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HIGHLIGHTS

« Soil erodibility in Europe is estimated at 0.032thahha='MJ~'mm~ .

« Stoniness has an important impact in Mediterranean countries.

« High resolution (500 m grid cell) dataset of K-factor is available for modelling.

« Coarse fragments, permeability and soil structure were considered in K-factor.

« K-factor map has very good correspondence with regional data in literature studies.
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The greatest obstacle to soil erosion modelling at larger spatial scales is the lack of data on soil characteristics.
One key parameter for modelling soil erosion is the soil erodibility, expressed as the K-factor in the widely
used soil erosion model, the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). The K-factor,
which expresses the susceptibility of a soil to erode, is related to soil properties such as organic matter content,
soil texture, soil structure and permeability. With the Land Use/Cover Area frame Survey (LUCAS) soil survey
in 2009 a pan-European soil dataset is available for the first time, consisting of around 20,000 points across 25

gS,Svagms. Member States of the European Union. The aim of this study is the generation of a harmonised high-resolution

K-factor soil erodibility map (with a grid cell size of 500 m) for the 25 EU Member States. Soil erodibility was calculated

Stoniness for the LUCAS survey points using the nomograph of Wischmeier and Smith (1978). A Cubist regression

Modelling model was applied to correlate spatial data such as latitude, longitude, remotely sensed and terrain features

gegrgssion in order to develop a high-resolution soil erodibility map. The mean K-factor for Europe was estimated
rosion

at 0.032 thahha=! MJ~! mm~"! with a standard deviation of 0.009 t hah ha=! MJ~! mm™. The yielded soil
erodibility dataset compared well with the published local and regional soil erodibility data. However, the incor-
poration of the protective effect of surface stone cover, which is usually not considered for the soil erodibility
calculations, resulted in an average 15% decrease of the K-factor. The exclusion of this effect in K-factor calcula-
tions is likely to result in an overestimation of soil erosion, particularly for the Mediterranean countries, where
highest percentages of surface stone cover were observed.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Soil erosion is the most widespread form of soil degradation world-
wide (Bridges and Oldeman, 1999). Since soil erosion is difficult to mea-
sure at large scales, soil erosion models are a crucial estimation tool at
regional, national and European levels. The high heterogeneity of soil
erosion causal factors, combined with often poor data availability is an
obstacle for the application of complex soil erosion models. Thus, the
empirical Revised Universal Soil Loss Equation (RUSLE) (Renard et al.,
1997), which predicts the average annual soil loss resulting from rain-
drop splash and runoff from field slopes, is still most frequently used
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at large spatial scales (Renschler and Harbor, 2002; Panagos et al., in
press). The RUSLE is the simple multiplication of 5 soil erosion risk
factors, of which one is the soil erodibility also called K-factor. The K-
factor is a lumped parameter that represents an integrated annual
value of the soil profile reaction to the process of soil detachment and
transport by raindrops and surface flow (Renard et al., 1997). As such
soil erodibility is best estimated by carrying out direct measurements
on field plots (Kinnell, 2010). However, since field measurements are
expensive and often not easily transferable in space, researchers inves-
tigated the relation between “classical” soil properties and soil
erodibility.

A number of equations have been designed to predict soil erod-
ibility, most famous is the soil erodibility nomograph of Wischmeier
et al.,, 1971. Dangler and El-Swaify (1976) developed an equation for
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Hawaiian soils. Other equations, such as that of Young and Mutcher
(1977), require attributes that are not widely available to predict
soil erodibility (e.g. bulk density). During the 1990s, Romkens et al.
(1997), Williams (1995) and Torri et al. (1997) developed simpler
equations mainly based on soil texture.

At European level, Panagos et al. (2012a) estimated soil erodibility
based on attributes (texture, organic carbon) which were available
from the Land Use/Cover Area frame Survey (LUCAS) topsoil data
(Toth et al., 2013) using the original nomograph of Wischmeier et al.
(1971). Inverse distance weighting (IDW) was used to interpolate
erodibility to a map with a grid-cell resolution of 10 km. The dataset at-
tracts great interest and it is available for download from the European
Soil Data Centre (ESDAC); approximately 200 users have registered and
downloaded the data within two years. The great majority of these used
the K-factor as an input for their USLE/RUSLE models, or for validation
and comparison to their modelled or measured K-factor estimates.
Past experience with the coarse-resolution soil erodibility dataset
showed that it is fairly difficult for soil erosion modellers to access soil
profile data in their area of interest.

However, a dataset with a resolution of 10-km grid cell can be con-
sidered too rough for most applications especially as the vast majority
of users downloaded the K-factor for regional and local applications.
Thus, the main objective of this paper is to produce a soil erodibility
dataset with a higher spatial resolution (500-m grid cell size). In order
to enable a better interpolation of the LUCAS point estimates Cubist
regression-interpolation is applied. Besides the higher spatial resolution
achieved through the abovementioned interpolation technique, this
new soil erodibility assessment will consider soil structure and the effect
of stones both on the soil permeability and the shielding of rain splash.
Moreover, Malta and Cyprus have been included in the analysis. Another
major improvement is that the estimated soil erodibility dataset will be
verified against local, regional and national data found in the literature.

