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1 Introduction

Let Py denote the projective n-space as a scheme over R. A real projective variety X < Py, is
a scheme over R which may be thought of as a pair (X¢, o), where X¢ is its complexification,
ie. Xc := X Xgpec v Spec C, and o is an anti-holomorphic involution on Xc. Let X(C)
denote the set of complex points of X and X(R) := X(C)? (the invariant points under o)
the real part of X. Supposing that X is smooth and X(R) is nonempty, we can endow X (R)
with the Euclidian topology and obtain a manifold of real dimension m = dimc X¢ over R.
There are then two kinds of regular morphisms between real algebraic varieties X, Y
studied in the literature (see for example the introductions of [Kol01] and [BM11]):

1. A regular morphism X — Y is a rational map defined at all complex points. The
corresponding category is the one of schemes defined over R, together with regular
morphisms of schemes. The group of automorphisms is denoted by Aut(X), which
is in general quite small: The connected component of the identity is an algebraic
group of finite dimension.

2. The second notion of regular morphisms consists of taking rational maps X --> Y
that are defined only at all real points of X, such maps will be called morphisms
X(R) — Y(R). This gives another category, with more morphisms where the objects
are X (R). The corresponding group of automorphisms will be denoted by Aut(X(R))
and is the same as the set of birational diffeomorphisms of the algebraic variety
considered.

In most real algebraic geometry texts, the second category, much richer, is in fact studied.

In [BHO7], I. Biswas and J. Huisman showed that if X and Y are two rational real compact
surfaces, then X (R) and Y (R) are diffeomorphic if and only if X (R) and Y (R) are isomorphic
(which corresponds to saying that there is a birational diffeomorphism between X and
Y). The proof of this result was simplified by J. Huisman and F. Mangolte in [HMO09], by
proving first that Aut(X(R)) acts n-transitively on X(R) for each n. The same question
for geometrically rational surfaces (i.e. rational over C) were then studied in [BM11] by
J. Blanc and F. Mangolte.

The group Aut(X(R)) is really larger than Aut(X) in general. In particular, J. Kollar and
F. Mangolte showed in [KM09] that Aut(X(R)) is dense in Diff (X(R)) if X is a smooth real
compact rational surface.

Some other information on the group Aut(X(R)) can be given by looking at its elements
of finite order. In particular, in this text we are interested in elements of prime order
of Aut(S(R)) up to conjugacy, where S(R) is the standard two-dimensional sphere (see
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Chapter 2). The group Aut(S(R)) is contained in the group Bir(S) of real birational trans-
formations of the sphere, which is isomorphic to the real Cremona group Bir(P%). This
latter group is, of course, contained in the complex Cremona group Bir(P%). The problem
of classification of conjugacy classes of elements of finite order in Bir(Pé) (which contains
the groups Bir(X) described before) have been of interest for a lot of mathematicians. The
first classification was the one of E. Bertini ([Ber77]), who studied involutions. The de-
composition into three types of maps, namely Bertini involutions, Geiser involutions, and
Jonquiéres involutions, was correct but there is some redundancy because the curves of
fixed points were not considered. A modern and complete proof was obtained by L. Bayle
and A. Beauville in [BB00], using the tools of the minimal model program developed in
dimension 2 by Yu. Manin ([Man68]) and V.I. Iskovskikh ([Isk80]). They obtain parametri-
sations of the conjugacy classes by the associated fixed curves. T. de Fernex generalised the
classification in [Fer04] for elements of prime order (except for one case, done in [BB04] by
A. Beauville and J. Blanc). See also [Zha01] for another approach to the same question. The
precise classification of elements of finite order was then obtained in [Bla11] by J. Blanc,
using the description of finite groups of I. Dolgachev and V.I. Iskovskikh [DI09]'. Again,
the parametrisations are given by fixed curves (of powers of elements), but also by actions
of the elements on the curves.

In this thesis, we obtain the results for the analogous problem of classification for
elements of prime order in the group Aut(S(R)). The classification is summarised in
Chapter 2 (Theorem A), which states that there are eight different families of conjugacy
classes, some with only one element and others with infinitely many elements. The second
main result is concerning the parametrisation of the conjugacy classes in each family
(Theorem B). As Aut(S(R)) Bir(Pé), it is possible to compare the classification of the
birational diffeomorphisms with the complex case i.e. birational transformations of the
complex plane. For instance, there are three families of involutions on Bir(Pé): Bertini,
Geiser, and de Jonquiéres. Bertini involutions do not occur in the group Aut(S(R)) because
they would come from an automorphism of a Del Pezzo surface of degree 1 after blowing
up at least one real point of S, which would damage the geometry of the real points;
see Proposition 3.0.13 in Chapter 3. The Geiser involution of Aut(S(R)) corresponds to
real quartics with one oval. Moreover, the group Aut(S(R)) contains distinct families of
conjugacy classes of involutions of de Jonquiéres type, which are all conjugate in Bir(Pé),
in particular, one family, containing uncountable many elements non conjugate to each
other, corresponds to only one conjugacy class in Bir(Pé).

This thesis is organised as follows. Chapter 2 contains the compilation of the results of
this thesis presented in two main statements and examples of birational diffeomorphisms
of the sphere. In Chapter 3, it is shown why the study of conjugacy classes of elements of
finite order of the group of birational diffeomorphisms corresponds to the study of pairs
(X,g) consisting of a smooth rational projective surface X and g an automorphism of X.

1 Also after [DI09], there are still open questions on finite subgroups of Bir(]Pé) left, some of them answered
in the recent paper [Tsy13].



More precisely, there are two cases to focus on, say, when X is a Del Pezzo surface whose
real Picard group invariant by g is isomorphic to Z, and when X admits a conic bundle
structure and the real Picard group invariant by g has rank 2. This is a result given by
V.I Iskovskikh ([Isk80]) and in this chapter, it is given more specifically what pairs are
obtained for the sphere (Proposition 3.0.15). In particular, since the sphere admits a structure
of conic bundle given by the projection to one of the affine coordinates, Proposition 3.0.15
gives that the morphism of the conic bundle structure for a pair (X,g), when X admits
one, factors through that projection of the sphere. Chapter 4 is devoted to the study of
pairs (X,g) when X is a Del Pezzo surface, including the case of the sphere itself. Special
automorphisms of Del Pezzo surfaces of degree 2 and 4 such as Geiser involution and
automorphisms a;, a, that are studied in Sections 4.4 and 4.3 bring on two different families
of conjugacy classes on the sphere. In Section 4.1, the conjugacy classes of the group of
automorphisms of the sphere are investigated (Proposition 4.1.3).

Chapter 5 is dedicated to the study of the birational diffeomorphisms that are compatible
with the conic bundle structure of the sphere, which is a P!-fibration not locally trivial. It is
natural to understand the action of a birational map on the basis of the fibration and that is
done in the first section. When the action on P! is trivial, it is shown in Section 5.2 that the
complex model of the sphere is birational to Aé, which allows to give an explicit algebraic
description of the birational transformations of the sphere and in the following section
for birational diffeomorphisms. In Section 5.4, it is proved that two birational maps of the
sphere compatible with the fibration and acting trivially on the basis of it are conjugate
in the group of birational maps of the sphere, if and only if there exist a birational map
between the curves of fixed points of these two maps, which is defined over R. This result
is also proved for the group of birational diffeomorphisms in the following section. In
addition, a geometrical characterisation of the birational diffeomorphisms of order 2 is
given according to the orientation when restricted to S(R). More precisely, it is proved
that there is a one-to-one correspondence between the conjugacy classes of orientation-
preserving birational diffeomorphisms of the sphere compatible with the fibration and
acting trivially on the basis and smooth real projective curves with not real point, which are
a 2-1 covering of P! up to isomorphism. For the case of orientation-reversing, they are in
correspondence with smooth real projective curves with one oval, which are a 2-1 covering
of P! up to isomorphism. In Sections 5.6 and 5.7, for birational maps and for birational
diffeomorphisms of the sphere of order larger than two which are compatible with the
fibration and acting trivially on the basis, it is shown than they are conjugate to rotations of
the sphere. The last section is concerning birational maps and birational diffeomorphisms
of order two compatible with the fibration and with non-trivial action on the basis. It
is constructed a bijection between conjugacy classes of birational involutions as before
and classes on a second cohomology group that is isomorphic to ®per_,Z/2Z. Since the
representative of these classes in the group of birational maps of the sphere are particularly
birational diffeomorphisms, this implies that there are uncountable many conjugacy classes
of birational diffeomorphisms of order two with a non-trivial action on the basis.

In Chapter 6, the problem that two pairs (X, g), (X’,¢') may rise the same conjugacy class
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in Aut(S(R)) is examined. In Section 6.1, Theorem A and B are proved by putting together
all results obtained in Chapters 3, 4, 5, and 6.



2 Results

In this chapter, we state the classification of conjugacy classes of elements of prime order in
the group of birational diffeomorphisms of the sphere and also the moduli spaces associated
to each conjugacy class (Theorem A and Theorem B below). It is required first to present
some definitions and give some examples that will appear in the classification.

We denote by S the real projective algebraic surface in P]3R defined by the equation
w? = x® + y* + z°. Let o denote the standard antiholomorphic involution in P}, o: (w : x :
y:2z) — (w:x:7:2z). Let S(R) denote the real part of S. Note that S(R) is contained in
the affine space where w = 1 and corresponds to the standard two-dimensional sphere of
equation x* + y? + z? = 1. The following two groups are of our interest, the first one is the
group of birational transformations of the sphere and is isomorphic to the real Cremona
group, and the second one is the group of birational diffeomorphisms of the sphere.

Bir(S) :={f:S->S| fisbirational},

Aut(S(R)) :={f:S-»>S| f isbirational
and f, f~! are defined
at every real point of S}.

Remark 2.0.1. Bir(S), Aut(S(R)) are groups and Aut(S(R)) < Bir(S).
Our goal is to classify the conjugacy classes of elements of Aut(S(R)) of prime order.

Remark 2.0.2. (i) Forgetting the real structure given by o, the surface Sc is isomorphic to
Pf x P{. Indeed,

Se={(w:x:y:2) ePL|(w+2)(w—2)=(y+ix)(y — ix)},
and the isomorphism is given by
¢ : Sc — P(lj X P%C
(w:x:y:2z) —> (W+z:y+ix),(w+z:y—ix)) (2.1)
=((y—ix:w—2),(y +ix:w—2)),
whose inverse is given by

(p_l : P<1C X Pé: — Sc
(r:s)(u:v)) — (ru+sv:i(rv—su):rv -+ su:ru— sv)
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(i) Pic(S) = Z, Pic(Sc) = Z D Z.

We denote by 7 the projection 7: S --> P! given by 7(w : x : y : z) = (w : 2z). Notice that
every fibre of 7 is rational except for 77 !(1 : 1) and 7~ !(1 : —1), which are the union of
the lines w = z, x = +iy, and w = —z, x = tiy, respectively.

Let us fix some notation for groups associated to the pair (S, ),

Bir(S, ) :={g € Bir(S) | Ja € Aut(P') such that ax = 7g},
Aut(S(R),7) :={g € Aut(S(R)) | 3a € Aut(P') such that ax = 7g}.

Note that Aut(S(R), ) < Bir(S, ), more precisely Aut(S(R), ) = Bir(S,7) n Aut(S(R)).
The group Aut(S(R), ) is the group of birational diffeomorphisms that preserve the fibra-
tion.

There is a natural map ® sending any g € Bir(S, ) to the associated action on the basis
®(g) = a € Aut(P?) so that the following diagram commutes:

Hence we get the exact sequence:
1 — Bir(S/x) — Bir(S, 7) - Aut(P'), (2.2)
where we have denoted by Bir(S/) the group:
Bir(S/x) := {g € Bir(S,x) | = = ng}.

One can see the group of birational diffeomorphisms that acts trivially on the basis of
the fibration as a subgroup of Bir(S/7), more precisely,

Aut(S(R)/m) = {g € Aut(SR),7) | = = ng}.
This latter subgroup has a special description given by the exact sequence
1 — Aut™(S(R)/7) — Aut(S(R)/7) > Z/2Z — 1

where Aut™ (S(R)/) denotes the orientation preserving birational diffeomorphisms of S
and the map Aut(S(R)/z) > Z/2Z admits a section s: Z/2Z — Aut(S(R)/z) mapping —1
into 7 where 7 is a reflection, say, 7: S — S, (x,y,z) — (x,—v,z) in the chart w = 1. Then

Aut(S(R) /) = Aut™ (S(R) /) = (7). (2.3)

Before stating the main results, let us describe some examples.



Example 2.0.3. Geiser involution of the sphere

The blow-up {: X — S of three pairs of conjugate imaginary points in S(C) is a real Del
Pezzo surface X of degree 2, with X(R) isomorphic to S(R). The linear system of the
anticanonical class of X yields double covering of P? ramified over a smooth real quartic
with one oval. The Geiser involution v on X is the involution which exchanges the two
points of any fibre. The birational map {v{ ™! on S is a birational diffeomorphism of S
of order 2 that fixes pointwise a non-hyperelliptic curve of genus 3 with one oval. The
birational diffeomorphism obtained will be called Geiser involution of the sphere.

Example 2.0.4. The blow-up £: X — S of two pairs of conjugate imaginary points in S(C)
is a real Del Pezzo surface X of degree 4 (see Section 4.3), with X (R) isomorphic to S(R).
In this case, the anticanonical divisor of X is very ample and then the linear system of
| — Kx| gives an embedding into P* as an intersection of two quadrics. In the coordinates
(Y1 : Y2 : Y3 : yg : ys) of P4, X is given by the intersection of

Ou: (4~ A+ WyT — 24182 + Y3 + (1 — B + pi — p)ys + y5 = 0,
Qz: HAY; — 2uy1y2 + (p — 1+ B)ys + pfiys + (1 — F + pfi — p)ys = 0,
for some py € C\{0,+1} (see Proposition 4.3.3 in Section 4.3).
The automorphisms a1, a; on X defined by
s (Y1:Y2 s Ya:ys) = (Y121 Y3: Ya: —Ys),
a2: (Y1 :Y2: Y3 Ys:ys) = (Y1: Y20 —Y3 1 Ya 1 Ys)

yield the birational diffeomorphisms ea;e 7!, eaze ! on S of order 2 that by abuse of notation
we denote again «; and a;. Each fixes pointwise an elliptic curve.

Example 2.0.5. Let 0 € [0,27). The rotation ryp € Aut(S) is given by
rg: (W:x:y:z)— (w:xcosf —ysinf : xsinf + ycos 0 : z).

This is a rotation that fixes the z-axis and preserves the fibration .

Example 2.0.6. The reflection v is given by the map
vi(wix:iy:z)—(w:—x:y:z).

This is a reflection that preserves the fibration 7 and fixes a conic.

Example 2.0.7. The antipodal involution of the sphere 4 is given by
a:(w:x:y:z) — (—w:x:y:2).

This involution has no real fixed points.

With these examples, we are ready to present the main two theorems of this thesis. The
first one tell us that there are eight families of conjugacy classes (some with only one
element, some with infinitely many) and the second, the moduli space associated to each
family. These two results are proved in Chapter 6 using all results obtained in Chapters 4 -
6.



2 Results

Theorem A. Every element of prime order of Aut(S(R)) is conjugate to an element of one of
the following families:

(1) A Geiser involution.

(2) An involution o or ay given in Example 2.0.4.

(3) A rotation ry of prime order given in Example 2.0.5.
(4) The reflection v given in Example 2.0.6.

(5) The antipodal involution a given in Example 2.0.7.

(6) An involution in Aut™ (S(R) /) acting on the fibres of m by maps conjugate to rotations
of order 2, and whose set of fixed points on S(C) is a hyperelliptic curve of genus > 1 with
no real points, plus the two isolated points north and south poles, Py and Ps.

(7) An involution in Aut(S(R)/m)\Autt (S(R)/x), acting on the fibres of = by maps conjugate
to reflections, and whose set of fixed points on S(C) is a hyperelliptic curve of genus > 1
whose set of real points consists of one oval, passing through Py and Ps.

(8) An involution in Aut(S(R),7)\Aut(S(R)/x) acting by z — —z on the basis which is not
conjugateto(w: x:y:z) — (w: tx: +y: —z).

Theorem B. The eight families presented in Theorem A correspond to distinct sets of conjugacy
classes, parametrised respectively by

(1) Isomorphism classes of smooth non-hyperelliptic real projective curves of genus 3 with one
oval.

(2) Isomorphism classes of pairs (X,g), where X is a Del Pezzo surface of degree 4 with
X(R) ~ S(R) and g is an automorphism of order 2 that does not preserve any real conic

bundle.
(3) Angles of rotations, up to sign.
(4) One point (only one conjugacy class).
(5) One point (only one conjugacy class).

(6) Smooth real projective hyperelliptic curves I' of genus > 1 with no real point, together
with a 2: 1-covering T — P!, up to isomorphisms compatible with the fibration and the
interval [—1,1].

(7) Smooth real projective hyperelliptic curves T’ of genus > 1 with one oval, together with a
morphism T — P!, which is a 2: 1-cover and satisfies 1 (T(R)) = [—1,1], up to isomor-
phisms compatible with the fibration and the interval.



(8) An uncountable set, which has a natural surjectionto P Z/27Z.
b€R>0

Remark 2.0.8. In (7), we can have genus 0 but this corresponds to the reflection v. In (6)
we can also have genus 0, there is in fact a real one-dimensional family of such maps, all
conjugate to the family (8) (see Lemma 6.0.14).

Remark 2.0.9. All elements in (8) are conjugate in Bir(Sc), this shows a big difference
between the complex and real cases.






3 Surface automorphisms and pairs

In this chapter, it is shown that to classify conjugacy classes of a birational diffeomorphism
of finite order of the sphere is equivalent to classify birational pairs (X,g) where g is an
automorphisms of finite order of a smooth real projective surface X obtained from the
sphere after blowing up pairs of conjugate imaginary points. Moreover, Proposition 3.0.15
gives what pairs (X, g) need to be studied.

We start with some definitions and a classical result due to Comessatti (Theorem 3.0.12),
which states in particular that the sphere S is a minimal real surface.

Definition 3.0.10. Let X be a smooth real projective surface. We say that X is minimal if
any birational morphism X — Y with Y a smooth real projective surface is an isomorphism.

Remark 3.0.11. Any birational morphism between smooth projective algebraic surfaces is a
sequence of contractions of

(i) one real (—1)-curve, or
(ii) two disjoint conjugate imaginary (—1)-curves.

