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Introduction 
 

Fission-Track (FT) analysis of the Palaeozoic crystalline bedrock in the area of the 

southern Upper Rhine Graben (URG) showed complex and rapid changing upper 

crustal thermal conditions during the Mesozoic and the Cenozoic (Timar-Geng et al. 

2004, 2006a). While an Eo-Oligocene thermal pulse accompanying the rifting of the 

URG is well documented by apatite FT modelling results (Timar-Geng et al. 2006a,b), 

the Jurassic hydrothermal period leading to a broad scatter of zircon FT data (Timar-

Geng et al. 2004) are only weakly constrained. Additionally, due to a large 

sedimentary hiatus between the Upper Jurassic and the Late Eocene the pre-rift 

evolution remains still unclear. Knowledge about the thermal evolution of the area is 

essential for development of crustal scale models, which evaluate the rift-evolution. 

This study aims to clarify the timing of the Jurassic thermal pulse(s) and its potential 

to heat the Mesozoic sediments, which covers the Palaeozoic basement. Especially, 

the temperatures and geothermal-gradients that were reached are of mayor interest. 

During a hydrothermal period is convective heat transport the important mechanism, 

which influences the reached temperatures in the upper crust. Therefore, addresses 

a localised detail study at the URG main border fault the potential of fault-bounded 

thermal anomalies caused by ascending hot fluids to heat the surrounding rocks. 

The FT method, which is the base method used here, is a low-temperature 

thermochronological method widely used to quantify the thermal history of igneous, 

metamorphic and clastic sedimentary rocks. In particular, the FT analyses of detrital 

samples provide the advantage to discriminate between a pre-depositional thermal 

history of the provenance regions and a post-depositional basin related thermal 

history (e.g. Brandon 1998, Carter 1999, Bernet & Garver 2005, Armstrong 2005).  

The FT analyses oft the Permian and Mesozoic sediment column in the URG area, 

this study, compared with previous FT studies from the Black Forest and the Vosges 

(Michalski 1988, Wyss 2000, Timar-Geng et al. 2004, 2006a, b) led to a complete 

overview of the FT age signatures of URG pre-rift units. This is a requirement for the 

interpretation of Cenozoic detrital syn-rift deposits of the region by the FT method. 

New FT analyses on Cenozoic samples from the southern URG area led to basal 

insights in the syn-rift river drainage patterns. 
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Concept 
 

 

Chapter I 
 

A palaeo-high-temperature event related to seismic activity at the Upper Rhine 
Graben Main Border Fault: constrained by fission-track and microstructural 

analysis. 
Dresmann H., Keulen N., Gaidies F., Timar-Geng Z., Fügenschuh B., 

Wetzel A. & Stünitz H.  

(in parts published: Dresmann H., Keulen N., Timar-Geng Z., Fügenschuh B., 
Wetzel A, & Stünitz H. 2009. The south-western Black Forest and the Upper Rhine 
Graben Main Border Fault: thermal history and hydrothermal fluid flow. International 
Journal of Earth Science. DOI 10.1007/s00531-008-0391-3 

 

Convective heat transport along structural discontinuities is the main factor 

influencing the regional thermal pattern. This chapter is a combined study of 

microstructural and FT analyses regarding the temperature evolution of an intensely 

deformed fault zone at the border of the Upper Rhine Graben. The importance and 

the influence of hot hydrothermal fluid flow on FT data at an active fault zone are 

shown.  

 

N. Keulen and H. Dresmann have performed the fieldwork. N. Keulen performed 
also the microstructural studies and wrote the corresponding parts of the manuscript. 
F. Gaides performed in collaboration with H. Dresmann the numerical model and 
wrote the Appendix. The first author performed the fission-track analyses, compiled 
and interpreted the data and wrote the first draft of this manuscript. Z. Timar-Geng, 
B. Fügenschuh, A. Wetzel and H. Stünitz helped to shape ideas and improved 
significantly the quality of the resulting text manuscript. 

 
 

Chapter II 
 

Upper Jurassic to Early Cretaceous thermal pulse in the later Upper Rhine 
Graben area 

 
This chapter addresses the Permian to Cenozoic thermal history, which can be 

recognised within the Mesozoic sediments of the southern URG area. In this 

X 



integrated study of fission-track and subsidence analyses on the Mesozoic deposits 

of the area, the relation between heating of sediments by burial and by hydrothermal 

activity is shown.  

 

The author performed the fieldwork, the fission-track analyses, compiled and 
interpreted the data and wrote the manuscript. Z. Timar-Geng, B. Fügenschuh, 
A. Wetzel and A. Kounov discussed ideas and improved the resulting text 
manuscript. 
 

 

Chapter III 
 

Thermal evolution and provenance regions of Cenozoic sediments from the 
southern Upper Rhine Graben 

 

During the rifting of the Upper Rhine Graben (URG) various fluvial drainage systems 

developed, were changed and later disappeared. FT analyses of these drainage 

system deposits was performed and provided information on the thermal history of 

their source areas. In addition, this type of analysis also allowed the determination of 

the post-depositional basin related thermal history. 

 

The author performed the fieldwork, the fission-track analyses, compiled and 
interpreted the data and wrote the manuscript. Z. Timar-Geng, B. Fügenschuh, 
A. Wetzel and A. Kounov discussed ideas and improved the resulting text 
manuscript. 
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I. A palaeo-high-temperature event related to seismic activity at the 
Upper Rhine Graben Main Border Fault: constrained by fission-
track and microstructural analysis 

 
Dresmann H.1, Keulen N.1*, Gaidies F.2, Timar-Geng Z.3**, 

Fügenschuh B.4, Wetzel A.1 & Stünitz H 1*** 
 
 

1Geologisch-Paläontologisches Institut, Universität Basel, Bernoullistrasse 32, CH-
4056 Basel, Switzerland; *) now at: GEUS, Øster Voldgade 10, DK-1350 København 
K, Denmark; ***) now at: Institutt for geologi,Universitetet i Tromsø, Dramsveien 210, 
9037 Tromsø, Norge 
2Mineralogisch-Petrographisches Institut, Universität Basel, Bernoullistrasse 30, CH-
4056 Basel, Switzerland 
3Geologisches Institut, Albert-Ludwigs-Universität Freiburg, Albertstr. 23b, D-79104 
Freiburg, Germany; **) now at: Geoenergie Bayern GmbH, Schwandorfer-Str. 12, 
93059 Regensburg, Germany  
4Institut für Geologie und Paläontologie, Universität Innsbruck, Innrain 52, A-6020 
Innsbruck, Austria 

 

(in parts published: Dresmann H., Keulen N., Timar-Geng Z., Fügenschuh B., 
Wetzel A, & Stünitz H. 2009. The south-western Black Forest and the Upper 
Rhine Graben Main Border Fault: thermal history and hydrothermal fluid flow. 
International Journal of Earth Science. DOI 10.1007/s00531-008-0391-3) 
 

 

Abstract 

Apatite and zircon fission-track (FT) analyses on fault rocks, combined with 
detailed microstructural observations, have been carried out to constrain the 
influence of highly localized thermal anomalies on FT data. The differentiation 
between a regional thermal evolution and local fault-related formation of 
thermal anomalies provides a model to explain for a wide overlap in apatite 
and zircon FT ages. 
Near the village of Kandern (Upper Rhine Graben, Germany) the eastern 
Main Border Fault intersects a Palaeozoic structure. FT analysis of fault-
affected material yields zircon FT central ages that are distinctly younger 
(109 ±17 Ma and 120 ±20 Ma) than those documented in the adjacent area 
(Black Forest and Vosges) in general (136 ±16 Ma - 312 ±29 Ma). The spread 
in zircon single grain ages (44 ±32 Ma – 284 ±99 Ma) broadly overlaps with 
the apatite FT single grain age distributions (13 ±8 Ma - 176 ±134 Ma). 
Microstructural analyses indicate repeated tectonic activity since the Variscan 
orogeny, in which the youngest cataclasite generation has been formed during 
a seismic or fast a-seismic event associated with an enhanced fluid flow. 
Numerical modelling compared to FT annealing experiments suggests that a 
short-lived heat pulse (about 30-45 h) with a temperature of 350 °C to 400 °C 
is able to produce the observed FT age record. Therefore, a local, fault-
related thermal event is proposed, hot fluids flowed along short-lived, high 
permeable pathways that formed during earthquakes. The most probable 
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timing of such an anomalous heating event is the Late Eocene, which is 
evidenced by interpretation of apatite and zircon FT data in the light of the 
Upper Rhine Graben evolution. 
 

 

1. Introduction 
 
Thermal anomalies within active rift systems are very common features. In the 

Upper Rhine Graben (URG), several of these thermal anomalies have been 

identified (e.g. Haas and Hoffmann 1929, Werner and Doebl 1974, 

Teichmüller 1979, Person and Garven 1992, Schellschmidt and Clauser 1996, 

Lampe and Person 2002). Today thermal springs document such anomalies 

for instance the springs of Baden-Baden (Wohnlich 1996). Recently, areas 

with high geothermal gradients are investigated and explored for their 

potential of geothermal energy.  

Faults play a major role as pathways for thermal fluids and may lead to locally 

elevated temperatures within their vicinity. Thermal springs and hydrothermal 

ore deposits are often related to such structural discontinuities (e.g. Sibson 

1990). 

East of the village Kandern at the south-eastern side of the URG, a road cut 

expresses the junction of the eastern URG Main Border Fault with a 

Palaeozoic fault (Fig. 1). The outcropping granite is intensely deformed and 

displays substantial cataclasis, joints and discrete fault planes (Fig. 2). 

Consolidated cataclasites and silicate veins indicate that pathways were 

formed allowing for the ascent of fluids. 

Only rarely, fission-track (FT) analysis, which is a low-temperature 

thermochronological method (e.g. Tagami and O’Sullivan 2005), has been 

applied to study such locally occurring anomalies (e.g. Seward and Sibson 

1985, Jelinek et al. 1999, Parry et al. 2001, Murakami and Tagami 2004). For 

a more detailed understanding of the thermal history of such a fault zone we 

analysed the deformation microstructures and integrated these observations 

with new and published FT data. The purpose of this paper is to distinguish 

between the regional thermal evolution and the local fault-related formation of 

thermal anomalies.  
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Fig. 1 
Geological map of the study area (modified after Metz and Rein 1957, Schnarrenberger 1985, 
Chantraine et al. 1996, Ernst and Herrgesell 1996, Ustaszewski et al. 2005) DB Dinkelberg 
Block, BF Belfort, BS Basel, FR Freiburg, MBF main border fault, K Kaiserstuhl volcano. 
 

 

2. Geological framework and samples 
 
The studied area is situated in SW Germany between the Black Forest, the 

URG and the associated Dinkelberg Block (Fig. 1). Regional metamorphism, 

large-scale thrust tectonics and extensive magmatic activity affected the pre-

Variscan rocks during the Variscan orogeny (e.g. Eisbacher et al. 1989, 

Echtler and Chauvet 1992, Hann and Sawatzki 2000, Ziegler and Dèzes 

2005). At the end of the Variscan orogeny numerous intramontane basins 

formed, among them the so-called Permo-Carboniferous Basin of Northern 

Switzerland (e.g. Thury et al. 1994). The Dinkelberg Block is located in the SE 

of the Black Forest; its northern border spatially coincides with the northern 

border of the Permo-Carboniferous Basin of Northern Switzerland (Fig. 1). 

During the Mesozoic, thermal subsidence and subordinate extensional crustal 

movements led to the deposition of several hundreds of meters of continental 
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or shallow marine sediments (e.g. Geyer and Gwinner 1991, Ziegler and 

Dèzes 2005). During the Cenozoic, the URG evolved in response to a 

changing stress field and reactivation of pre-existent Palaeozoic structures 

(e.g. Schumacher 2002, Hinsken et al. 2007). Middle Eocene fresh-water 

limestones are the first indicator of the onset of subsidence in the URG area 

(e.g. Berger et al. 2005a,b); in addition, the Eocene-Oligocene alluvial fan 

deposits along the basin margins indicate an increasing relief and erosion of 

the rift flanks (Duringer 1988, Hinsken et al. 2007). In the southern URG, 

Upper Oligocene to Miocene strata were largely eroded due to Miocene 

regional uplift (e.g. Laubscher 1987, Ziegler 1994, Sissingh 1998, Berger et al. 

2005a and b). At that time the uplift of the graben flanks (Vosges and Black 

Forest) started. In the study area, the NNE-trending and nearly vertical URG 

Main Border Fault cuts the WNW-ESE striking Kandern-Hausen Fault east of 

the village Kandern (Figs. 1, 2). In the following, this junction will be called 

“Kandern Fault Zone”. The Kandern-Hausen Fault separates the Black Forest 

from the Dinkelberg Block, which takes an intermediate tectonic position 

between the Black Forest and the URG in the west. Here, Triassic and 

Jurassic strata are still preserved on top of thick Upper Permian sediments. 

The Kandern-Hausen Fault formed during the Palaeozoic as a dextral 

transtensive normal fault (Wirth 1984) and has been reactivated during the 

formation of the URG. Near Kandern along a steeply SSW-dipping fault plane 

(Fig. 2) a post-Mesozoic vertical displacement of about 450 m has been 

estimated (Wilser 1914). However, since no marker horizon is available on the 

hanging wall, this value bears some uncertainty. A vertical displacement of ca. 

1500 m was estimated along the Main Border Fault between the Dinkelberg 

Block and the URG (Gürler et al. 1987). Towards the Graben interior the Main 

Border Fault was accompanied by a complex set of structures, which form a 

step-like escarpment and accommodate further graben subsidence. 
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Fig. 2 
Detailed geological map of the Kandern Fault Zone (modified after Hinsken 2003) with 
structural measurements; lower hemisphere, equal area projections (K. Ustaszewski in 
Dresmann et al. 2004)  
a) Rhenish-trending cataclasite (diameter of coin = 2.3 cm) 
b) sampled Rhenish-trending cataclasite with adjacent wall-rock (HD129) 
 

About 2.5 km NW of Kandern the Feuerbach diatreme forms the 

southernmost evidence of Cenozoic volcanic activity in the URG. Although the 

Feuerbach diatreme has never been dated directly, its mineralogical and 

petrographical similarities with the Kaiserstuhl volcanism suggest a Cenozoic 

age (Schreiner et al. 1957). Yet, the relevance of the Feuerbach diatreme with 

respect to rifting is still unknown.  

