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Introduction

Pathogens grow and cause disease by exploiting the host as a rich and diverse source of food.
However, it is not always an easy task to tap these food resources since the host innate immune
response restricts pathogen access to crucial nutrients (“nutritional immunity”) [1]. Pathogens
have acquired various mechanisms to evade host nutritional innate immunity and to trigger
the host to generate additional preferable sources of carbon, nitrogen, and energy.

Pathogens utilize various nutrients at vastly different rates. Some nutrients such as metal
ions, cofactors, and monomeric components of proteins, lipids, and carbohydrates are directly
incorporated into biomass. In addition, pathogens need to degrade substantial amounts of nu-
trients to small excreted waste products in order to obtain the energy they require for assem-
bling biomass components and maintaining homeostasis (such as counteracting dissipation of
membrane gradients). Uptake and metabolism of such energy sources is generally much faster
compared to nutrients that are directly incorporated into new biomass.

While extracellular pathogens can often exploit rich energy sources delivered to them by the
host circulation, intracellular bacterial pathogens depend on their surrounding host cells for
supply of energy sources at sufficiently high rates. This extensive metabolic interplay between
host cells and the pathogens that they nurture is likely full of fascinating, rich biology. Howev-
er, these major fluxes remain poorly characterized since common methods to study pathogen
metabolism such as tracking incorporation of isotope-labelled carbon/nitrogen into biomass
are not informative on nutrients converted into excreted waste products.

On the other hand, new approaches start to unravel how intracellular pathogens acquire en-
ergy sources at sufficiently high rates for growth and disease—in particular, intravacuolar path-
ogens that must import nutrients across the vacuolar membrane. This Pear] article will
highlight acquisition of energy sources by intravacuolar pathogens and its role in disease. For
other aspects of microbial nutrition in vivo and host mechanisms for nutrient restriction, the
reader is referred to various recent reviews [2-5].

The Hunger for Energy

Bacterial proliferation requires high amounts of energy. For bacteria such as Escherichia coli,
generating a daughter cell requires hydrolysis of some 8 x 10° adenosine triphosphate (ATP)
molecules to assemble biomass and support essential maintenance requirements, even if all
monomeric components (amino acids, nucleosides, sugars, etc.) are freely available [6]. Even in
minimal media with a single carbon source such as glucose where the bacterium has to synthe-
size all biomass components itself, energy production is the single most important metabolic
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activity of E. coli (about 37% of glucose is used for ATP generation) [6]). Pathogens thus must
access a suitable host energy source to cause disease. Relevant energy sources can be identified
based on consumption and waste product profiles as measured by metabolomics or from
major growth defects of strains defective for certain nutrient utilization pathways.

For extracellular pathogens with direct access to blood or interstitial fluid, host glucose and
glutamine provide rich energy sources that are rapidly replenished by the host circulation. In
contrast, intracellular pathogens access diverse host cell metabolites, but these nutrients are
quickly exhausted if not actively replenished by the host cell. As an example, ten Shigella cells
that rapidly grow in the cytosol of a human epithelial cell would completely consume the most
abundant host metabolites within just a few minutes [6,7]). Therefore, a robust continuous
host nutrient supply pipeline within viable host cells is essential to meet the energy demands of
intravacuolar pathogens that also face the challenge of importing across the pathogen-contain-
ing vacuole.

What nutrients can be delivered by host cells at sufficiently high rates to meet the energy de-
mands of intracellular pathogens? The host cells mostly depend on abundant blood metabo-
lites, in particular glucose and glutamine, but also lactate in areas with limited oxygenation
(Fig 1). Host cells possess high-rate uptake systems for these metabolites, and during inflam-
mation, glucose transport is even further enhanced.

Pathogens utilize diverse sources of host energy (Table 1). Cytosolic pathogens such as
enteroinvasive E. coli (EIEC) can directly use incoming glucose (Fig 1) [2], whereas intravacuo-
lar pathogens can access host cell glucose when using pathogen-encoded or host cell glucose
transporters in the vacuolar membrane (Fig 1) [8]. As an alternative pathway, Salmonella-con-
taining vacuoles have extensive exchange with endocytic vesicles [9,10], which may enhance

Extracellular fluid Host cell

Glucose Glucose

+

Lactate < » Lactate

Glutamine Glutamine
™~ Glutamate

Proteins—x1
AA

N\

Proteins
Lipids

a-Ketoglutarate

Fig 1. Schematic overview of host nutrient supply for intracellular pathogens (blue, cytosolic pathogen; green, vacuolar pathogen; AA, amino
acids; Glc, glucose; Glyc, glycerol). Cellular mechanisms that convert polymeric nutrients into small building blocks and deliver them to vacuolar
pathogens are shown on the right (1, degradation of proteins to amino acids by proteasomes; 2, endocytosis and degradation in lysosomes; 3,
autophagosome formation and delivery to lysosomes; 4, vesicle trafficking and fusion/luminal exchange with pathogen-containing vacuole). Pathways that
are stimulated (+) or repressed during hypoxic conditions within inflammatory foci are labelled in purple.

doi:10.1371/journal.ppat.1004866.9001
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Table 1. Main energy sources of intracellular pathogens.

