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SUMMARY

This article is dedicated to the rapid computation of separable expansions for the approximation of random
fields. We consider approaches based on techniques from the approximation of non-local operators on the
one hand and based on the pivoted Cholesky decomposition on the other hand. Especially, we provide an a-
posteriori error estimate for the pivoted Cholesky decomposition in terms of the trace. Numerical examples
are provided to validate and quantify the presented methods. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

In this article, we present and compare two different approaches for the approximation of random
fields in L2

P
(
Ω, Hp(D)

)
for a spatial domain D ⊂ Rd and a separable, complete probability space

(Ω,F ,P). Stochastic fields appear for example in the modeling of diffusion problems with random
data, see e.g. [1], and in machine learning, see e.g. [2]. To make a stochastic field a(x, ω)
feasible for numerical computations in a stochastic Galerkin or stochastic collocation method,
see e.g. [1, 3, 4, 5, 6, 7] and the references therein, one has to separate the spatial variable
x and the stochastic variable ω. Since L2

P
(
Ω, Hp(D)

) ∼= L2
P(Ω)⊗Hp(D), see e.g. [8], this can

be accomplished by computing a basis representation of a in L2
P(Ω)⊗Hp(D). A very common

approach to obtain such a representation is the Karhunen-Loève expansion, cf. [1, 9], which can be
regarded as the linear operator analogue of the singular value decomposition of matrices.

The main task in the computation of a Karhunen-Loève expansion is the solution of a symmetric
and positive semidefinite eigen-problem. In this context, approaches to efficiently compute the
Karhunen-Loève expansion have been made by means of the Fast Multipole Method (FMM) based
on interpolation, cf. [10], in [11] and with the aid of H-matrices, cf. [12], in [13]. The idea in
these articles is to provide a data-sparse representation of the covariance operator which is then
used to solve the related eigen-problem numerically by a Krylov subspace method, cf. [14]. Of
course, another algorithm for the efficient approximation of non-local operators, like the Adaptive
Cross Approximation (ACA), cf. [15, 16], or the Wavelet Galerkin Scheme (WGS), cf. [17, 18],
can be considered as well for the representation of the covariance operator. Nevertheless, the major
drawback of these approaches is that the number of eigenvalues to be computed has to be known in
advance which might be a strong assumption in practice.

To overcome this obstruction, we present here an alternative approach based on the Pivoted
Cholesky Decomposition (PCD). The PCD is an established tool in the simulation of Gaussian
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processes and and the computation of low-rank approximations to covariance matrices, see
e.g. [2, 19, 20]. It can be interpreted as a single-block ACA with applicable total pivoting, cf. [21].
Hence, only the main diagonal of the discretized operator has to be precomputed, which can
be performed in essentially, i.e. up to possible poly-logarithmic terms, linear complexity, if the
quadrature proposed in [22] is applied to discretize the operator. Then, in each step of the algorithm,
the quality of the approximation with respect to the stochastic field is controllable by means of
the trace. If the desired accuracy is achieved, the algorithm stops with an M -term approximation
to the operator. If M is substantially smaller than the dimension of the ansatz space, we end up
with a remarkable computational speed-up. The related Karhunen-Loève expansion might then be
computed in a post-processing step. In this case, the PCD yields a full but relatively small eigen-
problem if the operator under consideration exhibits a certain smoothness. This eigen-problem
might be solved numerically by e.g. the QR-algorithm, cf. [23].

Now the following question arises: which approach is more efficient? We will try to answer this
question numerically by comparing the PCD with methods lend from the approximation of non-
local operators. We employ here ACA for the data-sparse approximation of the covariance operator
which results in a fast matrix-vector product. Thus, a Krylov subspace method – we use the Implicit
Restarted Arnoldi Method (IRAM), cf. [24, 25, 26] – is feasible to compute the desired eigenvalues
of largest magnitude.

Finally, we would like to emphasize that, although we focus here on the application to random
fields, the presented methods are also applicable in the more general case of approximating bi-
variate functions in L2(D1)⊗ L2(D2) for two domains D1 ⊂ Rd1 and D2 ⊂ Rd2 .

The rest of this article is structured as follows. Section 2 is devoted to the approximation of
random fields. We start by introducing the Karhunen-Loève expansion. After this, we introduce error
bounds for the approximation of random fields in terms of operator traces. Especially, we discuss
here error estimates including discretization and truncation error. We also provide bounds for the
decay of the covariance operator’s eigenvalues. In Section 3, we provide the theoretical background
for the pivoted Cholesky decomposition. To that end, we consider separable representations of
random fields which are more general than the Karhunen-Loève expansion. After this, we establish
error estimates for the approximation of random fields by the pivoted Cholesky decomposition.
These estimates are essential for the a-posteriori control of the approximation error. Section 4
introduces a special class of covariance functions based on the Matérn kernel functions. We choose
this class of covariance functions for our numerical tests, since we a-priori know the decay rate of the
respective eigenvalues. In particular, we are also able to analytically compute the eigenfunctions and
eigenvalues in the case of the unit sphere S2. Thus, these kernels provide an excellent benchmark
to compare both approaches. Section 5 is dedicated to testing the numerical performance of the
methods under consideration. We start here by giving some information on the implementation
of the considered methods and especially introduce in brief the ACA. Then, we will solve the
eigenvalue problem for covariance operators related to some of the Matérn kernels from Section
4 on different geometries. Finally, we sum up the results presented within this article in Section 6.

In the following, in order to avoid the repeated use of generic but unspecified constants, byC . D
we mean that C can be bounded by a multiple of D, independently of parameters which C and D
may depend on. Obviously, C & D is defined as D . C, and C h D as C . D and C & D.

2. APPROXIMATION OF RANDOM FIELDS

Let (Ω,F ,P) be a complete probability space with σ-field F ⊂ 2Ω and probability measure P. In
order to ensure that L2

P(Ω) is separable, we also assume that Ω is a separable set. Furthermore, let
D ⊂ Rd for d = 2, 3 be a sufficiently smooth and bounded domain.