Sample material 

Two groups of samples have been collected. A first set of samples covers a 

wide area and serves to evaluate the regional thermal history (Fig. 1). The 

second set was taken from the Kandern Fault Zone (Fig. 2) to decipher the 

fault-related local thermal history. The regional sample set consists of four 

samples from the uplifted Black Forest crystalline basement (HD179, HD180, 

HD181, HD182), two samples from the Upper Permian sedimentary rocks of 

the Dinkelberg Block (HD74, HD184) and one sample from the Lower Jurassic 
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sedimentary rocks (HD125) within the stepwise faulted graben margin at 

Kandern (Figs. 1, 2). 

The samples from the Kandern Fault Zone were collected from a ca. 400 m 

long road cut (Fig. 2). The granite at the western end of the road cut is 

intensely deformed by cataclasis. The individual cataclasites are 

approximately 5 to 30 cm wide and follow the Rhenish NNE-SSW trend. 

Towards the east the degree of cataclastic deformation decreases. The 

orientation of the fault zones changes as they merge into the strike of the 

Kandern-Hausen Fault (WNW-ESE) in the eastern part of the road cut. 

Two consolidated cataclasites and their adjacent wall-rock (HD129, HD130; 

ca. 10x10x20 cm in size) have been sampled (Fig. 2). The cataclasites are 

associated with a Rhenish NNE-SSW striking fault set, which forms part of the 

several meter thick URG Main Border Fault. Additionally, a nearly undeformed 

granite (HD128) has been collected some 100 m east of the cataclasite 

sample location. It originates directly from a subordinate fault plane, which 

strikes parallel to the Kandern-Hausen Fault. Sample HD180, an undisturbed 

granite, has been collected about 10 m NE from sample HD128. This sample 

has been used as a reference of undeformed rock close to the fault.  

 
 
3. Methods and analytical procedure  
 
Fission-Track method 

The thermochronological interpretation of fission-track (FT) data is based on 

FT densities resulting mainly from the spontaneous fission of the unstable 

isotope 238U and the annealing behaviour of previously produced FTs, at 

elevated temperatures. The temperature interval within annealing rates 

increase is the so-called partial annealing zone (Wagner and van de Haute 

1992), which is well established for apatite (APAZ) ranging from 60 °C to 

120 °C with respect to a geological time span of 10 Myr (e.g. Green 1989). 

Nevertheless, due to the chemical composition of apatite, variations of the 

total annealing temperature are known (e.g. Gleadow and Duddy 1981). For 

zircon the estimated partial annealing zone (ZPAZ) ranges between 180 °C 

and 380 °C (Tagami 2005). With respect to a geological time span of about 
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1 Myr to 10 Myr, FTs above this temperature interval disappear fast whereas 

below they are stable (for detailed overview sees Reiners and Ehlers 2005). 

In this study, FTs in apatite and zircon were analysed by the external detector 

method after Naeser (1976) and Gleadow (1981). The analytical procedure 

was identical for all samples. Apatite and zircon grains were separated from 

each sample (4 to 6 kg rock material) using standard crushing, magnetic and 

heavy liquid methods. The zircon samples were mounted in Teflon PFA®, 

while the apatite samples were embedded in epoxy resin. After polishing, the 

apatites were etched for 40 s in 6.5 % HNO3 at ~18 °C and the zircons for 6 to 

12 h in a eutectic-melt of KOH-NaOH (220 °C). Mica was used as an external 

detector and CN-5 (apatite) and CN-1 (zircon) standards as dosimeter 

glasses. Irradiation with thermal neutrons was carried out at the Australian 

Nuclear Science and Technology Organisation facility (ANSTO).  

Mica detectors were etched in 40 % HF for 40 min at ~18 °C. Tracks were 

counted at a magnification of 1600x (dry) on a Zeiss Axioplan2 optical 

microscope with a computer-controlled motorised scanning stage, run by the 

program “FT-STAGE 3.11” (Dumitru, 1993). 

The FT age determination followed the zeta calibration method (Hurford and 

Green 1983) with a zeta value of 380.67 ±10.58 (Durango, CN-5) for apatite 

and 145 ±6.88 (Fish Canyon Tuff, CN-1) for zircon. The FT ages and errors 

were calculated using the software Trackkey V.4.1 (Dunkl 2002). Unless 

mentioned all reported ages are central ages (Galbraith and Laslett, 1993). 

 

Microstructural analysis 

Microscopy 

Thin sections of selected granitoid cataclasites were made for optical and 

scanning electron microscope (LM and SEM) studies. The samples originate 

from the same localities as the FT samples HD129 and HD130. Additionally, 

cathodoluminescence (CL) was studied on a light microscope connected to a 

CL-camera using 25kV acceleration voltage and 0.025 mA sample current 

(Ramseyer et al. 1989). 

Grain size analyses 

Several sets of back-scattered electron contrast SEM micrographs with a 

range of magnifications from 50x to 5000x were used to obtain the grain size 
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distribution of the cataclasites. After manually tracing the grain boundaries in 

each of the individual images the grain areas were measured automatically 

with help of the public domain software ImageSXM 

(http://www.liv.ac.uk/~sdb/ImageSXM/) and recalculated to radii of their 

equivalent circles. By combining the analyses of the individual images a 

composite grain-size distribution over several orders of magnitude can be 

obtained, described as a log (frequency) - log (size) histogram (Keulen et al. 

2007). The slope, D, of the best-fit power-law curve through the points in this 

histogram represents the grain-size distribution of the fault gouge (Sammis et 

al. 1987). Post-fracture healing of cataclasites reduces the relative amount of 

small grains with respect to large grains and causes a decrease in the 

D-value. The decrease in D-value may provide a measure for the 

consolidation of cataclasite (Keulen et al. 2008). 

 

 

4. Results 
 
Burial depth estimate 
For reconstruction of the thermal history knowledge of the burial depth of the 

samples before the onset of Cenozoic rifting is crucial. Although a direct 

estimate is impossible due to the lack of reference horizons a minimum value 

can be given based on the extrapolated thickness of the eroded Mesozoic 

sediments plus the approximate amount of eroded Black Forest crystalline 

basement. The Otterbach II borehole near Basel/Switzerland comprises a 

fairly complete section close to the study area. About 1350 m of Triassic to 

Upper Jurassic sediments were deposited on top of the Palaeozoic units 

(Häring 2002). The thickness of eroded crystalline basement at the sampled 

outcrops has been estimated to be at least ca. 300 m to 600 m, based on the 

present altitude of the outcrops beneath the mapped base of the Triassic 

palaeo-surface in the Black Forest (e.g. Paul 1955, Zienert 1986, 

Wimmenauer and Schreiner 1990). This estimate, however, does not take into 

account vertical block tectonics in the Black Forest, which at present cannot 

be accurately quantified (Huber and Huber-Aleffi 1990). In this study, a pre-

rifting minimum sample depth (Mesozoic cover plus eroded basement) of 

http://www.liv.ac.uk/~sdb/ImageSXM/
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1650 m to 1950 m has been used, depending on the topographic position of 

the sample.  

 
FT-Analysis 

Ten samples yielded 9 apatite and 10 zircon ages. The results are displayed 

in Table 1 according to the I.U.G.S. recommendations (Hurford 1990) and as 

radial plots (Galbraith 1988, 1990) in Figure 3. 

 

 
Tab.1 
Apatite and zircon FT data 
Coordinates (x,y) of Gauss Krüger DHDN Zone 3, Elevation (elev.) in metres above sea level, 
Number of grains counted (n). ρs, ρi and ρd are spontaneous, induced and dosimeter track 
densities in 105 tracks/cm2. N are number of tracks counted shown in brackets. Analyses by 
external detector method using 0.5 for the 4π/2π geometry correction factor. Disp., 
Dispersion, according to Galbraith and Laslett (1993). Ages calculated as central ages 
according to Galbraith and Laslett (1993) using dosimeter glass CN5 for apatite with ζCN5 = 
380.67±10.58 (H. Dresmann) and CN1 for zircon with ζCN1 = 145±6.88 (H. Dresmann). P(χ2) 
is the probability of obtaining χ2 value for ν degrees of freedom where ν = number of 
crystals-1 
 

Zircon samples 

Zircons in all samples exhibit a relatively strong zonation and metamictization. 

Therefore only a low number of grains could be analysed. The low number of 
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datable grains influences the statistics. Especially the χ2-test, a commonly 

used tool to detect multiple age populations within single samples, depends 

on the amount of counted tracks. For a low numbers of dated grains and, 

therefore, low numbers of counted tracks the overall significance of the χ2-test 

is low (Timar-Geng et al. 2004, Galbraith 2005). 

In the regional sample set, which acts as the reference system for the fault-

related samples, the zircon central ages range between 155 ±23 Ma (HD179) 

and 250 ±26 Ma (HD184) and the single grain ages between 80 ±16 Ma 

(HD181) and 428 ±94 Ma (HD74) (Tab. 1, Fig. 3). Central ages of the detrital 

samples HD125 and HD184 do not differ significantly from their deposition 

ages within errors. On the other hand, single grain ages from the Upper 

Permian sample HD74 show a tendency corresponding to Jurassic ages. 

Zircons from the faultzone samples show central ages between 109 ±17 Ma 

(HD128) and 196 ±38 Ma (HD129) and a single grain age distribution between 

44 ±32 Ma (HD129) and 284 ±99 Ma (HD128). Compared to the regional 

samples, a clear shift towards younger ages can be observed. 

 

Apatite samples 

The majority of the apatite grains were of good quality. Nevertheless, only in 

one sample (HD128) at least a low number (17) of confined horizontal tracks 

could be measured, yielding a mean track length of 10.5 μm. Yet due to the 

low number of measurable tracks this sample is not used for thermal 

modelling. The regional samples yield central ages ranging from 56 ±5 Ma 

(HD74) to 103 ±9 Ma (HD182) together with an overall spread of single grain 

ages between 16 ±10 Ma (HD125) and 202 ±36 Ma (HD179) (Tab. 1, Fig 3). 

The detrital samples display distinctly younger ages compared to their 

deposition ages. All regional samples fail the χ2-test, which implies a deviation 

from a true cooling age (Tab. 1). One exception is the Upper Permian sample 

HD184 with a χ2-value of 6.27 %. The fault related samples show central ages 

(55 ±4 Ma (HD128) and 60 ±12 Ma (HD129)) and single grain ages (13 ±8 Ma 

(HD128) and 176 ±134 Ma (HD129); Fig. 3) comparable to the data set from 

the Kandern region. 
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Fig. 3 
Apatite and zircon FT radial plots of the Kandern regional sample set and of the Kandern 
Fault Zone (shaded) 
 

Microstructural observations  
Two cataclastic deformation episodes can be distinguished for the Rhenish-

striking faults of the Kandern Fault Zone. Evidence for the older episode 

(cataclasite I) are large, multi-component clasts, which have been healed and 

cemented before the formation of a younger cataclasite (cataclasite II; Fig. 4). 

In cataclasite I, quartz and feldspar are deformed by fracturing (Fig. 4). Quartz 

and feldspar clasts in discrete fractures are completely healed and have lost 
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their angular shapes (Fig. 4c,d). Instead, they appear as well-rounded 

(recrystallized) grains. In parts, this recrystallized material constitutes more 

than 30% of the volume of the cataclasite I. Some healed cracks are similar to 

narrow zones of bulging recrystallization (Fig. 4c,d; Stipp et al. 2002a, b), but 

other features of extensive crystal plastic deformation are missing. 

 
Fig. 4 
Backscatter-contrast scanning electron micrographs (a,b) and crossed polarized light (c,d) 
showing typical microstructures from the Kandern Fault zone. 
(a) Cataclasite-II, in which larger clasts consist of fractured and re-cemented clasts 
(Cataclasite-I) 
(b) Thin barite veins (white, arrows) cut Cataclasite-I and do not continue into the matrix of 
Cataclasite-II. 
KFS = K-feldspar, QTZ = quartz, PLG = plagioclase. 
(c,d) Along a healed crack quartz has been deformed by bulging recrystallisation (arrows). 
 

Kinking and gliding along (001) planes is observed in deformed biotite at the 

edges of cataclasite I clasts. In the cataclastic matrix and within some of the 

fractures in K-feldspar and quartz, hematite has been precipitated. After 

formation of cataclasite I, a set of thin barite veins cuts through the rocks (Fig. 

4b). The barite veins are more localised phenomena than the hematite 

precipitations. 
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During formation of cataclasite II fragmented and granulated quartz, feldspar, 

biotite, muscovite, hematite, and multi-component fragments originating from 

cataclasite I form a fine-grained matrix. All minerals show only brittle 

deformation features. Cataclasite II forms clasts ranging from less than 1 μm 

to about 10-20 mm in cross-section (Fig. 4a,b). The observed average size of 

the quartz fragments is slightly larger than for feldspar; most of the larger 

clasts are quartz minerals. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Crossed polarized light and 
cathodoluminescence camera 
micrographs of structures in the Kandern 
Fault zone. 

(a) equivalent image to (b) with adjusted 
(inverted squared) grey-values. 
(a) clasts of Cataclasite-I (K-feldspar, 
white) cemented with light grey 
luminescent material (black arrows). Later 
fractures cut through all minerals and are 
cemented with low-luminescent (dark-
grey/black) material, indicated in (b) with 
white arrows. 
 

Alteration reactions have been observed in the granitoid rock and are 

concentrated in the fine-grained fragments produced during the formation of 

cataclasite II. Inter-growths of chlorite with Fe-Ti-oxides have been observed 

in biotite. Chlorite and K-feldspar are formed at the expense of biotite and 

muscovite. Both K-feldspar and muscovite partly react to form kaolinite. K-

feldspar is partly replaced by albite. A series of syntaxial silicate veins cuts 

through all other structures. The silica-rich veins consist of adularia when 

cutting through K-feldspar and of quartz within quartz or plagioclase minerals. 

