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!

1.1 Bacterial surface structures 

1.1.1 Bacterial surface polysaccharides: structure and interaction with the innate 

immune system 

The surface polysaccharides of commensal as well as pathogenic bacteria have to fulfil 

a multitude of functions to ensure viability (Bravo et al., 2008; Cardoso et al., 2006; 

Grossman et al., 1987; Lerouge and Vanderleyden, 2002; Murray et al., 2003; Nesper 

et al., 2002; Pluschke et al., 1983a; Porat et al., 1992; Raynaud et al., 2007; Ugalde et 

al., 2000). Dependent on the habitat of the bacterium the requirements for 

polysaccharides can vary largely, and even within a species or even an individual 

bacterium the conditions might change dramatically. Besides phospholipids the outer 

membrane of Gram-negative bacteria consists of a unique carbohydrate component, 

the lipopolysaccharide (LPS). The LPS of gram-negative bacteria consists of three 

regions: the lipid A, the core-oligosaccharide, and the O-antigen. Many Gram-negative 

(and Gram-positive) bacteria further have a polysaccharide capsule as outermost 

surface layer. Considering the functional diversity, not surprisingly a huge variety of 

surface polysaccharides exist (Bravo et al., 2008; Lerouge and Vanderleyden, 2002; Liu 

et al., 2008; Whitfield, 2006), including capsules or other exopolysaccharides as well as 

the LPS (Whitfield, 2006).  

 

1.1.2 LPS part 1: lipid A – common structure and modification 

The basic architecture of lipid A, the hydrophobic anchor of the LPS, is well conserved 

among all Gram-negative bacteria (Raetz, 1990a). It is composed of a disaccharide 

backbone to which a variable number of acyl chains of different length are attached at 

distinct positions. The backbone generally consists of GlcN, while some bacteria like 
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Brevundimonas diminuta, Brevundimonas vesicularis, Legionella pneumophila, 

Campylobacter jejuni or Flavobacterium meningosepticum (now Elizabethkinga 

meningoseptica) show a hybrid backbone including GlcN3N (Moran et al., 1991; 

Tanamoto et al., 2001). Often the lipid A further carries two phosphate groups, one on 

each sugar of the backbone, on the 1 or 4’ position respectively.  

 

Figure 1. Structure of E. coli hexa-

acylated lipid A. It consists of a ",1-6 

linked glucosamine disaccharide that is 

phosphorylated at positions 1 and 4’ and 

carries four R-3-hydroxymyristate chains 

(at positions 2, 3, 2’ and 3’). The 2’ and 3’ 

acyl groups are further esterified with 

laurate or myristate, respectively (Raetz, 

1990b). 

 

The LPS represents the principal endotoxin of Gram-negative bacteria (Bryant et al., 

2010) and since the main contribution generally comes from the lipid A part (Park et al., 

2009; Raetz, 1990a) the terms lipid A and endotoxin have become synonyms. As a 

potent activator of the innate immune system, lipid A can induce endotoxic shock in 

patients suffering from bacterial septicemia. Recognition of lipid A by the host occurs 

via the TLR4/MD-2/CD14 receptor complex (Toll-like receptor 4 / myeloid differentiation 

factor 2 or Lymphocyte antigen 96 / cluster of differentiation antigen 14) (Beutler, 2000; 

Gioannini et al., 2004; Medzhitov et al., 1997; Shimazu et al., 1999; Ulevitch and 

Tobias, 1999). CD14, in its soluble and membrane-bound forms, as well as the LPS 

binding protein (LBP) have been shown to enhance the response to lipid A by capturing 
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and transporting single LPS or lipid A molecules out of a micellar state (Kirkland et al., 

1993; Lee et al., 1992; Ulevitch, 1993; Wright et al., 1990; Yu et al., 1997). E. coli or 

Salmonella typhymurium lipid A are potent agonists of the TLR4/MD-2 receptor 

complex. They consist of a ",1-6 linked glucosamine disaccharide that is 

phosphorylated at positions 1 and 4’ and carries four R-3-hydroxymyristate chains (at 

positions 2, 3, 2’ and 3’). The 2’ and 3’ acyl groups are further esterified with laurate or 

myristate, respectively (Raetz, 1990b).  The structural basis of lipid A recognition by the 

TLR4/MD-2 complex has been solved (Park et al., 2009). Key features for receptor 

binding, multimerization and therefore activation are the 1 and 4’ phosphates, which 

form charge interactions with TLR4 and MD-2 (Park et al., 2009) (Fig. 2 B and C). In the 

process of TLR4 dimerization (formation of a TLR4/MD-2/lipid A/TLR4*/MD-2*/lipid A* – 

hexamer) E. coli lipid A can further interact with several amino acids of TLR4* (coloured 

green in Fig. 2B), which via its primary binding sites fixes the lipid A*. These lipid A – 

TLR4* interactions stabilize the multimer and might be crucial for endotoxic activity. For 

some of these ionic interactions, like the one involving K388 of TLR4* (see Fig. 2 B), 

contradictory results have been reported (Resman et al., 2009). It was further shown 

that the hydroxymyristate chain at position 2 forms hydrogen bonds and has 

hydrophobic interactions with TLR4. This chain is the only part of lipid A acyl chains that 

is not completely buried inside the MD-2 pocket and is partially exposed to the surface 

(Park et al., 2009). Beside the presence of the 1 and 4’ phosphate groups, the number 

and length of the acyl chains seem thus to play a major role in determining the 

endotoxic behaviour of a lipid A.  
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Figure 2. LPS recognition by human TLR4/MD-2/CD14 receptor complex. (A) LPS 

binding protein (LBP) binds a single LPS molecule out of the micellar state (1.), 

transports it to soluble or membrane bound CD14 (2.), from where the LPS is further 

passed on MD-2, which can be already bound to TLR4 (3. and 4.). LPS binding to MD-2 

and TLR4 causes TLR4 dimerization (5.) which then leads to an intracellular signal 

cascade and finally to the release of proinflammatory cytokines (6.). (B) Proposed 

interactions of E. coli lipid A with indicated amino acids of human TLR4 (blue). Upon 

TLR4 dimerization (formation of a TLR4/MD-2/lipid A/TLR4*/MD-2*/lipid A* – hexamer) 

E. coli lipid A can interact with indicated amino acids of TLR4* (green), which via its 

primary binding sites fixes the lipid A*.  (C) Proposed interactions of E. coli lipid A with 

indicated amino acids of human MD-2 (red). Data of B and C are based on the crystal 

structure of E. coli LPS bound to TLR4 and MD-2 (Park et al., 2009). 
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As the acyl chain length and number is crucial for endotoxicity, several bacteria have 

adapted their lipid A, e.g. by reducing the number of acyl chains attached to the lipid A 

(called underacylation). Underacylated lipid A have been studied in several gram-

negative bacteria (Berezow et al., 2009; Hajjar et al., 2006; Kawasaki et al., 2004; 

Saitoh et al., 2004; Somerville et al., 1996; Teghanemt et al., 2005). Hyperacylation is 

less common and its contribution to pathogenesis is unclear, as was shown for 

Salmonella (Belden and Miller, 1994; Gibbons et al., 2005; Guo et al., 1997). Generally, 

underacylated lipid A structures have either four (tetra-acyl) or five acyl chain (penta-

acyl). They are formed by either not adding further acyl chains (regulation of LpxL or 

LpxM) or by deacylation (e.g. by PagL in Rhizobiae). Tetra-acylated lipid A variants are 

antagonists of the action of hexa-acyl lipid A on human TLR4/MD-2, as has been 

shown in the peridontopathic bacterium P. gingivalis (Curtis et al., 2011; Kumada et al., 

2008). Lipid IVa, a tetra-acylated precursor in E. coli lipid A biosynthesis, served as 

structural basis for the generation of the potent antagonist Eritoran that now is in clinical 

trials as anti-sepsis agent (E5564, Eisai research). X-ray crystallography studies of 

complexes between lipid IVa or Eritoran with MD-2 (Kim et al., 2007; Ohto et al., 2007; 

Park et al., 2009) have shown that the tetra-acylated lipid A variants are bound deeper 

into the MD-2 pocket and inverted by 180°C as compared to hexa-acylated lipid A. Due 

to the decrease in acyl chains the tetra-acylated variants can bind deeper into the MD-2 

pocket (by 4-5 Angstrom), which leads to a repositioning of the phosphate groups. 

Therefore, although lipid IVa and Eritoran occupy the MD-2 binding sites, they do not 

lead to the human TLR4/MD-2 multimerization that is needed for signal transduction. 

Interestingly, lipid IVa was found to be an agonist or partial agonist of murine, cat and 

equine TLR4/MD-2. This was shown to result from few amino acids of MD-2 and TLR4, 

which alter multimerization potential upon lipid IVa addition (Meng et al., 2010; Walsh et 
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al., 2008). In case of the human TLR4, lipid IVa bound deep into the MD-2 pocket is no 

longer able to reach the binding sites of the phosphates (described in Fig. 2 B). And at 

the present position of the lipid IVa phosphates the human TLR4 has no adequate 

amino acids for proper interaction. This is in contrast to e.g. the murine TLR4, which 

harbours positively charged amino acids at the site of lipid IVa phosphates, thus 

enabling a stronger interaction with TLR4 and upon TLR4 dimerization (formation of a 

TLR4/MD-2/lipid A/TLR4*/MD-2*/lipid A* – hexamer) as well with amino acids of the 

TLR4*. The complexity of all this data implies a multistep activation mechanism, which 

remains to be elucidated in detail. 

 Penta-acylated lipid A are best described as „partial TLR4 agonists“ (Bryant et al., 

2010). Upon binding to TLR4/MD-2, such partial agonists lead to some conformational 

changes, but they fail to induce a full activation. In presence of a potent stimulus like E. 

coli lipid A (an agonist), partial agonists lower the activation. Thus, they act as 

antagonist. Partial agonists compete for receptor/co-receptor binding sites with the 

agonist (Coats et al., 2007). Therefore a mixture of a potent agonist and a partial 

agonist can lead to a weaker stimulation of the receptor, compared to the activity of the 

agonist alone. Dependent on the weakness of its agonism, penta-acylated lipid A have 

been designated as weak agonists or as antagonists (Bäckhed et al., 2003; Berezow et 

al., 2009; Coats et al., 2003; Hajjar et al., 2006; Yoshimura et al., 2002; Zähringer et al., 

2004). The notion of a partial agonist includes a weak agonsim as well as the 

antagonistic properties. It has been shown that the antagonistic effect of penta- and 

tetra-acyl lipid A is mainly based on direct competition between the antagonist and E. 

coli hexa-acyl lipid A for the identical binding site on human MD-2 (Coats et al., 2007).  

But the structure of a penta-acyl lipid A binding to human MD-2 remains to be solved. In 
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this thesis a model of a penta-acylated lipid A binding to MD-2 based on molecular 

mechanics calculations is presented.  

Along with the number of acyl chains, the length of the chains has been shown to play 

an important role in determining the endotoxic potential (Bainbridge et al., 2006). It 

might be that longer acyl chain lead to a repositioning of the phosphate groups and thus 

alter the endotoxicity. But one has to remind that acyl chains should not be seen as stiff 

sticks but rather as flexible. Hence, they might be bent to fit into the MD-2 pocket.   

Besides underacylation, Gram-negative bacteria have evolved different strategies to 

modify the lipid A structure (Coats et al., 2009; Dixon and Darveau, 2005; Hajjar et al., 

2006; Mata-Haro et al., 2007; Price et al., 1995; Wang et al., 2004; Wang et al., 2006). 

A complete overview on possible modifications has been published by Raetz et al. 

(Raetz et al., 2007). Modification in the 1 or 4’ phosphates of lipid A have been reported 

to alter endotoxicity and/or resistance to cationic antimicrobial peptides (CAMPs) (Coats 

et al., 2009; Curtis et al., 2011; Herrera et al., 2010; Ingram et al., 2010; Mata-Haro et 

al., 2007; Wang et al., 2006). 4’ phosphatases (LpxF) have been described in R. 

leguminosarum, R. etli, P. gingivalis, H. pylori and Francisella species. Removal of the 

4’ phosphate leads to increased endotoxicity (Coats et al., 2009; Cullen et al., 2011), 

decreased resistance to CAMPs (Cullen et al., 2011; Ingram et al., 2010) and in case of 

Francisella and H. pylori to reduced virulence (Cullen et al., 2011; Kanistanon et al., 

2011; Wang et al., 2006). 1 phosphatases (LpxE) have been identified in H. pylori, P. 

gingivalis, R. etli and others (Coats et al., 2009; Cullen et al., 2011; Ingram et al., 2010; 

Tran et al., 2004; Tran et al., 2006; Wang et al., 2004). Removal of the 1 phosphate 

leads to a slightly increased endotoxicity (Coats et al., 2009) and CAMP sensitivity 

(Ingram et al., 2010). After dephosphorylation, the 1 and 4’ positions can be further 

modified. H. pylori is known to add a phosphoethanolamine (P-Etn) to the 1 position of 
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lipid A (Cox et al., 2003; Kim et al., 2006; Tran et al., 2004). This happens via a two-

step mechanism, which first involves 1 dephosphorylation by LpxE and subsequent P-

Etn transfer by a phosphoethanolamine transferase (EptA) (Tran et al., 2004). 

The variety of lipid A modifications reflects the different niches colonized by bacteria. 

Still, most lipid A modifications might reduce endotoxicity, but other examples have 

been described as well (Dixon and Darveau, 2005). The tight regulation of some 

enzymes leading to changes in lipid A in function of pH, temperature or other host 

related parameters highlights the role of lipid A modifications in pathogenesis 

(Dentovskaya et al., 2008; Dixon and Darveau, 2005; Suomalainen et al., 2010). In the 

bacterial membrane, phosphates of neighbouring lipid A are bridged by divalent cations 

(likely Mg2+), leading to increased membrane stability (Kim et al., 2006). The lateral 

stability of the outer membrane hence is largely dependent on the presence of lipid A 

phosphate that can be glued with a divalent cation. It can be guessed that some 

modifications on the lipid A phosphates might thus influence membrane stability and will 

only be induced in favourable conditions.  
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1.1.3 LPS part 2: the core-oligosaccharide 

The core-oligosaccharide structure is divided into two regions, the inner core (adjacent 

to the lipid A) and the outer core, to which the O-antigen is attached. Mucosal 

pathogens often lack the O-antigen, and produce instead lipooligosaccharides (LOS), 

which consist of mono- or oligosaccharide branches attached to the inner core (Raetz 

and Whitfield, 2002a). 

The inner part of the core-oligosaccharide is rather well conserved within a genus or a 

family. The only sugar present in all known inner-core structures is the Kdo (3-deoxy-D-

manno-oct-2-ulosonic acid), which is linked to the lipid A backbone (5’ position). In very 

few bacteria Kdo is replaced by a derivative (Ko, D-glycero-D-talo-oct-ulosonic acid) 

(Brade, 1999). In most cases a second Kdo is linked to the first, which is then often 

followed by L-glycero-D-mannoheptose residue(s) (Brade, 1999; Raetz and Whitfield, 

2002a).This basic structure is modified by addition of other sugars, with phosphates, 

pyrophosphoethanolamines or phosphorylcholines attached. These various possibilities 

lead to heterogeneity in inner core structures, while within a genus or family the 

structure of the inner core tends to be pretty much conserved (Raetz and Whitfield, 

2002a). 

The outer core is structurally more diverse, following the trend that structures more 

exposed to the environment tend to be less conserved. But within a genus only limited 

structural variation exists (Brade, 1999; Raetz and Whitfield, 2002a). In E. coli five core-

types are known. They vary not exclusively but predominantly in the outer core (Raetz 

and Whitfield, 2002a). 

The role of the core in membrane stability was highlighted by studies of E. coli and S. 

enterica deep-rough mutants lacking the core (except for the Kdo which is vital and 

added to the lipid A before completion of its biosynthesis) (Nikaido and Vaara, 1985; 
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Schnaitman and Klena, 1993). The membrane stability was shown to be dependent on 

phosphate groups of the core-oligosaccharide, which are used to cross-link adjacent 

LPS molecules via divalent cations (just like the lipid A phosphates) (Nikaido and 

Vaara, 1985). 

The (inner) core of E. coli was recently shown to be sufficiently close to residues of 

TLR4 and MD-2 to establish interactions with TLR4 and MD-2 (Park et al., 2009). As it 

is generally reported that the lipid A is sufficient for endotoxicity (Rietschel et al., 1994), 

the importance of inner core interactions with TLR4  in E. coli lipid A binding to TLR4 

seems thus not obvious. The reported differences in endotoxicity of the lipid A and LPS 

for some bacteria (Kumada et al., 2008; Swierzko et al., 2000) were so far contributed 

only to changes in solubility in water. Even if the LPS-core has so far never been shown 

to play a major role in TLR4 binding of a specific lipid A, there is some evidence that the 

core is directly involved in the multistep process involving LBP, CD14, MD-2 and TLR4 

(Gomery et al., submitted; Muller-Loennies et al., 2003). 

 

1.1.4 LPS part 3: O-antigen structures 

LPS structures containing an O-antigen, called smooth LPS (S-LPS), are typically 

produced by Enterobacteriaceae, Pseudomonaceae, Pasteurellaceae, Vibrionaceae 

and many other Gram-negative bacteria (Raetz and Whitfield, 2002b). A tremendous 

diversity of O-antigens exists, which is based on more than 60 different sugars and 30 

different non-sugar compounds (Brade, 1999; Knirel and Kochetkov, 1994). The O 

antigen is synthesized independently of the lipid A-core (Raetz, 1990b). Prior to 

transport to the surface the O-antigen and the lipid A-core part are ligated in the 

periplasm. Three pathways have been described for LPS biosynthesis and 

translocation (see Fig. 3). They are distinguished by the export mechanism and are 
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called Wzy-dependent (Fig. 3 A), ATP-binding cassette (ABC)-transporter dependent 

(Fig. 3 B) and synthase dependent (Fig. 3 C) (Raetz and Whitfield, 2002b). The Wzy-

dependent export pathway is characterized by the formation of undecaprenyl 

pyrophosphate-linked repeat units in the cytoplasm. These units are then further 

polymerized block-wise at the periplasmic face of the inner membrane resulting in a 

polymer, which is transported across the outer membrane through a protein-machinery 

likely resembling the capsular export system formed by Wza in E. coli (Paulsen et al., 

1997; Raetz and Whitfield, 2002b). In the ABC-transporter dependent pathway the 

complete O-chain is assembled in the cytoplasm. Such linear O-polysaccharide chains 

that are linked as well to undecaprenyl pyrophosphate grow by stepwise addition of 

single glycosyl residues to the non-reducing end. This process seems to be 

independent of a specific polymerase (Raetz and Whitfield, 2002b). Finally, the polymer 

is transported across the inner membrane dependent on the ABC-transporter (formed 

of WecA, Wzm and Wzt in E. coli) and subsequently across the outer membrane, 

presumably involving a similar pathway as in the Wzy-dependent export. The synthase-

dependent export is branded by a single enzyme, the integral membrane protein 

synthase that performs synthesis and export across the inner membrane (Raetz and 

Whitfield, 2002b). The transport across the outer membrane likely involves the same 

machinery as in the other pathways. 
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The O-antigen generally consists of several repeats of an oligosaccharide called the O 

repeat unit or O-unit. The O-units vary in monomer content, the position and 

stereochemistry of the linkages and presence of modifications. The O-unit can be linear 

or branched, composed of only one sugar (homopolymer) or more frequently of several 

sugars (heteropolymer). The O-antigen variation within species provides the main basis 

for serotyping. In E. coli around 170 different serotypes have been identified, in S. 

enterica 46 serogroups have been described (Raetz and Whitfield, 2002b). While most 

bacterial isolates express only one O-antigen, for some bacteria more than one LPS 

type has been identified (Lam et al., 2011; Raetz and Whitfield, 2002a). Some bacteria 

further contain lipid A-core linked polysaccharides, which are not called LPS, but are 

referred as capsules. In which case the lipid A-core attached form is referred as capsule 

or LPS does not follow a strict rule but rather depends on the size and likely on the 

history of identification. In E. coli, lipid A-core has been shown to anchor O-antigens, 

one form of the Enterobacterial common antigen polymer as well as some of the group 

1 and 4 capsules (Kuhn et al., 1988; Whitfield, 2006). 

The O-polysaccharide can be a virulence factor contributing to serum resistance 

(Murray et al., 2003; Murray et al., 2005; Murray et al., 2006; Nesper et al., 2001; 

Nesper et al., 2002; Pluschke et al., 1983a; Pluschke et al., 1983b; Raynaud et al., 

2007; Slaney et al., 2006; Ugalde et al., 2000; West et al., 2005). O-antigen deficient 

strains of different bacteria have generally reduced virulence compared to the wt strains 

producing the complete LPS (Raynaud et al., 2007; Ugalde et al., 2000). Studies in E. 

coli and S. enterica reported a correlation between O-antigen length and resistance to 

complement (Bravo et al., 2008; Burns and Hull, 1998; Murray et al., 2003; Murray et 

al., 2005; Porat et al., 1992). Long chain S-LPS seems to prevent assembly of the 

membrane attack complex and thus protects from complement dependent killing. 



Introduction 

- 19 - 

 

1.1.5 Capsular polysaccharides and exopolysaccharides 

The outermost layer of many Gram-negative (and positive) bacteria is formed by 

capsules or exopolysaccharides. Capsules are exported across the inner membrane by 

one of the three pathways identified in LPS transport (Wzy-, ABC- or synthase-

dependent).  Capsules may share the same repeat units as the O-antigen. In E. coli 

these O-antigens are classified as type-1 and 4 capsules. While these capsules 

probably share common repeat-unit donors and polymerization machinery (like the 

Wzx/Wzy/Wzz system) with the LPS O-antigen, they use a separate translocation 

system across the outer membrane. In E. coli this system involves Wza, which forms a 

multimeric putative translocation channel (Whitfield, 2006). Other capsules are made 

out of sugars not related to the O-antigen. In E. coli they are classified as type-2 and 3 

capsules (Whitfield, 2006). Capsular polysaccharides not made out of O-antigen repeat 

units require a different polymerization and outer membrane translocation machinery 

(Whitfield, 2006). A well-studied example of a E. coli type-2 capsule is the K1 antigen, a 

polysialic acid capsule, which was shown to contribute to neonatal meningitis 

(Bonacorsi et al., 2001; Mushtaq et al., 2004).  As for the O-antigens a huge diversity of 

capsular polysaccharides exists. Single strains of Bacteroides fragilis have been 

reported to produce 2 or even three different capsular polysaccharides, which 

contribute to formation of intra-abdominal infections (Baumann et al., 1992; Kalka-Moll 

et al., 2001; Tzianabos et al., 1992). 

Capsules can be anchored into the outer membrane by diacylglycerol or by the lipid A-

core, as explained before (Gotschlich et al., 1981; Raetz and Whitfield, 2002a). For 

many capsules the anchor has not been identified. In which case the lipid A-core 

attached form is called capsule or LPS depends on the size and likely on the history of 
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identification. Lipid A linked polysaccharides that have been identified by a capsular 

staining technique (like China ink) might be referred to as capsule, even if the later 

identified lipid A linker allows its classification as a LPS.  

Exopolysaccharides are glycan polymers that are not anchored in the (outer) 

membrane. In P. aeruginosa an extracellular polymer substance containing a 

polysaccharide has been reported to be important in biofilm formation and thus 

pathogenesis (Ryder et al., 2007). Several exopolysaccharide structures of E. coli play 

as well a role in biofilm formation (Branda et al., 2005). 
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1.1.6 Known Capnocytophaga surface polysaccharide structures 

The structure of lipid A of Capnocytophaga spp bacteria has so far not been 

investigated in detail. Only fatty acids present in the LPS of some Cytophaga strains 

have been identified as [13-Me-14:0 (i15:0), 13-Me-14:0(3-OH)(i15:0(3-OH), 16:0(3-

OH) and 15-Me-16:0(3-OH) (i17:0(3-OH) (Ratledge and Wilkinson, 1988; Rosenfelder 

et al., 1974). The phylogenetically closest bacterium, in which the lipid A was 

characterized in detail, is Elizabethkinga meningoseptica (former Flavobacterium 

meningosepticum), which belongs to the Flavobacteriaceae (Tanamoto et al., 2001). 

The phylogenetic relatedness is in agreement with structural similarities between lipid 

A’s of E. meningoseptica, P. gingivalis (Kumada et al., 1995), Bacteroides fragilis 

(Weintraub et al., 1989), and, as it will be shown here, also of C. canimorsus. 

C. ochracea was shown to possess an immunosuppressive exopolysaccharide 

containing large amounts of mannose with lesser quantities of glucose, galactose, 

glucuronic acid, and glucosamine (Bolton et al., 1985; Dyer and Bolton, 1985). This 

exopolysaccharide was found free of protein, nucleic acid, and lipopolysaccharide. 
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1.2 Pathogenesis of Capnocytophaga canimorsus  

 

Since 1976 there have been numerous case reports about severe sepsis or meningitis 

in humans after dog bites or scratches (Bobo and Newton, 1976; Brenner et al., 1989; 

Lion et al., 1996; Pers et al., 1996). The bacterium causing these dramatic infections 

was identified as Capnocytophaga canimorsus (former dysgenic fermenter 2, DF-2) 

(Bobo and Newton, 1976). C. canimorsus belong to the family of Flavobacteriaceae in 

the phylum Bacteroidetes and are usual members of dog’s mouth flora (Bailie et al., 

1978; Blanche et al., 1998; Brenner et al., 1989; Mally et al., 2009; Manfredi et al., 

2011a)}. Human infections are rare and occur with an approximate frequency of one 

case per million inhabitants and year (Pers et al., 1996). 

Previous studies have shown that macrophages infected with C. canimorsus 5, a strain 

isolated from a patient with fatal septicemia (Shin et al., 2007), fail to release 

proinflammatory cytokines (Shin et al., 2007). By virtue of the LPS and/or a capsule, C. 

canimorsus are also able to escape complement killing (Shin et al., 2009). They further 

resist killing by human polymorphonuclear leukocytes and macrophages (Meyer et al., 

2008). Besides this passive evasion strategy, live but not heat-treated C. canimorsus 

bacteria have been shown to inhibit nitric oxide (NO) and TNF# release by LPS 

stimulated murine macrophages (Shin et al., 2007). Further, C. canimorsus has been 

reported to feed on eukaryotic glycoproteins at the surface of animal cells, including 

phagocytes (Mally et al., 2008; Manfredi et al., 2011b; Renzi et al., 2011). This 

deglycosylation is achieved by a multi-protein complex encoded by a polysaccharide 

utilization locus (PUL) (Renzi et al., 2011). PULs are a hallmark of the Cytophaga-

Flavobacteria-Bacteroides group (Martens et al., 2008; Martens et al., 2009) and the 
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archetype of the feeding system they encode is the Bacteroides thetaiotaomicron starch 

utilization system (Sus). Sus consists of a complex of surface-exposed and periplasmic 

proteins and lipoproteins devoted to starch foraging. SusG, an #-amylase, hydrolyses 

starch bound by SusC and SusD. The so generated starch-oligosaccharides are then 

transported via the TonB dependent transporter SusC into the periplasm for further 

breakdown (Anderson and Salyers, 1989; Reeves et al., 1997; Shipman et al., 2000). 

PULs characteristically encode a complex of surface exposed lipoproteins, a TonB-

dependent transporter and further lipoproteins oriented towards the periplasm. Some of 

the periplasm- and/or surface-facing lipoproteins are glycosyl hydrolases, while others 

play a role in binding of a specific substrate. The genome of C. canimorsus 5 (Cc5) 

contains 13 PULs (Manfredi et al., 2011a; Manfredi et al., 2011b). Some have been 

studied in detail. PUL5 was shown to encode a system devoted to deglycosylation of N-

linked glycan glycoproteins and called Gpd (Renzi et al., 2011). Gpd proteins have 

been shown to be surface-exposed and to co-purify as a group, together with sialidase 

SiaC (Manfredi et al., 2011b). For other PULs-encoded feeding systems, the enzymatic 

activity remains to be found. 
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Abstract 

 

Capnocytophaga canimorsus is a usual member of dog's mouths flora that causes rare 

but dramatic human infections after dog bites. We determined the structure of C. 

canimorsus lipid A.  The main features are that it is penta-acylated and composed of a 

”hybrid backbone“ lacking the 4’ phosphate and having a 1-P-Etn at GlcN. C. 

canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. 

canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. 

This represents the first example in which the core-oligosaccharide dramatically 

increases endotoxicity of a low endotoxic lipid A. The binding to human MD-2 was 

dramatically increased upon presence of the LPS core on the lipid A, explaining the 

difference in endotoxicity. Interaction of MD-2 or LBP/CD14 with the negative charge in 

the Kdo of the core might be needed to form the MD-2 – lipid A complex in case the 4’ 

phosphate is not present. Overall the properties of the lipid A-core may explain how this 

bacterium first escapes recognition by receptors of the innate immune system, but 

nevertheless is able to provoke a shock at the septic stage. 

 

 

 

Author summary 

 

Capnocytophaga canimorsus, a commensal bacterium in dogs mouths, causes rare but 

dramatic infections in humans that have been bitten by dogs. The disease often begins 

with mild symptoms but progresses to severe septisemia. The lipopolysaccharide 

(LPS), composed of lipid A, core and O-antigen, is one of the most pro-inflammatory 
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bacterial compounds. The activity of the LPS has so far been attributed to the lipid A 

moiety. We present here the structure of C. canimorsus lipid A, which shows several 

features typical for low-inflammatory lipid A. Surprisingly, this lipid A, when attached to 

the core-oligosaccharide was far more pro-inflammatory than lipid A alone, indicating 

that in this case the core-oligosaccharide is able to contribute significantly to 

endotoxicity. Our further work suggests that a negative charge in the LPS-core can 

compensate the lack of such a charge in the lipid A and that this charge is needed not 

for stabilization of the final complex with its receptor but in the process of forming it. 

Overall the properties of the lipid A-core may explain how this bacterium first escapes 

the innate immune system, but nevertheless can cause a shock at the septic stage. 

 

 

 

Introduction 

 

Capnocytophaga canimorsus, a usual member of dog's mouths flora [1] was 

discovered in 1976 [2] in patients who underwent dramatic infections after having been 

bitten, scratched or simply licked by a dog. The most common syndrome is sepsis, 

sometimes accompanied by peripheral intravascular coagulation and septic shock [3]. 

C. canimorsus is a Gram-negative rod belonging to the family of Flavobacteriaceae in 

the phylum Bacteroidetes [4, 5].  Human infections occur, worldwide, with an 

approximate frequency of one per million inhabitants per year [6].  

C. canimorsus are able to escape complement killing and phagocytosis by 

human polymorphonuclear leukocytes and macrophages [7, 8]. Whole bacteria are also 

poor agonists of Toll-like receptor (TLR) 4, which results in a lack of release of pro-
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inflammatory cytokines by macrophages [9]. In addition to these “passive” features, C. 

canimorsus have been shown to harvest glycan moieties from glycoproteins at the 

surface of animal cells, including phagocytes [10-12], in addition they also 

deglycosylate human IgG [12].  

