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Abstract

In this thesis we focus on low temperature transport through cleaved edge overgrowth

(CEO) quantum wires. This thesis is motivated by recent theoretical work on one hand

that predicts the formation of a nuclear helimagnet in presence of a Luttinger liquid

(LL) below a critical system temperature [1] and previous measurements on CEO wires

on the other hand that might indicate the onset of such a phase transition [2].

The first task for this thesis was to create suitable measurement conditions to approach

the theoretically predicted strongly correlated state of matter. More precisely, electron

sample temperatures much lower than the predicted ordering temperature of 75mK for

GaAs CEO wires have to be demonstrated. For this purpose, cryogenic microwave fil-

ters with very low cut-off frequency and good thermalization properties were developed

and installed for all measurement cables. With that a minimum electron tempera-

ture of 7.5mK was reached in metallic coulomb thermometers [3], and furthermore,

for the first time in these devices, a deviation from pure electron-phonon cooling is

observed [4].

At low refrigerator temperatures TR, the CEO (double) wires show pronounced and

completely reproducible conductance oscillations as a function of density. We show

that these oscillations, also present in the zero magnetic field tunneling current be-

tween the parallel quantum wires, emerge as 1D Fabry Perot resonances in the ballistic

CEO wires [5]. We analyze the maximum transmission (T = 1) through these wires, i.e.

the oscillation maxima, in the single mode regime as a function of temperature. While

the quantum wires approach universal conductance quantization of 2 e2/h for a single

quantum wire only at quite large TR & 15K, we find that the conductance saturates

below TR ≈ 75mK at ≈ 1 e2/h [6]. Furthermore, we give strong evidence that the

conductance saturation is not related to insufficient thermalization, i.e. the CEO wires

cool far beyond the saturation temperature of ≈ 75mK.This seems to indicate lifting



of electron spin degeneracy at zero external magnetic field, consistent with the theo-

retically predicted low temperature limit for a clean LL in the ordered helical state [1].

We can further exclude other potential mechanisms (temperature dependent contact

resistance, freeze-out of weakly disordered LL, Wigner crystal formation/incoherent

LL), leaving only nuclear spins as candidates for the source of the (possibly) observed

lifted spin degeneracy as spin-orbit coupling is rather weak in GaAs, and the satu-

ration at 1 e2/h is observed in absence of an external magnetic field. This might re-

solve the long-standing mystery of the temperature-dependent (non-universal) conduc-

tance quantization in GaAs cleaved edge overgrowth quantum wires, and furthermore

might give first experimental evidence for a new, strongly correlated state of matter,

namely (helical) nuclear order induced by the strongly interacting electrons via hyperfine

coupling.

We also measure real-time tunneling in a GaAs few electron double quantum dot (DQD)

by means of an adjacent quantum dot as charge sensor. At low temperatures, in the

limit of negligible interdot tunneling and low tunnel rates to source and drain, we ob-

serve metastable charge state switching. The metastability only occurs within diamond

shaped regions that are centered between associated triple points of the charge stability

diagram (CSD). We show that these charge fluctuations arise as an intrinsic property

in DQDs, and take place via fast intermediate states that include an electron exchange

with the leads [7]. Due to the geometrical shape of the diamond (in very good agree-

ment with our model of thermally activated electron exchange with the leads), its large

energy scale (>1.7K) and due to its visibility even at charge sensor bias voltages as

small as 5µV, we exclude extrinsic effects such as phonon or photon assisted tunneling.

Furthermore, the simultaneous observation of the diamond shaped region of metastable

charge state switching at various points in the CSD and its pinning to associated triple

points upon reshaping the DQD, make charge traps and other defects a very unlikely

explanation.
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1 Background

Temperature is the most important tunable knob in this thesis with focus on transport

measurements in cleaved edge overgrowth quantum wires. In fact, our main experimen-

tal finding is a low temperature saturation of reduced conductance steps in these wires

that is not related to a saturating electron temperature. To back up our conclusions,

reliable and verified thermometry is a basic requirement.

In this chapter we will introduce different thermometers that were used to determine

the refrigerator temperature, and give the background for electron temperature mea-

surements with a GaAs quantum dot. While dilution refrigerators with low base tem-

perature in the few milikelvin regime are commercially available, quite some additional

efforts have to made in order to reduce the electron sample temperature down to a

similar regime. In chapter 2 we present new cryogenic microwave filter that were devel-

oped for this purpose, together with electron temperature measurements using a GaAs

quantum dot and metallic coulomb blockade thermometers (CBTs) [3]. Electron tem-

peratures in CBTs are further investigated in chapter 3 with focus on the underlaying

cooling mechanism [4].

In chapter 4 we give a brief introduction to Luttinger liquid physics and nuclear order

in 1D conductors, followed by previous experimental findings and an introduction to

the CEO wires used in this work. We measure the electron density using tunnel spec-

troscopy [8] and verify the transition to electron localization [8, 9] at low densities as

well as ballistic transport [10]. Furthermore we identify Fabry-Perot resonances [5], a

manifestation of ballistic transport. Then we move on to transport measurements in

CEO wires (chapter 5), i.e. we analyze the reduced conductance steps in CEO wires as

a function of temperature [6].

In the last chapter we focus on intrinsic temperature activated metastable charge state

switching in a GaAs few electron double quantum dot.
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1.1 Measurement environment

A very broad range of temperatures has been addressed in experimental physics, ranging

from several hundreds of picokelvins [11, 12], achieved in Bose-Einstein condensates and

nuclear cooling of Rhodium spins, up to a few trillion degrees in quarks-gluon plasmas

[13]. Depending on the regime and the system under study, measuring temperature can

be quite challenging, and requires thermometers that are suitable for the specific situa-

tion. All experiments in this work were performed on 3He−4 He dilution refrigerators

(DRs), where temperature can be typically varied from a few milikelvin up to a few

Kelvin.

1.1.1 Refrigerator temperature

The DRs are equipped with RuO2 resistors that are commonly used as thermometers

in that regime. They are mounted on the mixing chamber plate which is very well

thermally coupled to the mixing chamber (MC), the core of any DR. Actual samples

are mounted on a sample holder that is attached to a coldfinger (CF). Our CF is an

extension made from copper that is attached to the mixing chamber plate, and allows

sample measurements in (large) external magnetic fields while B-fields at the MC-plate

are kept small. Due to small gradients between the MC-plate and the sample holder,

the actual temperature of e.g. the sample backplane is slightly larger than the MC-

temperature. In the following we will ignore these small temperature gradients and

use the temperature, measured with a RuO2 resistor at the MC-plate, as a synonym

for the refrigerator temperature TR. The RuO2 resistors are precalibrated with a fixed

point device to convert between the measured resistance and refrigerator temperature

TR using a 7th order polynomial. The fixed point device itself is a primary thermome-

ter where a series of superconducters with different (known) transition temperatures

serves as an absolute temperature scale. In the following section, we cross check the

precalibrated RuO2 thermometer with a CMN thermometer.

10



1.1.2 CMN thermometer

CMN is a paramagnetic salt, with a ferromagnetic ordering temperature TC in the low

milikelvin regime (TC = 1−2mK, see e.g. Pobell, "Matter and Methods at Low Temper-

atures" [14]). In the high temperature phase (para phase), the magnetic susceptibility

χm follows a Curie-Weiss law:

χm (T ) =
C

T −∆
(1)

The Weiss constant ∆ depends on experimental details such as the shape of the sample

and crystal symmetry of the salt. The Curie constant C depends on the amount of

CMN salt used (number of moles N0) and is given by C = N0J(J + 1)µ0µ2
Bg

2/3kB

[14]. Here J denotes the total angular momentum quantum number, µB = 58.9µeV/T

the Bohr magneton, µ0 the vacuum permeability and kB the Boltzmann constant.

The Curie-Weiss law, shown in eq. 1 is the basic principle of a CMN thermometer.

The magnetic susceptibility is measured indirectly via the mutual inductance L of a

pair of concentric coils with the CMN salt as center material. The primary coil is

excited with an alternating current I(ω) leading to an oscillating magnetic field B (t) =

(1 + χm)B0 (t). B0 (t) denotes the magnetic field in absence of the paramagnetic salt

(or equivalently, with the salt but in the limit of high temperatures). The change in

magnetic flux induces a voltage in the secondary coil. According to Lentz’ rule, the

induced voltage is given by:

Uind = −L(t)
dI
dt

= −
(

1 +
C

TCMN −∆

)
µ0NPNSA

l︸ ︷︷ ︸
L0

dI
dt︸︷︷︸

ωI0 cos(ωt)

; I (ω) = I0 sin (ωt)

(2)

NP , NS are the number of windings for the primary and secondary coil, A the cross

section and l the length of the coils. As evident from eq. 2, the induced voltage scales

linearly with the excitation frequency. Changing the frequency is a good experimental

11



tool for testing whether or not the measured signal is purely inductive. A measurement

of the mutual inductance as a function of refrigerator temperature TR is shown in fig. 1.

In practice for a CMN thermometer to work properly, external magnetic fields have to be

suppressed since the CMN temperature TCMN is gained through a B-field measurement.

For this purpose a Nb-shield covers the active part of the device. In the superconducting

state the Nb-shield expels external B-fields due to the Meissner-Ochsenfeld effect [15].
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Figure 1: Mutual inductance of a CMN thermometer versus mixing chamber tempera-
ture TR, measured with a RuO2 thermometer. The solid blue trace is a fit to the data
in the regime 15mK< TR < 1K using eq. 2. The same fit is shown for the whole tem-
perature range as dashed blue trace. Fit parameters are indicated in the legend. The
inset shows a picture of the CMN thermometer (small coil, from Leiden Cryogenics).

Using eq.2, we fit the data in fig. 1 in the temperature range 15mK< TR < 1K (solid

blue trace), where we believe the RuO2 calibration to be quite accurate. For comparison,

in dashed blue, we also show the same fit but plotted over the whole temperature range.

From the curve fit, we can extract the mutual inductance between the coils (in absence

of the CMN salt), L0 ≈ 250µH, the Curie constant C ≈ 26mK and a Weiss constant

of ∆ = 0.8mK. Also, the measured mutual inductance can be converted back to

a temperature TCMN if TR is well above the ordering temperature of the CMN salt

(TR & 5mK, see ref. [14]). As shown in fig. 2, CMN and RuO2 thermometer temperature

agree quite well and only start deviating a little towards base temperature of the DR. As
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a guideline to the eye, we also plot the ideal case, where CMN and RuO2 thermometer

agree perfectly, TCMN = TR.
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Figure 2: Mutual inductance of a CMN thermometer, converted to temperature TCMN

and plotted versus mixing chamber temperature TR (RuO2 thermometer). The black
trace is a guideline to the eye and indicates the ideal case TCMN = TR.

The larger deviations at lower temperatures probably arise from different time constants

in the thermalization of the paramagnetic salt and the RuO2 semiconductor respectively.

The system temperature was increased from base temperature by switching off the turbo

pumps for the 3He−4 He circulation system of the DR. This initially leads to a quite

fast temperature changes which then, due to different thermalization time constants,

inevitably lead to different CMN and RuO2 temperatures.

1.2 GaAs quantum dots

GaAs quantum dots (QDs) are tiny islands with a small but adjustable amount of

electrons. Because of their small size (tens of nanometers up to microns) which is

comparable to the typical Fermi wavelength in these system λF ≈ 50−100 nm, a quan-

tum mechanical description is required leading to discrete energy states. Due to their

similarities in the energy spectrum, quantum dots can be viewed as artificial (tunable)

atoms [16, 17]. QDs have been extensively studied in the past decades in many different
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material systems. Examples are SETs (single electron transistors), self assembled QDs

e.g. in InAs-InGaAs heterostructures (here, strain due to lattice mismatch is responsible

for the formation of QDs), etched QDs on Graphene, NV-centers in Diamond (Nitrogen

Vacancies), surface gated QDs e.g. on GaAs/AlGaAs heterostructures and many more.

The QD experiments in chapters 2, 6 are done on GaAs double quantum dots (DQDs)

fabricated by Kristine Bedner and Daniel Biesinger respectively. Starting point for the

fabrication is a GaAs heterostructure. The triangular potential well which forms at the

GaAs-AlGaAs interface, traps free electrons from the above Si-doping layer. At temper-

atures below ≈ 100K only the lowest subband of the triangular well remains populated

[18], resulting in a very clean two dimensional electron gas (2DEG) with mobilities µ of

several million cm2/Vs. Standard electron beam lithography is used to pattern Ti/Au

surface gates and Au/Ge Ohmic contacts. The surface gates allow for depletion and

shaping of the underlying electron gas, whereas the Ohmics serve as source and drain

contacts for electrical studies on the QD. The focus of this section will be on simple

transport through a QD, which will allow to use QDs as electron thermometers. An

overview on QDs can be found e.g. in ref. [19]. A schematic of a QD is shown in fig. 3.

Vg

SOURCE DRAIN

GATE

lateral
quantum dot

e

VSD I

and drain reservoir, with which part icles can be exchanged (see Fig. 3). By
at taching current and voltage probes to these reservoirs, we can measure the
elect ronic propert ies of the dot . The box is also coupled capacit ively to one or
more“ gate” elect rodes, which can beused to tune theelect rostat ic potent ial of
the dot with respect to the reservoirs. When the size of the box is comparable
to thewavelength of theelect rons that occupy it , thesystem exhibitsa discrete
energy spect rum, resembling that of an atom. As a result , quantum dots
behave in many ways as artificial atoms.

Because a quantum dot is such a general kind of system, there exist quan-
tum dots of many di erent sizes and materials: for instance single molecules
t rapped between elect rodes, metallic or superconduct ing nanopart icles, self-
assembled quantum dots, semiconductor lateral or vert ical dots, and even
semiconduct ing nanowires or carbon nanotubes between closely spaced elec-
t rodes. In thiswork, we focus on lateral (gated) semiconductor quantum dots.
These lateral devices allow all relevant parameters to be controlled in the fab-
ricat ion process, or tuned in situ.

Fabricat ion of gated quantum dots starts with a semiconductor het -
erost ructure, a sandwich of di erent layers of semiconduct ing material (see
Fig. 4a). These layers, in our caseGaAsand AlGaAs, aregrown on top of each
other using molecular beam epitaxy (MBE), result ing in very clean crystals.
By doping then-AlGaAs layer with Si, freeelect ronsare int roduced. Theseac-
cumulate at the interface between GaAs and AlGaAs, typically 100nm below
the surface, forming a two-dimensional elect ron gas (2DEG) – a thin (10nm)
sheet of elect rons that can only move along the interface. The 2DEG can have
a high mobility and relat ively low elect ron density (typically 105–106 cm2/ Vs
and ∼3 × 1015 m− 2, respect ively). The low elect ron density results in a large
Fermi wavelength (∼40nm) and a large screening length, which allows us to
locally deplete the 2DEG with an elect ric field. This elect ric field is created

Figure 3: Schematic of a lateral quantum dot, taken from ref. [20]. The quantum dot,
indicated as disc, is separated by tunnel barriers from source and drain contacts. A
capacitively coupled gate Vg controls the chemical potential in the quantum dot.

The quantum dot is a small region of the 2DEG that was separated from the surrounding

2DEG (by means of surface gates), leaving only tunneling contacts to source and drain.

A capacitively coupled gate Vg allows the chemical potential µ to be changed in the

quantum dot. For sufficiently large negative gate voltage Vg all electrons are pushed

out of the quantum dot, leaving an empty island. Upon increasing Vg to less negative

14



voltages, electrons can be filled in one by one. The addition energy Eadd for adding the

next electron depends on the number N of electrons already present in the QD and is

defined via the QD chemical potential [20]:

Eadd. = µ(N + 1)− µ(N) = EC + ∆E (3)

EC denotes the charging energy, a purely electrostatic term and ∆E is the quantum

mechanical level spacing. In practice, this addition energy can easily be extracted by

measuring the differential conductance through the QD. Hereby, the source is modulated

with a small AC excitation VSD (few µV and frequency typically in the hertz regime),

and the alternating current is measured at the drain. The differential conductance

dI/dVSD peaks whenever source or drain are aligned with a quantum dot level (see left

inset in fig. 4). A schematic differential conductance trace as a function of gate voltage

Vg and zero source-drain bias is shown in fig. 4.
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Figure 4: Schematic differential conductance trace (red) as a function of gate voltage.
The situation is depicted for the case of zero applied DC-bias, i.e. source and drain
chemical potential are aligned. Electron numbers N are indicated. Insets show the
energy level diagram for the resonant (conductance peak, alignment of source-drain-dot
level) and off-resonant case (in between peaks).

In the following, we will use the term conductance to label the differential conductance

unless explicitly stated differently. Since between conductance peaks the charge on the

QD is fixed, and at least the charging energy EC has to be provided to fill in the next
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electron; these peaks are referred to as coulomb blockade peaks. The off-resonant case

in between coulomb blockade peaks is depicted in the inset on the right in fig. 4. In the

limit of large tunneling rates ΓS/D~ � kBT the peak width is determined by lifetime

broadening of the QD level, i.e. by the rate Γt at which electrons tunnel out of the QD

[21]:

G =
2e2

h

ΓSΓD
ΓS + ΓD

(
Γt(Γt

2

)2
+
(
eα
~ ∆Vg

)) ; Γt = ΓS + ΓD (4)

The conversion between Vg and corresponding energy E = −eα∆Vg is done by means

of the leverarm α = CG/Ctot, defined as ratio of gate capacitance CG to the total

quantum dot capacitance Ctot. It is therefore a measure of how efficient Vg shifts the

QD levels.

At lower tunnel rates kBT ≈ ΓS/D~ both, life time broadening and thermal broadening

of the Fermi function in the leads, contribute to the peak width. When reducing the

tunnel rates even further (ΓS/D~ � kBT ) a regime is entered where the conductance

peak width is determined solely by the electron temperature in the leads. The transition

between temperature and life time broadened conductance peaks is demonstrated in

ref. [22]. For a QD with large level spacing ∆� kBT compared to temperature T , the

conductance (in the kBT � ΓS/D~ limit) as a function gate voltage ∆Vg , measured in

relation to the center of the conductance peak, reads [21]:

G =
2e2

h

ΓSΓD
ΓS + ΓD

h

4kBT
cosh−2

(
eα∆Vg
2kBT

)
(5)

Once the leverarm α is known, the measured conductance peak width ∆Vg can be

converted to the corresponding electron temperature of the leads. The leverarm can

be measured by applying a known DC bias and observing the splitting of the coulomb

blockade peaks into two conductance peaks that correspond to alignment of the QD

level with either source or drain.

An example of a coulomb blockade peak, measured in the temperature broadened
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regime, is shown below in fig. 5 (red trace) together with a theory curve (dashed curve),

created using eq. 5. At the position of the conductance peak, where source and drain

chemical potential align with the QD level (red trace), the simultaneously recorded DC

current remains zero since no DC bias is applied (dark blue trace).
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Figure 5: DC-current through the QD (light blue) measured at 196mK and finite source-
drain bias VSD = 0.3mV. Insets schematically depict the QD energy level configuration
at the raising and falling edge of the DC current, corresponding to alignment of QD level
with drain and source. We additionally plot the measured conductance g at zero source
drain bias (red) as a function of gate voltage Vg along with the simultaneously recorded
DC-current (dark blue). Dashed lines represent theory current and conductance curves
for TR = 196mK.

To get rid of (drifting) DC-offsets arising from small offsets in the measurement in-

strumentation (e.g. IV-converter), we use a feedback mechanism that minimizes the

DC-current in the effectively zero bias measurements.

Along with the zero bias measurements, fig. 5 shows the DC current IDC , recorded at

finite source drain bias VSD = 0.3mV. Current transport only takes place when a QD

level lies in between source and drain chemical potential. In a simple model, the mag-

nitude of IDC is given by the tunnel barriers and is independent of the applied DC bias

as long as it is small enough for excited states not to contribute to the current. For the

DC current shown in fig. 5, recorded at moderate DC bias, this is not the case and a

double step is observed. A mapping of the excited states in a GaAs QD and comparison

to a theoretical model has been done by Foxman et al., see ref. [22]. In this work we
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will use the DC current to (separately) monitor the electron temperature of source and

drain. Apart from the tunnel barriers, the current through the device depends on the

number of available states in the leads, i.e. the density of states (DOS) and on the

quantum statistics for the particles involved (Fermi-Dirac statistics for electrons and

fermions in general). For two dimensional leads the density of states (DOS) is indepen-

dent of energy, DOS2D = m/π~2. In this case and in the limit of small tunneling rates

to source and drain (ΓS ,ΓD � kBT/~ � ∆), the raising (falling) edge of the current

profile reflects the Fermi-Dirac distribution in the leads.

f(T ) = (1 + exp(α∆Vg/kBT ))−1 (6)

∆Vg is the gate voltage Vg , measured from the position at which the corresponding

current step reaches (drops to) half its height. As for the conductance peak, the lever-

arm α is required to convert between measured width of the Fermi distribution and

temperature. In contrast to the conductance measurements, a single current trace is in

principle self calibrating since α = eVSD/(VG2 − VG1), where VG1, VG2 denote inflec-

tion points of the Fermi distributions. In practice, accurate temperature measurements

require precise knowledge of the applied bias VSD, which can only be gained by com-

pensating the DC offset beforehand. From the width of the current window in fig. 5,

recorded at a refrigerator temperature of 196mK and VSD = 0.3 mV+Voffset, we extract

α = 83µeV/mV. Theory curves (dashed lines in fig. 5) for the current and conductance

profile in the temperature broadened regime using T=196mK and α = 83µeV/mV

agree very well with measured curves.

In comparison, the DC-method allows extraction of both source and drain reservoir

temperatures separately, an advantage over the VDC = 0 AC-method. In addition, the

DC method does not require careful zeroing of the DC voltage bias (although VDC drifts

still need to be small on the time-scale of the IDC measurement). Also, applying a large

DC voltage bias e ·VDC � kBT does not induce self-heating here since tunnel-rates and

resulting currents (in the temperature broadened case) are very small and independent

of VDC . The absence of such VDC bias-induced self heating was also experimentally
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investigated where no dependence of the extracted electron base temperature was found

for various applied 200µV & VDC � kBT . Further, the temperatures extracted from

IDC at large VDC are the same as temperatures extracted at VDC = 0 with the AC-

method via the differential conductance, confirming the DC-method as valid and very

useful resource. However, for the temperatures extracted with the AC-method, careful

zeroing of the DC voltage bias is crucial and great care must be taken to keep the VAC

bias small (� kBT ) to prevent AC modulation induced broadening of the CB peak.

Thermometry using GaAs QDs and metallic coulomb blockade thermometers as well

as cooling mechanisms and limitations on the measured electron temperature are the

topic of chapters 2 and 3.

1.3 GaAs double quantum dots

It seems straight forward to extend the theory for QDs to double quantum dots (DQDs).

Two gates VG1 and VG2 capacitively coupled to QD1 and QD2 respectively, are neces-

sary to achieve full control over the charge states in the DQD system, whereas a single

one was sufficient for a single QD (see fig.3). In the limit of negligible capacitive cou-

pling between the dots, gate VG1 only affects the number of electrons N1 on QD1 and

vice versa, i.e. the addition energy for QD1 does not depend on the charge state of QD2.

In this limit, the DQD is equivalent to a system composed of two individual quantum

dots that are separated enough such that mutual coulomb interactions are negligible.

This leads to electron configurations (N1, N2) in the charge stability diagram (CSD)

where four different charge states coexist. The situation is depicted in fig. 6(a). A red

dot indicates the quadruple point where the charge states (0,0), (1,0), (0,1) and (1,1)

are degenerate.