By means of cathodoluminescence two generations of silicate deposition have 
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been observed. The first one cements fractures in quartz, plagioclase and K-

feldspar with luminescent material of the same phase (Fig. 5a). The closed 

fractures have the same optical orientation as the minerals in which the 

fractures occur and are hardly visible with LM or SEM (BSE contrast). The 

second generation is represented by the late silicate veins described above 

and is low-luminescent (Fig. 5b). The change from quartz deposition to 

adularia deposition can be observed as a colour change of the vein material 

from black to dark grey (Fig. 5b). 

 
 
 
 
 
 
 
 
 
 
Fig. 6 
Frequency histogram for grain sizes 
determined in cataclasite II of the 
Kandern Fault Zone.  The D-value 
indicates the slope of the log 
(frequency) - log (size) distribution. 
 

 

The grain size distribution fits on a straight line in the log (frequency) - log 

(size) histogram (Fig. 6; D-value = 1.58). The minimum measured grain size 

has a radius of 1 µm and is the smallest grain size present with a statistically 

relevant resolution. The largest measured grain size is limited by the size of 

the thin section and is not the largest size of fragments in the rock. 

 

 

5. Discussion and interpretation 
 
Regional temperature history 

The zircon samples of the Kandern region in the south-western Black Forest 

show similar FT central ages and corresponding single grain ages as the 

dataset of Timar-Geng et al. (2004, 2006; Fig. 7, 8). The FT central ages and 

the single grain ages suggest a Mesozoic thermal overprint reaching the lower 
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boundary of the ZPAZ. Such a scenario has already been proposed by 

Timar-Geng et al. (2004) for the southern Black Forest, with temperatures of 

up to ~250 °C. The few pre-Mesozoic single grain ages in the basement 

samples (Fig. 8) indicate an incomplete reseting and therefore, that the 

Kandern area did not experience temperatures higher than the upper 

boundary of the ZPAZ (~350 °C; Tagami 2005) since Permian times. The 

youngest zircon FT central ages of the reference samples correspond to the 

Early Cretaceous (Fig. 7); thus indicating regional cooling through the ZPAZ at 

that time. 

The apatite FT central ages presented here are about 30 Myr older than the 

youngest of Timar-Geng et al. (2006; Fig. 7). These could either indicate 

earlier cooling or a less pronounced late Eocene heating of the Kandern 

region in comparison to the area further North (Timar-Geng et al. 2006). 

Furthermore, the Middle Cretaceous apatite FT central ages suggest a 

resetting during the Triassic and Jurassic thermal pulse. The apatite FT ages 

show almost complete resetting of the detrital grains after deposition. 

 
Fig. 7 
Fission-track central-ages for apatite 
(black) and zircon (white) originating 
from Black Forest, Kandern region 
and the Kandern Fault Zone. Error 
bars (grey) indicate 1σ. The apatite 
FT central ages of the Kandern region 
are slightly older compared to that of 
Timar-Geng et al. (2006). Zircon 
samples of the Kandern Fault Zone 
yield the younger FT central-ages 
than the reference sample sets, while 
the apatite FT central-ages do not 
differ significantly from the regional 
sample set. 
 

 

A couple of Miocene apatite single grain ages imply slow cooling up to the 

Miocene or a subordinate heating event followed by cooling below APAZ 

conditions, possibly related to Miocene volcanism. However, an accelerating 

cooling trend from early Miocene times onward seems probable and is a 

matter of debate (Timar-Geng et al. 2006, Ziegler and Dèzes 2007).  
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Local temperature history of the Kandern Fault Zone 

 

Microstructures 

The fracturing and cementation structures of quartz resemble bulging 

recrystallization in cataclasite I. Similar microstructures have been observed 

at the transition between brittle and crystal-plastic deformation in natural rocks 

(Fitz Gerald and Stünitz 1993, van Daalen et al. 1999, Stipp et al. 2002, a, b, 

Trepmann and Stöckhert 2003). For bulging recrystallization in quartz, 

temperatures above approximately 280 °C ± 30 °C at strain rates of 10-12 s-1 

have been inferred (Stipp et al. 2002a,b), whereas Trepmann and Stöckhert 

(2003) infer seismic pulses at ambient temperatures of 300-350 °C. In any 

case, the deformation temperature of cataclasite I appears to have been lower 

than about 280-300°C because of the lack of pervasive crystal-plastic 

deformation microstructures. Biotite grains inside cemented clasts of 

cataclasite I have been deformed by kinking and gliding. Laboratory 

experiments on granites under high strain rates (10-4 to 10-6 s-1) at 300 °C 

indicate that biotite deforms by a combination of fracturing, gliding and kinking 

(Tullis and Yund 1977, Kato et al. 2003, Keulen et al. 2007). The observed 

glide and kinking in biotite is consistent with slightly elevated temperatures of 

deformation, as inferred for quartz but below 280 °C. 

In cataclasite II, all minerals have been deformed in a brittle manner. No 

evidence for aggregates of rounded quartz grains has been observed. Biotite 

is always fractured. Mainly brittle behaviour has been observed for biotites 

that have been experimentally deformed at 180°C under strain rates of 10-4 to 

10-6 s-1 (Kato et al. 2003). The transition from brittle to semi-brittle behaviour 

of biotite in natural fault zones is estimated at about 150 °C by Lin (1999). 

After the formation of cataclasite II silica-rich veins have formed. Cataclasis 

has resulted in an enhanced permeability and a high grain surface area to 

grain volume ratio, which favours the dissolution of silica. As silica is very 

insoluble and, therefore, very immobile at temperatures below approximately 

70 °C (e.g. Truesdell 1984), the temperature is assumed to have been higher 

than circa 70 °C. Temperatures below 150 °C are estimated for the formation 

of cataclasite II based on the veins, and the quartz and biotite microstructures. 
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Cathodoluminescence investigations confirm the presence of two generations 

of cataclasites formed under different temperature conditions. Two phases of 

vein cementation are observed in quartz and K-feldspar. In cataclasite I, 

fragments are grown together with newly deposited luminescent material; 

cataclasite II veins are filled with non-luminescent material (Fig. 5). Material 

precipitated under higher temperatures is luminescent, but vein filling 

precipitated under diagenetic temperatures does hardly show any 

luminescence (e.g. Ramseyer et al. 1992; Milliken and Laubach 2000). 

The grain-size distribution of cataclasite II shows a D-value of 1.58 (Fig. 6). 

This value is the same as has been measured for parts of the San Andreas 

Fault (D = 1.60; Sammis et al. 1987), the Qin-Ling Mountain, China (D = 1.59; 

Shao and Zhou 1996), and the Nojima Fault Zone (D = 1.59; Boullier et al. 

2004, Keulen et al. 2008). In these three areas several earthquakes occurred 

during recorded history and their cataclasites are associated with 

pseudotachylytes, which are generally assumed to be the most likely indicator 

for seismic deformation (e.g. Magloughlin 1992). Keulen et al. (2008) have 

shown that for granitoid samples, experimentally deformed at a rate of 10-4s-1, 

the D-values of 1.5 to 1.6 are the result of healing after heat treatment of the 

samples in presence of a fluid. The observed grain size distribution of 

cataclasite II in the Kandern Fault Zone is, therefore, most likely the result of 

healing of the cataclasite after deformation. 

 

Interpretation of the FT data in comparison with the microstructural analysis 

Apatite FT central ages (Fig. 7) of the fault-related samples plot at the young 

side of the age range of the reference sample set. Therefore, a similar cooling 

path is inferred for the Kandern Fault Zone samples and the regional sample 

set. However, the zircon FT central ages (Fig. 7) display different central ages 

for the fault-related samples HD128 (109 ±17 Ma) and HD130 (120 ±20 Ma) in 

comparison to the reference zircon FT central ages of the Kandern region, 

ranging between 155 ±23 Ma and 202 ±23 Ma. Furthermore, the two zircon 

FT ages from the Kandern Fault Zone are younger than the ages of the Black 

Forest determined so far (Timar-Geng et al. 2004, 2006). These points to 

somewhat higher temperatures possibly due to a fault related thermal 

overprinting and (partial) resetting of these samples. The central age of 



18 

sample HD129 (196 ±38 Ma) is relatively uncertain, as only 5 grains have 

been dated. 

As outlined above, formation of cataclasite I occurred under higher 

temperatures (less than 280 °C) than cataclasite II (less than 150°C). These 

syn-deformational temperatures may have allowed for full annealing of fission 

tracks in apatite and partial annealing in zircon. Therefore, apatite FT central 

ages (Fig. 7) point to a pre-Cenozoic formation of cataclasite I. The 

combination of the estimated minimum overburden of the Kandern Fault Zone 

of about 1950 m (see above) for the late Jurassic with the inferred 

temperatures of approximately 250 °C to 280 °C for the presently exposed 

level of the Kandern Fault Zone implies a relatively high palaeo-geothermal 

gradient of about 128 °C/km to 154 °C/km. Such high gradients have possibly 

been established by the Late Palaeozoic emplacement of nearby outcropping 

granitic plutons (Echtler and Chauvet 1992, Schaltegger 2000), thus, 

suggesting formation of cataclasite I during the Late Variscan orogeny. 

Alternatively, hydrothermal activity during the Mesozoic (e.g. Wetzel et al. 

2003) and related tectonic activity could also have provided the necessary 

temperature and fluid conditions to produce the observed microstructures.  

Repeated fracturing after intermittent healing indicates reactivation of the 

faults within the Kandern Fault Zone. For cataclasite II a geothermal gradient 

of about 77 °C/km can be calculated by combining the estimated deformation 

temperatures of max. 150 °C with the inferred sample depth (1950 m). Such 

temperatures may allow for annealing of FTs in apatite, but are insufficient for 

annealing of FTs in zircon grains (e.g. Green et al. 1986, Yamada et al. 1995). 

Thus, it may be inferred that cataclasite II has formed after cooling through the 

ZPAZ. This lower limit is based on the youngest single grain age cluster, 

which comprises the thermally sensitive zircon grains (Brandon et al. 1998, 

Fügenschuh and Schmid 2003). 
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Fig. 8 
Zircon fission-track single grain 
ages; N = number of counted 
grains; width of bars 5 Ma; U/Pb 
age of the Marlsburg granite (Todt 
1976) and of the Schlächtenhaus 
granite (Schaltegger 2000) are 
given for reference at the bottom. 
 

 

The youngest zircon single grain ages from the Black Forest (Timar-Geng et 

al. 2004, 2006) and the Kandern region (this study) are dated at ca. 80 ±16 

Ma (HD181) (Fig. 8). In contrast, one third of the zircon single grain ages of 

the fault related samples (HD128, HD129, HD130) yielded Late Palaeocene to 

Middle Eocene ages, thus, clearly younger than 80 ±16 Ma (HD181)(Figs. 3, 

8). At first sight this seems to be contradicted by the apatite age spectrum of 

the same fault-related samples, which range between 13 ±8 Ma (HD128) and 

176 ±134 Ma (HD129) (Figs. 3, 9). This unusual broad overlap, ranging in 

time between 44 ±32 Ma (HD129) (youngest zircon single grain age) and 

176 ±134 Ma (HD129) (oldest apatite single grain age) asks for a more 

detailed inspection. 
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Fig. 9 
Apatite fission-track single grain 
ages; N = number of counted 
grains; width of bars indicates 5 Ma 
 

 

Generally, the partial annealing zones of zircon and apatite are well separated 

by a temperature gap of about 60°C (e.g. Wagner and van den Haute 1992, 

Tagami and Shimada 1996, Tagami et al. 1998). For a fast cooling through 

the ZPAZ and the APAZ the annealing kinetics of each grain and the 

individual error of the single grain age determination do not allow for a 

significant separation between single grain age distributions of apatite and 

zircon within one sample. Such an overlap can be observed in volcano-

sedimentary layers (e.g. Odin et al. 1991) or in fast exhuming areas affected 

by meteoric fluids (e.g. Fügenschuh et al., 1997). 

Alternatively, an overlap in the apatite and zircon single grain age distribution 

can result from an inhomogeneous temperature distribution on the scale of a 

few tens of centimetres. Such a steep temperature gradient can be produced 

by heating one side of the sample to temperatures valid for zircon annealing, 

followed by fast cooling. 
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Murakami and Tagami (2004) modelled a steep temperature gradient of 

1000 °C to 200 °C within a distance of 1 cm in a pseudotachylyte and its 

adjacent fault gouge in the Nojima Fault, Japan. Within a few millimetres, they 

determine total-, partial- and no-resetting zones of zircon FTs for a short (5 s) 

seismically induced heating event followed by fast cooling (10 s). In the case 

of the Nojima Fault pseudotachylyte formation a background temperature of 

about 200 °C avoids further fast cooling into the APAZ. 

This example illustrates that a steep temperature gradient over a short 

distance can be established only by a short localised heating event within a 

relatively cool environment. In such a scenario, a rock becomes heated at one 

side and different annealing areas should be discernible (Fig. 10), which 

comprise “hot” to “cold” areas documented by total-, partial- and no-resetting 

of both, apatite and zircon. The zircon total- and partial-resetting occurs within 

the apatite total-resetting area. Therefore, the earlier thermal history is stored 

at the sample’s “cold” side, whereas at the “hot” side the influence of the 

young heating episode is documented. 

 

 
Fig. 10 
Schematic sketch on hand-specimen scale of a wall-rock heated during short time period 
showing the influence on the FTs in apatite and zircon. The size of each zone depends on the 
duration of heating, on the thermal diffusivity, on the heat source temperature, on the 
environmental temperature and the three-dimensional shape of the contact between heat 
source and wall-rock 
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Assuming that cataclasite II formed while hot fluids percolated through it, they 

could have heated the (undisturbed) wall-rock conductively. Thus, a steep 

temperature gradient of some 20 cm width could have been established. The 

relevant parameters for conductive heat flow are the duration of heating, 

thermal diffusivity, heat source temperature, background temperature and the 

geometry of the contact between heat source and wall-rock. 

