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1 Introduction

Let Pn
R
denote the projective n-space as a scheme over R. A real projective varietyX Ă Pn

R
is

a scheme over Rwhich may be thought of as a pair (XC,σ ), whereXC is its complexi�cation,
i.e. XC := X ˆSpec R Spec C, and σ is an anti-holomorphic involution on XC. Let X (C)

denote the set of complex points of X and X (R) := X (C)σ (the invariant points under σ )
the real part of X . Supposing that X is smooth and X (R) is nonempty, we can endow X (R)

with the Euclidian topology and obtain a manifold of real dimensionm = dimCXC over R.
There are then two kinds of regular morphisms between real algebraic varieties X , Y

studied in the literature (see for example the introductions of [Kol01] and [BM11]):

1. A regular morphism X Ñ Y is a rational map de�ned at all complex points. The
corresponding category is the one of schemes de�ned over R, together with regular
morphisms of schemes. The group of automorphisms is denoted by Aut(X ), which
is in general quite small: The connected component of the identity is an algebraic
group of �nite dimension.

2. The second notion of regular morphisms consists of taking rational maps X d Y

that are de�ned only at all real points of X , such maps will be called morphisms
X (R) Ñ Y (R). This gives another category, with more morphisms where the objects
are X (R). The corresponding group of automorphisms will be denoted by Aut(X (R))

and is the same as the set of birational di�eomorphisms of the algebraic variety
considered.

In most real algebraic geometry texts, the second category, much richer, is in fact studied.
In [BH07], I. Biswas and J. Huisman showed that if X and Y are two rational real compact

surfaces, thenX (R) andY (R) are di�eomorphic if and only ifX (R) andY (R) are isomorphic
(which corresponds to saying that there is a birational di�eomorphism between X and
Y ). The proof of this result was simpli�ed by J. Huisman and F. Mangolte in [HM09], by
proving �rst that Aut(X (R)) acts n-transitively on X (R) for each n. The same question
for geometrically rational surfaces (i.e. rational over C) were then studied in [BM11] by
J. Blanc and F. Mangolte.

The group Aut(X (R)) is really larger than Aut(X ) in general. In particular, J. Kollár and
F. Mangolte showed in [KM09] that Aut(X (R)) is dense in Di� (X (R)) if X is a smooth real
compact rational surface.
Some other information on the group Aut(X (R)) can be given by looking at its elements

of �nite order. In particular, in this text we are interested in elements of prime order
of Aut(S (R)) up to conjugacy, where S (R) is the standard two-dimensional sphere (see
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1 Introduction

Chapter 2). The group Aut(S (R)) is contained in the group Bir(S ) of real birational trans-
formations of the sphere, which is isomorphic to the real Cremona group Bir(P2

R
). This

latter group is, of course, contained in the complex Cremona group Bir(P2
C
). The problem

of classi�cation of conjugacy classes of elements of �nite order in Bir(P2
C
) (which contains

the groups Bir(X ) described before) have been of interest for a lot of mathematicians. The
�rst classi�cation was the one of E. Bertini ([Ber77]), who studied involutions. The de-
composition into three types of maps, namely Bertini involutions, Geiser involutions, and
Jonquières involutions, was correct but there is some redundancy because the curves of
�xed points were not considered. A modern and complete proof was obtained by L. Bayle
and A. Beauville in [BB00], using the tools of the minimal model program developed in
dimension 2 by Yu. Manin ([Man68]) and V.I. Iskovskikh ([Isk80]). They obtain parametri-
sations of the conjugacy classes by the associated �xed curves. T. de Fernex generalised the
classi�cation in [Fer04] for elements of prime order (except for one case, done in [BB04] by
A. Beauville and J. Blanc). See also [Zha01] for another approach to the same question. The
precise classi�cation of elements of �nite order was then obtained in [Bla11] by J. Blanc,
using the description of �nite groups of I. Dolgachev and V.I. Iskovskikh [DI09]1. Again,
the parametrisations are given by �xed curves (of powers of elements), but also by actions
of the elements on the curves.

In this thesis, we obtain the results for the analogous problem of classi�cation for
elements of prime order in the group Aut(S (R)). The classi�cation is summarised in
Chapter 2 (Theorem A), which states that there are eight di�erent families of conjugacy
classes, some with only one element and others with in�nitely many elements. The second
main result is concerning the parametrisation of the conjugacy classes in each family
(Theorem B). As Aut(S (R)) Ă Bir(P2

C
), it is possible to compare the classi�cation of the

birational di�eomorphisms with the complex case i.e. birational transformations of the
complex plane. For instance, there are three families of involutions on Bir(P2

C
): Bertini,

Geiser, and de Jonquières. Bertini involutions do not occur in the group Aut(S (R)) because
they would come from an automorphism of a Del Pezzo surface of degree 1 after blowing
up at least one real point of S , which would damage the geometry of the real points;
see Proposition 3.0.13 in Chapter 3. The Geiser involution of Aut(S (R)) corresponds to
real quartics with one oval. Moreover, the group Aut(S (R)) contains distinct families of
conjugacy classes of involutions of de Jonquières type, which are all conjugate in Bir(P2

C
),

in particular, one family, containing uncountable many elements non conjugate to each
other, corresponds to only one conjugacy class in Bir(P2

C
).

This thesis is organised as follows. Chapter 2 contains the compilation of the results of
this thesis presented in two main statements and examples of birational di�eomorphisms
of the sphere. In Chapter 3, it is shown why the study of conjugacy classes of elements of
�nite order of the group of birational di�eomorphisms corresponds to the study of pairs
(X ,д) consisting of a smooth rational projective surface X and д an automorphism of X .

1Also after [DI09], there are still open questions on �nite subgroups of Bir(P2
C
) left, some of them answered

in the recent paper [Tsy13].
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More precisely, there are two cases to focus on, say, when X is a Del Pezzo surface whose
real Picard group invariant by д is isomorphic to Z, and when X admits a conic bundle
structure and the real Picard group invariant by д has rank 2. This is a result given by
V.I. Iskovskikh ([Isk80]) and in this chapter, it is given more speci�cally what pairs are
obtained for the sphere (Proposition 3.0.15). In particular, since the sphere admits a structure
of conic bundle given by the projection to one of the a�ne coordinates, Proposition 3.0.15
gives that the morphism of the conic bundle structure for a pair (X ,д), when X admits
one, factors through that projection of the sphere. Chapter 4 is devoted to the study of
pairs (X ,д) when X is a Del Pezzo surface, including the case of the sphere itself. Special
automorphisms of Del Pezzo surfaces of degree 2 and 4 such as Geiser involution and
automorphisms α1, α2 that are studied in Sections 4.4 and 4.3 bring on two di�erent families
of conjugacy classes on the sphere. In Section 4.1, the conjugacy classes of the group of
automorphisms of the sphere are investigated (Proposition 4.1.3).
Chapter 5 is dedicated to the study of the birational di�eomorphisms that are compatible

with the conic bundle structure of the sphere, which is a P1-�bration not locally trivial. It is
natural to understand the action of a birational map on the basis of the �bration and that is
done in the �rst section. When the action on P1 is trivial, it is shown in Section 5.2 that the
complex model of the sphere is birational to A2

C
, which allows to give an explicit algebraic

description of the birational transformations of the sphere and in the following section
for birational di�eomorphisms. In Section 5.4, it is proved that two birational maps of the
sphere compatible with the �bration and acting trivially on the basis of it are conjugate
in the group of birational maps of the sphere, if and only if there exist a birational map
between the curves of �xed points of these two maps, which is de�ned over R. This result
is also proved for the group of birational di�eomorphisms in the following section. In
addition, a geometrical characterisation of the birational di�eomorphisms of order 2 is
given according to the orientation when restricted to S (R). More precisely, it is proved
that there is a one-to-one correspondence between the conjugacy classes of orientation-
preserving birational di�eomorphisms of the sphere compatible with the �bration and
acting trivially on the basis and smooth real projective curves with not real point, which are
a 2-1 covering of P1 up to isomorphism. For the case of orientation-reversing, they are in
correspondence with smooth real projective curves with one oval, which are a 2-1 covering
of P1 up to isomorphism. In Sections 5.6 and 5.7, for birational maps and for birational
di�eomorphisms of the sphere of order larger than two which are compatible with the
�bration and acting trivially on the basis, it is shown than they are conjugate to rotations of
the sphere. The last section is concerning birational maps and birational di�eomorphisms
of order two compatible with the �bration and with non-trivial action on the basis. It
is constructed a bijection between conjugacy classes of birational involutions as before
and classes on a second cohomology group that is isomorphic to ‘bPRą0Z{2Z. Since the
representative of these classes in the group of birational maps of the sphere are particularly
birational di�eomorphisms, this implies that there are uncountable many conjugacy classes
of birational di�eomorphisms of order two with a non-trivial action on the basis.
In Chapter 6, the problem that two pairs (X ,д), (X 1

,д1) may rise the same conjugacy class

3



1 Introduction

in Aut(S (R)) is examined. In Section 6.1, Theorem A and B are proved by putting together
all results obtained in Chapters 3, 4, 5, and 6.
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2 Results

In this chapter, we state the classi�cation of conjugacy classes of elements of prime order in
the group of birational di�eomorphisms of the sphere and also the moduli spaces associated
to each conjugacy class (Theorem A and Theorem B below). It is required �rst to present
some de�nitions and give some examples that will appear in the classi�cation.

We denote by S the real projective algebraic surface in P3
R
de�ned by the equation

w2
= x2 ` y2 ` z2. Let σ denote the standard antiholomorphic involution in P3

C
, σ : (w : x :

y : z) ÞÑ (w̄ : x̄ : ȳ : z̄). Let S (R) denote the real part of S . Note that S (R) is contained in
the a�ne space wherew = 1 and corresponds to the standard two-dimensional sphere of
equation x2 `y2 ` z2 = 1. The following two groups are of our interest, the �rst one is the
group of birational transformations of the sphere and is isomorphic to the real Cremona
group, and the second one is the group of birational di�eomorphisms of the sphere.

Bir(S ) := tf : S d S | f is birationalu,

Aut(S (R)) := tf : S d S | f is birational
and f , f ´1 are de�ned
at every real point of Su.

Remark 2.0.1. Bir(S ), Aut(S (R)) are groups and Aut(S (R)) Ă Bir(S ).

Our goal is to classify the conjugacy classes of elements of Aut(S (R)) of prime order.

Remark 2.0.2. (i) Forgetting the real structure given by σ , the surface SC is isomorphic to
P1
C

ˆ P1
C
. Indeed,

SC = t(w : x : y : z) P P3
C

| (w ` z) (w ´ z) = (y ` ix ) (y ´ ix )u,

and the isomorphism is given by

φ : SC ÝÑ P1
C

ˆ P1
C

(w : x : y : z) ÞÝÑ ((w ` z : y ` ix ), (w ` z : y ´ ix ))

= ((y ´ ix : w ´ z), (y ` ix : w ´ z)),

(2.1)

whose inverse is given by

φ´1 : P1
C

ˆ P1
C

ÝÑ SC
((r : s ) (u : v )) ÞÝÑ (ru ` sv : i(rv ´ su) : rv ` su : ru ´ sv )

5



2 Results

(ii) Pic(S ) = Z, Pic(SC) = Z‘ Z.
We denote by π the projection π : S d P1 given by π (w : x : y : z) = (w : z). Notice that

every �bre of π is rational except for π´1(1 : 1) and π´1(1 : ´1), which are the union of
the linesw = z, x = ˘iy, andw = ´z, x = ˘iy, respectively.
Let us �x some notation for groups associated to the pair (S ,π ),

Bir(S ,π ) :=tд P Bir(S ) | Dα P Aut(P1) such that απ = πдu,
Aut(S (R),π ) :=tд P Aut(S (R)) | Dα P Aut(P1) such that απ = πдu.

Note that Aut(S (R),π ) Ă Bir(S ,π ), more precisely Aut(S (R),π ) = Bir(S ,π ) X Aut(S (R)).
The group Aut(S (R),π ) is the group of birational di�eomorphisms that preserve the �bra-
tion.
There is a natural map Φ sending any д P Bir(S ,π ) to the associated action on the basis

Φ(д) = α P Aut(P1) so that the following diagram commutes:

S

π

��

д
// S

π

��

P1
α
»

// P1

Hence we get the exact sequence:

1 Ñ Bir(S{π ) Ñ Bir(S ,π )
ΦÝÑ Aut(P1), (2.2)

where we have denoted by Bir(S{π ) the group:

Bir(S{π ) := tд P Bir(S ,π ) | π = πдu.

One can see the group of birational di�eomorphisms that acts trivially on the basis of
the �bration as a subgroup of Bir(S{π ), more precisely,

Aut(S (R){π ) = tд P Aut(S (R),π ) | π = πдu.

This latter subgroup has a special description given by the exact sequence

1 Ñ Aut`(S (R){π ) Ñ Aut(S (R){π ) oÝÑ Z{2ZÑ 1

where Aut`(S (R){π ) denotes the orientation preserving birational di�eomorphisms of S

and the map Aut(S (R){π ) oÝÑ Z{2Z admits a section s : Z{2ZÑ Aut(S (R){π ) mapping ´1
into τ where τ is a re�ection, say, τ : S Ñ S , (x ,y,z) ÞÑ (x ,´y,z) in the chartw = 1. Then

Aut(S (R){π ) � Aut`(S (R){π ) o xτ y. (2.3)

Before stating the main results, let us describe some examples.

6



Example 2.0.3. Geiser involution of the sphere

The blow-up ζ : X Ñ S of three pairs of conjugate imaginary points in S (C) is a real Del
Pezzo surface X of degree 2, with X (R) isomorphic to S (R). The linear system of the
anticanonical class of X yields double covering of P2 rami�ed over a smooth real quartic
with one oval. The Geiser involution ν on X is the involution which exchanges the two
points of any �bre. The birational map ζνζ´1 on S is a birational di�eomorphism of S
of order 2 that �xes pointwise a non-hyperelliptic curve of genus 3 with one oval. The
birational di�eomorphism obtained will be called Geiser involution of the sphere.

Example 2.0.4. The blow-up ε : X Ñ S of two pairs of conjugate imaginary points in S (C)
is a real Del Pezzo surface X of degree 4 (see Section 4.3), with X (R) isomorphic to S (R).
In this case, the anticanonical divisor of X is very ample and then the linear system of
| ´ KX | gives an embedding into P4 as an intersection of two quadrics. In the coordinates
(y1 : y2 : y3 : y4 : y5) of P

4, X is given by the intersection of

Q1 : (µ ´ µµ ` µ )y21 ´ 2y1y2 ` y22 ` (1 ´ µ ` µµ ´ µ )y23 ` y24 = 0,

Q2 : µµy
2
1 ´ 2µµy1y2 ` (µ ´ 1 ` µ )y22 ` µµy24 ` (1 ´ µ ` µµ ´ µ )y25 = 0,

for some µ P Czt0,˘1u (see Proposition 4.3.3 in Section 4.3).
The automorphisms α1, α2 on X de�ned by

α1 : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : y3 : y4 : ´y5),
α2 : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : ´y3 : y4 : y5)

yield the birational di�eomorphisms εα1ε
´1, εα2ε

´1 on S of order 2 that by abuse of notation
we denote again α1 and α2. Each �xes pointwise an elliptic curve.

Example 2.0.5. Let θ P r0,2π ). The rotation rθ P Aut(S ) is given by

rθ : (w : x : y : z) ÞÑ (w : x cosθ ´ y sinθ : x sinθ ` y cosθ : z).

This is a rotation that �xes the z-axis and preserves the �bration π .

Example 2.0.6. The re�ection υ is given by the map

υ : (w : x : y : z) ÞÑ (w : ´x : y : z).

This is a re�ection that preserves the �bration π and �xes a conic.

Example 2.0.7. The antipodal involution of the sphere ã is given by

ã : (w : x : y : z) ÞÑ (´w : x : y : z).

This involution has no real �xed points.

With these examples, we are ready to present the main two theorems of this thesis. The
�rst one tell us that there are eight families of conjugacy classes (some with only one
element, some with in�nitely many) and the second, the moduli space associated to each
family. These two results are proved in Chapter 6 using all results obtained in Chapters 4 -
6.

7



2 Results

Theorem A. Every element of prime order of Aut(S (R)) is conjugate to an element of one of

the following families:

(1) A Geiser involution.

(2) An involution α1 or α2 given in Example 2.0.4.

(3) A rotation rθ of prime order given in Example 2.0.5.

(4) The re�ection υ given in Example 2.0.6.

(5) The antipodal involution ã given in Example 2.0.7.

(6) An involution in Aut`(S (R){π ) acting on the �bres of π by maps conjugate to rotations

of order 2, and whose set of �xed points on S (C) is a hyperelliptic curve of genus ě 1 with
no real points, plus the two isolated points north and south poles, PN and PS .

(7) An involution inAut(S (R){π )zAut`(S (R){π ), acting on the �bres of π by maps conjugate

to re�ections, and whose set of �xed points on S (C) is a hyperelliptic curve of genus ě 1
whose set of real points consists of one oval, passing through PN and PS .

(8) An involution in Aut(S (R),π )zAut(S (R){π ) acting by z Ñ ´z on the basis which is not

conjugate to (w : x : y : z) ÞÑ (w : ˘x : ˘y : ´z).

TheoremB. The eight families presented in TheoremA correspond to distinct sets of conjugacy

classes, parametrised respectively by

(1) Isomorphism classes of smooth non-hyperelliptic real projective curves of genus 3 with one

oval.

(2) Isomorphism classes of pairs (X ,д), where X is a Del Pezzo surface of degree 4 with

X (R) » S (R) and д is an automorphism of order 2 that does not preserve any real conic

bundle.

(3) Angles of rotations, up to sign.

(4) One point (only one conjugacy class).

(5) One point (only one conjugacy class).

(6) Smooth real projective hyperelliptic curves Γ of genus ě 1 with no real point, together

with a 2 : 1-covering Γ Ñ P1, up to isomorphisms compatible with the �bration and the

interval r´1,1s.

(7) Smooth real projective hyperelliptic curves Γ of genus ě 1 with one oval, together with a

morphism Γ Ñ P1, which is a 2 : 1-cover and satis�es π (Γ(R)) = r´1,1s, up to isomor-

phisms compatible with the �bration and the interval.

8



(8) An uncountable set, which has a natural surjection to
À

bPRą0

Z{2Z.

Remark 2.0.8. In (7), we can have genus 0 but this corresponds to the re�ection υ. In (6)
we can also have genus 0, there is in fact a real one-dimensional family of such maps, all
conjugate to the family (8) (see Lemma 6.0.14).

Remark 2.0.9. All elements in (8) are conjugate in Bir(SC), this shows a big di�erence
between the complex and real cases.

9





3 Surface automorphisms and pairs

In this chapter, it is shown that to classify conjugacy classes of a birational di�eomorphism
of �nite order of the sphere is equivalent to classify birational pairs (X ,д) where д is an
automorphisms of �nite order of a smooth real projective surface X obtained from the
sphere after blowing up pairs of conjugate imaginary points. Moreover, Proposition 3.0.15
gives what pairs (X ,д) need to be studied.

We start with some de�nitions and a classical result due to Comessatti (Theorem 3.0.12),
which states in particular that the sphere S is a minimal real surface.

De�nition 3.0.10. Let X be a smooth real projective surface. We say that X is minimal if
any birational morphism X Ñ Y with Y a smooth real projective surface is an isomorphism.

Remark 3.0.11. Any birational morphism between smooth projective algebraic surfaces is a
sequence of contractions of

(i) one real (´1)-curve, or

(ii) two disjoint conjugate imaginary (´1)-curves.

Therefore, a surface is minimal if and only if it does not contain a real (´1)-curve or two
disjoint conjugate imaginary (´1)-curves. Let us cite the following classical result due to
Comessatti [Com12]:

Theorem 3.0.12. If X is a minimal rational smooth real surface such that X (R) ,H, then

X is isomorphic to P2
R
, to S , or to a real Hirzebruch surface Fn with n , 1. Moreover, X (R) is

connected and homeomorphic to the real projective plane, the sphere, the torus (n even), or the

Klein bottle (n odd) respectively.

Proposition 3.0.13. Let X be a smooth real projective surface with X (R) di�eomorphic

to the sphere. Then X does not contain any real (´1)-curve. In particular, any birational

morphism ζ : X Ñ Y , where Y is a smooth real projective surface, restricts to a di�eomorphism

ζ : X (R) Ñ Y (R).

Proof. If X contains a real (´1)-curve, then there is a birational morphism which corre-
sponds to the blow-up of a real point of some smooth real projective surface whose preimage
by such a birational morphism is the real (´1)-curve. Then the neighbourhood of the real
locus of the (´1)-curve in X (R) is topologically a Möbius strip which implies that X (R) is
not orientable and therefore non isomorphic to the sphere. �

11



3 Surface automorphisms and pairs

De�nition 3.0.14. Let (X ,д) be a pair i.e. X is a smooth real projective surface and д is a
non-trivial automorphism of X of �nite order. The pair (X ,д) is said to be minimal if any
birational morphism ζ : X Ñ X 1 such that there exist an automorphism д1 of X 1 of �nite
order with ζ ˝ д = д1 ˝ ζ is an isomorphism.

Proposition 3.0.15. Let д P Aut(S (R)) be an element of �nite order and let π : S d P1 be
the map given by π (w : x : y : z) = (w : z). Replacing д with a conjugate in the group

Aut(S (R)), one of the following holds:

(a) There exists a birational morphism ε : X Ñ S which is the blow-up of 0, 1, 2, or 3 pairs of
conjugate imaginary points in S , such that д̂ = ε´1 ˝ д ˝ ε P Aut(X ), Pic(X )д̂ � Z, and X

is a Del Pezzo surface.