2. Materials and methods
2.1. Input data

The geographical extent of this study includes 25 Member States of
the European Union (EU). Bulgaria, Romania and Croatia were not in-
cluded as the main input dataset (LUCAS survey 2009) does not include
data for those countries.

2.1.1. LUCAS topsoil data

LUCAS (Land Use/Cover Area frame Survey) is an in-situ assessment,
which means that the data is gathered through direct field observations.
The aim of the LUCAS survey is to establish a fully harmonised database
within the EU on land use/cover and to document changes over time.
A soil module was included in the LUCAS dataset for the first time in
2009. Topsoil samples (0-30 cm, approximate weight of 0.5 kg) were
collected from 10% of the survey points, providing 19,969 soil samples
across the 25 Member States. The density of LUCAS topsoil sample
points is around 1 per 199 km?, corresponding to a grid cell size of
around 14 km x 14 km (Panagos et al., 2013).

The objective of the soil module in the LUCAS dataset was to im-
prove the availability of harmonised data on soil parameters in
Europe. During the period 2010-2011, the 19,969 LUCAS soil sam-
ples were analysed in a single ISO-certified laboratory to obtain a co-
herent pan-European dataset. The significant advantage of this
method is that discrepancies arising from inter-laboratory differ-
ences (Cools et al., 2004) have been avoided. The results of the anal-
ysis are stored in the LUCAS topsoil database (Toth et al., 2013),
which includes (among others) the particle size distribution
expressed as percentages of clay (<0.002 mm), silt (0.002-
0.05 mm), sand (0.05-2.0 mm) as well as organic carbon (%) and
percentage coarse material (>2.0 mm). Analysis of the soil parame-
ters followed standard procedures (LUCAS, 2009a; ISO, 2013).

2.1.2. Stone cover percentage

During the 2009 LUCAS data collection exercise, the surveyors
estimated the percentage of the surface that is covered with stones.
Surveyors were given a chart (LUCAS, 2009b) to help them estimate
the percentage of stones present above the ground (Fig. 1). Accord-
ing to the instruction guide (LUCAS, 2009b), the surveyors removed
the vegetation coverage and litters around the sampling point. The
surveyors were trained to assign their estimation to one of the five
classes (LUCAS, 2009b) based on their visual assessment and the
charts provided in the instruction guide (Fig. 1). As surveyors in
Cyprus and Malta did not assess the percentage of stones, class =
2 was assigned to their data as this is the predominant stone
cover class in LUCAS for the southern parts of the Mediterranean
countries.

2.1.3. European Soil Database

The European Soil Database (ESDB), at 1:1,000,000 resolution (King
et al., 1994), is a reference dataset for assessing the state of soils in the
EU. The ESDB includes, among others, attributes such as texture and
soil types expressed as classes.

2.14. Covariates used for the Cubist regression model

Cubist (Quinlan, 1992) is a rule based model tree where the ter-
minal leaves contain linear regression models. Prediction is obtained
using the linear regression model at the terminal node of the tree and
smoothed by taking into account the prediction from the linear
model in the previous node of the tree. Various covariates were con-
sidered for the Cubist model, but three main types were considered
to be significant:

1. Remotely sensed data derived from the Moderate Resolution
Imaging Spectro-radiometer (MODIS), including vegetation indices
(Normalized Difference Vegetation Index — NDVI, Enhanced Vegeta-
tion Index — EVI) and raw band data which have been re-projected
using Principal Component Analysis;

2. Terrain features, derived from the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model, including common
geo-morphometric descriptors (elevation, slope, base level of
streams, altitude above channel base level and multi-resolution
index of valley bottom flatness);

3. Latitude and longitude.

The MODIS data was acquired in 2009 during the same period as the
LUCAS data, while the SRTM data refer to the year 2000.

2.2. Soil erodibility estimates for the LUCAS point dataset

As direct measurements of K-factor on field plots are not financially
sustainable at the regional or national levels, the soil erodibility nomo-
graph (Wischmeier et al., 1971) is most commonly used and cited for
soil erodibility calculation. An algebraic approximation of the nomo-
graph that includes five soil parameters (texture, organic matter, coarse
fragments, structure, and permeability) is proposed by Wischmeier and
Smith (1978) and Renard et al. (1997) in Eq. (1):

K=[(21107* M"™*(12-0M) +3.25(s—2) + 2.5(p~3)) /100] + 0.1317
()

where:

M the textural factor with M = (mg;;; + myg) * (100 — m);
m¢[%] clay fraction content (<0.002 mm);

Mg [%]  silt fraction content (0.002-0.05 mm);

mygs [%]  very fine sand fraction content (0.05-0.1 mm);

OM [%] the organic matter content;
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Fig. 1. Methodology applied for the generation of a European K-factor (soil erodibility) map.

the soil structure class (s = 1: very fine granular, s = 2: fine
granular, s = 3, medium or coarse granular, s = 4: blocky,
platy or massive; Table 1);

the permeability class (p = 1: very rapid, ..., p = 6: very
slow; Table 2).