For the Kandern Fault Zone a high fluid flow during and after the formation of 

cataclasite II, is suggested by the silicate veins. Fluid flux can increase along 

the fault zones before, during or after earthquakes (hours to days and 

sometimes for years) due to an enhanced permeability (e.g. Sibson 1990, 

Hill et al. 1993, Tokunaga 1999, Huang et al. 2004). For a relatively short time 

fluid temperature may increase as well (e.g. Mogi et al. 1989, Sibson 1990, 

Hamza 2001). Although no pseudotachylyte was observed at the Kandern 

Fault Zone, shear heating may eventually have occurred at larger depth. 

Since almost all mechanical work associated with movement on the fault 

plane is converted into heat (Scholz 1990) this may provide an additional heat 

source. Consequently, the heat can be transported to the studied part of the 

fault plane by means of fluid flow. The short duration of the heating event can 

be explained by fast sealing of the seismically induced pathways (Parry 1998). 

Sustained temperatures higher than 150 °C for extended periods of time 

during or after the formation of cataclasite II are unlikely. They would lead to 

recrystallisation of biotite and, at even higher temperatures, of quartz, and 

cause fast grain growth with luminescent material deposited around the 

fragmented gouge. However, temperatures of up to about 400°C might not 

lead to recrystallisation and grain growth if lasting only a very short period of 

time (in the order of hours or a few days). Therefore, for short durations the 

seismically induced fluid flow might have been sufficiently hot to start 

annealing of FTs in zircons without influencing the low-temperature 

microstructures. 
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Numeric model 

To combine the observed FT data with the data of FT annealing experiments 

a numerical model was designed, allowing for a rough estimate of the 

temperature and duration of the heating of cataclasite II and their wall-rock by 

a hot fluid.  

 
Fig. 11 
Relationship between FT annealing experiments and modelled heat conduction within granite 
a) The Arrhenius diagram displays the FT lengths annealing behaviour of apatite (Green et al. 
1986) and zircon (Yamada et al. 1995), respectively, depending on heating temperatures and 
heating durations. Hatched zones indicate the area of measurable annealing of track lengths 
in zircon and totally annealing of FTs in apatite, respectively. r = track lengths reduction (r = 
L/L0; with L= mean lengths of tracks and L0 = track lengths of the induced tracks).  
b) Diffusion of heat around a heat source (400°C) into a rock (granite) at an ambient 
temperature of 80°C. Thin lines are isochronal time steps. For modelling procedure see 
Appendix. 
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Experimental FT annealing studies on zircon (e.g. Carpena 1992, Yamada et 

al. 1995, Tagami et al. 1998) and apatite (Green et al. 1986, Crowley et al. 

1991, Ravenhurst et al. 2003) cover a large part of the temperature range 

typical for hydrothermal fluids. 

The results of experimental data of Yamada et al. (1995) and Green et al. 

(1986) are plotted in an Arrhenius diagram (Fig. 11a), which displays the FT 

length annealing behaviour for apatite and zircon in relation to the 

temperatures and durations of a heating event. The experiments cover 

heating durations of a few minutes to 1000 hours and they show FT length 

reduction “r” (with: r=L/L0; L= mean lengths of tracks and L0 = track lengths of 

the induced fresh tracks) in zircon between 350 °C to 750 °C and in apatite 

between 100 °C to 398 °C. The annealing experiments show that track 

annealing increases with increasing temperature or increasing heating 

duration. 

To correlate the observed FT data of the Kandern Fault Zone with the data of 

the annealing experiments a 1-D numerical model was designed. It simulates 

heat conduction trough an undeformed “cold” wall-rock (granite) initiated by 

hot fluids flowing through the cataclasite II or along a discrete permeable fault 

plane (see Appendix for further details).  

In the case of the annealing experiments, the temperatures were fixed after 

starting the experiments for the whole sample and for a distinct duration. In 

contrast, within the numerical model, heat enters the system at the cataclasite 

– wall-rock boundary and propagates into the wall-rock. Therefore, 

combinations of the annealing experiments with the numerical model offer 

only rough estimations to clarify the state of annealing of FTs in the 

conductive heated wall-rock. 

In the model, the ambient temperature was set to 80 °C, which is estimated 

from the microstructures of cataclasite II and matches the observed FT data 

(see above). The heat source (fluid) temperature was set to 400 °C. 

Therefore, the model covers the whole temperature range used in the apatite 

annealing experiments (Green et al. 1986) and the “low” temperature 

annealing experiments in zircon (Yamada et al. 1995). 

Immediately after the model start, the zircons at the contact reached 

temperatures exceeding the ZPAZ. The annealing experiments of Yamada et 
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al. (1995) on FTs in zircon, with an initial length of 11.4 μm, show that track 

length reduction starts for a heating duration between 1 h to 11 h at 

ca. 400 °C (Fig. 11a). Such conditions are comparable with the contact zone 

(heat source - wall-rock) in the numerical model. Furthermore, the annealing 

experiments suggest the same degree of track annealing in zircon after ca. 

30 h at 380 °C (Fig. 11a). In the numerical model the part of the wall-rock 

within a distance of ca. 2 cm from the heat source experienced 380 °C after 

15 h. Within this 2 cm wide zone, track shortening is predicted to occur after 

45 h. 

The annealing experiments of Green et al. (1986) on FTs in apatite, with an 

initial length of 16 μm, yield about 50 % (r = 0.49) track shortening after 

20 min at these conditions. Complete annealing occurred after ca. 1 h (Green 

et al. 1986). With respect to the 380 °C isotherm in the numerical model and 

after 15 h, the zone of total resetting in apatite propagated 2-3 cm into the 

wall-rock.  

In order to estimate the possible distance from the heat source, which causes 

total resetting of apatite, the more relevant isotherm is at 350 °C. At 350 °C 

about 3 h were needed to reset apatite (Green et al. 1986) and, therefore, the 

zone of complete annealing expanded after 45 h to little less than 10 cm. After 

ca. 45 h the 300 °C isotherm reached a distance of 20 cm from contact. For 

FTs in apatite, Green et al. (1986) found that 20 min were needed to obtain 

about 14 % of track length reduction, for tracks with an initial length of 16 μm 

at a fixed temperature of 300 °C. 

To summarize, the numerical modelling compared to the FT annealing 

experiments suggest a short (~30-45 h) heating event with a heat source of 

350 °C to 400 °C might be able to produce partial annealing of FTs in zircon 

and complete to partial annealing of FTs in apatite within a distance from heat 

source of up to 20 cm. 

The temperature estimate is also affected by the still poorly defined low-

temperature boundary of the ZPAZ. Accumulated radiation damage caused by 

alpha-decay can substantially lower the boundaries of the ZPAZ (Kasuya and 

Naeser 1988). This is especially the case for samples, which were heated up 

to temperatures well within the ZPAZ and remained there for a prolonged 



26 

period of time (Rahn et al. 2004, Timar-Geng et al., 2004). A good data set of 

annealing experiments on highly alpha-damaged zircons is still missing. 

The initial mean track length within the fault related samples prior to reheating 

is not known. Yet initial track lengths heavily influence the FT ages, as short 

tracks disappear rapidly during reheating and lead to an apparent younging. A 

substantial amount of short tracks can be expected for zircons that remained 

in the ZPAZ for a long time, as it is the case within the wider working area 

(Timar-Geng et al. 2004). 

The proposed temperature range of the fluid between 350 °C and 400 °C 

seems rather hot for the uppermost crustal level with a depth of approximately 

1950 m. Fluid inclusion studies at the Cenozoic URG Main Border Fault at 

Guebwiller (Surma et al. 2003) and Badenweiler (Lüders 1994) show 

homogenisation temperatures of 195 °C to 225 °C in Triassic units, with a 

maximum depth of only 1300 m. The studied fault at Guebwiller is of a post-

Early Triassic age and at Badenweiler a Cenozoic formation age is 

determined. 

 

Age estimation of the proposed short thermal event 

The youngest zircon single grain age cluster (44 ±32 Ma (HD129) to 59 ±22 

Ma (HD128), Fig. 3) contains the grains with the lowest thermal stability. 

These grains are the last to close while cooling below the ZPAZ (Brandon et 

al. 1998, Fügenschuh et al. 2003). Thus, the maximum age of the high 

thermal anomaly can be estimated to be younger than ca. 60 Ma. 

The proposed short-lived high temperature event is expected to have caused 

a high degree of FT annealing in apatite. Therefore, a large amount of single 

grains should show the age of the event. Depending on the post-event 

thermal history a further younging of the ages may occur. 

The fact that only a negligible number of apatite single grain ages are younger 

than 35 Ma (Fig. 3) implies a pre-Oligocene age of the inferred thermal event. 

The initial rifting period during the late Eocene (Schumacher 2002) offers ideal 

conditions to generate high-thermal anomalies such as described above. 

Since the timing constraints derived by fission-track dating (35 Ma – 60 Ma) 

coincide with a time span of increased tectonic activity, the anomalous heating 
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event at the Kandern Fault Zone seems likely, to have occurred at late 

Eocene times 

In terms of a possible indication of a heat source providing hot fluids to the 

Kandern Fault Zone the close structural relationship of the nearby, 

chronometrically so far undated, Feuerbach diatreme is worth mentioning.  

 

 

6. Conclusions 
 
The Kandern Fault Zone forms the intersection of two steeply dipping fault 

zones, namely the NNE trending URG Main Border Fault of Cenozoic age and 

the WNW-striking Palaeozoic Kandern-Hausen Fault (Fig. 1). Additionally, the 

Kandern Fault Zone is connected to the Feuerbach diatreme by a set of NW 

to NNW oriented faults (Fig. 1). 

Microstructural analysis of the Kandern Fault Zone indicates repeated tectonic 

activity since the Variscan orogeny. The youngest cataclasite generation (II) 

has been formed in a seismic or fast a-seismic event accompanied by an 

enhancement of the fluid flow and the temperatures of the surrounding rocks, 

which have an ambient temperature below 150 °C.  

FT analysis of fault-affected material yielded zircon FT central ages (109 ±17 

Ma and 120 ±20 Ma) distinctly younger than from surrounding (reference-) 

samples. The spread in zircon single grain ages (44 ±32 Ma – 284 ±99 Ma) 

partially overlaps with the apatite FT single grain ages distributions (13 ±8 

Ma - 176 ±134 Ma). This significant deviation of the thermal history of the 

Kandern Fault Zone from the regional thermal evolution indicates a strong 

influence of a local short-lived thermal anomaly. 

The comparison of the numerical model with the FT annealing experiments 

suggests that a local short-lived heat pulse (~30 - 45 h) with a heat source of 

350 °C to 400 °C is capable to produce the observed FT age record. Such a 

thermal pulse can produce steep gradients causing complete and an 

incomplete resetting of FTs on the hand specimen scale as observed at the 

Kandern Fault Zone. 

The time constraints derived by FT analyses provide a time range for the 

occurrence of such a thermal anomaly between about 60 Ma and 35 Ma. 
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These timing coincides with the initial rifting stage of the URG indicating a 

relationship of the anomalous heating event at the Kandern Fault Zone and 

tectonic events during the Late Eocene. 
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Appendix  
Numerical modelling of heat conduction 
The parabolic partial differential equation 
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is the governing equation for conduction of heat in a 1-dimensional isotropic 

medium, where T is the temperature, t is the time, the quantity D is the 

thermal diffusivity, and x is the distance. This equation can be used to predict 

in a rudimentary fashion the change of temperature with time at a given point 

in space. 
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After discretisation employing the Crank-Nicolson scheme (Crank and 

Nicolson 1947) the flow of heat can be expressed in the form 
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m and n correspond to the nodes of a regularly spaced grid with respect to the 

variables x and t, respectively. 

The rearrangement of relation (2) and the consideration of initial and boundary 

conditions yields a set of simultaneous linear equations, which is solved for 

Tm
n+1 at each time step by Gaussian elimination. Dirichlet-boundaries were 

implemented fixing the temperature at the inner and outer boundary to the 

initial values throughout the entire simulation. A 400°C hot heat source, which 

keeps a constant temperature, emits heat into a granitic host rock with 80°C 

ambient temperature. The size of the model was set to 15 m, and 1000 hours 

were chosen for the duration of the simulation. To guarantee appropriate 

precision, Δx  and Δt  were specified as ca. 2.5 mm and 60 s, respectively. 

Smaller values for Δx  and Δt  result in negligible changes of temperature but 

substantially increase the computational effort. A value of 0.8*10-6 m2 s-1 was 

used for the thermal diffusivity of the host rock, which is within the range of 

typical values for crustal rocks. 
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II. Upper Jurassic to Early Cretaceous thermal pulse in the later 
Upper Rhine Graben area  

 

 

Abstract 

Hydrothermal mineralisations, mineral alterations as well as fission track (FT) 

analyses suggests accelerated hydrothermal activity during the Triassic and 

the Jurassic in the region of the future Upper Rhine Graben (URG). New FT 

analyses on Permian and Mesozoic deposits of the southern URG area have 

been carried out to get more insights in the thermal evolution during the 

Mesozoic. Additionally, to test the effect of heating of the Mesozoic sediments 

by burial several subsidence analyses have been performed. For this 

purpose, different hypothetical amounts of today missing Jurassic and Lower 

Cretaceous deposits were taken into account. 

The Jurassic hydrothermal phase is confirmed by the FT analyses of the 

Permian and Lower Mesozoic sediments. The last intense regional 

hydrothermal phase, which reached temperatures of or above 180 °C 

occurred probably between 150 Ma and 140 Ma. FT age signatures indicate 

that during this time the affected Permian and Lower Triassic units reached 

abnormal geothermal gradients; higher than 110 °C/km. afterwards, during the 

Cretaceous the FT-results only show cooling. Accompanying the initial rifting 

of the URG at about 60 Ma a few localised thermal anomalies with 

temperatures in excess of 180 °C can be recognised along the eastern URG 

main border fault.  

 

 

1. Introduction 

 

The southern Upper Rhine Graben (URG) is bordered by the Vosges (NE-

France) in the west, the Black Forest (SW-Germany) in the east and the Jura 

Mountains (France/Switzerland) in the south (Fig. 1). The sedimentary record 

in this region comprises Upper Palaeozoic to Upper Jurassic strata and, after 

a large hiatus, sedimentation continues in the Eocene (Fig. 3). The reason for 

this stratigraphic gap is still a matter of debate; large-scale domal uplift 
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starting at the end of Jurassic led to a phase of non-deposition (Illies 1977, 

Geyer & Gwinner 2004) or, alternatively, Late Cretaceous domal uplift caused 

complete erosion of Cretaceous sediments (Ziegler 1990). However, 

additional information is provided by subsidence analysis that is generally 

documenting cooling of the lithosphere during the Mesozoic (e.g. Ziegler et al. 

