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Improved trial methods for a class of generalized Bernoulli problems
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Abstract

The aim of this article is to develop improved trial methods for the solution of a generalized exterior Bernoulli free
boundary problem. At the free boundary, we prescribe the Neumann boundary condition and update the free boundary
with the help of the remaining Dirichlet boundary condition. Appropriate update rules are obtained by expanding the
state’s Dirichlet data at the actual boundary via a Taylor expansion of first and second order. The resulting trial
methods converge linearly for both cases, although the trial method based on the second order Taylor expansion is
much more robust. Nevertheless, via results of shape sensitivity analysis, we are able to modify the update rules
such that their convergence is improved. The feasibility of the proposed trial methods and their performance is
demonstrated by numerical results.
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1. Introduction

In this article, we consider a generalized version of Bernoulli’s exterior free boundary problem which involves
Poisson’s equation and non-constant boundary data. To mathematically describe the problem under consideration, let
T c R? be a bounded domain with free boundary 4T = T. Inside the domain 7', we assume the existence of a simply
connected subdomain S C T with fixed boundary 8S = X. The resulting annular domain 7'\ S is denoted by Q; see
Figure 1.1 for a sketch of the geometry.

r

Figure 1.1: The domain Q and its boundaries I and X.
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The generalized Bernoulli free boundary problem reads as follows: Seek the domain Q and the state v which
satisfy the overdetermined boundary value problem

-Av=f in Q
v=g on X (1.1)
0
v=0,£=h onl.

Here, n stands for the unit normal vector on I' and dv/dn denotes the normal derivative of v. Moreover, f, g, and &
are supposed to be sufficiently smooth functions which satisfy f > 0, g > 0 and & < 0 such that the solution v is well
defined and positive in Q.

The free boundary problem under consideration can be viewed as the prototype of a large class of stationary
free boundary problems involved in many applications such as fluid dynamics, optimal design, electromagnetics and
various other engineering fields. For example, the exterior magnetic shaping of liquid metals involves the exterior
Poisson equation as state equation and the solution’s uniqueness is ensured by a volume constraint instead by a fixed
interior boundary, see e.g. [8, 21]. Also the maximization of the torsional stiffness of an elastic cylindrical bar under
simultaneous constraints on its volume and bending rigidity fits in the above general setup, see [4]. We refer to
[3, 5, 12] for a review of theoretical results concerning the existence and uniqueness of solutions to free boundary
problems. Results on the geometric form of the boundary I" can be found in [1] and the references therein.

For the solution of the above free boundary problem, we choose a fixed point type method, the so-called trial
method. The trial method is an iterative scheme, described by the following steps:

1. Choose an initial guess I'y of the free boundary.

2. a) Solve the boundary value problem with the Neumann boundary condition on the free boundary I'.

b) Update the free boundary I'y such that the Dirichlet boundary condition is approximately satisfied at the new
boundary 'y, ;.

3. Repeat step 2 until the process becomes stationary up to a specified accuracy.

Usually, the update is derived through a Taylor expansion and moves the boundary such that the Dirichlet boundary
condition is satisfied. The use of a first order Taylor expansion has been proposed in [12, 26]. In this article, we will
even use a second order Taylor expansion which, as numerical results show, is more robust. However, the trial method
still convergences only linearly.

In order to obtain higher order convergence, the Neumann boundary condition at the free boundary has been
substituted by a Robin boundary condition in [12, 26]. Instead, we intend to improve the convergence of the trial
method without changing the boundary condition at the free boundary I'. This is achieved by modifying the update
rule appropriately.

To the several numerical schemes for the solution of free boundary problems belong parametric trial methods, as
proposed in [2, 12, 25, 26], and the pseudo-solid approach, as proposed in [13, 19, 27]. The level set method for
Bernoulli’s problem has been used in [6, 7, 18], enjoying the property of allowing topology changes. In all these
papers, however, only the Laplace equation and constant Dirichlet and Neumann data have been considered which
corresponds to the original Bernoulli free boundary problem. In [23], for a related time-harmonic inverse acoustic
scattering problem, an iterative method based on the idea of the analytic continuation of the field has been used.
Shape optimization provides another powerful tool to solve free boundary problems, see e.g. [10, 11, 14, 16] and the
references therein.

