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Endocytosis of the ASGP Receptor H1 Is Reduced by Mutation
of Tyrosine-5 But Still Occurs via Coated Pits
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Department of Biochemistry, Biocenter, University of Basel, CH-4056 Basel, Switzerland

Abstract. The clustering of plasma membrane recep-
tors in clathrin-coated pits depends on determinants
within their cytoplasmic domains. In several cases, in-
dividual tyrosine residues were shown to be necessary
for rapid internalization. We have mutated the single
tyrosine at position 5 in the cytoplasmic domain of the
major subunit H1 of the asialoglycoprotein receptor to
alanine. Expressed in fibroblast cells, the mutant pro-
tein was accumulated in the plasma membrane, and its
rate of internalization was reduced by a factor of

four. The residual rate of endocytosis, however, was
still significantly higher than that of resident plasma

membrane proteins. Upon acidification of the
cytoplasm, which specifically inhibits the formation of
clathrin-coated vesicles but not uptake of the fluid
phase marker Lucifer yellow, residual endocytosis was
blocked. By immunoelectron microscopy mutant Hl
could be directly demonstrated in coated pits. The
fraction of wild-type and mutant Hl present in coated
pits as determined by immunogold localization cor-
related well with the respective rates of internaliza-
tion. Thus, mutation of tyrosine-5 only partially inac-
tivates recognition of H1 for incorporation into coated
pits.

ACROMOLECULES are taken up into eukaryotic
M cells by endocytosis. The best characterized mech-
anism for this process is mediated by cell surface
receptors that cluster into clathrin-coated domains in the
plasma membrane (Goldstein et al., 1985; Hubbard, 1989).
Receptors are collected in these regions either constitutively
or after binding of ligand, and are internalized by invagina-
tion and pinching off of clathrin-coated vesicles (Goldstein
et al., 1979; Hopkins and Trowbridge, 1983). In the last
years, convincing evidence has been accumulated in support
of another, clathrin-independent mechanism for internaliza-
tion of fluid phase and certain toxins and membrane proteins
(reviewed by van Deurs et al., 1989). By biochemical disrup-
tion of coated vesicle formation, it was possible to distinguish
between clathrin-dependent and -independent pathways.
The determinants for clustering into clathrin-coated pits
were shown for several plasma membrane receptors to be
contained within their cytoplasmic domain. Deletion of this
portion of the receptors for LDL, polymeric immunoglobu-
lins (poly-Ig), epidermal growth factor (EGF),! transferrin,
and mannose-6-phosphate resulted in a drastic reduction of
the internalization rate (Lehrman et al., 1985; Mostov et al.,
1986; Prywes et al., 1986; Rothenberger et al., 1987; Lobel
etal., 1989). In the case of the macrophage Fc receptor (RII-
B2), quantitative immunoelectron microscopy studies have
shown that a truncated form lacking the cytoplasmic do-
main was largely excluded from coated pits (Miettinen et al.,

1. Abbreviations used in this paper: ASGP, asialoglycoprotein; ASOR,
asialoorosomucoid; EGF, epidermal growth factor.
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1989). There is increasing evidence that peripheral mem-
brane proteins, so-called assembly or adaptor proteins bind
to the cytoplasmic domains of receptors and induce the for-
mation of the clathrin coat (e.g., Moore et al., 1987; Pearse,
1988; Glickman et al., 1989; reviews by Keen, 1990, and by
Pearse and Robinson, 1990). As a result, proteins recog-
nized by adaptor proteins are concentrated in coated pits,
while other (resident) plasma membrane proteins are pas-
sively excluded from these surface patches and internalized
only very slowly (Bretscher et al., 1980; Roth et al., 1986).

The cytoplasmic domains of endocytic receptors are very
diverse in length, primary structure, and even their orienta-
tion with respect to the membrane (some are amino-, others
carboxy-terminal). Analysis of natural LDL receptor mu-
tants deficient in LDL uptake revealed that mutation of a sin-
gle residue, tyrosine-807, strongly affected internalization
(Davis et al., 1986). No other amino acid at this position
except phenylalanine and, to a lesser degree, tryptophan,
mediated efficient endocytosis of LDL (Davis et al., 1987).
A general importance of tyrosine residues for internalization
was suggested by the finding that insertion of a tyrosine into
the short cytoplasmic domain of influenza virus hemaggluti-
nin caused this protein to enter coated pits and to be inter-
nalized (Lazarovits and Roth, 1988). The sequence context
appeared also to be important, since at only one of three in-
sertion positions tested the tyrosine was functional. Very re-
cently, an extensive mutational analysis of this endocytosis
signal has been performed as well as a comparison of se-
quences flanking tyrosine residues that are either known or
presumed to be critical for internalization of endocytosed
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proteins (Ktistakis et al., 1990). A degenerate consensus for
internalization signals was deduced and was successfully
used to predict a position within the cytoplasmic domain of
glycophorin A where insertion of a tyrosine directed the mu-
tant protein into the endocytic pathway (Ktistakis et al.,
1990). For natural endocytic receptors other than the LDL
receptor, reports have been published demonstrating the im-
portance of tyrosine-2360 and/or tyrosine-2362 of the cat-
ion-independent mannose-6-phosphate receptor (Lobel et
al., 1989), of tyrosine-20 of the transferrin receptor (Jing et
al., 1990; Alvarez et al., 1990), and of tyrosine-734 of the
polymeric immunoglobulin receptor (Breitfeld et al., 1990).
In the cases of the LDL, the transferrin, and the poly-Ig
receptor, internalization of mutant receptors lacking the crit-
ical tyrosine was significantly reduced in transfected cells,
but not entirely eliminated. So far, it has not been addressed
by which mechanism this residual endocytosis takes place,
i.e., whether the lack of a “tyrosine signal” renders these
molecules less efficiently clustered into coated pits or rather
diverts them into an alternative endocytic pathway.