(b) There exists α P Aut(P1) such that απ = πд. Moreover, there exists a birational morphism

ε : X Ñ S that restricts to a di�eomorphism X (R) Ñ S (R) such that д̂ = ε´1 ˝ д ˝ ε P
Aut(X ), π ˝ ε : X Ñ P1 is a conic bundle on X , and Pic(X )д̂ � Z2.

Proof. Let д P Aut(S (R)) of �nite order, д : S d S is a birational map with a �nite number
of imaginary base points, say p1,p1, . . . ,pn,pn that belong to S as proper or in�nitely near
points. After blowing up all of them and their images under powers of д (meaning the orbit
of the points by д), we obtain a smooth projective surface X̃

X̃

ζ

��

д̃=ζ´1дζ
// X̃

ζ

��
S

д
// S

where д̃ is an automorphism of X̃ .
Since д is de�ned at every real point of S , the birational morphism ζ restricts to a

di�eomorphism X̃ (R) Ñ S (R). After contracting all sets of disjoint (´1)-curves which are
invariant by д̃ and de�ned over R, we get a minimal pair (X ,д̂), with X (R) di�eomorphic
to the sphere by the Proposition 3.0.13, which can be one of the two following possibilities
(see [Isk80, Theorem 1G]):

(i). Pic(X )д̂ has rank 1 and X is a Del Pezzo surface.

(ii). Pic(X )д̂ has rank 2, there is a morphism X
πXÝÑ P1, X is a conic bundle.

Recall that Pic(X )д̂ is the part of Pic(X ) which is invariant by д̂ P Aut(X ).
In the �rst case, there exists ε : X Ñ Z a birational morphism to a minimal projective

smooth real algebraic surface Z . By Proposition 3.0.13, Z (R) is di�eomorphic to the sphere
and by Theorem 3.0.12, we haveZ » S . Then (KX )

2 ą 0,KX = ε
˚(KS )`E1`E1`¨ ¨ ¨`Er`Er

ñ (KX )
2
= K2

S ´ 2r and consequently X is the blow-up of 0, 2, 4 or 6 points in S and X is a

12



Del Pezzo surface of degree 8, 6, 4 or 2 and this gives statement (a). We study this case in
detail in Chapter 4.
For the second case, we denote by (X ,πX ,д̂) the minimal real conic bundle with rank

Pic(X )д̂ = 2. Recall that X (R) » S (R) implies that there is no real (´1)-curve on X .
Forgetting the action of д̂ on X , there is a birational morphism X Ñ Z which is the
contraction of disjoint imaginary (´1)-curves in �bres. In this way, we obtain πZ : Z Ñ P1
a minimal conic bundle with exactly two singular �bres because Z (R) is di�eomorphic
to S (R) again by Proposition 3.0.13. Now, if we dismiss π and keep contracting, we end
up with Z̃ a minimal real surface such that Z̃ (R) » Z (R) and by Theorem 3.0.12 we have
Z̃ » S implying that Z is the blow-up of two imaginary points on S . In this case, the surface
Z is unique and is the Del Pezzo surface of degree 6 that will be described in Section 4.2.
The explicit conic bundle structure on Z corresponds to the lift of the projection π : S d P1

sending (w : x : y : z) to (w : z). More precisely, πZ = π ˝ ε where ε : Z Ñ S is the blow-up
of two imaginary conjugate points. �
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4 Del Pezzo surfaces with

rk(Pic(X )д̂) = 1

In this chapter, we study the pairs (X ,д) where X is a Del Pezzo surface and д is an
automorphism of X . This corresponds to the �rst case in Proposition 3.0.15.
Recall that the complex surface SC is isomorphic to P1

C
ˆP1
C
via the isomorphism φ : SC Ñ

P1
C

ˆ P1
C
(see Remark 2.0.2).

We denote by f and f the divisors of the �bres of the two projections i.e. Pic(SC) =

Zf ‘ Z f̄ and by abuse of notation we denote again by f and f the pullback ε˚( f ) and
ε˚( f ) in X for ε : X Ñ S a birational morphism.

4.1 Case: (KX )
2
= 8.

In this section, our interest is to present the group of real automorphisms of S , Aut(S ),
and describe the conjugacy classes of it. We call σ the corresponding antiholomorphic
involution in P1

C
ˆ P1

C
via the isomorphism φ, which is given by σ (x ,y) = (y,x ).

Proposition 4.1.1. The group Aut(S ) corresponds, via φ, to the subgroup of the group of

complex automorphismsAut(P1
C

ˆP1
C
) generated byυ : (x ,y) ÞÑ (y,x ) and byF = t(A,A) |A P

PGL(2,C)u. Moreover, Aut(S ) � F o xυy.
Proof. Using the C-isomorphism SC » P1

C
ˆ P1

C
, the group Aut(S ) is the subgroup of

Aut(P1
C

ˆ P1
C
) consists of elements that commute with σ , i.e. Aut(S ) = Aut(P1

C
ˆ P1

C
,σ ).

Let (A,B) P PGL(2,C) ˆ PGL(2,C), (A,B) commutes with σ if and only if (A,B)σ (x ,y) =

σ (A,B) (x ,y) = σ (Ax ,By) and hence (Ay,Bx ) =
(

By,Ax
)

and it is equivalent to A = B. If

we call υ : (x ,y) ÞÑ (y,x ), which corresponds to (w : x : y : z) ÞÑ (w : ´x : y : z) on P3, we
see that υσ = συ, then Aut(S ) = Aut(P1

C
ˆ P1

C
,σ ) = F o xυy. �

Automorphisms in F �x the divisors of �bres f and f while elements of Aut(S )zF are
thus of the form (x ,y) ÞÑ (Ay,Ax ) for A P PGL(2,C) i.e. automorphisms exchanging the

divisors of the �bres f and f .

Example 4.1.2. The following automorphisms, already described in the introduction, are
now presented as automorphisms of P1

C
ˆ P1

C
via the isomorphism φ:

1. The rotation rθ given in Example 2.0.5 belongs to Aut(S ) and corresponds to the
automorphism (x ,y) ÞÑ (xe´iθ

,ye iθ ) of P1
C

ˆ P1
C
.

15



4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

2. The re�ection υ given in Example 2.0.6 belongs to Aut(S ) and corresponds to the
automorphism υ : (x ,y) ÞÑ (y,x ) of P1

C
ˆ P1

C
.

3. The antipodal automorphism of the sphere given in Example 2.0.7 corresponds to the

automorphism ã : (x ,y) ÞÑ
(

´ 1
y
,´ 1

x

)

of P1
C

ˆ P1
C
.

Proposition 4.1.3. Every element of Aut(S ) of prime order is conjugate to a rotation rθ , or

to the re�ection υ, or to the antipodal involution ã, which are given in Example 4.1.2.

Proof. We work in Aut(P1
C

ˆ P1
C
) according to Proposition 4.1.1. If д P F then д : (x ,y) ÞÑ

(Ax ,Āy) for some A P PGL(2,C) of �nite order. Hence, A is conjugate to
“
1
e´iθ

‰
for

some angle θ and locally we write x ÞÑ e´iθx . This shows that д is conjugate in F to
(x ,y) ÞÑ (xe´iθ

,ye iθ ).

If д < F, then д : (x ,y) ÞÑ (Ay,Āx ) for some A P PGL(2,C). Since д has prime order, д2

is the identity so AĀ = 1 in PGL(2,C). Notice that the action of υ on PGL(2,C) is given
by the action of υ on F in the �rst component, i.e. υ (A) = Ā and the condition AĀ = 1 is
equivalent to Aυ (A) = 1.

Let A0 P GL(2,C) be a representative of the element A, then A0A0 =
“
λ 0
0 λ

‰
for some

λ P C˚. SinceA0 commutes withA0A0,A0 commutes withA0. This implies that λ P R. Then
we multiply A0 with µ P C and assume that λ = 1 or λ = ´1. In the �rst case, there exists
B such that B´1A0B = r 1 0

0 1 s because H 1(xυy,GL(2,C)) is trivial by Proposition 3 in [Ser79,
Chapter X]. This implies that д is conjugate to υ by (x ,y) ÞÑ (Bx ,By). In the second case,
we want to �nd B P GL(2,C) such that B´1AB =

“
0 ´1
1 0

‰
. This will imply that д is conjugate

to the antipodal involution ã in Example 4.1.2 by the automorphism (x ,y) ÞÑ (Bx ,By) as
before.

Let e1 = r 10 s ,e2 = r 01 s be the two standard vectors, and choose a vector v1 P C2 such
that (v1,A0v1) is a basis of C2. This is always possible, by taking v1 P te1,e2u. Indeed,
otherwise A0 would be diagonal, so A0 ¨ A0 would have positive coe�cients. We choose
then B P GL(2,C) such that Be1 = v1, Be2 = A0v1, and observe that

´Be1 = ´v1 = A0A0v1 = A0Be2,

Be2 = A0v1 = A0Be1.

Multiplying by B´1, we obtain B´1A0B (e1) = e2 and B
´1A0B (e2) = ´e1,which corresponds

to

B´1A0B =
“
0 ´1
1 0

‰
. �

Remark 4.1.4. The group F corresponds to the orientation-preserving automorphisms of S
denoted by Aut`(S ).

In the sequel, we will also need the following result.
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4.1 Case: (KX )
2
= 8.

Lemma 4.1.5. Let p = (0 : i : 1 : 0) P S . The group of automorphisms of S preserving the set

tp,p̄u is denoted by Aut(S ,tp,p̄u) and, via the isomorphism φ, has the following structure

Aut(S ,tp,p̄u) � D o xυ,υ̃y

whereD is the subgroup of F of diagonal elements, the isomorphism υ̃ is de�ned by (x ,y) ÞÑ
(

1
x
,

1
y

)

, and xυ,υ̃y � (Z{2Z)2. Moreover, every element of prime order is one of the following:

(a) a rotation rθ , given in Example 4.1.2, corresponding to one element of D,

(b) conjugate to υ̃,

(c) conjugate to υ,

(d) equal to υυ̃,

(e) equal to the map ã : (x ,y) ÞÑ
(

´ 1
y
,´ 1

x

)

, which corresponds on the sphere to the antipodal

automorphism.

P1 ˆ P1 SC

υ

υ̃

υυ̃

ã

(x ,y) ÞÑ (y,x )

(x ,y) ÞÑ
(

1
x
,

1
y

)

(x ,y) ÞÑ
(

1
y
,

1
x

)

(x ,y) ÞÑ
(

´ 1
y
,´ 1

x

)

(w : x : y : z) ÞÑ (w : ´x : y : z)

(w : x : y : z) ÞÑ (w : ´x : y : ´z)
(w : x : y : z) ÞÑ (w : x : y : ´z)
(w : x : y : z) ÞÑ (´w : x : y : z)

Table 4.1: List of automorphisms.

Proof. The points p and p̄ correspond, via φ, to the points (1 : 0) (0 : 1) and (0 : 1) (1 : 0),
respectively. Diagonal elements in PGL(2,C) yield a subgroup of F preserving the points p
and p̄ which is D. The elements in F which interchange the two points are elements (A,Ā)
in F with A of the form r 0 1

a 0 s P PGL(2,C). Then the subgroup of F which preserve the set
tp,p̄u has the structureD o xυ̃y with υ̃ the automorphism of F de�ned by the element r 0 1

1 0 s
and that locally is described in the statement. As υ̃ commutes with υ that permutes the
points, we get Aut(S ,tp,p̄u) � D o xυ,υ̃y.

(a) An element of �nite order in D is a rotation rθ given in Example 4.1.2.

(b) If д P D o xυ̃y Ă Aut(S ,tp,p̄u) and is not a rotation, then д : (x ,y) ÞÑ (Ax ,Āy) with
A =

“
0 1
b 0

‰
for some b P C. Since A is conjugate to r 0 1

1 0 s by the diagonal element”
1 0
0 1{

?
b

ı
, then д is conjugate to υ̃ in Aut(S ,tp,p̄u).
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4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

(c) If д P D o xυy Ă Aut(S ,tp,p̄u) and is not a rotation, then д : (x ,y) ÞÑ (Dy,D̄x ) with
D =

“
1 0
0 b

‰
for some b P C. Then AĀ = 1 because д is of prime order and the action

of υ on D is exactly the conjugation and the equality AĀ = 1 is the same as Aυ (A)=1.
Then д is conjugate to υ because the group D = tD P PGL(2,C) | D is diagonalu is
isomorphic to C˚ and H 1(xυy,D) = t1u by Hilbert’s Theorem 90.

(d,e) If д P D o xυυ̃y and is not a rotation, then д = (d ,υυ̃) for d P D of �nite order and in
this case, d commutes with υυ̃ implying that d has order 1 or 2 since the order of д
is prime. Then д is either υυ̃ and is given by the map (x ,y) ÞÑ (1{y,1{x ) on P1 ˆ P1,
which is the map (w : x : y : z) ÞÑ (w : x : y : ´z) on S or is given by the map
(x ,y) ÞÑ (´1{y,´1{x ) on P1 ˆ P1 and corresponds, on the sphere, to the antipodal
automorphism (w : x : y : z) ÞÑ (´w : x : y : z).

�

4.2 Case: (KX )
2
= 6.

Proposition 4.2.1. Let ζ : X Ñ S be the blow-up of two imaginary conjugate points p,p.

Then ζAut(X )ζ´1 Ă Aut(S ), so the pair (X ,Aut(X )) is not minimal.

Proof. On X , there are six (´1)-curves: the two
exceptional divisors Ep and Ep and the four curves
corresponding to the strict transforms of the �bres

f and f passing through one point denoted by fp ,

fp , fp , and fp .

Since fp X fp = fp X fp and fp X fp = fp X fp , these
two intersection points are real (see the circles ˝
in Figure 4.1) and the other four vertices of the
hexagon are imaginary, so any action of Y can
only exchange the two lines Ep and Ep and this
implies that (X ,Aut(X )) is not minimal. �

HHH
fp ���

˝ fp

EpEp

���
fp HHH

˝ fp

?

p, p

‚˝ p
fp

fp

‚ ˝
p

fp

fp

Figure 4.1: Blow-up of p,p̄

4.3 Case: (KX )
2
= 4.

There is ζ : X Ñ S the blow-up of four imaginary points p,p,q,q. We have 16 (´1)-curves
in X : the exceptional divisors Ep , Ep , Eq , and Eq; the strict transform of the �bres f and

f passing through one point that we denote by fp , fp , fq , fq , fp , fp , fq , and fq as in the

previous section; and the strict transform of the curves equivalent to f ` f (e.g. of bidegree
(1,1)) passing through three of the four points that we denote by fppq , fppq , fpqq , and fpqq .
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4.3 Case: (KX )
2
= 4.

These (´1)-curves form the singular �bres of ten conic bundle structures on X with four
singular complex �bres each and are the following:

1. f ` f ´ Ep ´ Eq

2. f ` f ´ Ep ´ Eq

3. f ` f ´ Ep ´ Ep

4. f ` f ´ Eq ´ Eq

5. f ` f ´ Ep ´ Eq

6. f ` f ´ Ep ´ Eq

7. f

8. f

9. 2f ` f ´ Ep ´ Ep ´ Eq ´ Eq

10. f ` 2f ´ Ep ´ Ep ´ Eq ´ Eq

The anticanonical divisor of X is ´KX = 2f ` 2f ´ Ep ´ Ep ´ Eq ´ Eq . We collect these
conic bundles in pairs such that the sum of every pair is ´KX :

P1 :=tf ` f ´ Ep ´ Ep , f ` f ´ Eq ´ Equ,
P2 :=tf ` f ´ Ep ´ Eq, f ` f ´ Ep ´ Equ,
P3 :=tf ` f ´ Ep ´ Eq, f ` f ´ Ep ´ Equ,
P4 :=tf , f ` 2f ´ Ep ´ Ep ´ Eq ´ Equ,
P5 :=tf , 2f ` f ´ Ep ´ Ep ´ Eq ´ Equ.

Since KX is invariant under any automorphism of X , then Aut(X ) acts on the set of pairs
obtaining the following exact sequence.

0 // FR //

Ď

Aut(X )
ρ

//

Ď

Sym5

FC // Aut(XC)
ρ

// Sym5

(4.1)

where FR is naturally a subgroup of F52. An element (a1, . . . ,a5) exchanges the two conic
bundles of the pair Pi if ai = 1 and preserves each one if ai = 0. We represent in Figure 4.2 the
picture of the �ve pairs of conic bundles and with the next one, how the anti-holomorphic
involution σ acts on them.

Remark 4.3.1. The image of ρ in the exact sequence (4.1) is contained in the group x(2 3), (4 5)y
Ă Sym5 as a consequence of the action of the antiholomorphic involution σ . (See Figure 4.2).

Lemma 4.3.2. Let p,q P P1
C

ˆ P1
C

» SC be two distinct imaginary non conjugate points such

that the blow-up of p, p̄, q, q̄ is a Del Pezzo surface. Then up to automorphisms of the sphere,

the points p and q can be chosen to be (1 : 0) (0 : 1) and (1 : 1) (1 : µ ) for some µ P Czt0,˘1u,
respectively.
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4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

‚
f ` f ´ Ep ´ Ep

‚
f ` f ´ Eq ´ Eq

P1

‚
f ` f ´ Ep ´ Eq

‚
f ` f ´ Ep ´ Eq

P2

‚
f ` f ´ Ep ´ Eq

‚
f ` f ´ Ep ´ Eq

P3

‚
f

‚
´KX ´ f

P4

‚
f

‚
´KX ´ f

P5

‚
‚
P1

iIi
I

σ

σ

σ σ

σ

σ‚
‚
P2

6?
‚
‚
P3

6?
‚
‚
P4

-�

-�
‚
‚
P5

Figure 4.2: Representation of the �ve pairs of conic bundles and the action of σ on them.

Proof. Let p = (r1 : s1) (u1 : v1) P P1
C

ˆ P1
C
. Applying the automorphism (A,A) P F where

A =
“
v1 ´u1

´s1 r1

‰
maps p into (1 : 0) (0 : 1) and p̄ into (0 : 1) (1 : 0). Now, we may assume that

p = (1 : 0) (0 : 1) and p̄ = (0 : 1) (1 : 0) and q = (λ : 1) (ρ : 1) with λ,ρ P C˚ because by
hypothesis the points are not on the same �bres by any projection. The automorphism
(x ,y) ÞÑ (λx , λ̄y) �xes p and p̄ and sends q into (1 : 1) (1 : µ ) and q̄ into (1 : µ̄ ) (1 : 1).
Notice that when µ = 1 the points q and q̄ are equal; when µ = 0 the points p and q̄

are on the same �bre, as well as the points p̄ and q; and �nally, when µ = ´1 there is a
diagonal passing through the four points. Hence, the blow-up of p,p̄,q,q̄ is not a Del Pezzo
surface. �

Proposition 4.3.3. (a) The kernel of the sequence (4.1) is

FR = t(a1, . . . ,a5) P (F2)
5 | a1 ` a2 ` a3 = 0 and a4 ` a5 = 0u � (F2)

3
,

and is generated by the elements γ1 = (0,1,1,0,0), γ2 = (1,0,1,0,0), and γ = (0,0,0,1,1)
which correspond to the automorphisms of X with coordinates in P4 given as

γ1 : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : ´y3 : y4 : ´y5),
γ2 : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : y3 : ´y4 : ´y5),
γ : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : ´y3 : ´y4 : ´y5).

(b) The equation of the surface X is given by the intersection of the following two quadrics,

Q1 : (µ ´ µµ ` µ )y21 ´ 2y1y2 ` y22 ` (1 ´ µ ` µµ ´ µ )y23 ` y24 = 0,

Q2 : µµy
2
1 ´ 2µµy1y2 ` (µ ´ 1 ` µ )y22 ` µµy24 ` (1 ´ µ ` µµ ´ µ )y25 = 0.

Proof. We �rst prove that FR is contained in the group t(a1, . . . ,a5) P (F2)
5 | a1 `a2 `a3 =

0 and a4`a5 = 0u. To do so, we focus on the pairs P4 and P5 and observe that the action of the
antiholomorphic involution on those pairs (see Figure 4.2) implies that for an automorphism
д of X , which is in the kernel, is of the form either (˚,˚,˚,0,0) or (˚,˚,˚,1,1), which is the
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4.3 Case: (KX )
2
= 4.

same as the condition a4 `a5 = 0. Hence, a1 `a2 `a3 = 0 because over C, the kernel of the
map ρ : Aut(XC) Ñ Sym5 is the set t(a1, . . . ,a5) P (F2)

5 |
ř
ai = 0u [Bla09, Lemma 9.11].

We show the existence of γ , γ1, and γ2 and compute the equation of the surface X using
the fact that the anticanonical divisor ´KX is very ample and then the linear system of
| ´ KX | gives an embedding into P4 as an intersection of two quadrics. We study then the
following diagram

X

p,p,q,q

��

�

� |´KX |
// P4

S

ξ

>>

where the vertical map is the blow-up of four imaginary points p, p, q, q of S viewed SC as

P1
C

ˆP1
C
via the isomorphismφ given in Remark 2.0.2. As ´KX = 2f `2f ´Ep´Ep´Eq´Eq ,

the linear system | ´ KX | corresponds to the curves of S of bidegree (2,2) viewed on
P1
C

ˆ P1
C

» SC passing through the four blow-up points.

By Lemma 4.3.2, we may assume that p = (1 : 0) (0 : 1) and q = (1 : 1) (1 : µ ) for some
µ P C˚zt0,˘1u, and then p̄ = (0 : 1) (1 : 0) and q̄ = (1 : µ̄ ) (1 : 1).