One of the most pro-inflammatory bacterial compounds is the lipopolysaccharide 

(LPS, endotoxin) [13], consisting of three domains: lipid A, the core oligosaccharide and 

the O-polysaccharide (O-antigen). As a potent activator of the innate immune system, 

LPS can induce endotoxic shock in patients suffering from septicemia. Recognition of 

LPS by the host occurs via the TLR4/MD-2/CD14 receptor complex [14-16], at which 

two proteins, cluster of differentiation antigen 14 (CD14) and LPS-binding protein 

(LBP), have been shown to enhance the response to LPS by transporting single LPS 

molecules [17-20]. It has been shown that the lipid A  moiety of the LPS is sufficient for 

TLR4 binding and stimulation [21, 22]. The interaction of  lipid A and its receptor was 

unravelled by x-ray crystallography pioneering studies of complexes between myeloid 

differentiation factor 2 (MD-2) and the lipid A analog Eritoran [23] or lipid IVA [24].  The 

identification of the binding sites of lipid A to MD-2 and also to the LRR-domains of 

TLR4 [21] is a landmark achievement that enables a deeper understanding of the 

structure-function relationship between LPS/lipid A and its receptors. According to 

these data, the 1 and 4’ phosphates of the lipid A backbone, which form charge 

interactions with TLR4 and MD-2, are the  key elements for receptor activation [21, 25], 

even though for some of the interactions conflicting data have been reported [26]. It 

was further shown that the "-hydroxymyristate chain at position 2 forms hydrogen 

bonds and hydrophobic interactions with TLR4. At present, there is no evidence that the 

LPS-core plays any major role in binding to TLR4;  only a 10- to 100-fold difference in 

endotoxicity of lipid A and LPS has been reported for E. coli, Porphyromonas gingivalis 
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or Proteus mirabilis [27, 28], but these small differences could be attributed to 

differences in solubility. The core-oligosaccharide has so far never been shown to alter 

TLR4/MD-2 binding of a specific lipid A, only slight changes in MD-2 binding have been 

reported [29]. 

In this work, we investigated the lipid A structure of C. canimorsus in order to clarify its 

contribution to the septicemia and shock provoked by these bacteria. Very few lipid A 

structures have actually been solved in the Cytophaga/Flavobacterium group, with the 

exception of the lipid A from Elizabethkingia meningoseptica (former Flavobacterium 

meningosepticum) [30]. Already some time ago, the fatty acids present in the LPS of 

Cytophaga bacteria have been identified as [13-Me-14:0 (i15:0), 13-Me-14:0(3-

OH)(i15:0(3-OH), 16:0(3-OH) and 15-Me-16:0(3-OH) (i17:0(3-OH)] [31]. Here we show 

that lipid A of C. canimorsus consists of the penta-acylated hybrid backbone "-D-

GlcN3N’-(1’$6)-#-D-GlcN where the 4’ phosphate group is missing and the 1 

phosphate is linked to a ethanolamine group,  forming a phosphoethanolamine (P-Etn). 

Not unexpectedly, this lipid A was of very low endotoxicity but, surprisingly, when bound 

to the core (lipid A-core, LA-core) it became 20,000 fold more endotoxic.  In agreement 

with this observation, we show that the LPS core promotes the binding of C. 

canimorsus lipid A to MD-2. This is the first example of a core-oligosaccharide 

dramatically changing the endotoxicity of lipid A, in which the carboxy group of Kdo 

probably takes over the function of ionic binding of the missing 4’ phosphate. 
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Results 

Compositional analyses of lipid A. 2-Amino-2-deoxy-D-glucose (GlcN) and 2,3-

diamino-2,3-dideoxy-D-glucose (GlcN3N) were found in a ratio of approx. 2:1 (table I). 

Based on the notion that by GLC analysis synthetic GlcN3N expressed a response 

factor of about 50% when compared with GlcN (or GalN as internal standard), it was 

inferred that GlcN and GlcN3N are present in equimolar amounts in the lipid A 

backbone, suggesting the presence of a “hybrid backbone” in C. canimorsus lipid A 

(table I). Total fatty acid analysis revealed i15:0, i15:0(3-OH), 16:0(3-OH), and i17:0(3-

OH) in a molar ratio of 1:1:1:2 in lipid A preparations. Analysis of ester-bound fatty acids 

indicated the presence of i15:0 and i15:0(3-OH) in approximately equimolar amounts, 

indicating that one 16:0(3-OH) and two i17:0(3-OH) residues are primary fatty acids N-

linked to the lipid A backbone (table I). This result suggests a penta-acylated lipid A 

species. 

 

HPLC and MS analyses of lipid A. The reversed phase HPLC profile of the lipid A 

sample is shown in Figure S1. Peak 2 expressed a molecular ion at m/z 1716.30, which 

is in excellent agreement (!m = 0.3 ppm) with a lipid A containing i15:0, i15:0(3-OH), 

16:0(3-OH), and two moles of i17:0(3-OH) attached to the lipid A backbone (GlcN3N-

GlcN), which also carries one P-Etn residue. The second major fraction (peak 5) at m/z 

1594.29 was compatible with lipid A lacking the P-Etn. Based on peak intensities 

(peaks 2 and 5) about 40% of the P-Etn was liberated, most likely from the lipid A under 

the hydrolysis conditions used (Fig. S1).  

All lipid A fractions investigated expressed a certain heterogeneity with respect 

the chain length of fatty acids (-CH2- groups), as all mass spectra (MS) showed peak 



Lipid A 

- 43 - 

“clusters” differing by 14 u, thus suggesting fatty acid heterogeneity (table II, Fig. S2). 

GLC-MS analysis of the fatty acid revealed that the mass difference of !m = 14 u was 

not due to the exchange of one single, prominent shorter fatty acid [e.g. 16:0(3-OH) $ 

i15:0(3-OH)]. Instead, the lipid A showed a certain structural “fuzziness” with respect to 

the size and position of the individual fatty acids, which, according to this finding, 

appeared to be statistically distributed over all positions with no specific structural 

variation. 

The ESI-MS data of the wt strain shown in table II indicated identical mass at m/z 

1716.30 for peaks 2 and 3. As these lipid A fractions differed in their retention time, we 

conclude that they represent different structural isomers as they could be baseline-

separated by HPLC. This HPLC analysis in combination with ESI-MS data thus shows 

that structural heterogeneity might not be solely related to the chain length of one fatty 

acid, but also to its position within the lipid A backbone.  

In order to allocate the type of the hybrid lipid A backbone, the fatty acid 

distribution over the lipid A backbone, and the attachment side of the P-Etn, 

electrospray-ionization Fourier transform ion-cyclotron resonance (ESI FT-ICR) MS/MS 

mass spectrum in the positive mode was run [32]. The triethylammonium (TEN) salt of 

HPLC purified lipid A at m/z 1820.40 was selected as precursor ion (Fig. S3).  Infrared 

multiphoton dissociation (IRMPD)-MS/MS generated one abundant characteristic B-

fragment oxonium-ion of the non-reducing end at m/z 907.77 which is in excellent 

agreement with the mass value calculated for GlcN3N with i15:0, 16:0(3-OH), and 

i17:0(3-OH) attached (m/z 907.77). This fragmentation pattern also showed that P-Etn 

is attached at the reducing end - most likely at position C-1. Thus the lipid A in C. 

canimorsus is penta-acylated with an acylation pattern of three being attached to the 
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“non-reducing” GlcN3N’ and two to the reducing GlcN sugar (3+2) in the lipid A hybrid 

backbone. 

 

NMR analysis of lipid A. The lipid A was studied further by high-field nuclear magnetic 

resonance (NMR) spectroscopy using correlation spectroscopy (COSY), TOCSY, 

ROESY 1H,13C-HSQC, 1H,31P-HMQC, and  1H,31P-HMQC-TOCSY experiments. The 

results are depicted in the supplement (supplementary table I). The 1H,13C-HSQC 

spectrum (Fig. 1) showed two H-1,C-1 cross-peaks at $ 4.28/103.4 and 5.29/92.8 for 

GlcN3N’ and GlcN, which were distinguished by correlations between protons at 

nitrogen-bearing carbons and the corresponding carbons (C-2’ and C-3’ of GlcN3N’ and 

C-2 of GlcN, at $ 52.9, 54.6, and 51.4, respectively). 3J1,2 coupling constants of 8.0 and 

2.9 Hz for the H-1 signals at $ 4.28 and 5.29, were determined from the 1H NMR 

spectrum and showed that GlcN3N is !- and GlcN #-linked. The H-1 signal of #-GlcN 

was additionally split due to coupling to phosphorus (2J1,P 7.9 Hz), thus indicating that 

#-GlcN is phosphorylated with P-Etn and !-GlcN3N’ occupies the “non-reducing” end of 

the lipid A backbone. The !1’%6-linkage between the two amino sugars was evident 

from strong cross-peaks of H-1’ of Gl%N3N’ with protons H-6a’,6b’ of Gl%N at $ 3.64 and 

3.87 in the ROESY spectrum. The location of the P-Etn residue at position 1 of #-GlcN 

was further confirmed by 1H,31P-HMQC and 1H,31P-HMQC-TOCSY (Fig. S4) as well as 

ROESY experiments, which showed correlations between H-1 of Gl%N at $ 5.29 and H-

1a,1b of Etn at $ 3.91 and 3.98. In accordance with the 1’%6 linkage and the position of 

GlcN3N at the “non-reducing end”, the 13C NMR spectrum (supplementary table I) 

displayed a typical down-field displacement by ~10 ppm for C-6 of the 6-substituted 

GlcN  ($ 71.0; compared with $ 60.0 for C-6 of GlcN3N’, which is non-substituted in the 

free lipid A). The acylation pattern was confirmed by 1H,13C-HSQC spectroscopy (Fig. 



Lipid A 

- 45 - 

1), which showed only one characteristic downfield shift due to a deshielding effect for 

the i17:0[3-O(i15:0)]R2’ i.e. the H-3R2’/C-3R2’ cross-peak at $ 4.95/70.7. This finding 

indicated that only the OH-group of i17-0(3-OH) is acylated giving rise to an acyloxyacyl 

residue [i17:0-3-O(i15:0)] and that the 3+2 type fatty acids distribution in the penta-

acylated lipid A, which is in good agreement with the MS data (Figs. S2 and S3). Taking 

together the data of the chemical studies defines the structure of the lipid A of C. 

canimorsus shown in Figure 2 A. The structure of E. coli hexa-acylated lipid A is 

depicted for comparison (Fig. 2 B). The E. coli lipid A consists of a "-(1’$6)-linked GlcN 

disaccharide that is phosphorylated at positions 1 and 4’ and carries four (R)-3-

hydroxymyristate chains (at positions 2’, 3’, 2 and 3). The 2’ and 3’ 3-hydroxylated acyl 

groups in GlcN’ are further esterified with laurate and myristate, respectively [22]. 

 

C. canimorsus LPS core features only one Kdo. The structure of C. canimorsus LA-

core is depicted in Figure 2 C and its structural analysis will be described elsewhere 

(Zähringer et al., manuscript in preparation). The C. canimorsus LPS core features only 

one Kdo, to which a phosphoethanolamine (P-Etn) is attached in position 4. Usually, 

mono-Kdo LPS-core have a phosphate attached to the Kdo at that position. Thus, the 

only net negative charge in the core oligosaccharide originates from the carboxy-group 

of the Kdo. The inner core continues with two mannoses (Man) to which another P-Etn 

is attached in position 6 of ManI residue in the core oligosaccharide. The outer core 

consists of Galactose (Gal) and L-Rhamnose [to which the O-antigen is attached (U. 

Zähringer, unpublished results)]. A positively charged Galactosamine (GalN) residue is 

linked to the second Man residue in position 6.  
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The structure identified matches the C. canimorsus genome. E. coli lipid A 

biosynthesis has been unravelled in detail [22, 33]. Analyzing the genome of C. 

canimorsus 5 [5], we identified the genes required for the synthesis of lipid A-Kdo [33]. 

Only lpxA, lpxA’, lpxC and lpxD seem to cluster in one operon, the other genes are 

dispersed (Fig. 3 A).  The difference in acylation of the 3’ and 3 position and the hybrid 

backbone of the lipid A consisting of a "-1’,6-linked GlcN3N’-GlcN disaccharide, 

suggests that two lpxA genes might be present in C. canimorsus  and indeed two lpxA 

genes were identified (termed lpxA and lpxA’) in the C. canimorsus 5 genome  (Fig. 3 

A). In Acidithiobacillus ferrooxidans GnnA and GnnB are responsible for the 

biosynthesis of GlcN3N [34]. Based on the sequences of A. ferrooxidans, gnnA and 

gnnB could be identified in the genome of C. canimorsus (Fig. 3 A). In the biosynthetic 

pathway of E. coli lipid A, enzyme LpxM adds the acyloxyacyl-residue [14:0-3-O(14:0)] 

representing the 6th acyl chain [22].  In good agreement with the penta-acylation of lipid 

A in C. canimorsus 5 was our finding that lpxM could not be identified in the genome 

(Fig. 3 A). C. canimorsus LPS core features only one Kdo, suggesting a mono-

functional Kdo transferase (WaaA/KdtA) or a Kdo hydrolase two-protein complex 

(KdoH1/2) as in Helicobacter pylori or Francisella novicida [35, 36]. Searches with 

KdoH1/2 did not hit any gene in the C. canimorsus 5 genome. Therefore, C. 

canimorsus possesses either a mono-functional WaaA or a KdoH1/2 complex without 

significant sequence similarity to known Kdo hydrolases. We have further investigated 

the enzymes leading to the addition of an ethanolamine (Etn) at the 1 phosphate of lipid 

A. In H. pylori, the addition of a P-Etn at 1 position has been proposed to result from a 

two-step mechanism [37]. In a first step the 1 phosphate is removed by a phosphatase 

(LpxE), and subsequently a P-Etn-transferase (EptA or PmrC, YjdB) adds a P-Etn to 

the 1 position of lipid A [37] (Fig. 3 B). In H. pylori lpxE and eptA are encoded by one 
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operon (Hp0021-Hp0022). C. canimorsus eptA was annotated as Ccan 16950. Search 

for a lipid A phosphatase were based on lpxE and/or lpxF sequences from P. gingivalis 

[38], F. novicida [39], Rhizobium etli [40] H. pylori [37] and on all available 

Bacteroidetes-group pgpB sequences. Three lpxE/F candidates have been found in the 

C. canimorsus 5 genome (Ccan16960, Ccan14540 and Ccan6070). All candidates 

were deleted and the mutated bacteria were tested for endotoxicity. Only deletion of 

Ccan16960 affected endotoxicity (data not shown). Interestingly, Ccan16960 is located 

within the same operon as eptA and the two genes overlap by 20 bp. Following the 

operon organisation of H. pylori, Ccan16960 has been annotated as lpxE. The 

predicted function of lpxE and eptA was validated by KO and analysis of the resulting 

phenotype (Ittig et al., manuscript in preparation). 

The presence of the 4’ kinase LpxK and the absence of a 4’ phosphate leads to the 

assumption of the presence of a 4’ phosphatase, LpxF. Several candidate genes were 

identified (besides lpxE: Ccan 14540 and Ccan6070) and deleted but they had to be 

ruled out, as no deletion did affect the endotoxic activity (data not shown), thus, we lack 

annotation of lpxF. The proposed complete biosynthesis of C. canimorsus lipid A-Kdo is 

depicted in Figure 3 C, starting from UDP-N-acetyl-D-glucosamine and Ribulose-5 

phosphate.  

 

C. canimorsus LPS is 100-fold less endotoxic than E. coli O111 LPS. The 

endotoxic activity of wt C. canimorsus 5 LPS (S-form) was compared to the endotoxic 

activity of E. coli O111 LPS using two different approaches: (i) Purified LPS samples 

were assayed for TLR4 dependent NF&B activation with HEK293 cells overexpressing 

human TLR4/MD-2/CD14 and a secreted reporter protein (HEKBlue human TLR4 cell 

line), (ii) purified LPS samples were assayed for induction of TNF# release by human 
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THP-1 macrophages. In both assays (Fig. 4 A and Fig. 4 C) C. canimorsus LPS 

appeared to be about 100 fold less endotoxic than E. coli O111 LPS (both S-form LPS).  

 

C. canimorsus lipid A and LA-core exhibit striking difference in endotoxicity. 

Generally, the lipid A part of a LPS is considered as sufficient to trigger full TLR4 

activation. Minor differences to the LPS or LA-core might be explained by differential 

bioavailability/solubility in water. We have, therefore, examined the endotoxic activity of 

C. canimorsus lipid A, LA-core and LPS using the HEKBlue hTLR4 cell line and the 

TNF# release by human THP-1 macrophages. LPS and LA-core exhibited an 

endotoxicity in the same range, whereas the LPS was less than 10-fold more endotoxic 

than the LA-core (Fig. 4 B and Fig. 4 D). In contrast, C. canimorsus lipid A appeared to 

be absolutely non-stimulatory up to 5 µg/ml (Fig. 4 B and Fig. 4 D), around 20,000-fold 

less active than the LA-core and 200,000-fold less active than LPS on a weight basis 

(ng/ml) indicating a even higher difference on a molar basis. As the C. canimorsus LPS 

and the LA-core showed similar endotoxicity, the increase in endotoxicity in comparison 

to the lipid A must have been raised by the contribution of the core oligosaccharide. 

Minor differences in endotoxicity between LPS and LA-core as the 10- to 100-fold 

difference observed between E. coli lipid A and E. coli O111 LPS (Fig. 4 B and Fig. 4 D) 

might be explained by differential bioavailability/solubility in water/buffer.  However, 

differential bioavailability cannot account for the huge difference observed here for C. 

canimorsus lipid A and LA-core.  

 

C. canimorsus LPS core is essential for proper MD-2 binding of the lipid A. The 

increase in endotoxicity of the C. canimorsus LA-core in comparison to the lipid A must 

have been raised by the contribution of the core oligosaccharide (Fig. 4). The 4’ 
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phosphate of E. coli lipid A is known to interact with Arg264 and Lys362 of TLR4 and 

Lys58 and Ser118 of MD-2 [21]. C. canimorsus lipid A lacks the 4’ phosphate and 

features only one net negative charge in the LPS core, namely the carboxylic oxygen of 

Kdo. Based on the known structure of E. coli LPS bound to TLR4/MD-2 [3FXI, [21]] we 

measured the interaction distances from the carboxylic oxygen of Kdo to Arg264 and 

Lys362 of TLR4 and to Lys58 and Ser118 of MD-2. The carboxylic oxygen of Kdo is within 

close distance to Arg264 and Lys362 of TLR4 and Lys58 and Ser118 of MD-2 and hence 

could contribute to binding to MD-2 or TLR4. 

To assess the ability of C. canimorsus lipid A or LA-core to interact with human MD-2, 

we monitored their ability to compete with the binding of E. coli LPS-Biotin to MD-2. 

Culture supernatants of cells producing human MD-2 were incubated with biotinylated 

E. coli O111 LPS, either alone or in combination with different concentrations of a 

competitor. As a source of LBP and soluble CD14, 7.5% FCS (v/v) was added. After 

purification of LPS based on biotin, co-purification of MD-2 was monitored by Western 

blotting. C. canimorsus LA-core abolished the copurification of MD-2 with the E. coli 

LPS-Biotin at higher concentration than the positive controls, E. coli O111 LPS and lipid 

IVA but at lower concentration than unbiotinylated E. coli penta-acyl lipid A (Fig. 5 A and 

B). These results indicate that C. canimorsus LA-core binds to human MD-2, likely in 

the same pocket as E. coli LPS. This experiment does not reflect the antagonistic 

capacity of C. canimorsus LA-core as even native E. coli O111 LPS could prevent the 

co-purification of human MD-2 (Fig. 5 A and B).  In contrast to the LA-core, C. 

canimorsus lipid A did not significantly affect the copurification of MD-2 with E. coli LPS-

Biotin even at high concentration (Fig. 5 A and B). Thus, C. canimorsus lipid A seems 

not to bind to human MD-2 at all or to bind to MD-2 only very weakly, in contrast to the 

LA-core. We conclude from this experiment that the C. canimorsus LPS core promotes 
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the interaction and binding of the lipid A to MD-2 either via direct interaction with MD-2 

or via binding to LBP or CD14.   

 

The final complex of human MD-2 and lipid A of C. canimorsus would be as 

stable as MD-2 and lipid A of E. coli. In order to assess the contribution of the C. 

canimorsus LPS core in binding of the lipid A to MD-2, we modelled the binding of C. 

canimorsus lipid A to human MD-2 (Fig. 6 A) and compared it to the binding of E. coli 

lipid A. Some differences between the two complexes could be observed at the level of 

the lipid chains after just few ns of simulation (Fig. 6 A). In both cases the R3’ and R3 

chains (see Fig. 2 for nomenclature) were fully stretched and interacted with the same 

residues. No empty space was left by R3’’ (missing in C. canimorsus) because the 

longer R2’ and R2’’ chains filled the void. While in E. coli the R2 chain is stretched 

toward the inner side of the pocket, in C. canimorsus it was projected toward the pocket 

exterior, due to both i) its longer size and ii) to the presence of the bifurcated terminus 

of the close R2’’. The R2 chain of C. canimorsus lipid A was thus not completely buried 

inside the MD-2 pocket and it was even more exposed to the surface than the 

hydroxymyristate chain at position 2 in E. coli. This probably enables the i17:0(3-OH) 

chain at position 2 to interact with TLR4, as has been reported for the R2 chain of hexa-

acylated E. coli LPS [21]. It should be mentioned here that penta-acylated E. coli lipid A 

is endotoxically almost inactive [13], and the acyl chains might be completely buried 

inside MD-2.  Thus C. canimorsus penta-acylated lipid A is expected to behave 

differently from penta-acylated E. coli lipid A due to the extended length of the acyl 

chains and the bulky iso-groups. Overall the arrangement of the sugar moieties with 

respect to the MD-2 was similar for both complexes, the only major discrepancies being 

the orientation of the 1-phosphoryl group (1 phosphate in E. coli, 1 P-Etn in C. 
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canimorsus). The calculated binding energy for the two complexes was very similar 

when calculated at both MM-GBSA (molecular mechanics, the generalized Born model 

and solvent accessibility) and MM-PBSA (molecular mechanics, Poisson-Boltzmann 

solvent accessible surface area) level, being in both cases the MD-2 – E. coli lipid A 

complex slightly more stable (Fig. 6 C). To understand this trend the total binding free 

energy was fractionated into a list of interactions energies between each residue of MD-

2 and each fragment of lipid A (Fig. 6 B), as coded in Figure 2. Each pairwise binding 

free energy value has been further fractioned into its electrostatic, steric (Van der 

Waals), and solvation (polar and cavitation) components. For each term contributions 

arising from backbone and sidechain have been singled out.  In both cases the GlcN’ 

(E. coli) or the GlcN3N’ (C. canimorsus) moieties (R2’ NH group) interacted with the 

backbone carbonyl of Ser120 establishing a strong (about 4-5 kcal/mol) and persistent 

interaction. Favourable interactions were also observed between GlcN and residues 

Phe121 and Lys122. The side chain of Phe121 established a strong apolar interaction (Van 

der Waals, non-polar solvation) with the extended R3 acyl chain in both complexes. 

The hydrogen bond between the NH group of Ser120 and the carbonyl of the R3’ chain 

was found to be strong and persistent in both cases. Neither the 1 phosphate group (E. 

coli) nor the 1 P-Etn (C. canimorsus) established favourable interactions with MD-2, 

whereas the 4’ phosphate group (missing in C. canimorsus) could be accounted for the 

slightly greater stability of the MD-2 E. coli lipid A, due to the strong (about 7.5 kcal/mol) 

interaction established with both the backbone and the sidechain of Ser118 (see Fig. 6 

B). In summary, we found that in the final complex the arrangement of the sugar 

moieties with respect to the MD-2 and the calculated binding energy for the two 

complexes was very similar for E. coli lipid A and C. canimorsus lipid A. 
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C. canimorsus lipid A is no antagonist of TLR4. C. canimorsus LPS, lipid A or LA-

core were further tested for a possible antagonistic activity on the action of E. coli O111 

LPS using HEKBlue human TLR4 cells. The cells were preincubated for 3h with various 

concentrations of purified C. canimorsus lipid A, LA-core or LPS samples, then 

stimulated with 5 ng/ml E. coli O111 LPS for further 20-24h and the TLR4 dependent 

NF&B activation was measured. C. canimorsus LPS, LA-core and lipid A appeared to 

be no antagonist of E. coli O111 LPS binding to human TLR4, in contrast to the tetra-

acylated antagonist lipid IVA (Fig. 7 A and B). In a second assay, human THP-1 

macrophages were preincubated for 3h with purified C. canimorsus lipid A, LA-core or 

LPS samples at the concentration indicated. Then the THP-1 cells were stimulated with 

1 ng/ml E. coli O111 LPS for further 20 h and TNF# release was measured. C. 

canimorsus lipid A exhibited no antagonism to E. coli O111 LPS binding to human 

TLR4 (Fig. 7 D). Again lipid IVA showed the expected antagonism (Fig. 7 C and D). 

Dependent on the assay no antagonism or a very weak antagonism of C. canimorsus 

LPS was observed. This is in agreement with the notion of a partial agonist [41], which 

includes a certain degree of antagonism at sub-agonist concentration. 

All tested lipid A and LA-core fractions exhibited no activity towards human TLR2, as 

tested by HEK293 cells overexpressing human TLR2/MD-2 and a secreted reporter 

(Fig. S5). 
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DISCUSSION 

 

We showed here that C. canimorsus has a penta-acylated lipid A, a feature often 

correlated to low endotoxicity [13, 25]. In addition, the ester-bound 4’ phosphate is 

lacking. This structural feature is known to reduce the endotoxic activity by a factor of 

~100 [13], which can now be better explained based on the recent data obtained with 

x-ray crystallography on the TLR4/MD-2/LPS complex [21]. In this complex, phosphate 

groups of lipid A play a crucial role. The 4‘ phosphate is thought to bind to positively 

charged amino acids in the LRR of TLR4 (Arg264, Lys362) as well as to MD-2 (Ser118 and 

Lys58) in a well-defined manner. This ionic interaction seems to be critical for the ligand 

affinity of lipid A, enabling formation of a hexameric (TLR4/MD-2/LPS)2 complex 

necessary for signalling [21].  In the endotoxic lipid A, there is another negatively 

charged group, 1 phosphate, which binds to positively charged amino acids in the 

complex, especially in the LRR of both TLR4 and the counter TLR4, called TLR4* 

(Lys388* of TLR4*, Lys341, Lys362 of TLR4) and also to Arg122 of MD-2. In contrast to the 

4’ phosphate which binds to two proteins (TLR4 and MD-2), the 1 phosphate is involved 

in binding to three proteins in the complex (TLR4, TLR4*, and MD-2), suggesting that 

this group might be even more important for the formation of a stable hexameric 

(LPS/TLR4/MD-2)2 complex, as has been reported [42]. We showed in this work that 

the lipid A of C. canimorsus contains a P-Etn group at position 1, thus neutralizing the 

negative charge of the 1 phosphate group. Therefore, we propose that such modified 

phosphorylation may exert a “shielding effect” on the negative charge of the phosphate 

and, hence, can explain why the lipid A of C. canimorsus is significantly reduced in its 

endotoxic activity. 
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The lipid A structure of C. canimorsus is similar to that of the closely genetically 

related E. meningoseptica with respect to the nature and position of the fatty acids [30]. 

As reported for E. meningoseptica, we also found some heterogeneity with respect to 

the nature of the amino sugar at the non-reducing end in the lipid A backbone, but it 

was significantly lower (2-5% in C. canimorsus compared to ~ 30% in E. 

meningoseptica) [30]. It has to be pointed out that this structural modification has no 

influence on the biological activity of lipid A, as it was shown for Campylobacter jejuni 

[43]. The Etn substitution at position 1 of C. canimorsus lipid A is however not present 

in E. meningoseptica [30]. One might thus expect that the lipid A of C. canimorsus is 

less endotoxic than that of E. meningoseptica. To confirm this suggestion a 

comparative study of lipid A of both species must be carried out. Since the genus 

Capnocytophaga belongs to the Bacteroidetes phylum [44], it is also not surprising that 

the structure of lipid A from C. canimorsus shares some important traits involved in 

specific TLR4 and MD-2 binding with the structure of Bacteroides fragilis lipid A, which 

we determined earlier [45]. In particular, the lipid A’s from both bacteria are (3+2) penta-

acylated, lack the 4’ phosphate and share iso-branched fatty acids, including i15:0, 

16:0(3-OH), and i17:0(3-OH).  

In agreement with its structural traits, C. canimorsus lipid A was shown here to 

exhibit a very low activity towards human TLR4. C. canimorsus LPS and LA-core are 

100- respectively 1000- fold less endotoxic than E. coli O111 LPS, which reminds the 

activity of the closely related lipid A of E. meningospetica [30]. However, in contrast to 

what was shown in Capnocytophaga ochracea [46], C. canimorsus LPS and lipid A 

were found not to antagonize the action of E. coli LPS on human TLR4.  

The endotoxicity of the C. canimorsus LPS is probably reduced to the level, 

which is tolerable in the dog mouth.  This reduced endotoxicity may probably explain 
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why the disease in humans often begins with mild symptoms [2, 6, 47] and finally 

progresses to severe septicaemia with shock and intravascular coagulation. Features of 

the LPS could therefore account for initial evasion of C. canimorsus from the host 

immune system, while the same LPS might later on induce the endotoxic shock. 

 

E. coli lipid A and O111 LPS exhibit a 10- to 100-fold difference in endotoxicity 

and similar findings were made for P. gingivalis or Proteus mirabilis [27, 28]. The lipid A 

from E. meningoseptica also shows only minor differences in TLR4 activation to its LPS 

[30]. In contrast, we found that C. canimorsus lipid A was around 20,000 fold less 

endotoxic than the LA-core, even higher when compared on a molar basis, suggesting 

an important role of the core-oligosaccharide in TLR4/MD-2 binding and activation. This 

indicates the importance of the LPS core for TLR4 activation in the case of C. 

canimorsus, which has a lipid A devoid of a net negative charge. The C. canimorsus 

LPS core exhibits only one unshielded negative charge, on the carboxylic oxygen of 

Kdo. The negative charged carboxyl-group of Kdo in the C. canimorsus core could 

therefore directly participate in TLR4 or MD-2 binding, besides the reported inner core 

interactions with TLR4/MD-2 [21]. We found that the MD-2 binding ability of C. 

canimorsus lipid A is strongly reduced compared to the LA-core. This finding could 

explain the difference in endotoxicity, as a lipid A not properly bound to MD-2 cannot 

activate TLR4. It seems as if the C. canimorsus LPS core interacts with CD14, LBP or 

MD-2 and thus enables the binding to MD-2. By molecular modeling C. canimorsus lipid 

A was predicted to bind MD-2 in a very similar way as E. coli lipid A  and the calculated 

binding energy for the two complexes was similar. As the energetic state of the final 

complex would therefore be stable and favourable in the case of C. canimorsus lipid A, 

we propose that the interactions of the LPS core with MD-2 (or LBP/CD14) preceed the 
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final lipid A – MD-2 binding, rather than only stabilizing it. In our model, summarized in 

Fig. 8,  we suggest an intermediate state in which the lipid A in the case of E. coli or the 

core in the case of C. canimorsus form ionic interactions or hydrogen bonds with  MD-2 

allowing the lipid A – MD-2 complex to form at all. However,  we could not rule out a 

direct role of the LPS-core in binding to CD14 or LBP.  To our knowledge, this is the 

first reported example of the core-oligosaccharide changing dramatically the 

endotoxicity of lipid A.   
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Materials and Methods 

 

Chemicals. 13:0(3-OH) was purchased from Larodan, Malmö, Sveden and 2,3  

diamino-2,3-dideoxy-D-glucose (2 x HCl) from United States Biochemical Corporation, 

Cleveland, OH, USA. All other chemicals, solvents and reagents were of highest purity 

commercially available. E. coli O111 LPS was purchased from Sigma-Aldrich, lipid IVA 

from PeptaNova. E. coli F515 lipid A (hexa- and penta-acyl) was purified as described 

[48, 49]. The analysis and isolation of C. canimorsus LA-core will be described 

elsewhere (Zähringer et al., manuscript in preparation). Purchased reagents were 

resolved according to manufacturer’s instructions. Aliquots of lipid IVA were kept at -

80°C. 

 

Isolation of LPS. C. canimorsus bacteria were harvested from 600 blood plates in 

phosphate buffered saline (PBS) and washed with distilled water, ethanol (300ml) and 

acetone (300ml), followed each time by centrifugation at  18,000 x g for 30 min. 