In this study we have investigated the characteristics of en-
docytosis of the wild-type and a mutant subunit HI of the hu-
man asialoglycoprotein (ASGP) receptor. The ASGP recep-
tor is a constituent of the plasma membrane of hepatocytes.
It specifically binds galactosyl-terminal oligosaccharides and
is responsible for the removal of desialylated glycoproteins
from the circulation into the cell for degradation in lyso-
somes (reviewed by Ashwell and Harford, 1982; Breitfeld et
al., 1985). The ASGP receptor is composed of two homolo-
gous subunits, H1 and H2 (Spiess and Lodish, 1985), which
are assembled in a complex with an HI-H2 ratio of 2-5:1
(reviewed by Spiess, 1990; Henis et al., 1990). Formation
of the heterooligomeric complex is necessary for high-affin-
ity ligand binding (Shia and Lodish, 1989). Yet, we have re-
cently shown that the major subunit Hl alone, although un-
able to bind ligand with high affinity, contains all the sig-
nals for constitutive endocytosis and recycling (Geffen et al.,
1989).

Hl is a type Il membrane protein and contains an amino-
terminal cytoplasmic domain of 40 residues with a single
tyrosine residue at position 5. The flanking sequences have
no striking similarity to those of the tyrosines implicated in
endocytosis in other receptors. By site-directed mutagene-
sis, we have changed this residue to an alanine and character-
ized endocytosis of the resulting mutant ASGP receptor HI.
The rate of internalization was found to be reduced by ap-
proximately a factor of four. However, as in other receptor
systems, significant residual endocytosis was observed for
H1 lacking the cytoplasmic tyrosine. By immunoelectron
microscopy and by specific inhibition of clathrin-dependent
endocytosis, we could show that the residual internalization
still occurs via clathrin-coated pits and vesicles and not by
an alternative pathway. Mutation of this tyrosine thus does
not entirely inactivate the recognition signal(s) for clustering
in coated pits.

Materials and Methods
DNA Constructs

Site-directed mutagenesis was performed using the gapped duplex DNA
procedure according to Kramer et al. (1984). The HindIII-BamHI fragment
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of the cDNA of the ASGP receptor H1 (Spiess et al., 1985), encoding the
amino-terminal 60 residues of the protein, was subcloned into M13mp9 and
used as the template. Using the synthetic anti-sense oligonucleotide GGT-
CTTGAGCCTCCTTG (the mismatched nucleotides are underlined), the
codon for tyrosine-5 (TAT) was mutated to that for an alanine (GCT). Suc-
cessfully mutated M13 clones were identified by DNA sequencing and
ligated to the 3’ portion of the cDNA. After ligation of a BglII linker into
the blunted Hind!1I site at the 5’ end of the mutant cDNA and of a Sall linker
into the blunted EcoRI site at the 3’ end, the full-size cDNA (BglII-Sall)
was subcloned into the retroviral shuttle vector pLJ (cut with BamHI and
Sall; Korman et al., 1987) to yield the expression plasmid pL1/5A.

Cell Culture and Transfection

Cell culture reagents were purchased from Gibco Laboratories (Grand Is-
land, NY) NIH3T3 mouse fibroblasts and ¥AM cells were grown in Dul-
becco’'s modified minimal essential medium (DME) supplemented with 8%
newborn calf serum (Inotech, Switzerland), 100 U/ml penicillin, 100 pug/ml
streptomycin, and 2 mM L-glutamine at 37°C with 7.5% CO,. The cell
lines 1-7 (expressing subunit H1) and 1-7-1 (expressing both receptor sub-
units H1 and H2) were derived from NIH3T3 fibroblasts as described by
Shia and Lodish (1989). For expression of tyrosine-mutated Hl1 in fibro-
blasts, pL1/5A was first transfected into WAM helper cells (Cone and Mulli-
gan, 1984) using polybrene and dimethyl suifoxide as described by Kawai
and Nishizawa (1984). ¥ AM cells resistant to 1 mg/ml G418 sulfate (Gibco
Laboratories) were grown to confluence. The virus-containing medium was
filtered through a 0.45-um pore-size filter (Millipore Corp., Bedford, MA)
and supplemented with 8 ug/ml polybrene. To infect NIH3T3 cells, 2.5 ml
were added per 10-cm dish (30% confluent). After 2.5 h at 37°C, 7.5 mi
fresh medium was added. After two days, the cells were split into a 15-cm
dish with selective medium containing 1 mg/ml G418 sulfate. Resistant
colonies were isolated and screened for expression of mutant H1 protein by
metabolic labeling with [33S]methionine and [3*S]cysteine and immunopre-
cipitation. Two independent clonal cell lines, F1(5A)-1 and FI(5A)-2, were
further characterized.

