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VORWORT

Die vorliegende Dissertationsschrift ist im Wesentlichen eine Zusammenstellung der beiden
verdffentlichten Artikel

- H. Harbrecht and M. Peters. Comparison of fast boundary element methods on
parametric surfaces. Computer Methods in Applied Mechanics and Engineering,
261-262:39-55, 2013.

- H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based
k-th moment analysis of elliptic problems with random diffusion. Journal of
Computational Physics, 252:128-141, 2013.

und der beiden Vorabdrucke

- H. Harbrecht, M. Peters, and M. Siebenmorgen. Efficient approximation of
random fields for numerical applications. Preprint 2014-01, Mathematisches
Institut Universitit Basel, 2014.

- H. Harbrecht, M. Peters, and M. Siebenmorgen. Numerical solution of ellip-
tic diffusion problems on random domains. Preprint 2014-08, Mathematisches
Institut Universitdt Basel, 2014.

Die Resultate dieser Arbeiten sollen hier in einen gemeinsamen Kontext gesetzt werden:
Die numerische Losung von Randwertproblemen auf stochastischen Gebieten. Ich hoffe,
dass sich daraus eine neue Perspektive ergibt und das Ganze zu mehr wird als der Summe
seiner Teile. In diesem Sinne wurden hier einige Details ergédnzt, die in den einzelnen
Arbeiten ausgelassen wurden.
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Chapter I

INTRODUCTION

Various problems in science and engineering can be formulated as boundary value problems
for an unknown function. In general, the numerical simulation is well understood provided
that the input parameters are known exactly. In many applications, however, the input
parameters are not known exactly. Especially, the treatment of uncertainties in the com-
putational domain has become of growing interest, see e.g. [CK07, HSS08b, TX06, XT06].
In this thesis, we consider the elliptic diffusion equation

(1.1) —div (aVu(w)) = f in D(w), u(w)=0on dD(w),

as a model problem where the underlying domain D(w) C R? or respectively its boundary
0D(w) are random. For example, one might think of tolerances in the shape of products
fabricated by line production, or shapes which stem from inverse problems, like e.g. to-
mography. Of course, besides a scalar diffusion coefficient «(x), one could also consider
a diffusion matrix A(x). Even so, the emphasis of our considerations will be laid on the
case a(x) = 1, i.e. the Poisson equation. As we will see, the case of an arbitrary positive
diffusion coefficient and even the case of a symmetric positive diffusion matrix can also be
deduced from the presented framework.

Besides the fictitious domain approach considered in [CKO07], one might essen-
tially distinguish two approaches: the perturbation method and the domain mapping
method, both of which shall be considered in this thesis.

The perturbation method starts with a prescribed perturbation field

V(w): 0Dyes — R?

at the boundary 0D, and uses a shape Taylor expansion with respect to this perturbation
field to represent the solution to the model problem, see e.g. [HL13, HSS08b]. Whereas,
the domain mapping method requires that the perturbation field is also known in the
interior of the domain Dyef, i.e.

V(w): Dyt — RY.

Then, the problem is transformed to the nominal, fixed domain D,.s. This yields a partial
differential equation with a random diffusion matrix and a stochastic right hand side which
are correlated, cf. [CNT13, MNK11, TX06, XT06].

The major drawback of the perturbation method is that it is only feasible for
relatively small perturbations. Thus, in order to treat larger perturbations, the domain
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mapping method is the method of choice. Nevertheless, it might in practice be much easier
to obtain measurements from the outside of a work-piece to estimate the perturbation field
V(w) rather than from its interior. If no information of the vector field inside the domain
is available, it has to be extended appropriately, for example by the Laplacian, as proposed
in [MNK11, TXO06].

We would like to point out that the two approaches are in fact not comparable
at all. In the perturbation method, we use a problem description in terms of Fulerian
coordinates, which means that we keep each point fixed and perturb just the domain’s
boundary. When considering the domain mapping method, we change to Lagrangian
coordinates, which means that we keep track of the movement of each point. The cor-
respondence between those two approaches can be expressed in terms of the local shape
derivative du[V (w)] and the material derivative u[V(w)] of a given function u. They differ
by a transport term, cf. [SZ92]:

u[V(w)] = du[V(w)] + (Vu, V(w)).

For both methods, namely the domain mapping method and the perturbation
method, the starting point for our considerations will be the knowledge of an appropriate
description of the the random field V(w). To that end, we assume that the random vector
field is described in terms of its mean

E[V]: Dret = RY,  E[V](x) = [E[0](x),. .., E[vg](x)]"
and its (matrix valued) covariance function

COVI,I(Xa y) e COVl,d(X7 Y)
Cov[V]: Dyet X Dyep — R¥*? Cov[V](x,y) = : :
Covgi(x,y) -+ Covga(x,y)

For the perturbation method, this representation of the random vector field is already
sufficient. To make the vector field V(w) feasible for the domain mapping method, we
introduce the Karhunen-Loéve expansion.

The Karhunen-Loéve expansion separates the spatial variable x and the stochas-
tic variable w. It is also used to make random diffusion coefficients or random right hand
sides applicable for numerical computations in the stochastic Galerkin or the stochastic
collocation method, see e.g. [BNT07, BTZ04, FST05, GS91, MKO05, SG11] and the ref-
erences therein. Thus, one naturally aims at efficient algorithms for the computation of
the Karhunen-Loéve expansion. In this context, approaches to efficiently compute the
Karhunen-Loeéve expansion (for scalar valued random fields) have been made by means
of the Fast Multipole Method (FMM) based on interpolation (cf. [Gie01]) in [ST06] and
with the aid of H-matrices (cf. [Hac09]) in [EEUO07]. The idea in these works is to provide
a data-sparse representation of the covariance operator which is then used to solve the
related eigen-problem numerically by a Krylov subspace method, cf. [Saa92]. Of course,
another algorithm for the efficient approximation of non-local operators, like the Adaptive
Cross Approzimation (ACA), cf. [Beb00, BRO03], or the Wavelet Galerkin Scheme (WGS),
cf. [DHS06, HS06], can be considered as well for the data sparse representation of the
covariance operator.
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In any case, the major drawback of these approaches is that the number of eigen-
values to be computed has to be known in advance which might be a strong requirement in
practice. To overcome this obstruction, we present an alternative approach based on the
Pivoted Cholesky Decomposition (PCD). The PCD is an established tool in the simulation
of Gaussian processes and and the computation of low-rank approximations to covariance
matrices, see e.g. [RW05, BL77, FWAT09]. It can be interpreted as a single-block ACA
with total pivoting, cf. [HPS12]. Hence, only the main diagonal of the discretized oper-
ator has to be precomputed, which can be performed in essentially, i.e. up to possible
poly-logarithmic terms, linear complexity if the quadrature proposed in [SS97] is applied
to discretize the underlying operator. Then, in each step of the algorithm, the quality of
the approximation to the random field is controllable by means of the trace. If the desired
accuracy is achieved, the algorithm stops with an M-term approximation to the operator.
If M is substantially smaller than the dimension of the ansatz space, we end up with a
remarkable computational speed-up. The related Karhunen-Loéve expansion might then
be computed in a post-processing step. Notice that in this case the PCD yields a full
but relatively small eigen-problem if the operator under consideration exhibits a certain
smoothness.

The outline of this thesis is as follows.

Chapter II provides the theoretical background for the further considerations.
Here, we will introduce tensor products of Hilbert spaces, which are the theoretical foun-
dation for the representation of random fields. Moreover, we define the Karhunen-Loéve
expansion and introduce the Matérn class of covariance functions. These covariance func-
tions will serve as a benchmark for the numerical computations. For the numerical real-
ization of the domain mapping method, we propose in this thesis the use of parametric
finite elements. These are also introduced here.

In Chapter III, we consider the numerical approximation of random fields as
in [HPS14a]. Especially, we transfer here the results provided by this work to the case
of vector valued random fields and show how these fields can be represented by means
of the PCD. Moreover, we present special variants of the ACA and the FMM based on
parametric representations of the underlying geometry as introduced in [HP13]. This
approach yields very efficient variants of the two methods. Furthermore, in order to speed
up the matrix-vector product for the Krylov subspace method, we present a related and
improved H2-matrix, cf. [HB02], version of the FMM.

Now, the following question arises: which approach is more efficient in practice?
We will answer this question by numerically comparing ACA, FMM and the PCD. As
Krylov subspace method for ACA and FMM, we use the Implicit Restarted Arnoldi Method
(IRAM), cf. [LS96, LSY98, Sor92]. For the sake of simplicity, we consider here only scalar
valued covariance functions. Notice that, for matrix valued covariance functions, we would
have to compress each block Cov; ; of the related covariance operator separately for ACA
and FMM, since no global smoothness between two particular blocks is feasible. The PCD
does not suffer from this fact since it is independent of any smoothness assumption. Thus,
it can approximate the whole covariance operator en bloc.

Chapter IV deals with the domain mapping method as presented in [HPS14b].
In [CNT13], it is shown for a specific class of variation fields that the solution to (1.1)
provides analytic regularity with respect to the stochastic parameter. Thus, the random
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solution can be approximated by using the isotropic variant of the stochastic collocation
method from [BNT07]. We will generalize the analysis from [CNT13] to arbitrary domain
perturbation fields which are described by their mean and their covariance. Taking the
Karhunen-Loéve expansion of V(w) as the starting point, we show rates of decay for
the derivatives of the solution to (1.1) with respect to the stochastic parameter. From
this, we immediately derive the tractability of the Quasi-Monte Carlo method based on
the Halton sequence, cf. [Hal60, HPS13b, Nie92]. Furthermore, the decay estimates can
be sharpened in case of univariate derivatives which yields the applicability and related
rates of convergence for the anisotropic variant of the stochastic collocation method from
[BNTO7].

Employing parametric finite elements, we are able to approximate the mean and
the variance of the solution to (1.1) by computing each sample on the particular realization
D(w;) = V(wj, Dyer) of the random domain rather than on the reference domain Dyes. This
yields a non-intrusive approach to solve the problem under consideration. Actually, any
available finite element solver can be employed to compute the particular samples. Using
this approach rather than mapping the diffusion problem always to the reference domain,
we can easily treat also stochastic interface problems, cf. [HL13].

Chapter V treats the perturbation method for the numerical approximation of the
solution to (1.1). Having the mean and the covariance of the random vector field at hand,
we aim at the computation of the corresponding statistics of the unknown random solution.
Making use of sensitivity analysis, we linearize the solution’s nonlinear dependence on
the random vector field V(w). Based on this, we derive deterministic equations, which
compute, to leading order, the mean field and the covariance. In particular, the covariance
solves a tensor product boundary value problem on the product domain Dyt X Dies.

In difference to previous works, we do not explicitly use wavelets [HSS08b, ST03a,
ST03b] or multilevel frames [Har10b, HSS08a] for the discretization in a sparse tensor prod-
uct space. Instead, we define the complement spaces which enter the sparse tensor product
construction by Galerkin projections. The Galerkin discretization leads then to a system
of linear equations which decouples into sub-problems with respect to full tensor prod-
uct spaces of small size. These sub-problems can be solved by standard multilevel finite
element methods. In our particular realization, we need only the access to the stiffness ma-
trix, the BPX preconditioner (cf. [BPX90]) and the sparse grid interpolant (cf. [BGO04]) of
the two-point correlation function of the random vector field under consideration. In this
sense, our approach can be considered to be weakly intrusive. The resulting representation
of the covariance is known as the combination technique [GSZ92]. Nevertheless, in differ-
ence to [GSZ92, PZ99, Reil3, XZ04], this representation is a consequence of the Galerkin
method in the sparse tensor product space and is not an additional approximation step.

Throughout this thesis, in order to avoid the repeated use of generic but un-
specified constants, by C < D we mean that C can be bounded by a multiple of D,
independently of parameters which C' and D may depend on. Obviously, C' 2 D is defined
as D<SC,andC=<DasC < Dand C2ZD.
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PRELIMINARIES

1. Tensor products of Hilbert spaces

Tensor products have been considered in the context of Banach spaces at first in [Sch50].
The construction presented there extends to the tensor product of Hilbert spaces. There
exists a close connection between tensor products of Hilbert spaces, Hilbert-Schmidt op-
erators and trace-class operators, cf. [KR86, Sch50, Sch60]. This connection is later on
exploited in order to compute separable expansions of random vector fields. Thus, we
think it is convenient to outline here in brief the construction of tensor products of Hilbert
spaces. We follow the representation in [KR86], where the tensor product of Hilbert
spaces is defined by its universal property. For more details and the related proofs, we
refer the reader to [KR86]. In the sequel, let (27, (-,")2), (#,(-,")#) and (Z, ("))
denote separable Hilbert spaces over the field of real numbers R.

(1.1) Definition. The bounded, bilinear functional f: 2" x % — R is called Hilbert-
Schmidt functional if

(12) Y Iflen )l < o0
i

holds for two orthonormal bases {¢;}; C 2 and {¢;}; C #.

It can be shown that if (1.2) is satisfied for one pair of orthonormal bases
{pi}i € Z and {¢;}; C %, it holds for all pairs of orthonormal basis, cf. [KR86, Propo-
sition 2.6.1]. Moreover, the Hilbert-Schmidt functionals on 2" x # form itself a Hilbert
space.

(1.3) Theorem. The set HSF of all Hilbert-Schmidt functionals on 2" x # forms a
Hilbert space with respect to the linear structure

(afl + ﬁf?)(‘rv y) = O‘fl(x7y) + 5f2($’y)

for any two Hilbert-Schmidt functionals fi, fo € H6F and «, 5 € R. The related inner
product is given by

(f1, f2)ses = Z Z J1(0i, V) f2(@i, 05)
i
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for an arbitrary pair of orthonormal bases {p;}; C 2 and {¢;}; C #. The sum is
absolutely convergent and independent of the choice of the orthonormal bases. Moreover,
the related norm is given by || f|lses := V(f, f)ses. Finally, for each u € 2" and v € ¥,
it holds

Jup(,y) = (2,u) 2 (y,v)5 € HET

and the set {f,, 4, }ij forms an orthonormal basis of H&F.

Proof. For the proof, see [KR86, Proposition 2.6.2]. O

Figure I1.1: Universal property of the tensor product of Hilbert spaces.

(1.4) Definition. The bounded, bilinear mapping L: 2" x ¥ — 2 is called weak
Hilbert-Schmidt mapping if

L.(z,y) = (L(x,y),2)y forze X,ye¥

defines for each z € £ a Hilbert-Schmidt functional on 2" x #". The norm ||L|| of L is
the smallest value ¢ € R such that ||L;| ez < c||z|| 2.

With this definition at hand, the tensor product 2 ® % of the Hilbert spaces
Z and % may be characterized as follows.

(1.5) Theorem. There exists a Hilbert space (57, (-, ) ») and a weak Hilbert-Schmidt
mapping p: Z° x ¥ — J such that for an arbitrary weak Hilbert-Schmidt mapping
L: & X% — % there exists a unique, bounded linear mapping 7': 5 — 2 with L =Tp
and ||T'|| = ||L||. The space . and the mapping p are uniquely determined up to an
isometric isomorphism. Moreover, it holds

(p(x1,91), p(w2,92)) ,p = (x1,22) 2 (Y1, y2) 2

for any x1,29 € 2, y1,92 € #. If {p;i}s € 2 and {¢;}; C ¥ are two orthonormal bases,
the set {p(pi, ;) }:,; forms an orthonormal basis of .7 and the operator norm of p satisfies

Ipll = 1.

