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In this paper we review many aspects of the well-posedness theory for the Cauchy
problem for the continuity and transport equations and for the ordinary differential
equation (ODE). In this framework, we deal with velocity fields that are not smooth,
but enjoy suitable ‘weak differentiability’ assumptions. We first explore the
connection between the partial differential equation (PDE) and the ODE in a very
general non-smooth setting. Then we address the renormalization property for the
PDE and prove that such a property holds for Sobolev velocity fields and for
bounded variation velocity fields. Finally, we present an approach to the ODE theory
based on quantitative estimates.

1. Introduction

In this paper (based in part on [10,11], with additional updates and recent improve-
ments) we study the well-posedness of the Cauchy problem for the homogeneous
conservative continuity equation

d
dt

μt + Dx ·(bμt) = 0, (t, x) ∈ I × R
d (PDE)

for time-dependent families μt of probability measures in R
d (or, more generally,

signed measures) and for the transport equation

d
dt

wt + b · ∇wt = ct.

Here, b(t, x) = bt(x) is a given time-dependent vector field in R
d and I ⊂ R is an

interval: we are interested in the case in which bt(·) is not necessarily Lipschitz and
has, for instance, a Sobolev or bounded variation (BV) regularity. Vector fields with

∗This paper is a late addition to the papers surveying active areas in partial differential equa-
tions, published in issues 141.2 and 142.6, which were based on a series of mini-courses held in
Edinburgh from 2010 to 2013.
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this ‘low’ regularity show up, for instance, in several partial differential equations
(PDEs) describing the motion of fluids and in the theory of conservation laws.

We are also particularly interested in the well-posedness of the system of ordinary
differential equations (ODEs)

γ̇(t) = bt(γ(t)),
γ(0) = x.

}
(ODE)

In some situations one might hope for a ‘generic’ uniqueness of the solutions of
the system of ODEs, i.e. for ‘almost every (a.e.)’ initial datum x. An even weaker
requirement is the research of a ‘selection principle’, i.e. a strategy to select, for
Ld-a.e. x, a solution X(·, x) in such a way that this selection is stable with respect
to (w.r.t.) smooth approximations of b.

In other words, we would like to know that, whenever we approximate b by
smooth vector fields bh, the classical trajectories Xh associated with bh satisfy

lim
h→∞

Xh(·, x) = X(·, x) in C([0, T ]; Rd) for Ld-a.e. x.

The following simple example provides an illustration of the kind of phenomena
that can occur.

Example 1.1. Let us consider the autonomous ODE

γ̇(t) =
√

|γ(t)|,
γ(0) = x0.

Then, solutions of the ODE are not unique for x0 = −c2 < 0. Indeed, they reach
the origin in a time 2c, where they can stay for an arbitrary time T , then continue
as x(t) = 1

4 (t−T − 2c)2. Let us consider, for instance, the Lipschitz approximation
(that could easily be made smooth) of b(γ) =

√
|γ| by

bε(γ) :=

⎧⎪⎪⎨
⎪⎪⎩

√
|γ| if − ∞ < γ � −ε2,

ε if − ε2 � γ � λε − ε2,√
γ − λε + 2ε2 if λε − ε2 � γ < +∞,

with λε − ε2 > 0. Solutions of the approximating ODE starting from −c2 reach the
value −ε2 in time tε = 2(c−ε), and continue with constant speed ε until they reach
λε − ε2 in time Tε = λε/ε. They then continue as λε − 2ε2 + 1

4 (t − tε − Tε)2.
Choosing λε = εT with T > 0, by this approximation we select the solutions

that, when at the origin, do not move exactly for a time T .
Other approximations, for instance bε(γ) =

√
ε + |γ|, select the solutions that

move immediately away from the singularity at γ = 0. Among all possibilities,
this family of solutions x(t, x0) is singled out by the property that x(t, ·)#L1 is
absolutely continuous with respect to L1, so no concentration of trajectories occurs
at the origin1. To see this fact, notice that we can integrate in time the identity

0 = x(t, ·)#L1({0}) = L1({x0 : x(t, x0) = 0})
1In this paper we are using the notation f#μ for the push-forward operator between measures;

see (2.2) and (2.3).
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and use Fubini’s theorem to obtain

0 =
∫

L1({t : x(t, x0) = 0}) dx0.

Hence, for L1-a.e. x0, x(·, x0) does not stay at 0 for a strictly positive set of times.

We will see that there is a close link between (PDE) and (ODE), first investigated
in a non-smooth setting by DiPerna and Lions [72].

Let us now make some basic technical remarks regarding the continuity equation
and the transport equation.

Remark 1.2 (regularity in space of bt and μt).

(1) Since the continuity equation (PDE) is in divergence form, it makes sense
without any regularity requirement on bt and/or μt, provided that∫

I

∫
A

|bt| d|μt| dt < +∞ ∀A � R
d (1.1)

(here and in the following, A � B means that Ā is a compact subset of B).
However, when we consider possibly singular measures μt, we must address the
fact that the product btμt is sensitive to modifications of bt in Ld-negligible
sets. In the Sobolev or BV case we will consider only measures μt = wtL

d, so
everything is well posed.

(2) On the other hand, due to the fact that the distribution bt · ∇w is defined by

〈bt ·∇w, ϕ〉 := −
∫

I

∫
w〈bt,∇ϕ〉 dxdt−

∫
I

〈Dx ·bt, wtϕt〉 dt, ϕ ∈ C∞
c (I×R

d)

(a definition consistent with the case in which wt is smooth), the transport
equation makes sense only if we assume that Dx · bt = div btL

d for L1-a.e.
t ∈ I. See also [38, 40] for more refined results on the transport equation
when b satisfies a one-sided Lipschitz condition.

We next consider the problem of the time continuity of t 	→ μt and t 	→ wt.

Remark 1.3 (regularity in time of μt). For any test function ϕ ∈ C∞
c (Rd), condi-

tion (1.1) gives
d
dt

∫
Rd

ϕ dμt =
∫

Rd

bt · ∇ϕ dμt ∈ L1(I),

and therefore the map t 	→ 〈μt, ϕ〉, for given ϕ, has a unique uniformly continuous
representative in I. By a simple density argument, we can find a unique represen-
tative μ̃t independent of ϕ, such that t 	→ 〈μ̃t, ϕ〉 is uniformly continuous in I for
any ϕ ∈ C∞

c (Rd). We will always work with this representative, so that μt will be
well defined for all t and even at the endpoints of I.

An analogous remark applies for solutions of the transport equation.

There are some other important links between the two equations.

(1) The transport equation reduces to the continuity equation for the case in
which ct = −wt div bt.
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(2) Formally, one can establish a duality between the two equations via the (for-
mal) identity

d
dt

∫
wt dμt =

∫
d
dt

wt dμt +
∫

d
dt

μtwt

=
∫

(−bt · ∇wt + c) dμt +
∫

bt · ∇wt dμt

=
∫

c dμt.

This duality method is a classical tool to prove uniqueness in a sufficiently
smooth setting (but see also [38,40]).

(3) Finally, if we denote by Y (t, s, x) the solution of the ODE at time t, starting
from x at the initial time s, i.e.

d
dt

Y (t, s, x) = bt(Y (t, s, x)), Y (s, s, x) = x,

then Y (t, ·, ·) are themselves solutions of the transport equation. To see this,
it suffices to differentiate the semigroup identity

Y (t, s,Y (s, l, x)) = Y (t, l, x)

w.r.t. s to obtain, after the change of variables y = Y (s, l, x), the equation

d
ds

Y (t, s, y) + bs(y) · ∇Y (t, s, y) = 0.

This property is used in an essential way in [72] to characterize the flow Y and
to prove its stability properties. The approach developed here, based on [9],
is based on a careful analysis of the measures transported by the flow, and
ultimately on the homogeneous continuity equation only.

The layout of this paper is as follows. In § 2 we review the Cauchy–Lipschitz
theory and we derive classical representation formulae for the solution of the con-
tinuity and the transport equations in the Lipschitz regularity setting. Section 3
is devoted to general principles, somewhat extending the classical theory of char-
acteristics to the non-smooth setting, relating the uniqueness of the ODE to the
uniqueness of the PDE. The main tool here is the superposition principle, asserting
that every positive measure solution to the continuity equation can indeed be real-
ized as a suitable ‘probabilistic push-forward’ of the initial datum along a (possibly
multi-valued) ODE flow. We then introduce the notion of Lagrangian flow (the
suitable notion of solution to the ODE in the non-smooth framework) and prove
that the well-posedness of the PDE with velocity field b implies the well-posedness
of the Lagrangian flow associated with b.

We then start the study of the PDE in various weak regularity contexts. In § 4
we introduce the notion of a renormalized solution, prove the well-posedness of the
PDE for Sobolev vector fields, and describe the consequences for the Lagrangian
flow; this is extended to vector fields with bounded variation in § 5.
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In the subsequent two sections we describe an alternative approach to the theory
of Lagrangian flows, based on suitable quantitative estimates, without reference
to the PDE theory. This is first carried out for Sobolev W 1,p vector fields with
p > 1 in § 6, by showing how suitable bounds on an integral quantity measuring
a logarithmic distance between Lagrangian flows imply well-posedness, quantified
stability and mild regularity for the Lagrangian flow, and then extended in § 7 to
W 1,1 vector fields and to vector fields whose derivative is given by a singular integral
of an L1 function.

In § 8 we summarize two applications to nonlinear PDEs (the Keyfitz–Kranzer
system of conservation laws and the semi-geostrophic equations) and in § 9 we
collect some open problems and comment on further literature on the subject.

2. The transport equation and the continuity equation within the
Cauchy–Lipschitz framework

In this section we recall the classical representation formulae for solutions of the
continuity or transport equation for the case in which

b ∈ L1([0, T ];W 1,∞(Rd; Rd)).

Under this assumption it is well known that solutions X(t, ·) of the ODE are unique
and stable. Quantitative information can be obtained by differentiation:

d
dt

|X(t, x) − X(t, y)|2 = 2〈bt(X(t, x)) − bt(X(t, y)),X(t, x) − X(t, y)〉

� 2 Lip(bt)|X(t, x) − X(t, y)|2

(here Lip(f) denotes the smallest Lipschitz constant of f), so that Gronwall’s lemma
immediately gives

Lip(X(t, ·)) � exp
( ∫ t

0
Lip(bs) ds

)
. (2.1)

Turning to the continuity equation, uniqueness of measure-valued solutions can be
proved by the duality method. Or, following the techniques developed in this paper,
it can be proved in a more general setting for positive measure-valued solutions (via
the superposition principle) and for signed solutions μt = wtL

d (via the theory of
renormalized solutions). So, in this section we focus only on the existence and the
representation issues.

Given metric spaces X and Y and a Borel map f : X → Y , we shall use in this
paper the notation f# for the push-forward operator mapping non-negative Borel
measures in X to non-negative Borel measures in Y , namely,

f#μ(B) := μ(f−1(B)) B ⊂ Y Borel. (2.2)

Notice that f# is mass preserving, so that it maps finite Borel measures to finite
Borel measures and probability measures to probability measures. Note also the
basic change of variables formula∫

Y

φ df#μ =
∫

X

φ ◦ f dμ, (2.3)

for φ : Y → [0, +∞] Borel, that we will frequently and tacitly use in the following.
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The representation formula for solutions to the continuity equation is indeed very
simple.

Proposition 2.1. For any probability measure μ̄ in R
d, the solution of the conti-

nuity equation is given by

μt := X(t, ·)#μ̄, i.e.
∫

Rd

ϕ dμt =
∫

Rd

ϕ(X(t, x)) dμ̄(x). (2.4)

Proof. Notice first that we need only check the distributional identity dμt/dt+Dx ·
(btμt) = 0 on test functions of the form ψ(t)ϕ(x), so that∫

R

ψ′(t)〈μt, ϕ〉 dt +
∫

R

ψ(t)
∫

Rd

〈bt,∇ϕ〉 dμt dt = 0.

This means that we have to check that t 	→ 〈μt, ϕ〉 belongs to W 1,1(0, T ) for any
ϕ ∈ C∞

c (Rd) and that its distributional derivative is
∫

Rd〈bt,∇ϕ〉 dμt.
We show first that this map is absolutely continuous, and particularly that it

is W 1,1(0, T ); then one needs only to compute the pointwise derivative. For every
choice of finitely many, say n, pairwise disjoint intervals (ai, bi) ⊂ [0, T ] we have

n∑
i=1

|ϕ(X(bi, x)) − ϕ(X(ai, x))| � ‖∇ϕ‖∞

∫
⋃

i(ai,bi)
|Ẋ(t, x)| dt

� ‖∇ϕ‖∞

∫
⋃

i(ai,bi)
sup |bt| dt,

and therefore an integration with respect to μ̄ gives
n∑

i=1

|〈μbi − μai
, ϕ〉| � ‖∇ϕ‖∞

∫
⋃

i(ai,bi)
sup |bt| dt.

The absolute continuity of the integral shows that the right-hand side can be made
small when

∑
i(bi − ai) is small. This proves the absolute continuity. For any x the

identity Ẋ(t, x) = bt(X(t, x)) is fulfilled for L1-a.e. t ∈ [0, T ]. By Fubini’s theorem,
we then also know that, for L1-a.e. t ∈ [0, T ], the previous identity holds for μ̄-a.e.
x, and therefore dominated convergence gives

d
dt

〈μt, ϕ〉 =
d
dt

∫
Rd

ϕ(X(t, x)) dμ̄(x)

=
∫

Rd

〈∇ϕ(X(t, x)), bt(X(t, x))〉 dμ̄(x)

= 〈btμt,∇ϕ〉

for L1-a.e. t ∈ [0, T ].

For the case in which μ̄ = ρLd we can say something more, proving that the mea-
sures μt = X(t, ·)#μ̄ are absolutely continuous w.r.t. Ld and explicitly computing
their density. Let us start by recalling the classical area formula: if f : R

d → R
d is

a (locally) Lipschitz map, then∫
A

g|Jf | dx =
∫

Rd

∑
x∈A∩f−1(y)

g(x) dy
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for any Borel set A ⊂ R
d, where Jf = det ∇f (recall that, by Rademacher’s

theorem, Lipschitz functions are differentiable Ld-almost everywhere). Assuming
in addition that f is 1–1 and onto and that |Jf | > 0 Ld-almost everywhere on A,
we can set A = f−1(B) and g = ρ/|Jf | to obtain∫

f−1(B)
ρ dx =

∫
B

ρ

|Jf | ◦ f−1 dy.

In other words, we have a formula for the push-forward:

f#(ρLd) =
ρ

|Jf | ◦ f−1Ld. (2.5)

In our case f(x) = X(t, x) is surely 1–1, onto and Lipschitz. It remains to show
that |JX(t, ·)| does not vanish: in fact, one can show that JX > 0 and

exp
[
−

∫ t

0
‖[div bs]−‖∞ ds

]
� JX(t, x) � exp

[ ∫ t

0
‖[div bs]+‖∞ ds

]
(2.6)

for Ld-a.e. x, thanks to the following fact, whose proof is left as an exercise.

Exercise 2.2. If b is smooth, we have

d
dt

JX(t, x) = div bt(X(t, x))JX(t, x).

Hint: use the ODE d∇X/dt = ∇bt(X)∇X.