Bacteria were air dried and resuspended in PBS containing 1% phenol for killing and 

storage in the deep freezer prior to LPS extraction. Cells were washed with ethanol, 

acetone and diethyl ether (each 1 L) under stirring (1 h, room temperature). After 

centrifugation cells were dried on air to give 11.2 g. For the isolation of LPS, C. 

canimorsus 5 bacteria were extracted by phenol-water [50]. The LPS was identified in 

the water phase, which also contained a large amount of an unknown glucan polymer 

separated by repeated ultracentrifugation (100,000 x g, 4h, 4°C, 3 times). The glucan 

was further analyzed (U. Zähringer and S. Ittig, manuscript in preparation) and the LPS 

identified in the sediment. The crude LPS preparation was further subjected to 

RNAse/DNAse treatment (30 mg, Sigma) for 24 h at room temperature followed by 
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Proteinase K digestion (30 mg, 16 h, room temp.) and dialysis (2 days, 4°C), and 

lyophilization. The yield of enzyme-treated LPS related to bacterial dry mass was 70mg 

(0.6%).  

 

Isolation of lipid A. Lipid A was prepared from C. canimorsus 5 (25 mg) LPS by 

hydrolysis with 2% AcOH (4 ml) at 100°C until precipitation of lipid A (2-8 h). The 

sediment was extracted three times with a water-chloroform mixture (10 ml) and the 

organic phase was concentrated to dryness under a stream of nitrogen to give 17.7 mg 

of crude lipid A. The lipid A was purified by reversed phase HPLC as described 

elsewhere [51] with the following modifications: an Abimed-Gilson HPLC system 

equipped with a Kromasil C18 column (5'm, 100 Å, 10 x 250 mm, MZ-Analysentechnik) 

was used. Crude lipid A samples (2–5 mg) were suspended in 0.4 mL solvent A and the 

mixture was sonicated. A 0.1 M EDTA-sodium salt solution (100 'l, pH 7.0) was added 

forming a bi-phasic mixture, which was vortexed and injected directly onto the column. 

Samples were eluted using a gradient that consisted of methanol-chloroform-water 

(57:12:31, v/v/v) with 10 mM NaOAc as mobile phase A and chloroform-methanol 

(70.2:29.8, v/v) with 50 mM NaOAc as mobile phase B. The initial solvent consisted of 

2% B which was maintained for 20 min after injection, followed by a linear three step 

gradient raising from 2 to 17% B (20-50 min), 17 to 27% B (50-85 min), and 27 to 100% 

B (85-165 min). The solvent was held at 100% B for 12 min and re-equilibrated 10 min 

with 2% B and hold for additional 20 min before the next injection. The flow rate for 

preparative runs was 2 ml/min (~80 bar) using a splitter (~1:35) between the 

evaporative light-scattering detector (ELSD) and fraction collector. The smaller part of 

the eluate was split to a Sedex model 75C ELSD (S.E.D.E.R.E., France) equipped with 

a low-flow nebulizer. The major part was collected by a fraction collector in 1 min 
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intervals (~2 ml each). Nitrogen (purity 99.996%) was used as gas to nebulize the post 

column flow stream at 3.5 bar into the detector at 50°C setting the photomultiplier gain 

to 9. The detector signal was transferred to the Gilson HPLC Chemstation (Trilution LC, 

version 2.1, Gilson) for detection and integration of the ELSD signal. 

 

GLC and GLC-MS analyses. Sugar and fatty acid derivatives were analysed by gas-

liquid chromatography (GLC) on a Hewlett-Packard HP 5890 Series chromatograph 

equipped with a 30-m fused-silica SPB-5 column (Supelco) using a temperature 

gradient 150 °C (3 min) % 320 °C at 5°/min. GLC-MS was performed on a 5975 inert 

XL Mass Selective Detector (Agilent Technologies) equipped with a 30-m HP-5MS 

column (Hewlett-Packard) under the same chromatographic conditions as in GLC. 

 

ESI-MS Analysis. Analyses of lipid A were performed in negative and positive ion 

modes on a high resolution Fourier transform ion cyclotron resonance mass 

spectrometer, FT ICR-MS (Apex Qe, Bruker Daltonics, Billerica, MA, USA), equipped 

with a 7 T superconducting magnet and an Apollo dual electrospray-ionization (ESI) / 

Matrix-assisted laser desorption ionization (MALDI) ion source. Data were recorded in 

broadband mode with 512K data sampling rate. The mass scale was calibrated 

externally by using compounds of known structure. For the negative ion mode samples 

(ca. 10 ng/µl) were dissolved in a 50:50:0.001 (v/v/v) mixture of 

2-propanol/water/triethylamine (pH ~ 8.5). For the positive ion mode samples, a 

50:50:0.03 (v/v/v) mixture of 2-propanol/water/30 mM ammonium acetate adjusted with 

acetic acid to pH 4.5 was used. The samples were sprayed at a flow rate of 2 µL/min. 

The capillary entrance voltage was set to 3.8 kV and the drying gas temperature to 150 

°C. The mass numbers given refer to that of the monoisotopic ion peak. For MS/MS in 
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the positive ion-mode small amounts of TEN were added to the sample preparation to 

obtain the [M+TEN+H]+ adduct ions [32] which were selected for collision induced 

decay (CID) in the collision cell infrared multiphoton dissociation (IRMPD) within the ion 

cycIotron resonance (ICR) cell.  

 

NMR spectroscopy. Lipid A samples (1-3 mg) were exchanged twice with deuterated 

solvents [chloroform-d1/methanol-d4 1:1 (v/v), Deutero GmbH, Kastellaun, Germany] 

and evaporated to dryness under a stream of nitrogen. Samples were dissolved in 180 

'l chloroform-d1/methanol-d4/D2O 40:10:1  (v/v/v, 99.96%) and analyzed in 3 mm NMR 

tubes (Deutero). 1H-, 13C-, and 31P-NMR spectra were recorded at 700.7 MHz (1H) on 

an Avance III spectrometer equipped with a QXI-cryoprobe (Bruker, Germany) at 300K. 

Determination of NH-proton signals was performed in chloroform-

d1(99.96%)/methanol/H2O 40:10:1 without exchange in deuterated solvents. Chemical 

shifts were referenced to internal chloroform ($H 7.260,  $C 77.0). 31P NMR spectra were 

referenced to external aq. 85% H3PO4 ($P 0.0). Bruker software Topspin 3.0 was used 

to acquire and process the NMR data. A mixing time of 100 ms and 200 ms was used 

in TOCSY and ROESY experiments, respectively. 

 

Compositional analyses. Quantification of GlcN, GalN (internal standard) and GlcN3N 

by GLC and GLC-MS was done after strong acid hydrolysis of 0.5 mg lipid A in 4 M HCl 

(16 h, 100 °C), followed by acetylation (N-acetylation) in pyridine/acetic acid anhydride 

(10 min, 85°C), reduction (NaBH4) and per-O-acetylation. The response factor of the 

per-O-acetylated GlcNAc-ol, GalNAc-ol, and GlcNAc3NAc-ol derivatives, necessary for 

the quantification of GlcN3N by GLC, was determined in addition by external calibration 

with synthetic reference sugars. Etn, GlcN, GlcN3N and their corresponding 
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phosphates (GlcN-P and Etn-P), were determined from the hydrolysate by reversed 

phase HPLC using the Pico-tag method and pre-column derivatization with 

phenylisothiocyanate according to the supplier’s instructions (Waters, USA).  

Quantification of total phosphate was carried out by the ascorbic acid method [52]. For 

analysis of ester- and amide-linked fatty acids, the lipid A was isolated from LPS (1 mg) 

by mild acid hydrolysis (0.5 mL, 1% AcOH, 100°C, 2 h), centrifuged and the lipid A 

sediment was separated into two aliquots and lyophilized. Ester-linked fatty acids were 

liberated from the first aliquot by treatment with 0.05 M NaOMe in water-free methanol 

(0.5 mL) at 37°C for 1 h. The mixture was dried under a stream of nitrogen and acidified 

(M HCl) prior to extraction with chloroform. The free fatty acids were converted into 

methyl esters by treatment with diazomethane and hydroxylated fatty acids were 

trimethylsilylated with N,O-bis(trimethylsilyl)trifluoroacetamide for 4 h at 65°C [53]. The 

fatty acids derivatives were quantified by GLC-MS using the corresponding derivatives 

of 17:0 (50 'g) and 13:0(3-OH) (50 'g, Larodan, Malmö, Sweden) as internal standards 

for the calibration of the response factor of non-hydroxylated and hydroxylated fatty 

acids, respectively. For analysis of total fatty acids, the second aliquot was subjected to 

a combined acid/alkaline hydrolysis as described [54]. Briefly, fatty acids were liberated 

from the lipid A by strong acid hydrolysis (4 M HCl, 100 °C, 21 h) and extracted three 

times with water/chloroform (0.5 mL each). The organic phase containing the N- and O-

linked fatty acids was treated with diazomethane, trimethylsilylated and quantified as 

described above. 

 

Bacterial strains and growth conditions. The strains used in this study are listed in 

Supplementary Table II. E. coli strains were grown in LB broth at 37°C. C. canimorsus 5 

[9] was routinely grown on Heart Infusion Agar (HIA; Difco) supplemented with 5% 
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sheep blood (Oxoid) for 2 days at 37°C in presence of 5% CO2. Bacteria were 

harvested by scraping colonies off the agar surface, washed and resuspended in PBS. 

Selective agents were added at the following concentrations: erythromycin, 10 mg/ml; 

cefoxitin, 10 mg/ml; gentamicin, 20 mg/ml; ampicillin, 100 mg/ml. 

 

Human TLR4 activation assay. HEK293 stably expressing human TLR4, MD-2, CD14 

and a secreted NF&B dependent reporter were purchased from InvivoGen (HEKBlueTM 

hTLR4). Growth conditions and endotoxicity assay were as recommended by 

InvivoGen. Briefly, desired amount of LPS or lipid A were placed in a total volume of 20 

µl (diluted in PBS) an added a flat-bottom 96-well plate (BD Falcon). 25000 HEKBlueTM 

hTLR4 cells in 180 'l were then added and the plate was incubated for 20-24h at 37°C 

and 5% CO2. If the antagonistic activity of a compound on the action of E. coli O111 

LPS was assayed, the compound was added in a total volume of 10 µl (diluted in PBS), 

25000 HEKBlueTM hTLR4 cells in 180 µl were added and the plate was incubated for 3h 

at 37°C and 5% CO2. Then the cells were stimulated with 5 ng/ml E. coli O111 LPS and 

the plate was incubated as above. Detection followed the QUANTI-BlueTM protocol 

(InvivoGen).  20 µl of challenged cells were incubated with 180 µl detection reagent 

(QUANTI-BlueTM, InvivoGen). Plates were incubated at 37°C and 5% CO2 and colour 

developed was measured at 655nm using a spectrophotometer (BioRad).  

 

TNF! release by human THP-1 cells. Human THP-1 monocytes (ATCC TIB-202TM) 

were cultured as recommended by the American Type Culture Collection (RPMI 1640 

medium complemented with 10% v/v heat-inactivated fetal bovine serum, 2mM L-

Glutamine). Monocytes were seeded at 1.5(105 cells/ml in 24 well-plates (BD Falcon) 

in growth medium containing 10-7M PMA (Sigma-Aldrich). For differentiation and 



Lipid A 

- 63 - 

attachment the cells were incubated for 48h at 37°C and 5% CO2 and then washed with 

growth medium and fresh PMA-free medium was added. After further incubation for >1h 

the cells were challenged with the indicated amount of LPS or lipid A in a total volume 

of 20 µl (diluted in PBS). After 20h of incubation the supernatants were harvested and 

immediately analyzed for TNF# by an ELISA. ELISA was performed in accordance with 

the manufacturers instructions (BD OptEIATM). If an antagonist of E. coli O111 LPS was 

assayed, the compound was added in a total volume of 10 µl (diluted in PBS) to the 

THP-1 cells and the plates were incubate for 3h at 37°C and 5% CO2. Then the cells 

were stimulated with 1 ng/ml E. coli O111 LPS and the plate was incubated for 20h at 

37°C and 5% CO2. 

 

LPS Biotinylation. Biotinylation of E. coli O111 LPS (Sigma-Aldrich) was performed as 

described previously [55] using biotin-LC-hydrazide (Pierce, Rockford, IL). To verify that 

the biotinylation did not affect the functionality of the LPS, E. coli LPS-Biotin was 

assayed for endotoxicity with the HEKBlue human TLR4 cell line (Data not shown). 

Biotinylation reduced the endotoxic potential at low concentrations, but only slightly at 

concentrations used in the MD-2 binding assay.  

 

Human MD-2 binding assay. MD-2 binding assays was performed as described [55, 

56]. HEK293 cells were transfected using Fugene6 (Roche, 3:2 protocol) with a plasmid 

(kind gift of K. Miyake and C. Kirschning) encoding human MD-2 with a C-terminal Flag-

His-tag (pEFBOS-hMD2-Flag-His) [15]. The medium was exchanged 3-8 h post 

transfection with fresh growth medium. The cells were incubated for 48h and the 

supernatant was harvested and pooled. Fresh FCS was added to the hMD-2 

supernatant (7.5% v/v). For each binding reaction, 4 ml of hMD-2 supernatant were 
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combined with 250 ng, 500 ng, 1 µg, 2 µg, 5 µg or 10 µg of the competitor, incubated at 

room temperature and gently rocked for 30 min. 1 µg of biotinylated E. coli O111 LPS 

was added and the supernatant was further incubated for 3-4 h at room temperature. 

Biotinylated LPS–hMD-2 complexes or single biotinylated LPS were captured by 

addition of 120 µl (total volume) streptavidin-agarose beads (IBA) per sample. The 

beads were previously prepared by washing them three times with a buffer (100 mM 

Tris, 150 mM NaCl, pH 8.0).  For binding, the supernatants containing the beads were 

incubated overnight on a rotator at 4°C. Agarose beads were pelleted by centrifuging 

for 30 s at 5000 ( g and 4°C and washed three times with PBS containing 0.5% Tween 

20. The beads were finally resuspended in 60 µl SDS-loading dye (without dithiothreitol) 

and boiled for 5min at 95°C. The protein content in the sample was analyzed by non-

reducing, denaturing 4–12% Tris-glycine Polyacrylamide gels (Invitrogen) or 4-15% 

Tris-glycine Polyacrylamide gels (BioRad) and then transferred to polyvinylidene fluorid 

(PVDF) membrane (ImmobilonP, Millipore). Membranes were probed using monoclonal 

anti-Flag antibody (Sigma-Aldrich) according to the manufacturer’s instructions using 

ECL-Plus reagent (GE Healthcare). 

 

Genome annotation. Blast-p search tool [57] against the C. canimorsus 5 genome [5] 

was used. Search sequences were obtained from the National Center for Biotechnology 

Information. All available Bacteroidetes-group sequences were used as search if 

available, but standard E. coli sequences have always been included. The highest 

scoring subjects over all the searches have been annotated as corresponding 

enzymes. Difficulties in annotation were only observed for lpxE. lpxE search was based 

on lpxF and/or lpxE sequences from P. gingivalis [38], F. novicida [58], R. etli [40], H. 

pylori [37] and on all available Bacteroidetes-group pgpB sequences. Three lpxE/F 



Lipid A 

- 65 - 

candidates have been found in the C. canimorsus 5 genome (Ccan 16960, Ccan 14540 

and Ccan 6070). All candidates have been deleted and only deletion of Ccan 16960 

affected endotoxicity (data not shown). Since this gene is encoded in an operon with 

the predicted eptA and since the same operon structure (lpxE-eptA) has been identified 

in H. pylori [37] Ccan16960 was annotated as lpxE. 

 

Molecular modeling. The MD-2 - E. coli LPS complex (PDB code 3FXI) [21] was used 

to construct models for the MD-2 - E. coli lipid A and for the MD-2 – C. canimorsus Lipid 

A. The modeling of the lipid A moieties was performed using the VMD [59] program and 

the leap module of the AMBER11 [60] suite of programs. To investigate the time-

dependent properties of the two MD-2 – lipid A complexes, the constructed systems 

were subjected to molecular dynamics simulations [61] in the framework of a classical 

molecular mechanics [62] (MM) description. MM parameters from the Glycam06 [63, 

64] force field were adapted to describe the acyl chains and the sugar moieties, while 

the Amber99SB [65, 66] force field was employed for the MD-2 protein. Advanced 

methods based on quantum chemistry were employed to obtain the missing parameters 

of the ester linkages and hydroxyl groups on the acyl chain C2 atoms, the branching at 

the bottom of the C. canimorsus acyls, the phosphate/P-Etn groups and the GlcN3N’ 

moiety. Bonding parameters were obtained by performing relaxed potential energy 

scans [67] (bonds, angles, dihedrals), while charges were calculated on the optimized 

geometries of selected capped fragments. All the scan and geometry optimizations 

were conducted at the RI-MP2/def2-TZVP [68-70] level using the COBRAMM [71] suite 

of programs efficiently linking the ORCA2.8 [72] (wave-function calculation) and the 

GAUSSIAN09 [73] (optimization/scan driver) programs. Charges were calculated 

according to the RESP procedure at the HF/6-31G*//MP2/def2-TZVP. Both MD-2 – lipid 
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A complexes were embedded in a 6.5 ( 6.5 ( 6.5 nm3 box of TIP3P [74] water 

molecules and the appropriate number of Na+ and Cl- ions were added to neutralize the 

systems charge. The systems were relaxed (conjugate gradient geometry optimization) 

to remove clashes before stating molecular dynamics simulations. The systems were 

both heated to 300 K in the NVT (constant particle number, volume, temperature) 

ensemble for 500ps and then equilibrated in the NPT (constant particle number, 

pressure, temperature) until relevant structural parameters (density, RMSD on the 

protein C#) were found to be stable (1 ns). Statistics were then performed on 

trajectories collected from 10 ns long simulations of the equilibrated systems. All 

molecular dynamics calculations were performed with the sander module of the 

AMBER11 package; bonds involving H atoms were constrained using the SHAKE 

algorithm [75] to allow for using a time step of 2 fs. Pressure was controlled via a simple 

Berendsen weak coupling approach [76], while a Langevin thermostat (collision 

frequency set to 3 ps-1) was used to enforce the desired temperature. Molecular 

dynamics trajectories were analyzed using the VMD software, the ptraj module of the 

AMBER11 suite and the ProDy [77] package. A set of 300 snapshots of the equilibrated 

trajectories was subjected to further analysis to quantify the binding energy between 

MD-2 and each of the two lipid A moieties. Both the MM-PBSA and MM-GBSA 

approaches [78] were used to calculate the MD-2 – lipid A binding energy, while a full 

interaction energy decomposition [79, 80] was performed using the cheaper MM-GBSA 

method; the MMPBSA.MPI module of AMBER11 was used to perform the binding free 

energy calculations, while a locally developed software was used to process, analyze 

and plot the results. 
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Western-blot quantification. Quantification was performed using MultiGauge software 

(Fujifilm). 

 

Online supplemental material. Fig. S1 shows a HPLC elution profile of the lipid A from 

C. canimorsus. Fig. S2 shows a negative mode ESI mass spectrum of lipid A from C. 

canimorsus. Fig. S3 shows a CID-MS/MS (positive mode) of lipid A from C. canimorsus. 

Fig. S4 shows a 1H,31P-HMQC and 1H,31P-HMQC-TOCSY spectra of lipid A from C. 

canimorsus. Fig. S5 shows the activation of human TLR2 with C. canimorsus and E. 

coli lipid A or LA-core preparations.  
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Footnotes 

 

Abbreviations used: 

 

CD14, cluster of differentiation antigen 14; ELSD, evaporative light-scattering detector; 

Etn, ethanolamine; Gal, Galactose; GalN, Galactosamine; GLC, gas-liquid 

chromatography; GLC-MS, combined GLC/mass spectrometry; GlcN, 2-amino-2-deoxy-

D-glucose; GlcN3N, 2,3-diamino-2,3-dideoxy-D-glucose; HPLC, high-performance liquid 

chromatography; HMQC, heteronuclear multiple-quantum coherence; HSQC, 

heteronuclear single-quantum coherence; i15:0, iso-pentadecanoic acid (13-

methyltetradecanoic acid, 13Me-14:0); i15:0(3-OH), iso-(R)-3-hydroxypentadecanoic 

acid [(R)-3-hydroxy-13-methyltetradecanoic acid, 13Me-14:0(3-OH)]; 16:0(3-OH), (R)-3-

hydroxyhexadecanoic acid; i17:0(3-OH), iso-(R)-3-hydroxyheptanoic acid [(R)-3-

hydroxy-15-methylhexanoic acid, 15-Me-16:0(3-OH)]; Kdo, 3-deoxy-D-manno-oct-2-

ulosonic acid; LA-core, lipid A-core; LBP, LPS-binding protein; LRR, Leucine-riche 

repeat; Man, Mannose; MD-2, myeloid differentiation factor 2 or Lymphocyte antigen 

96; MM, molecular mechanics; MM-GBSA, molecular mechanics, the generalized Born 

model and solvent accessibility; MM-PBSA, molecular mechanics, Poisson-Boltzmann 

solvent accessible surface area; MS, mass spectrometry; NMR, nuclear magnetic 

resonance; P, phosphate; PBS, phosphate buffered saline; P-Etn, 

phosphoethanolamine; ROESY, rotating-frame nuclear Overhauser effect 

spectroscopy; TEN, triethylamine; TLR2 and TLR4, toll-like receptor 2 and 4; TOCSY, 

total correlation spectroscopy. 
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Figures 

 

 

Figure 1. NMR analysis of the lipid A from C. canimorsus wild type. 1H,13C-HSQC 

spectrum (700 MHz) of lipid A in chloroform-methanol-water (20:10:1, v/v/v) at 27°C. 

The corresponding parts of the 13C and 1H NMR spectra are displayed along the F1 and 

F2 axes, respectively. Numerals refer to atoms in sugar and fatty acid residues denoted 

by letters as shown in Supplementary table I and Figure S2. Signals from an 

unidentified contaminating lipid are indicated by X.  
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Figure 2. Structures of C. canimorsus lipid A (A), E. coli lipid A (B) and core-

oligosaccharide of C. canimorsus attached to the lipid A (C). (A) C. canimorsus 

lipid A consists of a "-(1’$6)-linked GlcN3N’-GlcN disaccharide, to which 3-hydroxy-15-

methylhexadecanoic acid, 3-hydroxy-13-methyltetradecanoic acid, 3-O-(13-

methyltetradecanoyl)-15-methylhexadecanoic acid, and 3-hydroxyhexadecanoic acid 
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are attached at positions 2, 3, 2’, and 3’, respectively. The disscharide carries a 

positively charged ethanolamine at the 1 phosphate and lacks a 4’ phosphate. (B) 

Structure of E. coli hexa-acylated lipid A. (C) C. canimorsus LPS core features only one 

Kdo, to which a phosphoethanolamine (P-Etn) is attached. The only net negative 

charge present is from the carboxy group of the Kdo. The inner core continues with 

Man to which another a P-Etn is attached. The outer core consists of Gal and L-

Rhamnose (L-Rha), to which the O-antigen is attached (U. Zähringer, unpublished 

results). 
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Figure 3. Biosynthesis of C. canimorsus lipid A-Kdo. (A) Alphabetic list of enzymes 

required and the corresponding gene codes in the C. canimorsus 5 genome are listed. 

(B) Proposed enzymatic modification on lipid A by LpxF, LpxE and EptA. (C) Single 

steps in the biosynthesis of C. canimorsus lipid A-Kdo (adapted from KEGG 

map00540). 
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Figure 4. Endotoxic activity of C. canimorsus (Cc) LPS, lipid A (LA) or lipid A-core 

(LA-core) and contribution of the LPS core to endotoxicity. (A-B) Dose-response 

curve of purified lipid A, LA-core or LPS samples were assayed for TLR4 dependent 

NF&B activation with HEKBlue human TLR4 cells. (C-D) Purified lipid A, LA-core or LPS 

samples were assayed for induction of TNF# release by human THP-1 macrophages. 

Data were combined from n=3 independent experiments, error bars indicated are 

standard error of the mean.  
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Figure 5. Binding to human MD-2 of C. canimorsus lipid A depends on the core-

oligosaccharide. Soluble human MD-2 from cell culture supernatant was combined 

with the indicated mixture of E. coli LPS-Biotin and a competitor (either C. canimorsus 

lipid A, lipid A-core, E. coli O111 LPS, penta-acyl E. coli lipid A or lipid IVA). Biotinylated 
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E. coli LPS-MD-2 complexes were purified and analysed by non-reducing, denaturing 

Western blotting for presence of MD-2. (A) Untreated human MD-2 did not bind to the 

Strep-column (lane 1), addition of E. coli LPS-biotin lead to co-purification of human 

MD-2 (lane 2). Results shown are representative of three independent determinations. 

(B) Quantification of Western-blots as shown in A. Values are shown as percentage of 

the corresponding positive control. Data were combined from n=3 independent 

experiments, error bars indicated are standard error of the mean.  
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Figure 6. Modeled binding of C. canimorsus lipid A to human MD-2. (A) Front and 

side view of the equilibrated complexes between MD-2 (gray) and C. canimorsus 

(yellow) and E. coli (green) lipid A. (B) Pairwise decomposition of the global total (Van 

der Waals + electrostatic + solvation) binding free energy calculated at MM-GBSA level. 

(C) Binding energy between MD-2 and the two lipid A molecules calculated using the 

MM-GBSA and MM-PBSA methods on 300 snapshots extracted from two 10 ns long 

equilibrated NPT molecular dynamics simulations. 
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Figure 7.  Antagonistic activity of C. canimorsus (Cc) LPS, lipid A (LA) or LA-core 

on the action of E. coli O111 LPS. (A-B) HEKBlue human TLR4 cells were 

preincubated for 3h with purified lipid A, LA-core or LPS samples at the concentration 
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indicated. Then the cells were stimulated with 5 ng/ml E. coli O111 LPS for further 20-

24h and TLR4 dependent NF&B activation was measured. (C-D) Human THP-1 

macrophages were preincubated for 3h with purified lipid A, LA-core or LPS samples at 

the concentration indicated. Then the cells were stimulated with 1ng/ml E. coli O111 

LPS for further 20h and TNF# release was measured. Data were combined from n=3 

independent experiments, error bars indicated are standard error of the mean. 
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Figure 8. Proposed model for the implication of the LPS core or the 4’ phosphate 

in enabling the binding to MD-2. Ionic interactions or hydrogen bonds involving the 4’ 

phosphate or the Kdo carboxy group in LPS lacking a 4’ phosphate enable the binding 

of lipid A to either LBP (1.), soluble CD14 (sCD14) (2.) or via an intermediate state to 

MD-2 (3.). Dependent on the type of lipid A bound to MD-2 this leads to TLR4 

mutimerization (4.), a downstream signaling cascade and finally release of 

proinflammatory cytokines (5.).  
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Tables 

 

Table I. Compositional analysis data of the purified lipid A of C. canimorsus 5 wild type.  

 

Component nmol/mg mol/mol  

GlcN 

Sugars   

GlcN3Na,c,* 167 0.5 

GlcNa,c 358 1.0 

   

Polar substituents   

Pb 468 1.3 

Etn-P c ND - 

Etnc ND - 

   

Fatty acidsa   

i15:0 278 0.8 

i15:0(3-OH) 416 1.2 

16:0(3-OH) 417 1.2 

i17:0(3-OH) 709 2.0 

 

aGLC-MS data, bPhotometric assay, cHPLC (Pico-tag). 

* Per-O-acetylated GlcN3N-ol can only be quantified by GLC analysis by approx. 50% 

compared to GlcNAc-ol, as determined by synthetic reference compound. 
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Table II. ESI-MS analysis of lipid A fractions obtained by reversed phase HPLC shown 

in Figure S1. 

Peak No. Retention Yield in mg  Mol. mass of   

  time, min     (%)   the major peak    

Wild-type           

1a  118.5  0.13 (5.8)  1660.235 

1b  119.7  0.18 (8.3)  1674.265 

2  124.3  0.66 (25.5)  1716.300 

3  127.3  0.06 (2.8)  1716.301 

5  131.9  0.55 (24.2)  1594.292 

6  ~ 133  0.19 (8.8)  1608.306 

6’  134.6  0.09 (4)  1589.266 

       1594.290 

Applied:  2.1 mg       

Total yield:  1.86 mg (88.6%)  

The major peaks shown in bold at m/z 1716.30 (peak 2) and m/z 1594.29 

 (peak 5) represent the lipid A and the lipid A lacking the P-Etn group at C-1 of 

GlcN. 
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Supplemental materials 

 

Supplementary methods 

 

Human TLR2 activation assay. HEK293 transfected with human TLR2 and CD14 

were purchased from InvivoGen (HEKBlueTM hTLR2). Growth conditions and agonist 

assay were performed in accordance with recommendations of InvivoGen. Briefly, 

desired amount of the stimulus in a total volume of 20 µl (diluted in PBS) were added to 

a well of a flat-bottom 96-well plate (BD Falcon). 25000 HEKBlueTM hTLR2 cells in 

180ul were added and the plate was incubated for 20-24h at 37°C and 5% CO2. 

Detection followed the QUANTI-BlueTM protocol (InvivoGen).  20 µl of challenged cells 

were incubated with 180 µl detection reagent (QUANTI-BlueTM, InvivoGen). Plates were 

incubated at 37°C and 5% CO2 and developed color was measured using a 

spectrophotometer (BioRad) at 655nm. Pam3CSK4 (InvivoGen) was used as positive 

control. 
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Supplementary Figures 

 

 

Supplementary Figure 1. HPLC elution profile of the lipid A from C. canimorsus 5. 

HPLC elution profiles of the semi-preparative fractionation of the lipid A from wild type 

C. canimorsus 5 (2.1 mg). Peak Nr. 2 (124.3 min) represents the intact lipid A and peak 

Nr. 5 (131.9 min) the 1-dephosphorylated lipid A (LA without P-Etn) as determined by 

ESI MS. The other peaks belong to lipid A with slightly modified fatty acids composition 

(Table II). For HPLC conditions see Materials and Methods. 



Lipid A 

- 90 - 

 

 

  

Supplementary Figure 2. Negative mode ESI mass spectrum of lipid A from C. 

canimorsus indicating heterogeneity in the fatty acids chain length (-CH2-, !m/z = 14 u) 

as also shown in table II. 
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Supplementary Figure 3. CID-MS/MS (positive mode) of lipid A from C. canimorsus 

showing the B-fragment (non-reducing end) obtained from the parent ion [M+TEN+H]+  

[m/z 1819.3]. The abundant B-fragment ion is consistent with a GlcN3N carrying two 

primary fatty acids [16:0(3-OH) and i17:0(3-OH)] in amide linkage and one (i15:0) in 

ester linkage forming an acyloxyacyl residue [i17:0(3-O(i15:0)] and proves the hybrid 

backbone (GlcN3N’-GlcN) to be the major one (>95%) and the distribution of the fatty 

acids to be 3+2. 
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Supplementary Figure 4. 1H,31P-HMQC (top) and 1H,31P-HMQC-TOCSY (bottom) 

spectra (700 MHz) of lipid A in chloroform-methanol-water (20:10:1, v/v/v) at 27°C. The 

31P NMR spectrum and the corresponding part of the 1H NMR spectrum are displayed 

along the F1 and F2 axes, respectively. Numerals refer to atoms in sugar and fatty acid 

residues denoted by letters as shown in Supplementary table I and Figure S2. 
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Supplementary Figure 5. Activation of human TLR2 with C. canimorsus (Cc) or E. coli 

lipid A (LA) or LA-core preparations. Indicated concentrations of purified lipid A or LA-

core samples were assayed for TLR2 dependent NF&B activation with HEKBlue human 

TLR2 cells. The triacylated lipopeptide Pam3CSK4 was used a positive control. Data 

were combined from n=3 independent experiments, error bars indicated are standard 

error of the mean. 
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Supplementary Table I.   1H (700 MHz) and 13C (176.2 MHz) NMR data of the lipid A 

from C. canimorsus (CDCl3/MeOD/D2O, 40:10:1, v/v/v). Chemical shifts are referenced 

to internal CDCl3 (dH 7.26, dC 77.0) at 27°C. For the assignment of the individual fatty 

acids (a-d, c’) see Figure S4. 

