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1 Introduction
Since at least 300 years it is known that one can define a commutative group law,
sometimes known as the chord-tangent law, on an algebraic curve defined by the
equation

y2 = x3 + ax+ b, 4a3 + 27b2 6= 0.
The parameters a, b can lie in any field of characteristic not equal to 2 as long
as the discriminant ∆ = −(4a3 + 27b2) does not vanish. If we homogenize the
equation we get a point at infinity O which is defined in any field and it is usual
to fix this point as the identity. We can then speak of an elliptic curve E.

This gives means to add a point on the curve to itself. For almost all points of
E (in almost all senses of the meaning) this leads to an infinite cyclic subgroup.
But sometimes we get our original point back after a finite number of steps. Such
a special point is then called a torsion point. These points play a central role in
the study of elliptic curves.

For example it is a theorem of Mordell that if a, b lie in a number field K, the
K-rational points E(K) on E form a finitely generated group. More concretely
E(K) is isomorphic to a group of the form T × Zr for some rational integer r ≥ 0
and some finite group T .

The number r itself has given rise to an intense field of study. It is often re-
ferred to as the rank of the elliptic curve and if K = Q it is generally believed
that r can be arbitrarily large. But so far the biggest provable rank that occurred
is 19 and the biggest lower bound for the rank of an elliptic curve is 28, both
found by Elkies. In this context one should also mention the famous Birch and
Swinnerton-Dyer conjecture which makes a connection between r and certain L-
functions associated to E.

The finite group T of course consists of the torsion points with coordinates in
K. If K = Q then a theorem of Mazur gives an explicit list of the groups that can
occur (see for example [Si2, p.223, Theorem 7.5]). However the knowledge of the
group structure does not directly provide a way to find those points and for larger
fields even the structure of T is generally unknown.

In this thesis we mainly study elliptic curves defined over a field of charac-
teristic zero. Then the complex theory with the rich theory of elliptic functions
becomes central. These functions were intensely studied by 19th century math-
ematicians such as Weierstrass, Abel and Jacobi. Several books listing identities
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and relations between elliptic functions appear in the classical literature where we
can name the books of Fricke [F] and Halphen [Hal] as examples.

Elliptic functions historically were often introduced as doubly periodic mero-
morphic functions and Weierstrass constructed the function ℘ named after him
as

℘(z) = 1
z2 +

∑
ω∈Λ\0

(
1

(z − ω)2 −
1
ω2

)
.

Here Λ is a lattice Zω1 + Zω2 in C and the infinite sum defines a meromorphic
function. The periodicity of ℘ with respect to ω1 and ω2 is then apparent from
the definition.

We can define certain invariants g2, g3 of the lattice Λ given by infinite series

g2 = 60
∑

ω∈Λ\0
ω−4

g3 = 140
∑

ω∈Λ\0
ω−6.

Even more, the pair (g2, g3) ∈ C2 determines the lattice Λ and always satisfies
g3

2 − 27g2
3 6= 0. The connection to elliptic curves then becomes clear with the

differential equation

(℘′)2 = 4℘3 − g2℘− g3.

And indeed if we set a = −g2/4, g3 = −g3/4 the map

C −→ E(C)

z −→ (℘(z), 1
2℘
′(z))

parametrizes the complex points of the curve E. The above map is often referred
to as the exponential map of E and one can define such an (surjective) exponential
map for each (connected) commutative group variety. The kernel of the exponen-
tial map of E is the lattice Λ and the points of order dividing n on E are the image
of 1

n
Λ.

One of the many identities involving the Weierstrass ℘ function is

℘(nz) = An(℘(z))
Bn(℘(z)) (1.0.1)
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where An, Bn are polynomials with coefficients in Z[a, b] of degree n2 and n2 − 1
respectively and An is usually chosen to be monic. These polynomials can be
directly defined using recursion formulae [Si2, Exercise 3.7(b)] and are itself of
independent interest. One property that makes them important is that in a strong
sense they encode all information about the torsion points of E.

Namely if (x, y) is of order n on E then multiplication by n sends (x, y) to the
point at infinity O. From the identity (1.0.1) it follows that

Bn(x) = 0.

If ∆ 6= 0 then An, Bn are co-prime and in chapter 2 we study the relation be-
tween the resultant of these polynomials and the discriminant ∆. More precisely
we obtain the following.

Theorem 1 For natural numbers n ≥ 2 we have

res(An, Bn) = (16∆)
n2(n2−1)

6 .

Thus adding another identity to the long list. In the proof of Theorem 1 we
make heavy use of the (20th century) theory of q-expansion of modular forms.

For each n ≥ 1 we can define a rational map φ from P1 to P1 defined by ho-
mogenizing An, Bn. Such maps are know as flexible Lattès maps. The adjective
flexible here should suggest that we can vary these maps in algebraic families. This
is not the case for Lattès maps defined by complex multiplication (see for example
[Mil, Lemma 5.5, p.29]) .

If the elliptic curve is defined over a field K with a non-archimedean valuation
v we can define a reduction of E modulo v. If the reduced curve is an elliptic
curve over the residue field we say that E has good reduction at v. Similarly we
can reduce the rational map defined by An, Bn and we say that the reduction is
good if the reduced map has the same degree as φ. With Canci, we investigated
the connection between the reduction of E and φ. In Appendix B we show how
to obtain the following proposition as a consequence of Theorem 1.

Proposition 2 Let K be a field equipped with a non-archimedean valuation v and
k the corresponding residue field. Let E be an elliptic curve given by an equation
in Tate form defined over K. Let φ : P1(K) → P1(K) be a flexible Lattès map
associated to E where the corresponding π as given in (5.1.1) is also defined over
K. Suppose that E has good reduction at v. Then there exists a f ∈ PGL2(K)
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such that φf = f ◦ φ ◦ f−1 has good reduction at v.

Since the zeroes of Bn are the abscissa of the torsion points of order dividing n,
it follows already from the fact that ℘ is an even function that Bn is generally not
square-free. But if we take the largest square free part B∗n of Bn it makes sense to
ask for the connection between the discriminant of E and the discriminant of B∗n.
With the methods we used to prove Theorem 1 it was not a long way to obtain
the following identities.

Theorem 2 For natural numbers n ≥ 2 we have

disc B∗n = (−1)
n−1

2 n
n2−3

2 (16∆)
(n2−1)(n2−3)

24 (n odd),

disc B∗n = (−1)
n−2

2 n
n2
2 2−(n2−2)(16∆)

n2(n2+2)
24 (n even).

Apart from their (possible) intrinsic interest the above identities could also
be useful from an algorithmic point of view. In [BuHu] the authors describe an
algorithm which uses, among other things, the discriminant of B∗n to compute the
torsion points of E(Q). In their article they already conjectured the above identity
for n odd, and for n even we discuss the connection with their conjecture at the
end of section 2.6.

In order to make sense of the formulae in Theorem 1 and 2 for elliptic curves
in characteristic 2 and 3 we have to consider different models. In the sections 2.7
and 2.8 we translate everything to the common Weierstrass, Legendre and Tate
model where we add a superscript W,L and T respectively to the multiplication
polynomials.

Here the Legendre model Eλ given by

Y 2 = X(X − 1)(X − λ)

(where we use the coordinates of chapter 3) stands out as it has only one parame-
ter and we immediately see that the points of order 2 are always rational over the
ground field (so T is never trivial).

We can view the multiplication polynomials ALn , BL
n of Eλ as polynomials in

two variables X,λ. (See [MZ3] where the authors studied those polynomials in
more detail.)
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If we fix λ to be 2, say, then the union of the solution sets of the equations

BL
n (X, 2) = 0, (1.0.2)

as n varies over the natural numbers n ≥ 2, is the set of abscissae of the torsion
points of the curve E2. It is well known (for example from the work of Zimmer)
that this set has bounded absolute height. However, already the description of the
n-torsion points as 1

n
Λ implies that its cardinality is infinite. So the union of the

sets defined by the equations (1.0.2) is very sparse but still infinite.

We can then ask what happens if we specialize λ at two distinct numbers. So
a natural question is whether the union of the solution sets of the simultaneous
equations

BL
n (X, 2) = 0, BL

n (X, 3) = 0 (1.0.3)

is infinite.

Here it makes sense to reformulate this in more geometric terms. We do this
by considering the abelian variety E2 × E3 and the curve parameterized by

(X,
√
X(X − 1)(X − 2), X,

√
X(X − 1)(X − 3))

in E2 × E3. The intersection of this curve with the group of torsion points of
E2 × E3 yields the solutions to (1.0.3).

Now each variety defined by (1.0.3) has codimension 2 in E2 ×E3 and a curve
has dimension 1. By the general philosophy of unlikely intersections as outlined
by Zannier in the introduction of his book [Za2] we would expect finiteness. And
in fact from the Manin-Mumford conjecture proven by Raynaud in the 1980’s in
[Ra1], [Ra2] follows finiteness for the solutions of (1.0.3).

However we could as well fix the abscissa and vary n and λ instead. In the
second part of the last decade Masser asked whether analogous finiteness results
for the equations

BL
n (2, λ) = 0, BL

n (3, λ) = 0 (1.0.4)

hold. We can reformulate this as intersecting the curve parametrized by

(2,
√

4− 2λ, 3,
√

6− 3λ)
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in the family E2
λ, as λ varies, with all torsion sections of the family E2

λ. By the
general philosophy of unlikely intersection we still expect finiteness since the fam-
ily E2

λ forms a group scheme of total dimension 3 where the codimension of the
torsion sections is 2 and the curve has dimension 1. And in fact in [MZ1] Masser
and Zannier prove that there are at most finitely many complex λ satisfying at
least one of the equations (1.0.4).

In this context it seems natural to try to formulate a relative version of the
Manin-Mumford conjecture. A few years ago the following problem concerning
families of semiabelian varieties came up.

Problem. Let S be a semiabelian scheme (of constant toric rank) over a vari-
ety defined over C, and denote by S [c] the union of its semiabelian subschemes
of codimension at least c. Let V be an irreducible closed subvariety of S. Then
V ∩S [1+dimV] is contained in a finite union of semiabelian subschemes of S of pos-
itive codimension.

Masser and Zannier went on from [MZ1] to prove the above statement for two-
dimensional families of abelian varieties in a series of papers [MZ2], [MZ4], [MZ5].
In the case of a family of multiplicative extensions of an elliptic curve Bertrand
[B2] found a counterexample. However he also showed that it still fits into the
more general scheme of the Pink conjecture on mixed Shimura varieties (see [Pin,
Conj. 1.2]) and together with Masser, Pillay and Zannier they showed in [BMPZ]
that this is the only counterexample to the relative Manin-Mumford problem in
the situation of two-dimensional families of semiabelian varieties.

The methods in the above mentioned work differ considerably from the meth-
ods used in [Ra1], [Ra2] to prove Manin-Mumford. Usually one part of the proof
is to show that the points of finite order have bounded height and with this, one
is able to deduce a lower bound for the Galois orbit of a torsion point in terms
of its degree. Another part is to show that the inverse-image of a curve by the
exponential map of the group varieties is generally a transcendental analytic set.
Then one can use the counting theorem given in [Pil] or [PW] to give an upper
bound for the Galois orbit. Comparing the two bounds then leads to finiteness.

This very broad strategy was first employed in [PZ] to give another proof of
Manin-Mumford and has since then proven successful to verify various other cases
of the so-called Zilber-Pink [Za1, p.78/79] conjecture.

But there is no reason to confine oneself to semiabelian varieties. As Hindry
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did in [Hi] for constant groups we can extend our scope to families of general two-
dimensional commutative algebraic groups. With the work of Hindry, Bertrand-
Masser-Pillay-Zannier and Masser-Zannier mentioned above the only remaining
case for two-dimensional families are additive extensions of families of elliptic
curves.

The easiest here are split such as Ga × Eλ but if we want to treat all such
extensions we also have to consider non-split extensions. Then the Weierstrass ζ
function naturally comes up. This one can see for example in the letter of Serre,
printed in [CMZ], where he shows how it appears in an embedding of a non-split
extension.

Similarly to the Weierstrass ℘ function the ζ function has a multiplication
formula, which is of the form

ζ(nz) = nζ(z) + ℘′(z)B′n(℘(z))
2nBn(℘(z))

and was implicitly used in the proof of Lemma 2.5 in chapter 2. It also has an
addition formula [CMZ, p.253, (3.13)] which together with the addition formula
of ℘ transports the group structure to the embedding of the non-split extension.

In section 3.1 we introduce a Legendre model Gλ, based on an embedding of
Masser (from [Mas1]), for such extensions. It is given by

Y 2 = X(X − 1)(X − λ), V − Y U = X2

and in section 3.3 we show how X, Y, U, V are parametrized by the Weierstrass ℘
and ζ functions.

By definition −ζ is the anti-derivative of ℘ with respect to the complex variable
z. But if we view ζ, ℘ as functions of two variables z, λ, as they parametrize the
family Gλ, the derivative of ℘ with respect to λ involves the ζ function again.

We use this fact in section 3.7 to prove, using the work of Bertrand [B1], that
for a curve C in the family Gλ the inverse image of C by the exponential map is
generally a transcendental analytic set. Here we could also have used the differen-
tial of the second kind on Eλ as suggested by Bertrand, and in section 3.7 we also
indicate how.

As the work of Masser-Zannier on products of elliptic families [MZ2], [MZ4]
the main result of chapter 3 is valid for curves over C while the other results in the
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direction of relative Manin-Mumford are only valid for curves over Q. The step
from Q to C is done in section 3.12 and follows the strategy of Masser-Zannier for
products of elliptic families.

By reducing to the Legendre model Gλ we can summarize the result from chap-
ter 3 in in the language of the relative Manin-Mumford problem as follows.

Theorem 3 Let G be an additive extension by Ga of an elliptic scheme over a va-
riety defined over C, and denote by G [c] the union of its flat subgroup subschemes
of codimension at least c. Let V be an irreducible closed curve of G. Then V ∩G [2]

is contained in a finite union of subgroup schemes of G of positive codimension.

Before we proceed to the applications of Theorem 3 we want to write some
words on effectivity.

In the case of a non-split additive extension the inverse image of the variety
V by the exponential maps is a complex analytic set rather than only a real an-
alytic one as in the abelian case. This allowed us to use the counting theorem of
Masser given in [Mas2] on counting rational points on analytic curves instead of
the counting results in [Pil] or [PW]. This opens the door for effective refinements
of Theorem 3 for curves defined over the algebraic numbers (see also subsection
3.11.1).

The proof of the transcendental case as given in section 3.12 is already effective
as are the results of Masser-Zannier in [MZ2], [MZ4] for curves not defined over Q.
We also refer to [MZ3] here, where Masser and Zannier investigate the effectivity
for the transcendental case further.

At this point one should also mention the work of Stoll [Sto] who showed, us-
ing reduction techniques, that the set defined by (1.0.4) is in fact empty. He also
obtained results for curves in E2

λ with fixed transcendental abscissa.

Finally in Appendix A we give some examples for applications of Theorem 3.
The first in section 4.2 is in the theory of elementary integration.

Here the adjective elementary refers to a certain type of function. Roughly
speaking all functions known from High-School mathematics are elementary. The
theory of elementary integration revolves around the question when the primitive
of an elementary function is again elementary.
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In this context James Davenport made an interesting claim about families of
algebraic functions parametrized by a curve [Dave, p.90, Theorem 7] and we give
a formulation of his claim in section 4.2. In [MZ6] Masser and Zannier prove this
claim for curves defined over a finite extension of Q building on their previous
work on the relative Manin-Mumford problem.

It seems that Theorem 3 together with [MZ2], [MZ4] makes it possible to prove
the claim for curves over C when the functions are elements of the function field
of an elliptic curve. We illustrate this in Appendix A by proving the claim for the
family of functions 1

(X−2)
√
X(X−1)(X−λ)

in section 4.2.2.

Theorem 4 There are at most finitely many λ ∈ C such that

1
(X − 2)

√
X(X − 1)(X − λ)

is elementary integrable.

For the proof of Theorem 4 we need the theory of generalized Jacobians which
we briefly introduce in section 4.1.

Using generalized Jacobians we can also give an application of Theorem 3 to
Pell’s equation in polynomials. This is done in section 4.3 where we prove the
following theorem.

Theorem 5 There are at most finitely many complex t such that Dt = X3(X3 +
X + t) is Pellian.

Here, a polynomial D is called Pellian if there exist polynomials A,B such that

A2 −DB2 = 1, B 6= 0.

If we replace the ring of polynomials with Z we are back in the classical Pell’s
equation which detects the units of the ring of integers of quadratic fields Q(

√
D).

Similarly the Pellianity of Dt in Theorem 5 is equivalent to the existence of a
non-trivial unit in the ring C[X,

√
Dt]. So Theorem 5 states that there are at most

finitely many specializations of t such that the specialized ring has non-trivial units.

Then in section 4.3 we show how to reduce Theorem 4 and 5 to Proposition
1 of section 3.3, which might be useful to prove explicit bounds for these problems.
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2 Resultants and discriminants of multiplication
polynomials for elliptic curves

In this chapter, we prove that the resultant of the standard multiplication poly-
nomials An, Bn of an elliptic curve in the form y2 = x3 + ax + b is (16∆)

n2(n2−1)
6 ,

where ∆ = −(4a3 + 27b2) is the discriminant of the curve. We give an application
to good reduction of an associated Lattès map. We also prove a similar result for
the discriminant of the largest square free factor of Bn.

2.1 Introduction
If a, b are elements of a field of characteristic not 2 with

∆ = −(4a3 + 27b2) 6= 0,

then the equation
y2 = x3 + ax+ b (2.1.1)

defines an elliptic curve. It is well-known, see for example [Si2], Exercise 3.7
(p.105), that for each natural number n there are polynomials An, Bn 6= 0 in x such
that multiplication by n sends the point P = (x, y) to a point whose x-coordinate
is An(x)

Bn(x) . The classical literature studied such things in detail, but mainly for the
Weierstrass model with an extra coefficient 4 in (2.1.1); there we see functions
φn, ψ

2
n instead of An, Bn. See among others Fricke [F, p.184-196], Halphen [Hal, p.

96-106] and Tannery and Molk [TM, p.100-105]. For example

A1(x) = x, B1(x) = 1, A2(x) = x4−2ax2−8bx+a2, B2(x) = 4(x3 +ax+ b).
(2.1.2)

In general they are usually normalized by their leading terms

An(x) = xn
2 + · · · , Bn(x) = n2xn

2−1 + . . . . (2.1.3)

(see [Si2, Exercise 3.7(b)]). More terms seem to be difficult to find in the literature,
classical or otherwise, and in connexion with another investigation Masser and
Zannier [MZ3] have recently found that

An(x) = xn
2 − κnaxn

2−2 − λnbxn
2−3 + · · · , Bn(x) = n2xn

2−1 + µnax
n2−3 + · · ·

(2.1.4)
where

κn = n2(n2 − 1)
6 , λn = 2n2(n4 − 1)

15 , µn = n2(n2 − 1)(n2 + 6)
30 . (2.1.5)
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With more work a few more early coefficients could be found but they get in-
creasingly complicated, and it seems hopeless to obtain similar expressions for late
coefficients like the constant terms.

A fundamental property is that An, Bn are coprime for any specialization of
a, b to any field of charactersitic not equal to 2 as long as ∆ 6= 0 (see also [Si2,
Exercise 3.7(c)]), which if n ≥ 2 is equivalent to the non-vanishing of the resultant
res(An, Bn). Here we mean this in a formal sense as if Bn had degree n2 − 1 (see
for example [La3, p.200]). It seems that no one has ever calculated res(An, Bn)
explicitly. As the resultant is given by a complicated Sylvester determinant looking
like ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −κna −λnb . . .
0 1 0 −κna . . .
... ... ... ... . . .
n2 0 µna ? . . .
0 n2 0 µna . . .
... ... ... ... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.1.6)

for (2.1.4), the task would at first sight seem difficult. Nevertheless it is what we
do in the present section, with a result that may initially seem surprisingly simple.

Theorem 1. For natural numbers n ≥ 2 we have

res(An, Bn) = (16∆)
n2(n2−1)

6 .

It is a natural step from resultants to discriminants, and as Bn is known to
play a major role in the study of torsion points it may seem justified to ask for
its discriminant. Unfortunately if n > 1 then Bn is not squarefree and so this
discriminant vanishes. But it can be shown (see [Si2, Exercise 3.7(a)]) that we
have

Bn = B∗2n (n odd) (2.1.7)
Bn = B∗2n /C (n even) (2.1.8)

for a polynomial B∗n unique up to sign, where C = C(x) = x3 + ax+ b. Here B∗n is
squarefree, at least in characteristic 0. In particular C divides Bn and B∗n when n
is even. We calculate the discriminant disc B∗n (also in the formal sense - see also
[La3, p.204]).