Pathogen

Enteroinvasive E. coli
Shigella flexneri

Listeria
monocytogenes

Plasmodium
Salmonella enterica

Brucella

Anaplasma
phagocytophilum
Legionella
pneumophila

Mycobacterium
tuberculosis

Intracellular
Localization

cytosol
cytosol

cytosol

vacuole
vacuole

vacuole
vacuole

vacuole

vacuole

doi:10.1371/journal.ppat.1004866.t001

Main Energy Source Supply Route Reference
glucose host cell uptake [2]
pyruvate host cell glycolysis/ [7]
host uptake
glycerol glucose conversion [26]
glucose host cell uptake [8]
diverse nutrients with glycerol and fatty acids as major sources of ? [10,14]
energy during acute infection, glucose during persistence
glucose ? [11]
amino acids autophagy [21]
amino acids proteasome [22]
cholesterol ? [27]

acquisition of glucose from the extracellular environment [2,11]. Interestingly, activation of
peroxisome proliferator-activated receptor y (PPAR y) or PPARS enhances glucose availability
for intravacuolar pathogens in the M2 subset of host macrophages and promotes pathogen per-
sistence, which has been shown for Salmonella and Brucella [12,13]. However, during acute in-
fection, glucose in infected tissues seems to play a moderate role for Salmonella nutrition [14].
These studies show a clear dynamic interaction between the host metabolism and metabolism
of intravacuolar pathogens.

Lactate is excreted by cells that ferment glucose and can be reimported by other cells. Fer-
mentation occurs in tissues with limited oxygen supply [15], a condition often encountered in
infected tissues. In addition, activated macrophages also switch from respiration to fermenta-
tion, even in the presence of ample oxygen [16]. As a result, lactate levels are elevated in many
infected host microenvironments. Extracellular lactate can be rapidly imported by cells and is
immediately converted in the cytosol into pyruvate if enough oxygen is present to consume re-
leased reduction equivalents (Fig 1). An alternative route to pyruvate is host cell glucose uptake
and metabolism through glycolysis. Being one of the major high-flux pathways in mammalian
cells, glycolysis can continuously provide pyruvate at very high rates that easily meet even vora-
cious demands for fast-growing intracellular Shigella (Fig 1) [7]. Various other intracellular
pathogens, such as Legionella, can also effectively utilize pyruvate, but its mechanism of import
into the pathogen-containing vacuoles and whether it plays a role in nutritional virulence are
not yet established [7,17-19].

It is important to note that in primary cells with sufficient oxygenation, host cell mitochon-
dria also take up pyruvate for fueling the tricarboxylic acid (TCA) cycle. Pathogens will thus
compete with the mitochondria for the cytoplasmic pyruvate pool (Fig 1). This important as-
pect might be underestimated in common cell culture infection models that employ cell lines
with minor mitochondrial pyruvate uptake even in presence of oxygen (aerobic glycolysis, the
Warburg effect; see below). On the other hand, even fully functional mitochondria have a pyru-
vate transporter with only moderate affinity (Ky in the range of 0.5 mM) and low transport
rate [20], compared to bacteria such as E. coli, which has at least two high-affinity pyruvate
transporters (Ky in the range of 10 uM) [21]. Pathogens might thus effectively compete with
mitochondria even in primary cells with active respiration.
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In addition to exploiting host cell nutrient uptake, or host metabolism, some intravacuolar
pathogens employ diverse sophisticated mechanisms to exploit valuable nutrients released by
host cell degradation of polymeric biomass components, in particular proteins (Fig 1). Coxiella
resides in phagolysosomes, where it resists the highly adverse conditions and captures amino
acids released from proteins as part of the normal host cell protein turnover [22]. Anaplasma
phagocytophilum uses the type IV-translocated effector 1 (Ats-1) to promote the host autop-
hagy degradation pathway and gain access to amino acids [23]. In contrast, Legionella pneumo-
phila also use amino acids (or amino acid-derived pyruvate) as the main intracellular energy
sources that are metabolized in their TCA cycle [24]. To mobilize sufficient levels of host cell
amino acids, Legionella injects into the host cell the type IV-translocated Ankyrin B (AnkB) ef-
fector, which functions on the pathogen-containing vacuole (PCV) as a platform for the assem-
bly of polyubiquitinated proteins, which are targeted for proteasomal degradation [17].
Inhibition of AnkB-dependent proteasomal degradation blocks Legionella growth within the
PCV, and this growth defect is totally bypassed upon supplementation of cysteine (Cys), serine
(Ser), alanine (Ala), pyruvate, or citrate, all of which feed the TCA cycle [17].