2004) and by fission track (FT) data of the Palaeozoic basement. The latter 

suggests complex and possibly rapidly changing thermal conditions in the 

upper crust from the Permian to the Neogene (Fig. 2, Timar-Geng et al. 2004, 

2006a,b).  

Based on Mesozoic FT ages, Timar-Geng et al. (2004) concluded that 

substantial heating of the upper crust mainly during a Jurassic hydrothermal 

phase was followed by cooling during the Cretaceous. Temperatures up to 

250 °C just below the contact between crystalline basement and Mesozoic 

sedimentary cover were proposed. Considering normal geothermal gradients 

(~30 °C/km) that cannot be explained with burial alone since the maximum 

thickness, of Mesozoic strata is on the order of 1500 m (Timar-Geng et al. 

2004). Comparable thermal conditions were reported by Madritsch et al. 

(2008) from the Massif de la Serre (NE-France) about 100 km SW of the 

Vosges. The recurrent enhanced basement temperatures during the Jurassic 

in the Vosges, Black Forest and Massif de la Serre (e.g. Timar-Geng et al. 

2004, Madritsch et al. 2008) appear to contradict the overall cooling of the 

European lithosphere (Ziegler et al. 2004). However, there is ample evidence 

of hydrothermal activity affecting this area during Triassic, Jurassic and 

partially Cretaceous times (e.g. Wetzel et al. 2003, Brockamp et al. 2003). 

A more moderate thermal pulse affected the uppermost crystalline basement 

of the Vosges and Black Forest during the Eo-Oligocene, simultaneous to the 

first rifting of the URG. Temperatures in excess of 120 °C within the upper 

most crystalline basement were hardly reached on a regional scale, as 

demonstrated by apatite FT modelling results (Timar-Geng et al. 2006a,b). 

Additionally, for the northern most Jura a thermal event related to the URG 

rifting during the Oligocene and Early Miocene was proposed by vitrinite 

analyses of Todorov et al. (1993). 

In this study new fission track data from the Permian and Mesozoic sediment 

cover provide the advantage to discriminate between a pre-depositional 
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thermal history of provenance regions and a post-depositional basin-related 

thermal history of the subsidence dominated environment in the investigation 

area during Mesozoic. FT analyses on detrital apatite and zircon grains that 

experienced considerable post-depositional heating offer the potential to 

investigate the Mesozoic to Cenozoic thermal conditions of the upper crust in 

more detail. To test the effect of burial-related thermal overprint of the 

sampled Permian to Jurassic strata, the Mesozoic subsidence history of the 

investigated area was taken into account. Especially in the light of the late 

Jurassic to late Eocene sediment hiatus and the sparse evidences of the 

upcoming URG, a better knowledge of the Mesozoic thermal history may lead 

to better understanding of the regional geologic evolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 
Geologic map of the southern URG  
and adjacent areas 
(changed after Metz and Rein 1957,  
Chantraine et al. 1996, Ustaszewski  
et al. 2005) 
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2. Geological background 
 
Metamorphism, large-scale thrust tectonics as well as extensive magmatic 

activity affected the region of the later URG and its flanks during the Variscan 

orogeny (e.g. Edel & Fluck 1989, Eisbacher et al. 1989, Echtler & Chauvet 

1992, Schaltegger et al. 1996, 2000, Hann et al. 2000). Exhumation and rapid 

cooling of the crystalline basement rocks introduce a phase of crustal 

consolidation during the Permian (Fig. 2). At the end of the Variscan orogeny, 

numerous grabens and half-grabens formed, including a graben system that 

extends from the Burgundy to the Lake Constance (Fig. 1), mainly 

documented in the subsurface (Diebold 1989, Laubscher & Noack 1997). 

Further intramontane basins are positioned to the north, crossing the Black 

Forest in the same direction (WSW to ENE) (Boigk & Schöneich 1970). 

Deposition of Permian strata leads again to increasing temperatures at the top 

of the basement and the successive deeper and deeper buried sediment 

layers especially within the Permo-Carboniferous basins. Sedimentation 

continues during the Mesozoic generally controlled by thermal subsidence 

(Loup et al. 1999). In addition, opening of the Atlantic and Tethys oceans 

caused a stretching of the lithosphere of the area in-between, including the 

study area (Ziegler 1990). The extensional stress regime and the thermal 

subsidence during the Triassic and Jurassic account for deposition of several 

hundreds of meters of continental and marine sediments (e.g. Wetzel et al. 

2003, Ziegler & Dezes 2005). Subsidence curves from the northern alpine 

molasse basin, the northern Jura and the southern URG show comparable 

subsidence histories during Triassic and Jurassic times (Fig. 6 und Wildi et al. 

1989, Schegg & Leu 1998, Wetzel et al. 2003, Ziegler et al. 2004, Mazurek et 

al. 2006). Beside a subtle pattern of numerous subordinate subsidence 

phases, two main periods of enhanced subsidence are obvious, an early 

Triassic (about 240-220 Ma) and a middle to late Jurassic (about 180-

140 Ma). The last one possibly continued during the Early Cretaceous. 

Several periods of accelerated hydrothermal activity that have been 

recognized by enhanced vein materialisations on the flanks of the later URG 

until the Neogene (Werner & Franzke 1994, 2001, and references therein, 
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Fig. 2  
Compilation (right column) of geologic history, Mesozoic hydrothermal activity and FT data of 
the uppermost (1 km) basement of the southern URG area 
 

Brockkamp et al. 2003) are partly contemporise to the estimated phases of 

enhanced subsidence rates (e.g. Wetzel et al. 2003). 

After a strong Variscan hydrothermal activity an Upper Permian to Lower 

Triassic phase is only weakly expressed. From the late Triassic to the late 

Jurassic localised hydrothermal activity can be recognized in the Vosges and 

the Black Forest (Werner & Franzke 1994, 2001, Tournier et al. 1999, Wetzel 

et al. 2003 and references therein). These hydrothermal episodes coincide 
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with the modal values of zircon FT central ages in the southern Black Forest 

and Vosges, leading to the interpretation of a regional thermal pulse caused 

by hydrothermal activity with temperatures up to 250 °C (Timar-Geng et al. 

2004, 2006a). Locally in the Black Forest formation-water could be 

responsible for a lowering of these temperatures to values of 150 °C and 

80 °C (Werner & Franzke 2001). 

Local fluid inclusion study in the Lower Triassic strata at Guebwiller 

(Vosges/France) yielded fluid temperatures of about 240 °C (Surma et al. 

2003), therefore, maximum temperatures of 250 °C (Timar-Geng et al. 2004) 

occurring in the Lower Triassic units cannot ruled out. 

During the Late Jurassic and the Early Cretaceous a widespread 

hydrothermal phase is expressed by the regional occurrence of vein 

materialization and alteration of minerals in the Black Forest (e.g. Werner & 

Franzke 1994 and references therein, Brockamp et al. 2003) 

Wetzel et al. (2003) account the opening oft the Atlantic and the extensional 

stress regime in between (Ziegler 1990) as responsible, for the reactivation of 

pre-existing structures and related hydrothermal activity in Jurassic times. 

Starting in the Late Jurassic (Illies 1977, Geyer & Gwinner 2004) or, 

alternatively during the Late Cretaceous (Ziegler 1990), uplift of several parts 

of the northern Alpine foreland related to intraplate compressional stresses 

(Ziegler & Dezes 2005) led to continental conditions in the region of the later 

southern URG. Consequently, erosion probably started sometime between 

the Late Jurassic and Palaeogene. Sporadic pre-rift volcanism occurred since 

the early Palaeocene (Keller et al. 2002), pointing to a thermal weakening of 

the lithosphere (Ziegler et al. 2004). However, the maximum of volcanic 

activity, represented by the Kaiserstuhl volcano complex, developed after the 

first strong rifting phase at least during the Miocene (19 Ma – 14 Ma; Keller et 

al. 2002, Wimmenauer 2003). 

The initial rifting of the URG is recognized by reworked palaeo and 

fresh-water limestones of Middle Eocene age (Illies 1967). A pronounced 

relief developed along the graben margins from the Late Eocene/Early 

Oligocene onwards when extensional sub-basins formed (e.g. Duringer 1988, 

Schumacher 2002, Hinsken et al. 2007, Roussé 2006).  
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The thermal regime of the underground accompanying the initial rifting period 

of Eocene to Late Oligocene times was known by a temperature increase 

affecting the crystalline basement of the Vosges, the Black Forest and the 

northern Switzerland, as suggested by apatite FT modelling (Timar-Geng et 

al. 2006a,b). Additionally, vein mineralizations have been found to be 

associated with the early syn-rift tectonic activity during the Palaeogene 

(Werner & Franzke 2001).  Moreover, for the northern Jura palaeo-geothermal 

gradients during the URG rifting were estimated by vitrinite analyses at about 

40 to 100 °C/km. 

Regarding the apatite FT analyses by Timar-Geng et al. (2006a,b) the 

temperatures in the uppermost basement rocks reached in their maximum 

about 120 °C (Fig. 2). The FT data suggest only cooling afterwards. Although 

a doming of the Moho is documented below the Kaiserstuhl complex (Rousset 

et al. 1993) a second regional thermal pulse accompanying the Miocene 

Volcanism of the Kaiserstuhl is not observable within the FT dataset. 

However, today absent sediments, which were deposited during the 

Oligocene and Early Miocene have been largely eroded in the southern URG 

documenting uplift of the southern URG area since the Early Miocene (e.g. 

Roll 1979). Laubscher (1992, 2003) interpreted the uplift of parts of the Black 

Forest, Vosges and the southern URG along a WSW-striking arc structure 

through the vicinity of the Kaiserstuhl volcano complex as a response to the 

alpine orogeny. The reasons of this Miocene up lift are still under discussion 

(Ziegler & Dezes 2007, Hinsken et al. 2007, Bourgeois et al. 2007). Up to 

recent times the exposed flanks of the graben were intensely denudated while 

subsidence of the graben starts again (Illies 1967).  

 

 

3. Sample material 
 
In the southern URG twenty-seven detrital samples were collected (Fig. 3), 

covering a stratigraphic range from the Lower Permian (ca. 296 Ma) to the 

Middle Jurassic (ca. 175 Ma). Due to the low relief of the study area most of 

the samples have been collected along the escarpments of the URG, which 

provides acceptable outcrops. 
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Fig. 3 
Sample location and stratigraphy; Simplified geological map of the study area (after Metz and 
Rein 1957, Schnarrenberger 1985, Chantraine et al. 1996, Ernst and Herrgesell 1996, 
Ustaszewski et al. 2005) and simplified stratigraphy of the southern URG area (changed after 
Bitterli-Brunner 1987, Wetzel et al. 2003) 
 
 
Some exceptions are formed by samples of Lower Triassic sandstone (HD48, 

HD49, HD70, HD78 and HD79) from the top of the graben flanks and two 

samples of Upper Triassic (HD89) and Middle Jurassic (HD91) age 

respectively, have been taken south of the URG in the Jura Mountains near 

Baerschwil, Switzerland. Additionally, one sample (HD09) represents cuttings 

from the Lower Triassic sandstone at the borehole Otterbach II, 1830 m to 

1840 m below surface at a surrounding temperature of about 80 °C (Häring 

2002). The sample locations above flank and basin structures of Permian-

Carboniferous troughs in the subsurface were repeatedly chosen (Fig. 3). All 
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sampled units experienced burial after deposition during the Mesozoic and 

depending on their geographic position on the graben flanks or along the 

escarpments possibly during the formation of the URG.  

 
 
4. Methods 
 
FT method 

FT analysis on apatite and zircon is a low-temperature thermochronological 

method widely used to quantify the thermal history of igneous, metamorphic 

and clastic sedimentary rocks (e.g. Wagner and van den Haute, 1992, 

Reiners & Ehlers, 2005). 

Fission-track analysis on apatite and zircon was carried out applying the 

external detector method according to Naeser (1976) and Gleadow (1981). 

Apatite and zircon grains were separated from each sample (2 to 8 kg rock 

material) following standard mineral separation procedure including crushing, 

magnetic and heavy liquid separation. The zircon samples were mounted in 

the Teflon PFA®, while the apatite samples were embedded in epoxy resin. 

After polishing, the apatites were etched for 40 s in 6.5 % HNO3 at ~18 °C 

and the zircons for 5 to 14 h in an eutectic-melt of KOH-NaOH (220 °C). 

Muscovite was used as an external detector (Naeser 1976, Gleadow 1981) 

and CN-5 (apatite) and CN-1 (zircon) standards as dosimeter glasses. 

Irradiation with thermal neutrons was carried out at the Australian Nuclear 

Science and Technology Organisation facility (ANSTO).  

Muscovite detectors were etched in 40 % HF for 40 min at ~18 °C. Tracks in 

apatite , zircon and detector muscovites were counted on a Zeiss (Axioplan2) 

optical microscope with a 1600x magnification (dry) using a computer-

controlled motorised scanning stage, run by the "FT-STAGE 3.11" software 

(Dumitru, 1993). The FT age determination followed the zeta calibration 

method (Hurford & Green 1983) with a zeta value of 380.67 ±10.58 (Durango, 

CN-5) for apatite and 145 ±6.88 (Fish Canyon Tuff, CN-1) for zircon.  

The FT single grain ages, central ages, analytical errors and chi-square 

values were calculated using the TRACKKEY software (Dunkl 2002). 

To interpret the FT data basic statistical methods were used. To test whether 

more than one age-population was present the chi-square was used 
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(Galbraight & Laslett 1993). Samples that have failed the chi-square test 

(Pχ<5%) are commonly thought to indicate a mixed age composition (e.g. 