Therefore, a surface is minimal if and only if it does not contain a real (—1)-curve or two
disjoint conjugate imaginary (—1)-curves. Let us cite the following classical result due to
Comessatti [Com12]:

Theorem 3.0.12. If X is a minimal rational smooth real surface such that X(R) # (J, then
X is isomorphic to IPI‘%{, to S, or to a real Hirzebruch surface F,, with n # 1. Moreover, X(R) is
connected and homeomorphic to the real projective plane, the sphere, the torus (n even), or the
Klein bottle (n odd) respectively.

Proposition 3.0.13. Let X be a smooth real projective surface with X(R) diffeomorphic
to the sphere. Then X does not contain any real (—1)-curve. In particular, any birational

morphism {: X — Y, where Y is a smooth real projective surface, restricts to a diffeomorphism
{: X(R) = Y(R).

Proof. If X contains a real (—1)-curve, then there is a birational morphism which corre-
sponds to the blow-up of a real point of some smooth real projective surface whose preimage
by such a birational morphism is the real (—1)-curve. Then the neighbourhood of the real
locus of the (—1)-curve in X(R) is topologically a Mobius strip which implies that X (R) is
not orientable and therefore non isomorphic to the sphere. O

11



3 Surface automorphisms and pairs

Definition 3.0.14. Let (X,g) be a pair i.e. X is a smooth real projective surface and g is a
non-trivial automorphism of X of finite order. The pair (X, g) is said to be minimal if any
birational morphism {: X — X’ such that there exist an automorphism ¢’ of X’ of finite
order with { o g = ¢’ 0 { is an isomorphism.

Proposition 3.0.15. Let g € Aut(S(R)) be an element of finite order and let : S --> P! be
the map given by m(w : x : y : z) = (w : z). Replacing g with a conjugate in the group
Aut(S(R)), one of the following holds:

(a) There exists a birational morphism ¢: X — S which is the blow-up of 0, 1, 2, or 3 pairs of
conjugate imaginary points in S, such that § = e ' o go e € Aut(X), Pic(X)J = Z, and X
is a Del Pezzo surface.

(b) There exists a € Aut(P') such that axr = rg. Moreover, there exists a birational morphism
e: X — S that restricts to a diffeomorphism X(R) — S(R) such that§ = ¢ logoe e
Aut(X), moe: X — P! is a conic bundle on X, and Pic(X)J = Z2.

Proof. Let g € Aut(S(R)) of finite order, g : S --» S is a birational map with a finite number
of imaginary base points, say p1,p1,. - . ,Pn, Pn that belong to S as proper or infinitely near
points. After blowing up all of them and their images under powers of g (meaning the orbit
of the points by g), we obtain a smooth projective surface X

~ N: 71 ~
P {79¢ b%
e {
s--2--3

where § is an automorphism of X.

Since g is defined at every real point of S, the birational morphism { restricts to a
diffeomorphism X (R) — S(R). After contracting all sets of disjoint (—1)-curves which are
invariant by g and defined over R, we get a minimal pair (X, g), with X(R) diffeomorphic
to the sphere by the Proposition 3.0.13, which can be one of the two following possibilities
(see [Isk80, Theorem 1G]):

(i). Pic(X)9 has rank 1 and X is a Del Pezzo surface.

(ii). Pic(X)9 has rank 2, there is a morphism X =5 P!, X is a conic bundle.

Recall that Pic(X)? is the part of Pic(X) which is invariant by § € Aut(X).

In the first case, there exists ¢: X — Z a birational morphism to a minimal projective
smooth real algebraic surface Z. By Proposition 3.0.13, Z(R) is diffeomorphic to the sphere
and by Theorem 3.0.12, we have Z ~ S. Then (Kx)? > 0,Kx = ¢*(Ks)+E;+E;+---+E, +E,
= (Kx)? = Kg — 2r and consequently X is the blow-up of 0, 2, 4 or 6 points in S and X is a

12



Del Pezzo surface of degree 8, 6, 4 or 2 and this gives statement (a). We study this case in
detail in Chapter 4.

For the second case, we denote by (X, 7x,g) the minimal real conic bundle with rank
Pic(X)J = 2. Recall that X(R) ~ S(R) implies that there is no real (—1)-curve on X.
Forgetting the action of § on X, there is a birational morphism X — Z which is the
contraction of disjoint imaginary (—1)-curves in fibres. In this way, we obtain 77: Z — P!
a minimal conic bundle with exactly two singular fibres because Z(R) is diffeomorphic
to S(R) again by Proposition 3.0.13. Now, if we dismiss 7 and keep contracting, we end
up with Z a minimal real surface such that Z(R) ~ Z(R) and by Theorem 3.0.12 we have
Z ~ S implying that Z is the blow-up of two imaginary points on S. In this case, the surface
Z is unique and is the Del Pezzo surface of degree 6 that will be described in Section 4.2.
The explicit conic bundle structure on Z corresponds to the lift of the projection 7 : S --» P!
sending (w : x : y : z) to (w : z). More precisely, 7z = 7 o ¢ where ¢: Z — S is the blow-up
of two imaginary conjugate points. O

13






4 Del Pezzo surfaces with
rk(Pic(X)9) =1

In this chapter, we study the pairs (X,g) where X is a Del Pezzo surface and g is an
automorphism of X. This corresponds to the first case in Proposition 3.0.15.

Recall that the complex surface Sc is isomorphic to Pf, x P{, via the isomorphism ¢: Sc —
Pf x P{, (see Remark 2.0.2).

We denote by f and f the divisors of the fibres of the two projections i.e. Pic(Sc) =
Zf ® Zf and by abuse of notation we denote again by f and f the pullback ¢*(f) and
¢*(f) in X for ¢ : X — S a birational morphism.

4.1 Case: (Kx)? = 8.

In this section, our interest is to present the group of real automorphisms of S, Aut(S),
and describe the conjugacy classes of it. We call ¢ the corresponding antiholomorphic
involution in P, x P{, via the isomorphism ¢, which is given by o (x,y) = (7,%).

Proposition 4.1.1. The group Aut(S) corresponds, via ¢, to the subgroup of the group of
complex auz,‘omorphismsAut(P}C xIP’é:) generated byv: (x,y) — (y,x) andbyF = {(A,A) |A e
PGL(2,C)}. Moreover, Aut(S) = F < (v).

Proof. Using the C-isomorphism S¢ ~ Péj X Pé:, the group Aut(S) is the subgroup of
Aut(IP)éj X P(lc) consists of elements that commute with o, i.e. Aut(S) = Aut(Péj X Péj,cr).
Let (A, B) € PGL(2,C) x PGL(2,C), (A, B) commutes with ¢ if and only if (A,B)o(x,y) =
0(A,B)(x,y) = 0(Ax,By) and hence (Ay,Bx) = (Eg,Z)_c) and it is equivalent to A = B. If
we call v : (x,y) — (y,x), which correspondsto (w:x:y:z) — (w: —x:y:z) onP3 we
see that vo = ov, then Aut(S) = Aut(P{, x Pf,0) = F = (v). i

Automorphisms in J fix the divisors of fibres f and f while elements of Aut(S)\F are
thus of the form (x,y) — (Ay, Ax) for A € PGL(2,C) i.e. automorphisms exchanging the
divisors of the fibres f and f.

Example 4.1.2. The following automorphisms, already described in the introduction, are
now presented as automorphisms of P x P{, via the isomorphism ¢:

1. The rotation ry given in Example 2.0.5 belongs to Aut(S) and corresponds to the
automorphism (x,y) — (xe ¢, yel?) of Pi x PL.
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4 Del Pezzo surfaces with rk(Pic(X)9) = 1

2. The reflection v given in Example 2.0.6 belongs to Aut(S) and corresponds to the
automorphism v: (x,y) — (y,x) of Péj X P(lc.

3. The antipodal automorphism of the sphere given in Example 2.0.7 corresponds to the
automorphism a: (x,y) — (—i,—%) ofPé: X P%:.
Proposition 4.1.3. Every element of Aut(S) of prime order is conjugate to a rotation rg , or
to the reflection v, or to the antipodal involution a, which are given in Example 4.1.2.

Proof. We work in Aut(P(lj X P}C) according to Proposition 4.1.1. If g € F then g: (x,y) —
(Ax,Ay) for some A € PGL(2,C) of finite order. Hence, A is conjugate to [1 e,ig] for
some angle 6 and locally we write x — e~ x. This shows that g is conjugate in J to
(x,y) = (xe™,yel).

If g ¢ F,then g: (x,y) — (Ay,Ax) for some A € PGL(2,C). Since g has prime order, ¢
is the identity so AA = 1 in PGL(2,C). Notice that the action of v on PGL(2,C) is given
by the action of v on JF in the first component, i.e. v(A) = A and the condition AA = 1 is
equivalent to Av(A) = 1.

Let Ay € GL(2,C) be a representative of the element A, then ApAg = [61 g] for some
A € C*. Since Ay commutes with AyAg, Ay commutes with Ag. This implies that A € R. Then
we multiply Ay with p € C and assume that A = 1 or A = —1. In the first case, there exists
B such that B"'A¢B = [} 9] because H'((v),GL(2,C)) is trivial by Proposition 3 in [Ser79,
Chapter X]. This implies that g is conjugate to v by (x,y) — (Bx,By). In the second case,
we want to find B € GL(2,C) such that B~'AB = [ 9 ! |. This will imply that g is conjugate
to the antipodal involution & in Example 4.1.2 by the automorphism (x,y) — (Bx,By) as
before.

Let e; = [}].e2 = [9] be the two standard vectors, and choose a vector v; € C? such
that (v;,A(07) is a basis of C2. This is always possible, by taking v; € {ej,e;}. Indeed,
otherwise Ay would be diagonal, so Ay - A, would have positive coefficients. We choose
then B € GL(2,C) such that Be; = vy, Be; = Ayv1, and observe that

—Be, _UIZAOITOUI = Aol_gez,
B€2 = AOU_l = AoBel.

Multiplying by B~!, we obtain B~'A(B(e;) = e, and B~'A(B(e;) = —e;, which corresponds
to
B_lA()E: [(1)7)1] O

Remark 4.1.4. The group J corresponds to the orientation-preserving automorphisms of S
denoted by Aut™(S).

In the sequel, we will also need the following result.
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4.1 Case: (Kx)? = 8.

Lemma 4.1.5. Letp = (0:i:1:0) € S. The group of automorphisms of S preserving the set
{p,p} is denoted by Aut(S,{p,p}) and, via the isomorphism ¢, has the following structure

Aut(S, {p,p}) = D = (v,d)

where D is the subgroup of F of diagonal elements, the isomorphism U is defined by (x,y) —
(%, i), and {v,0) = (Z/2Z)*. Moreover, every element of prime order is one of the following:

(a) a rotation ry, given in Example 4.1.2, corresponding to one element of D,
(b) conjugate to v,

(c) conjugate tov,

(d) equal to v0,

(e) equaltothe mapa: (x,y) — (_Zl/’ —}C), which corresponds on the sphere to the antipodal

automorphism.
| P x P! | Sc |
v (x,y) — (y,x) (wix:y:z) — (Ww:—x:y:2)
v (x,y) — (%,i) (wix:y:z) — (w:—x:y:—2)
VD (x,y) — (i,%) w:x:y:2z) —» (W:x:y:—2)
i (ry) — (—3,-1) | (wixiy:z) = (—w:ix:y:2)

Table 4.1: List of automorphisms.

Proof. The points p and p correspond, via ¢, to the points (1 : 0)(0 : 1) and (0 : 1)(1 : 0),
respectively. Diagonal elements in PGL(2,C) yield a subgroup of J preserving the points p
and p which is D. The elements in F which interchange the two points are elements (A, A)
in F with A of the form [ % } ] € PGL(2,C). Then the subgroup of F which preserve the set
{p,p} has the structure D = (0) with 0 the automorphism of F defined by the element [ %} ]
and that locally is described in the statement. As 0 commutes with v that permutes the
points, we get Aut(S, {p,p}) = D = (v,0).

(a) An element of finite order in D is a rotation ry given in Example 4.1.2.

(b) If g € D x () = Aut(S,{p,p}) and is not a rotation, then g: (x,y) — (Ax,Ay) with
A= [2 (1)] for some b € C. Since A is conjugate to [? }] by the diagonal element

[(1) 1/3/5], then g is conjugate to 0 in Aut(S, {p,p}).
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4 Del Pezzo surfaces with rk(Pic(X)9) = 1

(c)

(d.e)

If g € Dx{(v)  Aut(S,{p,p}) and is not a rotation, then g: (x,y) — (Dy,Dx) with
D = [(1) 2] for some b € C. Then AA = 1 because g is of prime order and the action
of v on D is exactly the conjugation and the equality AA = 1 is the same as Av(A)=1.
Then g is conjugate to v because the group D = {D € PGL(2,C) | D is diagonal} is
isomorphic to C* and H'((v), D) = {1} by Hilbert’s Theorem 90.

If g € D < (vD) and is not a rotation, then g = (d,vd) for d € D of finite order and in
this case, d commutes with v0 implying that d has order 1 or 2 since the order of g
is prime. Then g is either v0 and is given by the map (x,y) — (1/y,1/x) on P! x P,
which is the map (w : x : y : z) — (w : x : y : —2z) on S or is given by the map
(x,y) — (—1/y,—1/x) on P! x P! and corresponds, on the sphere, to the antipodal
automorphism (w:x:y:2) — (—w:x:y: 2).

4.2 Case: (Kx)? = 6.

Proposition 4.2.1. Let { : X — S be the blow-up of two imaginary conjugate points p,p.
Then {Aut(X){ ™! < Aut(S), so the pair (X, Aut(X)) is not minimal.

Proof. On X, there are six (—1)-curves: the two
exceptional divisors Ej, and E; and the four curves
corresponding to the strict transforms of the fibres
f and f passing through one point denoted by fos

fp, ij, andf—,. »F
Sinceﬁ; N ]713 = fj;m]TIgand]; N ij = ];m?p, these

two intersection points are real (see the circles o %
in Figure 4.1) and the other four vertices of the

hexagon are imaginary, so any action of Y can A

only exchange the two lines E, and Ej; and this

7
i )

implies that (X, Aut(X)) is not minimal. O

Figure 4.1: Blow-up of p,p

4.3 Case: (Kx)? = 4.

There is { : X — S the blow-up of four imaginary points p,p,q,q. We have 16 (—1)-curves
in X: the exceptional divisors E,, Ej—,, Eg4, and Eg; the strict transform of the fibres f and
f passing through one point that we denote by f,, f5. fq. fg fp, /5. fg» and f7 as in the
previous section; and the strict transform of the curves equivalent to f + f (e.g. of bidegree
(1,1)) passing through three of the four points that we denote by f,5.. fy5q: frqg- 2nd f54q-
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4.3 Case: (Kx)? = 4.

These (—1)-curves form the singular fibres of ten conic bundle structures on X with four
singular complex fibres each and are the following:

1. f+f—E—E; 6. f+f—E—E,

2. f+f—E,—E 7. f

3. f+f—E,—E; 8. f

4 f+f—E,—E; 9. 2f + f —E, — E — Eq — E5
5. f+f—E,—E; 10. f+2f —E, — E; — Eq — E5

The anticanonical divisor of X is —Kx = 2f + 2f — E, — E5

conic bundles in pairs such that the sum of every pair is —Kx:

— Ey — Eg. We collect these

Pri={f + f By~ Ep f+ f = Eq — Egh,
Pp={f + f —Ep — Eq, f + f — B — Eg},
Pym(f + T~ Ep—Ep £+~ B Ep)
Py:={f.f +2f — By — E; — Eq — Eg},
Ps :={f, 2f + f — E, — E5 — Eq — Eg}.

Since K is invariant under any automorphism of X, then Aut(X) acts on the set of pairs
obtaining the following exact sequence.

0 — Fp —— Aut(X) —= Sym; (4.1)
N N
Fe —— Aut(Xc) 2. Syms

where F, is naturally a subgroup of F5. An element (ay,. . .,as) exchanges the two conic
bundles of the pair P; if a; = 1 and preserves each one if a; = 0. We represent in Figure 4.2 the
picture of the five pairs of conic bundles and with the next one, how the anti-holomorphic
involution o acts on them.

Remark 4.3.1. The image of p in the exact sequence (4.1) is contained in the group {(23), (4 5))
 Syms as a consequence of the action of the antiholomorphic involution o. (See Figure 4.2).

Lemma 4.3.2. Letp,q € P%C X ch ~ Sc be two distinct imaginary non conjugate points such
that the blow-up of p, p, q, q is a Del Pezzo surface. Then up to automorphisms of the sphere,
the points p and q can be chosen to be (1:0)(0 : 1) and (1 : 1)(1 : u) for some p € C\{0,+1},
respectively.
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4 Del Pezzo surfaces with rk(Pic(X)9) = 1

f+f—Ep—Ep f+f—Ep—Eq f+f—Ep—Eg f f
L] L] L] L] L]
L] L] L] L] L]
f+f—Eq—Eg f+f—Ez—Eg f+f—E5—Eq —Kx —f —Kx—f
P; Pz P3 P4 PS
.9 oo
AR SRR
< 3
o
Py P, P Py Ps

Figure 4.2: Representation of the five pairs of conic bundles and the action of ¢ on them.

Proof. Letp = (r; : s1)(uy : v1) € P(lc X Pé. Applying the automorphism (A,A) € F where
A= [_7)_;1 7?‘_1] maps p into (1:0)(0 : 1) and p into (0 : 1)(1 : 0). Now, we may assume that
p=(1:00(0:1)andp=(0:1)(1:0)and g = (A : 1)(p : 1) with A,p € C* because by
hypothesis the points are not on the same fibres by any projection. The automorphism
(x,y) — (Ax,Ay) fixes p and p and sends g into (1 : 1)(1 : p) and g into (1 : )(1 : 1).
Notice that when p = 1 the points g and ¢ are equal; when p = 0 the points p and g

are on the same fibre, as well as the points p and ¢; and finally, when p = —1 there is a
diagonal passing through the four points. Hence, the blow-up of p, p,q,q is not a Del Pezzo
surface. O

Proposition 4.3.3. (a) The kernel of the sequence (4.1) is
FR = {((11,. .. ,615) € (Fz)S | a +as +as = 0 anda4 + a5 = 0} = (P2)3,

and is generated by the elements y; = (0,1,1,0,0), y» = (1,0,1,0,0), and y = (0,0,0,1,1)
which correspond to the automorphisms of X with coordinates in P* given as

Yi: Wi:iy2:y3:Ys:ys) = (Y1 :Y2: —Y3 1 ys: —ys),
Yo: W1:Y2:y3:Ys:ys) = (Y1:Y2:y3: —yg: —1s5),
Y: Wiy :ys:ys:ys) = (Y1 :y2: —ys: —yg: —ys).