For p ≥ 0, the Lebesgue-Bochner space L2
P
(
Ω;Hp(D)

)
consists of all maps a : Ω→ Hp(D) that

satisfy

‖v‖L2
P(Ω;Hp(D)) :=

(∫
Ω

‖v(·, ω)‖2Hp(D) dP(ω)

)1/2

<∞. (1)

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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In the sequel, it is convenient to identify L2
P
(
Ω;Hp(D)

)
according to

L2
P
(
Ω;Hp(D)

) ∼= Hp(D)⊗ L2
P(Ω).

For further details on Lebesgue-Bochner spaces see e.g. [27].

2.1. Karhunen-Loève expansion

Let a ∈ L2
P(Ω;Hp(D)) be a random field. We define the related centered random field a0(x, ω) via

a0(x, ω) := a(x, ω)− a(x) := a(x, ω)−
∫

Ω

a(x, ω) dP(ω) (2)

and the corresponding Hilbert-Schmidt operators, i.e. S : L2
P(Ω)→ Hp(D) with

(Su)(x) =

∫
Ω

a0(x, ω)u(ω) dP(ω) for u ∈ L2
P(Ω)

and its adjoint S? : H̃−p(D)→ L2
P(Ω) with

(S?u)(ω) =

∫
D

a0(y, ω)u(y) dy for u ∈ H̃−p(D).

Then, we especially find that SS? : H̃−p(D)→ Hp(D) is given by

(SS?u)(x) =

∫
D

∫
Ω

a0(x, ω)a0(y, ω) dP(ω)u(y) dy =: (Cu)(x) (3)

which is the covariance operator related to the stochastic field a.
Obviously, the Hilbert-Schmidt norms of S and S? correspond to the L2

P
(
Ω;L2(D)

)
-norm of a.

The products of Hilbert-Schmidt operators form the trace-class of operators, cf. [28].

Definition 2.1. A bounded linear operator A : L2(D)→ L2(D) is of trace-class if TrA :=∑∞
m=1

(
(A?A)

1
2ϕm, ϕm

)
L2(D)

<∞ holds for an arbitrary orthonormal basis {ϕm}m in L2(D).

For the positive and symmetric operator C, i.e. (Cu, u)L2(D) = (S?u,S?u)L2(Ω) ≥ 0, it holds
Tr C =

∑∞
m=1(Cϕm, ϕm)L2(D). Moreover, we derive

Tr C =

∞∑
m=1

(Cϕm, ϕm)L2(D) =

∞∑
m=1

‖S?ϕm‖2L2
P(Ω) =

∫
Ω

∞∑
m=1

(
a0(·, ω), ϕm

)2
L2(D)

dPω

=

∫
Ω

‖a0(·, ω)‖2L2(D) dP(ω) = ‖a0‖2L2
P(Ω;L2(D)).

(4)

Notice that for continuous correlation kernels, we have in particular

Tr C =

∫
D

k(x,x) dx with k(x,y) :=

∫
Ω

a0(x, ω)a0(y, ω) dP(ω) (5)

which is a consequence of Mercer’s theorem, cf. [29]. For more details on trace-class operators, we
refer the reader to [28, 30].

A very common representation of random fields in terms of the covariance operator’s eigen-pairs
{(λm, ϕm)}m is given by the Karhunen-Loève expansion.

Definition 2.2. Let a ∈ L2
P
(
Ω;L2(D)

)
be a random field. The representation

a(x, ω) = a(x) +

∞∑
m=1

√
λmϕm(x)Xm(ω) (6)

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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is called Karhunen-Loève expansion with respect to a. Here, a(x) denotes the mean of a as defined
in (2). The random variables {Xm}m are given according to

Xm(ω) :=
1√
λm

(S?ϕm)(ω) =
1√
λm

∫
D

a0(x, ω)ϕm(x) dx

and satisfy (Xm, Xn)L2
P(Ω) = δm,n as well as (Xm, 1)L2

P(Ω) = 0.

The Karhunen-Loève expansion can be regarded as the continuous analogue to the singular value
decomposition of matrices. For numerical issues, we have to truncate the series in (6) appropriately
after M ∈ N terms. The question how small M can actually be chosen in order to achieve a certain
precision is closely related to the decay of the eigenvalues of C, which depends on the smoothness
index p. Results on the decay of the eigenvalues have been established for periodic functions already
in [31]. Nevertheless, since we do not want to restrict ourselves to this situation, we refer here to the
more general results in [32, Theorem 3.3,Theorem 3.5].

Theorem 2.3. Let a ∈ L2
P
(
Ω;Hp(D)

)
with p > d/2. Then, the eigenvalues of the covariance

operator C : H̃−p(D)→ Hp(D) decay like λm . m−2p/d as m→∞ and it holds ε(M) :=∑∞
m=M+1 λm .M

1
2−

p
d .

2.2. Finite element approximation

For the approximation of spatial functions in L2(D), we employ piece-wise polynomial
(discontinuous) finite elements of order s. To that end, we introduce a family of quasi-uniform
triangulations Th for D with mesh width h and define the spaces

V sh := {vh : D → R : v|T is a polynomial of order s for all T ∈ Th} ⊂ L2(D). (7)

Then, given a function v ∈ Ht(D) with 0 ≤ t ≤ s, it holds due to the Bramble-Hilbert lemma the
approximation estimate

‖v −Qhv‖L2(D) := inf
vh∈V sh

‖v − vh‖L2(D) . ht‖v‖Ht(D) (8)

uniformly in h, see e.g. [33, 34]. For the spatial approximation of a(x, ω), i.e.

ah(x, ω) := (Qha)(x, ω) = (Qha)(x) +

∞∑
m=1

√
λm(Qhϕm)(x)Xm(ω),

we obtain in terms of the trace the following approximation result in V sh . Even though this result has
already been derived in [11, Theorem 2.10], we shall present here a proof which employs another
technique required for our considerations later on.

Theorem 2.4. Let N = dimV sh , λ1 ≥ λ2 ≥ . . . ≥ 0 be the eigenvalues of the covariance operator
C and λ1,h ≥ λ2,h ≥ . . . ≥ λN,h ≥ 0 those of Ch := QhCQh. Then, it holds

‖a0 −Qha0‖2L2
P(Ω;L2(D)) = Tr C − Tr Ch

and therefore

‖a0 −Qha0‖2L2
P(Ω;L2(D)) =

N∑
m=1

(λm − λm,h) +

∞∑
m=N+1

λm.