The previous exercise gives that, in the smooth case, JX(·, x) solves a linear
ODE with the initial condition JX(0, x) = 1, whence the estimates on JX follow.
In the general case the upper estimate on JX still holds by a smoothing argument,
thanks to the lower semi-continuity of

Φ(v) :=

{
‖Jv‖∞ if Jv � 0 Ld-almost everywhere,
+∞ otherwise

with respect to the w∗-topology of W 1,∞(Rd; Rd) (see [74, § 8.2.4]). This is indeed
the supremum of the family of Φ

1/p
p , where Φp are the polyconvex (and therefore

lower semi-continuous (l.s.c.)) functionals

Φp(v) :=
∫

Bp

|χ(Jv)|p dx.

Here χ(t) is equal to ∞ on (−∞, 0) and equal to t on [0, +∞), is l.s.c. and convex.
The lower estimate can be obtained by applying the upper one in a time-reversed
situation.

We now turn to the representation of solutions of the transport equation.

Proposition 2.3. If w ∈ L1
loc([0, T ] × R

d) solves

d
dt

wt + b · ∇w = c ∈ L1
loc([0, T ] × R

d)
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in the sense of distributions, then, for Ld-a.e. x, we have

wt(X(t, x)) = w0(x) +
∫ t

0
cs(X(s, x)) ds ∀t ∈ [0, T ].

The (formal) proof is based on the simple observation that

d
dt

wt ◦ X(t, x) =
d
dt

wt(X(t, x)) +
d
dt

X(t, x) · ∇wt(X(t, x))

=
d
dt

wt(X(t, x)) + bt(X(t, x)) · ∇wt(X(t, x))

= ct(X(t, x)).

In particular, as X(t, x) = Y (t, 0, x) = [Y (0, t, ·)]−1(x), we get

wt(y) = w0(Y (0, t, y)) +
∫ t

0
cs(Y (s, t, y)) ds.

We conclude this presentation of the classical theory by pointing out two simple
local variants of the assumption b ∈ L1([0, T ];W 1,∞(Rd; Rd)) made throughout this
section.

Remark 2.4 (first local variant). The theory outlined above still works under the
assumptions

b ∈ L1([0, T ];W 1,∞
loc (Rd; Rd)),

|b|
1 + |x| ∈ L1([0, T ];L∞(Rd)).

Indeed, due to the growth condition on b, we still have pointwise uniqueness of the
ODE and a uniform local control on the growth of |X(t, x)|. Therefore, we need
only consider a local Lipschitz condition w.r.t. x, integrable w.r.t. t.

The next variant will be used in the proof of the superposition principle.

Remark 2.5 (second local variant). Still keeping the L1(W 1,∞
loc ) assumption, and

assuming μt � 0, the second growth condition on |b| can be replaced by a global,
but more intrinsic, condition:∫ T

0

∫
Rd

|bt|
1 + |x| dμt dt < +∞. (2.7)

Under this assumption, one can show that, for μ̄-a.e. x, the maximal solution X(·, x)
of the ODE starting from x is defined up to t = T and the representation μt =
X(t, ·)#μ̄ still holds for t ∈ [0, T ] (see [22, § 8.1]).

3. ODE uniqueness versus PDE uniqueness

In this section we illustrate some general principles, whose application may depend
on specific assumptions on b, relating the uniqueness of the ODE to the unique-
ness of the PDE. The viewpoint adopted in this section is very close in spirit to
Young’s theory [106] of generalized surfaces and controls (a theory that also has
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remarkable applications to nonlinear PDEs [71,99] and calculus of variations [26]),
and also has some connection with Brenier’s weak solutions of incompressible Euler
equations [13,41], with Kantorovich’s viewpoint in the theory of optimal transporta-
tion [75, 95] and with Mather’s theory [27, 90, 91]. In order to study the existence,
uniqueness and stability (with respect to perturbations of the data) of solutions to
the ODE, we consider suitable measures in the space of continuous maps, allowing
for the superposition of trajectories. Then, in some special situations, we are able to
show that this superposition actually does not occur; despite this, this ‘probabilis-
tic’ interpretation is still very useful with regard to understanding the underlying
techniques and to give an intrinsic characterization of the flow.

The first, very general, criterion is the following.

Theorem 3.1. Let A ⊂ R
d be a Borel set. The following two properties are equiv-

alent:

(a) solutions of the ODE are unique for any x ∈ A;

(b) non-negative measure-valued solutions of the PDE are unique for any μ̄ con-
centrated in A, i.e. such that μ̄(Rd \ A) = 0.

Proof. It is clear that (b) implies (a) just by choosing μ̄ = δx and noticing that
two different solutions X(t), X̃(t) of the ODE induce two different solutions of the
PDE; namely, δX(t) and δX̃(t).

The converse implication is less obvious and requires the superposition principle,
which we will describe below, and that provides the representation∫

Rd

ϕ dμt =
∫

Rd

( ∫
ΓT

ϕ(γ(t)) dηx(γ)
)

dμ0(x)

with ηx probability measures concentrated on the absolutely continuous integral
solutions of the ODE starting from x. Therefore, when these are unique, the mea-
sures ηx are unique (and are Dirac masses), and so the solutions of the PDE are
unique.

We will use the shorter notation ΓT for the space C([0, T ]; Rd) and denote by
et : ΓT → R

d the evaluation maps γ 	→ γ(t), t ∈ [0, T ].

Definition 3.2 (superposition solutions). Let η ∈ M+(Rd × ΓT ) be a measure
concentrated on the set of pairs (x, γ) such that γ is an absolutely continuous
integral solution of the ODE with γ(0) = x. We define

〈μη
t , ϕ〉 :=

∫
Rd×ΓT

ϕ(et(γ)) dη(x, γ) ∀ϕ ∈ Cb(Rd).

By a standard approximation argument, the identity defining μη
t holds for any

Borel function ϕ such that γ 	→ ϕ(et(γ)) is η-integrable (or, equivalently, any
μη

t -integrable function ϕ).
Under the (local) integrability condition∫ T

0

∫
Rd×ΓT

χBR
(et)|bt(et)| dη dt < +∞ ∀R > 0, (3.1)
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it is not hard to see that μη
t solves the PDE with the initial condition μ̄ := (πRd)#η.

Indeed, let us check first that t 	→ 〈μη
t , ϕ〉 is absolutely continuous for any ϕ ∈

C∞
c (Rd). For every choice of finitely many pairwise disjoint intervals (ai, bi) ⊂ [0, T ]

we have
n∑

i=1

|ϕ(γ(bi)) − ϕ(γ(ai))| � Lip(ϕ)
∫

⋃
i(ai,bi)

χBR
(|et(γ)|)bt(et(γ))| dt

for η-a.e. (x, γ), with R such that suppϕ ⊂ B̄R. Therefore, assuming for simplicity
that η(Rd × ΓT ) = 1, an integration with respect to η gives

n∑
i=1

|〈μη
bi

, ϕ〉 − 〈μη
ai

, ϕ〉| � Lip(ϕ)
∫

⋃
i(ai,bi)

∫
Rd×ΓT

χBR
(et)|bt(et)| dη dt.

The absolute continuity of the integral shows that the right-hand side can be made
small when

∑
i(bi − ai) is small. This proves the absolute continuity.

It remains to evaluate the time derivative of t 	→ 〈μη
t , ϕ〉: we know that, for

η-a.e. (x, γ), the identity γ̇(t) = bt(γ(t)) is fulfilled for L1-a.e. t ∈ [0, T ]. Then,
by Fubini’s theorem, we know also that for L1-a.e. t ∈ [0, T ] the previous identity
holds for η-a.e. (x, γ), and therefore

d
dt

〈μη
t , ϕ〉 =

d
dt

∫
Rd×ΓT

ϕ(et(γ)) dη

=
∫

Rd×ΓT

〈∇ϕ(et(γ)), bt(et(γ))〉 dη

= 〈btμt,∇ϕ〉 L1-a.e. in [0, T ].

Remark 3.3. Actually, the formula defining μη
t does not contain x, and so it

involves only the projection of η on ΓT . Therefore, one could also consider mea-
sures σ in ΓT , concentrated on the set of solutions of the ODE (for an arbitrary
initial point x). These two viewpoints are basically equivalent: given η one can
build σ just by projection onto ΓT ; given σ, one can consider the conditional
probability measures ηx concentrated on the solutions of the ODE starting from x
induced by the random variable γ 	→ γ(0) in ΓT , the law μ̄ (i.e. the push forward)
of the same random variable and recover η via∫

Rd×ΓT

ϕ(x, γ) dη(x, γ) :=
∫

Rd

( ∫
ΓT

ϕ(x, γ) dηx(γ)
)

dμ̄(x). (3.2)

Our viewpoint has been chosen simply for technical convenience in order to avoid
the use, wherever this is possible, of the conditional probability theorem.

By restricting η to suitable subsets of R
d ×ΓT , several manipulations with super-

position solutions of the continuity equation are possible and useful, and these are
not immediate to see just at the level of general solutions of the continuity equation.
This is why the following result is interesting.

Theorem 3.4 (superposition principle). Let μt ∈ M+(Rd) solve (PDE) and as-
sume that ∫ T

0

∫
Rd

|b|t(x)
1 + |x| dμt(x) dt < +∞.
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Then μt is a superposition solution, i.e. there exists η ∈ M+(Rd × ΓT ) such that
μt = μη

t for any t ∈ [0, T ].

In the proof we use the weak convergence of positive measures, i.e. the conver-
gence with respect to the duality with continuous and bounded functions, and the
easy implication in Prokhorov compactness theorem: any tight and bounded fam-
ily F in M+(X) is (sequentially) relatively compact w.r.t. the weak convergence.
Remember that tightness means

for any ε > 0 there exists K ⊂ X compact s.t. μ(X \ K) < ε for every μ ∈ F.

A necessary and sufficient condition for tightness is the existence of a coercive
functional Ψ : X → [0,∞] such that

∫
Ψ dμ � 1 for any μ ∈ F.

Proof.

Step 1 (smoothing [76]). We mollify μt w.r.t. the space variable with a kernel ρ
having finite first moment M and support equal to the whole of R

d (a Gaussian,
for instance), obtaining smooth and strictly positive functions με

t . We also choose
a function ψ : R

d → [0, +∞) such that ψ(x) → +∞ as |x| → +∞ and∫
Rd

ψ(x)μ0 ∗ ρε(x) dx � 1 ∀ε ∈ (0, 1),

and a convex non-decreasing function Θ : R
+ → R having a more than linear growth

at infinity such that ∫ T

0

∫
Rd

Θ(|bt|(x))
1 + |x| dμt dt < +∞

(the existence of Θ is ensured by the Dunford–Pettis theorem). Defining

με
t := μt ∗ ρε, bε

t :=
(btμt) ∗ ρε

με
t

,

it is immediate that

d
dt

με
t + Dx · (bε

tμ
ε
t ) =

d
dt

μt ∗ ρε + Dx · (btμt) ∗ ρε = 0

and that bε ∈ L1([0, T ];W 1,∞
loc (Rd; Rd)). Therefore, remark 2.5 can be applied and

the representation με
t = Xε(t, ·)#με

0 still holds. We then define

ηε := (x,Xε(·, x))#με
0

so that ∫
Rd

ϕ dμηε

t =
∫

Rd×ΓT

ϕ(γ(t)) dηε

=
∫

Rd

ϕ(Xε(t, x)) dμε
0(x)

=
∫

Rd

ϕ dμε
t . (3.3)
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Step 2 (tightness). We will be using the inequalities

((1 + |x|)c) ∗ ρε � (1 + |x|)c ∗ ρε + εc ∗ ρ̃ε (3.4)

for c a non-negative measure and ρ̃(y) = |y|ρ(y), and

Θ(|bε
t (x)|)με

t (x) � (Θ(|bt|)μt) ∗ ρε(x). (3.5)

The proof of the first one is elementary, while the proof of the second one follows
by applying Jensen’s inequality with the convex l.s.c. function (z, t) 	→ Θ(|z|/t)t
(set to +∞ if t < 0, or if t = 0 and z �= 0, and set to 0 if z = t = 0) and with the
measure ρε(x − ·)Ld.

Let us introduce the functional

Ψ(x, γ) := ψ(x) +
∫ T

0

Θ(|γ̇|)
1 + |γ| dt,

set to +∞ on ΓT \ AC([0, T ]; Rd).
Using the Ascoli–Arzelà theorem, it is not hard to show that Ψ is coercive (it suf-

fices to show that max |γ| is bounded on the sublevels {Ψ � t}, so that
∫ T

0 Θ(|γ̇|) dt
is also uniformly bounded on the sublevels of Ψ). Since∫

Rd×ΓT

∫ T

0

Θ(|γ̇|)
1 + |γ| dt dηε(x, γ) =

∫ T

0

∫
Rd

Θ(|bε
t |)

1 + |x| dμε
t dt

(3.4),(3.5)
� (1 + εM)

∫ T

0

∫
Rd

Θ(|bt|(x))
1 + |x| dμt dt

and ∫
Rd×ΓT

ψ(x) dηε(x, γ) =
∫

Rd

ψ(x) dμε
0 � 1,

we obtain that
∫

Ψ dηε is uniformly bounded for ε ∈ (0, 1), and therefore the
Prokhorov compactness theorem tells us that the family ηε is weakly sequentially
relatively compact as ε ↓ 0. If η is any limit point, we can pass to the limit in (3.3)
to obtain that μt = μη

t .

Step 3 (η is concentrated on solutions of the ODE). It suffices to show that∫
Rd×ΓT

|γ(t) − x −
∫ t

0 bs(γ(s)) ds|
1 + max[0,T ] |γ| dη = 0 (3.6)

for any t ∈ [0, T ]. The technical difficulty is that this test function, due to the lack
of regularity of b, is not continuous. Towards this aim, we prove first that∫

Rd×ΓT

|γ(t) − x −
∫ t

0 cs(γ(s)) ds|
1 + max[0,T ] |γ| dη �

∫ T

0

∫
Rd

|bs − cs|
1 + |x| dμs ds (3.7)

for any continuous function c with compact support. Then, choosing a sequence
(cn) converging to b in L1(ν; Rd) with∫

ϕ(s, x) dν(s, x) :=
∫ T

0

∫
Rd

ϕ(s, x)
1 + |x| dμs(x) ds,
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and noticing that∫
Rd×ΓT

∫ T

0

|bs(γ(s)) − cn
s (γ(s))|

1 + |γ(s)| ds dη =
∫ T

0

∫
Rd

|bs − cn
s |

1 + |x| dμs ds → 0,

we can pass to the limit in (3.7) with c = cn to obtain (3.6).
It remains to show (3.7). This is a limiting argument based on the fact that (3.6)

holds for bε and ηε:

∫
Rd×ΓT

|γ(t) − x −
∫ t

0 cs(γ(s)) ds|
1 + max[0,T ] |γ| dηε

=
∫

Rd

|Xε(t, x) − x −
∫ t

0 cs(Xε(s, x)) ds|
1 + max[0,T ] |Xε(·, x)| dμε

0(x)

=
∫

Rd

|
∫ t

0 bε
s(X

ε(s, x)) − cs(Xε(s, x)) ds|
1 + max[0,T ] |Xε(·, x)| dμε

0(x)

�
∫ t

0

∫
Rd

|bε
s − cs|

1 + |x| dμε
s ds

�
∫ t

0

∫
Rd

|bε
s − cε

s|
1 + |x| dμε

s ds +
∫ t

0

∫
Rd

|cε
s − cs|

1 + |x| dμε
s ds

�
∫ t

0

∫
Rd

|bs − cs|
1 + |x| dμs ds +

∫ t

0

∫
Rd

|cε
s − cs|

1 + |x| dμε
s ds.

