CrystEngComm

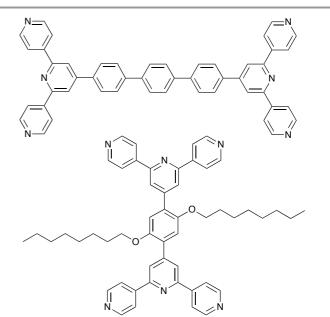
COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x constructed from a ditopic bis(4,2':6',4''-terpyridine)

Edwin C. Constable,^{*a*} Catherine E. Housecroft,*^{*a*} Srboljub Vujovic^{*a*} and Jennifer A. Zampese^{*a*}

 $2D \rightarrow 2D$ Parallel interpenetration of (4,4) sheets

Received 00th January 2012, Accepted 00th January 2012


DOI: 10.1039/x0xx00000x

www.rsc.org/

The ditopic ligand 1,4-bis(*n*-octyloxy)-2,5-bis(4,2':6',4''terpyridin-4'-yl)benzene reacts with ZnCl₂ to give 2dimensional (4,4) nets with a corrugated topology facilitating interpenetration in a 2D \rightarrow 2D parallel manner.

The coordination chemistry of 4,2':6',4"-terpyridines has blossomed¹ in the 15 years since the report of the first coordination polymer containing the parent 4,2':6',4"-tpy ligand.² To date, no examples are known in which the central pyridine ring is coordinated and the remaining divergent donor set lends itself to the assembly of 1dimensional coordination polymers or metallomacrocycles.¹ The incorporation of diphenylphosphino, 3 carboxylato, 4,5,6,7,8,9,10,11,12,13 or $\mathsf{pyridyl}^{13,14,15,16,17,18,19,20}$ functionalities into the scaffold leads to the assembly of molecular capsules and networks. Multitopic ligands incorporating multiple 2,2':6',2"-terpyridine domains²¹ have significantly expanded the diversity of structures accessible with the chealting 2,2':6',2"-tpy unit and have lead to a wide range of architectures. Outside the patent literature, reports of multidomain 4,2':6',4"-tpy ligands are remarkably sparse,^{22,23,24} although Yoshida et al. have investigated the coordination behaviour of 1,3-di((4,2':6',4"terpyridin)-4'-yl)benzene which forms a triply interpenetrating network with cobalt(II). $^{\rm 23}$ Here we describe the synthesis of the ditopic ligand 1 (Scheme 1) and its reaction with zinc(II) chloride to give a coordination network consisting of (4,4) sheets engaging in $2D \rightarrow 2D$ parallel interpenetration.

Although initial synthesis of a ditopic ligand containing a 4,4"-(1,1':4',1"-triphenylene) spacer connecting the 4'-positions of two 4,2':6',4"-tpy domains was successful,⁺ the product (Scheme 1) was poorly soluble in common organic solvents. We therefore decided to introduce solubilizing alkyl chains. Following the one pot method of Wang and Hanan²⁵, the reaction of two equivalents of 4-acetylpyridine with 2,5-bis(octyloxy)benzene-1,4-dicarbaldehyde in EtOH in the presence of NH₃ lead to the formation of pale yellow **1** in 30% yield after recrystallization from EtOH/CHCl₃.⁺ The base peak at *m/z* 797.9 in the electrospray mass spectrum (MeOH) of **1** was assigned to [M + H]⁺. Solution ¹H and ¹³C NMR spectra of **1**⁺ were assigned by COSY, HMQC and HMBC methods and confirmed the presence of a single, C₂symmetric 4,2':6',4"-tpy environment. A singlet at δ 7.16 ppm was assigned to the proton of the phenylene spacer; resonances in the alkyl region confirmed the presence of the octyloxy chains. The absorption spectrum of **1** exhibits intense, high energy bands arising from spin-allowed $\pi^* \leftarrow \pi$ and $\pi^* \leftarrow$ n transitions which tail into the visible (Fig. S1⁺). A crystal of X-ray quality was selected from the bulk sample and the structure of **1** is shown in Fig. 1.

Scheme 1. Structures of ditopic ligand with 4,4"-(1,1':4',1"-triphenylene) spacer and of ligand 1.