1H  ), ppm        J, Hz              3C ), ppm    JC,P, Hz 
 
GlcN3N 
H-1  4.28      J1,2 8.0 C-1 103.4 
H-2  3.49 *         C-2   52.9   
H-3  3.68 *        C-3   54.6   
H-4  3.17     *     C-4   68.3   
H-5  3.20 *         C-5   76.9    
H-6a 3.55 *      C-6   60.0    
H-6b 3.68 *          
       
GlcN    
H-1  5.29       J1,2 2.9, 

2J1,P 7.9  C-1   92.8 2JC-1,P 4.7 
H-2  3.96  J2,3 9.5  C-2 51.4 3JC-2,P  7.2  
H-3  4.99       J3,4 9.7 C-3   72.7    
H-4  3.27       J4,5 9.5 C-4   67.4   
H-5  4.05    * C-5   72.6  
H-6a  3.64    * C-6   71.0    
H-6b   3.87    *   
 
P-Etn 
H-1a,1b 3.91, 3.98  C-1 61.7 2JC-1,P 4.3 
H-2a,2b   3.04, 3.10  C-2 39.9 3JC-2,P 6.9 
 
Fatty acids 
 
(a) R2, i17:0(3-OH) 
    C-1 173.4&  
H-2a  2.24   C-2   41.6 
H-2b  2.30  C-3   68.1# 
H-3  3.74  C-4   36.8 
H-4a  1.23  C-5   25.1 
H-4b  1.29   
H-5a,b 1.02...1.13  C-6…C13   28.7...29.2 
H-6 ... H-14 0.95  C-14   38.55 
H-15  1.08  C-15   26.8 
H-15Me 0.68  C-15Me   22.0   
H-16  0.68  C-16   13.3 
 
(b) R3, i15:0(3-OH) 
     
H-2a  2.16   C-1 173.9&  
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H-2b  2.31  C-2   40.8 
H-3  3.78  C-3   67.9# 
H-4a  1.22  C-4   36.6 
H-4b  1.29  C-5   25.1 
H-5a,b 1.23     
H-6 ....H11 1.02...1.13  C-6…C11   28.7...29.2 
H-12  0.95  C-12   38.6 
H-13  1.08  C-13   26.8 
H-13Me 0.68  C-13Me   22.0   
H-14  0.68  C-14   22.2 
     
(c) R2’, i17:0(3-OH) 
    C-1 171.7&  
H-2a  2.13   C-2   43.4 
H-2b  2.06  C-3   70.7 
H-3  4.95  C-4   36.6 
H-4a  1.22  C-5   25.1 
H-4b  1.29   
H-5a,b  1.23   
H-6 ....H13 1.02...1.13  C-6…C13  28.7...29.2 
H-14  0.95  C-14   38.55 
H-15  1.08  C-15   26.8 
H-15Me 0.68  C-15Me   22.0   
H-16  0.68  C-16   22.0 
 
(c’) R2’’, 15:0 
    C-1  174.0 
H-2a,b 2.12  C-2   34.0 
H-3a,b 1.43  C-3   31.4 
H-4ª,b 1.06  C-4   27.0    
H-5...11 1.012...1.131 C-5...C-11  28.7...29.2 
H-12ª,b 0.95  C-12   38.6 
H-13ª,b 1.08  C-13   26.8 
H-13Me 0.68  C-13Me   22.0  
H-14  0.68  C-14   22.0  
 
(d) R3’, 16:0(3-OH) 
    C-1 172.5&  
H-2a  2.13   C-2   43.4 
H-2b  2.06  C-3   67.6 
H-3a,b 3.80  C-4   36.6 
H-4a,b 1.22  C-5   25.1 
H-5a,b  1.23   
H-6 ....H13 1.02...1.13  C-6…C13  28.7...29.2 
H-14a,b 0.95  C-14   38.6  
H-15a,b 1.09  C-15   22.1 
H-16  0.68  C-16   13.3 
 

*Non-resolved multiplet. 
&, # Assignement is interchangeable. 
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Supplementary Table II. Bacterial strains used in this study 

 

Bacterial 

strains 

Description or genotype Reference or 

source 

E. coli   

F515 Deep rough mutant [49] 

Top10 F- mcrA !(mrr-hsdRMS-mcrBC) 

!80lacZ!M15  

!lacX74 recA1 araD139 !(araleu)7697 galU 

galK  

rpsL, endA1 nupG. Smr  

Invitrogen  

 

C. canimorsus   

Cc5 Human fatal septicemia after dog bite 1995 [9], [5] 
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2.2 Manuscript in preparation: Detoxification of lipid A by Capnocytophaga 

canimorsus  
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 Introduction 

 

Gram-negative bacteria have evolved different strategies to modify the lipid A structure 

in order to reduce recognition by the host and sensitivity to cationic antimicrobial 

peptides (CAMPs) (Coats et al., 2009; Dixon and Darveau, 2005; Hajjar et al., 2002; 

Mata-Haro et al., 2007; Price et al., 1995; Wang et al., 2004; Wang et al., 2006). One of 

these consists in the modification of the 1 or 4’ phosphates of lipid A (Coats et al., 2009; 

Curtis et al., 2011; Herrera et al., 2010; Ingram et al., 2010b; Mata-Haro et al., 2007; 

Wang et al., 2006). 4’ phosphatases (LpxF) have been described in Rhizobium 

leguminosarum, Rhizobium etli, Porphyromonas gingivalis, Francisella species and 

Helicobacter pylori (Coats et al., 2009; Cullen et al., 2011; Ingram et al., 2010b; Wang 

et al., 2007). Deletion of lpxF and the resulting presence of the 4’ phosphate on lipid A 

leads to increased endotoxicity (Coats et al., 2009; Cullen et al., 2011), but decreased 

resistance to CAMPs (Cullen et al., 2011; Ingram et al., 2010b). In the case of 

Francisella and H. pylori virulence is reduced (Cullen et al., 2011; Kanistanon et al., 

2011; Wang et al., 2007). 1 phosphatases (LpxE) have been identified in H. pylori, P. 

gingivalis, R. etli and others (Coats et al., 2009; Cullen et al., 2011; Ingram et al., 

2010a; Ingram et al., 2010b; Tran et al., 2004; Tran et al., 2006; Wang et al., 2004). 

Deletion of lpxE and the resulting presence of the 1 phosphate on lipid A leads to a 

slightly increased endotoxicity (Coats et al., 2009) and CAMP sensitivity (Ingram et al., 

2010b). After dephosphorylation, the 1 position can be further modified. H. pylori is 

known to add a phosphoethanolamine (P-Etn) to the 1 position of lipid A (Cox et al., 

2003; Kim et al., 2006; Tran et al., 2004). This happens via a two-step mechanism, 

which first involves 1 dephosphorylation by LpxE and subsequent P-Etn transfer by a 

phosphoethanolamine transferase (EptA) (Tran et al., 2004; Tran et al., 2006). 
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We have previously identified the lipid A structure of C. canimorsus (Ittig et al., 

submitted) and found a P-Etn group attached to the 1 end of lipid A and the lack of a 4’ 

phosphate (Fig. 1 A). C. canimorsus lipid A consists of a "-(1’$6)-linked GlcN3N’-GlcN 

disaccharide, to which 3-hydroxy-15-methylhexadecanoic acid, 3-hydroxy-13-

methyltetradecanoic acid, 3-O-(13-methyltetradecanoyl)-15-methylhexadecanoic acid, 

and 3-hydroxyhexadecanoic acid are attached at positions 2, 3, 2’, and 3’, respectively. 

This is in contrast to the potent TLR4 agonist, the E. coli lipid A consisting of a "-

(1’$6)-linked GlcN disaccharide that is phosphorylated at positions 1 and 4’ and carries 

four (R)-3-hydroxymyristate chains (at positions 2’, 3’, 2 and 3). The 2’ and 3’ 3-

hydroxylated acyl groups in GlcN’ are further esterified with laurate and myristate, 

respectively (Raetz, 1990). 

 

In agreement with H. pylori we have identified lpxE and eptA in the genome of C. 

canimorsus 5 and found the overlapping genes to be organized in one operon. We 

show here that the deletion of lpxE or eptA leads to increased endotoxicity and 

decreased resistance to CAMPs, where deletion of lpxE has a more severe effect. 

Interestingly, the endotoxicity and CAMP resistance of a double deletion mutant of lpxE 

and eptA was found similar to a single lpxE mutant. This suggests that the P-Etn 

containing lipid A is synthesized by a similar two-step enzymatic process as in H. pylori, 

where dephosphorylation is necessary for substitution of 1 phosphate with P-Etn. 
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Results 

 

Identification of enzymes leading to the 1 P-Etn on lipid A. We have investigated 

the enzymes leading to the addition of an ethanolamine (Etn) at the 1 Phosphate (P) of 

lipid A. In H. pylori, the addition of a P-Etn at the 1 position has been proposed to result 

from a two-step mechanism (Tran et al., 2006). In a first step the 1 phosphate is 

removed by a phosphatase (LpxE), and subsequently a P-Etn-transferase (EptA or 

PmrC, YjdB) adds a P-Etn to the 1 position of lipid A (Tran et al., 2006). In H. pylori lpxE 

and eptA are encoded by one operon (Hp0021-Hp0022). In the genome of C. 

canimorsus, we identified Ccan16950 as eptA. Search for a lipid A phosphatase were 

based on lpxE and/or lpxF sequences from P. gingivalis (Coats et al., 2009), F. novicida 

(Wang et al., 2007), Rhizobium etli (Ingram et al., 2010b) H. pylori (Cullen et al., 2011; 

Tran et al., 2006) and on all available Bacteroidetes-group pgpB sequences. Three 

lpxE/F candidates have been found in the C. canimorsus 5 genome (Ccan16960, 

Ccan14540 and Ccan6070). All candidates have been deleted and only deletion of 

Ccan 16960 affected endotoxicity (data not shown).  Interestingly, Ccan16960 forms an 

operon with eptA and the two genes overlap by 20 base pairs (bp). Following the 

operon organisation of H. pylori, Ccan16960 has been annotated as lpxE. This 

annotation has been validated by mutagenesis and impact on endotoxicity and CAMP 

resistance. The C. canimorsus lpxE-eptA operon formed by Ccan16950 and 

Ccan16960 is depicted in Figure 2.     

 

LpxE and EptA impact endotoxicity. To study the impact on endotoxicity of the 

removal of the 1 P or the addition of an P-Etn to the free 1 position of lipid A, we 

engineered !eptA and !lpxE mutations and we monitored endotoxicity using a HEK293 



Lipid A 

- 102 - 

cell line overexpressing human TLR4/MD-2/CD14 and a secreted reporter protein 

(HEKBlue human TLR4 cell line). Activation of this cell line greatly depends on TLR4 

and other TLR stimuli may be neglected. Heat killed bacteria from both mutant strains 

showed increased endotoxicity compared to wt bacteria and mutation of lpxE had a 

more severe impact on endotoxicity (Fig. 3 A). Heat killed C. canimorsus "lpxE-eptA 

exhibited identical endotoxicity as C. canimorsus !lpxE (Fig. 3 A), again suggesting a 

two-step enzymatic mechanism in which EptA adds the P-Etn only after the removal of 

the lipid A 1 phosphate by LpxE (Tran et al., 2004; Tran et al., 2006).  

 

"eptA and "lpxE mutations are non-polar 

Complementation of the deleted genes with plasmid-borne genes expressed from the 

ermF promoter restored endotoxicity to the wt level indicating that none of the mutation 

was polar (Fig. 3 B, C and D). !lpxE could be complemented with lpxE or lpxE-eptA in 

trans, but not with eptA alone (Fig. 3 B). !eptA was complemented with eptA or lpxE-

eptA in trans (Fig. 3 C), and "lpxF-eptA was complemented with lpxE-eptA in trans 

(Fig. 3 D). 

 

LpxE and EptA affect resistance to Polymyxin B. 

Lipid A modifications have been shown not only to affect endotoxicity, but also to alter 

resistance to CAMPs such as Polymyxin B (Ingram et al., 2010b; Lee et al., 2004; 

Raetz, 1990; Raetz et al., 2007). Hence, we monitored the minimum inhibitory 

concentration of Polymyxin B for C. canimorsus 5, !lpxE, !eptA and the double-

knockout !lpxE-eptA. C. canimorsus 5 wt was highly resistant to Polymyxin B, as it was 

still able to grow in the presence of 512 mg/L Polymyxin B (MIC of 1024 mg/L) (Fig. 4). 

The MIC decreased to 512 mg/L for !eptA mutant bacteria and to 128 mg/L for C. 
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canimorsus !lpxE bacteria, showing an increased sensitivity to Polymyxin B (Fig. 4). 

The difference between the two mutants can be explained by the fact that EptA 

simultaneously adds a negative and a positive charge, whereas LpxE only removes a 

negative charge. Therefore the !lpxE mutation leads to a higher increase in negative 

charge interacting with Polymyxin B. The C. canimorsus !lpxE-eptA double-KO had the 

same MIC as the single !lpxE mutant (Fig. 4). This is in agreement with the proposed 

two-step enzymatic mechanism of LpxE and EptA, in which EptA can add the P-Etn 

only after the removal of the lipid A 1 phosphate (Tran et al., 2004; Tran et al., 2006).  

 

 

 

Discussion 

 

The P-Etn modification at position 1 was shown here to be important for low 

endotoxicity and Polymyxin B resistance of C. canimorsus, as has been shown in H. 

pylori (Cullen et al., 2011). In C. canimorsus, as in H. pylori, the enzymes responsible 

for the P-Etn modification, LpxE and EptA, are encoded by one operon. The identical 

phenotype in endotoxicity and Polymyxin B sensitivity of !lpxE and !lpxF-eptA 

suggests that the P-Etn containing lipid A is synthesized by a similar two-step 

enzymatic process as in H. pylori (Tran et al., 2004; Tran et al., 2006). In H. pylori, lipid 

A also carries a P-Etn group at position 1, generated in the course of the LPS 

biosynthesis by removal of the lipid A 1 phosphate by LpxE followed by transfer of a P-

Etn residue by EptA from phosphatidylethanolamine to the free reducing end of GlcN, 

where dephosphorylation is necessary for substitution of 1 phosphate with P-Etn 

(Cullen et al., 2011; Tran et al., 2004; Tran et al., 2006). 
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We found in both assays, endotoxicity and Polymyxin B sensitivity, that !lpxE 

had a more severe effect than !eptA. The difference between the two mutants can be 

explained by the fact that EptA adds a negative and a positive charge, whereas LpxE 

only removes a negative charge. In the proposed process, the !lpxE mutation leads to 

an increase of a negative charge (the phosphate) compared to the wt, while !eptA 

would result in a free hydroxy-group at the 1 end of lipid A as compared to the P-Etn in 

the wt. As net negative charges are important for interaction with CAMPs as well as 

TLR4/MD-2, one would expect !lpxE to affect endotoxicity and CAMP-sensitivity more 

than !eptA, which we found. This again supports the two-step enzymatic process of 

formation of the 1 P-Etn and that the annotation of lpxE and eptA in C. canimorsus 5 is 

correct. 

It is noteworthy that one could expect the mutation of eptA not to affect charge 

dependent mechanisms, as no net charge change is expected. Still !eptA showed a 

small effect on Polymyxin B sensitivity and a more pronounced effect on endotoxicity. 

This suggests that the positive charge on the Etn might not only shield the negative 

charge of the phosphate, but that there may exist some repulsion between the positive 

charges on CAMPs and the positively charged residues on TLR4/MD-2 exists.  

The genetic association of lpxE and eptA genes suggests that this modification 

of lipid A is essential for survival in the dog's mouth environment, the habitat of C. 

canimorsus. This lipid A modification might as well favour human infections. 
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Materials and Methods 

 

Bacterial strains and growth conditions. The strains used in this study are listed in 

Table 1. E. coli strains were grown in LB broth at 37°C. C. canimorsus 5 (Shin et al., 

2007) was routinely grown on Heart Infusion Agar (HIA; Difco) supplemented with 5% 

sheep blood (Oxoid) for 2 days at 37°C in presence of 5% CO2. Bacteria were 

harvested by scraping colonies off the agar surface, washed and resuspended in PBS. 

Selective agents were added at the following concentrations: erythromycin, 10 mg/ml; 

cefoxitin, 10 mg/ml; gentamicin, 20 mg/ml; ampicillin, 100 mg/ml. 

 

Genetic manipulations of C. canimorsus. Genetic manipulations of Cc5 wt has been 

described in ref (Mally and Cornelis, 2008). Briefly, replacement cassettes with flanking 

regions spanning approximately 500 bp homologous to direct lpxE or eptA framing 

regions were constructed with a three-fragment overlapping-PCR strategy. As the ATG 

of eptA is within the coding region of lpxE, around 100bp upstream of the eptA ATG 

were not deleted in lpxE single KO. First, two PCRs were performed on 100 ng of Cc5 

genomic DNA with primers A and B (Table 2) for the upstream flanking regions and with 

primers E and F for the downstream regions. Primers B and E contained an additional 

5' 20-nucleotide extension homologous to the ermF insertion cassette. The ermF 

resistance cassette was amplified from plasmid pMM13 DNA with primers C and D. All 

three PCR products were cleaned and then mixed in equal amounts for PCR using 

Phusion polymerase (Finnzymes). The initial denaturation was at 98°C for 2 min, 

followed by 12 cycles without primers to allow annealing and elongation of the 

overlapping fragments (98°C for 30 s, 50°C for 40 s, and 72°C for 2 min). After the 

addition of external primers (A and F), the program was continued with 20 cycles (98°C 
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for 30 s, 50°C for 40 s, and 72°C for 2 min 30 s) and finally 10 min at 72°C. Final PCR 

products consisted in lpxE::ermF or eptA::ermF insertion cassettes respectively and 

were then digested with PstI and SpeI for cloning into the appropriate sites of the C. 

canimorsus suicide vector pMM25 (Mally and Cornelis, 2008). Resulting plasmids were 

transferred by RP4-mediated conjugative DNA transfer from E. coli S17-1 to C. 

canimorsus 5 to allow integration of the insertion cassette. Transconjugants were then 

selected for presence of the ermF cassette and checked for sensitivity to cefoxitin. 

Deletion of the appropriate regions was verified by PCR.  

 

Construction of complementation plasmids. Plasmid pMM47.A was used for 

expression of LpxE and EptA (Mally and Cornelis, 2008). Full length lpxF, eptA or lpxF-

eptA were amplified with the specific primers listed in Table 2 and cloned into plasmid 

pMM47.A using NcoI and XbaI  or NcoI and XhoI restriction sites leading to the 

insertion of a glycine at position 2. Ligated plasmids were cloned in E. coli top10. 

 

Human TLR4 activation assay. HEK293 stably expressing human TLR4, MD-2, CD14 

and a secreted NF&B dependent reporter were purchased from InvivoGen (HEKBlueTM 

hTLR4). Growth conditions and endotoxicity assay were as recommended by 

InvivoGen. Briefly, desired amounts of LPS or lipid A were placed in a total volume of 

20 µl (diluted in PBS) and distributed in a flat-bottom 96-well plate (BD Falcon). 25000 

HEKBlueTM hTLR4 cells in 180 'l were then added and the plate was incubated for 20-

24h at 37°C and 5% CO2. If the antagonistic activity of a compound on the action of E. 

coli O111 LPS was assayed, the compound was added in a total volume of 10 µl 

(diluted in PBS), 25000 HEKBlueTM hTLR4 cells in 180 µl were added and the plate was 

incubated for 3h at 37°C and 5% CO2. Then the cells were stimulated with 5 ng/ml E. 
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coli O111 LPS and the plate was incubated as above. Detection followed the QUANTI-

BlueTM protocol (InvivoGen).  20 µl of challenged cells were incubated with 180 µl 

detection reagent (QUANTI-BlueTM, InvivoGen). Plates were incubated at 37°C and 5% 

CO2 and colour developed was measured at 655nm using a spectrophotometer 

(BioRad). 

 

Polymyxin B sensitivity assay. Polymyxin B sulphate was obtained from Sigma-

Aldrich. The agar dilution method was performed based on the CLSI/NCCLS 

recommendations (Ferraro and NCCLS/CLSI, 2003). Briefly, 104 bacteria contained in 2 

µl PBS were spotted on HIA 5% sheep blood plates containing Polymyxin B ranging 

from 0.5 mg/L to 1024 mg/L (2-fold increase per condition).  Plates were incubated and 

examined for growth of visible colonies after 48h and 72h. 

 

Genome annotation. Blast-p search tool (Altschul et al., 1997) against the C. 

canimorsus 5 genome (Manfredi et al., 2011) was used. Search sequences were 

obtained from the National Center for Biotechnology Information. All available 

Bacteroidetes-group sequences were used as search if available, but standard E. coli 

sequences have always been included. The highest scoring subjects over all the 

searches have been annotated as corresponding enzymes. Difficulties in annotation 

were only observed for lpxE. lpxE search was based on lpxF and/or lpxE sequences 

from P. gingivalis (Coats et al., 2009), F. novicida (Wang et al., 2006), R. etli (Ingram et 

al., 2010b), H. pylori (Cullen et al., 2011; Tran et al., 2006) and on all available 

Bacteroidetes-group pgpB sequences.  
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Tables 

 

Table 1. Bacterial strains used in this study 

Cc5 Human fatal septicemia after dog bite 1995 (Shin et al., 2007) 

Cc5 !lpxE Replacement of Ccan_16960 by ermF; Emr 

(primer 6493-6498) 

This study 

Cc5 !eptA Replacement of Ccan_16950 by ermF; Emr 

(primer 6499-6504) 

This study 

Cc5 !lpxE-

eptA 

Replacement of Ccan_16960-16950 by ermF; 

Emr (primer 6493-6495 and 6502-6504) 

This study 

 

 

Table 2. Oligonucleotides used in this study 

 

Ref. Name Sequence 5'-3' Restriction  Gene PCR 

6493 lpxE-A 

CCCTGCAGGGCACGTTCGTACCA
GTTA PstI 

lpxE A 

6494 lpxE-B 

GAGTAGATAAAAGCACTGTTATTT
GCTTATTTTGAATATTTCGG  

lpxE B 

6495 lpxE-C 

CTTATATTTGCCGCCGAAATATTC
AAAATAAGCAAATAACAGTGCTTT
TATCTACTCCGATAGCTTC 

 

ermF C 

6496 lpxE-D 

CTTGCATTATCTTAACACTCATAAA
AACAACACTCCCCTACGAAGGAT
GAAATTTTTCAGGGACAAC 

 

ermF D 

6497 lpxE-E 

AAAAATTTCATCCTTCGTAGGGGA
GTGTTGTTTTTATGAGTGTT  

lpxE E 

6498 lpxE-F 

CAACTAGTAAACCGTTTCAGTTTG
GGT SpeI 

lpxE F 
6499 eptA-A CCCTGCAGTGTTCCTCGCCCTGT PstI eptA A 
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TAC 

6500 eptA-B 

GAGTAGATAAAAGCACTGTTTTAT
TGATTTTTTTTAACATAAAATTTTA
TC 

 

eptA B 

6501 eptA-C 

GTTGTACTTAATGATAAAATTTTAT
GTTAAAAAAAATCAATAAAACAGT
GCTTTTATCTACTCCGATAGCTTC 

 

ermF C 

6502 eptA-D 

ATCTTGTAAATTACGGATTGGTCA
TTCAATAATTCTACGAAGGATGAA
ATTTTTCAGGGACAAC 

 

ermF D 

6503 eptA-E 

AAAAATTTCATCCTTCGTAGAATTA
TTGAATGACCAATCCG  

eptA E 

6504 eptA-F 

CAACTAGTTCCACCTCATTGAGAT
TCAC SpeI 

eptA F 

6646 
p-lpxE-
fw 

CGTACCATGGTTTTTAAAGAATCA
GCAAATAACC NcoI 

lpxE  

6647 
p-lpxE-
rev 

CAGTTCTAGATTATTGATTTTTTTT
AACATAAAATTTTATC XbaI 

lpxE  

6648 
p-eptA-
fw 

CGTACCATGGGATTAAAAAAAATC
AATAAATGGACTAACA NcoI 

eptA  

6649 

p-
eptA_re
v 

GCTTCTCGAGTTAGTCAAAAATGC
TCATTTGC XhoI 

eptA  
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Figures 

 

 

 

Figure 1. Structures of C. canimorsus lipid A (A) and E. coli lipid A (B). (A) C. 

canimorsus lipid A consists of a "-(1’$6)-linked GlcN3N’-GlcN disaccharide, to which 

3-hydroxy-15-methylhexadecanoic acid, 3-hydroxy-13-methyltetradecanoic acid, 3-O-

(13-methyltetradecanoyl)-15-methylhexadecanoic acid, and 3-hydroxyhexadecanoic 

acid are attached at positions 2, 3, 2’, and 3’, respectively. The disaccharide carries a 

positively charged ethanolamine at the 1 phosphate and lacks a 4’ phosphate. (B) 

Structure of E. coli hexa-acylated lipid A. E. coli lipid A consists of a "-(1’$6)-linked 

GlcN disaccharide that is phosphorylated at positions 1 and 4’ and carries four (R)-3-

hydroxymyristate chains (at positions 2’, 3’, 2 and 3). The 2’ and 3’ 3-hydroxylated acyl 

groups in GlcN’ are further esterified with laurate and myristate, respectively (Raetz, 

1990). 
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Figure 2. Proposed enzymatic activity of LpxE, EptA and LpxF (top) and schematic 

representation of the lpxE-eptA operon (bottom)(drawn to scale). 
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Figure 3. Effect of deletion of lpxE or eptA on endotoxicity (A) Endotoxic activity of heat 

killed C. canimorsus (Cc) wildt-ype (Cc5), !lpxE, !eptA or !lpxE-eptA bacteria. 

Indicated multiplicity of infection (MOI) of heat killed bacteria were assayed for TLR4 

dependent NF&B activation with HekBlue human TLR4 cells. Data were combined from 

n=3 independent experiments, error bars indicated are standard error of the mean. (B-

D) Endotoxic activity of heat killed C. canimorsus 5 wild-type (Cc5), !lpxE, !eptA or 

!lpxE-eptA bacteria and effect of the presence of indicated plasmid (p-) in trans. (A-D) 

Indicated multiplicity of infection (MOI) of heat killed bacteria were assayed for TLR4 

dependent NF&B activation with HekBlue human TLR4 cells. All mutations showed to 

be non-polar. Data were combined from n=3 independent experiments, error bars 

indicated are standard error of the mean. 
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Figure 4. Effect of deletion of lpxE or eptA on resistance to Polymyxin B. Minimum 

inhibitory concentration (MIC) of Polymyxin B for C. canimorsus (Cc) wild-type (Cc5), 

!lpxE, !eptA or !lpxE-eptA. Polymyxin B MIC was determined using the Agar dilution 

method. Data were combined from n=4 independent experiments, where MIC 

measured were identical. 
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3.1 Manuscript in preparation: Structure, biosynthesis and function of 

Capnocytophaga canimorsus 5 O-antigens 
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Abstract 

 

C. canimorsus is a usual member of dog’s oral flora that was discovered in patients that 

underwent dramatic infections after having been bitten, scratched or licked by a dog. 

The structure of the LPS from Capnocytophaga canimorsus 5 (Cc5) was determined by 

chemical analysis, GLC-MS, ESI FT-ICR MS and NMR spectroscopy. Two different O-

antigens (LPS I and LPS II) were found to be co-expressed. LPS I consists of repeating 

units of N-Acetylfucosamine (FucNAc), glucuronic acid (GlcA), N-Acetylquinovosamine 

(QuiNAc) and N-galacturonoyl-2-aminoglycerol (GalANgro) while LPS II O-antigen 

consists of five repeating units of N-Acetylglucosamine (GlcNAc) and L-Rhamnose (L-

Rha). Several transposon mutants sensitive to complement killing isolated by a large 

screen turned out to be also sensitive to killing by Polymyxin B.  All the mutations 

mapped in a 28-kb locus consisting of 29 genes involved in the biosynthesis and 

assembly of the sugars identified in LPS I and LPS II. All serum- and polymyxin-

sensitive mutants lacked LPS I but also a high molecular weight polysaccharide 

reacting with a specific anti LPS I antiserum. We inferred that this polysaccharide was a 

type 1 or 4 capsule consisting of the LPS I repeating units. The K-antigen, formed by 

LPS I and the related capsule, but not LPS II, were found to be assembled by a 

wzx/wzy dependent process. Deletion of wzz lead to deregulation of the length of LPS I, 

to the loss of the LPS I dependent capsule and to an altered surface as detected by 

TEM. Summarizing, we show that the C. canimorsus 5 K-antigen is responsible for the 

complement and Polymyxin B resistance.  
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Introduction 

 

Capnocytophaga canimorsus (formerly Centers for Disease Control group DF-2) are 

capnophilic Gram-negative bacteria that belong to the family of Flavobacteriaceae in 

the phylum Bacteroidetes. C. canimorsus is found in the normal oral flora of dogs and 

cats. It is rarely but regularly isolated from dog or cat bite infections since its discovery 

in 1976 (Bobo and Newton, 1976; Brenner et al., 1989). These infections occur, 

worldwide, with an approximate frequency of one per million inhabitants per year. They 

generally begin with flu symptoms and evolve in a few days into fulminant septicaemia 

and peripheral gangrene with mortality as high as 40 % (Bailie et al., 1978; Bobo and 

Newton, 1976; Le Moal et al., 2003; Pers et al., 1996; Westwell et al., 1989). 

Splenectomy, alcohol abuse and immunosuppression have been associated with a 

number of cases, but more than 40% of the patients have no obvious risk factor (Lion et 

al., 1996). Recent observations help understanding the infectiveness of C. canimorsus 

for humans. C. canimorsus are able to escape complement killing and phagocytosis by 

human polymorphonuclear leukocytes (PMN's) (Meyer et al., 2008; Shin et al., 2009). 

They also escape detection and phagocytosis by macrophages, which results in a lack 

of release of pro-inflammatory cytokines (Shin et al., 2007). In addition to the passive 

evasion from innate immunity, some strains are able to block the killing of Escherichia 

coli phagocytosed by macrophages (Mally et al., 2009; Meyer et al., 2008) and to block 

the onset of pro-inflammatory signalling induced by an E. coli lipopolysaccharide (LPS) 

stimulus (Shin et al., 2007). C. canimorsus also has the unusual property to 

deglycosylate  mammalian proteins, including IgG and surface glycoproteins from 

phagocytes (Mally 2008; Manfredi 2011; Renzi et al., 2011). 

Gram-negative bacteria have a complex set of surface polysaccharides, which 
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contribute to pathogenicity as well as commensalism (Bravo et al., 2008; Cardoso et al., 

2006; Grossman et al., 1987; Lerouge and Vanderleyden, 2002; Murray et al., 2003; 

Nesper et al., 2002; Pluschke et al., 1983a; Porat et al., 1992; Raynaud et al., 2007; 

Ugalde et al., 2000). These include the lipopolysaccharide (LPS) as well as capsules or 

other exopolysaccharides (Whitfield, 2006). The LPS of gram-negative bacteria, a 

major component of the outer membrane, consists of three regions: the lipid A, the core 

oligosaccharide, and the O-antigen. The O antigen is synthesized independently of the 

lipid A-core (Raetz, 1990) and generally consists of several repeats of an 

oligosaccharide called the O-unit. Three pathways have been described for LPS 

biosynthesis and translocation and they essentially differ by their export mechanism. 

They are called Wzy-dependent, ABC-transporter dependent and synthase dependent 

(Raetz and Whitfield, 2002). The O-antigen greatly varies in between and within 

species, providing the main basis for serotyping. It can be a virulence factor contributing 

to serum resistance (Murray et al., 2003; Murray et al., 2005; Murray et al., 2006; 

Nesper et al., 2001; Nesper et al., 2002; Pluschke et al., 1983a; Pluschke et al., 1983b; 

Raynaud et al., 2007; Slaney et al., 2006; Ugalde et al., 2000; West et al., 2005). O-

antigen deficient strains of different bacteria have generally reduced virulence 

(Raynaud et al., 2007; Ugalde et al., 2000). 