The K-factor is expressed in the International System of units as t ha
hha=!'MJ~! mm™ . The proposed erodibility equation (Eq. (1)) can
only be recommended if organic matter content is known and silt con-
tent is below 70%. If these criteria are met, this equation is more precise
than alternative equations (Declercq and Poesen, 1992). The
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Table 1
Classes of soil structure derived the European Soil Database.

Structure class (s) European Soil Database

1 (very fine granular: 1-2 mm) G (good)
2 (fine granular: 2-5 mm) N (normal)
3 (medium or coarse granular: 5-10 mm) P (poor)

4 (blocky, platy or massive: >10 mm) H (humic or peaty top soil)

methodology applied in this study (depicted in Fig. 1) was selected
based on the availability of data to calculate input attributes at the
European level.

The combined application of the K-factor nomograph with the
LUCAS dataset required three adaptions:

* According to Wischmeier and Smith (1978), Eq. (1) is restricted to
samples for which the silt fraction does not exceed 70%. A subset of
718 soil samples collected in LUCAS 2009 had silt fractions in the
range of 70%-80%. As these were mainly taken from northern France,
southern Belgium and central Germany, it was considered essential
to be included in the calculation of the K-factor. An upper limit value
of 70% silt fraction was assigned to those samples. The 212 soil samples
that exceeded the 80% silt fraction were excluded from the calculation.
In literature the sand fraction is categorised into five classes of sand:
very fine, fine, medium, coarse, very coarse (Gee and Bauder, 1986;
Gee and Or, 2002). The very fine sand structure (0.05-0.1 mm)
as sub-factor (myg) in Eq. (1) is usually not subject of standard soil
analysis and was therefore estimated as 20% of the sand fraction
(0.05-2.0 mm) which is available in the LUCAS topsoil database.

For soil samples with organic matter content above 4%, the upper limit
of 4% has been applied (Wischmeier and Smith, 1978). The application
of a 4% limit to soil organic matter intends to prohibit an underestima-
tion of soil erodibility for soils that are rich in organic matter.

2.2.1. Estimation of structure classes

Good soil structure and high aggregate stability are important for
improving soil fertility, enhancing porosity and decreasing erodibility
(Bronick and Lal, 2005). In past studies (Bonilla and Johnson, 2012;
Lopez-Vicente et al., 2008; Perez-Rodriguez et al., 2007), soil structure
was assigned based on soil types of the Food and Agriculture Organiza-
tion (FAO). A pedotransfer rule for estimating soil structure when no
direct measurements are available has been developed by Van Ranst
et al. (1995). In the European Soil Database, this pedotransfer rule clas-
sifies the soil structure as humic, poor, normal or good (Table 1), using
pedological inputs such as the FAO soil name and soil texture (Jones
et al., 2003). The latter dataset was used to derive the structure class
values needed for K-factor calculation as given in Table 1.

2.2.2. Soil permeability estimation

For the estimation of the soil permeability, classes described in
the US Department of Agriculture's National Soils Handbook No. 430
(USDA, 1983) were assigned according to soil texture classes (Table 2)
(Rawls et al., 1982). These soil textural classes have also been employed
for the estimation of the range values of saturated hydraulic conduc-
tivity, which are explained below (Table 2).

Table 2
Soil permeability classes and saturated hydraulic conductivity ranges estimated from
major soil textural classes.

Soil permeability is affected by the content of stones (>2 mm). The
Agriculture Handbook No. 537 (Wischmeier and Smith, 1978) separates
the influence of stone fragments into two components: a) surface rock
fragments which can further reduce the splash detachment rate in
a similar way to how vegetation protects soils from rainfall intensity;
b) subsurface rock fragments that lead to increased soil loss due to
reduced water infiltration.

The latter effect of coarse fragments is due to a reduction in the
empty spaces (voids). As the LUCAS topsoil database includes coarse
fragments (>2 mm), their effect on saturated hydraulic conductivity
and soil erodibility can be calculated using the following equation
(Brakensiek et al., 1986):

Ky/Ki = (1=Ry) (2)

where K, (mm day ') is the modified saturated hydraulic conductivity
after accounting for the effect of rock fragments, and Kt is the saturated
hydraulic conductivity of the fine soil fraction (<2 mm). Initial estimates
for K¢ were also assigned by classification of LUCAS texture information
into the corresponding texture classes and associated saturated hydrau-
lic conductivities of the US Department of Agriculture's National Soils
Handbook No. 430 (USDA, 1983). Ry, is the percentage of coarse frag-
ments greater than 2 mm. R,, reduces the saturated hydraulic conduc-
tivity in the soil profile and can likely change the permeability class, as
indicated in Table 2.

2.2.3. Adjustment of K-factor by inclusion of surface stone cover

Besides the percentage of coarse fragments for the 0-30 cm soil sam-
ples, LUCAS provides also a percentage estimate of the surface stone
cover. Surface stone cover may have a negative effect on sediment
yield and thus, can be considered as natural soil-surface stabiliser.
Rubio and Recatala (2006) proposed stoniness to be included in the
soil erodibility index qualitative estimation. Poesen and Ingelmo-
Sanchez (1992) carried out a review of the negative relationship be-
tween stone cover and the relative interrill sediment yield. This negative
relationship is generally observed where stones are either partly em-
bedded in the top layer or are on the surface of the soil.

