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Abstract   

The one-dimensional coordination polymer [{Cu(xantphos)(µ-PO2F2)}n] (xantphos = 4,5-

bis(diphenylphosphino)-9,9-dimethylxanthene) is reported, the first in which copper(I) 

centres are linked by µ-PO2F2 units.    
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The hexafluoridophosphate, [PF6]−, counterion is a ubiquitous choice in preparative inorganic 

chemistry due to a broad range of favourable properties including its weak coordination and 

straightforward handling. This counterion has become well-established in materials with 

applications including ionic liquids and batteries [1,2,3]. Nonetheless, hydrolysis of [PF6]− is not 

unprecedented [4] and can lead to unexpected complexes containing [PO2F2]– or [PO3F]2– groups 

[5,6,7,8,9]. Hydrolysis is catalysed by certain metal salts [10] and has also been observed under 

electrolytic conditions [11]. We report here the fortuitous formation of a one-dimensional 

coordination polymer consisting of chains of {Cu(µ-O2PF2)} units.  

 
Scheme 1. Structures of xantphos and POP. Ring labelling in xantphos is for NMR assignments; Ph ring = D.  
 

The attempted synthesis of [Cu(xantphos)(6,6'-(CF3)2bpy)][PF6] (xantphos = 4,5-

bis(diphenylphosphino)-9,9-dimethylxanthene) from equimolar amounts of [Cu(MeCN)4][PF6], 

xantphos and 6,6'-bis(trifluoromethyl)-2,2'-bipyridine (6,6'-(CF3)2bpy) following procedures 

used for related complexes [12,13] yielded a slightly orange solid, in contrast to the intense 
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yellow or orange which is characteristic of [Cu(xantphos)(N^N)][PF6] complexes (N^N = 

derivative of bpy) [13]. Crystal growth by layering yielded colourless crystals as the dominant 

product, in addition to some orange crystals. Parallel studies identified these as [Cu(6,6'-

(CF3)2bpy)2][PF6] [14]. The failure to obtain [Cu(xantphos)(6,6'-(CF3)2bpy)][PF6] is probably 

related to the electronic and steric factors of the two CF3 groups combined with the bulky 

xantphos ligand. The related complex [Cu(POP)(6,6'-Me2bpy)][PF6] (POP = bis(2-

diphenylphosphinophenyl)ether, 6,6'-Me2bpy = 6,6'-dimethyl-2,2'-bipyridine) can be isolated 

[12], and the increased demands of CF3 versus CH3 are consistent with the larger Tolman cone 

angle of P(CF3)3 (137o) versus PMe3 (118o) [15]. Single crystal X-ray diffraction revealed the 

colourless crystals to be the one-dimensional coordination polymer [{Cu(xantphos)(µ-PO2F2)}n]. 

The NMR spectroscopic data were consistent with the presence of [PO2F2]– rather than [PF6]–. 

The solvent from the crystallization tube was carefully removed, and the orange crystals 

manually separated from the colourless crystals. The latter were washed with Et2O,  dried in air 

and dissolved in CD2Cl2. Signals in the 1H NMR spectrum [16] are consistent with the 

{Cu(xantphos)} unit. The 19F NMR spectrum shows a broad doublet at δ –82.6 ppm (JPF = 964 

Hz) characteristic of [PO2F2]– [4]. In the 31P NMR spectrum (Figure 1) there is a coincidental 

overlap of a singlet arising from the {Cu(xantphos)} unit (δ −16.81 ppm) and the middle of the 

triplet assigned to the [PO2F2]– ion (δ −16.98 ppm, JPF = 962 Hz). The electrospray mass 

spectrum (positive mode) showed a peak envelope at m/z 641.4 arising from [Cu(xantphos)]+; 

although the [PO2F2]− anion was not observed in the negative mode, the spectrum showed a peak 

at m/z 63 assigned to [PO2]− which is a characteristic fragment [17, 18].  