In the last inequalities we added and subtracted cε
t := (ctμt)∗ρε/με

t . Since cε
t → ct

uniformly as ε ↓ 0 thanks to the uniform continuity of c, passing to the limit in the
chain of inequalities above we obtain (3.7).

The applicability of theorem 3.1 is strongly limited by the fact that, on the one
hand, pointwise uniqueness properties for the ODE are known only in very special
situations, for instance, when there is a Lipschitz or a one-sided Lipschitz (or log-
Lipschitz, Osgood, etc.) condition on b. On the other hand, uniqueness for general
measure-valued solutions is also known only in special situations. It turns out that
in many cases uniqueness of the PDE can only be proved in smaller classes L

of solutions, and it is natural to think that this should be reflected in a weaker
uniqueness condition at the level of the ODE.

We will see that there is indeed uniqueness in the ‘selection sense’. In order to
illustrate this concept, in the following we consider a convex class Lb of measure-
valued solutions μt ∈ M+(Rd) of the continuity equation relative to b, satisfying
the following monotonicity property:

0 � μ′
t � μt ∈ Lb =⇒ μ′

t ∈ Lb (3.8)

whenever μ′
t still solves the continuity equation relative to b, and satisfying the

integrability condition ∫ T

0

∫
Rd

|bt(x)|
1 + |x| dμt(x) dt < +∞.
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The typical application will be with absolutely continuous measures μt = wtL
d

whose densities satisfy some quantitative and possibly time-dependent bound (e.g.
L∞(L1) ∩ L∞(L∞)).

Definition 3.5 (Lb-Lagrangian flows). Given the class Lb, we say that X(t, x) is
an Lb-Lagrangian flow starting from μ̄ ∈ M+(Rd) (at time 0) if the following two
properties hold:

(a) X(·, x) is absolutely continuous in [0, T ] and satisfies

X(t, x) = x +
∫ t

0
bs(X(s, x)) ds ∀t ∈ [0, T ]

for μ̄-a.e. x;

(b) μt := X(t, ·)#μ̄ ∈ Lb.

Heuristically, Lb-Lagrangian flows can be thought as suitable selections of the
solutions of the ODE (possibly non-unique), made in such a way as to produce a
density in Lb (see example 1.1 for an illustration of this concept).

We will show that the Lb-Lagrangian flow starting from μ̄ is unique, modulo
μ̄-negligible sets, whenever well-posedness for the PDE holds in the class Lb.

Before stating and proving the uniqueness theorem for Lb-Lagrangian flows, we
state two elementary, but useful, results. The first one is a simple exercise.

Exercise 3.6. Let σ ∈ M+(ΓT ) and let D ⊂ [0, T ] be a dense set. Show that σ is
a Dirac mass in ΓT if its projections (e(t))#σ, t ∈ D, are Dirac masses in R

d.

The second one is concerned with a family of measures ηx.

Lemma 3.7. Let ηx be a measurable family of positive finite measures in ΓT with the
following property: for any t ∈ [0, T ] and any pair of disjoint Borel sets E, E′ ⊂ R

d,
we have

ηx({γ : γ(t) ∈ E})ηx({γ : γ(t) ∈ E′}) = 0 μ̄-a.e. in R
d. (3.9)

Then ηx is a Dirac mass for μ̄-a.e. x.

Proof. Taking into account exercise 3.6, for a fixed t ∈ (0, T ] it suffices to check
that the measures λx := γ(t)#ηx are Dirac masses for μ̄-a.e. x. Then (3.9) gives
λx(E)λx(E′) = 0 μ̄-a.e. for any pair of disjoint Borel sets E, E′ ⊂ R

d. Let δ > 0 and
let us consider a partition of R

d in countably many Borel sets Ri having diameter
less than δ. Then, as λx(Ri)λx(Rj) = 0 μ-a.e. whenever i �= j, we have a correspond-
ing decomposition of μ̄-almost all of R

d in Borel sets Ai such that suppλx ⊂ R̄i for
any x ∈ Ai (just take {λx(Ri) > 0} and subtract from it all other sets {λx(Rj) > 0},
j �= i). Since δ is arbitrary, the statement is proved.

Theorem 3.8 (uniqueness of Lb-Lagrangian flows). Assume that the PDE is well
posed in Lb. Then the Lb-Lagrangian flow starting from μ̄ is unique, i.e. two dif-
ferent selections X1(t, x) and X2(t, x) of solutions of the ODE inducing solutions
of the continuity equation in Lb satisfy

X1(·, x) = X2(·, x) in ΓT for μ̄-a.e. x.
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Proof. If the statement were false, we could produce a measure η not concentrated
on a graph inducing a solution μη

t ∈ Lb of the PDE. But this is not possible, since
it would contradict theorem 3.10. Such measure η can be easily built as follows:

η := 1
2 (η1 + η2) = 1

2 [(x,X1(·, x))#μ̄ + (x,X2(·, x))#μ̄].

Since Lb is convex we still have μη
t = 1

2 (μη1

t + μη2

t ) ∈ Lb.

Remark 3.9. In the same vein, one can also show that

X1(·, x) = X2(·, x) in ΓT for μ̄1 ∧ μ̄2-a.e. x

whenever X1 and X2 are Lb-Lagrangian flows starting, respectively, from μ̄1 and
μ̄2.

We used the following basic result, which has some analogy with Kantorovich’s
and Mather’s theories.

Theorem 3.10. Assume that the PDE is well posed in Lb. Let η ∈ M+(Rd × ΓT )
be concentrated on the pairs (x, γ) with γ an absolutely continuous solution of the
ODE, and assume that μη

t ∈ Lb. Then η is concentrated on a graph, i.e. there exists
a function x 	→ X(·, x) ∈ ΓT such that

η = (x, X(·, x))#μ̄ with μ̄ := (πRd)#η = μη
0 .

Proof. We use the representation (3.2) of η given by the disintegration theorem,
the criterion stated in lemma 3.7 and argue by contradiction. If the thesis were false
then ηx would not be a Dirac mass in a set of μ̄-positive measure and we could find
t ∈ (0, T ], disjoint Borel sets E, E′ ⊂ R

d and a Borel set C with μ̄(C) > 0 such
that

ηx({γ : γ(t) ∈ E})ηx({γ : γ(t) ∈ E′}) > 0 ∀x ∈ C.

Possibly passing to a smaller set having still strictly positive μ̄-measure, we can
assume that

0 <
ηx({γ : γ(t) ∈ E})
ηx({γ : γ(t) ∈ E′})

� M ∀x ∈ C (3.10)

for some constant M < +∞. Denoting by β the quotient in (3.10), we define
measures η1, η2 whose disintegrations η1

x, η2
x are given by

η1
x := χC(x)ηx �{γ : γ(t) ∈ E}, η2

x := β(x)χC(x)ηx �{γ : γ(t) ∈ E′}

and denote by μi
t the (superposition) solutions of the continuity equation induced

by ηi. Then

μ1
0 = ηx({γ : γ(t) ∈ E})μ̄�C, μ2

0 = β(x)ηx({γ : γ(t) ∈ E′})μ̄�C

so that the definition of β yields μ1
0 = μ2

0. On the other hand, μ1
t is orthogonal

to μ2
t : precisely, denoting by ηtx the image of ηx under the map γ 	→ γ(t), we have

μ1
t =

∫
C

ηtx �E dμ(x) ⊥ M

∫
C

ηtx �E′ dμ(x) = μ2
t .

Notice also that μi
t � μt and so the monotonicity assumption (3.8) on Lb gives

μi
t ∈ Lb. This contradicts the assumption on the validity of the comparison principle

in Lb.
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Now we come to the existence of Lb-Lagrangian flows.

Theorem 3.11 (existence of Lb-Lagrangian flows). Assume that the PDE is well
posed in Lb and that for some μ̄ ∈ M+(Rd) there exists a solution μt ∈ Lb with
μ0 = μ̄. Then there exists a (unique) Lb-Lagrangian flow starting from μ̄.

Proof. By the superposition principle, we can represent μt as (et)#η for some
η ∈ M+(Rd × ΓT ) concentrated on pairs (x, γ) of solutions of the ODE. Then
theorem 3.10 tells us that η is concentrated on a graph, i.e. there exists a function
x 	→ X(·, x) ∈ ΓT such that

(x,X(·, x))#μ̄ = η.

Pushing both sides via et we obtain

X(t, ·)#μ̄ = (et)#η = μt ∈ Lb,

and therefore X is a Lb-Lagrangian flow.

Finally, let us discuss the stability issue. As we will see, this is particularly relevant
in connection with the applications to PDEs.

Definition 3.12 (convergence of velocity fields). We define the convergence of bh

to b in an indirect way, defining rather a convergence of Lbh to Lb: we require that

bhμh
t ⇀ bμt in (0, T ) × R

d and μt ∈ Lb

whenever μh
t ∈ Lbh and μh

t → μt weakly for all t ∈ [0, T ].

For instance, in the typical case when L is bounded and closed w.r.t. the weak∗

topology in L∞(L1) ∩ L∞(L∞), and

Lc := L ∩
{

w :
d
dt

w + Dx · (cw) = 0
}

,

the implication is fulfilled whenever bh → b strongly in L1
loc.

For the flows, the natural convergence in the stability theorem is convergence in
measure. Let us recall that a Y -valued sequence (vh) is said to converge in μ̄-measure
to v if

lim
h→∞

μ̄({dY (vh, v) > δ}) = 0 ∀δ > 0.

This is equivalent to the L1 convergence to 0 of the R
+-valued maps 1 ∧ dY (vh, v).

Recall also that convergence μ̄-a.e. implies convergence in μ̄-measure, and that
the converse implication is true passing to a suitable subsequence.

Theorem 3.13 (stability of L-Lagrangian flows). Assume that:

(i) Lbh converge to Lb;

(ii) Xh are Lbh-flows relative to bh starting from μ̄ ∈ M+(Rd) and X is the
Lb-flow relative to b starting from μ̄;
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(iii) setting μh
t := Xh(t, ·)#μ̄, we have

μh
t → μt weakly as h → ∞ for all t ∈ [0, T ] (3.11)

and

lim sup
h→∞

∫ T

0

∫
Rd

Θ(|bh
t |)

1 + |x| dμh
t dt �

∫ T

0

∫
Rd

Θ(|bt|)
1 + |x| dμt dt < +∞ (3.12)

for some strictly convex function Θ : R
+ → R having more than linear growth

at infinity;

(iv) the PDE is well posed in Lb.

Then μt = X(t, ·)#μ̄ and x 	→ Xh(·, x) converge to x 	→ X(·, x) in μ̄-measure, i.e.

lim
h→∞

∫
Rd

1 ∧ sup
[0,T ]

|Xh(·, x) − X(·, x)| dμ̄(x) = 0.

Proof. Following the same strategy used in the proof of the superposition principle,
we push μ̄ onto the graph of the map x 	→ Xh(·, x), i.e.

ηh := (x,Xh(·, x))#μ̄,

and we obtain, using (3.12) and the same argument used in step 2 of the proof of
the superposition principle, that ηh is tight in M+(Rd × ΓT ).

Now let η be any limit point of ηh in the weak topology. Using the same argument
as in step 3 of the proof of the superposition principle, and (3.12), we obtain that η
is concentrated on pairs (x, γ) with γ an absolutely continuous solution of the
ODE relative to b starting from x. Indeed, this argument was made using only the
property

lim
h→∞

∫ T

0

∫
Rd

|bh
t − ct|

1 + |x| dμh
t dt =

∫ T

0

∫
Rd

|bt − ct|
1 + |x| dμt dt

for any continuous function c with compact support in (0, T )×R
d, and this property

is ensured by lemma 3.15 below.
Let μt := (et)#η and notice that μh

t = (et)#ηh; hence μh
t → μt weakly for any

t ∈ [0, T ]. As μh
t ∈ Lbh , assumption (i) gives that μt ∈ Lb and assumption (iv)

together with theorem 3.10 imply that η is concentrated on the graph of the map
x 	→ X(·, x), where X is the unique Lb-Lagrangian flow. We have thus obtained
that

(x,Xh(·, x))#μ̄ ⇀ (x,X(·, x))#μ̄.

By applying the following general principle we conclude.

Lemma 3.14 (weak convergence and convergence in measure). Let vh, v : X → Y
be Borel maps and let μ̄ ∈ M+(X). Then vh → v in μ̄-measure if and only if

(x, vh(x))#μ̄ converges to (x, v(x))#μ̄ weakly in M+(X × Y ).
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Proof. If vh → v in μ̄-measure, then ϕ(x, vh(x)) converges in L1(μ̄) to ϕ(x, v(x)),
and we immediately obtain the convergence of the push-forward measures. Con-
versely, let δ > 0 and, for any ε > 0, let w ∈ Cb(X; Y ) be such that μ̄({v �= w}) � ε.
We define

ϕ(x, y) := 1 ∧ dY (y, w(x))
δ

∈ Cb(X × Y )

and notice that

μ̄({v �= w}) +
∫

X×Y

ϕd(x, vh(x))#μ̄ � μ̄({dY (v, vh) > δ}),

∫
X×Y

ϕd(x, v(x))#μ̄ � μ̄({w �= v}).

Taking into account the weak convergence of the push-forward, we obtain that

lim sup
h→∞

μ̄({dY (v, vh) > δ}) � 2μ̄({w �= v}) � 2ε

and, since ε is arbitrary, the proof is achieved.

Lemma 3.15. Let A ⊂ R
m be an open set and let σh ∈ M+(A) be weakly converging

to σ ∈ M+(A). Let fh ∈ L1(A, σh, Rk), f ∈ L1(A, σ, Rk) and assume that

(i) fhσh weakly converge, in the duality with Cc(A; Rk), to fσ,

(ii)

lim sup
h→∞

∫
A

Θ(|fh|) dσh �
∫

A

Θ(|f |) dσ < +∞

for some strictly convex function Θ : R
+ → R having a more than linear

growth at infinity.

Then ∫
A

|fh − c| dσh →
∫

A

|f − c| dσ

for any c ∈ Cb(A; Rk).

Proof. We consider the measures νh := (x,fh(x))#σh in A × R
k and we assume,

possibly extracting a subsequence, that νh ⇀ ν, with ν ∈ M+(A × R
k), in the

duality with Cc(A × R
k). Using condition (ii), the weak convergence of σh and a

truncation argument, it is easy to see that the convergence actually occurs for any
continuous test function ψ(x, y) satisfying

lim
|y|→∞

supx |ψ(x, y)|
Θ(|y|) = 0.

Furthermore, for non-negative continuous functions ψ, we have also∫
A×Rk

ψ dν � lim inf
h→∞

∫
A×Rk

ψ dνh. (3.13)
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Then, choosing test functions ψ = ψ(x) ∈ Cb(A), the weak convergence of σh to σ
gives ∫

A×Rk

ψ dν =
∫

A

ψ dσ

and therefore, according to the disintegration theorem, we can represent ν as∫
A×Rk

ψ(x, y) dν(x, y) =
∫

A

( ∫
Rk

ψ(x, y) dνx(y)
)

dσ(x) (3.14)

for a suitable Borel family of probability measures νx in R
k. Next, we can use

ψ(x)yj as test functions and assumption (i) to obtain

lim
h→∞

∫
A

fh
j ψ dμh = lim

h→∞

∫
A×Rk

ψ(x)yj dνh =
∫

A

ψ(x)
( ∫

Rk

yj dνx(y)
)

dσ(x).