Poesen et al. (1994) developed a soil erodibility reduction factor
expressed as an exponential decay function based on experimental
field data:

St — o 0-04(R.—10) 3)

where:

St is the correction factor for the relative decrease in sediment
yield;

R¢ is the percentage of stones cover with 10% < R. < 100%.

The mean rate of decay was calculated as 0.04. Similar equations
with different parameters that were proposed by other authors have
given different rates of decay: 0.025 (Box, 1981), 0.044 (Simanton
et al., 1986), 0.050 (Martin, 1988).

Table 3
Classes of percentage surface stone cover of LUCAS database.

Permeability class (p) Texture Saturated hydraulic
conductivity, mm h™!

1 (fast and very fast) Sand >61.0

2 (moderate fast) Loamy sand, sandy loam 20.3-61.0

3 (moderate) Loam, silty loam 5.1-20.3

4 (moderate low) Sandy clay loam, clay loam 2.0-5.1

5 (slow) Silty clay loam, sand clay 1.0-2.0

6 (very slow) Silty clay, clay <1.0

Class Percentage of stones Value (%) used Number of St (correction factor)

for the St samples and
calculation proportion (%)
0 0% 0.0% 95 (0.48%) 1
1 Stones < 10% 5.0% 14,585 (73.37%) 1
2 10% < Stones < 25% 17.5% 3114 (15.66%) 0.740
3 25% < Stones < 50% 37.5% 1442 (7.25%) 0332
4 Stones > 50 75.0% 643 (3.23%) 0.074
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Surface stone cover was estimated by the LUCAS surveyor in five
classes (Table 3). The majority of the samples were found to have less
or equal to 10% of stones and a correction factor cannot be applied ac-
cording to Eq. (3). For classes 2, 3 and 4 (Table 3), the mean value of
the percentage class (Table 3 column 3) was applied in Eq. (3) resulting
in three correction factors (St).

The updated soil erodibility value (Ks;) incorporating surface stone
cover was calculated according to Eq. (4):

Ky = K+ St. (4)

K-factor

(tha h) / (ha MJ mm)
B <00
[_Joot-002

| |o002-0028
: 0.028 - 0.033
0.033-0.038
0.038 - 0.046
0.046 - 0.055
>0.055
No Data
3

' Background image: ESRI World Terrain Base

2.3. Spatial prediction of the K-factor

Given the linearity of Eq. (1), a regression approach was used to
predict the K-factor in order to infer the distribution of soil
erodibility from a series of related, but independent, covariates
(Goovaerts, 1998). Basically, this approach aims to find a statistical
relationship between the property to be predicted and a set
of spatially exhaustive covariates. Once this relationship is
established, the dependent property can be estimated for the area
of interest.
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Fig. 2. High-resolution (500 m grid cell size) map of Soil Erodibility estimated as K-factor in the European Union.
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2.3.1. Spatial analysis

In this study, the K-factor value of each LUCAS point sample was
interpolated using a series of spatially exhaustive environmental de-
scriptors (covariates) in order to derive a continuous map for Europe.
An alternative approach would have been to apply the equation to inter-
polated maps of all the soil properties needed in Eq. (1). However, the
latter approach has some critical drawbacks; first of all, every predicted
property has its own error and (possibly) bias. This could lead to a
misestimation of the K-factor which is not constant in the geographi-
cal space. Moreover, it is inherently simpler to evaluate the effect of
covariates on the value of K-factor if this is directly modelled as such,
and not as the combination of the mapped variables upon which the
K-factor is calculated.

The approach followed in this study made the calculation in two
stages. Firstly, the regression model based on the Cubist rule (Quinlan,
1992) was used to predict the value of the K-factor using a series of
covariates. Cubist is a tree model where each terminal leaf contains a
linear regression model. The prediction is made using the linear regres-
sion model at the terminal nodes of the tree smoothed by taking into ac-
count the predictions from previous nodes of the tree. Cubist makes an
average of the sample value over a given neighbour (Quinlan, 1993).
Once the first model is fitted, the nearest neighbours of a given instance
can be averaged and used as the proxy value for that instance. This pro-
cedure avoids overfitting and makes the model more robust to outliers.

In the next stage, the residuals from the Cubist model were interpo-
lated using Multilevel B-Splines (MBS) (Lee et al., 1997). In terms of
accuracy and unbiasedness, MBS performs as well as kriging but it
is computationally faster and allows an easy estimation of the interpo-
lated field (K-factor).

Model performance was tested for both the fitting and a cross-
validation dataset. In the bootstrapped cross-validation the random
sampling with replacement 1/10 of the original dataset (mutually
exclusive with the training set) was used as a validation sample. The
bootstrap procedure was repeated 100 times to produce reliable esti-
mates of the model predictive performance over LUCAS samples.

2.3.2. Verification

The proposed high-resolution dataset was validated against local
and regional studies. An extensive review of published studies that
use Eq. (1) was carried out. More than 100 soil erodibility assessments
were found in the literature at local, regional or even national level
(Hungary, Lithuania, Czech Republic and Slovakia). The authors
contacted the scientists who developed those assessments and received
replies and aggregated data of 21 published studies. The authors
attempted to ensure the maximum representativeness for the whole
study area (with at least one study for each country).

