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Abstract

Many problems in computational science arise in unbounded domains and
thus require an artificial boundary B, which truncates the unbounded ex-
terior domain and restricts the region of interest to a finite computational
domain, €2. It then becomes necessary to impose a boundary condition at
B, which ensures that the solution in 2 coincides with the restriction to €2
of the solution in the unbounded region. If we exhibit a boundary condition,
such that the fictitious boundary appears perfectly transparent, we shall call
it exact. Otherwise it will correspond to an approximate boundary condi-
tion and generate some spurious reflection, which travels back and spoils the
solution everywhere in the computational domain. In addition to the trans-
parency property, we require the computational effort involved with such a
boundary condition to be comparable to that of the numerical method used
in the interior. Otherwise the boundary condition will quickly be dismissed
as prohibitively expensive and impractical. The constant demand for increas-
ingly accurate, efficient, and robust numerical methods, which can handle a
wide variety of physical phenomena, spurs the search for improvements in
artificial boundary conditions.

In the last decade, the perfectly matched layer (PML) approach [16] has
proved a flexible and accurate method for the simulation of waves in un-
bounded media. Standard PML formulations, however, usually require wave
equations stated in their standard second-order form to be reformulated as
first-order systems, thereby introducing many additional unknowns. To cir-
cumvent this cumbersome and somewhat expensive step we propose instead
a simple PML formulation directly for the wave equation in its second-order
form. Our formulation requires fewer auxiliary unknowns than previous for-
mulations [23, 94].

Starting from a high-order local nonreflecting boundary condition (NRBC)
for single scattering [55], we derive a local NRBC for time-dependent multi-
ple scattering problems, which is completely local both in space and time. To
do so, we first develop a high order exterior evaluation formula for a purely
outgoing wave field, given its values and those of certain auxiliary functions



needed for the local NRBC on the artificial boundary. By combining that
evaluation formula with the decomposition of the total scattered field into
purely outgoing contributions, we obtain the first exact, completely local,
NRBC for time-dependent multiple scattering. Remarkably, the informa-
tion transfer (of time retarded values) between sub-domains will only occur
across those parts of the artificial boundary, where outgoing rays intersect
neighboring sub-domains, i.e. typically only across a fraction of the artificial
boundary. The accuracy, stability and efficiency of this new local NRBC is
evaluated by coupling it to standard finite element or finite difference meth-
ods.
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Chapter 1

Introduction to Wayve
Propagation
in Unbounded Domains

Abstract Many problems in computational science arise in unbounded
domains and thus require an artificial boundary B, which truncates the
unbounded exterior domain and restricts the region of interest to a finite
computational domain, €2. It then becomes necessary to impose a bound-
ary condition at B, which ensures that the solution in §2 coincides with
the restriction to {2 of the solution in the unbounded region. If we exhibit
a boundary condition, such that the fictitious boundary appears perfectly
transparent, we shall call it exact. Otherwise it will correspond to an ap-
proximate boundary condition and generate some spurious reflection, which
travels back and spoils the solution everywhere in the computational domain.
In addition to the transparency property, we require the computational ef-
fort involved with such a boundary condition to be comparable to that of the
numerical method used in the interior. Otherwise the boundary condition
will quickly be dismissed as prohibitively expensive and impractical. The
constant demand for increasingly accurate, efficient, and robust numerical
methods, which can handle a wide variety of physical phenomena, spurs the
search for improvements in artificial boundary conditions. In this section we
give a brief review of nonreflecting boundary conditions (NRBC).
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1.1 Nonreflecting boundary conditions
on planar boundaries

1.1.1 Engquist - Majda

In the late 1970s, Engquist and Majda [32, 33] contributed to the construction
and analysis of a hierachy of local boundary conditions, whose second-order
version is still widely used. By using the Laplace-Fourier transform in time
and in the plane tangential to the artificial boundary, they derived the ex-
act boundary condition in terms of a pseudo-differential operator, which in
practice needs to be localized through a Padé approximation.

1.1.2 Higdon
Higdon |71, 72| derived a Nonreflecting Boundary Condition (NRBC) of the
form
P
0 0
= =0. 1.1
1 <cosoz]8t C&m) u=0 (1.1)

This boundary condition is exact for any linear combination of plane waves
whose angles of incidence are +a; with wave speed c, i.e., each term of the
product in (1.1) annihilates the two plane waves © = u(t —cos o; x —sin o y)
and u = u(t —cos a; x +sin «; y). These plane waves leave the computational
domain without reflections, but all other waves produce some reflections. Its

reflection coefficient is
ﬁ (COSO[j_COSQ) (1.2)
cos a; + cos f

i=1

for plane waves propagating at the angle of incidence #. This implies that
the reflection coefficient becomes smaller as the order p is increased. The
Higdon NRBCs can be applied to a variety of wave problems including those
in dispersive or in layered media. We note that Engquist-Majda ABC’s are
equivalent to (1.1) for o; =0, j=1,...,p.

1.1.3 Givoli - Neta

Based on a reformulation of the Higdon NRBCs, Givoli and Neta [43| derive
a new boundary scheme, which does not involve any high derivatives beyond
second order. In contrast to the exponential computational effort in Higdon’s
NRBCs, the effort with the Givoli-Neta NRBCs increases just with the order.

12



1.1.4 Hagstrom - Warburton

Hagstrom and Warburton [58] propose a new formulation of local high-order
NRBC with several attractive features in comparison to the Givoli-Neta re-
formulation of Higdon-NRBC. They introduce new local auxiliary variables,
which satisfy a symmetrizable system of second-order wave equations on the
absorbing boundary and allows the straightforward derivation of the corre-
sponding high-order corner compatibility conditions.

1.2 Nonreflecting boundary conditions
on spherical boundaries

1.2.1 Bayliss - Turkel

Bayliss and Turkel [12] derived an alternative sequence of local operators,
which annihilate increasingly many terms in the large distance expansion of
an outgoing solution to the wave equation. Their boundary condition was
extended by Peterson [90] to Maxwell’s equations. The sequence of local
operators, which was introduced by Bayliss and Turkel, is as follows:

210 0 25—1
B, = =t =+
P ]1:[1(0815 or r ) (13)

1.2.2 Grote - Keller

The exact NRBC, which is local in time on a spherical boundary, was con-
tributed by Grote-Keller [45, 46] in 1995. It has the following general form

<%+3) [ru)(r, 6, 6,1) = —% D i P ()Yam(6, ), (1.4)

87" n=1m=-—n
d t) = ! A t 0,0, Y,m (0
E nm( ) - E—nwnm( )_I_ (u(fr? 7¢? )|T:R? nm( 7¢)) €n;

13



Rettiangulation #140

Figure 1.1: Sphere with a ball-shaped obstacle as a computational domain
(the mesh was generated by DistMesh [89]). Nonreflecting boundary cond-
tions are imposed on the outer surface of a sphere.

with
. , 1) 4
d, = {d}",, & = "("7;)3 (1.5)
€n = {egl ;}:17 6.3.7, = 51]'7 (16)
—n(n+1) i—=1
0, otherwise,
and

2T ™

(u(r, 0, 0,t) =g, Yom(0, qﬁ))://u(R,O, G, 1) Yom(0, @) sinf df do, (1.8)
0 0

14



for an N > 1. Here Y,,,,, are the spherical harmonics:

2n+1 (n—|m|)!
Yom (0, 0) := P|m| 6)e™e 1.
( 7¢) \/ A (n_'_‘mD (COS ) ( 9)
form = —n,...,n, n=20,1,2,.... The spherical harmonics are eigenfunc-

tions of the Laplace-Beltrami operator:
AsYym = —n(n+ 1)Y,,. (1.10)

The boundary condition is exact for N — oo and local in time, but non-local
in space. It is based on the following Fourier representation of the solution
w:

u(r,0,¢,t) = Z Z Ui (T, 8) Yo (6, @),

n=0 m=—n

2

Upm(r,t) = //u(r,@,gb,t)Ynm(@,gb)sinHd@dgb.
00

This derivation was later extended to electromagnetic and elastic waves [47|

- [49].

1.2.3 Hagstrom - Hariharan

According to the expansion theorem of Wilcox [107], the scattered solution of
the wave equation can be represented as a series, which converges absolutely
and uniformly in r > R:

oo

u(r, 0, 6, ) Z ¢ T_Ct) (1.11)

k

The functions f* = (0, ¢,r—ct), k > 1, are determined from the function,
fo by the recursion formula

ot _

2k —(Ag +k(E =) k>1, (1.12)
with the Laplace-Beltrami operator
1 0 ou 1 d%u
=—— 0— — 1.1
Sin 6 90 (Sm ae) T nZ6 06 (1.13)
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The function f* can be represented by a Fourier series as

=33 S OYn(0,0). (1.14)

n=0 m=—n

Hence, the solution u is expressed as Fourier series:

u(r, 0, ¢, t) Z Z U Yo r> R, (1.15)

n=0 m=—n

where the Fourier coefficients

k
—ct)
U (7 1) Z f"m r—ct) (1.16)

Substituting (1.16) into (1.15) with (1.9),we obtain the recursion formula

K E(k—1)+n(n+1) ..,
o= — o k=1,2,.... 1.1
dt 2k nm o (L.17)
We consider the sequence of local operators, which was introduced by Bayliss
and Turkel

P10 00 251
Bpjlj(;@*@* =)
19 o0 2p—1
Catar )8

. We define the auxiliay functions as

(1.18)

Set Bjtpm, = wi™

wi(r,0,0,8) = Y & (rt) Vam(6, 0) (1.19)
with
I (rt) = Z alr Rk (et — ), (1.20)

where a], = (— 1121 !j)

Hagstrom and Hariharan [55] use the functions w; to formulate the local
boundary conditions:

(18 —i—g—i—%)u:wl,

cot  Or
10 1 /., .
<08t )w]_R(y(j_l)_’_AS)w]—l—i_wj-i-lv j_1727"'(7p7 )
1.21

16



with wy1 = 0. The boundary condition (1.21) is local in space and time and
does not involve high-order derivatives. For this reason, this local boundary
condition is easily combined with standard numerical methods and enables
arbitrarily high order implementations. Recently, it was extended to the time
dependent Maxwell equations [53].

1.3 Perfectly matched layers (PML)

1.3.1 Split formulation

An alternative to nonreflecting boundary conditions are absorbing layers. We
consider the wave equation as a first-order system with the wave speed ¢ =1
and without source terms:

ou
ov

where v = (vy,v2)". Then Bérenger’s PML formulation [16] is based on
splitting the solution, u = u, + u, as follows:

ou,, vy

Ouy,  Ovy
E — a—y’ (1.25)
ov

We now formulate Bérenger’s PML system with damping in the x-direction.
Adding the damping terms in the equations involving u, and vy, we obtain
the PML equations:

8;z+gux - %, (1.27)
%+<v1 _ %, (1.29)
o _ o a0

Inside the absorbing layer a damping term ( is added to the wave equation,
which acts only in the direction orthogonal to the layer. The initial formula-
tions in [16] were based on splitting the electromagnetic fields into two parts,

17



the first containing the tangential derivatives and the second containing the
normal derivatives. Damping is then enforced only upon the normal direc-
tion. Later Abarbanel and Gottlieb [2] showed that Bérenger’s approach was
only weakly well-posed due to the unphysical splitting of the field variables.

1.3.2 Unsplit formulation

The Zhao-Cangellaris formulation [109]| avoids splitting the solution, u. In-
stead, we apply the operator 0, to (1.27) and the operator 0, + ¢ to (1.28),
and add up the two equations:

0 0 ovy o (0

— || = - -—=1|= =0. 1.31

8t(<8t+<)u 093) By (at+<)“2 (1.31)
The damping parameter, ¢, does not depend on y, and the operators 0; +

and 0, commute each other. We introduce a new variable, v3, which satisfies
the equation

% = % + Cva. (1.32)
Finally we get the Zhao-Cangellaris formulation
%+<u = %%—%—f, (1.33)
%’E = % + Con, (1.34)
Mo = 2 (1.35)
O a0

In [14] it is shown that the Zhao-Cangellaris formulation is equivalent to the
Bérenger’s formulation.

18
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Figure 1.2: Top: a photonic crystal ([76]) with periodic dielectric holes that
affect the propagation of electromagnetic waves. Bottom: numerical solution
of the z-component of the time-dependent electric field, E,, which was imple-
mented with the PML method. The pictures show that the photonic crystal
can be used to induce a 90 degree bend in the direction of propagation.
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Chapter 2

On Local Nonreflecting Boundary
Conditions for Time Dependent
Wave Propagation

Abstract The simulation of wave phenomena in unbounded domains gen-
erally requires an artificial boundary to truncate the unbounded exterior and
limit the computation to a finite region. At the artificial boundary a bound-
ary condition is then needed, which allows the propagating waves to exit the
computational domain without spurious reflection. In 1977, Engquist and
Majda proposed the first hierarchy of absorbing boundary conditions, which
allows a systematic reduction of spurious reflection without moving the artifi-
cial boundary farther away from the scatterer. Their pioneering work, which
initiated an entire research area, is reviewed here from a modern perspective.
Recent developments such as high-order local conditions and their extension
to multiple scattering are also presented. Finally, the accuracy of high-order
local conditions is demonstrated through numerical experiments.

2.1 Introduction

Unbounded domains are often encountered in scientific and engineering appli-
cations. Examples are radar and sonar technology, wireless communication,
and seismic imaging. Typically the phenomenon of interest is local but em-
bedded in a vast surrounding medium. Although the exterior region may not
be truly unbounded, the boundary effects are often negligible, so that one
further simplifies the problem by replacing the vast exterior by an infinite
medium.

Mathematical models of natural phenomena usually consist of partial dif-
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ferential equations, whose derivation is based on physical conservation laws.
Many standard numerical methods, such as finite differences and finite ele-
ments, can approximately solve partial differential equations. In fact, they
can even handle complicated geometries, inhomogeneous media, and nonlin-
earity. However, they typically require an artificial boundary, which trun-
cates the unbounded exterior domain, to fit the infinite region on a finite
computer. This immediately raises the question:

Which boundary condition guarantees that the solution to the
initial-boundary value problem inside the artificial boundary co-
incides with the solution of the original problem in the unbounded
region 7

If we exhibit a boundary condition, such that the fictitious boundary appears
perfectly transparent, we shall call it “exact”. Otherwise it will correspond to
an approximate boundary condition' and generate some spurious reflection,
which travels back and perturbs the solution everywhere in the computa-
tional domain. The resulting error in the computer simulation then consists
of two independent error components: the discretization error of the numer-
ical method used in the interior and the spurious reflection generated at the
fictitious boundary. Unless both error components are reduced systemati-
cally, the numerical solution will not converge to the solution of the original
problem in the unbounded region. In this article, we shall restrict ourselves to
time dependent scattering problems. Typically a scattering problem consists
of an obstacle, a source term f, and possibly an incident wave u’ — see Figure
1. Scattering problems are common in acoustic, electromagnetic, and elastic
wave propagation. Our goal is to calculate numerically the time-dependent
wave field u® scattered from the complex, possibly nonlinear, but bounded
scatterering region.

In 1974 Smith suggested perhaps the first exact method to restrict the com-
putation to a finite region [95]|. Let the computational domain €2 be bounded
by a convex boundary of n line segments (or planar facets in IR*). Then the
restricition to € of the solution in unbounded space consists of a linear com-
bination of 2" solutions which satisfy all possible combinations of Dirichlet
or Neumann boundary conditions. Unfortunately, this approach has but lit-
tle practical value, since a rectangular domain requires 2 = 64 independent
numerical solutions. This example illustrates a key aspect in the design of
improved absorbing boundary conditions: it is not sufficient to construct a
new boundary condition; in addition, the computational effort involved must

1« also called radiating, absorbing, silent, transmitting, transparent, open, free-space,
and one-way boundary conditions.”,  Givoli, 1992 [37]
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Figure 2.1: A typical scattering problem consists of an obstacle, a source term
f, and incoming wave u‘, and a scattered wave u*. The artificial boundary
B defines the outer boundary of the computational domain 2.

be comparable to that of the numerical method used in the interior. Other-
wise it will quickly be dismissed as prohibitively expensive and impractical.
In 1977, Engquist and Majda [32, 33| proposed the first hierarchy of absorb-
ing boundary conditions, which allows a systematic reduction of spurious
reflection while keeping the artificial boundary at a fixed distance from the
scatterer. Their pioneering work, still very much in use even today, initiated
an entire research area that led to a wide variety of different approaches, such
as perfectly matched layers (PML) [16], fast integral based formulations [84],
semi-local formulations [45, 46] and high-order local conditions [55, 58, 53|
— see [56, 104, 39| for review articles and additional references. All these
approaches lead to convergent numerical schemes while treating the open
boundary at a computational cost comparable to that in the interior.

In this article we shall focus on local absorbing (or nonreflecting) bound-
ary conditions, which are completely local both in space and time. First in
Section 2, we introduce the fundamental ideas underlying the derivation of
nonreflecting boundary conditions by considering the simple one-dimensional
case. Next, we review the original Engquist-Majda conditions [32] for wave
propagation in more than one space dimensions, where we exhibit the trade-
off between exactness and locality. We also present recent developments of
high-order local boundary conditions without high-order derivatives, both
for acoustic and electromagnetic waves. Next, in Section 3, we consider the
extension of local NBC to multiple scattering, first in one and then in three
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space dimensions. Finally, in Section 4, we demonstrate the accuracy high-
order local conditions via numerical experiments.

2.2 Absorbing boundary conditions

To illustrate the fundamental ideas underlying the derivation of absorbing
boundary conditions, we begin with a simple one-dimensional problem. In
this special situation many basic notions, in particular the exact boundary
condition, appear in a very simple form. Nonetheless, we hasten to point out
that its appealing simplicity is also misleading: the real challenges in deriving
effective absorbing boundary conditions appear only in higher dimensions.
Indeed a one-dimensional wave can only propagate in two directions, to the
left or to the right. In two or more dimensions, however, waves propagate in
infinitely many directions.

2.2.1 The One-dimensional Wave Equation

Consider the one-dimensional wave equation on the positive real axis,

*u  J%*u

At the left boundary, x = 0, we require that the solution satisfies
u(0,t) =0, t>0. (2.2)

Thus, u(z,t) describes the position of an infinitely (or just very) long vibrat-
ing string, attached at its left end; hence, u = 0 corresponds to the state
at rest. The one-dimensional wave equation (2.1) describes the propagation
of small perturbations induced by the applied forcing f(x,t). Here we have
normalized the propagation speed to one by rescaling time appropriately.
The initial conditions of the vibrating string are defined by its position and
velocity at t = 0:

0
u(z,0) = Up(x), au(aj, 0) = Vo(x), x> 0. (2.3)
It can be shown that the initial-boundary value problem (2.1)—(2.3) is well-
posed: it has a unique solution, which depends continously on Uy, V4, and f.
We now make the following assumption, which defines the local character of

the problem: let the forcing vanish outside a bounded region next to the left
boundary, that is let f(z,t) = 0 for z > L and for all time ¢ > 0. Then
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Figure 2.2: The one-dimensional wave equation: inside the computational
domain, © = [0, L] the problem can be arbitrarily complicated, but in the
exterior region, z > L, we assume that f(z,t) =0 for t > 0 and that u and
Oyu vanish at ¢t = 0.

the positive real line separates into two distinct regions: the bounded interval
2 = [0, L] and the interval [L, c0), unbounded yet where the forcing vanishes
identically. Both regions meet at the artificial boundary {z = L}, which
consists only of a single point. Furthermore, we assume that the string is
at rest in the exterior at t = 0: Up(x) = 0 and Vp(xz) = 0 for x > L.
We now wish to simulate numerically the time dependent behavior of the
vibrating string in the computational domain 2. Unfortunately, we cannot
apply our favorite numerical scheme in {2 and simply ignore the new artificial
boundary point. On the contrary, we must pay close attention to the new
boundary point at * = L: without a boundary condition at z = L, the
initial value problem (2.1)—(2.3) restricted to €2 is not even well-posed. To
derive a boundary condition, we first need to better understand its role at
the artificial boundary. Suppose a wave propagates to the right inside (2
and reaches the right boundary at = L. It must not be reflected, for any
spurious reflection will travel back into the computational domain and spoil
the solution everywhere. This spurious reflection, caused by an inaccurate
treatment of the artificial boundary, is not due to finite precision, unlike
discretization errors present in any computation. If we find a boundary
condition, which lets the waves hit the boundary without any reflection, the
solution inside €2, with that boundary condition imposed at x = L, coincides
with the restriction to  of the solution in the unbounded region. Hence
such a boundary condition is exact.