Receptor Distribution and Internalization Assay

The distribution between the cell surface and intracellular membranes and
the rate of internalization of wild-type and mutant H1 were determined as
described by Geffen et al. (1989). Briefly, H1 distribution was assayed by
digesting intact cells with proteinase K (1 mg/ml) at 4°C in PBS with 5 mM
EDTA for 30 min. Digestion was stopped by adding 2 mM PMSF. Protease-
digested and control cells were lysed in gel sample buffer and subjected to
SDS-PAGE and immunoblot analysis, using an affinity-purified rabbit anti-
body raised against a synthetic peptide to the carboxy-terminal sequence of
HI (residues 277-287). To assay HI internalization, cells were surface la-
beled at 4°C using the impermeant reagent ['**IJsulfosuccinimidyl-3-(4-
hydroxyphenyl) propionate (['>T)suifo-SHPP; Thompson et al., 1987), in-
cubated at 37°C for up to 45 min, and then digested at 4°C with proteinase
K. Protease-resistant labeled receptor was analyzed by immunoprecipita-
tion, SDS-gel electrophoresis, and autoradiography. Autoradiographs were
quantitated using a computing densitometer (Model 300A; Molecular Dy-
namics, Sunnyvale, CA).

Blocking Endocytosis via Clathrin-coated Vesicles

To specifically inhibit receptor internalization by coated pits/vesicles, the
method of acidification of the cytoplasm according to Sandvig et al. (1987)
was used. Cells grown in six-well clusters were rinsed with DME and
equilibrated with DME containing 20 mM Hepes (pH 7.2) and 30 mM am-
monium chloride for 30 min at 37°C. The medium was replaced by 1 ml
of prewarmed potassium/amiloride buffer (KA buffer; 140 mM KCl, 2 mM
CaCl;, 1 mM MgClz, 1 mM amiloride (Sigma Chemical Co., St. Louis,
MO), 20 mM Hepes, pH 7.2) for 5 min. This treatment lowers the cytoplas-
mic pH to 5.6-5.8 and blocks the pinching-off of coated vesicles (Sandvig
etal., 1987; Heuser, 1989). To maintain the acidic cytoplasmic pH, all sub-
sequent incubations were done in KA buffer.

Ligand Binding and Internalization

Asialoorosomucoid (ASOR) was prepared and '?5I-iodinated as described
previously (Shia and Lodish, 1989). Ligand binding to 1-7-1 cells (express-
ing both receptor subunits) was performed for 2 h at 4°C with 1 ug/ml
['#*I)ASOR in KA buffer containing 0.2 mg/ml cytochrome c. Nonspecific
binding was determined in the presence of 200-fold excess of unlabeled
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ASOR. To monitor ligand internalization, the cells were incubated with
[25TJASOR at 37°C for up to 15 min. Surface-bound ligand was selectively
removed by three washes with 5 mM EDTA in PBS at 4°C. Cell-associated
ligand was determined by counting the radioactivity, and by gel electropho-
resis of the cell lysate and autoradiography.

Endocytosis of Lucifer Yellow

Uptake of Lucifer yellow was measured as described by Swanson et al.
(1985). Acidified and control cells were incubated with 1 mg/ml Lucifer yel-
low (Fluka Chem. Corp., Ronkonkoma, NY) in KA buffer for various times
at 37°C. To wash the cells, the whole plate was immersed at 4°C twice in
11 each of PBS with 1 mg/ml BSA and twice in 11 each of PBS. The cells
were then lysed in 005 % Triton X-100 in PBS. The lysate was supplemented
with 0.1 mg/ml BSA, and Lucifer yellow concentration was determined by
fluorescence spectrometry (excitation at 430 nm, emission at 540 nm; back-
ground fluorescence of cells not incubated with Lucifer yellow was sub-
tracted).

Immunoelectron Microscopy

Surface distribution of wild-type and mutant Hl was analyzed in living and
prefixed cells by immunoelectron microscopy using gold conjugates. For
labeling of living cells, colloidal gold was prepared by the method of Slot
and Geuze (1985). Affinity-purified rabbit immunoglobulins directed against
the carboxy-terminal sequence of H1 were conjugated to 8-nm gold particles
essentially as described by Lucocq and Baschong (1986). Subconfiuent 1-7,
3T3 and F1(5A)-1 cells grown in 35-mm dishes were incubated in situ with
the immunoglobulin-gold probe in PBS for 1 h at 4°C and then for 10 min
at 37°C to allow labeled receptors to distribute in plasma membrane invagi-
nations and to be internalized. After fixation in 1% glutaraldehyde in PBS
for 2 h, the cells were rinsed three times with PBS and postfixed in reduced
osmium tetroxide for 30 min. Finally, cells were carefully scraped, enclosed
in 2% agar and embedded in Epon according to standard procedures. Thin
sections were counterstained with 6% aqueous uranyl acetate (30 min) and
lead acetate (2 min), and examined in a Phillips EM 300 electron micro-
scope.

For labeling of prefixed cells, monolayer cultures grown in six-well plates
were fixed at 4°C for 15 min as described by McLean and Nakane (1974)
and then covered with 50 mM NH,Cl in 100 mM sodium phosphate buffer,
pH 7.2, for 20 min to amidinate free aldehyde groups. The cells were
washed three times with phosphate buffer for 10 min each and twice for
5 min with TBS (20 mM Tris, pH 8.2, 150 mM NaCl), incubated with 3%
BSA in TBS for 40 min and then for 4 h with a rabbit antiserum raised
against purified human ASGP receptor (diluted 1:400 in TBS with 1%
BSA). After three washes with TBS for 5 min, the cells were incubated for
2 h with sheep anti-rabbit immunoglobulin conjugated to 5-nm gold parti-
cles diluted 1:20 in TBS with 0.25% BSA. After three rinses with TBS, the
cells were fixed and further processed as described above.