3. Results and discussion
3.1. Soil erodibility in Europe

The mean K-factor for the 25 Member States was calculated as
0.032 t ha h ha=! MJ™!" mm™"' with a standard deviation of
0.009 t ha h ha=' MJ~! mm™"' (Fig. 2). The range of values is
0.004-0.076 thah ha=! MJ~ ! mm™". The map (Fig. 2) does not in-
clude lakes, bare rocks, glaciers and urban areas.

The Cubist regression model predicted the pan-European distribu-
tion of the K-factor with a good performance as R> = 0.4 and RMSE =
0.0102 thahha='MJ~! mm~"in k-fold cross validation. The interpo-
lation using MBS further increased the prediction performance of the
K-factor to an R? of 0.94 for the fitting dataset. Cross-validation gives
a less good performance (R? of 0.74), given that part of the original
LUCAS points are left out for the prediction.

The spatial pattern of areas with high soil erodibility (Fig. 2) largely
follows the Loess map of Europe 1:2,500,000 according to Haase et al.
(2007). The mean K-factor value for the Loess areas of Europe was
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Fig. 3. K-factor compared to the European Soil Database (ESDB) soil surface texture
classes.

estimated at 0.0419 t hah ha=' MJ~' mm™". A comparison between
the resulting K-factors and the textural classes of the European Soil
Database shows that the highest mean values of the K-factor are
in the medium-fine textural class (3), followed by the fine (4) and me-
dium (2) classes, while the lowest mean values are recorded for coarse
(1) and very fine (5) classes (Fig. 3). This follows the main rules of soil
science that coarse particles are relatively heavy and fine particles
have, due to their relatively large surface areas, high cohesion strength
and thus are less susceptible to soil detachment. Thus, the medium
sized texture classes are more prone to soil erosion. The organic soils
(no mineral texture) have the lowest mean K-factor value.

Most of the soil samples belong to the Normal (N) soil structure
class of the ESDB corresponding to the fine granular (class: 2). The ma-
jority of the samples had a moderate permeability class (3) which
was corrected to moderate low (class: 4) with the incorporation of
coarse fragments. A soil sample having as attributes the mean values
(Table 4) of the input parameters of Eq. (1) will result in a K-factor
equal to 0032 thahha=' MJ~ ! mm~".

The aggregated country-level statistics present an overview
of the soil erodibility in Europe (Table 5). Organic matter has an im-
portant impact on the soil erodibility pattern as countries with high
concentrations of organic matter have the lowest soil erodibility.
Ireland, Estonia, Denmark, the Netherlands, the United Kingdom,
Finland, Sweden and Latvia with high mean organic matter values
(Jones et al., 2005) have mean soil erodibility values of less than
0.030 thahha=! MJ~! mm™". On the other hand, the highest mean
values (higher than 0.035 t hah ha=' MJ~! mm™!) are observed in

Table 4

Summary of input soil property values used for the estimation of the K-factor.
Eq. (1) attributes Range Mean value Standard

deviation
Organic matter (OM) 0-4% 3.08% 1.05%
Structure (S) 0,1,2,3,4 2¢
Permeability incorporating coarse 1,2,3,4,5,6 4°
fragments (P)

Clay (m,) 0-100% 18.5% 13.4%
Silt corrected (<70%) (ms;) 0-70% 35.5% 19.0%
Very fine sand (myys) 0-20% 8.1% 5.5%
K-factor (thahha ' MJ"'mm~')  0.004-0.076 0.0320 0.009

¢ Dominant value.
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Comparison of soil erodibility with and without considering surface stone content (K-factor and K-factor, respectively) per country.

195

Country K-factor equation (Eq. (1)) Ks-factor stoniness Reduction due to
I1SO Name Mean value Standard deviation Mean value stoniness (%)
(thahha='MJ~' mm™1) (thahha='MJ~'mm™1) (thahha ' MJ~' mm™1)

AT Austria 0.0321 0.0080 0.0291 9.5%
BE Belgium 0.0422 0.0092 0.0387 8.2%
cY Cyprus 0.0362 0.0028 0.0265 26.8%
cz Czech Republic 0.0373 0.0076 0.0342 8.3%
DE Germany 0.0334 0.0102 0.0311 7.0%
DK Denmark 0.0246 0.0065 0.0225 8.7%
EE Estonia 0.0254 0.0074 0.0242 4.5%
EL Greece 0.0298 0.0057 0.0229 23.3%
ES Spain 0.0368 0.0058 0.0265 27.9%
FI Finland 0.0273 0.0058 0.0242 11.2%
FR France 0.0356 0.0101 0.0284 20.1%
HU Hungary 0.0349 0.0078 0.0337 3.3%
IE Ireland 0.0234 0.0047 0.0216 7.4%
IT Italy 0.0322 0.0077 0.0276 14.5%
LT Lithuania 0.0321 0.0067 0.0309 3.8%
LU Luxembourg 0.0392 0.0036 0.0345 11.9%
LV Latvia 0.0290 0.0067 0.0281 3.2%
MT Malta 0.0381 0.0022 0.0284 25.5%
NL Netherlands 0.0246 0.0084 0.0236 3.9%
PL Poland 0.0299 0.0106 0.0285 4.8%
PT Portugal 0.0333 0.0069 0.0194 41.8%
SE Sweden 0.0293 0.0068 0.0252 13.9%
SI Slovenia 0.0313 0.0052 0.0282 9.6%
SK Slovakia 0.0362 0.0074 0.0321 11.3%
UK United Kingdom 0.0271 0.0063 0.0241 11.1%