Inside the computational domain ) waves propagate both to the left and to
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the right. In the exterior region, however, the absence of any forcing and the
zero initial conditions preclude the appearance of any waves traveling to the
left: there all waves propagate eastward towards infinity — see Figure 2. To
derive the exact boundary condition at x = L we first need to separate the
incoming from the outgoing waves. To do so, we let v and w be defined by

ou  Ou ou  Ou
A _ v 2.4
Ta e YTa 24
Since u satisfies the wave equation (2.1) in > L, we conclude that
ov Ov ow  Ow

= 0.

TR T T

Thus we can rewrite (2.1) as the first-order hyperbolic system:

JHITHH AR

Its general solution is
v(r,t) =¢(z+t), and w(z,t) =1z —1),

where ¢ and 1) are arbitrary functions, which are determined by initial and
boundary conditions. Therefore, v is constant on the characteristics x +t =
¢, whereas w remains constant on the characteristics x+ — ¢t = ¢. Thus v
corresponds to incoming waves, whereas w corresponds to outgoing waves.
Since there are no incoming waves in x > L, we have

v(L,t) =0, t > 0. (2.6)
By applying the definition (2.4) of v in (2.6) we thus obtain the exact non-

reflecting boundary condition for the displacement u(x,t),

0 0
<§—|—%)u—0, r=1L, t>0. (2.7)

Note that the problem inside ) can be arbitrarily complicated, since the
derivation of the (exact) nonreflecting boundary condition (2.7) depends only
on properties in the exterior region.

2.2.2 Absorbing Boundary Conditions in Higher Dimen-
sions

We consider a highly complex but local scatterer in unbounded two space
dimensions. Although we shall restrict ourselves to the two-dimensional
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case, much of the present discussion carries over immediately to the three-
dimensional case. Thus we consider the wave equation on the two-dimensional
infinite plane,

Pu  0Pu  O%u B

o2 0x?  Oy?

with the initial conditions

1, t >0, (2.8)

u(z,y,0) = Up(x,y), %u(:ﬁ,y, 0) =Ui(x,y), t=0.
By scaling time appropriately we have normalized the speed of propagation
to one. Again the phenomenon of interest is very complicated, possibly non-
linear, but local. Next, we truncate the unbounded exterior by an artificial
boundary and restrict the computation to the square Q = [—-L, L] x [—L, L]
— see Figure 1. Outside 2 we assume that neither source terms nor initial
perturbations are present:

UO(x7y>:U1(x7y):07 and f(xuyut)zou t>07 (l’,y) ER2\Q’

Again we seek a boundary condition at (z,y) € B, which ensures that all
waves reach the exterior region unharmed and without generating any un-
physical reflection at the fictitious interface. Because of symmetry we only
need to consider a single edge of the rectangle, here the right edge at z = L.
Hence the exterior region lies to the right and the computational domain {2
to the left of the artificial boundary {(z,y) € IR*|z = L}. Since the initial
conditions and the forcing vanish identically in the exterior, all waves in the
region x > L are purely outgoing and must propagate eastward. To avoid
any spurious reflection at = L, the exact boundary condition must anni-
hilate all incoming waves. In the previous section we easily derived such an
exact nonreflecting boundary condition for the one-dimensional wave equa-
tion. Unfortunately, the same approach does not apply in two dimensions. In
contrast to the one-dimensional case, any fixed location (L, y) at the artificial
boundary receives incoming waves from not one but infinitely many angles
of incidence, which propagate in infinitely many directions. The distinction
between incoming and outgoing waves is now “infinitely more complicated”.
Let 4(x, &, w) denote the Fourier transform of the solution w(z,y,t) in time
and in the tangential plane, parallel to the artificial boundary,

a(x, & w) = / / u(z,y, t) e dy dt. (2.9)

—00 —0O0
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Here we have set the solution u(z,y,t) to zero for all previous time ¢ < 0.
Then w is related to @ via the inverse Fourier transform, which resembles
(2.9) after exchanging u and 4. Since u satisfies the wave equation (2.8) with
f =0 for z > L, its Fourier transform satisfies

* 2\~ >

wu-(f —w?)a, x> L. (2.10)
To derive an exact nonreflecting boundary condition at x = L we need to
relate the normal derivative — here d,u — to tangential and time derivatives
— here d,u and Jyu. From (2.10) we conclude that 0,4 is determined by
+/&%2 —w? 4. The sign in front of the square root discriminates precisely
incoming from outgoing waves; here the correct choice leads to the following
exact boundary condition:

%ﬂ: —iw /1= (§/w)?q, x = L. (2.11)

Although this boundary condition ensures the absoute transparency of the
artificial boundary, this formulation has but little value in practice. Indeed,
we do not seek a boundary condition for @ but instead for w. In theory we
can always compute the inverse transform and thus determine 0,u. However,
unlike a polynomial expression, whose inverse Fourier transform yields a local
differential operator, the inverse transform of the above expression does not
result in a simple differential operator because of the square root. Instead,
we obtain a so-called pseudo-differential operator, which cannot be evaluated
without forward and inverse Fourier transform. As a consequence, the normal
derivative d,u at any given point on the boundary (L,y) depends on past
values of u on the entire line x = L, and cannot be computed locally either
in space or time.

“..unfortunately, these [perfectly absorbing| boundary conditions
have to be nonlocal in both space and time”, Engquist & Majda, 1977

To overcome the difficulties associated with the nonlocal nature of the exact
boundary condition (2.11), we can replace the above pseudo-differential op-
erator by an approximate differential operator. In doing so we give up on the
absolute transparency of the artificial boundary and accept some spurious
reflection. Such absorbing boundary conditions were proposed by Engquist
and Majda [32] in 1977, and we now briefly recall the fundamental ideas
underlying this popular approach.

The Fourier transform of a differential operator always results in a polynomial
expression in the frequency domain. For instance the Fourier transform of the
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differential operator 9y, yields the polynomial —¢2. Conversely every polyno-
mial in Fourier space corresponds to a (local) differential operator in physical
space. Thus, the inverse Fourier transform of a polynomial in s = £/w, which
approximates v/1 — s2, will yield a differential operator, which can be used
as an (approximate) absorbing boundary condition in physical space.

For s sufficiently small, we approximate /1 — s2 by the first few terms of its
Taylor expansion:

2
VIios2=1 —%+0(s4), Is| — 0.

We now replace the square root in (2.11) by the leading term in the Taylor
expansion, that is v/1 — s2 ~ 1, and perform the inverse Fourier transform
to obtain

Oi
oy = wi
o 0
—+— |Ju= =L.
:><at+ax)u 0, T

This is the first-order Engquist-Majda boundary condition, which contains
only first derivatives of the solution. It coincides with the exact boundary
condition (2.7) for the one-dimensional wave equation. Therefore, it remains
exact for solutions of the two-dimensional wave equation, which depend only
on x and ¢ and thus impinge on the artificial boundary with a normal angle
of incidence. Next, we include one additional term of the Taylor expansion
in the approximation, v/1 —s2 ~ 1 — s?/2. This yields the second-order

Engquist-Majda boundary condition,
o a1 (/)

ok ok 1 9

Equation (2.12) remains exact at normal incidence, since we can rewrite it
in the equivalent form as

by using (2.8). The inclusion of even higher order terms of the Taylor expan-
sion to improve the accuracy of the approximation ceases to yield well-posed
boundary conditions. Although this difficulty can be overcome by the use of
rational (Padé) approximations, the high-order derivatives involved in these
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Figure 2.3: A traveling plane wave with an angle of incidence 6.

boundary conditions greatly complicate their use in any numerical scheme.
As a result, first- and second-order boundary conditions are most commonly
used in practice. Various other (e.g. Chebychev) approximations of v/1 — s2
were proposed to design improved local boundary conditions. Eventually,
Higdon [72| showed that all these boundary conditions are particular cases

of the following general class of boundary operators, where oy,...,q, are
arbitrary parameters:
0 0 0 0
—+— ... — 4+ — =0 = L. 2.14
(cos U o + &E) (cos a1 + 0:)3) u=0, x (2.14)

For instance, the second-order Engquist-Majda boundary condition (2.13)
results from setting a3 = 0° and as = 0° in (2.14). This general formulation,
written as the product of first-order differential operators (cos «v; 9, +0,.), pro-
vides a new, more intuitive, interpretation for the effectiveness of absorbing
boundary conditions. Since any such differential operator perfectly annihi-
lates plane waves with angle of incidence +q;, the artificial boundary will

appear absolutely transparent at the discrete angles of incidence oy, ..., ay,.
The choice of a4, ..., a, is arbitrary and can be adapted to any given situa-
tion.

Nevertheless, all absorbing boundary conditions remain only approximations
to the exact boundary condition (2.11); therefore, they generate some spuri-
ous reflection at x = L. How large is the amount of reflection for a specific
boundary condition 7 Recall that any solution of the (homogeneous) wave
equation can be represented by the superposition of plane waves. In Figure 3
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Reflection coefficient [%)]

Angle of incidence 6

Figure 2.4: Amount of spurious reflection (in percent) caused by the use of
the boundary conditions (2.14) for a plane wave with angle of incidence 6.

we observe a plane wave, which impinges on the artificial boundary at x = L
with an angle of incidence . The linearity of both the wave equation (2.8)
and the boundary condition (2.14) imply that any reflected wave necessarily
propagates with the same frequency as the incident wave. Hence the solution
consists of an outgoing wave, whose amplitude we normalize to one, and an
incoming spurious wave with amplitude |r|:

u(w,y,t) = /W=l peil-hotly=et) =g >0, (2.15)

Here r = r(6;04,...,a,) depends on the angle of incidence 6, defined by
tanf = (/k, and the fixed parameters a,...,a,. In Figure 4 we compare
the effectiveness of three absorbing boundary conditions by displaying the
amount of reflection |r| versus the angle of incidence . The choice a; = 0°
corresponds to the first, whereas a; = 0° und ay = 0° corresponds to the
second Engquist-Majda boundary condition. Alternatively, the popular pa-
rameter choice a; = 0° and ay = 60° annihilates incoming waves at normal
incidence and at 60° angle of incidence. All other angles of incidence will gen-
erate some spurious reflection, which is very small close to normal incidence
but rapidly increases as grazing incidence is approached.
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2.2.3 High-order local nonreflecting boundary conditions

The local absorbing boundary conditions described in the previous section
can be made arbitrarily accurate, but in practice the resulting increasingly
higher order derivatives greatly complicate their use in any numerical scheme.
As a result, first- and second-order boundary conditions are most commonly
used in practice. If even higher accuracy is needed, the artificial boundary
then needs to moved farther away from the scatterer. Hence the absorbing
boundary conditions from Section 2 do not fully satisfy the demand for in-
creasingly accurate and efficient modern numerical methods to solve complex
time-dependent scattering problems in unbounded domains.

Starting from a convergent series representation of the scattered field in in-
verse powers of distance, Hagstrom and Hariharan [55] derived a nonreflecting
boundary condition of arbitrarily high order, in the special case when B is
a sphere. Thus, let B be the sphere of radius R and assume that u satisfies
the homogeneous wave equation,

0?u

57 AAu =0 (2.16)

with zero initial condition outside B. Starting from the convergent expansion

u(r, 0, ¢,t) = Zfﬂ TM) r> R, (2.17)

where r, 0, ¢ are spherical coordinates, Hagstrom and Hariharan [55] derived
the following exact local NRBC:

(i;+%+%)u:wl, (2.18)
(i; k)wk = %Rz(k(k — 1)+ Ag)wk_l + W

for K = 1,2,..., and wy = 2u. Here, Ag denotes the Laplace-Beltrami
operator in spherical coordinates (r, 6, ¢),

1 0 0 1 02
As = sin9%<81n9%> + sin2 ) 0?2 (2.19)

In fact in 1980, Bayliss and Turkel [12] started from that same infinite series
representation and derived a hierarchy of local absorbing boundary conditions
in spherical coordinates. Similar to the boundary conditions of Engquist and
Majda [32, 33|, it also requires increasingly higher order derivatives for im-
proved accuracy.
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The boundary condition (4.2) is local in space and time yet does not involve
high-order derivatives, but instead an infinite sequence of auxiliary variables
wy, defined on B. In practice, only a finite number of auxiliary functions wy,
k=1,..., Pisused setting wpy; = 0. Then, in general the boundary condi-
tion is no longer exact, but it remains exact for solutions which consist of a
finite combination of vector spherical harmonics up to order P. Imposition
of the boundary condition at any fixed radius R thus yields at least spectral
accuracy for smooth wave fields with increasing P. Therefore (4.2) is exact
in the same sense as the conditions proposed in [45, 46, 47|, namely that P
can always be chosen sufficiently large so that the error introduced at B is
smaller than the discretization error inside €2, without moving B farther away
from the scatterer. However, this new boundary condition does not require
any spherical harmonics or inner products with them; hence, it is somewhat
easier and cheaper to implement.

By combining ideas from [55] and [47], the above approach was recently ex-
tended to Maxwell’s equations in three space dimensions [53]. Again, outside
B, the medium is assumed to be linear, homogeneous, isotropic, of constant
electric permittivity €, of constant magnetic permeability u, and of zero con-
ductivity. In addition, we assume that at ¢ = 0 the scattered field is confined
to the computational domain inside B. Then, the following exact nonreflect-
ing boundary condition holds [53]:

18Etan
~ lE S — 1 22
£ X cur o w-, (220)
1 dw? L [ H
! g; L 'wT _ S {Curls curlg E + \/gfﬁ x curlg curlg + 1@,21)

1ow? p 1
cor Y T e

ﬁ
(As+p(p—D)w’ ' +wP™, p>2.  (2.22)

Again, the boundary condition (2.20)—(2.22) is local both in space and time.
It only involves first time derivatives and second tangential derivatives of E
and of the (unknown) auxiliary functions w?, p > 1, which satisfy (2.21)-
(2.22). Since at least two scalar potentials are necessary to represent the
general three-dimensional electro-magnetic field in free space, this bound-
ary condition is optimal in the sense that the number of auxiliary variables
required is minimal.

2.3 Multiple scattering problems

When the scatterer consists of several obstacles, which are well separated
from each other, the use of a single artificial boundary to enclose the entire
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scattering region becomes too expensive. Instead it is preferable to enclose
every sub-scatterer by a separate artificial boundary B;. Then we seek an
exact boundary condition on B = |J B;, where each B; surrounds a single
computational sub-domain €2;. This boundary condition must not only let
outgoing waves leave (); without spurious reflection from B;, but also propa-
gate the outgoing wave from €2; to all other sub-domains, which it may reen-
ter subsequently. To derive such an exact boundary condition, an analytic
representation of the solution everywhere in the exterior region is needed.

2.3.1 The one-dimensional case

t
Ut — Ugy = 0
—
= i
I s
§| P N H
[\l
S Uy Uz 3
(V)
S 3
I I
8 s 2
Up U Uz U

@) \/ Bl BQ \/ L X

Ql Q2

Figure 2.5: Multiple scattering in one space dimension.

To illustrate the basic principle underlying the NRBC for multiple scatter-
ing problems, we first consider the following simple one-dimensional Cauchy

33



problem:

0*u  0%*u
ﬁ—@_f(x,t), —o<r<oo, t>0,
u(z,0) = up(x),

uy(x,0) = vo(z).

(2.23)

We assume that the initial disturbance and the forcing are supported inside
the region Q = Oy N Qy, with Q; = [0, By] and Qy = [Bs, L], 0 < By <
By < L, that is supp{ug, vo, f(-, 1)} C Q — see Figure 5. We now wish to
restrict the computation to the sub-region €2; therefore we need to impose
appropriate boundary conditions at x = 0, By, By, and L to ensure that the
solution in {2 coincides with the solution u of the original Cauchy problem
for all time. Because u is purely outgoing for x < 0 and x > L, the NBC at
x =0 and x = L correspond to the standard artificial boundary conditions
for single scattering (see Section 2.1), that is

0 0
(a—x—a)u—o, LU—O,

0 0
<%+§)u—0, I—L,

which require no further discussion. We now focus on the two remaining
artificial boundary points at * = B; and = Bs, where u is not purely
outgoing. Because u satisfies the homogeneous wave equation in [By, By], it
is the superposition of a left and right moving wave there, that is

(2.24)

u(z,t) = uy(z,t) + ug(x, t), (2.25)
with
uy(z,t) = flx —1t), us(z,t) = g(x + t).

Moreover, if we require that supp{u;} C €y and supp{us} C Qs at t = 0,
uy and wug are uniquely defined for all time (see [51]). At # = By, an exact

NRBC is
(8+8)u (8+8)u+(8+8)u
—+ = =\l +=|w — + = | u
or Ot or Ot oxr Ot (2.26)

since u; is outgoing here.

Thus to impose the exact NRBC at x = By, we must be able to evaluate us
there. Here we need to distinguish initial times up to t = By — B; from later
times ¢t > By — By:
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e 0 <t < By— Bj: due to the finite propagation speed (here equal to
one) us hat not reached € yet; hence, it is still zero at * = By and
(2.26) reduces to the standard NRBC for purely outgoing solutions.

e By — By < t: uy no longer vanishes at * = By, however it is fully
determined by its past values at x = By through

us(Br,t) = us(Ba,t — (Ba — By)). (2.27)

How do we determine us at x = By? Recall that we are only computing u
(and not uy or uy) inside €. Again, during initial times ¢t < By — B; we have
us = u at x = By. To determine uy at later times we recall that

u(z,t) = uy(z,t) + ug(x, t), Vo e [By, By, t > 0. (2.28)

Therefore we obtain us at x = By by subtracting from w the value of u;
there, which again is determined by its past values on By, that is

UQ(BQ,t) = U(Bg, t) — Ul(BQ,t)

= U(BQ, t) — ul(Bl,t — (Bg — Bl)) <229>

Hence in every time step of the numerical scheme, we concurrently update
the new values of u; and uy at x = By, By respectively. This requires the
additional storage of past values u; at x = B;, ¢ = 1,2, for the finite time
window [t — (By — By), t].

2.3.2 The three-dimensional case

For simplicity, we consider a scattering problem with two bounded disjoint
scatterers, each surrounded by a sphere B; of radius, R; ¢ = 1,2. Hence,
the entire artificial boundary B = B; U By and the computational domain
Q = Q; UQy. In contrast to the situation of single scattering in Section 2,
we cannot simply expand u outside B as a superposition of purely outgoing
wave fields. In fact, since part of the scattered field leaving 2; will reenter
2, at later times, and vice versa, u is not outgoing ouside ). Thus, the
boundary condition we seek at B must not only let outgoing waves leave €2,
without spurious reflection from Bj, but also propagate those waves to {2,
and so forth, without introducing any spurious reflections.