Brandon 1998, Garver et al. 2000, Stewart & Brandon 2004). For such 

samples the BinomFit® software (e.g. Brandon et al. 1992, Brandon 2005) 

applying the binominal "peak-fitting" method (Galbright & Green 1990, 

Galbright & Laslett 1993) has been used for peak age (population) calculation. 

The BinomFit® software determines the optimal number of significant age 

peaks by using the F-Test, which calculates the improvement of the binominal 

peak-fitting statistic after each added age peak (e.g. Brandon 1992, 1996, 

1998, Stewart & Brandon 2004).  

The FT method is sensitive for temperatures between about 40°C to 350°C. 

(Tagami 2005). Regarding the fission track partial annealing zones (PAZ) 

used here the temperature brackets given by Gleadow & Duddy (1981) and 

Green et al. (1989) for apatite (APAZ) 60 to 120 °C and Tagami (2005) for 

zircon (ZPAZ) are 180 to 350 °C), respectively. 

It has been suggested that the annealing temperature for FT´s in apatite is 

controlled mainly by their chemical composition (e.g. Gleadow & Duddy 1981; 

Green et al., 1985, 1986). One of the important factors influencing the 

annealing properties of zircon is the radiation damage of the crystal lattice by 

alpha decay (alpha-damage; Kasuya & Naeser 1988, Rahn et al. 2004). 

Accumulated radiation damage can lower the temperature boundary of the 

zircon PAZ (Kasuya & Naeser 1988, Rahn et al. 2004). Unfortunately, a 

quantification of the lowering of this boundary seems not possible at the 

moment. According to Tagami (2005), who used natural zircon for his 

estimations, the 180°C isotherm was used as the lower temperature boundary 

for the interpretation here.  

Sediment samples usually contain detrital grains coming from different source 

areas bearing different thermal histories within their grain population. If these 

samples have not been heated significantly after deposition, the peak-fitting 

method (Galbraith & Green 1990, Galbraith & Laslett 1993) has the potential 

to discriminate different FT age groups eventually corresponding to different 

provenance regions (e.g. Brandon 1998, Carter 1999, Garver et al. 2000, 

Bernet & Garver 2005). Otherwise, every relevant post-depositional heating 
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event should cause an overprint of the inherited FT signature and offer the 

potential to investigate the post-depositional thermal history. 

The degree of influence of post-depositional events on the FT data depends 

on the different annealing characteristics of the individual grains. Supposing 

that the possible spectrum of annealing characteristics of single grains within 

one detrital sample was well represented, an interpretation of the FT single 

grain ages deliver a high potential for interpretation of thermal histories. 

During cooling through the PAZ, thermal low sensitive grains should close at 

first while thermal high sensitive grains close at last representing the best 

approximation of the age of the last cooling below the lower boundary of the 

PAZ (Fügenschuh and Schmid 2003). 

Therefore, the younger age peaks estimated from the single grains of the 

apatite and zircon samples probably contain the grains with the lowest thermal 

stability. After a post-depositional heating event, these grains will be the last to 

start their FT clock when they cool down trough the APAZ or ZPAZ 

respectively (Brandon et al. 1998). The youngest age peak then is indicative 

of the maximum age for the last cooling below the specific PAZ after a 

significant heating event (e.g. Fügenschuh & Schmid 2003). 

If the zircon FT peak age of samples documents post-depositional reheating 

(T>180 °C), total resetting of the apatite FT system in these samples can be 

assumed. In this case the old apatite FT peak ages represent the minimum 

age of the cooling into the APAZ.  

 

Subsidence analysis 

Subsidence analysis was carried out on representative sections of the 

Mesozoic sediment column (Fig. 3). Two deposition scenarios have been 

considered assuming different amounts of missing Late Mesozoic deposits. 

Deposition scenario I comprise the sediment column up to the end of Jurassic. 

The amount of today locally eroded Middle and Upper Jurassic sediments has 

been evaluated considering the thickness of these units within boreholes in 

the southern URG in a probably complete stratigraphic column (e.g. Otterbach 

II, Häring 2002; Hirtzbach, Vonderschmidt 1942), the known thickness in the 

adjacent Swabian Alb (Geyer & Gwinner 2004) and the Swiss Jura (Müller et 
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al. 1984, Bitterli-Brunner 1987). Thus, Upper Jurassic strata were estimated to 

be in the thickness range of 350 m. 

Deposition scenario II comprises the sediment columns used in scenario I 

plus 450 m of Lower Cretaceous deposits. This number is based on 

subsidence analysis and thermo-chronological data from central northern 

Switzerland (Mazurek et al., 2006). These authors proposed a maximum 

thickness of 450 m of Lower Cretaceous deposits. 

Considering the deposition scenarios, between well-reported boreholes and 

vertical sections, N-S directed transsects along the western and eastern 

margin of the URG were constructed (Fig.3, 4). The sample position of each 

FT samples were projected onto these transects according to their 

stratigraphic position, to estimate the burial of each sample within the different 

deposition scenarios at the given time. These burial values of each sample 

was determined using standard decompaction and backstripping methods 

(see below) 

The subsidence analyses on several vertical sections were prepared by using 

a Microsoft excel™ spreadsheet called EASYSUB (primary Backstripp89; by 

Uriate & Schegg 1991 and modified by Borel 1995), which uses the standard 

backstripping and decompaction techniques (e.g. Van Hinte 1978, Sclater and 

Christie 1980, Funk 1985, Wildi 1989, Allen & Allen 1990). The lithological 

parameters (porosity and compaction coefficients) are included from Sclater & 

Christie (1980), Sawyer et al (1982), Schmoker & Halley (1982) and Borel 

(1995) (Tab. 4,  Appendix). 

Due to the geographic position of the samples along the graben margins and 

on top of the flanks only minor or no eroded Cenozoic deposits are expected. 

Furthermore, eroded Upper Jurassic and Cretaceous deposits are responsible 

for compaction of the underlying units, which, during a possible Cenozoic 

burial, are not or only moderately affected by a continued compaction. 

Therefore, the Cenozoic accumulation of syn-rift deposits was not considered. 

The Bathymetric changes during the Mesozoic in the study area with max. 

water depths of up to 150 m were considered according to Allia (1996) and 

Wetzel and Allia (2003). 
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Fig. 4 
Projection of the FT samples onto the 
N-S-transects; 
 

 

The studied sections are based on 
borehole data, outcrop information and 
local summaries from literature (Liniger 
1970, Groschopf et al. 1977, Bitterli-
Brunner 1987, Wittmann 1988, Ernst and 
Hergesell, 1997, Herrgesell 1996a,b 
,Sawatzki 1999, Häring 2002, Geyer and 
Gwinner 2004) and on the geologic maps 
1:50000 of Neuf –Brisach Obersaasheim 
(379-379), Colmar Artolsheim (342), 
Mulhouse-Mullheim (413), Altkirch-
Huningue (445), Thann (412) of the 
France geologic service (BRGM). 
Additionally, some unpublished borehole 
data are provided by Philippe Elsass 
(BRGM Strasbourg) 
 

 
Thermal history analysis  

The subsidence analyses, which were interpolated to ~north-south oriented 

transects (Fig. 3, 4), deliver the overburden thickness of each sample at the 

investigated ages. Based on these estimates of sample depths and the 

integration with the new zircon FT data hypothetical palaeo-geothermal 

gradients can be calculated. For calculation of these palaeo-geothermal 

gradients temperature information at the investigated age and depth is 

needed. This temperature information is supported by the FT data. Partial 

annealing of FTs in zircon and therefore younging of the zircon FT ages 

occur, if the lower temperature boundary of the ZPAZ has been reached 

during a significant duration of about 10 My (Tagami 2005). Consequently, the 

lower temperature boundary of the ZPAZ (180 °C) can be used to calculate 

geothermal gradients, which are required to influence the zircon FT system at 

least. Furthermore, the 120 °C isotherm has to been reached to get complete 

annealing of the FTs in apatite. Therefore, geothermal gradients can be 

calculated, which are necessary to get complete annealing of FTs in apatite 

depending on an estimated burial depth. The calculated hypothetical 

gradients are minimum values, which could also been reached earlier during 

the thermal evolution, but not after the age for which the gradient was 

calculated. 
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Estimation of the palaeo-surface temperature influences the palaeo-gradient 

calculations. Due to significant climatic changes and changes between marine 

and continental surface condition as well as the probably not linear character 

of thermal gradients at shallow depths (< ~500m) it is difficult to find a single 

and representative value. Fully aware, that this problem was not solved 

palaeo-surface temperatures of 20 °C during the Permian, Mesozoic and 

Cenozoic and for the Quaternary 10 °C was chosen.  If the surface 

temperature varies by ±10°C, the gradients vary as well within the first 3000m 

with values of up to ±10°C/km. It has to be noted that these calculations of 

hypothetical gradients are only rough estimations for getting an overview onto 

the thermal stage at the investigated age levels. There are a lot of factors 

influencing the estimation of the palaeo-geothermal gradients, which cannot 

be quantified. For instance the water content of the sediments, which is an 

important factor considering the conductivity of an unit is unknown. It has to 

paid attention, considering the various not quantifiable uncertainties 

influencing these calculations, no errors were calculated. 

 

 

5. Results 
 
FT data 

Twenty-seven samples yielded 16 apatite and 25 zircon data (Tab. 1; apatite, 

Tab. 2; zircon, Fig. 5; the peak ages, central ages and deposition ages). 

Apatite samples:  

The apatite FT peaks calculated by the BINOMFIT® software and central 

ages range between 21 ±3 Ma (HD77) and 195 ±19 Ma (HD57) (Tab. 1). All 

apatite samples show post-depositional peak ages.  

Zircon samples:  

The zircon FT peak and central ages ranges between 55 ±13 Ma (HD169) 

and 349 ±112 Ma (HD79) (Tab. 2). All sampled stratigraphic units yielded 

FT central or peak ages (±1σ error), which are younger and older than the 

deposition age. Especially the samples of the Permian and Triassic strata 

show a significant younging of many zircon FT peak and central ages in 

respect to the deposition age (Fig. 5). 
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Fig. 5 
Apatite and zircon FT peak and central ages and sample deposition age 
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Tab. 1 
Apatite FT data 
Coordinates (x, y) of Gauss Krüger DHDN Zone 3, Elevation (elev.) in metres above sea level, Number of grains counted (n). ρs, ρi and ρd are spontaneous, induced 
and dosimeter track densities in 105 tracks/cm2. N are number of tracks counted shown in brackets. Analyses by external detector method using 0.5 for the 4π/2π 
geometry correction factor. Disp., Dispersion, according to Galbraith and Laslett (1993). Ages calculated as central ages according to Galbraith and Laslett (1993) using 
dosimeter glass CN5 for apatite with ζCN5 = 380.67±10.58 (H. Dresmann). P(χ2) is the probability of obtaining χ2 value for ν degrees of freedom where ν = number of 
crystals-1. Samples that have failed the chi-square test (Pχ<5%) the BinomFit® software (e.g. Brandon et al. 1992, Brandon 2005) applying the binominal "peak-fitting" 
method (Galbright & Green 1990, Galbright & Laslett 1993) has been used for peak age calculation. 

Deposition 
age 

Stratigraphy Lithology Coordinates elev. Spontaneus 
tracks 

Induced 
tracks 

P(χ2) Dosimeter Central-age  peak age 1  (Mio-
Oligocene) 

peak age 2 
(Eocene) 

peak age 3 
(Late 

Cretaceous) 

peak age 4  (Early 
Cretaceous) 

Ma     

sample 
code 

(G K Zone3) [m] 

No. of 
crystals 
counted 

(n) ps ( Ns) pi ( Ni) (%) 
value 

pd (Nd) 

Disp. 

Ma ±1σ 
 

Ma ±1σ 
(n) 

Ma ±1σ 
(n) 

Ma ±1σ 
(n) 

Ma ±1σ 
(n) 

178-184 Lower 
Jurassic silt-stone HD 125 3400540, 

5287135  350 9 14 (209) 23 (331) 0       
32 

9.15 
(2648) 0.52 93 ± 20 

      

39   
(3) ± 12      136 

(6) ± 15 

224-226 Middle 
Triassic sandstone HD 57 3396320, 

5266390  370 15 13 (314) 15(372) 14      
20 

12.3 
(1648) 0.16 195 ± 19               

224-226 Middle 
Triassic sandstone HD 77 3400560, 

5295030  550 33 3 (291) 20 (1796) 2       
51 8.8 (2730) 0.25 27 ± 3 21   

(18) ± 3 36  
(15) ± 5           

224-226 Middle 
Triassic sandstone HD 109 3409530, 

5312230  395 18 11 (409) 19 (686) 2       
31 10 (2648) 0.24 110 ± 11 

            

85   
(9) ± 25 136   

(9) ± 18 

246-249 Lower 
triassic sandstone HD 22 3406225, 

5306400  365 46 8 (1068) 30 (4195) 0       
180 6.3 (3641) 0.37 31 ± 2 25 

(34) ± 2 55  
(12) ± 7           

246-249 Lower 
triassic sandstone HD 55 3408230, 

5308860  305 7 13 (244) 29 (526) 15      
9 

11.8 
(2730) 0.00 103 ± 9               

246-249 Lower 
triassic sandstone HD 66 3365143, 

5308233  510 13 31 (986) 41 (1296) 28      
14  

10.9 
(1648) 0.06 155 ± 9               

246-249 Lower 
triassic sandstone HD 70 3368521, 

5343075  840 4 12 (130) 37 (385) 77      
1 9 (2730) 0.00 59 ± 6               

246-251 Lower 
triassic sandstone HD 78 3421180, 

5275990  838 20 28 (1782) 43 (2764) 0       
71 8 (3641) 0.21 98 ± 7 

            

83   
(12) ± 6 125 

(8) ± 9 

246-251 Lower 
triassic sandstone HD 79 3421250, 

5274410  800 18 33 (1682) 52 (2685) 5       
28 10 (1648) 0.12 117 ± 7 

            

84   
(12) ± 7 126 

(8) ± 10 

244-246 Lower 
triassic sandstone HD 81 3401145, 

5272780  360 30 24 (1291) 37 (1976) 0       
66 9.5 (1648) 0.22 116 ± 8 

            