 
Figure 1. 243 MHz 31P NMR spectrum of a CD2Cl2 solution of dissolved crystals of [{Cu(xantphos)(µ-PO2F2)}n] 

showing overlapping singlet and triplet (JPF = 962 Hz). Chemical shifts in δ / ppm. 
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The coordination polymer [{Cu(xantphos)(µ-PO2F2)}n] crystallizes in the monoclinic 

space group P21/c [19]; the structure of the repeat unit is shown in Figure 2 and part of one 

polymer chain in Figure 3. The copper atom is in a distorted tetrahedral environment, bonded by 

the two P atoms of the xantphos ligand and two O atoms of different µ-O2PF2 groups. The PF2 

unit of the bridging {PO2F2} group is disordered and has been modelled over two sites with 

fractional occupancies of 70 and 30%. Both orientations were constrained to be tetrahedral; only 

the major orientation is discussed below. Although the ability of [PO2F2]− to function as a 

bridging ligand is known (25 hits in a search of the Cambridge Structural Database, version 5.36 

with February 2015 updates [20] using Conquest version 1.1.7 [21]), [{Cu(xantphos)(µ-

PO2F2)}n] is the first reported coordination polymer of {PO2F2} connecting copper(I) centres. In 

the Cu(xantphos) unit, the Cu–P distances and P–Cu–P bond angle are in accord with literature 

values [Error! Bookmark not defined.]. Although xantphos is a relatively rigid ligand 

compared to POP (Scheme 1), the fused ring domain in xantphos (Scheme 1) undergoes a 

conformational change associated with the sp3 carbon of the CMe2 unit (C17–C19–C23 = 

106.9(3)°). The C–O–C angle of 114.2(2)° coupled with the C–O bond distances of 1.387(4) and 

1.397(4) Å are consistent with some π-localization across the C–O–C unit. In free xantphos, the 

corresponding angle is 117.4° [22]. Despite the π-contribution, the heterocyclic ring tends to 

adopt a boat conformation (survey of 173 structures containing xantphos in the CSD, version 

5.36 with February 2015 updates [20]); the conformation is variable and is affected if the O atom 

is involved in coordination [23]. In [{Cu(xantphos)(µ-PO2F2)}n], the angle between the planes 

containing atoms C18, O1 and C28 and atoms C17, C18, C23 and C28 is 31.9° and that between 

the planes containing atoms C17, C18, C23 and C28 and C17, C19 and C23 is 32.3°. The 

corresponding internal angles of the boat in free xantphos are 20.8° and 24.34°.   

The one-dimensional polymer chain is propagated by a screw axis running parallel to the 

crystallographic b-axis, and the Cu...Cu separation of adjacent copper atoms in a chain is 

5.9590(9) Å. The copper atoms and connecting O–P–O motifs in a chain are essentially coplanar 

(deviation from a least squares plane through these atoms <0.14 Å), and the O atom of the 

xantphos ligand also lies in this plane. Polymer chains are related by a glide plane with a distance 

between the planes containing the Cu(µ-O–P–O) units of 9.3214(5) Å. The chains are packed 
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closely together with no solvent-accessible voids; interactions between adjacent chains are 

dominated by H…H contacts. 

 
Figure 2.   The repeat unit (including atoms defining polymer connectivity) in [{Cu(xantphos)(µ-PO2F2)}n]; H atoms 
omitted and ellipsoids plotted at 40% probability. Symmetry codes: i = 1–x, 1/2+y,3/2–z. Selected bond parameters: 
Cu1–O2i = 2.167(2), Cu1–O3 = 2.063(2), Cu1–P1 = 2.2434(10), Cu1–P2 = 2.2299(9), O3–P3 = 1.450(4), O2–P3 = 
1.407(5), F2–P3 = 1.617(3), F1–P3 = 1.547(5) Å; O2i–Cu1–P1 = 105.55(8), O2i–Cu1–P2 = 110.04(8), P1–Cu1–P2 
= 117.64(4), O2i–Cu1–O3 = 97.83(8), P1–Cu1–O3 = 110.92(7), P2–Cu1–O3 = 112.76(8), F2–P3–F1 = 98.4(3), F2–
P3–O3 = 104.8(2), F1–P3–O3 = 108.9(3), F2–P3–O2 = 105.0(3), F1–P3–O2 = 112.6(3), O3–P3–O2 = 123.7(3)o. 
 

 
Figure 3. Part of one polymer chain in [{Cu(xantphos)(µ-PO2F2)}n] viewed down the c-axis; the chain follows the b-
axis. 
 

Given the general application of [PF6]– as a counterion in our work over many years, particularly 

in the isolation of [Cu(N^N)(POP)][PF6] [24] and [Cu(N^N)(POP)][PF6] complexes (N^N = bpy 

derivatives) [12,25], the hydrolysis of [PF6]– to [PO2F2]− was unexpected. We attribute it to a 



5 

 

combination of adventitious water and to the catalytic action of copper(I), possibly in the 

presence of the xantphos ligand. 
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