In a previous study we reported that C. canimorsus resist killing by human complement 

by virtue of a polysaccharide structure, likely the LPS. A mutant hypersensitive to killing 

by complement via the antibody-dependent classical pathway, called Y1C12, was 

indeed found to be affected in a glycosyltransferase gene (Shin et al., 2009). This 

mutant was missing a polysaccharide structure, the LPS or a capsule, but was still 

endowed with other polysaccharide structures. Here we characterize the different 

polysaccharide structures present at the surface of C. canimorsus 5 and we 
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characterize Y1C12 and other complement-sensitive mutants. We show that C. 

canimorsus 5 expresses two LPS O-chains (I and II) and a capsule made of the O 

chain from LPS I.  Synthesis of both chains and their assembly is encoded in one large 

locus.  Mutants that are sensitive to complement are also sensitive to Polymyxin B and 

they are all affected in the biosynthesis of LPS I. 

 

 

 

Results 

 

Structure of two different O-antigens from C. canimorsus 5  

The composition of the O-antigens expressed by C. canimorsus 5 was determined 

using electrospray-ionisation mass spectrometry (ESI-MS) and gas liquid 

chromatography mass spectrometry (GLC-MS) or using an NMR based technology 

(described in Zähringer et al, 2011, submitted).  Two different LPS O-antigens (LPS I 

and LPS II) were identified. LPS I O-antigen consists of repeating units of N-

Acetylfucosamine (FucNAc), glucuronic acid (GlcA), N-Acetylquinovosamine (QuiNAc) 

and N-galacturonoyl-2-aminoglycerol (GalA and NGro: GalANgro) (Fig. 1 A). The 

aminoglycerol attached to the galacturonic acids mask the negative charges of the 

carboxygroup at position 2 of the uronic acid (GalA). LPS II O-antigen consists of only 

five alternating units of N-Acetylglucosamine (GlcNAc) and L-Rhamnose (L-Rha) (Fig. 1 

B). Mutant Y1C12 affected in a glycosyltransferase synthesized only LPS II, hinting that  

Y1C12 is affected in a gene involved in synthesis of LPS I only. 
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LPS I is expressed on each single C. canimorsus 5 bacterium  

In order to see, if each individual C. canimorsus 5 bacterium co-expresses LPS I and 

LPS II, we generated an antiserum specific to LPS I by absorbing an antiserum raised 

against total bacteria with a large excess of intact Y1C12 bacteria. We stained C. 

canimorsus 5 wt (Fig. 2 A) and Y1C12 (Fig. 2 B) bacteria by immunofluorescence using 

this LPS I antibody.  The surface of every C. canimorsus 5 cell was stained all around 

while none of the Y1C12 bacteria were stained (Fig. 2). Thus all C. canimorsus 5 

bacteria express LPS I or a closely related antigen.  At least some if not all of C. 

canimorsus 5 bacteria must co-express LPS II since both LPS were purified from the 

same culture. Hence we infer that LPS I and II can be co-expressed by C. canimorsus 

5. 

 

C. canimorsus 5 also has a capsular antigen related to LPS I  

Since several polysaccharides were observed in our previous work, we used the anti-

LPS I serum to identify the band corresponding to LPS I.  We purified bacterial 

polysaccharide structures by digesting whole bacteria with proteinase K followed by 

immunoblotting using anti-C. canimorsus 5 and anti-LPS I antibody (Fig. 3). As a 

control purified LPS samples from C. canimorsus 5 wt and Y1C12 bacteria were used. 

Bands at molecular weight (MW) lower than LPS II were assigned as lipid A plus core 

(LA-core). Bands at MW higher than LPS I were assigned as B (3-5 five clustered 

bands). Bands labeled A and B were present in the wt and all Tn mutants. These were 

non-LPS bands, as they were not present in purified LPS samples.   They are also not 

structural elements related to LPS I as they were not stained with the anti-LPS I 

antibody (Fig. 3 B). In contrast, the band labeled HMW was missing Y1C12 (Fig. 3 A 

and B) and it was stained with the anti-LPS I antibody (Fig 3. B) although it was not 
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present in C. canimorsus 5 LPS purifications. This indicated that C. canimorsus 5 

encodes a high molecular weight structural element made at least partially of subunits 

identical to LPS I. This could be a capsule of type 1 or 4 that is made out of LPS 

repeating units (Whitfield, 2006). LPS I and the related capsule thus represents the C. 

canimorsus K-antigen. 

 

Identification of the genes encoding the O-antigens of C. canimorsus 5  

In order to identify the genes encoding these O antigens, we sought to identify more 

complement-sensitive mutants.  By screening a transposon mutant library (Tn4351) of 

C. canimorsus 5, we isolated four clones (hereafter designated Y1D1, Y3A2, U5D4, 

X1B12) whose survival rate in normal human serum (NHS) was severely decreased 

compared to that of the C. canimorsus 5 wt. As shown in figure 4, 10% NHS reduced 

the viable counts of all these mutants by almost 5 log10 units after 3 h of incubation 

while heat inactivated (HI) NHS had no significant effect indicating that the serum 

sensitivity involved complement-dependent killing (Fig. 4).  

Mutant bacteria Y1D1, Y3A2, X1B12 and U5D4 all lacked the LPS I band (Fig. 5 A), 

thus resembling Y1C12. Although Tn4351 often leads to cointegration, all the five 

mutants considered were bona-fide transposition mutants (Supplementary Fig. 1). The 

integration site of Y1C12, Y1D1, Y3A2, U5D4 and X1B12 were mapped on the genome 

sequence (Manfredi, Pagni, Cornelis, 2011) and found to be located in different genes 

clustered in a 28-kb locus, including the glycosyltransferase (Y1C12) identified earlier 

(Shin et al., 2009) (Fig. 6 A). This locus encodes 29 genes, whereof 23 are predicted to 

be involved in sugar synthesis, transfer or export. The gene cluster is directly flanked by 

transposase genes Ccan23450 and Ccan 22980, indicating the possibility of horizontal 

acquisition. This C. canimorsus 5 O-antigen gene cluster encodes the biosynthesis of 
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sugars for LPS II (L-Rha: RmlA-D) as well as genes required for biosynthesis of sugars 

incorporated in LPS I (FucNAc: FnlA-C, QuiNAc: WbtA-C, GlcA: Ugd and GalA: Ugd 

and Uge). The O-antigen repeat-units of LPS I and II and the putative role of genes 

from the C. canimorsus 5 "O-antigen cluster" are summarized in figure 6 B. 

Interestingly, all serum sensitive transposon mutants mapped in genes required for 

biosynthesis of LPS I (Fig. 6 A). The annotation of the gene mutated in Y1C12 was now 

refined as wbuB, a predicted FucNAc transferase (Shin et al., 2009). In Y1D1 the 

transposon inserted in wbtA (wbtA in F. tularensis or wbpM in P. aeruginosa), a gene 

required for QuiNAc biosynthesis (Belanger et al., 1999; Liu et al., 2008; Samuel and 

Reeves, 2003).  For mutant Y3A2, the Tn was found in uge, which encodes the enzyme 

for the conversion of GlcA into GalA.  The transposon generating U5D4 and X1B12 was 

located in fnlC, encoding the enzyme required for the last step in FucNAc biosynthesis. 

Y1C12, X1B12 and U5D4 synthesized a LPS, which migrated slightly below the LPS I, 

band (labeled LPS* in Fig. 5 A). Interestingly, the LPS* band was only detected for the 

mutants affecting FucNAc synthesis or transfer. The band labeled LPS* was not 

detected with the anti-LPS I antibody (Fig. 5 B), indicating that the LPS* is not identical 

to LPS I. It might be that LPS* is a version of LPS I without FucNAc and that the 

FucNAc residues are essential for recognition by the anti-LPS I antiserum and for 

serum resistance. This would match the reported role of FucNAc in pathogenesis of 

several bacteria (Kneidinger et al., 2003). 

The mapping of the new Tn mutants not only allowed to annotate accurately the LPS 

biosynthesis genes but it confirmed that LPS I but not LPS II is involved in the 

mechanism of serum resistance of C. canimorsus 5. By purification and analysis of 

Y1C12 LPS we could clearly show, that Y1C12 (therefore wbuB) affects biosynthesis of 

LPS I but not II. For Y1C12 polar effects have been excluded by complementation 
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studies (Shin et al., 2009). 

 

The length of the O-chains from LPS I is controlled by Wzz 

The polysaccharides from a fifth complement-sensitive mutant  (M1C12) presented an 

unusual migration in gel electrophoresis. Instead of a single band, it appeared as a 

ladder of products with a higher mass than wt LPS I.  No additional bands below the 

LPS I band appeared and the size difference in between each single step of the 

laddering fits more with 5-times the tetrasaccharide repeat than a single tetrasaccharide 

unit (Fig. 5). In this mutant the Tn inserted in a gene homologous to E. coli wza (Fig. 7). 

E. coli wza is thought to play a role in capsular export by forming a multimeric putative 

translocation channel (Whitfield, 2006). The gene just downstream of wza is an 

homologue of E. coli wzz. wzz (formerly cld or ro 1) is considered as the regulator of the 

O-antigen polymerase, Wzy, since E. coli wzz mutants have a random O-chain length 

distribution (Franco et al., 1996; Franco et al., 1998; Raetz and Whitfield, 2002). The 

abnormal chain length distribution observed in M1C12 LPS I (Fig. 5, Fig. S3) suggests 

that, in this mutant, the insertion had a polar effect and that the silencing of wzz was 

responsible for the phenotype. This interpretation was confirmed by engineering and 

analyzing single-gene deletions of wza, wzz and wza-wzz. Single deletion of wzz, which 

is the last gene in the operon, leads to the same laddering as in M1C12 and to the loss 

of the HMW-band (Fig. S3). The observed laddering of LPS I O-antigen but not of LPS 

II O -antigen upon deletion of wzz indicated that LPS I assembles by the wzx/wzy 

pathway. 

 

Deletion of wzz leads to an altered bacterial surface 

Bacterial samples were Immunogold labeled using the anti-LPS I antibody and 
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examined by transmission electron microscopy (TEM).  The gold particles localized to 

the surface of C. canimorsus 5 (Fig. 8 A and B, left side), whereas only background 

labeling was detected on the surface of Y1C12 (Fig. 8 A right side). Besides the 

Immunogold labeling, no difference in the surface structure of C. canimorsus 5 wt and 

Y1C12 mutant was detectable (Fig. 8 A). The M1C12 mutant bacteria, which show 

deregulated O-antigen polymerization, had an abnormal surface compared to wt. It was 

ruptured by little spikes unlike the rather smooth surface of wt bacteria (Fig. 8 B). The 

surface protruding spikes were labeled by anti-LPS I antibodies (see arrowhead Fig. 8 

B, right side), indicating that they probably represented the ultra-long LPS I made by 

M1C12 (Fig. 5, Fig. S3). As both, Y1C12 and M1C12, lack the HMW structural element, 

these spikes cannot account for the observed surface alteration. 

 

LPS I is essential for Polymyxin B resistance 

We have seen here before that LPS I protects C. canimorsus from the bactericidal 

action of complement.  As the LPS O-chain has been reported to protect some bacteria 

from cationic antimicrobial peptides (CAMP) (Cardoso et al., 2006), we monitored the 

sensitivity to Polymyxin B of wt and mutant Cc5 bacteria. C. canimorsus 5 wt  was 

found to be highly resistant (MIC = 1024 mg/L) while all LPS I/capsule mutants showed 

a decreased resistance (Fig. 9). Therefore the K-antigen is not only important for serum 

resistance but as well for resistance to CAMPs. 
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Discussion 

 

The O-antigen is known to play an important role in serum resistance and virulence of 

pathogenic bacteria (Bravo et al., 2008; Grossman et al., 1987; Murray et al., 2003; 

Murray et al., 2005; Murray et al., 2006; Raynaud et al., 2007; Ugalde et al., 2000).  In 

particular this was shown to apply to P. gingivalis, which is phylogenetically related and 

occupies a similar niche. P. gingivalis were reported to rely on a surface polysaccharide 

for serum resistance (Slaney et al., 2006). We have investigated the structure of 

archetypal C. canimorsus 5 LPS and found two different O-antigens, called LPS I and 

LPS II. The expression of LPS I and LPS II is shown not to be mutually exclusive and a 

single bacterium can have both LPS present at its surface. 

C. canimorsus 5 LPS I O-antigen consists of repeating units of L-FucNAc, GlcA, 

QuiNAc and GalANgro while LPS II O-antigen consists of five repeating units of GlcNAc 

and L-Rha. . The aminoglycerol attached to the uronic acid masks the negative charge 

of the uronic acid. This O-unit resembles the one of V. cholerae H11 (non O1), which 

besides neuraminic acid contains GlcANgro, QuiNAc and GalANgro (Vinogradov et al., 

1992; Vinogradov et al., 1993). L-FucNAc residues in capsular structures or LPS have 

been associated with pathogenicity in P. aeruginosa (O4, O11, O12) and S. aureus 

(serotype 5 and 8) (Kneidinger et al., 2003).  Overall, the presence of a L-Rha 

containing LPS glycoform and a more complex LPS glycoform containing three to five 

distinct sugars in a single cell reminds of P. aeruginosa (Lam et al.).  

In addition to the lipid A linked form, C. canimorsus seems to build a high molecular 

weight (HMW) structure out of sugars of LPS I, likely a capsule. Capsules made of 

sugars of the LPS O-unit have been described and are called capsules type 1 and 4 

(Whitfield, 2006). Type 1 capsules generally contain uronic acids (Whitfield, 2006) as 
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were detected in C. canimorsus LPS I. The C. canimorsus LPS I (in accordance with 

the E. coli nomenclature LPS I would be the KLPS) and its corresponding HMW-form 

thus represent one K-antigen, as seen in some E. coli strains, consisting of the LPS 

and a related capsule of type 1 or 4 (Whitfield, 2006).  

In previous study we have reported that Y1C12 was deficient in a putative 

glycosyltransferase. We could show that a polysaccharide structure dependent on this 

glycosyltransferase, likely the LPS, protected C. canimorsus from deposition of 

membrane-attack-complex (MAC) and therefore killing by serum (Shin et al., 2009). We 

have now analyzed the LPS structure of this mutant strain and found that it lacked the 

K-antigen. We infer that the serum resistance of C. canimorsus is based on the K-

antigen. Further all serum sensitive mutants mapped into one single gene cluster, that 

we call the O-antigen cluster. It encodes not only the biosynthesis of sugars for LPS I 

(FucNAc: FnlA-C, QuiNAc: WbtA-C, GlcA: Ugd and GalA: Ugd and Uge) but also for 

LPS II (L-Rha: RmlA-D). All serum sensitive Tn mutants mapped in genes required for 

biosynthesis of LPS I. This suggests again that LPS I but not LPS II is involved in the 

mechanism of serum resistance of C. canimorsus 5. As is the case in V. cholerae 

(Nesper et al., 2001; Nesper et al., 2002), the serum sensitive strains equally showed 

increased sensitivity to CAMPs. Concluding, LPS I and its related HMW-form protect C. 

canimorsus from CAMPs and human complement. 

LPS I and the related capsule but not LPS II is translocated via the Wzy-dependent 

pathway. To affect LPS II but not LPS I we have tried to mutate wzt, as LPS II might be 

exported via the wzm/wzt pathway (Raetz and Whitfield, 2002). Deletion mutation in the 

predicted C. canimorsus 5 wzt gene did not affect the polysaccharide structures 

visualized by Western-blotting (data not shown). Further, we tried to delete rmlA, rmlC 

or rmlD to interfere with LPS II. All these mutations showed to be lethal, which probably 
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reflects the fact, that a Rhamnose is present in the core. Perturbation of LPS I chain 

length by deletion of wzz led to sensitivity to serum and CAMPs. Even if generally a 

longer O-antigen is considered to protect better from complement (Porat et al., 1992), in 

the case of C. canimorsus unregulated length of the O-chain of LPS I led to serum 

sensitivity. Deletion of wzz did not lead to a uniform prolonged LPS I, which might 

promote improved serum resistance, but to a dispersed chain length. The regular 

surface structure was thus changed and spike-like protrusions were seen. Further "wzz 

bacteria did not have the HMW-form of LPS I, the proposed capsule. This capsule 

might be lost in "wzz bacteria because the sugars are used up for the ultra-long LPS I 

or because it is dependent on wzz. If the resulting serum sensitivity of "wzz bacteria is 

based on the loss of the capsule dependent on LPS I or on the irregular surface 

structure based on the various LPS I species present could not be evaluated. But the 

LPS I laddering observed for "wzz bacteria starts only at higher molecular weight than 

the wt LPS I. Hence the O-chain of LPS I of "wzz bacteria is never shorter as the wt 

LPS I. Studies in E. coli and Salmonella reported correlation of O-antigen length and 

resistance to complement (Bravo et al., 2008; Murray et al., 2003; Murray et al., 2005; 

Murray et al., 2006; Porat et al., 1992). Hence the LPS I of "wzz bacteria should be at 

least as protective as the one of C. canimorsus 5 wt. Based on this assumption the LPS 

I dependent capsule seems to be the complement and CAMP resistance providing 

structure. Attempts to prove this hypothesis by mutation of genes involved in capsular 

export (wzb, wzc) failed. Neither mutation affected the band pattern seen by Western-

blotting, either because of bad annotation even if all possible candidates have been 

tested or because the C. canimorsus capsule is exported independently of the genes 

with homology to wzb and wzc.   
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Materials and methods 

 

Bacterial strains and growth conditions. The following bacterial strains were used: 

C. canimorsus strains C. canimorsus 5, isolated from human infection as described 

previously (31); E. coli Top10 (Invitrogen). C. canimorsus bacteria were routinely grown 

on heart infusion agar (Difco) supplemented with 5% sheep blood (Oxoid) for 2 days at 

37°C in the presence of 5% CO2. Selective agents were added at the following 

concentrations: erythromycin at 10!g/ml, gentamicin at 20 g/ml. 

 

Antisera. Anti-rabbit IgG-FITC was obtained from Southern Biotech. Polyclonal serum 

against C. canimorsus 5 was generated from rabbits by immunization with HK C. 

canimorsus 5 (Laboratoire d’Hormonologie, Marloie, Belgium). The Y1C12-absorbed 

serum was prepared by incubating twice an excess amount of Y1C12 mutant bacteria 

(harvested from blood plates and washed in phosphate-buffered saline [PBS]) with anti-

C. canimorsus 5 serum at 4°C for 12 h. Bacteria were removed by repeated 

centrifugation. 

  

LPS isolation. C. canimorsus were harvested from 600 blood plates in phosphate 

buffered saline (PBS) and washed with ddH2O, ethanol (300ml) and acetone (300ml), 

followed each time by centrifugation at 18000 x g for 30 min. 

 

Transposon mutant screen for serum bactericidal assay. Random Transposon4351 

mutants were generated as described previously (Mally et al., 2008). Transposon (Tn) 

mutant bacteria were grown in 100 µl heart infusion broth (Difco) supplemented with 

10% (vol/vol) fetal bovine serum (Invitrogen) in 96-well plates for 48 h without shaking 
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in a 37°C incubator with 5% CO2. Subsequently they were diluted in a new plate to an 

OD590 of 0.025. 50 µl of bacterial suspension (6.25 x 105 CFU) was incubated with 

either 10% NHS or HI NHS as a control in a 100 µl total volume. After 3 h of incubation, 

a microliter-range aliquot was spotted onto blood agar using a metal stamper and 

incubated for 48 h. The insertion site of the Transposon was mapped by arbitrary PCR 

as described previously (Mally et al., 2008).  

 

Serum sensitivity. Bacteria were harvested by gently scraping colonies off the agar 

surface. They were washed and resuspended in PBS to an OD600 of 0.4. NHS from 

healthy volunteers was pooled, aliquoted, and stored at "80°C. Serum was HI at 55°C 

for 30 min. A total of 1 x 107 bacteria were incubated in 10% NHS in PBS at 37°C with 

5% CO2. Serial dilutions were plated onto blood plates, and viable colonies were 

counted after 48 h of incubation. 

 

Gene annotation. Blast-p search tool (Altschul et al., 1997) against the C. canimorsus 

5 genome (Manfredi et al.) was used. Search sequences were obtained from the 

National Center for Biotechnology Information. All available search sequences for a 

corresponding gene of interest were used. The highest scoring subjects over all the 

searches have been annotated as corresponding enzymes. 
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Immunoblotting of proteinase K-resistant structures. Bacteria were harvested from 

blood-agar plates, washed once in 1ml of PBS and adjusted to an OD600 of 1.5 in 

PBS. 500'l bacterial suspension was pelleted and dissolved in 125'l ddH2O loading 

buffer (1% sodium dodecyl sulfate [SDS], 10% glycerol, 50 mM dithiothreitol, 0.02% 

bromophenol blue, 45 mM Tris (pH 6.8)). Samples were boiled at 99°C for 10 minutes. 

Proteinase K (50'g/ml final concentration) was added and samples were incubated at 

37°C overnight. After incubation samples were boiled again for 10 minutes at 99°C and 

a second volume of proteinase K (equal to the first) was added. Samples were 

incubated at 55°C for 3 hours, boiled again for 5 minutes at 99°C and loaded on a 15% 

SDS-PAGE. Samples were analyzed by western blotting.  

 

Polymyxin B sensitivity assay. Polymyxin B sulphate was obtained from Sigma-

Aldrich. The agar dilution method was performed based on the CLSI/NCCLS 

recommendations (Ferraro, 2003). Briefly, 104 bacteria diluted in PBS were spotted in 

2µl on HIA 5% sheep blood plates containing Polymyxin B ranging from 0.5 mg/L to 

1024 mg/L (2-fold increase per condition).  Plates were examined for growth of visible 

colonies after 48h and 72h. 

 

Immunofluorescence. Falcon culture slides (Becton Dickinson) were coated with poly-

D-lysine. Bacteria from blood agar plates were adjusted to an OD600 of 1 in PBS. 

Slides were washed four times with PBS. 100' of bacterial suspension, corresponding 

to 5 x 107 CFU, was added to the slides and incubated for 1 h at 37°C. Slides were 

washed four times with PBS before being fixed with 3% paraformaldehyde for 15 min at 

RT. Bacteria were labeled with anti-C. canimorsus 5 or Y1C12-absorbed anti-C. 

canimorsus 5 antiserum diluted 1:100 in PBS-BSA for 1h at RT. Slides were washed 
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four times in PBS. FITC-conjugated secondary antibody was added (dilution 1:100 in 

PBS-BSA), and slides were incubated at RT for 45 min. Slides were washed four times 

with PBS, mounted with anti-fade reagent (Vector Laboratories), and analyzed by use 

of a Leica Dmire2 microscope. Pictures were taken using a digital camera (Hamamatsu 

Photonics) and OpenLab software (version 3.1.2).  

 

Electron microscopy. Bacteria were harvested from blood agar plates and washed 

twice in PBS (1x) and adjusted to an OD600 of 1.0 in PBS. Bacteria were fixed with 2% 

glutaraldehyde and prepared for EM analysis.  
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Figures 

 

 

Figure 1. Structure of the complete LPS of C. canimorsus 5. (A) C. canimorsus 5 

LPS I O-antigen shows repeating units of N-Acetylfucosamine (FucNAc), glucuronic 

acid (GlcA), N-Acetylquinovosamine (QuiNAc) and N-galacturonoyl-2-aminoglycerol 

(GalA and NGro: GalANgro). The red line indicates the end of the core-oligosaccharide. 

(B) C. canimorsus 5 LPS II O-antigen shows repeating units of N-Acetylglucosamine 
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(GlcNAc) and L-Rhamnose (L-Rha). The O-polysaccharide starts with the GlcNAc 

labeled „I“. The red line indicates the end of the core-oligosaccharide. 

 

 

 

 

 

 

Figure 2. LPS I is expressed by each single C. canimorsus 5 bacterium. Presence 

of LPS I was tested by immunofluorescence on paraformaldehyde fixed but not 

permeabilized bacteria using Y1C12-absorbed anti-C. canimorsus 5 antiserum followed 

by anti- rabbit IgG conjugated to FITC. (A) DIC and immunofluorescence picture of C. 

canimorsus 5. (B) DIC and immunofluorescence picture of Y1C12 Transposon-mutant. 
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Figure 3. Y1C12 mutant has alterations in LPS I. (A) Immunoblotting analysis of 

proteinase K-treated C. canimorsus 5 and Y1C12 mutated C. canimorsus 5 and of LPS 

isolated from C. canimorsus 5 and Y1C12 using anti-C. canimorsus 5 antibody. (B) 

Immunoblotting analysis as described above (A) using anti-LPS I antibody.  
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Figure 4. The Transposon mutants are serum sensitive. Total CFU present after 

incubation of wt or Transposon4351 mutated C. canimorsus in 10% heat inactivated 

normal human serum (HI NHS) or 10% normal human serum (NHS) for 180 min at 

37°C. Mean value of thee independent experiments. 
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Figure 5. Transposon mutants have an alteration in LPS I. (A) Immunoblotting 

analysis of proteinase K-treated C. canimorsus 5 and Tn mutated C. canimorsus 5 and 

of LPS isolated from C. canimorsus 5 and Y1C12 using anti-C. canimorsus 5 antibody. 

(B) Immunoblotting analysis as described above (for A) using anti-LPS I antibody. 
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Figure 6. The C. canimorsus 5 O-antigen cluster. (A) Genetic organization of the O-

antigen cluster of C. canimorsus 5. (I) Extents, orientation and names of the genes 

forming the C. canimorsus 5 O-antigen cluster. Type I and II signal peptides as well as 

N-terminal transmembrane domains are indicated with circles.  (II) The C. canimorsus 5 

O-antigen cluster can be divided into two regions. One for the synthesis, assembly and 

transport of LPS I. The other region encodes genes for the synthesis, assembly and 

transport of LPS II. (III) Position of transposon (Tn4531) insertions. Flags indicate 
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direction of Tn4531 insertion, numbers in brackets transposon integration site. (B) 

Schematic structure of the O-antigen subunits of C. canimorsus 5 and assignment of 

putative functions to the genes of the O-antigen cluster. Single O-repeat units are 

shown, with sugar residues and glycosidic linkages indicated. LPS I: N-

Acetylfucosamine (FucNAc), glucuronic acid (GlcA), N-Acetylquinovosamine (QuiNAc) 

and N-galacturonoyl-2-aminoglycerol (GalANGro). LPS II: N-Acetylglucosamine 

(GlcNAc) and L-Rhamnose (L-Rha). 

 

 

 

 

Figure 7. Genetic organization of the wzz operon of C. canimorsus. (A) Extents, 

orientation and names of the genes forming the C. canimorsus 5 wzz operon. Type I 

and II signal peptides as well as N-terminal transmembrane domains are indicated with 

circles.  (B) Assignment of corresponding region according to the division of the C. 

canimorsus 5 O-antigen cluster into two regions. Region 1 encodes for the synthesis, 

assembly and transport of LPS I. Region 2 encodes genes for the synthesis, assembly 

and transport of LPS II. (C) Position of Transposon4531 insertions. Flags indicate 

direction of Transposon4531 insertion, numbers in brackets transposon integration site. 
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Figure 8. M1C12 shows altered surface structure. Bacteria were ImmunoGold 

labelled using Y1C12-absorbed anti-C. canimorsus 5 antiserum (anti-LPS I antibody) 

and were analyzed by transmission electron microscopy (TEM). (A) ImmunoGold C. 

canimorsus 5 (left) and Y1C12 (right). (B): ImmunoGold C. canimorsus 5 (left) and 

M1C12 (right). 
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Figure 9. Transposon mutants are sensitive to Polymyxin B. Minimum inhibitory 

concentration (MIC) of Polymyxin B for C. canimorsus (Cc) wild-type (C. canimorsus 5), 

the transposon mutants and !wza, !wzz or !wza-wzz. Polymyxin B MIC was 

determined using the Agar dilution method. 
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Supplementary figure 1. To test for vector cointegration, the chloramphenicol 

acetyltransferase gene (cat), which is present on the Transposon4351 delivery vector 

pEP4351, was amplified as a 633-bp PCR product from genomic DNA using primers 

3576 and 3577. All mutants described in this study did show not to have the vector 

cointegrated.   

 

 

 

 

 

Supplementary figure 2. Biosynthesis pathways for the sugars in C. canimorsus 5 O-

antigens. Adapted from (Liu et al., 2008).  
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Supplementary figure 3. Single gene deletion of wzz leads to the laddering effect 

observed in M1C12. Immunoblotting analysis of proteinase K-treated C. canimorsus 5, 

Y1C12 and of C. canimorsus 5 !wza, !wzz or !wza-wzz using anti-LPS I antibody. 
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4 Immune evasion by Capnocytophaga 

canimorsus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
!

Statement of my work: My contribution was the data of figures 1, 2, 3, 5, 6, 7, 8. The 

Transposon-screen on NO-release and mapping of the mutants was performed by H. 

Shin, M. Mally and C Pfaff-Paroz. The metabolite analysis was done in collaboration 

with the group op S Gresziek by M. Gentner. 
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4.1 Introduction 

!

In previous studies C. canimorsus was found to inhibit LPS stimulated murine 

macrophages from releasing nitric oxide (NO) and TNF# (Shin et al., 2007). Manuela 

Mally, Hwain Shin and Cécile Pfaff have performed a genome wide Transposon (Tn)-

screen and have identified mutants unable to interfere with the NO release of 

macrophages. The mutants have been mapped and found to affect genes of different 

functional categories. Following up this work, I tried to unravel the mechanism behind 

this inhibition.  My work led to the conclusion that the common link between all these 

mutations is that they all slightly reduce growth, hinting that the agent responsible for 

the blockade of NO release could be a metabolite.  In good agreement with this  

hypothesis, it turned out that the agent is a small thermostable molecule but the 

identification attempts were unsuccessful. 

I have further analyzed at which step C. canimorsus interferes with LPS sensing and 

signaling by macrophages (chapter 4.3). 
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4.2 Growth dependent effects of Capnocytophaga canimorsus on the innate 

immune system involve a small heat stable molecule 

 

 

 

 

 



Immune evasion 

- 154 - 

 

4.2.1 The genes hit by the Tn-mutation belong to different functional categories. 

The insertion site of the Tn was mapped by arbitrary PCR. These Tn mutants have 

been termed X2E4, Y2F12, Y4B5, X7B9, W2E9 and Y4G6. The predicted function of 

the Tn mutants deficient in growth and blocking the LPS induced NO release are listed 

in table 1. The genes hit by the Tn in W2E9 and Y4G6 have previously been described 

as important in eukaryotic glycoprotein deglycosylation and thus nutrient acquisition 

(Mally et al., 2008; Renzi et al., 2011). The gene hit in the case of W2E9 is a sialidase, 

which has been shown to cleave terminal sialic acid from eukaryotic glycoproteins 

(Mally et al., 2008). The Tn in the Y4G6 mutant maps into locus PUL5 (Manfredi et al., 

2011a; Manfredi et al., 2011b; Renzi et al., 2011). This locus has been reported to 

encode the N-glycan glycoprotein deglycosylation complex of Cc5 (Renzi et al., 2011).  

The genes hit by the Tn in X2E4 and X7B9 encode nucleotide or amino acid 

biosynthesis, respectively. The difference in growth of these mutants between RAW 

and J774 macrophages (Fig. 1 A and C) might reflect the different growth media used 

for these two cell lines (DMEM and RPMI1640, respectively). Y2F12 mutation hits a 

gene in locus 

 PUL11 [see (Manfredi et al., 2011b)]. PUL11 consists of two genes with sequence 

homology to Bacteroides thetaiotaomicron starch utilization system (sus) genes susC 

and susD (Anderson and Salyers, 1989; Reeves et al., 1997; Shipman et al., 2000), 

termed camN and camO, as well as of two hypothetical proteins termed camA and 

camB. Like Y4G6 impacting PUL5, Y2F12 impacting PUL11 might be important in 

nutrient acquisition. Summarizing, the common feature of the genes affecting the 

inhibition of NO release play a role in growth on eukaryotic cells. 
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Table1. Name of the Tn mutant, orf (Ccan) number of the gene in which the Tn 

insertion mapped and predicted function of the targeted gene are indicated. 

name Tn-Insertion in Ccan 

Nr. 