Theorem 2. For natural numbers n ≥ 2 we have

disc B∗n = (−1)
n−1

2 n
n2−3

2 (16∆)
(n2−1)(n2−3)

24 (n odd),

disc B∗n = (−1)n−2
2 n

n2
2 2−(n2−2)(16∆)

n2(n2+2)
24 (n even).
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After using Fourier expansions to establish these results we came across Exer-
cise 6.23(e) in Silverman’s dynamical book [Si4, p.383], which gives the resultant
in Theorem 1, at least up to an undetermined sign. During our proof we had
already noted that the resultant up to undetermined powers of −1, 2 could be
found relatively simply without Fourier. And it turns out that the prime 2 can
be eliminated using the Tate form, thus supplying a similar proof of the Exercise.
But this requires certain integrality assertions which are not easy to track down
in the literature (see section 2.8 below).

However it seems that such purely arithmetic techniques do not extend to the
discriminant in Theorem 2; at best they give in place of the displayed powers of 2
and n only some undetermined product of primes p dividing n. Even more recently
we also came across Lemma 1 of Stark [Sta, p.354] which implies our Theorem 2 up
to sign when n is odd (see also Exercise 1.14(b) of Silverman’s second elliptic book
[Si3, p.88]). His proof seems rather different using the Kronecker Limit Formula.
We think it useful to publish our unified proof for general n, and it is hardly any
more work to include our original proof of Theorem 1; in fact we deduce Theorem
2 from Theorem 1 rather quickly. Also in section 2.6 we comment on how Theorem
2 is related to the conjecture made in [BuHu, p.31].

Here is how the proofs are arranged. In section 2.2 we show with compara-
tively simple arguments that the general shape of Theorems 1 and 2 is not too
surprising. In particular we get Theorem 1 up to powers of −1, 2. Then in section
2.3 we set the stage for the main calculations, which involve Fourier expansions of
elliptic functions and modular forms. These are carried out in section 2.4 to prove
Theorem 1. Here some work can be saved thanks to the transcendence of π! We
could use similar calculations to prove Theorem 2 but to avoid too many compli-
cations we first give some auxiliary resultants in section 2.5. At last in section 2.6
we prove Theorem 2. Then in section 2.7 we translate our results from x3 + ax+ b
in (2.1.1) to the more classical Weierstrass form 4x3 − g2x− g3 and the Legendre
form x(x− 1)(x− λ) investigated in [MZ3].

And finally in section 2.8 we pass to the Tate form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6; (2.1.9)

as mentioned, this leads purely arithmetically to Theorem 1 up to sign. It also
leads to a version of Proposition 6.55 of [Si4, p.362] about good reduction of the
Lattès map φn of degree n2 for a curve E in Tate form: namely if n ≥ 2 and our
ground field has a discrete ultrametric valuation with respect to which (2.1.9) is
minimal, then φn has good reduction if and only if E has good reduction. This
is proven in the Appendix where the arguments belong to the theory of good
reduction of rational maps.
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Finally a comment on the characteristic of the ground field seems to be in
place. All formulae appearing are identities and Theorem 1 and 2 are valid for
a, b in an arbitrary field simply by specialization. However AWn , BW

n in section
2.7 are elements in Z[ g2

4 ,
g3
4 , x] so it seems that it a priori doesn’t make sense to

ask for any properties in characteristic 2. In contrast ALn , BL
n , B

L∗
n ∈ Z[x, λ] (see

[MZ3], section 2) and the formulae in section 2.7 are valid in any characteristic.
The same holds for ATn , BT

n in section 2.8 but BT∗
n can carry a denominator 2 for

n even. We would need to replace BT∗
n by 2BT∗

n to make sense of the discriminant
in characteristic 2 which is then identically zero.

At this point I thank Joseph Silverman and John Tate for valuable correspon-
dence. I also thank my supervisor David Masser for suggesting this problem and
his assistance in writing this chapter.

2.2 Algebraic preparations
The following observation gives quite quickly the general shape of the resultant.

Lemma 2.1. For each natural number n ≥ 2 there are integers cn, c∗n and kn ≥
0, k∗n ≥ 0, depending only on n, such that

res(An, Bn) = cn∆kn , disc B∗n = c∗n∆k∗n .

Further there are integers dn and ln ≥ 0, depending only on n, such that

res(C,Bn) = dn∆ln , (n odd)

res(C,Bn/C) = dn∆ln . (n even)

Proof. It is known that An(x), Bn(x) and even B∗n(x) lie in Z[x, a, b] (again see [Si2,
Exercise 3.7(a)]). As C(x) is monic this is also true of Bn(x)/C(x) when n is even.
Thus it will suffice to prove the lemma when a, b are independent variables over
Q. Now the first resultant can be denoted by Rn(a, b) in Q[a, b]. If we specialize
a, b to any a0, b0 algebraic over Q then the resultant specializes too, and if it is
zero then we must have ∆(a0, b0) = 0, where ∆(a, b) = −(4a3 + 27b2). By the
Hilbert Nullstellensatz (see for example [La3, p.380]) there is a positive integer
m = mn and a Qn in Q[a, b] such that ∆(a, b)m = Qn(a, b)Rn(a, b). Since ∆(a, b)
is irreducible it follows that Rn(a, b) = c∆(a, b)k for some rational c = cn and
some non-negative integer k = kn. Finally since Rn(a, b) is actually in Z[a, b] and
∆(a, b) is primitive in Z[a, b] it follows that c is in Z, and this settles res(An, Bn).
The same arguments work for disc B∗n because we are in zero characteristic.
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Similar arguments work for res(C,Bn) provided we can show that the two
polynomials are coprime. But this is clear, because C = 1

4B2 vanishes at the x-
coordinates of points P 6= O with 2P = O and in the same way Bn with nP = O;
as n is odd both are not simultaneously possible. And likewise for Bn/C with
nP = O but 2P 6= O; this quotient is also in Z[x, a, b] because C is monic. That
C2 does not divide Bn can also be deduced from the fact that for the rational map
φn = An

Bn
(in affine form) satisfies φn ◦x = x ◦ [n] where [n] is the multiplication by

n map and x the projection (5.1.2) as defined in the appendix. Now x is a degree 2
map ramified at O and the 2-torsion points while [n] is a map of degree n2. These
arguments also deliver the shape of Bn as given in (2.1.7), (2.1.8).

We could go a bit further and verify by homogeneity arguments (assigning
x, a, b the usual weights 1,2,3 respectively in (2.1.6)) that here kn is equal to κn,
defined in (2.1.5), as in Theorem 1, but the details are not quite straightforward
and the calculations of section 2.3 will anyway deliver this with relatively little
effort. The real purpose of these calculations is to get at cn. In fact for any prime
p 6= 2 the equation y2 = x3− x over Fp defines an elliptic curve with ∆ = −4, and
so if p divides cn then res(An, Bn) = 0 would contradict the coprimality (known
for p 6= 2). Thus cn is composed of powers of -1 and 2.

We can even deal with 2 in a similar way by passing to the curve y2 +y = x3−x
in Tate form, and that would yield Theorem 1 up to sign; however this step is a
bit more delicate and we postpone it to section 2.8. In fact all we need to know in
the sequel is that cn is a rational number depending only on n. Similar remarks
apply for k∗n, ln. But for c∗n, dn we have to be more careful, because the zeroes of C
and Bn can coalesce. However this happens only if the characteristic divides 2n,
so all we could conclude in general is that c∗n, dn are composed at most of powers
of primes dividing 2n. It may be found a little surprising that c∗n is essentially a
power of n (and we will see that dn = n6 when n is even).

Lemma 2.2. For all natural numbers n we have

4(A3
n + aAnB

2
n + bB3

n)Bn = B2n.

Proof. For a point P = (x, y) on our elliptic curve we calculate 2nP as 2(nP ). We
find

A2n

B2n
=
A2(An(x)

Bn(x))
B2(An(x)

Bn(x))
= A

B
, (2.2.1)

where by (2.1.2)

A = A4
n − 2aA2

nB
2
n − 8bAnB3

n + a2B4
n, B = 4(A3

n + aAnB
2
n + bB3

n)Bn.
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Now in (2.2.1) A2n, B2n are coprime, and the degree of A is at most 4n2 = (2n)2

which is already the degree of A2n. It follows that A2n, A are equal up to constants,
and by checking the leading coefficients using (2.1.3) we deduce equality. So also
B2n = B, which is what we want.

For the sequel we record some properties of resultants. For polynomials A =
a
∏
α(x− α) of degree r ≥ 1 and B = b

∏
β(x− β) of degree s ≥ 1 we have

res(A,B) = asbr
∏
α,β

(α− β) = as
∏
α

B(α) = (−1)rsbr
∏
β

A(β) (2.2.2)

(see for example [La3, p.202]). These make clear the multiplicativity in both A
and B separately; and also

res(A,B) = res(A,B + Ã) = res(A+ B̃, B) (2.2.3)

for any Ã, B̃ such that B + Ã also has degree s, A + B̃ also has degree r, as well
as Ã(α) = 0 for all α and B̃(β) = 0 for all β.

2.3 Analytic preparations
From now on the coefficients a, b in (2.1.1) will be complex numbers. In fact
we start with an element τ of the upper half-plane and the corresponding lattice
Λ(τ) = Z + Zτ in C. One defines the corresponding Weierstrass function ℘(z) =
℘(z; τ) and the corresponding map P from C/Λ(τ) to an elliptic curve E = E(τ)
defined by(2.1.1), where P (z) = (℘(z), 1

2℘
′(z)) with the usual convention that P (z)

is the group origin for every z in the lattice. Here

a = a(τ) = −1
4g2(τ), b = b(τ) = −1

4g3(τ) (2.3.1)

for the standard Eisenstein series g2, g3. This is a group isomorphism between
C/Λ(τ) and the complex points E(τ)(C) ([Si2, p.158]). We also define

e1 = e1(τ) = ℘
(
τ

2

)
, e2 = e2(τ) = ℘

(1
2

)
, e3 = e3(τ) = ℘

(
τ + 1

2

)
. (2.3.2)

It is well-known that

C(x) = x3 + ax+ b = (x− e1)(x− e2)(x− e3). (2.3.3)

Now recall the polynomials An, Bn corresponding to the curve E(τ). We write
Cn for the set

Cn = {(r, s) ∈ Z2; 0 ≤ r, s < n, (r, s) 6= (0, 0)}. (2.3.4)
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Lemma 2.3. For all natural numbers n we have

Bn(x) = n2∏
Cn

(
x− ℘

(
rτ + s

n

))
(2.3.5)

and
An(x)− e1Bn(x) =

∏
C2n

r odd,s even

(
x− ℘

(
rτ + s

2n

))
(2.3.6)

An(x)− e2Bn(x) =
∏
C2n

r even,s odd

(
x− ℘

(
rτ + s

2n

))

An(x)− e3Bn(x) =
∏
C2n

r odd,s odd

(
x− ℘

(
rτ + s

2n

))
.

Proof. The zeros of Bn are the x-coordinates x(P ) of the points P 6= O on E(τ)
with nP = O. These are the ℘

(
rτ+s
n

)
and we can restrict here to Cn. Now

x(P ) = x(Q) is equivalent to P = ±Q. So each value turns up exactly twice
except if n is even, when the three values (2.3.2) each turn up once. By (2.3.3)
this corresponds precisely to (2.1.7) and (2.1.8) and we deduce (2.3.5).

Again using (2.3.3) on Lemma 2.2 we see that

4(An − e1Bn)(An − e2Bn)(An − e3Bn)Bn = B2n.

Thus the (2n)2 zeroes ℘
(
rτ+s

2n

)
of B2n are distributed between those of An −

e1Bn, An − e2Bn, An − e3Bn and Bn. Clearly we get a zero of Bn if and only if
r and s are both even. Also An(x) − e1Bn(x) = 0 for x = x(P ) is equivalent to
x(nP ) = e1 and so ℘

(
rτ+s

2

)
= ℘

(
τ
2

)
by (2.3.2). This in turn is equivalent to r

odd and s even. Similarly for the remaining two factors.

Finally we need some Fourier expansions in q = e2πiτ . We have

1
(2πi)12 (g3

2 − 27g2
3) = q

∞∏
l=1

(1− ql)24

whose leading term suffices for us, in the form

∆ = −(4a3 + 27b2) = g3
2 − 27g2

3
16 = (2πi)12

16 q + · · · . (2.3.7)

Then
1

(2πi)2℘(z; τ) = 1
12 +

∑
m∈Z

Qqm

(1−Qqm)2 − 2
∞∑
k=1

kqk

1− qk ,
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where Q = e2πiz [La2, p. 46, Proposition 3]. Putting z = rτ+s
n

for (r, s) in Cn we
deduce not quite as in [La2, p.66]

1
(2πi)2℘

(
rτ + s

n
; τ
)

= 1
12 + q

r
n ζsn

(1− q rn ζsn)2 +
∞∑
k=1

∞∑
m=1

kqmk(q rkn ζskn + q−
rk
n ζ−skn − 2),

where ζn = e
2πi
n . But here the leading term or terms are not so clear if we view

the Fourier expansion as a power series in q 1
n .

If r 6= 0 then |q rn ζsn| < 1 so we can expand

q
r
n ζsn

(1− q rn ζsn)2 =
∞∑
k=1

k(q rn ζsn)k

and we get a power series in q 1
n of the form

1
(2πi)2℘

(
rτ + s

n
; τ
)

= 1
12 + q

r
n ζsn + q

n−r
n ζ−sn + · · · , (2.3.8)

where the remaining terms involve q tn with t > min{r, n− r}.
If r = 0 then we get

1
(2πi)2℘

(
rτ + s

n
; τ
)

= 1
12 + ζsn

(1− ζsn)2 + · · · , (2.3.9)

where the remaining terms involve q tn with t > 0.
Finally we need the well-known

n−1∏
s=1

(1− ζsn) = n (2.3.10)

which is proved by evaluating ∏n−1
s=1 (X − ζsn) = Xn−1

X−1 at X = 1. Similarly

n−1∏
s=1

(1 + ζsn) = 1, (n odd) (2.3.11)

n−1∏
s=0,s 6=n

2

(1 + ζsn) = n. (n even) (2.3.12)

22



2.4 Proof of Theorem 1
In view of Lemma 2.1 and (2.3.7) it suffices to calculate the leading term of the
resultant res(An, Bn) in our Fourier case (2.3.1).

In (2.2.2) we can use (2.3.5) to factorize B = Bn but we have not yet factorized
An; however by (2.2.3) the resultant is also res(An − γBn, Bn) for any complex
number γ. It is most convenient here to choose γ = e1; then we can use (2.3.6).

This leads to the basic formula

res(An, Bn) = (2πi)2n2(n2−1)(n2)n2 ∏
(r,s)∈Cn

∏
(r′,s′)∈C2n

r′ odd, s′ even

f(r′, s′, r, s), (2.4.1)

where
f(r′, s′, r, s) = 1

(2πi)2

(
℘

(
r′τ + s′

2n

)
− ℘

(
rτ + s

n

))
. (2.4.2)

Next we examine (2.4.2) using (2.3.8) and (2.3.9). The 1
12 disappears; and as

r′ is odd the only way to get a constant term is with r = 0. This term is then
− ζsn

(1−ζsn)2 . Taking the product over s = 1, . . . , n − 1 gives (−1)n−1 1
n2 ζ

n(n−1)
2

n using
(2.3.10), and then the product over the n2 pairs (r′, s′) in (2.4.1) gives

(n2)−n2
. (2.4.3)

This cancels with one of the outside factors in (2.4.1).
It remains to consider the (2.4.2) outside r = 0, so that (2.3.8) holds for both

parts. To ease notation we write s′ = 2t, so that t = 0, . . . , n− 1. We find now

f(r′, s′, r, s) = q
r′
2n ζtn + q

2n−r′
2n ζ−tn − q

2r
2n ζsn − q

2n−2r
2n ζ−sn + · · · , (2.4.4)

where all other powers of q 1
2n exceed M = min{R′, R} for

R′ = min{r′, 2n− r′}, R = min{2r, 2n− 2r}.

We claim that this minimum

M = min{r′, 2n− r′, 2r, 2n− 2r} (2.4.5)

is attained at exactly one of the four elements, so that exactly one of the four
terms on the right of (2.4.4) is the leading term, then involving qM2n .

Note that R is even but R′ is odd because r′ is odd. In particular R′ 6= R.
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If R′ < R then M = R′ and so the above claim can be false only if M =
r′ = 2n − r′. But then n = r′ is odd and M = n, and as R ≤ n we must have
R < n = M = R′, a contradiction.

Similarly if R′ > R then M = R and the claim can be false only if M = 2r =
2n − 2r. But then n = 2r is even and M = n, and as R′ ≤ n we must have
R′ < n = M = R, another contradiction.

So the above claim regarding (2.4.5) is verified.

It follows from this discussion that if R′ < R then qM2n ζ±tn is the leading term
in (2.4.4) while if R′ > R then we get −qM2n ζ±sn . Furthermore the ± do not depend
on t, s. These latter both range unrestrictedly from 0 to n − 1 and so taking the
product over t, s kills off the roots of unity. Taking the further product over r, r′
we end up with some (−1)σnqk∗n . Here σn is the number of (r, s, r′, s′) with R′ > R.
If n is even then σn is even due to the range of t (or s); while if n is odd, then σn
is even because we may pair a given r with n− r 6= r.

So the product in (2.4.1) outside r = 0 is simply qk∗n . Combining this with the
above result (2.4.3) for r = 0 we end up with (2πi)2n2(n2−1)qk

∗
n as the leading term

of res(An, Bn).

On the other hand by Lemma 2.1 and (2.3.7) this leading term is cn
(

(2πi)12

16 q
)kn .

It follows that k∗n = kn and

16kn(2πi)2n2(n2−1)−12kn = cn.

However cn is rational and π is transcendental and therefore we must have kn =
n2(n2−1)

6 which is just κn from (2.1.5). Thus also cn = 16κn and this completes the
proof of Theorem 1.

Of course our appeal to the transcendence of π could be avoided here by directly
verifying that our exponent of q, which comes out from the above as the sum of
(2.4.5) over the range in (2.4.1), is κn. We leave this to the reader. The verification
is slightly easier if one uses An−e2Bn rather than An−e1Bn in (2.3.6), when (2.4.5)
becomes the more symmetric min{r′, n− r′, r, n− r}.

2.5 Some more resultants
We could calculate the discriminant of B∗n in Theorem 2 by deducing its zeros
from (2.3.5) and using the standard product formula. But this leads to long and
involved calculations which we prefer to avoid. Instead we first calculate the other
resultants in Lemma 2.1.
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Lemma 2.4. We have

res(C,Bn) = ∆
n2−1

2 , (n odd)

res(C,Bn/C) = n6∆
n2−4

2 . (n even)

Proof. Of course we go back to Fourier.
We start with n odd. We have

res(C,Bn) = (2πi)6(n2−1)(n2)3 ∏
(r,s)∈Cn

∏
(r′,s′)∈C2

f(r′, s′, r, s), (2.5.1)

where now

f(r′, s′, r, s) = 1
(2πi)2

(
℘

(
r′τ + s′

2

)
− ℘

(
rτ + s

n

))
.

Now the right-hand sides of (2.3.8) and (2.3.9) for n = 2 read simply 1
12 +2q 1

2 + · · ·
for (r′, s′) = (1, 0), and 1

12 − 2q 1
2 + · · · for (r′, s′) = (1, 1), and 1

12 −
1
4 for (r′, s′) =

(0, 1).
From these with r′ = 0 we get constant terms −1

4 if r ≥ 1 and

−1
4 −

ζsn
(1− ζsn)2 = − (1 + ζsn)2

4(1− ζsn)2

if r = 0. Taking the product over (r, s) using (2.3.10) and (2.3.11) gives n−22−2(n2−1).
Another constant term arises from r′ = 1 and r = 0, namely − ζsn

(1−ζsn)2 , and
taking the product over s′, s gives an additional (n−2)2; thus so far we have a
constant term

(n−2)32−2(n2−1) (2.5.2)
which partly cancels with one of the outside factors in (2.5.1).