Following [51], we first decompose the scattered field u in two wave fields,
u = uy + ug, where u; is purely outgoing as seen from §2;. The two wave
fields u; and uy both solve the homogeneous wave equation (4.1) outside 2,

and their sum coincides with u. The outgoing field u$*, as seen from 2, is
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fully determined by its boundary values on By, while the incoming field %}
is fully determined by its boundary values on B,. Hence,
u(IMt + ullg = u|317

(2.30)

out n o __
uy" + Uy = ulp,,

where u?* is the outgoing wave field from Q; and uj? is the incoming wave

propagating from €2; to 2;.

Next, we apply ¢ 10, +,., +r; ! in local spherical coordinates (r;, 0;, ¢;) to u
on each artificial boundary component B;, ¢+ = 1,2. This yields the following
exact local NBC for multiple scattering [54]:

Biu|p, = (12 + i + i>u|B
! c ot 0r1 Rl !

= Biu" + Byuly on By,
Bou|p, = <12 + i + i>u|B
? Cat 87”2 R2 2

= Bouy"" + Boub} on By.

(2.31)

To evaluate Bjug"* we use (4.2) at By, whereas to evaluate Bjul} we use past

values for us and the corresponding auxiliary functions on B;. The needed
past values of wy, are stored on each B; at regular time and angular intervals
and calculated, as needed, via local spline interpolation [54|. Because those
values are time-retarded, they are already known, so that the entire scheme
remains explicit in time. Remarkably, the information transfer (of time re-
tarded values) between sub-domains occurs only across those parts of the
artificial boundary, where outgoing rays intersect neighboring sub-domains,
i.e. typically only across a fraction of the artificial boundary.

2.4 Numerical experiment

We shall now illustrate the accuracy of local nonreflecting boundary con-
ditions via the following numerical experiment. Consider a spherical inclu-
sion of radius ry > 0 located inside an unbounded inhomogeneous acoustic
medium. At the sound-soft interface of the inclusion we impose a time-
dependent pressure field which corresponds to an outgoing spherical wave
field, initiated by an off-centered Gaussian point source. Located on the
z-axis at distance d < ry from the origin, its time dependence is shown in
Figure 6. Hence at the surface of the cavity, »r = ry, the imposed time-
dependent acoustic field is determined by

1
u(ro, 0,t) = ry e _C"‘i"t+0'2)2/02, (2.32)
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where 74 = /13 +d?> — 2rod cos(f), o =0.25/\/—loga, a = 107", and
Cmin = 0.5; here, r4 corresponds to the distance of any point (rg, 8) from the
point source at distance d fom the origin.

The sound speed in the surrounding medium varies from ¢,,;, 10 Cpez as a
function of distance only; for » > 1, the velocity profile shown in Figure 6
is constant and equal to ¢;,., normalized to one. Hence the inhomogeneous
surrounding medium, initially at rest, is expected to act as a spherical wave
guide around the cavity. The unbounded exterior is now truncated at R =
1, where we apply the high-order local conditions (4.2) with varying P —
note that with P = 0 the boundary condition (4.2) corresponds to the first-
order Engquist-Majda condition in spherical coordinates. Although this test
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Figure 2.6: Left: the time dependence of the Gaussian point source. Right:
the velocity profile ¢(r).

problem is three-dimensional, it is axisymmetric about the z-axis, that is
the solution is independent of ¢, so that we can restrict the computations
to the two-dimensional region €2, determined by rp < r < R, 0 < 06 <
m. Inside 2 we use standard second-order centered finite differences on a
80 x 480 polar equidistant mesh, combined with the explicit second-order
leap-frog scheme in time. At the artificial boundary B, located at r = R, the
boundary condition (4.2) is discretized in space using centered second-order
finite differences and in time as described in [55].

Since no simple analytical expression for the exact solution is available here,
we shall compute a reference solution in a much larger domain. Due to the
finite speed of propagation, any spurious reflection will then be postponed to
later times and thus not affect the reference solution inside €2 until 7' = 7.5.
In Figure 7 we observe how the spherical wave front penetrates the acoustic
medium to the right of the cavity and then progresses around it — note the
distorted wave front due to the varying velocity profile around ¢ = 1.5. By
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t = 3 the main wave front has left the computational domain, yet part of the
wave energy remains trapped inside the wave guide which and continues to
travel around the cavity. We now compare the exact (numerical reference)
solution with that obtained by imposing the boundary condition (4.2) for
varying P at the fixed location r = 0.75, § = 37/4, located well inside €2. In
Figure 8 the numerical solutions obtained with P =0, P =1, and P = 5
are shown. The numerical solution obtained with P = 0 strongly deviates
from the exact solution past t = 2. We recall that the error observed here
is solely due to the approximate nature of the boundary condition and thus
cannot be improved upon by refining the mesh. The solution obtained with
P =1 clearly displays a significant improvement in accuracy. Nonetheless,
we find again deviations of 5-10% around ¢ = 3.5, for instance. As we further
increase P, those spurious reflections essentially disappear and cannot be
observed anymore at this scale. Hence their amplitude now lies below the
discretization error. Further mesh refinement in the interior, however, would
generally require further increase in P, as both error components need to be
reduced systematically to achieve convergence.

2.5 Conclusion

The constant demand for increasingly accurate, efficient, and robust numer-
ical methods, which can handle a wide variety of physical phenomena, spurs
the search for improvements in absorbing boundary conditions. The frustra-
tion is all too obvious, when the gains made in the interior by using sophis-
ticated numerical methods, such as high order and adaptive methods, are
annihilitated at the artificial boundary by the use of an inaccurate boundary
condition.

Among the many different approaches nowadays available to truncate the
unbounded exterior and achieve convergence at a reasonable computational
cost, local absorbing boundary conditions remain probably the simplest and
most flexible approach. Because they are completely local, they apply to all
(convex) artificial boundaries and require no special functions or damping
parameters in the exterior. Moreover, they are easily coupled with stan-
dard finite difference or finite element methods in the interior and have been
found very accurate in practical computations. In contrast to the popular
perfectly matched layer approach, high-order local nonreflecting boundary
conditions can also be extended to multiple scattering problems, as they
yield an efficient analytical representation of the solution everywhere outside
the computational domain.
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t= 0.6449 t= 1.5048

Figure 2.7: Scattering from a spherical wave guide: snapshots of the ref-
erence solution at different times. The three circles drawn are located at
r = 0.5,1,1.5. The Gaussian point source is located outside the computa-
tional domain at » = 0.45, 6 = 0.
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Figure 2.8: The numerical solutions computed using the boundary conditions
(4.2) with P =0, P =1, and P = 5, are compared with the exact solution
at r = 0.75, 0 = 3w /4.
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Chapter 3

Perfectly Matched Layers for
Time-Dependent Wave Equations
in Second-Order Form

Abstract In the last decade, the perfectly matched layer (PML) approach
has proved a flexible and accurate method for the simulation of waves in
unbounded media. Most PML formulations, however, usually require wave
equations stated in their standard second-order form to be reformulated as
first-order systems, thereby introducing many additional unknowns. To cir-
cumvent this cumbersome and somewhat expensive step, we instead propose
a simple PML formulation directly for the wave equation in its second-order
form. Inside the absorbing layer, our formulation requires only two auxiliary
variables in two space dimensions and four auxiliary variables in three space
dimensions; hence it is cheap to implement. Since our formulation requires
no higher derivatives, it is also easily coupled with standard finite difference
or finite element methods. Strong stability is proved while numerical exam-
ples in two and three space dimensions illustrate the accuracy and long time
stability of our PML formulation.

3.1 Introduction

The accurate and reliable simulation of wave propagations in unbounded
media is of fundamental importance in a wide range of applications. The
perfectly matched layer (PML) approach [16] has proved a flexible and ac-
curate method for the simulation of waves. It consists in surrounding the
computational domain by an absorbing layer, which generates no reflections
at its interface with the computational domain; hence, it is perfectly matched.

41



Inside the absorbing layer a damping term is added to the wave equation,
which acts only in the direction perpendicular to the layer. This approach is
analogous to the physical treatment of the walls of an anechoic chamber and
provides an alternative to absorbing or nonrelfecting boundary conditions
[45, 46, 56, 55, 60].

The initial PML formulation of Bérenger [16] was based on splitting the elec-
tromagnetic fields into two parts, the first containing the tangential deriva-
tives and the second containing the normal derivatives; damping was then
enforced only upon the normal component. Later Abarbanel and Gottlieb
[2] showed that Bérenger’s approach was only weakly well-posed due to the
unphysical splitting of the field variables. Several strongly well-posed ap-
proaches have been suggested since, some of which were shown to be linearly
equivalent [6, 109].

The PML approach has proved very successful in practice, because of its
simplicity, versatility, and robust treatment of corners. Once discretized and
truncated at a finite thickness, the layer is no longer perfectly absorbing and
the optimal damping parameters need to be determined via numerical ex-
periments. Stability properties of the PML approach has been analyzed in
several works, such as in [29, 2, 6, 15] among others.

The best implementation in the time domain is still under debate. Most
PML formulations require wave equations stated in their standard second-
order form to be reformulated as first-order hyperbolic systems, thereby in-
troducing many additional unknowns. Here we propose instead a simple
PML formulation directly for the second-order wave equation both in two
and in three space dimensions. Our formulation also requires fewer auxiliary
variables than previous formulations for the second-order wave equation —
see [8, 23, 94|, for instance.

Our paper is organized as follows. In Section 2 we derive a PML formula-
tion for the wave equation in its standard second-order form. By judiciously
choosing the auxiliary variables in the Laplace transformed domain, the re-
sulting PML modified equations require only two auxiliary variables in two
dimensions and four auxiliary variables in three dimensions inside the ab-
sorbing layer. Next, in Section 3 we prove stability of our PML formulation
by using standard theory from [77]. In Section 4 we extend our method
to complex frequency shifted PML. The finite difference and discontinuous
Galerkin discretization of the PML modified wave equation is shown in Sec-
tion 5. In Section 6, our numerical results both in two and three space
dimensions demonstrate the accuracy and long time stability of the PML
formulation. The further applications of our method to elastodynamic and
poroelastic problems are shown in Section 7 and 8 with various numerical
experiments.
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3.2 PML formulation

We consider a time dependent wave field u propagating through unbounded
three dimensional space and assume that all sources and initial disturbances
are confined to the rectangular domain Q = [—ay, a1] X [—aq, as] X [—as, as),
ay, as, azg > 0. Outside €2, we further assume the speed of propagation ¢ > 0
to be constant; hence, all waves are purely outgoing in the unbounded exterior
R3\Q. Inside €, the wave field u(zy, o, x3,t) satisfies

uy — V- (FVu) = f t >0, (3.1)
u = U t=0, (3.2)
U = Vg t=0. (3.3)

We wish to truncate the unbounded exterior and thereby restrict the com-
putation to the finite computational domain 2. In doing so, we need to
ensure that all waves propagating outward leave () without spurious reflec-
tion. Thus we shall surround by a perfectly matched layer (PML) of
thickness L;, « = 1,2, 3, in each coordinate which is designed to absorb the
waves exiting €. Inside the absorbing layer, u then satisfies a modified wave
equation whose solutions decay exponentially fast with distance from the
computational domain.

Following [2, 6], we let 4 denote the Laplace transform of u, defined as

u=u(x,s) = / et u(x,t) dt, s e C. (3.4)
0
Outside €2, @ then satisfies the Helmholtz equation,
0 ou 0 ou 0 ou
20 = ? ? ? : 3.5
> 0:)31 (C 8:171) + 01'2 <C 81’2) + 01'3 <C 81’3) ( )

Next, we introduce the coordinate transformation

1 [
Xy Ty =+ —/ Gi(x) dx, i=1,2,3, (3.6)
S Jo

where the damping profile ¢; is positive inside the absorbing layer, |z;| > a;,
1 =1,2,3, but vanishes inside 2. If we now require « to satisfy the modified
Helmholtz equation in those stretched coordinates,

) ol ) ol ) ol
2~ 2 2 2
U 95 (C am) i 07y (C a;zg) * 073 (C afg)’ (3.7)
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it is well-known that u will remain unaltered inside €2, but decay expo-
nentially fast inside the layer; hence the absorbing layer will be perfectly
matched. In fact, the (unsplit) PML modified Helmholtz equation (3.7) in
the Laplace transformed domain is standard [2, 6]. The difficulty lies in
transforming (3.7) back to the time domain, without introducing high order
derivatives or too many auxiliary variables.

From (3.6), we observe that partial differentiation with respect to Z; is re-
lated to partial differentiation with respect to the physical coordinate, z;,
through

0 s 0
= . 3.8
We now let v; = 7;(;; ), i = 1,2, 3 denote
=14 % (3.9)

Then, by replacing partial derivatives according to (3.8) and multiplying the
resulting expression by 7, 7, v3, we rewrite (3.7) in physical coordinates as

X 0 Y2v3 Ol 0 Y3y1 Ol 0 T2 Ou

2 _ 2 2 2

SN = 81’1 <C Y1 81’1)+8x2 (C Y2 81’2 _'_81’3 ¢ Y3 81’3 )
(3.10)

From (3.9) we derive after some algebra the following identities:

2% _ (Ca+ (3 — C1)s + (G
= —+ ,
gl (s+G)s
VsV (G+ G —G)s+ GG
o b (s + Co)s ’ (3.11)
MY gL (G +G—G)s+ 0k
73 (s +3)s '

By using (3.11) in (3.10) we find

u

<s2+s(C1+C2+C3)+(g1§2+g2<3+<gcl)+Cliz(g) A

_ D (p 00, 0 (00, 0 (, 0
N 0:)31 8:171 01'2 81’2 81’3 01'3

0 (5 ((G+G—C0)s+ 3\ du O (5 ((G+ G —C)s+ (3¢ Ou
o (C ( 5+ C1)s )8:61) T o (C ( (5 + Ca)s ) 0z
O [ 5 ((G+G&—C3)s+ ¢\ Ou
+73(C ( (s+ (3)s )8:63)’

(3.12)
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Next, we introduce the auxiliary functions ¢ and ¢ = (¢1, ¢a, (bg)T,

IZ:_A7

S
~ L (GtG—G C2G3 ot
o1 =c < s+ ( +(s+C1)s)8:c1’
~ o (G+Ha—( (3G ot
¢2—C < S+<2 +(s+§2)s)81’2’

~ G+G—G C1 G ol
03 = < s+ (3 + (s+C3)s> Oxs’

or equivalently

s
(5+¢) b

<(C2+C3 G)+ ==

(5+C) do = C2<(C3+C1 C2) + —C)%,

and (S+<3)$3:c2<(<1—|—<2 <3)+%)88—x3

Finally, we use the above relations in (3.12) and transform the resulting
equations back to the time domain, which yields the PML modified wave

equation

U + (G H+H G+ G)uw+ (G e+eG+GEG)u=V-(Vu)+V-d— GGG,
¢, =110+ ATy Vu+ T3V,

wt = u,
(3.13)

where

[—¢G 0 0 G+ —G 0 0

=10 =G 0], Iy= 0 G+ —C 0

| 0 0 -G 0 0 G+ G —G3

(¢ 0 0
and I's=| 0 (G 0

| 0 0 GG

In the interior of €2, the damping profiles (;, + = 1,2,3 and the auxiliary
variables ¢, ¢ vanish; hence, (3.13) reduces to (3.1) in Q. Because our PML
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formulation (3.13) requires only four auxiliary scalar variables ¢1, ¢o, ¢3, ¥
inside the layer and no high order derivatives, its implementation is not only
straightforward but also cheap to implement.

In two space dimensions, (3 and ¢3 and v vanish and our PML formulation
reduces to

Utt+(§1+C2)Ut+C1C2U=V‘(CZVU)‘i‘V'(ﬁa
¢, =T1 ¢+ Ty Vu,

-G 0 G—G 0
r,= , Iy = .
: [ 0 -6 Tl 0 a-¢
Remarkably only two auxiliary functions are needed here.
The choice of the damping profiles (;(z) > 0, i = 1,2,3 is arbitrary; it
can be constant, linear, or quadratic among others. In our computations, we
always use

(3.14)

where

0 for |z;| <a;, 1=1,2,3
iZi) =< = L sin ((2xlzi—ail
C( ) G (Ixz—azl _ ( L, )) for a; < |5l7z| <a;+L;, i=1,23.

L; 27
(3.15)
Because (;(x) is twice continuously differentiable throughout the interface at
|z;| = a;, no special transmission conditions are needed there. The constant
¢; depends on the discretization and the thickness of the layer, which in
practice is truncated by a homogeneous Dirichlet (or Neumann) boundary
condition. Then the relative reflection, R, is given by

G = Lﬁ log (%) i=1,2,3. (3.16)

In Figure 1 we show damping profiles for different values of ¢;.

3.3 Stability

We now establish the stability and well-posedness of our PML formulation,
first in two and then in three space dimensions, where we assume that the
absorbing layer extends to infinity. Here we follow standard stability theory
for hyperbolic systems [77], which we briefly recall below.

Consider a general Cauchy problem,

Ut:P<(%)U, 0<t<T, UEcR?, (3.17)
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Figure 3.1: The damping profile (;(z;) given by (3.15) is shown for different
values of (;, with ¢c=1and L; = 0.1 .

where P(0,) denotes a linear differential operator, with initial conditions
U(x,0) = Us(z), z€R. (3.18)

Following [77|, the Cauchy Problem is weakly (resp. strongly) well-posed, if
the solution U( -, t) satisfies

(-, Ollz, < Ke|[U(-, 0)]

He (3.19)

with s > 0 (resp. s = 0). The Cauchy Problem is weakly (resp. strongly)
stable, if the solution U( -, t) satisfies

IUC-, D, < K1+ )°[[UC-, 0)]a (3.20)

with s > 0 (resp. s = 0). A necessary and sufficient condition for weak well-
posedness (resp. stability) is that all eigenvalues A of the operator P (ik))
satisfy

R{N(P(ik))} < C, ke R, (3.21)

with C' > 0 (resp. C' = 0) independent of k. For strong well-posedness (resp.
stability), the corresponding eigenvectors must also be complete.

By rewriting the PML-modified wave equations (3.13), (3.14) as a first-order
hyperbolic system and applying the stability theory from [77]| delineated
above, we can prove the following two stability results.

Theorem 3.3.1 The Cauchy problem for the PML formulation (3.14) in
two space dimensions is strongly stable for (1, (3 > 0.

proof)

For simplicity, we assume that (;, (5 are constant; note, however, that the
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stability theory from [77] extends to smoothly varying coefficients. We intro-
duce the new variable v to rewrite the first equation in (3.14) equivalently
as

u=—Gu+divy, v,=—-Gv+EVu+o. (3.22)

By using (3.22), we now rewrite (3.14) as a first order hyperbolic system:

Uy=AU,+BU, +C, (3.23)
where
Up = (u, ¢1, ba, V1, va)', (3.24)
0 0010 0 00 01
A(G—-G) 0000 A —CG) 000 0
A= 0 000 0|, B= 0 000 0f,
c? 0000 0 0000
0 0000 c? 0000
G2 0 0 0 O
0 ¢&¢ 0 0 0
and C=—-10 0 ¢ 0 0
0 0 0 ¢G O
0 0 0 0 G
(3.25)

By using a symbolic algebra program we find that the eigenvalues of the
principal part of P(ik) for (3.23) are

A (P (ik)) = +ic(k? + k)2 (3.26)
Thus,
R{X (P (ik))} = 0, (3.27)

while the corresponding eigenvectors are also complete for all ¢y, (o > 0.
Therefore, since C' is a diagonal matrix with negative entries for (1, (o > 0,
we conclude that (3.14) is strongly stable.