Predicted function as Reference 

X2E4 Ccan_3130 Dihydroorotase this study 

Y2F12 Ccan_20110 hypothetical this study 

Y4B5 Ccan_05080 hypothetical this study 

X7B9 Ccan_06510 Glutamine synthetase this study 

W2E9 Ccan_04790 Sialidase (Mally et al., 

2008) 

Y4G6 Ccan_08710 SusD of PUL5 (Renzi et al., 

2011) 

 

 

 

4.2.2 The inhibitory effect of C. canimorsus on NO release by macrophages is 

growth dependent. 

Tested for growth on J774.1 macrophages, all Tn mutants showed decreased growth 

capacity as compared to the Cc5 wt (Fig. 1 D). Only X2E4 showed almost wt growth on 

J774.1 macrophages, but also exhibited an intermediary phenotype in the NO release 

assay. The same Tn mutants were as well assayed for growth and preventing the LPS 

induced NO release using RAW murine macrophages. Surprisingly, differences using 

J774.1 or RAW murine macrophages were found (Fig. 1 A/B and C/D).  Mainly X7B9 

and X2E4 exhibited differences in growth on RAW macrophages as compared to 

J774.1 cells. Overall, a positive correlation between a wt growth and the ability to block 

the LPS induced NO release was found for both murine macrophage cell lines. 
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Figure 1. C. canimorsus 5 Tn-mutants are deficient in growth on macrophages 

and in blocking the LPS induced NO release by murine macrophages. (A) Growth 

on RAW264.7 macrophages 24 hours post-infection with MOI 50 of C. canimorsus 5 

wild-type (Cc5) and the Tn mutants and (B) NO release of RAW264.7 macrophages 

stimulated with LPS and infected with the indicated strain at MOI 50 for 24h. (C) Growth 

on J774.1 macrophages 24 hours post-infection with MOI 50 of Cc5 and the Tn mutants 

and (D) NO release of J774.1 macrophages stimulated with LPS and infected with the 

indicated strain at MOI 50 for 24h. 
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4.2.3 C. canimorsus growth on eukaryotic cells and ability to block the NO 

release by LPS stimulated macrophages are positively correlated. 

Multiple patient-derived C. canimorsus strains (Cc2-Cc12) as well as dog mouth derived 

strains (D7-D101) were tested for growth on RAW macrophages and blocking the LPS 

induced NO release (Fig. 2). Only few strains were able to block the LPS induced NO 

release (Fig. 2 B), and exactly these strains were found to grow best (Fig. 2 A). Only 

D101, which seems to grow above the average, was found not to block the NO release 

by LPS stimulated macrophages. 



Immune evasion 

- 158 - 

 

 

 

Figure 2. Only a restricted set of C. canimorsus strains has the ability to grow 

well on macrophages and to block the NO release by LPS stimulated 

macrophages. (A) Growth on RAW264.7 macrophages 24 hours post-infection with C. 

canimorsus (MOI 50) patient derived strains (labeled Cc2-12) and strains isolated from 

dog’s mouth (labeled d7-d101). (B) NO release of RAW264.7 macrophages stimulated 

with LPS and infected with the indicated strain at MOI 50 for 24h. 
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4.2.4 The NO release blocking factor is secreted, small and heat stable. 

To address the question, if C. canimorsus interfere with macrophages by releasing a 

factor, we performed assays with conditioned medium (CM). To prepare Cc5 CM, RAW 

murine macrophages were infected with Cc5 for 24h, the supernatant was collected 

and sterile filtered (0.22 µm) and occasionally further processed. The Cc5 CM was 

found to mediate the immunomodulatory effect, even if filtered through a 3kDa-cutoff 

filter unit (Fig. 3 A). The effect of Cc5 CM on RAW macrophages was found to be 

concentration dependent, as dilution with fresh growth medium led to an increase in NO 

release (Fig. 3 B). Increasing MOI and time of infection also affected the blocking of the 

NO release (Fig. 3 C), again pinpointing the concentration dependency of the observed 

effect.  The NO release blocking molecule was further found to be heat stable (Fig. 3 

D). Interestingly, growth medium that has been left on macrophages for 24 h (termed 

old medium) affected the NO release as well, showing the dependency of RAW 

macrophages on proper cell culture conditions for effective response to bacterial stimuli 

as LPS. Nevertheless, the effect of C. canimorsus conditioned medium was found to be 

significantly stronger than the effect of “old medium”. The effect on NO-release by C. 

canimorsus conditioned medium was not restored upon addition of fresh FCS (Fig. 3 

E). Therefore the effect seems not to be due to the bacterial consumption of a medium 

component but rather due to the release of a small thermostable molecule affecting 

murine macrophage function. 
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Figure 3. The NO release blocking factor is secreted, small and heat stable. The 

effect is concentration dependent and can’t be compensated by addition of extra 

FCS. (A) RAW murine macrophages were infected at MOI 50 with C. canimorsus 5. 24h 
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post infection the supernatant was collected and sterile filtered (0.22 um), called 

conditioned medium. In one case the conditioned medium filtered through a 3kDa filter 

unit. This conditioned medium was put on pre-seeded RAW cells and they were 

stimulated with LPS for further 24h before NO release was measured. (B) C. 

canimorsus 5 conditioned medium was prepared as in (A) and diluted with fresh 

medium to the extent indicated and was put on pre-seeded RAW cells. They were then 

stimulated with LPS for further 24h before NO release was measured. (C) RAW 

macrophages were stimulated with LPS and co-infected with the indicated MOI of C. 

canimorsus 5 for 4h or 6h before NO release was measured. (D) C. canimorsus 5 

conditioned medium was heat inactivated (HI) or treated with proteinase K (PK). As 

control the same treatment was performed with medium that has been on top of RAW 

macrophages for 24h (labeled “old medium”). The treated medium was put on pre-

seeded RAW cells and they were stimulated with LPS for further 24h before NO release 

was measured. (E) C. canimorsus 5 conditioned medium was supplemented with extra 

FCS (10% v/v) and put on pre-seeded RAW cells and they were stimulated with LPS for 

further 24h before NO release was measured. 
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4.2.5 Succinate and Acetate are the main metabolic end product in C. 

canimorsus 5 culture supernatant. 

In order to identify the Cc5 released molecule that affects macrophages, NMR analysis 

of Cc5 CM was performed. NMR samples were prepared from 400 µl of Cc5 CM by 

adding 5% D2O as described in the materials section. An overview spectrum of the 

supernatant from infected cultures is depicted in Fig. 4 A. Resonances close to water 

(4.78 ppm) are obscured due to solvent suppression. Selected regions from the spectra 

from the infected (+) and not-infected (-) cultures, as well as of 3 mM Succinate (suc) 

and 3 mM Acetate (ac) dissolved in (-) medium are shown (Fig. 4 B). In the infected 

sample (+), two resonances (2.39 ppm and 1.91 ppm) are more intense than in the non-

infected control (-). Data from C. ochracea (Kapke et al., 1980) indicate that Succinate 

and/or Acetate are the metabolites most likely to have higher concentrations. This 

assumption was confirmed by the observation of the respective resonances (2.39 ppm, 

suc) and (1.91 ppm, ac) in the control samples prepared from Succinate (suc) and 

Acetate (ac) dissolved in (-) medium. Using the NMR peak intensities of the supernatant 

and control spectra concentrations of these metabolites were determined. Succinate 

was found at 1.82 mM in the infected sample (and at 0.14 mM in the uninfected 

reference), while Acetate was found at 1.75 mM in the infected cell culture supernatant 

(compared to 0.17 mM for the uninfected reference) (Fig. 4 C). Cc5 CM as prepared for 

the NMR analysis (without NaN3) was confirmed to have full activity on RAW 

macrophages (Fig. 5 A), thus measured concentrations must be sufficient to fulfill the 

immune suppression. 
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Figure 4. NMR analysis of the supernatant of Raw 264.7 macrophages cultures 

infected (+) or not-infected (-) with Cc5 bacteria. (A) Overview spectrum of C. 

canimorsus 5 conditioned medium as described in the material and methods. 
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Resonances close to water (4.78 ppm) are obscured due to solvent suppression. (B) 

Selected regions from the spectra from the infected (+) and not-infected (-) cultures, as 

well as of 3 mM Succinate (suc) and 3 mM Acetate (ac) dissolved in (-) medium. In the 

infected sample (+), two resonances (2.39 ppm and 1.91 ppm) are more intense than in 

the non-infected control (-). Data from C. ochracea (Kapke et al., 1980) indicate that 

Succinate and/or Acetate are the metabolites most likely to have higher concentrations. 

This assumption was confirmed by the observation of the respective resonances (2.39 

ppm, suc) and (1.91 ppm, ac) in the control samples prepared from Succinate (suc) and 

Acetate (ac) dissolved in (-) medium. (C) Using the NMR peak intensities of the 

supernatant and control spectra, the following concentrations of these metabolites are 

determined: 1.82 mM (suc,+), 0.14 mM (suc,-), 1.75 mM (ac,+), and 0.17 mM (ac,-). 

 

 

 

4.2.6 Neither Succinate nor Acetate modulate macrophage immune response to 

LPS at relevant concentration. 

To see if Succinate or Acetate is the Cc5 factor affecting macrophages, we have 

performed further assays. Medium that has been left for 24h on RAW macrophages 

was supplemented with Succinate, Acetate or Succinate and Acetate. The medium of 

pre-seeded RAW macrophages was replaced with this Succinate/Acetate containing 

media and the cells were stimulated with LPS followed by an NO release assay. Up to 

10mM Succinate, Acetate and Succinate/Acetate did not affect LPS induced NO 

release by RAW macrophages (Fig. 5 B). 10mM Succinate or Acetate is at least 5 

times more than was measured in Cc5 CM.  Hence, neither Succinate nor Acetate nor a 
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combination of both account for the inhibition of the LPS induced NO release by 

macrophages. 

 

 

 

4.2.7 Ammonia at relevant concentration is not responsible for the block of LPS 

induced NO release. 

Another small molecule produced by bacteria with possible effects on macrophages is 

ammonia. To determine the effect of ammonia on murine macrophages, different 

concentrations of ammonia were assayed for interference with LPS induced NO release 

(Fig. 5 C). 50 and 100 mM ammonia drastically influenced NO release (Fig. 5 C). The 

concentration of ammonia in C. canimorsus CM (prepared as before) was measured. 

All tested strains exhibited similar amount of ammonia (Fig. 5 D), while only Cc5 affects 

NO release by RAW macrophages. The concentration of ammonia measured in Cc5 

conditioned medium is at least five fold too low to influence LPS induced NO release 

(Fig. 5 C and D). 
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Figure 5. Succinate, Acetate and ammonia are not responsible for the C. 

canimorsus 5 dependent blocking of the NO release by LPS stimulated 

macrophages. (A) RAW murine macrophages were infected at MOI 50 with C. 

canimorsus 5. 24h post infection the supernatant was collected and sterile filtered (0.22 

um), called conditioned medium. Then the conditioned medium was processed as for 

NMR analysis (see methods section). This conditioned medium was put on pre-seeded 

RAW cells and they were stimulated with LPS for further 24h before NO release was 

measured. (B) Medium that has been on top of RAW macrophages for 24h (labeled “old 

medium”) was complemented with the indicated amount of Succinate, Acetate or 

Succinate and Acetate. This medium was put on pre-seeded RAW cells and they were 

stimulated with LPS for further 24h before NO release was measured. (C) as in (B) but 
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with indicated concentration of NaNH4. (D) Amount of NH4 present in the medium of 

RAW cells infected with the indicated C. canimorsus strain at MOI 50 for 24h. 

 

 

 

4.2.8 pH change upon infection is not responsible for the block of LPS induced 

NO release. 

To address the question, if a drop in pH upon release of metabolic byproducts could 

account for the inhibition if LPS induced NO release, we assessed the pH change in the 

culture supernatant upon infection of RAW macrophages. As might be expected from 

the difference in growth capacity (Fig. 1 B and D), Cc5 led to a stronger acidification of 

the growth medium 24 hours after infection than the Y2F12 related Cc5 !camB (Fig. 6 

A). To estimate the importance of the pH change, the pH of Cc5 CM was adjusted to 

7.9 or 7.65. The capacity of the Cc5 CM to block the LPS induced NO release by RAW 

macrophages was found not depend on the reduced pH (Fig. 6 B). 
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Figure 6. The effect of C. canimorsus on LPS stimulated macrophages is not 

mediated by changes in pH. (A) RAW murine macrophages were infected at MOI 50 

with the indicated C. canimorsus strain. 24h post infection the supernatant was 

collected and sterile filtered (0.22 um) to yield conditioned medium. Then the pH was 

measured using a pH-meter. (B) C. canimorsus 5 conditioned medium prepared as in 

(A) was titrated to pH 7.65 or 7.9. This medium was put on pre-seeded RAW cells and 

they were stimulated with LPS for further 24h before NO release was measured. 
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4.2.9 Discussion 

 

In a genome wide Tn-screen we have identified several mutants deficient in blocking 

the NO release of LPS stimulated murine macrophages, an effect of C. canimorsus 5 

on macrophages described previously (Shin et al., 2007). We have compared the 

growth capacity on macrophages and the above-mentioned immunosuppressive effect 

of the Tn mutants and a C. canimorsus strain collection. Interestingly, a positive 

correlation was found for growth on macrophages and the ability to modulate the NO 

release of LPS stimulated macrophages.  The relation of growth on eukaryotic cells and 

blocking the NO release as well matches the genes hit by the Tn. In mutants affected in 

blocking the LPS induced NO release the Tn located in genes for general metabolism 

and in genes known to be important for nutrient acquisition (Mally et al., 2008; Manfredi 

et al., 2011b; Renzi et al., 2011). The striking growth dependency hints at a metabolite 

rather than an enzyme dependent effect of C. canimorsus on macrophages. 

We further show that C. canimorsus affects LPS stimulated macrophages by releasing 

a small (<3kDa), soluble and heat stable factor. Dilution of the factor-containing media 

led to a decrease in the immunosuppressive action, again pinpointing the 

concentration-dependency. The size, heat-stability and the striking effect of even a 1:2 

dilution suggest a non-enzymatic effect of C. canimorsus on macrophages. This is in 

contrast to a non-identified immunosuppressive factor of C. ochracea, which is heat-

labile and protease sensitive (Ochiai et al., 1998). Extra addition of FCS was shown 

here not to diminish the immunosuppressive effect, confirming that a factor is released 

rather than simple consumption of essential media components. C. canimorsus thus 

releases a small, heat-stable factor that interferes with macrophage stimulation by LPS. 
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To identify the small molecule involved in blocking the LPS induced NO release by 

macrophages, we have analyzed the culture supernatant of C. canimorsus infected 

macrophages. By NMR analysis Succinate (1.5 mM) and Acetate (2.2 mM) have been 

identified as the main metabolites released by C. canimorsus. However, Succinate and 

Acetate were shown here not be not responsible for the blocking of the LPS induced 

NO release by macrophages. Butyrate, a small molecule and known bacterial metabolic 

byproduct with immunosuppressing function, was identified only in trace amounts (data 

not shown). Other candidates like ammonia or a general effect of the pH drop upon 

infection have as well been ruled out. Therefore, the C. canimorsus released, small, 

heat-stable molecule affecting macrophages remains to be identified.  

Testing old growth medium we could show that macrophages rely on optimal media 

conditions for proper response to LPS. The small molecule released by C. canimorsus 

might reduce the fitness of the cells under cell culture conditions used. Such cells would 

respond far less to LPS. It might thus be that the observed effect of conditioned 

medium is related to the cell culture condition without media flux and does not reflect 

the in vivo situation in the blood adequately. 
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4.2.10 Materials and Methods 

 

Chemicals. Succinate (disodium Succinate), Acetate and Ammonium chloride were 

purchased from Sigma. 

 

Bacterial strains and growth conditions. The strains used in this study are listed in 

Table 2. E. coli strains were routinely grown in LB broth at 37°C. C. canimorsus 5 (Shin 

et al., 2007) was routinely grown on Heart Infusion Agar (HIA; Difco) supplemented with 

5% sheep blood (Oxoid) for 2 days at 37°C in presence of 5% CO2. Selective agents 

were added at the following concentrations: erythromycin, 10 mg/ml; cefoxitin, 10 

mg/ml; gentamicin, 20 mg/ml; ampicillin, 100 mg/ml. Heat inactivated Y. enterocolitica 

E40 were prepared by taking 1 ml of a o/n culture, centrifugation at 14000 rpm for 1 

min, aspiration of the supernatant and resuspension in 1 ml PBS. The bacterial 

suspension was boiled at 99°C under agitation for 2 hours. 

 

Genetic manipulations of C. canimorsus. Genetic manipulations of Cc5 wt has been 

described (Mally and Cornelis, 2008). Briefly, replacement cassettes with flanking 

regions spanning approximately 500 bp homologous to direct cam- framing regions 

were constructed with a three-fragment overlapping-PCR strategy. Final PCR product 

consisted in camB::ermF insertion cassette and was then digested with PstI and SpeI 

for cloning into the appropriate sites of the C. canimorsus suicide vector pMM25. 

Resulting plasmids were transferred by RP4-mediated conjugative DNA transfer from E. 

coli S17-1 to C. canimorsus 5 to allow integration of the insertion cassette. 
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Transconjugants were then selected for presence of the ermF cassette and checked for 

sensitivity to cefoxitin. Deletion of the appropriate regions was verified by PCR.  

 

Genome wide Tn4351 screen for blocking LPS induced NO release by murine 

J774.1 macrophages. Random Tn4351 mutants were generated as described 

previously (Mally and Cornelis, 2008). J774.1 macrophages were seeded at 3x104 

cells/well in 100µl in 96-well plates and incubated o/n. Tn mutant bacteria were grown 

in 96-well plates and subsequently diluted in a new plate to an OD590 of 0.12. 10 µl 

bacterial solution was added to the corresponding well to be infected (MOI of 20). The 

macrophages were stimulated with an MOI = 20 equivalent of heat inactivated Y. 

enterocolitica E40 (prepared as described above). The cells were incubated for 24 h at 

37°C and 5% CO2.  Triplicates of 50 'l of each sample was mixed with 50 'l of modified 

Griess regent in 96-well plates. The plates were incubated in the dark for 10 min and 

absorption was read at 575nm using a using a spectrophotometer (BioRad). The 

insertion site of the Tn was mapped by arbitrary PCR as described previously (Mally et 

al., 2008). The Tn insertion in Y2F12 is such, that it only affects camB, as was shown 

by complementation studies (Mally, 2008). Hence, in certain experiments the Tn mutant 

is replaced by a deletion mutation of camB. 

 

Cell culture and growth of C. canimorsus on murine macrophages. J774.1 murine 

monocyte-macrophages (ATCC TIB-67) were cultured in RPMI-1640 (Invitrogen) 

supplemented with 2 mM L-Glutamine (Invitrogen), 1 mM sodium pyruvate and 10% 

(v/v) fetal calf serum (Invitrogen). RAW264.7 murine macrophages (ATCC TIB-71) were 

cultured in DMEM (Invitrogen) supplemented with 1 mM sodium pyruvate and 10% (v/v) 

fetal calf serum (Invitrogen). Cells were grown in medium without antibiotics in a 
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humidified atmosphere enriched with 5% CO2 at 37°C. Cells were seeded in 24-well 

plates at 0.5(105 cell/ml and incubated o/n. Bacteria were harvested by gently scraping 

colonies off the agar surface and resuspending them in PBS. The cells were infected 

with a total of 5(106 bacteria per well (MOI = 50) in a final volume of 1.033 ml medium 

for 24 h. Samples were diluted in PBS and plated on HIA 5% sheep blood plates, 

incubated for 2 days at % CO2 at 37°C before colonies were counted. 

 

Nitric-oxide (NO) release assay. J774.1 or RAW264.7 murine macrophages were 

seeded in 24-well plates at 0.5(105 cell/ml and incubated o/n. Bacteria were harvested 

by gently scraping colonies off the agar surface and resuspending them in PBS. The 

cells were infected with a total of 5(106 bacteria per well (MOI = 50) and stimulated with 

an MOI = 50 equivalent of heat inactivated Y. enterocolitica E40 as LPS stimulus 

(prepared as described above) in a final volume of 1.066 ml medium and incubated for 

24 h. Triplicates of 50 'l of each sample was mixed with 50 'l of modified Griess regent 

in 96-well plates. The plates were incubated in the dark for 10 min and absorption was 

read at 575nm using a spectrophotometer (BioRad). 

 

 

NO release assay with conditioned medium and modified conditioned media. 

RAW264.7 murine macrophages were seeded in 24-well plates at 0.5(105 cell/ml and 

incubated o/n. Bacteria were harvested by gently scraping colonies off the agar surface 

and resuspending them in PBS. The cells were infected with a total of 5(106 bacteria 

per well (MOI = 50) and incubated for 24 h. The supernatant was then taken and sterile 

filtered (0.22 um filter, Millipore) to give conditioned medium. This conditioned medium 

was replacing the growth medium of RAW macrophages seeded in 24-well plates the 
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day before (at 0.5(105 cell/ml). These cells were stimulated with an MOI = 50 

equivalent of heat inactivated Y. enterocolitica E40 as LPS stimulus (prepared as 

described above) in a final volume of 1.033 ml medium and incubated for 24 h. 

Triplicates of 50 'l of each sample was mixed with 50 'l of modified Griess regent in 

96-well plates. The plates were incubated in the dark for 10 min and absorption was 

read at 575nm using a using a spectrophotometer (BioRad). The conditioned medium 

was modified by further filtration trough a 3kDa filter unit (Vivaspin, Sartorius), it was 

diluted with fresh growth medium, heat treated (99°C, 20 min), the pH was adjusted 

using 1M phosphoric acid or supplemented with different concentration of Succinate, 

Acetate or Ammonium. 

 

Identification of the main metabolic end product in Cc5 culture supernatants. Cc5 

were grown for 24 hours in the presence of murine macrophages (Raw 264.7) in DMEM 

supplemented with 1 mM Na-Pyruvate and 10% v/v fetal calf serum. The medium was 

collected and the bacteria were pelleted by centrifugation (5 minutes, 15000 rcf, 4 °C). 

0.1% NaN3 was added to the supernatant and the pH was adjusted to 7.5 with 

phosphate-buffer (500 mM, pH 8). The medium was finally passed through a 0.22 um 

filter and a 3 kDa cut-off filter (Vivaspin, Sartorius). NMR samples were prepared from 

400 µl of this medium by adding 5% D2O and placed into 5 mm standard NMR tubes. 

NMR measurements were carried out at 24 ˚C on a Bruker Avance DRX 600 

spectrometer equipped with a triple resonance pulse field gradient probe. 1D proton 

NMR spectra were recorded with the excitation sculpting scheme (pulseprogram 

zgesgp in the standard Bruker library) as described previously (Hwang and Shaka, 

1998) achieving water suppression by gradient dephasing of the water resonance. The 

proton carrier was set to the water frequency for solvent suppression. Spectra were 
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recorded with 57344 complex points and acquisition times of 1.99 seconds. The total 

experimental time was 3 minutes and 26 seconds for the accumulation of 64 transients. 

Spectra were processed and evaluated using the software Topspin 2.1.6 (Bruker). 

 

Ammonium concentration determination. Ammonium concentration in C. 

canimorsus conditioned medium was determined using the ammonia assay kit (Sigma) 

according to the manufacturers instructions. 

 

pH measurement. pH was determined using a pH-meter (Mettler Toledo).  

 

Statistical analysis.  Unpaired two-tailed students t-test was performed using Prism 

software (graphpad). Where * means p < 0.05, ** that p <  0.01 and *** that p < 0.005. 



Immune evasion 

- 176 - 

 

Table 2. Bacterial strains used in this study 

Bacterial 

strains 

Description or genotype Reference or 

source 

E. coli   

S17-1 hsdR17 recA1 RP4-2-tet::Mu1kan::Tn7; Smr (Simon et al., 

1983) 

Top10 F- mcrA !(mrr-hsdRMS-mcrBC) 

!80lacZ!M15  

!lacX74 recA1 araD139 !(araleu)7697 galU 

galK  

rpsL, endA1 nupG. Smr  

Invitrogen  

 

Y. 

enterocolitica 

  

E40 - (Sory et al., 

1995) 

C. 

canimorsus 

  

Cc5 Human fatal septicemia after dog bite 1995 (Manfredi et al., 

2011a; Shin et 

al., 2007) 

Cc2 Human fatal septicemia after dog bite (Shin et al., 

2007) 

Cc3 Human septicemia (Shin et al., 

2007) 

Cc6 Human infection, from Katholic University 

Leuven, Belgium,  1996 

This study 

Cc7 Human septicemia (Shin et al., 

2007) 

Cc8 Human septicemia, from Prof. M. Delmée, 

Louvain, Belgium, 2004 

This study 

Cc9 Human septicemia, BCCM/LMG 11510 (Shin et al., 
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2007) 

Cc10 Human fatal septicemia after dog bite, ATCC 

35978 

(Shin et al., 

2007) 

Cc11 Human septicemia, BCCM/LMG 11511 (Shin et al., 

2007) 

Cc12 Human fatal septicemia after dog bite, ATCC 

35979 

(Shin et al., 

2007) 

X2E4 !Ccan_3130, Dihydroorotase This study 

Y2F12 !Ccan_20110, hypothetical This study 

Y4B5 !Ccan_05080, hypothetical This study 

X7B9 !Ccan_06510, Glutamine synthetase This study  

W2E9 !Ccan_04790, Sialidase This study 

Y4G6 !Ccan_08710, SusD of PUL5 This study 

!camB Mutation of the last gene in the Y2F12 operon (Mally, 2008) 

CcD7 Isolated from dogs mouth (Mally et al., 

2009) 

CcD10 Isolated from dogs mouth (Mally et al., 

2009) 

CcD16 Isolated from dogs mouth (Mally et al., 

2009) 

CcD18 Isolated from dogs mouth (Mally et al., 

2009) 

CcD20 Isolated from dogs mouth (Mally et al., 

2009) 

CcD25 Isolated from dogs mouth (Mally et al., 

2009) 

CcD33 Isolated from dogs mouth (Mally et al., 

2009) 

CcD35 Isolated from dogs mouth (Mally et al., 

2009) 

CcD37 Isolated from dogs mouth (Mally et al., 

2009) 

CcD40 Isolated from dogs mouth (Mally et al., 
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2009) 

CcD43 Isolated from dogs mouth (Mally et al., 

2009) 

CcD57 Isolated from dogs mouth (Mally et al., 

2009) 

CcD80 Isolated from dogs mouth (Mally et al., 

2009) 

CcD88 Isolated from dogs mouth (Mally et al., 

2009) 

CcD101 Isolated from dogs mouth (Mally et al., 

2009) 
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4.2.11 Supplementaries: Metabolism of C. canimorsus 5 

!

Short chain fatty acids (SCFA) are major end products of bacterial metabolism. Acetate 

and Succinate (a dicarboxylic acid) were reported to be the main fermentation output of 

Bacteroides fragilis, Bacteroides ovatus (Macfarlane and Macfarlane, 2003; Macy et al., 

1978), Capnocytophaga ochracea (Calmes et al., 1980) and Capnocytophaga 

haemolytica (Yamamoto et al., 1994). Succinate might be decarboxylated to propionate 

in C-limiting conditions to regenerate CO2 (Macy et al., 1978).  As in C. ochracea, 

Succinate is probably built from Phosphoenolpyruvate (PEP) via intermediate 

production of OxalAcetate, Malate and Fumarate (Kapke et al., 1980) (see Fig. S1 for a 

metabolic map).  During this process bacteria dispose of reducing equivalents 

accumulated during glycolysis and might generate ATP. Converting PEP to 

OxalAcetate by PEP carboxykinase (PEPCK; Ccan15480) or PEP carboxylase (PEPC; 

Ccan10960) is furthermore a way for bacteria to fix CO2. This is in contrast to C. 

ochracea that has shown to fix CO2 almost exclusively by PEPCK (Kapke et al., 1980). 

CO2 dependent glucose fermentation leading to Succinate production reflects the 

capnophilia of Capnocytophaga canimorsus. Moreover released Succinate can be 

metabolised by cross-feeding bacteria (Kolenbrander et al., 2002; Macfarlane and 

Macfarlane, 2003). In accordance with C. ochracea, Acetate might be formed from 

PEP, the intermediates being Pyruvate and Acetyl-phosphate.  Acetate formation 

increases ATP yield compared to Succinate formation, but does not recycle NADH2 

(see Fig. S1 for a metabolic map). 
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Supplementary Figure 1. Proposes metabolic pathway of Succinate and Acetate 

generation by C. canimorsus. Succinate is probably built from Phosphoenolpyruvate 

(PEP) via intermediate production of OxalAcetate, Malate and Fumarate.  During this 

process bacteria dispose of reducing equivalents accumulated during glycolysis and 

might generate ATP. Converting PEP to OxalAcetate by PEP carboxykinase (PEPCK; 

Ccan15480) or PEP carboxylase (PEPC; Ccan10960) is furthermore a way for bacteria 

to fix CO2. Acetate might be formed from PEP, the intermediates being Pyruvate and 

Acetyl-phosphate.  Acetate formation increases ATP yield compared to Succinate 

formation, but does not recycle NADH2.  
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4.3 Effects of Capnocytophaga canimorsus on LPS sensing and signaling by 

macrophages 
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4.3.1 C. canimorsus 5 affects murine TLR4, murine CD14, phosphorylation of 

p38 and transcription of iNOS. 

To find out at which step C. canimorsus interferes, we have analyzed key proteins 

involved in LPS sensing and signaling. Macrophages sense the LPS stimulus via the 

TLR4/MD-2/CD14 receptor complex {Medzhitov, 1997 #20;Shimazu, 1999 

#21;Ulevitch, 1999 #22}. The signaling cascade following Toll-like receptor 4 (TLR4) 

dimerization includes mitogen activated protein kinases (MAPK) like p38 and JNK, 

NF&B nuclear translocation {Cario, 2000 #23} followed by inducible NO synthase 

(iNOS) dependent production and release of NO, release of TNF# and other 

proinflammatory cytokines {Beutler, 2000 #24}. Cell-lysates of C. canimorsus infected 

and LPS stimulated RAW macrophages were analyzed by Western-blotting for p38, p-

p38 (phospho p38), TLR4 and iNOS. Cc5 infection was found to inhibit LPS induced 

phosphorylation of p38, while total p38 level was similar (Fig. 7 A). C. canimorsus 

strains not able to block the NO release did not affect LPS dependent phosphorylation 

of p38 (Fig. 7 A), as shown for Cc12 and the Y2F12 related mutant Cc5 !camB. In 

uninfected cells, LPS stimulation led as expected to transcription of iNOS.  Again Cc5 

but not Cc12 or Cc5 !camB appeared to inhibit expression of iNOS upon LPS 

stimulation (Fig. 7 B). By RT-PCR we have further observed that the transcription of 

iNOS mRNA upon LPS stimulation is blocked by Cc5. Again, Cc12 and Cc5 !camB did 

not alter iNOS mRNA levels upon LPS stimulation (Fig. 7 D).  In accordance with the 

lack of downstream signaling events as phosphorylation of p38 and iNOS transcription, 

TLR4 was shifted in size upon Cc5 infection, but not or only partially upon infection with 

Cc12 or Cc5 !camB (Fig. 7 C).  The shifted TLR4 band might represent proteolytically 

cleaved or deglycosylated TLR4. It might be that the smaller TLR4 cannot respond to 
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LPS and thus the cells lack all TLR4 dependent downstream signaling events. Even 

more CD14, one of the co-receptors of TLR4, was found slightly size shifted upon 

infection with Cc5, but not or far less upon infection with Cc5 !camB (Fig. 7 E). In the 

case of CD14 the lysed cells have been treated with PNGaseF, cleaving all N-linked 

sugars, to see if the size shift is due to complete deglycosylation of N-linked sugars. 

