Hexafluoridophosphate partial hydrolysis leading to the one-dimensional coordination polymer [$\{Cu(xantphos)(\mu-PO_2F_2)\}_n$]

Sarah Keller, Fabian Brunner, Alessandro Prescimone, Edwin C. Constable, Catherine E. Housecroft*

Department of Chemistry, University of Basel, Spitalstrasse 51, CH 4056 Basel, Switzerland E-mail address: catherine.housecroft@unibas.ch (C.E. Housecroft)

Abstract

The one-dimensional coordination polymer $[{Cu(xantphos)(\mu-PO_2F_2)}_n]$ (xantphos = 4,5bis(diphenylphosphino)-9,9-dimethylxanthene) is reported, the first in which copper(I) centres are linked by μ -PO₂F₂ units.

Keywords: Coordination polymer; copper(I); hexafluoridophosphate hydrolysis; crystal structure; P^P chelate; μ -PO₂F₂ units

The hexafluoridophosphate, $[PF_6]^-$, counterion is a ubiquitous choice in preparative inorganic chemistry due to a broad range of favourable properties including its weak coordination and straightforward handling. This counterion has become well-established in materials with applications including ionic liquids and batteries [1,2,3]. Nonetheless, hydrolysis of $[PF_6]^-$ is not unprecedented [4] and can lead to unexpected complexes containing $[PO_2F_2]^-$ or $[PO_3F]^{2-}$ groups [5,6,7,8,9]. Hydrolysis is catalysed by certain metal salts [10] and has also been observed under electrolytic conditions [11]. We report here the fortuitous formation of a one-dimensional coordination polymer consisting of chains of {Cu(μ -O₂PF₂)} units.

Scheme 1. Structures of xantphos and POP. Ring labelling in xantphos is for NMR assignments; Ph ring = D.

The attempted synthesis of $[Cu(xantphos)(6,6'-(CF_3)_2bpy)][PF_6]$ (xantphos = 4,5bis(diphenylphosphino)-9,9-dimethylxanthene) from equimolar amounts of $[Cu(MeCN)_4][PF_6]$, xantphos and 6,6'-bis(trifluoromethyl)-2,2'-bipyridine (6,6'-(CF_3)_2bpy) following procedures used for related complexes [12,13] yielded a slightly orange solid, in contrast to the intense

yellow or orange which is characteristic of $[Cu(xantphos)(N^N)][PF_6]$ complexes $(N^N =$ derivative of bpy) [¹³]. Crystal growth by layering yielded colourless crystals as the dominant product, in addition to some orange crystals. Parallel studies identified these as [Cu(6,6'- $(CF_3)_2bpy)_2$ [[PF₆] [14]. The failure to obtain [Cu(xantphos)(6,6'-(CF_3)_2bpy)][PF₆] is probably related to the electronic and steric factors of the two CF₃ groups combined with the bulky xantphos ligand. The related complex $[Cu(POP)(6,6'-Me_2bpy)][PF_6]$ (POP = bis(2diphenylphosphinophenyl)ether, $6,6'-Me_2bpy = 6,6'-dimethyl-2,2'-bipyridine)$ can be isolated [12], and the increased demands of CF₃ versus CH₃ are consistent with the larger Tolman cone angle of $P(CF_3)_3$ (137°) versus PMe₃ (118°) [15]. Single crystal X-ray diffraction revealed the colourless crystals to be the one-dimensional coordination polymer [{ $Cu(xantphos)(\mu-PO_2F_2)$ }]_n]. The NMR spectroscopic data were consistent with the presence of $[PO_2F_2]^-$ rather than $[PF_6]^-$. The solvent from the crystallization tube was carefully removed, and the orange crystals manually separated from the colourless crystals. The latter were washed with Et₂O, dried in air and dissolved in CD₂Cl₂. Signals in the ¹H NMR spectrum [16] are consistent with the {Cu(xantphos)} unit. The ¹⁹F NMR spectrum shows a broad doublet at δ –82.6 ppm (J_{PF} = 964 Hz) characteristic of $[PO_2F_2]^{-1}$. In the ³¹P NMR spectrum (Figure 1) there is a coincidental overlap of a singlet arising from the {Cu(xantphos)} unit (δ -16.81 ppm) and the middle of the triplet assigned to the $[PO_2F_2]^-$ ion (δ -16.98 ppm, J_{PF} = 962 Hz). The electrospray mass spectrum (positive mode) showed a peak envelope at m/z 641.4 arising from [Cu(xantphos)]⁺; although the $[PO_2F_2]^-$ anion was not observed in the negative mode, the spectrum showed a peak at m/z 63 assigned to [PO₂]⁻ which is a characteristic fragment [17, 18].