In coordinates (r : s ) (u : v ) on P1
C

ˆ P1
C
, a basis of the linear system | ´ KX | is given by:

Γ1 = sv (r ´ s ) (v ´ u) ( f ´ Ep ) ` ( f ´ Ep ) ` ( f ´ Eq )

`( f ´ Eq )

Γ2 = (vs ´ µru) (r ´ s ) (v ´ u) ( f ` f ´ Ep ´ Ep ´ Eq ) ` Eq

`( f ´ Eq ) ` ( f ´ Eq )

Γ3 = ur (v ´ µu) (s ´ µr ) ( f ´ Ep ) ` ( f ´ Ep ) ` ( f ´ Eq )

`( f ´ Eq )

Γ4 = (vs ´ µru) (µ (1 ´ µ )ru ( f ` f ´ Ep ´ Ep ´ Eq ) ` Eq

`(µ ´ µ )su ` (µ ´ 1)sv ) `( f ` f ´ Ep ´ Eq ´ Eq ) ` Ep

Γ5 = (µ (µ ´ 1)ru ` (µ ´ µ )rv ( f ` f ´ Ep ´ Eq ´ Eq ) ` Eq

`(1 ´ µ )sv )u (s ´ µr ) `( f ´ Ep ) ` ( f ´ Eq )

The computation of the actions of γ1, γ2, and γ on Pic(X ) with respect to the basis
tΓ1,Γ2,Γ3,Γ4,Γ5u described above, gives the following elements:
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4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

M1 =





0 ´ µ´µ
µ 1 µ´µ 1´µ

0 1 0 0 0
1 0 0 µ´µ 1´µ

0 1
µ 0 ´1 0

0 0 0 0 ´1




, M2 =





1
2µ´µ

µ 0 0 1´µ

0 ´1 0 0 0
0 1 1 0 µ´2µ`1

0 ´ 1
µ 0 1 ´1

0 0 0 0 ´1




,

and

M =





0 ´ µ´µ
µ 1 µ´µ 0

0 1 0 0 0
1 0 0 µ´µ µ´µ

0 1
µ 0 ´1 1

0 0 0 0 1




.

By a change of the basis, the matrices M1, M2, and M can be diagonalised and the map
ξ : S Ñ P4 is given by ((r : s ), (u : v )) ÞÑ N ¨ yt where

N =





1 1 ´1 ´µ´µ µ

0 ´ 1
µ 0 2 ´1

1 1 1 µ´µ 1´µ
0 0 0 0 ´i

0 ´ 1
µ 0 0 0





and y = (Γ1, . . . ,Γ5).
With this new basis, the automorphisms γ1, γ2, and γ are the ones in the statement,

and the surface X , which is the image of the anticanonical embedding, is given by the
intersection of the two following quadrics:

Q1 : (µ ´ µµ ` µ )y21 ´ 2y1y2 ` y22 ` (1 ´ µ ` µµ ´ µ )y23 ` y24 = 0,

Q2 : µµy
2
1 ´ 2µµy1y2 ` (µ ´ 1 ` µ )y22 ` µµy24 ` (1 ´ µ ` µµ ´ µ )y25 = 0.

�

Proposition 4.3.4. The image of the sequence (4.1), ρ (Aut(X )) Ă Sym5, is x(2 3) (4 5)y if
|µ| = 1 and trivial otherwise.

Proof. As already mentioned in Remark 4.3.1, ρ (Aut(X )) Ă x(2 3), (4 5)y. We show that the
elements (2 3) and (4 5) do not belong to the image while (2 3) (4 5) does it if and only if
|µ| = 1.
We start explaining why there is no automorphism of type (2 3). If there were an

automorphism α exchanging the pair P2 with P3 then α would act on P2 and P3 either like

‚
‚
P2

-

-

�

�
‚
‚
P3

or like
‚
‚
P2

PPPPq����1����) PPPPi ‚
‚
P3

.

We may assume that the action on the pairs P2 and P3 is the �rst since we can multiply
the second one by the element of FR that corresponds to γ1 = (0,1,1,0,0). On the pairs P4

and P5, the action of α is either
¨
¨
P4

¨
¨
P5

or
‚
‚
P4

6?
‚
‚
P5

6? . And as before, we may assume that

it is the �rst one by multiplying the second one by γ = (0,0,0,1,1). Summarising, we have
to study only two cases:
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4.3 Case: (KX )
2
= 4.

(a)
¨
¨
P1

‚
‚
P2

-

-

�

�
‚
‚
P3

¨
¨
P4

¨
¨
P5

(b)
‚
‚
P1

6?
‚
‚
P2

-

-

�

�
‚
‚
P3

¨
¨
P4

¨
¨
P5

In both cases (a) and (b), f , f are �xed and hence f ` f is �xed. In the case (a), looking

at the pair P1 we see that f ` f ´ Ep ´ Ep , f ` f ´ Eq ´ Eq are �xed, then Ep ` Ep and
Eq ` Eq are �xed while the action on pairs P2 and P3 gives that α interchanges Ep ` Eq
with Ep ` Eq and Ep ` Eq with Ep ` Eq . This implies that Ep , Ep are �xed and Eq , Eq are
exchanged. So α would come from an automorphism α 1 of P1 ˆ P1 which �xes p,p and
interchanges q and q. Let us see that such an α 1 does not exist.
The automorphism α 1 would be given by (x ,y) ÞÑ (Ax ,Ay) where A P PGL(2,C) with

α 1(p) = p, α 1(p) = p then α 1 : (x ,y) ÞÑ (λx ,λy) with λ P C under the choice of the points
p = (1 : 0) (0 : 1) and q = (1 : 1) (1 : µ ) for µ < t0,˘1u (Lemma 4.3.2). Since α 1(q) = q, we
have λ = µ and λµ = 1 and hence µ2 = 1, which gives a contradiction.
In the case (b), α is not even an automorphism of the Picard group because the matrix

corresponding to an action described in (b) with basis tf , f ,Ep ,Ep ,Eq,Equ is




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1{2 ´1{2 1{2 1{2
0 0 ´1{2 1{2 1{2 1{2
0 0 1{2 1{2 ´1{2 1{2
0 0 1{2 1{2 1{2 ´1{2




.

Therefore, an automorphism that acts as (2 3) does not belong to the image.
Now, we prove that automorphisms of type (4,5) are not in the image and we proceed

in the same way as we did for (2 3). The action of an automorphism of type (4 5) on the

pairs P4 and P5 is either like
‚
‚
P4

-�

-�
‚
‚
P5

or like
‚
‚
P4

HHHj
�������*
HHHY ‚

‚
P5

. Multiplying by (0,0,0,1,1) we

may assume that is the �rst one. With respect to the action on the �rst three pairs P1, P2,
and, P3 we assume that the action on P1 and P3 is the identity since we can multiply by
(1,1,0,0,0) or by (0,1,1,0,0). Then, we have two cases to focus on:

(a)
¨
¨
P1

¨
¨
P2

¨
¨
P3

‚
‚
P4

-�

-�
‚
‚
P5

(b)
¨
¨
P1

‚
‚
P2

6?
¨
¨
P3

‚
‚
P4

-�

-�
‚
‚
P5

The case (a) corresponds to an automorphism which interchanges f with f and �xes Ep ,
Ep , Eq , and Eq . It would be the lift of an automorphism of S �xing 4 points which does not
exist. On the other hand, the case (b) is not an automorphism of the Picard group because
the matrix corresponding to it is





0 1 0 0 0 0
1 0 0 0 0 0
0 0 1{2 1{2 ´1{2 1{2
0 0 1{2 1{2 1{2 ´1{2
0 0 ´1{2 1{2 1{2 1{2
0 0 1{2 ´1{2 1{2 1{2




.

Finally, we check that there is an automorphism which acts as (2 3) (4 5) if and only if
|µ| = 1. As before, we can see that automorphisms corresponding to (2 3) (4 5) are, up to
composition with an element of FR, of the form
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4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

(a)
¨
¨
P1

‚
‚
P2

-

-

�

�
‚
‚
P3

‚
‚
P4

-�

-�
‚
‚
P5

(b)
‚
‚
P1

6?
‚
‚
P2

-

-

�

�
‚
‚
P3

‚
‚
P4

-�

-�
‚
‚
P5

For the case (a), looking at the pairs P4 and P5 we see that f and f are exchanged and then

f ` f is �xed. The exchange of pairs P2 and P3 gives that f ` f ´Ep ´Eq and f ` f ´Ep ´Eq

are interchanged and so are f ` f ´Ep ´Eq and f ` f ´Ep ´Eq . This implies that Ep `Eq
with Ep ` Eq are interchanged and Ep ` Eq with Ep ` Eq are interchanged, respectively. So
an automorphism of type (2 3) (4 5) for case (a) comes from an automorphism δ of P1 ˆ P1
which interchanges f with f , q with q and �xesp andp. We want to show that δ exists if and
only if |µ| = 1. So δ is given by δ : (x ,y) ÞÑ (Ay,Ax ) satisfying A r 01 s = r 10 s, A r 10 s = r 01 s .
This implies that A =

“
0 λ
1 0

‰
. Since δ interchanges q with q, then

“
0 λ
1 0

‰ “
1
µ

‰
=

“
1
µ

‰
=

”
λµ
1

ı

and
“
0 λ
1 0

‰
r 11 s = r 11 s =

“
λ
1

‰
. Hence, λ = 1 and µµ = 1. Therefore this automorphism exists

if |µ| = 1.
The case (b) is not possible because the matrix of the action of it on the Picard group

with basis tf , f ,Ep ,Ep ,Eq,Equ is




0 1 0 0 0 0
1 0 0 0 0 0
0 0 1{2 ´1{2 1{2 1{2
0 0 ´1{2 1{2 1{2 1{2
0 0 1{2 1{2 ´1{2 1{2
0 0 1{2 1{2 1{2 ´1{2





and this shows that it is not an automorphism of the Picard group. �

Proposition 4.3.5. If д P Aut(X ) and Pic(X )д has rank one, then д is either α1 = (1,1,0,1,1)
or α2 = (1,0,1,1,1) in FR which are given by

α1 : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : y3 : y4 : ´y5),
α2 : (y1 : y2 : y3 : y4 : y5) ÞÑ (y1 : y2 : ´y3 : y4 : y5).

Proof. Let д P Aut(X ) of prime order. If д P FR, д = (a1, . . . ,a5) and the condition on
the rank forces that the �rst component a1 = 1, д is thus either (1,1,0,˚,˚) or (1,0,1,˚,˚).
Moreover, we observe that д must interchange the two conic bundles in the pairs P4 and
P5 because otherwise, д( f ` f̄ ) = f ` f̄ P Pic(X )д implying that the rank of Pic(X )д ą 1
since f ` f̄ is not multiple of ´KX . Then the two possibilities for д when д P FR are
α1 = (1,1,0,1,1) and α2 = (1,0,1,1,1).
Now if д < FR, Proposition 4.3.4 tells us that the action of Aut(X ) on the �ve pairs is

x(2 3) (4 5)y. To ask that Pic(X )д � Z forces that the two conic bundle structures in the
�rst pair are interchanged for the same reason as before. On the other hand, the action of

(2 3) (4 5) on the pairs P2 and P3 cannot be of the form
‚
‚
P2

PPPPq����1�

�
‚
‚
P3

(or the one reversing the

arrows) because in this case the order of д is 4. In addition, we observe that if the action

of (2 3) (4 5) on the pairs P4 and P5 is as in this picture:
‚
‚
P4

-�

-�
‚
‚
P5

, the divisor f ` f̄ is
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4.3 Case: (KX )
2
= 4.

preserved under д and σ , then f ` f̄ P Pic(X )д. This implies that rk(Pic(X )д) ą 1.

We have then to check the remaining cases,

1. ‚
‚
P1

6?
‚
‚
P2

6?
‚
‚
P3

‚
‚
P4

6?
‚
‚
P5

6?

2. ‚
‚
P1

6?
‚
‚
P2

‚
‚
P3

6?
‚
‚
P4

6?
‚
‚
P5

6?

3. ‚
‚
P1

6?
‚
‚
P2

-

-

�

�
‚
‚
P3

‚
‚
P4

HHHj
�������*
HHHY ‚
‚
P5

4. ‚
‚
P1

6?
‚
‚
P2

PPPPq����1����) PPPPi ‚
‚
P3

‚
‚
P4

HHHj
�������*
HHHY ‚
‚
P5

The case (2) can be seen from case (1) conjugating it by the automorphism of the Picard
group interchanging the divisors Eq with Eq̄ and �xing f , f̄ , Ep , and Ep̄ . Now, the action
of the automorphisms of the case (1) on the Picard group Pic(X ) with respect to the basis

tf , f ,Ep ,Ep ,Eq,Equ is




1 2 1 1 1 1
2 1 1 1 1 1

´1 ´1 ´1 ´1 ´1 0
´1 ´1 ´1 ´1 0 ´1
´1 ´1 ´1 0 ´1 ´1
´1 ´1 0 ´1 ´1 ´1




.

In this case that corresponds to α1, the eigenspace for the eigenvalue 1 is generated by
the two conic bundles of the pair P3 which are not in Pic(X )д because of the action of σ
interchanges them but whose sum is ´KX . Hence, Pic(X )д � Z and therefore in case (2)
as well when д = α2. By Proposition 4.3.3, α1 = γ1γ2γ and α2 = γ2γ which are exactly the
maps in the statement.

Finally, for cases (3) and (4), the element д is not even an automorphism of the Picard
group because matrices corresponding to an action described in these cases with basis

tf , f ,Ep ,Ep ,Eq,Equ are




2 1 1 1 1 1
1 2 1 1 1 1

´1 ´1 ´ 1
2 ´ 3

2 ´ 1
2 ´ 1

2

´1 ´1 ´ 3
2 ´ 1

2 ´ 1
2 ´ 1

2

´1 ´1 ´ 1
2 ´ 1

2 ´ 3
2 ´ 1

2

´1 ´1 ´ 1
2 ´ 1

2 ´ 1
2 ´ 3

2





and





2 1 1 1 1 1
1 2 1 1 1 1

´1 ´1 ´ 3
2 ´ 1

2 ´ 1
2 ´ 1

2

´1 ´1 ´ 1
2 ´ 3

2 ´ 1
2 ´ 1

2

´1 ´1 ´ 1
2 ´ 1

2 ´ 1
2 ´ 3

2

´1 ´1 ´ 1
2 ´ 1

2 ´ 3
2 ´ 1

2





, respectively.

�

There are automorphisms of Del Pezzo surfaces of degree 4 which are minimal but
preserve a conic bundle structure. These will be needed in the sequel. We give here a special
family of examples.

Lemma 4.3.6. If |µ | = 1, thenX admits two automorphisms д1, д2 P Aut(X ) of order 2, acting
on the conic bundles like

д1 :
¨
¨
P1

‚
‚
P2

-

-

�

�
‚
‚
P3

‚
‚
P4

HHHj
�������*
HHHY ‚

‚
P5

д2 :
¨
¨
P1

‚
‚
P2

PPPPq����1����) PPPPi ‚
‚
P3

‚
‚
P4

HHHj
�������*
HHHY ‚
‚
P5

and having the following properties:
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4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

(a) The two automorphisms д1, д2 are conjugate by γ2 P Aut(X ) and satisfy rk(Pic(X )дi ) = 2
for i = 1,2.

(b) Both д1 and д2 preserve the two real conic bundles of the pair P1. The action on one is

trivial on the basis, but non-trivial on the other one.

(c ) The �xed points of дi on X (C) consists of two isolated real points, and one smooth rational

curve having no real point.

(d ) The action of д1,д2 on P
1
C

ˆ P1
C
, via the blow-up X Ñ S and the isomorphism φ : SC Ñ

P1
C

ˆ P1
C
, are respectively given by

(s,v ) d
(

s (µsv´(1`µ )v`µ )

µ (´sv`(1`µ )s´1) ,
µv (´sv`(1`µ )s´1)
µsv´(1`µ )v`µ

)

(s,v ) d
( ´sv`(1`µ )s´1
s (µsv´(1`µ )v`µ )

,

µsv´(1`µ )v`µ

v (´sv`(1`µ )s´1) )
)

on the chart t(1 : s ), (1 : v ) | (s,v ) P A2
C

u.

Proof. The existence can be checked by using Proposition 4.3.4 and the description of FR.
Using the action on the conic bundles to compute the matrices of д1, д2 with respect to the
basis tf , f̄ ,Ep ,Ep̄ ,Eq,Eq̄u, we respectively get





2 1 1 1 1 1
1 2 1 1 1 1

´1 ´1 0 ´1 ´1 ´1
´1 ´1 ´1 0 ´1 ´1
´1 ´1 ´1 ´1 ´1 0
´1 ´1 ´1 ´1 0 ´1




and





2 1 1 1 1 1
1 2 1 1 1 1

´1 ´1 ´1 0 ´1 ´1
´1 ´1 0 ´1 ´1 ´1
´1 ´1 ´1 ´1 0 ´1
´1 ´1 ´1 ´1 ´1 0




.

Using the fact that the points p,p̄,q,q̄ on P1
C

ˆP1
C
are respectively (1 : 0) (0 : 1), (0 : 1) (1 : 0),

(1 : 1) (1 : µ ), (1 : µ̄ ) (1 : 1) and the above matrices, we obtain the explicit description of the
birational maps of P1

C
ˆ P1

C
, given in (d ). Assertion (a) follows from the description of д1,

д2; it remains to show (b), (c ). The singular �bres of the two conic bundles of the pair P1
are given in Figure 4.3, together with the action of д1, which follows from the description
of the matrix above. This shows that the action on the basis is trivial in the �rst case and

(1) f ` f ´ Ep ´ Ep

A
A

A
A
A

fp

�
�

�
�
�

fp

A
A

A
A
A

fp

�
�

�
�
�

fp

A
A

A
A
A

Eq

�
�

�
�
�

fppq

A
A

A
A
A

Eq

�
�

�
�
�

fppq

6

?

6

?

(2) f ` f ´ Eq ´ Eq

A
A

A
A
A

fq

�
�

�
�
�

fq

A
A

A
A
A

fq

�
�

�
�
�

fq

A
A

A
A
A

Ep

�
�

�
�
�

fpqq

A
A

A
A
A

Ep

�
�

�
�
�

fpqq

�
�
��@

@
@R@

@
@I �

�
�	-�

� -

Figure 4.3: Singular �bres of the two conic bundles, together with the action of д1.

not trivial in the second. The �xed points are then contained in the two �bres of the second
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4.4 Case: (KX )
2
= 2.

�bration that are �xed, and which are then two smooth rational curves. Looking at the
�rst �bration, we obtain two �xed points in each smooth �bre, three points in the �rst two

singular �bres and one in the last two. The only real points in these �bres are fp X fp and

fp̄ X fp̄ , so we obtain on X (C) exactly two isolated real points and one smooth rational
curve with no real point. �

Lemma 4.3.7. Let д P Aut(X ) of prime order that preserves a real conic bundle structure and

such that rk(Pic(X )д) = 2, in particular, д preserves the pair P1. Then, one of the following

occurs:

(1) there is h P C(д) Ă Aut(X ), the centraliser of д, whose action on P1 is the exchange of the

two conic bundle structures. In other words, the following diagram commutes

д ýX

ζ1

}}

h //

π1

��

д ýX

π2

��

ζ2

!!
S

π // P1
» // P1 S

πoo

where ζ1, ζ2 are the blow-up of four points on SC and π1, π2 are the morphisms corre-

sponding to the conic bundle structures for f ` f̄ ´ Ep ´ Ep̄ and f ` f̄ ´ Eq ´ Eq̄ ,

respectively.

(2) The map д is equal to д1 or д2 given in Lemma 4.3.6.

Proof. Non trivial automorphisms in FR preserving the �rst pair P1 are γ1, γ , and γ1γ . In
this case, we are in (1) and can choose h = γ2.
When д < FR, then д exchanges P2 and P3. This plus the fact that д has prime order

implies that д has order 2. On the other hand, the action of д on the pairs P4 and P5 cannot

be like
‚
‚
P4

-�

-�
‚
‚
P5

, since this would imply that rk(Pic(X )д) ą 2 since in this case, д also �xes

f ` f̄ . Then, the action of д on the conic bundles is one of the two given in Lemma 4.3.6. �

4.4 Case: (KX )
2
= 2.

The birational morphism ζ : X Ñ S is the blow-up of 3 pairs of conjugate points, say
p,p̄,q,q̄,r , r̄ P S . Since X is a Del Pezzo surface of degree two, the linear system of the
anticanonical divisor de�nes a double covering | ´ KX | : X Ñ P2 rami�ed over a quartic
Γ. From the fact that X (R) » S (R), Γ is a real smooth quartic with one oval. We see X as
w2
= F (x ,y,z) in P(2,1,1,1) and Γ the zero set of F .

Proposition 4.4.1. There exists an exact sequence

1 // xνy // Aut(X ) // Aut(Γ) // 1
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4 Del Pezzo surfaces with rk(Pic(X )д̂) = 1

where ν represents the Geiser involution which exchanges the two points of any �bre i.e. the

involution given by (w ,x ,y,z) ÞÑ (´w ,x ,y,z).

Proof. We have the following exact sequence

1 // xνy // Aut(X ) // Aut(P2,Γ) // 1 (4.2)

where Aut(P2,Γ) denotes the automorphisms of P2 which preserves the quartic and is
isomorphic to Aut(Γ) because the restrictions gives a map from Aut(P2,Γ) to Aut(Γ) which
is injective since the only automorphism that preserves the quartic pointwise is the identity
(an automorphism of P2 can only �xed 3 points or a point and a line but not a quartic). To
see that the restriction map is surjective, we compute the canonical divisor of the quartic
by adjunction formula getting that KΓ = (KP2 ` Γ)|Γ = (´3L ` 4L)|Γ = L|Γ . Hence, every
automorphism of Γ extends to P2. �

Lemma 4.4.2. (a) Let C be a (´1)-curve in X , then the (´1)-curve ν (C ) is equal to ν (C ) =
´KX ´C .

(b) rk(Pic(X )ν ) = 1. In particular, the pair (X ,xνy) is minimal.