Theorem 3.3.2 The Cauchy problem for the PML formulation (3.13) in
three space dimensions is strongly stable, if at least two (; = 0, j = 1,2, 3,
and weakly stable, otherwise.

proof)

We introduce the new variable v to rewrite the first equation in (3.13) as

w=—Cu+divy —(p, vi=—-Ov+EVuto. (3.28)
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By using (3.28), we can rewrite (3.13) as a first order hyperbolic system:

Uy=AU,+BU,+CU,+ D, (3.29)
where
Ut - (U, ¢1a ¢2a ¢3> Vi, Vg, V3, ¢)Ta (330)
[ 0 000100 0]
F(GH+G—G) 000000 GG
0 0O 00O0OO0O0O O
0 00 0O0OO0O0O O
A= 2 00 0O0O0OO0O O]’ (3.31)
0 0O 00O0O0OO0O O
0 0O 00O0OO0OO0O O
i 0 000O0O0O0 0]
i 0 000010 0]
0 00 0O0OO0O0O O
A(G+G—=G) 000000 GG
0 0O00O0OO0O0O O
B= 0 0O00O0O0OO0OD O]’ (3.32)
c? 0O00O0OO0O0O O
0 00 0O0OO0O0O O
i 0 000O0O0O0 0]
and _ _
0 0O 00O0OO0OT1 O
0 0O 00O0O0OO0O O
0 0O 00O0O0OO0O O
G +G—=¢) 000000 G
¢= 0 0O000O0O0OO0O O0/|° (3.33)
0 0O 00O0OO0OO0O O
c? 00 0O0O0OO0O O
i 0 000000 0]

By using a symbolic algebra program, we find that the eigenvalues A of P(ik)
for (3.29) are
MN(P(ik)) = +ic(k? + k2 + k32 (3.34)
Thus,
R{\ (P (ik))} =0, (3.35)

while the corresponding eigenvectors are also complete, if at least two (; =
0, 5 = 1,2,3; else, they are not complete. Therefore, since D is a diagonal
matrix with negative entries for (i, (5,(3 > 0, we conclude that (3.13) is
strongly stable, if at least two (; = 0, and weakly stable, otherwise.
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3.4 Extension to complex frequency shifted PML

Based on the complex frequency shifted (CFS) PML by Kuzuoglu and Mit-
tra 78], we introduce the new PML formulation for the second order wave
equations, which is extended to the evanescent modes [17|. The stretching
coefficient of the original PML is replaced by

Gi

Oéi—i—S

vi=1+

Li=1,2. (3.36)

We find this causal function with Kramers-Kronig dispersion relation, which
verifies that the real (or imaginary) part is the Hilbert transformation of
imaginary (or real) part [74]. It can be shown that the inverse Laplace
transform of 7; is

T = 8(t) + G (3.37)
Then the wave equation (3.1) can be written in the Laplace domain as follows:
2 A 0 (2(S+042+C2)(S+OK1)8121) 0 (2<S+OK1+C1)(S+OQ)8121)
s“up = c + C
81‘1 (S + oy + Cl)(s + Oég) 81’1 8$2

(s+ a2+ () (s + ar) Oxg
(3.38)

By multiplying with M in (3.38) we obtain following equation

(+s (a1 + G+ a+G) + (m+G) (0 +G)) @

0 ou 0 2 ou (3.39)
e 7712 01, 01’2 121 Orq )
where
(s+a; +¢) (s + ) o
ij = , ,7)=1(1,2), (2, 1). 4
= e G)=(L2), @21 (340
The rational function 7;; could be decomposed into partial fractions:
py =14 0 G+G o, ailait2(a;+)) 2%2 (o +6) (3.41)
s+ a; + ¢ s(s+a; +¢) 2 (s+a; +¢)

Now we introduce the auxiliary functions ; ;, ¢ = 1,2,3, j = 1,2 such that

50

(s+oz1+C1)1£ (o + a0 — G+ G 0 17T
S(S‘I'O‘l‘l’Cl)"LD\ al(a1+2a2+2C2) 0 68_:1
s (s+ a1+ () Uns o Oz%(ag + (o) 0
(s+as+C)hm | 0 a1+ ags+ G — G )
s (s + a2 + C) Yo 0 (g +20 +2¢) | | 22
_52 (S + Qg + Cg) QZ L 0 ag(al + C1> |
(3.42)




By defining

_CZEM- [ @211_
?12 Slﬁm
ol _ [0 a2
?21 1221 ’
QA522 5@222
[ 23] _52 a3
the equation (3.42) can be rewritten as
on o+ — G+ G 0 171 . |
CZA512 ag(og + 209 + 2() 0 e
Prs| _ of (s + ) 0
s | X —
P21 0 ap +az+ G — G )
o 0 g + 201 + 2(7) 5)—:;“‘2
$23 i 0 aZ(ay + () i ]
i o] 7 (3.44)
(o1 +C1) %12
615,
szl
(a2 + (o) P22
_ el

Finally, we apply the inverse Laplace transformation to the time domain and
obtain the complex frequency shifted PML equations for the wave equation :

0? 0
a—;;—l—(oq—i—Cl+a2+§2)a—?+(0z1+C1)(0z2+C2)qu~(02Vu)+v-\Il,
0
a—f:cz'ﬂVu—Tqu,
Dy =9,
(3.45)

51



where

¢ = ((bllu ¢127 ¢137 ¢217 ¢227 ¢23)T7
1/J = (1011, %27 %37 %17 ¢227 ¢23)T7
3
ER
2 |y,
[ a1+ ay— G+ G 0 ]
ar(ar + 20 +2 () 0
T _ Oz%(ag + Cg) 0
! 0 o t+ax+G—GC |’
0 ag (g + 201 + 2¢3)
i 0 Ozg(Oél —I—Cl)
Ty, = diag (o + i, a1+ G, oq + (o, as + G2, ag + G, 0 + (),

D = diag(1, 1, 9/0t, 0/0t, 9*/Ot*, 5*/Ot?).

Note that the auxiliary variables in the third equation in (3.45) are satisfied
by ordinary differential equations only, so that there are little computational
costs.

3.5 Discretization

3.5.1 Finite difference discretization

Here we show how to discretize (3.13) with standard second-order finite dif-
ferences on a uniform mesh at grid points x;,;, = x1 0+t Az;, with ¢ =1,2,3
and 7, = 0,1,...,M,. For the time discretization we use a constant step
size At and denote the time levels by t, = to + nAt, n = 0,1,..., N. In-
side the absorbing layer, we further introduce a space-time staggered grid
at locations Tiigrl = Tip + (ig+ %) Ax;, i = 1,2,3 and times tn+% =
to+ (n + %) At. Then the numerical solution v, ;, which approximates u at
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grid point (x1, z2;, T3x) and time ¢, satisfies

n+1 2 n—1 n+l1 n—1
Z] k k Zv]yk Z?]vk Z?]vk
2 +((1i+§2j+§3k) 7+(Cu@j‘f‘@j@k"‘@k@i)“z
At 2At
2 n _ n
e P (e Cirdik T € 3.3, 1) Ui 6 Lk Lk
Al’l 2
2 n — (2 v
Gt wig+ie = (G, g =30 Ui ‘ [ A
ASL’Q 2
2 n — (2
+ Ci,j7k+%ui,j7k+1 G i, k45 +q i,5,k— ) ik T G i.J, k—lu” k-1
Al’g 2
n _ n n _ 7 in — hn TH_% n—%
11+%7]7k 1i_%7j7k —I— 227]+%7k 227]_7 k ‘I— 37”]7k+% ¢3i’j7k_% C C C wi:jvk wi:jvk
— 614 825 OQB3k—— &5
N Az Axs ’ 2 ’

where the cell averages of the auxiliary functions ¢, ¢ and ¢3 are defined
as

~ 1
n _ n n
¢1z’+%,j,k T4 <¢1i+%,j—%,k—% +¢li+% j— 2kt +¢1z+ 1 i+3.k—3 +¢1z+ Lit3.k+3 )
1
n —_— —
2ij+2k 4 < 2i—2 j+1 k-1 1+ ¢22——,j+2,k+2 + ¢2z+ T it+ik—1 1+ ¢2z+ L i+i e+ >
1
n _ n n
¢3i,j,k+% A <¢3i—%,j—% +2 + ¢32—— J+ak+3 1T ¢3z+ J—3.k+3 + ¢3i+%,j+%,k+%> :

Concurrently with the above discretized wave equation, we also advance the
(scalar) auxiliary variables ), ¢;, j = 1,2,3 inside the absorbing layer by
using standard finite differences. For ¢ we use

ntld n_1
¢ivj7]: B wlv]vk?

_n
At - ui?j7k7
whereas for ¢, we use
¢n+1 _n
Lit s j+3 k+2 Litd j+ik+1
At
n+1

¢ Plivy 3:d+3kts +¢1i+%7j+%7k+% + (¢ e _¢ oS

T Slits 2 2j+5 T S8kty T Slitg Dy, Uit Lkt
n—i—%

h
+g2j+% g3k+%Dw1 li—l—%,j—i-%,k—l—% )
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where

at! — ! ar —ar
hoontd U Yidrg+im+l = Vil ket L+ L ks T Vil kel
Dyu . 4 1= 3 + ,
Tt gty kty 2 Axy Axy
in—i—% _&n-{—%
Dh wn—i—% Lt 5.k+ 3 ij+3k+3
N At

Here, the cell averages of v and v are defined as
't _1 (u” + ul + ul + ul )
igtkrd = g Wik T gt T Wijare T Yijates1)

Tt WAE S TE S S
Vigiineer = 7 Wigk +¥ien H Vit it ) -

The finite difference approximations for ¢s and ¢3 are analogous.

3.5.2 Discontinuous Galerkin Discretization

Next, we show how to combine the above PML formulation with an interior
penalty (IP) discontinuous Galerkin finite element (DG-FE) discretization
[52, 9] in 2D. In contrast to standard conforming finite element methods, the
[P-DG formulation immediately yields fully explicit time-stepping [28].

Let &/ denote the set of all interior edges in 7j, while £ denotes the set of
all boundary edges. We define by &, := & U EP the set of all edges. We
define the jump and average of v across the edge I'*® = OK° N OK® € &
shared by the two neighboring elements K¢, K¢ € Ty, by

[v] == v°n® + o0,  {o}} = %(ve +0). (3.46)

Here, n® and n® denote the unit normal vectors on I'“¢" pointing exterior
to K¢ and K¢, and v® := v|gge. On boundary edges OK¢ € £F, we set
[v] :=vn®, {w} :=v°. In this case, n® is the unit outward normal vecto on
OK® € EP. For a vectorial function v, we define analogously the jump and
average across interior edges by [v] := v*-n®+v® -n¢, {v} = L(v* + v¢)
and on boundary edges by [v] := v®-n°, {v}} := v®. We introduce the local
meshsize function h by

b { min{hge, hyo} if zon I € &L

hce if zon OK*® € EP. (347)

For each edge I' € &,, we choose the stability parameter a := ach™! with
a>0.
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The IP-DG formulation of (3.14) is

(Lu",v) + ap(u”, v) = (f,v),

. (3.48)
(¢t ) ’l/)) = (97 1/))7

where
c=2 e rac
= op 1+ 6) 5 162,
and
f=V-o"+f g =70 Vi =Ty ¢

Here the discrete DG bilinear form ay, is given by

an(u,v) = 3 /Kc2vu-vvdx— 3 /E[[u]]-{{02Vv}}ds

-3 [ElAevay s+ Y ang! [ SRl s

where hg denotes the diameter of edge E and ~ is the interior penalty pa-
rameter. The right-hand sides of (3.73) are

(f,v) = Z/K¢.vvdx+Z/E{{¢}}~[[v]]ds

KeTy, Eegy,

+ Z/Kfvd:c,

KeT,

and

o) = 3 [ a3 [ qrvyds

KeTy, Eeg,

-3 [ ) v,

KeTy,

3.6 Numerical experiments

Here we present numerical experiments that illustrate the accuracy, versatil-
ity and long-time stability of our PML formulation discretized with standard
finite differences as in Section 4. In all cases we choose (; = 80 in the damp-
ing profile, which yields a relative reflection R ~ 1073 for the the typical
values ¢ = 1 and L; = 0.1. At the exterior boundary of the absorbing layer
we impose homogeneous Dirichlet boundary conditions.
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3.6.1 Point source in 2D

First, we consider the wave equation (3.1) in two space dimensions with
constant speed of propagation ¢ = 1 and zero initial conditions, ug = vy = 0.
The source term f corresponds to a truncated first derivative of a Gaussian:

f(a,y,t) = 6(x) 6(y) h(t) (3.49)
with p
W(t) = = (DT fy = 10Hs. (3.50)

The grid spacing is uniform in z; and x5, with Az = 0.002.

In Figure 2 we display snapshots of the numerical solutions at different times
in Q = [—0.5, 0.5], surrounded by a PML of width L = 0.1. We observe how
the circular wave propagates outward essentially without spurious reflection
from the PML. By time ¢ = 1 the wave has essentially left the computa-
tional domain. To assess the error in the numerical solution, we compute a
reference solution in a much larger domain of size [—5.5,5.5] x [5.5,5.5], so
that boundary effects are postponed to later times inside §2. In Figure 3, the
time evolution of the L?-error is shown for different values of the damping
coefficient (;. Until ¢ = 8 we observe a steady decrease of the error over seven
orders of magnitude, regardless of the value of (;, which demonstrates the
long-time stability of our method. Moreover, our formulation appears robust
with respect to the parameter value (.

3.6.2 Heterogeneous medium in 2D

Next, to illustrate the versatility of our PML formulation, we consider the
homogeneous wave equation (3.1) in a heterogeneous medium with varying
wave speed ¢ = ¢(z3), given by

0.5, if 2o < —b
c(wy,9) = ¢ 1+ 2+ Lsin (2) | if |2 < b (3.51)
1.5, otherwise.

We set b = 0.95 which yields the vertical velocity profile shown in Figure 3.4.
The initial conditions are

U)o = ug(x1,2) and  wul—g = 0, (3.52)
where

(4 (z1 +0.4) (0.4 — 21) ) sin(3mzy), if 0.4 <2y <04, =1 <2y < 1
U0(36’1,56’2) = 0

, otherwise.
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Figure 3.2: Point source in 2D: snapshots of the numerical solutions at dif-
ferent times in Q2 = [—0.5, 0.5], surrounded by a PML of width L = 0.1.
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Figure 3.3: Point source in 2D: time evolution of the Ly—error for different
damping coefficients (.
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Figure 3.4: Heterogeneous medium in 2D: varying wave speed ¢ given by
(3.51).

Here (2 is the square domain [—1, 1] x [—1, 1], surrounded by a PML of width
L = 0.2. The finite difference grid is uniform with grid spacing Az = 0.004.
In Fig.3.5, we display snapshots of the solution at different times, where again
the last frame is purposely chosen at a much later time. In spite of the varying
wave speed and the glancing angle of incidence along the vertical artificial
boundaries, the waves are damped without spurious reflection. Even at much
later times we do not observe any instability in the numerical scheme.

3.6.3 Point source in 3D

Finally, we consider the wave equation (3.1) in three space dimensions with
zero initial conditions and the same point source f as in (3.49). The grid
spacing is uniform in x1, x9 and x3 with Az = 0.006. In Figure 6, we display
snapshots of the numerical solutions at different times in Q = [—0.5, 0.5]2,
surrounded by a PML of width L = 0.1. We observe how the spherical wave
propagates outward essentially without spurious reflection from the PML. By
time t = 1 the wave has essentially left the computational domain. Again we
observe no instabilities in the numerical solution even at much later times.
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Figure 3.5: Heterogeous medium in 2D: snapshots of the numerical solution
are shown at different times in Q = [—1, 1], surrounded by a PML of width
L=0.2.

3.7 PML for elastodynamic equations in second-
order form

3.7.1 Model problem

We consider the second-order elastodynamic equations

Pu :
Pam dive = f in Q x (0,7), (3.53)
u = U in 2 x {0}, (3.54)

ou .
S = o in Q x {0}. (3.55)

Here u denotes the displacement field, p the density, and o the stress tensor,
which is related to the strain tensor

1 8’&2 8’&]‘
=3 (0xj * &Ei) ’ (3.56)
by Hooke’s law
o = Ce, (3.57)
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Figure 3.6: Point source in 3D: snapshots of the numerical solution are shown
at different times in Q = [—0.5, 0.5]3, surrounded by a PML of width L = 0.1.
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where
o= (011,022,012)T, and € := (611762272612)T- (3.58)

We consider an orthotropic medium by taking principal axes coinciding with
the (z,y) - axes. Then c13 = o3 = 0 so that

¢ ¢z 0
C = C12 (€29 0 . (359)
0 0 C33

In an isotropic medium, the components of the tensor C can be expressed in
terms of Lamé’s coefficients A and u:

C11 = Cog = A + 2,u, Cig = )\, and C33 = . (360)
Christoffel tensor [15, 22] in an orthotropic medium is

Cllk‘% + 033]{,‘% (012 + 033)]{31]{32
I'k) = . 3.61
( ((612 + 033)]{51/{?2 Cllk’% + ngk’% ( )

The frequency w and the wave vector k are related by the following dispersion

relation:

det(I'(k) — pw?I) = 0. (3.62)
We define s = k/w as the slowness vector and v, = w/|k| as the phase
velocity. The values pw}yp(k), pwig(k) are the two positive eigenvalues of
I'(k). In an isotropic medium, the angular frequencies for the pressure and

shear waves are
wep = |k‘vp7 wes = ‘k‘vsa (363)

where v, = /22 and v, = \/E
P P

3.7.2 PML formulation

By applying the Laplace transform in time to (3.53) by setting f = 0, we
obtain

9 . 9%, 9%, 0%l
ps iy = 15— + c335— + (c12 + c33) 5
Oxy Oxs 0x10x9
9%*u 9%*u 0%4 (3.64)
/182 Uy = 033—2 + 022—2 + (c12 + c33) L
z? Ox3 0x10x

Through the coordinate transformation

1 [*
R O / GE)de,  i=12,  (3.65)
0
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Figure 3.7: Left: the orientation of the slowness vector s is the same as the
group velocity vy with respect to the direction kq, Right: the orientations of
s and v, are different with respect to the direction k; (see more details [15]).

we obtain the following modified equation of (3.64)

0y 01y 0?1y

p(s°+5(G+G)+GG) i = Cn@—x% - 0335—373 et 033)&518552

Le 0 (G —Gou L 9 (G —Gouy
118 S—|—<1 0:)31 3301’2 S—|—<2 81’2 ’
D%ty 0%ty 01y

p(s®+s(G+G)+GG) by = c3—— 022 S+ o 02 + (a2 + ng)m

ny 0 (G2 — G Oty L 0 (¢ — C0uy
80w, \ s+ ¢ O 20x, \ s+ G Oxa )

By defining the auxiliary variables

Go — G1 0y ~ (= Gol
¢11 =Ci1—— s+ 01’1 ¢12 =C33———— s+ s 01'2
~ (= 0uy ~ (= Gouy
¢21—C33S+C1 0—:)51’ ¢22—C228+<2 8—:)52’

we obtain the following equations

)8u1 )8u1

(5+C)bn = enl(G — G (s + )bz = e33(Ch — G

) 8U2 ) 8u2

(s + §1)<$21 =c33(Ca — G (s + C1)$12 = c22(C1 — G
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Finally, we apply the inverse Laplace transformation to the time domain and
obtain the PML equations for the elastodynamic equations