Proof. For a proof of this statement, see [KR86, Proposition 2.6.4]. o
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(1.6) Remark. In the sequel, we set 2" ® % := . The elements z ®y := p(z,y) for
xe X,ye are called dyads. Their finite sums ) ;" ; x; ® y; form an everywhere dense
subspace of 2" ® %, cf. [KR86, Proposition 2.6.6]. In fact, the space

n
Ay ={ S mou: (mh € £ {nYi € #ine N}
i=1
corresponds to the algebraic tensor product of 2~ and %, cf. [KR86, Remark 2.6.7]. Thus,
we can consider 2" ®% as the completion of the space %) endowed with the inner product
(1 @ Y1,22 @ Y2) . = (x1,22) 27 (y1,y2) defined for dyads and extended by linearity to

4. This definition of the tensor product of Hilbert spaces conforms to the construction
in [LC85].

Next, we establish the connection between the tensor product of Hilbert spaces
and the class of Hilbert-Schmidt operators. To that end, we associate the bilinear form

br: Zx% =R, br(z,y) =Tz, y)»

to a given bounded linear operator T': 2~ — % . Obviously, the map T +— by is one-to-one
from the space of bounded linear operators to the bounded bilinear functionals.

(1.7) Definition. The bounded linear operator T': & — % is called Hilbert-Schmidt
operator if by is a Hilbert-Schmidt functional. The linear space of Hilbert-Schmidt oper-
ators is denoted by HSO.

Due to the mapping T' — br, the Hilbert space structure on HSF directly trans-
fers to HGSO and yields the inner product

(9, T)geo = Z Z(S% Vi) (Toi, Vi)

L)

for any two orthonormal bases {y;}; C 2 and {¢;}; C #. The related norm is denoted
by [|T]seo = (T, T)ss0- The definition of the inner product is equivalent to

(1.8) (S, T)seo = > _(S¢i. Tpi)w

1

by Parseval’s identity. Notice that ||T||sso < oo already implies the boundedness of T'

in the operator norm. This is easily seen by completing a given function ¢ € 2" with

ll¢ll2- = 1 to an orthogonal basis of 2" and then observing that [|T¢|ls < || T|lsso-
Now, we have the following identification of the tensor product of Hilbert spaces.

(1.9) Theorem. For each u € 2" and v € %/, the operator
Tyuw: & =%, Ty,v:=(x,u)gv forxe,

defines a Hilbert-Schmidt operator. Moreover, there exists an isometric isomorphism U
from 2" ® % to HBO such that U(u ® v) =Ty, for any u € & and v € #.
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Proof. For a proof of this result, see [KR86, Proposition 2.6.9]. o

The theorem suggests that we may consider expressions of the form z = >, z; ®y; €
to define the operators

n

T.: 2 =%, Tu:= Z(u,xz)gfyz e forue X

i=1
which are at most of rank n. Extension by continuity, i.e. setting T, = lim,, e g, 20—z T2
for z € 2%\ 7, then yields, together with the isometric isomorphism U, the expression
T, for an arbitrary z € 2" ® #. More precisely, for z = ;.7 x; ® y;, where Z C N, and
for an arbitrary orthonormal basis {p;}; C 2~ we have that

(T Tseo =3 (S lenas)ru X (owanvu)

T \jez ket %
(1.10) =Y 3 (i) (0 an) o (Wi, yi)w
i jel kel
=3 (@, z0) 2 Wi ve)o = 1212 ew
jeT keT

by Parseval’s identity.
We complete this section by showing that each element z € 2" ® % provides an
orthogonal representation of the form

(L11) 2= oipi ®

i€l
with two orthonormal families {p;}icz C 2 and {¢;}icr C # and non-negative real
numbers {o; };ez. To that end, we consider the operators

T, Z -2 and T.70:% - %,
where 17 : % — 2 denotes the Hilbert space adjoint of T, i.e.
Tiv=> (v,y;)wz; forallved.
€T
The set of all products S*T of two operators S, T € HSO form a subspace of the Hilbert-
Schmidt operators, cf. [Sch60].

(1.12)  Definition. The products of two operators in HSO form the trace-class. In
particular, an operator T': Z° — 2 is in the trace-class if

TeT =Y (Tpi, i) o < 00

)

for an arbitrary orthonormal basis {p;}; C 2.
By the definition of the trace, we have for A = S*T with S, T: 2" — %

(1.13) TrA= Z(A%,%)&V = (Tpi, Spi) = (S, T)seo,

7

cf. [Sch60, Remark 1].
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(1.14) Remark. The class of Hilbert-Schmidt operators contains those operators for
which the sequence of eigenvalues satisfy {\;}ier € ¢?(Z), whereas the eigenvalues of
trace-class operators satisfy {\;}iez € £1(Z).

The operator T, is the norm limit of finite rank operators and thus compact,
cf. [Alt07, Lemma 8.2]. Hence, the operators 17T, and 1,7} are also compact and addi-
tionally symmetric. For example, we have

(T;Tzul, ’LLQ)%' = (Tzul, TZUQ)WJ = (ul, T;TZUQ)%

Consequently, the spectral theorem for compact and normal operators, cf. [A1t07, Theorem
10.12], applies to T T, and T,T7. The spectral theorem reads as follows.

(1.15) Theorem. Let T: 2" — 2 be a symmetric and compact operator. Then,
there exists an orthonormal family {y;}icz with Z C N and {\;}iez C R\ {0} such that
Typ; = A\jp; for all ¢ € Z. Furthermore, it holds

Tu = Z Xi(u, i) 2pi forallu e 2.
€L

Proof. For a proof of this theorem, we refer to [Alt07, Theorem 10.12]. 0

In the following, we assume that the index set Z provides a meaningful numbering,
i.e. we assume that either Z = {1,2,...,n} for some n € Nor Z =N\ {0}.
For the eigenvalues of T77T, it holds {\;}iez € (0,00) due to

0 < || Toullyy = (Tou, Tou)y = (T3 Tou,u) o for all u € 2.

The same argumentation implies the positivity of the eigenvalues of T,T7. Especially, we
have the following connection between the eigen-pairs of 17,7, and T,T7.

(1.16) Lemma. Let the set {(\i, ¢;)}icz denote the eigen-pairs of 7;T,. Then, it holds
that {(\i, 1/vANiT20;) }Z <7 are precisely the eigen-pairs of T,T7.

Proof. Let (A, ¢;) for i € T be an eigen-pair of T7T,. It holds
T.TI(Toi) = To(T7To0i) = ATz

Moreover, we have for another eigenfunction 7% ¢; that
(Topis Topj)ar = (T2 Topi, 05) 27 = Gij i

This shows that (A\;, 1/v/A;Ts¢;) is an eigen-pair T,T7 for every eigen-pair (\;, ;) of TZT.
Interchanging the roles of 77T, and 1,77 in the preceding argumentation yields that the
cardinality of the set of eigen-pairs for both operators coincides. O

We have

1€L i€
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which is easily seen by completing the eigenfunctions {p;};c7 to an orthonormal basis of
Z". Since the eigenvalues of T;T, and 7,717 coincide, it holds

(1.17) TeTIT. = T .17 = (T5, T ge0 = (12, Tx)seo = 12| 2 ew

due to the isometry (1.10). This relationship will serve later on as a measure of the
approximation error for random fields.

Next, the following theorem gives us that each z € 2 ® # exhibits a decompo-
sition similar to (1.11).

(1.18) Theorem. Every z € 2" ® # can be represented in the form
2= oipi @1,
€L
where 0; = /A, i = 1/v/AiT.p; and {(\;, ¢;) }iez corresponds to the eigen-pairs of T7T.

Proof. Due to the equivalence of the spaces HSO and 2" ® %/, cf. Theorem (1.9), it suffices
to show that the operators defined by z = } ;.7 ; ® y; and the orthogonal representa-
tion Z = Y ,c7 05 ® 1; coincide. We complete the eigenfunctions {¢;}icz of T, to an
orthonormal basis of Z". Then, it holds

1
Trpj = Z Vi, i) —=Topi =0 forj ¢TI
€T ‘/)‘»2

and

1 .

Ts0j =Y Vil @i)ﬁTz()@i =T.p; forjel.
i€l g

It remains to show that T.¢; = 0 for all p; ¢ Z. To that end, assume that T.p; # 0 for

some j & Z. Therefore, we have 0 < ||Ty¢;||3, = (T:T.¢j, ;). Hence,

0#TrTopj = > Nile), 00)ei,
1€T
which is a contradiction to the orthogonality of the basis {¢;} C 2 . O

(1.19) Remark. Without loss of generality, we assume that the singular values are
sorted in decreasing order, i.e. o1 > o2 > .... The representation (1.11) is unique up to
isometries of the eigen-spaces. The representation becomes unique if we prescribe either
the orthonormal basis in {¢;}; in 2" or the orthonormal basis {1;}; in %, see also [ST06].

This statement is seen as follows. Without loss of generality, we prescribe the
orthonormal basis {¢;}; in #. Now, let z = >, z; ® ¢, = >, &; ® ;. Thus, it holds
0=>,(x; — %) ®; and therefore

0= (Z(xz — Z;) ® i, Z(ﬂﬁz —I) ® %‘)

7 X RY

- ZZ((:CZ — &), (xi — i) o (Yi, ) = Z 2 — ||

This shows x; = Z; for all 7.



Section 2. Random fields 19

(1.20) Corollary. Let o1 > o2 > ... denote the singular values of z € 2" ® #. Then,
we have that ||T;|| = o1 for the operator norm of the associated Hilbert-Schmidt operator
T,.

Proof. 1t holds ||T;| = supj , =1 [[T>ullz. Since the preimage of T is spanned by the
eigenfunctions {¢;}icr of T T, it suffices to consider linear combinations of these func-
tions. Let u = 3,c7 aip; with 3.7 @ = 1. Then we have

T.> i > aiT.p;

i€l 1€T

2
= sup
7 lale=1

2

= sup Zafa?:a%
7 lalle=1c7 O

IT:|? = sup

el 2 =1

2. Random fields

The natural environment for the consideration of random fields are the so called Lebesgue-
Bochner spaces. These spaces quantify the integrability of Banach space valued functions
and have originally been introduced in [Boc33]. In this section, we want to provide some
facts and results on Lebesgue-Bochner spaces. For more details on this topic, we refer to
the works [AE08, Alt07, DU77, HP57, LC85]. Especially in [AE08, Alt07], the Lebesgue
spaces LP are defined in a rather abstract fashion for Banach space valued functions and
thus coincide with our conception of Lebesgue-Bochner spaces. We will collect here results
from these works but directly modify them for probability spaces. In the sequel, we will
consider both, random scalar fields and random vector fields. Thus, in this section, we
will introduce the underlying spaces for both cases.

Let (2, F,P) denote a complete and separable probability space with o-algebra
F and probability measure P. Here, complete means that F contains all P-null sets. The
separability is e.g. obtained if F is countably generated, cf. [Hal76, Theorem 40.B].

Furthermore, let (4, ||-||%) be a Banach space over R. Its Borel o-algebra, which
is defined with respect to the open sets of the metric induced by || - ||, is called B. We
start by specifying measurability for functions u: Q — 4.

(2.1) Definition. A function u: Q — 2 is called strongly P-measurable if for any
O € B it holds that u=1(0) € F and if there exists a P-null set N such that u(Q\ N) is
separable.

Notice that the second part of the definition is automatically satisfied if & is a separable
space itself. Equivalently to the definition, there exists a sequence of simple functions
Up = S04 T;XA,, Where x4, is the characteristic function of the set A; := u,,*(z;), such
that

limy, o0 ||tn(w, -) — u(w, )|z =0 P-almost everywhere,

cf. [LC85, Lemmata 10.1, 10.3, 10.5]. The following lemma indicates that ||u(w, )| % is a
random variable if u: Q — £ is strongly P-measurable.

(2.2) Lemma. Let u: Q — % be strongly P-measurable. Then, [|u(w,-)||z: 2 — R is
a measurable function in the classical sense.
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Proof. For a proof of this result, see [HP57, Theorem 3.5.2]. 0

Thus, we may now define the Lebesgue-Bochner spaces as follows.

(2.3) Definition. For p > 0, the Lebesgue-Bochner space LE(Q; %) consists of all
equivalence classes of strongly P-measurable maps u: ) — % with finite norm

v 1/p
([ et a2) <o

esssup [u(w, )l|la  p=oc.
weN

24)  ullze =

Here, [, -dP denotes the standard integral for R-valued measurable maps. Furthermore,
u,v: 8 — 2 are identified if they coincide P-almost everywhere, i.e. if P[{u # v}] = 0.

The spaces LE(Q; A) are for all p € [1,00] complete with respect to the norm defined in
(2.4) and thus Banach spaces, see e.g. [AE08] for a proof of this statement. Notice that
that L3(€2) is separable if (2, F,P) is separable, cf. [Hal76, Exercise 43.(1)]. Thus, if p = 2
and B = (A, (-,")r) is a separable Hilbert spaces, then L%({;7#) is also a separable
Hilbert space equipped with the inner product

(uvv)L%(Q;%) = /Q (u(w? ), v(w, -))%dP,

In particular, it holds L&(Q; 5#) = LE(Q) @ S, cf. [RS80, Theorem 1.10].
(2.5) Definition. A strongly P-measurable map u: Q — A is Bochner integrable if

there exists a sequence of simple functions {uy, }, such that

n—oo

lim [ |up(w,-) —u(w,-)||zdP =0.
Q
In this case, we define for a set A € F the Bochner integral

/ u(w, )dP = lim [ up(w,-)dP.
A

n—o0 A

Especially for p = 1, the space L}(€2; %) coincides with the space of Bochner
integrable functions, cf. [DU77, Theorem 2.4]. We summarize some important facts about
the Bochner integral.

(2.6) Theorem.
(a) The Bochner integral [, -dP: Q — 2 is a linear map.
(b) For u € LL(Q; %) it holds || [, u(w,-) dP

2 < [4llu(w, )|z dP for all A€ F.

(c) Let {up}, be a sequence of Bochner integrable functions with lim, o uy = u in
P-measure and g a Lebesgue integrable function on €2 such that ||u,| < g P-almost
everywhere. Then, u is Bochner integrable and lim, o [4 uy dP = [, udP for
all A € F. Moreover, it holds lim,_, [q [|[un — ul|zdP = 0.
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(d) Let T: U — € be a closed linear operator for some Banach space ¢ and U C 4.
If uw and Tu are Bochner integrable, then T'( [, udP) = [, TudP for all A € F.

Proof. The statement (a) is shown in [HP57, Theorem 3.7.5]. For a proof of (b), see
[HP57, Theorem 3.7.6]. The result (c) is proven in [HP57, Theorem 3.7.9] and finally, a
proof of (d) is given by [HP57, Theorem 3.7.12]. O

Additionally, we have an analogue to Fubini’s theorem in case of Bochner inte-
grals.