Proof. (a) We call ε the map de�ned by | ´ KX |. Then, ε (C ) is a curve of degree d for
some d . If we call D = ε˚(ε (C )), we have that D = d (´KX ) , C . This implies that
D = C ` C 1

= d (´KX ) for C 1 a (´1)-curve, C 1
= ν (C ). Intersecting D with ´KX we

have 2 = 2d and hence d = 1. Then ν (C ) = C 1
= ´KX ´C .

(b) LetC be a (´1)-curve in X , then by item (a) we haveC ¨ν (C ) = C (´KX ´C ) = 2. More-
over, the fact that Pic(XC) is generated by the divisors in the setA := t´KX ,Ep ,Ep̄ ,Eq,Eq̄,
Er ,Er̄u then, for any divisor D P Pic(XC), D =

ř
aiCi with ai P Z and Ci P A. We have

D ` ν (D) = D ` ai
ř
ν (Ci ) = ai (

ř
´KX ´Ci ) =m(´KX ) for somem P Z.

�

Lemma 4.4.3. Let д P Aut(X ) of prime order and д , ν . Then rk(Pic(X )д) , 1.

Proof. Let д P Aut(X ). Since a basis of Pic(XC) � Z
8 is tf , f̄ ,Ep ,Ep̄ ,Eq,Eq̄,Er ,Er̄u, we

get that the action of д on Pic(X ) = Pic(XC)
σ is an element in GL(4,Z) Ă GL(4,C) and is

diagonalisable in GL(4,C) forд P Aut(X ). Ifд is an involution in Aut(X ) with rk(Pic(X )д) =

1, the only possibility for the action of д on Pic(X )д in GL(4,C) is given by

(

1
´1

´1
´1

)

assuming that the �rst entry 1 corresponds to the anticanonical divisor for some basis
containing it. On the other hand, since every element д in Aut(X ) commutes with ν , then
in the same basis, д and ν are conjugate to a diagonal action as the element presented above.
This implies that д and ν are the same.

Let д P Aut(X ) be of prime order p ě 3. We obtain then an element of GL(4,Z) of order
p which �xes KX . Then, the characteristic polynomial Q P Zrxs vanishes at 1 and all other
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4.4 Case: (KX )
2
= 2.

roots in C are roots of the polynomial xp´1 ` ¨ ¨ ¨ ` 1, irreducible over Q. Hence, Q is a
multiple of (x ´ 1) (xp´1 ` ¨ ¨ ¨ ` 1) = xp ´ 1. This implies that p ď 4, so p = 3 and then
Q = (x ´ 1)2(x2 ` x ` 1). Therefore Pic(X )д � Z2. �
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5 Conic bundle case

In this chapter, we describe the elements in Aut(S (R)) of prime order corresponding to the
second case of Proposition 3.0.15, i.e. that belong to the group Aut(S (R),π ). Let us recall
the following notation:

Bir(S ,π ) =tд P Bir(S ) | Dα P Aut(P1) such that απ = πдu,
Aut(S (R),π ) =tд P Aut(S (R)) | Dα P Aut(P1) such that απ = πдu,

and that Φ : Bir(S ,π ) Ñ Aut(P1) is the corresponding group homomorphism (see the
exact sequence (2.2)) whose kernel is denoted by Bir(S{π ) and by Aut(S (R){π ) for the
corresponding group homomorphism Aut(S (R),π ) Ñ Aut(P1).

5.1 Image of the action on the basis

Recall that π : S d P1 is the map given by π (w : x : y : z) = (w : z). Hence, the natural
coordinates on P1 are (w : z) or simply (1 : z) for a�ne coordinates. With the choice
of these coordinates, the group Aut(P1) is naturally isomorphic to PGL(2,R): an element“
a b
c d

‰
P PGL(2,R) acts as

z ÞÑ az ` b

cz ` d
or (w : z) ÞÑ (cz ` dw : az ` bw ).

In the following two lemmas, the image of the map Φ : Bir(S ,π ) Ñ Aut(P1) in the
sequence (2.2) is presented and the image of elements of �nite order is characterised.

Lemma 5.1.1. The image of Φ : Bir(S ,π ) Ñ Aut(P1) is the same as the image of its restriction

to Aut(S (R),π ).
The corresponding subgroup of Aut(P1) is given by the following semidirect product, where

the generator of Z{2Z is the automorphism η : z ÞÑ ´z.

Φ(Bir(S ,π )) = Φ(Aut(S (R),π )) =

"„
1 b

b 1


;b P (´1,1) Ă R

*
o Z{2Z (5.1)

Proof. Since the sphere S (R) is preserved by elements in Bir(S ,π ) (respectively Aut(S (R),π ))
and is mapped surjectively to the interval r´1,1s Ă R on the basis of the �bration, this
interval is then invariant, and the group Φ(Bir(S ,π )) is contained in the group generated by
z ÞÑ z`b

bz`1 , b P (´1,1) Ă R and z ÞÑ ´z because those are exactly the automorphisms of P1
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5 Conic bundle case

which �x or interchanged the points ´1 and 1. On the other hand, for each b P (´1,1) Ă R
the map дb : (x ,y,z) ÞÑ

(

x
?
1´b2
bz`1 ,y

?
1´b2
bz`1 ,

z`b
bz`1

)

belongs to Aut(S (R),π ) and is sent to
“
1 b
b 1

‰

and the map η̃ : (x ,y,z) ÞÑ (x ,y,´z) is sent to
“ ´1 0

0 1

‰
, corresponding to z ÞÑ ´z, which

proves Equality (5.1). �

Lemma 5.1.2. Let д P Aut(S (R),π ) be of �nite order. After conjugation in Aut(S (R),π ), the
map Φ(д) is the identity or equal to

“
1 0
0 ´1

‰
.

Proof. Elements of the form
“
1 b
b 1

‰
with b P (´1,1)zt0u are not of �nite order; indeed the

eigenvalues of
“
1 b
b 1

‰
are 1 ˘ b, so the element

“
1 b
b 1

‰
is conjugate to

”
1`b
1´b

0

0 1

ı
in PGL(2,R)

and 1`b
1´b P R˚ has in�nite order because 1`b

1´b , ´1. Moreover,
“
1 ´b
b ´1

‰
is conjugate to

“
1 0
0 ´1

‰

by the matrix r 1 cc 1 s with c = 1˘
?
1´b2
b
. �

5.2 Algebraic description of Bir(S{π )
Extending the scalars from R to C, the general �bre of π : SC Ñ C, (x ,y,z) ÞÑ z is rational.
The group of birational maps of SC preserving any general �bre of π is then equal to
PGL(2,C(z)). The group Bir(S{π ) can thus be viewed as a subgroup of PGL(2,C(z)).

De�nition 5.2.1.

(i ) For each A P GL(2,C(z)), we de�ne Ā P GL(2,C(z)), as the matrix obtained by
replacing every coe�cient of every entry of A by its conjugate.

(ii ) In the same way, we de�ne Ā for any element in PGL(2,C(z)) and we observe that
Ā does not depend on the representative because if A1,A2 P PGL(2,C(z)) are in the
class of the elementA thenA1 = λA2 for some λ P C(z)˚ and then Ā1 = λ̄Ā2 implying
that Ā1 and Ā2 are both in the class of Ā.

Lemma 5.2.2.

(a) The complex surface SC is birational to A
2
C
viaψ : (x ,y,z) d (x ´ iy,z).

(b) The group PGL(2,C(z)) acts on A2
C
via

PGL(2,C(z)) ˆ A2
C
d A2

C
( ”

α (z) β (z)
γ (z) δ (z)

ı
, (t ,z)

)

d

(

α (z)t`β (z)

γ (z)t`δ (z) ,z
) (5.2)

and thus also acts on SC via the conjugation byψ´1.
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5.2 Algebraic description of Bir(S{π )

(c ) For any A P PGL(2,C(z)), the corresponding action of A and τĀτ on SC, via ψ and

denoted by A and τ Āτ respectively, are conjugate by the anti-holomorphic involution σ

(i.e. σ : (x ,y,z) ÞÑ (x̄ ,ȳ, z̄) ), where τ :=
“
0 1´z2
1 0

‰
P PGL(2,C(z)),which means that the

following diagram commutes

SC

σ
��

A // SC

σ
��

SC
τ Āτ // SC.

In particular, the group Bir(S{π ) corresponds, via the action of PGL(2,C(z)) on SC, to the
group

G := tA P PGL(2,C(z)) | τAτ = Āu

Proof. (a) The mapψ is a rational map and its inverse is given by

ψ´1 : (t ,z) d

(

t2 ´ z2 ` 1

2t
, i ¨ t

2 ` z2 ´ 1

2t
,z

)

.

(b) Clearly, the identity in PGL(2,C(z)) gives the identity map of A2
C
. Let A =

”
α (z) β (z)
γ (z) δ (z)

ı

and A1
=

”
α 1 (z) β 1 (z)

γ 1 (z) δ 1 (z)

ı
be elements in PGL(2,C(z)). We compute

(A,A1(t ,z)) ÞÑ





α

(

α 1t`β 1

γ 1t`δ 1

)

` β

γ
(

α 1t`β 1

γ 1t`δ 1

)

` δ
,z




=

(

(αα 1 ` βγ 1)t ` αβ 1 ` βδ 1

(γα 1 ` δγ 1)t ` γ β 1 ` δδ 1 ,z

)

,

which is the same as

(AA1
, (t ,z)) ÞÑ

(

(αα 1 ` βγ 1)t ` αβ 1 ` βδ 1

(γα 1 ` δγ 1)t ` γ β 1 ` δδ 1 ,z

)

.

The action of PGL(2,C(z)) on A2
C
gives an action on SC in the following way: for any

element A =
”
α (z) β (z)
γ (z) δ (z)

ı
P PGL(2,C(z)) we denote by A ýA2

C
the action of A on A2

C

given by the map (t ,z) d
(

α (z)t`β (z)

γ (z)t`δ (z) ,z
)

, thus the following diagram gives the action

on SC that we denote byψ
´1Aψ or simply A if no confusion:

SC

A

��

ψ
// A2
C

A ýA2
C

��

SC A2
C

ψ´1

oo
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5 Conic bundle case

(c ) We name σ1 : (t ,z) ÞÑ (t̄ , z̄) the anti-holomorphic involution on A2
C
, then via the

birational mapψ we have

ψσψ´1
= σ1τ = τσ1 : (t ,z) d

(

1 ´ z̄2

t̄
, z̄

)

.

Let A P PGL(2,C(z)). We want to show that τ Āτ (σ (x ,y,z)) = σ (A (x ,y,z)) for any
(x ,y,z) P SCwhich is the same as showingψ´1(τĀτ ) (ψσ (x ,y,z)) = σ (ψ´1A(ψ (x ,y,z)))

for any (x ,y,z) P SC, where the action of A and τĀτ are now on A2
C
. Notice that ac-

cording to De�nition 5.2.1(ii ), the action of Ā on A2
C
is the same as the action of σ1Aσ1

and in this way, for any (x ,y,z) P SC we have

ψ´1(τĀτ ) (ψσ (x ,y,z)) = ψ´1(τσ1Aσ1τ ) (ψσ (x ,y,z))

= ψ´1((ψσψ´1)A(ψσψ´1)) (ψσ (x ,y,z))

= σψ´1A(ψσ (σ (x ,y,z)))

= σ (ψ´1A(ψ (x ,y,z))).

The elements in Bir(S{π ) correspond to the elements in PGL(2,C(z)) which com-
mute with ψσψ´1, in other words, for A P PGL(2,C(z)) we have that A belongs to
ψ´1Bir(S{π )ψ if τσ1Aσ1τ = A which is equivalent to τĀτ = A and hence we get the
description of the group G = ψ´1Bir(S{π )ψ .

�

Remark 5.2.3. The element τ =
“
0 1´z2
1 0

‰
P PGL(2,C(z)) belongs to G and corresponds to

the element of Bir(S{π ) given by

(x ,y,z) ÞÑ (x ,´y,z),

which is a re�ection that belongs then to Aut(S ) Ă Aut(S (R)).

The group G Ă PGL(2,C(z)) de�ned in Lemma 5.2.2 is the algebraic version of Bir(S{π ),
that we will study in the sequel. In the following lemma, we give a more precise description
of elements of this group.

Lemma 5.2.4. Each A P G Ă PGL(2,C(z)) is equal to
”
a(z) b (z)h

b̄ (z) ā(z)

ı
for some polynomials

a,b P Crzs with no common real roots, h = 1 ´ z2. Moreover, the corresponding matrix”
a(z) b (z)h

b̄ (z) ā(z)

ı
P GL(2,C(z)) has a determinant a(z)ā(z) ´ b (z)b̄ (z)h P Rrzs which is positive

when z2 ą 1.

Remark 5.2.5. Conversely, if A =
”
a(z) b (z)h

b̄ (z) ā(z)

ı
P PGL(2,C(z)) for some a,b P C(z) (and in

particular when a,b P Crzs), then A belongs to G, since τAτ = A.
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5.2 Algebraic description of Bir(S{π )

Proof. Let A =
”
a(z) b (z)
c (z) d (z)

ı
P G. The equality τAτ = Ā gives

”
ā(z) b̄ (z)

c̄ (z) d̄ (z)

ı
=

“
0 1´z2
1 0

‰ ”
a(z) b (z)
c (z) d (z)

ı “
0 1´z2
1 0

‰

=

”
d (z) (1´z2) c (z) (1´z2)2

b (z) a(z) (1´z2)

ı
.

Hence b (z) = λc̄ (z), d (z) (1 ´ z2) = λā(z), c (z) (1 ´ z2)2 = λb̄ (z), and a(z) (1 ´ z2) = λd̄ (z)

for some λ P C(z)˚. From �rst and third equation we get that c ((1´z2)2 ´λλ̄) = 0 and from
second and fourth equation we get that ā((1 ´ z2)2 ´ λλ̄) = 0. In both cases, λλ̄ = (1 ´ z2)2

which is equivalent to λ
(1´z2) ¨

(

λ
(1´z2)

)

= 1, then by Hilbert’s Theorem 90 there is µ P C(z)˚

such that λ =
µ

µ̄
(1 ´ z2) and A =

”
a(z)µ̄ µc̄ (z) (1´z2)
c (z)µ̄ ā(z)µ

ı
. Calling again a(z) : = a(z)µ̄ (z) and

b (z) : = µ (z)c̄ (z) we get A =
”
a(z) b (z)h

b̄ (z) ā(z)

ı
.

When a =
p

q
, b = r

s
with p,q,r ,s P Crzs, we can multiply A by qq̄ss̄ and we obtain an

element in the same class with entries in Crzs. Now, if z0 is a common real root of a and b
thus z0 is also a real root of ā and b̄ which means that we may divide by z ´ z0 all entries
of A and remain in the same class. Then A is of the desired form. The determinant of the
corresponding element of GL(2,C(z)) is then aā´bb̄ (1´z2) = aā`bb̄ (z2´1) P Rrzs. Notice
that for z2 ą 1, aā ` bb̄ (z2 ´ 1) ą 0 because aā ě 0, bb̄ ě 0 implies aā ` bb̄ (z2 ´ 1) ě 0
and the fact a and b have non common real roots implies that the inequality is strict. �

Remark 5.2.6. In the sequel, we will always denote by h the polynomial 1 ´ z2 P Rrzs.
Now, we would like to characterise elements in Aut(S (R){π ) and Aut`(S (R){π ) inside

the group G = ψ´1Bir(S{π )ψ . In order to do this, we need to understand the birational map
ψ : SC d A

2
C
given by (x ,y,z) d (x ´ iy,z). The following result describes the extension

of the map, that we again denote byψ .

Lemma 5.2.7. ψ satis�es:

(a) The birational map

ψ : SC d P1
C

ˆ P1
C

(1 : x : y : z) d ((1 : x ´ iy), (1 : z))
(w : x : y : z) d ((w : x ´ iy), (w : z))

has three base-points, namely q = (0 : i : 1 : 0), q̄ = (0 : ´i : 1 : 0), and one point ω,

in�nitely near q.

(b) Its inverse is

ψ´1 : P1
C

ˆ P1
C

d SC

((1 : t ), (1 : z)) d
(

1 : t
2´z2`1

2t : i ¨ t2`z2´1
2t : z

)

((u : t ), (v : z)) d
(2tuv2 : t2v2 ´ z2u2 ` u2v2 :
i(t2v2 ` z2u2 ´ u2v2) : 2tzuv )
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5 Conic bundle case

and has exactly three base-points, namely

(0 : 1) (0 : 1), (1 : 0) (1 : 1), and (1 : 0) (1 : ´1).

(c) The mapψ can be decomposed as the blow-up of q, q̄, ω, followed by the contraction of

the strict transforms of the curves L,M , D Ă SC given respectively by

L : x = iy,w = ´z
M : x = iy,w = z

D : w = 0

This can be described by the diagram in Figure 5.1, where PN = (1 : 0 : 0 : 1), PS = (1 :
0 : 0 : ´1) P S (R) are the north and south poles, where L, M are the image of L, M by the

anti-holomorphic involution and where the strict transforms of the curves are again denoted

by the same names.

SC

‚L

qPS

,
,
,

,
,

D

˝

˝M

ML

‚q PN

�
�	q, q

HHH
Eq
‚ω

���
M�

�
�
��
D

P̋S

P̋N

ML

���
L HHH

Eq

��� ω

HHH
Eq
�
�Eω

D

���
M

ML

P̋S

P̋N

���
L HHH

Eq
�
�
�
�

A
A
A
A
AU

L,M, D

P1
C

ˆ P1
C

ac L

PS

M

d‚Eωac
PN

Eq Eq
-ψ

Figure 5.1: The decomposition ofψ into blow-ups and blow-downs.

Proof. Parts (a) and (b) follow from a direct calculation. Hence, denoting by ζ : X Ñ SC
the blow-up of q,q̄,ω, the map ψζ is a birational morphism X Ñ P1

C
ˆ P1

C
, which is the

blow-up of three points since both SC and P
1
C

ˆ P1
C
have a complex Picard group of rank 2.

Looking at coordinates, one checks that the three curves are L,M ,N , and the remaining
part of the picture can be checked by computing the intersection between the curves. �

SinceM Y M is the �bre of (1 : 1) P P1 by π and is singular with only real point, every
element of Bir(S{π ) preserves the north pole PN = M X M and either preserves each of
the two curves or interchanges them. This result is proved in the following lemma, that
describes moreover algebraically the distinct possible cases.
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5.2 Algebraic description of Bir(S{π )

Lemma 5.2.8. Let A =
”
a(z) b (z)h

b̄ (z) ā(z)

ı
P G Ă PGL(2,C(z)), for some polynomials a,b P Crzs

with no common real roots (see Lemma 5.2.4), and let A P Bir(S{π ) be the corresponding
element (see Lemma 5.2.2).
The mapA is de�ned at the north and south poles PN = M XM and PS = L X L. Moreover,

the following hold:

(1) If a(1) = 0, then A exchangesM withM .

(2) If a(1) , 0, then A preserves bothM andM .

(3) If a(´1) = 0, then A exchanges L with L.

(4) If a(´1) , 0, then A preserves both L and L.

Remark 5.2.9. Note that a(1) , 0 (respectively a(´1) , 0) is equivalent to the fact that the

determinant a(z)a(z) ` b (z)b (z)h is positive when z = 1 (respectively z = ´1).

Proof. Recall that A acts on A2
C
via

(t ,z) d




a(z)t ` b (z) (1 ´ z2)

b (z)t ` a(z)
,z





(see Lemma 5.2.2).
Suppose �rst that a(1) , 0. This implies that the determinant a(z)a(z) ` (z2 ´ 1)b (z)b (z)

is not zero (and in fact positive) when z = 1. Hence, the above birational map is a local
isomorphism near the �xed point (t ,z) = (0,1), and restricts to an isomorphism of the curve
z = 1. After blowing up (0,1), we obtain thus a local isomorphism in the neighbourhood
of the exceptional divisor and of the strict transform of the curve z = 1. By Lemma 5.2.7,
these maps correspond to respectively M and M via ψ . This shows that A is de�ned at
PN = M X M and preserves each of the two curvesM andM .

If a(´1) , 0, we �nd similarly that A is de�ned at PS = L X L and preserves each of the
two curves L and L.
If a(1) = 0, we write a(z) = a0(z) (1´z) for some polynomial a0 P Crzs and have b (1) , 0,

since a,b have no common real root. We consider τ =
“
0 1´z2
1 0

‰
P G, that corresponds to the

re�ection
(x ,y,z) ÞÑ (x ,´y,z)

of the sphere S (see Remark 5.2.3). Note that this map is de�ned at the north and south
poles, interchanges L with L and interchangesM withM . It remains to study the map

Aτ =
”
b (1´z2) a(1´z2)

a b (1´z2)

ı
=

”
b (1`z) a0 (1´z2)
a0 b (1`z)

ı
P G Ă PGL(2,C(z))

and to see that it is equal to
”
a1 b1 (1´z2)
b1 a1

ı
, where a1

= b ¨ (1 ` z), b1
= a0 P Crzs have no

common real root, and such that a1(1) = 2b (1) , 0. This reduces to the previous case.
The case where a(´1) = 0 is similar. �
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5 Conic bundle case

Lemma 5.2.10. Let A =
”
a(z) b (z)h

b̄ (z) ā(z)

ı
P G Ă PGL(2,C(z)), for some polynomials a,b P Crzs

with no common real roots (see Lemma 5.2.4), and let A P Bir(S{π ) be the corresponding
element (see Lemma 5.2.2). We denote by D (z) = a(z)ā(z) ´ b (z)b̄ (z) (1 ´ z2) P Rrzs the
corresponding determinant.

Let z0 P (´1,1) Ă R, and let Γz0 Ă S be the conic given by z = z0. Then, the following hold:

(a) The map A is a local isomorphism at each point of Γz0 if and only if D (z0) , 0.

(b) The map A contracts the curve Γz0 onto a real point of Γz0 if and only if D (z0) = 0. In
this case, it has exactly one proper base-point on Γz0 , which is real.