The observed size shift of CD14 upon PNGaseF treatment is by far bigger than the 

observed smeary shift upon Cc5 infection. Therefore Cc5 infection leads either to 

proteolytic cleavage of CD14, only partial deglycosylation of N-linked glycans or 

deglycosylation of the O-linked sugars present on CD14. Summarizing, Cc5 infected 

and LPS stimulated macrophages lack TLR4 downstream signaling events and exhibit 

size-shifted versions of TLR4 and CD14. 
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Figure 7. C. canimorsus 5 prevents LPS dependent phosphorylation of p38, 

induction of iNOS and affects TLR4 and CD14. (A-C) J774.1 macrophages were 

infected for 24h with the indicated strain at MOI 50, stimulated with LPS and further 

incubated for another 24h. Cells were washed, lysed and boiled before the samples 

were charged on SDS-page followed by western-blot analysis. (A) Western-blot anti-

p38 and anti- phospho-p38. (B) Western-blot anti-iNOS. (C) Western-blot anti-TLR4. 

(D) iNOS RT-PCR on J774.1 macrophages infected and stimulated as in (A-C). "-actin 

was included as a control. (E) Western-blot anti-CD14. 
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4.3.2 Recombinant human TLR4 slightly shifts in size upon treatment with Cc5, 

but less upon treatment with Y2F12 related mutant Cc5 "camB. 

In order to determine the nature of the size-shifting effect of Cc5 on TLR4, recombinant 

human (rh) TLR4 and MD-2 were incubated with a suspension of C. canimorsus. 

Western-blot revealed recombinant TLR4 (Fig. 8 A, up) and MD2 (Fig. 8 A, down). 

While rh MD-2 stayed unaffected by the Cc5 treatment, rh TLR4 slightly shifted in size 

upon Cc5 treatment. The small size shift can clearly not correspond to a complete 

deglycosylation of TLR4, which carries several big branches of high-mannose type N-

linked sugars. To differentiate proteolytically cleaved or deglycosylated TLR4, we 

performed lectin staining with Galanthus nivalis agglutinin lectin (GNA) staining terminal 

mannose linked to mannose (Fig. 8 B), with Sambucus nigra lectin (SNA) that 

recognizes terminal sialic acid (2-6) linked to Gal or to GalNAc (Fig. 8 C), and with 

Datura stramonium agglutinin lectin (DSA) labeling Gal linked to GlcNAc (Fig. 8 D). In 

agreement with the presence of a sialidase in Cc5 [see (Mally et al., 2008)], the SNA 

signal was decreased upon treatment with Cc5. While hybrid and complex N-linked 

glycoproteins have been reported to be almost completely cleaved by the Cc5 endo-b-

N-acetylglucosaminidase GpdG (Renzi et al., 2011), the high-mannose N-linked sugars 

on TLR4 seem not to be cleaved to this extent. This is in agreement with other endo-b-

N-acetylglucosaminidases that were reported not to be active on high-mannose type 

polysaccharide branches. Hence, it seems that only terminal sialic acids are cleaved off 

the glycan chains on TLR4 by Cc5. This might account for the minimal size shift 

observed with rh TLR4. 
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Figure 8. Recombinant human TLR4 slightly shifts in size upon treatment with C. 

canimorsus 5. (A-D) Recombinant human TLR4/MD-2 were incubated with either 

DPBS or with a suspension of C. canimorsus (OD600 = 12) in DPBS. The samples were 

incubated for 90 min at 37°C, the tubes were centrifuged twice and supernatant was 

recovered, boiled and charged on SDS-Page followed by Western-blot analysis. (A) 

Western-blot anti-Flag revealing recombinant TLR4 (up) and MD2 (down). (B-D) TLR4 

glycosylation state was determined by staining with the Galanthus nivalis agglutinin 

lectin (GNA) staining terminal mannose linked to mannose (B), the Sambucus nigra 

lectin (SNA) that recognizes terminal sialic acid (2-6) linked to Gal or to GalNAc (C), 

and Datura stramonium agglutinin lectin (DSA) labeling Gal linked to GlcNAc (D). 
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Discussion 

 

To elucidate the level at which C. canimorsus interferes with the macrophage signaling 

pathway we studied key events upon LPS stimulation. Following LPS stimulation, C. 

canimorsus infected macrophages lack iNOS transcription, as shown by RT-PCR and 

Westernblotting, which explains perfectly the absence of NO in the culture supernatant. 

More upstream in the TLR4 signaling pathway we found p38 not to be phosphorylated 

when the cells were stimulated with LPS and infected with C. canimorsus 5. This 

indicates that the immunosuppression occurs upstream or at the level of the MAPK. For 

an extracellular bacterium like C. canimorsus, the most obvious target for the 

interference with the TLR4 signaling pathway is the surface exposed TLR4 itself or one 

of the TLR4 related proteins like CD14, MD-2 or LBP. Infected cells clearly showed a 

size shifted TLR4 band in Western blot analysis, indicating that C. canimorsus 

interferes with the LPS signaling at the level of TLR4. To assess whether the size shift 

was due to proteolysis or deglycosylation, purified recombinant TLR4 was incubated 

with C. canimorsus and analyzed for size and glycosylation. The high-Mannose type N-

linked glycosylation of TLR4 seems not to be affected by C. canimorsus, which is in 

contrast to the almost complete cleavage of hybrid and complex N-linked glycan chains 

(Renzi et al., 2011). Only terminal sialic acid were found to be cleaved off by C. 

canimorsus, which is in agreement with the presence of a sialidase (Mally et al., 2008). 

The observed small size shift of recombinant human TLR4 could be due to the partial 

loss of terminal sialic acids. However, the observed big size shift of TLR4 in the case of 

infected macrophages can’t be explained by the minimal deglycosylation found and 

might be due to proteolysis, either by bacterial proteases or by host proteases. It has to 

be noted that the prolonged infection time (48h) with C. canimorsus led in some cases 
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to some cell death, whereat only the faster growing C. canimorsus strains affected cell 

viability (data not shown). Cell death and the related proteases, like Caspases, could 

therefore account for the observed limited size-shift of TLR4 in the case of infected 

macrophages. Caspase3 was shown to be slightly activated after 48h infection with Cc5 

or Cc11 (data not shown). But it could as well be that the recombinant TLR4/MD-2 were 

not incubated long enough with C. canimorsus to obtain the full deglycosylation, as has 

been seen with IgM deglycosylation (F. Renzi, personal communication). Therefore, the 

observed size shift of TLR4 upon infection of murine macrophages could be due to 

deglycosylation, even if this could not be validated using recombinant soluble TLR4. As 

TLR4 has been shown to rely on glycosylation for its function (da Silva Correia and 

Ulevitch, 2002), affecting its glycan chains will reduce the reactivity towards LPS. 

Besides the effect on TLR4, CD14 was shown to be cleaved by C. canimorsus 5, either 

by proteolysis, incomplete N-linked or O-linked deglycosylation. 

 

Thus, the observed effect on TLR4 and CD14, either by proteolysis or deglycosylation, 

could be the cause of the non-responsiveness of the macrophages to LPS. 

Unfortunately, the fitness-reducing effect of the released small molecule and the related 

Caspase/host protease dependent protein cleavage can’t be distinguished easily from 

direct bacterial effects on TLR4 and CD14. 
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4.3.3 Materials and Methods 

 

Bacterial strains and growth conditions. The strains used in this study are listed in 

Table 2. E. coli strains were routinely grown in LB broth at 37°C. C. canimorsus 5 (Shin 

et al., 2007) was routinely grown on Heart Infusion Agar (HIA; Difco) supplemented with 

5% sheep blood (Oxoid) for 2 days at 37°C in presence of 5% CO2. Selective agents 

were added at the following concentrations: erythromycin, 10 mg/ml; cefoxitin, 10 

mg/ml; gentamicin, 20 mg/ml; ampicillin, 100 mg/ml. Heat inactivated Y. enterocolitica 

E40 were prepared by taking 1 ml of a o/n culture, centrifugation at 14000 rpm for 1 

min, aspiration of the supernatant and resuspension in 1 ml PBS. The bacterial 

suspension was boiled at 99°C under agitation for 2 hours. 

 

Immunoblotting for p38, p-p38, TLR4, CD14 and iNOS. J774.1 macrophages were 

seeded at 3(105 cells/2ml in 6-well plates and incubated for 4h. Cells were infected with 

C. canimorsus (MOI 50) and incubated for 20h. Then cells were stimulated with an MOI 

= 50 equivalent of heat inactivated Y. enterocolitica E40 as LPS stimulus an incubated 

for further 24h.  Cells were washed with PBS and collected in 1ml cold PBS by scraping 

them off the surface using cell scrapers (Corning). Cells were pelleted by centrifugation 

(6 min, 20 000 x g, 4°C) and resuspended in 100µl Phospho-Safe-reagent (Novagen) 

and then mixed by pipetting and vortexing followed by incubation for 10 min on ice. 

After centrifugation (6 min, 20 000 x g, 4°C) the supernatant was recovered, 5x SDS-

PAGE sample buffer was added and the samples were boiled for 5 min at 95°C. 

Proteins were separated on 12% SDS-PAGE gels and transferred to Nitrocellulose 

membranes (Amersham). The membranes were probed with anti-p38, anti-phospho-
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p38 (both Cell Signaling Technologies, dilution 1:1000), anti-TLR4 (Santa Cruz, sc-

16240, diluted 1:500), anti-CD14 (Santa Cruz, sc-73794, diluted 1:500) and anti-iNOS 

(Santa Cruz, sc-650, dilution 1:500) antibodies. PNGaseF treatment of cell-lysates were 

performed according to the supplier (New England BioLabs, P0704).  

 

RT-PCR. J774.1 macrophages were seeded at 5(105 cells/2ml in 6-well plates and 

incubated for 4h. Then they were infected with C. canimorsus at a MOI of 50 and 

stimulated with an MOI = 50 equivalent of heat inactivated Y. enterocolitica E40 as LPS 

stimulus (prepared as described above) and incubated for 24h. RNA was extracted 

using the RNeasy kit (Quiagen) according to the manufacturers instruction. An 

additional DNase I digest was introduced with 0.25 U/'g RNA for 15 min at 37°C and 

stopped by addition of final 2.5 mM EDTA and heat inactivation at 75°C for 10 min. 

Subsequent reverse transcription was performed with 200 U Superscript II/'g RNA in 

first strand buffer (Invitrogen), 10 mM DTT, 40 U RNAseOUT (Invitrogen) and 0.5 'g 

dT12-18 for 60 min at 42°C and stopped at 70°C for 15 min. 10% of cDNA preparation or 

of a preparation made without addition of reverse transcriptase was subjected to PCR 

using primers TGCATGGACCAGTATAAGGCAAGC and 

AGCTTCTGGTCGATGTCATG-AGCAA (5’ to 3’) for iNOS and primers 

TAAAACGCAGCTCAGTAACAGTCCG and  TGGAATCCTGTGGCATCCATGAAAC for 

"-actin (30 amplification cycles for "-actin and 35 for iNOS). 

 

TLR4 deglycosylation assay and lectin stain. Bacteria were collected from blood 

agar plates and resuspended in DPBS at OD600 = 12. 100 'l of bacterial suspensions 

were then incubated with 25 'l of a TLR4/MD-2 (R&D Systems, 3146-TM/CF) solution 

(1 mg/ml) for 90 minutes at 37°C. As negative control, TLR4/MD-2 solution was 
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incubated for 90 minutes at 37°C with 25 'l DPBS. Samples were then centrifuged 

twice for 6 min at 10000 ( g at 4°C, supernatant was collected and loaded in a 12% 

SDS gel. Samples were analyzed by immunoblotting (anti-Flag, M2 anti-Flag antibody, 

Sigma) and lectin staining. Lectin staining with Galanthus nivalis agglutinin lectin 

(GNA), Sambucus nigra lectin (SNA) and Datura stramonium agglutinin lectin (DSA) 

were performed according to manufacturer recommendations (DIG Glycan 

Differentiation Kit, 11210238001, Roche). 
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5 The cam locus is a bona-fide PUL. 
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5.1 Preface 

 

Among all the Tn mutants identified, one (Y2F12) seemed to be of particular interest, as 

the operon hit by the Tn was found only present in the wt strains able to prevent LPS 

stimulated macrophages from releasing NO. The operon affected by this Tn mutant was 

termed Cam (C. canimorsus active mechanism) In addition it presented all the 

characteristics of a PUL. 

 

 

 

5.2 Results 

 

5.2.1 PUL11 is only present in few C. canimorsus strains 

All dog isolates and the clinical isolates were tested for their capacity to block NO 

release by macrophages challenged with LPS.  Only a small subset of the tested C. 

canimorsus strains were able to block the LPS induced NO release by macrophages 

(Mally et al., 2009).  The capacity to block NO was correlated to the presence of PUL 

11 (Mally, unpublished data). Cc5 PUL11 is composed of two genes with sequence 

homology to B. thetaiotaomicron susC and susD, termed camN and camO, as well as 

of two hypothetical proteins termed camA and camB. PUL11 appeared to be important 

for proper growth on eukaryotic cells (Fig. 1 B and D), as the Tn mutant Y2F12 

affecting camB exhibited a small growth defect. In order to find a possible correlation, 

we assessed the presence of PUL11 in several C. canimorsus strains and the growth of 

these strains (for growth see Fig. 2). We thus tested the presence of camA and camB 
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at gene and protein level, as susC- and susD-like proteins might be shuffled between 

strains (P. Manfredi, personal communication). Only few strains appeared to encode 

camA and camB, while the two genes were always found associated (Fig. 9). 

Interestingly, PUL11 genes were found exclusively present in strains growing well on 

eukaryotic cells and being able to block the NO release of LPS stimulated murine 

macrophages (Fig. 2). This hints at a role of PUL11 in growth on macrophages, as has 

been shown for PUL5 (Manfredi et al., 2011b; Renzi et al., 2011).  



cam locus 

- 198 - 

 

 

 

Figure 9. Presence of camA and camB in different C. canimorsus strains. (A) 

Western-blot anti-CamA and anti-CamB on total cell extract of indicated C. canimorsus 

strain. (B) PCR on camA and camB, revealed by agarose gel electrophoresis. 
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5.2.2 PUL11 encoded proteins CamO, A, B and sialidase are copurified: PUL11 is 

a bona-fide PUL 

C. canimorsus 5 PUL5 has been shown to assemble in a multi-protein complex 

including genes of PUL5 and sialidase (Manfredi et al., 2011b). In a similar assay we 

have purified the PUL11 encoded CamB bearing a Strep- and His-tag. CamO and 

CamA were shown to co-purify with CamB (Fig. 10 A). The copurification of CamN, the 

SusC-like protein, was not assayed due to the lack of appropriate antibody. As for 

PUL5, PUL11 proteins were found to copurify sialidase (Fig. 10 A). This suggests that 

PUL11 forms a multi-protein complex including sialidase. Therefore PUL11 seems to be 

a bona-fide PUL. The copurification of sialidase hints at a role of PUL11 in glycan 

degradation, where CamA or CamB could be glycosyl hydrolases. The single proteins 

of PUL11 have previously been identified as surface-exposed (Mally, 2008; Manfredi et 

al., 2011b), fulfilling another requirement for a PUL. 

Surprisingly, CamB, encoded by the last gene in PUL11, was found to be released into 

the conditioned medium (Fig. 10 B). CamB, like CamA, which has been found only in 

trace amounts in the conditioned medium (data not shown), is a lipoprotein. Hence, one 

would expect it to be tightly anchored in the outer membrane of the bacteria. But in 

some way CamB seems to be released by C. canimorsus from the membrane. The 

released CamB did not show any size-shift (Fig. 10 B), hinting that even the lipid part 

might still be present on the released protein. 

PUL11 fulfills all requirements for a PUL encoded glycan degradation system. But the 

enzymatic action of the possible glycosyl hydrolases encoded by PUL11, CamA and 

CamB, is unknown. To assess the enzymatic activity of CamB, it was expressed in C. 

canimorsus 5 and purified over a Strep-tag (pSI09 and pSI10) (Fig. 10 D). The resulting 

double-band in the elution fractions was analyzed by Western-blot using anti-Strep and 
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anti-CamB antiserum and by mass spectrometry. Both bands (see Fig. 10 D) represent 

CamB, the small size difference might be due to changes in lipidation, cleavage of the 

signal peptide or by difference in post-translational bacterial modification as 

glycosylation. The elution fractions were tested for activity towards several umbelliferyl-

fused sugars (Fig. 10 C) (GlcNAc, #-Mannoside, "-Mannoside, Chitin and the sialidase 

substrate acetylneuraminic acid called MUAN; not shown and negative for all elution 

fractions: Galactose, Fucose and sulfate). The copurified sialidase likely accounts for 

the cleavage of MUAN. The cleavage of GlcNAc might be due to CamB. But it can’t be 

completely excluded that one of the few contaminants accounts for cleavage of 

GlcNAc, especially as elution fraction 3 as well exhibits an activity on GlcNAc (Fig. 10 

C), while it lacks both CamB bands (Fig. 10 D). 
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Figure 10. Characterization of PUL11. (A) Copurification of CamA, CamO and 

sialidase with CamB-Strep-His following a His- and Strep-tag purification visualized by 

Western-blotting. (B) Presence of CamB in C. canimorsus conditioned medium (CM) 

identified by Western-blotting. As a positive-control total cell extract (TCE) was 

included. (C) Activity of CamB-Strep purification elutions 1, 2 and 3 (E1-E3) assayed on 

methylumbelliferyl-conjugated sugars indicated, where MUAN is the conjugate with 

acetylneuraminic acid. (D) Steps in CamB-Strep (pSI09/10) purification revealed by 

silverstaining of a 12% SDS-PAGE. 
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5.3 Methods 

 

Immunoblotting. C. canimorsus were scraped from plates and resuspended in PBS. 

OD600 was set to 1 and 1ml of this suspension was centrifuged to pellet the bacteria. 

The pellet was then resuspended in 100ul of distilled water. 25ul SDS loading dye was 

added and the samples were boiled for 5 min, to give a total cell extract (TCE). 12.5ul 

of each sample were loaded on a 12% SDS PAGE, blotted and analyzed using antisera 

against CamA, CamB, CamO or sialidase (Mally, 2008). 

Samples from conditioned medium (prepared as described above) were precipitated 

with trichloroacetic acid (TCA). To do so, 1.8 ml of conditioned medium were 

supplemented with 200ul cold TCA and incubated at 4°C o/n. Then the sample was 

centrifuged (20’000 x rcf, 4°C, 30min), the supernatant was discarded and the pellet 

was washed with 600ul ice-cold acetone, followed by another centrifugation step as 

above. The supernatant was discarded and the pellet was air dried, resuspended in 

160ul distilled water plus 40ul SDS loading dye and boiled for 5 min. 25 ul of a sample 

were charged per slot on a 12 % SDS PAGE.  

 

PCR identifying presence of genes. PCR was carried out on single colonies picked 

with a toothpick using Taq DNA polymerase (NEB). camA was amplified using primer 

4200 and 4201, camB with 4332 and 4254 (primers are listed in the Appendix, table 

A2). PCRs were charged on 1% agarose gels and visualized using Ethidiumbromide. 

 

Purification of CamB over a Strep-tag. C. canimorsus 5 bearing pSI09 or pSI10 

(Appendix, table A1) were grown on HIA cfx plates for 2 days. Colonies from 10 plates 
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were collected by scraping and resuspension in PBS. OD600 was set to 6 and 1ml of 

this suspension was added to a 1.5 ml Eppendorf tube and the bacteria were pelleted 

by centrifugation (10’000 x rcf, 3 min, 4°C). 500ul of a lysis buffer (0.2% Triton X-100, 

1% NP-40, 1% sodium deoxycholate, 25mM Tris HCl, 150mM NaCl, pH 7.5) were 

added per tube. The pellets were resupended by vortexing and pipetting and incubated 

for 15 min on ice. The debris was pelleted by centrifugation (20’000 x rcf, 15 min, 4°C) 

and the supernatants were taken and pooled. 500 µl - 1 ml Streptactin resin (IBA) was 

loaded on a small column (BioRad) and equilibrated with 5 ml Buffer W (100 mM Tris, 

150 mM NaCl, 1 mM EDTA, pH 8.0). The resin was taken and mixed with the bacterial 

lysate diluted 1:3 in PBS and incubated o/n on a turning wheel at 4°C. The resin was 

then load again on the column and was wash 5 times with 5 ml Buffer W, before the 

elution with 3 times 500 µl - 1 ml (adapted to the resin volume) Buffer E (100 mM Tris, 

150 mM NaCl, 1 mM EDTA, 2.5 mM Desthiobiotin, pH 8.0). Purification over a Strep- 

and His-tag was performed as previously described (Manfredi et al., 2011b). 

 

Hydrolysis of methylumbelliferyl-conjugated sugars/compounds. 50ul of 0.2 mM 

methylumbelliferyl-conjugated sugar (in 0.25M sodium acetate, pH 7,5) were mixed in a 

black 96-well plate with 50 ul of CamB-Strep elution fraction 1-3 or 50ul of a OD600 = 0.4 

suspension of C. canimorsus in PBS. The plates were incubated o/n at 37°C. Free 

methylumbelliferyl was measured u sing a Synergy2 multiplate-reader (BioTek) at an 

excitation of 340/30nm, using an emission filter of 485/20nm. All methylumbelliferyl-

conjugated sugars wee purchased from Sigma (GlcNAc: M2133, Galactose: M1633, 

Sulfate: M7133, Fucose: M8527, acetylneuraminic acid, MUAN: M8639, Chitin: now 

within CS1030, "-Mannoside, M0905, #-Mannoside: M3657) 
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Plasmids. Plasmids used are listed in the Appendix, table A2. 
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5.4 Discussion 

 

The proteins encoded by PUL11 have been reported to be exposed to the bacterial 

surface (Mally, 2008; Manfredi et al., 2011b). Here we show that most of them can be 

copurified and that they even seem to associate with sialidase. These data show that 

PUL11 is indeed a bona-fide PUL. The copurification of sialidase hints at a role in 

glycan foraging, as has been shown for PUL5 (Mally et al., 2008; Manfredi et al., 

2011b; Renzi et al., 2011). We show here that the proteins of PUL11 with possible 

enzymatic activity, termed CamA and CamB, are present in only few C. canimorsus 

strains. Exactly these strains were shown to grow best on macrophages and to block 

LPS stimulated macrophages from NO release. Hence, PUL11 might be required for 

nutrient acquisition in cell culture conditions leading to improved growth and, indirectly, 

to the described immunosuppressive effect. We have further tried to identify the role of 

PUL11 in glycan degradation. Purified CamB was found inactive towards several sugar 

substrates. However, it has been shown that the growth supporting effect of PUL11 can 

be replaced by a laminarinase/chitinase (a glucanase), an enzyme releasing glucose 

from polyglucans (Master thesis, Claudio Cadel). !PUL11 bacteria supplemented with 

laminarinase were further shown to block the LPS induced NO release by macrophages 

(Master thesis, Claudio Cadel). This indicates that the small molecule interfering with 

the immune response of macrophages is not directly related to PUL11. Whether and at 

which step PUL11 plays a role in deglycosylation of eukaryotic glycoproteins and if it 

has a laminarinase activity remains to be clarified. 
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6.1 Appendix 1: Lipid A of Capnocytophaga canimorsus: Additional results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statement of my work: My contribution was the data of all figures (1-14) in this 

section. 

 



Appendix 

- 209 - 

6.1.1 E. coli penta-acyl lipid A is, in contrast to C. canimorsus lipid A, a TLR4 

antagonist 

 In order to evaluate the TLR4 agonistic and antagonistic potential of C. canimorsus 5 

(Cc5) lipid A, we compared it in endotoxicity assays not only to lipid IVa, but as well to 

E. coli F515 penta-acylated lipid A. E. coli F515 lipid A lacks one acyloxyacyl-residue 

[14:0-3-O(14:0)] and corresponds to a lpxM deletion. Endotoxic activity of C. 

canimorsus lipid A in comparison to E. coli F515 lipid A was assayed using two different 

methods: (i) Indicated concentrations of purified lipid A samples were assayed for TLR4 

dependent NF&B activation with Hek293 cells overexpressing human TLR4/MD2/CD14 

and a secreted reporter gene (HekBlue human TLR4 cell line), (ii) purified LPS samples 

were assayed for induction of TNF# release by human THP-1 macrophages. TNF# 

release was measured using ELISA. In both assays C. canimorsus lipid A and E. coli 

F515 penta-acyl lipid A showed to be not endotoxic (Fig. 1 A, C and Fig. 1 B, D). But 

E. coli penta-acyl lipid A showed to be a potent antagonist on the activity of E. coli 

O111 LPS (Fig. 1 B and D), being around 10-fold less inhibitory as lipid IVa. As has 

previously been shown, Cc5 lipid A is no antagonist of the interaction E. coli O111 LPS 

and human TLR4/MD2 (Fig. 1 B and D or Chapter 2.1, Fig. 7). 
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Figure 1. Endotoxic activity of C. canimorsus (Cc) lipid A (LA) and antagonistic 

activity of Cc LA on the action of E. coli O111 LPS.  (A) Indicated concentrations of 

purified LA were assayed for TLR4 dependent NF&B activation with HekBlue human 

TLR4 cells. (C) Purified LA were assayed for induction of TNF# release by human THP-

1 macrophages. (B) HekBlue human TLR4 cells were preincubated for 3h with purified 

LA at the concentration indicated. Then the cells were stimulated with 1ng E. coli O111 

LPS for further 20-24h and TLR4 dependent NF&B activation was measured. (D) 

Human THP-1 macrophages were preincubated for 3h with purified LA samples at the 

concentration indicated. Then the cells were stimulated with 1ng E. coli O111 LPS for 

further 20h and TNF# release was measured. 
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6.1.2 C. canimorsus is highly resistant to human !-Defensin 2 

Cc5 has been shown to be highly resistant to the CAMP Polymyxin B (Chapter 2.2 Fig. 

4), which is derived from Bacillus polymyxa. More physiological CAMPs, which Cc5 

might encounter in dog’s mouth and in human infections are Defensins (Lehrer et al., 

1993; Mathews et al., 1999; Miyasaki et al., 1990; Pazgier et al., 2006; Pazgier et al., 

2007). Human !-Defensin 2 (DEFB2) are expressed on the skin, oral and pulmonary 

epithelia, conjunctiva, cornea, astrocytes, gut epithelia and on epidermal and gingival 

keranocytes (Pazgier et al., 2006). To address the DEFB2 resistance, resuspended C. 

canimorsus 5 wt, "lpxE, "eptA or "lpxE-eptA were incubated for 30 min or 2h with 

various amounts of DEFB2. All C. canimorsus strains tested were found to be resistant 

to even the highest concentration of DEFB2 used (Fig. 2). C. canimorsus seems 

therefore to be highly resistant to Defensins and CAMPs in general, even in comparison 

to other high resistant bacteria as P. gingivalis (Curtis et al.). This might be due to the 

lack of negative charges in the lipid A as well as in the O-antigens expressed (see 

chapters 2 and 3). Higher concentrations of DEFB2 might be needed to lay open the 

difference between Cc5 and the lipid A mutants.  
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Figure 2. Human !-Defensin 2 (DEFB2) resistance of C. canimorsus wt and lipid A 

mutants. Resuspended C. canimorsus 5 wt (Cc5), "lpxE, "eptA or "lpxE-eptA were 

resuspended in PBS and incubated with the indicated amount of DEFB2 for 30 min (A) 

or 2 h (B). After incubation with DEFB2 the suspension was diluted and plated for cfu 

counting. 

 

 

 

6.1.3 Ccan6070 and Ccan14540 are not lipid A phosphatases 

Search for a lipid A phosphatase were based on lpxE and/or lpxF sequences from P. 

gingivalis (Coats et al., 2009a; Coats et al., 2009b), F. novicida (Wang et al., 2006), R. 

etli (Ingram et al.), H. pylori (Tran et al., 2004) and on all available CFB-group pgpB 

sequences. Three lpxE/F candidates have been found in the C. canimorsus 5 genome 

(Ccan16960, Ccan14540 and Ccan6070). All candidates have been deleted, whereas 

only deletion of Ccan16960 affected endotoxicity (chapter 2.2 Fig. 3). Deletion of 
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Ccan6070 (Fig. 3 B) or Ccan14540 (Fig. 3 A) did not lead to a strong increase in 

endotoxicity, which would be expected in case of a deletion of a lipid A phosphatase. 

Hence, we conclude that Ccan14540 and Ccan6070 are not lipid A phosphatases. 

 

 

 

Figure 3. Endotoxic activity of heat killed C. canimorsus (Cc) wild-type (Cc5), 

"Ccan14540 or "Ccan6070 bacteria. (A-B) Indicated multiplicity of infection (MOI) of 

heat killed (HK) bacteria were assayed for TLR4 dependent NF&B activation with 

HekBlue human TLR4 cells. 
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6.1.4 Ccan16940 is not a lipid A acyltransferase 

The C. canimorsus lpxE-eptA operon (Ccan16960-50) is followed by a gene 

(Ccan16940) annotated as putative acyltransferase. The control of the acylation of lipid 

A by acyltransferases and deacylases offers another way to modulate endotoxicity 

(Curtis et al.; Kawasaki et al., 2004). To address the activity of Ccan16940 on lipid A, 

we engineered a deletion mutant of Ccan16940 and analyzed it for endotoxicity. A triple 

KO Ccan16960-40 was further compared in endotoxicity to the double KO Ccan16960-

50 (corresponding !lpxE-eptA). As !Ccan16940 showed similar endotoxicity than the 

Cc5 wt (Fig. 4) and !Ccan16960-40 was as endotoxic as !Ccan16960-50 (Fig. 4), we 

concluded, that Ccan16940 does not acylate lipid A. This was further conformed by 

complementation of !lpxE/eptA (chapter 2.2 Fig. 3). It thus seems as if Ccan16940 is 

not involved in lipid A modification. 
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Figure 4. Endotoxic activity of heat killed (HK) C. canimorsus (Cc) wild-type (Cc5), 

"16940, "16960, "16960-50 and "16960-40 bacteria. Indicated multiplicity of 

infection (MOI) of heat-killed bacteria were assayed for TLR4 dependent NF&B 

activation with HekBlue human TLR4 cells. 

 

 



Appendix 

- 216 - 

 

6.1.5 C. canimorsus LpxE is non-functional and EptA is toxic in E. coli 

 The function of the corresponding lpxE-eptA operon in H. pylori (Hp0021-Hp0022) has 

been validated by expression of these genes in E. coli (Tran et al., 2004). Even though 

the function of C. canimorsus lpxE and eptA is currently confirmed by structural analysis 

of the lipid A of deletion mutants, we have tried to express C. canimorsus LpxE and 

EptA in E. coli K12.   To render the E. coli K12 lipid A more similar to C. canimorsus 

lipid A, we have used a E. coli K12 !lpxM background strain featuring a penta-acylated 

lipid A. This should render the E. coli lipid A a better substrate for C. canimorsus lipid A 

modifying enzymes like LpxE and EptA. Interestingly, expression of C. canimorsus 

EptA had strong toxic effects in E. coli top 10, which was used for cloning of the 

plasmid. By sequencing we found that only E. coli top 10 colonies having a mobile 

genetic element inserted upstream of the EptA start codon were able to grow (Data not 

shown). We hypothesize that Cc EptA modifies even 1 phosphorylated E. coli lipid A 

and might lead to membrane instability. Further C. canimorsus EptA might put a P-Etn 

group at several other positions like sugars in the core oligosaccharide and might thus 

lead to problems with membrane integrity. Constant pUC19 driven expression of Cc5 

LpxE (pSI65) in E. coli K12 !lpxM did not alter endotoxicity (Fig. 5). pUC19 driven 

expression of Cc5 LpxE-EptA (pSI68) in E. coli K12 !lpxM increased the endotoxic 

activity (Fig. 5). As the expression of LpxE alone had no effect, and Cc EptA seemed to 

have a striking toxic activity in E. coli K12 !lpxM, the effect of coexpression of LpxE-

EptA might be attributed to EptA. Coexpression of Cc LpxE-EptA in E. coli K12 !lpxM 

might be less toxic due to a lower expression level of EptA, as the pUC19 ribosome-

binding site (rbs) for eptA in pSI65 has been changed to the C. canimorsus rbs for eptA 

in pSi68. The observed effect on endotoxicity resulting upon presence of pSI68 might 
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be explained by differences from 1 phosphate lipid A to 1 P-PEtn resulting from C. 

canimorsus EptA activity in E. coli.      