The remainder of this article is organized as follows. Section 2 is dedicated to the derivation of the trial methods
based on first and second order Taylor expansions of the state’s Dirichlet data at the actual boundary. In Section 3, we
reformulate the boundary value problem by boundary integral equations and propose their numerical solution by the
boundary element method. Some first numerical tests are presented in Subsection 3.4. They give the motivation to
get involved with the convergence theory of trial methods in Section 4. It especially enables to appropriately modify
the update rule such that the convergence is improved. In addition, the inexact Newton method becomes performable.
The practicability of the resulting trial methods is shown by some numerical results in Section 4.5. Finally, in Section
5, the article’s conclusion is drawn.



2. Derivation of the update rules

2.1. Background and motivation

Throughout this article, we assume that the domain 7 is starlike. We can then represent the free boundary I' by a
parametrization y : [0, 2] — R2 in polar coordinates, that is

T :={y(s) = r(s)e,(s) : s € [0, 271},

where e,(s) = (cos(s), sin(s))T denotes the unit vector in the radial direction. The radial function r(s) is supposed to

be a positive function in Cger([O, 2n]), where

CZ.(10,27]) = {r € C2([0,27]) : *P(0) = FP(27), i = 0,1,2},

such that dist(Z,T") > 0.
The trial method for the solution of the free boundary problem (1.1) requires an update rule. Suppose that the
actual boundary is I';. Then, the corresponding state vy satisfies

—Avk = f in Qk

Vi =g onXx 2.1)
0
% =h onI;.

The new boundary I'y;; is now determined by moving the old boundary into the radial direction, which is expressed
by the update rule
Yie1 = Vi + 0rie;. (2.2)

The update function dry € Cger([O, 2r]) is chosen such that the desired homogeneous Dirichlet boundary condition is

satisfied at the new boundary I, i.e.,
Vk © Visl 20 on[0,2n], (2.3)

where vy is assumed to be smoothly extended into the exterior of ;. The main tool to find the update function dry, is
Taylor’s expansion of the first and second order.

2.2. First order update rule

The first order update rule is obtained by linearizing v; o (y, + dre,) with respect to the update function ér. This
yields the equation

6vk
W0 Ve % oy + (5o 0 o 4
e
We decompose the derivative of v, in the direction e, into its normal and tangential components:
6vk (9vk (9vk
= —/e,,n)+ —e,ty only. 2.5
Je, 6n<r> 6t<r> e (2.5)

Inserting the Neumann boundary condition dv;/dn = h, we arrive at the first order update equation

e viJen 0o Lo, 26)

Fi(6r0) 1= v 0 75 + | (h o y)er.m) + ( i

This leads to the most common update rule and has, for example, been used in [12, 18, 26]. However, there the
update is performed in the normal direction rather than the radial direction which might lead to a degeneration of the
domain. Notice finally that the update equation (2.6) is solvable at least in a neighbourhood of I'* since there it holds
ov*/oe, = h{e,,n) < 0 due to Ov*/dt = 0, h < 0 and (e,, n) > O for starlike domains.



2.3. Second order update rule

The second order update rule is derived from a second order Taylor expansion of v, o (y, + dre,) with respect to
or, that is

Ovi 1(0%
Vk O Vsl RVEKOYi + (6_ O‘yk)érk ( Je2 o 7k)6r,%. 2.7

Because of our regularity assumptions on the boundary I';, we are able to compute the derivatives of the twice contin-
uously differentiable function v;. Notice that, assuming more regularity of I';, even a higher order Taylor expansion
can be exploited here.

The directional derivative dv,/de, included in (2.7) is computed by (2.5). Whereas, for the second order directional
derivative 6%v;/ 6e%, we refer to the following lemma.

Lemma 2.1. The second order derivative of vy in the direction e, is given by

62 62 oh 0
Vi Vi Vk ](e,, nye,, t) onTy, (2.8)

_ v 2 _ 2 2 on
B_e%_ e [(e,, t)" —(e,,n)"} — f(e,,n) +2[6t K—

where k = —(y//,m)/ ||)/,’<||2 denotes the curvature of the boundary T.