For the quantitation of immunoelectron micrographs, the unlabeled, in-
accessible domain of the plasma membrane adjacent to the plastic was ig-
nored. For the accessible surface, the fraction of the plasma membrane oc-
cupied by coated pits was determined by counting the relative number of
intersections of the lines of a test grid with coated and uncoated membrane,
as described by Griffiths et al. (1989). For this a double-lattice test system
was used (Weibel, 1979) on a set (» = 28) of randomly selected micro-
graphs with a primary magnification of 10,000 and a final magnification of
40,900. At this magnification the spacing (d) between test lines was 1.47 um
for estimating the total plasma membrane length and 0.12 um for estimating
that of coated pits. The number of gold particles over total plasma mem-
brane and coated pits was determined from the same micrographs.

Results

Mutation of Tyrosine-5 to Alanine

The major subunit H1 of the human ASGP receptor has pre-
viously been expressed in NIH3T3 fibroblast cells, and the
resulting cell line, called 1-7, has been characterized in detail
(Shia and Lodish, 1989; Geffen et al., 1989). In the absence
of the second subunit, Hl was unable to bind ASGPs with
high affinity, but it was transported to the cell surface and
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was constitutively internalized and recycled with kinetics
very similar to those of the heterooligomeric HI-H2 recep-
tor complex. Subunit H1 thus contains all the signals neces-
sary for rapid internalization and recycling and can serve as
a model system to study the requirements for endocytosis.

The cytoplasmic domain of H1 consists of 40 amino acids
and contains a single tyrosine residue at position 5:

MTKEYQDLQHLDNEESDHHQLRKGPPPPQPLLQRLCSGPR . . .

There are no phenylalanines and tryptophans, residues which
in the LDL receptor could functionally replace tyrosine-807.
To study the importance of tyrosine-5 for clustering of Hl
into coated pits and endocytosis, we have mutated it to an
alanine by site-directed mutagenesis of the cDNA. Using a
retroviral expression system (Korman et al., 1987), the mu-
tated cDNA was introduced into mouse NIH3T3 fibroblasts,
and stable expressing cell lines were isolated. The amount
of mutant H1 expressed in two clones, F1(5A)-1 and FI(5A)-2,
was similar to the amount of wild-type HI expressed in 1-7
cells. In all three cell lines, two major forms of H1 with ap-
parent molecular masses of 40 and 46 kD were synthesized
(Fig. 1, lanes 2, 4, and 6), which have been previously iden-
tified as the high-mannose glycosylated precursor and the
complex glycosylated mature form of the protein, respec-
tively (Schwartz and Rup, 1983; Shia and Lodish, 1989).
The mature form (which sometimes appears as a doublet,
most likely because of glycosylation heterogeneity) migrated
with an electrophoretic mobility very similar to that of the
ASGP receptor purified from human liver (lane 1). The ratio
of the two forms was almost identical in all three cell lines,
suggesting that mutation of tyrosine-5 does not affect matu-
ration of the protein.

Mutant HI Is Accumulated in the Plasma Membrane

A first indication of whether mutation of tyrosine-5 affects
internalization of H1 was obtained by analyzing the distribu-
tion of receptor polypeptides between the plasma membrane
and intracellular compartments. Proteins defective in en-
docytosis are expected to accumulate on the cell surface.
F1(5A)-1, FI(5A)-2, and 1-7 cells were incubated with pro-
teinase K for 30 min at 4°C. At this temperature, membrane
traffic is arrested and only proteins located at the cell sur-
face are digested. Protease-resistant receptor was detected
by SDS-gel electrophoresis and immunoblot analysis using
an Hl-specific antiserum (Fig. 1). Upon proteinase K treat-
ment, ~50% of the mature form of wild-type H1 in 1-7 cells
was protected from digestion, i.e., intracellular, consistent
with previous determinations (Geffen et al., 1989). In con-
trast, only ~15% of the mature form of mutant H1 in F1(5A)-1
and F1(5A)-2 was resistant to exogenous protease. Mutation
of tyrosine-5 to alanine thus resulted in a significant accumu-
lation of H1 in the plasma membrane. The intracellular 40-
kD precursor remained unaffected by protease treatment in
all cell lines, indicating that the cells stayed intact during the
experiment.

Internalization Rate of Mutant H1 Is Reduced

We have previously developed a ligand-independent proce-
dure to determine the rate of internalization of subunit Hl
(Geffen et al., 1989). The cell surface is first labeled at 4°C
by incubation with '*I-iodinated sulfosuccinimidyl-3-(4-
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Figure 1. Cellular distribution of wild-type and mutant ASGP re-
ceptor H1. The distribution of wild type and mutant Hl between
the plasma membrane and intracellular compartments in 1-7 and
F1(5A)-1 and FI(5A)-2 cells, respectively, was determined by immu-
noblot analysis (as described in Materials and Methods). HI1 of un-
treated cells and of cell digested for 30 min at 4°C with proteinase
K (PK), as indicated, was analyzed. ASGP receptor purified from
human liver (lane ) and lysate of parental 3T3 cells (lane 8) were
included for comparison. The positions of the 40-kD high-mannose
glycosylated precursor form and the 46-kD complex glycosylated
mature form are indicated. Nonspecific proteins recognized by the
antiserum are marked by an asterisk.