Compound **1** crystallizes²⁶ in the space group $P2_1/c$ with half the molecule in the asymmetric unit; the second half is generated by an inversion centre. The phenylene ring is twisted 46.3° with respect to the plane of the pyridine ring to which it is bonded, thereby minimizing H...H contacts between the rings. The 4,2':6',4''-tpy unit is close to planar (angles between the rings containing N1/N2 and N2/N3 = 12.3 and 3.9°), concomitant with efficient π -stacking of 4,2':6',4''-tpy units in adjacent molecules. The N2/N3 pyridine rings exhibit face-to-face contacts with the N2ⁱⁱ/N3ⁱⁱ pair of rings (separation of planes = 3.44 Å, centroid...centroid separations = 3.59 Å; symmetry code ii = 1-x, -1-y, 1-z). The stacking is restricted to pairs of 4,2':6',4''-tpy domains, with each pair being sandwiched between a pair of alkoxy chains which adopt extended conformations (Fig. 2).

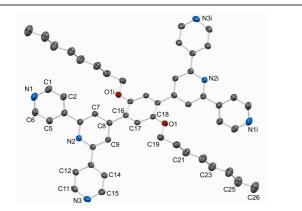


Fig. 1. ORTEP diagram of **1** with ellipsoids plotted at 50% probability level; H atoms omitted for clarity. Symmetry code i = 1-x, -y, 1-z. Selected bond parameters: O1–C18 = 1.3684(16), O1–C19 = 1.4390(16), C8–C16 = 1.4852(17), range N–C = 1.335(2) to 1.3455(17) Å; C18–O1–C19 = 118.70(10), C1–N1–C5 = 115.64(12), C10–N2–C6 = 118.13(11), C15–N3–C11 = $115.75(12)^{\circ}$.

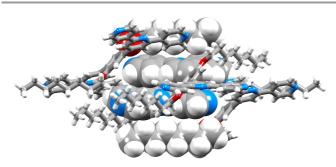


Fig. 2. Alkoxy/tpy/tpy/alkoxy stacking motif in the crystal lattice of 1.

Ligand **1** is potentially a 4-connecting node and could lead to a multiplicity of discrete and network structures upon interaction with metal ions, including two-dimensional (4,4) sheets and diamantoid (6,3) three dimensional structures.²⁷ We have previously shown that tetrahedral ZnX₂ units (M = F, Cl, Br or I) act as topologically linear two-connecting linkers to assemble 4,2':6',4''-tpy ligands into complex architectures.¹ Layering of chloroform and methanol solutions of, respectively, **1** and ZnCl₂ (ratio of equivalents of **1** : ZnCl₂ = **1** : 2) resulted in the formation of yellow crystals of a complex that analysed as [Zn₂Cl₄(**1**)].⁺ Structural determination²⁸ of the complex confirmed the formation of {[Zn₂Cl₄(**1**)]⁻ 4H₂O₃, in which each molecule of **1** binds zinc(II) only through the outer pyridine donors (Fig. S2⁺). Non-coordination of the central pyridine ring is typical of 4,2':6',4''-tpy and

its derivatives.¹ { $[Zn_2Cl_4(1)]$ 4H₂O}_n crystallizes in the C2/c space group with half the ligand and one ZnCl₂ unit in the asymmetric unit. The octyloxy chain is disordered and has been modelled with each of the last five C atoms of the chain in two sites of fractional occupancies of 0.46 and 0.54. Residual electron density in the lattice was modelled as partial occupancy water molecules. The conformation of 1 in $\{[Zn_2Cl_4(1)]^{\dagger} 4H_2O\}_n$ is close to that in the free ligand (Fig. S3⁺); angles between the planes of adjacent pyridine rings are 16.7 and 2.1°, and between the central pyridine and phenyl rings is 49.1°. As expected, each ligand acts as a 4-connecting node with tetrahedral zinc(II) centres as linkers. The primary unit that assembles is a metallomacrocycle (Fig. 3) which contains four zinc(II) ions and four 1 ligands. Metal centres 1 and 2 and metal centres 3 and 4 are each bridged by single 4,2':6',4"-tpy domains whereas centres 2 and 3 and 4 and 1 are linked by two nitrogen donors from each of the 4,2':6',4"-tpy domains of a single ligand. As a consequence of the different bonding modes of the ligands, the metallomacrocyle is non-planar. Interconnection of these metallomacrocycles produces a (4,4) sheet lying in the bc-plane, and Fig. 4a depicts part of one sheet. A view of the same sheet down the c-axis (Fig. 4b) illustrates its corrugated topology, with the extended alkoxy chains threaded through the middle of the sheet.