85   
(12) ± 8 127 

(8) ± 11 

246-249 Lower 
triassic sandstone HD 139 3413350, 

5316325  330 6 14 (78) 28 (151) 35      
6 11 (2797) 0.10 106 ± 16               

251-272 Permian arose HD 60 3341870, 
5289149  490 28 12.98 (932) 26.7 

(1920) 
0       

77 
10.8 

(2730) 0.27 103 ± 8 
            

75   
(13) ± 6 131 

(15) ± 11 

296-272 Permian arose HD 65 3347442, 
5287860  400 28 8 (1216) 24 (3032) 0       

91  9.7 (2730) 0.28 70 ± 5 
      

44  (9) ± 5 86 
(19) ± 5      

251-272 Permian arose HD 074 3401245, 
5285735  530 10 19 (504) 44 (1172) 0       

24 6.9 (3641) 0.21 56 ± 5 
      

52  (8) ± 6 80 
(2) ± 40 

      

251-272 Permian arose HD 184 3405170, 
5285095  435 40 13 (869) 28 (1931 ) 5       

55 
9.17 

(2797) 0.16 78 ± 5 
      

49 (7) ± 10 84 
(33) ± 6      
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Tab. 2  Zircon FT data; Lithology code: 1=sandstone, 2=Siltstone, 3=arcose;  bs = below surface 
Coordinates (x, y) of Gauss Krüger DHDN Zone 3, Elevation (elev.) in metres above sea level, Number of grains counted (n). ρs, ρi and ρd are spontaneous, induced and dosimeter track densities in 105 
tracks/cm2. N are number of tracks counted shown in brackets. Analyses by external detector method using 0.5 for the 4π/2π geometry correction factor. Disp., Dispersion, according to Galbraith and Laslett 
(1993). Ages calculated as central ages according to Galbraith and Laslett (1993) using dosimeter glass CN1 for zircon with ζCN1 = 145±6.88 (H. Dresmann). P(χ2) is the probability of obtaining χ2 value for ν 
degrees of freedom where ν = number of crystals-1. Samples that have failed the chi-square test (Pχ<5%) the BinomFit® software (e.g. Brandon et al. 1992, Brandon 2005) applying the binominal "peak-fitting" 
method (Galbright & Green 1990, Galbright & Laslett 1993) has been used for peak age calculation. 

Deposition 
age Coordinates elev. Spontaneus 

tracks 
Induced 
tracks P(χ2) Dosimeter Central-age  peak age 1  

(Cenozoic) 
peak age 2 

(Cretaceous) 
peak age 3 
(Jurassic) 

peak age 4  
(Triassic) 

peak age 5 
(Palaeozoic) 

Ma 
Stratigraphy Litho. 

code 
sample 
code (G K 

Zone3) 
[m] 

No. of 
crystals 
counted 

(n) 
ps ( Ns) pi ( Ni) (%) 

value 
pd (Nd) 

Disp. 
Ma ±1σ 

 
Ma ±1σ 

(n) 
Ma ±1σ 

(n) 
Ma ±1σ 

(n) 
Ma ±1σ 

(n) 
Ma ±1σ 

(n) 

178-175 Middle 
Jurassic 1 HD 89 3383611, 

5250426  660 11 205 (1671) 16 (133) 20      
13 

2.92 
(1625) 0.18 259 ± 32                          

178-184 Lower 
Jurassic 2 HD 

125 
3400540, 
5287135  360 8 232 (731) 34 (106) 85      

3 
3.71 

(1338) 0.01 183 ± 22                  

200-205 Middle 
Triassic 1 HD 91 3384254, 

5250063  570 8 235 (738) 24 (76) 39      
7 3.8 (936) 0.10 262 ± 36                  

224-226 Middle 
Triassic 1 HD 

109 
3409530, 
5312230  395 18 179 (1290) 24 (170) 67      

14 
3.87 

(1338) 0.01 209 ± 21                  

224-226 Middle 
Triassic 1 HD 

169 
3400375, 
5281420  410 45 151 (4882) 24 (770) 0       

147 
3.4 

(1338) 0.42 155 ± 15 55 
(2) ± 13 110 

(14) ± 11 
      

210 
(29) ± 18      

224-226 Middle 
Triassic 1 HD 57 3396320, 

5266390  370 7 214 (663) 29 (88) 58      
5 

4.07 
(936) 0.01 218 ± 28                  

224-226 Middle 
Triassic 1 HD 77 3400560, 

5295030  550 13 181 (1183) 16 (103) 78      
8 

3.95 
(936) 0.00 321 ± 38                  

246-249 Lower-
Triassic 1 HD 

139 
3413350, 
5316325  330 19 156 (3000) 16 (304) 68      

15 
3.63 

(1338) 0.05 256 ± 21                  

246-249 Lower-
Triassic 1 HD 

147 
3371291, 
5323818  590 19 265 (2952) 29 (325) 5       

29 3.5 (936) 0.20 223 ± 22 
            

167 
(5) ± 37      261 

(14) ± 32 

246-249 Lower-
Triassic 1 HD 22 3406225, 

5306400  365 30 258 (2656) 19 (202) 6       
42 

2.69 
(1625) 0.25 246 ± 25                  

249-251 Lower-
Triassic 1 HD 48 3368117, 

5330714  670 11 253 (1547) 37 (224) 52      
9 

4.14 
(936) 0.01 204 ± 19                  

249-251 Lower-
Triassic 1 HD 49 3367885, 

5330935  720 20 200 (2972) 28 (424) 36      
21 

4.11 
(936) 0.02 206 ± 16                  

246-249 Lower-
Triassic 1 HD 55 3408230, 

5308860  305 23 221 (3804) 28 (482) 78      
17 

4.09 
(936) 0.02 230 ± 17                  

246-249 Lower-
Triassic 1 HD 61 3349644, 

5290132  410 32 182 (5800) 23 (720) 3       
47 

4.06 
(1338) 0.14 232 ± 17 

            
     202 

(17) ± 23 276 
(15) ± 35 

246-249 Lower-
Triassic 1 HD 66 3365143, 

5308233  510 22 269 (5652) 32 (671) 0       
74 4 (936) 0.29 228 ± 22 

            
170 
(9) ± 19      292 

(13) ± 26 

249-251 Lower-
Triassic 1 HD 68 3372978, 

5338278  360 30 302 (8156) 24 (646) 0       
59 

2.9 
(1625) 0.22 246 ± 20 

            
175 
(8) ± 27      291 

(22) ± 24 

246-249 Lower-
Triassic 1 HD 70 3368521, 

5343075  840 20 248 (3029) 33 (403) 0       
71 

3.97 
(936) 0.33 234 ± 26 

      
125 
(2) ± 16           265 

(18) ± 25 

246-251 Lower-
Triassic 1 HD 78 3421180, 

5275990  838 14 320 (5097) 25 (403) 15      
18 

2.83 
(1625) 0.11 252 ± 21                  

246-251 Lower-
Triassic 1 HD 79 3421250, 

5274410  800 15 238 (2132) 32 (287) 5       
24 

3.93 
(936) 0.19 211 ± 21 

            
187 
(12) ± 21      349 

(3) ± 112 

246-251 Lower-
Triassic 1 HD 9 3395140, 

5271935  

1830-
1840 
bs 

16 251 (1764) 32 (226) 5       
25 

3.5 
(1625) 0.21 193 ± 21 

            

164 
(10) ± 23      268 

(6) ± 49 

251-272 Permian 3 HD 42 3401565, 
5281035  435 24 197 (3226) 24 (396) 0       

66 
3.26 

(1502) 0.35 208 ± 23 
      

140   
(10) ± 16           281   

(14) ± 46 

251-272 Permian 3 HD 46 3418335, 
5330440  250 36 231 (5527) 20(474) 36      

37 
3.06 

(1625) 0.10 254 ± 19                  

251-272 Permian 3 HD 60 3341870, 
5289149  490 6 299 (796) 46 (123) 71      

3 
3.01 

(1625) 0.00 140 ± 16                  

251-272 Permian 3 HD 74 3401245, 
5285735  530 12 310 (3335) 27 (290) 1       

25 
2.86 

(1625) 0.22 230 ± 24 
            

168  
(3) ± 62      263   

(9) ± 32 

251-272 Permian 3 HD 
184 

3405170, 
5285095  435 14 268 (1639) 25 (153) 68      

10 
3.28 
(936) 0.01 250 ± 26                          
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Subsidence curves 

The modelled subsidence curves of the Triassic and Jurassic periods are in 

agreement with the previously published subsidence curves from the southern 

URG and adjacent areas (Fig. 6; Wildi et al. 1989, Schegg & Leu 1998, 

Wetzel et al. 2003, Ziegler et al. 2004, Mazurek et al. 2006). All investigated 

sections show accelerated subsidence in the Early and Middle Triassic and 

additionally in the Middle Jurassic, which continued during the Cretaceous, 

depending on the estimate about the amount of Cretaceous sediments 

(Fig. 6).  

The determined palaeo-depths of the samples ranges between some hundred 

meters considering no Cretaceous deposits and up to 1890 m by supposing 

450 m of Cretaceous sediment thickness according to deposition scenario II 

(Tab. 3, Fig. 8 Appendix).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6 
Subsidence curves of the base of the Mesozoic from the southern URG and adjacent areas 
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Palaeo-geothermal gradients 

Related to the deposition scenarios two distinct age levels were studied for 

the integration with the new FT data. The first investigated age level is at 

166 Ma coeval to the end of deposition of the Middle Jurassic 

Hauptrogenstein Formation (Gonzales and Wetzel 1996). Timar-Geng et al. 

(2004) estimated a thermal pulse affecting the uppermost crystalline 

basement with temperatures of up to 250 °C approximately at this time. 

Additionally, this top Hauptrogenstein horizon is a regional wide marker, which 

is easily to identify with in borehole logs of the region. The second age level is 

at 125 Ma, an Early Cretaceous age, which is supposed as the age of 

maximum sediment thickness during deposition scenario II. This age 

correspond to a distinct significant Mesozoic thermal pulse recognised in the 

central northern Swiss by Marzurek et al (2006). 

The calculated palaeo-depths of the samples combined with the FT data, 

provide an estimate of hypothetical post-depositional palaeo-geothermal 

gradients (Tab. 3). Considering annealing of FTs in zircon and the same 

deposition scenario as estimated for the northern Switzerland by Mazurek et 

al. (2006), palaeo-geothermal gradients of 85 °C/km to 108 °C/km can be 

estimated for the Cretaceous at 125 Ma, which are significantly lower 

compared to 134 °C/km to 333 °C/km estimated for the Middle Jurassic at 

ca. 166 Ma. Without Cretaceous deposits gradients increase to values 

between 111 °C/km to 211 °C/km and to 142 °C/km to 381 °C/km for 125 Ma 

and 166 Ma respectively. 

Additionally, the table 3 shows the necessary overburden of each sample, if a 

Cretaceous (at ~125 Ma) palaeo-geothermal gradient of about 40 °C/km, as 

estimated for the central Swiss Molasse Basin (Mazurek et al. 2006), should 

be transferred to the URG. About 2500 m thick Cretaceous deposits are 

necessary to reach the required burial of the individual samples. 
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Tab. 3 
Estimated sample depth and calculated palaeo-geothermal gradients for different deposition scenarios at the investigated ages 125 Ma and 166 Ma. The 
shaded geothermal-gradients are of samples, which showed a clear post-depositional influence on the zircon FT system causing partial annealing. 

 
 
 
 

Deposition 
scenario 

II 
with Upper Jurassic (350m) 

and Cretaceous (450m)  

II 
with Upper Jurassic (350m) 

and Cretaceous (450m)  

I 
with Upper Jurassic (350m) 

without Cretaceous 

I 
with Upper Jurassic (350m) 

without Cretaceous 

according to the thermal regime 
of the central Swiss Molasse 
Basin (Mazurek et al. 2006); 

with Upper Jurassic (350m) and 
Cretaceous (2500m)  

 
investigated 

age 125 Ma 166 Ma 125 Ma 166 Ma 125 Ma 

           
           
           

 

  

  

geothermal 
gradient 

necessary to 
reach at 

temperatures of:   

geothermal 
gradient 

necessary to 
reach at 

temperatures of:   

geothermal 
gradient 

necessary to 
reach at 

temperatures of:   

geothermal 
gradient 

necessary to 
reach at 

temperatures of:   

geothermal 
gradient 

necessary to 
reach at 

temperatures of: 

 sample    code 
sample 
depth 

180 °C 120°C sample 
depth 

180 °C 120°C sample 
depth 

180 °C 120°C  sample 
depth 

180 °C 120°C  sample 
depth 

180 °C  120°C  

   m °C/km °C/km m °C/km °C/km m °C/km °C/km m °C/km °C/km m °C/km °C/km 
HD 70 (zr /ap) 1740 92 57 960 167 104 1160 138 86 850 188 118 3810 42 26 
HD 68 (zr) 1890 85   1100 145   1300 123   940 170   3940 41   
HD 48 (zr) 1800 89   1030 155   1240 129   970 165   3850 42   
HD 49 (zr) 1800 89   1030 155   1240 129   970 165   3850 42   
HD147 (zr) 1610 99   860 186   1100 145   840 190   3660 44   
HD 66 (zr/ap) 1480 108 68 760 211 132 1020 157 98 810 198 123 3530 45 28 
HD 61 (zr) 1640 98   950 168   1210 132   920 174   3690 43   
HD 60 (zr/ap) 1710 94 58 1020 157 98 1270 126 79 980 163 102 3760 43 27 w

es
te

rn
 m

ar
gi

n 
an

d 
Vo

sg
es

 

HD 65 (- /ap) 1750   57 1070   93 1310   76 1010   99 3800   26 
HD 46 (zr) 1760 91   1040 154   1300 123   970 165   3810 42   
HD139 (zr/ap) 1590 101 63 860 186 116 1140 140 88 810 198 123 3640 44 27 
HD109 (zr/ap) 1200 133 83 480 333 208 760 211 132 420 381 238 3250 49 31 
HD 55 (zr/ap) 1640 98 61 920 174 109 1190 134 84 860 186 116 3690 43 27 
HD 22 (zr/ap) 1650 97 61 930 172 108 1200 133 83 880 182 114 3700 43 27 
HD 77 (- /ap) 1200  83 530  189 800  125 450  222 3250  31 
HD125 (zr/ap) 1180 136 85 480 333 208 760 211 132 430 372 233 3230 50 31 
HD 74 (zr/ap) 1840 87 54 1170 137 85 1420 113 70 1090 147 92 3890 41 26 
HD184 (zr/ap) 1850 86 54 1180 136 85 1420 113 70 1100 145 91 3900 41 26 
HD169 (zr) 1230 130   550 291   825 194   490 327   3280 49   
HD 42 (zr) 1850 86   1190 134   1440 111   1110 144   3900 41   
HD 78 (zr/ap) 1820 88 55 1170 137 85 1410 113 71 1130 142 88 3870 41 26 
HD 81 (- /ap) 1790  56 1140  88 1380  72 1050  95 3840  26 
HD 79 (zr/ap) 1820 88 55 1170 137 85 1410 113 71 1130 142 88 3870 41 26 

ea
st

er
n 

m
ar

gi
n 

an
d 

B
la

ck
 F

or
es

t 

HD  9 (zr) 1830 87   1190 134   1430 112   1100 145   3880 41   
HD 89 (zr) 1160 138   500 320   750 213   430 372   3210 50   
HD 91 (zr) 1210 132   560 286   810 198   480 333   3260 49   

ea
st

er
n 

m
ar

gi
n 

an
d 

Ju
ra

 

HD 57 (zr) 1260 127   590 271   850 188   520 308   3310 48   
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6. Discussion and interpretation 
 
Nearly all analysed apatite samples (except HD57) have been reset by at 

least one phase of post-depositional heating up to temperatures of the APAZ 

or above. The old apatite FT peak ages (all less than 137 Ma) suggest a 

resetting during Cretaceous. . Especially Permian samples show Late 

Cretaceous to Early Cenozoic peak ages. The period of elevated 

temperatures accompanies the initial rifting of the URG (Timar-Geng et al. 