(2.7) Theorem. Let (Qq, F1, 1) and (Qg, Fa, 2) be two o-finite measure spaces and

u € L}“X 1o (1 X Q23 B), where 1 x po denotes the product measure on the product o-

algebra F1 x Fo. Then, u(wr,-): Q2 — 2 is Bochner integrable for pi-almost every wy € Q4
and u(-,we): 1 — X is Bochner integrable for ps-almost every wo € Q. Furthermore, it
holds

/ wd(py X p2) :/ / u(wy, wa) dpa dpg :/ / u(wi, wa2) dpa dpe.
QlXQQ Ql QQ Q2 Q1

Proof. A proof of this theorem, can be found in e.g. [HP57, Theorem 3.7.13]. o

Consider a sufficiently smooth domain D C R% and let & = L?(D;R%), where we equip
L?*(D;R%) = [L%(D)]% with the inner product

(W, V) p2(praz) = / (u,v)dx for all u,v € L*(D;R%).
’ D

Here, (-,-) denotes the canonical inner product in R? . In the case of random scalar fields,
we have do = 1. For random vector fields, we will especially consider d; = do = d. There
exists the following relationship between the spaces under consideration. It holds

L3(Q) ® L*(D;R%) = L2(Q; L2(D;R%)) = L3, (2 x D;R®),

where each relation holds by an isometric isomorphism, cf. [LC85, Theorem 1.39].
Now, let u € L2(Q; L*(D;R%)) be represented according to

u(w,x) = [ug(w,x),...,uq(w,x)]T.
Then, we can define the mean of u in terms of the Bochner integral

E[u](x) := /Q u(w, x) dP(Q) € L*(D; R%).

Especially, it holds E[u;](x) = [, ui(w,x) dP(2). By identifying u with its representative
in L3(Q) ® L*(D;R%), this definition coincides with E[u] = T,1. With respect to the
centered random field

up = u — E[u],
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we introduce the (matrix valued) covariance function of u according to

da

Cov[u](x,y) = [Cov; ;(x,¥)]i5-1

with
(2.8) Cov; j(x,y) = Elug,i(w, x)ug j(w,y)].

The boundedness of Cov; j(x,y) in L?*(D x D) follows from the Cauchy-Schwarz inequality
and the application of Fubini’s theorem. Since Cov; j(x,y) € L?(Dx D) holds, we conclude
Cov[u)(x,y) € L*(D x D; R%*42) where we consider the space R%*92 to be endowed with
the inner product

da
A:B:= Z ai,jbi,j for A,B € RdedQ with A = [am]ﬁ%:l, B = [bi,j]g’?:y
i,7=1

The related norm ||A||p := VA : A is the Frobenius norm. The inner product particularly
induces the inner product on L?(D x D;R%*92) given by

(A, B) 2(px piriaxds) = / / A :Bdxdy for A,B ¢ L*(D x D;R%*%),
’ D JD

By identifying ug with its representative in L2(2) ® L?(D;R92), we observe that
Cov[u] € L?(D;R%) ®@ L?(D;R®) is exactly the element corresponding to the trace-class
operator Ty,Ty;,. More precisely, for the orthogonal decomposition of ug in accordance
with (1.11), i.e. ug = 3,07 0 Xi ® ¢p;, where {X; }iez C LE(Q) and {@;}rer C L?(D;R%2)
are orthonormal families, it holds that

Tu T3, v= Z gi (Z (v, 4Pj)L2(D;Rdz)Xja Xi> Pi= Z aF (v, ‘Pi)LQ(D;Rdz)%-
i€ NjeT LZ(Q) i€l

This implies the identity
Covlu] =) alp; @ ¢;.
i€l

For limy_,x Cov[u](x,y), we especially obtain the variance
Vi) = [ wdw,%) dP(©) - (Elu(x)” € LD R™).
Q

Finally, in order to approximate random fields in L3(Q; L?(D;R%)), we have to
provide additional regularity with respect to the spatial variable x in terms of Sobolev
smoothness. To that end, we define the Sobolev spaces H?(D; R%) := [H9(D)]% for ¢ > 0
with respect to the inner product

(uvw)HQ(D;Rdz) = Z D<aau76aw> dx
lal<q

for ¢ € N and

aa
(W, W) oDz = (0 W) o) (D) T D // ”
jal=lg) /2P X =yl

u(x) — 9°w(y)ll3
g1+2s dx dy

for ¢ = |q] + s with s € (0,1). Tts dual space with respect to the L?-duality pairing is
denoted as H~9(D;R%).
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(2.9) Remark. The sequence of inclusions HY(D;R®) ¢ L*(D;R®) ¢ [HY(D;R%)]’
forms a Gelfand triple, cf. [W1lo82, Definition 17.1]. The completion of L?(D;R%) with
respect to the norm

(Va u)L2 D:Rd2
”u”H—q(D;Rdz) = sup ¥, ue LQ(D;RdQ),

0AVEHYI(D;RY2) ”VHH‘J(D;RdQ)

is H~9(D;R%) and it holds [H?(D;R%)]" = H~9(D;R®) due to [W1o82, Theorem 17.3].
Especially, (-, -)LQ(D;R@) extends to a bilinear form on H?(D;R%) x H~4(D;R%). In the
sequel, this bilinear form will also be denoted by (-, ") 12(p.rdz)-

Now, in particular, we obtain a generalized Cauchy-Schwarz inequality.

(2.10) Lemma. Let u € HY(D;R%) and f € H~9(D;R%). Then, there holds
(u, f)]ﬁ(D;Rdz) < HuHHq(D;Rdz)HfHﬁ—q(D;Rdz)
Proof. The case u = 0 is trivial. Hence let u # 0. We conclude

(W, £) 12 p.ret2)
u,f . = Al ga(p: Tal
(W, £) 12(piaz) = [ull oo Il o (pyra2

(v, f)L?(D;Rdz)

< HuHHq(D;Rdz) sup
0#£veH4(D;R%2) HV”Hq(D;Rdz)
= HuHHQ(D;Rd?)HfHH*Q(D;Rdz)' O
3. The Karhunen-Loéve expansion

In order to make the random (vector-) field u(w,x) € L2(Q; L?(D;R%)) feasible for nu-
merical computations, we consider here its Karhunen-Loéve expansion, cf. [Loe77]. This
representation is easily obtained with the machinery provided in the first section. Since
we may identify L3(; L?(D;R%)) = [2(Q) ® L?*(D;R%), we already know that ug(w, x)
exhibits the orthogonal decomposition

Ug = ZU’LX’L ® Pis
1€T
where {@; }iczr C L?(D;R%) and {X; };ez C L2(2) are orthonormal families. With respect
to the canonical map

L3(Q) ® L*(D;R™) — LE(Q; L*(D;R™)), X @ ¢ = X (w)p(x),
we end up with the following

(3.1) Definition. Let u(w,x) be a vector field in L2(Q; L?(D;R%)). The expansion

u(w, x) = E[u](x) + Y 0iXi(w)e;(x)
€L

is called Karhunen-Loéve expansion of u(w,x).
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(3.2) Remark. The knowledge of the random vector field u(w, x) is sufficient to com-
pute the related Karhunen-Loeve expansion. This is achieved in complete analogy to the
construction of the representation (1.11), i.e. by solving the eigenvalue problem for the
trace-class operator Ty Ty, associated with up = u — E[u]. In practice, however, the
random field is often only provided in terms of its (empirical) mean E[u] and its (em-
pirical) covariance function Cov[u]. In this case, the orthogonal basis in L3((2) is only
determined up to isometry since Tcoyju) = TugTy, = (TueU)(Tu,U)* for any isometry
U: L3(Q) — LZ(Q), see also Remark (1.19). In this situation, the law of the random
variables {X;};ez has to be approximated appropriately, e.g. by a mazimum likelihood
estimate, cf. [STO06].

We impose some common assumptions on the properties of the Karhunen-Loéve
expansion.

(3.3) Assumption.

(1) The random variables {X;}iez are centered, i.e. E[X;] = 0, and take values in
[—1,1] for all ¢ € 7 and almost every w € §.

(2) The random variables {X;};ez are independent and identically distributed.

(3) The sequence
(3.4) {riki = {HUz“Pi||W1,°°(D;Rd2)}i

is at least in £!(Z). We denote its norm by

(3.5) Cy 1= Z%.

i€

Here, and in the following, we shall equip the space Wl’oo(D;RdQ) with the
equivalent norm

HVHWLOO(D;]R@) = mmax {HVHLOO(D;Rd2)a HV/HLOO(D;Rd2Xd2)}7

where v/ denotes the Jacobian of v and

IVl oo (Do x ) 1= ess sup [/ (x)]|2-
xeD
In the last expression, || - ||2 corresponds to the usual 2-norm of matrices, i.e. the largest
singular value. Notice that this norm is equivalent to the Frobenius norm defined earlier.
Nevertheless, in the subsequent error estimates, the 2-norm provides smaller constants.
Regard moreover that the norm || - || (Dyer;RA2%d2) 18 consistent in the following way: for

v € L (Dyer; R%2) and M € L®(Dyer; R%2%%2) it holds

(36) ||MV||LO°(Dref§Rd2) < ||M”L°O(Dref§Rd2Xd2) ”VHLOO(Dref?RdQ) :
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4. The Matérn class of covariance functions

Later on, for our numerical experiments, we assume that the random (vector-) field u(w, x)
is described in terms of its mean E[u] and its covariance function Cov]u]. Thus, we have
especially to prescribe the scalar valued covariance functions Cov;; for ¢,7 = 1,...,da,
cf. (2.8). To that end, we consider a special class of covariance functions, namely the
Matérn class, cf. [Mat86]. They are very often used as covariance functions for the defi-
nition of stochastic fields in applications. In accordance with [RWO05], they are defined as
follows.

(4.1) Definition. Let r := ||x — y||2 and ¢ € (0,00). Then, the Matérn covariance
function of order v > 0 is given by

o i () R ()

Here, I' denotes the gamma function and K, denotes the modified Bessel function of the
second kind of order v, cf. [AS64].

The expression (4.2) simplifies if v = p 4+ 1/2 with p € N. In this case, [RWO05]
provides

i oo ) B )

—il(p

Especially, we deduce

1 r
V= 55 kl/?(’r) = exp ( - E),
3 V3r 3r
V=g ko (r) = (1+ £> eXP<— €>,
) Vo 5r? or
s V=g, k5/2(r):<1+ 7 +3€2)exp(—£),
. V_z ] (T)_(1+\/7T+14r2+49\/7r3)ex (77“)
— A= ¢ s T e )P )
-2 ()_<1+3r+27r2+18r3+27r4) (_3r>
T = ¢ T T T )P\ T )
7‘2
v = 00, k:oo(r):exp<—2£2>.

A visualization of these kernels for different values of v is given in Figure I1.2. Obviously,

the Sobolev smoothness of the kernel &, is controlled by the smoothness parameter v.
For increasing values of v, the respective kernel function k, exhibits successively

more regularity. Especially, the eigenvalues of the Matérn correlation kernels decay like

(4.4) Ay < Om~ )
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T
—Matern-3/2

Matern-5/2 .
—Matern-7/2
—Matern-9/2
—Matern—co

0
x-value

Figure I1.2: Visualization of k,(|z|) for different values of the smoothness parameter v.

for some C > 0, cf. [GKNT13]. Thus, since the decay of the covariance operator’s eigen-
values is known in advance, they are very well suited for numerical examples.

Obviously, the Matérn kernels provide rotational symmetry, i.e. they are invariant
under isometries of D, since they are only dependent on the particular distance of the
points x and y. Thus, we obtain analytic expressions for the eigenvalues of the underlying
Hilbert-Schmidt operators if we choose D = S%! to be the unit sphere in R?.  More
precisely, we may apply the Funk-Hecke formula, cf. [Ml98], which reads as follows.

(4.5) Theorem. Let x € S¥~! and f € C([-1,1]), then it holds

Lo FETYYauly) doy = AYou )
with

1
A = [S92 / Pald (1~ dt.

Here, Y,, corresponds to a spherical harmonic of order m and P,,(d;t) denotes the poly-

nomial
Lm/2] i 2\iym—2i
—1 -1 1-—
Py (d;t) == m!F<d> Z () , ( t ) t. -
2 i—0 4 Z'(m — 27,)'F(Z =+ T)
Proof. A proof of this theorem can be found in [Miil98]. 0

Especially, for the case d = 3, the polynomials P,,(3;t) correspond to the Leg-
endre polynomials, cf. [Miil98]. Moreover, the Funk-Hecke formula applies to all kernel
functions on S~ which depend only on the Euclidean distance r(x,y) = ||x — y||2. This
is easily seen due to

r(x,y) =r(xTy) = /2 — 2xTy forall x,y € S*°1.

Figure I1.3 shows the distribution of the Matérn-kernels’ eigenvalues for the pa-
rameters v = 3/2,5/2,7/2,9/2 on S up to an order of magnitude of 1071 for the corre-
lation length ¢ = 1. The constant C is estimated by a least-square fit for the ratio of the



Section 5. Parametric representation of geometries 27

T
T S B N |
Y * Matern-3/2 — fit (C=97.96)
B Matern-5/2 fit (C=1760.31)

" = Matern-7/2 — fit (C=40468.62)
10° - s L= Matern-9/2 — fit (C=1167352.98)|

Figure I1.3: Decay of the eigenvalues with related fits.

rate given by formula (4.4) for C' = 1 and the exact eigenvalues given by Theorem (4.5).
The obtained values of C' for each kernel under consideration are denoted in the legend
of Figure I1.3. The plot indicates, that the fitted rates perfectly match the asymptotic
behavior of the eigenvalues.

Finally, we remark that for continuous covariance functions, we have especially

(4.6)  TrTcovu =/ Covlu](x, x) dx,
D

which is a consequence of Mercer’s theorem, cf. [Mer09]. Hence, in case of the Matérn
covariance functions, we can easily compute the trace related to the covariance operator
by computing the measure of D, since

/Dk,,(]|x—x]|2)dx=/Dky(O)dx:/Dldx.

5. Parametric representation of geometries

Figure I1.4: Different parametric geometries.

In this section and the following one, we introduce a parametric representation
for geometries and the related finite element spaces. Since we are considering both, the
traditional finite element method for the discretization of partial differential equations on
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the domain D C R? (of interest to us, are the cases d = 2 and d = 3) and techniques
associated to the boundary element method, we will present here the underlying framework
for both of them. To that end, we shall consider here both, triangular and quadrangular
meshes. In particular, the special variant of the Fast Multipole Method introduced later
on heavily relies on quadrangular meshes. We remark that of course any quadrangular
mesh can be transformed into a triangular mesh by subdividing each quadrangular element
along a diagonal into two triangular elements.