Proof. We split the second derivative of vy in the direction e, into its normal and tangential components

0* 02 0%y 82
o L e, )2 425 (e e t) +

2
9e2 o ond g —He, 1)’ onTy. (2.9)

The derivative of v;’s Neumann data with respect to s is given by

d 5Vk 2vk dn
—| = +(V —).
ds(an ) ”7k”(a at 7") (Vore 7o)
Due to dn/ ds = «|ly, ||t and the Neumann boundary condition at I';, this equation can be rewritten as

62vk oh 6vk
=2 _ D% ot 2.1
omot ot ‘ot Ok (2.10)

In accordance with our smoothness assumptions, the derivatives 0*v/On? and 9%vy /Ot are coupled via the Poisson
equation which implies

62vk 62Vk

—_— = r 2.11

m = e/ onle @10
By inserting (2.10) and (2.11) into (2.9), the latter becomes (2.8). This concludes the proof. O

Having all the terms of the second order approximation (2.7) of the left hand side of (2.3) at hand, we find the
update function 6y from the numerical solution of the following equation:

2 oh (9Vk

Fa(6r0) = Fi(6r)+= {(602 O'yk){(e,,t) (e, m)?)— (foyk)(e,,n)2+2[(E—Kﬁ)oyk](er,n)(e,,t)}ér,% L0. 212

It is especially seen from this representation that the update which is computed from this second order update equation
coincides with the update computed by (2.6) except for a higher order term.

2.4. Discretization of the free boundary problem

For the numerical computations, we discretize the radial function ]| associated with the boundary I’y by a finite
Fourier series according to

n—1
ri(s) = ao + Z {a; cos(is) + b; sin(is)} + a, cos(ns). (2.13)
i=1



This obviously ensures that r; is always an element of Cper([O, 2nr]). To determine the update function 677, represented
likewise by a finite Fourier serles, we insert the m > 2n equidistantly distributed points s; = 2mi/m into the update
equations (2.6) and (2.12), respectively:

F(6r’;)40 in all the points  s1, ..., Sy.

This is a discrete least-squares problem which can simply be solved by the normal equations in case of the first order
update equation (2.6). In case of the second order update equation (2.12), the least-squares problem is nonlinear.
Hence, we have to apply the Gauss-Newton method for its solution.

3. Solving the boundary value problem

3.1. Newton potential

Since the solution v of the state equation is required only on the boundary I'; of the domain €, the boundary
element method is more efficient than other methods. For sake of notational convenience, we drop the index k in the
rest of the section. Despite Poisson’s equation, the boundary element method can be applied by making the ansatz

v=u+Ny 3.1

for a suitable Newton potential Ny which satisfies the equation —AN; = f and a harmonic function u which satisfies
the boundary value problem

Au=0 in Q

u :g—Nf onXx (32)
—=h-—L T.
on h on on

The Newton potential has to be given analytically or computed once in advance in a sufficiently large domain Q which
will contain all the iterates. Since this domain can be chosen fairly simple, efficient solution techniques for the Poisson
equation can easily be applied.

3.2. Boundary element method

Our approach to get the system of boundary integral equations is the direct formulation based on Green’s funda-
mental solution. In this case, the solution u of (3.2) is given by Green’s representation formula

oG
u(x) =f {G( )—( = (X Yo )} xeQ. 3.3)
Tux

Using the jump properties of the layer potentials, we obtain the direct boundary integral formulation of the problem

0G(x,y)

ruz  Ony

u(x) = f G(x, y) (y) doy + u(x) u(y)doy, xelUZ. 34
r

Writing the boundaries as A, B € {I', Z}, then (3.4) includes the single layer operator

1
V:CA) = CB),  (Vagp)x) = f log [Ix - ¥llo(y) dory (3.5)

and the double layer operator

. (X —y,ny)
K:CA) — C(B), (Kapp)x)= f T p(y)doy (3.6)



with the densities p being the Cauchy data of # on A. The equation (3.4) in combination with (3.5) and (3.6) indicates
the Neumann-to-Dirichlet map, which for problem (3.2) induces the following system of integral equations

1 ulr Vrr ~Ksr ONy
EI + Krr —(VZF] [au l - I 1 )} l(h a 6_n)‘r .

3.7
Krx Vs %|z Vs _(51 + Koz (g = Npls

The boundary integral operator on the left hand side of this coupled system of boundary integral equation is continuous
and satisfies a Garding inequality with respect to L?>(T') x H~'/2(Z) provided that diam(Q) < 1. Since its injectivity
follows from potential theory, this system of integral equations is uniquely solvable according to the Riesz-Schauder
theory.