Upon reducing the distance between individual QDs the coulomb interaction gains in

strength and finally, for closely spaced QDs, introduces large interdot coupling. The

situation for a DQD with significant interdot coupling is depicted in fig. 6(b). Due to the

coupling, a change in the chemical potential µ2(N1, N2) on QD2 also alters the chemical

potential µ1(N1, N2) on QD1. Note that no actual change in the electron number N2
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on QD2 is necessary to change the chemical potential on QD1. Due to the (capacitive)

interdot coupling, charge transition lines are no longer horizontal and vertical with

respect to the gates VG1 and VG2. More drastically, however, the quadruple points

split up in pairs of triple points. For example, the lowest quadruple point (red dot in

fig. 6a), sharing the charge states (0,0), (1,0), (0,1) and (1,1), splits up into a lower triple

point (0,0), (1,0), (0,1) and a higher triple point (1,0), (0,1), (1,1), indicated as red and

blue point in fig. 6(b).
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Figure 6: Charge stability diagram for a double quantum dot with and without interdot
coupling Cm is shown in (b) and (a) respectively. The electron numbers N1 and N2 on
quantum dots 1 and 2 are controlled by capacitively coupled gates VG1 and VG2. The
lowest quadruple point in (a) and corresponding triple points in (b), are indicated as
colored dots. This graph was taken and modified from ref. [23].

Along the zero detuning line µ1(1, 0) = µ2(0, 1), connecting the lower and higher triple

point in fig. 6(b), the two charge states (1,0) and (0,1) are degenerate. A zoom in on

the CSD in the N1 = 0/1, N2 = 0/1 region is given in fig. 7.

Fat black lines split up the CSD in four regions with the energetically most favorable

charge states (N1,N2) as indicated. In the (0,0) region both chemical potentials µ1(1, 0)

and µ2(0, 1) lie above the chemical potential of the leads µleads. Consequently (0,0) is

the only charge configuration that is energetically allowed in the (0,0) region. Similar

arguments hold for (1,1) region. The situation is more complicated when one electron

is present in the DQD. We only focus on the (0,1) region since the situation for the

(1,0) configuration is given by symmetry arguments. The (0,1) region can be separated

into the light blue and purple colored parts as shown in fig. 7. For the light blue area
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Figure 7: Double quantum dot charge stability diagram (CSD) in the vicinity of the
µ1(1, 0) = µ2(0, 1) zero detuning line. Insets schematically depict the alignment of the
quantum dot levels with respect to source and drain chemical potential for prominent
points (red) in the CSD. The (1,0) charge configuration is separated into light and dark
blue colored regions according to whether or not µ2(0, 1) < µleads is satisfied, see main
text. This was graph taken and modified from ref. [23].

the situation is similar to the case of the (0,0) and (1,1) charge configurations i.e. only

the (0,1) charge state is energetically allowed. In the purple area however both, µ1(1, 0)

and µ2(0, 1) lie below the chemical potential of the leads. In the limit of small tunnel

rates to source and drain, low electron temperatures and negligible interdot tunneling,

an electron can spend a noticeable amount of time in the energetically less favorable

(1,0) state before the (0,1) configuration is restored through electron exchange with the

leads via the intermediate (0,0) or (1,1) states. We note that though larger interdot

tunneling obscures the presence of this metastability, it does not suppress the effect.

Finally, these considerations are not restricted to the (0,1)-(1,0) transition in GaAs

DQDs but equally apply to any transition (k,m+1)-(k+1,m) in a DQD system.

The metastability, which results from two simultaneously available charge states in a

DQD and its consequences e.g. for spin manipulation experiments, are studied in detail

in chapter 6.
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1.4 Resistively detected NMR

1.4.1 Introduction to NMR

Nuclear Magnetic Resonance (NMR) provides a very sensitive tool to measure the mag-

netic environment in a noninvasive way. It is widely used in various fields e.g. chemistry

for structure analysis, for the study of biological samples (RNA, DNA, proteins) or med-

ical applications such as MRI (Magnetic Resonance Imaging).

Here we use resistively detected nuclear magnetic resonance (RDNMR) in an attempt

to directly measure (possible) nuclear order in GaAs quantum wires. We note, however,

that from a theoretical point of view it is difficult to predict the response of a nuclear

spin helix to NMR excitation (flipping of single nuclear spins becomes energetically

extremely unfavorable in the ordered state). While we observe clear RDMNR signals

in the quantum hall regime, no conclusive data could be gained for the quantum wires.

As a consequence, only a few preliminary (not understood) measurements on QWs are

shown in the outlook. In this section, after introducing the basic principles of NMR and

RDNMR, we present the assembly of our RDNMR setup and some proof-of-principle

experiments in the (fractional) quantum hall regime.

When placing a particle with spin in an external magnetic field B0, its energy becomes

spin dependent. As a consequence, the initially degenerate spin states shift in energy

∆E. Using standard nomenclature for NMR, the energy shift can be expressed as:

∆E = −µB0 = −γm~B0 (7)

Here, µ denotes the magnetic moment, m the magnetic quantum number, γ the gyro-

magnetic ratio and h = 2π~ is the Planck constant. In the case of a free electron the

magnetic quantum number can take the values m = ± 1
2 . In an external magnetic field

an electron can therefore take two different spin states that are separated by the energy

E = γ~B0 or equivalently and commonly used for the case of electrons E = gµBB0.

Here, g denotes the Landé factor (g ≈ 2 for a free electron) which is directly related to
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the gyromagnetic ratio by g = γ~/µB .

Using a second, oscillating magnetic field B1 applied perpendicular to B0, one can

drive transitions between the two spin states provided that the resonance condition is

met, i.e. the frequency ν of the oscillating field has to match the energy difference

E = hν = γ~B0. These driven transitions are know under the name Electron Spin

Resonance (ESR) in the case of electrons, Muon Spin Resonance (µSR) for muons or

Nuclear Magnetic Resonance (NMR) in case of nuclei. The main difference between

them is the mass of the corresponding particle leading to very different resonance con-

ditions. While typical frequencies for ESR lie in the GHz regime, they are in the MHz

regime for NMR, roughly a factor of thousand smaller. The situation gets slightly more

complicated for nucleons compared to isolated electrons due to the fact that more than

just two energy states can be involved here. The 69Ga, 71Ga and 75As isotopes for

example have a nuclear spin I = 3
2 and the magnetic quantum number may take the

values m = ± 1
2 ,±

3
2 corresponding to four different energy states with 3 different tran-

sitions in between them, without taking two- and three-photon processes into account.

However, to leading order the four states are equidistant in energy and therefore often

only a single resonance line is observed in the experiment.

How is a NMR signal detected? The strong static field B0 causes an imbalance in the

population of the contributing spins. In the simple case of free electrons, the population

NU of the more energetic up state is suppressed by the Boltzmann factor compared the

one of the down state ND

NU

ND
= e
− E

kB T (8)

where T stands for temperature, E for the energy difference of the two contributing

states and kB for the Boltzmann constant. It is straight forward to extend this concept

to nuclei with larger nuclear spin. Going to low temperatures and large static fields is

the key for building up a significant spin polarization, i.e. a population difference. The

magnetization of the polarized nuclear spins adds up to the external field B0, hence

increasing or decreasing its value depending on the sign of the gyromagnetic ratio.
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However, when tuning the frequency of the oscillating field to the resonance condition,

the spin polarization will be destroyed which manifests itself in a small change of the

total magnetic field. In standard NMR, this change in magnetic field is measured with

an (additional) pick up coil. Though actual magnetic fields due to the thermal nuclear

polarization are quite small, a NMR response is observed in GaAs when measuring

the longitudinal resistance RXX (resistively detected NMR, RDNMR). The reason for

that is as follows: Electronic spin S and nuclear spin I couple through the hyperfine

interaction, also known under Fermi contact interaction. The coupling strength is

characterized through the hyperfine coupling constant A and depends on the electronic

density at nuclear sites. Due to their s-type character, electrons in the conduction band

of GaAs have a significant weight at nuclear sites, leading to a large hyperfine constant

in GaAs (A ≈ 90µeV) and consequently to a significant hyperfine (contact) interaction.

In presence of an external B-field, the total electronic Zeeman energy reads [24]:

E = gµBBSz +A 〈Iz〉Sz (9)

Here, 〈Iz〉 denotes the nuclear spin polarization (in our case thermodynamic polariza-

tion) and Sz is the z-component of the electron spin. First and second part on the

right-hand side in eq. 9 are referred to as Zeeman term and Overhauser term. As can be

seen from eq. 9, the nuclear polarization 〈Iz〉 acts like an effective magnetic field, known

as nuclear Overhauser field BN = A 〈Iz〉 /gµB . Though this effective field is much larger

than the actual B-field contribution of the (partially) ordered nuclear spins to the ex-

ternal B-field (the maximum Overhauser field for GaAs is 5.3T [25]), it does not induce

orbital effects e.g. it does not cause any Lorentz force or Landau levels. Therefore the

Overhauser field does not affect the filling factor. However, the longitudinal resistance

RXX depends on the energy gap in the density of states (RXX ∼ exp(−∆/2kBT ) in

the thermally activated regime) which depends on the total electronic Zeeman energy

[24].
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1.4.2 RDNMR setup and assembly

Doing RDNMR at low temperatures < 100mK is challenging since signal cables for

the NMR coil should be broad band to transmit the required RF-frequencies and well

thermalized at the same time to prevent heating effects that could raise the sample

temperature. As a starting point, we take broad band coax cables (few GHz bandwidth,

≈ 10 dB attenuation at 20GHz) with inner conductor (IC) made from silver-plated Cu-

Ni and outer conductor (OC) made from Cu-Ni. Its low thermal conductivity (as low as

stainless steel [14]) and good soldering properties make Cu-Ni an ideal material for this

purpose. Still, additional heat sinking of the coax cables at several temperature stages

of the dilution refrigerator is crucial. For the OC, this is a quite simple task. Since

it is on ground potential, it can simply be connected electrically with e.g. the mixing

chamber plate. A low electrical resistance then guarantees good thermal contact. For

the IC carrying the NMR signal the situation is different. Since electrical insulation

from ground is required, the IC has to be cooled through an insulating layer by means

of phonons. However, standard coax cables use Teflon as a dielectric, whose thermal

conductivity is very poor. We therefore built thermalization stages where we use Stycast

1266 epoxy as a dielectric, which was shown to possess good thermal properties at

cryogenic temperatures [26] (at least compared to Teflon). The assembly of such a

HF-thermalizer is shown in fig. 8.

We solder standard MCX plugs (rounded with a turning machine) to a 5 cm long copper

rod of 1mm diameter as shown in fig. 8(a). Next, using a Teflon mold, we add a layer of

insulating Stycast 1266 epoxy. The radii RIC and ROC of inner and outer conductor,

together with the dielectric constant εr of the insulator, determine the characteristic

impedance Z0 of the HF-thermalizer [27]:

Z0 =
1

2π

√
µ

ε
ln
(
ROC

RIC

)
(10)

The dielectric constant of Stycast 1266 epoxy, measured at 1KHz, drops by a factor

of 0.63 upon cooling from room temperature down to 70mK [26]. Assuming the
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same scaling behavior for higher frequencies, we estimate εr = 1.89 at 1MHz and low

temperatures (εr = 3 at 1MHz and room temperature [26]). Assuming µr = 1, we

calculate an outer conductor diameter ROC of 3.2mm (RIC = 1mm) for a desired

characteristic impedance Z0 of 50 Ω. Reflection measurements using a vector network

analyzer show transmission characteristics that are close to 50Ω with a reflection

parameter S11 smaller than −15 dB (measured at 4.2K) up to one 1GHz.

After adding the 1.1mm thick (ROC − RIC) insulation layer, in a final fabrication

step, the body of the HF-thermalizer is glued into a copper housing with Ag-epoxy,

see fig. 8(c). Three HF-thermalizers were mounted at different temperature stages of

the DR, one at the MC-plate, one at the 50mK-plate and a last HF-thermalizer is

mounted at the 1K-plate.

Figure 8: (a)-(c) shows the assembly of an impedance matched high frequency (HF)
thermalizing stage. (a) Rounded MCX connector, soldered to a 1mm diameter copper
rod. (b) Prefabricated Epoxy rod (dielectric) with inserted copper rod (c) Fully assem-
bled stage, with the center body of (a),(b) glued into a copper housing using Ag-Epoxy.
(d) NMR coil made from an insulated, 1.4mm diameter copper rod.

Besides the broad band signal cables, NMR obviously requires a coil with sufficiently

large bandwidth to generate the required oscillating magnetic field. Good results are

obtained with free-standing few-turn coils made from thick copper wire, see fig. 8(d).

We use an 1.4mm thick, insulated copper rod (rigid copper wire) that we shape in the

geometry of a coil by bending it around a wooden slat. The RF-setup consisting of coax

cables, HF-thermalizers and NMR coil, shows a broad bandwidth of almost 1GHz. We
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note that non-resonant heating through the NMR setup is small. Thermometry using

the 5/3 fractional quantum hall state in presence of RF-irradiation strong enough to

see NMR, yields an upper limit on the electron temperature of 27.5mK.

1.4.3 RDNMR in the (fractional) quantum hall regime

Before trying to find a NMR response from the CEO wires, we perform a few standard

RDNMR experiments to test the NMR coil and get familiar with RDNMR measure-

ments in general. With GaAs heterostructures RDNMR has been demonstrated in the

quantum hall regime for a variety of integer and fractional filling factors ν [24, 28–

32]. Here, we will follow the measurements from Desrat et al. in [24] and reproduce

some of their results (see fig. 9). As discussed earlier, the longitudinal resistance RXX

depends on the gap of the corresponding state to which the total electronic Zeeman

energy contributes (i.e. the sum of Zeeman and Overhauser term). Changes in the

total electronic Zeeman energy, e.g. when destroying the nuclear polarization with res-

onant RF-irradiation, manifest themselves as a change in RXX . We use this fact and

measure RXX (see fig. 25) as a function of perpendicular magnetic field Bz and RF-

frequency fNMR. The results are shown below in fig. 9(a). The output power for the

RF-frequency is set to -30 dBm (1µW ). The optimal output power depends on details

of the setup and has to be established experimentally, e.g. by optimizing the signal

size. The bright (asymmetric) spot in fig. 9(a), moving linear in frequency as a function

of Bz , is identified as 75As resonance. The asymmetry becomes more evident in single

line scans as shown in fig. 9(b).

When crossing the resonance frequency from left to right (smaller to larger frequencies),

RXX first stays constant then abruptly changes and finally exponentially relaxes back.

The opposite is observed when reversing the sweep direction. The reason for this is

quite simple. The nuclear spin system stays undisturbed until the resonance frequency

is hit and the nuclear polarization is destroyed immediately. However, a finite time, in

the order of seconds for the present system, is needed to repolarize the nuclear spins.

This asymmetry is therefore observed in fast frequency scans compared to the time scale
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of the repolarization time. Lowering the frequency sweep rate from 0.26MHz/min, as

used for the measurements in fig. 9(c), to 3.5 kHz/min, reveals the quadrupolar splitting

of 75As.
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Figure 9: (a) Longitudinal resistance RXX (in arbitrary units) as a function of perpen-
dicular magnetic field Bz and RF-frequency fNMR in the vicinity of the 75As resonance.
Each line scan is renormalized to emphasize the small NMR signal on a largely varying
background (b) Fast frequency scans (0.26MHz/min) with scan direction indicated by
black arrows. A black dashed line marks the position of the resonance frequency. (c)
75As quadrupolar splitting, revealed in a slow (3.5 kHz/min) frequency scan.

The standard RDNMR data presented in fig. 9 agrees well with findings from previous

measurements such as [24], which makes us confident that the RDNMR setup works

properly.

1.4.4 Identification of different isotopes

The question naturally arises whether or not other resonances besides 75As can be

detected. In order to answer that question, we scan the RF-frequency across a very

large window (1 MHz < fNMR < 100 MHz). Fig. 10(a) shows ∆RXX (RXX with a

smooth background subtracted) at a fixed magnetic field of Bz = 3.75T.
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Figure 10: (a) Longitudinal resistance ∆RXX in a high resolution frequency scan
(1 MHz −100 MHz) for a fixed magnetic field of Bz = 3.75T. A smooth background has
been subtracted from the data to emphasize the NMR resonances, attributed to 69Ga,
71Ga and 75As isotopes and labeled accordingly. (b) B-field evolution for the three
resonances in (a). The blue traces are linear fits to the measured data (red points).
Extracted gyromagnetic ratios (γ = 2π · fNMR) are indicated in the respective panels
together with literature values from [33].

The three clear RDNMR signals observed in fig. 10(a) are assigned to 75As, 69Ga and
71Ga resonance lines. To confirm that hypothesis, we check that all peaks move linear

in fNMR as a function of Bz (fig. 10(b). Furthermore, from the linear fit in fig. 10(b) we

extract the gyromagnetic ratio and see that it is only slightly above the literature value

for all three resonances. One could think of several reasons for the systematic deviation

(experimental values are ≈ 5% smaller than literature values). It could be that the

magnet does not completely reach its setpoint or simply that the calibration for the

field constant is slightly off. Also, a slight missalignment of the sample away from the

center of the field would lead to an overestimation of the B-field and consequently to

an underestimation of the gyromagnetic ratio (equivalent to a slight overestimation of

the field constant). Besides the three prominent resonances, other signals with smaller

amplitudes are observed. The resonant feature around 56MHz was reproducible, it was
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not tested though wether or not the resonance moves linearly in frequency as a function

of Bz (NMR resonance frequencies in that regime are only expected for 115Sn and 119Sn

out of all elements listed in [33]).

In summary, these proof-of-principle experiments demonstrate a fully operational

RDNMR setup. In the outlook at the end of the thesis we present some preliminary

measurement results for a CEO wire under RF irradiation.
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Abstract

We present cryogenic filters with very low cut-off frequency and good at-

tenuation that allow for thermal heat sinking in a dilution refrigerator. They

consist of several meters of thin copper wire with minimized parasitic capacitive

coupling between windings, casted into conductive silver epoxy. The measured

attenuation reaches 100 dB or more above ≈ 150 MHz and - when capacitors are

added - already above ≈ 30 MHz. Combined with ≈ 1.5 m of thermocoax, we

measure electron temperatures as low as 18± 3 mK using a GaAs surface gated

quantum dot in deep Coulomb Blockade as an electron thermometer. Between

≈ 40 mK and 0.6K, the quantum dot electron temperature agrees very well with

RuO2 and CMN thermometers on the mixing chamber. Using an improved setup

with thermalized sample holder, chip carrier and additional filtering stage, we

demonstrate electron temperatures as low as 7.5mK in metallic coulomb block-

ade thermometers.

This chapter is in preparation for publication
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2.1 Motivation and main experimental results

Advancing to lower system temperatures is of fundamental interest, as it allows to re-

solve smaller energy scales and hence to visualize effects that were previously smeared

out by temperature broadening. Examples of quantum mechanical effects with small

energy scales include fractional quantum hall states[34–39], phase transitions[1, 40–42]

and many more. Though 3He/4He-dilution refrigerators with base temperatures as

low as 5 mK are readily available, typical electron temperatures Te in semiconductor

nanoscale devices are considerably higher due to insufficient thermalization, filtering

of high frequency radiation and low frequency noise from the measurement setup, e.g.

ground loops. Part of the microwave radiation stems from the room temperature mea-

surement setup, connected to the sample via the leads, but also from higher temperature

stages (1K-4.2K) of the refrigerator[43–45]. Various types of cryogenic microwave fil-

ters (CMFs) have been developped in the past to suppress this radiation such as metal

powder filters[46–49], micro fabricated filters[50–53], thermocoax cables[54, 55], cop-

per tapeworm filters[56, 57], thin film filters[58] and lossy transmission lines[59]. An

overview on CMFs is given in ref.[60].

While achieving low electron temperatures relies on efficient filtering strategies, reduc-

tion of heat leaks and proper heat sinks for sample holder, backplane, current leads

etc. are equally important ingredients. We note that electron-phonon coupling, scal-

ing as T5, is highly suppressed at low temperatures which makes further cooling very

challenging. However, additional cooling through the current leads introduces a much

weaker T 2 scaling (electron-electron coupling) which eventually becomes the dominant

mechanism[39].

In this Letter we present miniature CMFs that unit excellent RF-filtering properties

and efficient thermalization, suitable for e.g. low temperature quantum transport mea-

surements. The filters are modular, robust against thermal cycling, and possess a

predictable attenuation spectrum. Their performance is tested in thermometry experi-

ments using a GaAs quantum dot and metallic coulomb blockade thermometers (CBTs).
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In the latter case, Te down to 7.5mK are demonstrated.

2.2 Cryogenic microwave filters

The CMFs (inset of fig. 11), mounted at the mixing chamber (MC) plate of a dilu-

tion refrigerator with TMC = 5mK at base temperature, are connected to the room

temperature measurement setup through 1.5m long thermocoax cables - very effecient

microwave filters in the few GHz regime (green trace in fig.11). The coaxes are heat

sunk at 4.2K, the 1K pot, at the 50mK plate and the MC-plate.
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Figure 11: Room temperature attenuation characteristics of a thermocoax cable (green)
and different CMFs. Blue and red represent layered and segmented filters respectively.
For the dashed characteristics, a 4.7 nF capacitor was added to both filter ends. A
picture of a CMF and centimeter scalebar is shown in the inset.

2.2.1 Filter thermalization and attenuation

The CMFs consist of insulated copper wire, casted into conductive Ag-epoxy[61] to

facilitate cooling. Note that the Ag-epoxy stays conductive down to the lowest TMC.

A thick copper braid, also embedded into the epoxy layer and attached to the mixing

chamber plate on its other end, ensures a well thermalized outer conductor which in
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return cools the inner conductor through the Cu-wire’s dIns. = 8µm thick polyurethane

insulation.

The attenuation profile can be described as a lossy transmission line with frequency

dependent (skin effect) resistance per length RIC and ROC of inner and outer conductor,

respectively. While DC-currents are supported by the whole cross section A = πD 2/4

of the Cu-wire with inner conductor diameter D, the skin effect forces AC-currents with

frequency ν to an annulus of width δ = 1/√σCuµCuνπ (skin depth). Here, σCu denotes

the conductivity of the Cu-wire and µCu its magnetic permeability. The effective cross

section therefore reduces to A = Dπδ and consequently RIC increases as a function of

ν. Equivalent arguments hold for the outer conductor. Note that due to its smaller

conductivity σepoxy � σCu, the Ag-epoxy outer conductor is dominating the total

resistance Rtot (ν) = RIC (ν) + ROC (ν) at high ν & 2MHz. The resulting attenuation

is ∝ −ν3/4 for low frequencies 2πνL� Rtot (ν) and ∝ −ν1/2 for high frequencies in the

GHz regime with a smooth transition in between. Here, L = µ0/2π ·ln ((D + 2dIns.)/D)

denotes the inductance per length (see supplementary material for details on the theory

and comparison with experimental data).

2.2.2 Filter fabrication and characterization

2.5m of Cu-wire (D = 0.1mm) are wound around a prefabricated 2.5mm thick Ag-

epoxy rod to form a 5-layer coil of 8 mm length. During the winding process we con-

tinously wet epoxy rod and coil with Ag-epoxy to ensure good electrical and thermal

contact throughout the device. Standard MCX connectors are soldered and, after glue-

ing parts together with Stycast 2850 epoxy, a Cu-braid is attached that seves as a

thermal ankor. The resulting layered CMFs are 22 mm long, 5 mm in diameter with

a room temperature DC resistance of ≈ 5 Ω (below 50 mΩ at 4.2K), a capacitance of

≈ 4 nF, and more than 100 dB attenuation above 1.5GHz (solid blue trace in fig.11).

Parasitic capacitive couplings drastically degrade the transmission caracteristics of lay-

ered filters. However, a different filter design (segmented CMF), where the single con-

tinuous coil is split up into several coils in series, allows for significant reduction of
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capacitive couplings. For layered filters the first and the last layer of the coil, corre-

sponding to start (first 20%) and end (last 20%) of the current path through the CMF

or vice versa, are separated only by 3 layers of Cu-wire or equivalently 0.3 mm distance.