We suppose that D is a Lipschitz domain which is given as a collection of smooth
patches. More precisely, let /A denote the reference simplex in R% and O = [0, 1]¢ the
reference hypercube. We assume that the domain D is partitioned into K € N patches

K
D = U Ti,0,
i=1

where the intersection 7;0 N 77 ¢ consists at most of a lower dimensional face for i # 7.
Herein, it holds 7,0 = k;(M) for M € {A, 0}, where x;: R? — R? denotes a smooth,
i.e. analytic, diffeomorphism for ¢ = 1,2,..., K. Thus, we have especially that

sup{llri(s)xflo s € Mllxlla =11 g iy Kk and Mee (A0

5.1 <
(5-1) inf{[|kj(s)x|l2 : s € M, [|x[2 = 1}

where K denotes the Jacobian of k;. Since there are only finitely many patches, we may
set p 1= maxfil p;i- Moreover, to obtain a regular mesh, we impose the following matching
condition: there exists a bijective, affine mapping 2: M — M for M € {A,O} such that
for each x = k;(s) on a common interface of 7;9 and 7 o it holds K;o(s) = (ki 0 0 E)(s).
This means, the parameterizations k; and &; coincide on a common interface except for
orientation.

Many of such parametric representations of geometries are available as techni-
cal surfaces generated by tools from Computer Aided Design (CAD). The most common
geometry representation in CAD is defined by the IGES (Initial Graphics Exchange Speci-
fication) standard. Here, the initial CAD object is a solid, bounded by a closed surface that
is given as a collection of parametric surfaces which can be trimmed or untrimmed. An
untrimmed surface is already a four-sided patch, parameterized over a rectangle. Whereas,
a trimmed surface is just a piece of a supporting untrimmed surface, described by bound-
ary curves. There are several representations of the parameterizations including B-splines,
NURBS (nonuniform rational B-Splines), surfaces of revolution, and tabulated cylinders
[HL89]. Such geometries are also recently studied in isogeometric analysis, where finite
elements based on B-splines are considered, cf. [HCBO05] and the references therein.

(5.2) Remark. In the context of parametric boundary element methods, we have the
situation that the surface I' := 9D is represented in exactly this way. In [HR10], an algo-
rithm has been developed to decompose a technical surface, described in the IGES format,
into a collection of parameterized four-sided patches, fulfilling all the above requirements.
In [HR09, HR11], the algorithm has been extended to molecular surfaces. Figure I1.4
visualizes three parameterizations which satisfy the present requirements. Since in this
situation I' is a (d — 1)-dimensional manifold, we also consider the reference hypercube
0 = [0,1]%"! together with the smooth diffeomorphisms k;: R¥"1 — R? cf. [HP13] and
the references therein.
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The proposed parametric representation yields an exact representation of the
geometry under consideration, which is in contrast to the common approximation of ge-
ometries by simplices. Especially, there is no further approximation step required if the
geometry is given in this form. As a result, the rate of convergence is not limited by the
accuracy of the geometry approximation.

Figure I1.5: Localized parameterization

Given a geometry in this fashion, a nested sequence of meshes can be easily
constructed. A mesh on level j on D is induced by regular subdivisions of depth j of the
reference element M € {A, 0} into 2/¢ sub-domains M = {#; x }x and lifting the elements
in M; to D by the diffeomorphisms &; for ¢ = 1,..., K. This generates the

(53) N; =2K

elements on level j. We will refer to the particular elements as 7; ;5 = Kk;(7j %), where i
is the index of the diffeomorphism k;, j is the level of the element and k is the index of
the element in hierarchical order. To simplify the notation we will also denote the triple
(1,7,k) by XA := (i,7,k) with |A| := j. A visualization of the lifting procedure is shown
in Figure I1.5 for M = 0. Notice that we, here and later on, slightly abuse the notation
and also refer to 7; as the local element mapping from the reference element to the k-th
element in M. Finally, we denote the obtained mesh on level j by

T={njri=1...,K,k=0,...,2/%—1}

with JoCc T C ... C Ty.

In this construction, the local element mappings M — 7; ;. satisfy for the ref-
erence element M € {A, 0} the same bound (5.1). This result is easily derived by the
application of the chain rule. Therefore, especially the uniformity condition for (iso-)
parametric finite elements is fulfilled, cf. [Bra07, Len86].

6. Multilevel finite elements

We have now the prerequisites to define nested finite element spaces. We define the finite
element ansatz functions on D with respect to the parameterizations {m}fil To that end,
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we lift Lagrangian finite elements from M € {A,0} to D by the composition with the
inverse mappings K, ! We will distinguish between piecewise continuous finite elements
defined in simplices and piecewise discontinuous finite elements defined on hypercubes.

We begin with the definition of the continuous finite elements. For this purpose,
we define on the j-th subdivision A; of the reference element the standard Lagrangian
piecewise polynomial continuous finite elements ®; = {@; . : k € Z;}, where Z; denotes an
appropriate index set. The corresponding finite element spaces on the reference domain
are then given by

Vi, =span{@j, k€ L} ={ue C(A) 1 ul €M, forall 7 € Aj} € H(A)

with dim Vg j~ 29% and II, denoting the space of polynomials of total degree at most
s. Continuous basis functions whose support overlaps with several patches are obtained
by gluing across patch boundaries, using the C° inter-patch compatibility. This yields a
(nested) sequence of finite element spaces

Vi ={por'eCD):peVi, i=1,....K}C H(D)
with dim V&j ~ N; , cf. (5.3). A basis of this space is given by the functions
o _ J(@ike Ky )(x), ifx €T
Pk 0, otherwise,

where @; . € ;.
Analogously, for hypercubes on the j-th subdivision [; of the reference element,
we define the finite element spaces

V8 = {u: 0= R:uly € Q, forall 7 € O;}  LA(D)

with dim VDS 7~ 294 and Q, denoting the space of tensor product polynomials of degree
at most s. Then, the related ansatz space Vi ; on level j is given by

. -1 ) . 2
Vi =A{por; tpe Vi, i=1,...,K} C LY(D).
Both constructions of the finite element spaces obviously result in a nested se-
quence

6.1) VocVic---cVyc HYD),

where the Sobolev smoothness ¢ depends on the global smoothness of the functions v; € V7.
Especially, for transported piecewise constant functions (s = 0), we have ¢t < 1/2 and, for
globally continuous, transported piecewise linear functions (s = 1), we have ¢t < 3/2.

It is well known that the spaces V3, . for M € {A,U} satisfy the following
Jackson and Bernstein type estimates, see e.g. [DeV98], forall t <¢g<s+1,0<r <t

(6.2) inf Jlu =l oy S Nullmepy, we HYD),
’U]‘EVASAJ

and
6.3)  lvllaey S R vl )y, vi € Viags

uniformly in j, where we set h; := 277,
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(6.4) Remark. For a proof of these statements, cf. [Sch98, Theorems 6.1.1, 6.1.2].
The proof can be sketched as follows: Since the k; are smooth functions, there holds
vl za(r0) = IV o Kill ra(rq) With a constant dependent on g. For the reference domain, we
have the classical approximation result for finite elements, cf. [BS08, Theorem 4.4.20] and
a related inverse estimate, cf. [BS08, Theorem 4.5.11]. Now, (6.2) and (6.3) are obtained
by the norm equivalence of the piece-wise defined norm with respect to the spaces H9(7; )
and the norm on HY(D), cf. [SS11, Lemma 4.1.49].

Note that, by construction, h; scales like the mesh size maxj{diamy}, i.e. it
holds h; =~ maxj{diam 7y} uniformly in j € N due to (5.1). In particular, for t = 0, we
obtain an estimate for the L2-orthogonal projection onto Vi, ie

(6.5) v —Qullapy == inf v —villL2py S hillv]l za(p)-
vJEVMyj
(6.6) Remark. Of course, we can define continuous finite elements on hypercubes

and discontinuous finite elements on polyhedrons in complete analogy. If the shape of the
reference domain and the hierarchy of the finite element spaces is not of interest, we will
simply refer to the finite element spaces for a mesh of mesh-width hA and a polynomial
degree s by V7.

In the sequel, we will also deal with finite element approximations to vector
fields in R?. Therefore, we shall also introduce the related L?-orthogonal projection. Let
Qn: L*(D) — V;# denote the L2-orthogonal projection onto V;*. The orthogonal projection
@1 can be extended to an orthogonal projection

6.7)  Qu: LA(D;RY = [Vi]% [vr..,0d]T = [Qnvi, - - -, QuvdlT,

i.e. the component-wise projection of a function in L?(D; Rd).

(6.8) Lemma. The operator Qy, defined by (6.7) is the L2-orthogonal projection from
L*(D;R%) to [V,ﬂd. Moreover, it holds

6.9)  NT=QuVlreprey S hUVIgapray  for ve HY(D;RY).
Here, I € R%*4 denotes the identity matrix.

Proof. Obviously, it holds Im Qj, = [V,f]d. Let v € HY(D;R?) and w € [V,f]d. We deduce

d

(T —Qun)v, q)LQ(D;Rd) = (vi — Quvi, wi)r2(py =0
i=1

due to the orthogonality of (). This shows the orthogonality of Qj. Moreover, we have
by (6.5) that

d
I — QuIVIGa (e = D v = Qurilliap)
i=1

d
S 2 W ill e oy = WV o gygay- .
=1
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(0,0) (1,0)

Figure I1.6: Construction of parametric finite elements for mapped domains.

For the analysis of the regularity of the solution to elliptic diffusion problems on
random domains in Chapter IV, we will exploit that there exists a one-to-one correspon-
dence between the deterministic problem on the random domain and the random problem
pulled-back to the reference domain. Nevertheless, for the numerical computations, in
contrast to [CNT13, TX06], we do not aim at mapping the equation to a fixed refer-
ence domain D, but rather intend to solve the equation on each particular realization
D(y;) = V(Dyet,yi) for suitable parameters y;, where i € Z for an appropriate index set Z.
Here, we assume that the vector field V(y) corresponds for each choice of the parameter
y to a C?-diffeomorphism.

A first step towards this approach is made by [MNK11], where a random bound-
ary variation is assumed and a mesh on the realization of the reference domain D, is
generated via the solution of the Laplacian. Under the assumption that the realizations of
Dyt are provided by a sufficiently smooth vector field, we may also employ mapped para-
metric finite elements to directly approximate functions on the mapped domains D(y;).
Figure I1.6 visualizes this procedure.

The argumentation in this situation is similar to that presented before. We have
to assume that the singular values of the vector fields Jacobian J(x,y) are bounded in the
following way: There exists constants 0 < ¢ < @ < oo such that

o < min{o(I(x.y))} < max{o(I(x.y))} <7

holds for the singular values of J(x,y) for all x € D, and almost every y in the set of
admissible parameters. This condition guarantees that (5.1) is satisfied with p = 7/g.
Also the Jackson and Bernstein type estimates (6.2) and (6.3) are still valid, where the
only limitation is imposed by the smoothness of V(x,y). For example, in our case that
V(x,y) is a C2-diffeomorphism, we have the restriction ¢ < 2 such that

inf Jlu—vjllge(piyy) S 0 Null e ey

ve€Vj(y)

for all 0 <t < 3/2,t < q <2, where

(6.10)  Vj(y):={poV(y) ' : 9 e VZ,;} c H(D(y)).
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(6.11) Remark. For elliptic diffusion problems, the H2-regularity of the mapped prob-
lem, i.e. on D(y), follows from the HZ?-regularity of the problem on the reference do-
main Dy if the vector field V(x,y) is at least a C2-diffeomorphism. Especially, if
V(x,y) = x + Vo(x,y) is a perturbation of the identity as in (IV.3.1) and Vy(x,y)
is a vector field of class C?, then V(x,y) ! is also a C?-diffeomorphism provided that

||Vo(-,y)||(;2(m;Rd) < 1/2, cf. [Sim&0].






Chapter III

APPROXIMATION OF RANDOM FIELDS

As it has been discussed in Chapter II, the main task in the computation of a Karhunen-
Loeve expansion is the solution of a symmetric and positive semidefinite eigen-problem. In
this chapter, we present and compare different numerical approaches for the approximation
of random fields. These are cluster methods, which are well established in the business of
discretizing non-local operators, namely the Adaptive Cross Approximation (ACA) and the
Fast Multipole Method (FMM) on the one hand, and the Pivoted Cholesky Decomposition
(PCD) on the other hand. As we will see, the PCD can be considered as a black-box
algorithm to compute low-rank approximations to symmetric and positive semi-definite
operators. Although, the results presented here are valid for d; # ds, we restrict ourselves
in the subsequent analysis to the case di = dy = d, i.e., for fixed w € Q, D C R%, we
consider mappings u(w): D — R

We start our considerations by providing approximation results for random fields.
To that end, we have to assume that the random field provides additional spatial regularity,
ie.

u(w,x) € LA(Q) ® HY(D;R%) with ¢ > 0.
Thus, the associated Hilbert-Schmidt operator satisfies Ty,: L3(Q) — H9(D;R9). In

particular, it holds

C = Toovju = Tu T3, : HY(D;RY) — HY(D;RY).

uo-—-ug

We shall be first concerned with the approximability of the covariance operator and derive
error estimates involving the trace of the covariance operator C.

1. Error bounds in terms of the trace

In the beginning of this section, we show that the covariance operator C extends to an
operator C: H=9(D;R%) — H(D;R%).

(1.1) Lemma. By defining the dual operator Ty : H=9(D;R?) — L2(Q) with respect
to the L?(D; RY)-inner product, i.e. (T}, f, w)LH%(Q) = (f, Tuy¥) 2(p;r), the operator Teoy[y]
extends to a continuous and compact operator from H~9(D;R%) to H?(D;R%) in accor-
dance with

jﬂCov[u]f = Z UiQ(f7 Soi)LQ(D;Rd)QOi'
i€
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Proof. From (Tﬁof,z/;)Lz(Q) = (£, Tuy¥) 2(p;re), we deduce

Tsof— ZO'z y Ps LQ(DRd)X

1€

Hence, it holds

TuoTSOfZZUz<ZUJ ,P;) L2(DRd)XJ,X> =Y Nl 90) 12Dy i

i€l jeT Lﬁ(ﬂ) i€l

By applying the generalized Cauchy-Schwarz inequality, cf. Lemma (I1.2.10), we arrive at

I3 1720y = ( > 0ilf, @) 12(pmay Xy Y 05(£, <Pj)L2(D;Rd)Xj)

i€T jez L3 ()

=3 o (f, )2 (prey) 1Xil1 72
€L

ZO'QHf”H 4(D;R9) H‘Pz’HJQLIq(D;Rd)HXiH%]%(Q)
1€L

2 2
= HUOHLHQ)(Q)(qu(D;Rd)”ngfq(D;Rd)'
Thus, T}, is a bounded operator. Since Ty, is compact, so is Tu, Ty, = Tcoy[u]- O
Combining equations (II.1.10) and (II.1.13), we obtain

where the trace is defined with respect to the L?(D;R%)-inner product. This identity gives
rise to an approximation result in the finite element space V;7 which bounds the error in
terms of the trace, cf. [ST06, Theorem 2.10].

(1.3) Theorem. Let N = dim V;?, let Ay > Ay > ... > 0 be the eigenvalues of the
covariance operator C and let Ay, > Aoy = ... = Agnp = 0 be the eigenvalues of
Ch := QrCQp, where Qy, is given by (I1.6.7). Then, it holds

||110 - (Id ®Qh)u0H%]%(Q)®L2(D;Rd) =TrC —TrCy

and therefore

dN o)
lug — (Id ®Qh)u0HL2 Q)@L2(D;RY) — Z()\’ — )‘z‘,h) + Z i,
=1 i=dN+1

where we set \; = 0 for ¢ > #7.