Proof. Observe that ψ is a local isomorphism at a general point of Γz0 by Lemma 5.2.7.
Hence, A contracts Γz0 or is a local isomorphism at each point of it if and only if so does A
on the curve of A2

C
given by z = z0. Recall that A acts as

(t ,z) d




a(z)t ` b (z) (1 ´ z2)

b (z)t ` a(z)
,z



 .

IfD (z0) , 0, we obtain thus a local isomorphism along Γz0 . IfD (z0) = 0, then
a(z0)t`b (z0) (1´(z0)

2)

b (z0)t`a(z0)
does not depend on t . The fact that a and b cannot both vanish at z0 implies that the curve
Γz0 is then contracted onto one point, which is thus real. It has moreover exactly one proper
base-point on this curve, which corresponds to the vanishing of the denominator and
numerator of the above fraction. �

5.3 Algebraic description of Aut(S (R){π ).
The fact that an element in the group Aut(S (R){π ) exchanges or not the lines L and L can be
checked geometrically, as the following result shows. This will help to describe algebraically
the groups Aut(S (R){π ) and Aut`(S (R){π ) as subgroups of G (Proposition 5.3.3 below).

Lemma 5.3.1. Let A P Aut(S (R){π ), and let L,L,M ,M Ă SC be the four curves given in

Lemma 5.2.7. Then, one of the following holds:

(a) A P Aut`(S (R){π ) and A preserves each of the four curves L,L,M ,M .

(b) A P Aut(S (R){π )zAut`(S (R){π ) and A exchanges L with L andM withM .

Proof. Since M Y M is the �bre of (1 : 1) P P1 by π , every element of Aut(S (R){π ) either
preserves each of the two curves or interchanges them.
We study the action of A on the lines M and M near the point PN = M X M = (1 :

0 : 0 : 1), the situation near PS = L X L is similar. The equation of the sphere being
(w ´ z) (w ` z) = x2 ` y2, the complex tangent plane TPNSC is given by w = z = 0, and
contains the two linesM andM , which correspond to x = ˘iy.
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The real tangent plane is contained in the complex tangent plane i.e. TPNS (R) Ă TPNSC
and the action of A on the linesM andM is the same as the action of its di�erential at PN
denoted by DPNA P GL(2,C) which also preserves TPNS (R) and is linear. Then DPNA can
be presented as a matrix in GL(2,R).

Matrices in GL(2,C) which preserve the two lines x = ˘iy are of the form
“
a b

´b a

‰
for

some a, b P C. Imposing the condition of preserving the real plane is equivalent to ask for
a,b P R. This tell us that if DPNA is the di�erential at PN of a di�eomorphism A which
�xes PN and preserves the linesM andM , then DPNA restricted toTPN (S (R)) is of the form“
a b

´b a

‰
for some a,b P R and is positive de�ned because its determinant is a2 ` b2 ą 0 and

therefore such a di�eomorphism A is an orientation-preserving one.

On the other hand, matrices in GL(2,C) which interchange the lines M and M and
preserve the real tangent plane are of the form

“
a b
b ´a

‰
for some a, b P R. Then if DPNA is

the di�erential at PN of a di�eomorphism A which �xes PN and interchanges the linesM
andM , we obtain that DPNA restricted toTPN (S (R)) is of the form

“
a b
b ´a

‰
for some a,b P R

and its determinant is ´(a2 ` b2) ă 0 which implies that A is an orientation-reversing
di�eomorphism. �

De�nition 5.3.2. We denote by Rrzs` the multiplicative submonoid of Rrzs de�ned as
Rrzs` := tf P Rrzs | f (z0) ą 0 for each z0 P Ru.

Proposition 5.3.3. LetH andH0 be the subgroups of G given respectively byψAut(S (R){π )ψ´1

andψAut`(S (R){π )ψ´1.

Then H = H0 o xτ y, where τ =
“
0 1´z2
1 0

‰
=

“
0 h
1 0

‰
as before, and

H0 =

!”
a(z) b (z)h

b̄ (z) ā(z)

ı
; a,b P Crzs,aā ´ bb̄h P Rrzs`

)
.

Proof. The fact thatH = H0 o xτ y follows from the fact that τ corresponds to a re�ection
in Aut(S (R){π )zAut`(S (R){π ); it remains to describe H0.

Let A P G be some element, that we write as
”
a(z) b (z)h

b̄ (z) ā(z)

ı
for some polynomials a,b P Crzs

with no common real roots (Lemma 5.2.4), and letD = aā´bb̄h P Rrzs be the corresponding
determinant. We have D (z) ą 0 if z2 ą 1 (see Lemma 5.2.4). We denote by A P Bir(S{π )
the corresponding element, given byψ´1Aψ .

Suppose that A P H0. By Lemmas 5.2.8 and 5.3.1, this implies that a(1)a(´1) , 0,
hence D (1) and D (´1) are both positive. Moreover, D (z) , 0 for each z0 P (´1,1) by
Lemma 5.2.10. This implies that D P Rrzs`.

Conversely, suppose that D P Rrzs`. By Lemmas 5.2.8 and 5.2.10, this implies that A
is de�ned at each real point of the sphere, hence A P H. The fact that A P H0 is given by
Lemma 5.3.1. �
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5.4 Involutions in Bir(S{π )
Recall that the group of elements of Bir(S ,π ) acting trivially on the basis of the �bration is
denoted by Bir(S{π ). This group is conjugate to

G =

!
A =

”
a(z) b (z)h

b̄ (z) ā(z)

ı
; a,b P Crzs with no common real roots,

and a(z)ā(z) ´ b (z)b̄ (z)h ą 0 for z2 ą 1
(

Ă PGL(2,C(z))

by the birational mapψ (see Lemma 5.2.2). In this section, we study involutions in Bir(S{π )
or equivalently in G up to conjugacy.
We also recall that the action of PGL(2,C(z)) on A2

C
was given in Equation (5.2) by

(t ,z) d
(

a(z)t`b (z)
c (z)t`d (z) ,z

)

for
”
a(z) b (z)
c (z) d (z)

ı
= A P PGL(2,C(z)). Notice that when A has order

2, the restriction of A to the P1
C
corresponding to z = z0, for a general z0 P C, is an

automorphism of order 2 with two �xed points. We denote by ΓA the closure of the set
of those �xed points as z varies in C and call it the curve of �xed points of A or just the
curve �xed by A. The corresponding de�nition for the sphere is presented below, see
De�nition 5.4.5.
The following results will be useful for the proof of the main result of this subsection

in Theorem 5.4.6, which states that two involutions are conjugate in G if and only if their
respective �xed curves are birational over R.

Lemma 5.4.1.

(a) If A P PGL(2,C(z)) is an element of order 2, then A is conjugate to
“
0 p
1 0

‰
for some

p P C(z)˚,

(b) the elements
”
0 p
1 0

ı
,
”
0 p1

1 0

ı
P PGL(2,C(z)) withp,p1 P C(z)˚ are conjugate in PGL(2,C(z))

if and only if p{p1 is a square in C(z).

(c ) Let A, B P PGL(2,C(z)) of order 2. Then A and B are conjugate in PGL(2,C(z)) (A „ B)

if and only if there exists a birational map ρ de�ned over C

ΓA

π

��

ρ
// ΓB

π

��
C = C

where ΓA, ΓB Ă C2 are the curves �xed by A and B, respectively.

Proof. (a) LetA =
“
a b
c d

‰
be an element of order 2 in PGL(2,C(z)). FromA2

=

”
a2`bc b (a`d )
c (a`d ) bc`d2

ı
=

r 1 0
0 1 s = I , we get that a = ´d or b = 0 = c , but in the second case, a2 = d2 thus a = ˘d .
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5.4 Involutions in Bir(S{π )

If a = d and b = c = 0 then A = I and therefore A does not have order 2. This implies
that a = ´d in any case so we can write A =

“
a b
c ´a

‰
. Now A is conjugate to

“
0 a2`bc
1 0

‰

by
“ ´a ´b

1 0

‰
when b , 0 or by

“ ´c a
0 1

‰
when c , 0. The case when b = c = 0, we

have A =
“
1 0
0 ´1

‰
and is conjugate to r 0 1

1 0 s by
“
1 1
1 ´1

‰
. We have proved that A is always

conjugate to
“
0 p
1 0

‰
.

(b) If
”
0 p
1 0

ı
,
”
0 p1

1 0

ı
are conjugate in PGL(2,C(z)) then the determinants are equal up to

square and then p{p1 is a square. Reciprocally, if p{p1
= a2 for some a P C(z)˚ then“

0 p
1 0

‰
is conjugate to

”
0 p1

1 0

ı
by

”
1 0
0 a

ı
.

(c ) If A and B are conjugate elements of order 2 in PGL(2,C(z)), there is an element
ζ P PGL(2,C(z)) such that the following diagram commutes:

C2
B //

��

C2

π

��

C2
ζ

>>

π

��

A // C2
ζ

>>

π

��

C
=

// C

C

=

==

= // C
=

==

Then the existence of the birational map ρ is given by the restriction of ζ to ΓA. Con-
versely, we assume the existence of ρ : ΓA d ΓB . By part (a), the fact that A and B are
of order 2 implies that they are conjugate to an element of the form

“
0 f
1 0

‰
and

“
0 д
1 0

‰

respectively, for some f ,д P C(z)˚. In this way, the equations for the curves ΓA and
ΓB are t2 = f (z) and t2 = д(z). Since ΓA and ΓB are birational, this implies that the
corresponding �elds of rational functions are isomorphic i.e. C(z)r

a
f s � C(z)r?дs.

The isomorphism will send z ÞÑ z and
a
f ÞÑ a

?
д `b for some a,b P C(z) with a , 0.

Since f = д(= t2), we have f = (
a
f )2 ÞÑ (a

?
д ` b)2 = a2д ` 2ab

?
д ` b2 = f then

a2д`b2 ´ f = ´2ab
?
д in C(z)r?дs which implies that 2ab

?
д = 0 and therefore b = 0.

Hence f = a2д and then
“
0 f
1 0

‰
and

“
0 д
1 0

‰
are conjugate by part (b).

�

Lemma 5.4.2. Let A, B P G Ă PGL(2,C(z)) be of order two. If A and B are conjugate in

PGL(2,C(z)) then there are elements α , β P PGL(2,C(z)) such that A = αPα´1, B = βPβ´1

for some P =
“
0 p
1 0

‰
, p P R(z)˚

Proof. By Lemma 5.4.1 we can present A and B as in the statement for the same P for some
p P C(z)˚, what remains to show is that we can pick p P R(z)˚ (equivalently p = p̄). Let
A0,τ0 P GL(2,C(z)) be elements corresponding to A,τ P PGL(2,C(z)). We can choose A0
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5 Conic bundle case

so that det(A0) = p and want to �nd an element µ P C(z)˚ such that pµ2 = pµ2 because“
0 p
1 0

‰
is conjugate to

”
0 pµ2

1 0

ı
by

“
µ 0
0 ´1

‰
.

The equality τAτ = Ā in PGL(2,C(z)) implies that (τ0)
´1A0τ0 = λĀ0 for some element

λ P C(z)˚. Taking the determinant, we obtain det(A0) = λ2det(A0), which means that

p = λ2p. It su�ces to �nd µ with λ =
µ

µ
. Since λ2 = p{p, we obtain λ2 ¨ λ2 = 1, and thus

λλ = ˘1. If λλ = 1 then by Hilbert’s Theorem 90 there is µ P C(z)˚ such that λ =
µ

µ
. The

case λλ = ´1 is not possible in C(z) otherwise λ would be the quotient of two polynomials

in C(z), say λ =
f

д
with f ,д P Crzs˚ and then

f f̄

дд̄
= ´1 which is equivalent to f f̄ = ´дд̄.

But the leading coe�cient of any element of the set tf f̄ : f P Crzsu Ă Rrzs˚ is always
positive implying that f f̄ cannot be equal to ´дд̄ for any д P C(z)˚. �

Proposition 5.4.3. Let F =

„
0 f

1 0


with f P C(z)˚,

(a) the centralizer of F in PGL(2,C(z)), that we denote by C(F ), is the semi-direct product

Jf o Z{2Z where Jf is the image in PGL(2,C(z)) of Tf where

Tf :=

"„
a f b

b a


P GL(2,C(z)) ; a,b P C(z),a2 ´ f b2 , 0

*

and Z{2Z is generated by the element ν =

„
1 0
0 ´1


in PGL(2,C(z)).

(b) The group Tf is isomorphic to the multiplicative group C(Γ)˚ where C(Γ) is the �eld of

rational functions on Γ, the hyperelliptic curve Γ of equation t2 = f (z) in A2
C
(the �xed

curve of the birational map corresponding to the element F ).

(c ) H 1(xνy, Jf ) = t1u.

Proof. (a) Let A =
“
a b
c d

‰
P PGL(2,C(z)), from AF = FA we get

”
b f a
d f c

ı
=

”
f c f d
a b

ı
implying

that d = λa, b = λf c , a = λd , and f c = λb for some λ P C(z)˚. If a , 0 we have a = λ2a

hence λ = ˘1 and A =
”
a f b
b a

ı
or

”
a ´f b
b ´a

ı
. When a = 0, we get d = 0, and f c = λ2 f c

implying λ = ˘1 and A =
”
0 f b
b 0

ı
or

”
0 ´f b
b 0

ı
. Then C(F ) = Jf o

@“
1 0
0 ´1

‰D
.

(b) An element of the �eld C(Γ) can be written as a ` bt with a, b P C(z) and then we see
that C(z)r

a
f s is isomorphic to C(Γ) by sending a ` bt to a ` b

a
f . Hence we de�ne

the map from C(z)r
a
f s˚ to Tf given by a ` b

a
f ÞÑ

”
a f b
b a

ı
which is clearly bijective

and is a group homomorphism since

(a ` b
a
f ) (c ` d

a
f ) = (ac ` f bd ) ` (ad ` bc )

a
f
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corresponds to the product
„
a f b

b a

 „
c f d

d c


=

„
ac ` f bd f (ad ` bc )

ad ` bc ac ` f bd


.

(c ) From the exact sequence

1 Ñ C(z)˚ iÝÑ Tf
pÝÑ Jf Ñ 1 (5.3)

we obtain the cohomology exact sequence

H 1(xνy,Tf ) Ñ H 1(xνy, Jf ) Ñ H 2(xνy,C(z)˚).

The �rst cohomology group H 1(xνy,Tf ) is trivial by Hilbert’s Theorem 90 and the
second cohomology group H 2(xνy,C(z)˚) is trivial by Tsen’s Theorem ([Ser79, Chapter
X, Section 7]). Then we get that H 1(xνy, Jf ) = t1u.

�

Lemma 5.4.4. Let A P G of order 2 and let α P PGL(2,C(z)) such that A = αPα´1 for some

P =
“
0 p
1 0

‰
, p P R(z)˚. Then the element µA : = α´1τ ᾱ belongs to Jp where τ =

“
0 h
1 0

‰
for

h = 1 ´ z2 and Jp is de�ned in Proposition 5.4.3.

Proof. The fact that A P G implies that µA P C(P ) because

µAPµ
´1
A
= (α´1τα )P (α´1τα )

= α´1τ (αPα´1)τα

= α´1(τAτ )α = α´1Aα = P .

In order to check that indeed µA belongs to Jp , we compute P and α explicitly. First, we

observe that if A is an involution in G then A is of the form
”
i¨a(z) b (z)h

b̄ (z) ´i¨a(z)

ı
with a(z) P R(z),

b (z) P C(z). In PGL(2,C(z)), this involution is conjugate to the element P =
”
0 ´(a2´bb̄h)
1 0

ı

by α =
”

0 b (z)h
´1 ´i¨a(z)

ı
. In this case, p = ´(a2 ´ bb̄h) and then µA is explicitly

”
i¨a(z) ´p
´1 i¨a(z)

ı

which belongs to Jp . If α
1 is another element in PGL(2,C(z)) such that α 1´1Aα 1

=

“
0 p
1 0

‰

then α 1´1α P C(P ), say θ = α 1´1α . Then µ 1
A = α

1´1τ ᾱ 1
= (θα´1)τ (αθ´1) = θ (α´1τα )θ´1

that lies in Jp as well. �

De�nition 5.4.5. Let A P Bir(S{π )zt1u be of �nite order. For a general z0 P R the
birational map given by A �xes the conic Γz0 corresponding to the preimage of z0 by π .
Note that A restricted to Γz0 (AΓz0

: Γz0 Ñ Γz0) is an isomorphism with exactly two �xed
points, which can be two real points or two imaginary conjugate points. The (closure of)
the set of these �xed points, for every z P P1, gives the curve of �xed points that we denote
by Fix(A) and that is a double covering of P1. Note that some isolated points can also be
�xed and not belong to Fix(A).
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5 Conic bundle case

Theorem 5.4.6. Let A, B P Bir(S{π ) of order 2. The elements A and B are conjugate in

Bir(S{π ) (A „Bir(S{π ) B) if and only if there exists a birational map ρ de�ned over R

Fix(A)

π

��

ρ
// Fix(B)

π

��
R = R

with Fix(¨) as in the precedent paragraph.

Proof. If A and B are conjugate in Bir(S{π ), then there is an element ζ P Bir(S{π ) such
that ζAζ´1

= B and then the map ρ is given by the restriction of ζ to Fix(A) which is
de�ned over R.

In order to prove the su�ciency, we assume that there is ρ : Fix(A) d Fix(B) with
σρ = ρσ . Then by Lemma 5.4.1(c), we obtain that A := ψAψ´1 P G and B := ψBψ´1 P G

are conjugate in PGL(2,C(z)) and by Lemma 5.4.2 there are α , β P PGL(2,C(z)) such that

A = αFα´1, B = βFβ´1 and F =
(

0 f
1 0

)

, for some f P R(z)˚. Observe that the action of α
and β on SC restrict to birational maps Fix(F ) d Fix(A) and Fix(F ) d Fix(B), respectively.
To sum up, we have the following diagram (which is not necessarily commutative, since
ρ : Fix(A) d Fix(B) may be not the restriction of βα´1):

Fix(A)

ρ de�ned over R

&&

α´1

11

π

��

Fix(F )
β

--α
qq

π

��

Fix(B)

π

��

β´1

mm

C = C = C

.

Since we want to show that A „G B (or equivalently A „Bir(S{π ) B), we need to �nd
γ P G such that γAγ´1

= B i.e. γαFα´1γ´1
= βFβ´1 ðñ β´1γαF (β´1γα )´1

= F , hence
β´1γα P C(F ). In other words, �nding γ P G so that γAγ´1

= B is equivalent to �nd
ξ P C(F ) such that βξα´1 P G.

The condition βξα´1 P G is the same as τ (βξα´1)τ = βξα´1 which is equivalent to

ξ = (β´1τ β )ξ (α´1τα ). We de�ne µB := β´1τ β and µ´1
A

:= α´1τα and like this, we need to

�nd ξ P C(F ) such that ξ = µB ξ̄ µ
´1
A

. By Lemma 5.4.4 µA, µB P Jf and then also µ´1
A

P Jf .

On the other hand, µ´1
A
µ´1
A
= 1 and µBµB = 1 and as Jf is abelian, we get µBµ

´1
A

¨ µBµ´1
A
= 1

and then by Proposition 5.4.3(c) there is ξ P Jf such that ξ {ξ̄ = µBµ´1
A

ùñ ξ = µAξ̄ µ
´1
A

. �
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5.5 Involutions in Aut(S (R){π ).

5.5 Involutions in Aut(S (R){π ).
In Proposition 5.3.3, we have described algebraically the orientation preserving birational
di�eomorphisms as the group

H0 =

!”
a(z) b (z)h

b̄ (z) ā(z)

ı
; a,b P Crzs,aā ´ bb̄h P Rrzs`

)
.

We want to describe involutions in H » H0 o xτ y where τ =
“
0 h
1 0

‰
.

Lemma 5.5.1. Every involution ι P H0 is equal to

ι =
”
i¨p (z) q(z)h
q̄(z) ´i¨p (z)

ı

for some p P Rrzs and q P Crzs with no common real roots and p2 ´ qq̄h P Rrzs`.

Proof. All such elements are indeed involutions, as one easily calculates. From the proof of
the �rst statement of Lemma 5.4.1, we see that the trace of any involution in PGL(2,C(z))
vanishes. Since in H0 the diagonal entries are conjugate, they are strictly imaginary, from
which the claim follows. �

Fibrewise, the maps in H0 look like rotations, the maps in HzH0 like re�ections:

Lemma 5.5.2. The restriction of an involution ι P H0 to a �bre is conjugate, inside the group

of automorphisms of the circle, to a rotation by π . For an element in HzH0, the restriction is

conjugate to a re�ection.

Proof. A �bre is a subvariety of the real points of S and isomorphic to a circle S1, which
in turn is isomorphic to P1(R). Therefore ι restricts on each �bre to an automorphism of
P1(R), that is, an element of PGL(2,R). The �rst statement of Lemma 5.4.1 applies equally
when the �eld R instead of C(z) is used, which tells us that the automorphism is conjugate
to an element of the form

“
0 ˘p
1 0

‰
, with p ą 0 in R. The sign is negative forH0 and positive

for HzH0, and depends on whether the element is orientation-preserving or -reversing.

With q =
?
p, the element is equal to

”
0 ˘q

q´1 0

ı
, which is conjugate to

“
0 ˘1
1 0

‰
via

“
1 0
0 p

‰
.

These elements describe a rotation and a re�ection, as claimed. �

Recall that Rrzs` := tf P Rrzs | f (z0) ą 0 for each z0 P Ru. We will need the following
description.

Lemma 5.5.3.