In contrast, the first and the last 20% of the current path are separated by ≈ 5 mm for

the segmented filters (dashed blue trace in fig. 11). In a naive plate capacitor model

this enhancement of separation corresponds to a reduction of capacitive couplings by

a factor of 10-20. Indeed, we obtain 100 dB at 1.5GHz for the layered CMFs while a

similar attenuation is already reached at 150MHz for segmented filters.

The CMFs may be extended to π-filters through addition of capacitors to both filter

ends. Here, 4.7 nF discoidal ceramic capacitors with negligible temperature dependence

were used, available from PA&E [62]. Layered and segmented π-filters are shown as solid

and dashed red curves in fig. 11. The addition of capacitors further reduces the cut off

frequency such that 100 dB attenuation are obtained at 30MHz for segmented π-filters.

However, in order not to reduce the bandwidth for future experiments by adding capac-

itive parts and because of noise reasons (IV-Converter), the low capacitance segmented

CMFs were choosen for the following measurements.

We note that replacing the material of the central rod with a mixture of Stycast 2850

and Fe powder as in ref.[47] or replacing the copper wire with resistive wire, did not

improve the filter performance.

All spectra were recorded with an Agilent Network Analyzer and a Signal Analyzer

for the low frequency range. Changing between instruments is also responsible for the

jump in the noise floor at 10MHz in fig.11. Going to cryogenic temperatures does not

significantly alter the CMF transmission profile (not shown). Ultimately, the objective

of the CMFs is to reach lower electron temperatures Te in real devices, which is the

focus of the following section.
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2.3 Electron temperature measurements

2.3.1 Quantum dot thermometer

We use a surface gated GaAs/AlGaAs quantum dot (QD) in deep coulomb blockade,

probing the Fermi Dirac distribution in the reservoirs, as an electron thermometer [63–

67]. A SEM image of a similar device is shown in the lower inset of fig.12.
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Figure 12: Electron temperature extracted from current and conductance measurements
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also indicated. The upper inset shows a typical base temperature conductance trace
and fit. A SEM image of similar device is shown in the lower inset. Gates N,L,R and
P (light grey) form the QD, while gates in dark grey are left grounded.

Surface depletion gates N,L,R and P isolate the QD from the surrounding two dimen-

sional electron gas (2DEG), while source (S) and drain (D) ohmic contacts serve for

current injection and detection. Details on sample fabrication are given in Ref. [68].

The QD differential conductance g peaks whenever one of its energy levels is aligned

with the chemical potential of source and drain (upper inset of fig. 12). The conversion
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between measured peak width ∆VG and energy ∆E is done by means of the lever arm α,

∆E = α ·∆VG. In order to determine α, a known DC-bias VSD is applied to the source.

As a consequence, the zero bias differential conductance peak splits up into two peaks

corresponding to resonant tunneling between quantum dot and either source or drain.

α is then simply given by the separation Vsep of these peaks divided by the applied

bias, α = Vsep/(eVSD). In the limit of small tunnel rates to source and drain (and

large QD level spacing) compared to temperature, the width ∆VG of these conductance

peaks provides a primary electron thermometer[19]. Extracted electron temperatures

TCOND are shown in fig.12. All conductance data is recorded with standard Lock in

technique using an experimentally chosen AC-excitation to avoid heating (2µV at base

temperature).

Instead of measuring g, we can also monitor the DC current, which shows a finite

value whenever a QD level lies between the chemical potentials of source and drain.

Measuring the resulting temperature broadened current step as shown in fig.13, allows

one to individually map the Fermi Dirac distribution for source and drain and therefore

to extract their temperature separately. Here, α is simply given by the ratio of the

applied bias VSD, divided by the separation of the inflection points for the two Fermi

Dirac distributions (for an overview on electron transport in quantum dots, see e.g.

ref.[19, 69, 70]). We stress that the DC current, determined by the tunneling rates to

source and drain, does not depend on the applied DC voltage as long as excited states

(and cotunneling) do not contribute to the transport. Since no systematic deviation is

observed between source and drain temperatures, we conclude that energetic electrons

from the source with 100µeV or more get efficiently thermalized at the drain (reducing

the DC bias did not affect Te).

2.3.2 Electron temperature with CMFs

Fig. 12 compares extracted electron temperatures from the same warump using both,

AC and DC method. We repeatedly measure first the differential conductance as a

function of gate voltage VP with a finite AC excitation VAC and zero DC bias VSD = 0.
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Then we measure the DC current step at finite VSD and repeat the cycle. When fitting

the measured current step, source and drain temperatures are forced to be identical

in order to obtain more reliable fitting results i.e. TS = TD =: TCURR. From the fit,

we get TCURR and the lever arm α, which is also used to calibrate the conductance

measurements. We note that for the differential conductance measurements, already a

small DC offsets results in a broader conductance peak, leading to an overestimation

of TCOND. Therefore, a feedback mechanism was implemented that compensates the

DC offset by minimizing the DC current in the VSD = 0 conductance measurements,

therefore ensuring excellent alignment of source and drain during the more than 40

hours lasting measurement in fig.12.

Over the whole temperature range these two methods of measuring the Te agree well

with each other and, above 40mK, also with TMC, measured with a RuO2 thermometer.

The RuO2 thermometer, precalibrated with a fixed point device, agrees very well with

a CMN thermometer which uses the mutual inductance of the paramagnetic cerium

magnesium nitrate salt as a measure of temperature (not shown). Below 40mK, Te

starts deviating from TMC and saturates at 30mK, defining an upper bound on the

electron temperature.

The temperature saturation of the electronic system is due to noise in the measurement

setup and insufficient thermalization (e.g. ground plane of the chip carrier is not heat

sunk). We therefore switch to a simpler, pure DC setup which facilitates noise reduc-

tion. As a consequence, Te is reduced down to 18± 3 mK, averaged several traces. An

example of such a trace including curve fits and individually extracted source/drain

temperatures, is presented in the upper panel of fig.13.

The inset shows a zoom in on the drain lead in logarithmic scale, where the linear

current increase clearly indicates the temperature broadened regime.
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2.3.3 Electron temperature without CMFs

The CMFs are now replaced with simple adapters and the same DC current temper-

ature measurement is repeated. As shown in the lower panel of fig.13, without CMFs

the electron temperature drastically increases to Te≈ 75 mK, demonstrating the filters

efficiency. Note that due to the elevated electron temperature, more DC bias is applied

to clearly separate the source and drain current steps. However, the larger DC bias of
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400µV, compared to 100µV does not increase the system temperature, as discussed

earlier (smaller bias was tested). All QD temperature measurements were performed in

the single electron regime.

2.3.4 Metallic coulomb blockade thermometer

Despite the success of the CMFs, there is still room for improvement considering that

the mixing chamber reaches 5mK. Therefore, another filtering/thermalization stage is

placed directly inside the Faraday cup i.e. inside the shielded sample can. Furthermore,

a heat sunk sample holder made from conductive Ag-epoxy is used and the ceramic chip

carrier (known to possess heat release) is replaced with a standard plastic dip socket

equipped with a 1mm thick gold plated and heat sunk copper backplane. We proceed

to measure electron temperatures with the two stage filtering/thermalization setup.

For simplicity, metallic coulomb blockade thermometers (CBTs) are used that do not

require gate tuning in contrast to QDs.
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The CBTs consist of 7 parallel arrays with 64 angle evaporated tunnel junctions be-

tween metal islands[71, 72]. They operate in the regime where the charging energy

EC is comparable to temperature [73], in contrast to the quantum dot measurements

in figures 12, 13. The full width at half maximum of the bias voltage dependent con-

ductance dip can serve as a primary thermometer [74, 75]. Here, however, we use the

conductance dip ∆g/g as a secondary thermometer to avoid heating at finite bias. At

high temperatures where the CBTs are in thermal equilibrium with the mixing cham-

ber, EC can be extracted from the temperature dependent ∆g/g using the relation

[73] ∆g/g = u/6 − u2/60 + u3/630, where u = EC/kBTe. With the known EC, the

measured ∆g/g can then be converted to the corresponding electron temperature Te

in the full temperature range. Two CBTs (on the same wafer) with resistances around

140 kΩ were measured using standard Lock in technique with an AC excitation of 4µV,

experimentally chosen to avoid heating effects. Extracted electron temperatures from

both devices agree very well with each other and start deviating from TMC below 15mK

(see fig.14), reaching a minimum Te of 7.5mK (corresponds to a residual heat leak of

13 aW per junction, if electron-phonon coupling is assumed to be dominant).

At the lowest temperatures, long times constants in order of minutes are observed. The

conductance g(VSD = 0) drops as a function of time and saturates at a value gmin,

clearly lower than the minimum conductance in VSD scans, see fig. 14. We therefore

use gmin in order to compute the relative conductance dip ∆g/g and consequently the

electron temperature Te. We note that fitting the data in fig. 14 with a power law

Te = (T pS + T pMC)1/p, where TS = 6.9 ± 0.1 is the CBT saturation temperature, gives

p = 2.7 ± 0.2, clearly lower than p = 5 (electron-phonon coupling)[4]. This might

indicate additional cooling through the current leads.

2.4 Summary

In conclusion, we presented CMFs with significantly reduced cut-off frequency due to

a reduction of parasitic capacitive couplings. Their attenuation reaches 100 dB at

150MHz or, when capacitors are added, already at 30MHz. In addition, the CMFs
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are optimized for thermalization of the filtered current leads. One stage of CMFs al-

lowed to reduce the electron temperature, measured with a GaAs quantum dot, from

≈ 75 mK down to ≈ 18 mK. With an improved setup (filtering, thermalization), elec-

tron temperatures as low as 7.5mK are demonstrated in CBTs, clearly supporting the

present cooling strategy. It remains to be checked experimentally to what temperature

a quantum dot (2DEG) would cool in latter configuration.
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2.5 Supplemetal Materials

The attenuation of a coaxial cable can be calculated by means of transmission line

theory[27], which extends the description of discrete electronic components to dis-

tributed elements. For a coaxial cable with resistance Rtot [Ω/m], given by the sum

of inner and outer conductor resistance RIC and ROC, with inductance L [H/m], ca-

pacitance C [F/m] and shunt conductance G [S/m] (note that all parameters are per

length), the attenuation in units of decibel as a function of frequency ν reads:

Attenuation(ν) = 20 log
∣∣e−γz∣∣ , γ =

√
(Rtot + 2πiνL)(G+ 2πiνC) (11)

Here, z denotes the wire length in units of m. Parameters Rtot, L, C and G may be

calculated from geometric dimensions of the coaxial cable (inner conductor diameter D,

thickness dIns. of the polyurethane insulation and depoxy for the epoxy outer conduc-

tor), and material properties such as the dielectric constant εIns. of the polyurethane

insulation and the conductivity σCu, σepoxy, σIns. of inner conductor, outer conductor

and the insulator, respectively:

Rtot =
1

σCu
(
D
2

)2
π

+
1

σepoxy

((
D
2 + dIns. + depoxy

)2
−
(
D
2 + dIns.

)2)
π

C =
2πε0εIns.

ln
(
D/2+dIns.

D/2

)
L =

µIns.
2π

ln
(
D/2 + dIns.

D/2

)
G =

σIns.
εIns.

C

(12)

As discussed in the main text, the skin effect forces AC currents to the conductor

surface i.e. the skin depth δCu = 1/√σCuµCuνπ in case of copper and δepoxy =

1/√σepoxyµepoxyνπ for the epoxy outer conductor (the permeabilities µCu, µepoxy and

µIns. are assumed to be equal to the vacuum permeability µ0, since all those materials,

copper and Ag-epoxy and polyurethane, are not magnetic). As a consequence, the
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resistance is modified to:

RIC =
1

σCu

((
D
2

)2
−
(
D
2 − δ1

)2) , δ1 = min(δCu, D/2)

ROC =
1

σepoxy

((
D
2 + dIns. + δ2

)2
−
(
D
2 + dIns.

)2) , δ2 = min(δepoxy, depoxy)
(13)

Note that eq. 13 gives an approxiated solution for RIC(ν) that is, however, very close

to the exact solution which can be expressed in terms of bessel functions.

Next, experimental results are compared with attenuation curves obtained from trans-

mission line theory, i.e. using eq. 11 (C, L and G are calculated from eq. 12 and the

frequency dependent resistance is given in eq. 13). Fig. 15 shows the measured attenua-

tion profile for a microwave filter with z = 1.51m of copper wire, a total DC resistance

and capacitance of R0 = 3.36 Ω and C = 2.54 nF, respectively. In contrast to the filters

in the main text, here the wire is wound as a 6 cm long and thin single layer coil to sup-

press parasitic capacitive couplings (due to the single layer design interlayer couplings

are absent).
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The measured attenuation is in very good agreement with theoretical predictions for

a 1.51m long coax cable (black dashed line in Fig. 15) with inner and outer conductor

made from copper and silver epoxy, respectively. We stress that the input parameters

for the theory curve, given in Tab. 1, arise from independently measured quantities

and literature values that completely fix the attenuation profile without adjustable

parameters. While the conductivity of copper σCu, the thickness depoxy of the epoxy

layer have a minor infulence on the transmission profile (given the low conductivity

σIns. of pulyurethane, the shunt term is negligible), the other quantities affect it quite

strongly.

We note that since Rtot is dominated by the outer conductor at high frequencies, a

replacement of the inner conductor with e.g. resistive wire, does not improve the filter

performance, provided that the resistivity of the inner conductor stays well below that

of silver epoxy. For the same reason, the transmission does not significantly alter

at cryogenic temperatures, though the conductivity of the copper wire significantly

increases (a residual resistance ratio of RRR = 128 was measured for the present wire,

whereas RRR ∼ 3 for the silver epoxy).

D 97 ± 2µm measured (D = 100µm, manufacturor[76])
dIns. 8 ± 2µm measured
depoxy ≈ 2mm cross section of the filter
z 1.51m measured
εIns. 4.6 ± 1 chosen to match the measured capacitance
σIns. < 9.3 · 10−14 S/m measured
σCu 5.95 · 107 S/m Ref. [77]
σepoxy ≥ 2 · 105 S/m Ref. [61]

Table 1: Material parameters and geometrical dimensions used for the theory curve
shown in Fig. 15.

From eq. 12 the filter DC resistance R0 = (RIC(ν = 0)+ROC(ν = 0))·z ≈ RIC(ν = 0)·z

can easily be calculated, R0 = 3.43 ± 0.15 Ω, in good agreement with the measured

resistance of 3.36Ω.

To emphasize the filter performance, the theoretical attenuation profile for a standart

first order low-pass filter with R0 = 3.36 Ω and C0 = 2.54 nF is shown in fig. 15 (dashed

grey) in addition to the data and transmission line model.
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10mK and below
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Abstract

We present an improved nuclear refrigerator reaching 0.3mK, aimed at mi-

crokelvin nanoelectronic experiments, and use it to investigate metallic Coulomb

blockade thermometers(CBTs) with various resistances R. The high-R devices

cool to slightly lower T , consistent with better isolation from the noise envi-

ronment, and exhibit electron-phonon cooling ∝ T 5 and a residual heat-leak

of 40 aW. In contrast, the low-R CBTs display cooling with a clearly weaker

T -dependence, deviating from the electron-phonon mechanism. The CBTs agree

excellently with the refrigerator temperature above 20mK and reach a minimum-

T of 7.5± 0.2mK.

This chapter was published in Rev. Sci. Instrum. 83, 083903 (2012).
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3.1 Motivation

Advancing to even lower temperatures can open the door for the discovery of new

physics: for example, submillikelvin temperatures in quantum transport experiments

could lead to novel nuclear-spin physics [41, 42] in nanoscale semiconductor devices [78]

or could facilitate the study of non-Abelian anyons, Majorana fermions and topological

quantum computation in fractional quantum Hall samples [79, 80]. However, cooling

of nanoscale devices below T∼ 1mK is a formidable challenge due to poor thermal

contact as well as microwave and other heating, often resulting in device and/or electron

temperatures raised well above the refrigerator temperature. Therefore, significant

progress beyond the status quo in both cooling techniques and thermometry is necessary.

3.2 Strategy to approach submilikelvin sample temperatures

One approach to overcome these difficulties uses Ag sinters [14, 81, 82] to thermalize the

sample wires [35], pioneered by the Florida group [39, 83]. Another approach — pursued

by our Basel group [84] — is to use nuclear cooling [14, 81, 82] on the sample wires, with

the potential to advance well into the microkelvin range. Thermometry in this regime

[14, 81, 82] typically faces similar challenges as cooling nanostructures and is ideally

integrated on-sample. Among numerous sensors [57], Coulomb blockade thermometers

[72] (CBTs) are simple to use and self-calibrating yet offer high accuracy, demonstrated

down to 20mK [75]. Here, we present an improved nuclear refrigerator (NR) for cooling

nanoelectronic samples and use it to investigate CBTs and their mechanisms of cooling.

3.2.1 Nuclear refrigerator and microwave filtering scheme

We employ a novel scheme for cooling electronic nanostructures into the microkelvin

regime by thermalizing each sample wire directly to its own, separate nuclear refrigerator

[84]. In this scheme, the sample cools efficiently through the highly conducting wires via

electronic heat conduction, bypassing the phonon degree of freedom since it becomes

inefficient for cooling at low T . A prototype of this refrigerator presented in Ref. [84]
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has been significantly improved in a second generation system, briefly outlined below

and in Fig. 16.
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Figure 16: Layout of novel nanosample microkelvin refrigerator and CBT array. Radi-
ation shields (not drawn) are attached to the still and cold plate (∼ 50mK). The RC
filters are 820 Ω / 22 nF and 1.2 kΩ / 4.7 nF. The 21 NR plates are 0.25 × 3.2 × 9.0 cm3

each, amounting to 64 g Cu per plate.

A network of 21 parallel NRs is mounted on a rigid tripod intended to minimize vi-

brational heating. Two separate 9T magnets allow independent control of the NR and

sample magnetic field.

Several stages of thermalization and filtering are provided on each sample wire (see

Fig. 16). After π-filter and thermocoax [54], each lead passes through a Ag-epoxy

microwave filter [3], followed by a RC filter. Each wire then feeds into a Ag-sinter

in the mixing chamber, emerging as a massive high-conductivity Ag wire. After Al

heat-switches with fused joints, each lead traverses a separate Cu-NR via spot welded

contacts, terminating in an easily-exchangeable chip carrier plugged into Au-plated pins
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which are spot welded to the Ag wires. Therefore, excellent thermal contact (< 50 mΩ)

is provided between the bonding pads and the parallel network of 21 Cu pieces — the

micro kelvin bath and heart of the nuclear refrigerator — while maintaining electrical

isolation of all wires from each other and from ground, as required for nanoelectronic

measurements.

3.2.2 Performance of the nuclear refrigerators

The performance of the NRs is evaluated in a series of demagnetization runs. The tem-

perature TCu of the Cu pieces is obtained using a standard technique [14, 82, 84]: after

demagnetization, we apply power on heaters mounted on some of the NRs and evaluate

the warm-up time-dependence TCu(t) measured with Lanthanum Cerium Magnesium

Nitrate (LCMN) thermometers above 2mK. This allows us to determine both the tem-

perature TCu of the Cu-NRs after demagnetization as well as a small field-offset. For

each demagnetization run, the NRs are precooled to Ti ∼ 12mK in a Bi = 9T magnetic

field and then demagnetized to temperatures as low as Tf ∼ 0.3mK after the field has

been slowly ramped down to Tf ∼ 0.135T, giving efficiencies (Ti/Tf )/(Bi/Bf ) & 60%.

Reruns showed excellent repeatability, allowing us to chart TCu for various Bf . To

determine TCu during the CBT experiments, we use the LCMN thermometers above

2mK, warm-up curves at the lowest Bf and in-between, the pre-charted TCu values.

3.3 Electron temperature measurements

3.3.1 CBT sample overview

The network with 21 NRs allows measurements of several CBTs (2-wire each). The

CBT devices are Au-wire bonded and glued to the Au backplane of the chip carrier

which is also cooled with a NR. Each CBT consists of 7 parallel rows of 64 Al/Al2O3

tunnel-junctions in series with an area of 2µm2 fabricated using e-beam lithography and

shadow evaporation. The process used allows oxidation at elevated temperatures, giving

junction resistances up to 1 MΩ/µm2. Each island extends into a large cooling fin made
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from Cu, since Cu gives excellent electron-phonon (EP) coupling. A small B ∼ 150mT

is applied perpendicular to the sensor wafer to suppress the superconductivity of the

Al. The differential conductance through a CBT sensor was measured with a standard

lock-in technique adding a small ac excitation Vac to a dc bias VSD. Note that only

1/64 of the applied voltage drops across each junction and the sensor resistance is 64/7

times the junction resistance Rj , assuming identical junctions.

3.3.2 CBT performance for different sensors
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Figure 17: CBT normalized differential conductance g/gT versus source-drain dc bias
VSD for various NR temperatures TCu as color-coded, with resulting TCBT (δg method,
see text) given adjacent to each trace. Data from a 67 kΩ, 175 kΩ and 4.8 MΩ CBT is
shown. Dashed curves are fits to a model (see text). Note lower noise in low-R sensors
due to larger resulting currents.

We investigated CBTs with various R, see Fig. 17. Due to Coulomb blockade effects, the

conductance around VSD = 0 is suppressed below the large-bias conductance gT . Both

width and depth δg = 1 − g(VSD = 0)/gT of the conductance dip are related to the

CBT electron temperature TCBT . To extract TCBT , we perform fits (dashed curves)
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using a numerical model from Ref. [71]. We find excellent agreement between model and

data (see Fig. 17). Independently, TCBT can be obtained [71] from the conductance dip

δg = u/6 − u2/60 + u3/630 with u = EC/(kBTCBT ) and charging energy EC . We

first extract EC at high-T assuming TCu = TCBT and then use this EC to extract

TCBT from δg everywhere. While both methods produce very similar TCBT (deviating

slightly only at the lowest T ), the δg approach makes no a priori assumptions about

the cooling mechanism, allowing us an unbiased investigation, though now requiring

high-T calibration against another thermometer. All TCBT values given here are from

the δg method.

3.4 CBT cooling mechanism

3.4.1 Theoretical model including EP and WF cooling

The thermalization properties of TCBT of the lowest and highest R CBTs are displayed

in Fig. 18 for a wide range of TCu from 0.5mK to 100mK. As seen, excellent agreement

is found between TCBT and TCu at high temperatures, as expected. Further, TCBT is

seen to lie well above TCu at the lower temperatures (see Fig. 17 and 18), decoupling

fully from TCu well below 10mK. We note that Vac was experimentally chosen to avoid

self-heating. Also, the 4.8 MΩ sensor reaches lower temperatures than the other, lower

impedance CBTs, consistent with better isolation from the environment, since the power

dissipated is proportional to V 2
env/Rj , with environmental noise voltage Venv .

To model the CBT thermalization[71], we write down the heat flow Q̇i onto a single

island i with electron temperature Ti:

Q̇i =
V 2
j

Rj
+
∑
±

π2k2
B

6e2Rj
(T 2
i±1 − T

2
i )− ΣΩ(T 5

i − T
5
p ) + Q̇0 (14)

where Q̇0 is a parasitic heat leak and Vj is the voltage drop across the junction, appear-

ing here in the Joule heating term. Σ is the Cu EP coupling constant, Ω = 300µm3

the island volume and Tp the phonon bath temperature assumed to be equal to TCu.
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This is well justified by the high thermal conductance between the NRs and bonding

pads. Note that at T � 1K, the sample-to-Au-backplane interface resistance (Kapitza)

is small compared to the EP coupling resistance [71]. Within this model, two cooling

mechanisms are available: Wiedemann-Franz (WF, T 2 term) and EP cooling. Note the

strong T 5 dependence of the EP term, ultimately rendering WF cooling dominant at

sufficiently low T . Assuming one mechanism and simplifying to only one island gives

a saturation curve TCBT = (T pS + T pCu)1/p, with a CBT saturation temperature TS

and an exponent p, corresponding to p = 2 for WF-electron cooling and p = 5 for EP

cooling.