Proof
Let {ϕm}m be an orthonormal basis of L2(D) such that either ϕm ∈ ImQh or ϕm ∈ Im(I −Qh)
holds. Therefore, we obtain (S?(I −Qh)ϕm,S?Qhϕm)L2

P(Ω) = 0. Thus, we infer by (4) that

‖a0 −Qha0‖2L2
P(Ω;L2(D)) =

∞∑
m=1

(S?ϕm,S?ϕm)L2
P(Ω) − (S?Qhϕm,S?Qhϕm)L2

P(Ω)

= Tr C − Tr Ch.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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For the rest of this article, we refer to {(λm, ϕm)}m as the eigen-pairs of C (in decreasing
order) and to {(λm,h, ϕm,h)}Nm=1 as the eigen-pairs of Ch. Moreover, it is convenient to set
ah(x) := (Qha)(x) and a0,h := ah − ah. By the application of the theorem and the approximation
estimate (8) it is straightforward to show the following

Corollary 2.5. The trace error satisfies 0 ≤ Tr C − Tr Ch . h2 min{s,p} if a ∈ L2
P
(
Ω;Hp(D)

)
,

where the hidden constant involves the L2
P
(
Ω;Hp(D)

)
-norm of a.

Theorem 2.4 remains valid if we introduce the additional orthogonal projection Ph : V sh → U
onto an M -dimensional subspace U ⊂ V sh . The related projected stochastic field is given by

ah,M := ah + Pha0,h = Qha+ PhQha0

and its covariance according to Ch,M := PhChPh. We arrive at the subsequent approximation result.

Theorem 2.6. Let Ch = QhCQh, Ch,M = PhChPh and ah,M = ah + Pha0,h. Then, there holds

‖a− ah,M‖2L2
P(Ω;L2(D)) . h2 min{s,p} + (Tr Ch − Tr Ch,M ), (9)

where the hidden constant involves the L2
P
(
Ω;Hp(D)

)
-norm of a.

Proof
By Theorem 2.4 and Corollary 2.5, it holds

‖a− ah,M‖2L2
P(Ω;L2(D)) ≤ ‖(I −Qh)a‖2L2(D)

+ ‖a0 − a0,h‖2L2
P(Ω;L2(D)) + ‖a0,h − Pha0,h‖2L2

P(Ω;L2(D))

. h2 min{s,p} + (Tr C − Tr Ch) + (Tr Ch − Tr Ch,M )

. h2 min{s,p} + (Tr Ch − Tr Ch,M ).

The theorem indicates that, after fixing the ansatz space V sh , the approximation error of the
stochastic field is controllable in terms of the discretized operators Ch and Ch,M . The optimal choice
of Ph in terms of minimizing the trace error is the orthogonal projection onto the dominant invariant
subspace of Ch, i.e. UM,h := span{ϕ1,h, . . . , ϕM,h} corresponding to the M dominant eigenvalues
of Ch. The related Karhunen-Loève expansion then reads

ah,M (x, ω) = ah(x) +

M∑
m=1

√
λm,hϕm,h(x)Xm(ω), (10)

where the random variables are given according to

Xm(ω) :=
1√
λm,h

∫
D

(PhQha0)(x, ω)ϕm,h(x) dx. (11)

Notice that, in this setting, the discretization of the stochastic field implies a change of the stochastic
model induced by (11).

If, however, UM,h and thus Ph are not known exactly, they have to be approximated appropriately.
This induces an additional error and we have to assume that λM+1,h is distinct from λM,h,
cf. [35, 36]. Nevertheless, any subspace is feasible as long as the difference Tr Ch − Tr Ch,M
becomes small for moderate sizes of M .

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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2.3. Approximation of eigenvalues

In the remainder of this section, we will briefly consider how well the decay of the eigenvalues
{λm}m of C is reflected by Ritz-values λ1,h, . . . , λN,h related to Ch. The approximation error
of the Ritz-values is measured in terms of the gap between the invariant subspace Um =
span{ϕ1, . . . , ϕm} ⊂ L2(D) of C and the approximation space V sh , i.e.

θ(Um) := sup
u∈Um,‖u‖L2(D)=1

‖(I −Qh)u‖L2(D).

In order to control the gap, we have to take the eigenfunctions’ regularity into account. By [32,
Remark 3.8], it holds for a ∈ Hp(D)⊗ L2

P(Ω) that the eigenfunctions {ϕm}m of the covariance

operator C satisfy ‖ϕm‖Ht(D) . λ
− t

2p
m for 0 ≤ t ≤ min{s, p} and λm 6= 0. Thus, the orthogonal

projection of ϕm onto V sh yields the error estimate

‖(I −Qh)ϕm‖L2(D) . ht‖ϕm‖Ht(D) . λ
− t

2p
m ht. (12)

Now, we can estimate the gap as follows.

Lemma 2.7. Let Um = span{ϕ1, . . . , ϕm} ⊂ L2(D) be an invariant subspace of C. Then, it holds
for 0 ≤ t ≤ min{s, p} and λ1, . . . , λm 6= 0 that

θ(Um) .
√
mλ
− t

2p
m ht. (13)

Proof
Let u =

∑m
i=1 αiϕi with ‖u‖L2(D) = 1. Thus, it holds

∑m
i=1 α

2
i = 1. Then, withα = (α1, . . . , αm),

we have

θ(Um) = sup
u∈Um,‖u‖L2(D)=1

‖(I −Qh)u‖L2(D) = sup
‖α‖2=1

∥∥∥∥ m∑
i=1

αi(I −Qh)ϕi

∥∥∥∥
L2(D)

≤ sup
‖α‖2=1

m∑
i=1

|αi|‖(I −Qh)ϕi‖L2(D) . sup
‖α‖2=1

m∑
i=1

|αi|λ
− t

2p

i ht .
√
mλ
− t

2p
m ht,

where we used (12) in the second to last step.

Remark 2.8. In order to achieve convergence for the m-th eigenvalue, we have to guarantee
θ(Um) < 1 which imposes a restriction to the mesh width h of the discretization. Moreover, we
have m ≤ N = dimV sh .