The next step to the solution of the boundary value problem is the numerical approximation of the integral oper-
ators included in (3.7) which first requires the parametrization of the integral equations. To that end, we insert the
parametrization of the boundaries as it was described in the beginning of Section 2.1. For the approximation of the
unknown Cauchy data, we use the collocation method based on trigonometric polynomials. Applying the trapezoidal
rule for the numerical quadrature and the regularization technique along the lines of [17] to deal with the singular in-
tegrals, we arrive at an exponentially convergent boundary element method provided that the data and the boundaries
and thus the solution are arbitrarily smooth.

3.3. Numerical realization of the update rules

We briefly present the equations we solve to determine the update functions in case of Poisson’s equation. The
tangential derivative of u is computed from the identity

u Yy 1 d(uoy)
—oy= < oYy, . > = - .
ot Iyl Il ds

In view of (3.1), the first order update results thus from the solution of

1 duoy) N ONy

Fi(or) = (u+Nf)oy+[(ho’}’)<er,n>+(“y/” ds ot

o y) (e, t>] o5r=0,

cf. (2.6). Likewise, to compute the second order tangential derivative of u, we use

dZ(u 07’) 712 azu ’” Ou ” Ou
ST (S ov)+ 005 o)+ w5 0 7)
This yields the relation
0*u 1 d*moy) (y’.tyduory) ONy
0 °Y = - +x(hoy - ) 3.8
o VTP d? I ds (o= o7 38

where we substituted the Neumann data of u according to the desired boundary condition at I, cf. (3.2). The combi-
nation of (2.12), (3.1), and (3.8) finally yields

woy) ".Hduoy) ( f ONy ) . PNy
- K [e] — —— O
ds? P ds Y m PV o

o y)](e,, n)e,, t)}érz.

_ 1 1 d2 2 2
Fa(67) = F1(67) + 5{[”7,”2 o7 (e ? - (e m?)

oh
—(foyXe,ny +2|—oy-—
(foy) Friaid bl ds

kK duoy) K(aNf
at

The quantities d(u o y)/ ds and d*(u o y)/ ds* which show up in the above expressions are computed by differentiating
the trigonometric representation of the approximation to u o .



3.4. Numerical results
In this section, we perform numerical tests in order to compare the trial methods based on the first and the second
order update rule. We choose the fixed boundary X kite-shaped, parameterized via

_|=0.1 cos(s) + 0.065 cos(2s)
7:(s) = [ 0.15 sin(s) } :

As initial guess Iy to the free boundary I', a slightly perturbed ellipse is used:
cos(s)}

— 2 )
71, () = \/0.04 c0s?(2s) + 0.06 sin“(2s) [sin(s)
We intend to solve the free boundary problem with respect to the data
fx,y) =60, gx,y)=x>+y*+1, and h(x,y)=-Ax>+y*+1),

where A is a positive constant. An appropriate Newton potential can be analytically determined, namely N,(x,y) =
—15(x*+y?). Figure 3.1 shows the boundary £ and the optimal boundary I'* of the free boundary problem for different
values of the parameter A.

Figure 3.1: Solutions of the generalized Bernoulli free boundary problem in case of a kite-shaped interior boundary.

In Table 3.1, we present the number of boundary updates which the trial methods require in order to reach the
optimal free boundary I'*. The numerical setting was as follows. We used 80 degrees of freedom to represent the
unknown boundary I’y (i.e., n = 40) and 600 boundary elements per boundary. The trial method was stopped if the
update function satisfied ||67]] < 1078, The outermost boundary corresponds to A = 10 and the innermost boundary
to 4 = 40. As one figures out of the table, the trial method based on the first order update converges only if the
parameter A is small enough (row entitled “1st order update”). Whereas, the trial method based on the second order
update converges for all choices of the parameter A (row entitled “2nd order update). One can therefore notice that
high values of 1 are more computationaly demanding.

The following modification helps to enforce convergence in case of the first order update also for large values of
A. Namely, we introduce an appropriate damping parameter @ > 0 in the update of the radial function: ry.; = ry +adr.
Then, as it is seen in Table 3.1, convergence for all values of A is achieved for the particular choices @ = 0.5 and
a = 0.8 (rows entitled “1st order update with damping”). Nevertheless, we emphasize that there is no systematic rule
of choosing the damping parameter; see Remark 4.3.

It turns out that both, the trial method based on the first order update and the trial method based on the second
order update, converge linearly (see Figure 3.2). However, the trial method based on the second order update is much
more robust unless we use a suitable damping for the trial method based on the first order update. The last annotation
we are going to make is that, for the trial method based on the second order update, we are able to compute with more
degrees of freedom for the representation of r; than for the trial method based on the first order update.