0*u ou
pW_FP(CI +C2)E
where
vy
v,
Q

3.7.3 Extension to

We define the coefficients

8+ +G) 5+ o)

+pC1C2u = dng—i‘le?,

¢ =",(Q:gradu)’ — ¥, ¢,

= diag (¢ — 1, G — o),

= dlag (Cla <2)7

€11 C12
Ci2 €33

(3.66)

complex frequency shifted PML

T (s +ai +G)

The rational function n;; could be decomposed into partial fractions:

Ozi—i-Oéj—Ci—FCj

a; (o +2(a; + ()

af (o +¢)

) ('é’ ]) = (1> 2)? (2> 1)'

i =1+
i s+a; +¢

Now we introduce the auxiliary functions

such that

(s + 1+ G) o

s (s + o1+ Q1) ¥
8% (s + o1 + Q1) Yig
(s + a2 + G2) Yay
5(s+ a2+ G2) ¥gy
57 (5 + a2 + Go) ¥y

[ +as— G+ G
aq (g + 20 + 2(3)
ai(az + )

0
0
0

s(s+a; +G)

k

4,37

(s + a1+ G) ¥
s (s + o+ Q1) ¥
8% (s + a1 + (1) ¥y
(s + 02 + G2) Y3,
s(s+ a2+ G) V3,
8% (s + ag + Go) 13 ]
0 -
0
0

ap+ o+ G — G
OéQ(OéQ + 20(1 —+ 2<1)

3o+ Gr)

63

2 (s+ai+¢G)

di
C11 gy

i
C33 By

i
€33 G

oi
C22 Gpo

(3.67)

(3.68)

i=1,237=12k=12

(3.69)



By defining

AR

?%2 jl S 12%2 S %%2

Qﬁg jl _ s’ @ﬁ?, 52@231 (3.70)
N I e A |
?52 jl S @ﬁ%z S @Djz

(635 1] BN

the equation (3.42) can be rewritten as

ﬁl Azl ot o — G+ G 0 1T N aA-
?12 P12 aq(ag + 20 + 2¢5) 0 i1 Gt sy G2
|18 Ot _ aj(as + ) 0
P31 P31 0 ar+ag+ (G —C ) A
%z A%z 0 g + 201 +201) | | cs3 2—;‘; Co2 g—gg
~° = 2
(b33 d3s] L 0 omlnt+G) || |
_ - 1T
P11 O11
(a1 +C1) |91a| (1 +G1) |97
R %3_ i %3_
o 2
(@2 +C) [ @5 | (a2+G) |03,
I | 633 | #33] |
(3.71)

Finally, we apply the inverse Laplace transformation to the time domain and
obtain the complex frequency shifted PML equations for the wave equation

O*u ou . .
P o +plon + G +ag + C2)§ + plar + G)(a2 + QJu =dive + dive,

¢:=T1(Q: gradu)’ — Ty,

Dy = ¢,
(3.72)
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where

¢11 Oh LYk
o o L ot
o 13 P13 _ |¥13 Vi3
? = ok ¢ A P A
Phy  Doo 20 Uiy
| b33 P33 ] Vo5 V3]
3
o Ui s }
v = J J
2 o)
[ +as— G+ G 0
aq (Oél + 20(2 + 2 CQ) 0
T, = Oé%(ag -+ CQ) 0
0 ap+as + G — G
O OéQ(OéQ + 20(1 + 2<1)
| 0 Oz%(Oél + Cl) i
Ty = diag(oq + G, o0 + G, a1 + G, as + G, an + G, o+ (o),
D = diag(1, 1, 0/0t, 0/0t, */0t*, 9% /Ot?).

Note that the auxiliary variables are satisfied by an ordinary differential
equation only, so that there are little computational costs.

3.7.4 Discretization
Finite Difference Discretization

We shall now show how to discretize the PML equations (3.66) with second-
order finite difference scheme on staggered grids. We denote by ufj the
values of the numerical solution on the spatial grid points (z1;,22;) at the
time step k, and discretize (3.66) by second order central differences in space
and time. Hence the auxiliary variables ¢, ¢o are evaluated on the grid
points (:cli+%,x2j+%) at the time step k. For the time discretization we
construct an explicit centered finite difference scheme, by approximating the
first equation in (3.66) at t;, = k At with the leap-frog scheme, the second
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equation in (3.66) at t, 1 = (k+ 3) At:

k+1 k k—1 k+1 k-1
Uy — 2uf; Uy Urij — Uiy koo
Ar2 + (Cri + C2y) oAl +CriGejuy; ;=
k k k k k k
Uy i1y — Uiy T Uiz Uy, g1 —2UT; Uy
C11 N + ¢33 Ay?
k k k k
Uit jp1 — Uit 1 — U211 T U151
(e + cs) 4AzAy
k k k k
) ) + . . — ) . — ) )
1lit+1,5+2 ¢11@+%,J—% 11i—1,5+4 ¢112—%,]—%
2Ax
k k ik ik
12041 j+1 + ¢12i—%,j+% 1204151 ¢12i—%,j—2
2Ay ’
and
k41 k k—1 k+1 k-1
Usij — 2Un;; + Uy ; Upij — Usj Ko
INE + (Cri + C2j) TﬂLCuCzjugm—
k k k k k k
Ugjpq; — Ugij T Ugiqj Ugij+1 — 2u2i,j + Uz,
€33 e + C22 Ay?
k k k k
UT i1 b1 — UTim1 b1 — Ulip1j—1 T UTi—1—1
+ (c12 + ¢c33) NN
k k ik ik
21i+3,5+3 + ¢21i+%,j—% 21i—1,j+% 21i—3,j—1
2Ax
k k ik ik
22i+3,5+3 + ¢22i—%7j+% 22i+3,j—% 22i—3,j-1
2Ay '

Concurrently with the above discretized wave equation we advance the two
auxiliary variables ¢, ¢ on the staggered grid points (z,,, 1, Tyjy %) at the
time k using the following (explicit) finite difference scheme e.g. for ¢;; using
the following (explicit) finite difference scheme

¢k+l 4k
1i+3,j+1 11i+3 543
At
k1 k+1 k k
Upijpry T Ui jpr T Uligry T Ul iqn 41
T 1Az

k+1 k

k+1 k+1 k k TR o

LUy T U U U ) Cronn ¢111+%,J+% ¢1lz+%7j+%
4Ax lits 2
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Discontinuous Galerkin Discretization

The IP-DG formulation of (3.66) is

p(Lu”, ) + ap(u,v) = (f,v),

(@ %) = (9.9), (3.73)

where )

L= 88152 + (G + Cz) + C1Ca,

and
f:: diV@h + f, g =V (Q:grad U)T — Wol' Qh'

Here the discrete DG bilinear form ay, is given by

(u,v) Z/ dx—Z/ v)n}ds

where hg denotes the diameter of edge E and ~ is the interior penalty pa-
rameter.

3.7.5 Numerical experiments

In this section, we present various numerical investigations for the stability
and effectiveness of our method when applied to difficult model problems
from two significant works [15, 7] . The problems are based on the elasticity
coefficients [Pa] in the Table 2.1. The slowness curves represented in Fig.2.8.

Materials I II 111 1v v

C11 4 20 4 10 30
€22 20 20 20 20 6
Cs3 2 2 2 6 15

Table 3.1: Elasticity coefficients of the orthotropic materials

illustrate the anisotropy of the medium. In our finite difference simulations,
the initial data is zero and the source is taken equal to

fxy, xo, t) = h(t) g(x1, 22), (3.74)
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Figure 3.8: Slowness curves for different materials.
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with

h(t) = e Uot=1? 4 d (e~ ot=17) (3.75)

and

g(xl’ x2) — 45_28((1‘1—1‘?)2 + (:cz—:cg)Q)’ (3.76)

where the source point (zf, x5) = (—8,8). This point is located closed to
the absorbing layer. For simplicity we choose the density p = 1kgm™3.
The snapshots of the each numerical experiments are given in Fig.2.9 - 2.13.
The numerical tests with materials I, I'1, IV, and V work remarkably well,
whereas the solution with material 117 is unstable, as predicted in [15, 7].
We remark that the elastic materials IV and V can easily lead to unstable
behavior [15]; in contrast, with our PML formulation we do not observe any
instability at later times.
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Figure 3.9: The snapshots of ||u||2 in material 1
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Figure 3.10: The snapshots of ||ul|y in material 17
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Figure 3.11: The snapshots of ||u|| in material 171

72




t=1.3199 i t=2.6399
o

t=3.9598 i t = 6.5997 :
o

t=10.5595 i t=79.196 :
3

Figure 3.12: The snapshots of ||ul|; in material IV
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Figure 3.13: The snapshots of ||ul|y in material V'
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3.8 PML for poroelastic wave equations in second-
order form

3.8.1 Model problem

The propagation of waves in porous media is of interest in many geophysics
applications. We consider the second order formulation of the poroelastic
equations based on Biot’s model [18] — [21] in nondissipative medium :
0*u, N 0w
o TP e

—dive = f in Q x (0,7), (3.77)

u

ag=Ce(u,)—Bpl inQx(0,7T), (3.78)

0*u 0w .
PfWﬂLPwW‘FVp:fw in Qx (0,7), (3.79)
1
EerﬁV-ustV-w:fp in Q x (0,7), (3.80)
with initial conditions
us =up, w =w, inx {0}, (3.81)
Ou 0 :
{; = v, a—":: wy in Q x {0}, (3.82)

The unknowns u, and w = ¢ (us—wu,) are the displacement of solid particles,
and the relative displacement, u; being the displacement of fluid particles
and ¢ being the porosity. The unknown p is the fluid pressure.
The parameters describing the physical properties of the medium are as fol-
lows:
p=psod~+ps(l—¢)is the density of the saturated medium, where p; and
ps are the fluid and solid densities, and p,, = aps /¢ with a denoting the
tortuosity. The viscous damping coefficient is K = /1, where « is the per-
meability of the solid matrix and 7 is the fluid viscosity. The parameters
m = (¢/K;+ (8 —¢)/K,) " and B = 1 — K,/K, are positive physical co-
efficients, where Ky, K, and K} are the bulk modulus of the solid, the bulk
modulus of the fluid and the frame bulk modulus. p is the frame shear mod-
ulus, and A = Kj — 2u/3 is the Lamé constant. The source terms f,, f,
and f, are the force densities.
Now we reformulate the first equation (3.77) in the poroelastic equations.
The equation (3.79) can be rewritten as
0w 1 0*u
W:p—<fw—v]9—ﬂf 8t2>’ (3.83)

w
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By substituting (3.78) and (3.83) into (3.77) we obtain

O*u Pw . .
P op + P om ~ div (Ce(uy)) = f, —div(8pI). (3.84)

Therefore, the poroelastic equations can be simplified as follows:

2 2
VA RCAC TR _ (P _pr
(p pw) 8152 le (CE(US)) - (pw ﬁ) Vp_'_fu pwfw7

*u, 0*w

1
—p+ BV U +Vw= .

3.8.2 PML formulation

By applying the Laplace transform in time to (3.85) and through the coor-
dinate transformation

T:0— QPML, z; — I(r;) = 2 + é/ Z Gi(&) dg, =12, (3.86)
0

we obtain for the first equations

2 2.0 2 A 2 A~
P . 0“1l 0“1l 0“1l
(p - p_i) (s +5 (G + C2) 4 i) sy = 01187%’1 + 0338T%’1 + (c12 + 033)8x18§2
e O (@ =GOua O (G- GO
1 ory \ s+ 0ry 33 0ry \ s+ (o 0xo

2 A 2 A
P\ Op Py G2 Op
+ <p__f) a__|_ <p__f) _28_
Pw T Pw/) S 0Ty

)
+fu,1_p_ifw,17

2 24 24 2.5
p X ) 0%, 07,
(P - p—i) (s° +8 (¢ + G) + (i) fia = 33 8::%2 + C22 82;;%’2 + (c12 + Cgs)axlua;
L 0 ((o— G 0lgo ny 0 (¢ — (20U,
33 ory \ s+ 0ry 2 0y \ s+ (o 0xo

pw) Oy Pw/) S Oxg
)
+fu,2_p_ifw,27
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for the second equations

- - . . i
Pr (52 Usy + C18Ts1) + pu (52 W1+ GsW1) + 27— = Furs
81’1

5 (3.87)
pre

N N N N 0
pr (82U + Ca5Ts2) + pu (87 Wy + Cas W) + P Fuas

and for the third equation
1 8u8 1 8@8,2 01/171 01/172
Pt ﬂ(al 8x2)+<8x1+8x2

B Cl sy | w1\ @ sz | Wy (3.88)
S‘l‘Cl <ﬂ 0:)31 _'_01'1) S‘l‘CQ <ﬂ 01'2 _'_01'2)

= fp.
Now we define the auxiliary variables

a —c <2 - Cl aﬁs,l 5 —©c Cl - CQ 8@8,1

11 11 S+ G Omy 12 = C33 st (y Ory

(/b\ —c <2 - Cl aﬁsﬂ $ —©c Cl - CQ a’ll&g

21 = C33 S+ ¢ Om 22 = C22 st Cy 01y
2 -~ 2 ~

> P 0 ~ p 0
b= (p—2L é_p’ b= (p—L Q_p)
Pw S 81’1 Pw S 8352

~ 1 Ousy W ~ G Qusy W
m=org (6 e +8:c1)’ TN G (ﬂ 0y | O1s)

Finally, we apply the inverse Laplace transformation to the time domain and
obtain the PML equations for the elastodynamic equations in porous medium

2
<P - p—f) (58;5 + (¢ + Cz) “+ GG Us) —div (Ce(us))

=divep + ¢ + (pf /6) Vp+fu—z—ffw,

i 3 e (3.89)
U, U, w _
pf(ﬁﬁ MY ) +pw<8t2 +ZW) e
1
Ep+ﬁv-us+v-w+771+772:fp’
with
¢ =V (Q:gradu) — Yo,
an .
o = ~diag{V(Bu+w)}J -, (3.90)

o _ (ﬁ_ﬁ) £V
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where

J =1 1),

¥ = diag{(, ¢f,

¥ o= diag{G, Gi},

U = diag (¢ — G, G — ),

_|C1i1 Ci2
C12 (33

3.8.3 Discretization
Finite Difference Discretization

For the numerical solutions of (3.89) we consider the following second-order
centered finite difference discretization on staggered grids: for the first equa-
tions

2 k+1 k k—1 k+1 k—1
Py Ugyij — 2Ugy,; 5+ Usy; Ug14,5 — Us1ij k
p—— +(Cri +Goj) =5 + Qi e ugyi

Pw At? 2At
k k k k k k
— . Ugiipt; — Ustij T Ugiizi, L Ug1ij+1 — 2usli,j T Uy 51
k k k k
Ugoiptja1 — Us2i—1,j+1 — Us2ig1,j—1 T Usoi—1j—1
-+ (012 —+ 033) 4A:L’Ay
k k ik ik
1li+3,j+2 + ¢11i+%7j—% 11i—1 541 11i-3,5-1
2Ax
k k ik ik
12i+5,j+3 + ¢12i—%7j+% 1245 ,j—4 12i-3%,-1
2Ay
k k k k
) . + p’ . — D ) — . .
n ﬁ _ﬂ p2+%,y+% pz—i—%,y—% pz—%,]—i—% pz—%,y—% I k —|—fk _ ﬁ k
9N wu,j uli,j wlijs
Pw z Pw
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k—1

At?

2 k+1 E+1
p Uggij —2u2 —I—u2 Uggi; — Ugoij
(/)__f) ( — = o + (Cri + G2j) M"‘Cu@juggm

2At

k k k
U9y u2z +ub; 1,j Usjy1 — 2Ug,; 5 +Ug; 5
= (33 + C22

Az? Ay?

k k k k
UT i1 b1 — Ulim1 b1 — Ulip1j—1 T UTi—1—1

4AxAy

+ (c12 + ¢33)

k k _ ik
21i+3,j+3 + ¢211+2 J—3 21i—1,j+3 ¢21i—%,j—%
2Ax

k _ ik _ ik
22i+3,5+3 +¢221——,j+% 22i+3,j—% ¢22i—%,j—%
2Ay

Pu 2Ay

for the second equations

k+1 k k—1 k+1 k—1
P wy; ;= 2wy, +wyy; ¢ Wy — Wiy
1 —2 )
b At? C2A¢
k+1 k—1 k+1 k—1
T u512]_2uslzj+u3113+c slij — Us1iy
i
At 2 ' 2A¢
k ok ok
_'_ p2+27]+1 +p7/+27]__ pl_%vj—"_% pl_%?]_E
2Ax
— fk
wle,j?
and
k+1 k k—1 k+1 k—1
p Wo; 5 — 2w2i,j + Wy, ; e Wy, — Way;
g Zh]
b At ? 72Nt
k+1 k+1 k—1
+p us2i,]_2u822j+us213 C Ugoij — Usa4;
9
! At? 7 At
k k ok
p2+27]+1 +p § pl+%7j_% pl_fvj_f
+
2Ay
— fk
= Jw2ij»
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and for the third equation

k+1

1 pz—l— ]+1 _'_pz—l—z,j—l—l
m 2
Y k+1 k k Y k+1 k k
Ustip1,j T Ustivt g T Ustipry T Wstivrgrn Ustij T Ustijen T Ustij T Ustijs
+0 —
4Ax 4Azx
k+1 k+1 k k S k+1
Ugoijt1 T Ugoiptjrr T Us2iji1 T Us2igt1jr1 Us24j T Ugoigr; T Us2” + “521+1g
_I_ —
4Ay 4Ay
k41 k+1 k k k41 k41 k k
Wi T Wi T Wiigrj T Wiigr 1 Wiy T Wi T Wi T Wiy 540
_I_ —
4Azx 4Ax
whH! k+1 k k k41 k41
Waijp1 T Waipyjpn T Waijan + Waipr i Waiyj + Woipy; + w2zy + w22+1g
4Ay 4Ay
k+1 k41 k
Tivl vl Jr771z+2,y+2 Myipt et T il jid
_l’_
2 2
__fk+%
pityits’
(3.91)

Finally, we discretize for the auxiliary variables, e.g.

k+1 k
¢11- 1,401 il 1
+35,5+3 11@—1—2,3—1—2
At B
k+1
c C C uslz—i—l]_'_uslz—i-lj-i-l_'—uslz—l—ly+uslz+1j+1
-1 — -1
HA\b2its lits 4A\x
k+1
k+1 k+1 k k —+
Ugpij+ Ugtijpr T Ugiij T Ugtyjp ¢ ¢1lz+273+1 ¢llz+27j+2
— (i
4Nz lits 2 ’
k+1 k+1
k+1 _ 1k + —+ 1+
15 wli’j _(Pr _ CRRCY p2+2’]_’ ]9""2’]""1 pl+2’] p2+271+2
At Pw / 4Ax
k+1 k41 k
et 2 e A T e
Pt TP TP

4Ax
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and

k+1 ok
Ml gl = Tl el
At
k+1 k+1 k k
¢ ﬁu1i+1,j T UL 1 T U T UL 41
o
Lity 4Ax
k1, k1 k k
_ ﬁuliJ U g T UL U
4Azx
k1 k1 k k
N Wy T Wi T Wiigry T Wiigr g1
4Azx
k1 k
k+1 k+1 k k ) T ol A .
Wy + Wy T Wi+ WY 0 ¢ il ged T gl il
_ (o _
4Ax Lits 2

3.8.4 Numerical experiments

For the numerical experiments we condsider a problem with a pressure source.
The computational domain is taken to be [—3, 3] x [—3, 3] with the length of
PML, L = 0.6. We use a point source located at the center of domain:

fol,y,t) = 6(x) 0(y) h(t) (3.92)
with p
W) = = (77 (fot=1)") (3.93)

where fo = 5.95Hz.
In our test, we use the following parameters [34]:

p=18kg/m*, pr = 1kg/m? pw = 7.5kg/m?
uw=4Pa, Ao = 5.93 Pa, m = 10 Pa,,
3 = 0.295.