As ψ and j are arbitrary, this means that the first moment νx, i.e.
∫

y dνx, is equal
to f(x) for σ-a.e. x.

On the other hand, choosing ψ(y) = Θ(|y|) as the test function in (3.13), assump-
tion (ii) gives ∫

A

∫
Rk

Θ(|y|) dνx(y) dσ(x) � lim inf
h→∞

∫
A×Rk

Θ(|y|) dνh

= lim sup
h→∞

∫
A

Θ(|fh|) dσh

=
∫

A

Θ(|f |) dσ,

and hence
∫

Θ(|y|) dνx = f(x) = Θ(|
∫

y dνx|) for σ-a.e. x. As Θ is strictly convex,
this can happen only if νx = δf(x) for σ-a.e. x.

Finally, taking into account the representation (3.14) of ν with νx = δf(x), the
convergence statement can be achieved just by choosing the test function ψ(x, y) =
|y − c(x)|.

4. Vector fields with Sobolev spatial regularity

Here we discuss the well-posedness of the continuity or transport equations assum-
ing that bt(·) has Sobolev regularity, following [72]. The general theory previously
developed then provides existence, uniqueness and stability of the L-Lagrangian
flow, with L := L∞(L1) ∩ L∞(L∞). We denote by I ⊂ R an open interval.

Definition 4.1 (renormalized solutions). Let b ∈ L1
loc(I; L1

loc(R
d; Rd)) be such

that D · bt = div btL
d for L1-a.e. t ∈ I, with

div bt ∈ L1
loc(I; L1

loc(R
d)).

Let w ∈ L∞
loc(I; L∞

loc(R
d)) and assume that, in the sense of distributions, there holds

c :=
d
dt

w + b · ∇w ∈ L1
loc(I × R

d). (4.1)
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We then say that w is a renormalized solution of (4.1) if

d
dt

β(w) + b · ∇β(w) = cβ′(w) ∀β ∈ C1(R).

Equivalently, recalling the definition of the distribution b · ∇w, the definition
could be given in a conservative form, writing

d
dt

β(w) + Dx · (bβ(w)) = cβ′(w) + β(w) div bt.

Notice also that the concept makes sense on choosing properly the class of ‘test’
functions β and also functions w that do not satisfy (4.1), not even locally inte-
grable. This is particularly relevant in connection with the DiPerna–Lions existence
theorem for Boltzmann’s equation [73], or with the case in which w is the charac-
teristic of an unbounded vector field b.

This concept is also reminiscent of Kruzhkov’s concept of an entropy solution for
a scalar conservation law

d
dt

u + Dx · (f(u)) = 0, u : (0, +∞) × R
d → R.

In this case, only a distributional one-sided inequality is required:

d
dt

η(u) + Dx · (q(u)) � 0

for any convex entropy–entropy flux pair (η, q) (i.e. η is convex and η′f ′ = q′).

Remark 4.2 (time continuity). Using the fact that both t 	→ wt and t 	→ β(wt)
have a uniformly continuous representative (w.r.t. the w∗−L∞

loc topology), we obtain
that, for any renormalized solution w, t 	→ wt has a unique representative that is
continuous w.r.t. the L1

loc topology at almost every time. The proof follows by a
classical weak–strong convergence argument:

fn ⇀ f, β(fn) ⇀ β(f) =⇒ fn → f

provided β is strictly convex. In the case of scalar conservation laws there are
analogous results [92, 103]. We remark on the fact that, in general, a renormalized
solution does not need to have a representative that is strongly continuous for
every t. This can be seen using a variation of an example given by Depauw [70].
Depauw’s example provides a divergence-free vector field a ∈ L∞([0, 1] × R

2; R2),
with a(t, ·) ∈ BVloc(R2; R2) for L1-a.e. t ∈ [0, 1] (but a �∈ L1([0, 1]; BVloc)), such
that the Cauchy problem

∂tu + a · ∇u = 0, u(0, ·) = 0

has a non-trivial solution, with |ū| = 1 L3-almost everywhere in [0, 1] × R
2 and

with the property that ū(t, ·) ⇀ 0 as t ↓ 0, but this convergence is not strong. Now
consider a vector field b on [−1, 1] × R

2 defined as Depauw’s vector field for t > 0,
and set b(t, x) = −a(−t, x) for t < 0. It is simple to check (as only affine functions
β̃(t) = a + bt need to be checked, because for any β there exists an affine β̃ such
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that β̃(±1) = β(±1)) that the function

w̄(t, x) =

{
ū(t, x) if t > 0,

ū(−t, x) if t < 0,

is a renormalized solution of ∂tw + b · ∇w = 0, but this solution is not strongly
continuous at t = 0.

Remark 4.3. A new insight in the theory of renormalized solutions has been
obtained in [35]. In particular, it is proved that for a vector field b ∈ L∞([0, T ] ×
R

d; Rd) with zero divergence (and without any regularity assumption) the follow-
ing two conditions are equivalent (the L2 framework has been considered just for
simplicity):

(i) b has the uniqueness property for weak solutions in C([0, T ];w − L2(Rd)) for
both the forward and the backward Cauchy problems starting, respectively,
from 0 and T , i.e. the only solutions in C([0, T ];w − L2(Rd)) to the problems

∂tuF + b · ∇uF = 0,

uF (0, ·) = 0

and

∂tuB + b · ∇uB = 0,

uB(T, ·) = 0

are uF ≡ 0 and uB ≡ 0;

(ii) every weak solution in C([0, T ];w − L2(Rd)) of ∂tu + b · ∇u = 0 is strongly
continuous (i.e. lies in C([0, T ]; s − L2(Rd))) and is a renormalized solution.

The proof of this equivalence is obtained through the study of the approximation
properties of the solution of the transport equation with respect to the norm of the
graph of the transport operator (see [35, theorem 2.1] for details).

Using the concept of a renormalized solution, we can prove a comparison principle
(and therefore well-posedness) in the following natural class L:

L := {w ∈ L∞([0, T ]; L1(Rd)) ∩ L∞([0, T ];L∞(Rd)) :

w ∈ C([0, T ]; w∗ − L∞(Rd))}. (4.2)

Theorem 4.4 (comparison principle). Assume that

|b|
1 + |x| ∈ L1([0, T ];L∞(Rd)) + L1([0, T ];L1(Rd)), (4.3)

that D · bt = div btL
d for L1-a.e. t ∈ [0, T ] and that

[div bt]− ∈ L1
loc([0, T ) × R

d). (4.4)

Setting bt ≡ 0 for t < 0, assume in addition that any solution of (4.1) in (−∞, T )×
R

d is renormalized. Then the comparison principle and, therefore, uniqueness for
the continuity equation both hold in the class L defined in (4.2).
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Proof. By the linearity of the equation, it suffices to show that w ∈ L and w0 � 0
implies wt � 0 for any t ∈ [0, T ]. We extend first the PDE to negative times, setting
wt = w0. Then, fix a cut-off function ϕ ∈ C∞

c (Rd) with suppϕ ⊂ B̄2(0) and ϕ ≡ 1
on B1(0), and the renormalization functions

βε(t) :=
√

ε2 + (t+)2 − ε ∈ C1(R).

Notice that
βε(t) ↑ t+ as ε ↓ 0, tβ′

ε(t) − βε(t) ∈ [0, ε]. (4.5)

We know that

d
dt

βε(wt) + Dx · (bβε(wt)) = div bt(βε(wt) − wtβ
′
ε(wt))

in the sense of distributions in (−∞, T )×R
d. Plugging ϕR(·) := ϕ(·/R), with R � 1,

into the PDE, we obtain

d
dt

∫
Rd

ϕRβε(wt) dx

=
∫

Rd

βε(wt)〈bt,∇ϕR〉 dx +
∫

Rd

ϕR div bt(βε(wt) − wtβ
′
ε(wt)) dx.

Splitting b as b1 + b2, with

b1

1 + |x| ∈ L1([0, T ];L∞(Rd)) and
b2

1 + |x| ∈ L1([0, T ];L1(Rd)),

and using the inequality

1
R

χ{R�|x|�2R} � 3
1 + |x|χ{R�|x|},

we can estimate the first integral in the right-hand side with

3‖∇ϕ‖∞

∥∥∥∥ b1t

1 + |x|

∥∥∥∥
∞

∫
{|x|�R}

|wt| dx + 3‖∇ϕ‖∞‖wt‖∞

∫
{|x|�R}

|b1t|
1 + |x| dx.

The second integral can be estimated with

ε

∫
Rd

ϕR[div bt]− dx.

Passing to the limit first as ε ↓ 0 and then as R → +∞ and using the integrability
assumptions on b and w, we get

d
dt

∫
Rd

w+
t dx � 0

in the distribution sense in R. Since the function vanishes for negative times, this
suffices to conclude using Gronwall’s lemma.

Remark 4.5. It would be nice to have a completely nonlinear comparison principle
between renormalized solutions, as in the Kruzhkov theory. Here, on the other hand,
we rather used the fact that the difference of the two solutions is renormalized.
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In any case, DiPerna and Lions proved that all distributional solutions are renor-
malized when there is Sobolev regularity with respect to the spatial variables.

Theorem 4.6. Let b ∈ L1
loc(I; W 1,1

loc (Rd; Rd)) and let w ∈ L∞
loc(I × R

d) be a distri-
butional solution of (4.1). Then w is a renormalized solution.

Proof. We mollify the PDE with respect to the spatial variables and we set

rε := (b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)), wε := w ∗ ρε

to obtain
d
dt

wε + b · ∇wε = c ∗ ρε − rε.

By the smoothness of wε w.r.t. x, the PDE above tells us that dwε
t /dt ∈ L1

loc, and
therefore wε ∈ W 1,1

loc (I × R
d) and we can apply the standard chain rule in Sobolev

spaces, getting

d
dt

β(wε) + b · ∇β(wε) = β′(wε)c ∗ ρε − β′(wε)rε.

When we let ε ↓ 0, the convergence in the distribution sense of all terms in the
identity above is trivial, with the exception of the last one. To ensure its convergence
to 0, it seems necessary to show that rε → 0 strongly in L1

loc (remember that β′(wε)
is locally equibounded w.r.t. ε). It will be proven in the next proposition that this is
indeed the case, and it is exactly here that the Sobolev regularity plays a role.

Proposition 4.7 (strong convergence of commutators). If w ∈ L∞
loc(I × R

d) and
b ∈ L1

loc(I; W 1,1
loc (Rd; Rd)), we have

L1
loc- lim

ε↓0
(b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)) = 0.

Proof. Playing with the definitions of b · ∇w and the convolution product of a
distribution and a smooth function, one first proves the identity

rε(t, x) =
∫

Rd

w(t, z)(bt(z) − bt(x)) · ∇ρε(x − z) dz − (w div bt) ∗ ρε(x). (4.6)

Indeed, to prove (4.6) we introduce the commutators in the (easier) conservative
form

Rε := (Dx · (bw)) ∗ ρε − Dx · (bwε)

(here we again set wε := w ∗ ρε). In order to get (4.6) it suffices to show that
Rε = Lε − wε div bt, where

Lε(t, x) :=
∫

Rd

w(t, z)(bt(z) − bt(x)) · ∇ρε(x − z) dz.
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Indeed, for any test function ϕ, we have that 〈Rε, ϕ〉 is given by

−
∫

I

∫
wb · ∇ρε ∗ ϕ dy dt −

∫
I

∫
ϕb · ∇ρε ∗ w dxdt −

∫
I

∫
wεϕ div bt dt

= −
∫

I

∫∫
wt(y)bt(y) · ∇ρε(y − x)ϕ(x) dxdy dt

−
∫

I

∫∫
bt(x)∇ρε(x − y)wt(y)ϕ(x) dy dxdt −

∫
I

∫
wεϕ div bt dxdt

=
∫

I

∫
Lεϕ dxdt −

∫
I

∫
wεϕ div bt dxdt

(in the last equality we used the fact that ∇ρ is odd).
Now we change variables and write (4.6) in the form

rε(t, x) =
∫

Rd

w(t, x−εy)
(bt(x − εy) − bt(x)) · ∇ρ(y)

ε
dy− (w div bt)∗ρε(x). (4.7)

Then one uses the strong convergence of translations in Lp and the strong conver-
gence of the difference quotients (a property that characterizes functions in Sobolev
spaces)

u(x + εz) − u(x)
ε

→ ∇u(x)z strongly in L1
loc for u ∈ W 1,1

loc

to obtain that rε strongly converges in L1
loc(I × R

d) to

−w(t, x)
∫

Rd

〈∇bt(x)y, ∇ρ(y)〉 dy − w(t, x) div bt(x).

The elementary identity ∫
Rd

yi
∂ρ

∂yj
(y) dy = −δij

then shows that the limit is 0 (this can also be derived by the fact that, in any case,
the limit of rε in the distribution sense should be 0, so the main point here is the
strength of the convergence).

In this context, given μ̄ = ρLd with ρ ∈ L1 ∩L∞, the L-Lagrangian flow starting
from μ̄ (at time 0) is defined by the following two properties:

(a) X(·, x) is absolutely continuous in [0, T ] and satisfies

X(t, x) = x +
∫ t

0
bs(X(s, x)) ds ∀t ∈ [0, T ] for μ̄-a.e. x;

(b) X(t, ·)#μ̄ � CLd for all t ∈ [0, T ] with C independent of t.

Assumption (b) expresses in a quantitative way the condition that ‘trajectories
do not concentrate too much’. It can equivalently be stated as∫

Rd

ϕ(X(t, x)) dx � C

∫
Rd

ϕ(y) dy

for all positive ϕ ∈ Cc(Rd).
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Summing up what we have obtained so far, the general theory provides us with
the following existence and uniqueness result.

Theorem 4.8 (existence and uniqueness of L-Lagrangian flows). Let

b ∈ L1([0, T ];W 1,1
loc (Rd; Rd))

satisfy

(i) |b|/(1 + |x|) ∈ L1([0, T ];L1(Rd)) + L1([0, T ];L∞(Rd));

(ii) [div bt]− ∈ L1([0, T ];L∞(Rd)).

Then the L-Lagrangian flow relative to b exists and is unique.

Proof. By the previous results, well-posedness holds for the continuity equation
relative to b. The general theory previously developed therefore applies and theo-
rem 3.8 provides uniqueness of the L-Lagrangian flow.

As for the existence, the general theory (theorem 3.11) still tells us that it can
be achieved provided that we are able to solve, within L, the continuity equation

d
dt

w + Dx · (bw) = 0 (4.8)

for any non-negative initial datum w0 ∈ L1 ∩ L∞. The existence of these solutions
can be immediately achieved by a smoothing argument: we approximate b in L1

loc
by smooth bh with a uniform bound in L1(L∞) for [div bh

t ]−. This bound, in turn,
provides a uniform lower bound on JXh and finally a uniform upper bound on
wh

t = (w0/JXh
t ) ◦ (Xh

t )−1, solving

d
dt

wh + Dx · (bhwh) = 0.

Therefore, any weak limit of wh solves (4.8).