hydroxyphenyl) propionate (sulfo-SHPP), a water-soluble
and thus impermeant, amino group-specific reagent (Thomp-
son et al., 1987). The surface-labeled cells are incubated at
37°C for different times, then chilled on ice and digested
with proteinase K at 4°C. Labeled receptors that have been
internalized during the 37°C chase and thereby have acquired
resistance to added protease are then immunoprecipitated
and analyzed by gel electrophoresis and autoradiography.
Fig. 2 shows the result of a typical endocytosis assay per-
formed with 1-7 and F1(5A)-2 cells. The fraction of surface-
labeled H1 that acquired protease resistance is significantly
smaller for mutant Hl in F1(5A)-2 cells than for wild-type
H1 in 1-7 cells (compare lanes 2-5 with lane I, and lanes 7-10
with lane 6). Fig. 3 shows the quantitation of experiments
performed with 1-7 cells and the two cell lines expressing

1-7 F1(5A)-2
Chase 0 5 15 30 45 0 5 15 30 45
PK — + + + <+ - 4+ + + +
50% 50%

46 - Ay ek e . e

1 2 3 4 5 6 7 8 9 10

Figure 2. Endocytosis of surface-labeled Hl in 1-7 and Fi(5A)-2
cells. Intact cells were labeled at 4°C with '2I-sulfo-SHPP and in-
cubated for increasing times at 37°C (as indicated in minutes). Af-
ter digestion of the cell surface by proteinase K at 4°C, protease-
resistant labeled receptor was analyzed by immunoprecipitation,
SDS-gel electrophoresis, and autoradiography (lanes 2-5 and 7-10).
In lanes I and 6, 50% aliquots of the respective labeled cells not
digested with protease were loaded.
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Figure 3. Time course of endocytosis of wild-type and mutant
receptor Hl. Internalization assays as shown in Fig. 2 were quanti-
tated by densitometric scanning of the autoradiographs. Average
values with standard deviations originating from one (F1(5A)-2
cells) or from two (1-7 and F1(5A)-1 cells) experiments, each done
in triplicates, are shown.

mutant Hl. Within 15 min of incubation at 37°C, surface-
labeled and unlabeled receptor proteins had mixed, and an
equilibrium distribution was reached: ~50% of wild-type
H1 and 15-20% of mutant Hl were intracellular. This is in
agreement with the results obtained by the immunoblot anal-
ysis in Fig. 1. Judged from the values determined after 5 min
of chase, the rate of internalization of mutant H1 was reduced
by a factor of three to four. This change of the internalization
rate alone can explain the change in receptor distribution
from an intracellular-to-surface ratio of 1:1 for the wild-type
to ~v1:4 for the mutant. It is therefore likely that the recycling
rate has not been significantly affected by mutation of
tyrosine-5 to alanine. The half-life of surface-labeled mutant
H1 was determined to be 6-7 h (data not shown) and was in-
distinguishable from that of wild-type Hl in 1-7 cells (Geffen
et al., 1989). Turnover of receptor protein was thus negligi-
ble within the time of the experiments.

Residual Endocytosis of Mutant HI Is Blocked
by Acidification of the Cytoplasm

Endocytosis of mutant H1 is clearly reduced, yet internaliza-
tion still occurs at a low but significant rate which is higher
than expected for a bona fide resident plasma membrane pro-
tein. Similar levels of residual endocytosis have been re-
ported for the tyrosine mutants of the LDL, the poly-Ig, and
the transferrin receptor (Davis et al., 1986; Breitfeld et al.,
1990; Jing et al., 1990). Interestingly, mutation of tyrosine-
807 of the LDL receptor of cysteine reduced LDL internali-
zation to ~25% of wild-type levels in transfected IdlA-7
hamster fibroblasts, whereas the same mutant in the fibro-
blasts of the hypercholesterolemia patient from which it was
isolated took up LDL at only 5% of the rate of the wild-type
receptor (Davis et al., 1986). Based on this observation, it
was suggested that the mutant receptor, depending on the cell
type it is expressed in, might be endocytosed by a pathway
not involving clathrin-coated pits. Similarly, it has been pro-
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posed that ligand-independent endocytosis of the EGF re-
ceptor occurs through noncoated pits (Lund et al., 1990).
To identify by which pathway mutant ASGP receptor Hl1
is taken up into the cell, we examined internalization of wild-
type and mutant Hl under conditions that selectively block
endocytosis of clathrin-coated vesicles. This was achieved by
acidification of the cytoplasm using the procedure developed
by Sandvig et al. (1987). The cells are initially equilibrated
with up to 30 mM ammonium chloride and then washed with
medium free of ammonium chloride. As ammonia (but not
ammonium ions) diffuse out of the cell, the cytoplasmic pH
is lowered to <6, depending on the initial ammonium chlo-
ride concentration used. If no sodium ions are present in the
medium and amiloride is added to inhibit the Na*/H* ex-
changer of the plasma membrane, the cytoplasm can be main-
tained acidified for >1 h. These conditions have been shown
to block the pinching off of coated pits (Heuser, 1989) and
to eliminate endocytosis of EGF and transferrin, whereas in-
ternalization of ricin and of the fluid-phase marker Lucifer
yellow was only partially reduced (Sandvig et al., 1987).
The use of 30 mM ammonium chloride in the acidification
procedure was found to be sufficient in our fibroblast cell
lines to completely inhibit endocytosis via clathrin-coated
vesicles without blocking fluid-phase uptake, as is iustrated
in Figs. 4 and 5. ASOR is a ligand of the ASGP receptor that
has previously been shown by electron microscopy to be in-
ternalized specifically via coated pits (Wall et al., 1980). In
Fig. 4, the binding and uptake of ['*I]iodinated ASOR by
1-7-1 cells is shown. 1-7-1 cells are derived from 1-7 cells and
express both subunits of the ASGP receptor (Shia and Lod-
ish, 1989). ['*IJASOR was specifically bound to 1-7-1 cells,
and its binding could be competed with a 200-fold excess of
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12 13