There remain the terms with r′ = 1 and r ≥ 1, which give

(−1)s′2q 1
2 − q

r
n ζsn − q

n−r
n ζ−sn + · · · . (2.5.3)

As n is odd the leading term here has coefficient −ζ±sn with ± independent of s.
Now ∏n−1

s=0 ζ
s
n = 1 so this kills the root of unity; and the minus sign is killed by

the two values of s′. Thus taking the product yields just 1 for the coefficient, and
together with (2.5.2) we find res(C,Bn) = (2πi)6(n2−1)2−2(n2−1)ql

∗
n+· · · . Comparing

with Lemma 2.1 and using again transcendence we conclude l∗n = ln = n2−1
2 and

dn = 1 as required.
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Now for n even. This time we have

res(C,Bn/C) = (2πi)6(n2−4)(n2)3 ∏
(r,s)∈C∗n

∏
(r′,s′)∈C2

f(r′, s′, r, s),

with f as above, where now C∗n is Cn as in (2.3.4) but without (r, s) = (n2 , 0), (0, n2 ), (n2 ,
n
2 )

corresponding to points of order 2.
As above with r′ = 0 we get constant terms −1

4 if r ≥ 1 and

−1
4 −

ζsn
(1− ζsn)2 = − (1 + ζsn)2

4(1− ζsn)2

if r = 0. Taking the product over (r, s) using (2.3.10) and now (2.3.12) gives
2−2(n2−4).

Another constant term arises from r′ = 1 and r = 0, namely − ζsn
(1−ζsn)2 , and

taking the product over s′, s gives an additional 16(n−2)2; thus so far we have a
constant term

(n−2)22−2(n2−6). (2.5.4)

There remain the terms with r′ = 1 and r ≥ 1, which give again (2.5.3).
Now n is even. If r 6= n

2 then the leading term here has coefficient −ζ±sn with ±
independent of s. Now ∏n−1

s=0 ζ
s
n = −1 so this kills the root of unity; and the two

minus signs are killed by the two values of s′. Thus taking the product yields just
1 for the coefficient. But if r = n

2 then we get three leading terms with a coefficient
(−1)s′2 − ζsn − ζ−sn . This is (1 − ζsn)(1 − ζ−sn ) for s′ = 0 and −(1 + ζsn)(1 + ζ−sn )
for s′ = 1. Taking the product using (2.3.10) and (2.3.12) yields (n2 )4 for the
coefficient.

So together with (2.5.4) we find res(C,Bn/C) = (2πi)6(n2−4)2−2(n2−4)n6ql
∗
n .

Comparing with Lemma 2.1 and using again transcendence we conclude l∗n =
ln = n2−4

2 and dn = n6 as required.

2.6 Proof of Theorem 2
We start by expressing An = An(x) in terms of Bn = Bn(x) and its derivatives.

Lemma 2.5. For all natural numbers n we have

n2AnBn = n2xB2
n −BnB

′
nC
′ − 2(BnB

′′
n −B′2n )C.
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Proof. Again it is enough to prove this over the complex numbers; indeed in view
of the coefficients n2 it may not be so useful in positive characteristic (even though
it is true there). There we have the Weierstrass σ-function σ(z) = σ(z; τ). It is
well-known (see for example [F, p.184]) that

σ(nz)
σ(z)n2 = ψn(℘(z), ℘′(z)),

where the square of the right-hand side is Bn(℘(z)). So squaring, then logarith-
mically differentiating to get the Weierstrass ζ-function, then again differentiating
to involve ℘(nz) = An(℘(z))

Bn(℘(z)) we end up after a short calculation with the desired
result after writing x = ℘(z).

We will now prove Theorem 2 for n odd. Substituting Bn = B∗2n in Lemma 2.5
we obtain n2An = A+ Ã for Ã = 4(B∗n)′2C and a polynomial A of degree at most
n2 and divisible by B∗n. Also Ã has the same degree n2 as n2An. So taking the
resultant of both sides with Bn and using (2.2.3) we get

(n2)n2−1res(An, Bn) = res(n2An, Bn) = res(Ã, Bn) = 4n2−1res((B∗n)′2C,Bn)

because B∗n vanishes at the zeroes of Bn. Using multiplicativity we see that the
last resultant is

res(C,Bn)res((B∗n)′, B∗n)4 = res(C,Bn)(n disc B∗n)4

because the leading coefficient of B∗n is ±n. Finally substituting in our values from
Theorem 1 and Lemma 2.4 we end up with

(disc B∗n)4 = (n2)n2−3(16∆)
(n2−1)(n2−3)

6 .

The required result follows up to an unspecified sign from this by taking fourth
roots and using Lemma 2.1. The sign of the discriminant will be determined below.

Now for n even, it is convenient to substitute Bn = CB∗∗2n in Lemma 2.5, where
B∗∗n = B∗n/C. We obtain n2An = A+ Ã for

Ã = C ′2B∗∗2n + 4C2(B∗∗n )′2

and a polynomial A of degree at most n2 and as before divisible by B∗n = CB∗∗n .
Also Ã has the same degree n2 as n2An. Taking the resultant of both sides with
Bn we get as above

(n2)n2−1res(An, Bn) = res(Ã, Bn) = res(Ã, C)res(Ã, B∗∗2n ) (2.6.1)
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because B∗n still vanishes at the zeroes of Bn.
Now we evaluate each resultant on the right-hand side of (2.6.1).
First C ′2B∗∗2n also has degree n2 and so

res(Ã, C) = res(C ′2B∗∗2n , C) = res(C ′, C)2res(B∗∗2n , C) = n6∆n2
2 (2.6.2)

by Lemma 2.4.
Similarly

res(Ã, B∗∗2n ) = res(4C2(B∗∗n )′2, B∗∗2n ) = 4n2−4res(C,B∗∗2n )2(nD)4 = 4n2−4n16∆n2−4D4

(2.6.3)
again by Lemma 2.4, where D = disc B∗∗n . However we are aiming at

disc B∗n = (−1)n2 n−1res(CB∗∗n , C ′B∗∗n + C(B∗∗n )′) (2.6.4)

which by multiplicativity and (2.2.3) is

(−1)n2 n−1res(C,C ′B∗∗n )res(B∗∗n , C(B∗∗n )′) = ∆ res(C,B∗∗2n )D = n6∆
n2−2

2 D
(2.6.5)

once again by Lemma 2.4. Now combining this with Theorem 1 and (2.6.1),(2.6.2)
and (2.6.3) we end up with

(disc B∗n)4 = n2n22−4(n2−2)(16∆)
n2(n2+2)

6 . (2.6.6)

Again taking fourth roots we complete the proof of Theorem 2 up to an undeter-
mined sign.
We see that from (2.6.5),(2.6.6) and (2.6.4) follows that

D = ±nn2
2 −62n2−2(16∆)

(n2−4)(n2−6)
24 .

We could determine the sign of the discriminant by using Fourier expansions
similar as for the resultant but a referee of [Sc] pointed out the possibility for the
following simpler proof.

In order to determine the sign for the discriminant we choose τ imaginary
(thus 1 and τ generate a rectangular lattice) and specialize to a(τ), b(τ). From the
general theory of elliptic curves over the real numbers [KK, p.37] follows that a, b ∈
R and ∆(a, b) > 0. Also for a polynomial B = b0

∏d
i=1(X −αi) the discriminant of

B is given by disc B = (−1)
d(d−1)

2 b2d−2
0

∏
i 6=j(αi − αj). If B is defined over R and
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square free the discriminant is a non zero real number and if we denote by r the
number of (distinct) real roots of B we get the following formula for its sign

sign(disc B) = (−1)
d(d−1)+r(r−1)

2 . (2.6.7)

Now from the same theory as above follows that ℘( rτ+s
n

), (r, s) ∈ Cn, is real if and
only if either of r or s is equal to 0 or n

2 . We know that ℘( rτ+s
n

) = ℘( r′τ+s′
n

) is
equivalent to r = n− r′, s = n− s′ if (r′, s′) also lies in Cn.

We deduce that Bn has exactly n−1 distinct real roots if n is odd and 2n−1 if
n is even. Since the degree of B∗n is n2−1

2 if n is odd and n2+2
2 if n is even it follows

from (2.6.7) that sign(disc B∗n) is equal to (−1)n−1
2 if n is odd and (−1)n−2

2 if n is
even. This then concludes the proof of Theorem 2.

We remark that we checked all results appearing in this article with Mathe-
matica for small n. Further it seems that the conjecture as stated in [BuHu, p.31]
is wrong. In order to compare the conjecture with our result we notice that the
authors study the discriminant of fn with fn = B∗∗n /2 (n even) and from (2.2.2)
we deduce disc fn = 2−n2+6D while by (2.6.5) D has the same sign as disc B∗n.
We see however that the error lies just in the determination of the sign for n even.

2.7 Weierstrass and Legendre curves
The first of these is defined by the equation y2 = 4x3 − g2x − g3. Now defining
AWn = AWn (x), BW

n = BW
n (x) again with respect to the action of multiplication by

n on the x-coordinate, so that

℘(nz) = AWn (℘(z))
BW
n (℘(z))

for the corresponding Weierstrass function, and again normalizing the numerator
to be monic, we have no change except for the substitution of the form (2.3.1).
Thus we find the even simpler form

res(AWn , BW
n ) = (g3

2 − 27g2
3)

n2(n2−1)
6 .

And with
BW
n = BW∗2

n (n odd)

BW
n = 4BW∗2

n /(4x3 − g2x− g3) (n even)
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we find

disc BW∗
n = (−1)

n−1
2 n

n2−3
2 (g3

2 − 27g2
3)

(n2−1)(n2−3)
24 (n odd),

disc BW∗
n = (−1)

n−2
2 n

n2
2 2−(n2−2)(g3

2 − 27g2
3)

n2(n2+2)
24 (n even).

The Legendre curve is defined by the equation y2 = x(x − 1)(x − λ). Now
defining ALn = ALn(x), BL

n = BL
n (x) with respect to the action of multiplication by

n on the x-coordinate, and again normalizing the numerator to be monic, we have

ALn(x) = An(x+ 1
3(λ+ 1)), BL

n (x) = Bn(x+ 1
3(λ+ 1)) (2.7.1)

and the substitution

a = −1
3(λ2 − λ+ 1), b = − 1

27(λ− 2)(λ+ 1)(2λ− 1)

(see [MZ3] for more about these polynomials). We find

res(ALn , BL
n ) = (4λ(λ− 1))

n2(n2−1)
3 .

And finally with
BL
n = BL∗2

n (n odd)

BL
n = BL∗2

n /(x(x− 1)(x− λ)) (n even)

we find

disc BL∗
n = (−1)n−1

2 n
n2−3

2 (4λ(λ− 1))
(n2−1)(n2−3)

12 (n odd),

disc BL∗
n = (−1)

n−2
2 n

n2
2 2−(n2−2)(4λ(λ− 1))

n2(n2+2)
12 (n even).

2.8 Tate form
We saw that the Tate form is given by (2.1.9). This can be reduced to y2 =
x3 + ax + b as in [Si2, p.46,48] with a = −27c4, b = −54c6 both complicated
polynomials in R = Z[a1, a2, a3, a4, a6]; here the old variables are expressed in
terms of the new as

36x+ 3b2, 216y + 108a1x+ 108a3 (2.8.1)
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respectively, for some b2 in R. Thus multiplication by n on x is still given by
polynomials ATn = ATn (x), BT

n = BT
n (x), and again normalizing the numerator to

become monic we find

ATn (x) = 36−n2(An(36x+3b2)−3b2Bn(36x+3b2)), BT
n (x) = 36−n2+1Bn(36x+3b2),

(2.8.2)
the latter also looking like n2xn

2−1 + · · · .
Taking into account the various appearances of 36, and using another property

of resultants (see for example Exercise 2.7(a) of [Si4, p.75] with β = γ = 0, δ = 1)
we find the nice form

res(ATn , BT
n ) = (∆T )κn , (2.8.3)

where ∆T = 1
1728(c3

4−c2
6), by definition the discriminant of (2.1.9), is an even more

complicated polynomial still in R (with 26 terms). Similarly with

BT
n = BT∗2

n (n odd)

BT
n = 4BT∗2

n /BT
2 (n even)

for BT
2 = 4x3 + b2x

2 + 2b4x+ b6 and the standard b4, b6 in R [Si2, p.59] we find

disc BT∗
n = (−1)

n−1
2 n

n2−3
2 (∆T )

(n2−1)(n2−3)
12 (n odd),

disc BT∗
n = (−1)n−2

2 n
n2
2 2−(n2−2)(∆T )

n2(n2+2)
12 (n even).

Now (2.8.3) has an application in good reduction, but we must first pause
to prove that ATn (x), BT

n (x) lie in R[x]. This seems not to be explicitly in the
literature, even though it is known to the experts; indeed from (2.8.2) it looks
unlikely at first sight. But Tate pointed out that it follows from Proposition 4 of
his paper [MT, p.681] with Mazur. Here we supply a slightly more direct proof.

Again by [Si2, p.59] we have AT2 = x4 − b4x
2 − 2b6x − b8 for the standard b8

in R. We can then proceed by induction using the relations in [Si2, p.216]. These
imply for n ≥ 2 that

xn−1 + xn+1 = S(x, xn), xn−1xn+1 = P (x, xn),

where xm = x(mQ) for the generic point Q = (x, y) on y2 = x3 + ax+ b and

S(x, z) = 2(x+ z)(a+ xz) + 4b
(x+ z)2 − 4xz , P (x, z) = (xz − a)2 − 4b(x+ z)

(x+ z)2 − 4xz .

We make the change of variables as in (2.8.1) to land on (2.1.9) and solve for the
new xn−1, xn+1 to find

xn−1 + xn+1 = ST (x, xn), xn−1xn+1 = P T (x, xn)
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with
ST (x, z) = 1

36S(36x+ 3b2, 36z + 3b2)− 1
6b2

P T (x, z) = 1
1296P (36x+ 3b2, 36z + 3b2)− 1

432b2S(36x+ 3b2, 36z + 3b2) + 1
144b

2
2.

Now setting

xm = ATm
BT
m

= xm
2 + · · ·

m2xm2−1 + · · ·
and comparing the resulting denominator and numerator we obtain

BT
n−1B

T
n+1 = (ATn − xBT

n )2

and similarly (with mild surprise at the disappearance of the denominators) that

ATn−1B
T
n+1 + ATn+1B

T
n−1, ATn−1A

T
n+1

lie in R[x,ATn , BT
n ].

As ATn−1 is monic, the second above shows that if ATn−1, A
T
n , B

T
n are over R

then so is ATn+1; and then the first does the same for BT
n+1. This suffices for the

induction step.
Incidentally a similar argument shows that for the Legendre model bothALn(x), BL

n (x)
lie in Z[x, λ] as mentioned in [MZ3]; this is not directly clear from (2.7.1) because
of the denominator 3.

At this point we interrupt to indicate how to prove Theorem 1 up to sign
starting only from res(An, Bn) = cn∆κn as in section 2.2 with kn = κn and cn
composed at most of primes 2,3. As above we deduce only

res(ATn , BT
n ) = 16−κncn(∆T )κn , (2.8.4)

in place of (2.8.3). Now it is a fact that ∆T is a primitive polynomial; in fact 5 of
the 26 terms have coefficient ±1. It follows that cn = 16κncTn for cTn also in Z. If 2
or 3 divides cTn then we look at y2 + y = x3− x over F2 or F3 with ∆T = −37, and
then (2.8.4) would imply res(ATn , BT

n ) = 0 again contradicting coprimality.
In connection with Appendix B we make a remark about translation by a point

P = (ξ, η) of order 2. Here

BT
2 (ξ) = 4ξ3 + b2ξ

2 + 2b4ξ + b6 = 0. (2.8.5)

From [Si2, p.59] we find that x becomes

ATP (x)
BT
P (x) = ξ − δ

x− ξ
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with δ = a1η−3ξ2−2a2ξ−a4 (here 2η+a1ξ+a3 = 0). But now there seems to be
no obvious way to normalize ATP , BT

P ; for example ξ is probably not in the integral
closure of R. However from (2.8.5) we see that 4ξ (as well as b6/ξ if ξ 6= 0) is; and
if we take

ATP (x) = 4(ξx− ξ2 − δ), BT
P (x) = 4(x− ξ)

then we also find that even 2(ξ2 + δ), which is −4ξ2 − b2ξ − b4 or b4 + b6
ξ
, is in the

closure.
Then ρ = res(ATP , BT

P ) satisfies

ρ3 + c4ρ
2 + 256∆T = 0. (2.8.6)

This is not so nice in characteristic 2, and over F2[a1, a2, a3, a4, a6] we should nor-
malize differently. Then a1 6= 0 otherwise we are in the supersingular case and P
does not exist, and with

ATP (x) = a1(ξx− ξ2 − δ), BT
P (x) = a1(x− ξ)

we get a1ξ = a3 and a1(ξ2+δ) the square root of a1(a3
3+a1a2a

2
3+a1a

2
4+a2

1a3a4+a3
1a6)

in the closure; and simply
ρ2 = ∆T . (2.8.7)

In fact, all is much nicer for Legendre when the three ALP (x)
BLP (x) are

λ

x
,

x− λ
x− 1 , λ

x− 1
x− λ

.
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3 Relative Manin-Mumford in additive exten-
sions

In recent papers Masser and Zannier have proved various results of “relative Manin-
Mumford” type for various families of abelian varieties, some with field of defini-
tion restricted to the algebraic numbers. Typically these imply the finiteness of
the set of torsion points on a curve in the family. After Bertrand discovered some
counterexamples for multiplicative extensions of elliptic families, the three authors
together with Pillay settled completely the situation for this case over the alge-
braic numbers. Here we treat the last remaining case of surfaces, that of additive
extensions of elliptic families, and even over the field of all complex numbers. In
particular analogous counterexamples do not exist. There are finiteness conse-
quences for Pell’s equation over polynomial rings and integration in elementary
terms. Our work can be made effective because we use counting results only for
analytic curves.

3.1 Introduction
The following has motivated much recent work.

Problem. Let S be a semiabelian scheme over a variety defined over C, and de-
note by S [c] the union of its semiabelian subschemes of codimension at least c. Let
V be an irreducible closed subvariety of S. Then V ∩ S [1+dimV] is contained in a
finite union of semiabelian subschemes of S of positive codimension.

This is a variant of the conjecture stated by Pink [Pin] in 2005, which general-
ized the Zilber conjectures [Zil] to schemes.

In [MZ1] Masser and Zannier verified the above statement in a special case
where S is the fibred square of the standard Legendre elliptic family, with coor-
dinates (X1, Y1), (X2, Y2), and V is the curve defined by X1 = 2, X2 = 3. This
amounted to the finiteness of the set of complex numbers λ 6= 0, 1 such that the
points

(2,
√

4− 2λ), (3,
√

18− 6λ) (3.1.1)

both have finite order on the elliptic curve Eλ defined by

Y 2 = X(X − 1)(X − λ).
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In [MZ2] they generalized this to any pair of points defined over an algebraic
closure of C(λ). It turns out that this is equivalent to the problem above with S
isogenous to the product of two isogenous elliptic schemes and V a curve. In [MZ3]
they obtained some more precise information when the X-coordinates (abscissae)
happen to be in C. And in [MZ4] they settled the case of two non-isogenous elliptic
schemes.

Then in [MZ5] they dealt with S isogenous to a simple abelian surface scheme
and V a curve; but with the restriction that S,V are defined over an algebraic
closure Q of Q. So with this restriction the above problem is settled for abelian
surface schemes whether simple or not.

While investigating the problem for schemes that are not abelian, Bertrand
[B2] discovered a surprising counterexample. This concerned schemes of multi-
plicative extensions of elliptic curves. The example was of a somewhat special
nature involving the so-called ‘Ribet curves’. In [BMPZ] Bertrand, Masser, Pillay
and Zannier were able to show that there are essentially no other counterexamples
for multiplicative extensions of elliptic curves, subject to the above restriction of
field of definition. This settles the situation for all semiabelian surface schemes
over Q.

Now there may be no good reason for confining all these considerations to
semiabelian. For example, the finiteness of the set of complex numbers λ such
that the points

(2λ,
√

2λ(2λ− 1)(2λ− 4)), (3λ,
√

3λ(3λ− 1)(3λ− 4)) (3.1.2)

both have finite order on the elliptic curve E defined by Y 2 = X(X − 1)(X − 4)
is an easy consequence of the Manin-Mumford conjecture for E ×E, and this was
generalized to any commutative group variety, semiabelian or not, by [Hi].

Up to isomorphism there are exactly three group schemes of relative dimension
2 S which are not semiabelian. These are Ga × Ga,Ga × Gm, and an additive
extension G of an elliptic scheme E with

0 −→ Ga −→ G −→ E −→ 0. (3.1.3)

The first two are constant and so covered by [Hi]. In this section we treat the
remaining one for curves V . It turns out that there are no counterexamples as for
multiplicative extensions. Together with the work described above, this settles the
situation for all surface schemes defined over Q. But in fact we can handle the
additive case over the full C. Thus our main result is as follows.
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Theorem 3. Let G be an additive extension by Ga of an elliptic scheme E over a
variety defined over C, and denote by G [c] the union of its flat subgroup schemes
of codimension at least c. Let V be an irreducible closed curve of G. Then V ∩G [2]

is contained in a finite union of subgroup schemes of G of positive codimension.