Numerical solutions are shown in Fig. 2.14.-2.16. Here the first components
of u,, w, and the value p are illustrated in the computational domain €2 =

[—3, 3] x [-3, 3] surrounded by PML of width L = 0.6. The numerical
solutions do not blow up even at later times.

3.9 Concluding remarks

We have presented a PML formulation for the wave equation in its stan-
dard second-order form. It distinguishes itself from known formulations by
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t=0.33941 (10 t=0.50912

t=1.0182 (10 t=1.5274

t=13.7335 (10 t=6.6185

Figure 3.14: Numerical solution, u;"l with the pressure source, f, in the
computational domain = [—3, 3]? surrounded by PML of width L = 0.6.
It was implemented with finite difference method.
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t=0.33941 (10 t=0.50912

t=1.0182 10 t=1.5274

t=23.7335 . i t=6.6185

Figure 3.15: Numerical solution, w’
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t=0.33941 t=0.50912

t=1.0182 t=1.5274

t=13.7335 t=6.6185

Figure 3.16: Numerical solution, p"



its simplicity and the small number of auxiliary variables needed inside the
absorbing layer. We have proved that the continuous Cauchy problem with
the unbounded PML is stable and well-posed. Our numerical results in two
and in three space dimensions with standard finite differences illustrate the
accuracy, versatility and long-time stability of our PML formulation.
Because it involves no high space or time derivatives, our PML formulation
easily fits continuous or discontinuous Galerkin formulation for use with finite
element methods |28, 52|. Current work involves the extension to second-
order wave equations in complex elastic and poro-elastic media.
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Chapter 4

Local Nonreflecting Boundary
Conditions for Time-Dependent
Multiple Scattering

Abstract Starting from a high-order local nonreflecting boundary condi-
tion (NRBC) for single scattering [55], we derive a local NRBC for time-
dependent multiple scattering problems, which is completely local both in
space and time. To do so, we first develop a high order exterior evaluation
formula for a purely outgoing wave field, given its values and those of certain
auxiliary functions needed for the local NRBC on the artificial boundary.
By combining that evaluation formula with the decomposition of the total
scattered field into purely outgoing contributions, we obtain the first exact,
completely local, NRBC for time-dependent multiple scattering. Remark-
ably, the information transfer (of time retarded values) between sub-domains
will only occur across those parts of the artificial boundary, where outgoing
rays intersect neighboring sub-domains, i.e. typically only across a fraction
of the artificial boundary. The accuracy, stability and efficiency of this new
local NRBC is evaluated by coupling it to standard finite element or finite
difference methods.

4.1 Local boundary condition for single scat-
tering

We wish to calculate numerically the time dependent field u scattered from
a bounded scattering region in three-dimensional space. In this region, there

may be one or more scatterers, and the equation for u may have variable
coefficients and source terms. As usual, we surround the scattering region
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by an artificial boundary B, and confine the computation to the region 2
bounded by B. Then, a nonreflecting boundary condition (NRBC) is needed
at B, which guarantees that the solution of the problem in €2 coincides with
the solution of the original problem in the unbounded region.

We let B be the sphere of radius R and assume that u satisfies the homoge-
neous wave equation,

outside B. Then, Hagstrom and Hariharan [55] derived the following exact
local NRBC in three space dimensions:

(i;+%+%)“:wl= (4.2)
(i; k)wk = %Rz(k(k — 1)+ Ag)wk_l + W

for k = 1,2,..., and wy = 2u. Here, Ag denotes the Laplace-Beltrami
operator in spherical coordinates (r, 6, ¢),

1 0 0 1 02
5 sin9%<81n9%> + sin2 ) 0?2 (43)

The boundary condition (4.2) is local in space and time and does not involve
high-order derivatives, but instead an infinite sequence of auxiliary variables
wy defined on B. Then, the boundary condition remains exact for any com-
bination of spherical harmonics up to order p, while the error introduced
at B generally behaves like R=2~!. Hence, p can always be chosen large
enough to reduce the error introduced at B below the discretization error in-
side the computational domain, at any fixed R. Because it does not involve
high-order derivatives, this local boundary condition is easily combined with
standard numerical methods and enables arbitrarily high order implementa-
tions. Recently, it was extended to the time dependent Maxwell equations

[53].
4.2 Exterior evaluation formula

The general solution to (4.1) is given by the following fourier representation.

u(r, 0, ¢,t) ZZuant m (6, 0) (4.4)

n=0 m=—n
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with

Yom(0, ¢) = \/2714: ! En n :Z;LB P|m|(cos 0)e Zmd’

(4.5)

Upm (7, 1) = pkt fffm(ct — 7).
k=0

The spherical harmonics Y}, form a complete orthogonal system in L?(B).
Let Yp :=span{¥,,,|m=—-n,...,n, n=0,1,...,p} and
P:L*B)— Y, (4.6)

be the orthogonal projection upon Y, with respect to the Ly— inner product
on B:
(u—"Pu,v)=0forall v e Y,, (4.7)

where

21 T
(u,v) := 7’2/0 /0 u(r, 0, ¢,t)v(r,0,¢,t) sin 6 db de. (4.8)

Hence, Pu corresponds to the truncated Fourier series of u, i.e.

u(r, 0, ¢,t) ZZunmrt Y (6, 0). (4.9)

n=0 m=—n

The spherical harmonics are the eigenfunctions of the Laplace-Beltrami op-
erator:

AsYpm =—n(n+1) Y, (4.10)
From this equation we derive the recursion formula:
! E(k+1)—n(n+1)

M) = — A 4.11

Then we take f¥ =0 for k > n, so that

n

U (ryt) = > 1 7F R (et — 1)
h=0 (4.12)
=r— fo (ct—r) +Z Lk (et — 7).

Multiplying by r we obtain at r=R:

wm(ct = R) = R (R, t) — ZR R). (4.13)
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Setting this equation in (4.12), we obtain
U (1, 1) =771 £ (c(t — (r — R) Z*lh%m

= Rr Yy (Rt — (r — R)/e) — 1! Z RFfE (ct—7r) (4.14)

—I-Z Rk (et — 7).

We evaluate now the orthogonal projection of the solution upon Y, of the
Pu =: ulP! in the exterior by the truncated Fourier representation (4.9), where
we have used (4.14) to replace the coefficients w,,(r,t):

ulPl(r,6, ¢,t) “ZZMMFWWMY

n=0 m=—n

r! Z Z ZR (et —7) Yo, (4.15)

n=1m=-n k=1

S ST et 1) Vi

n=1 m=—n k=1

By using Lemma A.6. with a,; = >0 r7% f* (ct — 1) Yon(0, ¢), the

m=—n

right-hand side of (4.15) can be rewritten as follows

ZZZ m(ct=r) Z PN et=r) Yo (6, 0).

n=1m=-n k=1 n=p—{m=—n

Hence we obtain the following representation in the exterior, » > R at the
future time, t + (r — R)/c :

"?
L

P70, 0,1+ (r—R)/) = Sowo(R, 0,0, 1) br™ S (=R P) my (R, 6, .1,
0

o~
Il

(4.16)

where

Npe(r, 0,0, t) Z Z fPbet — 1) Yom (6, 6). (4.17)

n=p—{ m=-n

Now, let

= Zp: zn:%ﬂ_k_j - Zn: o Yom, (4.18)

n=j k=j m=-n
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where ;. ; = (—1)72'7J (kf!j)!. By defining s = p — k for k = j,...,n for fixed

p, we obtain the following formula:

wj[P} _ Zp: pz_i Vo—s.i popts—i-1 Zn: T2 Y- (4.19)

n:] s=p—mn m=—n

Since fF 7 =0 for s < p —n, we obtain

P p—j n
,wj[p} = Z Z’yp—s,j ,r,—p—i-s—]—l Z fﬁ;zs Ynm
n=j s=0 m=—n
’ (4.20)
pP—=J ' p n
S S v,
s=0 n=j m=-—n
For 0 < s < p—j we have hm =0, 0<n<j. With this relation,
p—j ‘ D n
= e $OY v )
s=0 n=p—sm=-n
p—J '
= Yo—s,j ppFs—i-l Mp.s- (4.22)
s=0
We use the last equation to derive the following formula.
wj['p] = Y5 r Mpp—i + Z Vp—s.j PP (4.23)
s=0

This relation with j =p— ¢, £ =1,2,...,p leads to the following equation:

-1
-1 _ -1 s—
Mot = (Vp—t.p—1) p2e-0+ w;z[all - (Vo—tp—t) Vp—sprt T énp,s
s=0
-1 b
=% ™y — (6 - s) T 42
s=0

-1
— S
= g T2(p—f)+1 w}[)ple . <p ),rs—f Tp.ss

where «; := (—=1)72771 /5.
Note, that 7,0(ct — 1) = (yp,) " 72! w?'. This completes the equation to
evaluate the solution in the exterior using auxiliary functions.
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Theorem 4.2.1

R .
uP(r,0.0,0) = 3w’ (R.0,0.6 = =2) +r™ 37 (PP — RVP) e (R,0.0,0 = )
k=0
(4.25)
where
Mo = opRPTwl and for k=1,2,...,p, (4.26)
k—1
_ D=5\ s
Mok = Qo REOPTH (k } S)R s (4.27)
s=0
with oy = (—1)72771 /41 (4.28)

When the solution consists of a finite sum of spherical harmonics up to order
p, the local NRBC (4.2) with £ = 0,...,p becomes exact. Then, the past
values of u and the auxiliary functions wy, at r = R determine the solution
everywhere outside €) through the following exact (analytical) representation
by using the auxiliary functions.

Lemma 4.2.2

k .

_ (p—k+ k)4

Tpk = Qp—k R k)+1w£7plk + Z(—W ( j j) AXp—k+j R k)ﬂﬂwz[yplkﬂ-
j=1

(4.29)

Proof: From equation (4.27) we derive

k

Z <Z - s) R s = a,_ R2ORH1 w}[)plk’ for k=0,1,...,p. (4.30)
—s

s=0

Multiplying by R* in this equation we obtain

k

Z (i — 8) RS Np,s = Cp—k R2p—k+l wz[ﬂk’ for k = ()’ 1’ ) (4.31)
— S

s=0

Let 7,s = Ry, by := a,_j RPHH wl?!

ks S0 that equation (4.31) can be
expressed as follows:

k
3 (Z:i) fps = by, fork=0,1,....p. (4.32)

s=0
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This equation can also be displayed in lower triangular matrix form:

(g) _1 ﬁp,o bO
(1) ¢o) i | B
(g) (p%) (pg) Mp2 | = |02 ]. (4.33)
@ e o) i) s

We now need to solve explicitly this matrix equation. First, we verify the
following equation from the matrix equation (4.33):

k-1
_ p—s).
N = bk — ; (/{Z _ S) Mp,s- (434)
Now, we show that (4.34) is equivalent to the following equation:
- p—J
=Y (—1)F b;. 4.35
=30 (D) (4.39

We assume that (4.35) is satisfied with k =1,2,...,¢ — 1. Therefore, (4.34)
with £ = ¢ can be expressed as follows:

e = by — ZZ( )(p 9)(—1)5—%]-. (4.36)

S_
s=0 j=0 J

By using Lemma A.5. we derive the following equation from (4.36) :

fp = ZZ:%:( )(Z_])(—Ui—jbj. (4.37)

With m := ¢ — j we obtain from (4.37) :

i1< p=J- )(p;j)(—nmbj. (4.38)

m=0 _j o

—1¢

2

J

31
||

By using Lemma A.4. in (4.38), we verify (4.35) with & = ¢. This shows that
(4.35) is equivalent to (4.34). The equation (4.35) completes our proof. [J
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Remark 4.2.1 FEquation (4.35) can also be written as matriz form:

77:0,0 (g) 1 bo
i e 3
e | - W= e ,
i)\ CP() () ey ) g,

Theorem 4.2.3 Theorem 4.2.1 is equivalent to the following equation :

R &~ 241 R\\"
0, 0,t) =—> = (R (1 - 7)) w? (R,0,¢,t — =8) . (4.39)

k=0

Proof: Let t = t — T_CR r > R denote the retarded time value of . By

)

substituting (4.29) into (4.25) we get

[p](r797 ¢7t)
R P!
= 5w (R0,6.) 1k — R) iy (R, 6,6,1)
=0
= —wl(R,0,0,1)
p—1 k .
oty Y (=L (p_]; +j)%‘k+j w oy (R,60,0,1) (rF P RAP-OHH
k=0 7=0

By using Lemma A.5 we obtain

P(r,0,6,t) = — wi(R,0,6,)

Now, we use the Lemma A.3.

[p](/r7 97 ¢7 t)

_R [p] n
- 2TQU (}L97¢7t)

Rp—k—l—j—l—l) .

+ —Zap i (R, 0,¢,0) R (pz’“:l (p j k) <§)H_j e (—1)1’—’“‘1) |

J=0
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By using the binomial theorem and by the definition of a; in (4.28), we obtain

[p} (7”7 97 (b? t )

-1 p—k p—k—j
= Lul(R0.0.1) + Z ap-rwy)y (R.0.0,1) R ’“( ( ) (R) <—1>J’)

=0

<.

p—k
- i w (R, 0,0, Z% vl (R0, 6,8) R <§ - 1)
=0
-1 e —k
— R [P] R p—k 2P P [117] p—k o E 8 _ 1\p—k
= 5wy (R,0,0,8) + (1> TR W(B, 0,0, )R (1—— ) (=1)

:ggo%( ( ) Re¢,)>.

O

When the solution consists of a finite sum of spherical harmonics up to order
p, the local NRBC (4.2) with £ = 0,...,p becomes exact. Then, the past
values of u and the auxiliary functions wy at r = R determine the solution
everywhere outside € through the exact (analytical) representation (4.39).
For a general wave field, equation (4.39) yields an approximate evaluation
formula for u in the exterior region, whose accuracy improves with increasing

p (or R).

4.3 Local boundary condition for multiple scat-
tering

4.3.1 Multiple scattering in spherical coordinate

For simplicity, we consider a scattering problem with two bounded disjoint
scatterers, each surrounded by a sphere B; of radius, R;, ¢ = 1,2. Hence,
the entire artificial boundary B = By U By and the computational domain
Q =y UQy. In contrast to the situation of single scattering above, we
cannot simply expand u outside B as a superposition of purely outgoing
wave fields. In fact, since part of the scattered field leaving 2; will reenter
), at later times, and vice versa, u is not outgoing ouside ). Thus, the
boundary condition we seek at B must not only let outgoing waves leave )y
without spurious reflection from Bj, but also propagate those waves to (2o,
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yl—x

Figure 4.1: Wave scattering from an obstacle I'. The computational domain,
(2, is bounded by the artificial boundary, B, where the local NRBC (4.2) is
imposed. Subsequent evaluation of the solution in other sub-domains, @,
and ()9, is possible via (4.16) by using past values of u and wy at B.

and so forth, without introducing any spurious reflections.

Following [51], we first decompose the scattered field u in two wave fields,
u = u; + ug, where u; is purely outgoing as seen from 2;. The two wave
fields u; and ug both solve the homogeneous wave equation (4.1) outside €2,
and their sum coincides with u. The outgoing field uS", as seen from 2y, is
fully determined by its boundary values on B;, while the incoming field u'%
from 5 to €2 is fully determined by its boundary values on By. Next, we
apply ¢ 10, + 0,, + R;* in local spherical coordinates (r;, 6;, ¢;) to u on each
artificial boundary component B;, ¢ = 1,2. This yields the following exact
local NRBC for multiple scattering:

10 0 1 10 0 1
Bu= (-2 4+ 2 4~ Bu— (-2, 9 . =
e (c@t+8r1 +R1)u 2t <08t+8r2+R2)u (4.40)
= Blu‘l"“ + Blu‘fg on Bl, = Bgugut + Bgugi on BQ.

To evaluate Bju$" we use (4.2) at B;, whereas to evaluate Bjuly we use

(4.16) for uy on B;. The needed past values of wy, are stored on each B; at
regular time and angular intervals and calculated, as needed, via local spline
interpolation [3|. Because those values are time-retarded, they are already
known, so that the entire scheme remains explicit in time. Remarkably, the
information transfer (of time retarded values) between sub-domains occurs
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only across those parts of the artificial boundary, where outgoing rays in-
tersect neighboring sub-domains, i.e. typically only across a fraction of the
artificial boundary. Let ¢15 denote the distance between the two origins.
Then the coordinates of any point on By in the (rg, 05, ¢o)-coordinate system
are given by

o = \/R% — 2R1 612 COS 91 —+ 6%2 y (441)
R1 sin ‘91 = T2 sin ‘92, T9 COS ‘92 = R1 COS ‘91 — 112, (442)
P2 = ¢1. (4.43)
We describe the normal derivative on B; with the radial and angular deriva-
y
Bl — BZ
e ,’,.2 /7:’/1/////,
Ry - .
L /Ql ,l:" /9/2/;‘/ Al ‘/ '6 12\9\ \2 1 \‘\\
1o <
Figure 4.2: Local coordinates (r1,6;) and (rg, 65)
tives in (rq, 02, ¢2)-coordinates:
0 0 0
— = 0,)— 0 — 4.44
o ) oz12‘m:Rl( 1>8r2 + Ba( 1)‘,1231 90, ( )
r=R
with
87’2
Q12), _p, =
(97’1 r1=R; (445)
N Rl — flg COS 91
= - ,
and
00,
512}”:31 = (9—7’1
ri=Ry (446)
_ flg sin 91
= 7@ ;
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where 1y = \/(R? — 2 Ri{15cos 0 + (2,) and 6, = arcsin <R1%> for 6, €

=53l

Finally, we present the following explicit numerical scheme for the multi-
ple scattering problem (see also Fig.3.2, 3.4, and 3.5) :

Algorithm
e initialize u° and u! in Q.

e initialize the auxiliary functions wy, &k = 1,2,...,p and u;n], (i,5) =
(1,2), (2,1).

e at each time step t,,, given u™, u™~
1,2,...,p:

! and past values of wy, k =

— compute uzljfmﬂ, (1,7) = (1,2), (2,1) by (4.39) and
Akimal local spline interpolation by (4.50) with (4.59)
— advance to v inside Q

— compute u""™ i =1,2 by (4.2)

4.4 Finite difference formulation

In this section we consider finite difference schemes for the wave equation with
the local boundary conditions. A second order finite difference approximation
to the wave equation is given by

k+1 k k-1
LU =205 + Ui

c? At? (4.47)
1 Ti2—1/2Uik—17j - (7’@'2—1/2 + 7"2'2+1/2)Uz']fj + Ti2+1/2Uik+1,j 1 D2y .
= A 2 DEUG,

3 (2

where r; = Ry +iAr, ¢=0,1,...,N,,and §; = A0, j=0,1,..., Ny
The Laplace-Beltrami operator (4.3) is discretized as follows:

sinf;_1/9 Uf;j71—(sin9j71/2+sin€j+1/2)Uf;j+sin9j+1/2 Uf,'jjtl

. 1<j<Ny—1
sin 0 —J =
277k kUK.
DSU’L'J g 4(Ul,j£;2 Uz,]) j — O
AUk, —UF. .
( Z,j£é2 7,,]) j — N@-
(4.48)
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Yy
Py
B P Jale—
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Figure 4.3: Evaluation of solution on the other computational domain: we
evaluate the exterior solution on P, P3, and P, based on the auxiliary func-
tions on Fy, and P;.