(b) The equation of the surface X is given by the intersection of the following two quadrics,
Qu: (i — i+ WYY — 2182 + Y5 + (1 — [+ pll — p)ys + Y3 = 0,
Qu: PAYY — 21z + (0 — 1+ )3 + phys + (1 — f + pfi — p)ys = 0.

Proof. We first prove that Fg is contained in the group {(ai,...,as) € (F2)° | a; +as + asz =
0 and a4+as = 0}. To do so, we focus on the pairs Py and Ps and observe that the action of the
antiholomorphic involution on those pairs (see Figure 4.2) implies that for an automorphism
g of X, which is in the kernel, is of the form either (,*,+*,0,0) or (*,*,*,1,1), which is the
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4.3 Case: (Kx)? = 4.

same as the condition a4 + a5 = 0. Hence, a; + a» + a3 = 0 because over C, the kernel of the
map p: Aut(Xc) — Syms is the set {(ai,...,as) € (F2)° | Y. a; = 0} [Bla09, Lemma 9.11].

We show the existence of y, y1, and y; and compute the equation of the surface X using
the fact that the anticanonical divisor —Ky is very ample and then the linear system of
| — Kx| gives an embedding into P* as an intersection of two quadrics. We study then the
following diagram

where the vertical map is the blow-up of four imaginary points p, p, g, g of S viewed Sc as
Pf x P{, via the isomorphism ¢ given in Remark 2.0.2. As —Kx = 2f +2f —E, —E;—E;—Eg,
the linear system | — Kx| corresponds to the curves of S of bidegree (2,2) viewed on
Pf x P, ~ Sc passing through the four blow-up points.

By Lemma 4.3.2, we may assume that p = (1: 0)(0: 1) and ¢ = (1 : 1)(1 : p) for some
peC\{0,+1},and thenp = (0:1)(1: 0) and g = (1 : 1)(1: 1).
In coordinates (r : s)(u : v) on Pf x P, a basis of the linear system | — Kx| is given by:

Iy = so(r — s)(v — u) (f = Ep) + (f — Ep) + (f — Ey)
+(f — Eg)

L = (vs — pru)(r —s)(v—u) | (f + f — E, — BE5 — Ep) + E5
+(f — Eg) + (f — Eg)

Iy = ur(v — pu)(s — fir) (f —Ep) + (f —Ep) + (f — Ey)
+(f — E3)

Ty = (vs — pru)(E(1 — pyru | (f + f —Ep — E5 — Eq) + E,

+(u— p)su + (g — 1)sv) +(f+?_Ep_Eq_E§)+EP

s = (u(a— Dru+ (u—pro | (f + f —E; — Eq— Eg) + Fg

+(1 — p)sv)u(s — ir) +(f — Ep) + (f — Eg)

The computation of the actions of y;, y2, and y on Pic(X) with respect to the basis
{11,1,,T5,T4,T5} described above, gives the following elements:

21



4 Del Pezzo surfaces with rk(Pic(X)9) = 1

kR =T 2p—¢ _
0 m 1 py—pl1—p 1 m 00 1—p
0 1 0 0 0 0 —1 00 0
My=1]1 o oppi—pug|,My=1]0 1 10p—2u+1],
1 _ _1 _
0 4 0 -1 0 0 — 01 1
0 0 0 0 -1 00 00 —1
and _

0—5F 1pu—p 0

0 1 0 0 0

M=11 o opppyp

1 _
0 4 0 -1 1
0 0 0 0 1

By a change of the basis, the matrices M;, M, and M can be diagonalised and the map
&:S — Ptisgiven by ((r:s),(u: v)) — N -y where

11 =1—p—p p
o—+ o0 2 -1
7]

N=|11 1 p-p 1-x1
00 0 0 —i
o—1 0 o0 0

H

andy = (Iy,....I5).

With this new basis, the automorphisms y1, y2, and y are the ones in the statement,
and the surface X, which is the image of the anticanonical embedding, is given by the
intersection of the two following quadrics:

Qu: (p— pE+ W)Y — 2y1y2 + v + (1 — F + pfi — p)ys + ys = 0,
Qz: pAY: — 2ufiyiys + (u — 1+ A)Y5 + pays + (1 — H + pfi — p)yé = 0.
O

Proposition 4.3.4. The image of the sequence (4.1), p(Aut(X)) < Syms, is {(2 3)(4 5)) if
|| = 1 and trivial otherwise.

Proof. As already mentioned in Remark 4.3.1, p(Aut(X)) < {(2 3), (4 5) ). We show that the
elements (2 3) and (4 5) do not belong to the image while (2 3)(4 5) does it if and only if
u = 1.

We start explaining why there is no automorphism of type (2 3). If there were an
automorphism « exchanging the pair P, with P; then a would act on P, and Ps either like

o~ | | *

<

or like | «TT

Py P3 Py P3

We may assume that the action on the pairs P, and P is the first since we can multiply
the second one by the element of Fg that corresponds to y; = (0,1,1,0,0). On the pairs P4

and P, the action of « is either 1o lor i1, Andas before, we may assume that

it is the first one by multiplying the second one by y = (0,0,0,1,1). Summarising, we have
to study only two cases:
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4.3 Case: (Kx)? = 4.

(@ |- ik () |
In both cases (a) and (b), f, f are fixed and hence f + f is fixed. In the case (a), looking
at the pair P; we see that f + f — E, — E5 f + f— E, — Ej are fixed, then E, + Ej and
E4 + Eg are fixed while the action on pairs P, and P3 gives that « interchanges E, + Eg
with E, + Eg and E}{—J + Eg with E}; + E4. This implies that E,, E;, are fixed and E, Eg are
exchanged. So @ would come from an automorphism a’ of P! x P! which fixes p,p and
interchanges g and g. Let us see that such an a’ does not exist.
The automorphism &’ would be given by (x,y) — (Ax,Ay) where A € PGL(2,C) with
o' (p) = p, &' (p) = pthen &’ : (x,y) — (Ax,Ay) with A € C under the choice of the points
p=(1:0)(0:1)and g = (1:1)(1: p) for u ¢ {0,£1} (Lemma 4.3.2). Since «'(q) = g, we

have A = i and A = 1 and hence p? = 1, which gives a contradiction.
In the case (b), « is not even an automorphism of the Picard group because the matrix
corresponding to an action described in (b) with basis { f, f, Ep, Ep, Eq,Eg} is
10 0 0 0 0
01 0 0 0 0
00 1/2 —1/2 1/2 1/2
00—1/2 1/2 1/2 1/2
00 1/2 1/2 —1/2 1/2
00 1/2 1/2 1/2 —1/2
Therefore, an automorphism that acts as (2 3) does not belong to the image.
Now, we prove that automorphisms of type (4,5) are not in the image and we proceed

in the same way as we did for (2 3). The action of an automorphism of type (4 5) on the

pairs P, and Ps is either like | orlike | XL | . Multiplying by (0,0,0,1,1) we

may assume that is the first one. With respect to the action on the first three pairs Py, P,,
and, P; we assume that the action on P; and Ps is the identity since we can multiply by
(1,1,0,0,0) or by (0,1,1,0,0). Then, we have two cases to focus on:

@ |- ] e w | s

Py Py P3 Py Py P3

The case (a) corresponds to an automorphism which interchanges f with f and fixes Ep,
EI_J’ Eg4, and Eg. It would be the lift of an automorphism of S fixing 4 points which does not
exist. On the other hand, the case (b) is not an automorphism of the Picard group because
the matrix corresponding to it is

01 0 0 0 0

10 0 0 0 0

00 1/2 1/2 —1/2 1/2

00 1/2 1/2 1/2 —1/2

00—1/2 1/2 1/2 1/2

00 1/2 —1/2 1/2 1/2

Finally, we check that there is an automorphism which acts as (2 3)(4 5) if and only if

|| = 1. As before, we can see that automorphisms corresponding to (2 3)(4 5) are, up to

composition with an element of Fg, of the form

23



4 Del Pezzo surfaces with rk(Pic(X)9) = 1

@ |- (b) | i

Py P, P3 Py Ps Py P, Ps Py Ps

For the case (a), looking at the pairs P, and Ps we see that f and f are exchanged and then
f + f is fixed. The exchange of pairs P, and Ps gives that f + f — E,—E;and f +f— E,—Eg
are interchanged and so are f + f — E; —Egand f + f— E5 — Eg. This implies that E, + E,
with E, + Ej are interchanged and E; + Eg with Ej + E; are interchanged, respectively. So
an automorphism of type (2 3)(4 5) for case (a) comes from an automorphism & of P! x P!
which interchanges f with f, ¢ with § and fixes p and p. We want to show that § exists if and
only if [u| = 1. So & is given by & : (x,y) — (Ay,Ax) satisfying A[9] = [1], A[4] = [9].

This implies that A = [(1’ 61] . Since § interchanges g with g, then [(1) g] [},] = [%] = [’_11/’]

and [94][1]=[1]1=[1]. Hence, A = 1 and yji = 1. Therefore this automorphism exists
if |y = 1.

The case (b) is not possible because the matrix of the action of it on the Picard group
with basis {f, . Ep,E5. Eq, Eg} is

01 0 0 0 0
10 0 0 0 0

00 1/2 —1/2 1/2 1/2
00—1/2 1/2 1/2 1/2
00 1/2 1/2 —1/2 1/2
00 1/2 1/2 1/2 —1/2

and this shows that it is not an automorphism of the Picard group. O

Proposition 4.3.5. Ifg € Aut(X) andPic(X)Y has rank one, then g is either ; = (1,1,0,1,1)
oras = (1,0,1,1,1) in Fr which are given by

o (Y1 Y2 Y3 yaiys) = (Y1 Y2 Y3t ys —Ys),
az:(y1:yz:y3=y4:ys)H(y1ryz:—y3=y4:ys)-

Proof. Let g € Aut(X) of prime order. If g € Fg, g = (ay,...,as) and the condition on
the rank forces that the first component a; = 1, g is thus either (1,1,0,*,%) or (1,0,1, , *).
Moreover, we observe that g must interchange the two conic bundles in the pairs P, and
Ps because otherwise, g(f + f) = f + f € Pic(X)? implying that the rank of Pic(X)? > 1
since f + f is not multiple of —Ky. Then the two possibilities for g when g € Fy are
a1 = (1, 1,0, 1, 1) and ay = (1,0, 1,1, 1)

Now if g ¢ Fr, Proposition 4.3.4 tells us that the action of Aut(X) on the five pairs is
{(23)(4 5)). To ask that Pic(X)? = Z forces that the two conic bundle structures in the
first pair are interchanged for the same reason as before. On the other hand, the action of

>

(2 3)(4 5) on the pairs P, and P; cannot be of the form —~ (or the one reversing the

Py Py

arrows) because in this case the order of g is 4. In addition, we observe that if the action

of (2 3)(4 5) on the pairs P, and Ps is as in this picture: :i , the divisor f + f is

Py Ps
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4.3 Case: (Kx)? = 4.

preserved under g and o, then f + f € Pic(X). This implies that rk(Pic(X)?9) > 1.
We have then to check the remaining cases,

Lo S >
SN IR S e S o o o

The case (2) can be seen from case (1) conjugating it by the automorphism of the Picard
group interchanging the divisors E; with E; and fixing f, f, E,, and E;. Now, the action
of the automorphisms of the case (1) on the Picard group Pic(X) with respect to the basis

{f,f,Ep,Ej—), Eq,Eq} iS

In this case that corresponds to a;, the eigenspace for the eigenvalue 1 is generated by
the two conic bundles of the pair P; which are not in Pic(X)J because of the action of o
interchanges them but whose sum is —Kx. Hence, Pic(X)?Y = Z and therefore in case (2)
as well when g = a,. By Proposition 4.3.3, a; = y1y2y and a2 = yy which are exactly the
maps in the statement.

Finally, for cases (3) and (4), the element g is not even an automorphism of the Picard
group because matrices corresponding to an action described in these cases with basis

{f.fEp,E5,Eq.E5} are

2 1 1 1 1 1 2 1 1 1 1 1
1z 1 1 11 Lz 11 1 1

1 1 1 1 1 1
—1-1 72727272 —1-1-3 Tz72 72

1 1 1 1 1 1 1

-1-1-3-1 —1 72 and | -1 -1-1 -3 -1 =ik respectively.

1 1 1 1 1 1
—1-1-3 -3 -3 2 —1-1-3 —3 Tz 72

1 1 1 1 1
—1-1-3-3—-27 3 —1-1-3-3—-2 3

O

There are automorphisms of Del Pezzo surfaces of degree 4 which are minimal but
preserve a conic bundle structure. These will be needed in the sequel. We give here a special
family of examples.

Lemma 4.3.6. If|p| = 1, then X admits two automorphisms gy, g, € Aut(X) of order 2, acting
on the conic bundles like

ae | e o || E e

Py P, Ps Py Ps Py

and having the following properties:
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4 Del Pezzo surfaces with rk(Pic(X)9) = 1

(a) The two automorphisms g1, g, are conjugate by y, € Aut(X) and satisfy rk(Pic(X)%") = 2
fori=1,2.

(b) Both g, and g, preserve the two real conic bundles of the pair P;. The action on one is
trivial on the basis, but non-trivial on the other one.

(c) The fixed points of g; on X(C) consists of two isolated real points, and one smooth rational
curve having no real point.

(d) The action of 91,9, on Pf. x P, via the blow-up X — S and the isomorphism ¢ : Sc —
Pé: X Pé:, are respectively given by

s(uso—(1+p)v+p)  po(—sv+(14+p)s—1)
(0 - (GEFarey S

—sv+(14+p)s—1 psv—(14+p)v+p
(S’U) 2 (s(ysv—(l+y)v+y)’v(—sv—l—(l—i—y)s—l)))

on the chart {(1:5),(1:v) | (s,0) € AL}

Proof. The existence can be checked by using Proposition 4.3.4 and the description of Fg.
Using the action on the conic bundles to compute the matrices of g1, g, with respect to the
basis { f, f,Ep, E5, Eq, Eq}, We respectively get

2 1 1 1 1 1 2 1 1 1 1 1
4 21(1) A 4 21 l1(1) LA
1-1-10 —1—1|and | 2y 25 g S 21
—1-1-1-1-10 -1-1-1-10 —1
-1-1-1-10 —1 —1-1-1-1-10

Using the fact that the points p,p, q,§ on P{, x P{, are respectively (1: 0)(0 : 1), (0 : 1)(1: 0),
(1:1)(1:p), (1:[a)(1:1) and the above matrices, we obtain the explicit description of the
birational maps of Péj X P(E, given in (d). Assertion (a) follows from the description of ¢,
g2; it remains to show (b), (c¢). The singular fibres of the two conic bundles of the pair P;
are given in Figure 4.3, together with the action of g;, which follows from the description
of the matrix above. This shows that the action on the basis is trivial in the first case and

O f+f-E—E @ f+f—E—E
E fop
Ir Eq

Figure 4.3: Singular fibres of the two conic bundles, together with the action of g;.

not trivial in the second. The fixed points are then contained in the two fibres of the second
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4.4 Case: (Kx)? = 2.

fibration that are fixed, and which are then two smooth rational curves. Looking at the
first fibration, we obtain two fixed points in each smooth fibre, three points in the first two
singular fibres and one in the last two. The only real points in these fibres are f, N ]Tp and
i jTI;, so we obtain on X (C) exactly two isolated real points and one smooth rational
curve with no real point. O

Lemma 4.3.7. Let g € Aut(X) of prime order that preserves a real conic bundle structure and
such that rk(Pic(X)?) = 2, in particular, g preserves the pair P;. Then, one of the following
occurs:

(1) thereish € C(g) < Aut(X), the centraliser of g, whose action on Py is the exchange of the
two conic bundle structures. In other words, the following diagram commutes

gCX gGX
1 T2
S T . p! = P! 4 S

where (1, {3 are the blow-up of four points on Sc and 1, 7, are the morphisms corre-
sponding to the conic bundle structures for f + f — E, — Es and f + f — E4 — Eg,
respectively.

(2) The map g is equal to g, or g, given in Lemma 4.3.6.

Proof. Non trivial automorphisms in Fr preserving the first pair P; are y1, y, and y;y. In
this case, we are in (1) and can choose h = ys.

When g ¢ Fg, then g exchanges P, and Ps;. This plus the fact that g has prime order
implies that g has order 2. On the other hand, the action of g on the pairs P, and Ps cannot

belike | - | , since this would imply that rk(Pic(X)9) > 2 since in this case, g also fixes

Py Ps

f + f. Then, the action of g on the conic bundles is one of the two given in Lemma 4.3.6. O

4.4 Case: (Kx)* = 2.

The birational morphism {: X — S is the blow-up of 3 pairs of conjugate points, say
p.p.q,q,r,7 € S. Since X is a Del Pezzo surface of degree two, the linear system of the
anticanonical divisor defines a double covering | — Kx|: X — P? ramified over a quartic
I'. From the fact that X(R) ~ S(R), I is a real smooth quartic with one oval. We see X as
w? = F(x,y,z) in P(2,1,1,1) and T the zero set of F.

Proposition 4.4.1. There exists an exact sequence

1 —(v) — Aut(X) — Aut(I) — 1
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4 Del Pezzo surfaces with rk(Pic(X)9) = 1

where v represents the Geiser involution which exchanges the two points of any fibre i.e. the
involution given by (w,x,y,z) — (—w,x,y,z).

Proof. We have the following exact sequence
1— (v) — Aut(X) — Aut(P%,I) — 1 (4.2)

where Aut(P?,I) denotes the automorphisms of P?> which preserves the quartic and is
isomorphic to Aut(I) because the restrictions gives a map from Aut(P?,T) to Aut(I) which
is injective since the only automorphism that preserves the quartic pointwise is the identity
(an automorphism of P? can only fixed 3 points or a point and a line but not a quartic). To
see that the restriction map is surjective, we compute the canonical divisor of the quartic
by adjunction formula getting that Kt = (Kpz + I)|r = (—3L + 4L)|r = L|r. Hence, every
automorphism of T extends to P2. O

Lemma 4.4.2. (a) Let C be a (—1)-curve in X, then the (—1)-curve v(C) is equal to v(C) =
—Kx —C.

(b) rk(Pic(X)") = 1. In particular, the pair (X,{v)) is minimal.

Proof. (a) We call ¢ the map defined by | — Kx|. Then, ¢(C) is a curve of degree d for
some d. If we call D = ¢*(¢(C)), we have that D = d(—Kx) # C. This implies that
D = C + C' = d(—Kx) for C' a (—1)-curve, C' = v(C). Intersecting D with —Kx we
have 2 = 2d and hence d = 1. Then v(C) = C' = —Kx — C.