We will see at the beginning of section 3.3 that the base variety can be assumed
to be irreducible of dimension at most one. In case it is a point, G is constant and
we see the classical result of Manin-Mumford type (as given in [Hi]) in the special
situation under consideration. It also applies when E is isoconstant (isomorphic to
a constant family). In fact we will appeal to the classical result to eliminate those
cases.

We give a brief description of the subgroup schemes of G over an irreducible
base curve B. The flat subgroup schemes (see [Hab, subsection 2.4] for the abelian
case) of G arise from algebraic subgroups of the generic fibre. So if G is not split
the flat subgroup schemes of codimension 1 are all isogenous to Ga × B. But if G
is split there is in addition the subgroup scheme 0×E . The flat subgroup schemes
of codimension 2 consist of unions of torsion sections. A typical subgroup scheme
that is not flat is the union of the identity section with an algebraic subgroup of
one fibre (and finite unions of those). These are either contained in a flat subgroup
scheme of positive codimension, or are elliptic curves in a split fibre of a non-split
G. The latter ones occur only for finitely many fibres and for all practical purposes
we may disregard the non-flat subgroup schemes in our discussion.

In the rest of this chapter as well as Appendix A all subgroup schemes that
appear are assumed to be flat unless explicitly stated otherwise.

We will show in section 3.14 that if G is not split and the projection of V to the
base B is dominant then V ∩ G[2] is even contained in a finite union of subgroup
schemes of codimension 2. For the image V of a section s : B → G this implies
for such G, that the intersection of V with the union of all torsion sections of G
is infinite if and only if s is a torsion section. If G is split then we must add the
possibility that V lies in 0 × E and the intersection of V with all torsion sections
is usually infinite but sparse (see for example [MZ1, p.1677]).

We give some examples of our theorem for base curves.

As we shall see in section 3.2, a typical G has an affine part in A5, with coor-
dinates (X, Y, U, V, λ), defined by equations

Y 2 = X(X − 1)(X − λ), V − Y U = X2 (3.1.4)
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and with the obvious projection, call it π, to Eλ. Here we removed the kernel of
π. Since the kernel does not contain any non-zero torsion points it is enough to
consider the above affine part. The group law is not so easily written down, but we
give an analytic description later. We may also refer to this G as Gλ, to indicate
the fibres over the base B = A \ {0, 1}. Here one may consult the article [CMZ] of
Corvaja, Masser, Zannier (in particular equation (3.6) on p.245 for the projective
Weierstrass model).

Thus we get the finiteness of the set of complex numbers λ 6= 0, 1 such that
the point

(2,
√

4− 2λ, 3, 3
√

4− 2λ+ 4) (3.1.5)

has finite order on Gλ (compare with (3.1.1) above). Or the complex numbers
λ 6= 0, 1 such that

(2,
√

4− 2λ, π, π
√

4− 2λ+ 4) (3.1.6)

has finite order on Gλ. We also get finiteness for the set of complex λ 6= 0, 1 such
that

(2,
√

4− 2λ, 0, 4) (3.1.7)

is torsion on Gλ. We will show in Appendix A that this implies that there are at
most finitely many λ such that∫ dX

(X − 2)
√
X(X − 1)(X − λ)

(3.1.8)

is integrable in elementary terms (see [MZ6] or [Ri] for the definition). This is
consistent with a claim of Davenport. In [MZ6] Masser and Zannier have formu-
lated this claim more precisely: the fundamental object is a differential on a curve
defined over the function field C(C) of another curve C itself defined over C. They
proved the claim when the field C is replaced by Q. Our Theorem implies Dav-
enport’s Claim for any elliptic curve defined over C(C) but not C. For example
with ∫ dX

(X − 2)
√
X3 +X + λ

,
∫ dX

(X − π)
√
X3 +X + λ

.

Another type of example is

(−1,
√
−2− 2λ, 0, 1); (3.1.9)
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we shall show in a future paper that this implies that there are at most finitely
many λ such that there exist A and B 6= 0 in C[X] with

A2 −X3(X − 1)(2X − 1)((λ+ 1)X − 1)B2 = 1.

This property has been studied by Masser and Zannier [MZ5]; see also Zannier’s
article [Za2], where now the fundamental object is a polynomial D in C(C)[X],
which is called Pellian if there exist A and B 6= 0 in C(C)[X] with A2−DB2 = 1.
Similarly with C(C) replaced with C. At the moment there is no satisfactory con-
jecture completely analogous to Davenport’s Claim; a naive version would already
be false for most quartic D such as X(X3 + X + λ). But our Theorem allows
the full investigation of families of sextic D with a cubed factor. For example in
Appendix A we prove that there are at most finitely many complex λ such that

X3(X3 +X + λ)

is Pellian and the proof translates without difficulties to

(X − π)3(X3 +X + λ).

It is interesting to note here that the presence of squared factors, for example
as in X2(X4 + X + λ) treated in [BMPZ], leads to multiplicative extensions of
elliptic curves. As shown by Bertrand in [B3, p.20, Corollary 3] the counterexam-
ples to relative Manin-Mumford given in [B2] also lead to counterexamples of a
Pell analogue of Davenport’s Claim. We also refer to section 4.2 of Appendix A
for an exhibition of some counterexamples.

In all the examples (3.1.5), (3.1.6), (3.1.7), (3.1.9) it can be checked that V
(the image of the corresponding sections) does not lie in G [1]; thus it has zero-
dimensional intersection with any subgroup scheme of positive dimension, leading
to finiteness statements. To do this checking we remark that the extension is non-
split (see for example [CMZ, p.244]), and so the only such connected subgroup
scheme is Ga inside Gλ, which is obtained by homogenizing (3.1.4) with coordi-
nates (Z0, X0, Y0, U0, V0) and taking (0, 0, 1, 0, v0) (one of the two lines at infinity).
This is the set of P with π(P ) = O; and similarly any such subgroup scheme, not
necessarily connected, is contained in one defined by qπ(P ) = O for some positive
integer q. For P = Pλ defined by (3.1.5), (3.1.6), (3.1.7) it was already verified in
[MZ1, p.1677] that π(Pλ) = (2,

√
4− 2λ) is not identically torsion, for example by

specializing to λ = −6; and a similar argument works for (3.1.9) at λ = −9.
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Our proof follows the general strategy of Masser and Zannier, especially [MZ2]
but also with elements from [MZ3]. The main case is when G is non-split and V is
defined over Q. Then in the context of Legendre elliptic curves, this amounts to
the study of the equations

z = xf + yg, w = −xk − yl (3.1.10)

where (z, w) are group logarithms of points Pλ like (3.1.5), (3.1.6), (3.1.7) or
(3.1.9), f, g are basis elements of the period lattice of Eλ, and k, l are correspond-
ing quasi-periods. Here z, f, g are as in [MZ2], but w, k, l represent new features.
Our coefficients x, y as defined in (3.8.1) are complex analytic (for example in
λ) and their locus S in C2 is analytic, of complex dimension at most 1. When
for some specific λ the point Pλ is torsion, say of order dividing some n, then
we get a rational point in 1

n
Z2 on S. The work of Bombieri-Pila [BP] is on real

analytic curves and so does not directly apply, but a variant of Masser [Mas2]
provides for any ε > 0 an upper bound for their number, of order at most nε as n
tends to infinity, provided S is transcendental. This presents a new feature as it
opens the door for effective refinements of our results. See also subsection 3.11.1
where we indicate how to obtain an effective result for the curve defined by (3.1.7).

Now if it happens that qπ(Pλ) = O for generic λ and a non-zero integer q, then
we get a subgroup scheme of codimension 1 as in the Theorem, so there is nothing
to prove.

Otherwise we are able to show that indeed S is transcendental; that is, the
functions x, y are algebraically independent. This follows from a result of Bertrand
[B1] concerning the functions z, w, f, g, l. Here we need to observe that w is closely
related to a suitable derivative of z.

We conclude the proof as in [MZ2] by combining Silverman’s Specialization
Theorem [Si1] with David’s result [Davi] on counting conjugates of torsion points,
which we first have to extend from Eλ to Gλ. This implies by contrast that the
number of rational points is of order at least nδ for some δ > 0. Comparison of
this lower bound with the above upper bound leads to an estimate for n which
suffices to prove the Theorem when G is non-split and V is defined over Q.

When G is non-split and V is not defined over Q as in (3.1.6), we may suppose
that λ is transcendental over Q. Now the classical theory of Fricke and Weber
provides so much Galois information on torsion points that we no longer need the
work of [B1], [Mas2], [Si1] or [Davi]. However in the Legendre context we first have
to extend also this theory from Eλ to Gλ. Then we are able to use the method
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of the Appendix of [MZ3] (see also the sketch in [Za1, p.81]). That involved con-
structing a certain curve Č over Q(j) for the modular invariant j, representing
multiplication by a suitable l as an element of some SL2(Z/nZ), and intersecting
Č and lČ using Bézout. However the details are slightly simpler here because we
can use GL2(Z/nZ) as in section 10 of [MZ2], or at least something nearly as big.

Finally when G is split it is Ga × E and the Theorem is easy to prove.

Here is a brief section-by-section account of this chapter.

We start in section 3.2 by explaining how the equations (3.1.4) arise and de-
scribing the analysis behind them. Then in section 3.3 we show how to reduce
the non-split case to a Proposition over C involving the special case G = Gλ,
and in section 3.4 we record our counting result. Our own curve S is constructed
from elliptic periods and quasi-periods defined in section 3.5 together with elliptic
logarithms and quasi-logarithms defined in section 3.6. The relevant algebraic in-
dependence result is then proved in section 3.7, and the curve is defined in section
3.8 and shown there to be transcendental. Then in sections 3.9 and 3.10 we record
the consequences of the work of David and Silverman for our purposes, and the
proof of the Proposition in the “algebraic case”, that is, over Q, is completed in
section 3.11. We also indicate how to obtain an effective result for the curve given
by (3.1.7) in subsection 3.11.1.

Finally, the proof for the transcendental case is done in section 3.12.

Then in section 3.13 we give the very simple proof of the Theorem in the split
situation.

And in section 3.14 we return to non-split and show how the Theorem can be
slightly strengthened in that situation; namely that V ∩G [2] is contained in a finite
union of (not necessarily flat) subgroup schemes of G of codimension at least two.

All the results of this section can be made effective, thanks to the fact that our
counting involves only curves, to which zero estimates of a classical form can be
applied. Thus based on the arguments of section 3.11.1 we have shown that there
are at most

exp(exp(exp(exp(exp(5))))

different values of λ such that (3.1.8) is integrable in elementary terms. With the
counting on surfaces in most of the previous work, the matter is not so clear due
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to the implicit use of Gabrielov’s Theorem (not to mention parametrizations).

We thank David Masser for introducing us into this subject and his involve-
ment in the development of this work. Also we would like to heartily thank Daniel
Bertrand for pointing out the differential relation (see section 3.7) between the
differential of the first and second kind of an elliptic curve defined over a function
field.

3.2 Additive extensions
As we will be using Weierstrass functions, we start with a corresponding curve E
whose affine part is defined by Ỹ 2 = 4X̃3 − g2X̃ − g3 and parametrized by the
exponential map X̃ = ℘(z), Ỹ = ℘′(z). Any non-split extension of E is isomorphic
to the variety G whose affine part is defined in A4 by

Ỹ 2 = 4X̃3 − g2X̃ − g3, Ṽ − Ỹ Ũ = 2X̃2 (3.2.1)

[CMZ, p.245]. The exponential map now sends (z, w) in C2 to

X̃ = ℘(z), Ỹ = ℘′(z), Ũ = w + ζ(z), Ṽ = (w + ζ(z))℘′(z) + 2℘2(z) (3.2.2)

where ζ(z) is the corresponding zeta function [CMZ, p.251]. Homogenizing the
equations leads to a projective varietyG in P4, say with coordinates (Z̃0, X̃0, Ỹ0, Ũ0, Ṽ0),
and analytically this amounts to multiplying (3.2.2) by the cube of the theta func-
tion (note that the last function has poles of order at most three not four). However
the parametrization does not cover all of G but only that part of G with the line
Z̃0 = X̃0 = Ỹ0 = 0 removed. Then

π̃(Z̃0, X̃0, Ỹ0, Ũ0, Ṽ0) = (Z̃0, X̃0, Ỹ0)

defines a projection π̃ from G to E. And

φ̃(ṽ0) = (0, 0, 1, 0, ṽ0) (3.2.3)

defines an isomorphism φ̃ of Ga to the kernel of π̃. So we get an exact sequence

0 −→ Ga −→ G −→ E −→ 0

(compare (3.1.3) above). Finally the group law is given by addition in C2.

Starting instead with the Legendre form Y 2 = X(X − 1)(X − λ) we get the
Weierstrass form via

X̃ = X − 1
3(λ+ 1), Ỹ = 2Y
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and

g2 = 4
3(λ2 − λ+ 1), g3 = 4

27(λ− 2)(λ+ 1)(2λ− 1). (3.2.4)

Defining also

Ũ = U, Ṽ = 2V − 4
3(λ+ 1)X + 2

9(λ+ 1)2

we get (3.1.4) as the analogue of (3.2.1) and

X = ℘λ(z) + 1
3(λ+ 1), Y = 1

2℘
′
λ(z), (3.2.5)

U = w + ζλ(z), V = 1
2(w + ζλ(z))℘′λ(z) +

(
℘λ(z) + 1

3(λ+ 1)
)2

(3.2.6)

as the analogue of (3.2.2), where the subscripts denote the restriction to (3.2.4).
Homogenizing the equations leads to a projective variety Gλ in P4, say with coordi-
nates (Z0, X0, Y0, U0, V0) as above, and its part Gλ with the line Z0 = X0 = Y0 = 0
removed. Then

π(Z0, X0, Y0, U0, V0) = (Z0, X0, Y0) (3.2.7)

defines a projection π from Gλ to Eλ. And

φ(v0) = (0, 0, 1, 0, v0) (3.2.8)

defines an embedding φ of Ga in Gλ. With these maps we get an exact sequence

0 −→ Ga −→ Gλ −→ Eλ −→ 0. (3.2.9)

3.3 Reduction to Gλ

It was shown in section 2 of [MZ2] that the above Problem is isogeny invariant in
the following sense. Let S,S ′ be semiabelian schemes defined over a variety over
C and suppose that there is an isogeny σ from S to S ′. Then the statement for S ′
implies the statement for S.

In fact the same argument works for any commutative group schemes S,S ′
semiabelian or not.
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Next, also as mentioned in section 2 of [MZ2], if V is a curve then we can
assume that the base variety is irreducible of dimension at most one. Also if E is
isoconstant Theroem 3 is implied by [Hi] and we will assume that this is not the
case.

Now for S = G we have an exact sequence 0→ Ga → G → E → 0 in our The-
orem, with a (non-isoconstant) elliptic scheme E . Under the above assumptions
about the base variety for the latter, the reduction of E to Legendre form Eλ leads
to 0 → Ga → G → Eλ → 0 (possibly after a finite base-change). Suppose that
G is non-split. Since all non-split extensions are isomorphic as algebraic groups
(see for example [CMZ, p.243]), it follows that G is isomorphic to Gλ above. This
provides σ as above (in fact an isomorphism), with S ′ = Gλ having coordinates
now (X, Y, U, V ). Let V be a curve in S. Then σ(V) in Gλ is a curve C in the
affine space A5 with coordinates (X, Y, U, V, λ) unless it lies in the kernel of π (so is
already contained in a subgroup scheme). We will regard it as being parametrized
by (ξ, η, µ, ν, λ) with ξ, η, µ, ν, λ functions in C(C).

If the point P = (ξ, η, µ, ν) satisfies qP = O for some non-zero integer q, then
the whole of σ(V) lies in the corresponding subgroup scheme of codimension 2, so
the Theorem is trivial for S ′. Thus we are entitled to assume qP 6= O for all such
integers.

If only qπ(P ) = O, then we will show (in section 3.14) that the Theorem is
easy for S ′ (also with codimension 2).

So for the moment we will assume that qπ(P ) 6= O as well.

If λ is constant on C, then the base variety can be considered as a point and
the Theorem for S ′ follows from Manin-Mumford as mentioned in the Introduction.

From all these considerations, we see that our Theorem for non-split G is im-
plied by the following statement (in conjunction with section 3.14).

Proposition 1. Let C in A5 be an irreducible curve defined over C and parametrized
by (ξ, η, µ, ν, λ), with λ non-constant. Suppose that the point

P = (ξ, η, µ, ν)

lies on Gλ and satisfies there

qπ(P ) 6= O (3.3.1)
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for all non-zero integers q. Then there are at most finitely many points c in C(C)
such that

P (c) = (ξ(c), η(c), µ(c), ν(c))

is of finite order on Gλ(c).

We shall prove this Proposition when C is defined over Q in C, which we refer
to as the algebraic case, in the following sections 3.4 to 3.11. Due to the use of
Pila’s result (not to mention the work of David using transcendence techniques)
this can be considered the deepest case. Then in section 3.12 we do the same when
C is not defined over Q, which we refer to as the transcendental case. This is by
comparison less deep.

3.4 Rational points
The analytic curve S in C2 mentioned in section 3.1 will arise as the locus of cer-
tain (f1, f2). In this section we record the basic counting result for such curves.

Lemma 3.4.1. Let D be a closed disc in C and let D# be the closed disc with the
same centre and twice the radius. Let f1, f2 be algebraically independent functions
analytic in a neighbourhood of D#. Then for every ε > 0 there is C(ε) such that
for any n in N there are at most C(ε)nε points t in D with (f1(t), f2(t)) in Z2/n.

Proof. First we observe that the closed disc of radius R > 0 centred at the origin
can be covered by k closed discs of radius r > 0, where

k ≤ 4
(

1 +
√

2
2
R

r

)2

. (3.4.1)

By scaling it suffices to prove this with r =
√

2/2. We inscribe the disc of radius
R in a square of side 2R, which we then cover by unit squares with vertices in Z2,
and finally we cover each unit square by a disc of radius

√
2/2. We can do this

with 4l2 unit squares provided l ≥ R; thus we take l = 1 + [R] ≤ 1 +R to get

k = 4l2 ≤ 4(1 +R)2 = 4
(

1 +
√

2
2
R

r

)2

.

By translating it suffices to prove the lemma when the centres are at the origin;
let R be the radius of D. As implicitly in [Mas2, p.2045] we define for each non-
negative integer T the quantity γ(T ) as the maximum number of t in D such that
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f(t) = (f1(t), f2(t)) lies on an algebraic curve of degree at most T . Because f1, f2
are algebraically independent this is well-known to be finite. Let M ≥ 1 be such
that max{|f1(t)|, |f2(t)|} ≤M on D#. Choose T ≥

√
8 and define A by

AR = (4T )96/T 2(M + 1)16/T (nM)48/T . (3.4.2)

We cover D by k closed discs D0 of radius r = (2A)−1; as AR ≥ 1 each D#
0

of twice the radius lies in D#. Then by Proposition 2 of [Mas2, p.2039] with
d = 1, H = nM the number of t in any D0 with f(t) in Z2/n is at most γ(T );
note that f1(t) = a/n for |a| ≤ nM and similarly for f2. Thus by (3.4.1) the total
number of such t in D is at most

4γ(T )
(

1 +
√

2
2
R

r

)2

≤ Cn96/T

where C by (3.4.2) depends only on T,R andM . We conclude the proof by taking
T ≥

√
8 minimal with 96/T ≤ ε.

This argument makes the effectivity clear provided we have an upper bound
for γ(T ); but that is of course a “zero estimate”, for which many methods are
available. The situation is not so clear when the analytic curve (parametrized by
f(t) as t varies) is replaced by a surface or worse.

3.5 Functions on C
To define the functions f, g, k, l in (3.1.10) we can work on C (or at least certain
subsets) with classical functions. Namely let

F (t) = F
(1

2 ,
1
2 , 1; t

)
=

∞∑
m=0

(2m)!2
24mm!4 t

m

be a hypergeometric function, convergent for |t| < 1. As in [MZ2] this together
with F (1 − t) will describe the periods of Et; but for safety we restrict for now
to the set Λ defined by |t| < 1 and |1 − t| < 1. Now Gt also has periods, which
involve the corresponding quasi-periods of Et, and to describe these we need also

K(t) = 1
3(1− 2t)F (t) + 2t(1− t)F ′(t). (3.5.1)

It is well-known that starting from any point t0 of Λ we may continue F (t) along
any path not passing through 0 and 1. We can continue F (1− t) along the same
path, and then by (3.5.1) this gives a continuation of the vector function

(F (t), F (1− t), K(t), K(1− t)). (3.5.2)
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The precise connexion with periods and quasi-periods is given by the following two
pairs of identities of a classical flavour; however we did not find them explicitly
in the literature (which is admittedly vast). The first is not crucial for us and is
included just for completeness (and possible interest).