Belgium, Luxembourg, central European countries (Slovakia, Czech
Republic, and Hungary), Spain and France. Those relatively high values
can be attributed partly to the Loess belt and partly to relatively lower
organic matter content compared to the northern countries. The
smallest variations were noticed in small countries (Cyprus, Malta and
Luxembourg) with more homogenous regions, while higher variations
were noticed in the Loess regions (Poland, Germany and Netherlands).

3.2. The effect of surface stone cover (stoniness)

The K values of the LUCAS points were interpolated using the
same methods and covariates as for the K-factor. The Cubist model
for the Ky-factor prediction performed with R? = 0.31 and an RMSE =
0.0081 thah ha=' MJ~! mm~" for the k-fold cross validation. The MBS
was used to model the spatial distribution of the residuals. The resulting
Ks-factor map (Fig. 4) is slightly different compared to the K-factor map
(Fig. 2). The mean K-factor value is 0.0271 thahha= ! MJ~ ! mm™!
with a standard deviation of 0.0087 t ha h ha~! MJ~! mm™. The
range is 0.001-0.0737 t ha h ha=! MJ~! mm~". The application of
the stoniness correction factor (St) reduces the K-factor on average
by 15%. The stoniness effect is much stronger in the Mediterranean
Basin, as also confirmed by past studies (Danalatos et al., 1995; Poesen
et al., 1998).

The considerable effect of surface stone cover (named stoniness in
the following) on soil erodibility in the Mediterranean Basin has also
been presented in recent studies (Zavala et al., 2010). The effect
of high stoniness can be greater than the protection of vegetation in
limiting soil loss. The protective effect of stoniness is strongest in
Portugal, Spain, Greece and France (Table 5) where it reduces the
K-factor by 20-42%. In contrast, stoniness reduces soil erodibility by
less than 5% in the Baltic States, Poland, Hungary and the Netherlands
(Table 5). The regional effect of stoniness, visualised as percentage re-
duction map (Fig. 5) is most pronounced in eastern Portugal, western
Spain, southern France, the Italian islands and southern Greece (Fig. 5).

The impact of stoniness on the K-factor was included for the first
time at European scale. This is a major improvement of the former
K-factor map. As a future development for the next LUCAS 2015 soil
survey, a larger number of stoniness classes (more than the 5 classes

in Table 3) could be made available to the surveyors and targeted
training could be given on how to estimate this attribute. As past re-
search (Poesen et al., 1994) proved that the presence of surface-level
stones can lead to an exponential decrease in soil erosion, soil erosion
modellers should also take the Kg-factor into account.

3.3. Mapping of soil erodibility and related uncertainties

The application of Cubist regression interpolation for the develop-
ment of the high-resolution soil erodibility map facilitates the identifi-
cation of the dependencies of the K-factor on other covariates such as
geo-morphometric indices, hydrology, topography, elevation and land
cover. As the covariates are available in high resolution (<500 m), the
values can be interpolated to the pixels between the sampled points
with much better accuracy than with the inverse weighted distance
method and the spatial variability can be modelled.

The variable importance is defined as the relevant proportion (%) of
K-factor variance which is explained by a given variable (Fig. 6). The
selection of variables for the Cubist model and the variable importance
was performed using Recursive Feature Elimination (RFE) (Iguyon and
Elisseeff, 2003). The variables were ranked in relation to their influ-
ence on the overall performance of the model (Cross validation —
RMSE) and model complexity (number of rules in the Cubist model).
Variables whose removal significantly increases the RMSE of the
model are retained while variables with little influence are not taken
into account in the model. Latitude is the most important variable
and the significance of the remaining 19 variables is relative to the
latitude.

MODIS derived products (Fig. 6) are indicated by a prefix such
as “red”, “nir” (Near Infrared), “mir” (Medium Infrared) and “EVI”
(Enhanced Vegetation Index). The suffixes “_PCAb1”, “_PCAb2", etc.
correspond to the 1st, 2nd, etc. axes of the Principal Component
Analysis (PCA) performed on said MODIS products over a time frame
of 1 year (2009). Regarding the rest of the variables (Fig. 6), ‘level’ is
the channel network base level (Bohner and Antonic, 2009), ‘network’
represents the altitude above channel network (Béhner and Antonic,
2009), ‘IGBP’ is the MODIS global land cover (Friedl et al., 2010),
‘gradient’ is the downslope distance gradient (Hjerdt et al., 2004)
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Fig. 4. High-resolution (500 m grid cell size) map of Soil Erodibility estimated as K-factor in the European Union, incorporating stoniness.

and ‘flatness’ is the multi-resolution index of valley bottom flatness
(Gallant and Dowling, 2003). The remaining variable names are
self-explanatory.