3.4.2 Measured cooling power-laws versus theory

We study the mechanism of thermalization by fitting the saturation curve first to the

4.8 MΩ data. We find very good agreement, giving p = 4.9±0.4 (see Fig. 18), indicating

that EP coupling presents the dominant cooling mechanism, limiting TCBT to 9.2mK

even though TCu = 0.75mK. Using Q̇0 = ΣΩT 5
CBT , a small parasitic heat leak Q̇0 =

40 aW results for each island, with Σ = 2×109 Wm−3K−5 from Ref. [71]. We speculate

that Q̇0 could be caused by electrical noise heating such as microwave radiation, intrinsic

residual heat release from materials used or other heat sources. Considering the high-R

junctions and correspondingly weak WF cooling, it is not surprising that EP coupling

is dominant here.

When analogously examining the low-R sensors, on the other hand, we find p = 3.9±0.4

and TS = 13.4mK for the 67 kΩ sensor (see inset Fig. 18), and even p = 2.7 ± 0.2 and

TS = 6.9± 0.1mK for a 134 kΩ sensor (not shown) mounted on a conventional dilution

refrigerator (base-T ∼ 5mK) with improved filtering and chip carrier. Note that TS is

the extrapolated TCu = 0 saturation-T . The lowest T measured here was 7.5± 0.2mK.

These power-laws far below p = 5 indicate that EP cooling is no longer dominant but,

rather, a more efficient mechanism p < 5 takes over at the lowest-T in the low-R sensors.
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Figure 18: CBT electron temperature TCBT versus NR temperature TCu for 4.8 MΩ
(open markers) and 67 kΩ sensors (filled markers, same axes on inset as main figure).
Below 10mK, the data is obtained in 3 demagnetization sweeps (blue markers) with
B = 9T, 5T, 2T, 1T and 0.4T in a typical run, ramped at 1T/h above 1T and 0.5T/h
below. Error bars are about the size of the markers. Purple curves are TCBT saturation
curves (see text).

3.5 Summary

In summary, we have demonstrated operation of the NRs down to 0.3mK while the

CBTs cool as low as 7.5mK. Though the high-R sensor is obviously cooled by EP cou-

pling, the low-R sensors, interestingly, appear to be entering a different cooling regime.

However, the low-R sensors have slightly higher TCBT given the same environment,

consistent with stronger coupling to the environment. The lowest CBT temperatures

are limited by the parasitic heat leak, which is drained by the cooling channels available.

To further improve the sensor performance, the cooling-fin volume can be increased or

the heat leak can be reduced, potentially using improvements in microwave shielding

and filtering, e.g. using on-chip capacitors, metal planes or alternative array designs.

Such efforts will strongly enhance thermalization if a more efficient cooling mechanism is
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indeed present, since otherwise, in the EP regime, reducing Q̇0 by 5 orders of magnitude

will only reduce TCBT by a factor of ten.

An alternative avenue based on quantum dot CBTs, e.g. in GaAs, might also be re-

warding, taking advantage of a much larger EC and level spacing ∆. The resulting

reduced sensitivity to the environment might allow a single dot to be used, rather than

an array, cooling the reservoirs directly via the WF term, rather than through a long

series of junctions.
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4 Luttinger Liquid Theory and GaAs CEO Wires

Whereas Fermi liquid theory is very successful in describing two and three dimensional

electronic systems by means of perturbation theory, it completely breaks down for

1D-conductors. This is due to the enhanced coulomb interaction in one dimensional

systems which leads to a failure of any perturbative approach. However, such systems

can be described in the framework of Luttinger liquid theory. In contrast to higher

dimensional systems, where spin and charge are bound in long lived quasi-particles, the

fundamental excitations of 1D-conductors are collective spin and charge density waves.

Interacting many-body quantum systems are of fundamental interest in physics. They

can arrange themselves in complicated ways to reduce their energy which can lead to

exotic phases of matter. Unlike in higher dimensions where such theories do not exist,

Luttinger liquid theory (LL) offers a model to solve interacting 1D problems exactly (a

linear dispersion is assumed).

In a recent theory from B.Braunecker, P. Simon and D. Loss interactions between a

LL and the nuclear spins in the host material were studied [1, 40]. Though direct

interactions between nuclear spins are weak, it turns out that they are well coupled

through the electronic system in a RKKY-type of interaction. The authors from ref. [1]

predict that below a critical temperature T ∗ the system undergoes a phase transition

and forms a new, strongly correlated state of matter: a fully polarized nuclear spin

helix. In the ordered phase half of the conducting electron modes are frozen out and

consequently the conductance is predicted to drop by a factor of two.

Measurements in GaAs cleaved edge overgrowth (CEO) quantum wires by A.Yacoby et

al. showed reduced, nonuniversal conductance quantization [2]. Furthermore, the de-

viation from universal conductance quantization was found to increase with decreasing

temperature, measured down to 300mK. Despite significant efforts from both, experi-

mental and theoretical side, there is no satisfactory explanation for these observations

so far.
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Motivated by the recent theoretical work from B.Braunecker et al. on nuclear mag-

netism in the LL-regime with an estimated ordering temperature of T ∗ ≈ 75mK (for

CEO quantum wires in [2]) and previous measurements on CEO wires by A.Yacoby

et al. where observed reduced conductance steps might indicate the onset of such a

phase transition, low temperature transport measurements were performed at Univer-

sity Basel on these quantum wires. The measurements were done in collaboration with

the Yacoby group from Harvard University at Cambridge USA on the same kind of

CEO wire samples (grown by Loren Pfeiffer and coworkers at Bell Labs more than 10

years ago) as used in previous experiments by the Yacoby group. We also worked in

close collaboration with people from several theory groups, in particular B.Braunecker,

D. Loss, P. Simon, T.Meng and D.Maslov. Furthermore, we greatly benefited from dis-

cussions with O.Auslaender and his explanations on tunnel spectroscopy measurements

in CEO wires.

This chapter is structured as follows: At first a short introduction to LLs is given in

sec. 4.1 and subsequently nuclear order in 1D quantum wires is discussed in more de-

tail (sec. 4.2). Before giving a detailed overview on the CEO wires used in this work

(sec. 4.4), Yacobys findings [2] on reduced conductance steps will be reviewed in sec. 4.3.

Many important physical parameters can be extracted from tunnel spectroscopy mea-

surements on the CEO double wire samples such as density, subband spacing and in-

teraction strength KC . Such spectroscopy measurements were first demonstrated by

O.Auslaender et al. in [85] on quantum wires nominally identical to the CEO wires

in this thesis. We use the gate modulation technique (tunneling transconductance)

from [8] to measure the density in our wires. The electron density is a very important

quantity that e.g. determines the Fermi energy, the interaction parameter KC and

consequently the spin and charge velocities. Only the precisely known electron density

(as a function of top gate voltage) allowed to identify measured conductance oscilla-

tions in the tunneling current (and in direct transport measurements) as Fabry-Perot

resonances which is the topic of sec. 4.5.
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Finally, chapter 5 is devoted to the reduced conductance step size in CEO wires, i.e.

we extend A.Yacobys measurements down to lower system temperatures and find that

the first upper wire conductance step in a CEO double quantum wire saturates below

TR ≈ 75mK at 1 e2/h, consistent with the predicted low temperature limit (for a clean

LL) by B.Braunecker et al. in [1].

4.1 Basic introduction to Luttinger liquids

4.1.1 Luttinger liquid versus Fermi liquid

Fermi liquid theory is a very powerful tool for solving many-Fermion problems in

two and three dimensions. It assumes that interactions are small enough to only

slightly modify the single particle wave function. This allows one to solve first the

non-interacting case and then approach the interacting case by means of perturbation

theory (applied to the solution for the non-interacting case). For temperatures much

smaller than the Fermi temperature T � TF , the system can be described by its Fermi

surface (the ground state) and its low-energy excitations, the so called quasi-particles.

They possess the same quantum numbers as the original particles, but their kinematic

(e.g. effective mass) and thermodynamic parameters (specific heat, susceptibility) get

renormalized by interactions [86].

The situation drastically changes upon reducing the dimensionality. The fact that

electrons in 1D systems electrons can not avoid each other leads to a collective behavior

and consequently to a complete breakdown of Fermi liquid theory, where free fermions

are assumed. Instead of quasiparticles with defined charge and spin, the fundamental

excitations in these systems are spin and charge density waves of bosonic character.

Inspired by Blochs work on the stopping power of charged particles [87], Tomonaga

proposed a 1D model of interacting fermions and solved it by means of acoustic sound

waves. The assembly of fermionic quasi-particles is hereby treated as sound quanta, i.e.

bosonic particles. The important mathematical step is a replacement of the quantized

field variables Ψ and Ψ∗ with the ones for the sound field, being the density ρ and its
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appropriate conjugate. The model proposed by S.Tomonaga in 1950 [88] was general-

ized by J.M. Luttinger in 1963 [89] and correctly solved by D.C.Mattis and E.H. Lieb

in 1965 [90].

4.1.2 Physical properties of Luttinger liquids

The fundamental excitations of these Tomonaga-Luttinger liquids (LL) are the charge

and spin density waves. In the limit of the non-interacting case Kc = Ks = 1, with

Kc,Ks being the interaction parameters for charge and spin (K>1: attractive, K<1

repulsive interactions), both waves travel with the Fermi velocity vF . While repulsive

interactions increase the velocity for charge density waves vc = vF /Kc, they do not

affect the one for spin density waves, at least up to first order. The fact that spin

and charge density waves travel at different velocities leads to spin-charge separation

in 1D systems, first observed in tunnel spectroscopy measurements by O.Auslaender et

al. in 2005 [8] on GaAs cleaved edge overgrowth double quantum wires. Momentum

is conserved for electrons tunneling between the parallel quantum wires (translational

invariance) and can be tuned with a magnetic field By applied in-plane with orienta-

tion perpendicular to the wires. Together with a source drain bias (energy control) this

allows for spectroscopy measurements i.e. extraction of the quantum wire dispersions

which, due to interactions, are different for spin and charge modes. Spin charge sepa-

ration was later on verified on CEO wires in [91] and on surface gated GaAs 1D wires

[92]. This behavior is completely different from 2D and 3D systems where spin and

charge are inseparably bound in the quasi-particles that carry both properties.

Another peculiar effect in LLs is the so called charge fractionalization, demonstrated

on CEO wires by H. Steinberg et al. in 2008 on CEO double quantum wires. Since

only two directions of motion exist in 1D, all excitations can be grouped into either

left or right movers. Charge that is injected into a LL will decompose into left and

right moving charge density waves. In contrast to the quasi-particles in 2D and 3D, the

charge of these waves is not quantized, i.e. can take any arbitrary value. Injection of a

right moving electron into the bulk of a LL liquid is predicted to result in right and left
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moving charge density waves with fractional charges f0e and (1− f0)e respectively. In

the non-interacting limit, f0 approaches unity and the injected electron will continue

as right mover.

The correlations between the spin and charge excitations translate into interaction-

dependent (non-universal) power laws in many physical properties, whereas ordinary

metals are characterized by universal powers [86]. For example tunneling into a clean LL

is strongly suppressed at the Fermi energy. The tunneling conductance G is predicted

to vanish in a power law fashion G(T ) ∝ Tα for small bias voltage eV � kBT . This

is in clear contrast to Fermi liquid theory where the tunneling conductance is energy

independent resulting in bias and temperature independent tunneling conductance [93].

Experimentally such power laws in the tunneling conductance have been observed in

carbon nanotubes [93, 94], in GaAs cleaved edge overgrowth wires [85, 95, 96] and for

tunneling into fractional quantum hall states [97–99]. Correlation functions were also

studied for Bose-Einstein condensates (BEC). Interference of two quasi one dimensional

condensates of variable length also indicate LL behavior [100, 101].

In addition, O.Auslaender et al. studied low temperature conductance of a one-

dimensional island embedded in a single mode CEO wire [102]. They observe that

the intrinsic linewidth decreases in a power law fashion with temperature and find good

agreement with Furusaki’s model for resonant tunneling in a LL.

A well known effect is the conductance quantization in 1D system (see next section), i.e.

the current through a narrow channel (order of Fermi wavelength) drops in a staircase

manner as a function of channel width. While clear conductance steps with long and

flat plateaus are seen in CEO wires (see e.g. [2, 85]), a first observation of conductance

steps was reported in [103] for carbon nanotubes.

4.1.3 Conductance quantization in 1D

The Landauer-Büttiker formalism [104–106] predicts that in absence of external mag-

netic fields, transport through one dimensional systems with adiabatic contacts (smooth

variation of the contact potential on the scale of the Fermi wavelength) is quantized
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in units of T · 2 e2/h, g = NT · 2 e2/h. Here, N denotes the number of transmitted

channels and T is the transmission probability (T=1 in the ballistic case). This effect

was observed first by B. J. van Wees et al. and D.A.Wharam et al. in 1988 [106, 107]

in GaAs quantum point contacts (narrow constriction of the order λF ) which can be

viewed as short wires. The universal conductance quantization does not depend on mi-

croscopic details and has been reported for quantum point contacts in various different

material systems. It is a consequence of the reduced Fermi velocity vF , when moving

along a conductance plateau toward the pinch off regime (vF = ~k/m = n~π/2m in

1D), that is compensated by the increased density of states DOS1D in one dimensional

systems (DOS1D = 2m/~2πk).

For a correct description of one dimensional systems including interactions, Luttinger

liquid theory has to be invoked. It was shown theoretically (W.Apel, T.M.Rice [108]

and C. L.Kane, M.P.A. Fisher [109, 110]) that the universal conductance quantization

is modified for an infinitely long LL in the presence of interactions. In case of repulsive

interactions K < 1, the conductance reduces to g = K ·e2/h per spin orientation. How-

ever, in every real transport measurement the Luttinger liquid is finally connected to

non-interacting Fermi leads. D.Maslov and M. Stone [111], I. Safi and H. J. Schulz [112]

and V.V.Ponomarenko [113] showed in 1995 that the conductance for a clean Luttinger

liquid connected to noninteracting reservoirs is 2 e2/h regardless of interactions in the

wire. In the same year, D.Maslov showed that this result is again modified in the pres-

ence of weak disorder. Here, the correction to the universal conductance quantum does

indeed depend on interactions in the wire and is temperature dependent [114]. Such

a reduction in weakly disordered 2 − 10µm long side gated GaAs quantum wires has

been observed by S.Tarucha et al. in 1995 [115]. In contrast to Yacobys measurements

on CEO wires, the conductance plateaus are short (small density variation within one

conductance plateau) and show signs of disorder. In addition, the observed reduction

is only a few percent compared to a 25% reduction in the CEO wires despite their long

and flat conductance plateaus. Measurements performed by E. Levy et al. in 2006 on

weakly disordered GaAs quantum wires [116], showed good agreement with Maslovs

theory for transport through dirty LLs.
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4.2 Luttinger liquid and nuclear spins

4.2.1 Nuclear magnetism and electron order in a Luttinger liquid

The system considered in [1] is a one dimensional conductor in the LL state, surrounded

by a 3D matrix of nuclear spins from the surrounding host material. The Kondo-lattice-

type Hamiltonian for the considered system reads:

H = H1D
el +

∑
i

A0Si · Ii +
∑
ij,α,β

vαβij I
α
i I

β
j (15)

A0 is the hyperfine coupling constant, Si and Ij represent electron and nuclear spin

operators respectively. Indices i and j run over 3D lattice sites. The first term describes

the electronic interacting 1D system, the second term couples electronic and nuclear

system, also known as hyperfine coupling, and the last term represents the nuclear

dipole-dipole interaction (quadrupolar splitting for i = j). Since associated temperature

scales in the order of 1µK are much lower than what is achieved in experiments, the

last term in eq. 15 is neglected in the following.

Furthermore, the 1D conductor considered here is assumed to be confined to a single

transverse mode with higher harmonics clearly split off (large subband spacing). Taking

this into account, the 3D system can be converted into the equivalent 1D Hamiltonian:

H = H1D
el +

∑
i

A0

N⊥
Si · Ĩi (16)

Here i = iII runs over all lattice sites of the 1D chain. Ĩi represents the ferromagnetic

component off all nuclear spins N⊥ that lie on the same cross section of the 1D conduc-

tor. The size of the cross sectional area is given by the confinement. For the present

GaAs cleaved edge overgrowth wires in the single mode regime this area is roughly

50 lattice constants in both directions (perpendicular to the 1D channel), resulting in

N⊥ ≈ 2500. It is shown in ref. [1] that the maximal alignment Ĩ = N⊥I minimizes

the effective Ruderman-Kittel-Kasya-Yoshida (RKKY) interaction i.e. the coupling of
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nuclear spins through the conducting electrons and hence the assembly of nuclear spins

within a section behaves like a single large nuclear spin N⊥I. This situation is schemat-

ically depicted below in fig. 19.

(a)                                                  (b)

q2kF
J αq
0

2π/ λT |J α2kF (T)|

Figure 19: (a) Cross section through a 1D conductor showing the N⊥ ≈ 2500 ferromag-
netically locked nuclear spins behaving like a single large spin Ĩ = N⊥I. A sketch of
the RKKY interaction is shown in (b). λT is the thermal wavelength and q represents
the momentum transfer. Both graphs were taken from ref. [1].

Since timescales for the electronic system are much faster that for the nuclear spin sys-

tem, the Overhauser field (generated by the assembly of nuclear spins) can be treated

as a static effective B-field for the electrons. The corresponding Hamiltonian for the

electronic system is given by the Tomonaga-Luttinger model. The dispersion relation

is then linearized around the two Fermi points. It is important to note that though

excitations of the system are low energetic (close to the Fermi energy), coupling to

higher energies is possible through interactions which makes a description necessary

that includes a large energy window. The cut-off is done at the highest energy scale for

the system ∆a = ~vF /a, given by the lattice spacing a (5.65Åin GaAs).

The calculated RKKY interaction reaches its minimum at q = ± 2kF . Its width

(fig. 19(b)) is given by the thermal length λT = ~vF /kBT (for T = 0 the RKKY

interaction diverges at 2kF ). Nuclear spins minimize their ground state energy when

aligning in the shape of a helix with periodicity 2kF . Each individual cross section is

hereby fully polarized as shown in fig. 19(a). As for the regular Peierls transition [117],

where the system turns insulating in an external perturbation with periodicity 2kF (see

fig. 20(b)), a gap opens a the Fermi energy due to the nuclear helix. However, due to the
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chirality of the helix only left moving electrons with spin down and right movers with

spin up are mixed by the 2kF perturbation which leads to a partially gapped system

as shown in fig. 20(a).
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Figure 20: (a) Electronic dispersion in the ordered state, indicated by the nuclear spiral
helix (green arrows). Black arrows indicate spin selective scattering between L↓ (blue)
and R↑ (red) with 2kF momentum transfer that leads to a partial gap. Gapless modes
are also indicated. (b) depicts the situation for the regular Peierls transition where due
to scattering (black arrows) in an external potential with periodicity 2kF (green) the
system turns insulating. Both figures were taken from ref. [118].

Since half of the of the low energy modes remain, the conductance is predicted to drop

by a factor of two when the system reaches its ordered state. A closer inspection of the

remaining modes (L↑ and R↓, see fig. 20(a)) reveals that the system acts as a perfect

spin filter in the ordered phase.

The opening of a partial gap in the electronic dispersion can therefore be seen as spin

selective Peierls transition. B.Braunecker et al. showed in [118] that the spin orbit gap

that opens for a 1D conductor with strong spin orbit interaction in a perpendicular (to

the spin orbit axis) magnetic field can be mapped onto a spin selective Peierls transition.

4.2.2 Spin selective Peierls in a 1D wire with SOI

In a 1D conductor with strong spin orbit interaction (SOI), the dispersion splits up into

two branches that are symmetrically shifted away from k = 0 by the momentum σkSO.

The degeneracy point at k = 0, where the two spin-split subbands cross, can be lifted

in an external magnetic field applied perpendicular to the spin orbit axis which leads
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to the opening of a gap ∆ (intrinsic SOI may also lift the degeneracy).

It was shown by B.Braunecker et al. [118] that the spin-dependent gauge transformation

Ψσ(r) → eiσkSOrΨσ(r) eliminates the σkSO shift, i.e. the hamiltonian H = H0 +

HSO + H∆ reduces to H = H0 + H∆. In return, the uniform gap ∆ is replaced

by a spiral field ∆(r) with periodicity λSO/2. In other words, a 1D conductor with

strong SOI in an external B-field ∆ is equivalent to a 1D conductor placed into a spiral

magnetic field with periodicity λSO/2.

For kSO = kF , the consequences for the electronic system are the same as in the phase

transition discussed in the previous section, i.e. the conductance drops from 2 e2/h to

1 e2/h and the remaining modes provide a perfect spin filter composed of R↑ and L↓

movers [119, 120]. The observation of such a spin-orbit gap was reported for a GaAs

cleaved edge overgrowth hole gas in [121].

In contrast to the 1D conductor with strong SOI, the self ordering process from sec. 4.2.1

opens the gap automatically at the Fermi energy. Therefore, without external magnetic

field, the conductance of a quantum wire is expected to drop by exactly a factor of

two upon lowering the system temperature below T ∗ where half of the conducting

modes freeze out. For a clean LL connected to Fermi leads with predicted Landauer

conductance quantization (regardless of interactions in the wire [111]) this implies a

conductance reduction from 2 e2/h to 1 e2/h.

The authors from ref. [1], using typical experimental parameters, estimate a crossover

temperature in the milikelvin regime for GaAs cleaved edge overgrowth wires (T ∗ ≈

75mK) and also for 13C carbon nanotubes (T ∗ ≈ 11mK in CNTs).

4.3 Nonuniversal conductance quantization in quantum wires

Cleaved edge overgrowth (CEO) allows for the fabrication of one dimensional ballistic

quantum wires in GaAs [10]. In 1996, A.Yacoby et al. observed nonuniversal conduc-

tance quantization in CEO quantum wires which was reported in ref. [2]. Fig. 21, taken

from [2], shows the conductance through a 2µm long CEO wire as a function of its top

gate.
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Figure 21: Conductance of a CEO wire as a function of top gate voltage (solid trace).
A scaling with a factor of 1.15, maps the measured data on universal conductance steps
(dashed trace). The inset shows the conductance for the lowest mode in CEO wires of
various length. This graph was taken from [2].

The conductance drops in clear steps of equal height as the electron density in the

wire is lowered with the top gate. However, the step height is found to be suppressed

below the universal conductance quantum of 2 e2/h. In fact, a rescaling of the measured

conductance with a scaling factor of 1.15 restores the universal conductance steps. This

excludes a series resistance as possible origin for the reduction. A stronger reduction

was observed in longer quantum wires as shown in the inset of fig. 21. However, in

contrast to the short wires, the conductance plateaus are not completely flat for the

long quantum wires, probably a sign of finite disorder. The temperature dependence

for the first mode in a 2µm long CEO wire is shown in fig. 22. Due to the large

subband spacing, the lowest mode in the measured CEO wires stays flat even at large

temperatures TR � 4.2K. Upon increasing the temperature, the conductance step

height increases and approaches 2 e2/h at the highest temperatures.

A similar behavior was found when measuring the conductance at low temperature as

a function of applied source drain bias. Here the differential conductance g = dI/dV

even exceeds 2 e2/h for large bias, the linear conductance G = I/V however stays below

the universal conductance quantum even at the highest DC bias.
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Figure 22: Zoom in on the first conductance step of a cleaved edge overgrowth wire for
various temperatures. The inset shows the conductance as a function of temperature
for fixed gate position, indicated by the black arrow. This graph was taken from [2].