Importantly, diverse sources of nutrients are most likely captured within a specific tissue as
major sources of carbon and energy (Table 1). Salmonella access many diverse host nutrients
in infected mouse spleen [14]. Major nutrients include glycerol and fatty acids that are presum-
ably released by lipid degradation. In addition, Salmonella obtains carbohydrates such as N-
acetylglucosamine [14], which is usually part of macromolecules, suggesting again host cell
degradation as part of the nutrient supply pipeline. Together, data for Salmonella suggest that
instead of one major energy source, the host—pathogen metabolic interface can be much more
complex, with a diversified portfolio of energy sources. Interestingly, glycerol generated from
lipid degradation and/or glycolytic intermediates can also be a major energy source for intra-
cellular pathogens (Table 1) [3,25,26]. The intravacuolar pathogen Mycobacterium tuberculosis
seems to be peculiar, as it mainly consumes host lipids such as cholesterol as sources of energy
[27] but also remodels some of these lipids to generate its own essential lipids, including myco-
lic acids [28]. We speculate that it is more likely that many intravacuolar pathogens have
evolved to utilize a diverse portfolio of host energy sources that are imported into the PCV
lumen, instead of relying on one nutrient that may become scarce under certain conditions
(Table 1).

Pathogen Sources of Energy as Essential Host Metabolites

There is an emerging theme that many sources of energy, and amino acids in particular, are es-
sential for intracellular pathogens as well as their host cells. Human cells are auxotrophic for
nine amino acids (leucine [Leu], isoleucine [Ile], methionine [Met], valine [Val], threonine
[Thr], phenylalanine [Phe], tryptophan [Trp], histidine [His], and lysine [Lys]), while Cys is
semiessential and is the most limiting amino acid in human cells. Therefore, intracellular path-
ogens have evolved with nutritional strategies to enhance the level of these essential sources of
energy. The cytosolic pathogen, Francisella, is auxotrophic for six amino acids (His, Lys, Met,
Cys, arginine [Arg], and tyrosine [Tyr]). Interestingly, Francisella boosts the levels of free Cys
in the host cell cytosol using its y-glutamyl transpeptidase (Ggt) enzyme to cleave host glutathi-
one (GSH) (L-y-L-glutamyl-L-Cysteinyl-glycine) [29]. Similarly, the intravacuolar pathogen
Legionella is auxotrophic for several amino acids (Leu, Ile, Met, Val, Thr, Cys, and Arg), five of
which are essential for human cells [30]. We speculate that access of intracellular pathogens to
host energy sources has been a major factor in nutritional evolution and adaptation of patho-
gens to the intravacuolar environment. Future studies should determine the role of host auxot-
rophy in the nutritional and metabolic evolution of intracellular pathogens [30,31].
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Importing Nutrients across the PCV Membrane

Intravacuolar pathogens are faced with the additional challenge of importing nutrients across
the vacuolar membrane. However, there is very limited knowledge of how intravacuolar patho-
gens import nutrients from the host cell cytosol across the vacuolar membrane and into the
lumen of the pathogen-containing vacuole (Fig 1). In addition to the transporters/pores em-
ployed by Plasmodium and Toxoplasma (see above), evidence for bacterial pathogens suggests
participation of host solute-carrier (SLC) transporters, the second largest superfamily (~400
putative transporters) of membrane proteins in humans [32]. The SLCs include passive trans-
porters, Na*- or H -coupled symporters, and antiporters, located in cellular and organelle
membranes. About 25% of all SLCs are members of seven SLC families that transport amino
acids, but other substrates such as glucose, lipids, and drugs are also transported by specific
SLCs.

In particular, it has been shown that the host cationic amino acid transporter SLC7A1 is ac-
quired by the PCV-harboring Salmonella and Mycobacterium within macrophages, where it
imports Arg across the pathogen-containing vacuolar membrane [33]. SLC1A5, which imports
neutral amino acids, is essential for intravacuolar proliferation of Legionella [34], but it remains
to be determined whether the transporter is localized to the membrane of the PCV (Fig 1).
High-throughput proteomic analyses of the Legionella PCV within human macrophages indi-
cated the presence of a few SLCs that transport various amino acids [35], and transcriptome
analysis has shown up-regulation of many SLCs during infection [36]. In addition, some patho-
gens might translocate their own nutrient transporters to be incorporated into the vacuolar
membrane (as proposed for the Toxoplasma pore). Finally, PCVs might extensively communi-
cate with other cellular vesicles, exchanging luminal contents. This has been documented for
Salmonella, which acquires extracellular nutrients through stealing cargo of normal host cell
endocytosis [9,10].