From [37, Theorem 9.2.2.2] we obtain finally a convergence result, which relates the eigenvalues’
rate of approximation to the gap.

Theorem 2.9. Let Um = span{ϕ1, . . . , ϕm} be an invariant subspace of C such that dim(QhUm) =
m. Then, the approximation λi,h to the i-th eigenvalue by the Rayleigh-Ritz method, i.e. Chϕi,h =
λi,hϕi,h, satisfies the estimate

0 ≤ λi − λi,h ≤ λi
(
θ(Ui)

)2
for all 1 ≤ i ≤ m. (14)

Thus, we can approximate the eigenvalues in V sh according to

0 ≤ λi − λi,h . iλ
p−t
p

i h2t for all 1 ≤ i ≤ m and 0 ≤ t ≤ min{s, p}.

Especially for s� p, the eigenvalues of Ch exhibit a similar rate of decay as the eigenvalues of C
up to a relative error of ih2s.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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3. THE PIVOTED CHOLESKY DECOMPOSITION

Based on the observation in Theorem 2.6 and the subsequent discussion, we consider in this section
a more general approach for the representation of a random field. For this purpose, we rather refer
here to the separable decomposition

ah,M (x, ω) = ah(x) +

M∑
m=1

ψm,h(x)Ym(ω) (15)

than to the orthogonal decomposition (10). In the expansion (15), we assume that {ψm,h}Mm=1 ⊂ V sh
with appropriately modified random variables {Ym}Mm=1.

Algorithm 1: Pivoted Cholesky decomposition ([21])
Data: matrix A = [ai,j ] ∈ RN×N and error tolerance ε > 0

Result: low-rank approximation AM =
∑M

i=1 `i`
T
i such that trace(A−AM ) ≤ ε

begin
set M := 1;
set d := diag(A) and error := ‖d‖`1 ;
initialize π := [1, 2, . . . , N ];
while error > ε do

set i := arg max{dπj : j = M,M + 1, . . . , N};
swap πM and πi;
set `M,πM :=

√
dπM ;

for M + 1 ≤ i ≤ N do

compute `M,πi :=

(
aπM ,πi −

M−1∑
j=1

`j,πM `j,πi

)/
`M,πM ;

update dπi := dπi − `M,πM `M,πi ;

compute error :=

n∑
i=M+1

dπi ;

increase M := M + 1;

One possibility to obtain a separable expansion (15) is to compute the pivoted Cholesky
decomposition of the coefficient matrix of Ch with respect to a basis in V sh . To that end, let
Φ(x) := [φ1(x), . . . , φN (x)] denote an orthonormal basis of V sh . Then, the coefficient matrix of
Ch with respect to Φ is given by

C = [(Chφj , φi)L2(D)]
N
i,j=1 ∈ RN×N . (16)

For each finite dimensional ansatz space, the matrix C is symmetric and positive semidefinite. Thus,
C exhibits a (possibly pivoted) Cholesky decomposition. By pivoting the Cholesky decomposition
(see Algorithm 1), we achieve numerical stability on the one hand, cf. [38, 39], and, if the
eigenvalues of C decay sufficiently fast, a low-rank approximation on the other hand, cf. [21].
Especially, the approximation error of the (truncated) pivoted Cholesky decomposition is a-
posteriori controllable in terms of the (discrete) trace, i.e. trace(A) :=

∑N
i=1〈Aei, ei〉 =

∑N
i=1 ai,i,

where e1, . . . , eN denotes the canonical basis in RN .

3.1. Separable expansions of random fields

In the following, we establish the connection between the approximation to the random field
obtained by the pivoted Cholesky decomposition and the Karhunen-Loève expansion of Qha(x, ω).

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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We denote the spectral decompositions related to C by C =
∑N

i=1 λiviv
ᵀ
i with λi ∈ [0,∞) and

vi ∈ RN . Therefore, the Karhunen-Loève expansion of Qha(x, ω) is given by

ah(x, ω) = Φ(x)ah +

N∑
i=1

√
λiΦ(x)viXi(ω)

with respect to the orthonormal basis Φ of V sh and ah := [(a, φi)L2(D)]
N
i=1 ∈ Rn. Moreover, the

random variables {Xi}Ni=1 are given by (11), where Ph = I is chosen as the identity mapping on
V sh . This representation can be rewritten in matrix notation as

ah(x, ω)−Φ(x)ah =: Φ(x)VΣX(ω) (17)

with V := [v1, . . . ,vN ], Σ := diag(
√
λ1, . . . ,

√
λN ) and X(ω) := [X1(ω), . . . , XN (ω)]ᵀ. The

matrix (VΣ)ᵀ ∈ RN×N from (17) exhibits a QR-decomposition: QLᵀ = (VΣ)ᵀ or LQᵀ = VΣ,
respectively. Here, Q denotes an orthogonal matrix, i.e. QᵀQ = I ∈ RN×N , and L ∈ RN×N is a
lower triangular matrix. We shall next define the transformed random vector Y(ω) := QᵀX(ω).
Then, Y(ω) also consists of N uncorrelated and centered random variables, since it holds∫

Ω

Y(ω)Yᵀ(ω) dP(ω) = Qᵀ
∫

Ω

X(ω)Xᵀ(ω) dP(ω)Q = QᵀIQ = I.

That the random variables Yi(ω) are also centered, follows from the fact that they are weighted sums
of centered random variables. Thus, we obtain a representation equivalent to (17) according to

Φ(x)VΣX(ω) = Φ(x)LY(ω)

where the change of basis Q only acts on the basis of L2
P(Ω). Moreover, we observe

C = VΣ(VΣ)ᵀ = LQᵀQLᵀ = LLᵀ.

Since L is a lower triangular matrix, we thus end up with the Cholesky decomposition of C. In
the following, without loss of generality, we will especially assume, that LLᵀ corresponds to the
pivoted Cholesky decomposition of C.

Using the Cholesky decomposition of C, we obtain the separable representation

ah(x, ω) = Φ(x)ah +

N∑
i=1

Φ(x)`iYi(ω) (18)

for ah(x, ω) with L = [`1, . . . , `N ]. Whereas, the related truncated Cholesky decomposition leads
to the truncated expansion

ah,M (x, ω) = Φ(x)ah +

M∑
i=1

Φ(x)`iYi(ω).