-7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27

Figure 1. 243 MHz ³¹P NMR spectrum of a CD₂Cl₂ solution of dissolved crystals of $[{Cu(xantphos)(\mu-PO_2F_2)}_n]$ showing overlapping singlet and triplet ($J_{PF} = 962$ Hz). Chemical shifts in δ / ppm.

The coordination polymer [{ $Cu(xantphos)(\mu-PO_2F_2)$ }] crystallizes in the monoclinic space group $P2_1/c$ [19]; the structure of the repeat unit is shown in Figure 2 and part of one polymer chain in Figure 3. The copper atom is in a distorted tetrahedral environment, bonded by the two P atoms of the xantphos ligand and two O atoms of different µ-O₂PF₂ groups. The PF₂ unit of the bridging $\{PO_2F_2\}$ group is disordered and has been modelled over two sites with fractional occupancies of 70 and 30%. Both orientations were constrained to be tetrahedral; only the major orientation is discussed below. Although the ability of $[PO_2F_2]^-$ to function as a bridging ligand is known (25 hits in a search of the Cambridge Structural Database, version 5.36 with February 2015 updates [20] using Conquest version 1.1.7 [21]), [{Cu(xantphos)(µ- PO_2F_2 is the first reported coordination polymer of $\{PO_2F_2\}$ connecting copper(I) centres. In the Cu(xantphos) unit, the Cu-P distances and P-Cu-P bond angle are in accord with literature values [Error! Bookmark not defined.]. Although xantphos is a relatively rigid ligand compared to POP (Scheme 1), the fused ring domain in xantphos (Scheme 1) undergoes a conformational change associated with the sp^3 carbon of the CMe₂ unit (C17–C19–C23 = 106.9(3)°). The C–O–C angle of 114.2(2)° coupled with the C–O bond distances of 1.387(4) and 1.397(4) Å are consistent with some π -localization across the C–O–C unit. In free xantphos, the corresponding angle is 117.4° [22]. Despite the π -contribution, the heterocyclic ring tends to adopt a boat conformation (survey of 173 structures containing xantphos in the CSD, version 5.36 with February 2015 updates $[^{20}]$); the conformation is variable and is affected if the O atom is involved in coordination [23]. In [{Cu(xantphos)(μ -PO₂F₂)}_n], the angle between the planes containing atoms C18, O1 and C28 and atoms C17, C18, C23 and C28 is 31.9° and that between the planes containing atoms C17, C18, C23 and C28 and C17, C19 and C23 is 32.3°. The corresponding internal angles of the boat in free xantphos are 20.8° and 24.34°.

The one-dimensional polymer chain is propagated by a screw axis running parallel to the crystallographic *b*-axis, and the Cu...Cu separation of adjacent copper atoms in a chain is 5.9590(9) Å. The copper atoms and connecting O–P–O motifs in a chain are essentially coplanar (deviation from a least squares plane through these atoms <0.14 Å), and the O atom of the xantphos ligand also lies in this plane. Polymer chains are related by a glide plane with a distance between the planes containing the Cu(μ -O–P–O) units of 9.3214(5) Å. The chains are packed

closely together with no solvent-accessible voids; interactions between adjacent chains are dominated by H...H contacts.