Modulation of Host Cell Metabolism during Infection In Vivo—
Challenges

It is clear that energy supply is one of the most crucial aspects determining pathogen growth
and virulence. However, still only a small minority of pathogen metabolism studies are focused
on this important issue (Table 1). The classical focus on auxotrophic strains is not informative
for energy production, and sophisticated metabolomic studies that determine carbon and/or
nitrogen label incorporation in biomass can yield only indirect evidence for energy. The most
direct approach to unravel pathogen energy production is quantitative analysis of metabolic
waste products in combination with various labeling and mutagenesis strategies [7]. We can
expect more insights from similar approaches for various pathogen-host interactions.

However, separation of host and pathogen metabolites to directly determine participation
of host and pathogen pathways remains challenging because of the very short turnover time,
which can result in substantially altered metabolomes during pathogen purification attempts.
New techniques that can follow metabolites in a spatially resolved manner would offer fascinat-
ing opportunities to overcome these difficulties. In the meantime, specific perturbation of host
and/or pathogen enzymes can provide important insights on relevant pathways and their local-
ization in the host or pathogen cells. Once major energy sources have been unraveled, host
pathways that supply them at sufficiently high rates can be investigated. In many cases, such
pipelines are manipulated by the pathogen as a major part of their molecular virulence
mechanisms.

Our knowledge of metabolic host responses to bacterial pathogens during infection is still
limited because of the major experimental challenges of the infection model and the
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complicated analytical tools and methods. Many studies have utilized metabolic flux analysis
revealing host cell metabolic alterations and carbon fluxes during infection by various patho-
gens (see [37] for a recent review). In general, some common themes have been observed, but
otherwise there are major differences between the pathogens in terms of the host metabolic
modulation during infection. Some of these modulations can be caused by direct manipulation
of the host metabolism by the pathogen, while others are indirect host cell responses to infec-
tion. However, the in vitro tissue culture systems used to determine the host cell metabolic re-
sponse are difficult to extrapolate to the in vivo conditions in infected tissues.

We focused this Pearl article on the diverse strategies utilized by various intracellular patho-
gens to acquire preferable energy sources at sufficiently high rates within the host cell. Howev-
er, the two main carbon and nitrogen sources for mammalian cells are glucose (Glu) and
glutamine (Gln), which are imported by SLC transporters [32]. A two-enzymatic step converts
Gln into Glu and then to o-ketogluterate, which feeds the TCA cycle (Fig 1). In most differenti-
ated cells, there is a balanced carbon flux through various catabolic pathways, while oxidative
phosphorylation from the TCA cycle is the main route to generate ATP [37]. However, most
transformed cells utilize glycolysis as the main catabolic pathway for generation of ATP, which
has been designated as aerobic glycolysis or the Warburg effect [37]. In addition to enhanced
glycolysis in transformed cells, glutaminolysis is enhanced, which provides TCA intermediates
(Fig 1) [37]. Tissue culture studies using primary or transformed cell lines utilize media con-
taining high levels of glucose and amino acids (especially glutamine) and growth factors,
which alter cellular regulation of nutrient transporters and metabolic pathways. These in vitro
nutritional environments are rarely encountered by bacterial pathogens in vivo. Therefore,
the metabolic responses observed in tissue culture may vary considerably from the in vivo envi-
ronment. Moreover, in response to hypoxia encountered within inflammatory foci, the cells re-
spond to it through up-regulation of the hypoxia inducible factor (HIF-1) [38,39], which
activates hundreds of genes required for adaption to hypoxia, including the glucose transporter
and glycolytic enzymes as well as lactate dehydrogenase [5,40]. In addition, part of the inflam-
matory response is triggering nuclear factor kappa B (NF-«B), which is a major regulator of
various nutrient transporters and metabolic pathways [5,40]. However, since macrophages in
hypoxic inflammatory foci undergo metabolic shift to aerobic glycolysis and enhanced gluta-
minolysis, the generation of high levels of lactate and pyruvate and TCA intermediates
[5,37,40] may provide a major source of carbon and energy for various intracellular pathogens
in vivo (Fig 1). However, in vitro modeling of the dynamic hypoxic inflammatory foci that con-
tain various host cells would be very challenging with the current technologies available. It is
clear that major advances in the field will depend on the development of innovative tools and
technologies to model the infection in vitro and to overcome the challenges in deciphering
host-microbe nutritional and metabolic cross talk in vivo.
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