(b) Let C be a (—1)-curve in X, then by item (a) we have C - v(C) = C(—Kx — C) = 2. More-
over, the fact that Pic(X¢) is generated by the divisors in the set A := {—KJx, E,,E5,Eq, Eg,
E,,E;} then, for any divisor D € Pic(Xc), D = > a;C; with a; € Z and C; € A. We have
D+ v(D) =D + a; Y, v(C;) = a;(>, —Kx — C;) = m(—KYx) for some m € Z.

O

Lemma 4.4.3. Let g € Aut(X) of prime order and g # v. Then rk(Pic(X)9) # 1.

Proof. Let g € Aut(X). Since a basis of Pic(Xc) = Z® is {f,f,Ep,Ep,Eq,Eq,E,,Ef}, we
get that the action of g on Pic(X) = Pic(Xc)? is an element in GL(4,Z) < GL(4,C) and is
diagonalisable in GL(4,C) for g € Aut(X). If g is an involution in Aut(X) with rk(Pic(X)9) =
1
1, the only possibility for the action of g on Pic(X)? in GL(4,C) is given by | ' _;
~1
assuming that the first entry 1 corresponds to the anticanonical divisor for some basis

containing it. On the other hand, since every element g in Aut(X) commutes with v, then
in the same basis, g and v are conjugate to a diagonal action as the element presented above.
This implies that g and v are the same.

Let g € Aut(X) be of prime order p > 3. We obtain then an element of GL(4,Z) of order
p which fixes Kx. Then, the characteristic polynomial Q € Z[x| vanishes at 1 and all other
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4.4 Case: (Kx)? = 2.

roots in C are roots of the polynomial x?~! + - -. + 1, irreducible over Q. Hence, Q is a
multiple of (x — 1)(x*~! + -+ + 1) = x? — 1. This implies that p < 4, so p = 3 and then
O = (x — 1)?(x%? + x + 1). Therefore Pic(X)9 = Z2. O
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5 Conic bundle case

In this chapter, we describe the elements in Aut(S(R)) of prime order corresponding to the
second case of Proposition 3.0.15, i.e. that belong to the group Aut(S(R), ). Let us recall
the following notation:

Bir(S, ) ={g € Bir(S) | 3a € Aut(P') such that ax = 7g},
Aut(S(R),7) ={g € Aut(S(R)) | Ja € Aut(P') such that arx = 7g},

and that ®: Bir(S,7) — Aut(P!) is the corresponding group homomorphism (see the
exact sequence (2.2)) whose kernel is denoted by Bir(S/7) and by Aut(S(R)/x) for the
corresponding group homomorphism Aut(S(R), ) — Aut(P?).

5.1 Image of the action on the basis

Recall that 7: S --> P! is the map given by m(w : x : y : z) = (w : z). Hence, the natural
coordinates on P! are (w : z) or simply (1 : z) for affine coordinates. With the choice
of these coordinates, the group Aut(P!) is naturally isomorphic to PGL(2,R): an element
[‘Z Z] € PGL(2,R) acts as

az+b
cz+d

—

or (w:z)— (cz+dw:az+ bw).

In the following two lemmas, the image of the map ®: Bir(S,7) — Aut(P!) in the
sequence (2.2) is presented and the image of elements of finite order is characterised.

Lemma 5.1.1. The image of ®: Bir(S,7) — Aut(P') is the same as the image of its restriction
to Aut(S(R), ).

The corresponding subgroup of Aut(P') is given by the following semidirect product, where
the generator of Z/27Z is the automorphismn: z — —z.

®(Bir(S, 7)) = ®(Aut(S(R), 7)) = {[ [17 117 ] ;be(—1,1) R} ~Z/2Z (5.1)

Proof. Since the sphere S(R) is preserved by elements in Bir(S, ) (respectively Aut(S(R), x))
and is mapped surjectively to the interval [—1,1] < R on the basis of the fibration, this
interval is then invariant, and the group ®(Bir(S, rr)) is contained in the group generated by

zZ— bz;jrbl, b e (—1,1) € R and z — —z because those are exactly the automorphisms of P!
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5 Conic bundle case

which fix or interchanged the points —1 and 1. On the other hand, for each b € (—1,1) = R
the map gp: (x,y,z) — (x Vb;1z+l1} 7 Vb;rllj , lf;bl) belongs to Aut(S(R), ) and is sent to [1 b]

and the map 7: (x,y,z) — (x,y,—2z) is sent to [ 0 1] corresponding to z — —z, which
proves Equality (5.1). O

Lemma 5.1.2. Let g € Aut(S(R), ) be of finite order. After conjugation in Aut(S(R), ), the
map ®(g) is the identity or equal to [(1, ) ]

Proof. Elements of the form [ } ¢ | with b € (—1,1)\{0} are not of finite order indeed the

eigenvalues of[ ] are 1 £+ b, so the element [ ] is conjugate to [ o ] in PGL(2,R)

1+b + 1

and 12 € R* has infinite order because —1. Moreover, [ } 7] is conjugate to [ § ;|

1+v1-b2 b?
-3 -

by the matrix [} ] with ¢ = O

5.2 Algebraic description of Bir(S/x)

Extending the scalars from R to C, the general fibre of 7: S¢ — C, (x,y,z) — z is rational.
The group of birational maps of Sc preserving any general fibre of 7 is then equal to
PGL(2,C(z)). The group Bir(S/x) can thus be viewed as a subgroup of PGL(2,C(z)).
Definition 5.2.1.

(i) For each A € GL(2,C(z)), we define A € GL(2,C(z)), as the matrix obtained by
replacing every coefficient of every entry of A by its conjugate.

(ii) In the same way, we define A for any element in PGL(2,C(z)) and we observe that
A does not depend on the representative because if Aj,A; € PGL(2,C(z)) are in the
class of the element A then A; = AA; for some A € C(z)* and then A; = AA; implying
that A; and A, are both in the class of A.

Lemma 5.2.2.
(a) The complex surface Sc is birational to Aé viay: (x,y,z) - (x — iy, z).

(b) The group PGL(2,C(z)) acts on Aé via

PGL(2,C(z)) x AL -» AZ
([am ﬁ<z>] ’ (t’z)) o (a(z)t+ﬁ(z) Z) (5.2)

v(z) 6(z) y(2)t+6(2)°

and thus also acts on Sc via the conjugation by L.
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5.2 Algebraic description of Bir(S/r)

(c) For any A € PGL(2,C(z)), the corresponding action of A and tAt on Sc, via  and
denoted by A and t At respectively, are con]ugate by the anti-holomorphic involution o
(ie. o: (x,y,z) — (X,7,2) ), where T := [(1’ 1=z ] € PGL(2,C(z)), which means that the
following diagram commutes

Sc -2~ ¢
UL l
se 2% se.

In particular, the group Bir(S/r) corresponds, via the action of PGL(2,C(z)) on Sc, to the

group
G := {A e PGL(2,C(2)) | rAr = A}

Proof. (a) The map ¥ is a rational map and its inverse is given by

Ul (1,2) - (”2

— 2241 t?P+22-1
s 2] -
2t 2t

(b) Clearly, the identity in PGL(2,C(z)) gives the identity map of Az .Let A= [;8 58 ]

and A’ = [a EZ; g,(; ] be elements in PGL(2,C(z)). We compute

(A A (t,2)) —

(aH'B,/)-l-ﬁ / / / /
y't+8 2| = ((aa + Byt + af’ + Bé z)
tHp - "+ 5yt r+68877)°
}/(;{,t+5,)—|—5 (ya' +3oy")t +yp' +

which is the same as

(AA,(t,2)) — ((0{0{’ + Byt + af + B8 )

(ya' + Syt +yf + 068"

The action of PGL(2,C(z)) on Aé gives an action on Sc in the following way: for any

element A = [a(z) f (z)} € PGL(2,C(z)) we denote by A C Aé the action of A on A(ZC

(2) 8(2)
given by the map (t,z) -- (% ), thus the following diagram gives the action

on Sc that we denote by /! Ay or simply A if no confusion:

4

Sc - -~ A2
| I
Al :AcAZC
|
—1 V
e <= —— A%
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5 Conic bundle case

(c) We name o7: (t,z) — (f,z) the anti-holomorphic involution on Aé, then via the
birational map i we have

1 1-— 7
Yoy = o1t =107y: (t,2) --> - 2.

Let A € PGL(2,C(z)). We want to show that t At (o (x,y,z)) = o(A(x,y,z)) for any
(x,y,2) € Sc which is the same as showing "1 (A7) (Vo (x,y,2)) = o (Y 1A(Y(x,y,2)))
for any (x,y,z) € Sc, where the action of A and 7Ar are now on Aé. Notice that ac-
cording to Definition 5.2.1(ii), the action of A on Aé is the same as the action of o1 Aoy
and in this way, for any (x,y,z) € Sc we have

¥ (rAD) (Yo (x,y.2)) = ¥~ (t01A017) (Yo (x,y.2))

=y Yoy AWy ) (Yo(x.y.2))
oy AYo(o(x.y,2)))
o(y AW (x,y.2))).

The elements in Bir(S/x) correspond to the elements in PGL(2,C(z)) which com-
mute with o/, in other words, for A € PGL(2,C(z)) we have that A belongs to
Y 1Bir(S/x)y if to1Acit = A which is equivalent to At = A and hence we get the
description of the group § = ¢~ 'Bir(S/x)y.

O

Remark 5.2.3. The element 7 = [? 1—022] € PGL(2,C(z)) belongs to G and corresponds to

the element of Bir(S/x) given by

(x.y,2) = (x,~y,2),

which is a reflection that belongs then to Aut(S) < Aut(S(R)).

The group § < PGL(2,C(z)) defined in Lemma 5.2.2 is the algebraic version of Bir(S/x),
that we will study in the sequel. In the following lemma, we give a more precise description
of elements of this group.

Lemma 5.2.4. Each A € § < PGL(2,C(z)) is equal to [28 ba((zz))h] for some polynomials

a,b € C[z] with no common real roots, h = 1 — z>. Moreover, the corresponding matrix
[28 bcffz))}l] € GL(2,C(z)) has a determinant a(z)a(z) — b(z)b(z)h € R[z]| which is positive
when z% > 1.

(2) b(z)h
(2) a(z)
particular when a,b € C|z]), then A belongs to G, since TAr = A.

Remark 5.2.5. Conversely, if A = [Z ] € PGL(2,C(z)) for some a,b € C(z) (and in
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5.2 Algebraic description of Bir(S/r)

Proof. Let A = [?8 28] € G. The equality TAr = A gives

a(z) b(z) | _ [0 1—:2] a(z) b(z) [0 1—7.2]
&(2) d(z) 1 0 cz)dz) | L1 o

_ [ d@(1-2) c(z)(1—2%)?

- b(z) a(z)(1—2%)

Hence b(z) = Aé(z), d(z)(1 — 2%) = Aa(z), c(z)(1 — 2%)? = Ab(2), and a(z)(1 — z%) = Ad(2)
for some A € C(z)*. From first and third equation we get that ¢((1 — z%)* — A1) = 0 and from
second and fourth equation we get that @((1 — z%)> — A1) = 0. In both cases, A1 = (1 — z?)?

which is equivalent to —2 (L) = 1, then by Hilbert’s Theorem 90 there is p € C(z)*

(1—2%) "\ (1-2%)

such that A = 5(1 —2z?)and A = [385 “E(?((Zl);zz)]. Calling again a(z): = a(z)ji(z) and

_ a(z) b(z)h
b(z): = p(2)é(z) we get A = [bE; b ]

When a = %’, b = © with p,q,r,s € C|z], we can multiply A by ggss and we obtain an
element in the same class with entries in C[z]. Now, if 2z, is a common real root of a and b
thus z, is also a real root of @ and b which means that we may divide by z — z, all entries
of A and remain in the same class. Then A is of the desired form. The determinant of the
corresponding element of GL(2,C(z)) is then aa—bb(1—2z%) = aa+bb(z>—1) € R[z]. Notice
that for z> > 1, aa + bb(z* — 1) > 0 because aa > 0, bb > 0 implies aa + bb(z> — 1) > 0
and the fact a and b have non common real roots implies that the inequality is strict. O

Remark 5.2.6. In the sequel, we will always denote by h the polynomial 1 — z* € R|[z].

Now, we would like to characterise elements in Aut(S(R)/r) and Aut™ (S(R)/x) inside
the group § = ¢~ 'Bir(S/7)¢. In order to do this, we need to understand the birational map
¥: S - Aé given by (x,y,z) --> (x — iy, z). The following result describes the extension
of the map, that we again denote by /.

Lemma 5.2.7. { satisfies:
(a) The birational map
l//: S@ - Pé X ch
(I:x:y:2) -» ((1:x—1iy),(1:2))
(wix:y:z) - ((w:x—iy),(w:z))
has three base-points, namely g = (0 :i:1:0),q = (0: —i: 1 :0), and one point w,
infinitely near q.

(b) Its inverse is

y7li PLxPL - S

2_ 2 L2072
((1:0.(1:2) - (1550 =)

(2tuv? : t20% — Z2u? + uv?:
i(t20? + z%u? — u®0?) : 2tzuv)

((u:t),(v:2))
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5 Conic bundle case

and has exactly three base-points, namely

(0:1)(0:1),(1:0)(1:1), and (1:0)(1: —1).

(c) The map y can be decomposed as the blow-up of q, G, w, followed by the contraction of
the strict transforms of the curves L, M, D < Sc given respectively by

L: x=iyw=—z
M: x=iyw=z
D: w=0

This can be described by the diagram in Figure 5.1, where Py = (1 : 0 : 0 : 1), Ps = (1 :
0:0:—1) € S(R) are the north and south poles, where L, M are the image of L, M by the
anti-holomorphic involution and where the strict transforms of the curves are again denoted
by the same names.

L, M, D

9.9

T

i 7

s
D
L S ———— o v .

M

q PN
Sc PL x Pl

Figure 5.1: The decomposition of ¢ into blow-ups and blow-downs.

Proof. Parts (a) and (b) follow from a direct calculation. Hence, denoting by {: X — Sc
the blow-up of q, G, », the map ¢ is a birational morphism X — Pé.: X Pé, which is the
blow-up of three points since both S¢ and Pf. x P{, have a complex Picard group of rank 2.
Looking at coordinates, one checks that the three curves are L, M, N, and the remaining
part of the picture can be checked by computing the intersection between the curves. O

Since M U M is the fibre of (1 : 1) € P! by x and is singular with only real point, every
element of Bir(S/r) preserves the north pole Py = M n M and either preserves each of
the two curves or interchanges them. This result is proved in the following lemma, that
describes moreover algebraically the distinct possible cases.
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5.2 Algebraic description of Bir(S/r)

Lemma 5.2.8. Let A = [aEZ; ba((zz ] € § c PGL(2,C(z)), for some polynomials a,b € C|z|

with no common real roots (see Lemma 5.2.4), and let A € Bir(S/x) be the corresponding
element (see Lemma 5.2.2).

The map A is defined at the north and south poles Py = M n M and Ps = L n L. Moreover,
the following hold:

(1)
()
(3)
(4) Ifa

Remark 5.2.9. Note that a(1) # 0 (respectively a(—1) # 0) is equivalent to the fact that the
determinant a(z)a(z) + b(z)b(z)h is positive when z = 1 (respectively z = —1).

Ifa(1) = 0, then A exchanges M with M.

Ifa(1) # 0, then A preserves both M and M.

=

(1)
(

a(—1) = 0, then A exchanges L with L.
(—

1) # 0, then A preserves both L and L.

Proof. Recall that A acts on Aé via

a(z)t + b(z)(1 — zz)

(t,Z) i
b(2)t + a(z)

(see Lemma 5.2.2).

Suppose first that a(1) # 0. This implies that the determinant a(z)a(z) + (2% — 1)b(z)b(z)
is not zero (and in fact positive) when z = 1. Hence, the above birational map is a local
isomorphism near the fixed point (¢,z) = (0, 1), and restricts to an isomorphism of the curve
z = 1. After blowing up (0,1), we obtain thus a local isomorphism in the neighbourhood
of the exceptional divisor and of the strict transform of the curve z = 1. By Lemma 5.2.7,
these maps correspond to respectively M and M via . This shows that A is defined at
Py = M n M and preserves each of the two curves M and M.

If a(—1) # 0, we find similarly that A is defined at Ps = L n L and preserves each of the
two curves L and L.

If a(1) = 0, we write a(z) = ao(z)(1— z) for some polynomial ay € C[z] and have b(1) # 0,
since a,b have no common real root. We consider 7 = [(1) 1_022 ] e G, that corresponds to the
reflection

(x,y,2) = (x,~y,2)
of the sphere S (see Remark 5.2.3). Note that this map is defined at the north and south
poles, interchanges L with L and interchanges M with M. It remains to study the map

Ar = MO0 2 [P @l 20 e g - POL(2, C(2))

b(1—2%) ag b(1+z)
’oalq_ 2
and to see that it is equal to [% e )], where @’ = b (1 + z), b’ = ay € C|z] have no
a
common real root, and such that a’(1) = 2b(1) # 0. This reduces to the previous case.
The case where a(—1) = 0 is similar. O
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5 Conic bundle case

Lemma 5.2.10. Let A = [ZZ; ba((zz))h] € § < PGL(2,C(z)), for some polynomials a,b € C|z]

with no common real roots (see Lemma 5.2.4), and let A € Bir(S/x) be the corresponding
element (see Lemma 5.2.2). We denote by D(z) = a(z)a(z) — b(z)b(z)(1 — z%) € R[z] the
corresponding determinant.

Letzy € (—1,1) € R, and let T, = S be the conic given by z = z,. Then, the following hold:

(a) The map A is a local isomorphism at each point of T, if and only if D(z,) # 0.

(b) The map A contracts the curve I;, onto a real point of I, if and only if D(zy) = 0. In
this case, it has exactly one proper base-point on I, which is real.

Proof. Observe that ¢ is a local isomorphism at a general point of I’;; by Lemma 5.2.7.
Hence, A contracts I;, or is a local isomorphism at each point of it if and only if so does A
on the curve of Aé given by z = z,. Recall that A acts as

a(z)t + b(z)(1 — z%) ,

(t,z) --> —
b(z)t + a(z)

If D(zp) # 0, we obtain thus alocal isomorphism along I';,. If D(zy) = 0, then a(ZO);b)(i’:Et_)(z")Z)
Z0 a\zo

does not depend on t. The fact that a and b cannot both vanish at zy implies that the curve
I7, is then contracted onto one point, which is thus real. It has moreover exactly one proper
base-point on this curve, which corresponds to the vanishing of the denominator and
numerator of the above fraction. O

5.3 Algebraic description of Aut(S(R)/x).

The fact that an element in the group Aut(S(R)/x) exchanges or not the lines L and L can be
checked geometrically, as the following result shows. This will help to describe algebraically
the groups Aut(S(R)/z) and Aut® (S(R)/x) as subgroups of G (Proposition 5.3.3 below).