7



parameter A 10 | 15120 25|30 |35 |40

Ist order update 1412023 |31 | - | - | -

Ist order update with damping (@ =0.8) | 18 | 22 | 23 | 22 | 21 | 20 | 19
Ist order update with damping (@ = 0.5) | 38 | 41 | 42 | 41 | 39 | 37 | 36
2nd order update 14|21 |27 (28|29 |29 |31

Table 3.1: Number of iterations of the trial method.

—v— 1st order update rule
—+—2nd order update rule
—a— 1st order with damping 0.5
—e— 1st order with damping 0.8

\
0 5 10 15 20 25 30
iterations

Figure 3.2: Convergence history of the trial method based on the first and second order update equation in case of A = 25.

4. Convergence analysis

4.1. Shape sensitivity analysis

We shall investigate the convergence of the trial method. Following the lines of [26], we explore under which
conditions we gain convergence and which is the attained rate of the convergence. To that end, some results from
shape sensitivity analysis are required.

Given a sufficiently smooth domain perturbation field V : Q — R2 such that V]z = 0, we can define the perturbed
domain Q.[V] by

Q= {(I +eV)(x):x€ Q}

Let v and v, denote the solution of (2.1) with respect to the domains Q and Q.. Then, the local shape derivative
ov = ov[V] of v at Q in the direction V is formally (see [20, 24] for a rigorous derivation) obtained by the pointwise
limit
sv(x) = lim 22X Y® L cona,
-0 E
The local shape derivative measures the sensitivity of the solution to (2.1) when changing the domain € in the direction
V. According to [9, 24], the local shape derivative can be characterized by a boundary value problem.

Lemma 4.1. Given a sufficiently smooth domain perturbation field V : Q — R? such that V|z = 0. Then, the local



shape derivative 6v = 6v[V] of the boundary value problem (2.1) is given as the solution of the problem

Adv =0 in Q
ov=0 onx @1
0ov

. oh
o = dive ((V, Vi) + [Kh +ol f](V, n)  onl.

For more details concerning shape sensitivity analysis, we address the reader to [9, 20, 22, 24].

4.2. Banach'’s fixed point theorem

The procedure of proving higher order convergence is based on Banach’s fixed point theorem. The update rule
(2.2) defines a self-mapping
O:X—>X, re>0r) =r+r(r)

Ser([o, 2n]) will be appropriate. By construction, the

update §r vanishes at the sought free boundary IT'* = {x € R? : x = r*e,}. Hence, the radial function * which
describes the boundary I'* is obviously a fixed point r* = ®(r*) of the mapping ®. In particular, the trial method
corresponds to the fixed point iteration

in a Banach space X. For the present theory, the space X = C

Teet = 1p+0r(n), k=0,1,2,....

According to Banach’s fixed point theorem, there exists a unique solution of this fixed point iteration if the mapping
@ is contractive. The convergence rate

e = r¥llx lim 190 — OO )lIx 6@[r — r*1(r™)lix

lim - = " = lim "
koo |l —r*lly koo e —r¥lx koo llre — r*llx
can be estimated by
. Tra] —17° L 10GE* + gg) — O
fim e = 7l . b < sup 1im 127+ 20 2D G smpg1tlx. 4.2)
koo lrg — r*|lx llgllx=1&—0 € ligllx=1

As firstly stated in [26], we can thus deduce a sufficient condition for the convergence of the trial method. Namely,
if SUPjix=1 l6D[g1(r*)llx < 1, then the trial method converges. If it holds in addition infyg,=1 l6®[g](r*)llx > O, then
the convergence rate is linear.

Theorem 4.2. Consider the trial method based on the first order update equation (2.6). Then, for a given perturbation
q € X, it holds

6v*[gloy*
(o y*){e,,m)’
where y* = r*e, and 6v*[q] denotes the local shape derivative of v* at the optimal boundary T'* into the direction
Voy* =qe.?

6D[gl(r*) = - (4.3)

Proof. Define y; = (r* + gq)e, and let v* and v} denote the solutions to the underlying boundary value problems
(2.1) relative to the domains Q* and Q}, i.e.,

A= f inQ* AV =f i@t
V=g onx, vi=g onX
ov* ov}
- = h F* £ = h F*_
on ont on onte

3The local shape derivative depends only on the boundary perturbation V o y*, see e.g. [9, 24]. Hence, we do not need to specify a particular
extension of ge, into the domain Q*.