Since soil erodibility is a result of complex relationships between soil
properties, the authors attempted to identify the impact of a change in
one input parameter on soil erodibility, keeping all the other attributes
constant. The uncertainty analysis is also related to the three adaptions
of the methodology (mentioned above). For example, high soil organic
carbon values contribute to low K-factor values. If the input attributes

are considered to be representative of the whole dataset (Table 4),
then an increase in organic matter to 4% (from 3.08%) will lead to a 9%
decrease in the soil erodibility (K-factor = 0.0294). The application of
a 4% limit to soil organic matter (as required by the nomograph of
Wishmeier and Smith) is not taken into account in many regional as-
sessments, which results in lower K-factor values. A possible solution
would be a correction with an experimental mathematical curve of
the effect of organic matter in those cases where organic matter levels
are higher than 4%.
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Fig. 5. Reduction in soil erodibility due to the protective effect of stones covering the soil surface (stoniness).

If the belowground coarse fragments were not taken into account,
the permeability class would be much lower, with a dominant value
of 3 (compared to actual 4), and the average calculated soil erodibility
would have been 15% lower (K-factor = 0.0279).

If the soil structure was not considered in Eq. (1), then the soil erod-
ibility would have decreased by an average of 2.5% (K-factor = 0.0313).
In most cases, soil erosion modellers ignore both permeability and soil
structure due to a lack of data. In these cases, the mean decrease of
soil erodibility would be around 16.3% (K-factor = 0.0276).

The very fine sand fraction is estimated to be around 20% of the total
sand fraction. If the very fine sand fraction is taken to be 33.3% of the
total, then the soil erodibility will increase by 11% (K-factor = 0.0361).

3.4. Comparison of K-factor estimates to local and regional assessments

Scientists of most countries provided datasets or aggregated data
of K factors (Table 6: column d). However, no studies with soil erod-
ibility reference data were found for the United Kingdom and Nordic
countries, even though our literature review on soil erodibility was
extensive.

The findings in the literature are heterogeneous in scale (from plot
data to national level), nonetheless all were taken into account for the
verification of K-factor dataset. None of these literature studies have
included the stoniness effect. The comparison of K-factor/Ks.-factor
with the literature results is performed by the absolute deviation (%)
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Fig. 6. The twenty most important covariates and their relative importance in the applica-
tion of Cubist/MBS model for K-factor interpolation.

(Table 6: columns g, h). The sign (—) is applied in case the aggregated
K-factor/Kg-factor data are lower than the ones found in the literature.

The comparison of our K-factor (Table 6: column e) against the
regional studies (Table 6: column d) shows a deviation of about 14.3%
in absolute terms (Table 6: column g). In most of the cases, K-factor
mean values are higher than those of the regional studies, with the ex-
ception of the Lithuanian study, two local Polish studies and French
catchment. At national and regional levels, the correspondence of
K-factor to the study area aggregated data was very positive with the
exception of Brandenburg (Deumlich, 2009) where the permeability
had not been taken into consideration. The 14.3% average deviation
can be attributed to either the application of the 4% limit in organic mat-
ter or to the incorporation of coarse fragments in the calculation of the

permeability. However, the very good correspondence of K-factor with
literature data at local and regional scales shows how the soil erodibility
equation can be successfully applied at the European scale.

The relative agreement between the stoniness-corrected (Ks-factor)
and the literature data is almost equally good. The K-factor (Table 6:
column f) has an average deviation of 18.0% compared to the literature
studies (Table 6: column h) and especially for the Mediterranean coun-
tries the change towards smaller K-factor values is considerable. Thus,
neglecting surface stone cover will likely result in an overestimation of
soil erosion risk in these countries.

4. Conclusions

The presented soil erodibility map (Fig. 2) is an important contribu-
tion to the estimation of soil erosion from local to European scales,
as the K-factor is very crucial among the input factors used to esti-
mate soil loss according to RUSLE and other models. In addition, the
K-factor can usually not easily be determined or calculated by indi-
vidual soil erosion modellers with no extensive data access. With
the publication of this study, modellers and in general scientists will
be able to download the high-resolution datasets (K-factor, Ks-factor)
from the European Soil Data Centre.

Compared with past attempts to predict soil erodibility at the
European level (Van der Knijff et al., 2000), the presented K-factor
dataset has the advantage of pan-European harmonised soil data. In
addition, topsoil data was collected within one year (2009) all across
Europe and analysed by the same ISO-certified laboratory. Furthermore,
the past approach to map soil erodibility at European scale (Van der
Knijff et al., 2000) was based on 5 estimated textural classes of
large soil mapping units of the European Soil Database while the new
K-factor dataset is based on measured values.

The proposed model provides a framework for the digital soil map-
ping of the soil erodibility at continental scale. The Cubist regression
model successfully established the relation between the K-factor
and environmental features with the advantage of explaining the
spatial distribution of soil erodibility. This also improves the spatial
accuracy of the end product and allows establishing rules upon
which the K-factor can be estimated from remotely sensed data.