Notice that this is exactly the representation (15) with ψi(x) = Φ(x)`i.

Remark 3.1. The separable representation (18) of the stochastic field is based on the knowledge of
an appropriate matrix R ∈ RN×N , a square root of the coefficient matrix, such that C = RRᵀ. It is
known that for two different square roots, i.e. C = RRᵀ = R̃R̃ᵀ, there exists an orthogonal matrix
Q ∈ RN×N such that R̃ = RQᵀ. The change of the representation (17) due to the application of
Q is then performed by the change of the basis functions in L2

P(Ω), i.e. Y(ω) := QᵀX(ω). Thus,
any square root of C yields a separable representation of ah(x, ω). Nevertheless, we focus on the
pivoted Cholesky decomposition here.
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3.2. Approximation by the pivoted Cholesky decomposition

The approximation error of a given stochastic field induced by truncating of the pivoted Cholesky
decomposition is controllable in accordance with the following theorem.

Theorem 3.2. For the coefficient matrix C ∈ RN×N given by (16), let CM = LMLᵀ
M ∈ RN×N

denote its (truncated) pivoted Cholesky decomposition computed by Algorithm 1 such that
trace(C−CM ) < ε holds for some ε > 0. Then, for the related stochastic fields, we have the error
estimate ‖ah − ah,M‖L2

P(Ω;L2(D)) <
√
ε.

Proof
Let C = LLᵀ denote the pivoted Cholesky decomposition of C. We define

(S?hu)(ω) :=

∫
D

(
Φ(x)LY(ω)

)ᵀ
u(x) dx

and Ph : V sh → span{φ1(x), . . . , φM (x)} the orthogonal projection onto the space spanned by the
first M basis functions. Then, it holds in complete analogy to the proof of Theorem 2.4 that

‖ah − ah,M‖2L2
P(Ω;L2(D)) =

N∑
i=1

(S?hφi,S?hφi)L2
P(Ω) − (S?hPhφi,S?hPhφi)L2

P(Ω)

=

N∑
i=1

〈Lᵀei,L
ᵀei〉 −

M∑
i=1

〈Lᵀei,L
ᵀei〉 = trace(C−CM ) < ε.

The theorem states that the choice ε h hmin{p,s} in the pivoted Cholesky decomposition
guarantees, together with inequality (9), the (optimal) error estimate

‖a− ah,M‖L2
P(Ω;L2(D)) . hmin{p,s}.

The major advantage of this approach is, that at no time the coefficient matrix C has to be fully
assembled. It is sufficient to provide access to single entries of this matrix while processing the
pivoted Cholesky decomposition. The error in the approximation of the random field a is then a-
posteriori controllable by the trace.

Given that the pivoted Cholesky decomposition for C truncates with M � N terms and
CM = LMLᵀ

M ∈ RN×N , where LM ∈ RN×M , the computation of the related Karhunen-Loève
expansion is performed with complexity O(M2N), cf. [21]. This can be achieved by computing
the eigenvalues of Lᵀ

MLM ∈ RM×M which coincide with those of CM . Then, if v1, . . . ,vM
denote the orthonormal vectors of the small eigen-problem, the eigenvectors of CM are given by
Lv1, . . . ,LvM and we have

(Lvi)
ᵀ(Lvj) = viL

ᵀLvj = λiδi,j for all i, j = 1, . . . ,M. (19)

Thus, the related Karhunen-Loève decomposition is given by

ah,M (x, ω) = ah(x) +

M∑
i=1

Φ(x)LviX̃i(ω). (20)

If the laws of the random variables Xi(ω) are known, we obtain the relation

X̃(ω) = [v1, . . . ,vM ]ᵀY(ω)

with vi from (20). Otherwise, the related random variables X̃i(ω) can be determined by a maximum
likelihood estimate, cf. [11]. Notice that for the important Gaussian case X(ω) ∼ [N (0, 1)]N , we
have for any orthogonal transform QX(ω) ∼ [N (0, 1)]N and thus X̃ has the same law as X.
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4. THE MATÉRN CLASS OF KERNELS

For our numerical tests, we consider a special subset of Hilbert-Schmidt kernels, namely the Matérn
class of kernel functions, cf. [40]. They are very often used as covariance kernels for the definition
of stochastic fields. In accordance with [2], they are defined as follows.

Definition 4.1. Let r := ‖x− y‖2 and ` ∈ (0,∞). Then, the Matérn covariance function of order
ν > 0 is given by

kν(r) :=
21−ν

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)
. (21)

Here, Γ denotes the gamma function andKν denotes the modified Bessel function of the second kind
of order ν, cf. [41].

The expression (21) simplifies if ν = p+ 1/2 with p ∈ N. In this case, [2] provides

kp+1/2(r) = exp

(
−
√

2νr

`

)
p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

`

)p−i
.

Especially, we have

ν =
1

2
, k1/2(r) = exp

(
− r

`

)
,

ν =
3

2
, k3/2(r) =

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
,

ν =
5

2
, k5/2(r) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
,

ν =
7

2
, k7/2(r) =

(
1 +

√
7r

`
+

14r2

5`2
+

49
√

7r3

15`3

)
exp

(
−
√

7r

`

)
,

ν =
9

2
, k9/2(r) =

(
1 +

3r

`
+

27r2

7`2
+

18r3

7`3
+

27r4

35`3

)
exp

(
− 3r

`

)
,

ν =∞, k∞(r) = exp

(
− r2

2`2

)
.

(22)

A visualization of this kernels for different values of ν is given in Figure 1. Obviously, the Sobolev
smoothness of the kernel kν is controlled by the smoothness parameter ν.

For increasing values of ν, the respective kernel function kν exhibits successively more regularity.
Especially, the eigenvalues of the Matérn correlation kernels decay like

λm ≤ Cm−(1+ 2ν
d ) (23)

for some C > 0, cf. [42]. Thus, since the decay of the covariance operator’s eigenvalues is known
in advance, they are very well suited for numerical examples.