Lemma 5.3.1. Let A € Aut(S(R)/x), and let L,L,M,M < Sc be the four curves given in
Lemma 5.2.7. Then, one of the following holds:

(a) A e Aut™(S(R)/r) and A preserves each of the four curves L,L, M, M.
(b) A € Aut(S(R)/m)\Aut* (S(R)/7) and A exchanges L with L and M with M.

Proof. Since M U M is the fibre of (1 : 1) € P! by x, every element of Aut(S(R)/x) either
preserves each of the two curves or interchanges them.

We study the action of A on the lines M and M near the point Py = M n M = (1 :
0 : 0 : 1), the situation near Ps = L n L is similar. The equation of the sphere being
(w — 2)(w + 2) = x* + y?, the complex tangent plane Tp, Sc is given by w = z = 0, and
contains the two lines M and M, which correspond to x = +iy.
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The real tangent plane is contained in the complex tangent plane i.e. TpyS(R) < Tp, Sc
and the action of ‘A on the lines M and M is the same as the action of its differential at Py
denoted by Dp, A € GL(2,C) which also preserves Tp, S(R) and is linear. Then Dp, A can

be presented as a matrix in GL(2,R).

Matrices in GL(2,C) which preserve the two lines x = +iy are of the form [_“b Z] for

some a, b € C. Imposing the condition of preserving the real plane is equivalent to ask for
a,b € R. This tell us that if Dp, A is the differential at Py of a diffeomorphism A which
fixes Py and preserves the lines M and M, then Dp, A restricted to Tp,, (S(R)) is of the form
[fb 2] for some a,b € R and is positive defined because its determinant is a* + b*> > 0 and
therefore such a diffeomorphism A is an orientation-preserving one.

On the other hand, matrices in GL(2,C) which interchange the lines M and M and
preserve the real tangent plane are of the form [l‘; b a] for some a, b € R. Then if Dp, A is
the differential at Py of a diffeomorphism A which fixes Py and interchanges the lines M
and M, we obtain that Dp,, A restricted to Tp, (S(R)) is of the form [g fa] for some a,b € R
and its determinant is —(a® + b®) < 0 which implies that A is an orientation-reversing
diffeomorphism. O

Definition 5.3.2. We denote by R|z], the multiplicative submonoid of R[z| defined as
R[z]+ = {f € R[z] | f(z0) > 0 for each zy € R}.

Proposition 5.3.3. Let H and H, be the subgroups of G given respectively by Aut(S(R) /)y —*
and yAut™ (SR)/m)y 1.

Then H = Hy = (1), wheret = [‘1) 1*022] =[9%] as before, and

Ty = {[bﬁi b(())h] : a,b € C[z],aa — bbh e R[z]+} ,

Proof. The fact that H = H, = (r) follows from the fact that r corresponds to a reflection
in Aut(S(R)/7)\Aut™ (S(R)/r); it remains to describe Hy.

Let A € G be some element, that we write as [28 ba((zz)h ] for some polynomials a,b € C|z]

with no common real roots (Lemma 5.2.4), and let D = aa— bbh € R|z] be the corresponding
determinant. We have D(z) > 0 if z22 > 1 (see Lemma 5.2.4). We denote by A € Bir(S/r)
the corresponding element, given by /1 Ay.

Suppose that A € Hy. By Lemmas 5.2.8 and 5.3.1, this implies that a(1)a(—1) # 0,
hence D(1) and D(—1) are both positive. Moreover, D(z) # 0 for each zy € (—1,1) by
Lemma 5.2.10. This implies that D € R|z] .

Conversely, suppose that D € R[z];. By Lemmas 5.2.8 and 5.2.10, this implies that A
is defined at each real point of the sphere, hence A € J{. The fact that A € J{, is given by
Lemma 5.3.1. O
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5 Conic bundle case

5.4 Involutions in Bir(S/x)

Recall that the group of elements of Bir(S, ) acting trivially on the basis of the fibration is
denoted by Bir(S/r). This group is conjugate to

G = {A = [28 ba((zz))h] ; a,b € C[z] with no common real roots,
and a(z)a(z) — b(z)b(z)h > 0 for z* > 1 } < PGL(2,C(2))
by the birational map ¥ (see Lemma 5.2.2). In this section, we study involutions in Bir(S/x)

or equivalently in G up to conjugacy.
We also recall that the action of PGL(2,C(z)) on Aé was given in Equation (5.2) by

(t,z) --> (a(z)Hb(z) z) for [?8 28] = A € PGL(2,C(z)). Notice that when A has order

c(z)t+d(z)’

2, the restriction of A to the ch corresponding to z = z, for a general z; € C, is an
automorphism of order 2 with two fixed points. We denote by I’y the closure of the set
of those fixed points as z varies in C and call it the curve of fixed points of A or just the
curve fixed by A. The corresponding definition for the sphere is presented below, see
Definition 5.4.5.

The following results will be useful for the proof of the main result of this subsection
in Theorem 5.4.6, which states that two involutions are conjugate in G if and only if their
respective fixed curves are birational over R.

Lemma 5.4.1.
(a) If A € PGL(2,C(z)) is an element of order 2, then A is conjugate to [?’6] for some
peC(2)",

10

if and only if p/p’ is a square in C(z).

(b) theelements [0 p ], [(1)1(’)/] € PGL(2,C(z)) withp,p’ € C(z)* are conjugate inPGL(2,C(z))

(c) Let A, B e PGL(2,C(z)) of order 2. Then A and B are conjugate in PGL(2,C(z)) (A ~ B)
if and only if there exists a birational map p defined over C

Ly -~~~ Tp

/4 /4

c = C
where Ta, Tg = C? are the curves fixed by A and B, respectively.

Proof. (a) LetA = [‘CZ Z] be an element of order 2 in PGL(2,C(z)). From A% = [ca(zail;c) I;(::;Z)]

[§9] =1, we getthat a = —d or b = 0 = ¢, but in the second case, a* = d* thus a = +d.
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5.4 Involutions in Bir(S/r)

(b)

(c)

Ifa=dandb = c = 0then A = I and therefore A does not have order 2. This implies
that a = —d in any case so we can write A = [‘C’ _Z ] Now A is conjugate to [‘1) “ZJOFZ’C]
by [ 74 ] when b # 0 or by [ 7§ {] when ¢ # 0. The case when b = ¢ = 0, we
have A = [ _} ] and is conjugate to [ § ] by [ _i |. We have proved that A is always

conjugate to [ §7].

If [?% ], [‘1)%/] are conjugate in PGL(2,C(z)) then the determinants are equal up to

square and then p/p’ is a square. Reciprocally, if p/p’ = a® for some a € C(z)* then

[1#] is conjugate to [?%/]by el

If A and B are conjugate elements of order 2 in PGL(2,C(z)), there is an element
{ € PGL(2,C(z)) such that the following diagram commutes:

e

Then the existence of the birational map p is given by the restriction of { to 4. Con-
versely, we assume the existence of p : [y --> I'5. By part (a), the fact that A and B are
of order 2 implies that they are conjugate to an element of the form [(1) {; ] and [(1) ; ]
respectively, for some f,g € C(z)*. In this way, the equations for the curves Iy and
I are t> = f(z) and t* = g(z). Since Iy and I are birational, this implies that the
corresponding fields of rational functions are isomorphic i.e. C(2)[1/f] = C(2)[/9].
The isomorphism will send z — z and \/17 — a,/g + b for some a,b € C(z) with a # 0.
Since f = g(= t?), we have f = (\/17)2 — (a\/g + b)? = a’g + 2ab./g + b? = f then
a’qg+b* — f = —2ab,/g in C(z)[/g] which implies that 2ab,/g = 0 and therefore b = 0.
Hence f = a?g and then [(1) JS] and [(1) g] are conjugate by part (b).

C

O

Lemma 5.4.2. Let A, B € § < PGL(2,C(z)) be of order two. If A and B are conjugate in
PGL(2,C(z)) then there are elements a, B € PGL(2,C(z)) such that A= aPa™!, B = fPB!
forsome P = 7], p € R(z)*

Proof. By Lemma 5.4.1 we can present A and B as in the statement for the same P for some
p € C(z)*, what remains to show is that we can pick p € R(z)* (equivalently p = p). Let
Ay, 79 € GL(2,C(z)) be elements corresponding to A,z € PGL(2,C(z)). We can choose A
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5 Conic bundle case

so that det(A) = p and want to find an element p € C(z)* such that;? = pp? because

[12] is conjugate to [?PSZ} by [# ]

The equality A7 = A in PGL(2,C(z)) implies that (zp) "1A¢7y = AA, for some element
A € C(z)*. Taking the determinant, we obtain det(Ay) = A%det(A), which means that
p = A%p. It suffices to find p with A = % Since A* = p/p, we obtain A? - 1= 1, and thus
A\ = +1.If A1 = 1 then by Hilbert’s Theorem 90 there is i € C(z)* such that A = /’:j The
case AA = —1 is not possible in C(z) otherwise A would be the quotient of two polynomials
in C(z), say A = £ 5 with f.g € Cl[z]* and then ff = —1 which is equivalent to ff = —gg

But the leading coePﬁc1er_1t of any element of the set {ff : feClz]} = R[z]* is always
positive implying that f f cannot be equal to —gg for any g € C(z)*. O

0
Proposition 5.4.3. Let F = [ 1 g ] with f € C(z)*,

(a) the centralizer of F in PGL(2,C(z)), that we denote by C(F), is the semi-direct product
Jg = Z/2Z where J; is the image in PGL(2,C(z)) of Ty where

Ty := {l Z ];b ] e GL(2,C(2)) ; a,b € C(z),a* — fb* # O}

and Z/2Z is generated by the element v = [ (1) _01 ] in PGL(2,C(z)).

(b) The group Ty is isomorphic to the multiplicative group C(I)* where C(I) is the field of
rational functions on T, the hyperelliptic curve T of equation t> = f(z) in A(Zc (the fixed
curve of the birational map corresponding to the element F).

¢) H'((v).Jy) = {1}.

Proof. (a) Let A = [? Z] e PGL(2,C(z)), from AF = FA we get [ZJ;‘CI] [fc fd] implying
thatd = Aa,b = Afc,a = Ad, and fc = Ab for some A € C(z)*. If a # 0 we have a = A\%a
hence A = +1and A = [“fb] or [Zﬂ;b]. When a = 0, we getd = 0, and fc = A%fc
implying A = +1and A = [gJ;b] [g_({b].ThenC(F) TJr=<{{s %]

(b) An element of the field C(I') can be written as a + bt with a, b € C(z) and then we see
that C(z)[+/f] is isomorphic to C(I) by sending a + bt to a + b4/ f. Hence we define

the map from C(z)[+/f]* to Tf given by a + by/f — [Z J; b] which is clearly bijective

and is a group homomorphism since

a+br\/f)(c+d\/f) = (ac + fbd) + (ad + be)\/f
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5.4 Involutions in Bir(S/r)

corresponds to the product

a fb c fd | | ac+ fbd f(ad+ bc)
[b a][d c]_[ad—kbc ac+fbd]'

(¢) From the exact sequence
1->C)* ST —1 (5.3)
we obtain the cohomology exact sequence

H'((v),Tf) — H'((v),J§) = H*((v),C(2)*).

The first cohomology group H'({v),Tf) is trivial by Hilbert’s Theorem 90 and the
second cohomology group H?((v),C(z)*) is trivial by Tsen’s Theorem ([Ser79, Chapter
X, Section 7]). Then we get that H'((v), Jr) = {1}.

O

Lemma 5.4.4. Let A€ G of order 2 and let a € PGL(2,C(z)) such that A = aPa™! for some
P = [9%], p € R(z)*. Then the element yis: = a'ra belongs to J, wheret = [ ] for
h =1—z* and ], is defined in Proposition 5.4.3.

Proof. The fact that A € G implies that p4 € C(P) because

,uAP,uZl = (¢ ra)P(@ 'ra)
= o 'r(aPa Hra
= a YrAr)a = a 'Aa = P.

In order to check that indeed p14 belongs to J,, we compute P and « explicitly. First, we

i- b(z)h .
lgz(zz)) _i(.z)(z)] with a(z) € R(2),

b(z) € C(z). In PGL(2,C(z)), this involution is conjugate to the element P = [(1) 7((12071,5;1) ]

by a = [_01 _bi(.z)(};)]. In this case, p = —(a? — bbh) and then p, is explicitly [i'a(z) o

observe that if A is an involution in G then A is of the form [

—1 i-a(z)

(
which belongs to J,. If @’ is another element in PGL(2,C(z)) such that o’ ~Aa’ = [?7]

then o'~'a € C(P), say 6 = o' 'a. Then y/, = '~ 'rd’ = (o~ )z (2b~?) = 0(a ra)0—!
that lies in J, as well.

O

Definition 5.4.5. Let A € Bir(S/7)\{1} be of finite order. For a general z; € R the
birational map given by A fixes the conic I}, corresponding to the preimage of z, by 7.
Note that A restricted to I, (Ar, : I, — Iy) is an isomorphism with exactly two fixed
points, which can be two real points or two imaginary conjugate points. The (closure of)
the set of these fixed points, for every z € P, gives the curve of fixed points that we denote
by Fix(A) and that is a double covering of P!. Note that some isolated points can also be
fixed and not belong to Fix(A).
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5 Conic bundle case

Theorem 5.4.6. Let A, B € Bir(S/x) of order 2. The elements A and B are conjugate in
Bir(S/m) (A ~pir(s/r) B) if and only if there exists a birational map p defined over R

Fix(A) - - - = Fix(B)

T /.

R = R

with Fix(-) as in the precedent paragraph.

Proof. If A and B are conjugate in Bir(S/r), then there is an element { € Bir(S/x) such
that { AL~ = B and then the map p is given by the restriction of { to Fix(A) which is
defined over R.

In order to prove the sufficiency, we assume that there is p: Fix(A) --> Fix(B) with
op = po. Then by Lemma 5.4.1(c), we obtain that A := Ay '€ Gand B:= yByY 1 € G
are conjugate in PGL(2,C(z)) and by Lemma 5.4.2 there are «, f € PGL(2,C(z)) such that
A=qFa ',B=pBFp tand F = ((1’ {;), for some f € R(z)*. Observe that the action of «
and f on Sc restrict to birational maps Fix(F) --> Fix(A) and Fix(F) --» Fix(B), respectively.
To sum up, we have the following diagram (which is not necessarily commutative, since
p: Fix(A) --> Fix(B) may be not the restriction of fa™?):

p defined over R

- -~ -

//; B~

Fix(A) ~_ _ Z Fix(F) ;i:i*Fix(B> :

Since we want to show that A ~g B (or equivalently A ~gj;s/r) B), we need to find
y € G such that yAy ™! = Bie. yaFa 'y ™! = BFp~! < B~ lyaF(B 'ya)~! = F, hence
B~ lya € C(F). In other words, finding y € § so that yAy ™! = B is equivalent to find
& € C(F) such that Bta~! € G.

The condition féa~! € G is the same as 7(féa™ 1)t = f€a—! which is equivalent to
£ = (B 17p)E(a 'ta). We define yip := f~'7f and pi; ' := @ 'z and like this, we need to
find & € C(F) such that & = ,uBf,u;l. By Lemma 5.4.4 4, up € Jr and then also ,ugl € Jy.

On the other hand, /1;111;1 = land pppp = 1 and as Jy is abelian, we get yB,uX1 -pBygl =1
and then by Proposition 5.4.3(c) there is £ € J such that £/¢ = ,uBygl == ¢ = ,uA.f,ugl. O
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5.5 Involutions in Aut(S(R) /7).

5.5 Involutions in Aut(S(R)/x).

In Proposition 5.3.3, we have described algebraically the orientation preserving birational
diffeomorphisms as the group

3o ={| 5" | abeClz)aa— bbheR[z], | .

We want to describe involutions in H ~ 3o < () where 7 = [ { I ].

Lemma 5.5.1. Every involution 1 € H, is equal to

=[2G a@n
a() —ip(2)

for some p € R[z| and q € C|z] with no common real roots and p* — qgh € R[z] .

Proof. All such elements are indeed involutions, as one easily calculates. From the proof of
the first statement of Lemma 5.4.1, we see that the trace of any involution in PGL(2,C(z))
vanishes. Since in HH, the diagonal entries are conjugate, they are strictly imaginary, from
which the claim follows. m]

Fibrewise, the maps in H look like rotations, the maps in H\H, like reflections:

Lemma 5.5.2. The restriction of an involution 1 € J{, to a fibre is conjugate, inside the group
of automorphisms of the circle, to a rotation by . For an element in F\H,, the restriction is
conjugate to a reflection.

Proof. A fibre is a subvariety of the real points of S and isomorphic to a circle S!, which
in turn is isomorphic to P! (R). Therefore : restricts on each fibre to an automorphism of
P!(R), that is, an element of PGL(2,R). The first statement of Lemma 5.4.1 applies equally
when the field R instead of C(z) is used, which tells us that the automorphism is conjugate
to an element of the form [0 p ], with p > 0 in R. The sign is negative for J{, and positive

10
for H\H, and depends on whether the element is orientation-preserving or -reversing.

With ¢ = /p, the element is equal to [qgl ioq], which is conjugate to [ ¥} ] via [ p -

These elements describe a rotation and a reflection, as claimed. O

Recall that R[z]; := {f € R[z] | f(z0) > 0 for each z, € R}. We will need the following
description.

Lemma 5.5.3.
Rlz]+ = {pp | p € C|z], p has no real root}

Proof. Since f(z) > 0 for every z € R, f has complex roots which can be sorted as
pairs of complex conjugate roots. Then f can be factorised in C(z) as factors of the form
(z — a)(z — @) which already have the form p,p, with p, = z — a for every complex root
a of f. We then construct p’ as the product p’ = py, - pa, - - - Pa, Where k is the number
of pairs of complex conjugate roots and in this way, f = A - p’ - p/ for some real positive
constant A. Thus we define p = v/Ap’ and the result follows. O
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5 Conic bundle case

Proposition 5.5.4. Let A € J{ be an element of order 2. Then the curve Fix(A), which is a
double covering of P, has the following properties:

(a) IfA e JHy, then Fix(A) has no real point (0 oval);
(b) if Ae H\H,, then Fix(A) has one oval and n(Fix(A)(R)) = [—1,1].
Proof. Let A € H be an element of order two. By Lemma 5.5.1, A is of the form [i;ﬁ(zz)) —qi(-;)(}zl') ]
where p € R|z], ¢ € C|z] and p,q have no common real roots. The curve of fixed points is
given by q(z)t? — 2ip(z)t + q(z)h = 0 whose discriminant (with respect to t) is —4(p? + qgh)
and corresponds to minus the determinant of the matrix.