Rrzs` = tpp̄ | p P Crzs, p has no real rootu
Proof. Since f (z) ą 0 for every z P R, f has complex roots which can be sorted as
pairs of complex conjugate roots. Then f can be factorised in C(z) as factors of the form
(z ´ α ) (z ´ ᾱ ) which already have the form pαp̄α with pα = z ´ α for every complex root
α of f . We then construct p1 as the product p1

= pα1 ¨ pα2 ¨ ¨ ¨pαk where k is the number

of pairs of complex conjugate roots and in this way, f = λ ¨ p1 ¨ p1 for some real positive
constant λ. Thus we de�ne p =

?
λp1 and the result follows. �
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5 Conic bundle case

Proposition 5.5.4. Let A P H be an element of order 2. Then the curve Fix(A), which is a

double covering of P1, has the following properties:

(a) If A P H0, then Fix(A) has no real point (0 oval);

(b) if A P HzH0, then Fix(A) has one oval and π (Fix(A) (R)) = r´1,1s.

Proof. LetA P H be an element of order two. By Lemma 5.5.1,A is of the form
”
i¨p (z) q(z)h
q̄(z) ´i¨p (z)

ı

where p P Rrzs, q P Crzs and p,q have no common real roots. The curve of �xed points is
given by q̄(z)t2 ´2ip (z)t `q(z)h = 0 whose discriminant (with respect to t ) is ´4(p2 `qq̄h)

and corresponds to minus the determinant of the matrix.
If A P H0, then the determinant is positive, so Fix(A) does not have any real point.
If A P HzH0, then the determinant is negative (because it is (1 ´ z2) times the positive

determinant). Hence, we get 2 real points for each z0 P (´1,1). �

According to Proposition 5.5.4, for an involution which is also a di�eomorphism its curve
of �xed points is birational to a smooth real hyperelliptic curve with no oval or just one. In
the �rst case, there is no real point on the �xed curve and 1 and ´1 are not rami�cation
points. This involution is an orientation preserving di�eomorphism with two isolated �xed
points. In the second case, the only two rami�cation points are 1 and ´1, the oval is sent
by π : S Ñ A1 onto the real interval r´1,1s and this involution is an orientation reversing
di�eomorphism. Both possible cases for the curve of �xed points are illustrated in Figure
5.2. Now, we would like to prove the converse, i.e. for any hyperelliptic curve with one or
no oval (equation of the form t2 = (1 ´ z2)p or t2 = ´p for some p P Rrzs` with no real
roots) we want to associate an element γ of H which realises the curve as Fix(γ ). We need
�rst to prove the following lemmas.

&%
'$

&%
'$

‚ ‚ ‚ ‚

? ?
π π

´1 ´11 1

H0 HzH0

Figure 5.2: Possible appearances of the �xed curve of elements in Aut(S (R){π ).

Lemma 5.5.5. Let f P Rrzs be a polynomial of degree two such that f P Rrzs` then there

exist a P Rrzs and a positive real number c such that f (z) = a(z)2 ` c (z2 ´ 1).

Proof. Since f P Rrzs`, then f is factorised as f (z) = (z ´α ) (z ´ ᾱ ) = z2 ´ (α ` ᾱ )z `αᾱ

for α a complex number and making α = b` id , we rewrite f as f (z) = z2 ´2bz` (b2 `d2).
Then if we write a(z)2 = f (z) ´ c (z2 ´ 1) = (1 ´ c )z2 ´ 2bz ` b2 ` d2 ` c , we want
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5.5 Involutions in Aut(S (R){π ).

to show that there exist some value of c ą 0 such that the right side is indeed a square
with respect to z. So we want the discriminant of such an expression to be zero. This is
4b2 ´ 4(1 ´ c ) (b2 ` d2 ` c ) = 4(c2 ` (b2 ` d2 ´ 1)c ´ d2) = 0 which implies that c is a
positive solution of p (c ) := c2 ` (b2 ` d2 ´ 1)c ´ d2 so we compute the discriminant of
this quadratic expression with respect to c and want it to be larger than zero i.e. ∆c :=
(b2 ` d2 ´ 1)2 ` 4d2 ą 0 but this is always the case. Now, since the leading coe�cient of
a(z)2 has to be larger than zero, implies that c ă 1 so we just check that the discriminant
which depends on c has a root between 0 and 1 which is true because p (0) = ´d2 ă 0
and p (1) = b2 ą 0. What remains is to check the case b = 0 i.e. α = id . In this case,
f (z) = z2 ` d2 so we just take c = 1 and a =

?
d2 ` 1. �

Lemma 5.5.6. Let V be the set

V = ta2 ` P ¨ (z2 ´ 1) | a P Rrzs,P P Rrzs`u.

(a) If f ,д P V X Rrzs`, then f ¨ д P V X Rrzs`,

(b) Rrzs` Ă V .

Proof. (a) Let f ,д P V X Rrzs` then f = a2 ` P ¨ (z2 ´ 1) and д = b2 ` Q ¨ (z2 ´ 1) for
a,b P Rrzs and P ,Q P Rrzs`. We have then

f ¨ д =(a2 ` P ¨ (z2 ´ 1)) (b2 `Q ¨ (z2 ´ 1))

=a2b2 ` a2Q ¨ (z2 ´ 1) ` b2P ¨ (z2 ´ 1) ` PQ ¨ (z2 ´ 1)2

=(ab)2 ` (z2 ´ 1)ra2Q ` P (b2 `Q ¨ (z2 ´ 1))s

and a2Q ` P (b2 `Q ¨ (z2 ´ 1)) P Rrzs` because a2, Q , P , and b2 `Q ¨ (z2 ´ 1) are all
in Rrzs`. Therefore, f ¨ д P V X Rrzs`.

(b) Let f P Rrzs` then f can be presented as a product of quadratic polynomials. Since
every quadratic factor is also in Rrzs`, thus it su�ces to prove the Lemma in the case
where f is quadratic and this was already proved in Lemma 5.5.5.

�

Lemma 5.5.7. The elements in Aut(S (R){π ) realise all smooth real hyperelliptic curves with

at most one oval. More precisely,

(a) for a real smooth hyperelliptic curve with one oval of the form t2 = (1 ´ z2)ββ̄ for some

β P C(z) with no real roots there is an orientation reversing birational di�eomorphism

whose �xed curve is this curve,

(b) for a real smooth hyperelliptic curve with no oval of the form t2 = ´ββ̄ for some β P C(z)
with no real roots there is an orientation preserving birational di�eomorphism whose �xed

curve is this one.
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Proof. Given the hyperelliptic curve t2 = (1 ´ z2)ββ̄ for some β P C(z) with no real roots,

the element α =
”

0 β (z)h

β̄ (z) 0

ı
is an involution inHzH0 whose �xed curve is t

2
= (1´ z2)ββ̄ .

In the other case, when t2 = ´ββ̄ where β has no real roots, we have ββ̄ P Rrzs` Ă V by
Lemma 5.5.6 and then there are a P Rrzs and P P Rrzs` such that ββ̄ = a2 ` P (z2 ´ 1).

Lemma 5.5.3 implies that P = bb̄ for some b P Crzs then the element α =
”
ia(z) b (z)h

b̄ (z) ´ia(z)

ı
is an

involution in H0 whose �xed curve is t2 = ´ββ̄ . �

Lemma 5.5.8. Let a,b,c,d P Crzs and let A(z) =
„
a(z) b (z)

c (z) d (z)


P GL(2,C(z)). Let z0 P C

be a simple root of ad ´ bc P Crzs, such that A(z0) has rank 1.

Then, the birational map of P1 ˆ A1 given by

(rt : us,z) d (ra(z)t ` b (z)u : c (z)t ` d (z)us,z)

has exactly one base-point on the line z = z0, and no in�nitely near base-point to this one.

Proof. Making the change of variable z ÞÑ z ´ z0, we can assume that z0 = 0. Replacing
A(z) with αA(z)β , where α ,β P GL(2,C), we can moreover assume that A(0) = r 0 0

1 0 s, so
we can write A(z) =

”
za(z) zb (z)

1`zc (z) zd (z)

ı
, for some a,b,c,d P Crzs (which are not the same as

before but we keep the same letters to simplify the notation). Since z0 is a simple root of
the determinant, we have b (0) , 0. The corresponding birational map of P1 ˆ A1 is then

(rt : us,z) d (rz (a(z)t ` b (z)u) : t ` z (c (z)t ` d (z)u)s,z)

and has a unique proper base-point on the line z = 0, which is the point (r0 : 1s,0).
The blow-up of this point is locally given by

π : A2 Ñ P1 ˆ A1

(t ,v ) ÞÑ (rt : 1s,tv )

And the lift of our birational is then locally given by

(t ,v ) d

(

v (a(vt )t ` b (vt ))

c (vt )tv ` d (vt )v ` 1
,

t (c (vt )tv ` d (vt )v ` 1)

a(vt )t ` b (vt )

)

.

The curves E,E1 corresponding respectively to the exceptional divisor and the �bre z = z0
are now given by t = 0 and v = 0 respectively, and exchanged by the lift:

(0,v ) d
(

vb (0)
1`d (0)v ,0

)

(t ,0) d
(

0, t
a(0)t`b (0)

)

This implies that both, our map and its inverse, have a simple base-point at (0,0). �
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5.5 Involutions in Aut(S (R){π ).

Theorem 5.5.9. Let д, д1 P Aut(S (R){π ) of order 2. Then д and д1 are conjugate in Bir(S{π )
if and only if they are conjugate in Aut(S (R){π ).
Proof. Letд andд1 be conjugate in Bir(S{π ), then there is α P Bir(S{π ) such that αдα´1

= д1.
We want to show that д and д1 are conjugate in Aut(S (R){π ). By Proposition 5.5.4, the
curve of �xed points of an element in Aut(S (R){π ) either contains no real point or only
one oval.
If α P Bir(S{π )zAut(S (R){π ), there is a real point r P S (R) where α is not de�ned, and

this point is not PS or PN (Lemma 5.2.8). The element α blows up this point and contracts
the conic Γzr passing through r which is a �bre of the conic bundle structure of S . Then
α (Γzr ) = q for some q P S (R).

Note that q is �xed by д. Indeed, otherwise д(q) = q1
, q and as д preserves the �bration,

д(Γzr ) = Γzr , then α (д(Γzr )) , д
1(α (Γzr )). Since q is a real point �xed by д and distinct from

PS and PN , the curve Fix(д) contains real points. We may then assume that д is equal to”
0 b (z)h

b̄ (z) 0

ı
(Lemma 5.5.7). The centraliser of д contains the following subgroup

C(д) =
!”

a(z) λb (z)h

λb̄ (z) a(z)

ı
; a,λ P Rrzs and a2 ´ λ2bb̄h , 0

)
Ă G.

We want to prove now that C(д) contains, in particular, an element β =
”
a(z) b (z)h

b̄ (z) a(z)

ı
such

that D (z) = a(z)2 ´ b (z)b̄ (z) (1 ´ z2) has only one zero exactly at z = zr on the interval
(´1,1). The reason of the existence of such a β is that it is possible to �nd a polynomial a(z)

with values a(´1) = 0 and a(zr ) =
a
b (zr )b̄ (zr ) (1 ´ z2r ) and satisfying that D (z) ą 0 on

(´8,´1) Y (zr ,8) and D (z) ă 0 on the interval (´1,zr ). Notice that b (z)b̄ (z) (1 ´ z2) ą 0
for z P (´1,1) and the condition D (z) ą 0 for z2 ą 1 is already ful�lled (see Lemma 5.2.4).
We use the function f (z) = zm withm su�ciently large and apply a suitable linear change

of coordinates, namely a(z) =
a
b (zr )b̄ (zr ) (1 ´ z2r ) ¨ f

(

z`1
zr`1

)

to get the polynomial a(z)
with the required conditions. See Figure 5.3.

-

6

´1 1zr

a(z)

b
b (z)b̄ (z) (1 ´ z2 )

Figure 5.3: Conditions for the polynomial a(z)

With β P C(д) as before, i.e. the element with the only root of its determinant at z = zr ,
Lemma 5.5.8 implies that the birational map that β de�nes has exactly one real base-point
and no in�nitely near base-point to this one. Then replacing α by β´1α , one gets one
base-point less. Then the claim follows by induction. �
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5 Conic bundle case

Proposition 5.5.10. There are bijective correspondences

"
conjugacy classes of involutions

in Aut`(S (R){π )

*
1:1ÐÝÑ

$
’’&
’’%

smooth real projective

curves Γ with no real point

with π : Γ Ñ P1 a 2 : 1-covering,
up to π -isomorphism

,
//.
//-

"
conjugacy classes of involutions

in Aut(S (R){π )zAut`(S (R){π )

*
1:1ÐÝÑ

$
’’&
’’%

smooth real projective

curves Γ with one oval

with π : Γ Ñ P1 a 2 : 1-covering,
up to π -isomorphism

,
//.
//-

Remark 5.5.11. By a π -isomorphism we mean an isomorphism γ : Γ Ñ Γ1 such that πγ = π .

Proof. Let д,д1 P Aut(S (R){π ) be of order 2. If д and д1 are conjugate in Aut(S (R){π )
then by Theorem 5.4.6, Fix(д) and Fix(д1) are birational over R by some π -isomorphism.
Proposition 5.5.4 tell us that Fix(д) and Fix(д1) are a double covering of P1 with no real point
(when д,д1 are orientation-preserving birational di�eomorphisms) or with one oval (when
д,д1 are orientation-reversing birational di�eomorphisms), and Lemma 5.5.7 shows that all
such curves are obtained. Given a π -isomorphism between two smooth real hyperelliptic
curves with no oval (respectively one), Theorem 5.4.6 implies that д and д1 are conjugate in
Bir(S{π ) and Theorem 5.5.9 that д and д1 are indeed conjugate in Aut(S (R){π ). �

5.6 Elements in Bir(S{π ) of finite order larger than two

The goal of this section is to show that any element in Bir(S{π ) of �nite order larger than
two which preserves the �bration is conjugate to a rotation. We start by observing that any
rotation ρθ P Bir(S{π ) is given by the map

ρθ : S ÝÑ S

(x ,y,z) ÞÝÑ (x cosθ ´ y sinθ ,x sinθ ` y cosθ ,z)

which viaψ (Lemma 5.2.2) corresponds inA2 to the map (t ,z) ÞÑ (te´iθ
,z) and is equivalent

to the action of the element
“
e´iθ 0
0 1

‰
=

„
e´i

θ
2 0

0 e i
θ
2


=

“
1 0
0 e iθ

‰
= Rθ P G. With this observation

and the following remark, the result is presented in Lemma 5.6.2.

Remark 5.6.1.

(i) Let A P PGL(2,C(z)) an element of �nite order larger than 2. Then A is diagonalisable.

(ii) Two diagonal elements r 1 0
0 a s and

“
1 0
0 b

‰
are conjugate in PGL(2,C(z)) if and only if

a = b˘1.
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5.6 Elements in Bir(S{π ) of �nite order larger than two

Lemma 5.6.2. Let A P G of order n , 2. Then A is conjugate to a rotation

Rθ =

„
1 0

0 e iθ



in G for some angle θ .

Proof. Since A is an element of �nite order n , 2 then by Remark 5.6.1, A is diagonalisable
in PGL(2,C(z)) so there is an element α P PGL(2,C(z)) so that A = α

“
1 0
0 µ

‰
α´1 for some

µ P C(z)˚ an element of order n, i.e. µ is a root of unity that we can write as µ = eiθ for
some angle θ .

We de�ne J := r 1 0
0 s sα´1 and we want to �nd s P C(z) such that J P G and JAJ´1

= Rθ .
This latter condition is ful�lled by the form of J . To ask for J P G is the same as J satis�es
the relation τ Jτ = J̄ which is equivalent to τ r 1 0

0 s sα´1τ = r 1 0
0 s̄ sα´1. Multiplying to the

right by ᾱ we get τ r 1 0
0 s sα´1τα´1

= r 1 0
0 s̄ s. We call ρ := α´1τα and we rewrite the last

equation in terms of ρ obtaining:

τ r 1 0
0 s s ρ̄ = r 1 0

0 s̄ s (5.4)

where ρ̄ = ρ´1 because ρρ̄ = (ᾱ´1τα ) (α´1τ ᾱ ) = 1.

On the other hand, the fact that A P G i.e. τAτ = Ā which is the same as τα
“
1 0
0 µ

‰
α´1τ =

ᾱ
“
1 0
0 µ̄

‰
ᾱ´1 is equivalent to ρ

“
1 0
0 µ

‰
=

“
µ 0
0 1

‰
ρ and gives the condition on ρ to be of the

form ρ =
“
0 λ
1 0

‰
for some λ P C(z)˚. Moreover, ρρ̄ = 1 implies that λ P R(z)˚ because“

0 λ
1 0

‰ “
0 λ̄
1 0

‰
=

“
λ 0
0 λ̄

‰
= r 1 0

0 1 s. With this information about ρ, �nding s P C(z)˚ satisfying the
equation (5.4) is equivalent to �nd s satisfying the equation

λ = (1 ´ z2)ss̄ (5.5)

Note that we already know that λ
1´z2 P R(z)˚, but not every element of R(z)˚ can be

written as ss̄ . What follows is to describe ρ in terms of entries of α and τ in order to �nd
candidates for the value of s satisfying the previous equation. Let us present α =

“
a b
c d

‰
,

then the relation ρ = ᾱ´1τα explicitly will be

„
0 λ

1 0


=

„
d̄ ´b̄

´c̄ ā

 „
0 1 ´ z2

1 0

 „
a b

c d



=

„
´ab̄ ` (1 ´ z2)cd̄ ´bb̄ ` (1 ´ z2)dd̄

aā ´ (1 ´ z2)cc̄ āb ´ (1 ´ z2)c̄d



and this gives two equations

´ab̄ ` (1 ´ z2)cd̄ = 0

(aā ´ (1 ´ z2)cc̄ )λ = ´bb̄ ` (1 ´ z2)dd̄
(5.6)
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5 Conic bundle case

When a , 0, b̄ = (1 ´ z2) cd̄
a
and plugging it in the second equation in (5.6) we get

λraā ´ (1 ´ z2)cc̄s = (1 ´ z2)
dd̄

aā
raā ´ (1 ´ z2)cc̄s

hence

λ = (1 ´ z2)
dd̄

aā

In the case a = 0, equations (5.6) imply that d = 0 and that

λ =
1

1 ´ z2
bb̄

cc̄

Then, we may choose s = d
a
when a , 0 or s = 1

1´z2
b
c
otherwise and in this way there exist

J P G such that JAJ´1
= Rθ . �

5.7 Elements in Aut(S (R){π ) of finite order larger than

two

We can check that Lemma 5.6.2 also holds in the subgroup Aut(S (R){π ), viaψ :

Lemma 5.7.1. Let A P H of order n , 2. Then A is conjugate to a rotation

Rθ =

„
1 0

0 e iθ



in H for some angle θ .

Proof. Let A P H of �nite order di�erent from 2, then by Lemma 5.6.2, there is α P G such
that αAα´1

= Rθ . Let A = ψ
´1Aψ . By abuse of notation, the element ψ´1αψ P Bir(S{π )

will be called α as well. If α P Bir(S{π )zAut(S (R){π ), there is a real point r P S (R) where
α is not de�ned. The element α blows up this point and contracts the conic Γzr passing
through r which is a �bre of the conic bundle structure of S . Then α (Γzr ) = q for some
q P S (R), which is sent by Rθ to a di�erent real point (Rθ only �xes PN and PS ). As A
preserves the �bration, A (Γzr ) = Γzr , then α (A (Γzr )) , Rθ (α (Γzr )) �

5.8 Involutions in Bir(S ,π )zBir(S{π )
Since we want now to study conjugacy classes of elements in Bir(S ,π )zBir(S{π ) whose
square is the identity, we observe that thanks to Lemma 5.1.2, we can think about elements
of �nite order in Bir(S ,π ) as the semi-direct product between elements of �nite order in
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5.8 Involutions in Bir(S ,π )zBir(S{π )

Bir(S{π ) and Z{2Z where Z{2Z is generated by η : SC Ñ SC sending z to ´z. The action of
η on Bir(S{π ) is given by the map:

η : PGL(2,C(z)) ÝÑ PGL(2,C(z))„
a(z) b (z)

c (z) d (z)


ÞÝÑ

„
a(´z) b (´z)
c (´z) d (´z)


(5.7)

Let α = (α0,η) P Bir(S ,π ) then α2
= (α0η(α0),1) P Bir(S{π ) and η(α0) = α0(´z) which

means that all entries of α0 in C(z) are changed by the C-�eld automorphism of C(z)
sending z to ´z. We are then interested in the case α0η(α0) is the identity.
Recall that in Lemma 5.2.2(c), we identi�ed Bir(S{π ) with the group

G = tA P PGL(2,C(z)) | τAτ = Āu

where τ =
“
0 1´z2
1 0

‰
. We denote by T the following group,

T := tA P GL(2,C(z)) | A = τĀτ´1u Ă GL(2,C(z))

whose image under the canonical projection corresponds to G. We have the following exact
sequence where p denotes the canonical projection:

1 Ñ R(z)˚ Ñ T
pÝÑ G Ñ 1

Hence we obtain the cohomology exact sequence

H 1(xηy,T ) pÝÑ H 1(xηy,G) δÝÑ H 2(xηy,R(z)˚) (5.8)

where xηy » Z{2Z and the action of η is described in (5.7).
The next lemma tells us that H 1(xηy,T ) is trivial. Once that is done, the study of the map

δ will show that conjugacy classes of α P Bir(S ,π )zBir(S{π ) with α2
= id are parametrised

by particular elements in R(z2).