Lemma 3.5.1. For t in Λ we have

℘t

(
π

2F (t)
)

= −1
3(t− 2), ℘t

(
π

2 iF (1− t)
)

= −1
3(t+ 1). (3.5.3)

Proof. It is well-known that πF (t) and πiF (1− t) constitute a basis for the period
lattice of Et with respect to dX/2Y . The abscissae of the points of order 2 are
0, 1, t (and the ordinates 0); and thus by (3.2.5) the two left-hand sides in (3.5.3)
are among the values −(t+ 1)/3,−(t− 2)/3, (2t− 1)/3, which are distinct for any
t 6= 0, 1. So we could check (3.5.3) numerically at say t = 1

2 and then continue
them to any point of Λ (or even C with 0, 1 removed). Less computationally we
could restrict to real t (so 0 < t < 1); then it is easily seen that

X(r) = ℘t(rπF (t)) + 1
3(t+ 1), Y (r) = 1

2℘
′
t(rπF (t))

are real for 0 < r < 1. As r → 0 and r → 1 we get the points at infinity of
the real graph of Y 2 = X(X − 1)(X − t), so as r varies we get the non-compact
component defined by X ≥ 1, which cuts the X-axis at X = 1 with r = 1

2 because
there Y (r) = 0. The first of (3.5.3) follows, and then as above by continuation. A
similar argument works for the second of (3.5.3) using real X and purely imaginary
Y at rπiF (1− t).

To these identities we could now add the third abscissa

℘t

(
π

2F (t) + π

2 iF (1− t)
)

= 1
3(2t− 1)

and even as mentioned above the ordinates

℘′t

(
π

2F (t)
)

= ℘′t

(
π

2 iF (1− t)
)

= ℘′t

(
π

2F (t) + π

2 iF (1− t)
)

= 0.

The second pair of identities is a bit more exotic.

Lemma 3.5.2. For t in Λ we have

ζt

(
π

2F (t)
)

= π

2K(t), ζt

(
π

2 iF (1− t)
)

= −π2 iK(1− t). (3.5.4)
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Proof. We will use some old-fashioned formulae from Halphen [Hal]. Probably a
more modern account can be found in [Ka]. We can view a period ω̃ of a curve
in Weierstrass form (3.2.1) as a function of the invariants g2, g3, and as such it is
locally analytic, provided of course that we avoid the zero locus of the discriminant
∆ = g3

2 − 27g2
3. If η̃ = 2ζ(ω̃/2) is the corresponding quasi-period, we have

∆ ∂ω̃

∂g2
= −1

4g
2
2ω̃ + 9

2g3η̃, ∆ ∂ω̃

∂g3
= 9

2g3ω̃ − 3g2η̃; (3.5.5)

see (37) of [Hal, p.307] (which actually refers to half-periods).

Now when we specialize to (3.2.4) with λ = t to get ω, η (the reader will forgive
the η both here, where it is completely traditional, and in the Proposition, where
it is rather natural) we deduce for the derivatives with respect to t

∆ω̇ =
(
−1

4 ġ2g
2
2 + 9

2 ġ3g3

)
ω +

(9
2 ġ2g3 − 3ġ3g2

)
η,

and a simple calculation gives

η = 1
3(1− 2t)ω + 2t(1− t)ω̇. (3.5.6)

Taking ω = πF (t) and recalling (3.5.1) we get the first of (3.5.4) at once; and the
second follows quickly using πiF (1− t).

We could here add

ζt

(
π

2F (t) + π

2 iF (1− t)
)

= π

2K(t)− π

2 iK(1− t).

Anyway πK(t) and −πiK(1 − t) are the quasi-periods corresponding to the
periods πF (t) and πiF (1 − t) respectively, at least on Λ. The Legendre relation
now looks like

(πiF (1− t))(πK(t))− (πF (t))(−πiK(1− t)) = 2πi, (3.5.7)

where in principle there could be a sign ambiguity on the right-hand side; this
however can be removed either by computation at say t = 1

2 , or by noting that
the period quotient (πiF (1 − t))/(πF (t)) clearly has positive imaginary part for
0 < t < 1.

As for the periods of Gt, these are given by the (ω,−η) in (3.5.6) (note that
we have w + ζt(z) in (3.2.6) of the exponential map).
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3.6 Functions on C

To define the functions z, w in (3.1.10) we can no longer use classical functions,
and we have to revert back to the curve C of the Proposition. But first we define
f, g, k, l on C.

With λ in C(C) as in the Proposition, we write

f = πF (λ), g = πiF (1− λ), k = πK(λ), l = −πiK(1− λ). (3.6.1)

Then f, g, k, l are well-defined at all c in λ−1(Λ) in C(C). They are analytic in
λ = λ(c). In particular, if we write expt for the associated exponential function
from C to Gt(C) as in (3.2.5),(3.2.6), then from the discussion in section 3.5 we
have

expλ(c)(f(c),−k(c)) = expλ(c)(g(c),−l(c)) = O

for the origin O of Gλ(c), which in projective form (3.2.8) is (0, 0, 1, 0, 0).

Next let P = (ξ, η, µ, ν) be as in the Proposition with ξ, η, µ, ν in C(C). We
can now follow [MZ2, p.459] to define the “elliptic logarithm”

z(c) =
∫ ∞
ξ(c)

dX
2
√
X(X − 1)(X − λ(c))

locally analytic at any c in C(C) with

λ(c), ξ(c) 6= 0, 1,∞ and λ(c) 6= ξ(c). (3.6.2)

Note that λ 6= 0, 1 identically as it is non-constant, and further ξ 6= 0, 1, λ identi-
cally, otherwise 2π(P ) = O contradicting (3.3.1).

For the second coordinate w we restrict further to

µ(c) 6=∞. (3.6.3)

We note from the first of (4.5) of [MZ2, p.459] and (3.2.5) above that we have

℘λ(c)(z(c)) + 1
3(λ(c) + 1) = ξ(c), 1

2℘
′
λ(c)(z(c)) = η(c). (3.6.4)

In particular z(c) is not a period. Now we can define the “elliptic quasi-logarithm”

w(c) = µ(c)− ζλ(c)(z(c)), (3.6.5)
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also locally analytic (for example the Weierstrass ζ(z) is locally analytic in g2, g3
and we specialize to (3.2.4) as above). Now consulting (3.2.5),(3.2.6) we see that

expλ(c)(z(c), w(c)) = (ξ(c), η(c), µ(c), ν(c)) = P (c). (3.6.6)

Thus we have inverted the exponential map.

We could also have used integrals of the second kind instead of (3.6.5) to define
w, for example ∫ (X − 1

3(λ+ 1))dX
2
√
X(X − 1)(X − λ)

,

but then we have to be careful with signs and at X =∞.

3.7 Algebraic independence
The relation (3.5.6) yields on the basis elements

k = 1
3(1− 2t)f + 2t(1− t)ḟ , (3.7.1)

l = 1
3(1− 2t)g + 2t(1− t)ġ, (3.7.2)

where now the derivative is taken with respect to t regarded as λ(c); this at c
makes sense provided

dλ(c) 6= 0. (3.7.3)

Thus we define Ĉ as the subset of C consisting of all c with (3.6.2),(3.6.3),(3.7.3)
(so that also η(c) 6= 0). By the above discussion, it is C with at most finitely many
points removed.

We now obtain an analogous relation expressing the quasi-logarithm w in terms
of the logarithm z and a derivative.

Lemma 3.7.1. For c in Ĉ we have

w = −1
3(1− 2t)z − 2t(1− t)ż + t(1− t) ξ̇

η
+ η

ξ − t
+ µ.
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Proof. Note that the signs on the right-hand side of (3.5.6) get changed, because
a period of Gλ is (ω,−η). We use some more old-fashioned formulae. Namely in
the Weierstrass notation (3.5.5) we have

∆∂℘(z)
∂g2

= ℘′(z)
(
−9

2g3ζ(z) + 1
4g

2
2z
)
− 9g3℘(z)2 + 1

2g
2
2℘(z) + 3

2g2g3,

∆∂℘(z)
∂g3

= ℘′(z)
(

3g2ζ(z)− 9
2g3z

)
+ 6g2℘(z)2 − 9g3℘(z)− g2

2;

see (14) of [Hal, p.298]. We take the total derivative as in the proof of Lemma
3.5.2 using (3.6.4) and (3.6.5) with t = λ(c) and a short calculation yields the
result.

We briefly sketch an alternative proof of this lemma, as suggested by Bertrand.
By standard results, there exists a linear relation over the field C(λ) between the
differentials ηλ = −(X − 1

3(λ+ 1))dX/(2Y ), ωλ = dX/(2Y ) and ω̇λ = dX/(4(X −
λ)Y ) modulo the exact differentials on Eλ. And indeed one can check the following
identity

d
(

Y

X − λ

)
= 1

3(1− 2λ)ωλ + 2λ(1− λ)ω̇λ − ηλ

by dividing both sides by dX and then comparing the left with the right hand side
after differentiation. The above relation would also follow from the differential
equation for ωλ in [Man, p.1397, (3)]. If we integrate both sides along a path from
some suitably chosen base point Q∗(c) on Eλ(c) to π(P (c)) we arrive at the same
identity as in the statement of Lemma 3.7.1. We cannot take Q∗ to be O because
η has a pole there but taking one of the 2-torsion points (0, 0) or (1, 0) on Eλ works.

Thus, fixing any point c∗ of λ−1(Λ) also in Ĉ, we see that f, g, k, l, z, w are
well-defined on a small neighbourhood N∗ of c∗. We will need the following result,
where again t = λ(c) is interpreted on C.

Lemma 3.7.2. The functions z, w are algebraically independent over C(f, g, k, l)
on N∗.

Proof. We show the independence even overK = C(t, f, g, k, l). From the Legendre
relation (3.5.7), now in the form

gk − fl = 2πi, (3.7.4)
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together with (3.7.1), we see that K is K′ = C(t, f, g, ḟ). Further by Lemma 3.7.1
it is enough to verify the algebraic independence of z, ż over K′. But this is just
Théorème 5 of [B1, p.136] with r = 1; one can choose the parameter x = λ there
(recall that λ is not constant). Note that the condition there that z, f, g are indeed
linearly independent over Z is satisfied because of (3.6.4) and our assumption that
π(P (c)) = (ξ(c), η(c)) is not identically torsion.

3.8 Continuation.

Recall that Ĉ is obtained from C(C) by the removal of a finite set of points.
Fix c∗ in λ−1(Λ), choose c in Ĉ and then a path from c∗ to c lying in Ĉ. We
can easily continue f, g, k, l along the path using (3.6.1) and the remark around
(3.5.2), because λ 6= 0, 1 on Ĉ. Then f, g remain a basis for the period lattice of Eλ,
and by continuing (3.5.4) we see that (f,−k), (g,−l) remain a basis for that of Gλ.

For the continuation of the functions z, w we follow section 3.6 of [MZ2]. It is
convenient to remove also the singular points. Let C0 be the finite subset which
we have removed so far, and write Ĉ for what remains. We can now speak of
functions analytic on Ĉ.

To continue (z, w) from c∗ to c in Ĉ it suffices to verify that if N1, N2 are
small open subsets in Ĉ, with N1 ∩N2 connected, such that (z, w) has an analytic
definition (z1, w1) on N1 and an analytic definition (z2, w2) on N2, then it has
an analytic definition on N1 ∪ N2. But from (3.6.6) we deduce expλ(z1, w1) =
expλ(z2, w2) on N1 ∩N2. Thus there are rational integers x, y with

(z2, w2) = x(f,−k) + y(g,−l) + (z1, w1)

on this intersection, and they must be constant there. So all we have to do is for
example to change (z2, w2) to (z2, w2)−x(f,−k)−y(g,−l) on N2. Using the same
path it is easy to see that we can continue the function (f, g, k, l, z, w) from a small
neighbourhood of c∗ to a small neighbourhood Nc of c in Ĉ. The end result is
a function (fc, gc, kc, lc, zc, wc) analytic on Nc. Write Ωt for the period lattice of Gt.

Lemma 3.8.1. The functions zc, wc are algebraically independent over the field
C(fc, gc, kc, lc) on Nc. Further we have Ωλ = Z(fc,−kc) + Z(gc,−lc) on Nc.

Proof. We could continue an algebraic dependence relation backwards to get the
same relation between f, g, z, w on a neighbourhood of c∗; however this would
contradict Lemma (3.7.2). The assertion about Ωλ follows from the discussion
above.
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With a view towards constructing the set S mentioned in the Introduction, we
now define xc, yc on Nc by

xc = − 1
2πi(lczc + gcwc), yc = 1

2πi(kczc + fcwc)

By (3.7.4) these satisfy

(zc, wc) = xc(fc,−kc) + yc(gc,−lc) (3.8.1)

as in (3.1.10).

We use the standard maximum norm on C5. For small δ > 0 (later to be
specified) we define Cδ as the set of c in C satisfying |c| ≤ 1/δ and

|c− c0| ≥ δ (3.8.2)

for each c0 in the finite set C0.

Shrinking Nc if necessary, we can choose for each c in Cδ a local analytic
isomorphism ϕc from Nc to an open subset of C. Choose any closed disc Dc
centred at ϕc(c) such that some neighbourhood of the disc with twice the radius
and the same centre is inside ϕc(Nc), and define

θc = (xc, yc) ◦ ϕ−1
c (3.8.3)

from Dc to C2. By compactness there is a finite set Π of c in Cδ such that the
ϕ−1

c (Dc) cover Cδ.

We are all set up for an application of Lemma 3.4.1. It will turn out that every
c in our Proposition leads to many rational values of xc, yc, and of course we have
to estimate their denominator. This we do in the next short section.

3.9 Orders of torsion
We first clarify the relation between torsion points of Et and torsion points of Gt

using (3.2.9) with the projection π of (3.2.7) and the embedding φ of (3.2.8).

Lemma 3.9.1. For each complex t 6= 0, 1 and each positive integer n the map π
induces a bijection from the points of order n in Gt to the points of order n on Et.
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Proof. We first verify the analogous statement for the groups of points of order
dividing n; now π is a homomorphism. It is injective because its kernel φ(Ga) has
no non-zero torsion. Now the group in Et has order n2, and this is well-known to
hold also for Gt; for example they are the points expt(z/n) for all z in the period
group Πt, of rank 2 over Z, modulo nΠt. The result follows quickly for points of
order exactly n; for example by Möbius inversion or by noting that if Q has order
n then π(Q) has order d dividing n but if d < n then π(Q) = π(R) for R of order
dividing d, which by the group isomorphism forces Q = R an impossibility.

We use the standard absolute Weil height of an algebraic number and also the
standard extension to vectors. See for example [Si2, p.208].

Lemma 3.9.2. There is a constant c = c(C) with the following property. Suppose
for some a in Ĉ that the point P (a) has finite order n. Then a is algebraic, and

n ≤ c[Q(a) : Q]2(1 + h(a)).

Proof. By Lemma 3.9.1 the point P ′ = π(P (a)) also has order n. It is clear that
a is algebraic, otherwise q = n would contradict (3.3.1). Now we apply David’s
work [Davi] to P ′, . . . , nP ′, just as in the proof of Lemma 7.1 of [MZ2, p.462].

3.10 Heights
In view of the following result we can eliminate the height dependence in Lemma
(3.9.2).

Lemma 3.10.1. There is a constant c = c(C) with the following property. Suppose
for some a in Ĉ that the point P (a) has finite order. Then h(a) ≤ c.

Proof. This is a consequence of Silverman’s Specialization Theorem [Si1, p.197]
for Eλ, because π(P ) is not identically of finite order.

Another advantage of bounded height is the following easy remark concerning
the sets C0 and Cδ in section 3.8. We note that the points of C0 are algebraic over
Q.
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Lemma 3.10.2. Given a number field K containing the coordinates of the points
of C0, and a constant c, there is a positive constant δ = δ(C,K, c) depending only
on C,K and c with the following property. Suppose a is algebraic on C, not in C0,
with h(a) ≤ c. Then there are at least 1

2 [K(a) : K] conjugates of a over K lying
in Cδ.

Proof. This is Lemma 8.2 of [MZ4, p.126].

3.11 Proof of Proposition (algebraic case)
We fix any positive ε < 1

2 . We use c, c1, c2, . . . , for positive constants depending
only on C. We have to show that there are at most finitely many a such that
P = P (a) has finite order on Gλ(a). By Lemma 3.9.2 each such a is algebraic, say
of degree d = [Q(a) : Q], and thanks to Lemma 3.10.1 and the Northcott property
it will suffice to prove that d ≤ c. We will actually argue with a single a.

Next, Lemma 3.9.2 together with Lemma 3.10.1 shows that there is a positive
integer

n ≤ c1d
2 (3.11.1)

such that

nP = O.

Fix a number field K containing a field of definition for the curve C and the
points of C0. By Lemma 3.10.1 and Lemma 3.10.2 the algebraic a has at least
1
2 [K(a) : K] different conjugates over K in some Cδ; here δ = c2. Now Cδ is
contained in the union of at most c3 closed sets ϕ−1

c (Dc), and so there is c such
that ϕ−1

c (Dc) contains at least 1
2 [K(a) : K]/c3 ≥ d/c4 different conjugates σ(a).

And the corresponding conjugate points σ(P ) also satisfy nσ(P ) = O.

We claim that each point

Θσ = θc(ϕc(σ(a))) = (xc(σ(a)), yc(σ(a)))

lies in Q2 and even in Z2/n.
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Now the function θc arises from continuations fc, gc, kc, lc, zc, wc of the func-
tions in section 3.8. We deduce from (3.6.6) that

expλ(zc, wc) = P

on Nc. At σ(a) this implies

expλ(σ(a))(nzc(σ(a)), nwc(σ(a))) = O.

It follows that (nzc(σ(a)), nwc(σ(a))) lies in the period lattice Ωλ(σ(a)), which by
Lemma 3.8.1 is just

Z(fc(σ(a)),−kc(σ(a)) + Z(gc(σ(a)),−lc(σ(a))).

Thus (3.8.1) shows that nxc(σ(a)), nyc(σ(a)) lie in Z. Thus indeed Θσ lies in Z2/n
as claimed.

We are going to apply Lemma 3.4.1 with (f1(t), f2(t)) = θc(t) in (3.8.3). Here
the algebraic independence of f1, f2 amounts to that of xc, yc which follows at once
from (3.8.1) and Lemma 3.8.1. We deduce that there are at most c5n

ε different
possibilities for ϕc(σ(a)) and so for σ(a). Thus by (3.11.1) at most c6d

2ε. This
contradicts the above lower bound d/c4 provided d is sufficiently large. As ob-
served near the beginning of this section, that suffices to prove Proposition 1 in
the algebraic case.

3.11.1 Example of Effectivity

All the ingredients of the proof of Proposition 1 in the algebraic case are well-
known to be effective except for the zero-estimate γ(T ) appearing in the proof of
Lemma 3.4.1.

In this short subsection we indicate rapidly how to get an upper bound for
γ(T ) for the curve parametrized by

(2,
√

4− 2λ, 0, 4)

which we already presented in (3.1.7). In section 3.6 we have described how to
locally invert the exponential map on a curve and for our curve the inverse is given
by

z =
∫ ∞

2

dX

2
√
X(X − 1)(X − t)

,

w = −1
3(1− 2t)z − 2t(t+ 1)ż +

√
4− 2t
2− t
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for a complex parameter λ = t in a neighbourhood of 1
2 . For the integral defining

z we can choose the path of integration as the real line and after choosing a sign
for the square-root in the definition of z, we get well-defined analytic functions
z, w in a neighbourhood of 1

2 . Now we define the coordinates x, y by

x = − 1
2πi(lz + gw),

y = 1
2πi(kz + fw)

where f, g, l, k are defined as in section 3.5 by hypergeometric functions. We can
continue the analytic function f = (x, y) to any point in C\{0, 1, 2} as we explained
in section 3.8.