Notice also that, choosing for instance a Gaussian, we obtain that the L-Lagran-
gian flow is well defined up to Ld-negligible sets (and is independent of μ̄ � Ld,
thanks to remark 3.9).

It is interesting to compare our characterization of Lagrangian flows with the one
given in [72]. Heuristically, while the DiPerna–Lions one is based on the semigroup
of transformations x 	→ X(t, x), ours is based on the properties of the map x 	→
X(·, x).

Remark 4.9. The definition of the flow in [72] is based on the following three
properties:

(a)
∂Y

∂t
(t, s, x) = b(t, Y (t, s, x)) and Y (s, s, x) = x

in the distribution sense in (0, T ) × R
d;

(b) the image λt of Ld under Y (t, s, ·) satisfies

1
C

Ld � λt � CLd for some constant C > 0;
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(c) for all s, s′, t ∈ [0, T ] we have

Y (t, s,Y (s, s′, x)) = Y (t, s′, x) for Ld-a.e. x.

Then, Y (t, s, x) corresponds, in our notation, to the flow Xs(t, x) starting at
time s (well defined, even for t < s, if one has two-sided L∞ bounds on the diver-
gence).

In our setting, condition (c) can be recovered as a consequence of the following
argument: to fix the ideas assume that s′ � s � T and define

X̃(t, x) :=

{
Xs′

(t, x) if t ∈ [s′, s],
Xs(t, Xs′

(s, x)) if t ∈ [s, T ].

It can immediately be seen that X̃(·, x) is an integral solution of the ODE in [s′, T ]
for Ld-a.e. x and that X̃(t, ·)#μ̄ is bounded by C2Ld. Theorem 4.8 (with s′ as initial
time) then gives X̃(·, x) = X(·, s′, x) in [s′, T ] for Ld-a.e. x, whence (c) follows.

Moreover, the stability theorem 3.13 can be read in this context as follows. For
simplicity, we state it only in the case of equibounded vector fields (see [11] for
more general results).

Theorem 4.10 (stability). Let bh, b ∈ L1([0, T ];W 1,1
loc (Rd; Rd)), let Xh and X be

the L-Lagrangian flows relative to bh and b, respectively, let μ̄ = ρLd ∈ M+(Rd)
and assume that

(i) bh → b in L1
loc((0, T ) × R

d),

(ii) |bh| � C for some constant C independent of h,

(iii) [div bh
t ]− is bounded in L1([0, T ];L∞(Rd)).

Then,

lim
h→∞

∫
Rd

max
[0,T ]

|Xh(·, x) − X(·, x)| ∧ ρ(x) dx = 0.

Proof. It is not restrictive, by an approximation argument, to assume that ρ has
compact support. Under this assumption, (i) and (iii) ensure that μh

t � MχBR
Ld

for some constants M and R independent of h and t. Denoting by μt the weak limit
of μh

t and choosing Θ(z) = |z|2 in theorem 3.13(iii), we have to check that

lim
h→∞

∫ T

0

∫
Rd

|bh|2
1 + |x| dμh

t dt =
∫ T

0

∫
Rd

|b|2
1 + |x| dμt dt. (4.9)

Let ε > 0 and let B ⊂ (0, T ) × BR be an open set given by Egorov’s theorem such
that bh → b uniformly on [0, T ] × BR \ B and Ld+1(B) < ε. Also, let b̃ε be such
that |b̃ε| � C and b̃ε = b on [0, T ] × BR \ B. We write

∫ T

0

∫
Rd

|bh|2
1 + |x| dμh

t dt −
∫ T

0

∫
Rd

|b̃ε|2
1 + |x| dμh

t dt

=
∫

[0,T ]×BR\B

|bh|2 − |b̃ε|2
1 + |x| dμh

t dt +
∫

B

|bh|2 − |b̃|2
1 + |x| dμh

t dt,
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so that

lim sup
h→∞

∣∣∣∣
∫ T

0

∫
Rd

|bh|2
1 + |x| dμh

t dt −
∫ T

0

∫
Rd

|b̃ε|2
1 + |x| dμt dt

∣∣∣∣ � 2C2Mε.

Since ε is arbitrary and

lim
ε→0

∫ T

0

∫
Rd

|b̃ε|2
1 + |x| dμt dt =

∫ T

0

∫
Rd

|b|2
1 + |x| dμt dt,

this proves that (4.9) is fulfilled.

Finally, we conclude this section with an illustration of some recent results [15,
19, 83] that seem to be more specific to the Sobolev case, concerned with the ‘dif-
ferentiability’ w.r.t. x of the flow X(t, x) (see [11] for a more detailed treatment of
this topic). These results provide a sort of bridge to the standard Cauchy–Lipschitz
calculus.

Theorem 4.11. There exist Borel maps Lt : R
d → Md×d satisfying

lim
h→0

X(t, x + h) − X(t, x) − Lt(x)h
|h| = 0 locally in measure

for any t ∈ [0, T ]. If, in addition, we assume that∫ T

0

∫
BR

|∇bt| ln(2 + |∇bt|) dxdt < +∞ ∀R > 0,

then the flow has the following ‘local’ Lipschitz property: for any ε > 0 there exists
a Borel set A with μ̄(Rd \ A) < ε such that X(t, ·)|A is Lipschitz for any t ∈ [0, T ].

According to this result, L can be thought of as a (very) weak derivative of the
flow X. It is still not clear whether the local Lipschitz property holds in the W 1,1

loc
case, or in the BVloc case discussed in the next section. Also compare this result
with the approximate differentiability results presented in § 6.5.

5. Vector fields with BV spatial regularity

In this section we prove the renormalization theorem 4.6 under the weaker assump-
tion of a BV dependence w.r.t. the spatial variables, but still assuming that

D · bt � Ld for L1-a.e. t ∈ (0, T ). (5.1)

Theorem 5.1. Let b ∈ L1
loc((0, T ); BVloc(Rd; Rd)) satisfy (5.1). Any distributional

solution w ∈ L∞
loc((0, T ) × R

d) of

d
dt

w + Dx · (bw) = c ∈ L1
loc((0, T ) × R

d)

is then a renormalized solution.

We try to give a reasonably detailed proof of this result, referring to the original
paper [9] for minor details. Before doing that we set up some notation, denoting
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by Dbt = Dabt + Dsbt = ∇btL
d + Dsbt the Radon–Nikodým decomposition of

Dbt in absolutely continuous and singular part w.r.t. Ld. We also introduce the
space–time measures |Db| and |Dsb| by integration w.r.t. the time variable, i.e.∫

ϕ(t, x) d|Db| :=
∫ T

0

∫
Rd

ϕ(t, x) d|Dbt| dt,

∫
ϕ(t, x) d|Dsb| :=

∫ T

0

∫
Rd

ϕ(t, x) d|Dsbt| dt.

We shall also assume, by homogeneity and locality of the arguments involved, that
‖w‖∞ � 1.

Proof. We shall find two estimates on the commutators, quite sensitive to the choice
of the convolution kernel, and then combine them in a (pointwise) kernel optimiza-
tion argument.

Step 1 (anisotropic estimate). Let us start from the expression

rε(t, x) =
∫

Rd

w(t, x− εy)
(bt(x − εy) − bt(x)) · ∇ρ(y)

ε
dy − (w div bt) ∗ ρε(x) (5.2)

of the commutators (b ·∇w) ∗ ρε − b · (∇(w ∗ ρε)): since bt /∈ W 1,1 we can no longer
use the strong convergence of the difference quotients. However, for any function
u ∈ BVloc and any z ∈ R

d with |z| < ε, we have a classical L1 estimate on the
difference quotients∫

K

|u(x + z) − u(x)| dx � |Dzu|(Kε) for any K ⊂ R
d compact,

where Du = (D1u, . . . ,Ddu) stands for the distributional derivative of u, Dzu =
〈Du, z〉 =

∑
iziDiu denotes the component along z of Du and Kε is the open ε

neighbourhood of K. Its proof follows from an elementary smoothing and lower
semi-continuity argument.

We notice that, setting Dbt = Mt|Dbt|, we have

Dz〈bt,∇ρ(z)〉 = 〈Mt(·)z,∇ρ(z)〉|Db| ∀z ∈ R
d,

and therefore (using that div btL
d is the trace of Dabt) the L1 estimate on difference

quotients gives the anisotropic estimate

lim sup
ε↓0

∫
K

|rε| dx �
∫

K

∫
Rd

|〈Mt(x)z,∇ρ(z)〉| dz d|Db|(t, x) + d|Dab|(K) (5.3)

for any compact set K ⊂ (0, T ) × R
d.

Step 2 (isotropic estimate). On the other hand, a different estimate of the com-
mutators, which reduces to the standard one when b(t, ·) ∈ W 1,1

loc , can be achieved
as follows. Let us start from the case d = 1: if μ is an R

m-valued measure in R with
locally finite variation, then by Jensen’s inequality the functions

μ̂ε(t) :=
μ([t, t + ε])

ε
= μ ∗

χ[−ε,0]

ε
(t), t ∈ R,
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satisfy ∫
K

|μ̂ε| dt � |μ|(Kε) for any compact set K ⊂ R, (5.4)

where Kε is again the open ε neighbourhood of K. A density argument based
on (5.4) then shows that μ̂ε converges in L1

loc(R) to the density of μ with respect
to L1 whenever μ � L1. If u ∈ BVloc and ε > 0, we know that

u(x + ε) − u(x)
ε

=
Du([x, x + ε])

ε
=

Dau([x, x + ε])
ε

+
Dsu([x, x + ε])

ε

for L1-a.e. x (the exceptional set possibly depends on ε). In this way we have
canonically split the difference quotient of u as the sum of two functions, one strongly
converging to ∇u in L1

loc, and the other one having an L1-norm on any compact
set K asymptotically smaller than |Dsu|(K).

If we fix the direction z of the difference quotient, the slicing theory of BV
functions gives that this decomposition can also be carried on in d dimensions,
showing that the difference quotients

bt(x + εz) − bt(x)
ε

can be canonically split into two parts, the first one strongly converging in L1
loc(R

d)
to ∇bt(x)z and the second one having an L1-norm on K asymptotically smaller than
|〈Dsbt, z〉|(K). Repeating the DiPerna–Lions argument and taking into account the
error induced by the presence of the second part of the difference quotients, we then
get the isotropic estimate

lim sup
ε↓0

∫
K

|rε| dx �
( ∫

K

∫
Rd

|z||∇ρ(z)| dz

)
d|Dsb|(t, x) (5.5)

for any compact set K ⊂ (0, T ) × R
d.

Step 3 (reduction to a pointwise optimization problem). Roughly speaking, the
isotropic estimate is useful in the regions where the absolutely continuous part
is the dominant one, so |Dsb|(K) � |Dab|(K), while the anisotropic one turns
out to be useful in the regions where the dominant part is the singular one,
i.e. |Dab|(K) � |Dsb|(K). Since the two measures are mutually singular, for a
typical small ball K only one of these two situations occurs. Let us see how the two
estimates can be combined: coming back to the smoothing scheme, we have

d
dt

β(wε) + b · ∇β(wε) − β′(wε)c ∗ ρε = β′(wε)rε. (5.6)

Let L be the supremum of |β′| on [−1, 1]. Since K is an arbitrary compact set, (5.5)
then tells us that any limit measure ν of |β′(wε)rε|Ld as ε ↓ 0 satisfies

ν � LI(ρ)|Dsb| with I(ρ) :=
∫

Rd

|z||∇ρ(z)| dz

and, in particular, is singular with respect to Ld. On the other hand, the esti-
mate (5.3) also tells us that

ν � L

∫
Rd

|〈M·(·)z,∇ρ(z)〉| dz|Db| + d|Dab|(K).
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The second estimate and the singularity of ν with respect to Ld give

ν � L

∫
Rd

|〈M·(·)z,∇ρ(z)〉| dz|Dsb|. (5.7)

Notice that in this way we got rid of the potentially dangerous term I(ρ): in fact,
we shall choose very anisotropic kernels ρ on which I(ρ) can be arbitrarily large.
The measure ν can of course depend on the choice of ρ, but (5.6) tells us that the
‘defect’ measure

σ :=
d
dt

β(wt) + b · ∇β(wt) − ctβ
′(wt),

clearly independent of ρ, satisfies |σ| � ν. Eventually we obtain

|σ| � LΛ(M·(·), ρ)|Dsb| with Λ(N, ρ) :=
∫

Rd

|〈Nz, ∇ρ(z)〉| dz. (5.8)

For (x, t) fixed, we are thus led to the minimum problem

G(N) := inf
{

Λ(N, ρ) : ρ ∈ C∞
c (B1), ρ � 0,

∫
Rd

ρ = 1
}

(5.9)

with N = Mt(x). Indeed, notice that (5.8) gives

|σ| � L inf
ρ∈D

Λ(M·(·), ρ)|Dsb|

for any countable set D of kernels ρ, and the continuity of ρ 	→ Λ(N, ρ) w.r.t. the
W 1,1(B1)-norm and the separability of W 1,1(B1) give

|σ| � LG(M·(·))|Dsb|. (5.10)

Notice now that the assumption that D · bt � Ld for L1-a.e. t ∈ (0, T ) gives

trMt(x)|Dsbt| = 0 for L1-a.e. t ∈ (0, T ).

Hence, recalling the definition of |Dsb|, the trace of Mt(x) vanishes for |Dsb|-a.e.
(t, x). Applying the following lemma, courtesy of Alberti, and using (5.10), we
obtain that σ = 0, thus concluding the proof.

Lemma 5.2 (Alberti). For any d × d matrix N , the infimum in (5.9) is |trN |.

Proof. Since
∫

〈Nz, ∇ρ(z)〉 dz = − trN , we have to build kernels ρ in such a way
that the field Nz is as tangential as possible to the level sets of ρ. Notice first that
the lower bound follows immediately by the identity∫

Rd

〈Nz, ∇ρ(z)〉 dz =
∫

Rd

−ρ(z) div Nz + div(ρ(z)Nz) dz = − trN.

Hence, we only have to show the upper bound. Again, by the identity

〈Nz, ∇ρ(z)〉 = div(Nzρ(z)) − trNρ(z),

it suffices to show that, for any T > 0, there exists ρ such that∫
Rd

|div(Nzρ(z))| dz � 2
T

. (5.11)
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The heuristic idea is (again) to build ρ as the superposition of elementary proba-
bility measures associated with the curves etNx, 0 � t � T , on which the divergence
operator can be easily estimated. Given a smooth convolution kernel θ with compact
support, it turns out that the function

ρ(z) :=
1
T

∫ T

0
θ(e−tNz)e−t tr N dt (5.12)

has the required properties (here etNx =
∑

it
iN ix/i! is the solution of the ODE

γ̇ = Nγ with the initial condition γ(0) = x). Indeed, it is immediate to check that
ρ is smooth and compactly supported. To estimate the divergence of Nzρ(z), we
note that ρ =

∫
θ(x)μx dx, where μx are the probability one-dimensional measures

concentrated on the image of the curves t 	→ etNx defined by

μx := (e·Nx)#

(
1
T

L1 �[0, T ]
)

.

Indeed, for any ϕ ∈ C∞
c (Rd), we have∫

Rd

θ(x)〈μx, ϕ〉 dx =
1
T

∫ T

0

∫
Rd

θ(x)ϕ(etNx) dxdt

=
1
T

∫ T

0

∫
Rd

θ(e−tNy)e−t tr Nϕ(y) dy dt

=
∫

Rd

ρ(y)ϕ(y) dy.