Obviously, the Matérn kernels provide rotational symmetry, i.e. they are invariant under
isometries ofD, since they are only dependent on the particular distance of the points x and y. Thus,
we obtain analytic expressions for the eigenvalues of the underlying Hilbert-Schmidt operators, if
we choose D = Sd−1 to be the unit sphere in Rd. More precisely, we may apply the Funk-Hecke
formula, cf. [43], which reads as follows.

Theorem 4.2. Let x ∈ Sd−1 and f ∈ C([−1, 1]), then it holds∫
Sd−1

f(xᵀy)Ym(y) dσy = λmYm(x)

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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Figure 1. Different values for the smoothness parameter ν.

with

λm =
∣∣Sd−2

∣∣ ∫ 1

−1

Pm(d; t)f(t)(1− t2)
d−3
2 dt.

Here, Ym corresponds to a spherical harmonic of order m and Pm(d; t) denotes the polynomial

Pm(d; t) := m! Γ

(
d− 1

2

) bm/2c∑
i=0

(
−1

4

)i
(1− t2)itm−2i

i!(m− 2i)!Γ
(
i+ d−1

2

) .
A proof of this theorem can be found in [43]. Especially, for the case d = 3, the polynomials

Pm(3; t), correspond to the Legendre polynomials, cf. [43].
Notice, that the Funk-Hecke formula applies to all kernel functions on Sd−1, which depend

only on the Euclidean distance r(x,y) = ‖x− y‖2. This is easily seen due to r(x,y) = r(xᵀy) =√
2− 2xᵀy for all x,y ∈ Sd−1. Figure 2 shows the distribution of the Matérn-kernels’ eigenvalues

for ν = 3/2, 5/2, 7/2, 9/2 on S2 up to an order of magnitude of 10−10 for the correlation length
` = 1. The constant C is estimated by a least-square fit for the ratio of the rate given by formula
(23) for C = 1 and the exact eigenvalues given by Theorem 4.2. The obtained values of C for each
kernel under consideration are denoted in the legend of Figure 2. The plot indicates, that the fitted
rates perfectly match the asymptotic behavior of the eigenvalues.

5. NUMERICAL RESULTS

The numerical tests in this section are performed on parametric surfaces Γ ⊂ R3. These surfaces
have recently been considered in the context of solving boundary integral equations, cf. [44] and the
references therein. The following subsection provides some details on the numerical implementation
of the considered methods.

5.1. Implementation

For the sake of completeness, we start by briefly recalling the idea of ACA. For more details, we
refer to [44] and the references therein.
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For the application of ACA, we exploit that the correlation kernel k(x,y) of the covariance
operator C : H̃−p(D)→ Hp(D) is asymptotically smooth, i.e. the kernel is smooth away from the
diagonal {(x,y) ∈ D ×D : x = y}. Then, the coefficient matrix C from (16) can be partitioned
into admissible, i.e. compressible, matrix blocks corresponding to the far-field of C and non-
admissible, i.e. non-compressible, matrix blocks corresponding to the near-field of C. ACA provides
a means to compress the admissible matrix blocks of C. A visualization of the block partitioning
and the related ranks of C in case of the Matérn-9/2 kernel on S2 is depicted for level 4 in Figure 3.
In each admissible matrix block, we approximate C by a truncated, partially pivoted Gaussian
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Figure 3. Partition of the matrix C for the Matérn-9/2 kernel with inscribed ranks.

elimination, cf. [16]. To this end, we define the vectors `m,um ∈ Rn by the following iterative
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scheme, where Cadm = [ci,j ]
n
i,j=1 is the admissible matrix block under consideration:

for m = 1, 2, . . . set um = ûm/[ûm]jm with

ûm = [cim,j ]
n
j=1 −

m−1∑
j=1

[`j ]imuj and `m = [ci,jm ]ni=1 −
m−1∑
i=1

[ui]jm`i.
(24)

A criterion to guarantee the convergence of the algorithm is to choose the pivot element located
in (im, jm)-position as the maximum element in modulus of the remainder Cadm − Lm−1Um−1,
where we define the matrices Lm−1 := [`1, . . . , `m−1] and Um−1 := [u1 . . . ,um−1]ᵀ. This would
require the assembly of the whole matrix block Cadm, which is not feasible in practice. Therefore,
we employ another pivoting strategy: We choose jm such that [ûm]jm is the largest element in
modulus of the row ûm.

We finally stop the iteration if the criterion ‖`m+1‖2‖um+1‖2 ≤ ε‖LmUm‖F is met for some
desired accuracy ε > 0. Here and in the following, ‖ · ‖F denotes the Frobenius norm. Notice that
the stopping criterion supposes a saturation assumption, i.e. the assumption that the error is reduced
in each step by a constant factor. Compressing each block with the prescribed accuracy ε yields the
overall error estimate ‖C− C̃‖F . ε‖C‖F , where C̃ denotes the compressed matrix.

Obviously, the complexity for the computation of the rank-m-approximation LmUm to the block
Cadm is O(2m2n) and the storage cost is O(2mn). The latter one can be further reduced by the
application of a singular value decomposition and neglecting non-relevant singular values.

Notice that (24) combined with total pivoting would result for symmetric matrix blocks in an
algorithm quite similar to the pivoted Cholesky decomposition. Nevertheless, for PCD, we do not
have to partition the system matrix into far- and near-field, but directly employ Algorithm 1 to C. In
this sense, we may think of PCD as a single-block ACA with total pivoting. Here, the total pivoting
is not prohibitive expansive since it is a-priori known that the pivots are located along the main
diagonal of C. Furthermore, we have in contrast to ACA a rigorous stopping criterion based on the
quantity trace(C− LmLᵀ

m).
The implementations of both ACA and PCD rely on the same single-scale code, which means,

they use the same quadrature routines for the assembly of the entries of the matrix C. In case of
ACA, we end up with a data-sparse representation C̃ of C. Thus, to obtain a representation of the
approximate stochastic field ah,M similar to (10), we have still to compute the dominant eigen-pairs
of C̃. The representation of C̃ yields a fast matrix-vector product. Therefore, we employ ARPACK,
cf. [25], to solve the eigen-problem for the compressed matrix C̃. The size of the Krylov subspace
in ARPACK is chosen twice the number of desired eigenvalues, which is a reasonable choice
according to [25]. Both methods have been implemented in the C-programming language, cf. [45].
Furthermore, in the implementation of ACA, we have employed level 1 and 2 BLAS† routines in
the assembly of the matrix C̃ and in the matrix-vector product, whenever possible. Additionally,
exploiting the symmetry of C, we only assembled the lower triangular part of the matrix C̃ for
ACA. Notice that a LAPACK‡-style implementation of the PCD, cf. [46], is not applicable since it
relies on the assembly of the entire matrix C, which is not feasible for large values of N§.