Now x, y have singularities at 0,1 and 2 coming from the hypergeometric func-
tions f, g and the elliptic integral z. If we remove the half lines (−∞, 0] and [1,+∞)
from the real line the continuation of the function (f, g, z) to the resulting simply
connected domain in C is well-defined and we can estimate its norm as a function
of the distance to 0,1 and 2. Then taking also monodromy into consideration we
can compute the following bound

max{|f(t)|, |g(t)|, |z(t)|} ≤ 50 max{1, |2− t|3/2, | log(|1− t|)|, | log(|t|)|} (3.11.2)

for a suitable continuation of (f, g, z) from 1
2 to any point of C \ {0, 1, 2}.

Now we assume that t is such that the point (3.1.7) is torsion for λ = t. The
height-bound for t allows us to pick δ effectively such that at least half of the
Galois conjugates of t lie in the set Cδ (analogously to Cδ in Lemma 3.10.2), which
consists of all t ∈ C satisfying

1
δ
≥ |t| ≥ δ, |1− t| ≥ δ, |2− t| ≥ δ.

We cover Cδ by an effective number of discs of radius δ/8 such that for each disc
D in the cover, the disc D# of radius δ/4 and the same centre as D lies in C3δ/4.
With our choice of the cover and the estimate in (3.11.2) we can now give an upper
bound M for max{|x|, |y|} for a continuation of f from 1

2 to D# for each disc D of
this cover. Now we can follow the proof of Proposition 1 with Cδ replaced by Cδ

and x, y described above. What remains for an effective proof is a zero-estimate
of Masser for certain functions with a logarithmic singularity. In relation to the
quantity γ(T ) the following version of his estimate would be good enough for our
purposes.

56



Masser’s zero estimate: Let u, v, y be functions analytic in the open disc of
radius 1 centred at 0 with v(0) 6= 0, y′(0) 6= 0, and let P = P (X, Y ) be a non-zero
polynomial of degree at most d in X and of degree at most e in Y . Then for
x = u+Lv, where L is the ordinary logarithm function, the function Φ = P (x, y)
has at most

222(d+1)2(e+ 1)2 log(2M)

zeroes in the closed disc of radius 1
20 centred at 1

2 , where

M = max{1, 1
|v(0)| ,

1
|y′(0)| , |u|B(0, 9

10 ), |v|B(0, 9
10 ), |y|B(0, 9

10 )}.

Here the symbol |f |B(0, 9
10 ) denotes the maximum of an analytic function f on

the closed ball B(0, 9
10).

In our case x has such an expansion with v = − 1
πi
y and y is analytic on the

unit disc. The method used to establish the zero-estimate is flexible enough to
provide us with an estimate of γ(T ) for each disc D of the cover.

This strategy opens the door for a general effective version of Theorem 3 which
will be done in future work.

3.12 Proof of Proposition (transcendental case)
Now we extend Proposition 1 to curves defined over an arbitrary subfield of C.
We have already proved it when C is defined over Q. We now assume that C is
not defined over Q.

For the proof we follow the arguments in [MZ2, p.471, 472]. Given a torsion
point P (c) we construct a curve in a fixed additive extension of an elliptic curve
with transcendental j-invariant containing a point of the same order. By Fricke-
Weber the Galois orbit of such a point is as big as possible and this will allow us
to find a bound for its order. The construction of this curve will not depend on
the particular point but only on the equations defining C. Since we assumed that
qπ(P ) 6= O for all non-zero rational integers q this provides us with a bound on
the number of torsion points on C.

If λ(c) is algebraic then Gλ(c) is defined over Q and so if P (c) is torsion it must
also be defined over Q. But a curve not defined over Q contains only finitely many
points with algebraic coordinates; see for example [BMZ, Lemma 3, p.313]. So we
may assume that λ(c) is transcendental during the rest of this section.
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3.12.1 Reduction to a constant relation

Because λ(c) is transcendental it can be viewed as a generic element over Q which
by abuse of notation we call λ. In what follows we write (ξ, η, µ, ν) for the coordi-
nates of the point P (c).

We start by finding a non-trivial algebraic relation between ξ and ν defined
over Q(λ). For this we can follow the arguments in [MZ2, p.471] very closely. Let
K be a field of definition of C and t its transcendence degree over Q. Note that we
always have t ≥ 1 because of our assumption that C is not defined over Q. We can
then write K = Q(κ0, κ1, . . . , κt) where κ1, . . . , κt are algebraically independent
and κ0 is algebraic over Q(κ1, . . . , κt). If t = 1 we define K0 = Q and W0 to be the
algebraic variety parametrized by (ξ, ν, λ). Its dimension over Q is at least t = 1
and at most t+ 1 = 2 since K(ξ, ν, λ) has transcendence degree at most 1 over K.
If t > 1 we note that Q(λ, κ0, . . . , κt) has transcendence degree at least t− 1 over
Q(λ). So we may and will assume that κ1, . . . , κt−1 are algebraically independent
over Q(λ). In this case we define K0 = Q(κ1, . . . , κt−1) and W0 to be the algebraic
variety parametrized by (ξ, ν, λ, κ1, . . . , κt−1). Again W0 has dimension at least t
and at most t+ 1 over Q.

If the dimension of W0 is t + 1, its points lie in the zero locus of a single
polynomial. So if the dimension of W0 is t + 1 we get a non-trivial algebraic
relation between ξ and ν of the form

F (ξ, ν) = 0

where F has coefficients in the field K0(λ). If the dimension of W0 is less than
t+ 1 it must be exactly t and we consider the projection of W0 to the variety W1
parametrized by (ξ, λ, κ1, . . . , κt−1) in At+1. Now just as at the top of [MZ2, p.472]
we again obtain a non-trivial algebraic relation between ξ and ν (but without ν)
which is also defined over K0(λ).

We arrive at a non-trivial algebraic relation defined over Q(λ) by noting as
in [MZ2, p.473] that the fields K0(λ) and Q(λ) are linearly disjoint over Q(λ) by
[La3, Proposition 3.3, p.363]. Since ξ and ν are coordinates of a torsion point on
Gλ they are in Q(λ) and from the linear disjointness of the fields K0(λ) and Q(λ)
follows that there exists a non-trivial algebraic relation between ξ and ν defined
over Q(λ). By abuse of notation we denote this last algebraic relation also by F .
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3.12.2 Passing to a Weierstrass model defined over Q(j)

Before we can apply the necessary Galois theory we have to change the elliptic
curve so that it is defined over Q(j) for its j-invariant j. We do this via g2, g3
defined by (3.2.4) to get Ỹ 2 = 4X̃3−g2X̃−g3 as in (3.2.1), and then X̌ = u2X̃, Y̌ =
u3Ỹ for any u with u2 = g2

g3
(note g3 6= 0). Defining also Ǔ = uŨ, V̌ = u4Ṽ we get

the equations

Y̌ 2 = 4X̌3 − 27j
j − 1728X̌ −

27j
j − 1728 , V̌ − Y̌ Ǔ = 2X̌2 (3.12.1)

where

j = 256(λ2 − λ+ 1)3

λ2(1− λ)2 .

Here (3.12.1) defines Ǧj, an extension of Ěj defined by the first equation and all
are defined over Q(j).

3.12.3 Galois theory

For a natural number n ≥ 2 we denote by Ln the field obtained by adjoining the
coordinates of all points of order dividing n of the curve Ěj to the field Q(j). Fur-
ther let ℘̌, ζ̌ be the Weierstrass functions associated to Ěj and Λ be the lattice of ℘̌.

The non-zero points of order dividing n of Ěj are given by
(℘̌(ω/n), ℘̌′(ω/n)), ω ∈ Λ \ nΛ.

The Galois group of the extension Ln/Q(j) is isomorphic to GL2(Z/nZ) [La2,
p.68] and we can describe its action on the points of order n as follows. If ω1, ω2
is a basis of the period lattice of Λ and ω = m1ω1 + m2ω2, then γ ∈ GL2(Z/nZ)
sends (℘̌(ω/n), ℘̌′(ω/n)) to (℘̌(ωγ/n), ℘̌′(ωγ/n)) with ωγ = mγ

1ω1 + mγ
2ω2 where(

mγ
1

mγ
2

)
= γ

(
m1
m2

)
. This is pointed out in Lemma 10.1 of [MZ2, p.464].

We denote by η(ω) = 2ζ̌(ω/2) the quasi-period associated to ω ∈ Λ and by
exp the exponential map of Ǧj as in (3.2.2) for the Weierstrass model. Then
Ω = Z(ω1,−η(ω1)) +Z(ω2,−η(ω2)) is the kernel of exp and the non-zero points of
order dividing n on Ǧj are

exp(ω/n,−η(ω)/n), ω ∈ Λ.
Now we describe the action of the Galois group of Ln/Q(j) on the torsion points
of Ǧj as follows.
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Lemma 3.12.1. Let Ǧj and exp be as above. The coordinates of a point P̌ of
order n are in Ln and an element γ ∈ GL2(Z/nZ) acts on P̌ by sending P̌ =
exp(ω/n,−η(ω)/n) to P̌ γ = exp(ωγ/n,−η(ωγ)/n).

Proof. We first show that the coordinates of P̌ are in Ln. It is clear from (3.2.2)
that it is enough to show that ζ̌(ω/n) − η(ω)/n ∈ Ln. To prove this we consider
the function ζ̌((n + 1)z)− (n + 1)ζ(z). It is an odd elliptic function with respect
to the lattice Λ. By the general theory of elliptic functions there exists Q ∈ C(X)
such that

ζ̌((n+ 1)z)− (n+ 1)ζ̌(z) = ℘̌′(z)Q(℘̌(z)). (3.12.2)

Now fairly standard arguments show that we can even take Q ∈ Q(j)(X). For
example when Q = P1/P2 for P1, P2 ∈ C[X], we have

P2(℘̌(z))(ζ̌((n+ 1)z)− (n+ 1)ζ̌(z))− ℘̌′(z)P1(℘̌(z)) = 0. (3.12.3)

By expanding in Laurent series about z = 0, we can regard this as an infinite
system of homogenous linear equations in the coefficients of P1, P2. Because it has
a non-trivial solution, the rank is strictly less than the number of coefficients. Now
it is well-known that the Laurent series of ℘̌(z) and ζ̌(z) have coefficients in Q(j)
(see for example [Hu, p.175] with the remark (4.6) on p.221). Thus the system is
defined over Q(j). It follows that there is a non-trivial solution also over Q(j). In
fact P2 6= 0 for this solution, else P2 = 0 would imply also P1 = 0 by (3.12.3). So
indeed this Q = P1/P2 ∈ Q(j)(X).

We can further assume P1, P2 are coprime by dividing through their common
factor in Q(j)[X].

Now we return to the relation (3.12.2) with Q = P1/P2 ∈ Q(j)(X). The poles
of the function on the left side are contained in 1

n+1Λ as are the poles of ℘̌, ℘̌′.

We temporarily assume n is odd. Then for any ω ∈ Λ\nΛ we have ℘̌′(ω/n) 6= 0
and it follows that P2(℘̌(ω/n)) 6= 0 otherwise P1(℘̌(ω/n)) 6= 0 by coprimality and
the right-hand side would become infinite. Thus Q(℘̌) is defined at z = ω

n
.

Setting z = ω
n
in (3.12.2) we find that

ζ̌
(
ω

n

)
− η(ω)

n
= − 1

n
℘̌′
(
ω

n

)
Q
(
℘̌
(
ω

n

))
∈ Ln (3.12.4)
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as claimed.

Next we take an element g of the Galois group of Ln/Q(j) which sends (℘̌(ω/n), ℘̌′(ω/n))
to (℘̌(ωγ/n), ℘̌′(ωγ/n)) and set µ̌ = ζ̌(ω/n)− η(ω)/n. Then (3.12.4) shows that

µ̌g = − 1
n
℘̌′
(
ωγ

n

)
Q
(
℘̌
(
ωγ

n

))

which is equal to ζ̌(ωγ/n)− η(ωγ)/n, again by (3.12.4) with ω replaced by ωγ.

If n is even then a similar argument works provided we restrict to ω ∈ Λ \ n2 Λ
to keep ℘̌′(ω/n) 6= 0 (the corresponding ωγ is then also in Λ \ n2 Λ because we have
avoided points of order 2). And for ω ∈ n

2 Λ \ nΛ we have ζ̌(ω/n) − η(ω)/n = 0
and also ζ̌(ωγ/n) − η(ωγ)/n = 0 (we are now working with points of order 2), so
the lemma is trivial.

With Lemma 3.12.1 we can refer to [MZ2, Lemma 10.1] to get the Galois
bounds necessary for the proof of the Proposition in the transcendental case.

Namely for any point P = (ξ, η, µ, ν) on Gλ of order n ≥ 2 the point P̌ =
(ξ̌, η̌, µ̌, ν̌) on Ǧj is of order n and from [MZ2, Lemma 10.1] follows that the cardi-
nality of the orbit of P̌ under the action of the Galois group of Ln/Q(j) is bounded
from below by 6

π2n
2.

We note for later use that this bound applies to (ξ̌, η̌), and since any ξ̌ gives
rise to at most two η̌ we deduce that ξ̌ has degree at least 3

π2n
2 over Q(j).

3.12.4 Conclusion

We assume that P (c) and so also P̌ is of exact order n ≥ 2.

Note that in the formulae expressing ξ, ν in terms of ξ̌, ν̌ only λ and u2 = g2
g3
∈

Q(λ) turn up. So the relation F between ξ and ν from subsection 3.12.1 gives
rise to a relation between ξ̌ and ν̌ defined over Q(λ). The field Q(λ) is a finite
extension of Q(j) so taking the norm we end up with a relation (independent of n
or c)

F̌ (ξ̌, ν̌) = 0 (3.12.5)
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defined over Q(j). We select a factor F̌0 of F̌ over Q(j) irreducible over Q(j) also
vanishing at (ξ̌, ν̌). Now F̌0 = 0 defines in Ǧj a curve Č (note that by (3.2.1)
X̌ and V̌ are independent on Ǧj) with P̌ ∈ Č. Now Č has no zero-dimensional
components. This follows from [La1, Corollary, p.38] with r = 3, s = 2, n = 4 and
V 3 there defined by F̌0 = 0 and W 2 there defined by the equations in (3.12.1),
both in the affine space A4. Thus there is a curve component Č0 over Q(j) of Č
also with P̌ ∈ Č0 (in fact one can show that if Č is not itself irreducible then it
has two components, of the form Ď and −Ď).

In fact Č0 is defined over a finite extension K of Q(j). The compositum
KLn is a Galois extension of K whose group G whose index satisfies D = [G :
GL2(Z/nZ)] ≤ [K : Q(j)] also independent of n or c.

Now we can apply the methods of of the Appendix of [MZ3]. We first fix a prime

l not dividing n. Since
(
l 0
0 l

)
is in GL2(Z/nZ) we see that

(
m 0
0 m

)
is in G

for m = lD. So multiplication by m acts on the points of order n like an element
of G. In particular mP̌ ∈ Č0. As mP̌ ∈ mČ0 we deduce that mP̌ ∈ Č0∩mČ0 and
further that for any g in G

mP̌ g ∈ Č0 ∩mČ0.

From the remarks at the end of the last subsection it follows that

|Č0 ∩mČ0| ≥
6

π2D
n2. (3.12.6)

Next we give a bound for the degree of mČ0 in terms of m. For this we
take a new embedding of Ǧj into projective space as described in [Hi, p.577,
section 1, part (a)]. For an algebraic subvariety H of Ǧj we denote by degeH the
degree of H with respect to that embedding and by degH the degree of H with
respect to the original embedding of Ǧj into P4 given by homogenizing (3.2.1).
Since the embeddings are fixed there exist absolute constants c1 > 0, c2 such that
c1 degeH ≤ degH ≤ c2 degeH. For our curve Č0 the Corollaire in [Hi, p.589]
implies that

degemČ0 ≤ m2 dege Č0.

So

degmČ0 ≤ c2 degemČ0 ≤ c2m
2 dege Č0 ≤ c−1

1 c2m
2 deg Č0.
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If Č0 and mČ0 do not have a common component then it follows by any easy
version of Bézout’s theorem for curves in P4 (see for example [BG, p.561]) that

|Č0 ∩mČ0| ≤ cm2(deg Č0)2 (3.12.7)

for an absolute constant c. As pointed out in [MZ3, p.658] we can pick l such that
l ≤ 41 + 2 log n with the above property. Now comparing the upper bound coming
from (3.12.7) with the lower bound (3.12.6) we get

6
π2D

n2 ≤ c(41 + 2 log n)2D(deg Č0)2

and so a bound for n. This finishes the proof for that case.

In fact we can avoid the exponent 2D above by working over Q(j) not the
closure. This may be useful in numerical examples.

It remains to consider the case that Č0,mČ0 do have a common component.
But by irreducibility we must have

Č0 = mČ0. (3.12.8)

From [Hi, Lemme 16, p.589] we deduce that Č0 is a translate of an algebraic
subgroup of Ǧj.

The only (geometrically) connected algebraic subgroup curve of Ǧj is A =
φ̃(Ga) (for φ̃ as in (3.2.3)) so Č0 is of the form A+ S for some point S on Ǧj.

Now (3.12.8) implies A + S = m(A + S) so (m − 1)S ∈ A. So π(S) = 0
is torsion. It follows from Lemma 3.9.1 that π(S) = π(T ) for T torsion. Thus
A+ S = A+ T .

As Č0 is independent of n or c, we can find a positive integer q independent of
n such that qT = O.

Finally P̌ lies in A + T , so qP̌ lies in A and qπ(P̌ ) = O in Ǧj. Hence also
qπ(P (c)) = O in Gλ. In view of (3.3.1) this yields as desired the finiteness of the
set of c.

This establishes the Proposition in the transcendental case, and so completes
the entire proof.
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We illustrate some of the arguments above by showing that there are no com-
plex λ 6= 0, 1 such that (3.1.6) is torsion on Gλ.

Here ξ = 2 so F (X, V ) = X−2 is already defined over Q(λ) and even Q. Then

ξ̃ = ξ − 1
3(λ+ 1) = 5− λ

3

as well as

ξ̌ = g2

g3
ξ̃ = g2

g3

5− λ
3

giving the relation between ξ̌, ν̌ over Q(λ). Taking the norm to Q(j) we find

F̌ (X̌, V̌ ) = A0X̌
6 + A1X̌

5 + . . .

(also independent of V̌ ) with

A0 = 16j3 − 82944j2 + 143327232j − 82556485632
A1 = −1512j3 + 5225472j2 − 4514807808j.

This is irreducible over Q(j). Thus ξ̌ has degree 6 over Q(j). But we saw that its
degree is at least 3

π2n
2 over Q(j). So n = 2, 3, 4.

If n = 2 then its degree is at most 3. If n = 3 then its degree is at most 4. If
n = 4 then its degree is at most 6, and we find G(ξ̌) = 0 where

G(X̌) = A0X̌
6 +BX̌5 + . . .

has the same coefficient of X̌6 but

B = −540j3 + 1866420j2 − 1612431360j 6= A1.

This gives a contradiction.

Generally the proof of Proposition 1 in the transcendental case provides an ef-
fective bound for the order of P if we have sufficient knowledge about the algebraic
relations between the transcendental coefficients defining the curve C. Similarly
as in [MZ2, p.471] the bound only depends on the degree of the algebraic variety
W0 defined at the beginning of subsection 3.12.1.
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3.13 Split extensions
Here we prove the Theorem when G = Ga × E is split. Now we have a projection
to Ga. This induces a regular function α on the curve V . If P on V is torsion,
then α(P ) is torsion so zero. If α is not identically zero this gives at most finitely
many P and so V ∩ G [2] is contained in a finite union of subgroup schemes of G of
codimension two. Otherwise V lies in 0 × E itself a group subgroup scheme of G
of codimension one.

3.14 Non-split extensions again
The simple arguments of the preceding section can be combined with the Proposi-
tion to show that if G is non-split, and V is a curve in G, then V ∩G [2] is contained
in a finite union of (not necessarily flat) subgroup schemes of G of codimension two.
We may follow the reduction in section 3.3, which allows us to assume G = Gλ and
V = C with generic point P . If qπ(P ) 6= O for every positive integer q, then the
Proposition shows that V ∩G[2] is contained in a finite union of subgroup schemes
of G of codimension two. So this time we assume qπ(P ) = O for some such q.
Thus qP = φ(α) for some α which can also be identified with a rational function
(on C). Now if P (c) is torsion then by Lemma 3.9.1 it has order dividing q and

φ(α(c)) = O

forcing α(c) = 0. If α is not identically zero this gives at most finitely many c and
so V ∩ G[2] is contained in a finite union of subgroup schemes of codimension two.
Otherwise qP = O identically and V itself lies in a group subgroup scheme of G of
codimension two.