Then, in view of the first order update equation (2.6), it holds

* * * *
V- O [e] ’)/
or(r*) = ——4—"— Y 0 and or(r* + eq) = ——=—=
[okiid ov* vz *
oe, de, €

Hence, we obtain

OG* + gq) — PG*)
&
r* +eq+or(r* + eq) — r* — 6r(r*)

S®Lgl(r*) = lim

= lim

-0 &
1 vioy?

= q—llm—a*—.
0 Ve *
£ sﬁ_ero‘yg

On the optimal boundary I'*, the following identities are valid:

*
v oy* =0 and Loy* =hoy*.
on

So, assuming that v} is smoothly extended into the exterior of 2, we conclude

veovs _Veovs—viey + (g =)oy’ ﬂ)q(av* 07*)+6v*[6]]oy*
oe

£ e e »

and
011; % €0 6v*

(o) —>
Oe, e Oe,

Consequently, the derivative of the mapping @ with respect to g can be simplified according to

oy* =(hoy*)e.n). 4.4)

_gqthoy*Xe.m)  ov¥[gloy*  v[gloy*

(hoy*)e,my (hoy*)e,m)  (hoy*)e,n)

5[g1(r*) = q
O

From this result, it is obvious that the question whether the trial method based on the first order update equation is
(locally) converging or not, i.e., whether the number sup;, - [[(6v*[g] o ¥*)/((h o y*){e,, m))|lx is smaller than 1 or
not, can be answered by inspecting the local shape derivative (4.1) at I'*. It satisfies the Neumann boundary condition

aov* oh "
peale [Kh + n +f](V,n) onI’

due to v* = 0 and thus Vrv* = 0 on I'*. Since it in general holds
oh .
[Kh + n + f] # 0 almost everywhere on '™,

the local shape derivative 6v*[¢] is nonzero for all directions 0 # g € X. Therefore, we can only expect linear
convergence of the trial method*, as already observed in the numerical experiments of Subsection 3.4.

Remark 4.3. In case of a damping, the self-mapping @ is modified according to

O:X—>X, re O =r+adr(r).

4Since 6v*[q¢] satisfies the Laplace equation with homogenous boundary condition on Z, the Dirichlet data 6v*[g] o ¥* can only vanish if it
holds 6v*[¢] = 0 in Q*.

10



Therefore, the derivative becomes

V*[gloy*

90lgl(r") = (L = a)g —a g fore

From this expression, it is not obvious how to choose the damping parameter « to ensure that SUPygiy=1 [6@[g](r™)llx <
1.

The update 6r, = 6r2(r) computed from the second order update equation (2.12) coincides with the update dr; =
or1(r) computed from the first order update equation (2.6) except for a higher order term, i.e., 6ry(r) = ori(r) + &(r)
with |le(r)||x = O(||5r1(r)||§). Hence, all the results about the convergence remain essentially valid also in the case of
the trial method based on the second order update equation (2.12).

4.3. Speeding up the convergence

As we have seen before, the computation of the shape derivative §v*[¢] enables the evaluation of the convergence
rate of the method. Hence, a question of great importance arises. What happens if ||(6v*[g] o ¥*)/((h o y*){e,, m))||x =
1? Can we then enforce convergence of the trial method or is it possible to obtain even superlinear convergence?
A superlinearly convergent trial method for Bernoulli’s free boundary problem has been proposed in [12], called the
implicit Neumann method. Results on a quadratically convergent trial method can be found in [25, 26], where the
solution of a Robin boundary value problem was suggested. Unfortunately, this Robin boundary value problem is
only well-posed if the free boundary is convex. In contrast, our objective is to avoid the solution of a boundary value
problem other than (2.1) since this would require the change of the boundary element method.