By the linearity of the divergence operator, it suffices to check that

|Dz · (Nzμx)|(Rd) � 2
T

∀x ∈ R
d.

But this is elementary, since∫
Rd

〈Nz, ∇ϕ(z)〉 dμx(z) =
1
T

∫ T

0
〈NetNx,∇ϕ(etNx)〉 dt =

ϕ(eTNx) − ϕ(x)
T

for any ϕ ∈ C∞
c (Rd), so TDz · (Nzμx) = δx − δeT N x.

The original argument in [9] was slightly different and used, instead of lemma 5.2,
a much deeper result, still due to Alberti, saying that, for a BVloc function u : R

d →
R

m, the matrix M(x) in the polar decomposition Du = M |Du| has rank 1 for
|Dsu|-a.e. x, i.e. there exist unit vectors ξ(x) ∈ R

d and η(x) ∈ R
m such that

M(x)z = η(x)〈z, ξ(x)〉. In this case the asymptotically optimal kernels are much
easier to build, just by mollifying in the ξ direction much faster than in all other
ones. This is precisely what Bouchut and Lions did in some particular cases (respec-
tively, ‘Hamiltonian’ vector fields and piecewise Sobolev ones).

As in the Sobolev case, from the general theory given in § 3, we can now obtain
existence and uniqueness of L-Lagrangian flows, with L = L∞(L1) ∩ L∞(L∞): we
just replace in the statement of theorem 4.8 the assumption

b ∈ L1([0, T ];W 1,1
loc (Rd; Rd)) with b ∈ L1([0, T ]; BVloc(Rd; Rd))

assuming as usual that D · bt � Ld for L1-a.e. t ∈ [0, T ].
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Analogously, with the same replacements in theorem 4.10 (for b and bh), we
obtain stability of L-Lagrangian flows.

6. Quantitative ODE estimates: W 1,p regularity with p > 1

In this section and the next we introduce a further approach to the well-posedness
of the ODE, based on quantitative a priori estimates, as an alternative to the
approach exploiting the well-posedness of the continuity equation (in the various
regularity contexts) and the link between the ODE and the continuity equation
described in § 3.

Here we restrict our attention to L-Lagrangian flows with L := L∞(L∞) and
for simplicity we refer to them (in this and in the next section) simply as regular
Lagrangian flows. We recall that, given a vector field b : [0, T ] × R

d → R
d, we are

considering as ‘admissible solutions to the ODE’ those maps X : [0, T ] × R
d → R

d

such that:

(i) for Ld-a.e. x ∈ R
d, the function t 	→ X(t, x) is a solution of the ODE in the

integral sense;

(ii) there exists a constant L > 0 such that X(t, ·)#Ld � LLd for all t ∈ [0, T ].

The constant L in (ii) is called the compressibility constant of the flow X.
For simplicity, in this and in the next section we only consider globally bounded

vector fields: the extension to more general growth conditions does not pose a
problem, but makes some of the computations much longer. At many occurrences
we will also avoid explicitly indicating the time dependence. We deal with three
different regularity classes: W 1,p with p > 1 (in this section), W 1,1 and the case in
which the derivative is a singular integral of an L1 function (in the next section).
We remark that we do not systematically assume conditions about the spatial
divergence div b: divergence bounds will be needed for the existence result only.

The objective is to develop in the non-Lipschitz context a theory for the ODE
that is ‘parallel’ to the usual Cauchy–Lipschitz theory for the Lipschitz context,
and which is independent from the PDE theory. In particular, this approach allows
us to recover the following for the ODE:

• existence and uniqueness;

• stability (with respect to approximations of the vector field), with an explicit
convergence rate;

• compactness, under natural bounds (this is relevant in view of applications
to nonlinear PDEs);

• regularity of the flow X(t, x) with respect to the initial position x (this also
gives some mild propagation of regularity for the transport equation).

The presentation is based on [37,61]. Some ideas originated from [19,83].
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6.1. An integral quantity and the lower bound

Remember the very basic estimate providing (2.1) in the context of Lipschitz
vector fields. A variant of it can be performed using the following formal estimate
for the logarithm of the spatial derivative of the flow:

d
dt

log |∇X| � 1
|∇X|

∣∣∣∣ d
dt

∇X

∣∣∣∣ =
1

|∇X| |∇(b(X))| = |∇b|(X). (6.1)

Again, when b is Lipschitz, we recover that the flow is Lipschitz with a Lipschitz
constant depending exponentially on the Lipschitz constant of b.

The relevance of (6.1) is that it admits an integral version, which works well even
out of the Lipschitz case in some weak regularity contexts.

Let us fix two regular Lagrangian flows X1 and X2, associated with the vector
fields b1 and b2, respectively, and with compressibility constants L1 and L2. Given
a (small) parameter δ > 0 and a truncation radius R > 0, we consider the following
(time-dependent) quantity:

Φδ(t) =
∫

BR

log
(

1 +
|X1(t, x) − X2(t, x)|

δ

)
dx. (6.2)

We start by establishing a simple, but useful, lower bound for Φδ. Given an
arbitrary γ > 0 we can compute

Φδ(t) �
∫

BR∩{|X1−X2|>γ}
log

(
1+

γ

δ

)
dx = Ld(BR∩{|X1−X2| > γ}) log

(
1+

γ

δ

)
.

(6.3)
In particular, in the special case b1 = b2 = b (in which Φδ is somehow ‘measuring
the non-uniqueness’), we deduce that, in order to have non-uniqueness, Φδ must
blow up at least as fast as log(1/δ) as δ → 0. More generally, we understand that
upper bounds on Φδ will provide upper estimates on the measure of the superlevels
{|X1 − X2| > γ}.

6.2. The maximal function

Since we have now dropped the Lipschitz context, the difference quotients

|b(x) − b(y)|
|x − y|

are no longer uniformly bounded. In the proof of the upper bounds for the func-
tional Φδ we will again have to deal with difference quotients, but we will take
advantage of the fact that they will always appear under the integral sign.

Suitable estimates can be provided using the classical maximal function. Given
f ∈ L1

loc(R
d; Rm), we define its maximal function as

Mf(x) = sup
r>0

∫
B(x,r)

|f(y)| dy, x ∈ R
d. (6.4)

Similarly, when μ is an R
m-valued measure in R

d with locally finite total variation,
we define

Mμ(x) = sup
r>0

|μ|(B(x, r))
Ld(B(x, r))

, x ∈ R
d. (6.5)
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Since |fLd| = |f |Ld, the two definitions are consistent; namely, M(fLd) = Mf .
Note that, if f ∈ L1(Rd; Rm), or if μ is a measure with globally finite total variation
in R

d, then the maximal function is Ld-a.e. finite.
A fundamental question is to provide bounds for this operator. It is immediate

to see that

‖Mf‖L∞ � ‖f‖L∞ . (6.6)

Remarkably, the analogue property involving L1 does not hold. Only the weak
estimate

|‖Mf |‖M1 � Cd,1‖f‖L1 (6.7)

holds, where the weak Lebesgue space M1(Rd) is defined as the space consisting of
all measurable functions g on R

d such that

|‖g|‖M1 = sup
λ>0

{λLd({x : |g(x)| < λ})} < ∞.

Note carefully that the quantity |‖g|‖M1 is not a norm, and for this reason we have
chosen the notation with the triple vertical bar.

By interpolating (6.6) and (6.7) we can obtain the strong estimate

‖Mf‖Lp � Cd,p‖f‖Lp , (6.8)

valid for every 1 < p � ∞, with a constant Cd,p that blows up as p → 1.
The maximal function is relevant in our context because of the following property.

Assume that f ∈ BV (Rd). There then exists a Lebesgue negligible set N ⊂ R
d such

that

|f(x) − f(y)| � C|x − y|(MDf(x) + MDf(y)) ∀x, y ∈ R
d \ N, (6.9)

where C is a dimensional constant. Estimate (6.9) provides a control of the differ-
ence quotients with the maximal function of the derivative. We shall exploit this
property instead of the Lipschitz assumption in the estimates for Φδ.

Exercise 6.1. Prove formula (6.9) (a detailed proof is given, for instance, in [16,
theorem 5.34]).

For a detailed exposition of the theory of maximal functions we refer the reader
to, for instance, [98].

6.3. Upper bound for the integral quantity

We derive now an upper bound on Φδ that makes use of the dynamics of our
situation; that is, we start to exploit the fact that X1 and X2 are regular Lagrangian
flows. The following estimates will rely on the W 1,p regularity of the vector fields b1
and b2 (we assume p > 1 in this section, while p = 1 will be considered in the next
section), and on the compressibility constants of the regular Lagrangian flows. Also
notice that, if x ∈ BR, then Xi(t, x) ∈ BR+T‖bi‖∞ for all t ∈ [0, T ].
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We estimate the time derivative of Φδ as follows:

Φ′
δ(t) �

∫
BR

|b1(X1) − b2(X2)|
δ + |X1 − X2|

dx

�
∫

BR

|b1(X2) − b2(X2)|
δ + |X1 − X2|

dx +
∫

BR

|b1(X1) − b1(X2)|
δ + |X1 − X2|

dx

� 1
δ

∫
BR

|b1(X2) − b2(X2)| dx +
∫

BR

min
{

2‖b1‖∞
δ

;
|b1(X1) − b1(X2)|

|X1 − X2|

}
dx

� L2

δ
‖b1 − b2‖L1(BR+T ‖b2‖∞ )

+
∫

BR

min
{

2‖b1‖∞
δ

; C(M∇b1(X1) + M∇b1(X2))
}

dx. (6.10)

We can estimate∫
BR

M∇b1(Xi) dx � Li

∫
BR+T ‖bi‖∞

M∇b1(x) dx � C‖M∇b1‖Lp � C‖∇b1‖Lp ,

where the constant C depends on Li, p, ‖bi‖∞, R and T . Note that with a bit more
care this estimate could be made local, so as to depend on the norm of ∇b1 on a
compact set only.

For a vector field b1 ∈ W 1,p with p > 1 we hence deduce

Φ′
δ(t) � C

δ
‖b1 − b2‖L1

x
+ C‖∇b1‖Lp

x
,

and so, since Φδ(0) = 0, we have

Φδ(t) � C

δ
‖b1 − b2‖L1

t (L1
x) + C‖∇b1‖L1

t (Lp
x).

Putting this together with (6.3), we conclude

Ld(BR ∩ {|X1(t, ·) − X2(t, ·)| > γ})

� C

δ log(1 + γ/δ)
‖b1 − b2‖L1

t (L1
x) +

C

log(1 + γ/δ)
‖∇b1‖L1

t (Lp
x). (6.11)

This is the fundamental estimate, which will allow us to deduce many of the well-
posedness results for the ODE.

6.4. Well-posedness of the ODE: W 1,p regularity

We start with uniqueness, which is an immediate consequence of (6.11). Since we
consider the case in which b1 = b2, we have

Ld(BR ∩ {|X1(t, ·) − X2(t, ·)| > γ}) � C

log(1 + γ/δ)
‖∇b1‖L1

t (Lp
x)

for every δ > 0 and every R > 0. It suffices to let δ → 0.
Next we discuss stability. Consider b ∈ L1

t (W
1,p
x ) and a sequence (bn) convergent

to b in L1
loc, equibounded in L∞. Assume that the regular Lagrangian flows X
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and Xn have equibounded compressibility constants. The fundamental estimate
(6.11) now reads

Ld(BR ∩ {|Xn(t, ·) − X(t, ·)| > γ})

� C

δ log(1 + γ/δ)
‖bn − b‖L1

t (L1
x,loc)

+
C

log(1 + γ/δ)
‖∇b‖L1

t (Lp
x)

= I + II.

Given γ, η > 0, we choose δ > 0 so small that II � η/2. This fixes the quantity
C/δ log(1 + γ/δ) in I. We can therefore find n̄ so large that I � η/2 for all n � n̄.

We have hence discovered that: given γ > 0 and R > 0, for every η > 0 we can
find n̄ such that

Ld(BR ∩ {|Xn(t, ·) − X(t, ·)| > γ}) � η ∀n � n̄.

This means that Xn is converging to X locally in measure in R
d. Since X and Xn

are locally equibounded, this also implies L1
loc convergence: given R > 0, for every

η > 0 we can find n̄ such that∫
BR

|Xn(t, x) − X(t, x)| dx � η ∀n � n̄.

Note the important fact that stability comes with a quantitative rate: the value n̄
depends only on η and on the equibounds on the sequence.

The proof of the compactness goes along the same line. Consider a sequence (bn)
that is equibounded in L∞ and in L1

t (W
1,p
x ). Assume that there exist associated

regular Lagrangian flows Xn with equibounded compressibility constants. We can
then use the fundamental estimate (6.11) to write

Ld(BR ∩ {|Xn(t, ·) − Xm(t, ·)| > γ})

� C

δ log(1 + γ/δ)
‖bn − bm‖L1

t (L1
x) +

C

log(1 + γ/δ)
= I + II,

where the constant C in II also depends on the equibounds on ‖Dbn‖L1
t (Lp

x).
Given η > 0, we find δ > 0 such that II � η/2. Correspondingly, we find n̄ such

that I � η/2 for every n, m � n̄.
Summarizing, we have proven that, given γ > 0 and R > 0, for every η > 0 we

can find n̄ such that∫
BR

|Xn(t, x) − Xm(t, x)| dx � η ∀n, m � n̄,

that is, the sequence (Xn) is locally precompact in measure. As for the stability,
thanks to the local equiboundedness of Xn, precompactness in L1

loc can be deduced
from this.

Remark 6.2. The analogue compactness statement under L1 bounds on ∇bn,
instead of Lp bounds, is the content of a conjecture due to Bressan [45]. The W 1,1

theory presented in the next section will replace the Lp bounds on ∇bn with equi-
integrability bounds.
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The compactness is the key property required in order to prove existence of the
regular Lagrangian flow associated with a bounded vector field b ∈ L1

t (W
1,p
x ). At

this point, we have to assume some condition about the divergence of b and, for
simplicity, we assume div b ∈ L∞.

We regularize b by convolution in order to get a sequence bn of smooth vec-
tor fields that are equibounded in L∞ ∩ L1

t (W
1,p
x ), and with div bn equibounded

in L∞. Remembering (2.6), we infer that the (classical) flows associated with bn

have equibounded compressibility constants. We are therefore in position to apply
the compactness property, and it is simple to prove that this produces a regular
Lagrangian flow associated with b.

6.5. A mild regularity property of the regular Lagrangian flow

Remember that, for Lipschitz vector fields, the flow inherits regularity with
respect to the spatial variable: x 	→ X(t, x) is Lipschitz, with the Lipschitz constant
depending exponentially on the time and on the Lipschitz constant of the vector
field (cf. (2.1)).

We now want to derive a similar result for Sobolev vector fields. In order to do
this, we consider a functional Ψδ strictly related to the functional Φδ(t) in (6.2),
that is

Ψ(X) =
∥∥∥∥ sup

0�t�T
sup
r>0

∫
B(x,r)

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy

∥∥∥∥
Lp

x(BR)
, (6.12)

where R > 0 is fixed.
We want to derive upper bounds for the functional Ψ(X). We begin by differen-

tiating with respect to time the integral:

d
dt

∫
B(x,r)

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy

�
∫

B(x,r)

|b(X(t, x)) − b(X(t, y))|
|X(t, x) − X(t, y)| dy

� C

∫
B(x,r)

[M∇b(X(t, x)) + M∇b(X(t, y))] dy

= CM∇b(X(t, x)) + C

∫
B(x,r)

M∇b(X(t, y)) dy.