If A € H,, then the determinant is positive, so Fix(A) does not have any real point.

If A € H\H,, then the determinant is negative (because it is (1 — z%) times the positive
determinant). Hence, we get 2 real points for each z; € (—1,1). O

According to Proposition 5.5.4, for an involution which is also a diffeomorphism its curve
of fixed points is birational to a smooth real hyperelliptic curve with no oval or just one. In
the first case, there is no real point on the fixed curve and 1 and —1 are not ramification
points. This involution is an orientation preserving diffeomorphism with two isolated fixed
points. In the second case, the only two ramification points are 1 and —1, the oval is sent
by n: S — A! onto the real interval [—1,1] and this involution is an orientation reversing
diffeomorphism. Both possible cases for the curve of fixed points are illustrated in Figure
5.2. Now, we would like to prove the converse, i.e. for any hyperelliptic curve with one or
no oval (equation of the form t* = (1 — z?)p or t* = —p for some p € R[z] with no real
roots) we want to associate an element y of I which realises the curve as Fix(y). We need
first to prove the following lemmas.

) )

B B —
—1 1 —1 1

g’fo 9{\9{0

Figure 5.2: Possible appearances of the fixed curve of elements in Aut(S(R)/r).

Lemma 5.5.5. Let f € R[z| be a polynomial of degree two such that f € R|z]y then there
exist a € R|z] and a positive real number c such that f(z) = a(z)? + ¢(z* — 1).

Proof. Since f € R[z], then f is factorised as f(z) = (z —a)(z — @) = 2> — (@ + @)z + aa
for & a complex number and making a = b + id, we rewrite f as f(z) = z2 — 2bz + (b* + d?).
Then if we write a(z)? = f(z) — c(z2 — 1) = (1 — ¢)z% — 2bz + b? + d? + ¢, we want
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5.5 Involutions in Aut(S(R) /7).

to show that there exist some value of ¢ > 0 such that the right side is indeed a square
with respect to z. So we want the discriminant of such an expression to be zero. This is
4b? — 4(1 — ¢)(b* + d? + ¢) = 4(c®* + (b* + d* — 1)c — d?) = 0 which implies that c is a
positive solution of p(c) := ¢ + (b + d* — 1)c — d? so we compute the discriminant of
this quadratic expression with respect to ¢ and want it to be larger than zero i.e. A, :=
(b%? + d? — 1)? + 4d? > 0 but this is always the case. Now, since the leading coefficient of
a(z)? has to be larger than zero, implies that ¢ < 1 so we just check that the discriminant

which depends on ¢ has a root between 0 and 1 which is true because p(0) = —d? < 0
and p(1) = b*> > 0. What remains is to check the case b = 0ie. a = id. In this case,
f(z) = 2% + d? so we just take c = 1 and a = V/d? + 1. m|

Lemma 5.5.6. Let V be the set
V={a*+P- - (z*—1)|aeR[z],PeR[z]:}.
(a) If f,ge V. R|z]4, then f - g€V nR[z]4,
(b) Rlz]+ < V.
Proof. (a) Let f,ge VA R[z], then f=a®>+P-(z2—1)and g = b* + Q- (22 — 1) for
a,b € R|z] and P,Q € R|[z]+. We have then
frg=@+P-(Z-1))b*+Q- (2"~ 1))
=a*b* + a°Q - (2 — 1) + b*P - (z* — 1) + PQ - (z* — 1)*
=(ab)’ + (z* = D[a’Q + P(b* + Q- (" — 1))]

and a’Q + P(b? + Q - (z22 — 1)) € R[z] because a?, Q, P, and b* + Q - (2% — 1) are all
in R[z]. Therefore, f - g€ V n Rz];.

(b) Let f € R[z]+ then f can be presented as a product of quadratic polynomials. Since
every quadratic factor is also in R|z], thus it suffices to prove the Lemma in the case
where f is quadratic and this was already proved in Lemma 5.5.5.

O

Lemma 5.5.7. The elements in Aut(S(R)/x) realise all smooth real hyperelliptic curves with
at most one oval. More precisely,

(a) for a real smooth hyperelliptic curve with one oval of the form t? = (1 — z%) Bf for some
B € C(z) with no real roots there is an orientation reversing birational diffeomorphism
whose fixed curve is this curve,

(b) for a real smooth hyperelliptic curve with no oval of the form t> = — B3 for some B € C(z)
with no real roots there is an orientation preserving birational diffeomorphism whose fixed
curve is this one.
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5 Conic bundle case

Proof. Given the hyperelliptic curve t? = (1 — z?) 8 for some 8 € C(z) with no real roots,

ﬂ?z) d (g)h] is an involution in H\J(y whose fixed curve is t> = (1 — 22) 8.

In the other case, when t? = — 3 where f has no real roots, we have ﬁﬁ_ e R[z]+ = V by
Lemma 5.5.6 and then there are a € R[z] and P € R|z], such that B = a® + P(z%* — 1).

the element o = [

Lemma 5.5.3 implies that P = bb for some b € C[z] then the element & = [ig((zz)) ffzzg)] is an

involution in H, whose fixed curve is t> = —fp. O
a(z) b(z)

Lemma 5.5.8. Let a,b,c,d € C|z] and let A(z) = z) d) € GL(2,C(2)). Letzg € C

be a simple root of ad — bc € C|z], such that A(zo) has rank 1.
Then, the birational map of P! x Al given by

([t : ul,2z) > ([a(2)t + b(2)u : c(z)t + d(2)u],z)
has exactly one base-point on the line z = zy, and no infinitely near base-point to this one.

Proof. Making the change of variable z — z — z;, we can assume that z; = 0. Replacing

A(z) with aA(z) B, where «, f € GL(2,C), we can moreover assume that A(0) = [99], so

za(z) zb(z
1+zc(z) zd(z

before but we keep the same letters to simplify the notation). Since z, is a simple root of
the determinant, we have b(0) # 0. The corresponding birational map of P! x A! is then

we can write A(z) = [ ;], for some a,b,c,d € C|z] (which are not the same as

([t : u],z) --> ([z(a(z)t + b(2)u) : t + z(c(z)t + d(2)u)],z)

and has a unique proper base-point on the line z = 0, which is the point ([0 : 1],0).
The blow-up of this point is locally given by

T A2 — Plx Al
(t,v) — ([t:1],tv)

And the lift of our birational is then locally given by

(1.0) - (2D + boD) t(C(vt)tv+d(vt)v+1))

c(vt)tv +d(vt)v + 1’ a(vt)t + b(vt)

The curves E, E’ corresponding respectively to the exceptional divisor and the fibre z = z
are now given by t = 0 and v = 0 respectively, and exchanged by the lift:

b(0)
(0,0) - (1id(o)u’0)
(t,O) -

0.z

This implies that both, our map and its inverse, have a simple base-point at (0,0). O
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5.5 Involutions in Aut(S(R) /7).

Theorem 5.5.9. Let g, g’ € Aut(S(R)/r) of order 2. Then g and g’ are conjugate in Bir(S/r)
if and only if they are conjugate in Aut(S(R) /).

Proof. Let g and ¢’ be conjugate in Bir(S/r), then there is a € Bir(S/r) such that aga™! = ¢'.

We want to show that g and ¢’ are conjugate in Aut(S(R)/x). By Proposition 5.5.4, the
curve of fixed points of an element in Aut(S(R)/x) either contains no real point or only
one oval.

If & € Bir(S/7)\Aut(S(R)/x), there is a real point r € S(R) where « is not defined, and
this point is not Ps or Py (Lemma 5.2.8). The element o blows up this point and contracts
the conic I, passing through r which is a fibre of the conic bundle structure of S. Then
a(I;,) = q for some q € S(R).

Note that q is fixed by g. Indeed, otherwise g(q) = ¢ # q and as g preserves the fibration,
g(I;,) =TI, then a(g(T;,)) # ¢'(a(l3,)). Since q is a real point fixed by g and distinct from

Ps and Py, the curve Fix(g) contains real points. We may then assume that g is equal to
0 b(2)h

[ 5z o ] (Lemma 5.5.7). The centraliser of g contains the following subgroup

a(z) Ab(z)h -
Clg) = {| ey 0| are R[z) and @® — A%bbh # 0} < .

: 12500 g
that D(z) = a(z)? — b(z)b(z)(1 — z*) has only one zero exactly at z = z, on the interval
(—1,1). The reason of the existence of such a f is that it is possible to find a polynomial a(z)
with values a(—1) = 0 and a(z,) = \/b(zr)B(zr)(l — 22) and satisfying that D(z) > 0 on
(—0,—1) U (zr,50) and D(z) < 0 on the interval (—1,z,). Notice that b(z)b(z)(1 — z?) > 0
for z € (—1,1) and the condition D(z) > 0 for z? > 1 is already fulfilled (see Lemma 5.2.4).
We use the function f(z) = z™ with m sufficiently large and apply a suitable linear change
of coordinates, namely a(z) = \/b(zr)l;(zr)(l —22) - f (er%ll) to get the polynomial a(z)
with the required conditions. See Figure 5.3.

We want to prove now that C(g) contains, in particular, an element f = [

a(z)

i 01
Figure 5.3: Conditions for the polynomial a(z)
With € C(g) as before, i.e. the element with the only root of its determinant at z = z,,
Lemma 5.5.8 implies that the birational map that f defines has exactly one real base-point

and no infinitely near base-point to this one. Then replacing a by f~'a, one gets one
base-point less. Then the claim follows by induction. O
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5 Conic bundle case

Proposition 5.5.10. There are bijective correspondences

smooth real projective
conjugacy classes of involutions 1:1 curves I' with no real point
>
in Autt(S(R) /) withw: T — P! a2 : 1-covering,

L up to m-isomorphism )

smooth real projective
conjugacy classes of involutions 1:1 curves I' with one oval

{ in Aut(S(R)/7)\Aut* (S(R) /) } withm: T — P! a2 : 1-covering,

up to m-isomorphism

\ J

Remark 5.5.11. By a r-isomorphism we mean an isomorphism y: ' — I" such that 7y = 7.

Proof. Let g,g' € Aut(S(R)/r) be of order 2. If g and ¢’ are conjugate in Aut(S(R)/x)
then by Theorem 5.4.6, Fix(g) and Fix(g’) are birational over R by some r-isomorphism.
Proposition 5.5.4 tell us that Fix(g) and Fix(g’) are a double covering of P! with no real point
(when g, ¢’ are orientation-preserving birational diffeomorphisms) or with one oval (when
g,g are orientation-reversing birational diffeomorphisms), and Lemma 5.5.7 shows that all
such curves are obtained. Given a r-isomorphism between two smooth real hyperelliptic
curves with no oval (respectively one), Theorem 5.4.6 implies that g and ¢’ are conjugate in
Bir(S/m) and Theorem 5.5.9 that g and ¢ are indeed conjugate in Aut(S(R)/r). |

5.6 Elements in Bir(S/x) of finite order larger than two

The goal of this section is to show that any element in Bir(S/x) of finite order larger than
two which preserves the fibration is conjugate to a rotation. We start by observing that any
rotation py € Bir(S/r) is given by the map

Po: N — N
(x,y,2) —— (xcosf —ysinf,xsinf + ycosb,z)
which via §/ (Lemma 5.2.2) corresponds in A? to the map (t,z) — (te”'%,z) and is equivalent
to the action of the element [e_oig ‘1)] = e_oig eiog = [(1) e?"] = Ry € G. With this observation
and the following remark, the result is presented in Lemma 5.6.2.
Remark 5.6.1.

(i) Let A e PGL(2,C(z)) an element of finite order larger than 2. Then A is diagonalisable.

(i) Two diagonal elements [} ] and [} ] are conjugate in PGL(2,C(2)) if and only if
a=>btl
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5.6 Elements in Bir(S/x) of finite order larger than two

Lemma 5.6.2. Let A€ G of order n # 2. Then A is conjugate to a rotation

1 O
R9=[0 ew]

in G for some angle 0.

Proof. Since A is an element of finite order n # 2 then by Remark 5.6.1, A is diagonalisable
in PGL(2,C(z)) so there is an element a € PGL(2,C(z)) so that A = « [(1) 2] a1 for some
1 € C(z)* an element of order n, i.e. y1 is a root of unity that we can write as y = e® for
some angle 6.

We define J := [} 9]« ! and we want to find s € C(z) such that J € G and JAJ ! =
This latter condition is fulfilled by the form of J. To ask for J € G is the same as J satisfies
the relation 77 = J which is equivalent to 7 [} ] a~ 'z = [} 2]@~". Multiplying to the
right by @ we get 7 [} ] a"'za ' = [} ?]. We call p := @ 't and we rewrite the last
equation in terms of p obtaining:

t[§21p=152] (5.4)

where p = p~! because pp = (@ 'ra)(a"lra) = 1.

On the other hand, the fact that A € G i.e. TAr = A which is the same as ra [0 2] alr =
a [(1) 2] a~! is equivalent to p [0 y] = [0 1] p and gives the condition on p to be of the
form p = [ ] for some A € C(z)*. Moreover, pp = 1 implies that A € R(z)* because
[ ] [ ] [ ] 39]. With this information about p, finding s € C(z)* satisfying the
equation (5 4) is equlvalent to find s satisfying the equation

A= (1—-2%ss (5.5)

Note that we already know that - 2 € R(z)*, but not every element of R(z)* can be
written as s5. What follows is to descrlbe p in terms of entries of « and 7 in order to find
candidates for the value of s satisfying the previous equation. Let us present o = [‘Cl Z],
then the relation p = @ 'ra explicitly will be

0A] [d —b|[0o1-22][a b
10| |- a 1 0 ¢c d
| —ab+ (1—2%)cd —bb+ (1—2%)dd
| aa— 11—z ab— (1—z%)cd

and this gives two equations

—ab+ (1 —2%)cd =0

(aa — (1 — 22)ed)A = —bb + (1 — 2%)dd (5.6)
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5 Conic bundle case

Whena #0,b = (1 — 22)%Z and plugging it in the second equation in (5.6) we get

Aaa — (1 — 2%)cc] = (1 — zz)j—g[ad — (1 — 2%)cc]

hence
A=(1-2)—
aa

In the case a = 0, equations (5.6) imply that d = 0 and that

1 bb
/1_

1—2z%cc

Then, we may choose s = % whena #0ors = 1_1222 otherwise and in this way there exist

J € G such that JAJ ™! = Ry. O

5.7 Elements in Aut(S(R)/x) of finite order larger than
two

We can check that Lemma 5.6.2 also holds in the subgroup Aut(S(R)/x), via :

Lemma 5.7.1. Let A€ H of order n + 2. Then A is conjugate to a rotation

1 0
Re:lo eie]

in H for some angle 0.

Proof. Let A € I of finite order different from 2, then by Lemma 5.6.2, there is « € G such
that ¢ Aa~! = Ry. Let A = ' Ay. By abuse of notation, the element ¢~ lay € Bir(S/r)
will be called « as well. If « € Bir(S/x)\Aut(S(R)/x), there is a real point r € S(R) where
a is not defined. The element a blows up this point and contracts the conic I;, passing
through r which is a fibre of the conic bundle structure of S. Then a(I;,) = g for some
q € S(R), which is sent by Ry to a different real point (Ry only fixes Py and Ps). As A
preserves the fibration, A(I};,) = I;,, then a(A(I3;,)) # Ro(a(I%,)) O

5.8 Involutions in Bir(S, 7)\Bir(S/ )
Since we want now to study conjugacy classes of elements in Bir(S, 7)\Bir(S/x) whose

square is the identity, we observe that thanks to Lemma 5.1.2, we can think about elements
of finite order in Bir(S, 7) as the semi-direct product between elements of finite order in

52
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Bir(S/r) and Z/2Z where Z/27Z is generated by n: Sc — Sc sending z to —z. The action of
n on Bir(S/r) is given by the map:

n:  PGL(2,C(z)) — PGL(2,C(2))

a(z) b(z) a(—z) b(—2) (5.7)
cz) diz) | ~ | e(=2) d(—2)

Let a = (ap,n) € Bir(S, ) then a? = (aon(ap),1) € Bir(S/n) and n(ay) = ap(—z) which
means that all entries of « in C(z) are changed by the C-field automorphism of C(z)
sending z to —z. We are then interested in the case ayn(ay) is the identity.

Recall that in Lemma 5.2.2(c), we identified Bir(S/7) with the group

G = {A € PGL(2,C(z)) | rAr = A}

where 7 = [(1’ 1—022 ] We denote by T the following group,

T := {Ae GL(2,C(z)) | A= At~ '} = GL(2,C(z))

whose image under the canonical projection corresponds to §. We have the following exact
sequence where p denotes the canonical projection:

1->RGE*>T5HG-1

Hence we obtain the cohomology exact sequence

H'((p), T) & H' (), G) > HA((1),R(2)*) (5.8)

where (n) ~ Z/27 and the action of 1 is described in (5.7).

The next lemma tells us that H*({(5), T) is trivial. Once that is done, the study of the map
§ will show that conjugacy classes of a € Bir(S, 7)\Bir(S/z) with a? = id are parametrised
by particular elements in R(z?%).

Lemma 5.8.1. Let T := {A e GL(2,C(z)); A= TZT_I} with T as before. Then the group T

can be presented more precisely as
T:{[E ];a,be@(z),ad—hbl;iO}

and H'((n).T) = {1}.

Proof. The group T is isomorphic to the multiplicative group of the non-commutative field
K := C(z) + C(2)¢ where £* = h and a(z)¢ = £a(z) for any a € C(z). The isomorphism
is defined by sending an element A = [EZ; }%b((zz))] € T to the element a(z) + b(z)¢ €

C(z) + C(z)¢. Indeed, we have that the product in K,
(a + bé)(c + d&) = ac + b&d¢ + adf + béc = ac + bdh + (ad + bé)é
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5 Conic bundle case

corresponds in T to the product

a hb c h _ | ac+ bdh h(ad + be)
b a d ¢ | | ad+bc ac+bdh

The corresponding action of () ~ Z/2Z on C(z) + C(z)¢ is given by the extension
of the field automorphism z — —z of C(z)* to K*, to be more precise, a(z) + b(z)¢ —
a(—z) + b(—z)¢&.