As a consequence of the observations in the previous subsection, we shall modify the self-mapping ® according
to

O:X->X, re> O =r+a@)or(r). 4.5)

Notice that r* is still a fixed point of ®. We shall now determine the function a(r) : [0, 2] — R such that superlinear
convergence of the method is ensured. In other words, we seek a function a(r) such that

ey —r*llx . @) = @)y .. l6D[rx — r*107)lIx
koo |lre —1*|lx kool —r*lx k—co lrx — r*|lx

=0. (4.6)

Following the same procedure as in the proof of Theorem 4.2, the derivative of the mapping ® with respect to a given
direction g is computed by

a(r* +eq) Vil

O + gq) - OG*) .
=q—lim

& &—0 & vz *
e, ° Ve

5D[q](r*) = lim

Recall that v} o yZ — v* o y* = 0 as € — 0. Thus, similar to the proof of Theorem 4.2, we conclude

a(r* +eq), ., o

(vg o 78)

Vi oYE &m0

(07 0D+t =T ()|

* _ * *
_ a(r* + &q) — a(r*) v oy*)+6v*[q] oy*].
€ de,

In view of (4.4), we finally arrive at

6 * o *
50[g10™*) = ¢ - a(r*)(vavgq# + q).
e ©

*

A superlinearly convergent scheme is derived if we define the function a(r) such that (4.6) is satisfied for the direction
q = limy_,o(ri — r*)/|lre — r*||x provided that this limit exists. Nevertheless, since r* is unknown, ¢ would not be
accessible even in the case of existence. Hence, we choose just ¢ = 1 which corresponds to the radial direction e,.
This leads to ”

de, ° Y
ovie,Joy + % oy
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This expression depends on the actual state v and on its local shape derivative. The local shape derivative 6v[e,] can
be evaluated in complete analogy to the solution of the mixed boundary value problem (4.1) by using the Neumann-
to-Dirichlet map (3.7) as it was described in Section 3. Hence, one additional solve of the Neumann-to-Dirichlet map
(3.7) is necessary per iteration step.

Remark 4.4. The condition ah

he 24 ] <0 onl* 48
is very often required in connection with the convergence theory of free boundary problems, see e.g. [10, 11, 28, 29].
Since it holds also (e,,n) > 0 in case of a starlike domain, the prescribed Neumann data of the local shape derivative
ov[e,] are negative at '™, cf. (4.1). Hence, under the condition (4.8), there holds 6v[e,] < 0 in Q* and thus év[e,] <0

at T'*. As a consequence, the denominator of (a(r*))(s) is negative for all s € [0, 27r]. We finally conclude that a(r) is
well defined at least in a neighbourhood of r* if (4.8) holds.

4.4. Inexact Newton’s method

A quadratically convergent trial method is derived in case of Newton’s method. It is obtained by demanding that
the update function 6r(r) becomes zero:

¥(r) = 6r(r) = 0.

Linearizing the update function around the actual boundary r; gives
!
(i) = W(ri) + 6¥[reer — riel(re) = 0.
Hence, the Newton update g is determined as the solution of the linear equation
o¥gl(re) = =¥ (ro). 4.9)

In complete analogy to the proof of Theorem 4.2, the derivative of the mapping ¥ with respect to a given direction
q is given by

5w[q](r)=£%w:_. 1| veoy, voy]:_(q+5v[q]oy

lim — ) + Elq](r).
N v, av v

=0 & e oy, e, oy e, o

The error term E[q](r) issues from neglecting the derivative of the denominator multiplied with v o y and is of order
O(|l6r(r)lIx) for |lgllx = 1. In particular, it holds E[¢](r*) = 0. Thus, to approximately solve the nonlinear equation

(4.9), we perform the fixed point iteration

0
qrs1 =5r(i’k)—%, ¢=0,1,2,....

2 0
oe,

A good initial guess is given by go = 6r(r;) which would be the first iterate when starting with g_; = 0. Nevertheless,
several of these inner iterations will be performed, each of which requires one solve of the Neumann-to-Dirichlet map
(3.7) to calculate the local shape derivative 6v[g,]. To our experience, we need about 10-20 iterations to compute the
(inexact) Newton update sufficiently accurate.

Remark 4.5. Like for the Newton scheme, the self-mapping which underlies the proposed inexact Newton method
has a vanishing first order derivative at the optimal r*. This implies that the convergence order of the iterative method
is quadratic.

12



Figure 4.1: The solutions of Bernoulli’s free boundary problem for different choices of the parameter A.

4.5. Numerical results

In the last part of this article, we show practically the improvement in the results by two numerical examples. We
consider Poisson’s equation (1.1) with

fy) =5, gy =x>+y>+1, h(x,y)=-Ax>+y> + 1),
where A is a positive constant. The fixed boundary X is chosen to be peanut-shaped with parametrization

0.03 sin(s)(1.25 + cos(2s))

ve 027 = 2, syl = 0.045 cos(s)

The solutions of the free boundary problem are depicted in Figure 4.1.