Proof. Let {@;}; be an orthonormal basis of L?(D;R?) such that either ¢; € Im Qy, or
®; € Im(I — Q) holds. Then, one easily derives (7y (I — Qh)ﬂoz‘vTﬁth‘Pi)Lﬂ%(Q) = 0.
Thus, we infer by (1.2) that

||u0 - (Id ®Qh>u0H%2 )®L2(D;Rd)

Z w0 ®i Loy i) 12(0) = (1o, Quess T3, Qnepi) 12() = TrC = TrCh. o
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Even though this result has already been derived in [ST06, Theorem 2.10], we have pre-
sented here an alternative proof which employs another technique required for our consid-
erations later on. Notice that the proof of the theorem heavily relies on the properties of
orthogonal projections, especially on the self-adjointness. Thus, we cannot weaken here
this supposition to arbitrary projections.

For the rest of this thesis, we refer to {(\;, ;) }icz as the eigen-pairs of C (in
decreasing order) and to {(Ain, ;) 1) as the eigen-pairs of Cj. By the application of
Theorem (1.3) and the approximation estimate (I1.6.5) it is straightforward to show the
following

(1.4) Corollary. The trace error satisfies
0 < TrC — TrCy, < p2min{stlal
if ue L3(Q) ® HI(D;RY).

Theorem (1.3) remains valid for Cp s := P,CP}, where Py, : L?*(D;R%) — U denotes an
arbitrary orthogonal projection onto an M-dimensional subspace U C [Vhs]d. Thus, we
obtain

(1.5) Theorem. Let Cj, = Q,CQy, and Cp s = P,CPy. Then, there holds
(1.6) |lu— (Id ®Ph)u”%ﬂ%(ﬂ)®L2(D;Rd) < p2min{stlal 4 (Tyc, — Tr Choar),
where the hidden constant involves the norm of u in L2(Q) ® H4(D;R?).
Proof. By Theorem (1.3) and Corollary (1.4), it holds

|lu— (1d ®Ph)u”z§(ﬂ)®L2(D;Rd)
<(@— Qh)E[u]”i%D;Rd) + (TrC — TrCp) + (Tr Cp — TrChonr)
5 h2min{s+17Q} + (Tr C — TI“C}LM)- .

The theorem indicates that, after fixing the ansatz space V;?, the approximation error of
the stochastic field is controllable in terms of the discretized operators C;, and Cp, 7. The
optimal choice of Py, in terms of minimizing the trace error is the orthogonal projection
onto the dominant invariant subspace of Cp,, i.e. Upr, 1= span{ch o PM, »} correspond-
ing to the M dominant eigenvalues of Cj,. If Uysj, and thus Py, are not known exactly, they
have to be approximated appropriately. This induces an additional error and we have to
assume that Apsyq 5 is distinet from Apyp, cf. [Kny97, Ovt06]. Nevertheless, any subspace
is feasible as long as the difference Tr Cj, — Tr Cj, 37 becomes small for moderate sizes of M.

2. Decay rates for the eigenvalues of the covariance

Usually, the index set Z which occurs in the Karhunen-Loéve expansion

u(w,x) = E[u](x) + 3 0:Xi(w)e; (),
i€L
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cf. Definition (I1.3.1), is not finite. Therefore, for numerical applications, the Karhunen-
Loeve expansion has to be truncated appropriately after M € N terms. The question
how small M can actually be chosen in order to achieve a prescribed precision in the
approximation of the covariance operator is closely related to the decay of the eigenvalues
of C and Cj, respectively, which depends on the smoothness index ¢. Results on the
decay of the eigenvalues have already been established for periodic functions in [Tem&6].
Nevertheless, since we do not want to restrict ourselves to this situation, we refer here to
the more general results in [GH14, ST06] and extend them to the case of vector fields.

For u € L2(Q) ® HY(D;R?), it obviously holds

Cov[u] € HY(D;R?Y) ® HY(D;R?) with Cov[u Z Aip; @ @;,
1€T

where )\; = o2 denote the eigenvalues of Tcoviu)- At the same time, we will consider the
operator

Toovr = TooTuo LE(Q) — L3(Q).

Here, we derive

Covlu] € L3(Q) ® L3(Q) with Cov[u] = > A X; ® X;.
i€

The following theorem for the decay of the covariance operator’s eigenvalues is a
modification of the related theorem in [GH14] for the case of R? valued functions, see also
[STO06].

(2.1) Theorem. Let u € LE(Q) ® HY(D;R?). Then, the eigenvalues of the covariance
operator Tcoyy): H™4(D; RY) — HI(D;R?) decay like

L\ —2¢q/d
(2.2) Ai S (2) A1 as i — oo.

Proof. We shall focus on the approximation space [th]d C L?(D;R%) of piecewise poly-

nomial (discontinuous) finite elements. Let N = dim VthJ. Then, we have for the L2-
orthogonal projection Qp, cf. (I11.6.7), dN = dim(Im Qp).

Now, we can describe the eigenvalues of the operator Ta;[u]: L3(Q) — LA(Q)

via the min-max principle of Courant-Fisher. For arbitrary subspaces Vi, C L2(f2) with
dim(V%) < k it holds that

Ak+1 = min max (T wi/J)Lz
Vi pevt Ml o) =1 Covlu]

:II‘l/ln Lmax ( uowv uo¢)L2(D;Rd)'
b eVt IIvll 20 =1



Section 2. Decay rates for the eigenvalues of the covariance 39

For the choice Vyn = Im(T3; QnTy,), the orthogonality of the projection Qy, yields

AdN+1 < max TuV, Tug¥) 12(p.Rd
+ d’J—Im(TJOQhTu0)7||¢||L]%(Q)=1( ug ug )L (D;R9)
= max (Tuowa (I - Qh)TU()w) L2(D;R%)

¢LIm(Tl§OQhTuo)vnwnL]%(Q):l

(0= Qu) Tyl

= max
wilm(Tf{o QnTy, )1||¢||L]%(Q) =1

< sup  [|T- Qh)TUO@DH;(D)
1¥123(0)=1

SN2 sup [ Tuy¥ll e pamy = N 729N,
H’LPHL%(Q):]‘

where the hidden constant results from (I1.6.9). The assertion is finally obtained by
substituting N by (N —1)/d. 0

(2.3) Remark. The preceding result can straightforwardly be generalized for D C R%
and Tooypu: H™(D; R92) — HI(D;R%) according to

7 2Q/dl
/\<(d> A1 as ¢ — oo.
2

For dy = 1, this is exactly the result found in [GH14]. Nevertheless, for the case of partial
differential equations on random domains, the situation d; = do = d is the relevant one.

In accordance with [GH14], an estimation of the Karhunen-Loéve expansion’s
truncation error is provided by the following theorem.

(2.4) Theorem. Let u € L3(Q) ® HY(D;R?) with ¢ > d/2. Then, it holds

‘ ) 1/2 q/d
9 S5
L2(Q)®L2(D;RY) i M+1 ‘ 2Q/d - 1

Proof. According to Theorem (2.1), the eigenvalues \; = o2 of the covariance operator
related to u decay like (2.2). Thus, it holds

00 0o .\ —2¢/d 00 —2q/d d M 1-2q/d
5 ) e )
2 )\’N.Z <d> S v \d & 2q/d—1\ d '

i=M+1 i=M+1

ug — Z 0 Xi ® p;
i=1

This theorem tells us that we have to choose
2d

M =< ded—2q

in order to guarantee an error bound

To determine how well the eigenvalues of the covariance operator can be ap-
proximated numerically, we have also to take the smoothness of the covariance operator’s
eigenfunctions into account, cf. [GH14, ST06].

<e.

~

M
u)— Y 0iXi ®
L2 Q)@L (D:R)

=1
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(2.5) Theorem. Let u € L2(Q)® H9(D;R?). Then, the eigenfunctions {¢; };cz of the
covariance operator C satisfy

12
o1 \¢
||‘PiHHt(D;Rd) S (U) , 0<t<q.

7

Proof. From Lemma (I1.1.16), we obtain ¢; = Ty, X;/0;. Thus, from the continuity of Ty,
we deduce

1 o1 01
||99i”Hq(D;Rd) = f||TuoXi||Hq(D) < fHXi”Lg,(Q) =
g; o;

o; '
Moreover, we have
1

13172 (pray = (TuoXi/ 06 Tuo X/ 03) 12Dty = Y (T3 Tao X Xi) p2(0) = 1.
Thus, the assertion is true for the extremal cases t = 0 and ¢t = ¢. The result for the
intermediate Sobolev spaces is obtained by the interpolation estimate (A.2.6). Note that

the hidden constant depends on t € (0, q). o

(2.6) Remark. As a consequence of Theorem (2.5), we can approximate the eigen-
functions in V}’ according to

Q|+

. o1
2.7 f - ray < R, Ry < () ht,
(2.7) vhg[lv,f]d e Vh”L?(D,Rd) ~ H%HHﬁ(D,Rd) ~\ o,
given that 0 <t < min{s+ 1, ¢}.
The approximation error of the related Ritz-values A1y, ..., Aanp, N = dim(Vy?),

is given in terms of the gap between the invariant sub-space

Un = span{ey,...,en} C L*(D;RY)
(dim(Ups) = M) corresponding to the eigenvalues A1, ..., Ay and the approximation space
Vi, ie.

0(Un) = sup (I = Qn)vllz2(pray,

veUM [Vl p2(p.pd)=1

where Qy: L2(D;RY) — [V;¥]¢ denotes the L?(D;R?) orthogonal projection onto [V;*]%. In
order to control the gap, we employ the eigenfunctions’ regularity. Then, we can estimate
the gap as follows.

(2.8) Lemma. Let Uy = span{e;, ...,y C L?(D;R?) be an invariant subspace of
C. Then, it holds for 0 < ¢t < min{s + 1,¢} and Aq,..., Ay # O that

Qo+

(2.9) O(UM),S\/M<JI> K.

oM
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Proof. Let v = Y M aip, with [vlz2(py = 1. Thus, it holds M a? = 1. With
a=(ag,...,ay), we have
0(Un) = sup X = Qn)vllr2(pre
veUM,|IVII2(prd)=1
M
= sup ai(I - Qn)ep;
lell2=11 =1 L2(D;R%)

M
< sup Z’aim(I_Qh)‘aoiHLQ(D;Rd)

llallz=1 =1

M t t
S swp Yol (2) < VAE(22)

lleell2=13=1 oM
where we used (2.7) in the second to last step. 0

(2.10) Remark. In order to achieve convergence for the M-th eigenvalue, we have to
guarantee #(Ups) < 1. This imposes a restriction on the mesh width h of the discretization.
Moreover, it is required that dN = dim[V}?]¢ > M.

From [DM96, Theorem 9.2.2.2], we obtain the convergence result which relates
the eigenvalues’ rate of approximation to the gap.

(2.11) Theorem. Let U; = span{¢y,...,;} be an invariant subspace of C such that
dim(QpU;) = @ for ¢ = 1,...,M. Then, the approximation A;j to the i-th eigenvalue
determined by the Rayleigh-Ritz method, i.e. Chp; ), = Ai np; p, satisfies the estimate

(212)  0< A — A < N (O(UL)° for all 1 <i < M.
Proof. For a proof of this result, see [DM96, Theorem 9.2.2.2]. 0

As a consequence, we can approximate the eigenvalues in [V,f]d according to

t
IS
0< N —Ain S )\Zz<)\1> B2 forall 1 <1< Mand0<t<min{s+1,q}.
i
Especially for s < g, the eigenvalues of Cp, exhibit a similar rate of decay as the eigenvalues
of C up to a relative error of order ih2(s+1).

3. Cluster methods

In this section, we introduce so called cluster methods. By name, these are the Adaptive
Cross Approximation, cf. [Beb00, BR03], and the (interpolation based) Fast Multipole
method, cf. [GieOl, HB02, SLS03]. Our particular realization of these methods is based
on a parametric geometry representation by four-sided patches, i.e. the collection {7;0}
as introduced in Section I1.5 with respect to the reference domain (. A specialty of these
methods, borrowed from the business of fast boundary element methods, is that they can
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be regarded as black-box algorithms for the discretization of Hilbert-Schmidt operators
since there is no explicit knowledge of the integral kernel assumed except for its smooth-
ness apart from the diagonal. For the FMM, we exploit the parametric representation
of the geometry for the interpolation. This results in a drastic reduction of the compu-
tational effort compared to the interpolation in space. The achieved compression in the
case of a polynomial expansion of the kernel function is even better than that of H2-
matrices, cf. [HB02]. Notice that we focus here on the discretization of scalar covariance
functions, i.e. we only provide a means of compressing the blocks Cov;;: D x D — R.
Moreover, the construction is presented here exclusively for d = 2. Thus, we either al-
low that x;: [0,1]> — R? (parametric domain) or ;: [0,1]2> — R3 (parametric surface),
cf. Remark (I1.5.2).

In view of the eigenvalue problem for the covariance operator considered in the
preceding section, we refer here to the following situation: For a given kernel function
k(x,y), we efficiently want to solve the operator eigenvalue problem

31 (A = [ kxyuly) doy, = du(x).

Herein, the integral operator A is an operator of order 2¢, which means that it maps
H1(D) continuously to H~9(D). Here, since we do not want to distinguish between
Sobolev spaces on open domains or closed manifolds, see e.g. [SS11, Ste03], we make the
convention that H4(D) = [H~9(D)]’ for ¢ < 0. The kernel functions under consideration
are supposed to be smooth as functions in the variables x and y, apart from the diagonal
{(x,y) € D x D : x =y}, and may have a singularity on the diagonal. Such kernel
functions arise, for instance, by applying a boundary integral formulation to a second
order elliptic problem [SS11, Ste03] or as correlation kernels. In general, they decay like
a negative power of the distance of the arguments which depends on the order 2¢q of the
operator and the spatial dimension.

Since we employ parametric geometry representations, the integration is with
respect to a non-constant surface measure: On the patch 709, we denote the surface
measure by

(32)  |il(s) = [ kils) X Dupria(s)],.
Here, the vector product for the situation s;: [0,1]?> — R?, is defined via the embedding
1R — Rg, (.%'1,.%'2) — (5131,332,0).

The variational formulation of the eigenvalue problem (3.1) reads as follows:

. i s V)L = ) e .
(3.3) Find u € HY(D) such that (Au,v)r2(py = M, v)r2(p) for all v € HI(D)

If we insert the parameterizations k;, the bilinear form for A becomes
(Auv)ap) = [ [ K y)uly)oix) doy do

K
= Z /D/Dki,i’(svt)u(f@z"(t))v(f@i(s» dtds

ii'=1
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and the L2-inner product becomes

(u,v)r2(D) :/Du(x)v(x) dox

K
=3 [ uli(o)v(a(s)) i) ds.
i=1
Here, the kernels k; ; denote the transported kernel functions

ki,i’: ] XD—)R,
ki (s, t) :=k(ki(s), ki (t))|Ri|(s)|kir|(t)
Since the kernel k(x,y) is in general asymptotically smooth, cf. (A.3.1), the ana-

lyticity of the parameterizations {;}X ;| gives rise to a decay estimate for the transported
kernel function which is quite similar to (A.3.1).