 

 

 

Figure 5. Endotoxic activity of heat killed E. coli K12, E. coli K12 "lpxM, and E. 

coli K12 "lpxM with a plasmid encoding C. canimorsus lpxE (pSi65) or lpxE-eptA 

(pSi68). Indicated multiplicity of infection (MOI) of heat-killed bacteria were assayed for 

TLR4 dependent NF&B activation with HekBlue human TLR4 cells. 



Appendix 

- 218 - 

 

6.1.6 C. canimorsus LPS is neither an agonist nor an antagonist of murine TLR4 

Murine TLR4 is known to react different than the human receptor to some 

underacylated lipid A. Lipid IVa is an antagonist of the human TLR4 but an agonist of 

the murine TLR4 (Golenbock et al., 1991; Means et al., 2000). We therefore assayed 

the ability of Cc5 LPS to stimulate murine TLR4 by measuring nitric oxide (NO) release 

from murine macrophages (RAW 264.7).   While Cc5 LPS showed a 100-fold reduced 

induction of human TLR4 than E. coli O111 LPS, Cc5 LPS did not stimulate murine 

macrophages at all to release NO (Fig. 6).  This difference might be due to changes in 

the TLR4 sequence and therefore variation in lipid A binding between the human and 

the murine TLR4, as has been suggested for lipid IVa (Meng et al., 2010). 
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Figure 6. Activity of C. canimorsus (Cc) LPS on murine TLR4. RAW264.7 murine 

macrophages were stimulated with indicated amount of LPS for 24 h. Release of nitric 

oxide (NO) was measured using modified Griess reagent. 

 

 

 

Antagonistic activity of C. canimorsus LPS on the action of E. coli O111 LPS on murine 

TLR4 was further examined. RAW264.7 murine macrophages were preincubated for 3h 

with purified Cc5 LPS samples at the concentration indicated. Then the cells were 

stimulated with 10 ng/ml, 100 ng/ml or 1 ug/ml E. coli O111 LPS for further 24h and NO 
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release was measured. C. canimorsus LPS showed to be no antagonist of E. coli O111 

LPS binding to murine TLR4 (Fig. 7). Summarizing, C. canimorsus LPS seems neither 

to be an agonist nor an antagonist for murine TLR4, while it was shown to be a partial 

agonist of the human TLR4. To our knowledge this is the first example of an LPS with 

greater reactivity towards the human than the murine TLR4/MD-2/CD14. Further work 

will be needed to elucidate which sequence variation between the human and murine 

TLR4/MD-2/CD14 is responsible for the observed difference in activity. 
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Figure 7. Antagonistic activity of C. canimorsus LPS on the action of E. coli O111 

LPS on murine TLR4. RAW264.7 murine macrophages were preincubated for 3h with 

the indicated amount (amount indicated is per ml) of C. canimorsus (Cc) LPS, 

stimulated with 10 ng/ml (A), 100 ng/ml (B) or 1 ug/ml (C) E. coli O111 LPS and further 

incubated for 24h. Release of nitric oxide (NO) was measured using modified Griess 

reagent. 
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6.1.7 Comparison of endotoxicity of different C. canimorsus strains 

In order to see if low endotoxicity is a common feature of all Cc strains, we tested all 

patient derived strains (except the slow growing strain Cc8) and several dog mouth 

derived strains for activity on murine macrophages. Murine RAW264.7 macrophages 

were incubated for 24h with heat-killed bacteria (amount corresponding to MOI 50) and 

NO release was measured. All strains exhibited similar capacity to activate murine 

macrophages (Fig. 8). In this assay, stimuli for TLR4, TLR2 or other pattern-recognition 

receptors (PRR) can’t be distinguished. As purified Cc5 LPS has been found not to be 

active on murine TLR4 (Fig. 7), the C. canimorsus dependent activation of murine 

macrophages might rather reflect TLR2 stimulation. Nevertheless, none of the strains 

tested seems to express a LPS with a increased activity on murine TLR4. 
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Figure 8. NO release of RAW264.7 murine macrophages after stimulation for 24h 

with heat-killed (HK) bacteria. Macrophages were stimulated with heat-killed (HK) 

bacteria at MOI 50 and incubated for 24h. Release of nitric oxide (NO) was measured 

using modified Griess reagent. Patient derived strains are marked with Cc (Cc2-Cc12), 

dog mouth derived strains are marked with d (d7-d101). HK Yersinia enterocolitica 

MRS40 (E40) was used as positive control. 

 

 

 

In the same NO release assay other Capnocytophaga species and the slow growing C. 

canimorsus strain Cc8 were compared to Cc5. To make differences better visible, 
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several MOIs were tested. Interestingly, Cc8, a patient derived strain (Prof. Dr. Michel 

Delmée, Université Catholique de Louvain) showed increased macrophages stimulation 

(Fig. 9), while Cc5, C. cynodegmi, C. ochracea and C. gingivalis activated murine 

macrophages to a similar extent (Fig. 9). Stimuli for TLR4, TLR2 or other pattern-

recognition receptors (PRR) could not be distinguished with this method. We were 

interested to see if the increased macrophage activation was due to changes in lipid A. 

Therefore the same samples were assayed for TLR4 dependent NF&B activation with 

Hek293 cells overexpressing human TLR4/MD-2/CD14 and a secreted reporter gene. 

Again Cc8 showed to lead to higher stimulation than Cc5 and than other 

Capnocytophaga species (Fig. 10). It might thus well be that the lipid A of Cc8 is 

different from Cc5 and might either carry a 1 or 4’ phosphate or have alterations in the 

acyl chains.  To compare Cc8 to Cc5, we analyzed several genes involved in lipid A 

synthesis or modification. The sequence of lpxK, the 4’ kinase, was identical in Cc5 and 

Cc8 (data not shown). Cc5 and Cc8 lpxL, a late acyltransferase, showed only few 

sequence variation (Fig. 11). The presence of the lpxE-eptA operon in Cc8 was 

confirmed by PCR on lpxE, eptA and lpxE-eptA (Fig. 12). Therefore the 1-position of 

Cc8 lipid A might be modified as in Cc5. The higher endotoxicity of Cc8 LPS could be 

explained by alterations in acylation (encoding of lpxM, incorporation of shorter acyl 

chains) or changes in 4’ dephosphorylation. The gene encoding the lipid A 4’ 

phosphatase, LpxF, is not known in C. canimorsus 5 (Chapter 2.1, Fig. 3). It might be 

that Cc8 doesn’t encode lpxF, and therefore still has a phosphate attached to the 4’ 

position of lipid A, which would explain the increased endotoxicity. A genome wide 

Transposon-insertion screen on endotoxicity could lead to the identification of Cc5 lpxF 

and would allow comparison to Cc8. Unravelling the structure of Cc8 lipid A would solve 

the question of variations to Cc5 lipid A. 
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C. ochracea, C. cynodegmi, C. gingivalis and C. canimorsus 5 stimulated murine 

macrophages to a similar extent (Fig. 9). This includes several stimuli for TLR4, TLR2 

or other PRRs. Therefore we have tested heat-killed bacteria in an only TLR4 

dependent cell activation assay. The endotoxic activity of the tested Capnocytophaga 

species varied (Fig. 10). Cc5 and C. ochracea showed weakest endotoxicity (in 

agreement with (Yoshimura et al., 2002)). C. gingivalis exhibited a slightly increased 

endotoxic activity. C. cynodegmi, besides C. canimorsus the other member of dog 

mouth’s flora, showed higher endotoxicity. Neither C. ochracea, C. cynodegmi nor C. 

gingivalis encode the C. canimorsus lpxE-eptA operon (Fig. 12). Of course only minor 

nucleotide sequence variation would abolish PCR amplification, hence C. ochracea, C. 

cynodegmi or C. gingivalis might still encode lpxE and eptA.   
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Figure 9. NO release of RAW264.7 

murine macrophages after stimulation 

for 24h with heat-killed (HK) bacteria. 

Macrophages were stimulated with heat-

killed (HK) bacteria at MOI indicated and 

incubated for 24h. Release of nitric oxide 

(NO) was measured using modified 

Griess reagent. 

Figure 10. Endotoxic activity of C. 

canimorsus (Cc) 5, Cc8 and other 

Capnocytophaga species. Indicated 

MOI of heat killed (HK) bacteria were 

assayed for TLR4 dependent NF&B 

activation with HekBlue human TLR4 

cells.  

 

Figure 11. ClustalW multiple sequence alignment of C. canimorsus 5 (Cc5) and C. 

canimorsus 8 (Cc8) lpxL. lpxL was cloned in pUC19 with primers 6317/6242 (for Cc5) 
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CLUSTAL 2.0.12 multiple sequence alignment

Cc5_LpxL_seq           MGNLLIYILAFPVIWLVSVLPFRWLYIFSDFVYLFVYKIFKYRVEVVRKNLSIAFPDKTK 60
Cc5_LpxL_database      -MNLLIYILAFPVIWLVSVLPFRWLYIFSDFVYLFVYKIFKYRVEVVRKNLSIAFPDKTK 59
Cc8_LpxL               MGNLLIYILAFPVIWLVSVLPFRWLYIFSDFVYLFVYKIFKYRVEVVRKNLSIAFPDKTE 60
                         *********************************************************:

Cc5_LpxL_seq           AEKRNIERKFYHHMCDMFLEMVKSYHMSEKEIKKRMVYTNIELIKSYENSRSIIFLCGHY 120
Cc5_LpxL_database      AEKRNIERKFYHHMCDMFLEMVKSYHMSEKEIKKRMVYTNIELIKSYENSRSIIFLCGHY 119
Cc8_LpxL               AEKRNIERKFYHHMCDMFLEMVKSYHMSEKEIKKRMVYTNIELIKPYENSRSIIFLCGHY 120
                       *********************************************.**************

Cc5_LpxL_seq           ASYEWLMSLGYFLKHKSYGLYTPITNPYFDRLVKKIRMKHRGFLISRYAAASEMKKHRDE 180
Cc5_LpxL_database      ASYEWLMSLGYFLKHKSYGLYTPITNPYFDRLVKKIRMKHRGFLISRYAAASEMKKHRDE 179
Cc8_LpxL               ASYEWLMSLGYFLKHKSYGLYTPITNPYFDRLVKKIRMKHQAFLISRYAAASEMKKHRDE 180
                       ****************************************:.******************

Cc5_LpxL_seq           NTIACYGFAADQSPSSSKSYRREFLGKIVPVFTGAERLGKQLNTVMVYAKIEKVKRGYYQ 240
Cc5_LpxL_database      NTIACYGFAADQSPSSSKSYRREFLGKIVPVFTGAERLGKQLNTVMVYAKIEKVKRGYYQ 239
Cc8_LpxL               NTIACYGFAADQSPSSSKSYRREFLGKIVPVFTGAERLGKQLNTVMVYAKIEKVKRGYYQ 240
                       ************************************************************

Cc5_LpxL_seq           CTFEILAENPNEMPNYQITDLFFERLNQQIYQKPEYYLWTHNRFKRM 287
Cc5_LpxL_database      CTFEILAENPNEMPNYQITDLFFERLNQQIYQKPEYYLWTHNRFKRM 286
Cc8_LpxL               CTFEILAENPNEMPNYQITDLFFERLNQQIYQKPEYYLWTHNRFKRM 287
                       ***********************************************
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and 6338/6242 (for Cc8) and sequenced with standard sequencing primers for pUC19 

(Microsynth, pUCM13-52, pUCM13r-57). Cc5 lpxL sequence was taken from genome 

database (marked as _database) and re-sequenced (marked as _seq). Primer 6317 

couldn’t be used for cloning of Cc8 lpxL cloning, as a polymorphism leads to an internal 

HindIII site.  

 

 

 

Figure 12. PCR amplification of lpxF, eptA or lpxF-eptA using primers 6646/6647, 

6648/6649 or 6646/6649, respectively. 
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6.1.8 C. canimorsus 5 and C. canimorsus 8 LpxL partially restore E. coli "lpxL 

phenotype 

In order to compare LpxL of Cc5 and Cc8 we have expressed the genes in E. coli K12 

"lpxL (Bainbridge et al., 2006). Cc5 LpxL is a (R)-3-hydroxy-13-methyltetradecanoic 

acid transferase. This acyl chain is not synthesized by E. coli. Due to the known 

fuzziness of LpxL, it might most probably attach palmitate in E. coli (personal 

communication, U. Zähringer). Cc8 LpxL might have an altered acyl chain specificity 

than the one of Cc5 and could preferentially add palmitate or other by E. coli 

synthesized acyl chains. Therefore a difference in endotoxicity for E. coli K12 "lpxL with 

the plasmid encoding Cc5 lpxL (pSI49 and pSI51) or Cc8 lpxL (pSI50 and pSI52) might 

be measured. To address this issue, heat-killed bacteria were assayed for TLR4 

dependent NF&B activation with the HekBlue human TLR4 cell line. Expression of Cc5 

and Cc8 lpxL in E. coli K12 "lpxL leaded to a similar increase in endotoxicity as 

compared to E. coli K12 "lpxL (Fig. 13 and 14). This suggests that Cc8 lpxL might as 

well be a (R)-3-hydroxy-13-methyltetradecanoic acid transferase (or a transferase of 

another acyl chain synthesized by C. canimorsus and not by E. coli). 
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Figure 13. Endotoxic activity of E. coli 

(Ec) K12, E. coli K12 "lpxL, E. coli K12 

"lpxL with the plasmid encoding Cc5 

lpxL (pSI49 and pSI51). Indicated MOI 

of heat killed (HK) bacteria were assayed 

for TLR4 dependent NF&B activation with 

HekBlue human TLR4 cells. 

Figure 14. Endotoxic activity of E. coli 

(Ec) K12, E. coli K12 "lpxL, E. coli K12 

"lpxL with the plasmid encoding Cc8 

lpxL (pSI50 and pSI52). Indicated MOI 

of heat killed (HK) bacteria were assayed 

for TLR4 dependent NF&B activation with 

HekBlue human TLR4 cells. 
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6.1.9 Additional Methods 

!

Sensitivity of C. canimorsus to Human !-Defensin 2. The resistance of C. 

canimorsus to DEFB2 was measured using the protocol previously described  (Curtis et 

al.). Human !-defensin 2 (GIGNPVTCLKSGAICHPVFCPRRYKGIGYCGLPGTKCCLL, 

with disulfide bonds C-1–C-5, C-2–C-4, and C-3–C-6) were supplied by Peptides 

International. Briefly, 1x106 cfu/ml C. canimorsus bacteria were incubated with 3-100 

µg/ml DEFB2 in PBS for 30 min or 2h. cfu/ml was then determined using dilution and 

plating.  

 

NO release by RAW264.7 or J774 murine macrophages. Murine monocyte-

macrophage J774.1 (ATCC TIB-67) and murine monocyte-macrophage RAW264.7 

(ATCC TIB-71) were cultured as recommended by the American Type Culture 

Collection. 1x105 cells were seeded in 24-well plates (1 ml/well) and incubated for 24h 

at 37°C and 5% CO2. Cells were stimulated as indicated and incubated for further 24h. 

Nitric oxide (NO) production was the estimated as the amount of nitrite released in the 

culture medium, by use of modified Griess reagent (Sigma).  

 

Plasmids. All Plasmids are described in the Appendix, table A1. 
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6.1.10 Discussion 

!

C. canimorsus lipid A and E. coli F515 penta-acyl lipid A both showed to be not 

endotoxic. E. coli penta-acyl lipid A showed to be a potent antagonist on the activity of 

E. coli O111 LPS, being around 10-fold less inhibitory as lipid IVa. This is in contrast to 

Cc5 lipid A, which was found not to be an antagonist of the interaction E. coli O111 LPS 

and human TLR4/MD-2. Lipid IVa binds deeper into the MD-2 pocket and is turned by 

180° as compared to E. coli hexa-acyl and probably penta-acyl lipid A (Ohto et al., 

2007; Park et al., 2009). The binding of lipid IVa to MD-2 could therefore be more stable 

as the penta-acylated E. coli lipid A. Lipid IVa therefore is a more potent antagonist as 

E. coli penta-acyl lipid A. The discrepancy in agonism and antagonism of E. coli penta-

acyl lipid A and Cc5 lipid A can be explained by differences in binding to MD-2. The free 

lipid A of C. canimorsus was found not to bind to human MD-2 even if LBP and CD14 

are present (chapter 2.1 Fig. 5). Hence it can’t act as an antagonist, as the antagonism 

mainly takes place at the level of MD-2 (Coats et al., 2007). This is in contrast to E. coli 

penta-acyl lipid A that seems to be transported from CD14 onto MD-2 and thus 

competes for its binding with the agonist. 

CAMPs are important members of the innate immune system and have a broad range 

bactericidal activity. CAMP binding to bacteria relies on charge-charge interactions. 

Reducing the negative charge on the bacterial surface reduces the interaction with 

CAMPs and thus the fatal insertion of CAMPs in the bacterial membrane. Defensins are 

small cystein-rich CAMPs and several Defensins are expressed in the human oral 

cavity (Mathews et al., 1999), and likely in dog’s mouth. C. canimorsus has therefore to 

cope with CAMPs in its natural habitat and accordingly exhibited a high CAMP 
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resistance. We could demonstrate that besides high resistance to Polymyxin B, C. 

canimorsus highly resists to the action of human Defensins, even in comparison to 

other highly resistant bacteria as P. gingivalis (Curtis et al.). Altering the net negative 

charge of C. canimorsus lipid A had a strong influence on Polymyxin B resistance, and 

very probably on CAMP resistance in general. This feature of C. canimorsus might as 

well be important for human infections, as human CAMPs (as Defensins) are present in 

peripheral blood (Pazgier et al., 2006) and are released by polymorphonucleated 

neutrophils (Lehrer et al., 1993).  Besides the effect on endotoxic activity, lipid A 

modifications alter C. canimorsus resistance to CAMPs and thus favour persistence in 

dog’s oral cavity as well as human infections.  
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6.2 Appendix 2: Table A1: Plasmids constructed 

 
 



 

 

- 236 - 

 

Name Insert template in plasmid 
cleavage 
sites  remarks primer used 

pSI01 3 fragment PCR: orf 568::ermF Cc5 genomic DNA pMM25 PstI/SpeI orf568 is Ef-Tu; lethal deletion 5106-5111 

pSI02 3 fragment PCR: orf 958::ermF Cc5 genomic DNA pMM25 PstI/SpeI orf958 is pitrilysin 5100-5105 

pSI03 3 fragment PCR: orf 1890::ermF Cc5 genomic DNA pMM25 PstI/SpeI   5094-5099 

pSI04 orf 958 Cc5 genomic DNA pMM47 NcoI/XbaI orf958 is pitrilysin 5213/5214 

pSI05 
orf 958-His (read-through to His on 
plasmid) Cc5 genomic DNA pMM47 NcoI/XbaI orf958 is pitrilysin 5213/5319 

pSI06 
Mutation in CamA zinc binding 
motif: HEFSH to HEFSA pMM82 - - iPCR 5183/5184 

pSI07 
Mutation in CamA zinc binding 
motif: HEFSH to HDFSH pMM82 - - iPCR 5185/5186 

pSI08 CamB-13Aa linker-His (orf981) Cc5 genomic DNA pMM47 NcoI/XbaI 
CamB is the 4. gene in Cc5 
PUL11 4339/5238 

pSI09 CamB-13Aa linker-Strep Cc5 genomic DNA pMM47 NcoI/XbaI 
CamB is the 4. gene in Cc5 
PUL11 4339/5481 

pSI10 CamB-13Aa linker-Strep Cc5 genomic DNA pMAPA OmpACc NcoI/XbaI 
CamB is the 4. gene in Cc5 
PUL11 4339/5481 

pSI11 CamB-13Aa linker-StrepHis Cc5 genomic DNA pMM47 NcoI/XbaI 
CamB is the 4. gene in Cc5 
PUL11 4339/5482 

pSi12 CamB-13Aa linker-StrepHis Cc5 genomic DNA pMAPA OmpACc NcoI/XbaI 
CamB is the 4. gene in Cc5 
PUL11 4339/5482 

pSI13 CamB-13Aa linker-His for E. coli Cc5 genomic DNA pET22b+ NdeI/XhoI CamB with Signalpeptide 4332/5305 

pSI14 CamB-13Aa linker-His for E. coli Cc5 genomic DNA pET22b+ NdeI/XhoI CamB without Signalpeptide 4333/5305 

pSI15 orf608 Cc5 (LuxS) Cc5 genomic DNA pMAPA OmpAFJ NcoI/XbaI orf608 is a homologue to LuxS 6012/6013 

pSI16 orf608 Cc5 (LuxS) Cc5 genomic DNA pMAPA OmpACc NcoI/XbaI orf608 is a homologue to LuxS 6012/6013 

pSI17 orf608 Cc5 (LuxS) Cc5 genomic DNA pMM47 NcoI/XbaI orf608 is a homologue to LuxS 6012/6013 

pSI18 LpxK E. coli O111 
E. coli O111 
genomic DNA pMAPA OmpAFJ NcoI/XbaI   6163/6164 

pSI19 LpxK E. coli O111 
E. coli O111 
genomic DNA pMM47 NcoI/XbaI   6163/6164 

pSI20 LpxK E. coli BL21 
E. coli BL21 
genomic DNA pMAPA OmpAFJ NcoI/XbaI   6163/6164 

pSI21 LpxK E. coli BL21 
E. coli BL21 
genomic DNA pMM47 NcoI/XbaI   6163/6164 

pSI22 LpxL E. coli O111  
E. coli O111 
genomic DNA pMAPA OmpAFJ NcoI/XbaI   6165/6166 
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pSI23 LpxL E. coli O111  
E. coli O111 
genomic DNA pMAPA OmpACc NcoI/XbaI   6165/6166 

pSI24 LpxL E. coli O111  
E. coli O111 
genomic DNA pMM47 NcoI/XbaI   6165/6166 

pSI25 LpxL E. coli BL21 
E. coli BL21 
genomic DNA pMAPA OmpAFJ NcoI/XbaI   6165/6166 

pSI26 LpxL E. coli BL21 
E. coli BL21 
genomic DNA pMAPA OmpACc NcoI/XbaI   6165/6166 

pSI27 LpxL E. coli BL21 
E. coli BL21 
genomic DNA pMM47 NcoI/XbaI   6165/6166 

pSI28 LpxK Campylobacter jejuni 
C. jejuni genomic 
DNA pMM47 NcoI/XbaI   6263/6264 

pSI29 LpxK Campylobacter jejuni 
C. jejuni genomic 
DNA pMAPA OmpACc NcoI/XbaI   6263/6264 

pSI30 LpxL Campylobacter jejuni 
C. jejuni genomic 
DNA pMM47 NcoI/XbaI   6265/6266 

pSI31 LpxL Campylobacter jejuni 
C. jejuni genomic 
DNA pMAPA OmpACc NcoI/XbaI   6265/6266 

pSI32 LpxK Cc5 Cc5 genomic DNA pMM47 NcoI/XbaI Ccan17380 is LpxK 6208/6209 

pSI33 LpxK Cc5 Cc5 genomic DNA pMAPA OmpACc NcoI/XbaI Ccan17380 is LpxK 6208/6209 

pSI34 LpxL Cc5 Cc5 genomic DNA pMM47 NcoI/XbaI Ccan6750 is LpxL 6241/6242 

pSI35 LpxL Cc5 Cc5 genomic DNA pMAPA OmpACc NcoI/XbaI Ccan6750 is LpxL 6241/6242 

pSI36 LpxK Cc8.1 Cc8.1 genomic DNA pMM47 NcoI/XbaI   6208/6209 

pSI37 LpxK Cc8.1 Cc8.1 genomic DNA pMAPA OmpACc NcoI/XbaI   6208/6209 

pSI38 LpxL Cc8.1 Cc8.1 genomic DNA pMM47 NcoI/XbaI   6241/6242 

pSI39 LpxL Cc8.1 Cc8.1 genomic DNA pMAPA OmpACc NcoI/XbaI   6241/6242 

pSI40 3 fragment PCR: Ccan17380::ermF Cc5 genomic DNA pMM25 PstI/SpeI Ccan17380 is LpxK 6210-6215 

pSI41 3 fragment PCR: Ccan6750::ermF Cc5 genomic DNA pMM25 PstI/SpeI Ccan6750 is LpxL 6243-6248 

pSI42 3 fragment PCR: Ccan14540::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan14540 is a candidate for 
LpxF 6362-6367 

pSI45 Ccan6750 (LpxL) Cc5 Cc5 genomic DNA pUC19 HindIII/XbaI ATG pUC19 6317/6242 

pSI46 LpxL Cc8.1 Cc8.1 genomic DNA pUC19 SphI/XbaI ATG pUC19 6317/6242 

pSI49 Ccan6750 (LpxL) Cc5 Cc5 genomic DNA pUC19 SphI/XbaI 
own ATG in frame with ATG 
pUC19 6474/6242 

pSI50 LpxL Cc8.1 Cc8.1 genomic DNA pUC19 SphI/XbaI 
own ATG in frame with ATG 
pUC19 6474/6242 

pSI51 Ccan6750 (LpxL) Cc5 Cc5 genomic DNA pUC19 SphI/XbaI 
own ATG, out of frame with ATG 
pUC19 6475/6242 
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pSI52 LpxL Cc8.1 Cc8.1 genomic DNA pUC19 SphI/XbaI 
own ATG, out of frame with ATG 
pUC19 6475/6242 

pSI53 Ccan14540 Cc5 Cc5 genomic DNA pUC19 SphI/XbaI ATG pUC19 6471/6369 

pSI54 Ccan14540-like from Cc8.1 Cc8.1 genomic DNA pUC19 SphI/XbaI ATG pUC19 6471/6369 

pSI55 Ccan14540 Cc5 Cc5 genomic DNA pUC19 SphI/XbaI 
own ATG in frame with ATG 
pUC19 6472/6369 

pSI56 Ccan14540-like from Cc8.1 Cc8.1 genomic DNA pUC19 SphI/XbaI 
own ATG in frame with ATG 
pUC19 6472/6369 

pSI57 Ccan14540 Cc5 Cc5 genomic DNA pUC19 SphI/XbaI 
own ATG, out of frame with ATG 
pUC19 6473/6369 

pSI58 Ccan14540-like from Cc8.1 Cc8.1 genomic DNA pUC19 SphI/XbaI 
own ATG, out of frame with ATG 
pUC19 6473/6369 

pSI59 Ccan16960 Cc5 genomic DNA pMM47 NcoI/XbaI 
Ccan16960 is LpxE, ! Overlap 
with Ccan16950! 6646/6647 

pSI60 Ccan16950 Cc5 genomic DNA pMM47 NcoI/XhoI 
Ccan16950 is EptA, !overlap with 
Ccan16960! 6648/6649 

pSI61 Ccan16940 Cc5 genomic DNA pMM47 NcoI/XhoI   6650/6651 

pSI62 Ccan16960-50 Cc5 genomic DNA pMM47 NcoI/XhoI   6646/6649 

pSI63 Ccan16960-40 Cc5 genomic DNA pMM47 NcoI/XhoI   6646/6651 

pSI64 Ccan16950-40 Cc5 genomic DNA pMM47 NcoI/XhoI   6648/6651 

pSI65 Ccan16960 Cc5 genomic DNA pUC19 SphI/XbaI 
own ATG in frame with ATG 
pUC19 6652/6647 

pSI66 Ccan16950 Cc5 genomic DNA pUC19 SphI/SacI 
own ATG in frame with ATG 
pUC19 6653/6654 

pSI67 Ccan16940 Cc5 genomic DNA pUC19 SphI/SacI 
own ATG in frame with ATG 
pUC19 6655/6656 

pSI68 Ccan16960-50 Cc5 genomic DNA pUC19 SphI/SacI 
own ATG in frame with ATG 
pUC19 6652/6654 

pSI69 Ccan16960-40 Cc5 genomic DNA pUC19 SphI/SacI 
own ATG in frame with ATG 
pUC19 6652/6656 

pSI70 Ccan16950-40 Cc5 genomic DNA pUC19 SphI/SacI 
own ATG in frame with ATG 
pUC19 6653/6656 

pSI71 pMM47 with Promoter Ccan16960 Cc5 genomic DNA pMM47 SalI/NcoI   6644/6645 

pSI72 LpxM E. coli O111 
E. coli O111 
genomic DNA pMAPA OmpAFJ NcoI/XbaI   6167/6168 

pSI73 3 fragment PCR: Ccan16960::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan16960 is LpxE, ! Overlap 
with Ccan16950! 6493-6498 

pSI74 3 fragment PCR: Ccan16950::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan16950 is EptA, !overlap with 
Ccan16960! 6499-6504 
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pSI75 3 fragment PCR: Ccan16940::ermF Cc5 genomic DNA pMM25 PstI/SpeI   6505-6510 

pSI76 3 fragment PCR: Ccan16960::ermF Cc5 genomic DNA pMM25 PstI/SpeI   
6493-
5/6502-04 

pSI77 3 fragment PCR: Ccan16960::ermF Cc5 genomic DNA pMM25 PstI/SpeI   
6493-
5/6508-10 

pSI78 3 fragment PCR: Ccan6070::ermF Cc5 genomic DNA pMM25 PstI/SpeI Ccan6070 is a candidate for LpxF 6511-6516 

pSI79 3 fragment PCR: Ccan12100::ermF Cc5 genomic DNA pMM25 PstI/SpeI Ccan12100 is a homologue to wzt 6600-6605 

pSI80 3 fragment PCR: Ccan8390::ermF Cc5 genomic DNA pMM25 PstI/SpeI Ccan8390 is a homologue to wzb 6553-6558 

pSI81 3 fragment PCR: Ccan17350::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan17350 is a homologue to 
wzc 6559-6564 

pSI82 3 fragment PCR: Ccan15550::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan15550 is a homologue to 
wza 6541-6546 

pSI83 3 fragment PCR: Ccan15540::ermF Cc5 genomic DNA pMM25 SalI/SpeI Ccan15540 is wzz 6547-6552 

pSI84 3 fragment PCR: Ccan15550::ermF Cc5 genomic DNA pMM25 SalI/SpeI   

6565, 
6542-
6546/6547-
6552 

pSI85 3 fragment PCR: Ccan23290::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan23290 belongs to the O-
antigen cluster 6517-6522 

pSI86 3 fragment PCR: Ccan23410::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan23410 is a homologue to 
rmlA 6523-6528 

pSI87 3 fragment PCR: Ccan23430::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan23430 is a homologue to 
rmlC 6529-6534 

pSI88 3 fragment PCR: Ccan23440::ermF Cc5 genomic DNA pMM25 PstI/SpeI 
Ccan23440 is a homologue to 
rmlD 6535-6540 
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6.3 Appendix 3: Table A2: Oligonucleotide primers 
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Es git e Bueb mit name Fritz  
es git e Bueb mit name Fritz  
und dä cha renne wi dr Blitz  
und dä cha renne wi dr Blitz  

 
Är rennt, dä unerhört Athlet  
är rennt, dä unerhört Athlet  

so schnäll, das me ne gar nid gseht  
so schnäll, das me ne gar nid gseht  

 
und wil er geng isch grennt bis jitz  
und wil er geng isch grennt bis jitz  

het ne no niemer gseh, dr Fritz  
het ne no niemer gseh, dr Fritz  

 
und ig sogar, dr Värslischmid  
und ig sogar, dr Värslischmid  

mues zuegäh: vilich gits ne nid  
mues zuegäh: vilich gits ne nid 

 
(Mani Matter, 1966) 
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