Table 6
Comparison of K-factor estimates with local/regional/national studies.
Catchment/region Coverage Reference study (c) K-factor of reference  K-factor K. factor Deviation of ~ Deviation of
(country) (a) (no of points) (b) study (d) (Fig. 2) (e)  (Fig. 4) (f)  K-factor vs. Ky-factor
study (g) vs. study (h)
Mean value (t hah ha=' MJ~! mm~") (%)
Hungary (HU) National (2851) Centeri and Pataki (2000) 0.0293 0.0349 0.0337 16.0% 13.1%
Slovakia (SK) National Styk et al. (2008) 0.029 0.0362 0.0321 19.9% 9.7%
Czech Republic (CZ) National Dostal et al. (2002) 0.0376 0.0373 0.0342 (—)0.8% (—)9.9%
Lithuania (LT) National Mazvila et al. (2010) 0.035 0.0321 0.0309 (—)9.0% (—)133%
Hessen federal state (DE) Regional Tetzlaff et al. (2013) 0.0400 0.0411 0.0382 2.6% (—)4.8%
Bavaria federal state (DE) Regional (1051) Auerswald (1992) 0.0331 0.0367 0.0337 9.7% 1.8%
Nordrhein-Westfalen federal Regional Elhaus (2013) 0.033 0.0370 0.0337 10.7% 2.2%
state (DE)
Brandenburg federal state (DE) Regional Deumlich (2009) 0.0163 0.0232 0.0223 29.7% 27.0%
Region of Sicily (IT) Regional (1813) Bagarello et al. (2012) 0.0291 0.0300 0.0230 3.2% (—)26.7%
Geul catchment (Maastricht, NL) ~ Regional de Moor and Verstraeten (2008) 0.0420 0.0449 0.0383 6.5% (—)9.6%
Strymonas (GR) Regional Panagos et al. (2012b) 0.0241 0.0292 0.0247 17.4% 23%
Andalucia (ES) Regional (8) Ruiz-Sinoga and Diaz (2010) 0.0303 0.0379 0.0245 20.1% (—)23.7%
Sele Catchment, Basilicata (IT) Regional Diodato et al. (2011) 0.026 0.0269 0.0230 3.5% (—)132%
Lautaret, Province Alps-Cote Local Bakker et al. (2008) 0.037 0.0344 0.0254 (—)7.6% (—)45.7%
d'Azur (FR)
Yialias River Catchment (CY) Local Alexakis et al. (2013) 0.0261 0.0378 0.0280 30.9% 6.6%
Gregos (PT) Local (97) Ferreira and Panagopoulos (2010)  0.0344 0.0383 0.0215 10.2% (—) 60.2%
Pico (PT) Local (25) Ferreira and Panagopoulos (2010)  0.0290 0.0394 0.0192 26.4% (—) 50.9%
Roncdo (PT) Local (82) Ferreira and Panagopoulos (2010)  0.0229 0.0382 0.0201 40.1% (—)13.7%
Bogucin, Poznan (PL) Local Rejman et al. (2008) 0.0598 0.0623 0.0594 4.1% (—)0.7%
Lazy, Carpathian foothill (PL) Local (7 plots) Swiechowicz (2010) 0.0738 0.0588 0.0552 (—) 25.6% (—)33.8%
Lublin, South Warsaw (PL) Local Wawer et al. (2005) 0.0285 0.0267 0.0261 (—)6.6% (—)9.2%
Overall average 21 studies 0.0344 0.0373 0.0308 14.3% 18.0.%
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Another advantage is that the remote sensing products are con-
stantly updated giving the possibility for dynamic prediction of
the K-factor. On the contrary, the used remote sensing products
are not tailed for the prediction of soil properties and this possibly
limits the model accuracy.

The high-resolution soil erodibility map (Fig. 2) incorporates certain
improvements over the coarse-resolution map (Panagos et al., 2012a):

= Soil structure was for the first time included in the K-factor
estimation.

= Coarse fragments were taken into account for the better estimation
of soil permeability.

= Surface stone content, which acts as protection against soil erosion
was for the first time included in the K-factor estimation. This cor-
rection is of great interest for the Mediterranean countries where
stoniness is an important regulating parameter of soil erosion.

Soil erodibility, together with management practices (P-factor) and
vegetation cover (C-factor) can be influenced by agricultural practices.
Therefore, the K-factor dataset can be a guide for applying better conser-
vation practices (e.g., increase or preserve soil organic carbon in areas
prone to high levels of soil erosion risk or adaption of soil management
at areas of high risk).

The K-factor dataset may also be proposed as an index for the vul-
nerability of ecosystems. The soil erodibility maps (Figs. 2, 4) delineate
areas where soil reaction to erosive rainfall events is considerably
high. Areas where the stoniness effect is relatively low (<10%) and soil
erodibility is still high (K > 0.046 thahha=!' MJ~! mm™!) should
be treated with considerable care in terms of agricultural practices
and vegetation cover. For example, dependent on the force and timing
of erosive rain events, local/regional policies can classify those areas as
being ecologically vulnerable and propose the application of permanent
crops or permanent grasslands.

The study also identified possible future improvements that can be
made in the future LUCAS topsoil 2015 data collection process. Data
analysis of the fraction of very fine sand and hydraulic conductivity
would certainly improve the textural and permeability calculation fac-
tors, and lead to more precise estimations of soil erodibility.
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