We apply the boundary condition between the last two circular rows of points
in the mesh:

(UnGs+ Unag) = (UK, + UK, 1)

k k
-y (UN +UE ) — UL+ UE )

2A - 2Ar
CUNGHUN D A Ut 0N 8 e L s (4.49)
4R 9 9 d .
and
k41 0k
Y 7Y L ok+1 | ok
——x; taplw tw)
1 2 0—1,k+1 -1k 3 ik 1 paxa
=< (DI +4(0—1)) (w; )+ S = Sy .

4.5 Interpolation of the evaluated solution

4.5.1 Akima spline interpolation

In this section, we introduce a local spline approximation method by H. Akima
[3], which is built from a set of polynomials, each of degree at most three,
and determine the slope of the curve by the two points on each side of given
points. The coefficients of the interpolating polynomial can be estimated at
each given point locally and therefore there is no need to solve large linear
systems of equations. For given data points

s; = s(x;), j=0,....,n—1,
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we define the cubic interpolating polynomial as follows:
S(SL’) = aj —|—bj(l’—l’j) +Cj($(7—$lfj)2 —|—dj(l’—l’j)3, X S xT S Ljt1- (450)

The basic idea of the Akima spline interpolation is to determine the coeffi-
cients a;, b, ¢; and d; in the equation (4.50) using the function values s;, s;41,
and the appropriate slopes s’, s’ ; at the end points of the local interval. The
expression for the slope at x; in the sense of H. Akima [3] is

r_ Wik M1 + W;m;

S. = , 2<<’]’I,—37 451
J U)j+2+U)j =J = ( )

where the slopes of the line segments

Tj+1 —
and the weighting coefficients
w; = |mj_1—mj_2|, QSJS’R—B

If the denominator is zero, we define

5 — mj_1 +m;

5 (4.52)

Note that we require five points, i.e. the given point and two points on each
side of it. Therefore, at each end of the curve, two additional ghost points
have to be derived from the given points. These extrapolated points are
determined from the quadratic polynomial

s(r) = e; + filx — x;) + gj(x — ;)7 r; <x <1, (4.53)
with the supplementary assumptions
Tog —Xyg—=T1 — -1 =Ty — T_2. (454)

With this recipe, we obtain the following slopes of the line segments

my = 2m2 — ms, (455)
moyg = 2m1 — My, (456)
my—_3 = 2mn_4 — My_5, (457)
my_o = an_g — Mpy—4. (458)
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In the end, we explicitly get the coefficients with respect to the interpolating
polynomial (4.50):

a; = Sj($])>
bj = S;(zj)>
1 sj(wj1) — s5(x5)
Cj .flfj+1 — ,TI,"J ( xj—l—l _ ,’L’] 8] (xj) 8] (x]-l'l) ) ( )

dj = s <39(~”Cj) + 85(@j41) — ilti) - S;(xj)) :

($j+1 - 933')2 Tjt1 — Ty
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Figure 4.4: We calculate the auxiliary functions, wg, & = 0,...,p of
Hagstrom-Hariharan’s NRBC (4.2) at the green points. Then we obtain
the exterior solutions at the blue points, using representation formula (4.39),
and if needed, interpolate the exterior solution at the red points using the
local spline interpolation (4.50) with (4.59).

4.6 Numerical experiments

4.6.1 Accuracy of the evaluation formula

We shall now illustrate the accuracy of the local NRBC (4.2) and the eval-
uation formula (4.16). To do so, we consider an outgoing spherical wave
generated by a Gaussian point source located at distance d = 0.4 from the
origin. Its time dependence is determined by

g(t) = e =/ =03, o= (4.60)

Thog 0
and vanishes outside the time window [0,0.6]. This exact solution is used
to initialize the numerical solution inside the computational domain 2 =
{(r,0)|r € [0.5,1],0 € [0,7])} and we impose (4.2) for varying p on the
artificial boudary located at R = 1.

Inside €2 we use standard second-order finite differences on a regular polar
grid. The auxiliary functions wy, in (4.2) are advanced concurrently with u as
in [55]. Outside the computational domain in the region Q%' = {(r,6)|r €
[1.0,1.5],60 € [0,7])} directly adjacent to it, the solution is evaluated using
(4.16). As shown in Fig. 3.6, the contour lines across B are smooth.

In Fig. 3.7 we compare the numerical solution along a ray at a fixed time for
varying p with the exact solution. Next, the total L?-error inside Q vs. the
mesh size h is shown in Fig. 3.8. For p = 4 we observe the expected global
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x

Figure 4.5:

located at (0.4, 0).

0.5

the solution at 8=1v2 and t=1 in the outer domain

15

Contour lines across B obtained either from the numerical solu-
tion for 0.5 <7 < 1 or the evaluation formula (4.39) for r > 1; the source is

0.8 T T T — T

u(r,m/2,1.0)

Figure 4.6: Evaluation of the solution at § = 5 and ¢
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second-order convergence up to the finest mesh chosen here. Further mesh
refinement generally requires increasing the value of p.

L2~Error with h
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Figure 4.7: The total L?-error is shown vs. the mesh size h for varying p.

4.6.2 Multiple scattering of an incident plane wave

Next, we demonstrate the accuracy and performance of our local NRBC
(4.40) in a situation of multiple scattering. A plane wave generated between
two spherical obstacles initially propagates to the right. It then impinges
on the right sphere and bounces back and forth between the two obstacles
without spurious reflections, as shown in Fig. 3.9. Here the computational
domain consists of two disjoint regions, each surrounding an inner spherical
obstacle. This test problem is axisymmetric, so that the computation is
restricted to two dimensions.
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Figure 4.8: Plane wave scattering from two sound-soft spheres. The compu-
tation is restricted to the two disjoint regions.



Chapter 5

Time-Dependent Multiple
Scattering for Maxwell’s
Equations

Abstract We derive a high-order local nonreflecting boundary condition
(NRBC) for time-dependent multiple scattering problems of electromagnetic
fields. We first develop a high order exterior evaluation formula for purely
outgoing electromagnetic fields, given its values and those of certain auxiliary
functions needed for the local NRBC on the artificial boundary. By combin-
ing that evaluation formula with the decomposition of the total scattered
electromagnetic field into purely outgoing contributions, we obtain the first
exact, completely local, NRBC for time-dependent electromagnetic multiple
scattering.

5.1 Local NRBC for single scattering

We wish to calculate numerically the time dependent electromagnetic fields
scattered from a bounded scattering region in three-dimensional space. In
this region, there may be one or more scatterers. As usual, we surround the
scattering region by an artificial boundary B, and confine the computation
to the region 2 bounded by B. Then, a nonreflecting boundary condition
(NRBC) is needed at B, which guarantees that the solution of the problem
in € coincides with the solution of the original problem in the unbounded
region.

We let Q% be the region outside €. In Q%' the medium is assumed to be
linear, homogeneous, isotropic, of constant electric permittivity, of constant
magnetic permeability, and of zero conductivity. In Q% the electric field E
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and the magnetic field H satisfy MaxwellaAZs equations

OE OH
1H =e— 1E = —p——.
cur € cur e,
Both FE and H vanish at t = 0 in Q% so that V- E =V - H = 0 for all
time. In [53] the following exact NRBC was derived:

(5.1)

18Etan
rxcurltl — -

c Ot
1 1
2851;1 '“;1 =53 (curlg curls E + \/g x curlgcurl sH) + w,
1 0wy N 14 1
4wy = —
c Ot T

= Wy,

(As + 6(6 - 1))'wg_1 +wpq, (>2.
(5.2)

Here 1, curlg, curlg, and Ag denote the unit normal vector, scalar surface
curl, and vector Laplace-Beltrami operators. This boundary condition is local
in space and time and does not involve high-order derivatives, but instead an
infinite sequence of auxiliary variables w;, defined on B. In practice, only a
finite number, p, of auxiliary variables is used. Then, the boundary condition
remains exact for any combination of spherical harmonics up to order p,
while the error introduced at B generally behaves like R~?~!. Hence, p can
always be chosen large enough to reduce the error introduced at B below the
discretization error inside the computational domain, at any fixed R.

5.2 Local boundary condition for multipole fields

First we introduce the vector spherical harmonics, which is used to develop
a Fourier representation for the electromagnetic field. For a more discussion,
see, for example, [26]. The basis functions for tangential fields on the surface
of the unit sphere, S are the vector spherical harmonics of order n given by

VsYum 1 {0Ynm A 1 0Ym A]
U,m = = v+ — , 9.3
Vit D) yaman L o0 O s a6 ? >3

. 1 1 OYum o OYpm

and Y,,,, are the scalar spherical harmonics of order n. They form a complete
orthonormal system in the space

L2(S)={ue (L*®))’ |v-u=0 onS} (5.5)
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where v is the unit outward normal to S.
The vector spherical harmonics are eigenfunctions of the vector Laplace-
Beltrami operator,

Agu := VgV g u—curlg curlg u, (5.6)
and thus satisfy

AsVm=-nn+1) V., AsU,pm=-—n(n+1)U,p, n>1.
(5.7)
Here Vg, V-g, curlg, and curlg denote the surface gradient, divergence, and
curl operators:

0 1 Ou

U~ ~
Vsu = 8_1919—’_ sin198_¢¢’
1 0 . 0
Vegu= 9 (8_19 (sinduy) +V -5 8—¢u¢) :
(5.8)
curlgu = b @ 9 — @ 913
U= i 0o o9
1 0, . 0
curlg u = g, (8—19(smi9u¢) "3 u¢) :
Note that
VsVun=0, curls U,,, =0, (5.9)

so that we have
curlg curls V., = n(n+ 1)V, VsV =—n(n+1)V,,. (5.10)

The vector spherical harmonics also satisfy the following useful equations for
the radial function, f(r):

txcurl(f(r)V,m) = _%wvnmv (5.11)
P curl (F(F)Um) — —%WUW. (5.12)

In the case of an interior or an exterior domain delimited by a sphere, the
Maxwell’s equations admit solutions whih are expressed as a sum of separated
variable solutions in the variable r, and (9, ¢). They are called multipole
fields. With this construction we decompose the electromagnetic field into
transverse electric (TE) and transverse magnetic (TM) fields. The electric
component of the (TE) multipole field of order (n,m) is given by

EME(r,9,0,t) = fam(r,t) Vi (0, ), (5.13)
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where f,,,, satisfies

2 2
ﬁnfnm = (lﬁ__a__gﬁjLM) fnm’ TZR. (5_14)

2otz oOr2  ror 72

The magnetic component of the (TM) multipole field of order (n, m) is given
by

H i (1,0, 6,1) = gun(r,1) Vi (9, 9), (5.15)
where L,, ¢pm = 0.
The TE / TM solutions form complete set of solutions of Maxwell’s equations

in a source-free region. Therefore the electromagnetic fields are obtained by
composition of TE / TM fields :

(Bnms Huw) = (Eny, Ho R ) + (B, HOM) (5.16)

nm? nm?

with

1 t
E™ - _curl [ / H™(r 9, 6,s) ds],
‘ 0 (5.17)

1 t
HZ:;:@ = ——curl |:/ Egﬁ(rvﬁv (ba 8) d8:| :
M 0

The explicit form of (5.16) with respect to vector spherical harmonics is as
follows:

E,.(r9,0,1) = fam(r, )V om + %curl [Vnm(ﬁ, ®) /t Grm (T, 8) ds] ,
0
H,,(rv ¢,t) = _l curl lvnm /t frm(r, 8) ds] + Grm (1, 8) Vo (9, 0).
1% 0

The total electromagnetic field is a superposition of multipole fields:

E=Y> Y E.., H=) > H,,.

n>1|m|<n n>1|m|<n

In contrast to the acoustic wave equation, the time dependent Maxwell’s
equations with initial data supported in a bounded domain do not admit
spherically symmetric modes. Therefore all sums over n start a n = 1.

In (5.14), the Fourier coefficients fp,,(7,t) = (Enm, V) satisfy the radial
wave equation

g ot? N or2 +; or o 72 fnm~ (518)
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By using Laplace transform methods, the solution to (5.18) can be repre-
sented by

n

Fam(rit) =Y 7R (et —7), n > 1, (5.19)

k=0

with f*¥ =0 forr > R.
Substituting (5.19) into (5.18), we obtain

3
—

O RE D ) o) kD) ) =0 620

e
Il

Hence the coefficients f*  satisfy the following recurrence relation

' k(k+1)—n(n+1)
k1) — k <k<n-— .

and similarly for g .
Based on the Bayliss-Turkel Condition [12], we introduce the auxiliary func-

tions, w’ = with
10 o0 20+1
(Ea + 5 + , ) ’Ué = ’UZ—H. (522)

This equation can be rewritten as

L _ Lo Ly ]

—nm o T 2
where
o 1 10
T e _ [ - - 14
Urim (87" * rooc 8t) Urim
= a2 (f) — (kO ) (5.24)
k=t
(l—-1)—n(n+1) ,,
=— Uy -
r2 nm
Thus, equation (5.23) can be rewritten as follows:
100! ((—1)—nn+1) ,., € , I s
= Lom 1_Z “pltl, 2

By defining the auxiliary function

wi® =23 ), () Vo (9, 9),

n>1 |m|<n

109



we obtain the following local high order nonreflecting boundary condition for
the E'"-field:

19 0 1\ . TR
(08t+8t )E -
10 ¢ 1
<Ea+ ) ZTE:R(€(£—1)+curlscurls)wz L twi, (=1,2,...,p,
(5.26)

with wi® = 2E™" and w}{; = 0.
Slmllary we find

(c&t+8t+ )H -

10 ¢ 1
(E§+ ) ZTM:E(ﬁ(ﬁ—l)—l—curlscurls)'wg L+wi, (=1,2,...,p,
(5.27)

with wi™ = 2H™ and w!™ = 0.

5.3 Exterior evaluation formula for multipole
fields

By combining (5.26) and (5.27) above, we obtain

1o o0 1 E™]  [w]®
cot ' or r) |H™|  |wM|
When the solution consists of a finite sum of vector spherical harmonics up

to order p, the local NBC (5.2) with £ = 0,...,p becomes exact. Then,

the past values of (ETE ,H™ ) and the auxiliary functions w}® or wi™ at

r = R determine the solution everywhere outside €2 through the following
exact (analytical) representation:

_ k
BT 0.0.0) = 032 (R(1- 1)) (0,0 5

b - k
H™Pl(r 9 ¢ t) = f2£<3<1_§>) wI™ (R, 0, .t — T=B).
(5.28)
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5.4 Time-dependent multiple scattering
for Maxwell’s equations

For simplicity, we consider an electromagnetic scattering problem with two
bounded disjoint scatterers, each surrounded by a sphere S; of radius, R;
i = 1,2. Hence, the entire artificial boundary B = B; U By and the compu-
tational domain 2 = € U Qy. Let W electric or magnetic multipole fields,
ie. E™ or H™. In contrast to the situation of single scattering above,
we cannot simply expand W outside B as a superposition of purely outgoing
electromagnetic fields. In fact, since part of the scattered field leaving 2,
will reenter )y at later times, and vice versa, W is not outgoing ouside ).
Following [51], we first decompose the scattered field ¥ in two electromag-
netic fields, ¥ = ¥, + W, where ¥, is purely outgoing as seen from €2;. The
two electromagnetic fields ¥, and W, both solve the Maxwell’s equations
(5.1) outside €, and their sum coincides with ¥. The outgoing field "
as seen from (2q, is fully determined by its boundary values on B, while
the incoming field ¥ from €, to €, is fully determined by its boundary
values on By. Next, we apply ¢'0, + 9,, +7; ! in local spherical coordinates
(r;,0;, ¢;) to u on each artificial boundary component B;, i = 1,2. This yields
the following exact local NBC for multiple scattering:

10 0 1
Bl\Ij_(Ea—i_&—’f’l—i_a)\Il

= Bl\I’(l)ut —I—Bl‘I’lfé OIlBl,
10 0 1
BY = (-2t —)w
2 c Ot * 87’2 * T
= BQ‘I’gut +BQ 12r11 on Bg.

To evaluate By 5™ we use (5.26) and (5.27) at By, whereas to evaluate B; ¥,
we use (5.28) for ¥y on By. The needed past values of wi® or wi™ are stored
on each B; at regular time and angular intervals and calculated, as needed, via
local spline interpolation. Because those values are time-retarded, they are
already known, so that the entire scheme remains explicit in time. Remark-
ably, the information transfer (of time retarded values) between sub-domains
occurs only across those parts of the artificial boundary, where outgoing rays
intersect neighboring sub-domains, i.e. typically only across a fraction of the

artificial boundary.
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Appendix

Lemma A. 1

k 1 2 . _ _
Z j+ o m . k—2n—1,n—1,2, (529>
—j+1 0 D k=2n,n=1,2,---.

J=1

Proof: By using the binomial theorem, we obtain

G- = Yy (")

2.V
- e () () e ()
_ é—w‘ @RS
Thus,
(1) = é(—l)j(’fjl)
B DL,

If we divide each side of this equation by —(k + 1)!, we obtain

i J+1 14+ (_1)k+1

= —]+1'j (k+1)!

Hereby, we conclude our statement. [
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Lemma A. 2

k .
S (~ 1)t p—1J P\ _[2(%) + k=2n-1Ln=12.-
kE—ji+1)\y 0 o k=2n,n=1,2,---.

j=1
(5.30)
Proof:
- p=J \(p - (p—J)! p!
N - Bt
j:l( RV ESIAY ;( -k =D -
P N~ (D)
- (p—(k+1))!;(k—j+1)'ﬂ
By using Lemma A.1.
k 4
Z(_l)jH p—J Py _ p! ﬁ o k=2n—-1,n=1,2,---
= k—ji+1)\y (p—(k+ 1) 0 o k=2n,n=12---
B Q(k-li]-l) o k=2n—-1,n=1,2,---
N 0 c k=2n,n=1,2---
0]

Lemma A. 3

§(—1)j (lj) = (=1)F 1, (5.31)

=0

Proof: According to the binomial theorem, we obtain the equations

A-1f = 1y (")

_ :(—W’ (5)+ v

Thus, it follows the Lemma. [
Lemma A. 4

Sew(2) (0= ) e

=0

Proof: By using Lemma A.2. [J
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Lemma A. 5

(5.33)

(5.34)

Lemma A. 6

(5.35)

p—1
0n

p
nk = E E App—4-
=p—~

14

115



Bibliography

[

2l

3]

4]

[5]

(6]

17l

8]

19]

[10]

M. Abramowitz and I. A. Stegun : Handbook of mathematical functions.
Dover Publications, Inc., New York, 1992.

S. Abarbanel, D. Gottlieb and J. S. Hesthaven : Long time behavior of
the perfectly matched layer equations in computational electromagnetics.
J. Sci. Comput. 17 (1-4), pp. 405-422. 2002.

H. Akima : A new method of interpolation and smooth curve fitting based
on local procedures., J. of the ACM 17 (4), pp. 589-602, 1970.

B. Alpert, L. Greengard and T. Hagstrom : Rapid evaluation of non-
reflecting boundary kernels for time-domain wave propagation. STAM J.
Numer. Anal., 37, pp. 1138-1164, 2000.