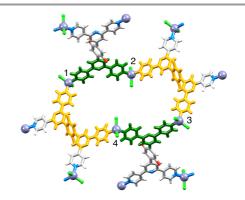
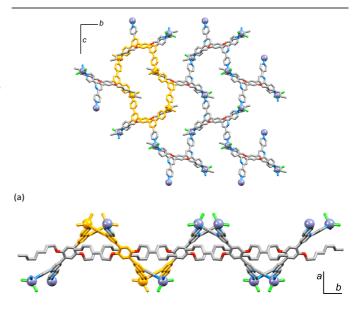



Fig. 3. One macrocyclic unit in $\{[Zn_2Cl_4(1)]$ $^2H_2O\}_n$, emphasizing the two different bridging modes of 1 (see text). Alkyl chains omitted for clarity.

This journal is © The Royal Society of Chemistry 2012

(b)

Fig. 4 (a) Part of one (4,4) sheet in $\{[Zn_2Cl_4(1)], 4H_2O\}_n$ with one macrocyclic unit highlighted in orange; view down the *a* axis. (b) The same sheet viewed down the *c*-axis. Hydrogen atoms are omitted.

The corrugated form of each sheet allows two such sheets to interpenetrate,²⁹ in a 2D \rightarrow 2D parallel manner^{30,31} to optimize packing (Figs. 5 and 6). Zinc dichloride units protrude from the top and bottom of the resultant layer and are accommodated in the V-shaped cavities (Fig. 5) of the adjacent layer. Interactions between layers involve offset face-to-face stacking of 4,2':6',4"-tpy units at a separation of 3.59 Å. Within each layer, there are no face-to-face stacking interactions between a pair of 4,2':6',4"-tpy units. This suggests that the presence of the alkyl chains on **1** may have a significant influence on the assembly of the network, and we are now investigating analogous systems with shorter alkoxy functionalities.

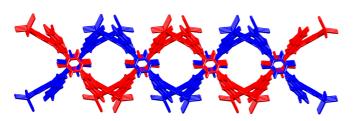


Fig. 5. View down the *c*-axis showing $2D \rightarrow 2D$ parallel interpenetration of sheets in one layer of the lattice in {[$Zn_2Cl_4(1)$] $^{-}4H_2O$ }_n. Alkyl chains have been deleted for clarity.

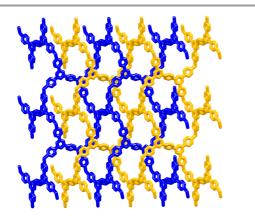


Fig. 6. View down the a-axis showing interpenetration of two sheets in one layer of the lattice in $\{[Zn_2Cl_4(1)]$ $4H_2O\}_n$. Alkyl chains have been deleted for clarity

Conclusions

We have described the synthesis and characterization of a ditopic 4,2':6',4''-tpy ligand, **1**, bearing solubilizing alkyl chains, and have demonstrated its use in the assembly of a coordination network. The ligand acts as a 4-connecting node with $ZnCl_2$ units as linkers in $\{[Zn_2Cl_4(1)], 4H_2O\}_n$. The complex assembles in (4,4) nets with a corrugated topology allowing interpenetration in a 2D \rightarrow 2D parallel manner. The octyloxy chains incorporated into the phenylene spacer in **1** adopt an extended conformation and are sandwiched between

pairs of 4,2':6',4"-tpy domains, suggesting that the length of the chain may assist in directing the assembly of the interpenetrated sheets.

Acknowledgements

We thank the Swiss National Science Foundation, the European Research Council (Advanced Grant 267816 LiLo) and the University of Basel for financial support.