Integrating in time we deduce∫
B(x,r)

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy

�
∫

B(x,r)
log

(
1 +

|x − y|
r

)
dy + C

∫ t

0
M∇b(X(s, x)) ds

+ C

∫ t

0

∫
B(x,r)

M∇b(X(s, y)) dy ds

� log 2 + C

∫ t

0
M∇b(X(s, x)) ds + C

∫ t

0

∫
B(x,r)

M∇b(X(s, y)) dy ds.
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Taking the supremum over 0 � t � T and over r > 0, and finally the Lp
x(BR)-norm,

we deduce

Ψ(X) � C + C

∫ T

0
‖M∇b(X(s, x))‖Lp(BR) ds

+ C

∫ T

0
‖M [M∇b(X(s, ·))]‖Lp(BR) ds

� C + C

∫ T

0
‖M∇b‖Lp ds + C

∫ T

0
‖M∇b(X(s, ·))‖Lp ds

� C + C‖∇b‖L1
t (Lp

x) + C

∫ T

0
‖M∇b‖Lp ds

� C + C‖∇b‖L1
t (Lp

x)

� C, (6.13)

where the constant C only depends on the bounds on b and on the compressibility
constant of the regular Lagrangian flow X.

We shall use Chebyshev’s inequality which asserts that, for every 1 � p < ∞ and
every λ > 0, we can estimate

Ld({|f | > λ}) � ‖f‖p
Lp

λp
.

Applying this with λ = C/ε1/p to the function of x introduced in (6.12), we obtain
the existence of a set K ⊂ BR with Ld(BR \ K) � ε such that

sup
0�t�T

sup
r>0

∫
B(x,r)

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy � C

ε1/p
∀x ∈ K.

This means that ∫
B(x,r)

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy � C

ε1/p

for every x ∈ K, every r > 0 and every 0 � t � T .
We apply this in order to derive the Lipschitz estimate for the regular Lagrangian

flow X. Let x and x′ be points of K and set r = |x − x′|. Define

Cx,x′ = B(x, r) ∩ B(x′, r).

Notice that Ld(Cx,x′) = cdr
d for a positive dimensional constant cd. We can esti-

mate

log
(

1 +
|X(t, x) − X(t, x′)|

r

)
=

∫
Cx,x′

log
(

1 +
|X(t, x) − X(t, x′)|

r

)
dy

�
∫

Cx,x′

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy

+
∫

Cx,x′

log
(

1 +
|X(t, x′) − X(t, y)|

r

)
dy
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� C

∫
B(x,r)

log
(

1 +
|X(t, x) − X(t, y)|

r

)
dy

+ C

∫
B(x′,r)

log
(

1 +
|X(t, x′) − X(t, y)|

r

)
dy

� C

ε1/p
.

As a consequence

|X(t, x) − X(t, x′)| � |x − x′| exp
(

C

ε1/p

)

for every x and x′ belonging to K, that is

LipX(t, ·)|K � exp
(

C

ε1/p

)
. (6.14)

Remember that the set K ⊂ BR is such that Ld(BR \ K) � ε.

Remark 6.3. The Lipschitz property we have proven is usually called a Lusin-type
approximation with Lipschitz function. From this, approximate differentiability Ld-
a.e. of the map x 	→ X(t, x) can be deduced.

Exercise 6.4. Using the Ascoli–Arzelà theorem, find another proof of the com-
pactness of the regular Lagrangian flow. Notice that it is essential that the control
on the Lipschitz constant provided by (6.14) is quantitative.

7. Quantitative ODE estimates: W 1,1 regularity and singular integrals

In the previous section we described the quantitative estimates and their conse-
quences in the case of W 1,p regularity of the vector field when p > 1. The case
p = 1 (and a fortiori the BV case) was not covered by this analysis due to the lack
of strong estimates for p = 1 for the maximal function: (6.8) does not hold for p = 1
and only the weak estimate (6.7) is available. However, (6.7) seems to be of no help
for our purposes: we need to bound an integral of difference quotients, which are
in turn bounded by the maximal function of the gradient of the vector field. The
bound in M1 coming from (6.7) does not even guarantee integrability!

The good news is that there is an additional element that can be exploited in our
analysis, and this refined proof will allow us to obtain the same theory (except for
the regularity results in § 6.5) in the W 1,1 case (but unfortunately not in the BV
case, presently only covered by the theory of renormalized solutions).

In the derivation of the upper bound for the functional Φδ(t), after differentiation
in time, we obtained the bound

Φ′
δ(t) � L2

δ
‖b1 − b2‖L1 +

∫
BR

min
{

2‖b1‖∞
δ

; C(M∇b1(X1) + M∇b1(X2))
}

dx.

Afterwards, we proceeded with the estimate of the difference quotients, simply
‘forgetting’ the first term inside the minimum.
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In this section we describe how an interpolation argument (exploiting the L∞

term 2‖b‖∞/δ in the above minimum) will allow us to recover both the W 1,1 case
and the case in which the derivative of the vector field is a singular integral of an
L1 function. Note that this second class is not included in, nor includes, BV. We
also remark that equi-integrability bounds will play a role in the estimates: this is
the obstruction to pushing this W 1,1 technique to BV.

7.1. Weak Lebesgue spaces and interpolation

In order to address the case p = 1, some additional tools will be needed. Recall
that the weak Lebesgue space M1(Rd) is defined as the space consisting of all
measurable functions g on R

d such that

|‖g|‖M1 = sup
λ>0

{λLd({x : |g(x)| < λ})} < ∞.

We have already noticed that the maximal function satisfies a weak inequality from
L1 into M1, expressed by (6.7). The same holds when we consider the maximal
function of a measure, defined as in (6.5):

|‖Mμ|‖M1 � Cd,1‖μ‖M, (7.1)

where on the right-hand side we have the total variation norm.
The space M1 is strictly bigger than L1. For instance, on the real line, 1/x belongs

to M1 but fails to be in L1 (even locally, due to the blow-up at the origin). The
following interpolation inequality may be interpreted by informally saying that ‘M1

is not too distant from L1’:

‖f‖L1 � |‖f |‖M1

[
1 + log

(
C‖f‖L∞

|‖f |‖M1

)]
. (7.2)

Indeed, we can bound the L1-norm with the M1-(pseudo)norm, up to a logarithm
of the L∞-norm. We notice that (7.2) holds for functions defined on a compact set,
and that one could similarly interpolate between M1 and Lp for any p > 1.

Exercise 7.1. Prove the interpolation inequality (7.2). In order to do this, rewrite
the L1-norm of f as the integral of the distribution function of f , defined as usual by
α(λ) = Ld({|f | > λ}). Split the integral into the sum of the integrals over [0, Λ] and
[Λ, ‖f‖L∞ ], use suitable estimates in the two intervals, and conclude by optimizing
over Λ.

7.2. Uniqueness for the ODE: W 1,1 regularity

We show now how to extend the estimates in § 6.3 to include the case p = 1. For
clearness and simplicity of exposition we focus our presentation on the uniqueness
issue, but all the well-posedness results of § 6.4 could be proven in this context along
the same lines. However, it is less clear in this case how to extend to the Lipschitz
estimates in § 6.5.

Given a vector field b ∈ W 1,1, we consider two regular Lagrangian flows X1
and X2 with compressibility constants given, respectively, by L1 and L2. Proceeding
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as in (6.10) we estimate

Φ′
δ(t) �

∫
BR

min
{

2‖b‖∞
δ

; C(MDb(X1) + MDb(X2))
}

dx

� C(L1 + L2)
∫

BR+T ‖b‖∞

min
{

‖b‖∞
δ

; MDb

}
dx.

By integrating with respect to time we arrive at

Φδ(t) � C(L1 + L2)
∫ T

0

∫
BR+T ‖b‖∞

min
{

‖b‖∞
δ

; MDb

}
dxds. (7.3)

We now set

φ(s, x) = min
{

‖b‖∞
δ

; MDb

}
(7.4)

and observe that we have the two bounds

‖φ‖L∞
tx

� ‖b‖∞
δ

, |‖φ|‖M1
tx

� |‖MDb|‖M1
tx

. (7.5)

We can exploit the interpolation inequality (7.2) and the bounds (7.5), together
with the fact that the function z 	→ log z is increasing and the function z 	→
z[1 + log(c/z)] is increasing for z � c/δ, to obtain

Φδ(t) � C|‖φ|‖M1
tx

[
1 + log

(
C‖φ‖L∞

tx

|‖φ|‖M1
tx

)]

� C|‖MDb|‖M1
tx

[
1 + log

(
C‖b‖L∞

tx

δ|‖MDb|‖M1
tx

)]
.

From (7.1) we simply obtain

|‖MDb|‖M1
tx

� |‖|MDb|‖M1
x
‖L1

t
� C‖Db‖L1

t (Mx),

and again using the fact that the function z 	→ z[1 + log(c/z)] is increasing for
z � c/δ, this gives

Φδ(t) � C‖Db‖L1
t (Mx)

[
1 + log

(
C

δ‖Db‖L1
t (Mx)

)]
, (7.6)

in which ‖b‖∞ has been absorbed in the constant.
This upper bound is exactly on the critical scale discriminating for uniqueness

in (6.3)! This means that (7.6) (valid even for BV vector fields) is not enough to
conclude.

However, in the W 1,1 case we can ‘play with the constants’. Indeed, given ε > 0,
the derivative ∇b ∈ L1([0, T ] × R

d) can be split as

∇b = g1
ε + g2

ε , (7.7)

with ‖g1
ε‖L1

t (L1
x) � ε and ‖g2

ε‖L1
t (L2

x) � Cε. The constant Cε blows up as ε → 0 and
depends on the equi-integrability of ∇b. Using this argument, we are only able to
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proceed in the W 1,1 case, and the more general BV case (still allowed in (7.6)) has
to be abandoned. A decomposition as in (7.7) does not hold for a measure.

With this decomposition we can estimate the function φ in (7.4) as follows:

φ(s, x) � min
{

‖b‖∞
δ

; Mg1
ε + Mg2

ε

}

� min
{

‖b‖∞
δ

; Mg1
ε

}
+ min

{
‖b‖∞

δ
; Mg2

ε

}
= φ1(s, x) + φ2(s, x).

Reasoning as before and exploiting (7.7), we have

‖φ1‖L∞
tx

� ‖b‖∞
δ

,

|‖φ1|‖M1
tx

� |‖Mg1
ε |‖M1

tx
� ‖|‖Mg1

ε |‖M1
x
‖L1

t
� C‖g1

ε‖L1
t (L1

x) � Cε

and
‖φ2

ε‖L1
t (L2

x) � C‖g2
ε‖L1

t (L2
x) � CCε.

We use these two estimates in the bound for Φδ. The ‘borderline’ estimate (7.6) is
used with the term g1

ε , while the term g2
ε is treated according to the analysis for

the case p > 1 in § 6.3. We finally get an estimate of the form

Ld(BR ∩ {|X1 − X2| > γ}) � Cε
1 + log(C/δε)
log(1 + γ/δ)

+
CCε

log(1 + γ/δ)

and we conclude by choosing first ε and then δ sufficiently small.

Remark 7.2. The extension of this proof to the BV case is an important open
problem. This would solve the compactness conjecture proposed by Bressan in [45].

7.3. An extension to a case involving singular integrals

We want to extend the argument in § 7.2 to a more general case involving singular
integrals of L1 functions. We start by presenting a motivation for this setting.

The Euler equation in vorticity form in two dimensions reads

∂tω + div(vω) = 0. (7.8)

This is a continuity equation for the fluid vorticity ω, which is transported by the
(divergence-free) fluid velocity v. This is indeed a nonlinear continuity equation
due to the structural condition ω = curlv. Both the vorticity and the velocity are
unknowns of the problem, and the coupling can be rewritten as a convolution:

v = K ∗ ω. (7.9)

In the above formula, the Biot–Savart kernel is defined (up to multiplicative con-
stants) by K(x) = x⊥/|x|2.

In order to proceed with the analysis of (7.8), it is necessary to understand the
regularity of the fluid velocity v. A formal differentiation of the convolution product
in (7.9) gives Dv = DK ∗ ω. The problem now is that |DK| ∼ 1/|x|2 around the
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origin in R
2, hence it is in general not even locally integrable. We cannot give a

meaning to the formula for the derivative of v as a usual convolution of distributions.
However, the actual expression of DK (without the modulus!) retains enough

cancellations to allow for a definition of the ‘convolution’ in the sense of Calderón–
Zygmund singular integrals (see [98] for a detailed description of this topic).

The analysis of § 7.2 extends naturally to the case in which the derivative of the
vector field b is given by singular integrals of L1 functions:

∂jb
i =

∑
k

Sijkgijk,

where gijk ∈ L1 and each Sijk is a singular integral operator, associated with a
kernel Kijk ∈ S ′(Rd) ∩ C1(Rd \ {0}), satisfying

|K(x)| � C

|x|d , |DK(x)| � C

|x|d+1

and the cancellation property∣∣∣∣
∫

R1<|x|<R2

K(x) dx

∣∣∣∣ � C ∀0 < R1 < R2 < ∞.

Remark 7.3. This class of vector field is motivated by the example of the two-
dimensional Euler equation with L1 vorticity. It includes W 1,1, but is strictly bigger;
on the other hand, it is not included in, nor does it include, BV.

We now describe the main ideas from this proof. Analogously to maximal func-
tions, singular integrals satisfy strong estimates

‖Sf‖Lp � Cp‖f‖Lp

for every 1 < p < ∞, but only the weak estimate

|‖Sf |‖M1 � C1‖f‖L1

when p = 1. Given two singular integral operators S1 and S2, associated with
regular enough singular kernels K1 and K2, the composition S = S2 ◦ S1 is again a
singular integral operator, associated with the singular kernel K = K2 ∗ K1. This
means that the weak estimate

|‖Sf |‖M1 = |‖S2 ◦ S1f |‖M1 � C1‖f‖L1

holds. Note carefully that this estimate cannot be obtained by composing the two
weak estimates, valid for S1 and S2, from L1 into M1 separately. The idea is that
cancellations in the formal convolution product K2 ∗ K1 are exploited.

We return to our uniqueness argument that involves the search for upper bounds
for the functional Φδ. We would like to obtain something similar to (7.6) (with ‖g‖L1

instead of ‖Db‖L1 on the right-hand side). We realize that we need an estimate of
the form

|‖MDb|‖M1 = |‖MSg|‖M1 � C‖g‖L1 . (7.10)

The classical maximal function in (6.4) is ‘too rough’ to allow for such an estimate.
The idea is that we can choose a ‘smooth maximal function’, with absolute value
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outside the integral, and with a smooth weight. More precisely, given ρ ∈ C∞
c , we

define

Mρf(x) = sup
r>0

∣∣∣∣ 1
rd

∫
Rd

ρ

(
x − y

r

)
f(y) dy

∣∣∣∣.
It can be proven that this smooth maximal function (also known as the grand
maximal function in the context of Hardy spaces) is still suitable for the estimate of
difference quotients as in (6.9). Moreover, the cancellation properties of the kernel ρ
play together with those of the singular integral S, allowing us to get estimate (7.10).
We refer the reader to [37] for the exact statements and for the proofs.