In contrast to previous experiments, where conductance reduction as a function of

temperature was observed [115], the CEO wires measured in [2] (figs. 21, 22) show flat

conductance steps which indicates energy independent transmission. Indeed, electron

transport through these wires was later on shown to be ballistic, a demonstration of

low disorder within the wires. These results are surprising as clean Luttinger liquids

(attached to Fermi leads) are predicted to exhibit universal conductance quantization

[111] as discussed in sec. 4.1.3.

Three models were proposed in [2] in an attempt to explain the nonuniversal conduc-

tance quantization in CEO quantum wires. In the first model, noninteracting electrons

were assumed in both, wire and leads. A conductance reduction may then result from

nonideal electron transmission. However, long and flat conductance plateaus indicate

energy independent transmission which, in a noninteracting theory, leads to tempera-

ture independent conductance [2], in contradiction with the experiment. In a second

model, e− e interactions were considered. The conductance for a clean, finite LL con-

nected to Fermi liquid leads is predicted to be 2 e2/h regardless of interactions within

the wire [111]. Therefore, in this scenario, finite disorder would have to be assumed in
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order to explain reduced conductance. As the strength of e − e interactions and the

temperature dependence are both determined by the electron density in the wire (which

significantly changes along the conductance plateau), this is in contradiction to the ob-

servation of flat conductance plateaus. In a third model, backscattering within the 1D

channel was studied, in combination with scattering between edge channels and 2DEG.

Using a Boltzmann approach, the conductance for a CEO was calculated and found to

be reduced below the universal one, g = 2 e2/h ·1/
√

1 + 2 l2D↔1D/lBS , where l2D↔1D

is the 2D-1D scattering length and lBS denotes the backscattering length. LL theory

predicts enhanced backscattering and reduced 2D-1D coupling at low temperatures.

Therefore, within this model, the conductance is predicted to continuously decrease

as a function of temperature. This is in clear contradiction to our experimental find-

ings (see chapter 5), where a low temperature conductance saturation at ≈ 1 e2/h was

observed (below TR ≈ 75mK). We note that A.Yacoby et al. already pointed out

problems with this model, as it would be very difficult to explain their observation of

equally reduced conductance steps for different modes in the wire. In summary, the

nonuniversal conductance quantization in CEO quantum wires remains an unsolved

problem.

A.Yacoby’s previous observations together with the recent theoretical work by

B.Braunecker et al. on the formation of a nuclear helimagnet for a 3D system

of nuclear spins in a LL (with a predicted conductance drop by a factor of two)

initiated and motivated this thesis. Further motivation came from low temperature

measurements on surface gated GaAs quantum wires [122] where a 0.7 like structure

(0.7 · 2 e2/h) transformed into a plateau at 1 e2/h (for zero B-field) as a function of

side gate voltage, i.e. increased confinement and density.

4.4 GaAs cleaved edge overgrowth (double) quantum wires

GaAs cleaved edge overgrowth (CEO) is a special growth technique that allows very

strong confinement in two spacial directions, resulting in quantum wires with very large

subband spacings up to 20meV [123]. Together with a high quality 2DEG, used as a
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starting point for the wire fabrication, CEO wires result in one of the best experimental

realizations of a Luttinger liquid. Consequently, also the strongest indications for LL

behavior were given for these wires (e.g. spin charge separation and charge fraction-

alization next to power law behavior that was also shown for other 1D systems, see

sec. 4.1.2).

In addition to their outstanding physical properties, these wires can be well contacted

to 2DEG reservoirs and a single gate allows flexible density tuning e.g. into the single

mode regime. Together with a reasonably large estimated crossover temperature of

T ∗ ≈ 75mK compared to 11mK for CNTs made from pure 13C (natural abundance

of ≈ 1 %), these wires seem to be the ideal candidates to experimentally approach the

predicted phase transition from sec. 4.2.1.

All measurements on CEO quantum wires in this thesis were performed on samples

provided by the Yacoby group from Harvard University at Cambridge USA. The fragile

(more than 10 year old) samples were shipped already bonded and glued onto a 16 pin

DIP socket. In fact, in order not to risk damaging these unique samples by placing them

on a different chip carrier that fits our standard sample holders, two new coldfingers

were built in regard to the CEO wire measurements.

The CEO wire fabrication process, done by L. N. Pfeiffer et al. [123–126], is very chal-

lenging and deserves special notice. The main fabrication steps are captured in the

following section before proceeding to actual measurements.

4.4.1 Sample fabrication

Starting point for the fabrication of the CEO double wires is a standard GaAs

heterostructure grown along the [100] crystal direction with two GaAs quantum wells

(QW) [126]. The lower, 30 nm wide quantum well is separated from the upper, 20 nm

thick quantum well by a 6 nm thick, 300meV high Al0.3Ga0.7As tunnel barrier [85].

Excessive electrons from the silicon δ-doping layer, present only above the upper QW,

result in a clean 2DEG located 500 nm below the surface (in the upper QW).

After evaporating narrow tungsten top gates the sample is cleaved in ultra high vacuum
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and the atomically sharp sample edge is immediately overgrown along the [001] crystal

axis with a modulation doping sequence [126]. This additional doping layer at the

sample edge, next to contributing free electrons that are collected in the edge channels

and the 2DEG, pulls electrons toward the positively charged Si-donor layer at the

cleaved side of the sample thus creating two one-dimensional edge channels (see fig. 23).

The purpose of the prefabricated tungsten top gate (yellow stripe in fig. 23) is twofold.

First, it allows separating the 2DEG into two parts that act as source and drain

contacts for the quantum wire. The width of the top gate hereby defines the length of

the quantum wire. Second, it allows density control in the edge channel underneath.

A sample schematic is shown in fig. 23. The 2DEG and the two edge channels, upper

and lower wire (UW and LW), are schematically indicated in blue.

VG

2DEG

x [010]

y [001] z [100]

UW
LW

y [001]

Figure 23: Schematic of the CEO double wire sample. The tungsten top gate (yel-
low) separates the underlying 2DEG (blue) into source and drain contacts to the edge
channels denoted UW and LW (blue tubes). A coordinate system indicates the sample
orientation and crystal growth directions.

Crystal growth directions are indicated in the coordinate system adjacent to the sample

schematic. We will use this sample orientation for all CEO wire measurements, i.e. we

choose the x-axis along the double wire system and the z-axis perpendicular to the

2DEG.
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4.4.2 Sample properties before and after LED illumination

Fig. 24 shows a picture of a quantum wire sample. Tungsten top gates g2-g7 (light gray)

and ohmic indium solder contacts (labeled o1-o4, o7 and o8 in light blue) are visible.

A four wire differential conductance measurement as a function of top gate voltage g3

(faint red gate in the inset), is shown in the main graph as black trace. In the following

we only use the term conductance to label the differential conductance. Ohmic o1, o8

serve as source-drain contacts and the voltage drop is measured across ohmics o2 and

o7. At zero top gate voltage the whole 2DEG in the upper QW contributes to the

current resulting in large conductances around 600 e2/h (≈ 20Ω/�). Upon decreasing

the gate voltage g3 the conductance abruptly drops to ≈ 20e2/h (light gray arrow in

fig. 24) when the 2DEG below g3 is depleted and all current is carried by edge channels.

Decreasing g3 even further will also deplete the edge channels in the gated region and

the system turns insulating (black arrows).
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Figure 24: Conductance as a function of top gate voltage g3 (see artificially red colored
gate in the inset) for a GaAs CEO double quantum wire. Black and red represent
conductance measurements before and after LED illumination. Arrows indicate the
depletion region for the 2DEG (below gate g3). Further arrows indicate depletion of
upper and lower edge channels. The inset shows an optical image of the sample with
available gates g2-g7 and ohmic contacts o1-o4, o7, o8 as labeled. The cleaved edge is
located at the lower sample side.
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An AlGaAs infrared (875 nm) light emitting diode (LED) was used to irreversibly in-

crease the electron density in the 2DEG and the quantum wires (warmup to room

temperature will recover the initial state). The LED flash is done at 4.2K with typical

currents of few milliampere and illuminations times of a few tens of seconds. After LED

illumination, clear conductance steps with long and flat plateaus are observed, see red

trace in fig. 24.

Because of the elevated electron density after illumination, more negative top gate volt-

age is needed to deplete the underlying 2DEG and quantum wires. Due to screening

the gating effect of g3 is stronger on upper than on lower wire modes. Therefore, after

depleting all upper wire modes one is still left with the lowest mode of the lower wire

(LW1), indicated by dark gray arrows in fig. 24 (also the width of upper and lower QW

has to be chosen properly for this situation to apply).

Extracting the density for a given mode (e.g. UW1) as a function of its corresponding

top gate is a non trivial task but can be done by means of spectroscopy and will be dis-

cussed later. It is fairly simple, however, to measure the 2DEG density by means of the

hall resistance RXY. It turns out that the CEO wire sample allows for decent quantum

hall measurements, see fig. 25. At Bz = 4T the filling factor increases from ν = 1 to

ν = 2 upon LED illumination (blue and red dashed traces in fig. 25), corresponding to an

approximate density change by a factor of 2. Precise information about the 2DEG den-

sity is gained by fitting the transversal resistance RXY (blue and red solid line in fig. 25)

in the classical regime (small B-fields) where hall plateaus have not yet developed. We

obtain n = (1.00 ± 0.02) · 1011 cm−2 before and n = (1.91 ± 0.03) · 1011 cm−2 after

LED illumination. For visibility reasons the curve fits (black dashed lines in fig. 25),

performed in the low B-field regime, are drawn across the whole B-field range.

We note that the actual error margins on the measured 2DEG densities are larger than

what is presented in fig. 25, since no corrections have been done to account for the imper-

fect hall bar geometry in the measurement. Together with the sheet resistance Rsheet,

the 2DEG density n determines the Drude mobility µ = σ/en = 1/enRsheet. Before

LED illumination the longitudinal resistance RXX, recorded in a 4 wire measurement

setup to subtract ohmic contact resistances (I: ohmics o1, o8, V: ohmics o2, o7, see inset
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of fig. 24), is RXX = 45± 17 Ω. The rectangular geometry of the sample under study is

well approximated by the sum of two adjacent squares. We therefore obtain a sheet re-

sistance of Rsheet = 23±8 Ω/� and consequently a mobility of µ = (2.8±1)·106 V s/cm2

before LED illumination, consistent with [123].

For the red trace in fig. 25 the LED was only partially flashed (after full illumination

the wire DW pinch off shifts from −3.6V to −4.5V). In order to obtain at least a lower

limit on the mobility in that case, we use the larger density n = 1.91 · 1011 cm−2 for

the case of saturated LED illumination to compute µ. Using Rsheet = 4.3± 1.5 Ω/� we

obtain µ = (7.6± 2.6) · 106 V s/cm2 after the LED flash.
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Figure 25: Longitudinal resistance RXY as a function of perpendicular (to the 2DEG)
magnetic field Bz . Blue and red traces represent measurements before and after LED
illumination. Filling factors ν = h/e2RXY are drawn as dashed lines. The indicated
2DEG electron densities (and errors) are obtained from linear curve fits to the measured
hall resistance RXY in the low B-field regime. For clarity, the linear fits (black dashed
traces) are drawn for the entire B-field range. No corrections were done to account for
the imperfect hall bar geometry.

We note that the large error bars result from the voltage biased 4 wire measurement.

At zero gate voltage (electron transport through the whole 2DEG) only a small fraction

of the applied few µV AC excitation drops across the 2DEG (few tens of nV) which

is difficult to measure and results in large uncertainties for the voltage measurement.

Obviously, this could be easily circumvented with a current biased measurement. How-
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ever, at negative gate voltage when current transport takes place only via the edge

channels this would lead to a large voltage drop across the system. Therefore the 4 wire

measurement setup with voltage bias is more suitable for transport measurements with

these quantum wires.

4.4.3 Disentangling lower and upper wire modes

As mentioned previously, the present sample hosts a 2DEG and two edge channels

at the cleaved sample side. Whereas the upper channel (wire) is well coupled to the

2DEG states, the lower wire is separated by a 300meV tunnelbarrier from the upper

channel (and even more from the 2DEG). For the upper wire (UW) we therefore ex-

pect conductance steps in units of 2 e2/h [111], apart from the conductance reduction

observed by Yacoby et al. We note that the criterion of adiabatic contacts, a neces-

sary ingredient for conductance quantization, is automatically given in typical GaAs

samples with λF ∼ 50 nm and a separation of > 100 nm between 2DEG and top gate

structures i.e. potential variations are smooth at the depth of the 2DEG compared to

λF (especially for the CEO wire samples used in this thesis where the 2DEG lies 500 nm

below the surface). The situation is different for the lower wire (LW). The additional

tunnel process introduces a transmission factor T < 1 that reduces the conductance

through the LW-system from gLW down to T · gLW. This transmission factor depends

on experimental details and varies e.g. for different combinations of upper and lower

wire modes UWi and LWk which possess different wave function overlap. For LW1, the

first mode in the lower wire, tunneling is quite strong in our case with g = 0.3e2/h after

LED illumination and even g = 0.8e2/h before illumination (fig. 24). The large tunnel

conductance, however, is a result of the coupling between upper and lower edge channel

taking place over an extended distance L much larger than the top gated region. Within

the length of the double wires (L = 2µm) tunnel coupling is quite weak and UW, LW

can be viewed as independent conductors. This was confirmed through reduction of the

coupling length by means of neighboring top gates (not shown). In order to do so, the

DW-system was completely pinched off with a neighboring gate such that current is
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only injected through a 6µm wide section of the 2DEG in between top gates. For such

a reduced injection region we measure a tunneling step height of 0.08 e2/h. A tunneling

step of 0.02 e2/h was measured for a 2µm long injection region in [8] on nominally

identical CEO double quantum wires.

To clearly distinguish between upper and lower wire modes we perform conductance

measurements in a parallel magnetic field Bx applied along the axis of the wires (fig. 26).

While not much is expected to happen to UW modes at moderate B-fields (due to a

large wave function overlap with the 2DEG states), reshaping of the wave function dras-

tically affects the tunneling process, thus changing the conductance through the LW.

This can be seen when recording g(B) at fixed gate voltage g5 set such that only LW1

is transmitted underneath the gate, see inset of fig. 26 (gate position g5 is indicated by

the black arrow in the main graph).
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Figure 26: Conductance as a function of top gate voltage g5, measured at T=560mK
and zero external magnetic field (blue trace). For the red trace an external B-field of
Bx = 2T is applied along the wires. Both traces are vertically shifted to align g = 0
with the first conductance step. Fat gray arrows indicate the gate voltage range where
only the lowest mode is available in the upper (lower) wire. The inset shows a B-field
scan at fixed gate position, indicated by the black arrow in the main graph.

A gate scan for an external parallel B-field of 2T (red trace) is shown in the main

graph along with a conductance trace recorded without external B-field applied (blue

trace). To emphasize the big effect on the LW conductance and the small effect on
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the UW conductance at the same time, traces where shifted such that g(LW1) = 0.

The conductance step size of LW1, which can now be read off in the pinch off regime,

increases from ≈ 0.3e2/h at zero magnetic field to ≈ 1e2/h for Bx = 2T.

The next conductance step, starting at g5 ≈ −4V, is only slightly affected by the

parallel magnetic field and is therefore attributed to an upper wire mode (UW1). At less

negative top gate voltage around -3.5V, the magnetic field reveals a clear conductance

step that is barely visible at zero field. Due to the strong B-field dependence this step

is identified as the second conductance step of the lower wire (LW2). The gate voltage

range where only one mode is present in the lower (upper) wire, i.e. the system is truly

in the Luttinger liquid state, is indicated in fig. 26 with light gray arrows.

4.4.4 Ballistic addition of wires

The special CEO wire fabrication process presented in sec. 4.4.1, allows for the

production of high quality quantum wires with a backscattering mean free path lBS as

large as 20µm [127]. Since lBS clearly exceeds the length L = 2µm of the CEO wires

under study, electron transport through them is expected to be ballistic. This means

that the measured conductance for such a quantum wire arises only from coupling into

and out of the 1D modes. The resistance within the wire is essentially zero, i.e. all

applied voltage drops across the wire contacts. Ballistic transport in CEO wires was

demonstrated by Picciotto et al. [10] in 2001. In order to do so, three adjacent, closely

spaced quantum wires were tuned to the single mode regime. In the diffusive limit

the resistance of the combined system (three wires in series) is simply given by the by

the sum of resistances, i.e. three times the resistance of a single wire. This is because

in the diffusive limit scattering causes electrons to couple into and out of each wire

separately. In the ballistic limit, however, when only coupling into the first and out of

the last wire is required, the conductance is the same for one wire or three series (if

the spacing between adjacent gates is much smaller than the 2D-1D coupling length

[127]). In [10], instead of measuring the resistance of three wires in series, it was shown

that there is only a negligible voltage drop across the middle wire, consistent with the
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assumption of ballistic transport in these wires.

In the following, the situation is investigated for the present DW samples. We slightly

modify the measurement scheme from ref. [10], and record the conductance as a

function of two neighboring gates instead of using three adjacent top gates. The sample

schematic in fig. 27(a) (front view) shows a zoom in for two adjacent double wires

(dark blue) and corresponding top gates (yellow). Schematic conductance traces gDW3,

gDW4 for the two neighboring double wires DW3 and DW4 are plotted in fig. 27(b) as

a function of their respective gates g3 and g4.
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Figure 27: (a) Sample schematic showing two adjacent gates (yellow). The corre-
sponding upper and lower wires (dark blue) are part of the 1D channels that ex-
tend along the entire sample edge (light blue). Geometric dimensions are indicated.
(b) Simulated conductance trace for DW3 (DW4) versus gate voltage g3 (g4)
(c) Calculated conductance of the combined DW system in the diffusive limit where
series resistors simply add up. (d) Same as (c) but in the ballistic limit. Here the wire
i with the lower conductance limits the total transmission

We assume that each double wire system DWi can be modeled as a pair of independent

parallel resistors RUWi and RLWi. For classical resistors (equivalent to the diffusive
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limit) the total conductance gtot of the combined DW system in fig. 27(a) can easily be

calculated. In units of e2/h the conductance gtot reads:

gtot =
h

e2

(( 1
RUW3

+
1

RLW3

)−1
+
( 1
RUW4

+
1

RLW4

)−1
)−1

(17)

Fig. 27(c) shows gtot for the schematic DW traces in fig. 27(b), calculated using eq. 17.

The resulting checkerboard pattern reflects the fact that changing the value of any

resistor in the diffusive case changes the total resistance of the system.

For the ballistic limit we assume that e.g. right moving electrons in fig. 27(a) can only be

backscattered upon coupling into UW4 (LW4) on the left hand side and upon coupling

out of UW3 (LW3) on the right hand side. In other words the combined DW system

in fig. 27(a) can be viewed as a single 6µm long double wire, composed of DW4, DW3

and the 2µm long ungated section in between.

The conductance gtot of the 6µm long combined system is given by:

gtot =
h

e2

( 1
max(RUW4, RUW3)

+
1

max(RLW4, RLW3)

)
(18)

As for the diffusive case, we plot gtot for the schematic DW traces given in fig. 27(b),

see panel (d). In contrast to the checkerboard pattern, a L-shaped structure appears

for the ballistic addition of conductors. A four wire conductance measurement of the

conductance as a function of g3, g4 is shown in fig. 28.

The close match of measured L-shaped pattern in fig. 28 and the simulated conductance

of the combined DW system in fig. 28(d) shows that the 2µm long CEO wires add

like ballistic conductors. Indeed, a careful inspection of individual traces (see fig. 37 in

sec. 4.5.2) confirms ballistic transport with small deviations. More precisely, the average

conductance
〈
gUW1

〉
as a function of g3 (in the gate voltage range indicated by the

black rectangle in fig. 37) for two quantum wires in series (neighboring DW2 tuned to its

first UW mode) is only slightly smaller than the conductance recorded for DW3 without

neighboring gates activated. The conductance for the combined DW system (separated

by a 2µm long ungated section) reaches 95 ± 3 % of the individual DW conductance,
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in good agreement with [127] where a 6 % reduction was found for the combined DW

system.
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Figure 28: Measured conductance g as a function of top gate voltage g3 and g4. The
two neighboring, 2µm wide gates are separated 2µm in distance. The observation of a
L-shaped patten rather than a checkerboard pattern for the combined system indicates
ballistic addition of the two subsystems.

4.4.5 Electron localization in the pinch off regime

As the top gate voltage is lowered, the electron density n beneath the gate is contin-

uously reduced for both, upper and lower wire. Below a critical density n ≈ 20µm−1

the Fermi energy is small enough (EF = ~2n2π2/8m ≈ 0.5 − 1meV depending on the

value of Kc) for electron transport through the CEO wires to be dominated by the

local disorder potential. As a consequence, electrons start to form localized states in

between the highest barriers of the disorder potential. Sharp conductance peaks in the

pinch off regime of the CEO wire, as seen in fig. 29, indicate the transition to electron

localization in the quantum wire as previously observed by O.Auslaender, H. Steinberg

and others [8, 9, 102].
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Figure 29: CEO wire conductance as a function of top gate voltage g3. At sufficiently
low electron density (in the pinch off regime) the system starts to localize. As a conse-
quence, coulomb blockade peaks dominate the transport properties of the CEO wires.

Further verification comes from conductance measurements as a function of gate voltage

g3 and source-drain bias VSD. We observe the very familiar coulomb diamond pattern,

see fig. 30(a). The charging energy EC for the six visible diamonds increases with

decreasing gate voltage g3 and ranges from ≈ 0.75mV up to to ≈ 1.5mV. In addition

to the bare coulomb diamonds, excited states can be seen in fig. 30(a) with energies

ranging from ≈ 0.5meV to 1meV. A naive comparison of the QD to a "particle in a

box" with a ground state energy E1 = ~2π2/2mL2 allows for a rough guess of the QD

size. For an excited state energy of 0.5− 1meV we end up with a quantum dot length

of L = 75− 105 nm.

We will now extract the gate capacitance Cg to the quantum dot by analyzing the

separation of coulomb blockade peaks at zero bias (black circles in fig. 30(a). In order

to do so, we plot the VSD = 0 conductance peak positions from fig. 30(a) (black circles)

versus the electron number N in the QD (black dots in fig. 30(b)).

Since the charge on the QD changes by one electron between peaks, the slope of the

data determines the gate capacitance, Cg = e/∆Vg . A linear fit (red) to the data yields

Cg = 8.9 aF, see fig. 30(b).
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Figure 30: (a) Logarithm of the conductance g as a function of source-drain bias VSD
and top gate voltage g3 in the pinch off regime of the double wire system. The stability
diagram shows single quantum-dot behavior with clear coulomb blockade diamonds. (b)
Charge transition points (black circles in (a)) versus electron number N in the quantum
dot (black data points). The top gate capacitance Cg = 8.9± 0.1 aF is extracted from
a linear fit (red trace) to the data.

For a known QD size L the gate capacitance Cg can also be calculated. In the case of two

infinitely long, parallel cylinders with radii Ra, Rb and separation d′, the capacitance

per length C/L reads [128]:

C

L
=

2πε0εr

arccosh
(
d′2−R2

a−R2
b

2RaRb

) (19)

This geometry can easily be adapted to the present case of a cylinder and a parallel

plane (top gate) with separation d. We redefine: d′ → d′ + ∆x, Rb → Rb + ∆x, take

the limit ∆x → ∞ and replace d = (d′ − Rb). The resulting capacitance per length

for a cylinder of radius Ra at a distance d from a "semi-infinite" plane (top gate only

extends up to the cleaved edge) is given by:

C

L
=

πε0εr

arccosh
(
d
Ra

) (20)

Using the previous estimate for the QD length L = 75 − 105 nm, εr = 12.9 for GaAs
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and d = 541 nm, Ra = 15nm for the lower wire where the QD forms, we obtain Cg =

6.3 − 8.9 aF. The calculated Cg is in good agreement with the measured Cg = 8.9 aF

which seems to support the rough guess of the QD size.