The numerical setting is as follows. We use 60 degrees of freedom to represent the unknown boundary I'; (i.e.,
n = 30), 500 boundary elements per boundary, and stop the trial method if the update function satisfies ||6r]| < 1078.
The random boundary seen in Figure 4.1 is the initial approximation I'y.

parameter A 40 | 50 | 60 | 70 | 80 | 90

1st order update 31129129 | — | — | -

1st order update with damping (¢ =0.7) | 14 | 17 | 20 | 22 | 23 | 23
improved 1st order update 11 1111|1416 | 17

2nd order update 31129 |28 |27 |26|25

improved 2nd order update 12 | 11 | 13 124 | 26 | 30
inexact Newton’s method 516 |6 |6 | 6|7

Table 4.1: Number of iteration required for convergence.

It is seen in Table 4.1 that the trial method based on the first order update equation does not always converge for
the parameters A under consideration (row entitled “1st order update”). Whereas, the trial method based on the second
order update equation converges always (row entitled “2nd order update”). Notice that a damping of the first order
update by a = 0.7 enforces convergence of the trial method based on the first order update equation (row entitled “1st
order update with damping”). Nevertheless, as long as we add the update 6r with the suggested parameter a(r) from
(4.7), then we see that the trial method is converging for both cases (rows entitled “improved 1st order update” and

13
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Figure 4.2: Convergence history in case of a peanut-shaped interior boundary and A = 50.

“improved 2nd order update”). Indeed, according to Figure 4.2, we obtain a nicely improved (linear) convergence
rate after some burn-in where the solution is too far away from the optimal boundary I'*. Finally, when we apply the
inexact Newton method, we observe a further improvement of the convergence (see the row entitled “inexact Newton’s
method” in Table 4.1). The associated green graph in Figure 4.2 validates the quadratic convergence.

parameter A 10 12| 14 | 16 | 18 | 20

1st order update 18 | 22 |1 27 | 32 | 39 | 48
improved Ist order update | 14 | 18 | 21 | 28 | 35 | 38
2nd order update 18 | 22| 26 | 32 | 38 | 47
improved 2nd order update | 12 | 16 | 22 | 28 | 26 | 44
inexact Newton’s method 7 8 8 9 |10 | 11

Table 4.2: Number of iterations of the trial methods in case of several interior boundaries.

The trial methods we have constructed are also applicable for free boundary problems with several inner bound-
aries. This is demonstrated by an example where the boundary X is composed of the union of four circles as can be
seen in Figure 4.3. We consider the original Bernoulli free boundary problem, that is

fe,» =0, gxy=1, hxy=-2

in (1.1). The extension of the boundary element method introduced in Subsection 3.2 to the new topological config-
uration is straightforward and left to the reader. On each boundary, we apply 400 boundary elements which leads to
2000 boundary elements in all. The free boundary is discretized by 80 degrees of freedom, that is n = 40 in (2.13).
For the initial approximation of the free boundary, we have chosen a circle. The trial method is again stopped if the
update function satisfies ||6r] < 1078.

In Table 4.2, the number of iterations of the different trial methods are listed. Now, the standard trial method
converges for all chosen parameters A (row entitled “1st order update”). The improved 1st order update converges

14



Figure 4.3: Solutions of the free boundary problem in case of several interior boundaries.

slightly faster (row entitled “improved 1st order update”). The same is observed for the related trial methods based on
the second order equation (rows entitled “2nd order update” and “improved 2nd order update”). The fastest method is
again the inexact Newton method (row entitled “inexact Newton’s method”).

5. Conclusions

We considered the numerical solution of generalized Bernoulli free boundary problems. On the actual domain, we
approximated the solution to the boundary value problem which complies the desired Neumann boundary condition
at the free boundary. This approximation is computed by a boundary element method which converges exponentially
in case of smooth data. We then analyzed and applied trial methods which are based on update rules arising from
first and second order Taylor series of the violated Dirichlet boundary condition at the free boundary. It turns out that
an update computation based on a second order Taylor expansion of the Dirichlet data at the actual interface leads
to a much more stable scheme. Moreover, by computing the local shape derivative to the boundary value problem
under consideration, we were able to modify the trial method such that the convergence is improved considerably. In
particular, a Newton-type method yields quadratical convergence rates.
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