8. Some applications

8.1. A system of conservation laws

Let us consider the Cauchy problem (studied in one space dimension by Keyfitz–
Kranzer in [82])

d
dt

u +
d∑

i=1

∂

∂xi
(fi(|u|)u) = 0, u : R

d × (0, +∞) → R
k, (8.1)

with the initial condition u(·, 0) = ū. Here f : R → R
d is a C1 function.

In [46], Bressan showed that the problem can be ill posed for L∞ initial data
and he conjectured that it could be well posed for BV initial data, suggesting the
extension of the classical method of characteristics to this case. In [12] it was proved
that this procedure can really be implemented, thanks to the results in [9], for initial
data ū such that ρ̄ := |ū| ∈ BV ∩ L∞, with 1/|ū| ∈ L∞. Later on it was proved [17]
that the lower bound on ρ̄ is not necessary and, moreover, that the solution built
in [12] is unique in a suitable class of admissible functions: those whose modulus ρ
satisfies the scalar PDE

d
dt

ρ +
d∑

i=1

∂

∂xi
(fi(ρ)ρ) = 0 (8.2)

in the Kruzhkov sense (i.e. η(ρ)t + Dx · (q(ρ)) � 0 for any convex entropy–entropy
flux pair (η, q); here (sf)′(s)η′(s) = q′(s). See [65] for existence, uniqueness and
regularity results for Kruzhkov solutions), with the initial condition ρ(0, ·) = ρ̄.

Notice that the regularity theory for this class of solutions gives that ρ ∈ L∞ ∩
BVloc([0, +∞)×R

d) due to the BV regularity and the boundedness of |ū|. Further-
more, the maximum principle gives 0 < 1/ρ � 1/|ū| ∈ L∞.

In order to obtain the (or, better, a) solution u we can formally decouple the
system, writing

u = θρ, ū = θ̄ρ̄, |θ| = |θ̄| = 1,

thus reducing the problem to the system (decoupled, if one neglects the constraint
|θ| = 1) of transport equations

θt +
d∑

i=1

∂

∂xi
(fi(ρ)θ) = 0 (8.3)

with the initial condition θ(0, ·) = θ̄.
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A formal solution of the system, also satisfying the constraint |θ| = 1, is given
by

θ(t, x) := θ̄([X(t, ·)]−1(x)),

where X(t, ·) is the flow associated with f(ρ). Notice that the non-autonomous
vector field f(ρ) is bounded and of class BVloc, but the theory illustrated in this
paper is not immediately applicable because its divergence is not absolutely con-
tinuous with respect to Ld+1. In this case, however, a simple argument still allows
the use of the theory, representing f(ρ) as a part of the autonomous vector field
b := (ρ, ρf(ρ)) in R

+ × R
d. This new vector field is still BVloc and bounded, and

it is divergence free due to (8.2).
At this point, it is not hard to see that the re-parametrization of the flow

(t(s),x(s)) associated with b

(ṫ(s), ẋ(s)) = (ρ(t(s),x(s)),f(ρ(t(s),x(s)))ρ(t(s),x(s)))

defined by x̃(t) = x(t(s)−1(t)) (and here we use the assumption ρ > 0) defines a
flow for the vector field f(ρ) we were originally interested in.

In this way we get a kind of formal, or pointwise, solution of the system (8.2)
that could in principle be very far from being a distributional solution. But here
the stability theorem comes into play, showing that all formal computations above
can be justified just first by assuming (ρ,f(ρ)) smooth, and then by approximation
(see [12] for details).

8.2. Lagrangian solutions of semi-geostrophic equations

The semi-geostrophic equations are a simplified model of the atmosphere/ocean
flows [62] described by the system of transport equations

d
dt

∂2p + u · ∇∂2p = −u2 + ∂1p,

d
dt

∂1p + u · ∇∂1p = −u1 − ∂2p,

d
dt

∂3p + u · ∇∂3p = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(SGE)

Here the velocity u is a divergence-free field, p is the pressure and ρ := −∂3p
represents the density of the fluid. We consider the problem in [0, T ] × Ω, with Ω
bounded and convex. Initial conditions are given on the pressure and a no-flux
through ∂Ω condition is imposed for all times.

By introducing the modified pressure Pt(x) := pt(x) + 1
2 (x2

1 + x2
2), (SGE) can be

written in a more compact form as

d
dt

∇Pt + u · ∇2Pt = J(∇Pt − x) with J :=

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ . (8.4)

The existence of solutions for this problem was an open problem until very recently,
while uniqueness remains open. In [28, 64], existence results have been obtained in
the so-called dual coordinates, where we replace the physical variable x by X =
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∇Pt(x). Under this change of variables, and assuming Pt to be convex, the system
becomes

d
dt

αt + Dx · (Utαt) = 0 with Ut(X) := J(X − ∇P ∗
t (X)) (8.5)

with αt := (∇Pt)#(LΩ) (here we denote by LΩ the restriction of Ld to Ω). Indeed,
for any test function ϕ we can use the fact that u is divergence free to obtain:

d
dt

∫
Rd

ϕ dαt =
∫

Rd

∇ϕ(∇Pt) · d
dt

∇Pt dx

=
∫

Rd

∇ϕ(∇Pt) · J(∇Pt − x) dx +
∫

Rd

∇ϕ(∇Pt)∇2Pt · u dx

=
∫

Rd

∇ϕ · J(X − ∇P ∗
t ) dαt +

∫
Rd

∇(ϕ ◦ ∇Pt) · u dx

=
∫

Rd

∇ϕ · Ut dαt.

Existence of a solution to (8.5) can be obtained by a suitable time discretization
scheme. Now the question is, can we go back to the original physical variables? An
important step forward has been achieved, by Cullen and Feldman [63], with the
concept of a Lagrangian solution of (SGE).

Taking into account that the vector field Ut(X) = J(X − ∇P ∗
t (X)) is BV,

bounded and divergence free, there is a well-defined stable and measure-preserving
flow X(t, X) = Xt(X) relative to U . This flow can be carried back to the physical
space with the transformation

Ft(x) := ∇P ∗
t ◦ Xt ◦ ∇P0(x),

thus defining maps Ft preserving Ld
Ω .

Using the stability theorem, one can also show that Zt(x) := ∇Pt(Ft(x)) solve,
in the distributions sense, the Lagrangian form of (8.4), i.e.

d
dt

Zt(x) = J(Zt − Ft). (8.6)

This provides us with a sort of weak solution of (8.4). In connection with existence
of solutions to the semi-geostrophic problem in the original physical variables, a
formal argument suggests that, given Pt, the velocity u should be defined by

∂t∇P ∗
t (∇Pt(x)) + ∇2P ∗

t (∇Pt(x))J(∇Pt(x) − x).

On the other hand, the a priori regularity on ∇Pt (ensured by the convexity of Pt) is
a BV regularity. In more recent times, distributional solutions for the Eulerian form
of the PDE have been recovered [23,24] using refined regularity results on Alexan-
drov solutions to Monge–Ampère equations that provide not only BV regularity but
also Sobolev regularity (see [68,69,96], improving earlier results in [47–50,101,102]
in the borderline case when the right-hand side is bounded away from 0 and ∞,
but only Borel).
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9. Open problems, bibliographical notes and references

Section 2. The material contained in this section is classical. Good references
are [74], [22, ch. 8], [39] and [72]. For the proof of the area formula, see, for instance,
[16,77,78].

The proof of the second local variant, under the stronger assumption

∫ T

0

∫
Rd

|bt| dμt dt < +∞,

is given in [22, proposition 8.1.8]. The same proof works under the weaker assump-
tion (2.7).

Section 3. Many ideas of this section, and in particular the idea of looking at
measures in the space of continuous maps to characterize the flow and prove its
stability, are borrowed from [9], which deals with BV vector fields. Later on, the
arguments have been put in a more general form, independent of the specific class
of vector fields under consideration (see [10]). See also [11], which provides more
insight into the quantitative side of the theory and the differentiability properties
of the flow.

The idea of a probabilistic representation is of course classical, and appears in
many contexts (particularly for equations of diffusion type). To the best of our
knowledge the first reference in the context of conservation laws and fluid mechan-
ics is [41], where a similar approach is proposed for the incompressible Euler equa-
tion (see also [42–44]): in this case the compact (but neither metrizable, nor sepa-
rable) space X [0,T ], with X ⊂ R

d compact, was considered.
This approach is by now a familiar one in optimal transport theory, where trans-

port maps and transference plans can be thought of in a natural way as measures
in the space of minimizing geodesics [95], and in the so-called irrigation problems,
a nice variant of the optimal transport problem [30]. See also [27] for a similar
approach within Mather’s theory. The lecture notes [105] (see also the appendix
of [88]) contain, among other things, a comprehensive treatment of the topic of
measures in the space of action-minimizing curves, including at the same time
the optimal transport and the dynamical systems case (this unified treatment was
inspired by [29]). Another related reference is [67].

The superposition principle is proved under the weaker assumption

∫ T

0

∫
Rd

|bt|p dμt dt < +∞,

for some p > 1, in [22, theorem 8.2.1]. See also [89] for the extension to the case
p = 1 and to the non-homogeneous continuity equation. Very closely related results,
relative to the representation of a vector field as the superposition of ‘elementary’
vector fields associated with curves, appear in [27,97].

In [20] an interesting variant of the stability theorems 3.13 and 4.10 is discussed,
peculiar to the case when the limit vector field b is a sufficiently regular gradient.
In this case it was proved that weak convergence of μh

t to μt for all t ∈ [0, T ] and
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the energy estimate

lim sup
h→∞

∫ T

0

∫
Rd

|bh
t |2 dμh

t dt �
∫ T

0

∫
Rd

|bt|2 dμt dt < +∞

are sufficient to obtain the stability property. This is a consequence of the fact that,
for μt given, gradient vector fields minimize

∫ T

0

∫
|ct|2 dμt among all velocity fields ct

for which the continuity equation (dμt/dt) + Dx · (ctμt) = 0 holds (see [22, ch. 8]
for a general proof of this fact and for references to earlier works of Otto and
Benamou–Brenier).

Section 4. The definition of a renormalized solution and the strong convergence
of commutators are entirely borrowed from [72]. See also [73] for the relevance of
this concept in connection with the existence theory for the Boltzmann equation.

The differentiability properties of the flow in [83]: later on, this differentiability
property was characterized and compared with the more classical approximate dif-
ferentiability (see [78]) in [15], while [19] contains the proof of the stronger ‘local’
Lipschitz properties. Theorem 4.11 summarizes all of these results. Also, [61] con-
tains more explicit Lipschitz estimates and an independent proof of the compactness
of flows. See [51] for a proof, using radial convolution kernels, of the renormalization
property for vector fields satisfying Dib

j + Djb
i ∈ L1

loc.
Both the method illustrated in this paper and the DiPerna–Lions method are

based on abstract compactness arguments and do not provide a rate of convergence
in the stability theorem.

A few existence results for Sobolev vector fields seem to be known in the infinite-
dimensional case; see [31] and the more recent paper [14]. Also, the investigation
of non-Euclidean geometries, e.g. Carnot groups and horizontal vector fields, could
provide interesting results.

Finally, notice that the theory has a natural invariance. Namely, if X is a flow
relative to b, then X is a flow relative to b̃ whenever {b̃ �= b} is L1+d-negligible
in (0, T ) × R

d. So a natural question is whether the uniqueness ‘in the selection
sense’ might be enforced by choosing a canonical representative b̃ in the equivalence
class of b: in other words we may think that, for a suitable choice of b̃, the ODE
γ̇(t) = b̃t(γ(t)) has a unique absolutely continuous solution starting from x for
Ld-a.e. x.

Section 5. Here we closely followed [9]. The main idea of this section, i.e. the
adaptation of the convolution kernel to the local behaviour of the vector field, was
used at various levels of generality [34, 56, 86] (see also [52, 53] for related results
independent of this technique) until the general result [9].

The optimal regularity condition on b ensuring the renormalization property,
and therefore the well-posedness in Lb, is still not known. New results, both in the
Sobolev and in the BV framework, are presented in [18,83,84].

As mentioned in remark 4.3, it is proved in [35] that the renormalization property
can be characterized in terms of the uniqueness (for both the forward and the
backward Cauchy problems) and the strong continuity of weak solutions, or in terms
of the density of smooth functions with respect to a suitable ‘graph norm’. This
in some sense tells us that the renormalization property is more than a ‘technical
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tool’ to prove uniqueness, but is really a substantial property related to the well-
posedness.

In [21], the possibility of proving the renormalization property for nearly incom-
pressible BVloc ∩L∞ fields b is investigated: nearly incompressible fields are defined
by requiring the existence of a positive function ρ, with ln ρ ∈ L∞, such that the
space–time field (ρ, ρb) is divergence free. As in the case of the Keyfitz–Kranzer
system, the existence a function ρ with this property seems to be a natural replace-
ment of the condition Dx · b ∈ L∞ (and is actually implied by it); as explained
in [17], a proof of the renormalization property in this context would lead to the
proof of a conjecture, due to Bressan, on the compactness of flows associated with
a sequence of vector fields bounded in BV.

The situation in the two-dimensional context is somehow more ‘rigid’. In the
series of papers [5–7] a characterization of the uniqueness for the continuity equation
is proved in the context of two-dimensional bounded autonomous divergence-free
vector fields. To any such vector field b a Lipschitz function f : R

2 → R so that
b = ∇⊥f can be associated. The main result of [6] is the equivalence between
the uniqueness and a ‘measure theoretical version’ of the Sard property for the
function f , which, apart from a minor technical detail, reads

f#(L2 �{∇f = 0}) ⊥ L1. (9.1)

The heart of the proof is a suitable disintegration of the PDE along level sets
of f . In this way, two-dimensional uniqueness is linked to uniqueness on the level
sets. It turns out that (9.1) is the condition characterizing uniqueness for such
one-dimensional problems.

Section 6. The presentation in this section is based on [61]. Some related analysis,
with further developments in the case of kinetic equations, is contained in [54,81].

Section 7. Here the analysis follows [37], but, in order to make the presentation
more accessible, we skipped most of the details and essentially tried to convey the
general ideas. A similar presentation can be found in [36,59].

The main open problem in this context is clearly the extension of the quantitative
estimates to BV vector fields, or even more to vector fields whose gradient is given
by singular integrals of measures (and not just of L1 functions). In the work in
progress [33], the following split case is addressed: the derivatives with respect to
some coordinates are singular integrals of measures, while all other derivatives are
singular integrals of L1 functions. The strategy is based on an anisotropic version
of the functional.

The quantitative estimates in the context of singular integrals are relevant for
applications to nonlinear PDEs. In particular, in [32] we plan to study existence
and energy concentration for solutions to the two-dimensional Euler equation with
L1 vorticity, and some existence settings for the Vlasov–Poisson equation.

Section 8. In connection with the Keyfitz–Kranzer system there are several open
questions. In particular, one would like to obtain uniqueness (and stability) of
the solution in more general classes of admissible functions (partial results in this
direction are given in [17]). A strictly related problem is the convergence of the
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vanishing viscosity method to the solution built in [12]. Also, very little about the
regularity of solutions is presently known: we know [66] that BV estimates do not
hold and, besides, that the construction in [12] seems not to be applicable to more
general systems of triangular type; see the counter-example in [60].
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