Figure 4. Internalization of ['*I]JASOR in
1-7-1 cells under conditions of cytosolic
acidification. (4) '>I-ASOR was bound to
1-7-1 cells for 2 h at 4°C without (lane /) or
with (lane 2) a 200-fold excess of unlabeled
ASOR. The cells were lysed and the radio-
active ligand was analyzed by SDS-gel elec-
trophoresis and autoradiography. Cells in-
cubated with '*I-ASOR at 4°C and then
washed with EDTA were analyzed in lane 3.
Untreated (lanes 4-9) and acidified cells
(lanes 10-15) were incubated with 'ZI-ASOR
at 37°C for 5, 10, and 15 min, and then
washed at 4°C without or with EDTA as in-
dicated to determine total cell-associated
and internalized ligand. (B) Internalization
assays including those shown in A were
quantitated by densitometric scanning of
the autoradiographs. The average percent-
age of EDTA-resistant '2’I-ASOR of the to-
tal cell-associated ligand was calculated from
triplicate samples for control (filled circles)
and acidified cells (open circles).

14 15

cold ASOR (Fig. 4 A, lanes / and 2). After binding of
['*IJASOR to the cells at 4°C, the bound ligand could be
completely released by washing the cells with EDTA, which
removes calcium ions necessary for ligand binding (lane 3).
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Figure 5. Fluid-phase endocytosis of Lucifer yellow in 1-7 cells un-
der conditions of cytosolic acidification. Acidified and control cells
were incubated for the indicated times at 37°C with 1 mg/ml Lu-
cifer yellow. After extensive washing at 4°C, internalized Lucifer
yellow was determined by fluorescence spectrophotometry. Aver-
age values and standard deviations of two experiments done in
triplicates are shown for acidified (open circles) and for control
cells (closed circles).
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Figure 6. Time-course of constitutive endocytosis of ASGP receptor protein in 1-7-1, 1-7 and FI(5A)-1 cells under conditions of cytosolic

acidification. Internalization assays were performed and quantitated as described for Figs. 2 and 3. The average values of triplicate samples
with standard deviations are shown for acidified (open circles) and for control cells (closed circles).

To monitor ligand internalization, 1-7-1 cells were incubated
with ['“IJASOR at 37°C for increasing times, and total cell-
associated ligand and EDTA-resistant, intracellular ligand
was determined. In untreated cells, an increasing fraction of
bound ligand had acquired resistance to EDTA stripping
(lanes 4-9; filled circles in B). After acidification, however,
all cell-associated ligand remained on the surface and could
be released with EDTA (lanes 10-15; open circles in B). Un-
der the same conditions, uptake of Lucifer yellow by 1-7-1,
1-7, and F1(5A)-1 cells, as determined after incubation for 10
min at 37°C, was never reduced >40% by acidification. In
Fig. 5, a time course of Lucifer yellow uptake by 1-7 cells
is shown. The difference in Lucifer yellow accumulation be-
tween control (filled circles) and acidified cells (open circles)
most likely refiects the fraction of fluid phase internalization
occurring via coated vesicles.

To analyze constitutive endocytosis of wild-type and mu-
tant receptor, the same acidification conditions were applied
to 1-7-1, 1-7, and F1(SA)-1 cells immediately followed by the
ligand-independent internalization assay used in Figs. 2 and
3. The results are shown in Figs. 6 and 7. Constitutive en-
docytosis of the heterooligomeric ASGP receptor in 1-7-1
cells (Fig. 6 A) and of Hl expressed alone in 1-7 cells (B)

Control Acidified
Chase0 0 5 15 30 0 0 5 15 30
PK— + + + + - + + + +
50% 50%

46 - 4 Y

1 2 3 4 5 6 7 8 9 10

Figure 7. Endocytosis of mutant H1 in FI(5A)-1 cells under condi-
tions of cytosolic acidification. The internalization assay as de-
scribed in the legend to Fig. 2 was performed on untreated and
acidified F1(5A)-1 cells. The asterisk indicates a proteolytic frag-
ment of the receptor.
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was completely blocked after acidification (open circles), in-
dicating that internalization occurs exclusively via clathrin-
coated pits. Likewise, the residual endocytosis of mutant H1
was entirely inhibited by acidification of the cytoplasm (Fig.
7 and Fig. 6 C), suggesting that upon mutation of tyrosine-5
to alanine the recognition signal for association with clath-
rin-coated pits was not completely inactivated and that mu-
tant H was still recognized by coat-associated components,
although with reduced affinity. The acid-resistant pathway
for fluid-phase uptake is likely to internalize also consider-
able amounts of membrane, suggesting that a sorting mecha-
nism exists that excludes many membrane proteins, among
them the ASGP receptor proteins.