Lemma 5.8.1. Let T :=
!
A P GL(2,C(z)) ; A = τAτ´1

)
with τ as before. Then the group T

can be presented more precisely as

T =

"„
a hb

b a


; a,b P C(z),aā ´ hbb̄ , 0

*

and H 1(xηy,T ) = t1u.
Proof. The group T is isomorphic to the multiplicative group of the non-commutative �eld
K := C(z) ` C(z)ξ where ξ 2 = h and a(z)ξ = ξa(z) for any a P C(z). The isomorphism

is de�ned by sending an element A =
”
a(z) hb (z)

b (z) a(z)

ı
P T to the element a(z) ` b (z)ξ P

C(z) ` C(z)ξ . Indeed, we have that the product in K ,

(a ` bξ ) (c ` dξ ) = ac ` bξdξ ` adξ ` bξc = ac ` bd̄h ` (ad ` bc̄ )ξ
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5 Conic bundle case

corresponds in T to the product

„
a hb

b a

 „
c hd

d c


=

„
ac ` bd̄h h(ad ` bc̄ )

ād̄ ` b̄c āc̄ ` b̄dh


.

The corresponding action of xηy » Z{2Z on C(z) ` C(z)ξ is given by the extension
of the �eld automorphism z ÞÑ ´z of C(z)˚ to K˚, to be more precise, a(z) ` b (z)ξ ÞÑ
a(´z) ` b (´z)ξ .
Let д : xηy Ñ K˚ be a cocycle such that д(1) = 1 and д(η) = A for some A P K˚ such

that Aη(A) = 1. Let C P K such that B = C `Aη(C ) , 0, such a C exists because we may
chooseC = AwhenA , ´1, otherwise there are many choices ofC satisfyingC ´η(C ) , 0,
e.g. C = z. We have thus η(B) = η(C ) ` η(A)C and hence Aη(B) = Aη(C ) ` Aη(A)C =

Aη(C ) `C = B i.e. A = Bη(B)´1 and this means that A is a coboundary. �

The following Lemma will be useful to compute H 2(xηy,R(z)˚).

Lemma 5.8.2. LetG be a group with two elements acting on an abelian groupM and let ξ be

the non trivial element of G.

(a) Any class rcs P H 2(G,M ) admits a normalised 2-cocycle c 1 i.e. it is the class of c : G2 Ñ M

such that c (д,1) = c (1,д) = 1 for every д P G.

(b) Let c : G2 Ñ M is a normalised 2-cocycle and de�ne ρ (c ) = c (ξ ,ξ ) P M . Then ρ induces

an isomorphism of groups

H 2(G,M )
�ÝÑ MG{tmξ (m) |m P Mu.

Proof. (a) Let c be in Z 2(G,M ), c : G2 Ñ M such that

c (д1,д2д3)д1(c (д2,д3)) = c (д1д2,д3)c (д1,д2)

for д1,д2,д3 P G. When д2 = 1 = д3 we get д1(c (1,1)) = c (д1,1) for every д1 P G

and when д1 = 1 = д2 we have c (1,д3) = c (1,1) for every д3 P G. We de�ne a 1-
cochain d 1 : G Ñ M by d 1(д) = c (1,1) for every д P G then it de�nes a 2-coboundary
d (д1,д2) = d

1(д1)d 1(д1д2)´1д1(d
1(д2)) = д1(c (1,1)). Then the 2-cochain c 1 de�ned as

c 1(д1,д2) := c (д1,д2)d (д1,д2)´1 is equivalent to c and normalised because

c 1(1,д) = c (1,д)d (1,д)´1
= c (1,1) (c (1,1))´1

= 1

c 1(д,1) = c (д,1)d (д,1)´1
= д(c (1,1)) (д(c (1,1)))´1

= 1.

(b) In order to show the isomorphism, we de�ne χ : MG Ñ H 2(G,M ) given bym ÞÑ rcms
where cm is the normalised cocycle de�ned by cm (ξ ,ξ ) =m.
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Notice that cm is a 2-cocycle because the fact that cm (1,1) = cm (1,ξ ) = cm (ξ ,1) = 1
implies that the equality

cm (д1,д2д3)д1(cm (д2,д3)) = cm (д1д2,д3)cm (д1,д2)

holds whenever д1 or д2 or д3 is 1 and for the case д1 = д2 = д3 = ξ , we have that

ξ (cm (ξ ,ξ )) = cm (ξ ,ξ )cm (1,ξ )cm (ξ ,1)
´1
= cm (ξ ,ξ ) (5.9)

which is true since cm (ξ ,ξ ) = m P MG . On the other hand, the map χ is surjective
because by hypothesis, given a normalised 2-cocycle c , ρ (c ) = c (ξ ,ξ ) P M and equation
(5.9) gives that ξ (m) =m implyingm P MG . What remains is to compute ker(χ ) which
in this case is

ker(χ ) = tm P MG | cm (д1,д2) = r (д1)д1(r (д2)) (r (д1д2))´1 (5.10)

for a some map r : G Ñ Mu

Letm P ker(χ ), then the normalised 2-cocycle cm satis�es

cm (д1,д2) = r (д1)д1(r (д2)) (r (д1д2))
´1

for r : G Ñ M so that r (1) = 1 and r (ξ ) = m̃ for some m̃ P M . In particular, m =
cm (ξ ,ξ ) = r (ξ )ξ (r (ξ )) = m̃ξ (m̃).

Conversely, let n P tmξ (m) | m P Mu then n = m̃ξ (m̃) for some m̃ P M . Notice that
ξ (n) = n i.e. n P MG because ξ (n) = ξ (m̃ξ (m̃)) = ξ (m̃)m̃ = n, this allows to de�ne
a normalised 2-cocycle cn given by cn (1,1) = cn (1,ξ ) = cn (ξ ,1) = 1 and cn (ξ ,ξ ) = n.
Then n P ker(χ ) because the condition (5.10) is satis�ed de�ning the map r : G Ñ M

by r (1) = 1 and r (ξ ) = m̃.
�

Lemma 5.8.3. For the exact cohomology sequence (5.8),

H 2(xηy,R(z)˚) » R(z2)˚{tf η( f ) | f P R(z)˚u

= xr´1s,trz2 ` bs : b ą 0uy » t˘1u ‘



à

bPRą0

Z{2Z


 .

Proof. Let (R(z)˚)η denote the elements of R(z)˚ which are invariant with respect to the
action of η described above. We call N the map N : R(z)˚ Ñ (R(z)˚)η given by N(p (z)) =

p (z)η(p (z)) = p (z)p (´z). Then by Lemma 5.8.2,H 2(Z{2Z,R(z)˚) is isomorphic to coker(N)

that we need to compute. First, we prove that (R(z)˚)η = R(z2)˚. The inclusion R(z2)˚ Ă
(R(z)˚)η is clear. Reciprocally, if д(z) P (R(z)˚)η , д(z) = p (z)

q(z)
with p,q P Rrzs that we can

assume having non common factors. Thus from
p (z)

q(z)
=

p (´z)
q(´z) follows that p (z)q(´z) =

p (´z)q(z) and then roots of both sides need to coincide. This implies that if a is a real root
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of p (z), it has to be a root of p (´z) and therefore z2 ´ a2 divides p (z). For a complex root α
of p (z), using the same argument we obtain that (z ´ α ) (z ´ ᾱ ) (z ` α ) (z ` ᾱ ) divides p (z).
By induction on the number of roots of p and q, we obtain R (z)η = R(z2).
In order to compute coker(N) we look at the image by N of generators of R(z)˚ and

compare with generators of R(z2)˚. Generators of R(z)˚ are a P R˚, (z ´b) with b P R, and
(z´α ) (z´ ᾱ ) with α P CzR and they are mapped byN to a2, b2 ´z2, and (z2 ´α2) (z2 ´ ᾱ2)

while generators of R(z2)˚ are c P R, (z2 ´d ) with d P R, and (z2 ´β ) (z2 ´ β̄ ) with β P CzR
(notice that β is always a square). Hence, coker(N) » R(z2)˚{Im(N) = xr´1s,trz2 ` bs :
b ą 0uy Ă R(z2)˚{Im(N).

To see the structure of H 2(xηy,R(z)˚), we see that r´1s ¨ r´1s = 1 and for any b ą 0,
rz2 `bsrz2 `bs = 1 because (z2 `b) (z2 `b) = (z2 `b)η(z2 `b) = 1 in R(z2)˚{tf η( f ) | f P
R(z)˚u. However, rz2`bsrz2`cs , 1 for b,c ą 0 and b , c and r´1srz2`bs = ´(z2`b) , 1
for b ą 0. �

Proposition 5.8.4. The connecting map H 1(xηy,G) δÝÑ H 2(xηy,R(z)˚) for the exact cohomol-

ogy sequence (5.8) corresponds to the map

δ : H 1(xηy,G) ÝÑ xr´1s,trz2 ` bs : b ą 0uy » H 2(xηy,R(z)˚)"
class of Ã P G;

Ãη(Ã) = 1

*
ÞÝÑ

#
class of µ P R(z2);
Aη(A) =

”
µ 0
0 µ

ı
and p(A) = Ã

+

and it is bijective.

Proof. In order to study how the connecting map δ is de�ned, we use the Snake Lemma
(see e. g. [NSW00], Lemma 1.3.1) that in our case works as follows. Consider the following
diagram, in which Z2 stands for xηy:

C1 (Z2,R(z)
˚){B1 (Z2,R(z)˚)
BR

��

i1 // C1 (Z2,T ){B1 (Z2,T )
BT

��

p1 // C1 (Z2,G){B1 (Z2,G)
BG

��

// 1

1 // Z 2 (Z2,R(z)
˚)

i2 // Z 2 (Z2,T )
p2 // Z 2 (Z2,G)

Notice that δ is the same as the map ker(BG) δÝÑ coker(BR). Let rps P H 1(xηy,G), then p is a
map p : xηy Ñ G de�ned by sending 1 to 1 and η to Ã for some Ã P G satisfying Ãη(Ã) = 1.
Since p1 is surjective, there is rr s P C1(xηy,T ){B1(xηy,T ), this is r : xηy Ñ T so that 1 ÞÑ 1
and η ÞÑ A where A P T is a representative of the element Ã. There is q P Z 2(xηy,R(z)˚)
such that i2(q) = BT (rr s) because p2(BT (rr s)) = BG(p1(rr s)) and p2(BT (rr s)) = BG(rps) = 1
since rps P ker BG then BT (rr s) P kerp2 = Im i2. Then δ is de�ned by sending rps to rqs
satisfying i2(rqs) = BT (rr s). More explicitly, BT (rr s) is the normalised cocycle

BT (rr s) : xηy ˆ xηy ÝÑ T

(д1,д2) ÞÝÑ r (д1)д1(r (д2)) (r (д1д2))
´1

(1,1) ÞÝÑ 1
(1,η) ÞÝÑ 1
(η,1) ÞÝÑ 1
(η,η) ÞÝÑ Aη(A)
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5.8 Involutions in Bir(S ,π )zBir(S{π )

Thus, Aη(A) =
”
µ 0
0 µ

ı
with i2(rqs) (η,η) = µ P R(z2)˚. Summing up, δ corresponds to the

map

δ : H 1(xηy,G) ÝÑ H 2(xηy,R(z)˚)"
Ã P G;

Ãη(Ã) = 1

*
ÞÝÑ

"
µ P R(z2);

Aη(A) = r µ 0
0 µ s and p(A) = Ã

*
.

Let us see that the map δ is surjective: the element
“
i 0
0 ´i

‰
is mapped by δ to the class

r´1s. When c P Rą0, the element
”
i(z´i

?
c ) 0

0 ´i(z`i
?
c )

ı
is sent by δ to the class rz2 ` cs.

Given any �nite product of classes γ = (z2 ` c1) ¨ ¨ ¨ (z2 ` ck ) in H
2(xηy,R(z)˚) with ci ą 0

for 1 ď i ď k , the diagonal elements of the form
”
a(z) 0
0 ā(z)

ı
where

a(z) =

#
i(z ´ i

?
c1) (z ´ i

?
c2) ¨ ¨ ¨ (z ´ i

?
ck ), if k is odd

(z ´ i
?
c1) (z ´ i

?
c2) ¨ ¨ ¨ (z ´ i

?
ck ), if k is even

is mapped to γ . This proves the surjectivity of the application δ .

In order to prove injectivity, we will show that any class Ã =
”
a(z) hb (z)

b̄ (z) ā(z)

ı
in H 1(Z{2Z,G)

is equivalent to a diagonal element D of the form
”
x (z) 0
0 x̄ (z)

ı
. In other words, we want to

show that we can �nd an element α =
”
c (z) hd (z)

d̄ (z) c̄ (z)

ı
in G such that η(α )Aα´1

= D where A is

the representative of Ã in T . This leads to the following equation

c̄ (z) (d̄ (´z)a(z) ` c̄ (´z)b̄ (z)) ´ d̄ (z) (hd̄ (´z)b (z) ` c̄ (´z)ā(z)) = 0

which is equivalent to

c̄ (z)

d̄ (z)
=

ā(z)
c̄ (´z)
d̄ (´z) ` hb (z)

b̄ (z)
c̄ (´z)
d̄ (´z) ` a(z)

(5.11)

We call Ψ the following automorphism of P1
C(z)

de�ned by

Ψ : P1
C(z)

ÝÑ P1
C(z)

(r (z) : s (z)) ÞÝÑ (ā(z)r (z) ` hb (z)s (z) : b̄ (z)r (z) ` a(z)s (z))
.

The equation (5.11) can be seen as f (z) = Ψ( f (´z)) for f (z) = c̄ (z)

d̄ (z)
. In this way, �nding

c (z) and d (z) satisfying the equation (5.11) is equivalent to �nd �xed points of rΨ where
rΨ( f (z)) := Ψ( f (´z)). First we notice that the automorphism Ψ is a linear automorphism

given by the element
”
ā(z) hb (z)

b̄ (z) a(z)

ı
in PGL(2,C(z)) that we denote by Â since it comes from

A by interchanging the elements of the mean diagonal, this implies that rΨ has order two
because rΨ ˝ rΨ = id is equivalent to Âη(Â) = 1 which is satis�ed because A is a class

in H 1(xηy,G). On the other hand, the element Â is equivalent to ˆ̂
A =

”
0 ´ det Â

b̄ (z)2 0

ı
since
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5 Conic bundle case

B´1Âη(B) =
ˆ̂
A for B =

”
1 ā(z){b̄ (z)
0 1

ı
. Hence, the existence of �xed points for the automor-

phism associated to ˆ̂
A gives the existence of �xed points for the automorphism rΨ. Then

we look explicitly for elements u,v P C(z) such that (u (z) : v (z)) = ˆ̂
A(u (´z) : v (´z)) =

(´ det Âv (´z) : b̄ (z)2u (´z)) in P1
C(z)

i.e. u (z)u (´z)b̄ (z)2 = ´v (z)v (´z) det Â and then
u (z)
v (z)

u (´z)
v (´z) = ´det Â

b̄ (z)2
. The right side of this last equation belongs toC(z2) because det Â = detA

which belongs to R(z2) and b̄ (z)2 P C(z2) condition imposed by the fact that A is a class in
H 1(xηy,G). Existence of u and v comes from the next Lemma. �

Lemma 5.8.5. Any element f P C(z2) can be written as the product д(z)д(´z) for some

element д P C(z). In other words,

C(z2) = tд(z)д(´z) : д(z) P C(z)u.
Proof. Clearly, for д P C(z) it follows that д(z)д(´z) P C(z2). Reciprocally, let f P C(z2).
Thus f =

p (z)

q(z)
with p,q P Crz2s. We can write p in terms of roots as p (z) = α (z2 ´

α1) ¨ ¨ ¨ (z2 ´αs ) where α ,αi P C, 1 ď i ď s . Any factor of p can be decomposed as a product
of the form ´(z ´ ?

αi ) (´z ´ ?
αi ) for any root αi . We can then write p as the product

д1(z)д1(´z) where

д1(z) =

#?
α (z ´ ?

a1) ¨ ¨ ¨ (z ´ ?
ar ) (z ´ ?

α1) ¨ ¨ ¨ (z ´ ?
αs ), if s is even

i
?
α (z ´ ?

a1) ¨ ¨ ¨ (z ´ ?
ar ) (z ´ ?

α1) ¨ ¨ ¨ (z ´ ?
αs ), if s is odd.

In the same way, q(z) = д2(z)д2(z) and therefore, f can be presented as the product
д1 (z)

д2 (z)
¨ д1 (´z)
д2 (´z) . �

Corollary 5.8.6 (from Proposition 5.8.4). The conjugacy classes of elements α = (α0,η) P
Bir(S ,π )zBir(S{π ) such that α0η(α0) is the identity are parametrised by the classes of polyno-

mials xr´1s,trz2 ` bs : b ą 0uy » H 2(xηy,R(z)˚).
Proof. The cohomology group H 1(xηy,G) corresponds precisely to the set of conjugacy
classes of involutions in Bir(S ,π )zBir(S{π ), that is, classes of elements (α0,η) as in the
statement. Therefore Proposition 5.8.4 directly implies the corollary. �

Corollary 5.8.7. The set of conjugacy classes of involutions in Aut(S (R),π )zAut(S (R){π )
surjects naturally to the set of conjugacy classes of involutions in Bir(S ,π )zBir(S{π ).
Proof. Let (A,η) be an involution in Bir(S ,π )zBir(S{π ). The proof of Proposition 5.8.4
shows that (A,η) is conjugate to an element (Ã,η) where Ã is, via ψ , an element of the

form
”
a(z) 0
0 ā(z)

ı
, and a P Crzs has no real roots. Since in that case aā P Rrzs`, Proposition

5.3.3 tells us that such an element corresponds to one of Aut(S (R){π ). Hence the birational
di�eomorphism (Ã,η) P Aut(S (R),π )zAut(S (R){π ) is conjugate in Bir(S ,π ) to (A,η), and
therefore every conjugation class of Bir(S ,π )zBir(S{π ) contains a conjugation class of
Aut(S (R),π )zAut(S (R){π ). �
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6 Connection between families

In this chapter, we collect all our results, and use the �xed points and the classi�cation of
the possible Sarkisov links given by Iskovskikh in [Isk96] to give the proofs of Theorem A
and Theorem B (Chapter 2).
We start with some de�nitions, which come from the equivariant Sarkisov program.

De�nition 6.0.8. Let X be a smooth projective real rational surface with X (R) » S (R), let
д P Aut(X ) be an automorphism of �nite order and let µ : X Ñ Y be a morphism.

The triple (X ,д,µ ) is said to be a Mori �bration when one of the following holds

(i ) rk(Pic(X )д) = 1, Y is a point and X is a Del Pezzo surface;

(ii ) rk(Pic(X )д) = 2, Y = P1 and the map µ is a conic bundle.

Remark 6.0.9. In the second case, we can do as in Proposition 3.0.15 and �nd a birational
morphism ε : X Ñ S that restricts to a di�eomorphism X (R) Ñ S (R), such that πε = αµ,
for some α P Aut(P1

R
). This conjugates д to an element εдε´1 P Aut(S (R),π ). The possible

choices for ε just replace εдε´1 with a conjugate in the group Aut(S (R),π ).

De�nition 6.0.10. Let µ : X Ñ Y and µ 1 : X 1 Ñ Y 1, д P Aut(X ),д1 P Aut(X 1) be two
Mori-�brations. An isomorphism of Mori �brations is an isomorphism ρ : X Ñ X 1, such that
д1ρ = ρд and µ 1ρ = αµ for some isomorphism α : Y Ñ Y 1.

De�nition 6.0.11. A Sarkisov link between twoMori �brations µ : X Ñ Y and µ 1 : X 1 Ñ Y 1,
д P Aut(X ),д1 P Aut(X 1) is a birational map ζ : X d X 1 such that д1ζ = ζд and is of one of
the following four types,

(i ) Links of type I. These are commutative diagrams of the form

X

µ

��

ζ
// X 1

µ1

��

Y = tpu Y 1
= P1

ρ
oo

where ζ´1 : X 1 Ñ X is a birational morphism, which is the blow-up of either a д-orbit
of real points or imaginary conjugate points of X , and where ρ is the contraction of
Y 1
= P1 to the point p.
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6 Connection between families

(ii ) Links of type II. These are commutative diagrams of the form

X

ζ

((

µ

��

Z
β 1

//
β

oo X 1

µ1

��
Y

»
ρ

// Y 1

.

where β : Z Ñ X (respectively β 1 : Z Ñ X 1) is a birational morphism, which is the
blow-up of either aд-orbit (respectively д1-orbit) of real points or imaginary conjugate
points of X (respectively of X 1), and where ρ is an isomorphism between Y and Y 1.

(iii ) Links of type III. (These are the inverse of the links of type I). These are commutative
diagrams of the form

X

µ

��

ζ
// X 1

µ1

��
Y = P1

ρ
// Y 1
= tpu

where ζ : X Ñ X 1 is a birational morphism, which is the blow-up of either a д1-orbit
of real points or imaginary conjugate points of X 1, and where ρ is the contraction of
Y = P1 to the point p.

(iv ) Links of type IV. These are commutative diagrams of the form

X

µ

��

ζ

»
// X 1

µ1

��

Y = P1 Y 1
= P1

where ζ : X Ñ X 1 is an isomorphism and µ, µ 1 ˝ ζ are conic bundles on X 1 with
distinct �bres.

The following result is given in [Isk96, Theorem 2.5]

Theorem 6.0.12. Let (X ,д,µ ) and (X 1
,д1
,µ 1) be two Mori-�brations. Every birational map

ρ : X d X 1 such that д1ρ = ρд decomposes into elementary links and isomorphisms of conic

bundles.

Looking at the classi�cation of links of [Isk96], we obtain the following lemma with the
links that could be possible to have in our classi�cation problem.

60



Lemma 6.0.13. Let (X ,д,µ ) and (X 1
,д1
,µ 1) be two Mori-�brations, and let ρ : X d Y be a

birational map which restricts to a di�eomorphism X (R) Ñ Y (R). Then, ρ decomposes into

elementary links that blow up only imaginary points and contract only imaginary curves, and

are of the following type:

(a) Links of type II between conic bundles, which correspond therefore to a conjugation in

Aut(S (R),π ).

(b) Links of type II of the form X d X , where X is either the sphere S or a Del Pezzo surface

of degree 4. Moreover, the two elements of Aut(X ) corresponding to this link are conjugate

in Aut(X ).