5.2. Numerical examples

All computations are carried out single threaded on a computing server with two Intel(R) Xeon(R)
X5550 CPUs with a clock rate of 2.67GHz and 48GB of main memory. Furthermore, we set the
correlation length of the Matérn kernels to ` = 1 in each example. For the spatial discretization we
choose piece-wise constant finite elements, i.e. the ansatz space is V 1

h , cf. (7). For ACA, we set the
truncation error ε h h2. Thus, we expect for both approaches a linear rate of convergence for the

†http://www.netlib.org/blas/
‡http://www.netlib.org/lapack/
§For example for N = 105, the storage of the matrix C would require about 80GB of memory in 8-Byte double precision.
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stochastic field in terms of the (continuous) traces, i.e.

‖a− ah,M‖L2
P(Ω;L2(D)) . h+

√
Tr Ch − Tr Ch,M .

Therefore, we will measure the error by the quantity
√

Tr Ch − Tr Ch,M/
√

Tr Ch. Notice that we
consider here the relative error in order to make the error independent of the scaling of the
eigenvalues which depends on the size of the domain, cf. (5).

First example

Figure 4. The unit sphere S2 represented by 6 patches.

As a benchmark, we consider the three-dimensional unit sphere S2 ⊂ R3 represented by 6
congruent patches, see Figure 4. Thus, with the knowledge from the preceding Section 4, we can
compute the exact eigenvalues and eigenfunctions of the Matérn covariance functions as reference.
Furthermore, we can estimate the truncation error due to (23). For the truncation error related to the
Matérn covariance with smoothness parameter ν, it holds that√√√√ ∞∑

m=M

λm .

√∫ ∞
M

Cx−1−ν dx =

√
1

ν
CM−ν . (25)

Notice that the dimension is essentially d = 2 here, since we restrict the Matérn kernels to the unit
sphere S2. Thus, to bound the truncation error of the Karhunen-Loève expansion by h, we have to
ensure that √

1

ν
CM−ν ≤ h ⇒ M ≥

(
C

νh2

) 1
ν

.

With the estimation of the constant C at hand, cf. Figure 2, we could now compute the related
length of the Karhunen-Loève expansion. Unfortunately, this approach yields very large numbers
of eigen-pairs to be approximated by ACA. Therefore, we choose another approach. We consider
for each respective kernel the sum of those eigenvalues with magnitude larger then 10−10 as an
approximation to the actual trace of the kernel, i.e.∫

S2
kν(x,x) dsx =

Mmax∑
m=1

λm + ε,

cf. (5), with Mmax = arg minm{λm > 10−10}. The resulting truncation error is computable due to
the knowledge of the exact traces which are equal to 4π for every ν. We have ε = 4.18 · 10−6 for
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j ν = 3/2 ν = 5/2 ν = 7/2 ν = 9/2
1 6 (9) 4 (4) 4 (4) 4 (4)
2 18 (25) 13 (16) 11 (16) 9 (9)
3 48 (49) 25 (25) 20 (25) 17 (25)
4 120 (121) 45 (49) 33 (36) 26 (36)
5 305 (324) 79 (81) 49 (49) 40 (49)
6 768 (789) 139 (144) 76 (81) 57 (64)
7 1928 (1936) 243 (256) 113 (121) 78 (81)
8 4807 (4900) 423 (441) 166 (169) 107 (121)

Table I. Different values for the cut-off parameter Mj on the unit sphere S2.

j ν = 3/2 ν = 5/2 ν = 7/2 ν = 9/2
1 5 (6) 5 (6) 4 (5) 4 (5)
2 19 (21) 14 (14) 12 (13) 11 (12)
3 49 (56) 29 (32) 23 (24) 21 (22)
4 137 (158) 53 (58) 38 (41) 32 (35)
5 359 (414) 97 (107) 58 (62) 46 (49)
6 935 (1082) 167 (185) 89 (96) 64 (69)
7 2415 (2812) 295 (327) 132 (143) 90 (96)
8 − (7158) 513 (569) 197 (214) 122 (130)

Table II. Ranks determined by PCD on the unit sphere S2.

ν = 3/2, ε = 2.43 · 10−7 for ν = 5/2, ε = 4.93 · 10−8 for ν = 7/2, and ε = 1.70 · 10−8 for ν = 9/2.
The rank on each level j with mesh width h h 2−j is then determined according to

Mj = arg min
k∈{1,...,Mmax}

{Mmax∑
m=1

λm −
k∑

m=1

λm < h2

Mmax∑
m=1

λm

}
, (26)

that is the trace error relative to the scaling of the eigenvalues. The finest level j which we consider
here is 8, resulting in 393216 finite elements. For the levels j = 1, . . . , 8 and ν = 3/2, 5/2, 7/2, 9/2,
the related cut-off parameters Mj are found in Table I. The number in the brackets denotes the size
necessary to resolve clusters of eigenvalues by approximating only complete subspaces related to
the multiplicity of the respective eigenvalue. This is proposed in [25] in order to achieve the optimal
performance of ARPACK.

Table II shows the ranks determined by PCD. The numbers in front of the brackets correspond to
the recompressed ranks, the numbers within the brackets denote the original rank. As it turns out,
the ranks computed by PCD are rather optimal in the sense that they reflect the estimated length of
the Karhunen-Loéve expansion determined by formula (23). Especially for increasing smoothness
of the kernel function, the determined rank gets successively better.

Remark 5.1. We end up with the spectral decomposition of the approximate covariance Ch,M when
we solve the eigen-problem (19) for PCD. By truncating the obtained decomposition (20) with
the prescribed relative accuracy h2, we achieve an a-posteriori recompression of the PCD. This
procedure may at most double the approximation error but reduces the rank by up to 10% on average
in our computations for this article.