(3.4) } ii' =1,2,...,K.

(3.5) Definition. A kernel function k(x,y) is called analytically standard of order 2¢
if constants ¢ > 0 and r; > 0 exist such that the partial derivatives of the transported
kernel functions k; ; (s, t) are uniformly bounded by

|
(3.6) 020k (s, t)] < Ck%\ym(s) — K ()], FTRHIIED
Tk

provided that 2 4+ 2¢ + |a| + |B] > 0.

(3.7) Remark. The parameterizations provide patch-wise smoothness. Hence, under
these assumptions, most kernels of boundary integral operators A of order 2¢q are analyt-
ically standard of order 2¢q. Indeed, in Section A.3 of the appendix, we present a proof of
this statement.

In the context of the Galerkin scheme, it will be convenient to have also access
to the localized kernel functions. In Section I11.5, we have already defined the local element
mappings, i.e.

Tik: O — n;l(Tm,k) for j=0,1,...,Jand k=0,1,..., 4K — 1.

via dilatation and translation. Thus, the localized kernel functions are given by

(3:8)  kan(st) := k(ra(s), kx (8))[Ral(s) [k (t)

with the localized parameterizations K := Kk;07;, and the corresponding surface measures
|ka| :== 27%|k;| 0 7 with |k;| as defined in (3.2), see also Figure IL5.

In the following, we will only consider the localized kernel functions. The subse-
quent proposition is an immediate consequence of the fact that 98%;(s) = 277 if |a| = 1
and 0§87 ;(s) = 0if |af > 1.

(3.9) Proposition. Let the kernel function k(x,y) be analytically standard of order
2q. Then, there exist constants ¢ > 0 and 7 > 0 such that

(Ja| + 18 27 Alel+2) 9= IN[(18]+2)
+ 2+2g+|al+
r I lmals) = e ()7

holds uniformly for all X\, X" provided that 2 + 2q + |a| + |3] > 0.

(3.10) 080k (s,6)] < cx




44 Chapter III. Approzximation of random fields

Now, we shall be concerned with the Galerkin scheme for the discretization of
the variational formulation (3.3). By replacing the energy space H%(D) in the variational
formulation (3.3) by the finite dimensional ansatz space V; C H?(D), we arrive at the
Galerkin scheme for the operator eigenvalue problem (3.1):

Find u; € V7, such that

3.11

(3.11) / / k(x,y)us(y)vs(x)doy dox = )\/ ug(x)vy(x)dox forall vy € V;.
DJD D

By setting @y := uy o kx and Uy = vy o k), we may rewrite (3.11) and arrive at the

equation

312) % /D /D o (8, £y (£)0x (5) dt ds = A /D iix(s)0x(s)ka(s) ds

X |=

for all X with |A| = J. In the case of element-wise supported, piecewise polynomial basis
functions for Vj, this leads immediately to the generalized matrix eigenvalue problem

(3.13) Au= )\Bu

with the (block-) diagonal mass matrix B. Otherwise, for basis functions of higher global
smoothness, straightforward but obvious modifications have to be made to arrive at the
linear system (3.13), cf. [SS11].

In the chosen basis representation, i.e. in the single-scale basis for V7, the system
matrix A in (3.13) is in general densely populated. This yields a rather high computational
effort for the assembly and the matrix-vector multiplication. Fortunately, the system ma-
trix is block-wise of low rank, i.e. it is compressible by means of an H-matrix, cf. [Hac99].
The computational complexity can thus be drastically reduced by a block-wise compression
scheme.

N SR S
im%éé////
T ] | Tio7
XT\ . /:: L Ti2,6
71,0 [Tl l=—— |
7 7 e e E— =Ti25
T2 ’
level 0 level 1 level 2

Figure III.1: Visualization of the cluster tree.

To that end, we introduce a tree structure on the nested meshes

ToCcTiC...CTy
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introduced in Section I1.5. Especially for our case d = 2, we end up with a quad-tree
structured sequence of meshes consisting of N; elements on level j. Therefore, we will also
refer to 7; ;1 as a cluster. In this case we think of 7; ; , as the union

Tigk = {Ti,gk  Tigkr C Tijjk s

i.e. the set of all tree leafs appended to 7; ;j or its sons. Furthermore, we denote the
collection of all clusters, the cluster tree, by T. A scheme for the subdivisions of the patch
7,0 up to level 2 is shown in Figure II11.1.

Now, we employ the following admissibility condition to determine compressible
matrix blocks.

(3.14) Definition. The clusters 75 and 7y with |A| = |\’| are called admissible if
(3.15)  max { diam(7y), diam(7y/)} < ndist(a, 7y/)

holds for some fixed n € (0,1). The collection of admissible blocks 75 x 7y forms the far-
field of the operator. The remaining non-admissible blocks correspond to the near-field of
the operator.

The quad-tree structure of the cluster tree T yields thus a block partitioning of
the system matrix with quadratic blocks and each block on a particular level contains ex-
actly the same number of element-element interactions, see Figure I11.2 for a visualization
of this special block partitioning of an H-matrix.

Figure I11.2: Partition of the (symmetric) H-matrix for the Matérn-9/2 kernel on S? for
level 4 with inscribed ranks.
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Fast Multipole Method

We start by developing the black-box version of the FMM based on the interpolation of
the kernel k(x,y) as firstly proposed in [GieOl]. Note that, later on, this idea was also
followed in [HB02] to construct H2-matrices.

For a given polynomial degree p € N, let {xq, z1,...,2,} C [0,1] be p+1 pairwise
distinct points. Furthermore, let L,,(s) for m = 0,...,p be the Lagrangian basis polyno-

mials with respect to the interpolation points x,, for m = 0,...,p. By a tensor product
construction, we get the interpolation points Xm := (Zpm, , Tm,) and the corresponding ten-
sor product interpolation polynomials Ly (8) := Ly, (S1) © Ly, (s2) for mi,me = 0,...,p.

In all admissible blocks 7y X Ty, we approximate

(3.16)  kyn(s,t)~ > kxx' (Xm, X ) Lin (8) Ly (£).

l[m|[oc,[[m’{|oo<p

Consider now two basis functions @y, Py € ij‘ A of the ansatz space on the

level J — |A|. Since we employ quadrangular meshes, we may exploit the tensor product

structure of the ansatz functions. Therefore, let @y = @él) ® @152) and ¢p = @é,l ) ® @é?),

respectively. From this and (3.16), we derive

Aol = [ [y (tm o) L)L (4)20() 0 (8) dt s

[[m|foo,[lm’| oo <p

= Y hawGmxm) [ L)@ ds [ Lu(t)pu(t)dt

l[m|foc,[[m’||co<p
. O O
= [M‘)\IK)M)\/(M‘A/OT]E,[/

By construction, each cluster on a particular level contains the same number of basis
functions, namely dim(V;_,y|). Additionally, the moment matrices M‘DM are independent
of the patch parameterization. This yields the

(3.17)  Proposition. For j =1,2,...,J and all |A| = || = j, it holds
0 0
As a consequence we have to compute and store only a single moment matrix
M\DM e RAmM(Vy_ )% (p+1)?

for each particular level. These moment matrices can be decomposed further by exploiting
the tensor product structure of the basis functions:

1 1
[ L2 ds = [ [ Lo (08 (51) Ly (52)8f (s2) ds1 s
1 1
= [ Lo (0@ @) dst [ L5202 (s2dso

= [M|)\|®M|A|]g,(p+1)m1+m2'
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Since
1\/[‘)\| c RV dim(VJ—m)X(PJrl),

we end up with a major compression of the far-field.

(3.19) Remark. It is convenient to impose a lower threshold for the far-field. Therefore,
we consider matrix blocks with O(p*) entries as near-field. This yields O(N;p~?) near-field
blocks with a storage cost of O(N;p?).

(3.20) Theorem. The complexity for the computation and the storage of the far-field
is given by O(N;p?).

Proof. At first, we show inductively that there are O(NN;) admissible and also O(NN;) non-
admissible clusters on level j. For level 0 this is clearly true. Now, let the assumption
hold for level j — 1. On level j — 1, for a fixed cluster, there exist O(1) neighbouring
clusters which do not satisfy the admissibility condition (3.15). For such clusters, we have
to consider the 4 son clusters on level j. Hence, we face 4O(N;_1) = O(N;) non-admissible
and also O(N;) admissible cluster-cluster interactions on level j.

Furthermore, in accordance with Remark (3.19), the maximum level to be com-
puted is now [J — 2log, p]. Due to N; = 47K, we thus may estimate

[J—2log, p|
YN = O(K4l7=210erly — O(K47p~?) = O(Njp~?).
=0

This yields, together with Remark (3.19), overall O(N p~2) far-field blocks and accord-
ingly O(N;p~2) near-field blocks.
For each far-field block, we have to evaluate and store the localized kernel function

in O(p*) points. The complexity for assembly and storage of the moment matrices is
O(V/Nyp) in total. Hence, the far-field complexity is

O(Nyp~2) - O(p") + O(\/N;p) = O(N,p?). 0

(3.21) Remark. Due to the parametric geometry representation, we obtain especially
for boundary element methods in three dimensions, i.e. I' C R3, an improved cost com-
plexity. The classical FMM proposes here to interpolate in space. Thus, the polynomial
degree enters with O(p?), cf. [Gie01, HB02]. Since we only interpolate the transported
kernel on the reference domain, we can reduce this cost to O(p?).

Storing the moment matrices M|y on each particular level can be avoided by
the concept of nested cluster bases, cf. [HB02], Obviously, since the polynomial degree for
each cluster is p, we can represent the Lagrange polynomials of the father cluster by those
of the son clusters. Let

P P
{xgg)}glzoz {:Cm} and  {zl}) P = {xm+1} ,
2 m=0 2 m=0
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0.5

0.1 0:2 0.3 014 0.5 0.6 017 0.8 0.9 1

Figure II1.3: First Lagrange polynomials of son clusters and father cluster.

respectively, be the interpolation points in the son clusters, see Figure II1.3. It holds
{xﬁ,?) P, C[0,0.5] and {m%) P _o C [0.5,1]. If we denote the related Lagrange polyno-

m=0
mials with LSP () and Lg) (x), respectively, we can now exactly represent the Lagrange
polynomials of the father cluster according to

P
Lin(2) =Y L@ L (2)  for z € [0,0.5]
and
o 1)y (1
Lin(2) =3 L@ LV (2)  for « € [0.5,1].
This gives rise to the transfer matrices

TO) .= [Li(azgg))]ﬁjzo and TW = [Li(z

.~

which yields the representation

| TOMy
. T(I)M\AIH '

By tensor product construction, we then obtain the four transfer matrices
T, =TO TV, =01,
for the reference domain [J. Here, we have the refinement relation

Ongd
TYM

2 E\|+1
T3 M|)\|+1

o _
M =

Notice that the peculiar order of the transfer matrices results from our hierarchical, counter
clock-wise ordering of the elements, cf. Figure II1.1. In order to make use of the efficient
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implementation of the H2-matrix-vector product, cf. [HB02], we have only to store M5
and Tg, TT, TS, TY.

With Definition (3.5) at hand, the proof of convergence for our FMM is straight-
forward. We present it here for the case that Chebyshev nodes on I := [0,1], i.e. the

points
1 2m +1
= — —_— 1 =0,1,...
Tm, 2{cos<2(p+1)7r)+ }, m , 1, s Dy

are used for the interpolation [Gie01, HB02].

(3.22) Theorem. Let k(x,y) be an analytically standard kernel of order 2q. Then, in
an admissible block 7y X 7/, it holds

k’)\ )\/ S, t Zk}\ )\/ Xm,Xm )L (S)Lm/(t)

IImHoo f[m/lo

Lo (OxDO)

n P 4|7 —2(14q)
S (7%) 2 HK')\(S) - K’)\' HL°°(E|><D
with r; > 0 being the constant from Definition (3.5).

Proof. We start with the one-dimensional interpolation error for the Chebyshev interpola-

tion. It is well known that for a sufficiently smooth function f: I — R the error estimate

9. 4~ (p+1)

Pt 1) 1075 1l Lo (1)

1F =T | ey <

holds, where the interpolation operator IT7 is defined by

P
= Z f(@m) L (x
m=0
According to [HB02, Estimate A.2], II7 satisfies the stability estimate

(3.23) I} fllzee(ry < clog(p+ DIIfll ooy

for some constant ¢ > 0. By tensorization, we obtain the d-dimensional interpolation
operator Hl;d on I, From [HB02, Lemma A.1], we know for the interpolation of a function

f: Bg — R in product Chebyshev nodes in By := Hfle[ag, by that

d
—1(br—ay
1 =T, e, < p+1v2010gp+ (5 ) 1025l
/=1

Here, the constant ¢ stems from the stability estimate (3.23). In our case, we interpolate
on O x O which is isomorphic to I*. Hence, the preceding estimate becomes

4

log p+ 1))6 !
2 1)

Hf o H§4HL00(14) H p+1fHL°°(I4)'

(=1
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Therefore, in view of (3.10), we conclude

[k — I gk e ox0)

4 (log(p+1))"
<. 182 ea x| e

= 20p+1)4r Lee(@x0)

2. (log(p + 1)) (p +1)! (1+
< K kv 2 D= () o= |X|((p+1)+4)
NZZ::I 2(p + 1)!4p TZ+1 H A(s x HL (Ox0O)

4 /-1

log(p +1) . —2(1

< Z ( 5 p+14p) dist(7x, Ta) (P+1)9—[A|(p+5) |ka(s) — Ky (t HLOO( Sjm)

=1 Tk

—[Al(p+5)

S p+1 & (1+4q) dist(7x, 7)Y,

Tk H”A(S) —ky(t HLoo (Ox0)

The admissibility condition (3.15) provides

max { diam(7y), diam(7y/)} .

dist(mx, Ty) =
n

Moreover, the Lipschitz continuity of the parameterizations and their inverses imply
diam7y ~ 27 forall [A|=1,2,...,J.

Hence, we may bound

9—IAl
dist(7x, Ty) 2 ——
n

Inserting this estimate into the above expression finally yields

—(p+1)

) . 92— Al(p+5) 2-IAl
Hk)\)\/ — HDXDk)\7)\/HLOO(EIXD) p+1HKz}\ ) _ H’)‘/ H (1+q) ( n )
Lo (Ox0O)

- 2_4|)\| n p+1HK)‘(S) e H 2(14q)
S - w( Lee(Ox0)"

As in [Gie01], we can directly derive from the previous theorem an error estimate

for the bilinear form which is associated with the variational formulation (3.3).

(3.24) Theorem. Let 0 > 0 be arbitrary but fixed. Then, for the integral operator
A which results from an interpolation of degree p > 0 of the kernel function in every
admissible block and the exact representation of the kernel in all other blocks, there holds

| (Au, v)r2(py — (Agu, v)r2py| < 277 |lull vl (o)

provided that p = J(2 + 2q + o).
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Proof. From Theorem (3.22), one infers for admissible clusters 7 x 7y that
=[]
dist(7a, Tyv) 2 > - >’
n

since n < 1 and |A| < J. Therefore, it holds

p+1
II —alAl( N 2J(1
[ x — %ka)\,)\,HLoo(DXD) < o~ |<Tk> 92J(1+4)

for all A, X" with |A| = |X|, because the kernel representation is exact in non-admissible
clusters.