Figure 2. The repeat unit (including atoms defining polymer connectivity) in [{Cu(xantphos)(μ -PO₂F₂)}_n]; H atoms omitted and ellipsoids plotted at 40% probability. Symmetry codes: i = 1-x, ¹/₂+y, ³/₂-z. Selected bond parameters: Cu1-O2i = 2.167(2), Cu1-O3 = 2.063(2), Cu1-P1 = 2.2434(10), Cu1-P2 = 2.2299(9), O3-P3 = 1.450(4), O2-P3 = 1.407(5), F2-P3 = 1.617(3), F1-P3 = 1.547(5) Å; O2i-Cu1-P1 = 105.55(8), O2i-Cu1-P2 = 110.04(8), P1-Cu1-P2 = 117.64(4), O2i-Cu1-O3 = 97.83(8), P1-Cu1-O3 = 110.92(7), P2-Cu1-O3 = 112.76(8), F2-P3-F1 = 98.4(3), F2-P3-O3 = 104.8(2), F1-P3-O3 = 108.9(3), F2-P3-O2 = 105.0(3), F1-P3-O2 = 112.6(3), O3-P3-O2 = 123.7(3)°.

Figure 3. Part of one polymer chain in $[{Cu(xantphos)(\mu-PO_2F_2)}_n]$ viewed down the c-axis; the chain follows the *b*-axis.

Given the general application of $[PF_6]^-$ as a counterion in our work over many years, particularly in the isolation of $[Cu(N^N)(POP)][PF_6]$ [24] and $[Cu(N^N)(POP)][PF_6]$ complexes (N^N = bpy derivatives) [¹²,25], the hydrolysis of $[PF_6]^-$ to $[PO_2F_2]^-$ was unexpected. We attribute it to a combination of adventitious water and to the catalytic action of copper(I), possibly in the presence of the xantphos ligand.

Acknowledgements

We acknowledge the Swiss National Science Foundation, the University of Basel and the European Research Council (Advanced Grant 267816 LiLo) for financial support.

Appendix A. Supplementary data

CCDC 1053233 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk)

- R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, N. Armaroli, Angew. Chem. Int. Ed. 51 (2012) 8178.
- [2] J. P. Hallett, T. Welton, Chem. Rev. 111 (2011) 3508.
- [3] J. B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 587.
- [4] R. Fernández-Galán, B. R. Manzano, A. Otero, M. Lanfranchi, M. A. Pellinghelli, Inorg. Chem. 22 (1994) 2309.
- [5] M. Albrecht, K. Hübler, W. Kaim, Z. Anorg. Allg. Chem. 626 (2000) 1033.
- [6] N. P. Deifel, K. T. Holman, C. L. Cahill, Chem. Commun. (2008) 6037.
- [7] N. R. Brooks, A. J. Blake, N. R. Champness, J. W. Cunningham, P. Hubberstey, M. Schröder, Cryst. Growth Des. 1 (2001) 395.
- [8] D. Dermitzaki, C. P. Raptopoulou, V. Psycharis, A. Escuer, S. P. Perlepes, T. C. Stamatatos, Dalton Trans. 43 (2014) 14520.
- [9] T. T. da Cunha, F. Pointillart, B. Le Guennic, C. L. M. Pereira, S. Golhen, O. Cador, L. Ouahab, Inorg. Chem. 52 (2013) 9711.
- [10] D. Wiedmann, E. Świętek, W. Macyk, A. Grohmann, Z. Anorg. Allg. Chem. 639 (2013) 1483 and refs. therein.
- [11] A. J. Tasiopoulos, N. C. Harden, K. A. Abboud, G. Christou, Polyhedron 22 (2003) 133.
- [12] S. Keller, E. C. Constable, C. E. Housecroft, M. Neuburger, A. Prescimone, G. Longo, A. Pertegás, M. Sessolo, H. J. Bolink, Dalton Trans. 43 (2014) 16593 and references therein.
- [13] I. Andrés-Tomé, J. Fyson, F. B. Dias, A. P. Monkman, G. Iacobellis, P. Coppo, Dalton Trans. 41 (2012) 8669.
- [14] F. Brunner, S. Keller, Y. M. Klein, E. C. Constable, C. E. Housecroft, in preparation.
- [15] C. A. Tolman, Chem. Rev. 77 (1977) 313.