In this situation we can write down α explicitly. Namely P = expλ(zP , wP )
with zP = ωP/q for some period ωP . Thus by (3.2.8)

(0, 0, 1, 0, α) = φ(α) = qP = expλ(ωP , qwP ).

We cannot evaluate the exponential map (3.2.5),(3.2.6) directly at z = ωP , but
by taking V/Y we can see that α is the limit as z → ωP of

qwP + ζλ(z) + 2
(℘λ(z) + 1

3(λ+ 1))2

℘′λ(z) .

As ζλ(z) = ζλ(z − ωP ) + ηP for the quasi-period ηP corresponding to ωP , a simple
calculation shows that α = qwP + ηP . Using (3.5.6) and then ωP = qzP we end up
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thanks to Lemma 3.7.1 (which holds even if qπ(P ) = O provided q 6= 2) with

α

q
= λ(1− λ)ξ

′

η
+ η

ξ − λ
+ µ

at least if q 6= 2. If q = 2 then ξ is equal to either 0, 1 or λ and after a short
calculation using µ = wP + ζ(zP ) we see that

α

2 = µ

in this case.

In particular we can calculate α without having to multiply by q on the group,
which may be arduous.

The example

P = (
√
λ, i(λ−

√
λ), − i2(

√
λ− 1), 1

2
√
λ(λ+ 1))

is no good because 4P = O identically (so all values of λ give torsion, and α = 0).
But for say

P = (
√
λ, i(λ−

√
λ), −i(λ+

√
λ), λ2)

with 4π(P ) = O we find α = −2i(2λ+
√
λ+ 1) and so only

√
λ = −1±

√
−7

4
gives torsion.
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4 Appendix A
In this appendix we give some applications of the results from the last chapter.
Beforehand we briefly introduce the theory of generalized Jacobians. This sets
up the formalism to prove Theorem 4 in section 4.2 after providing some more
background to the theory of elementary integration. Then in section 4.3 we prove
Theorem 5 about Pell’s equation in polynomials. Finally in section 4.4 we return
to the context of Proposition 1 and we construct explicitly the curves C there
corresponding to the theorems.

4.1 Generalized Jacobians
In this section we introduce the theory of generalized Jacobians of curves. Such
a theory proved useful to treat classical problems as will be described in section
4.2 and 4.3. Additive extensions appear naturally as generalized Jacobians. This
allows us to apply the main result of chapter 3 to prove Theorem 4 and 5.

For a more detailed treatment of the theory of generalized Jacobians we refer
the reader to [Se].

4.1.1 Orders on a curve

Let C be a non-singular, projective and complete curve defined over an algebraically
closed field K of characteristic 0. For each P ∈ C(K) we can define the ring OP
which is the ring of functions in K(C) with no pole at P . Since C is non-singular
this is always a local ring and the maximal ideal mP of OP is principal. A func-
tion tP ∈ K(C) which generates mP is called a local uniformizer at P . For each
non-zero element f ∈ K(C) there is a unique integer n such that f = tnPu where u
is invertible in OP . This is all well-known and explained for example in [Se, p.7].

We can expand each f ∈ K(C) into a Laurent series at P as follows. If f ∈ OP
we define a0 = f(P ) and a1, . . . , ai, i ≥ 1 inductively by f − ∑i

l=0 alt
l
P ∈ mi+1

P .
This is well defined since mi+1

P /mi
P is a vector space over K of dimension 1. We

then define lP (f) = ∑∞
l=0 alt

l
P ∈ K((tp)). If f is not in OP then 1/f is and we can

define lP (f) = 1/lP (1/f). Thus for each P ∈ C(K) we get a well-defined map

lP : K(C) −→ K((tP )) (4.1.1)

which is in fact a field homomorphism. For non-zero f in K(C) and n as above we
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have

lP (f) =
∞∑
l=n

alt
l
P . (4.1.2)

The integer n is called the order of f at P and we denote it by ordP (f). From the
discussion above it follows that ordP defines a valuation on K(C) equal to

ordP (f) = min{l ∈ Z; al 6= 0} (4.1.3)

if f 6= 0 and for f = 0 we can set it formally equal to +∞. The functions ordP
are related by ∑

P∈C(K)
ordP (f) = 0. (4.1.4)

For a proof of the latter fact we refer to [Se, p.8, Proposition 1].

4.1.2 Divisors

We define the group Div(C) to be the free abelian group generated by the points
of C(K). Each element D of Div(C) can be expressed as a (finite) sum

D =
∑

P∈C(K)
nP (P ), np ∈ Z

where nP = 0 for all but finitely many P . The set of P where nP 6= 0 is called the
support |D| of D. The degree function deg

deg : Div(C)→ Z

defined by

deg(D) =
∑

nP

is a group homomorphism between Div(C) and Z and we define Div0(C) to be
its kernel. With the valuation we defined in the last subsection we can define the
divisor of a non-zero function f denoted by (f) as

(f) =
∑

P∈C(K)
ordP (f)(P ).

The map from the multiplicative group K(C)∗ of K(C) to Div(C) sending f to (f)
is a homomorphism from K(C)∗ to Div(C) with kernel K∗. The image of K(C)∗
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in Div(C) is the group of principal divisors P(C) and by (4.1.4) it is a subgroup of
Div0(C).

This makes it possible to consider the group J (C) defined by

J (C) = Div0(C)/P(C).

This group has the fundamental property that for every curve C there exists
a projective algebraic group Jac(C) which is isomorphic to J (C). Moreover the
isomorphism is given by extending a non-constant morphism g0 from C to Jac(C)
[Se, p.2, Theorem 3] to Div0(C) by∑

nP (P ) −→
∑

nPg0(P ).

We denote the extension of g0 to Div0(C) also by g0. From the construction it
follows that on Jac(C) we have∑

P∈C(K)
ordP (f)g0(P ) = O

for all non-zero functions f ∈ K(C).

If C is an elliptic curve E with identity element O, then Jac(C) is isomorphic
to E. An isomorphism is given by sending P in E(K) to (P ) − (O) in Div0(E)
and through this isomorphism we can identify E with Jac(C). The above relation
then becomes ∑

P∈E(K)
ordP (f)P = O (4.1.5)

on E, for every non-zero f ∈ K(E).

4.1.3 Modulus

We generalize the notion of Jacobian from the previous subsection. For this we
first have to introduce the notion of a modulusM on C.

This is the data of a finite (possibly empty) set of point S in C(K) and a
postive integer sP for every P ∈ S. It is often convenient to identifyM with the
divisor ∑P∈S sP (P ). We can define an equivalence relation on K(C)∗ by setting f
equivalent to 1 if

ordP (f − 1) ≥ sP , for all P ∈ S
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and write f ≡ 1 mod M or that f is congruent to 1. If S is empty then the set
of functions congruent to 1 mod M is just K(C).

We can define the narrow class [D]M of a divisor D in Div0 to be the set of
divisors D′ ∈ Div0 such that

D −D′ = (f),
f ≡ 1 mod M.

We can restrict Div0(C) to the group Div0,S(C) of divisors D with support |D|
disjoint from S. The set of narrow classes [D]M with D ∈ Div0,S(C) is a group
JM(C).

By [Se, p.2, Theorem 3], for each modulusM on C, there exists a commutative
algebraic group JacM(C) and a morphism gM from C \ S to JacM(C) such that
the extension of gM to Div0,S(C) defined by

Div0,S(C) −→ JacM(C) (4.1.6)
gM :

∑
np(P ) −→

∑
nPgM(P ). (4.1.7)

is surjective with kernel equal to the divisors of all functions f ∈ K(C) congruent
to 1 mod M. Thus gM induces an isomorphism from JM(C) to JacM(C). If
S is empty then JacM(C) is just the usual Jacobian. This justifies the fact that
JacM(C) is called the generalized Jacobian for general modulusM.

There is a canonical map

πM : JM(C) −→ J (C)

defined by sending the narrow class of a divisor D defined byM to the ordinary
class in Div0(C)/P(C). We denote the kernel of this map by LM.

The map πM induces a projection π of algebraic groups from JacM(C) to
Jac(C). The kernel of πM is

LM = {[(f)]M; f ∈ K(C)∗, ordP (f) = 0 for all P ∈ S}

and it can be given the structure of a linear algebraic group LM = Gr
a×Gs

m, where
r, s are

r =
∑
P

(sP − 1), s = |S| − 1,
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independent of the genus of C (see [Se, chapter V, §3]). This linear group LM is
isomorphic to the kernel of π as an algebraic group and we get an exact sequence
of algebraic groups

0 −→ LM −→ JacM(C) −→ Jac(C) −→ O.

This is again [Se, p.2, Theorem 3].

4.1.4 Examples

In order to provide the reader with some intuition for the construction of the gen-
eralized Jacobian we describe (the) two (easiest) examples. The structure of LM
is described in [Se, p.96] as a product of ”local groups“ and in [Se, Proposition
8] the structure of the local groups is determined. In this section we treat some
specific moduli on an elliptic curve.

Let E be an elliptic curve with neutral element O. If we set M = 2O, then
LM is given by the narrow classes of the elements in the set

{1 + ctO ∈ K(C); c ∈ K}

where tO as usual is a uniformizer at O.

If we multiply f1 = 1 + c1tO, f2 = 1 + c2tO in Div0,M we get the class of
1 + (c1 + c2)tO and we see that the map sending [1 + ctO]M to c provides an iso-
morphism between LM and the additive group Ga.

In fact JacM(E) is an additive extension of E. This is an algebraic group
sitting inside an exact sequence

0 −→ Ga −→ JacM(E) −→ E −→ O.

Up to isomorphism (of algebraic groups) there are exactly two such groups. Either
JacM is the product Ga × E or it is non-split (see for example [CMZ, p.244]). In
[Se, p.188, Proposition 15] it is shown that JacM is non-split.

We give a second example before finishing this subsection. ForM = (P ) +(Q)
where P 6= Q, we see by normalizing at P that LM consists of the classes of
functions f with expansion lP (f) = 1 + . . . at P and lQ(f) = c+ . . . , c 6= 0 at Q.
It is easy to check as above that the map sending [f ]M to c provides an isomorphism
between LM and Gm. And in fact JacM(E) is a multiplicative extension of E (a
semiabelian variety).
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4.2 Elementary integration
In this section we give a brief introduction to the theory of elementary integration.

Intuitively “elementary functions” are the functions known from High-School
mathematics such as polynomials, trigonometric functions, the log and the exp
function. The theory of elementary integration can then be understood as the
study of the question whether the primitive of a given elementary function is also
elementary.

We give a rigorous definition of the adjective elementary and then prove some
results using the theory of generalized Jacobians introduced in the previous section.

4.2.1 Definition

We start with a differential field K of characteristic 0. This is a field equipped
with a derivation ∂. The kernel of ∂ is the field of constants of K.

A differential field extension of K is a field K′ which contains K with a deriva-
tion ∂′ on K′ such that the restriction of ∂′ to K is equal to ∂. By abuse of notation
we will just denote the derivation of the extension also by ∂.

We call a differential extension of K elementary if it is obtained as a finite
tower of algebraic extensions and of extensions L/K of intermediate differential
fields K,L where L = K(y) with y such that either ∂(y)/y = ∂x or ∂(y) = ∂(x)/x
for some x ∈ K. The former y can be informally thought of as exp(x) and the
latter as log(x). We say that f ∈ K is elementary integrable (with respect to K)
if there exists g in an elementary extension of K such that ∂g = f .

In 1981 James Davenport made a very interesting claim about the elementary
integrability of parametrized algebraic functions [Dave, p.90, Theorem 7]. This
can be expressed formally in the following way.

Let C be an algebraic curve defined over a field k. Pick a non-constant function
X in k(C). Then k(C) is a differential field with ∂ = d

dX
(and field of constants k).

Thus we can speak of the elementary integrability of any f in k(C).

In particular this holds if k = C(V) is itself the function field of a curve V
defined over C.
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But then we can specialize everything at a point v in V(C), at least for at most
finitely many exceptions v. We get a specialized curve Cv over C and a specialized
fv in C(Cv), which is also a differential field (now with the field of constants C).
Thus we can speak of the elementary integrability of fv.

Davenport’s Claim: As above suppose that f is not elementary integrable
in C(V)(C). Then there are at most finitely many v ∈ V(C) such that fv is ele-
mentary integrable in C(Cv).

Masser and Zannier have recently proved this claim in [MZ6] “over Q”; that is
when V is defined over Q and f is in Q(V).

It seems very likely that our Theorem 3 will be the key tool in proving the full
Davenport’s Claim “over C” when C is an elliptic curve. In the next section we
will illustrate this by the example f = 1

(X−2)
√
X(X−1)(X−λ)

with C the Legendre
elliptic curve Y 2 = X(X − 1)(X − λ) over C(λ) = C(V) for V = A \ {0, 1}. Then
we obtain the following unconditional finiteness statement.

Theorem 4. There are at most finitely many λ ∈ C such that

1
(X − 2)

√
X(X − 1)(X − λ)

is elementary integrable.
In fact Liouville showed how to avoid the tower of extensions. He proved that

if the field of constants K0 of K is algebraically closed, then f in K is elementary
integrable if and only if there are g0, g1, . . . , gm in K and c1, . . . , cm in K0 such that

f = ∂g0 +
m∑
i=1

ci
∂gi
gi
.

In the situation of K = k(C) above this amounts in terms of differentials to

fdX = dg0 +
m∑
i=1

ci
dgi
gi
.

4.2.2 Proof of Theorem 4

For the proof we may assume that λ 6= 0, 1, so fλ = 1
(X−2)Y is a function on the

Legendre curve

Eλ : Y 2 = X(X − 1)(X − λ).
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We will prove that each λ such that fλ is elementary integrable gives rise to a
torsion point on a fixed curve in a non-split additive extension of Eλ. Then we can
conclude with the main result of chapter 3 that there are at most finitely many
such complex λ.

If fλ is elementary integrable then by Liouville

fλdX = dg0 +
m∑
i=1

ci
dgi
gi

(4.2.1)

now for g0, g1, . . . , gm in C(Eλ) and c1, . . . , cm in C. The differential ξλ = fλdX =
dX

(X−2)Y has a pole at Pλ = (2,
√

4− 2λ) and −Pλ of order 1 and a zero of or-
der 2 at O and no other poles or zeros. If g0 is non-constant then dg0 has at
least one pole of order at least 2 but ∑m

i=1 cidgi/gi has poles of order at most 1. By
comparing poles on both sides of (4.2.1) we deduce that g0 is constant and dg0 = 0.

We take m in (4.2.1) minimal. Clearly m ≥ 1. This implies that c1, . . . , cm
are linearly independent over Q; for example if cm = c1 + · · · + cm−1 the sum on
the right-hand side of (4.2.1) is ∑m−1

i=1 cidg̃i/g̃i with g̃i = gigm. Now any pole or
zero of gi at some Q gives rise to a pole of dgi/gi of residue ordQ(gi). So we get a
total residue ∑m

i=1 ciordQ(gi). If Q 6= ±Pλ this has to vanish. But then the linear
independence implies ordQ(gi) = 0 (i = 1, . . . ,m).

Thus the only possible poles or zeros of gi are ±Pλ. By (4.1.4) we deduce for
the divisor (gi) = di(Pλ) − di(−Pλ) (di ∈ Z). It follows that the multiplicative
rank of g1, . . . , gm modulo constants is at most 1, and so it is clearly 1. Adjusting
by constants, we can assume for example gi = gai1 (i = 1, . . . ,m) for integers ai
and then this leads to m = 1 in (4.2.1). Thus we can write

ξλ = c
dg

g

for some g ∈ C(Eλ) and c in C.

We know from the above discussion that the divisor of g is of the form

(g) = d(Pλ)− d(−Pλ) (4.2.2)

for some non-zero integer d. Further since ξλ has a zero of order 2 at O also dg has
a zero of order 2 at O and there exists a ∈ C∗ such that g− a vanishes of order at
least 3 at O. After replacing g with (1/a)g we get

ordO(g − 1) ≥ 2. (4.2.3)
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Thus the narrow class of the divisor (Pλ)− (−Pλ) with respect to the modulus
2O is a torsion point of order dividing d in J2O(Eλ).

Now let us temporarily think of λ as being generic over C and let Jλ be the
additive extension of Eλ defined by the modulusM = 2O. Then Jλ defines a non-
split additive extension of the family Eλ and together with the projection map to
C \ {0, 1} a group scheme G. The class [(Pλ)− (−Pλ)]M is the generic point of a
curve C1 in G.

Now going back to our special λ in (4.2.1), we see that Q1 = [(Pλ)−(−Pλ)]M is
torsion and so in C1∩G [2] in the notation of Theorem 3. It follows from that result
that Q1 is contained in one of a finite number of subgroup schemes of G of positive
codimension. As G is non-split the only such subschemes are torsion translates
T + Ga of Ga, with say qT = O for some fixed positive integer q. But then we
would have qπ(Q1) = O for the projection to Eλ. Here π(Q1) is the ordinary class
of (Pλ) − (−Pλ) which is identified with 2Pλ. So in Eλ we get 2qPλ = O. We re-
marked in section 3.1 that Pλ is not identically torsion so we get the finiteness of λ.

The reader will check without difficulty that the whole proof works also with
1

(X − π)
√
X(X − 1)(X − λ)

analogously to the π-examples exhibited in section 3.1. This time it is obvious
that the corresponding point (π,

√
π(π − 1)(π − λ)) is not torsion identically.

4.3 Pell’s equation in polynomials
In this section we study certain Pell’s equation in polynomials. Now let K be a
field of characteristic zero. We call a polynomial D ∈ K[X] Pellian (with respect
to K) if there exist A,B in K[X] such that

A2 −DB2 = 1, B 6= 0.

This is equivalent to finding a non-trivial unit A+Y B in the ringK[X, Y ]/(Y 2−D).
This problem was studied at least since the 19th century and is closely connected
to certain abelian integrals. For a more precise and systematic treatment of the
problem and its history we refer the reader to [Za2].

Let V be an algebraic curve defined over C. Thus we can speak of the Pel-
lianity of any D ∈ C(V)[X]. And for any v ∈ C(V) (with at most finitely many
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exceptions) we can specialize to Dv ∈ C[X] and so speak of the Pellianity of Dv.

The natural analogue of Davenport’s Claim, that if D is not Pellian over C(V)
then there are at most finitely many v ∈ V(C) such that Dv is Pellian over C, is
false. A counterexample is D = X6 +X2 +t [Za1, p.86] arising from elliptic factors
of the Jacobian. A much more subtle counterexample comes from [B3]

D = X2(X4 + tX3 − tX − 1) = X2(X2 − 1)(X2 + tX + 1)

arising from Ribet curves (as described in [B2]) in multiplicative extensions of el-
liptic curves.

It seems likely that there are no such counterexamples when D is sextic with
a triple zero. In the next section we will illustrate this with the example D =
X3(X3 + X + t) with C(t) = C(V) for V = A. Then we obtain the following
unconditional finiteness statement.

Theorem 5. There are at most finitely many complex t such that

Dt = X3(X3 +X + t)

is Pellian.

4.3.1 Proof of Theorem 5

Let t ∈ C be such that there exist A,B 6= 0 in C[X] such that

A2 −DtB
2 = 1. (4.3.1)

We set d = deg(A) to be the degree of A and then necessarily deg(B) = d− 3.
From (4.3.1) follows that the function f = A+XY B on the curve

Y 2 = X(X3 +X + t) (4.3.2)

has zeros and poles supported at the points at infinity corresponding to X =∞.

The points at infinity then are P+
∞, P

−
∞ (on a suitable non-singular model) and

as above we can assume that

(f) = d(P+
∞)− d(P−∞).
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From (4.3.1) we deduce that X3 divides (A−1)(A+1) and by possibly changing
A to −A we can assume that X3 divides A − 1. The function X has a zero of
order 2 at P0 = (0, 0) and the function Y a zero of order 1. Thus

ordP0(f − 1) ≥ min{ordP0(A− 1), ordP0(XY B)} ≥ 3.

So we could use the modulus 3P0. However as in the previous section (see 4.2.3)
M = 2P0 suffices and it can be shown in both cases that considering M = 3P0
does not provide any new information. If we temporarily assume t to be generic
over C then JacM(E) defines an additive extension of the Jacobian of a suitable
non-singular projective model E of (4.3.2). The curve defined by (4.3.2) has genus
1 so JacM(E) defines a non-split additive extension of an elliptic family. Together
with the projection map defined by t it is a group scheme G over the base curve
A \ {0,±

√
−4/27} and the class [(P+

∞)− (P−∞)]M is the generic point of a curve C2
in G.

Now going back to our special t in (4.3.1) it follows from the above discussion
that Q2 = [(P+

∞) − (P−∞)]M is torsion and so in C2 ∩ G [2]. Thus as in subsection
4.2.2 we deduce that q((P+

∞)− (P−∞)) = O for the ordinary class.