In principle the total gate capacitance CUW , CLW to upper and lower wire can also be

calculated with eq. 20. For 2µm long double wires we obtain:

UW : d = 510 nm ; RUW = 10 nm ⇒ CUW = 155 aF

LW : d = 541 nm ; RLW = 15 nm ⇒ CLW = 168 aF
(21)

There are, however, two problems with this simple capacitance calculation. Eq. 20 as-

sumes cylinder (wire) and plane (top gate) to be translational invariant along the axis

of the cylinder. For the quantum dot being much smaller than the wire length, this

situation is probably satisfied (unless it forms at one end of the wire by chance). For

the wires, however, eq. 20 overestimates the capacitance.

Much more important than this finite size effect is screening of e.g. LW modes by UW

modes, but also withing the same wire (e.g. screening of UW1 by UW2). The only

situation where screening is absent and eq. 20 is expected to apply (apart from the finite

size overestimation) is when only one mode is present in the lower wire.

Calculations including screening would be extremely complicated to do since they re-

quire precise knowledge of the wave function for each participating mode. Experi-

mentally, the density may be determined independently for each mode by means of

spectroscopy [8, 85, 92] which will be discussed in the following section.

4.4.6 Electron density of upper and lower wire modes

The dispersion for 1D-systems reduces to a simple parabola with two Fermi points

located at ± kF . Fig. 31(a) schematically depicts the dispersions at zero magnetic field

for a double wire system with nUW < nLW . The four corresponding Fermi points are

indicated as black circles.
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Figure 31: (a) Sketch of the dispersions in a DW system with nLW > nUW at zero
magnetic field. The situation is depicted for a rescaled (due to interactions) effective
electron mass me,GaAs → 0.75 · me,GaAs, though in presence of interactions the dis-
persions might not be parabolic anymore. Black circles indicate the four Fermi points,
the Fermi energy is shown as black line. (b) Resonant tunneling between left movers
in upper and lower wire at a magnetic field B = +B−, applied perpendicular to the
plane spanned by the DW-system. (c) Resonant tunneling between UW right movers
and LW left movers at B = +B+.

Due to translational invariance of the DW-system momentum is a conserved quantity for

electrons tunneling between the wires [129]. Since none of the UW Fermi points overlaps

with any of the LW Fermi points, tunneling to the LW is suppressed at B = 0. In

presence of an external magnetic field By , applied perpendicular to the plane defined by

the DW system (parallel to the 2DEG), electrons acquire a momentum kick ∆p = ~∆k

upon tunneling to the lower wire. For a separation d between UW and LW, ∆p is given

by [8, 85]:

∆p
∆t

= FLorentz = evBy = e
∆s
∆t

By ⇒ ∆k =
− |e| d ·By

~
(22)

At By = +B−, the acquired momentum kick exactly compensates for the mismatch in

Fermi wave vectors between left movers B− = ~
(
kFU

− kFL

)
/ |e| d and tunneling to

the LW is resonant, see fig. 31(b). When increasing the B-field further, the resonance

condition is no longer met and tunneling is again suppressed. This persists until the

B = +B+ point is reached (fig. 31(c)) where resonant tunneling between UW right
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movers and LW left movers takes place i.e. the acquired momentum kick is equal to the

sum of Fermi wave vectors B+ = ~
(
kFU

+ kFL

)
/ |e| d. For a given pair of resonance

points
{
Bij− , B

ij
+
}

corresponding to tunneling between UW mode i and LW mode j,

the densities nUWi
and nLWj

are simply given by:

nUWi
=

2 |e| d
(
Bij+ −B

ij
−

)
h

; nLWj
=

2 |e| d
(
Bij+ +Bij−

)
h

(23)

In practice we use three top gates, g3 and its adjacent gates g4 and g2 to achieve suitable

conditions for spectroscopy measurements on DW3. The situation is schematically

depicted in fig. 32. Gate g4 is set to large negative voltage such that the underlying

2DEG and DW4 are pinched off. A small source-drain bias VSD = 100µV is applied to

ohmic contact o4 (contacts the 2DEG in the ungated section in between g3 and g4) to

overcome the suppression of tunneling into a LL at zero bias. The current is drained

at ohmic contact o1 by means of an IV-converter. To make sure that only tunneling

current is measured, g2 is set to the first mode of its corresponding lower wire.

g4          g3  g2

2µm       2µm       2µm       2µm       2µm                 ≈1mm

    VSD = 100µV
 

VDC + VAC

o4          o1

Figure 32: Gating scheme as used for tunnel spectroscopy measurements in fig. 33. Gate
g4 pinches the DW completely and g3 transmits only the lowest mode of the LW. The
differential tunneling current dIT /dVg3 with respect to top gate g3 is measured at o1.
A small source drain bias VSD = 100µV is applied to the short tunnel junction to
overcome the zero bias suppression of tunneling into a Luttinger liquid.

We note that the small source-drain bias induces a negligible but finite bandshift be-

tween the parallel wires (and even smaller bandfilling [130] effects). A much more

important effect is magnetic depopulation of 1D subbands [131]. The magnetic field

By introduces an additional confinement which increases the electron effective mass,
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m∗ → m∗(By). As a consequence, lower modes are populated at the expense of higher

ones. For the lowest mode in the present wires this only leads to a slight overesti-

mation (below 5 %) of the electron density. However, since precise correction for the

magnetic confinement is very difficult in case of the CEO wires (triangular confinement

with nonuniform level spacing), this effect was neglected for all extracted wire densities

presented in this thesis.

In order to be more sensitive to electrons tunneling to the LW underneath g3 where the

electron density is varied through the top gate (instead of tunneling in between gates g4

and g3) and following Auslaender [8], g3 is modulated with few mV AC-excitation and

the differential tunneling current dIT /dVg3 is measured at o1. Fig. 33(b) shows such

a differential tunneling current measurement as a function of g3 and By , recorded in

the gate configuration depicted in fig. 32. As the gate voltage g3 is lowered, the density

in UW and LW decreases, and consequently Bij+ resonances (given by sum of densities

in UWi and LWj) move to smaller By . In contrast, Bij− resonances shift to larger By

since UW modes depopulate faster than LW modes (UW screens LW), and therefore

the density difference grows with decreasing gate voltage. Several pairs of {B+, B−}

branches are visible in fig. 33(b). Red and blue dots indicate the pair of resonances

{B1
+, B

1
−} corresponding to tunneling between the lowest modes of upper and lower

wire.

It turns out that the moderate AC-excitation on gate g3 also induces a small modula-

tion in the neighboring 2DEG. Therefore, in addition to the gated section, the Lockin

measurement is also sensitive to electrons tunneling in the ungated section. In other

words electrons from the UW can either tunnel to the LW in the ungated section, i.e.

in between gates g3, g4 (see fig. 32), or they tunnel from the UW section underneath

g3 where density is changed by the top gate. Black arrows indicate B+, B− resonances

that arise from electrons tunneling to the LW in the ungated section. Since ideally the

density in the ungated section is not affected by top gates, these resonances appear as

(almost) horizontal lines in fig. 33.
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Figure 33: (a) 2 terminal conductance trace for DW3. Vertical blue dashed lines indicate
gate voltages where modes LW2, LW1, UW2 and UW1 pinch off. (b) Differential trans
tunneling current as a function of perpendicular magnetic field By (⊥ to the plane
spanned by the DW system) and gate voltage g3, measured in the configuration shown
in fig. 32. Blue and red dots indicate the resonance condition for co- and counter-
propagating electrons in the lowest upper and lower wire modes (gated section). Arrows
indicate the same resonance condition for electrons tunneling in the ungated section in
between gates g4 and g3.

This identification is supported by the observation that horizontal lines extend up to

the gate voltage where g3 depletes its LW and blocks current completely (compare with

2 terminal conductance measurement of DW3 in fig. 33(a). For the gated section, the

{B1
+, B

1
−} resonances obviously only exist up the point where the upper wire is pinched

off. In addition, at zero top gate voltage (g3 = 0), the resonance condition for gated

and ungated section is the same since densities in both regions are identical. Therefore
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upon approaching g3 = 0 resonances arising from electrons tunneling in the ungated

and gated section start to merge (see fig. 33(b)).

In addition to {B1
+, B

1
−} points, vertical resonance lines (no defined momentum) are

observed in fig. 33(b). They are attributed to electron localization at low density in

different modes (see sec. 4.4.5 for localization in LW1) and have previously been observed

[8, 9].

We proceed to calculate the electron densities from the {B1
+, B

1
−} branches in fig. 33(b)

(red and blue points) using eq. 23. The results are presented in fig. 34, along with a two

terminal conductance trace (black) for comparison.
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Figure 34: Electron density nUW1 and nLW1 for the lowest upper and lower wire
mode as a function of top gate voltage g3. Densities are calculated from the {B1

−, B
1
+}

resonances in fig. 33(b). A black dashed line indicates linear density change in the regime
where the UW hosts only one mode. For comparison a two terminal conductance trace
(black) for DW3 is shown along with the densities.

Initially, due to screening by higher modes (and the 2DEG), the densities nUW1 and

nLW1 only change little upon lowering the top gate voltage g3. As mentioned earlier,

screening of the LW by the UW is responsible for nLW1 to change slower as a function

of g3. Even though the density depends on g3 in a non trivial way, in the regime where

only one mode is present in both wires, the capacitance C = ∆Q/∆Vg3 is fairly constant

(constant C is indicated as black dashed line) in agreement with simple capacitor mod-
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els. If we assume that the same behavior applies for the lower wire in the regime where

all UW modes have been depleted and furthermore that the LW localizes at similar

densities as the UW, the capacitance CLW in the unscreened region can be calculated.

We therefore assume that the density nLW1 drops from ≈ 70µm−1 (last data point for

nLW1 in fig. 34) to ≈ 20µm−1 within a gate range of 150mV, see conductance trace in

fig. 34 or fig.29. The resulting capacitance CLW = ∆Q/∆Vg3 = 107 aF is roughly one

third smaller than the previously (theoretically) calculated lower wire capacitance of

CLW,theory = 168 aF (see eq. 20 in sec. 4.4.5). Considering that the calculation slightly

over estimates CLW due to the finiteness of the system, measured and calculated ca-

pacitance agree quite well.

All measurements in this section were performed after partial (weak) LED illumination.

This can be seen from the much lower voltage needed to pinch off the DW-system in

fig. 34 (g3 ≈ −1.8V) compared to the measurements shown in sec. 4.4.5 (pinch off at

≈ −4.5V in fig. 29). One might mistake this drastic change in pinch off voltage as a

sign for a significant change in the electron densities nUW1 and nLW1 . Unfortunately,

at present, no spectroscopy measurements are available for DW3 after strong LED

illumination. Measurements on DW5 and DW6 after strong LED illumination, how-

ever, show that though their pinch off voltage significantly differs (g5pinch ≈ −4.6V,

g6pinch ≈ −4.1V) the densities nUW1 and nLW1 are very similar for corresponding gate

voltages (e.g. when UW1 starts to localize in either DW5 or DW6). Consequently, simi-

lar densities would be assumed for DW3 after strong LED illumination. In addition, the

ungated densities nUW1 = 102.5µm−1 and nLW1 = 100.7µm−1 for DW5 after strong

LED illumination are only slightly larger (less than 5%) than the densities presented

in fig. 34 for g3 = 0. It seems that little LED illumination is sufficient to saturate the

densities nUW1 and nLW1 for the lowest modes. However, more modes are populated

after illumination, resulting in an overall much higher electron density (factor 2-3) in

the wires after strong LED illumination which is responsible for larger pinch off gate

voltages.
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4.5 CEO wires as 1D electronic Fabry-Perot resonators

4.5.1 Fabry-Perot resonances in the tunneling current

A closer look at the low B-field regime in the tunnel spectroscopy measurement (fig. 33)

reveals a clear checkerboard pattern. The periodicity of the pattern changes as a func-

tion of gate voltage from slow oscillations around g3 = 0 to fast oscillations in the

regime where only the lowest mode in the upper wire is present (see fig. 35(a)). This

becomes even more clear when looking at single cuts for a fixed magnetic field as shown

in fig. 35(b). Since the checkerboard pattern is only visible around B = 0, we attribute

the signal to electrons tunneling in the ungated section (compare with scheme in fig. 32

and discussion in the previous section).
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Figure 35: (a) Differential tunneling current dIT /dVg3 as a function of top gate voltage
g3 in the low B-field regime (zoom in from fig. 33(b)). (b) Line cuts from (a) for different
By as indicated. For clarity traces are offset by 75 pA. Black dots mark resonance peaks
that are used for further analysis. To visualize the changing oscillation period in relation
to the DW configuration, a two terminal conductance trace (black) is shown in addition.
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The question arises how the top gate g3 would create such oscillations if we assume

that the ungated section is only affected very little by g3. We assume that coupling

from the multi mode to the single mode regime (ungated versus gated section) is not

perfect. Hence, we may have scattering at the left and right boundaries of gates g3

and g2. This can lead to multiple reflections e.g. inside the gated section beneath g2

or g3. Given the densities in different sections, it is possible to determine whether or

not multiple scattering paths interfere constructively. For the measurement in fig. 35

only the top gate g3 is varied, and hence multiple reflections e.g. within LW2 (UW is

pinched off below g2) will only contribute a fixed transmission factor to the measured

tunneling current. Therefore the observed oscillations in fig. 35 as a function of g3 are

attributed to Fabry-Perot resonances within DW3, more precisely within the LW of

DW3 (electrons tunnel in the ungated section in between g4 and g3).

In optics such resonances are very well known. Consider a pair of parallel mirrors

with reflectance R and a filling material with refractive index nmed in between. The

wavelength λmed in between the mirrors is reduced from the bare vacuum wavelength

λ0 by the refractive index, i.e. λmed = λ0/nmed. For an incident light beam hitting

the parallel mirrors under normal incidence, the intensity Iout of the out-coming light

oscillates as a function of λmed:

Iout

Iin
=

(1−R)2

1 +R2 − 2R cos
(

2π
λmed

2L
) (24)

In case of an electronic 1D-system, where electron density and wavelength are related

by 2π/λ = nπ/2, the Fabry-Perot oscillations appear as a function of density n in the

wire:

Iout

Iin
=

(1−R)2

1 +R2 − 2R cos(πLn)
(25)

For L = 2µm the argument of the cosine changes by 2π whenever the density nLW1 for

DW3 changes by 106 m−1. In other words, one full oscillation in fig. 35 corresponds to

the addition of two electrons to the first lower wire mode in DW3.
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In order to verify these statements, we proceed to count the oscillations in the checker-

board pattern of fig. 35(a) and try to reconstruct the density nLW1 as a function of top

gate voltage g3. For all cuts in fig 35(b) oscillation peaks can clearly be assigned (black

dots) in the regime where only one mode is present in the UW. Since the LW already

contains a significant amount of electrons at the position of the first assigned peak

(at g3 ≈ −1.5V), counting subsequent peaks will only allow to calculate the electron

density nLW1 up to a constant. For all B-field cuts, we assign a density of 74.5µm−1

to the first peak (as obtained from spectroscopy measurements), thus fixing the offset.

For every further peak, the density is increased by 1µm−1. For the dark blue trace

in fig. 35 oscillation peaks were assigned up zero gate voltage. However, maybe not

every identified resonance in fig. 35(b) is completely obvious. Therefore this procedure

is broken up into two sequences where the identification of peaks seems more clear for

the −20mT / − 4mT / 12mT traces. For the low gate voltage range (g3 > −0.8V) a

new density offset noffs may be chosen (noffs = (74.5 +m)µm−1 with m ∈ N) to match

the reconstructed density with the spectroscopic data.

Fig. 36 shows the lower wire density nLW1 as a function of top gate voltage g3, extracted

from the spectroscopy measurements in fig. 33. Superimposed are reconstructed den-

sities (plus constant offset) calculated by counting oscillations in the B-field cuts from

fig. 35(b). For all B-field cuts, the reconstructed lower wire density are in excellent

agreement with the lower wire density LW1 obtained from spectroscopy measurements.

Clearly, the reconstructed density does not match the upper wire density UW1.
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Figure 36: Reconstructed lower wire density nLW1 (for DW3) by counting Fabry-Perot
resonances (black dots) of corresponding cuts in fig. 35 and assigning a density change
of 1µm−1 per oscillation. A fixed offset of 74.5µm−1 is added to the reconstructed
densities for better comparison with the spectroscopically gained data (gray squares
for lower and brown circles for the UW density). The small gate voltage range g3 >
−0.8V for the −20mT /−4mT / 12mT traces was treated separately and therefore, as
indicated, different offsets were assigned.

To complete the picture we return to the checkerboard pattern in fig. 35(a), this time

with the focus on the B-field period. We notice that adjacent traces are phase shifted

quite precisely by π (observed over ≈ three periods in B-field direction <=> phase shift

of 6π). Since neighboring traces are separated by 16mT, we infer an oscillation period

of 32mT. Due to the low sampling rate (B-field resolution) possible oscillation periods

are actually given by 32/(2k + 1)mT with k ∈ N0. For oscillations in gate voltage

direction we concluded that a density change of 1µm−1 (by changing the top gate g3)

is required to accumulate a phase shift of 2π over a distance of 2L. Instead of changing

g3, we can also give the tunneling electron a momentum kick (during the tunneling

process) that corresponds to the same density change and is small enough for UW and

LW dispersions to still have a finite overlap. Using eq. 22 we calculate a B-field period

∆By of:
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By =
~∆k
|e| d

=
~∆nπ
2 |e| d

= 33.4mT (26)

Though the B-field sampling rate is low, it still allows for a rough estimation of the pe-

riod (32mT) which agrees well with the 33.4mT predicted for Fabry-Perot resonances.

We would like to note that Aharonov Bohm resonances as observed e.g. in [85] for

By versus VSD spectroscopy measurements can be excluded since they would occur

with double the period: ∆BLd = h/e ⇒ ∆B = 66.7mT. In conclusion, the density

reconstruction in fig. 36 and the correctly predicted B-field period strongly support the

interpretation of the checkerboard pattern as Fabry-Perot resonances.

4.5.2 Fabry-Perot resonances in the upper quantum wire

The question naturally arises, whether or not Fabry-Perot resonances can also be ob-

served for the upper wire. In sec. 4.4.4 where it was shown that two adjacent double

wires add like ballistic resistors, clear horizontal and vertical lines are seen in the con-

ductance measurement versus top gate voltage g3 and g4 (no other gates activated),

indicating the presence of such oscillations. Two line scans for fixed g4 are shown in

fig. 37 as a function of gate g3. While for the red trace g4 is only set to sufficiently

negative voltage (-2V) to deplete the underlying 2DEG, g4 is set to the first mode of

the corresponding upper wire for the blue trace.

The inset shows a magnified view in the regime where only one mode in the UW is

present. After shifting the traces horizontally by 4.9mV, the two oscillation patterns

agree very well, which shows that they are controlled by the scanning gate g3 only.

Furthermore, for the blue trace where the total conductance is limited by gate g4 to

one mode in the UW, these oscillations are clearly visible even in the regime where

further (higher) modes in DW3 become available. While the oscillation period is fast

(but roughly constant) in the regime where only one mode is available in UW and LW,

it significantly increases with less negative gate voltage. This behavior seems similar

to the observations made for the differential tunneling current to the LW in fig. 35 and

therefore hints towards Farbry Perot resonances as possible source for these oscillations.
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Figure 37: Conductance g as a function of top gate voltage g3. For the red trace the
neighboring gate g4 is set to -2V such that is depletes the underlying 2DEG. For the
blue trace g4 is set to the lowest mode of the corresponding wire (compare with fig.28).
The inset shows a zoom-in onto the pronounced conductance oscillations. For better
visibility the traces in the inset have been shifted horizontally by 4.9mV to match their
patterns.

As mentioned earlier, no spectroscopy data is available for DW3 after strong LED il-

lumination. After partial illumination, the density nUW1 drops approximately by 40

electrons per micron (from 60µm−1 to 20µm−1) in the regime where only one mode in

upper and lower wire are present. Within measurements uncertainties, the same values

are obtained for DW5 and DW6 after full LED illumination. It seems to be a fair

assumption that after full LED illumination the density nUW1 in DW3 still drops by

roughly 40µm−1 in that regime. The corresponding gate range from the point at which

UW1 localizes (g3 = −4.15V) until the second mode of the LW sets in (g3 = −3.43V)

measures ≈ 720mV and is indicated as gray area in fig. 37. For the Fabry-Perot res-

onances in the tunneling current to the LW we concluded that a density change by

1µm−1 in the LW of DW3 is required for one oscillation. This still holds for Fabry-

Perot resonances in the UW of DW3 with the only difference that the oscillation period

is controlled by the UW density nUW1 instead of nLW1 . We therefore expect one oscil-

lation per 18mV (720mV/40) in the regime where the density nUW1 changes linearly

with gate voltage g3 (until LW2 sets in). Within the 400mV wide gate voltage window

−4 V < g3 < −3.6V (black rectangle in fig. 37) we count 21 oscillations, corresponding
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to a period of 19mV, very close to the predicted one.

Such direct comparisons are difficult for the regime where the density does not change

linear with gate voltage unless nUW1 is precisely known from spectroscopy measure-

ments in the same configuration, as was the case for the previous section about Fabry-

Perot resonances in the LW. We note that in the less negative gate voltage regime

g3 > −3.2V at least the qualitative behavior with growing oscillation periods as fur-

ther UW modes are populated (slower density change in UW1 as a function of g3 due

to screening) agrees with the prediction for Fabry-Perot resonances in the UW.

Finally, from the visibility of oscillations we can estimate the reflectance and transmit-

tance of the contacts. After subtracting the parallel conductance LW1 (lowest mode

of LW), the conductance oscillates in average by roughly 20% from 1 e2/h to 0.8 e2/h.

Therefore we conclude (see eq. 25) that though the visibilty of oscillations is quite large

(20%), the reflectance R is only in the order of 5% (R = 0.05 ; T = 0.95).

We would like to add that electronic Fabry-Perot resonances have previously been ob-

served in carbon nanotubes [132], in ballistic graphene [133] and also for (fractional)

quantum hall states in GaAs heterostructures [134, 135].

96



5 Possible Evidence for Helical Nuclear Spin Order in

GaAs Quantum Wires

Christian P. Scheller, Tai-Min Liu, Dominik M. Zumbühl

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel,

Switzerland

Gilad Barak, Amir Yacoby

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Loren N. Pfeiffer, Ken W. West

Department of Electrical Engineering, Princeton University, Princeton, New Jersey

08544, USA

Abstract

We present transport measurements of cleaved edge overgrowth GaAs quan-

tum wires. The conductance of the first mode reaches 2 e2/h at high temper-

atures T & 10K, as expected. As T is lowered, the conductance is gradually

reduced to 1 e2/h, becoming T -independent at T . 0.1K, while the device cools

far below 0.1K. This behavior is seen in several wires, is independent of density,

and not altered by moderate magnetic fields B. The conductance reduction by a

factor of two suggests lifting of the electron spin degeneracy in absence of B. Our

results are consistent with theoretical predictions for helical nuclear magnetism

in the Luttinger liquid regime.

This chapter was published in Phys. Rev. Lett. 112, 066801 (2014)
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5.1 Motivation

Conductance quantization is a hallmark effect of ballistic one-dimensional (1D) non-

interacting electrons [104, 106, 107, 136]. One mode of conductance e2/h opens for

each spin, giving conductance steps of 2 e2/h for spin degenerate electrons. In pres-

ence of electron-electron (e-e) interactions, strongly correlated electron behavior arises,

described by Luttinger liquid (LL) theory [88, 89, 137]. Salient LL signatures include

ubiquitous power-law scaling [93, 96, 97, 102, 138], separation of spin and charge modes,

and charge fractionalization - all recently observed [8, 85, 139, 140] in cleaved edge

overgrowth (CEO) GaAs quantum wires [125, 126], thus establishing CEO wires as a

leading realization of a LL. Interestingly, the conductance of a clean 1D channel is not

affected by interactions, since it is given by the contact resistance in the Fermi liquid

leads [10, 111–113, 141]. In presence of disorder, however, the conductance is reduced

with LL power-laws [114, 115]. While short constrictions display universal quantization

[106, 107], the ballistic CEO wires exhibit steps reduced below 2 e2/h at temperatures

T ≥ 0.3K [2, 123], presenting an unresolved mystery [2, 85, 102, 127].