- [16] A solution of xantphos (145 mg, 0.25 mmol) and 6,6'-(CF₃)₂bpy (73 mg, 0.25 mmol) in CH₂Cl₂ (20 ml) was added to a solution of [Cu(MeCN)₄][PF₆] (93 mg, 0.25 mmol) in CH₂Cl₂ (20 ml). The resulting pale yellow solution was stirred for 2 h, and then solvent was removed in vacuo. The yellow residue was redissolved in CH₂Cl₂ (4 ml), transferred to a layer tube and layered with Et₂O. After one day, colourless crystals mixed with a minor component of orange crystals were obtained. The colourless crystals were collected and analysed. ¹H NMR (600 MHz, CD₂Cl₂, 298 K) δ /ppm 7.61 (dd, *J* = 7.6, 1.5 Hz, 2H, H^{C5}), 7.43–7.29 (m, 12H, H^{D3+D4}), 7.24 (m, 8H, H^{D2}), 7.16 (t, *J* = 7.7 Hz, 2H, H^{C4}), 6.64 (m, 2H, H^{C3}), 1.67 (s, 6H, H^{Me}). ¹⁹F NMR (565 MHz, CD₂Cl₂, 298 K) δ / ppm –82.6 (broad d, *J*_{PF} = 964 Hz). ³¹P NMR (243 MHz, CD₂Cl₂, 298 K) δ / ppm –16.98 (t, *J*_{PF} = 962 Hz, PF₂), -16.81 (br, xantphos). ESI MS positive mode: *m*/z 641.4 [M–PO₂F₂]⁺ (base peak, calc. 641.1); ESI MS negative mode: *m*/z 62.5 (base peak, calc. 63.0, [PO₂]⁻). Found C 63.18, H 4.59, N 0.53; C₃₉H₃₂CuF₂O₃P₃⁻¹/₃MeCN requires C 62.95, H 4.40, N 0.62%.
- [17] V. Kraft, M. Grützke, W. Weber, M. Winter, S. Nowak, J. Chromatogr. A 1354 (2014) 92.
- [18] M. Wachsmann, K. G. Heumann, Int. J. Mass Spectrom. Ion Processes 108 (1991) 75.
- [19] $C_{39}H_{32}CuF_2O_3P_3$, M = 743.14, colourless block, monoclinic, space group $P2_1/c$, a = 12.4347(15), b = 10.8870(13), c = 25.682(3) Å, $\beta = 100.220(3)^\circ$, U = 3421.6(7) Å³, Z = 4, Dc = 1.443 Mg m⁻³, μ (Cu-K α) = 2.636 mm⁻¹, T = 123 K. Total 27376 reflections, 5965 unique, $R_{int} = 0.032$. Refinement of 5913 reflections (460 parameters) with $I > 2\sigma(I)$ converged at final $R_1 = 0.0737$ (R_1 all data = 0.0737), w $R_2 = 0.1888$ (w R_2 all data = 0.1888), gof = 0.9956.
- [20] F. H. Allen, Acta Cryst., B 58 (2002) 380.
- [21] I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Cryst., B 2002 (58) 389.
- [22] S. Hillebrand, J. Bruckmann, C. Kruger, M. W. Haenel, Tetrahedron Lett. 1995, 36, 75.
- [23] See for example: D. Fujino, H. Yorimitsu, A. Osuka, J. Am. Chem. Soc. 136 (2014) 6255.
- [24] S. Y. Brauchli, F. J. Malzner, E. C. Constable and C. E. Housecroft, *RSC Adv.*, 2014, 4, 62728 and references therein.
- [25] R. D. Costa, D. Tordera, E. Ortí, H. J. Bolink, J. Schönle, S. Graber, C. E. Housecroft, E. C. Constable, J. A. Zampese, J. Mater. Chem. 21 (2011) 16108.