To go further we use X̂ = 1/X and Ŷ = (1/
√
t)Y/X2 to get a non-singular

(affine) model Êt defined by

Ŷ 2 = X̂3 + t−1X̂2 + t−1

for t(4 + 27t2) 6= 0. Then P±∞ go to ±P̂t for P̂t = (0,
√

1/t). Thus as above it
suffices to prove that P̂t is not identically torsion.

However we check at t = 1
9 that

4P̂ 1
9

=
(765

4 ,
21651

8

)
and so by Lutz-Nagell P̂ 1

9
is not torsion on Ê 1

9
; thus P̂t is not torsion on Êt for t

generic over C. This concludes the proof of Theorem 5.

Again the reader can easily check that the whole proof works with

(X − π)3(X3 +X + t)

as exhibited in section 3.1. One ends up with
(

0,
√

1+π2−π3t
t

)
on a curve more

complicated than Êt, and again the π prevents torsion.
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4.4 Reduction to Gλ in A4

In this section we concentrate on the case of an additive extension of the Legendre
family. For an elliptic curve over C the order function can be defined in terms of
classical elliptic functions. We briefly outline how and then indicate how a concrete
embedding of an additive extension can be obtained using the Weierstrass ℘ and
ζ function. This then leads to an explicit description of the generalized Jacobian
Jac2O(Eλ) and a map g2O.

We then use this explicit description to calculate the curves in Proposition 1
corresponding to Theorems 4 and 5.

We work over an elliptic curve E defined over an algebraically closed field K
of characteristic 0. Then E has a Weierstrass model of the form

E : Ỹ 2 = 4X̃3 − g2X̃ − g3, g2, g3 ∈ K. (4.4.1)

If K = C then X̃, Ỹ are parametrized by the Weierstrass functions ℘, ℘′ asso-
ciated to the lattice generated by the invariant differential dX̃

Ỹ
. It is well-known

that ℘, ℘′ are meromorphic functions with a Laurent expansion (at 0) of the form

℘(z) = 1
z2 +

∞∑
i=0

siz
i, (4.4.2)

℘′(z) = − 2
z3 +

∞∑
i=0

(i+ 1)si+1z
i, si ∈ Q(g2, g3). (4.4.3)

We can interpret this as formal and define a map

l̃O : K(X̃, Ỹ )→ K((z))

from the function field K(X̃, Ỹ ) of E to the field of formal Laurent series over K
by setting

l̃O(X̃) = 1
z2 +

∞∑
i=0

siz
i, l̃O(Ỹ ) = − 2

z3 +
∞∑
i=0

(i+ 1)si+1z
i.

For an element φ ∈ K((z)) we define ai(φ) to be the coefficient of zi in the
Laurent series of φ. We can then define the order of φ by

ord(φ) = min
i∈Z
{ai 6= 0}

From basic properties of Laurent series follows that ord is a valuation onK((z))
if we formally set ord(0) = +∞. With the differential equation for ℘

(℘′)2 = 4℘3 − g2℘− g3
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we can define the higher derivatives of ℘ as polynomials of ℘, ℘′ with coefficients
in the field Q(g2, g3). Hence for any non-zero point (xP , yP ) ∈ E(K) we can define
formal Laurent series in K((z)) (actually a Taylor series), by

l̃P (X̃) =
∞∑
i=0

℘(i)(xP )
i! zi,

l̃P (Ỹ ) =
∞∑
i=0

℘(i+1)(xP )
i! zi.

As with l̃O we can extend this to a map

l̃P : K(X̃, Ỹ )→ K((z)).

Now for each point P ∈ E(K) (with O the point at infinity) this defines a
valuation on K(X̃, Ỹ ) through

ordP (f) = ord(l̃P (f)).

It is well-known that this valuation ordP is the same as ordP defined in subsection
4.1.1 for C = E. If K is a subfield of C then from the theory of elliptic functions
it follows directly that this valuation has the property∑

P∈E(K)
ordP (f) = 0,

∑
P∈E(K)

ordP (f)P = O (4.4.4)

where the right sum is defined by addition on E.

If we want to pass to an additive extension of E the Weierstrass ζ function
enters the picture. It is defined to be the unique odd meromorphic function such
that ζ ′ = −℘.

It has the property that for a basis ω1, ω2 of the lattice Λ associated to ℘
we have ζ(z + a1ω1 + a2ω2) = ζ(z) + a1η1 + a2η2 for a1, a2 ∈ Z, where η1 =
2ζ(ω1/2), η2 = 2ζ(ω2/2) are quasi-periods of ζ. Now setting Ũ = ζ(z) + w, Ṽ =
(w + ζ(z))℘′(z) + 2℘2(z) we get a map from C2 \ (Zω1 + Zω2)× C to P4 sending
(z, w) to (1, X̃, Ỹ , Ũ , Ṽ ) and Ũ , Ṽ satisfy

Ṽ − Ỹ Ũ = 2X̃2.

It is easy to check that this map is invariant under translations by the group
Z(ω1,−η1)+Z(ω2,−η2). We can extend the above map to a map from C2 to P4(C)
(if necessary using the sigma function) and the image describes a quasi-projective
subvariety G of P4. With the addition on C2 this map transports a group structure
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to G with a natural projection π down to E given by the projection from C2 to C
sending (z, w) to z. So we get an exponential map exp between C2 and G inducing
an isomorphism between C2/(Z(ω1,−η1) + Z(ω2,−η2)) and G.

We can further check directly that the set 0×C is mapped to an affine line in
P4 and the additive group 0×C maps isomorphically to an additive group on this
line. This line is the kernel of the projection π and G is an additive extension of
E. As pointed out in [CMZ] (see (3.11) on p. 251 for the uniformization), where
all of this was outlined in more detail, this extension is non-split.

We next construct the map g = gM in (4.1.7) forM = 2O and C = E. Actually
it is easy to define g on E \O simply by

g(X̃, Ỹ ) = (X̃, Ỹ , 0, 2X̃2). (4.4.5)

This induces a map g on the tangent spaces defined by

g(z) = (z,−ζ(z)). (4.4.6)

We see from (4.4.6) that g is odd in the sense that

g(P ) = −g(−P )

for all P 6= O in E.

Building on a note of Masser on elementary integration we now show that if f0
is in C(E) congruent to 1 mod 2O then∑

O 6=P∈E(C)
ordP (f0)g(P ) = O

in G; this shows that the extension to Div0,O(E) is well-defined on narrow classes.
But it is hardly any more work to establish the isomorphism property after (4.1.7).

Lemma 4.4.1. The extension of g to Div0,O(E) induces an isomorphism from
J2O to G.

Proof. Let Zω1 + Zω2 be the lattice of E as above with =(ω2/ω1) > 0 and η1, η2
the associated quasi-periods of ζ. Thus Z(ω1,−η1) + Z(ω2,−η2) is the kernel of
the exponential map of G. Now let f ∈ C(X̃, Ỹ ) be such that f(O) = 1 and let
P1, . . . , Pn be the set of its poles and zeros withm1 = ordP1(f), . . . ,mn = ordPn(f).
Further let u1, . . . , un in C be such that

(℘(ui), ℘′(ui)) = Pi, i = 1, . . . , n.
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We can pick z0 ∈ C with

F = {z0 + t1ω1 + t2ω2; t1, t2 ∈ R, 0 ≤ t1, t2 < 1}

such that ∂F ∩Zω1 +Zω2 is empty and such that we can pick u1, . . . , un as above
in the interior of F and such that 0 is the only lattice point in F . We define the
meromorphic function φ by

φ(z) = f(℘(z), ℘′(z)).

Then φ has zeroes and poles u1, . . . , un in F with mi = orduiφ in the usual ana-
lytical sense.

We now repeat the standard argument from elliptic function theory to obtain
an analytic version of the second equation in (4.4.4).

By the residue theorem the integral along ∂F (with the usual orientation) of
z φ
′

φ
is equal to

I1 = 1
2πi

∫
∂F
z
φ′

φ
dz =

n∑
i=1

miui.

If we integrate along the two pairs of opposite sides of ∂F we see that I1 ∈
Zω1 +Zω2. More precisely using that φ is an elliptic function we get the following
equalities ∫ z0+ω1+ω2

z0+ω1
z
φ′

φ
dz =

∫ z0+ω2

z0
z
φ′

φ
dz + ω1

∫ z0+ω2

z0

φ′

φ
dz∫ z0+ω2

z0+ω1+ω2
z
φ′

φ
dz =

∫ z0

z0+ω1
z
φ′

φ
dz + ω2

∫ z0

z0+ω1

φ′

φ
dz.

For the last two integrals on the right hand side we get

1
2πi

∫ z0+ω2

z0

φ′

φ
dz = 1

2πi

∫ z0+ω2

z0

d

dz
log(φ(z))dz = n1 ∈ Z

1
2πi

∫ z0

z0+ω1

φ′

φ
dz = 1

2πi

∫ z0

z0+ω1

d

dz
log(φ(z))dz = n2 ∈ Z,

where the last equalities result from the fact that the image of the lines from z0
to z0 + ω1 and z0 + ω2 map to closed paths under φ and n1,−n2 are their winding
number around 0.
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In conclusion we find
n∑
i=1

miui = n1ω1 + n2ω2.

Now following the note of Masser mentioned above and departing from stan-
dard, we consider the integral I2 = 1

2πi
∫
∂F ζ

φ′

φ
dz. Note that by construction ζ has

exactly one pole of order 1 at 0 with residue 1 and no other poles in F . With the
residue theorem we get

I2 =
n∑
i=1

miζ(ui) + φ′(0).

Next using ζ(z + ω1) = ζ(z) + η1 and ζ(z + ω2) = ζ(z) + η2 (the quasi-
periodicity of ζ(z) instead of that of z) we get with the same arguments as for
I1 that integrating along opposite sides yields I2 = n1η1 + n2η2. Thus

n∑
i=1

mi(ui,−ζ(ui)) = (0, φ′(0)) + n1(ω1,−η1) + n2(ω2,−η2). (4.4.7)

Now by applying the exponential map to (4.4.7) and taking f ≡ 1 mod 2O,
so that φ′(0) = 0, we see that g((f)) = O. Thus g is well-defined on the quotient
J2O(E).

To prove injectivity we first note that π(g(P )) = P for all P 6= O on E. Now
take D = ∑

nP (P ) with g(D) = O. Then ∑nPg(P ) = O in G, and applying π
gives

O =
∑

nPπ(g(P )) =
∑

nPP.

As ∑nP = 0, it follows from well-known elliptic curve theory that D = (f) is
principal. Now (4.4.7) shows that exp(0, φ′(0)) = O in G. Looking at the periods
we deduce that φ′(0) = 0. Thus f ≡ 1 mod 2O and D is zero in the quotient.

To prove surjectivity (which looks slightly unlikely due to the mysterious 0 in
(4.4.5) above) take any Π0 in G in the kernel of π, so that Π0 = exp(0, c) for some
c ∈ C. Then taking f = 1 − 2cX

Y
in (4.4.7) we find from (4.4.2) and (4.4.3) that

φ = 1 + cz+ . . . and so g((f)) = Π0. So at least we have surjectivity on the kernel
of π.

Now take Π in G not in the kernel of π. Then P = π(Π) 6= O and we can find
Q in E with 2Q = P . For D = (Q)− (−Q) in Div0,O(E) we compute (using that
g is odd)

g(D) = 2g(Q) = g(P )
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so π(g(D)) = P = π(Π). Thus g(D)−Π is in the kernel of π and so by the above
is g((f)). Therefore

Π = g(D − (f))

and this completes the proof of surjectivity.

It is easy to obtain the analogues of all this for the Legendre model Eλ and
the associated Gλ of chapter 3. Using section 3.2 and (3.1.4) we find that the
corresponding gλ is given by

gλ(X, Y ) = (X, Y, 0, X2) (4.4.8)

and is again odd.

Next we return to the point Pλ from subsection 4.2.2.

If λ ∈ C \ {0, 1} is such that f is elementary integrable, then there exists
g ∈ C(Eλ) congruent to 1 mod 2O with divisor equal to

(g) = d(Pλ)− d(−Pλ)

for some positive integer d. This implies together with the fact that gλ is odd that

2dgλ(Pλ) = O

on Gλ. Thus the point

(2,
√

4− 2λ, 0, 4)

is torsion. This is the point given in (3.1.7) of the introduction of chapter 3. We
have already remarked there that Pλ is not identically torsion. Thus we could
deduce directly from Proposition 1 that there are at most finitely many complex
λ 6= 0, 1 such that gλ(Pλ) is torsion on Gλ and therefore Theorem 4.

In order to treat the point P∞ from subsection 4.3.1 we have to pass to the
Legendre family first. We have already shown how to pass from the initial curve
to the point P̂t on Êt.

It can be checked that if we pass from Êt to Eλ, where by consideration of
j-invariant we must have

256(λ2 − λ+ 1)3

λ2(1− λ)2 = − 256
t2(27t2 + 4) ,
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then the point P̂t passes to P̃λ = (ξ, η, µ, ν) where 3ξ2 − 2(λ+ 1)ξ + λ = 0 as well
as the usual equations

η2 = ξ(ξ − 1)(ξ − λ), µ = 0, ν = ξ2

arising from (4.4.8). The relation between t and λ is a bit messy.

As a matter of fact the curve C parametrized by (ξ, η, µ, ν, λ) is of genus 0, for
example with the equations

ξ = 1− u2

2 , η = u4 − 1
4u , µ = 0, ν = (1− u2)2

4 , λ = −(u2 − 1)(3u2 + 1)
4u2 .

Now each value of t gives rise to several values of u; first the roots of

(27t2 + 4)u12 + (27t2 − 8)u8 + (9t2 + 4)u4 + t2 = 0

and then the u′ =
√

3/u.

Thus again we could deduce Theorem 5 from Proposition 1.
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5 Appendix B
In this short appendix we give an application of Theorem 1 to the theory of good
reduction of Lattès maps. After a brief introduction into the subject we give the
proof of Proposition 2, which improves Proposition 6.55 in [Si4, p.362] in that it
removes the condition on m there.

5.1 Good reduction of flexible Lattès maps
Recall that a rational map φ : P1 → P1 is called a Lattès map if there exists an
elliptic curve E, a morphism Φ: E → E, and a finite separable covering π : E → P1
such that the map φ fits in the following diagram

E
Φ

- E

P1

π

? φ
- P1.

π

?

(5.1.1)

The study of these type of maps has a long history. See [Mil] for an introduction
to Lattès maps.

From an arithmetical point of view they are important because information
about preperiodic points of a Lattès map associated to a multiplication by n-map
[n] : E → E gives information about the torsion points of E.

From an analytic point of view they are important because they are postcriti-
cally finite maps, i.e. the set of critical points is contained in the set of preperiodic
points. In other words the full forward orbit of each critical point is finite. See
[Si4, Chapter 6] for more information about this. Over C, the study of the forward
orbits of the critical points is very important because it gives information about
the dynamical behavior of a holomorphic map. Furthermore, the family of Lattès
maps represents a very exceptional set of postcritically finite maps (see [BBLPP,
Thurston’s Rigidity]).

Following Milnor’s definitions in [Mil], we can divide Lattès maps into two
groups: the flexible Lattès maps and the rigid Lattès maps. A flexible Lattès
map is characterized by the property that by varying the elliptic curve E con-
tinuously we obtain other Lattès maps which are not conformally conjugate to
it. More practically, it is a map as in diagram (5.1.1) where the map Φ is of the
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form Φ(P ) = [n](P ) + Q for n ∈ Z, Q ∈ E and π is a double covering with
π(P ) = π(−P ) for all P ∈ E. A Lattès map which is not flexible is called a rigid
Lattès map.

Let K be a field equipped with a discrete valuation v and k the respective
residue field. Further let φ : P1 → P1 be a morphism defined over K. We use the
usual definition (as on p.6 of the introduction) of good reduction of φ modulo v as
given in [Si4, p.58]. Good reduction is equivalent to the existence of a morphism
φv : P1 → P1 defined over k that fits in the following commutative diagram:

P1(K)
φ
- P1(K)

P1(k)

˜
? φv- P1(k)

˜
?

where ˜ denotes the reduction modulo v map and k̄, K̄ are suitable algebraic clo-
sures of the fields K, k respectively where we can take any extension of v to K̄.
From [Si4, Theorem 2.18] follows the existence of such a φv and if φ has bad reduc-
tion at v from the vanishing of the resultant follows that we can find two distinct
points in K which are equal modulo v but are sent to two points which are distinct
modulo v. This then clearly hurts the commutativity of the diagram.

As an application of Theorem 1 and its generalization to the Tate form in
section 2.8, we prove the following proposition. It can be seen as an improvement
of [Si4, Proposition 6.55] since it removes the condition on n (and the proof is valid
in all characteristic).

Proposition 2. Let K be a field equipped with a non-archimedean valuation v
and k the corresponding residue field. Let E be an elliptic curve given by an
equation in Tate form defined over K. Let φ : P1(K)→ P1(K) be a flexible Lattès
map associated to E where the corresponding π is also defined over K. Suppose
that E has good reduction at v. Then there exists an f ∈ PGL2(K) such that
φf = f ◦ φ ◦ f−1 has good reduction at v.

Proof of Proposition 2. In Silverman’s book [Si4, Proposition 6.51] it is proven
that the Q appearing in the definition of flexible Lattès maps has to be a torsion
point of order dividing 2.

Since a priori π is not the projection on the x–coordinate we have to pass to a
conjugate φf = f ◦φ◦f−1 where f ∈ PGL2(K). Indeed, by [Si4, Proposition 6.51],
there exists an automorphism f ∈ PGL2(K) such that φf fits into a diagram of
the type (5.1.1) where π now is the projection on the x–coordinate. Furthermore
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since E has good reduction it can be seen by standard arguments that we can
conjugate with another f ∈ PGL2(K) such that E is given by a minimal Tate
equation with respect to v and π is still the projection on the x–coordinate. If Q
is the identity element and n2 the degree of the Lattès map, then φf (x) = ATn (x)

BTn (x)
(where we are using the notation as in section 2.8 and the affine notation for the
endomorphism φ). From the arguments in section 2.8 follows that the polynomials
ATn (x) and BT

n (x) have v–integer coefficients and ATn (x) is monic of degree n2. By
[Si4, Theorem 2.15], the map φf (x) has good reduction if and only if the resultant
res(ATn (x), BT

n (x)) is a v–unit. But this follows immediately from (2.8.3).
Suppose now that Q is not the identity element. We define the addition by Q

map as ψ(P ) = P + Q. Since ψ(−P ) = −ψ(P ) it has a Lattès map φ
Q
sitting in

the following commutative diagram

E
ψ

- E

P1

x

? φ
Q - P1,

x

?

(5.1.2)

where x denotes the projection down to the x coordinate. We want to show that
φ
Q
has good reduction if the chosen model for E in (5.1.2) has good reduction. To

show the desired property we look at the following bigger diagram.

E
ψ

- E

Ẽ

˜
?

ψ̃
- Ẽ

˜
?

P1(k)

x

? φ̃Q- P1(k)

x

?

where ψ̃ denotes the addition by Q̃ map (by abuse of notation we use ˜ also for
reduction on the curve). This map has an associated Lattès map φ̃Q. The upper
diagram commutes because reduction modulo v is a homomorphism of groups
since E has good reduction. The lower small diagram commutes simply because
of the definition of Lattès maps. Now reducing modulo v so applying ˜ and then
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projecting down to the x coordinate can be performed in the reverse order if
suitably interpreted in the case of the identity element. We draw yet another
diagram

E
ψ

- E

P1(K)

x

? φ
Q- P1(K)

x

?

P1(k)

˜
? φ̃

Q- P1(k)

˜
?

where now the commutativity of the upper small diagram is given by definition
and the commutativity of the big one by the previous remark about reversing the
order of projecting and reducing. We want to verify the commutativity of the small
lower diagram. We start at E in the left upper corner and go down by projecting to
the x coordinate. Then we apply φ

Q
and afterwards .̃ By commutativity of the big

diagram and the upper small one this is the same as applying the map x reducing
modulo v and then applying φ̃

Q
. Hence we get the equality ˜ ◦ φ

Q
◦ x = φ̃

Q
◦ ˜ ◦ x.

Since x is surjective it follows that ˜◦φ
Q

= φ̃
Q
◦˜which is the desired commutativity

of the lower small diagram. It follows that the Lattès map φ
Q
has good reduction

(a fact also consistent with (2.8.6) and (2.8.7)). This concludes the proof since
good reduction is preserved under composition.
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