5.2 Main experimental findings

In this Letter, we revisit the conductance quantization in CEO wires, investigating for

the first time low temperatures down to T ∼ 10mK. We find that the conductance of

the first wire mode drops to 1 e2/h at T ∼ 100mK and remains fixed at this value for

lower T , while the electron temperature cools far below 100mK. At high T & 10K, the

conductance approaches the expected universal value 2 e2/h [2]. This behavior suggests

a lifting of the electron spin degeneracy at low T , in absence of an external magnetic

field B. The observed quantization values are quite robust, appearing in several devices,

unaffected by moderate magnetic fields, and independent of the overall carrier density.

A recent theory [1, 40, 118] predicts a drop of the conductance by a factor of two in

presence of a nuclear spin helix - a novel quantum state of matter. Our data agree well

with this model, while other available theories are inconsistent with the experiments,

98



thus offering a resolution of the non-universal conductance quantization mystery.

5.3 CEO wire sample

Ultra-clean GaAs CEO double wires (DWs) were measured (inset, Fig. 38), similar to

Refs. [8, 85, 139, 140], offering mean free paths∼ 20µm and subband spacings exceeding

10meV. Details on sample fabrication are given in [2, 85, 123, 125, 126]. A surface gate

allows depletion of the 2D electron gas (2DEG) below, giving edge conduction in the

DW only, forming what we will refer to as the “wire”. Semi-infinite DWs with a few

modes forming a 1D electron gas (1DEG) extend the wire on both sides, contacting

the adjacent 2DEGs. Contacts to the 2DEGs are used to measure the two-terminal

differential conductance g of the wire.
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Figure 38: Double wire mode structure Differential conductance g (red) versus gate
voltage VG at T = 0.56K and B = 0. Arrows indicate VG above which modes start to
contribute to g, as labeled. Blue data is at BX = 2T along the wire, offset in g to align
LW1 plateaus. The inset shows a sample schematic with a coordinate system.

The sample comprises an array of gates with 2µm ungated spacing between 2µm long

wires, allowing individual and serial operation. In the ungated regions, the upper wire

(UW) modes run directly adjacent to the 2DEG, resulting in a 2D-1D coupling length

`2D−1D ∼ 6µm [127]. The 1DEG to few-mode wire transition occurs on a length
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scale of about 500 nm - the distance of the UW and 2DEG to the surface gate - clearly

longer than the Fermi wavelength λF . 200 nm, and hence in the adiabatic regime.

The lower wire (LW), on the other hand, has no adjacent 2DEG and is only weakly

tunnel-coupled to the UW and 2DEG through a 6 nm thick AlGaAs barrier. UW to

LW tunneling is very small in the gated segments. Thus, the 2µm long DWs are

considered as independent parallel resistors, with total conductance given by the sum

of each conductance.

Figure 38 allows identifying the wire modes as a function of gate voltage VG: increasing

VG starting from g = 0 at the most negative voltages, g is increasing in a step-like

manner as the DW modes are populated one by one, as indicated. LWn (UWn) denotes

n-th mode in lower (upper) wire. Since the first step is small � 2 e2/h, it is associated

with the tunnel coupled LW1. The next, larger step corresponds to UW1, followed by

the LW2 step, which becomes visible with a magnetic field BX = 2T along the wires

(blue trace, shifted to align LW1 plateaus). The tunneling process into the LW depends

sensitively on parameters such as B, affecting the LW conductance. The next step has

a large amplitude again and therefore corresponds to UW2. Identifying higher modes

is not easy due to a rapidly decreasing subband spacing.

5.4 Temperature dependence

The temperature dependence is shown in Fig. 39. At high T , the UW1 step height is

approaching 2 e2/h, as expected for a spin degenerate single mode wire. Thermally

excited subband population and resulting inclined plateaus start to become visible at

high T , as well as a feature reminiscent of 0.7 structure [142] at the low end of the

plateau. At low T , on the other hand, the UW1 conductance plateau is reduced strongly

to ∼ 1 e2/h, contrary to the 0.7 feature, which rises to 2 e2/h at low T [142]. In addition,

the plateau develops pronounced, fully repeatable conductance oscillations. The same

effect (transition from g = 2 e2/h to 1 e2/h) was seen in all four DWs, and also in single

wires (see upper inset, Fig. 39(a)) Due to the lower quality of the single wires currently

available (note the short plateaus), measurements were largely done on DWs. CEO
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wires are extremely difficult to fabricate, limiting experiments to the present samples.
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Figure 39: Temperature effects exhibiting conductance reduction by a factor of two
(a) Gate voltage traces g(VG) at T as labeled, shifted in g to align LW1 plateaus at
g = 0. Similar measurements for a single wire are given in the upper inset. Lower inset:
histogram of g(VG) for LW1 and UW1 regions (base temperature). (b) Conductance
step height δg of UW1 mode as a function of temperature on a logarithmic T -axis
(linear axis in inset), extracted from histogram peak positions (see main text). Small
but discrete steps in g result from histogram binning.

The oscillation pattern on the UW1 plateau - complicating extraction of the step height

- is reproduced independent of the number of modes transmitted through an adjacent

wire. This indicates ballistic addition of quantized mode steps, as expected for a mean
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free path far exceeding the wire length. The oscillations are well understood as quantum

interference caused by the finite size of the wire [5], giving maximal transmission ∼ 1

at the conductance maxima. Indeed, the maxima of the oscillations neatly line up

forming an upper ceiling on the UW1 plateau, at intermediate T even forming flat

tops, see Fig. 38. The minima, on the other hand, are rather dispersed over a range of

conductances. A histogram extending over the first two conductance plateaus clearly

reflects this behavior, see lower inset Fig. 39(a). A long, asymmetric tail to low g on the

UW1 plateau (red) is seen below the peak at higher g. Therefore, we extract the peak

positions gmaxUW1 and gmaxLW1 from the histogram and obtain the UW1 conductance

step height δg = gmaxUW1 − gmaxLW1 .

The temperature dependence of δg at B = 0 is displayed in Fig. 39(b) from 20K down

to 5mK. Starting from the highest T , where δg reaches 2 e2/h, lowering T continuously

and monotonously decreases δg down to ∼ 1 e2/h. We note that breaking of spin

degeneracy would result in a reduction of the conductance by a factor of two. At low

T . 100mK, δg becomes temperature independent. However, the sample temperature

cools far below 100mK: first, thermal activation of fractional quantum Hall states can

be used to extract an electron temperature ≤ 27mK, clearly smaller than 100mK.

Note that this T is an upper bound only, since disorder can lead to deviation from

exponential activation at low T . Occasional formation of a wire quantum dot [102] leads

to life-time broadened peaks not suitable for thermometry. Second, metallic Coulomb

blockade thermometers [4] were measured under identical conditions, giving an electron

temperature of 10.5±0.5mK at refrigerator temperature T = 5mK. Details on filtering

and heat sinking will be given elsewhere [3].

5.5 DC bias and B-field dependence

Next, we investigate the dependence on source-drain bias VSD. Fig. 40(a) and (b)

shows the conductance gUW for VG fixed on the UW1 plateau as a function of VSD.

gLW ∼ 0.3 e2/h depends only weakly on VSD. At large VSD > 1mV, conductances

around 2 e2/h are approached, while at low VSD ∼ 0, a sharp zero bias anomaly (ZBA)
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of reduced gUW . 1 e2/h develops.
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Figure 40: Bias and B-field dependence (a,b) g as a function of dc bias VSD, for
fixed VG on the UW1 plateau. (b) shows different temperatures as labeled. (c) g at
B = 0 (red) and BZ = 2.8T applied perpendicular to the 2DEG (blue), shifted in g to
align LW1 plateau. The inset shows the conductance step height δg versus BZ .

While the ZBA could be related to the energy to destroy the nuclear spin helix, it could

also have various other origins. Further, large bias causes resistive heating, raising

temperature. Indeed, the |VSD| behavior and T-dependence shown in Fig. 39(b) appear

qualitatively very similar. Given the sharp ZBA, great care was taken to keep VSD

small throughout all linear response measurements (VSD = 3.5µV - experimentally

chosen to avoid non-linear effects).

We now turn to the influence of a magnetic field. Fig. 40(c) compares g at B = 0 and

BZ = 2.8T perpendicular to the 2DEG, at base T . While gLW is changed, the step
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height δg is hardly affected at all: δg(BZ) remains close to 1 e2/h within the error

bars (see inset Fig. 40(c)), despite Landau levels and edge states induced by BZ in the

2DEG, reaching filling factor ν = 3 at BZ = 3T. Further, the transitions from LW1

to UW1 at the larger B are comparable to B = 0 data (see e.g. Fig. 41) and do not

provide evidence for an additional plateau. Note that at 3T, the Zeeman splitting is

much larger than temperature, and the Landau level spin splitting is already resolved

for much lower BZ ∼ 0.3T. Finally, δg shows very little dependence on BX (Fig. 38).

Overall, we did not find evidence for qualitative changes of the UW1 conductance step

in moderate B-fields.

5.6 Comparison with theoretical predictions

We emphasize that the experiments [2, 127], which studied single wires at T ≥ 300mK,

are consistent with the results presented in this Letter. New here is the full g reduction

to g ∼ 1 e2/h, T -independent for T . 100mK, combined with the sharp zero-bias

dip, B-field independence, and pronounced low T conductance oscillations. In light

of our new and complementary data, we now proceed to analyze different theories

attempting to explain our findings, including re-examining models already discussed in

Refs. [2, 127]. First, non-interacting theories must be rejected: reduced conductance

quantization within the Landauer formula results from non-ideal transmission t < 1

[136], in contradiction to the observation of ballistic transport in our wires, in addition

to the objections already raised in Ref. [2]. Our measurements with two wires in series

show that t is at most a few percent below t = 1, in any case ruling out a g-reduction

by a factor of two.

Second, we examine e-e interactions in the wire. A weakly disordered LL connected to

Fermi liquid (FL) leads [114] gives conductances decreasing below 2 e2/h with a power-

law in VSD and T . A finite conductance ∝ L−1 is obtained at T = 0 due to thermal

freeze-out: when the thermal length LT exceeds the wire length L at low enough T , g

becomes T independent. However, here, δg(T ) remains clearly T dependent well below

the freeze-out temperature ∼ 0.6K (see Fig. 39) and further cannot reasonably be fit
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with a single power law over the entire T -range. Therefore, LL theory for the 2µm wire

alone is an unlikely explanation.

Next, we consider e-e interactions also outside the wire. The 1DEGs may also experience

non-FL correlations, albeit weaker than the wire since the 1DEGs are not single mode.

The 2D-1D coupling scale `2D−1D ∼ 6µm sets an effective LL system length L1DEG =

2 · `2D−1D + L comprised of segments `2D−1D on each side of the L = 2µm wire. As

T is reduced, LT first grows larger than L before eventually surpassing L1DEG, where

g(T → 0) saturates at gsat ∝ 1/L1DEG. Hence, two temperature ranges with distinct

power laws emerge, before g saturation at low T .

δg(T ) is consistent with such a model, giving decent agreement with two separate power-

law fits. Further, a reasonable saturation temperature results: LT > L1DEG occurs on

a temperature scale of ∼ 0.1K, where indeed the δg data is seen to loose T -dependence.

The value gsat ∼ 1 e2/h could then simply be a coincidence, but would depend on the

details of the 2D-1D coupling. This coupling must involve scattering at an impurity or

defect due to the large momentum mismatch between 1DEG and 2DEG electrons [2],

and hence, within this model, gsat will depend on parameters [143] such as disorder,

chemical potential (density), and B-fields.
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Figure 41: Density dependence g(VG) for a DW, recorded after LED illumination
as labeled. Traces were shifted in g only to align LW1 plateau at g = 0. δg appears
independent of flash strength and hence carrier density.
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Figure 41 displays g(VG) for a sequence of LED illumination [85] steps, ionizing more

and more donors and thereby globally increasing the carrier density and mobility after

each flash. The depletion voltage is proportional to density, and is seen to become more

negative with increasing LED exposure, enhancing the density by over a factor of two,

see Fig. 41. Similarly, the 2D density and mobility increase by roughly a factor of two

(before illumination, the density is 1 · 1011 cm−2 and the mobility ∼ 3 · 106 cm2/(Vs)).

Despite the large density change, the UW1 step height (ceiling of g oscillations) is seen

to remain very close to 1 e2/h. This is seen also in the other wires. In absence of any

significant density, disorder, wire, and B-field dependence (see Fig. 38 and 40) of gsat,

this scenario has to be abandoned.

A further model put forth in [2] and refined in [127] proposed a competition between

`2D−1D and residual backscattering in the wires on a length `BS � L for the reduced g

plateaus. This model is expected to exhibit a similar sensitivity to the 2D-1D coupling

details as above, and can again be ruled out based on the observations in Fig. 41, aug-

menting objections already raised in [2, 127]. In addition, both `2D−1D and `BS have

(weak) LL power-law T -dependence [144], leading to g → 0 for T → 0, in contradiction

to the finite gsat observed. Another scenario is an incoherent LL due to Wigner crystal

formation [145, 146]. In this model, g increases from 1 e2/h to 2 e2/h upon decreasing

temperature, opposite to observations here. Further, very low densities (aBn)−1 � 1

are required (aB is the GaAs Bohr radius), which is not the case for the wires used

here. Finally, spin orbit coupling has to be ruled out as well, since the g-reduction is

seen at B = 0 and shows little B-dependence.

A recent theory by Braunecker, Simon and Loss [1, 40, 118] predicts helical nuclear

spin order in a LL, causing a reduction of g by a factor of two, from 2 e2/h to 1 e2/h

for a clean wire, as seen in the experiment here. Below a crossover temperature T ∗, an

effective RKKY interaction, strongly enhanced by e-e interactions, forces the nuclear

spin system via hyperfine interaction into helical order, constituting a novel state of

matter. The resulting large Overhauser field acts back on the electronic system where

a large gap opens - pinned at the Fermi energy - for half of the low energy modes,
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forming a helical LL and causing the g reduction at B = 0, applicable similarly for

single and double wires [147]. The wire then only transmits spin-down right and spin-

up left movers, therefore acting as a perfect spin filter. Note that the nuclear spin helix

is a thermodynamic ground state protected by a gap, rather than a dynamic nuclear

spin polarization.

The predicted T ∗ depends very strongly on the charge LL parameter KC and can

exceed 1K for small KC (strongly interacting) [1]. Full nuclear order is obtained only

at T � T ∗ and zero polarization only at T � T ∗. Estimating KC is far from trivial

both experimentally and theoretically [8]: KC = 0.4 gives T ∗ ∼ 0.2K and KC = 0.3

already T ∗ ∼ 0.6K, consistent with the experiment. Further, large T ∗ result in a rather

broad, washed-out transition, as observed in the experimental δg(T ). KC is expected

to depend (weakly) on density n, therefore T ∗ will change over a conductance plateau.

However, given a very broad transition, this may affect g only weakly, and give rather

flat conductance plateaus, as seen in the experiment. Further, the theory derives g

far below and above, rather than throughout, the nuclear transition, allowing only a

qualitative comparison. Finally, a Zeeman splitting much smaller than the induced gap

should affect neither the nuclear order nor the conductance, as seen in the experiment.

5.7 Summary and Conclusions

In summary, we have investigated B-field conductance quantization in single mode LL

wires, finding a very broad transition at B = 0 from 2 e2/h at high T to 1 e2/h at low

T . 100mK, where g becomes T independent. This behavior is consistently seen in

double and single wires, is independent of overall density and disorder (2D-1D coupling,

illumination), is destroyed with bias VSD similar to T , and is insensitive to moderate

B-fields. All these observations are in good agreement with a nuclear spin helix model

[1, 40, 118] which predicts a crossover temperature T ∗ in the observed range, while all

other theories considered here and previously [2, 127] are inconsistent with the data.

While we can not rule out other explanations we are not aware of, we emphasize that

the data are striking and stand alone, irrespective of the model used for interpretation.
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Further experiments are needed to investigate the role of the nuclear spins. Resistively

detected NMR was already attempted here: While detecting clear 2DEG signals, no

identifiable NMR response was found for the wires. However, it is difficult to estimate

what the effect of an NMR excitation is, what the low energy nuclear spin excitations

are, and whether a detectable resistive signal would result. Spectroscopic methods [85]

might be used to shed more light on the electronic structure. In the nuclear spin helix

state, the electron system is in the helical LL regime, equivalent to a spin-selective

Peierls transition in a Rashba spin-orbit coupling wire [118]. Given proximity to an

s-wave superconductor, a topological phase sustaining Majorana fermions could be cre-

ated.
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Abstract

We report intrinsic metastable charge state switching in a laterally defined

GaAs few electron double quantum dot in the limit of very low tunnel rates.

Charge switching is recorded in real-time with a nearby charge sensor and ap-

pears within a diamond shaped region between two associated triple points of

the charge stability diagram. The switching rate is gate tunable and shows an

exponential temperature dependence. We provide a straight forward extension

to the orthodox theory for electron transport in double dots that reproduces our

experimental findings.

This chapter is in preparation for publication
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6.1 Motivation

Quantum dots are promising candidates for the implementation of qubits, the building

block of a quantum computer, in solid state systems [148]. Numerous sophisticated

experiments have demonstrated the successful implementation, control and single-shot

readout of electron-spin qubits in GaAs quantum dots [78, 149–153]. The dynamics of

the electron spin is characterized by two time scales, the relaxation time T1 and the

coherence time T2. Since energy relaxation inevitably destroys coherent spin-states,

the T1-time always sets an upper limit for T2, 2T1 > T2 [154, 155]. In practice the

measured T2-time is usually much shorter than its theoretical maximum e.g. due to the

interactions of the electron spin with the Overhauser-field created by the nuclear spins

of the host material. In recent experiments, where the electron spin was decoupled

from the slowly varying Overhauser-field by means of spin-echo techniques (also known

under dynamical decoupling), dephasing up to 200µs were achieved [156].

6.2 Experimental findings

In this Letter we present intrinsic charge fluctuations (ICFs) in a GaAs few electron

double quantum dot (DQD). They appear within a diamond shaped region of the charge

stability diagram (CSD) with the short diagonal defined by the zero detuning line of

associated triple points. ICFs are measured in real-time with a nearby charge sensor.

We stress that due to limited measurement bandwidth ICFs are only visible in the

limit of low electron temperatures (here Te . 80mK), small tunnel rates and negligible

interdot tunneling.

We show that these ICFs result from a metastability of e.g. the (0,1)-(1,0) states.

Switching between configurations takes place via the (0,0) and (1,1) intermediate states,

i.e. includes an electron exchange with the leads and consequently leads to complete

loss of coherence. As the switching frequency scales with the strength of tunnel barriers

(to source and drain), this effect can be a limiting factor for T2-measurements where

short initialization times are desirable.
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We note that this thermally activated process could be used for thermometry purposes.

6.3 Sample fabrication and charge stability diagram

We fabricate our samples on an Al0.3Ga0.7As/GaAs heterostructure which incorporates

a 2D electron gas (2DEG) 110 nm below the surface of the wafer. The 2DEG features

a density of n = 2.6 · 1011 cm−2 and a mobility of µ = 4 · 105 cm2/Vs. Ti/Au surface

depletion gates are used to form and control the nanostructure, see SEM picture in

fig. 42(a).
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Figure 42: (a) SEM picture of a device similar to the one studied in the experiment.
Yellow numbers indicate ohmic contacts and gates are labeled in black (on white back-
ground). Gates p1 and p3 are used to control the double dot while L1, L2 and L3
form the left sensor dot. (b) Sensor conductance gCC in the vicinity of the (0,0) - (1,1)
transition point with a smooth background subtracted. (c) Large section of the CSD
with numerous charge configurations (N1, N2) as indicated.

Single quantum dots on either side of the double dot are used as real-time charge
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sensors and allow for single-shot charge readout with a minimum rise time of 6µs and

sensitivities as large as δg/g ∼ 1 per electron [157–159]. All data shown in this letter

was acquired with the left charge sensor, though similar results were obtained also with

the right sensor. The measurement sensitivity is maximized by gate tuning of the sensor

dot onto the rising (falling) edge of a coulomb blockade peak. During measurements the

conductance was held approximately constant by means of a linear feed-back mechanism

applied to gate L2 such that the capacitive coupling, induced by gates p1 and p3 (see

fig. 42(a), is compensated. Together with an exceptional device stability, the feed-back

mechanism allows for high resolution measurements of the CSD diagram across many

different charge configurations as shown in fig. 42(c). Clear parallel lines with two

different slopes correspond to addition of a single electron in either left or right dot as

indicated in fig. 42(c) (white labels).

Measurements were done at base temperature Tbase = 22mK (unless explicitly stated

differently) of a standard 3He-4He dilution refrigerator with an electron temperature of

≈ 80mK.

We now focus on the (0,0) - (1,1) transition (fig. 42(b)) and find a clear undisturbed zero

detuning line separating the (1,0) and (0,1) charge states. All measurements in fig. 42

are completely reproducible and overall we observe standard textbook like behavior for

a DQD.

6.4 Metastable region in the CSD

The situation drastically changes upon decreasing the tunnel coupling to source and

drain as well as the inter-dot tunneling. The straight zero detuning line transforms

into a diamond shaped region (fig. 43(a)) wherein the adjacent charge sensor records

time dependent switching between the (0,1) and (1,0) charge states. Depending on the

position within the diamond shape, switching frequencies range from 5Hz up to a few

kHz. An exemplary time trace is shown in fig. 44(e). Though we focus on the (0,0) -

(1,1) charge transition in this Letter, we note that the diamond shape also appears

at higher charge transitions. Therefore, and because the effect can be observed over a
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wide range of gate voltages (the diamond remains at fixed position within the CSD upon

reshaping the dot), we rule out trapped charges as a possible cause. From the real-time

measurements, integrated over 20ms, we can not only extract the average conductance

(fig. 43(a)), but also the standard deviation of the sensor signal as shown in fig. 43(b).

While the diamond shape clearly appears in the standard deviation, the tunneling rates

are still too large for charge transition lines (white solid lines, extracted from fig. 43(a))

to be resolved. Remarkably, the borderline of the diamond (white dashed lines) is well

approximated by two pairs of parallel lines with slopes equal to the lines in the CSD.

Since the latter represent alignment of source or drain chemical potential with an energy

level of the adjacent quantum dot, this suggests that the leads might be involved.
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Figure 43: Real-time conductance data recorded with the left charge sensor at the (0,0) -
(1,1) transition point. Every data point in (a) corresponds to an average conductance,
integrated over 20ms. The standard deviation for the same data is shown in (b). Solid
white lines indicate charge transition lines from (a). The borderlines of the diamond
shaped region are shown as white dashed lines. White and yellow dots refer to data
analysis presented in fig. 45.

The charge switching persists even at very small bias voltages of 5µV across the sensor

dot. Together with the low electron temperatures ≈ 80mK and the broad energy

spectrum of the diamond (short diagonal corresponds to 148µeV or 1.7K) it seems

very unlikely that phonon- or photon assisted tunneling is responsible for this effect

[160]. Our observations also qualitatively differ from all kind of sensor back actions
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reported in literature [161–163].