Next, denote by B C 7T x T the set of all matrix blocks, i.e. the union of all
admissible and of all non-admissible blocks. Then, we may write

|(Au,v) 2(py — (A, v) 2y

3 / / (kan — TI2, (k) (5. )y (£)02(s) dt ds

AN)eB

> // [N § SN (Ox)x (£)0x(s) dt ds

AN)eB
Z 2- 4‘)“//%\/ )oa(s)dt ds

p+
(77) 22J 1+q)
Tk (AN)EB

n P 2J(1
< () 221040 | 1 o 0] 2 -

AN

T
In view of
p+1
(77> 92J(14q) _ 9—Jo b= J(2+2q+0) 7
Tk logy(n) — loga (k)
we obtain the assertion. o

(3.25) Remark. To maintain the approximation order of the Galerkin method, we
have to choose p ~ log N;. This yields an over-all complexity of O(N;(log N;)?) for the
computation and the storage of the far-field. Nevertheless, if the integrals of the near-field
cannot be evaluated with constant effort, then the computational effort of the near-field
computation will in general dominate. For example, in the case of tensor product Gaussian
quadrature rules and the Duffy trick, cf. [SS97, SS11], to regularize the singular integrals,
one has to increase the degree of the quadrature for all singular integrals proportionally to
|log hs| where h; = 277 is the mesh size. Thus, the computational effort is O((log N,;)*)
for each entry, which results in a complexity of O(N,(log N;)*) for all singular integrals.
However, it can be shown that this is also the overall complexity for the whole near-field
if the quadrature degree is properly decreased with the distance of the elements.
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Adaptive Cross Approximation

We shall also introduce the ACA as an alternative for the compression of admissible matrix
blocks. As a starting point, we employ again the admissibility condition (3.15) to partition
the system matrix. Then, in each admissible matrix block, we approximate Ay y/ € R7*n
with n = dim(Vj_| >\|) by a truncated, partially pivoted Gaussian elimination, cf. [Beb00)].
To this end, we define the vectors £,,,u,, € R™ by the following iterative scheme, where

A x = [a;;]} =1 is the matrix-block under consideration:
form=1,2,... set u,, = ﬁm/[ﬁm] jm With
m—1
U = [ai,, ;17 Z WU and £y, = [a; . liey — Z u;)j,. £
: =1

A criterion to guarantee the convergence of the algorithm is to choose the pivot
element located in (i, jm)-position as the maximum element in modulus of the re-
mainder Ay y/ — Ly,—1Uy,—1, where we define the matrices L1 := [€1,...,£y—1] and
U,—1 = [ui...,upy_1]7. This would require the assembly of the whole matrix block
Ay, which is not feasible in practice. Therefore, we employ another pivoting strategy
which performs quite well in most cases. We choose j,, such that [G,,];, is the largest
element in modulus of the row .

We finally stop the iteration if the criterion

(3.26)  [[€mill2llamirllz < el[LmUml
for some desired accuracy € > 0 is met. Under the assumption that

[Axx — L1 Unmtillr < O[Ax v — L Un|

holds uniformly for a fixed ¥ < 1, we arrive at

[m+1ll2lam+1ll2 = ILm+1Umt1 — LUl ¢
< HA/\,X - Lm+1Um+1HF + HA)\)\/ — LmUmHF
< (T +9)[Ax v — LUl F.

On the other hand, we find

[Lm+1Umt1 — LinUn || HAA N — L Unil|p — ”AA,,\’ — L1 Ui llp

>
2 ( 0)||A)\,X _LmUm”F-

Therefore, we conclude that the approximation error is proportional to the product of the
norms |[€p,41|/2||tm+1||2 of the update vectors

(1= D[Axx = LnUnllr < [[€miill2lwmiallz < (1 +9)[[Ax x = LnUn| 7.

Thus, together with (3.26), we can guarantee a relative error bound

3:27)  [[Axx = LnUnllr S ellAx x £
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(3.28) Theorem. Let A be the uncompressed system matrix and A be the system
matrix which is compressed by the ACA. Then, with respect to the Frobenius norm, there
holds the error estimate

IA - Allr S ellAllr
provided that the block-wise error satisfies (3.27).

Proof. In view of (3.27), we have

J
IA-AIZ=3 3 A A

F=0ALIN =)
J

2 2

Se Z Z HA)\,XHF
I=0ALIN]=5

2 2

= &”[|A[-
Taking square roots on both sides yields the assertion. O

Obviously, the complexity for the computation of the rank-m-approximation
LUy, to the block Ay y is O(m?n) and the storage cost is O(mn). The latter one can
be further reduced by the application of a singular value decomposition and neglecting
non-relevant singular values.

(3.29) Remark. The theoretical foundation of ACA for boundary integral equations is
the successive interpolation of asymptotically smooth functions, cf. [Beb00]. Traditionally,
ACA employs the three-dimensional interpolation theory for estimating the interpolation
error relative to the boundary I'. Since then the interpolation points may lie on a hyper-
plane for which the interpolation is not unique anymore, cf. [SX95], the traditional ACA
may fail to converge. We refer the reader to [BG05] and [BGO06], respectively, for a specific
example where this happens. Nevertheless, in our framework, such situations are excluded
since only the two-dimensional interpolation theory on the unit square is employed.

In the following, we restate the convergence result from [Beb00] and adapt ev-
erything to the case that the interpolation is performed on the unit square [J and [J x [,
respectively.

Let the function f: D x D — R satisfy Definition (3.5) and let 7, x 7y be an
admissible block. Consider the sequences {sy}x, {7x}r given as follows. Set

ro(s,t) := fyn(s,t) and so(s,t) := 0,

and compute for £k =0,1,...

Tk (Sa tjk+1 )rk (Sik+1 ) t)a

Tk’(sa tjk+1 )Tk(sik+l ) t)'

7”k+1(sa t) = ’I”k(S, t) - rk(sik+17tjk+1)

Spt1(s,t) = sp(s,t) + Tk(sik+1’tjk+l)

Here, we have to assume explicitly that the points s;, , ,t € [0 are chosen such that

—1
rk(sikJrl?tijrl) 7é 0.

Jk+1
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Then, with partial pivoting, i.e. s;,, is chosen such that
7% (St 1> tipin)| = [TR(s,t,,, )| for all s € OJ,

the following error estimate can be proven, cf. [Beb00],
k(s £)] S 2 dist(ra, 7y ) 20O VE,

Consequently, for sufficiently small n, the remainders |ry(s,t)| decay exponentially. Ac-
cording to [Beb00], the factor 2¥ is not observed in most of the practical applications.
Therefore, we will also omit it here for the complexity considerations which improves the
results.

(3.30) Theorem. Assume that, for admissible clusters 7y and 7y/, the remainder r(s, t)
satisfies the estimate

(331)  |ra(s, b)] < dist(ra, 7y3) 20T pVE,
Then, for € > 0, it holds |ry(s, t)| < e provided that k = (|loge| + J(2 + 2q))2.
Proof. Analogously to the proof of Theorem (3.24), it holds

dist(x, Ty) =277,

Therefore, the assertion immediately follows from

2
552207(1+q)77\/% N k:<log2€—2J(1+q)).

logy n 0

(3.32) Remark. For the particular choice € = 2779 in the above theorem, we observe
that the rank k of the ACA behaves like the rank p? for the FMM. In fact, this result is
in concordance with the respective results from [Gie01] and [BGO5].

Although it is not necessary to introduce a threshold parameter for the far-field in
the ACA, as discussed in Remark (3.19) for the FMM, we will consider it here. Hence, we
arrive at the following theorem which can be proven rather analogously to Theorem (3.20).

(3.33) Theorem. Assume that (3.31) holds uniformly for all k. Furthermore, let p
denote the threshold parameter from Remark (3.19). Then, the complexity for the com-
putation of the far-field in the ACA is given by O([J — 2log, p] k‘ZNJ) and the storage by
O([J — 2log, plkN,).

Proof. In accordance with the proof of Theorem (3.20), the complexity for the far-field
computation is given by
[J—2log, p] [J—2log, p] ) )
> O(N;) - O(k*Ny_j) = > O(K4) - O(k*K4777)
§=0 =0
= O([J — 2log, p|k*K?47)
= O([J — 2log, p|k*Ny).

A similar computation yields the complexity for the storage. O
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4. The pivoted Cholesky decomposition

The discussion in the first two sections of this chapter yields to the spatially discretized
Karhunen-Loeve expansion according to

M
(41)  u(w,x) = QuE[](x) + D 0inXi(w)p; (%)
i=1

with

X; = L /((Id@Qh)uo)Tcp@hdx
D

Oih

and {(A; p, <pi,h)}£/[:1 are the M dominant eigen-pairs of the discretized covariance operator
Ch. Based on the observation in Theorem (1.5), we consider in this section a more general
approach for the representation of a random (vector-) field. For this purpose, we rather
refer here to the separable decomposition

M
(42)  wm(w,x) = QuEM](x) + ) Yi(w)9; (%)
i=1

than to the orthogonal decomposition (4.1). In the expansion (4.2), we assume that
{; 3, C [Vi¥]¢ for appropriately modified random variables {Y;,}M_; C L2(9).

Data: matrix A = [a; ;] € R™*" and error tolerance € > 0
Result: low-rank approximation A,; = Zf\il £;€] such that trace(A — Ay) <e

begin
set M :=1;
set d := diag(A) and error := ||d||,1;
initialize 7 := [1,2,...,n];

while error > ¢ do

set 1 1= argmax{dy; : j = M, M +1,...,n};
swap 7y and 7;;

set Uafryy 2= /iy

for M +1<i<ndo
M—1

compute £py r, = <a7fMJri - Z KJ',WMKJQM)/EMJFM;
Jj=1
update dr, = dr, — Crrmp Ond s

end

n
compute error := Z dn,;
i=M+1
increase M = M + 1,
end

end
Algorithm 1: Pivoted Cholesky decomposition.
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One possibility to obtain a separable expansion (4.2) is to compute the pivoted
Cholesky decomposition of the coefficient matrix of Cj, with respect to a basis in [V;?]¢. To
that end, let ®(x) 1= [p1®e1,...,pNRe€1,...,01R€q,. .., pNRey] denote an orthonormal
basis of [V;*]¢, where {ey,...,e,} denotes the canonical basis in R%. Then, the coefficient
matrix of Cp, with respect to ® is given by the block-matrix

Cii - Cig

) 5

(43) C= [(C(PJ, (pi)LQ(D;Rd)]géy:l = c RdNXdN.

Can -+ Cgg
For each finite dimensional ansatz space, the matrix C is symmetric and positive semidef-
inite. Thus, C exhibits a (possibly pivoted) Cholesky decomposition. By pivoting the
Cholesky decomposition as seen in Algorithm 1, we achieve numerical stability on the one
hand, cf. [Hig90, Hig02], and, if the eigenvalues of C decay sufficiently fast, a low-rank
approximation on the other hand, cf. [HPS12]. Especially, the approximation error of
the (truncated) pivoted Cholesky decomposition is a-posteriori controllable in terms of
the (discrete) trace, i.e. trace(A) = > i (Aej,€) = > i a;;, for A € R"™™ and the
canonical basis {ej,...,e,} in R™.

(4.4) Remark. Notice that ACA combined with total pivoting would result for sym-
metric and positive semidefinite matrix blocks in an algorithm which is quite similar to
the pivoted Cholesky decomposition. Nevertheless, for PCD, we do not have to partition
the system matrix into far- and near-field, but can directly apply Algorithm 1 to C. In
this sense, we may think of PCD as a single-block ACA with total pivoting. Here, the
total pivoting is not prohibitive expansive since it is a-priori known that the pivots are
located on the main diagonal of C. Furthermore, we have in contrast to ACA, a rigorous
stopping criterion based on the quantity trace(C — Lj/L},).

In the following, we establish the connection between the approximation to the
random field obtained by the pivoted Cholesky decomposition and the Karhunen-Loeve
expansion of (Id ®Qp)u(w,x). We denote the spectral decomposition related to C by
C = fivl Aiviv] with \; € [0,00) and v; € RN Therefore, the Karhunen-Lo¢ve expan-
sion of (Id ®Qp)u(w, x) is given by

dN
up(w,x) = QpEu](x) + Z VX (w)®(x)v;
i=1

with respect to the orthonormal basis ® of [V;*]%. This representation can be rewritten in
matrix notation as

(4.5) uy(w,x) — QpE[u](x) =: ®(x)VEX(w)
with V := [vy,...,van], B = diag(v/A1, ..., vVAgn) and X(w) = [X(w), ..., Xan(w)]T.

The matrix (VE)T € RIN*IN from (4.5) exhibits a QR-decomposition, QLT = (V)T or
LQT = VX, respectively. Here, Q denotes an orthogonal matrix, i.e. QTQ = I € RINVxdN
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and L € RINXIN is 5 Jower triangular matrix. We shall next define the transformed ran-
dom vector Y (w) := Q"X (w). Then, Y (w) also consists of dN uncorrelated and centered
random variables, since it holds

/ Y () YT (w) dP(w) = QT / X ()X T(w) dP(w)Q = QTIQ = I.
Q Q

That the random variables Y;(w) are also centered follows from the fact that they are
weighted sums of centered random variables. Thus, we obtain a representation which is
equivalent to (4.5) according to

P(x)VEX(w) = ®(x)LY (w)
where the change of basis Q only acts on the basis of L2(2). Moreover, we observe
C=VX(VY)T=LQTQLT =LL".

Since L is a lower triangular matrix, we thus end up with the Cholesky decomposition of
C. In the following, without loss of generality, we shall assume that LLT corresponds to
the pivoted Cholesky decomposition of C.

Using the Cholesky decomposition of C, we obtain the separable representation

dN
(4.6) up(w,x) = QpE[u](x) + Z Yi(w)®(x)¥;
i=1

for up(w,x) with L = [€1,...,£€n]. Whereas, the related truncated Cholesky decomposi-
tion leads to the truncated expansion

M

up, v (w, x) = QpE[u](x) + ZYi(w)q)(x)Ei.
i=1

Notice that this is exactly the representation (4.2) with 1, ,(x) = ®(x)¥;.

(4.7) Remark. The separable representation (4.6) of the stochastic field is based
on the knowledge of an appropriate matrix R € RINXIN 4 square root of the coef-
ficient matrix, such that C = RRT. It is known that for two different square roots,
ie. C = RRT = RRT, there exists an orthogonal matrix Q € RW*IN guch that
R = RQT. The change of the representation (4.5) due to the application of Q is then
performed by the change of the basis in L3(12), i.e. Y(w) := QTX(w). Thus, any square
root of C yields a separable representation of uj(w,x). Nevertheless, we focus on the
pivoted Cholesky decomposition here.

The approximation error of a given stochastic field which is induced by truncating
of the pivoted Cholesky decomposition is controllable in accordance with the following
theorem.