Localization of Mutant HI in Coated Pits

Using an independent approach to directly detect the mutant
protein in clathrin-coated pits, the distribution of mutant and
wild-type Hl in the plasma membrane of 1-7 and Fi(SA)-1
cells was analyzed by immunoelectron microscopy. Living
cells were incubated for 1 h at 4°C with an Hl-specific, affin-
ity-purified antibody conjugated to 8-nm gold particles. In-
cubation was continued for another 10 min at 37°C to allow
the receptor protein to be internalized and to potentiaily en-
ter also noncoated invaginations, which might not be easily
accessible for gold particles directly. Like wild-type HI in
1-7 cells (Fig. 8, A-C), mutant Hl could be found along the
plasma membrane and in endosomes, as well as in coated
pits (D-F). No label was found in typical flask-shaped, non-
coated invaginations. To exclude the possibility that the im-
munoglobulin-gold complexes caused receptor cross-linking
on the surface of unfixed cells, receptor distribution was also
analyzed in prefixed cells. After in situ fixation, the cells
were incubated with a polyclonal receptor-specific antise-
rum followed by sheep anti-rabbit immunoglobulin coupled
to 5-nm gold. Also by this procedure mutant H1 could be de-
tected in coated pits (Fig. 9), confirming the biochemical
data.

Quantitation of gold particles on the total plasma mem-
brane and in coated pits of in situ-fixed 1-7 and F1(5A)-1 cells
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Figure 8. Immunolocalization of H1 protein on the plasma membrane and in endocytic compartments of 1-7 and Fi(5A)-1 cells. Living
cells were first incubated for 1 h at 4°C with affinity-purified Hl-specific antibodies coupled to 8 nm gold. Cells were then shifted to 37°C
for 10 min. In 1-7 cells, gold label was found on the plasma membrane as well as in coated pits and endosomal compartments (4-C).
Similarly, mutant H1 could also be localized in coated pits of FI(5A)-1 cells (D-F) but not in smooth membrane invaginations. In untrans-
fected 3T3 cells, no plasma membrane label was detectable (not shown). Bars, 200 nm.

is summarized in Table I. Coated pits were found to account
for a similar fraction, 2%, of the plasma membrane in both
cell lines. Based on the number of gold particles, ~6% of
wild-type H1, but only 1.7% of mutant Hl were localized in
coated pits. These numbers are in excellent agreement with
the internalization rates determined biochemically. Com-
parison of the gold densities in coated pits and in the total
plasma membrane shows that wild-type H1 was clearly con-
centrated in coated pits by a factor of 2.3. The density of the
mutant protein in coated areas, however, was very similar to
that in the uncoated plasma membrane and even somewhat
lower. Yet, mutant HI was not dramatically excluded from
coated pits as has been shown for resident proteins (Bretscher
et al., 1980; Miettinen et al., 1989; Ktistakis et al., 1990;
see Discussion). These findings confirm that the ASGP re-
ceptor subunit Hl retains a reduced affinity to the clathrin-
coated plasma membrane domains independently of tyrosine
residues.

Fuhrer et al. Endocytosis of Mutant Asialoglycoprotein Receptor

Discussion

The large diversity of cytoplasmic sequences of endocytic
receptors suggests that the recognition signal for clustering
in coated pits is degenerate, perhaps comparable to the sig-
nals that target proteins to the ER or to mitochondria (Verner
and Schatz, 1988). This notion is confirmed by the finding
that replacement of the cytoplasmic portion of the chicken
liver glycoprotein receptor with unrelated sequences did not
entirely eliminate internalization and coated pit localization
(Verrey et al., 1990). A naturally occurring mutant of the
LDL receptor indicated the involvement of a tyrosine (Davis
etal., 1986), a residue that is also present in the cytoplasmic
domains of most other endocytic receptors. Studies by Roth
and co-workers (Lazarovits and Roth, 1988; Ktistakis et al.,
1990) showed that mutation of a single cytoplasmic residue
to a tyrosine can be sufficient to direct the resident plasma
membrane proteins hemagglutinin and glycophorin A to the

Figure 9. Immunolocalization of mu-
tant H1 on the plasma membrane of
prefixed F1(5A)-1 cells. Cells fixed in
situ were incubated for 4 h at 4°C
with a polyclonal antiserum raised
against ASGP receptor purified from
human liver, and immunoreactive
products were detected by incubation
for 2 h at 4°C with secondary sheep
anti-rabbit immunoglobulins coupled
to 5-nm gold particles. Gold parti-
cles are found on the plasma mem-
brane as well as in coated pits. Bar,
100 nm.
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Table 1. Surface Distribution of Wild-Type and Mutant H1 Determined by Immunogold Electron Microscopy

Fraction of PM Fraction of goid Gold particles/pm Gold particles/um Ratio of densities
Cp

Cell line occupied by CP particles in CP PM CP/PM

%
1-7 2.60 + 0.41 5.97 £ 1.05 2.93 £0.33 6.73 + 1.41 2.30 + 0.55
F1(5A)-1 1.97 £ 0.35 1.72 £ 0.45 3.77 £ 0.38 3.21 + 0.96 0.87 + 0.28

Cells fixed in situ with 4% paraformaldehyde were incubated for 1 h at room temperature with a polycional antiserum against ASGP receptor. Immunoreactive
products were detected by incubation for 1 h with protein A coupled to 9-nm gold particles. Samples were processed for electron microscopy and a set of 28
randomly selected micrographs were quantitated as described in Materials and Methods. The means with standard errors are listed. CP, coated pits; PM, total

plasma membrane.

endocytic pathway. However, there are also proteins lacking
cytoplasmic tyrosines or aromatic residues in general, which
are nevertheless internalized via clathrin-coated vesicles. An
example is the gC glycoprotein of Herpes simplex virus (Roth
et al., 1986). It is thus important to experimentally demon-
strate the involvement of tyrosines in clustering in coated
pits for each endocytic protein. This has been published for
the LDL, the mannose-6-phosphate, the transferrin, and the
poly-Ig receptor (Davis et al., 1986, 1987; Lobel et al.,
1989; Jing et al., 1990; Alvarez et al., 1990; Breitfeld et
al., 1990). In the present study, we have shown for the major
subunit H1 of the human ASGP receptor that tyrosine-5 is
important for efficient internalization. Mutation of this resi-
due to an alanine reduced the rate of constitutive endocytosis
by a factor of approximately four. Consistent with this reduc-
tion of the internalization rate, the fraction of H1 present on
the cell surface at steady-state was increased from 50% for
the wild-type protein to 80-85% for mutant HI.