The error plots and related computational times for the numerical experiments on the unit sphere
are depicted in Figure 5 and in Figure 6, respectively. Unfortunately, the computations of ACA as
well as PCD with recompression for ν = 3/2 and level 8, i.e. for 393216 finite elements, could not
be carried out since the available main memory has been insufficient.
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Figure 5. Numerical results (errors) on the unit sphere S2.

Figure 5 shows the trace error for each particular kernel. The expected rate h h 2−j is indicated
in the plots by the dashed black line. The magenta colored line with boxes shows the error for
ACA with clusters of eigenvalues resolved (full subspaces), whereas the red line with circles shows
the error for ACA with the exact number of eigenvalues computed by (26). The error of the PCD is
indicated by the blue lines with squares and finally the error of PCD with recompression is indicated
by the cyan colored line with circles. It turns out that all four methods provide the expected rate of
convergence in this example. For overview purposes, we have chosen the same colors and markers
for each particular method in the subsequent visualizations.

Figure 6 shows the computational times for every method and each particular kernel. There seems
to be no significant difference in the times for ACA with clusters of eigenvalues resolved and ACA
with the exact number of eigenvalues from (26) for all kernels under consideration. Nevertheless,
we observe that PCD is about a factor of 10 times faster than ACA for the smoother kernels,
i.e. ν = 5/2, 7/2, 9/2 and about a factor of 2 times faster for ν = 3/2. Furthermore, we observe that
the computation time consumed by ACA for ν = 5/2, 7/2, 9/2 is mostly caused by the assembly of
the matrix C̃, indicated by the green colored line with diamonds, whereas the computation time is
governed by the eigenvalue computation for ν = 3/2.

Second example

In our second example, we consider the plate geometry shown in Figure 7. It is a rectangle with 30
inscribed, equi-spaced circular holes, which is represented by 120 patches and scaled to a size of
2× 2.4. Here, the computations are carried out on levels j = 1, . . . , 6, where level 6 corresponds
to 491520 finite elements. Figure 8 contains a visualization of the four orthonormal eigenfunctions
corresponding to the four largest eigenvalues of the Matérn kernel with ν = 3/2.

In this example, we do not know the number of eigenvalues necessary to achieve the desired
precision with ACA and ARPACK. Therefore, we use here the ranks provided by PCD with
recompression as reference. The respective values are found in Table III. Again, the numbers in
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Figure 6. Numerical results (computational times) on the unit sphere S2.

Figure 7. Plate geometry represented by 120 patches.

front of the brackets correspond to the recompressed ranks of PCD and the numbers within the
brackets denote the original ranks.

The error plots and related computational times for the numerical experiments on the plate
geometry are presented in Figure 9 and in Figure 10, respectively.

The trace error for each particular kernel, i.e. ν = 3/2, 5/2, 7/2, 9/2,∞, and the different methods
is found in Figure 9. Again, PCD provides exactly the expected rate of convergence. The behavior
of ACA is not that monotone as in the previous example. In case of the smoother kernels,
i.e. ν = 7/2, 9/2,∞, the rate of convergence deteriorates in the last step. For ν = 3/2 we have
a contrary behavior. The rate of convergence is increased from level 2 to 3 and in the last step.
Finally, we observe for ν = 5/2 an increased rate of convergence from level 4 to 5 on the one hand
and an increase of the error in the last step on the other hand. Possibly, these effects are caused by a
lack of resolution of the faster oscillating eigenfunctions which are involved in the deflation process
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Figure 8. First four orthonormal eigenfunctions on the plate geometry and Matérn kernel for ν = 3/2.

j ν = 3/2 ν = 5/2 ν = 7/2 ν = 9/2 ν =∞
1 13 (14) 11 (11) 9 (9) 9 (9) 7 (7)
2 34 (36) 19 (20) 15 (15) 14 (14) 10 (10)
3 78 (86) 31 (33) 25 (26) 20 (21) 13 (13)
4 178 (196) 52 (56) 35 (37) 29 (30) 17 (17)
5 416 (459) 87 (93) 49 (52) 38 (39) 21 (21)
6 983(1085) 141 (151) 71 (75) 53 (55) 25 (26)

Table III. Ranks determined by PCD on the plate geometry.

of the implicit restarted Arnoldi method and the resulting impact on the computation of the sought
eigenvalues.

Figure 10 shows the computational times for every method and each particular kernel. Here,
the times for the recompression of PCD are rather moderate due to the low ranks. Nevertheless,
the benefit of the recompression is relatively small here, especially for the smoother kernels,
cf. Table III. Again, PCD outperforms ACA by about a factor of 10, even in the case of ν = 3/2.
This is due to the coupling of the number of eigenvalues to be computed to the ranks provided by
PCD. Furthermore, as in the previous example, the computation time for ACA is governed by the
assembly of the matrix for ν = 5/2, 7/2, 9/2,∞ and by the eigenvalue computation for ν = 3/2.

6. CONCLUDING REMARKS

The present article is devoted to the efficient approximation of random fields for numerical
applications. It is state of the art to compute a separable representation of the random field under
consideration. A very common approach to determine such a representation is the (truncated)
Karhunen-Loève expansion. Here, one has to solve the eigen-problem for the related covariance
operator. We have tackled this task by combining the Adaptive Cross Approximation and
ARPACK. Nevertheless, a major drawback of this approach is that the number of eigen-pairs to
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Figure 9. Numerical results (errors) on the plate geometry.

be approximated has to be known in advance. This might be a problem in practice since the correct
number is not feasible in many applications. With the pivoted Cholesky decomposition, we provide
a method which overcomes this obstruction. Due to the knowledge of the discretized covariance
operator’s main diagonal, we are able to a-posteriori control the approximation error in terms of
the trace. If, for the application at hand, an orthogonal decomposition of the stochastic field is
required, this can be realized relatively cheap by the pivoted Cholesky decomposition in a post-
processing step. The numerical experiments suggest that both approaches provide the optimal rate
of convergence. In the comparison of the computational times, we observe however that the pivoted
Cholesky decomposition is the superior method.
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