(4.8) Theorem. Let C € R¥VX4V denote the coefficient matrix given by (4.3). Fur-
thermore, let Cyy = Ly/L], € RIN*AN denote its (truncated) pivoted Cholesky decompo-
sition computed by Algorithm 1 such that trace(C —Cjy) < € holds for some € > 0. Then,
for the related stochastic field, we have the error estimate ||[u; — uh7M||L]§>(Q;L2(D)) < y/E.
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Proof. Let C = LLT be the pivoted Cholesky decomposition of C. We define the related
integral operator

(T*v)(w) := /D (®(x)LY () Tv(x) dx

and the orthogonal projection Py, : [Vi]? — span{¢;(x), ..., ¢, (x)} onto the space which
is spanned by the first M basis functions. Then, it holds in complete analogy to the proof
of Theorem (1.3) that

dN
lun = wn sl 7202y = D (T @i Thed) 2(0) — (T Prep; T'Proy) 120
i=1
AN M
= Z<LTei7 LTei> - Z<LTei7 LTei>
i=1 i=1
= trace(C — Cyy) < e. m

This theorem states that the choice e = h2™ir{s+1.a} in the pivoted Cholesky decomposition
guarantees, together with inequality (1.6), the (optimal) error estimate

i 1

The major advantage of this approach is that at no time the coefficient matrix C has to
be fully assembled. It is sufficient to provide access to single entries of this matrix while
processing the pivoted Cholesky decomposition. The error in the approximation of the
random field u(w,x) is then a-posteriori controllable by the trace.

Given that the pivoted Cholesky decomposition for C terminates with M < dN
terms and Cp; = Ly L], € RANXAN “where Ly, € RV*M the computation of the related
Karhunen-Loéve expansion is performed with complexity O(M?2dN), cf. [HPS12]. This is
achieved by computing the eigenvalues of L], Ly € RMXM which coincide with those of
Cyus. Then, if vy, ..., v denote the orthonormal eigenvectors of the small eigen-problem,
the eigenvectors of Cj; are given by Lvy, ..., Lvys and we have

(49) (LVZ')T(LV]') = VZ'LTLV]' = )\7;51'7]' for all ’i,j = 1, ey M.

Thus, the related Karhunen-Loéve decomposition is given by
M ~

(4.10)  wupm(w,x) = QpE[u](x) + ZXi(w)i)(x)Lvi
i=1

for appropriately chosen random variables Xi(w),..., Xas(w). If the laws of the random
variables X;(w) are known, we obtain the relation

X(w) = [vi,...,vu]|TY (w)

with v; from (4.10). Otherwise, the related random variables X;(w) can be determined by
a maximum likelihood estimate, cf. [ST06]. Notice that for the important Gaussian case
X (w) ~ [N(0,1)]%" we have for any orthogonal transform QX (w) ~ [N(0,1)]" and thus
X has the same law as X. Nevertheless, we consider here only distributions with compact
range. Therefore, the Gaussian case will be of no interest later on.
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5. Numerical results

We have already pointed out that the cluster methods provide a means to approximate
single blocks of the matrix-valued covariance function Cov[u]. Thus, to keep things simple
in the numerical tests, we will consider here only covariance functions related to random
scalar fields u € L&(€2, L2(D)). The covariance functions under consideration shall then
be given by the Matérn class of covariance functions, cf. Section II.4. The parametric
geometries we study here are given by the unit sphere S?> C R? on the one hand and a
more complex geometry D C R?, i.e. a rectangular plate with holes, on the other hand.

The implementations of namely ACA, FMM and PCD rely on the same basic
routines, which means that they use the same quadrature routines for the assembly of
the entries of the matrix C. Especially, we employ here the quadrature proposed in
[SS97] for the treatment of singular integrals. Although, all of the kernel functions under
consideration are at least continuous, we observed that this quadrature provides more
accurate approximations. Exploiting the symmetry of C, we only assemble its lower
triangular part of the matrix for ACA and FMM. We refer to the related compressed
matrix as C. The constant in the admissibility condition (3.15) is set to n = 1.6 for both
methods. Although, this choice contradicts the requirement n € (0, 1), it is sufficient for the
numerical examples at hand. All methods have been implemented in the C-programming
language, cf. [KR88]. In the implementation of ACA, we have employed level 1 and
2 BLAS' routines in the assembly of the matrix C and in the matrix-vector product,
whenever possible. In the implementation of the FMM, the matrix-vector product is
based on the H2-matrix variant.

In case of ACA and FMM, we end up with a data-sparse representation C of
C. Thus, to obtain a representation of the approximate stochastic field uj ps similar to
(4.1), we have still to compute the dominant eigen-pairs of C. The representation of C
provides a fast matrix-vector product. Therefore, we employ ARPACK, cf. [LSY98], to
solve the eigen-problem for the compressed matrix C. The size of the Krylov subspace
in ARPACK is chosen as twice the number of desired eigenvalues, which is a reasonable
choice according to [LSY98].

Notice that a LAPACKZ?-style implementation of the PCD, cf. [Luc04], is not
applicable since it relies on the assembly of the entire matrix C, which is not feasible for
large values of N.?

All computations performed on a computing server with two Intel(R) Xeon(R)
X5550 CPUs with a clock rate of 2.67GHz and 48GB of main memory. The computa-
tions have been carried out single-threaded, i.e. on a single core. Furthermore, we set
the correlation length of the Matérn kernels to £ = 1 in all examples. For the spatial
discretization, we choose piecewise constant finite elements, i.e. the ansatz space is V2,
cf. Remark (I1.6.6). For ACA and PCD, we set the truncation error ¢ ~ h?. The FMM
works with polynomial degree p = 3 which is sufficient to maintain the convergence for all
levels of refinement. Thus, we expect for both approaches a linear rate of convergence for

"http://www.netlib.org/blas/

Zhttp://www.netlib.org/lapack/

3For example for N = 10°, the storage of the matrix C would require about 80GB of memory in 8-Byte
double precision.
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the stochastic field in terms of the (continuous) traces, i.e.

||u - uhaM||L]}%(Q;L2(D)) S h+ \/TI'Ch — T‘I'ChyM

Therefore, we will measure the error by the quantity /TrCj, — TrCp ar/+/TrCh. Notice
that we consider here the relative error in order to make the error independent of the
scaling of the eigenvalues which depends on the size of the domain, cf. (I1.4.6).

First example

Figure II1.4: The unit sphere S? represented by 6 patches.

As a benchmark, we consider the three-dimensional unit sphere S? C R? rep-
resented by 6 congruent patches, see Figure III.4. Thus, with the knowledge from the
preceding Section 1.4, we can compute the exact eigenvalues and eigenfunctions of the
Matérn covariance functions as reference. Furthermore, we can estimate the truncation
error due to (IL.4.4). For the truncation error related to the Matérn covariance with
smoothness parameter v, it holds that

o0 00 1
5.1 Am < / Cr=1=vde = | = CM~.
D) W siovdo = |1

Notice that the dimension is d = 2 here, since we restrict the Matérn kernels to the unit
sphere S?. Thus, to bound the truncation error of the Karhunen-Loéve expansion by h,
we have to ensure that

1
,/ECM—Vgh — M>(C>”.
v vh2

With the estimation of the constant C from Figure 1.3 at hand, we are able
to compute the related length of the Karhunen-Loeéve expansion. Unfortunately, this
approach yields very large numbers of eigen-pairs to be approximated by ACA and FMM.
Therefore, we choose another approach. We consider for each respective kernel the sum
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J v=3/2| v=5/2| v="T/2] v=9/2
1 6 (9) 1 (4) 1(4) 1)
2 18 (25) | 13 (16) | 11 (16) 9 (9)
3 48 (49) 25 (25) 20 (25) 17 (25)
4 120 (121) 45 (49) 33 (36) 26 (36)
5| 305 (324) | 79 (31) | 49 (49) | 40 (49)
6 | 768 (789) | 139 (144) | 76 (1) | 57 (64)
7 [ 1928 (1936) | 243 (256) | 113 (121) | 78 (31)
8 | 4807 (4900) | 423 (441) | 166 (169) | 107 (121)

Table III.1: Different values of the cut-off parameter M; on the unit sphere S2.

J v=3/2| v=5/2| v=T/2| v=9/2
1 5 (6) 5 (6) 4 (5) 4 (5)
2 19 (21) | 14 (14) | 12(13)| 11 (12)
3 49 (56) | 20 (32) | 23 (24)| 21 (22)
1] 137 (158) | 53 (58) | 38 (4l) | 32 (35)
5 359 (414) | 97 (107) 58 (62) 46 (49)
6 | 935 (1082) | 167 (185) 89 (96) 64 (69)
7 | 2415 (2812) | 295 (327) | 132 (143) | 90 (96)
8| — (7158) | 513 (569) | 197 (214) | 122 (130)

Table I11.2: Ranks determined by PCD on the unit sphere S2.

of those eigenvalues with magnitude larger than 10710 as an approximation to the actual
trace of the kernel, i.e.

Mmax
/ k(x,X)dsx = Y Am+6  With Miax = arg min{\,, > 107},
S2 m

m=1

cf. (I1.4.6). The resulting truncation error ¢ is computable due to the exact knowledge
of the traces which are equal to 47 for all v. We have § = 4.18 - 107% for v = 3/2,
§=243-10"" for v =5/2, 5 = 4.93- 1078 for v = 7/2, and 6 = 1.70 - 1078 for v = 9/2.
The rank on each level j with mesh width A = 277 is then determined according to

MII]&X k ]\/[n\ax
(5.2) M; = arg min { Z Am — Z Am < h? Z )\m},
ke{l,...,Mmax} \ pm=1 m=1 m=1

that is the trace error relative to the scaling of the eigenvalues. The finest level j which
we consider here is j = 8, resulting in 393216 finite elements. For the levels j = 1,...,8
and v = 3/2,5/2,7/2,9/2, the computed cut-off parameters M; are found in Table III.1.
The number in the brackets denotes the size necessary to resolve clusters of eigenvalues by
approximating only complete subspaces associated with the multiplicity of the respective
eigenvalue. This is proposed in [LSY98] in order to achieve the optimal performance
of ARPACK. Nevertheless, in our numerical studies in [HPS14a], we could not observe
major differences in neither the computational time nor the precision obtained of the
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eigen-pairs. Therefore, we will show here only the results for the number of eigen-pairs
which is provided by (5.2).

Table I11.2 shows the ranks determined by PCD. The numbers in front of the
brackets correspond to the recompressed ranks, the numbers within the brackets denote
the original rank. As it turns out, the ranks computed by PCD are rather optimal in
the sense that they reflect the estimated length of the Karhunen-Loéve expansion deter-
mined by formula (I1.4.4). Especially for increasing smoothness of the kernel function, the
determined rank gets successively better.

(5.3) Remark. We end up with the spectral decomposition of the approximate co-
variance Cp, 5y when we solve the eigen-problem (4.9) for PCD. By truncating the obtained
decomposition (4.10) with the prescribed relative accuracy h?, we achieve an a-posteriori
recompression of the PCD. This procedure may at most double the approximation error
but reduces the rank by up to 10% on average in our computations for this thesis.

The error plots and related computational times for the numerical experiments
on the unit sphere are depicted in Figure II1.5-I11.8. Unfortunately, the computations
of ACA and FMM as well as PCD with recompression for » = 3/2 and level 8, i.e. for
393216 finite elements, could not be carried out since the available main memory has been
insufficient.

10

Matern-9/2

Matern-9/2

\\ ——time assembly ACA
= —=—total time ACA
\ ——time assembly H2FMM
NS , || —=total time H2FMM
.. 10" || ——time PCD d
-1 < 2
_ 10 \;\\ time PCD (w. recomp.) /
o >y — "
Q S~
S10
T 102 s
—=—error ACA : o4
—=—error H2FMM
—=—error PCD 2y
error PCD (w. recomp.) : 107
- -~ -Asymptotics 270 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ; ;
1 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Level Level

Figure IT1.5: Trace error (left) and computational times (right) for the v = 9/2 on S2.

In the plots on the left hand side of Figures I11.5-I11.8, the trace error for each
particular kernel under consideration is depicted. The expected rate h =~ 277 is indicated
in the plots by the dashed black line. The red line shows the error for ACA and the
magenta line shows the error for FMM. The error of the PCD is indicated by the blue line
and finally the error of PCD with recompression is indicated by the cyan colored line. It
turns out that all methods provide at least the expected linear rate of convergence in this
example. The rate of FMM is even slightly increased on level 8.

In the plots on the right hand side of Figures II1.5-1I1.8, the computational times
for every method and each particular kernel is found. There seems to be no significant
difference in the times for ACA and FMM for all kernels under consideration. Furthermore,
we observe that the computation time consumed by ACA and FMM for v = 5/2,7/2,9/2 is
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0 Matern-7/2 . Matern-7/2
10° ¢ ; ‘ : : . ‘ 10 : : : ‘
S5 ; ——time assembly ACA
N ; —=—total time ACA
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-1 , ||—=total time H2FMM /
; N 10" f{——time PCD < il
_10 : N i ] time PCD (w. recomp.) /
& >3 R ()
g e Eq°
- 2 3 ~
10 M =—error ACA : N
—=—error H2FMM
—=—error PCD -2
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Figure I11.6: Trace error (left) and computational times (right) for the v = 7/2 on S2.

Matern-5/2

Matern-5/2

——time assembly ACA
—=—total time ACA
——time assembly H2FMM
—=—total time H2FMM

10" [} ——time PCD

time PCD (w. recomp.)

trace—error
time (s)

{| —=—error ACA
—=—error H2FMM
—=—error PCD

error PCD (w. recomp.)
5|~ - Asymptotics 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Figure IT1.7: Trace error (left) and computational times (right) for the v = 5/2 on S2.

dominated by the assembly of the matrix C, indicated by the green line for ACA and by the
dark magenta line for FMM, whereas the computation time is governed by the eigenvalue
computation for v = 3/2. Nevertheless, we observe that PCD becomes significantly faster
than ACA and FMM for increasing smoothness of the kernels. In order to quantify this
behaviour, we have plotted in Figure I11.9 the average computational times for ACA and
FMM relative to the computational time of the PCD with recompression. The bar graph
shows that PCD is nearly a factor 3 times faster than ACA and FMM for v = 3/2 up to
factor of 9 and 8 times faster than ACA and FMM for v = 9/2, respectively.

Second example

In our second example, we consider the plate geometry depicted in Figure II1.10. It is a
rectangle with 30 inscribed, equi-spaced circular holes which is represented by 120 patches
and scaled to a size of 2x 2.4. Here, the computations are carried out on levels j = 1,...,6,
where level 6 corresponds to 491520 finite elements. Figure II1.11 contains a visualization
of the four orthonormal eigenfunctions corresponding to the four largest eigenvalues of the
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Figure I11.8: Trace error (left) and computational times (right) for the v = 3/2 on S%.
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Figure II1.9: Computational times relative to PCD on the unit sphere S?.

Matérn kernel with v = 3/2. For overview purposes, we have chosen the same colors for
each particular method as in the previous visualizations.

In this example, we do not know the number of eigenvalues necessary to achieve
the desired precision with ACA and FMM for ARPACK. Therefore, we use here the ranks
provided by PCD with recompression as reference. The respective values are found in
Table II1.3. Again, the numbers in front of the brackets correspond to the recompressed
ranks of PCD and the numbers within the bra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>