6.5 Analysis of the measured real-time data

In order to quantify this process more thoroughly, we proceed to measure the tunneling

rates ΓL = Γ(0,1)→(1,0) and ΓR = Γ(0,1)→(1,0) for tunneling "from the right to the left"

dot and vice versa for each position within the diamond (figs. 44(a),(b)). In practice

we record one 20 s long real-time trace (fig. 44(e)) for each gate position in fig. 44(a). A

trigger system decides on the presence (or absence) of switching events, and in case of

positive confirmation further 14 traces are recorded. The tunneling rates can easily be

calculated from the real-time data. The rate ΓL for tunneling to the left dot is given by

the total number of switches N (in all 15 traces) divided by two times the accumulated

time TR that an electron spends in the right dot ΓL = N/(2 TR) and equivalently for

the reversed process.

While ΓL is largest at the left boarder of the diamond, ΓR reaches its maximum val-

ues at the opposite boarder (figs. 44(a),(b)). Tunneling rates drastically drop when

moving away from the boarder and are rather low inside the diamond (see logarithmic

scale in figs. 44(a),(b)). Next we calculate the switching frequency f (fig. 44(c)) and

probability PR for being in the right dot (fig. 44(d)) from tunnel rates ΓL and ΓR,

f = 2(1/ΓL + 1/ΓR)−1 and PR = ΓR/(ΓL + ΓR). The probability PL for being in

the left dot can be calculated accordingly and is equal to 1 − PR. For the switching

frequency f , two pronounced maxima are observed. Since a full switching cycle includes

both tunnel rates (f ∼ ΓL · ΓR), large frequencies are observed where both ΓL and ΓR

are large. Within the diamond f is rather small and varies only little with position.

We note that the measured tunnel rates are strongly temperature dependent. Fig. 45(f)

shows ΓL as a function of refrigerator temperature TR, recorded in the center of the

diamond. Apart from the low temperature saturation at ≈ 80mK, attributed to a satu-

rating electron temperature, the tunnel rate ΓL increases exponentially which indicates

that the switching is thermally activated.

114



-1140

-1138

-1136

-1134

p1
 (

m
V

)

Γ (0,1) −> (1,0)

(a)

10
1

10
2

10
3

10
4

Γ [Hz]

(c)
3

2

1

0

F
requency (kH

z)

-1110 -1108 -1106
p3 (mV) 

-1140

-1138

-1136

-1134

p1
 (

m
V

)

Γ (1,0) −> (0,1)

(b)

-1110 -1108 -1106
p3 (mV) 

1.0

0.5

0.0

P
robability P

R

(d)

0.10

0.09

0.08

V
 (

m
V

)

1098
t(s)

(0,1)

(1,0)
0.1

0.2

0.4

1

2

4

Γ
 (kH

z)

1601208040
TR (mK)

(e) (f)

Figure 44: (a) Tunnel rate from (0,1) to (1,0) in logarithmic scale. (b) Tunnel rates
for the reversed process. (c) The average switching frequency. (d) Probability PR for
being in the right dot, calculated from the tunnel rates in (a) and (b). PR is 50% on the
zero detuning line and approaches 1/0 for positive/negative detuning. The probabilites
P(1,1) and P(0,0) are assumed to be negligible. (e) Exemplary real-time trace as used to
extract Γ. (f) Exponential temperature dependence of Γ as described in the main text.
The low temperature saturation is attributed to a saturating electron temperature.

The key point is to realize that the diamond shape defines the region within which both

(0,1) and (1,0) state lie below the source-drain chemical potential and are therefore

energetically accessible. As discussed in full length in the last section of this Letter,
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the observed "apparent" switching between (0,1) and (1,0) is a result of fast electron

exchange with the leads through either the (0,0) or the (1,1) intermediate state.

6.6 Time resolved 4-level system in the metastable region

An experimental verification, i.e. a time-resolved measurement of the four-level system

would give strong support to the previous statements. In order to increase the dwell time

for the short intermediate states but maintain sufficiently large switching frequencies

at the same time, we increase the tunnel barriers and heat up the refrigerator to TR =

200mK. Fig. 45 shows an example trace of the time resolved four level system with

respective states as labeled, measured in the center of the diamond. More statistics is

required to proof that the zoomed in trace in fig. 45(a) originates from a true 4-level

system and is not just a random event. A histogram is created for each real-time trace

from a large dataset. Histograms are summed up after normalizing each individual one

to the peak position of the (0,1) and (1,0) charge states. Indeed we find a clear 4-level

system for data acquired in the center of the diamond (fig. 45(b)). For comparison we

show data recorded at the (0,0)-(0,1)-(1,0) triple point (fig. 45(c)) where, as expected,

a 3-level system is observed (similar results are obtained for the adjacent triple point).

Finally, at the charge transition lines, true 2-level systems can be resolved.

If we assume energy independent (identical) tunnel rates to source and drain, a sample

electron temperature Te of Te = TR = 200mK and furthermore assume that data in

fig. 45(b) is acquired exactly in the middle of the diamond, then the ratio between high

and low peaks in fig. 45(b) is given by the Boltzmann-factor. Conversely, the energy

scale for the diamond can be calculated from the number of counts e.g. in the (1,1) and

(0,1) states and the known temperature. We obtain ∆E = 200± 40µeV in reasonable

agreement with the measured width of 148µeV. The latter is measured in a slightly

different dot configuration with larger tunnel rates. This fact together with small drifts

away from the center of the diamond during data acquisition might be responsible for

the discrepancies.
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Figure 45: (a) Example trace for the time-resolved four level system, recored at a tem-
perature TR = 200mK in the center of the diamond (position indicated as white dot in
fig. 43(b). (b) Histogram from numerous real-time traces as shown in (a). Peak posi-
tions are normalized to the (1,0) and (0,1) charge states before summing up histograms.
(c) For comparison, we show histogram data for the lower triple point (yellow dot in
fig. 43(b)) where the expected three level system can be clearly identified.

6.7 Extension of the orthodox theory for transport in DQDs

We provide in the following a straightforward dynamical extension of the orthodox the-

ory for transport in double dot systems [23] that captures the main features of the

charge fluctuations with a minimum of assumptions. Following this, we discuss which

further nonuniversal effects must be taken into account for direct comparison with the

experimental data.

We start by noting that the switching rates observed in the experiment are slow enough

such that we can use a semi-classical description with definite occupation numbers Nj

117



of dots j = 1, 2. The charge fluctuations lead to switching between different configu-

rations x = (N1, N2), which we express through a master equation for the occupation

probabilities p(x),

∂tp(x) =
∑
x′ 6=x

[
Γxx′p(x′)− Γx′xp(x)

]
, (27)

with Γxx′ the tunneling rate from configuration x′ to x. In accordance with the ex-

periment, the four configurations of relevance for the investigated region of the CSD

are x = (1, 0), (0, 1), (0, 0), and (1, 1). From the data we see that we can neglect a

direct tunneling between the two quantum dots, (1, 0) ↔ (0, 1), because it would be

lead to resonant switching rates at the boundary between the (1, 0) and (0, 1) regions

of the CSD, which are not observed. Instead the switching rates increase towards the

borders of the diamond indicated by the dashed lines in fig. 43, where the chemical

potential of one of the dots comes close to the Fermi level of the neighboring lead

[see fig. 46(a)]. This indicates that the (1, 0) ↔ (0, 1) transition takes place mainly

through the intermediate of the (0, 0) and (1, 1) states, in which electrons are ex-

changed between dots and leads, and for eq. 27 we keep only the rates between the

states (1, 0) ↔ (0, 0) ↔ (0, 1) and (1, 0) ↔ (1, 1) ↔ (0, 1). By the Pauli principle,

the bare tunneling rate Γj between dot j and its neighboring lead are weighted by the

number of occupied lead states when tunneling onto the dot, f(µj(N1, N2)), and by

the number unoccupied lead states when tunneling out of the dot, 1 − f(µj(N1, N2)).

Here µj(N1, N2) is the chemical potential of dot j [23], f(ε) = [1 + exp(ε/kBT )]−1

the Fermi function (with Boltzmann constant kB and temperature T ), and we have

chosen the zero of energy at the Fermi level εF = 0 of the unbiased leads. This

leads to the set of rates Γ(1,0),(0,0) = Γ1f(µ1(1, 0)), Γ(0,0),(1,0) = Γ1[1 − f(µ1(1, 0))],

Γ(1,1),(1,0) = Γ2f(µ2(1, 1)) Γ(1,0),(1,1) = Γ2[1 − f(µ2(1, 1))]. With exchanged dot in-

dices 1 ↔ 2 we obtain the corresponding rates involving (0, 1). We have furthermore

assumed energy independent Γj . The stationary solution ∂tp(x) = 0 of eq. 27 becomes

now the straightforward inversion of a 4 × 4 matrix and leads to the results shown in

fig. 46 (c) - (f), which reproduce the main features shown in fig. 44.

To understand better the implications of this model, let us assume that (0, 1) is the dot
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ground state and focus on the transition to the metastable state (0, 1)→ (0, 0)→ (1, 0)

as shown in fig. 46(a).

Figure 46: (a) Illustration of the effective switching (1, 0)→ (0, 1) by first tunneling out
of the right dot (slow rate, suppressed by almost unavailable unoccupied states in the
lead), and then tunneling onto left dot into the metastable (1, 0) state (fast rate due to
high occupation number in lead at this energy). (b) Chemical potential at the border-
lines of the honey comb with blue area indicating where both µ1(1, 0), µ2(0, 1) < εF = 0.
(c)-(f) Calculated transition rates, average switching frequency and probability quali-
tatively matching the experimental results shown in fig. 3(a)-(d). For the calculations
Te = 80 mK and Γ1 = Γ2 = 20 kHz were assumed.

The first transition, the tunneling of the dot electron into the lead, is strongly sup-
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pressed, as µ2(0, 1) < 0 and as the number of available unoccupied lead states is

described by the exponentially small tail of the Fermi function 1 − f(µ2(0, 1)) only.

Such rare transitions set the overall time scale for the slow switching rates. The state

(0, 0) obtained after this tunneling event, however, is highly unstable since tunneling

back into (0, 1) is weighted by f(µ1(0, 1)), and so the rate is on the order of the bare

tunneling rate Γ2. Yet, within the shaded diamond-shaped region shown in fig. 46(b),

the chemical potential of dot 1 for the configuration (1, 0) lies below the Fermi level as

well, µ1(1, 0) < 0 [fig. 46(a)], and tunneling into this metastable state has a large rate

Γ1f(µ1(1, 0)) ∼ Γ1, too. This tells us that the particle indeed spends a notable fraction

of time in (1, 0), with short excursions over (0, 0) as well as over (1, 1). The weighting by

the Fermi functions shows that the switching frequency increases when µ1(1, 0), µ2(0, 1)

or µ1(1, 1), µ2(1, 1) (for transitions over (1, 1)) approach 0, which corresponds to ap-

proaching the dashed boundaries of the shaded region in fig. 46(b). Close to the lower

triple point µ1(1, 0) = µ2(0, 1) = 0, the average time spent in (0, 0) becomes of the same

order as the time spent in (0, 1) and (1, 0), while state (1, 1) is almost never populated

and decays very quickly. Close to the upper triple point µ1(1, 1) = µ2(1, 1) = 0, the role

of (0, 0) and (1, 1) is reversed. On the other hand, the line µ1(1, 0) = µ2(0, 1) marking

the separation between the (0, 1) and (0, 1) regions in the CSD has no special feature

since the direct tunneling (0, 1) ↔ (1, 0) is absent. All these characteristics reproduce

the main experimental observations.

6.7.1 Discrepancies between measured data and theoretical predictions

Of course, there are discrepancies between the minimal model and the realistic data.

Most prominent is the S-shape seen in fig. 44(d). We can think of two different origins

of the S-shape. First, if each dot is tunnel coupled to more than a single lead, slight

differences in the Fermi levels lead to a multi-step shape of the transition rates, due to

the sum over shifted Fermi functions. Second, the changed Coulomb repulsion of the

lead electrons by the changed number of charges on the dots can be seen as a slight

shift of the lead ground state energy, and so of εF . The different energy shifts induced
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by the (1, 1) and (0, 0) configurations introduce an asymmetry along the (0, 1), (1, 0)

boundary.

6.8 Summary

In summary we report intrinsic metastability in a GaAs DQD. A straight forward

extension to canonical theory of electron transport in double dots captures our exper-

imental observations. As the observed metastability is based on thermally activated

electron exchange with the leads, the corresponding time scale sets an upper limit on

the T2-time. In GaAs systems this becomes relevant when the hyperfine interaction

has already been reduced by dynamical decoupling. The positive aspect is that the

switching frequency is gate tunable and can be made very small. The drawback is,

however, that long switching times would automatically imply long qubit initialization

times, vastly exceeding recently demonstrated time scales of 50 ns [164].
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7 Summary and Outlook

Going to lower electron temperatures

Quite some efforts were made to achieve low electron sample temperatures. In partic-

ular, new cryogenic microwave filters were developed and installed for all signal cables.

Their design is similar to the well known copper powder filters, however, the filling mate-

rial (outer conductor) is replaced with conductive silver epoxy to improve thermalization

properties. In terms of transmission characteristics we were able to significantly lower

the cut-off frequency by means of a special winding technique that reduces parasitic

capacitive couplings. In addition to microwave filters, mounted at the mixing chamber

plate and a second stage inside the sample can, a home built and heat-sunk silver epoxy

sample holder was installed.

Electron temperatures as low as 7.5mK, measured in metallic coulomb blockade ther-

mometers, demonstrate a very efficient cooling strategy. The present low temperature

setup system enables very fragile effects to be measured such as the 5/2 fractional quan-

tum hall state which is part of ongoing research.

A further attempt to lower the electron temperature even more does not make much

sense for the present dilution refrigerator with a base temperature of roughly 5mK. How-

ever, a different experiment in our group focuses on approaching the µ-Kelvin regime by

means of adiabatic demagnetization. There, initial measurements with a second filter-

ing stage and a new silver epoxy sample holder already showed significant improvements

and allowed to reduce the electron temperature in a CBT down to 5.2mK.

Cleaved edge overgrowth wires

A low temperature saturation of nonuniversal conductance step size is observed in CEO

single and double quantum wires. While conductance reduction in surface gated GaAs

quantum wires was attributed to finite disorder, this does not seem to apply in our DWs

where Fabry-Perot resonances are found, a demonstration of ballistic transport over at
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least 6µm i.e. 3 times the wire length. Also, scattering mechanisms as considered by

A.Yacoby, R. dePicciotto and others, do not agree with our observations as they do

not predict low temperature saturation.

The conductance measurements on CEO double wires did indeed show the theoretically

predicted low temperature limit of 1 e2/h for a clean LL confined to one transversal

mode and embedded in a 3D system of nuclear spins. The predicted high temperature

limit of 2 e2/h is only restored at T ≈ 16K which is consistent with previous measure-

ments but much higher than expected in the picture of helical nuclear magnetism.

While transport measurements with focus on the reduced conductance address

the predicted partial opening of an electronic gap induced by the nuclear Overhauser

field, NMR type measurements could give direct evidence for nuclear ordering. It is

not so clear though what to expect from NMR measurements. On one hand, if we

assume that in the ordered phase the whole helimagnet has to be flipped in NMR, then

attributed NMR frequencies would be gigantic. On the other hand, since electrons only

possess a finite weight in the order of 1% at nuclear sites, a standard NMR response

at elevated frequencies might exist.

However, the fundamental excitations for a nuclear helimanget are spin density waves,

so called magnons, rather than individual spin flips. A mapping of the magnon

spectrum as a function of temperature could give further evidence for the presence of

nuclear order.

In the following some preliminary measurement results are shown for a CEO wire

under RF-irradiation using the NMR setup presented in chapter 1. We underline that

the following data is not understood, and hence no final conclusions will be drawn.

The intention is to give the reader a brief overview on different approaches that have

been pursued and to present some preliminary experimental observations.

In the upper panel of fig. 47 we present CEO wire conductance data as a function of

top gate voltage and frequency. In order to visualize small conductance changes as

a function of frequency on a largely varying background (g > 1000 e2/h at zero top

gate voltage and < 0.01 e2/h in the pinch off regime) we renormalize g(ν) separately
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for each gate voltage g3 separately (each vertical linescan) in fig. 47. Normalized

current, voltage and calculated relative resistance are shown in the three lower panels.

For orientation we plot a CEO wire conductance trace (blue) superimposed to the

normalized conductance data in the upper panel.
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Figure 47: The top panel shows the CEO wire conductance as a function of gate voltage
g3, recorded at base temperature (with large bias voltage, equiv. T . 4K) and zero B-
field. For visibility reasons each vertical line is renormalized. Superimposed to the false
color data is a single conductance trace (horizontal cut at the lowest frequency). In the
lower panels we present normalized current and voltage data as well as the calculated
(percentual) relative resistance change.

The measurement is done at base temperature of the refrigerator for zero external mag-

netic field. However, quite large currents were used for the current biased measurement

in fig. 47, leading to a large AC voltage drop across the wire (VAC ≤ 300µV) and
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consequently the electron sample temperatures significantly larger than the refrigerator

temperature TR.

We observe a clear response to RF-irradiation in the regime where current flows only

through the edge channel. These resonances are absent when the quantum wire is

pinched off completely (no current flow). Also we do not observe any response to RF-

irradiation for small gate voltages where current is carried mainly by the 2DEG. In

the latter case, this could simply be due to the small 2DEG resistance which results

in a very small voltage drop, i.e. it is difficult to measure the voltage drop with high

precision (signal to noise ratio). In order to exclude this simple effect, we calculate the

relative resistance change, shown in the lower right panel in fig. 47. The limits for the

color scale, -5% to +5% resistance change, are chosen such that the resonances are

clearly visible. In the pinch off regime all data points are saturated (exceed the color

scale). This is obvious since the current is zero within some noise level, and conse-

quently current fluctuations are large compared to its average value. For the regime

where the 2DEG contributes to the current, surprisingly, the relative resistance change

is smaller than the observed size of resonances. This suggests that the absence of RF

response is not due the limited measurements sensitivity and that resonant features in

fig. 47 due to RF-irradiation are related to edge conductance.

The situation changes in presence of an external magnetic field Bz applied perpendic-

ular to the 2DEG. Data shown in fig. 48 was recorded under the same experimental

conditions as data in fig. 47 but with an additional B-field Bz = 3.3T, corresponding to

a filling factor in between 2 and 3 (standard RDNMR was observed in this configuration

even with applied top gate voltage, as long as the wire is not pinched off). There is

still response to RF-irradiation in a similar frequency regime around 400-600MHz that

stops when the quantum wire is pinched off. In contrast to the zero B-field data these

resonances extend up to zero gate voltage. Since electron transport in a (sufficiently

strong) perpendicular B-field is reduced to edges, even at zero top gate voltage the

2DEG does not contribute to the total current. Therefore, also data recorded at finite

B-field indicates a connection between observed RF resonances and current transport

through the sample edges.
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Figure 48: The top panel shows the CEO wire conductance as a function of gate
voltage g3, recorded at base temperature (with large bias voltage, equiv. T . 4K) in a
perpendicular (to the 2DEG) magnetic field of 3.3T. For visibility reasons each vertical
line has been renormalized. Superimposed to the false color data is a single conductance
trace (horizontal cut at the lowest frequency). In the lower panels, normalized current
and voltage data are presented.

In a different cool down we investigated the temperature dependence for these reso-

nances. For orientation, a low and high temperature conductance trace for DW3 are

shown in fig. 49a. For the low temperature data the conductance step height gUW1 is

≈ 1 e2/h as discussed in detail in chapter 5. We proceed to measure the conductance as

a function of frequency and temperature for gate positions indicated by the black arrows

in fig. 49a. The results are presented in fig. 49c for the lower and fig. 49d for the upper

wire. For visibility reasons traces have been shifted, i.e. for each trace we subtract its
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conductance measured at 1MHz (first data point). While the resonances maintain their

specific fingerprint at high temperatures, their amplitude is strongly reduced. Only at

quite large TR ≈ 10K we completely loose the response to RF-irradiation and the mea-

sured conductance becomes independent of frequency. The temperature at which the

signal is lost also depends on the measurement sensitivity (can be increased e.g. by

increasing the bias across the wire) and the choice of irradiated RF-power.

In fig. 49e we plot the RF signal size (blue dots), defined as the difference gmax − gmin

for conductance traces as shown in fig. 49c, as a function of refrigerator temperature TR.

For comparison we additionally plot the CEO wire conductance (black dots), measured

under 1MHz RF-irradiation. As in chapter 5, we observe that upon increasing TR the

conductance stays constant and starts to increase only above a critical temperature.

For the RF-signal size we observe the opposite. The signal is largest at the lowest

temperatures and then starts to decay quickly with increasing TR above the critical

temperature. In order to check whether this low temperature saturation results from

RF-heating, we further increase the power to from -45 dBm to -35 dBm and repeat the

measurement (data is actually recorded in the same warmup), shown as red dots in

fig. 49e. For clarity, this data has been scaled by a factor of 1/2. Corresponding con-

ductance data is shown in gray. We note, though the increased RF-power increases the

RF-signal size, the saturated low temperature behavior is the same, i.e. the satura-

tion temperature does not change. Also the conductance data (recorded under 1MHz

RF-irradiation) is identical to the low RF-power data. We conclude that the increase

in RF-power does not further increase the conductance. Together this indicates that

the saturation is not caused by RF-heating. The same observations hold for the upper

wire yet with a different saturation temperature. Finally, we note that the saturation

of RF-signal size coincides with the saturation temperature for the conductance step

size.

For the sake of completeness we plot the conductance step size as a function of temper-

ature in fig. 49b) i.e. the difference of black data points in f) and e). We find a similar

temperature dependent reduced conductance step as for measurements presented in

chapter 5.
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Figure 49: a) CEO wire conductance for temperatures as indicated. Traces are shifted
to align LW1 with g = 0. b) Conductance step height gUW1, calculated by subtracting
the black data points in e) from the ones in f). c) gLW as a function of RF frequency
for various temperatures. Traces are shifted to align the first data point (low frequency)
with g = 0. RF power and gate voltage g3 are indicated. d) Same as c) for the UW. e)
Signal size, defined as gmax − gmax from c), versus refrigerator temperature TR (blue
data). Red data points are recorded at larger RF power (-35 dBm). For the conductance
data (black, gray) we plot the lowest frequency point in c) as a function of TR. f) Same
as e) for the UW.

The outlook on CEO wires in connection with RF-irradiation can be summarized as

follows: we find a strong response to RF-irradiation that is observed only when the
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system is conducting and the current is carried by edge channels. The amplitude of this

response is strongly temperature dependent (suppressed at large TR) and saturates at

low temperatures in coincidence with the saturation of reduced conductance steps.

We note that for all CEO wire measurements under RF-irradiation the conductance

through the DWs was measured as a function of RF-frequency. As mentioned earlier,

the conductance steps for a quantum wire arise only from contact resistance without

contribution from the actual ballistic CEO wires. Therefore, the measured conductance

might not be very sensitive to changes in the magnetic environment inside the quantum

wire. We therefore propose tunnel spectroscopy measurements under RF-irradiation. A

mapping of the dispersions via spectroscopy offers highly B-field dependent transport

properties as required for RDNMR. In addition, tunnel spectroscopy directly probes

the wire rather than the contacts.

Metastable charge state switching

Intrinsic charge fluctuations as observed in chapter 6 set an upper limit on the T1-time

since they are based on electron exchange with the leads which inevitably destroys

coherence. The good news is that these fluctuations can be made very slow simply by

gate tuning of relevant tunnel barriers. The negative aspect is that slow switching rates

also imply slow qubit initialization times.

Seen from another point of view, these intrinsic charge fluctuations in a double quantum

dot could be used to study the coupling to a bath (Fermi-reservoirs) in a controlled,

gate tunable manner.

The next step for this project is a successful resolution of the Zeeman splitting which

then allows for a T1-measurement. At that point one could e.g. measure the T1-time

as a function of coupling to the bath as proposed above.
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