Let g: {n) — K* be a cocycle such that g(1) = 1 and g() = A for some A € K* such
that An(A) = 1. Let C € K such that B = C + A5(C) # 0, such a C exists because we may
choose C = Awhen A # —1, otherwise there are many choices of C satisfying C —n(C) # 0,
e.g. C = z. We have thus 5(B) = (C) + n(A)C and hence An(B) = An(C) + An(A)C =
An(C) + C = Bie. A= Bn(B) ! and this means that A is a coboundary. O

The following Lemma will be useful to compute H*((1),R(z)*).

Lemma 5.8.2. Let G be a group with two elements acting on an abelian group M and let & be
the non trivial element of G.

(a) Any class[c] € H*(G,M) admits a normalised 2-cocycle ¢’ i.e. it is the class of c: G* — M
such that c(g,1) = c¢(1,g9) = 1 for every g € G.

(b) Letc: G* — M is a normalised 2-cocycle and define p(c) = c¢(&,£) € M. Then p induces
an isomorphism of groups

H*(G,M) = MC/{mé(m) | m € M}.
Proof. (a) Let ¢ be in Z?(G,M), c: G* — M such that

c(91,9293)91(c(92,93)) = c(9192.93)c(91,92)

for g1,92,93 € G. When g, = 1 = g3 we get g1(c(1,1)) = c(¢1,1) for every g; € G
and when g; = 1 = ¢, we have ¢(1,g35) = ¢(1,1) for every g3 € G. We define a 1-
cochain d’: G — M by d’(g) = ¢(1,1) for every g € G then it defines a 2-coboundary
d(91,92) = d'(91)d'(9192) '91(d’(g2)) = g1(c(1,1)). Then the 2-cochain ¢’ defined as
c'(g1,92) := ¢(g91,92)d(g1,92) ! is equivalent to ¢ and normalised because

d(1,9) = c¢(1,9)d(1,9) " = ¢(1,1)(c(1,1)) P =1
(9,1) = ¢(g.1)d(g,1) " = g(c(1,1))(g(c(1,1))) " = 1.

(b) In order to show the isomorphism, we define y: M® — H?(G, M) given by m + [c,,]
where ¢, is the normalised cocycle defined by ¢,,(¢,&) = m.
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Notice that c,, is a 2-cocycle because the fact that ¢;,(1,1) = ¢p(1,€) = cn(€,1) = 1
implies that the equality

cm(91,9293)91(cm(92,93)) = cm(9192,93)cm(91,92)

holds whenever g; or g; or gs is 1 and for the case g; = g, = g5 = £, we have that

E(em(€.8)) = em(£, E)em(LEem(E.1) 7 = em(€,8) (5.9)

which is true since c¢,,(£,&) = m € M®. On the other hand, the map y is surjective
because by hypothesis, given a normalised 2-cocycle ¢, p(c) = ¢(&,&) € M and equation
(5.9) gives that £(m) = m implying m € M®. What remains is to compute ker(y) which
in this case is

ker(x) = {m € M® | cn(g1,92) = r(g1)91(r(92)) (r(9192) " (5.10)
for a some map r: G — M}

Let m € ker(y), then the normalised 2-cocycle ¢, satisfies

cm(91,92) = r(g1)91(r(92)) (r(9192)) ™"

for r: G — M so that r(1) = 1 and r(¢) = m for some m € M. In particular, m =
em(8,€) = r(£)E(r(8)) = m&(m).
Conversely, let n € {mé(m) | m € M} then n = mé(n) for some m € M. Notice that
£(n) = nie. n e MC because £(n) = E(mé(m)) = £(m)m = n, this allows to define
a normalised 2-cocycle ¢, given by c,(1,1) = ¢,(1,&) = c,(&,1) = 1 and ¢,(€,&) = n.
Then n € ker(y) because the condition (5.10) is satisfied defining the mapr: G - M
by r(1) = 1 and r(¢) = m.

O

Lemma 5.8.3. For the exact cohomology sequence (5.8),
H*((n).R(2)") ~R(*)"/{fn(f) | f € R(2)"}
={([-1].{[Z2+b]: b >0}) ~ {+1} ® [ P Z/ZZ) :

b€R>0

Proof. Let (R(z)*)" denote the elements of R(z)* which are invariant with respect to the
action of 1 described above. We call N the map N: R(z)* — (R(z)*)" given by N(p(z)) =
p(2)n(p(2z)) = p(z)p(—z). Then by Lemma 5.8.2, H*(Z/2Z,R(z)*) is isomorphic to coker ()
that we need to compute. First, we prove that (R(z)*)" = R(z%)*. The inclusion R(z?)* <

(R(z)*)" is clear. Reciprocally, if g(z) € (R(2)*)", g(z) = @) with ,q € R|z| that we can
P y, 11 g 9 e) p-q

r(z) _ p(=2)

assume having non common factors. Thus from @ = a2 follows that p(z)q(—z) =

p(—z)q(z) and then roots of both sides need to coincide. This implies that if a is a real root
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of p(z), it has to be a root of p(—z) and therefore z2 — a? divides p(z). For a complex root «
of p(z), using the same argument we obtain that (z — a)(z — @)(z + a)(z + @) divides p(z).
By induction on the number of roots of p and g, we obtain R(z)" = R(z?%).

In order to compute coker(N) we look at the image by N of generators of R(z)* and
compare with generators of R(z?)*. Generators of R(z)* are a € R*, (z — b) with b € R, and
(z— a)(z — @) with @ € C\R and they are mapped by N to a?, b* — 2%, and (z* — a?)(z* — @?%)
while generators of R(z?)* are ¢ € R, (22 —d) with d € R, and (z% — ) (2% — ) with f € C\R
(notice that f is always a square). Hence, coker(N) ~ R(z?)* /Im(N) = {[-1],{[z* + b] :
b > 0}) < R(z%)*/Im(N).

To see the structure of H*((n),R(z)*), we see that [-1] - [-1] = 1 and for any b > 0,
[2% + b][2? + b] = 1 because (z% + b) (22 + b) = (2% + b)n(z* + b) = 1in R(z*)*/{fn(f) | f €
R(z)*}. However, [z +b][z% +¢] # 1 forb,c > 0and b # cand [—1][z2+b] = —(z2+b) # 1
for b > 0. O

Proposition 5.8.4. The connecting map H'({n),5) 5 H? ({n),R(2)*) for the exact cohomol-
ogy sequence (5.8) corresponds to the map

S: H'({n),9) — ([-1].{[* + b] : b> 0}) ~ H*((n),R(2)")
class of/i € G; class of i € R(z%); B
{ An(d) =1 } o { anay=[4o] =

and it is bijective.

Proof. In order to study how the connecting map § is defined, we use the Snake Lemma
(see e.g. [NSW00], Lemma 1.3.1) that in our case works as follows. Consider the following
diagram, in which Z, stands for (5):

CHZyR(2)*)/B (Z2 R(2)* ) g CY(Z,,T)/BY(Z,,T) i> CY(Z,.9)/BY(Z5,5) —=1

aRl aTl dg l
i P2

Z2(ZyR(2)*) ————> 72(Z,T) 72(2,.9)

1

Notice that § is the same as the map ker(dg) LN coker(cr). Let [p] € H'((n),9), then p is a
map p: () — G defined by sending 1 to 1 and 7 to A for some A € § satisfying An(A) = 1.
Since p; is surjective, there is [r] € C}((n),T)/B*({n),T), thisis r: {5y — T so that 1 — 1
and n — A where A € T is a representative of the element A. There is g € Z*({n),R(z
such that iy(q) = dr([r]) because p2(dr([r])) = dg(p1([r])) and p2(dr([r])) = d5([p]) = 1
since [p] € ker dg then Or([r]) € kerp, = Im i. Then § is defined by sending [p] to [¢]
satisfying i2([q]) = dr([r]). More explicitly, or([r]) is the normalised cocycle

or([r): =,y — T
(91.92)  — 1(91)91(r(g2))(r(g192)) "
(1 1) — 1
(1p) +— 1
(n1) — 1

(n.m)  — An(A)

56



5.8 Involutions in Bir(S, ) \Bir(S/ )

—
=
[
2
=
=
2
I

[’é 2] with i2([q])(7,n7) = p € R(z%)*. Summing up, § corresponds to the

s H(9)  — HREY
A€ G; p € R(2%);
{AU(A):l} — { ap(a) = [11] @nd P = }

Let us see that the map § is surjective: the element [0 ,1] is mapped by & to the class
[—1]. When ¢ € R, the element [1(7, 01\[) —i(z—?—i\ﬁ)
Given any finite product of classes y = (22 + ¢1) - - - (2% + ¢x) in H2((),R(2)*) with ¢; > 0

a(z) 0
0 a(z)

] is sent by § to the class [z? + c].

for 1 < i < k, the diagonal elements of the form [ ] where

(2) = 1\f)(z—1\/7 (z —iy/ck), ifkisodd
a(z) =
z—1f (z —iy/c2) - z—1\/7 if k is even
is mapped to y. This proves the surjectivity of the application .
In order to prove injectivity, we will show that any class A = [Zg; };b((zz)) ] in H(2/2Z,9)

is equivalent to a diagonal element D of the form [XE)Z) 5{?2) ] In other words, we want to

c(z) hd(z)
d(z) e(2)
the representative of A in T. This leads to the following equation

¢(2)(d(—2)a(z) + &(—2)b(z)) — d(2)(hd(—2)b(z) + E(—2)a(z)) = 0

show that we can find an element o = [ ] in G such that n(a)Aa~! = D where A is

which is equivalent to

az)_cn@c<z + hb(2)

@) b2 + a(z)

We call ¥ the following automorphism of Pé: @ defined by

(5.11)

: 1 N 1
b E Pe @) Pe C(z)

(r(2):5(2)) > (a(2)r(2) + hb(2)s(2): b(2)r(z) + a(z)s(2))

The equation (5.11) can be seen as f(z) = ¥(f(—z)) for f(z) = In this way, finding

d( )
E,(Z) and d(z) satisfying the equation (5.11) is equlvalent to find fixed points of ¥ where

Y(f(z)) := ¥(f(—=z)). First we notice that the automorphism V¥ is a linear automorphism

given by the element [“8 hb((z)) ] in PGL(2,C(z)) that we denote by A since it comes from

A by interchanging the elements of the mean diagonal, this implies that ¥ has order two
because ¥ o ¥ = id is equivalent to An(A) = 1 which is satisfied because A is a class

in H'({(n),G). On the other hand, the element Ais equivalent to A= [ P (2)2 - d()etA] since
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5 Conic bundle case

B 'An(B) = A for B = [1 a Z)/ bz ] Hence, the existence of fixed points for the automor-

phism associated to A gives the existence of fixed points for the automorphism ¥. Then
we lookA explicitly for elements u,v € C(z) such that (u(z): v(z)) = A(u(—z)i v(—z)) =
(—det Av(—2z): b(z)?u(—=z)) in PL, . ie. u(z)u(—2)b(z)? = —v(z)v(—z)detA and then

C(z)
ug; UE 3 = g(etA The right side of this last equation belongs to C(z?) because det A = det A

which belongs to R(z?) and b(z)? € C(z?) condition imposed by the fact that A is a class in
H'({n),5). Existence of u and v comes from the next Lemma. O

Lemma 5.8.5. Any element f € C(z%) can be written as the product g(z)g(—z) for some
element g € C(z). In other words,

C(z*) = {g(2)g9(—2) : g(z) € C(2)}.

Proof. Clearly, for g € C(z) it follows that g(z)g(—z) € C(z?). Reciprocally, let f € C(z?).
Thus f = E y with p,q € C[z %]. We can write p in terms of roots as p(z) = a(z* —
ay) -+ (22 — as) where a,; € C, 1 < i < s. Any factor of p can be decomposed as a product
of the form —(z — y/a;)(—z — \/a;) for any root a;. We can then write p as the product
91(2)g1(—z) where

(2) = Va(z —y/ar) - (z — \/ar)(z — /1) - - - (z — y/as), if siseven
I =N ivalz — var) - (2 — )z — ) -+ (z — /@), if s is odd.

In the same way, q(z) = ¢2(z)g2(z) and therefore, f can be presented as the product
91(2)  g1(=2)
2@ @) -
Corollary 5.8.6 (from Proposition 5.8.4). The conjugacy classes of elements a = (ay,n) €
Bir(S, )\Bir(S/m) such that agn(ay) is the identity are parametrised by the classes of polyno-

mials {{—1],{[z* + b] : b > 0}) ~ H*((n),R(2)*).

Proof. The cohomology group H'({1),§G) corresponds precisely to the set of conjugacy
classes of involutions in Bir(S, 7)\Bir(S/x), that is, classes of elements (@,7) as in the
statement. Therefore Proposition 5.8.4 directly implies the corollary. |

Corollary 5.8.7. The set of conjugacy classes of involutions in Aut(S(R), 7)\Aut(S(R)/x)
surjects naturally to the set of conjugacy classes of involutions in Bir(S, ) \Bir(S/r).

Proof. Let (A,n) be an involution in Bir(S,T[)\I}ir(S /7). The proof of Proposition 5.8.4
shows that (A,7) is conjugate to an element (A,n) where A is, via ¢/, an element of the

form [a(oz) é(oz) ], and a € C[z] has no real roots. Since in that case aa € R|z]|, Proposition

5.3.3 tells us that such an element corresponds to one of Aut(S(R)/). Hence the birational
diffeomorphism (4,7) € Aut(S(R), 7)\Aut(S(R)/x) is conjugate in Bir(S, 7) to (A,7), and
therefore every conjugation class of Bir(S,)\Bir(S/x) contains a conjugation class of
Aut(S(R), 7)\Aut(S(R)/x). O
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6 Connection between families

In this chapter, we collect all our results, and use the fixed points and the classification of
the possible Sarkisov links given by Iskovskikh in [Isk96] to give the proofs of Theorem A
and Theorem B (Chapter 2).

We start with some definitions, which come from the equivariant Sarkisov program.

Definition 6.0.8. Let X be a smooth projective real rational surface with X (R) ~ S(R), let
g € Aut(X) be an automorphism of finite order and let y: X — Y be a morphism.
The triple (X, g, 1) is said to be a Mori fibration when one of the following holds

(i) rk(Pic(X)?) =1, Y is a point and X is a Del Pezzo surface;
(ii) rk(Pic(X)?) = 2, Y = P! and the map y is a conic bundle.

Remark 6.0.9. In the second case, we can do as in Proposition 3.0.15 and find a birational
morphism ¢: X — S that restricts to a diffeomorphism X(R) — S(R), such that e = ay,
for some a € Aut(PllR). This conjugates g to an element ege~! € Aut(S(R), ). The possible
choices for ¢ just replace ege~! with a conjugate in the group Aut(S(R), 7).

Definition 6.0.10. Let y: X — Y and p//: X' — Y/, g € Aut(X),g" € Aut(X’) be two
Mori-fibrations. An isomorphism of Mori fibrations is an isomorphism p: X — X’, such that
g p = pgand /' p = ayu for some isomorphism a: Y — Y’.

Definition 6.0.11. A Sarkisov link between two Mori fibrations y: X — Yand p/: X' — Y/,
g € Aut(X),qg’ € Aut(X’) is a birational map ¢: X --> X’ such that ¢ = {g and is of one of
the following four types,

(i) Links of typel. These are commutative diagrams of the form

Y= {pp———y =¥

where { 7!: X’ — X is a birational morphism, which is the blow-up of either a g-orbit

of real points or imaginary conjugate points of X, and where p is the contraction of
Y' = P! to the point p.
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6 Connection between families

(ii) Links of typeIl. These are commutative diagrams of the form

(iii)

(iv)

- ~

X=——7Z—=X" .

| Y E

Y — Y’

where f: Z — X (respectively f': Z — X') is a birational morphism, which is the
blow-up of either a g-orbit (respectively ¢g’-orbit) of real points or imaginary conjugate
points of X (respectively of X’), and where p is an isomorphism between Y and Y’.

Links of type IIL. (These are the inverse of the links of type I). These are commutative
diagrams of the form

{

X X/

/

H H

Y =P Ly = fp)

where {: X — X’ is a birational morphism, which is the blow-up of either a g'-orbit
of real points or imaginary conjugate points of X', and where p is the contraction of
Y = P! to the point p.

Links of type IV. These are commutative diagrams of the form
X E X/
H 4
Y = P! Y = P!

where {: X — X' is an isomorphism and y, y’ o { are conic bundles on X’ with
distinct fibres.

The following result is given in [Isk96, Theorem 2.5]

Theorem 6.0.12. Let (X,g,u) and (X',g',1/") be two Mori-fibrations. Every birational map

p: X > X' such that ¢'p = pg decomposes into elementary links and isomorphisms of conic
bundles.

Looking at the classification of links of [Isk96], we obtain the following lemma with the
links that could be possible to have in our classification problem.
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Lemma 6.0.13. Let (X,g,p) and (X',g’,1/') be two Mori-fibrations, and let p: X --> Y be a
birational map which restricts to a diffeomorphism X(R) — Y(R). Then, p decomposes into
elementary links that blow up only imaginary points and contract only imaginary curves, and
are of the following type:

(a) Links of type Il between conic bundles, which correspond therefore to a conjugation in
Aut(S(R), x).

(b) Links of typeIl of the form X --> X, where X is either the sphere S or a Del Pezzo surface
of degree 4. Moreover, the two elements of Aut(X) corresponding to this link are conjugate
in Aut(X).

(¢) Link of typel and Il between the sphere S and the Del Pezzo surface of degree 6 obtained
by blowing up two conjugate points on S. These are possible for only a few of elements,
given in Lemma 4.1.5.

(d) Links of type IV on Del Pezzo surfaces of degree 2 or 4, obtained by blowing up pairs of
conjugate points in S.

If the two elements of Aut(S(R), ) corresponding to the link are not conjugate, then X is
a Del Pezzo surface of degree 4 and the two automorphisms are 1,9, € Aut(X) described
in Lemma 4.3.6.

Proof. 1t follows from Proposition 3.0.13 that X, X’ do not contain any real (—1)-curve.
Moreover, the map p has no real base-points implying that the first Sarkisov link obtained
in the decomposition does not have real base-points (the base-points of the link are taken
among the base-points of the map, see the proof of [Isk96, Theorem 2.5]). Proceeding by
induction on the number of links provided by Theorem 6.0.12, we obtain that p decomposes
into Sarkisov links that do not blow up any real point or contract any real curve. In
particular, the surfaces obtained are all diffeomorphic to the sphere and with K} € 2Z.