However, when the critical tyrosine of the LDL (Davis et
al., 1986), the poly-Ig (Breitfeld et al., 1990), and the trans-
ferrin receptor (Jing et al., 1990; Alvarez et al., 1990) was
mutated, the mutant receptors were still more efficiently in-
ternalized than the respective tail-less proteins. Further-
more, for these receptors and also for the ASGP receptor Hl,
mutation of the critical tyrosine to a nonaromatic amino acid
did not reduce the internalization rate to the level of bona fide
resident plasma membrane proteins. While wild-type H1
was taken up at a rate of 6% of the surface population per
minute, mutant Hl was still internalized at 1.5%/min. In
contrast, hemagglutinin internalization was not detectable
within 10 min and was <10% in 2 h (Lazarovits and Roth,
1988; Ktistakis et al., 1990). Internalization of the mutant
hemagglutinin HAY543, which occurred at a rate of 4.5%/
min (Lazarovits and Roth, 1988), is therefore solely due to
mutation of cysteine-543 to tyrosine. The same situation per-
tains to the mutation of serine-106 to tyrosine in glycophorin
A (Ktistakis et al., 1990).

In the four natural endocytic receptors mentioned above,
the tyrosine residue is required only for rapid internaliza-
tion, but significant endocytosis occurs even in its absence.
Two mechanisms could explain this behavior. The mutant
receptors might enter the cell through a clathrin-indepen-
dent pathway, as has been previously suggested (Davis et al.,
1986). Alternatively, the signal for sorting into coated pits
might be (at least partially) redundant, resulting in incom-
plete inactivation by mutation of any single amino acid. To
distinguish these possibilities, we have analyzed internaliza-
tion of wild-type and mutant ASGP receptor under condi-
tions that selectively block the formation of clathrin-coated

The Journal of Cell Biology, Volume 114, 1991

vesicles but still allow endocytosis of fluid phase and of cer-
tain surface markers (e.g., surface-bound ricin; Sandvig et
al., 1987). For this purpose, the cytoplasm of the cells was
acidified using the procedure by Sandvig et al. (1987). Under
conditions where uptake of the fluid phase marker Lucifer
yellow is reduced by less than 40% , ligand internalization by
the functional, heterooligomeric ASGP receptor in 1-7-1
cells was entirely blocked. Ligand-independent, constitutive
endocytosis of the heterooligomeric H1-H2 complex in 1-7-1
cells and of the wild-type subunit Hl alone in 1-7 cells, as
well as the residual endocytosis of mutant Hl in F1(5A)-1
cells was also eliminated upon acidification. These results
strongly suggest that ASGP receptor proteins are internal-
ized exclusively via clathrin-coated pits.

This conclusion was confirmed by direct localization of
wild-type and mutant H1 in coated pits by immunogold elec-
tron microscopy. The fractions of wild-type and mutant Hl1
detected in coated pits, 5.9 and 1.7 %, respectively, correlate
well with the relative internalization rates of the two proteins.
The value for the mutant receptor is significantly higher than
the coated pit fractions determined for the resident plasma
membrane protein glycophorin A, 0.4% (Ktistakis et al.,
1990), and the tail-less Fc receptor, 0.55% (Miettinen et al.,
1989). Mutant H1 is neither concentrated in coated pits like
wild-type H1 nor is it significantly excluded. From our data
it cannot be formally ruled out that some proteins might nei-
ther bind to nor be excluded from coated pits resulting in a
distribution similar to that of the tyrosine mutant of HI.
However, our data are consistent with the model that mem-
brane proteins are sorted into coated pits by a cytoplasmic
signal interacting with specific components of the coat (the
assembly or adaptor proteins; Pearse and Robinson, 1990;
Keen, 1990). The extent to which a protein is concentrated
in coated pits depends on the affinity by which its cytoplas-
mic domain interacts with the coat. As endocytic proteins are
accumulated, other proteins are passively excluded from the
coated area. The fact that the mutant H1 density in coated
pits was only slightly reduced in comparison to the density
in the uncoated membrane therefore indicates that it still re-
tained some affinity for assembly proteins. In addition, pro-
teins may be prevented from entering coated pits by interac-
tion with cytoskeletal elements. This has been suggested for
the Bl isoform of the FcRII receptor, since it was found to
be almost completely absent from coated pits (only 0.12%
were localized in coated pits; Miettinen et al., 1989).

These findings thus show that mutation of tyrosine-5 only
partially inactivates recognition of Hl for clustering in coated
pits. Whether natural receptors contain more than one inde-
pendent recognition signal with different affinities to clath-
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rin-coated pits or a single signal with a tyrosine residue
essential only for high affinity recognition remains to be in-
vestigated.
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