Notes and references

^{*a*} Department of Chemistry, University of Basel, Spitalstrasse 51, CH4056 Basel, Switzerland. Fax: +41 61 267 1018; Tel: +41 61 267 1008; E-mail: catherine.housecroft@unibas.ch

† Electronic Supplementary Information (ESI) available: Synthetic and general crystallographic details: Fig. S1. Absorption spectrum of 1; Fig. S2. Structure of the 4-connecting node in $\{[Zn_2Cl_4(1)], 4H_2O\}_n$; Fig. S3. Overlay of the ligand conformations in 1 and the complex. See DOI: 10.1039/c000000x/

- 1 C. E. Housecroft, Dalton Trans., 2014, DOI: 10.1039/c4dt00074a.
- 2 M. Barquín, J. Cancela, M. J. González Garmendia, J. Quintanilla and U. Amador, *Polyhedron*, 1998, **17**, 2373.
- 3 X. Tan, X. Chen, J. Zhang and C.-Y. Song, *Dalton Trans.*, 2012, **41**, 3616.
- 4 L. Wen, X. Ke, L. Qiu, Y. Zou, L. Zhou, J. Zhao and D. Li, *Cryst. Growth Des.*, 2012, **12**, 4083.
- 5 C. Niu, A. Ning, C. Feng, X. Wan and C. Kou, J. Inorg. Organomet. Polym., 2012, 22, 519.
- 6 P. Yang, M.-S. Wang, J.-J. Shen, M.-X. Li, Z.-X. Wang, M. Shao and X. He, *Dalton Trans.*, 2014, 43, 1460.
- 7 Y.-L. Gai, F.-L. Jiang, L. Chen, Y. Bu, M.-Y. Wu, K. Zhou, J. Pan and M.-C. Hong, *Dalton Trans.*, 2013, 42, 9954.
- 8 Y. Li, Z. Ju, B. Wu and D. Yuan, Cryst. Growth Des., 2013, 13, 4125.
- 9 F. Yuan, J. Xie, H.-M. Hu, C.-M. Yuan, B. Xu, M.-L. Yang, F.-X. Dong and G.-L. Xue, *CrystEngComm*, 2013, 15, 1460.
- 10 F. Yuan, Q. Zhu, H.-M. Hu, J. Xie, B. Xu, C.-M. Yuan, M.-L. Yang, F.-X. Dong and G.-L. Xue, *Inorg. Chim. Acta*, 2013, **397**, 117.
- 11 H.-N. Zhang, F. Yuan, H.-M. Hu, S.-S. Shen and G.-L. Xue, *Inorg. Chem. Comm.*, 2013, 34, 51.
- 12 W. Yang, A. J. Davies, X. Lin, M. Suyetin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, E. Bichoutskaia, N. R. Champness, S. Yang and M. Schröder, *Chem. Sci.*, 2012, **3**, 2992.