(c ) Link of type I and III between the sphere S and the Del Pezzo surface of degree 6 obtained
by blowing up two conjugate points on S . These are possible for only a few of elements,

given in Lemma 4.1.5.

(d ) Links of type IV on Del Pezzo surfaces of degree 2 or 4, obtained by blowing up pairs of
conjugate points in S .

If the two elements of Aut(S (R),π ) corresponding to the link are not conjugate, then X is

a Del Pezzo surface of degree 4 and the two automorphisms are д1,д2 P Aut(X ) described

in Lemma 4.3.6.

Proof. It follows from Proposition 3.0.13 that X , X 1 do not contain any real (´1)-curve.
Moreover, the map ρ has no real base-points implying that the �rst Sarkisov link obtained
in the decomposition does not have real base-points (the base-points of the link are taken
among the base-points of the map, see the proof of [Isk96, Theorem 2.5]). Proceeding by
induction on the number of links provided by Theorem 6.0.12, we obtain that ρ decomposes
into Sarkisov links that do not blow up any real point or contract any real curve. In
particular, the surfaces obtained are all di�eomorphic to the sphere and with K2

X P 2Z.
It remains to study links X d X 1, between two Mori-�brations µ : X Ñ Y and µ 1 : X 1 Ñ

Y 1, д P Aut(X ), д1 P Aut(X 1), such thatX (R) » X 1(R) » S (R), with (KX )
2, (KX 1 )2 P 2Z, and

which do not blow up any point. In the case where Y is a point, we can moreover assume
that (KX )

2
, 6, by Proposition 4.2.1 (and similarly (KX 1 )2 , 6 if Y 1 is a point). Looking at

the list of [Isk96, Theorem 2.6], we get the following possibilities.

1. Links of type I and III (Y is a point and Y 1
= P1 or vice versa). Looking at [Isk96,

Theorem 2.6, case (i )], one gets only one possibility, which is the blow-up of two
imaginary conjugate points on the sphere S . Up to automorphism, these points can be
taken to be the two base-points of π : S d P1, and the automorphisms that preserve
the union of these two points are described in Lemma 4.1.5.

2. Links of type II (Y = Y 1
= P1 or Y = Y 1 is a point).

In the �rst case, when Y = Y 1
= P1, the link corresponds to conjugation in the group

Aut(S (R),π ) (see Remark 6.0.9).
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6 Connection between families

In the second case, the list of [Isk96, Theorem 2.6, case (ii )] yields the following three
possibilities:

(1) (Case (KX )
2
= 8, (b)) A birational map S (R) d S (R) that blows up 3 pairs of

conjugate points and contract 3 pairs of conjugate curves. It corresponds to the
Geiser involution on the blow-up of the 6 points.

(2) (Case (KX )
2
= 8, (d )) A birational map S (R) d S (R) that blows up 2 pairs of

conjugate points and contract 2 pairs of conjugate curves.

(3) (Case (KX )
2
= 4, (b)) A birational map X (R) d X (R) that blows up 2 pairs of

conjugate points on a Del Pezzo surface X of degree 4 and contract 2 pairs of
conjugate curves. It corresponds to the Geiser involution on the blow-up of the 4
points.

In each case we get a link X d X , where X is either the sphere S or a Del Pezzo
surface of degree 4. It remains to see that the two automorphisms of prime order
of Aut(X ) produced by this link are conjugate by an element of Aut(X ). If the link
corresponds to a Geiser involution, this is because the Geiser involution commutes
with all automorphism of the surface (see Proposition 4.4.1). In the other case, the orbit
blown up consists of two pairs of conjugate points on S (C), so the automorphism
is an element of order 2 in Aut(S ), so conjugate to a rotation, a re�ection or the
antipodal involution (Proposition 4.1.3). By looking at the �xed points, we observe
that two elements of order 2 in Aut(S ) are conjugate in Aut(S ) if and only if they are
conjugate in Aut(S (R)).

3. Links of type IV. (X » X 1 is a surface which admits two di�erent conic bundle
structures, and the link consists of changing the structure). It follows from [Isk96,
Theorem 2.6, case (iv )] that (KX )

2 P t2,4,8u. The case 8 is not possible since Pic(S ) �
Z. If (KX )

2
= 2, the link is given by the Geiser involution (by [Isk96, Theorem

2.6]), which commutes with all automorphisms. Hence, the two automorphisms
of Aut(S (R),π ) provided by the links are conjugate. This is the same if (KX )

2
= 4

and if there is an element of Aut(S ) which commutes with the automorphism. By
Lemma 4.3.7, the only remaining case is when the two automorphisms are д1,д2 given
in Lemma 4.3.6.

�

Lemma 6.0.13 shows that the automorphisms д1,д2 given in Lemma 4.3.6 are quite special.
The following result describes the situation.

Lemma 6.0.14. (1) Let X be a Del Pezzo surface of degree 4 with µ P Czt˘1u, |µ | = 1 (see

Lemma 4.3.2), and д1,д2 P Aut(X ) be the automorphisms given in Lemma 4.3.6. The

action on the two conic bundles invariant yields two involutions

д1
1(µ ) P Aut(S (R){π ), д1

2(µ ) P Aut(S (R),π )zAut(S (R){π )
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given by

д1
1(µ ) : (t ,z) d

(

´2iµt`(1`µ ) (1´z2)
µ (2i`(1`µ )t )

,z

)

д1
2(µ ) : (t ,z) d

(

(1´z2)(it (1`µ )´2)
´2µt´i(1`µ ) (1´z2) ,´z

)

(using the mapψ : SC d A
2
C
of Lemma 5.2.2)

(2) Taking another surface given by µ 1 P Czt˘1u, |µ 1 | = 1, the following are equivalent:

a) д1
1(µ ) and д

1
1(µ

1) are conjugate in Aut(S (R),π );

b) д1
2(µ ) and д

1
2(µ

1) are conjugate in Aut(S (R),π );

c) µ 1
= µ˘1.

(3) Let д P Aut(S (R){π ) be an element of order 2, such that Fix(д) is a rational curve with
no real point. Then, д is conjugate in Aut(S (R),π ) to д1

1(µ ) for some µ P Czt˘1u, |µ | = 1.

Proof. Letд P Aut(S (R){π ) be an element of order 2, such that Fix(д) is a rational curve with
no real point. The element д belongs to Aut`(S (R){π ), and the map π restricts to a double
covering πд : Fix(д) Ñ P1 (Proposition 5.5.4). Since the curve is rational, by the Riemann-
Hurwitz formula the double covering is rami�ed over two points q,q̄ P P1(C). These two
points determine the curve Fix(д), up to isomorphisms above P1(C), i.e. isomorphisms
ρ : Fix(д) Ñ Fix(д1) with πд1ρ = πд. Hence, by Theorems 5.4.6 and 5.5.9, the conjugacy
class of д in Aut(S (R){π ) is given by the set tq,q̄u.
We will use this observation to show that д is conjugate to one of the automorphisms д1,

д2 P Aut(X ), where X is a Del Pezzo surface of degree 4, given in Lemma 4.3.6.

We use the map ψ : SC d A
2
C
, (x ,y,z) d (x ´ iy,z) given in Lemma 5.2.2 to compute

the action of д1, д2 on A
2
C
. Note thatψφ´1 : P1

C
ˆ P1

C
d A2

C
is locally given by

((1 : s ), (1 : v )) d
( ´2is

sv ` 1
,

1 ´ sv

1 ` sv

)

,

and its inverse is (t ,z) d ((z ` 1 : it ), (t : i(z ´ 1))). Using the explicit description of
Lemma 4.3.6, the actions of д1, д2 are then respectively given by

д1
1(µ ) : (t ,z) d

(´2iµt ` (1 ` µ ) (1 ´ z2)

µ (2i ` (1 ` µ )t )
,z

)

д1
2(µ ) : (t ,z) d

(

(1 ´ z2) (it (1 ` µ ) ´ 2)

´2µt ´ i(1 ` µ ) (1 ´ z2)
,´z

)

These correspond to involutionsд1
1(µ ) P Aut(S (R){π ) andд1

2(µ ) P Aut(S (R),π )zAut(S (R){π ),
which are conjugate by an element which is in the group Aut(S (R))zAut(S (R),π ) (see
Lemma 4.3.6).
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6 Connection between families

In order to show that there exists µ such that д is conjugate to д1
1(µ ) in Aut(S (R),π ), we

need to compute the rami�cation points of Fix(д1
1(µ )). The curve of �xed points of д1

1(µ ) is
given by

µ (1 ` µ )t2 ` 4iµt ´ (1 ´ z2) (1 ` µ ) = 0

so its discriminant with respect to t is equal to

´4µ (µ ` 1)2 ¨


z
2 ´

(

µ ´ 1

µ ` 1

)2


 ,

and the two points correspond then to z = ˘ µ´1
µ`1 . We conjugate д with an automorphism

of the form

дb : (x ,y,z) ÞÑ
(

x

?
1 ´ b2

bz ` 1
,y

?
1 ´ b2

bz ` 1
,

z ` b

bz ` 1

)

for some b P (´1,1) (see Lemma 5.1.1), and claim that we can send the points q,q̄ onto ˘ µ´1
µ`1

for some µ P Czt˘1u with |µ | = 1. To see this, we make the change of coordinates z = 1´z1

1`z1 ,

z1
=

1´z
1`z , so that the map дb acts as z

1 ÞÑ z1 1´b
1`b and the points z = ˘ µ´1

µ`1 correspond to

z1
= µ˘1. The claim follows then from the fact that the map b ÞÑ 1´b

1`b yields a bijection
(´1,1) Ñ Rą0. Hence д is conjugate to д1

1(µ ) for some µ.
Let us show that д1

1(µ ) is conjugate to д
1
1(µ

1) in Aut(S (R),π ) if and only if µ 1
= µ˘1. First,

observe that
1{µ´1

1{µ`1
=

1´µ

1`µ
, so the pair of points are the same for µ and µ´1. Hence, д1

1(µ ) is

conjugate to д1
1(µ

1) in Aut(S (R),π ). Second, if д1
1(µ

1) is conjugate to д1
1(µ ), there exists an

element of Aut(S (R),π ) whose action on P1 sends
!

˘ µ´1
µ`1

)
onto

!
˘ µ1´1

µ1`1

)
. But the action

is generated by the maps z ÞÑ z`b
bz`1 , b P (´1,1) and by z Ñ ´z (Lemma 5.1.1). Making the

same change of coordinates as before, we obtain that µ 1
= µ˘1.

To �nish the proof, it remains to see that two elements д1
2(µ ) and д

1
2(µ

1) are conjugate
in Aut(S (R),π ) if and only if µ 1

= µ˘1. The element д1
2(µ ) corresponds to an element of

H 2(xηy,R(z)˚) that we can compute using Proposition 5.8.4. To do this, we need to write
the corresponding element of H 1(xηy,G). Composing д1

2(µ ) with (t ,z) Ñ (t ,´z), we obtain
the element of Ã = G given by

”
´i(1`µ ) (1´z2) 2(1´z2)

2µ i(1`µ ) (1´z2)

ı
.

In order to get an element of T Ă GL(2,C(z)) (see Lemma 5.8.1), we divide each element of
the matrix with ν , with ν P C, |ν | = 1, ν2 = µ, and get

”
a hb

b a

ı
P T Ă GL(2,C(z)),

with a = ´ i(1`µ ) (1´z2)
ν

, b = 2
ν
(indeed, a =

i(1`1{µ ) (1´z2)
1{ν =

i(1`µ ) (1´z2)
ν

). Observing that

a = ´a and that a,b are invariant by z ÞÑ ´z, the corresponding element of H 2(xηy,R(z)˚)
can be computed (using Proposition 5.8.4) by
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6.1 Proof of Theorems A and B

”
a hb

b a

ı2
=

”
a2`bbh 0

0 a2`bbh

ı

and corresponds therefore to

a2 ` bbh = (1 ´ z2)



z
2 ´

(

1 ´ µ

1 ` µ

)2



(1 ` µ )2

µ
.

Writing µ = cos(θ ) ` i sin(θ ) we obtain
(1`µ )2

µ
= 2(cos(θ ) ` 1),

(

1´µ

1`µ

)2
=

cos(θ )´1
cos(θ )`1 =

cos2 (θ )´1
(cos(θ )`1)2

P Ră0, so the corresponding element ofH 2(xηy,R(z)˚) is the class of z2 ` 1´cos(θ )
cos(θ )`1 .

Denoting by s : (0,π )Y (π ,2π ) Ñ Rą0 the map s (θ ) =
1´cos(θ )
cos(θ )`1 , we observe that s (θ ) = s (θ

1)
if and only if θ 1 P tθ ,2π ´ θu. This gives the result. �

6.1 Proof of Theorems A and B

We can now �nish by giving the proof of the main theorems.

Proof of Theorem A. Let д P Aut(S (R)) be of prime order. By Proposition 3.0.15, one of the
two following possibilities holds

(a) There exists a birational morphism ε : X Ñ S which is the blow-up of 0, 1, 2, or 3 pairs
of conjugate imaginary points in S , such that д̂ = ε´1дε P Aut(X ), Pic(X )д̂ � Z, and X
is a Del Pezzo surface.

(b) There exists α P Aut(P1) such that απ = πд. Moreover, there exists a birational
morphism ε : X Ñ S that restricts to a di�eomorphism X (R) Ñ S (R) such that
д̂ = ε´1дε P Aut(X ), πε : X Ñ P1 is a conic bundle on X , and Pic(X )д̂ � Z2.

In particular, we have a Mori �bration in the sense of De�nition 6.0.8.
In the case (a), X is a Del Pezzo surface with possible degree 8,6,4, or 2. If (KX )

2
= 8,

X » S and д P Aut(S ). By Proposition 4.1.3, д is conjugate to one of the cases (3), (4), or
(5) of the statement. If X is a Del Pezzo surface of degree 6, X comes from S by blowing
up a pair of conjugate imaginary points and Proposition 4.2.1 tell us that д̂ comes from
an automorphism of S , having the same cases as before. If X is a Del Pezzo surface of
degree 4, X comes from S by blowing up two pairs of conjugate imaginary points and by
Proposition 4.3.5 д is conjugate to α1 or α2 giving in case (2). If X is a Del Pezzo surface
of degree 2, X comes from S by blowing up three pairs of conjugate imaginary points
and Lemma 4.4.2 asserts that the Geiser involution ν is such that Pic(X )ν has rank 1 and
Lemma 4.4.3 that there is no other such automorphism of X . We get then case (1).
We look now at case (b), where rk(Pic(X )д̂) = 2. In this case, д is conjugate to an element

of Aut(S (R),π ) by some birational morphism ε : X Ñ S that restricts to a di�eomorphism
X (R) Ñ S (R) (see Remark 6.0.9) that we call д again for simplicity. Since the order of д is
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�nite, by Lemma 5.1.2 the image of д under the map Φ : Bir(S ,π ) Ñ Aut(P1) is the identity
or η : z ÞÑ ´z, after conjugation by an element of Aut(S (R),π ).

• If Φ(д) is the identity, then д P Aut(S (R){π ). When д has order larger than 2, by
Lemma 5.7.1 д is conjugate to a rotation, case (3).

If д has order 2, then д is an element in Aut`(S (R){π ) if д is an orientation-preserving
birational di�eomorphism or an element in Aut(S (R){π )zAut`(S (R){π ) otherwise.
Proposition 5.5.4 implies in the �rst case, that Fix(д) is a double covering of P1 with
no real points and in the second case, that Fix(д) is a double covering of P1 with real
points one oval and rami�cation points PN and PS . Lemma 5.2.8 implies that PN and
PS are �xed in both cases. By Lemma 5.5.2, the action of д on the �bres of π is either
by rotations of order 2 when д is in Aut`(S (R){π ) or by re�ections when д is in
Aut(S (R){π )zAut`(S (R){π ). We get thus cases (6) and (7) in the statement, except if
the curve Fix(д) is rational. It remains to see that if Fix(д) is rational, д is conjugate to
another case. If д P Aut(S (R){π )zAut`(S (R){π ), then the curve Fix(д) is isomorphic
to P1

R
and д is conjugate to the re�ection υ : (w : x : y : z) ÞÑ (w : ´x : y : z) by

Theorems 5.4.6 and 5.5.9. If д P Aut(S (R){π ), then д is conjugate to an automorphism
of the last family by Lemma 6.0.14.

• If Φ(д) = η, then д = д1η̃ with Φ(η̃) = η (Lemma 5.1.2) and д1 P Aut(S (R){π ). Since
the order of д is prime, д is of order 2 in Aut(S (R),π )zAut(S (R){π ) giving the case (8)
in the statement, or one of the automorphisms (w : x : y : z) ÞÑ (w : ˘x : ˘y : ´z).

�

Proof of Theorem B. All the cases are disjoint because of the �xed curves and order, except
maybe in case (2) where the curve of �xed points of αi has genus 1 because elements in
cases (6) and (7) may a have curve of �xed points of the same genus. However, αi is not
conjugate to an automorphism of a conic bundle since there is no sequence of links coming
from it to a Mori �bration preserving a conic bundle (Lemma 6.0.13). On the other hand, αi
is conjugate to another element if and only if the conjugation is by an isomorphism of the
surface X ; this is again a consequence of Lemma 6.0.13. We proved that conjugacy classes
in (2) are disjoint and parametrised by isomorphism classes of pairs (X ,д), where X is a
Del Pezzo surface of degree 4 with X (R) » S (R) and д is an automorphism of order 2 that
does not preserve any real conic bundle (Proposition 4.3.5).

It remains to show the parametrisation of the families (1) and (3) ´ (8).

For (1), the curves of �xed points in S (C) are not rational and invariant under conjugation
in Bir(S ) and then in Aut(S (R)). We obtain a map from the set of conjugacy classes
associated to each family to the set of isomorphism classes of the set of �xed curves. The
surjectivity is given by the correspondence

"
Smooth real quartics

with one oval

*
Ø

"
Del Pezzo surfaces of degree 2
di�eomorphic to the sphere

*
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6.1 Proof of Theorems A and B

Concerning injectivity, if two quartics are isomorphic, then the surfaces are isomorphic. This
is because the canonical divisor of the quartic is the class of a line (see proof Proposition 4.4.1).
Then every isomorphism extends to P2 and then, it yields an isomorphism of Del Pezzo
surfaces of degree 2.
For (6) and (7), the elements are conjugate in Aut(S (R)) if and only if they are conjugate

in Aut(S (R)), because it is not possible to use other links that links of type II (see the
description of links given in Lemma 6.0.13). We can thus consider the �xed locus, which
is not only a non-rational curve, but also a curve endow with a 2 : 1-covering. Moreover,
the elements of Aut(S (R),π ) preserve the interval. Conversely, let Γ Ñ P1, Γ1 Ñ P1 be
2 : 1-coverings of P1 and assume that there exists an isomorphism α : P1 Ñ P1 such that
the following diagram commutes:

Γ

π

��

ρ

„ // Γ1

π

��

P1
α
»

// P1

and that α preserves r´1,1s then α is in the group given in Lemma 5.1.1, then there exist
ξ P Aut(S (R),π ) such that we replace ρ with ξ ρξ´1 and may assume that α = id . Then the
corresponding elements are conjugate by Proposition 5.5.10.
For (4) and (5), the parametrisation is trivial since there is only one element in each

family.
For (3), if two rotations are equal up to sign, they are conjugate by υ or the identity. It

remains to see that if rθ is conjugate to rθ 1 by ρ P Aut(S (R)) then θ = ˘θ 1 (mod 2π ). We
may assume that the order is ě 5, (since otherwise we always have θ = ˘θ (mod 2π )).
We decompose ρ into elementary links and use Lemma 6.0.13 to see that ρ is a product of
maps of the following type:

dP6

��

II // dP6

��
S

» // S

where the vertical arrows are blow-ups of two imaginary �xed points, �xed by д and the
image. Hence, we may assume that the points are (0 : ˘i : 1 : 0) and then we stay in
Aut(S (R),π ) (Lemma 4.1.5). In Aut(S (R){π ) o xτ y Ă PGL(2,C) o xτ y the elements are
(“

1 0
0 e iθ

‰
,1

)

(see Section 5.6), and two are conjugate only if θ = ˘θ 1
.

For (8), by Corollary 5.8.7, conjugacy classes of elements in Aut(S (R),π )zAut(S (R){π )
surjects naturally to the set of conjugacy classes of elements in Bir(S ,π )zBir(s{π ) which is
uncountable. These correspond to the conjugacy classes of Bir(S ,π ), we may then have a
priori more conjugacy classes in Aut(S (R),π ). It remains to prove that two such elements
are conjugate in Aut(S (R),π ) if and only if they are conjugate in Aut(S (R)). For this, we
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6 Connection between families

write ρ P Aut(S (R)) an element that conjugates one involution to another, and decompose
it into elementary links. If all links are of type II, then ρ P Aut(S (R),π ). If some links
of type I or III are used, then by Lemma 6.0.13 these pass through the sphere and the
Del Pezzo of degree 6, which is impossible here, since elements of the last family are not
conjugate to (w : x : y : z) ÞÑ (w : ˘x : ˘y : ´z) by hypothesis. The last part is when ρ
decomposes into links of type II and IV. The links of type IV provide two �brations of the
same surface, which lead to two di�erent elements of Aut(S (R),π ). If the two elements are
conjugate in this latter group, the result is clear. The only case where this is not true is by
Lemma 6.0.13 the case given by the automorphisms д1, д2 on special Del Pezzo surfaces
of degree 4 given by |µ| = 1 (Lemma 4.3.6). But in this case, we conjugate an element of
Aut(S (R),π )zAut(S (R){π ) to an element of Aut(S (R){π ), and when we come back we did
not change the conjugacy class in Aut(S (R),π ) (Lemma 6.0.14). This ends the proof of the
Theorem B. �
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