B. Alpert, L. Greengard and T. Hagstrom : Nonreflecting boundary
condition for the time-dependent wave equation J. Comput. Phys. 180
(1), pp. 270-296, 2002.

D. Appel6, T. Hagstrom and G. Kreiss : Perfectly matched layers for
hyperbolic systems: General formulation, well-posedness, and stability.

SIAM J. Appl. Math. 67 (1), pp. 1-23, 2006.

D. Appel6 and G. Kreiss : A new absorbing layer for elastic waves. J.
Comput. Phys. 215 (2), pp. 642-660, 2006.

D. Appelé and G. Kreiss : Application of a perfectly matched layer to
the nonlinear wave equation, Wave Motion 44, pp. 531-548, 2007.

D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini : Unified analysis
of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer.
Anal. 39 (5), pp. 1749-1779, 2001.

B. B. Baker and E. T. Copson : The Mathematical Theory of Huygens’
Principle. Oxford University Press, 1939.

116



[11]

[12]

13

[14]

[15]

[16]

17]

18]

[19]

[20]

21

22|

F. Bassi , A. Crivellini , D. A. Di Pietro and S. Rebay : An artificial
compressibility flux for the discontinuous Galerkin solution of the in-
compressible Navier-Stokes equations. J. of Comput. Phys., 218(2), pp.
794-815, 2006.

A. Bayliss and E. Turkel : Radiation boundary conditions for wave-like
equations. Comm. Pure Appl. Math. 33 (6), pp. 707725, 1980.

A. Bayliss, M. Gunzburger and E. Turkel : Boundary conditions for
the numerical solution of elliptic equations in exterior regions. SIAM J.
Appl. Math. 42 (2), pp. 430451, 1982.

E. Bécache and P. Joly : On the analysis of Bérenger’s perfectly matched
layers for Mazwell’s equations, Modélisation Mathématique et Analyse
Numérique, 36(1), pp. 87-119, 2002.

E. Bécache, S. Fauqueux and P. Joly : Stability of perfectly matched
layers, group velocities and anisotropic waves. J. Comput. Phys., 188,
pp. 399-433, 2003.

J. P. Bérenger : A perfectly matched layer for the absorption of electro-
magnetic waves. J. Comput. Phys., 114, pp. 185-200, 1994.

J. P. Bérenger : Application of the CFS PML to the absorption of evanes-
cent waves in waveguides. IEEE Microw. Wireless Components Lett. 12,
pp. 218-220, 2002.

M. A. Biot : Theory of deformation of a porous viscoelastic anisotropic
solid. J. Appl. Phys., 27, pp. 459-467, 1956.

M. A. Biot : Theory of propagation of elastic waves in a fluid-saturated
porous solid - 1. low-frequency range. J. Acoust. Soc. Am., 28, pp. 168—
178, 1956.

M. A. Biot : Theory of propagation of elastic waves in a fluid-saturated
porous solid - II. higher frequency range. J. Acoust. Soc. Am., 28,
pp. 179-191, 1956.

M. A. Biot : Mechanics of deformation and acoustic propagation in
porous media. J. Appl. Phys., 33, pp. 1482-1498, 1962.

C. Chapman : Fundamentals of seismic wave propagation. Cambridge
Univ. Press, 2004.

117



23]

[24]

[25]

[26]

27]

28]

29]

[30]

31

32|

33]

[34]

G. Cohen: Higher-order numerical methods for transient wave equations.
Springer, 2002.

F. Collino and P. Monk : The perfectly matched layer in curvilinear
coordinates. STAM J. Sci. Comput. 19 (6), pp. 2061-2090, 1998.

F. Collino and P. Monk : Optimizing the perfectly matched layer. Com-
put. Methods Appl. Mech. Engrg. 164 (1-2), pp. 157-171, 1998.

D. Colton and R. Kress : Inverse acoustic and electromagnetic scattering
therory. Springer, 1992.

L. Demkowicz and F. Ihlenburg : Analysis of a coupled finite-infinite
element method for exterior Helmholtz problems. Numer. Math. 88 (1),
pp- 43-73, 2001.

J. Diaz and M. J. Grote : Energy conserving explicit local time stepping
for second-order wave equations. SIAM J. Sci. Comput., in press.

J. Diaz, and P. Joly : A time domain analysis of PML models in acous-
tics. Comput. Methods Appl. Mech. Engrg. 195 (29-32), pp. 3820-3853,
2006.

J. Douglas, Jr., J. E. Santos, D. Sheen and L. S. Bennethum : Frequency
domain treatment of one—dimensional scalar waves. Math. Models Meth.
Appl. Sci., 3, pp. 171-194, 1993.

J. Douglas, Jr., J. E. Santos and D. Sheen : Approzimation of scalar
waves in the space—frequency domain. Math. Models Meth. Appl. Sci.,
4, pp. 509-531, 1994.

B. Engquist and A. Majda : Absorbing boundary conditions for the
numerical simulation of waves. Math. Comp. 31 (139), pp. 629-651,
1977.

B. Engquist and A. Majda : Radiation boundary conditions for acoustic
and elastic wave calculations. Comm. Pure Appl. Math. 32(3), pp. 314—
358, 1979.

A. Ezziani : Modélisation mathématique et numérique de la propagation
d’ondes dans les milieuxr viscoélastiques et poro elastiques. PhD thesis,

Université Paris 9, 2005.

118



[35]

[36]

37|

38]

[39]

140]

[41]

[42]

[43]

|44]

[45]

[46]

147]

48]

X. Feng and D. Sheen : An elliptic regularity estimate for a problem
arising from the frequency domain treatment of waves. Trans. Amer.
Math. Soc, 346, pp. 475487, 1994.

G. K. Géchter and M. J. Grote : Dirichlet-to-Neumann map for three-
dimensional elastic waves. Wave Motion 37 (3), pp. 293-311, 2003.

D. Givoli : Numerical methods for problems in infinite domains. Elsevier
Scientific Publishing Co., Amsterdam, 1992.

D. Givoli : Recent advances in the DtN FE method. Arch. Comput.
Methods Engrg. 6 (2), pp. 71-116, 1999.

D. Givoli : High-order local non-reflecting boundary conditions: a review.
Wave Motion 39 (4), pp. 319-326, 2004.

D. Givoli and D. Cohen : Nonreflecting boundary conditions based on
Kirchhoff-type Formulae. J. Comput. Phys. 117 (1), pp. 102-113, 1995.

D. Givoli and J.B. Keller : Nonreflecting boundary conditions for elastic
waves. Wave Motion 12 (3), pp. 261-279, 1990.

D. Givoli and I. Patlashenko : An optimal high-order non-refiecting
finite element scheme for wave scattering problems. Internat. J. Numer.
Methods Engrg. 53 (10), pp. 23892411, 2002.

D. Givoli and B. Neta : High-order non-reflecting boundary scheme for
time-dependent waves. J. Comput. Phys. 186 (1), pp. 24-46, 2003.

L. Greengard and V. Rokhlin : A fast algorithm for particle simulations.
J. Comput. Phys. 73 (2), pp. 325-348, 1987.

M. J. Grote and J. B. Keller : Ezact nonreflecting boundary conditions
for the time Dependent wave equation. STAM J. Appl. Math. 55 (2), pp.
280-297, 1995.

M. J. Grote and J. B. Keller : Nonreflecting boundary conditions for
time-dependent scattering. J. Comput. Phys. 127 (1), pp. 52-65, 1996.

M. J. Grote and J. B. Keller : Nonreflecting boundary conditions for
Mazwell’s equations. J. Comput. Phys. 139 (2), pp. 327-342, 1998.

M. J. Grote and J. B. Keller : Ezact nonreflecting boundary condition
for elastic waves. SIAM J. Appl. Math. 60 (3) pp. 803-819, 2000.

119



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. J. Grote and J. B. Keller : Nonreflecting boundary conditions for
elastodynamic scattering. J. Comput. Phys. 161 (1) pp. 331-353, 2000.

M. J. Grote and C. Kirsch : Dirichlet-to-Neumann boundary conditions
for multiple scattering problems. J. Comp. Phys, 201 (2), pp. 630-650,
2004.

M. J. Grote and C. Kirsch : Nonreflecting boundary conditions for time-
dependent multiple Scattering. J. Comp. Phys, 221 (1), pp. 41-62, 2007.

M. J. Grote, A. Schneebeli and D. Schétzau : Discontinuous Galerkin
finite element method for the wave equation. STAM J. Numer. Anal. 44,
pp. 2408-2431, 2006.

M. J. Grote : Local nonreflecting boundary condition for MazwellaAZs
equations. Comput. Methods Appl. Mech. Engrg. 195 (29-32), pp. 3691-
3708, 2006.

M. J. Grote and 1. Sim: Local nonreflecting boundary conditions for
time-dependent multiple scattering, in preparation.

T. Hagstrom and S. I. Hariharan : A formulation of asymptotic and
exact boundary conditions using local operators. Appl. Numer. Math. 27
(4), pp. 403-416, 1998.

T. Hagstrom : Radiation boundary conditions for the numerical simula-
tion of waves. Acta Numer. 8, pp. 47-106, 1999.

T. Hagstrom : Topics in Computational Wave Propagation.
M. Ainsworth et al eds., Springer-Verlag, pp. 1-42, 2003.

T. Hagstrom and T. Warburton : A new auziliary variable formulation
of high-order local radiation boundary conditions: corner compatibility
conditions and extensions to first-order systems. Wave Motion 39(4),

pp. 327-338, 2004.

T. Hagstrom and S. Lau : Radiation boundary conditions for Mazwell’s
equations: a review of accurate time-domain formulations. J. Comput.
Math. 25, pp. 305-336, 2007.

T. Hagstrom, A. Mar-Or and D. Givoli : High-order local absorbing
conditions for the wave equation: extensions and improvements. J. Com-
put. Phys. 227 (6), pp. 3322-3357. 2008.

120



[61]

62|

63

[64]

[65]

[66]

167]

68

169]

[70]

71

72|

T. Hagstrom, T. Warburton and D. Givoli : Radiation boundary con-
ditions for time-dependent waves based on complete plane wave expan-
sions. J. Comput. Appl. Math., to appear.

[. Harari and T. J. R. Hughes : A cost comparison of boundary ele-
ment and finite element methods for problems of time-harmonic acous-
tics. Comput. Methods Appl. Mech. Engrg. 97 (1), pp. 77-102, 1992.

[. Harari and T. J. R. Hughes : Analysis of continuous formulations

underlying the computation of time-harmonic acoustics in exterior do-
mains. Comput. Methods Appl. Mech. Engrg. 97 (1), pp. 103124, 1992,

I. Harari, I. Patlashenko and D. Givoli : Dirichlet-to-Neumann maps for
unbounded wave guides. J. Comput. Phys. 143 (1), pp. 200-223, 1998.

I. Harari and Z. Shohet : On non-reflecting boundary conditions in un-
bounded elastic solids. Comput. Methods Appl. Mech. Engrg. 163 (1-4),
pp- 123-139, 1998.

I. Harari, M. Slavutin and E. Turkel : Analytical and numerical studies
of a finite element PML for the Helmholtz equation. J. Comput. Acoust.
8 (1), pp. 121-137, 2000.

C. Hazard and M. Lenoir : On the solution of time-harmonic scattering
problems for Mazwell’s equations. SIAM J. Math. Anal. 27 (6), pp.
1597-1630, 1996.

R. Hiptmair : Coupling of finite elements and boundary elements in
electromagnetic scattering. STAM J. Numer. Anal. 41 (3), pp. 919-944,
2003.

E. W. Hobson : The theory of spherical and ellipsoidal harmonics. Cam-
bridge University Press, 1931.

F. Thlenburg : Finite element analysis of acoustic scattering. Springer-
Verlag, New York, 1998.

R. L. Higdon : Absorbing boundary conditions for difference approzi-
mations to the multidimensional wave equation. Math. Comp. 47 (176),
pp. 437-459, 1986.

R. L. Higdon : Numerical absorbing boundary conditions for the wave
equation. Math. Comp. 49 (179), pp. 65-90, 1987.

121



[73] T. Hohage, F. Schmidt and L. Zschiedrich : Solving time-harmonic scat-
tering problems based on the pole condition. II. Convergence of the PML
method. STAM J. Math. Anal. 35 (3), pp.547-560, 2003.

[74] J. D. Jackson : Classical Electrodynamics. John Wiley & Sons, 1999.

[75] J. Jin : The finite element method in electromagnetics. Wiley-IEEE
Press, 2002.

[76] J. D. Joannopoulos, S. G. Johnson, R. D. Meade and J. N. Winn :
Photonic crystals: Molding the flow of light. Princeton Univ. Press, 2008.

[77] H.-O. Kreiss and J. Lorenz : Initial-boundary value problems and the
Navier-Stokes equations, Academic Press, 1989.

[78] M. Kuzuoglu and R. Mittra : Frequency dependence of the constitu-
tive parameters of causal perfectly matched anisotropic absorbers. IEEE
Microw. Guided Wave Lett. 6, pp. 447-449, 1996.

[79] C. Lubich and A. Schadle : Fast convolution for nonreflecting boundary
conditions. STAM J. Sci. Comput. 24 (1), pp. 161-182, 2002.

[80] P. A. Martin : Integral-equation methods for multiple-scattering prob-
lems. I. Acoustics. Quart. J. Mech. Appl. Math. 38 (1), pp. 105-118,
1985.

[81] P. A. Martin : Multiple scattering: an invitation. In Mathematical and
numerical aspects of wave propagation, pp. 3-16, SIAM, Philadelphia,
PA, 1995.

[82] P. A. Martin : Multiple scattering and modified Green’s functions. J.
Math. Anal. Appl. 275, pp. 642-656, 2002.

[83] P. A. Martin and F. J. Rizzo : Partitioning, boundary integral equations,
and exact Green’s functions. Internat. J. Numer. Methods Engrg. 38
(20), pp. 3483-3495, 1995.

[84] A. A. Ergin, B. Shanker and E. Michielssen: Fuast evaluation of three-
dimensional transient wave fields using diagonal translation operators,
J. Compt. Phys. 146(1)), 1998.

[85] M. J. Mohlenkamp : A fast transform for spherical harmonics. J. Fourier
Anal. Appl. 5, pp. 159-184, 1999.

122



[36]

187]

38

[89]

190]

191

192]

193]

[94]

195]

196]

197]

198

P. Monk : Finite element methods for Maxwell’s equations. Oxford Uni-
versity Press, 2003.

C. Miiller : Spherical harmonics, Springer 1966.

J. C. Nédélec : Acoustic and electromagnetic equations: integral repre-
sentations for harmonic problems. Springer-Verlag, New York, 2001.

P. O. Persson and G. Strang : A simple mesh generator in MATLAB.
SIAM Review. 46 (2), pp. 329-345, 2004.

A. F. Peterson : Absorbing boundary conditions for the vector wave
equation. Microw. Opt. Techn. Lett. 1, pp. 62-64, 1988.

A. F. Peterson, S. L. Ray and R. Mittra : Computational methods for
electromagnetics. Wiley-IEEE Press, 1997.

P. G. Petropoulos : Refilectionless sponge layers as absorbing boundary
conditions for the numerical solution of Mazwell equations in rectangu-
lar, cylindrical, and spherical coordinates. SIAM J. Appl. Math. 60 (3),
pp. 1037-1058, 2000.

F. Rellich : Uber das asymptotische Verhalten der Lésungen von Au +
Au = 0 in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53, pp.
57-65, 1943.

B. Sjogreen and N. A. Petersson: Perfectly matched layers for Maxwell’s
equations in second order formulation. J. Comput. Phys., 209 (1),
pp. 19-46, 2005.

W. D. Smith: Nonreflecting plane boundary for wave propagation prob-
lems, J. Comput. Phys. 15, 1974.

I. L. Sofronov : Conditions for complete transparency on a sphere for
a three-dimensional wave equation. Russian Acad. Sci. Dokl. Math. 46
(2), pp. 397-401, 1993.

A. Sommerfeld : Die Greensche Funktion der Schwingungsgleichung.
Jber. Deutschen Math. Verein. 21, pp. 309-353, 1912.

A. Taflove and S. C. Hagness : Computational electrodynamics: the

finite-difference time-domain method. 3rd ed. Norwood, MA: Artech
House, 2005.

123



[99] Z. H. Teng : Ezact boundary condition for time-dependent wave equation
based on boundary integral. J. Comput. Phys. 190 (2), pp. 398-418, 2003.

[100] L. L. Thompson and R. Huan : Implementation of exact non-reflecting
boundary conditions in the finite element method for the time-dependent
wave equation. Comput. Methods Appl. Mech. Engrg. 187, pp. 137159,
2000.

[101] L. L. Thompson and R. Huan : Computation of far field solutions based
on exact nonreflecting boundary conditions for the time-dependent wave
equation. Comput. Methods Appl. Mech. Engrg. 190, pp. 1551-1557,
2000.

[102] L. L. Thompson, R. Huan and C. lanculescu : Finite element formula-
tion of exact Dirichelt-to-Neumann radiation conditions on elliptic and
spheroidal boundaries. In Proc. Internat. Mech. Engrg. Congress and
Exposition, 1999.

[103] L. Ting and M. J. Miksis : FEzact boundary conditions for scattering
problems. J. Acoust. Soc. Amer. 80 (6), pp. 1825-1827, 1986.

[104] S. V. Tsynkov : Numerical solution of problems on unbounded domains.
A review. Appl. Numer. Math. 27 (4), pp. 465-532, 1998.

[105] E. Turkel and A. Yefet : Absorbing PML boundary layers for wave-like
equations. Appl. Numer. Math. 27 (4), pp. 533-557, 1998.

[106] D. V. Widder : The Laplace Transform. Princeton University Press,
1946.

[107] C. H. Wilcox : A generalization of theorems of Rellich and Atkinson.
Proc. Amer. Math. Soc. 7, pp. 271-276, 1956.

[108] K. Yee : Numerical solution of inital boundary value problems involving
Mazwell’s equations in isotropic media. IEEE Trans. Antennas Propag.,
14 (3), 302-307, 1966.

[109] L. Zhao and A. C. Cangellaris : A general approach for the development
of unsplit-field time-domain implementations of perfectly matched layers
for FDTD grid truncation. IEEE Microwave and Guided Letters, 6 (5),
1996.

124



Curriculum Vitae

Imbo Sim

Personal data

Date and Place of birth : June 24, 1977 in Suwon, Republic of Korea
Nationality : Republic of Korea
Martial Status : Married, One Child

Academic Education

2005-2009

2004-2005

2000-2005

Doctoral Studies at the Department of Mathematics,
University of Basel

PhD in Mathematics: June 4, 2009
Advisor: Prof. Marcus J. Grote, Basel
Co-referee: Prof. Thomas Hagstrom
(Southern Methodist University, USA)

Guest Studies of Scientific Computing
at the Free University of Berlin, Germany

Studies of Mathematics and Engineering Mechanics
at the University of Hamburg and
Hamburg University of Technology (TUHH), Germany

Graduation as Dipl.-Math., equivalent to a

MS in Mathematics:

Advisors of diploma thesis (with distinction): Prof. Jens Struckmeier,
Prof. Ingenuin Gasser, and PD. Frank Schmidt

Scientific Position

2005-2009

2005-2009

2004-2005

Research & Teaching Assistant,
Department of Mathematics, University of Basel

Linux-System Administrator,
Department of Mathematics, University of Basel

Research Assistant in the Computational Nano-Optics Group
at the Zuse-Institut-Berlin, Germany

125