This journal is © The Royal Society of Chemistry 2012

- 13 Y.-Q. Chen, S.-J. Liu, Y.-W. Li, G.-R. Li, K.-H. He, Y.-K. Qu, T.-L. Hu and X.-H. Bu, *Cryst. Growth Des.*, 2012, **12**, 5426.
- 14 E. C. Constable, G. Zhang, C. E. Housecroft and J. A. Zampese, *CrystEngComm.* 2011, 13, 6864.
- 15 J. Heine, J. Schmedt auf der Günne and S. Dehnen, J. Am. Chem. Soc., 2011, 133, 10018.
- 16 V. N. Dorofeeva, S. V. Kolotilov, M. A. Kiskin, R. A. Polunin, Z. V. Dobrokhotova, O. Cador, S. Golhen, L. Ouahab, I. L. Eremenko and V. M. Novotortsev, *Chem. Eur. J.*, 2012, **18**, 5006.
- 17 Y.-Q. Chen, G.-R. Li, Y.-K- Qu, Y.-H. Zhang, K.-H. He, Q. Gao and X.-H. Bu, *Cryst. Growth Des.*, 2013, 13, 901.
- 18 C. Liu, Y.-B. Ding, X.-H. Shi, D. Zhang, M.-H. Hu, Y.-G. Yin and D. Li, *Cryst. Growth Des.*, 2009, 9, 1275.
- 19 J. Song, B.-C. Wang, H.-M. Hu, L. Gou, Q.-R. Wu, X.-L. Yang, Y.-Q. Shangguan, F.-X. Dong and G.-L. Xue, *Inorg. Chim. Acta*, 2011, 366, 134.
- 20 K.-R. Ma, F. Ma, Y.-L. Zhu, L.-J. Yu, X.-M. Zhao, Y. Yang and W.-H. Duan, *Dalton Trans.*, 2011, 40, 9774.
- See for example: E. C. Constable, A. M. W. Cargill Thompson, P. Harveson, L. Macko and M. Zehnder, *Chem. Eur. J.*, 1995, *1*, 360; A. Wild, A. Winter, F. Schluetter and U. S. Schubert, *Chem. Soc. Rev.*, 2011, 40, 1459; Y. Yan and J. Huang, *Coord. Chem. Rev.*, 2010, 254, 1072; E. C. Constable, *Chimia*, 2013, 67, 388; E. C. Constable, *Coord. Chem. Rev.*, 2008, 252, 842; E. C. Constable, *Chem. Soc. Rev.*, 2007, 36, 246 and references therein.
- 22 G. W. V. Cave and C. L. Raston, J. Chem. Soc., Perkin Trans. 1, 2001, 3258.
- 23 J. Yoshida, S.-I. Nishikiori and H. Yuge, J. Coord. Chem., 2013, 66, 2191.
- 24 S. A. S. Ghozlan and A. Z. A. Hassanien, *Tetrahedron*, 2002, **58**, 9423.
- 25 J. Wang and G. S. Hanan, Synlett, 2005, 1251.
- 26 1: $C_{52}H_{56}N_6O_2$, M = 797.03, yellow block, monoclinic, space group $P2_1/c$, a = 13.3440(8), b = 11.0423(7), c = 14.6607(9) Å, $\beta = 90.571(3)^\circ$, U = 2160.1(2) Å³, Z = 2, $D_c = 1.225$ Mg m⁻³, μ (Cu-K α) = 0.589 mm⁻¹, T = 123 K. Total 31623 reflections, 3923 unique, $R_{int} = 0.0353$. Refinement of 3425 reflections (272 parameters) with $I > 2\sigma$ (I) converged at final R1 = 0.0393 (R1 all data = 0.0447), wR2 = 0.1046 (wR2 all data = 0.1096), gof = 1.034. CCDC 986027.
- 27 S. R. Batten, S. M. Neville and D. R. Turner, Coordination Polymers: Design, Analysis and Application, RSC Publishing, Cambridge, 2009.
- 28 {[**Zn₂Cl₄(1)**] $^{\circ}$ **4H₂O**}_{*n*}: C₅₂H₅₆N₆O₂, *M* = 797.03, yellow block, monoclinic, space group *P*2₁/*c*, *a* = 13.3440(8), *b* = 11.0423(7), *c* =

14.6607(9) Å, $\beta = 90.571(3)^{\circ}$, U = 2160.1(2) Å³, Z = 2, $D_c = 1.225$ Mg m⁻³, μ (Cu-K α) = 0.589 mm⁻¹, T = 123 K. Total 31623 reflections, 3923 unique, $R_{int} = 0.0353$. Refinement of 3425 reflections (272 parameters) with $I > 2\sigma$ (I) converged at final R1 = 0.0393 (R1 all data = 0.0447), wR2 = 0.1046 (wR2 all data = 0.1096), gof = 1.034. CCDC 986027.

- 29 H. Guo, D. Qiu, X. Guo, S. R. Batten and H. Zhang, *CrystEngComm*, 2009, **11**, 2611.
- 30 S. R. Batten in Supramolecular Chemistry: From Molecules to Nanomaterials, eds. P. A. Gale and J. W. Steed, Wiley, Chichester, 2012, vol. 6, p. 3107.
- 31 S. R. Batten, CrystEngComm, 2001, 18, 1.