It remains to study links X --» X, between two Mori-fibrations y: X — Y and p//: X' —
Y, g € Aut(X), ¢’ € Aut(X’), such that X(R) ~ X'(R) ~ S(R), with (Kx)?, (Kx)? € 2Z, and
which do not blow up any point. In the case where Y is a point, we can moreover assume
that (Kx)? # 6, by Proposition 4.2.1 (and similarly (Kx/)? # 6 if Y’ is a point). Looking at
the list of [Isk96, Theorem 2.6], we get the following possibilities.

1. Links of type I and III (Y is a point and Y’ = P! or vice versa). Looking at [Isk96,
Theorem 2.6, case (i)], one gets only one possibility, which is the blow-up of two
imaginary conjugate points on the sphere S. Up to automorphism, these points can be
taken to be the two base-points of 7: S --» P!, and the automorphisms that preserve
the union of these two points are described in Lemma 4.1.5.

2. Links of type I (Y = Y/ = P! or Y = Y’ is a point).

In the first case, when Y = Y’ = P!, the link corresponds to conjugation in the group
Aut(S(R), ) (see Remark 6.0.9).
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6 Connection between families

In the second case, the list of [Isk96, Theorem 2.6, case (ii)] yields the following three
possibilities:

(1) (Case (Kx)? = 8,(b)) A birational map S(R) --» S(R) that blows up 3 pairs of
conjugate points and contract 3 pairs of conjugate curves. It corresponds to the
Geiser involution on the blow-up of the 6 points.

(2) (Case (Kx)? = 8,(d)) A birational map S(R) --» S(R) that blows up 2 pairs of
conjugate points and contract 2 pairs of conjugate curves.

(3) (Case (Kx)? = 4, (b)) A birational map X(R) --» X(R) that blows up 2 pairs of
conjugate points on a Del Pezzo surface X of degree 4 and contract 2 pairs of
conjugate curves. It corresponds to the Geiser involution on the blow-up of the 4
points.

In each case we get a link X --> X, where X is either the sphere S or a Del Pezzo
surface of degree 4. It remains to see that the two automorphisms of prime order
of Aut(X) produced by this link are conjugate by an element of Aut(X). If the link
corresponds to a Geiser involution, this is because the Geiser involution commutes
with all automorphism of the surface (see Proposition 4.4.1). In the other case, the orbit
blown up consists of two pairs of conjugate points on S(C), so the automorphism
is an element of order 2 in Aut(S), so conjugate to a rotation, a reflection or the
antipodal involution (Proposition 4.1.3). By looking at the fixed points, we observe
that two elements of order 2 in Aut(S) are conjugate in Aut(S) if and only if they are
conjugate in Aut(S(R)).

3. Links of type IV. (X ~ X' is a surface which admits two different conic bundle

structures, and the link consists of changing the structure). It follows from [Isk96,
Theorem 2.6, case (iv)] that (Kx)? € {2,4,8}. The case 8 is not possible since Pic(S) =
Z. If (Kx)? = 2, the link is given by the Geiser involution (by [Isk96, Theorem
2.6]), which commutes with all automorphisms. Hence, the two automorphisms
of Aut(S(R), ) provided by the links are conjugate. This is the same if (Kx)? = 4
and if there is an element of Aut(S) which commutes with the automorphism. By
Lemma 4.3.7, the only remaining case is when the two automorphisms are g;,g, given
in Lemma 4.3.6.

O

Lemma 6.0.13 shows that the automorphisms gy, g, given in Lemma 4.3.6 are quite special.

The following result describes the situation.

Lemma 6.0.14. (1) Let X be a Del Pezzo surface of degree 4 with u € C\{£1}, |u| =1 (see
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Lemma 4.3.2), and g1,9, € Aut(X) be the automorphisms given in Lemma 4.3.6. The
action on the two conic bundles invariant yields two involutions

91(p) € Aut(S(R)/7), g5 (1) € Aut(S(R), 7)\Aut(S(R)/x)



given by

] —2ipt+(1+p)(1—2%)
9w (tz) - ( P 1+ D) ’Z)

) (1—=2%)(it(1+p)—2)
g(w) = (tz) - (Zﬂti(lﬂl)(lzz)’_z)

(using the map i : Sc --> A% of Lemma 5.2.2)

(2) Taking another surface given by ji' € C\{£1},|1/| = 1, the following are equivalent:
a) g, (u) and g, (y') are conjugate in Aut(S(R), r);
b) g,(u) and g,(i') are conjugate in Aut(S(R),x);
¢) p = pth.

(3) Letg € Aut(S(R)/x) be an element of order 2, such that Fix(g) is a rational curve with
no real point. Then, g is conjugate in Aut(S(R), ) to g, (u) for some p € C\{+1}, || = 1.

Proof. Let g € Aut(S(R)/) be an element of order 2, such that Fix(g) is a rational curve with
no real point. The element g belongs to Aut™ (S(R)/x), and the map 7 restricts to a double
covering 7y Fix(g) — P! (Proposition 5.5.4). Since the curve is rational, by the Riemann-
Hurwitz formula the double covering is ramified over two points ¢, € P!(C). These two
points determine the curve Fix(g), up to isomorphisms above P!(C), i.e. isomorphisms
p: Fix(g) — Fix(g') with 7yp = 7. Hence, by Theorems 5.4.6 and 5.5.9, the conjugacy
class of g in Aut(S(R)/r) is given by the set {q,g}.

We will use this observation to show that g is conjugate to one of the automorphisms gy,
g2 € Aut(X), where X is a Del Pezzo surface of degree 4, given in Lemma 4.3.6.

We use the map ¢: S¢ --» Aé, (x,y,z) --» (x — iy,z) given in Lemma 5.2.2 to compute
the action of gy, g, on A. Note that ¢~ ': P, x P, --> AZ is locally given by

—2is 1-— sv)

((1:5),(1:0)) - (sv+ 1’1+ sv

and its inverse is (t,z) --> ((z + 1 : it),(t : i(z — 1))). Using the explicit description of
Lemma 4.3.6, the actions of g1, g» are then respectively given by

%uownana(ﬁwf+0+ux1—£{%

p(2i+ (1 + pi)

%wraﬁwe(“‘£““1+”‘2)_4

—2ut —i(1+ p)(1 — 2%)°

These correspond to involutions ¢} (1) € Aut(S(R)/x) and g, () € Aut(S(R), 7)\Aut(S(R)/x),
which are conjugate by an element which is in the group Aut(S(R))\Aut(S(R), ) (see
Lemma 4.3.6).
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6 Connection between families

In order to show that there exists y such that g is conjugate to ¢} (1) in Aut(S(R), ), we
need to compute the ramification points of Fix(g; (1)). The curve of fixed points of g} (y) is
given by

p(1+ p)t® + dipt — (1 —2°)(1 4+ p) =0

so its discriminant with respect to t is equal to

2 2 .U_lz
—4p(p + 1) -(z —(m) )

and the two points correspond then to z = +E1 We conjugate g with an automorphism
pH1T
of the form

V1—=0b%2 1-— b2 z+b)

bz +1 Y bz+1 bz+1

gy (x,y,2) — (x
p—1
e

for some p € C\{+1} with |u| = 1. To see this we make the change of coordinates z= %ﬁ;

7 = 1 —=, so that the map g, acts as Z — 7 1 T b and the points z = + correspond to

z' = py*'. The claim follows then from the fact that the map b — 1 o ylelds a bijection
(—1,1) — Ro. Hence g is conjugate to g;(u) for some .
Let us show that ¢/ (/1) is conjugate to g; () in Aut(S(R), r) if and only if 4/ = p*!. First,

p—1 _ 1-p
1/u+1 1+,u
conjugate to ¢} (¢') in Aut(S(R), ). Second, if ¢} (1) is conjugate to g} (i), there exists an

element of Aut(S(R), ) whose action on P! sends {i“ T } onto {4—” T } But the action

is generated by the maps z — %err’ be (—1,1) and by z —» —z (Lemma 5.1.1). Making the
same change of coordinates as before, we obtain that ' = p*!

To finish the proof, it remains to see that two elements g, (¢) and g, (') are conjugate
in Aut(S(R),r) if and only if ¢/ = p*!. The element g () corresponds to an element of
H?({n),R(z)*) that we can compute using Proposition 5.8.4. To do this, we need to write
the corresponding element of H' ({17, ). Composing g, (y) with (t,z) — (¢,—z), we obtain
the element of A = § given by

for some b € (—1,1) (see Lemma 5.1.1), and claim that we can send the points g, onto +

observe that so the pair of points are the same for y and p~'. Hence, g/ (u) is

[—i(1+y)(1—z2) 2(1—2%) ]
2u i(1+p)(1—2%)

In order to get an element of T < GL(2,C(z)) (see Lemma 5.8.1), we divide each element of
the matrix with v, with v € C, |v| = 1, v* = 11, and get

[Eha ] e T c GL(2,C(2)),

% b = ). Observing that

a = —a and that a,b are invariant by z — —z, the corresponding element of H?((1),R(z)*)
can be computed (using Proposition 5.8.4) by

. — i(1+1/p)(1—2° i —z*
2 (indeed, a = 0+ /1”/)5 2 - l(H”)V(l 2)

with a =
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6.1 Proof of Theorems A and B

and corresponds therefore to

2
az—i—bgh:(l—zz)(zz—(l_’u) ) (1+/1)2'

2 _
Writing = cos(f) + isin(f) we obtain % = 2(cos(0) + 1),(i+—ﬁ) = Eﬁiﬁggﬁ =

% € Ry, so the corresponding element of H*((1),R(z)*) is the class of z? + i;sig;fi
Denoting by s: (0,7) U (7,27) — R=q the map s(0) = =0 we observe that s(0) = s(¢")
if and only if 6’ € {0,27 — 0}. This gives the result. o

6.1 Proof of Theorems A and B

We can now finish by giving the proof of the main theorems.

Proof of Theorem A. Let g € Aut(S(R)) be of prime order. By Proposition 3.0.15, one of the
two following possibilities holds

(a) There exists a birational morphism ¢: X — S which is the blow-up of 0, 1, 2, or 3 pairs
of conjugate imaginary points in S, such that § = ¢ !ge € Aut(X), Pic(X)? = Z, and X
is a Del Pezzo surface.

(b) There exists @ € Aut(P') such that ar = mg. Moreover, there exists a birational
morphism ¢: X — S that restricts to a diffeomorphism X(R) — S(R) such that
g = ¢ 'ge € Aut(X), me: X — P! is a conic bundle on X, and Pic(X)¢ = Z2,

In particular, we have a Mori fibration in the sense of Definition 6.0.8.

In the case (a), X is a Del Pezzo surface with possible degree 8,6,4, or 2. If (Kx)? = 8,
X ~ S and g € Aut(S). By Proposition 4.1.3, g is conjugate to one of the cases (3), (4), or
(5) of the statement. If X is a Del Pezzo surface of degree 6, X comes from S by blowing
up a pair of conjugate imaginary points and Proposition 4.2.1 tell us that § comes from
an automorphism of S, having the same cases as before. If X is a Del Pezzo surface of
degree 4, X comes from S by blowing up two pairs of conjugate imaginary points and by
Proposition 4.3.5 g is conjugate to a; or a; giving in case (2). If X is a Del Pezzo surface
of degree 2, X comes from S by blowing up three pairs of conjugate imaginary points
and Lemma 4.4.2 asserts that the Geiser involution v is such that Pic(X)" has rank 1 and
Lemma 4.4.3 that there is no other such automorphism of X. We get then case (1).

We look now at case (b), where rk(Pic(X)9) = 2. In this case, g is conjugate to an element
of Aut(S(R), ) by some birational morphism ¢: X — S that restricts to a diffeomorphism
X(R) — S(R) (see Remark 6.0.9) that we call g again for simplicity. Since the order of g is
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6 Connection between families

finite, by Lemma 5.1.2 the image of g under the map ®: Bir(S,7) — Aut(P!) is the identity
or n: z — —z, after conjugation by an element of Aut(S(R), 7).

« If ®(g) is the identity, then g € Aut(S(R)/x). When g has order larger than 2, by
Lemma 5.7.1 g is conjugate to a rotation, case (3).

If g has order 2, then g is an element in Aut™* (S(R) /) if g is an orientation-preserving
birational diffeomorphism or an element in Aut(S(R)/z)\Aut™ (S(R)/r) otherwise.
Proposition 5.5.4 implies in the first case, that Fix(g) is a double covering of P! with
no real points and in the second case, that Fix(g) is a double covering of P! with real
points one oval and ramification points Py and Ps. Lemma 5.2.8 implies that Py and
Ps are fixed in both cases. By Lemma 5.5.2, the action of g on the fibres of 7 is either
by rotations of order 2 when g is in Aut™ (S(R)/x) or by reflections when g is in
Aut(S(R)/m)\Aut™ (S(R)/x). We get thus cases (6) and (7) in the statement, except if
the curve Fix(g) is rational. It remains to see that if Fix(g) is rational, g is conjugate to
another case. If g € Aut(S(R)/7)\Aut™ (S(R) /), then the curve Fix(g) is isomorphic
to P} and g is conjugate to the reflection v: (w:x:y:2z) — (w: —x : y : 2) by
Theorems 5.4.6 and 5.5.9. If g € Aut(S(R)/x), then g is conjugate to an automorphism
of the last family by Lemma 6.0.14.

« If ®(g) = n, then g = ¢'fj with ®(7}) = n (Lemma 5.1.2) and ¢’ € Aut(S(R)/x). Since
the order of g is prime, g is of order 2 in Aut(S(R), 7)\Aut(S(R)/r) giving the case (8)
in the statement, or one of the automorphisms (w:x:y:z) — (w: £x: +y: —z).

O

Proof of Theorem B. All the cases are disjoint because of the fixed curves and order, except
maybe in case (2) where the curve of fixed points of o; has genus 1 because elements in
cases (6) and (7) may a have curve of fixed points of the same genus. However, ¢; is not
conjugate to an automorphism of a conic bundle since there is no sequence of links coming
from it to a Mori fibration preserving a conic bundle (Lemma 6.0.13). On the other hand, «;
is conjugate to another element if and only if the conjugation is by an isomorphism of the
surface X this is again a consequence of Lemma 6.0.13. We proved that conjugacy classes
in (2) are disjoint and parametrised by isomorphism classes of pairs (X,g), where X is a
Del Pezzo surface of degree 4 with X(R) ~ S(R) and g is an automorphism of order 2 that
does not preserve any real conic bundle (Proposition 4.3.5).

It remains to show the parametrisation of the families (1) and (3) — (8).

For (1), the curves of fixed points in S(C) are not rational and invariant under conjugation
in Bir(S) and then in Aut(S(R)). We obtain a map from the set of conjugacy classes
associated to each family to the set of isomorphism classes of the set of fixed curves. The
surjectivity is given by the correspondence

Smooth real quartics - Del Pezzo surfaces of degree 2
with one oval diffeomorphic to the sphere
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6.1 Proof of Theorems A and B

Concerning injectivity, if two quartics are isomorphic, then the surfaces are isomorphic. This
is because the canonical divisor of the quartic is the class of a line (see proof Proposition 4.4.1).
Then every isomorphism extends to P? and then, it yields an isomorphism of Del Pezzo
surfaces of degree 2.

For (6) and (7), the elements are conjugate in Aut(S(R)) if and only if they are conjugate
in Aut(S(R)), because it is not possible to use other links that links of type II (see the
description of links given in Lemma 6.0.13). We can thus consider the fixed locus, which
is not only a non-rational curve, but also a curve endow with a 2: 1-covering. Moreover,
the elements of Aut(S(R), ) preserve the interval. Conversely, let I — P!, I’ — P! be
2 : 1-coverings of P! and assume that there exists an isomorphism a: P! — P! such that
the following diagram commutes:

r—°2 .r

|

P! —— P!

and that o preserves [—1,1] then « is in the group given in Lemma 5.1.1, then there exist
£ € Aut(S(R), ) such that we replace p with £p&~! and may assume that & = id. Then the
corresponding elements are conjugate by Proposition 5.5.10.

For (4) and (5), the parametrisation is trivial since there is only one element in each
family.

For (3), if two rotations are equal up to sign, they are conjugate by v or the identity. It
remains to see that if rg is conjugate to ry by p € Aut(S(R)) then 0 = £6’ (mod 27). We
may assume that the order is > 5, (since otherwise we always have § = +0 (mod 2x)).
We decompose p into elementary links and use Lemma 6.0.13 to see that p is a product of
maps of the following type:

dP6 - —H— > dP6

|

~

S———S§

where the vertical arrows are blow-ups of two imaginary fixed points, fixed by g and the
image. Hence, we may assume that the points are (0 : +i : 1 : 0) and then we stay in
Aut(S(R),7) (Lemma 4.1.5). In Aut(S(R)/z) =< {(r) < PGL(2,C) = (r) the elements are
([(1) e?g] , l) (see Section 5.6), and two are conjugate only if 6 = +6'.

For (8), by Corollary 5.8.7, conjugacy classes of elements in Aut(S(R), 7)\Aut(S(R)/x)
surjects naturally to the set of conjugacy classes of elements in Bir(S, 7)\Bir(s/7) which is
uncountable. These correspond to the conjugacy classes of Bir(S, z), we may then have a
priori more conjugacy classes in Aut(S(R), ). It remains to prove that two such elements

are conjugate in Aut(S(R), ) if and only if they are conjugate in Aut(S(R)). For this, we

67



6 Connection between families

write p € Aut(S(R)) an element that conjugates one involution to another, and decompose
it into elementary links. If all links are of type II, then p € Aut(S(R),x). If some links
of type I or III are used, then by Lemma 6.0.13 these pass through the sphere and the
Del Pezzo of degree 6, which is impossible here, since elements of the last family are not
conjugate to (w : x : y : z) — (w : £x : £y : —z) by hypothesis. The last part is when p
decomposes into links of type II and IV. The links of type IV provide two fibrations of the
same surface, which lead to two different elements of Aut(S(R), ). If the two elements are
conjugate in this latter group, the result is clear. The only case where this is not true is by
Lemma 6.0.13 the case given by the automorphisms g;, g, on special Del Pezzo surfaces
of degree 4 given by |u| = 1 (Lemma 4.3.6). But in this case, we conjugate an element of
Aut(S(R), )\Aut(S(R)/r) to an element of Aut(S(R)/x), and when we come back we did
not change the conjugacy class in Aut(S(R), 7) (Lemma 6.0.14). This ends the proof of the
Theorem B. O
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