2006) are obviously responsible for annealing of FTs within the deeply buried 

layers. Only samples with a close spatial relationship to the URG main border 

fault (HD22 and HD77) are heavily influenced by a Cenozoic syn-rift thermal 

pulse leading to complete resetting, which is probably related to ascending hot 

hydrothermal fluids. But at these locations temperatures of the ZPAZ were not 

reached since the zircon FT data of these samples show no clear 

post-devotional younging. 

Since all zircon samples have a relatively large spread of single grain ages 

with some younger and some older than the related age of their deposition it 

can be assumed that they have not been fully reset. Therefore the sample 

ages are considered as partially reset and the apparent central age being 

older than the age of the thermal event which induced the annealing. The 

large age spread reflects on the one hand the pre-depositional thermal history 

preserved partially in the less thermally sensitive grains and, on the other 

hand, the post-depositional thermal processes which have affected the 

minerals more sensitive to annealing. The zircon single grain ages of Permian 

strata, which are older than the deposition age indicate that no sampled 

stratigraphic unit was heated to temperatures higher than the upper 

temperature limit of the ZPAZ at about 350 °C (Tagami 2005). This also 

agrees with temperature estimates for the uppermost basement rocks during 

the Jurassic hydrothermal period of 150 °C to 250 °C (Brockamp et al. 2003, 

Timar-Geng et al. 2004).  

 

Time vs. temperature paths 

To outline the thermal history of (1) the Permian and Lower Triassic deposits 

(Fig. 7a) and (2) the Upper Triassic and Middle Jurassic deposits (Fig. 7b) on 
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the base of the FT dataset the probable time-temperature fields were 

constructed in which the real palaeo-temperature paths lays.  

In a first approximation the thermal history of the basement (Fig. 2) provides 

the time vs. temperature limits (Fig. 7a, dashed line) for the overlying Permian 

to Lower Triassic deposits. This approximation is additionally refined by FT 

analyses on the sediment samples. The Permian to Early Triassic thermal 

evolution in turn provides the constraints for a first approximation for the time 

vs. temperature limits (Fig. 7b, dashed line) of the Middle Triassic to Middle 

Jurassic depositional intervals. 

The geographic distribution of the common temperature distribution in a 

distinct depth ranges probably within an unknown temperature array. 

Therefore, in each individual case it is hard to decide whether a local event or 

a regional thermal trend affects a FT sample. In a first view it is assumed, that 

all FT results determined in this study are reflecting regional rather than local 

effects.  

However, if zircon starts to record its FT age finally, due to cooling below the 

lower boundary of the ZPAZ (~180 °C), it is thought, that the temperatures fall 

below the 180°C isotherm and of course the proposed maximum temperature 

of 250 °C (Timar-Geng et al. 2004) were no longer reached on a regional 

scale. Moreover, the final cooling below the 180 °C isotherm is necessary 

before the first apatite samples cool below the upper temperature boundary of 

the APAZ at 120 °C. As shown here, the apatite samples were completely 

reseted, this is independently proven by the partial annealing of the zircon FT 

system. In such a case, the oldest old-peak-ages display the ages closest to 

the cooling below the upper temperature boundary of the APAZ (120°C). 

 

Permian and Early Triassic deposits (Fig. 7a) 

By combining the results of all Permian and Lower Triassic FT samples, a 

wide region can be covered (Fig. 3) allowing for the construction of the time 

vs. temperature field valid for a regional scale.  

As described above, the old apatite FT peak age at 137 ±11 Ma (sample 

HD81; Tab. 1), marks approximately the entrance into the APAZ from 

temperatures above 120 °C. Considering a similar regionally thermal 
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evolution, the oldest peak at 137 ±11 Ma marks the apatite FT age closest to 

the final cooling below the 180 °C isotherm. This fits quite well with the cooling 

below the ZPAZ estimated by the young peak ages of the zircon FT dataset at 

125 ±16 Ma (HD70) and clustering between 140 ±16 Ma (HD42) and 

175 ±27 Ma (HD68). 

 
Fig. 7 a,b 
Outline of the time-temperature field including the most likely time-temperature paths 
representing the thermal history of the a) Permian and Lower Triassic deposits and b) Upper 
Triassic and Middle Jurassic deposits of the Southern URG area. Ages after ICS (Gradstein 
et al. 2004) 
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The range of the apatite FT peak ages of the Permian an Lower Triassic are 

in the range of the already known apatite FT central ages of the crystalline 

basement (Michalski 1987, Wyss 2001, Timar-Geng et al. 2006a). Therefore a 

similar low temperature (<120 °C) evolution is inferred. As also shown by 

Timar-Geng et al. (2006a) the relative broad scattering of the apatite FT data 

prove a long remaining within the APAZ between about 137 Ma and 25 Ma. 

Modelled time vs temperature paths (Timar-Geng et al. 2006a) may show 

periods of minor cooling below APAZ temperature conditions before a short 

Eo-Oligocene heating period occurred, which was followed by a last cooling. 

Thereby, the young apatite FT peak age of 25 ±2 Ma (HD22) of the Lower 

Triassic deposits reflects possibly the last cooling below 60 °C in the region. 

This age coincides with the onset of uplift of the southern URG. The reason 

and the amount of the uplift and the amount of eroded material is still a matter 

of debate (Laubscher 1992, 2003, Ziegler 1994, Ziegler & Dezes 2007, 

Hinsken et al. 2007). 

 

Late Triassic to Middle Jurassic deposits (Fig. 7b) 

Upper Triassic and Middle Jurassic samples come from the eastern part of the 

study area. Nevertheless, information about the underlying units and on a 

local scale is preserved. 

The sampled Upper Triassic and Middle Jurassic sediments were deposited in 

three time steps between 226 Ma and 224 Ma and between 205 Ma and 

200 Ma and the Lower to Middle Jurassic between 184 Ma and 175 Ma. 

Inspection of the FT data (Fig. 5) very obviously reveals that sample HD169 is 

an outlier of the young zircon FT peak ages. This sample yielded three zircon 

FT peak ages, in which the young FT peak age at 55 Ma represents the 

youngest zircon FT peak age of the whole dataset. This young age does not 

match the possible time vs temperature paths recognized in the Permian to 

Lower Triassic deposits (Fig. 7a) or the crystalline basement (Fig. 2). 

Therefore, it is suggestive of a localized thermal anomaly, which disturbed the 

regional temperature field significantly. A similar high temperature anomaly 

was also detected about 4 km away near Kandern, Germany related to the 

URG Main Border Fault for the same time (Dresmann et al. 2009). The 
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sample HD169 (Middle Triassic sandstone) was taken about 100 m west of 

the URG Main Border Fault. Therefore, a relationship to hot hydrothermal fluid 

flow related to tectonic activity as proposed in the Kandern Fault Zone 

(Dresmann et al. 2009) seems very likely.  

Except for sample HD169, no Middle Triassic to Middle Jurassic sample 

yielded zircon FT ages younger than their deposition age. Hence, apart from 

local thermal anomalies the temperature range of the ZPAZ was not reached 

in the stratigraphic units younger than Middle Triassic on a regional scale. 

Therefore, these samples mainly reflect the thermal evolution of their source 

regions.  

The apatite FT data show approximately the same age pattern as shown for 

the underlying units, implying a similar low-temperature (<120 °C) evolution. 

Except, sample HD57, which yielded a relative old FT central age. Several old 

FT apatite peak ages at ca. 128 Ma to 137 Ma suggest cooling from 

temperatures higher than 120 °C during Cretaceous as estimated for the 

underlying units. 

 

Subsidence analysis and FT data 
The calculated hypothetical palaeo-geothermal gradients, which displays the 

necessary temperature conditions to influence the FT data characterises the 

thermal history at the investigated age levels. According to the two proposed 

deposition scenarios these hypothetical palaeo-geothermal gradients should 

now discussed.  

Thermal evolution during deposition scenario 1 (without Cretaceous deposits) 

Deposition scenario I was subdivided into two thermal sub-scenarios (a) and 

(b). First (a), according to Timar-Geng et al. (2004), a Jurassic, about 55 Myr 

long hydrothermal phase affected the crystalline basement as well as the 

Permian and Lower Triassic deposits with temperatures of at least 180 °C. To 

reach the 180°C isotherm palaeo-geothermal gradients of about 144 °C/km 

(sample HD42, Permian arcose) are necessary during the investigated age 

level at 166 Ma. The proposed maximum temperature of about 250 °C 

requires geothermal gradients in excess of 144°C/km during Middle Jurassic. 

Due to the decreasing overburden of the analysed horizons (Permian to 

Lower Triassic) the expected gradients tent to elevated values, if hypothetical 
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thermal events (≥180 °C) predate the deposition age of Middle Jurassic 

sediments (166 Ma). After the main phase of hydrothermal activity the 

geothermal-gradients decreased in their intensity during the Late Jurassic and 

were followed by cooling until the Late Eocene.  

Considering the required abnormal high geothermal-gradients during this 

scenario, a regional heating of Mesozoic sediments up to temperatures 

corresponding to the ZPAZ seems highly unlikely since no signs of 

magmatism are recognized during Triassic and Jurassic times. 

The second thermal sub-scenario (b) is in contrast to the first (a) related to a 

relative short (about 10-15 Myr) high thermal pulse during Late Jurassic and 

Early Cretaceous. It is suggested, that such a hypothetical thermal event 

occurred simultaneously to the stage of maximal burial. Therefore, the 

hypothetical geothermal-gradient needed during this relative short time 

window indicate values in excess of about 111 °C/km (sample HD42, Permian 

arcose) to reach temperatures of the ZPAZ. 

The necessary palaeo-gradients are substantial lower than in sub-scenario 

(a), but still, abnormal elevated. Nevertheless, such a thermal scenario at the 

transition from the Jurassic to the Cretaceous is in line with the last 

documented Mesozoic hydrothermal activity recognized on a regional scale 

(Werner und Franzke 2001, Brockamp et al. 2003, Wetzel et al. 2003). By the 

absence of signs of magmatism, a regional-wide hydrothermal activity has to 

be assumed as an additional heat source to explain the high gradients during 

the Late Jurassic and Early Cretaceous. 

 

Thermal evolution during deposition scenario II  

Considering an additional burial by 450 m of Early Cretaceous deposits, the 

required palaeo-geothermal gradients are below 100 °C/km during the middle 

Early Cretaceous (125 Ma). Deposition scenario II allows the lowermost and 

therefore most realistic palaeo-geothermal gradients. Nevertheless, the old 

apatite FT peak ages indicate a cooling below the 180 °C isotherm before 

about 140 Ma (lower most Early Cretaceous), contradicting a thermal pulse of 

at least 180°C simultaneous to the proposed maximum burial at the end of 

Early Cretaceous. Additionally, extensive hydrothermal activity that could have 
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caused such a late Early Cretaceous (~125 Ma) thermal pulse is up to now 

not observed in the southern URG area (e.g. Wetzel et al. 2003). In 

neighbouring regions like the central northern Switzerland for Middle 

Cretaceous times a thermal pulse was recognized (Mazurek et al. 2006). 

Unfortunately, the estimated geothermal gradient of about 42 °C/km is not 

comparable with the needed values here. Assuming such a palaeo-

geothermal gradient for the URG area, a burial related to about 2500 m of an 

Early Cretaceous sediment thickness would be required to allow for the 

observed annealing of FTs in zircon in the Lower Triassic and Permian strata 

(Tab. 3). Deposition of 2500 m thick Early Cretaceous sediments is 

geologically not reasonable. There are neither structural nor sedimentological 

evidences in the region in favour of such high values. 

Concluding the considerations above it is clear, that independent of the time 

at which post-depositional heating to temperatures of the lower ZPAZ 

boundary (180 °C) and above occurred, an elevated heat flux from the depth 

is crucial on a regional scale. 

By the excluding arguments of a heating event related to deposition scenario 

II and the abnormal high gradients needed during the first thermal sub-

scenario (a) of deposition scenario I, only the second thermal sub-scenario (b) 

is probable. 

Therefore, the most reasonable set-up is constraint by a thermal pulse 

causing hydrothermal activity simultaneous to the maximum of burial at the 

transition between Jurassic and Cretaceous between about 150 Ma and 

140 Ma.  

An increased heat flow may activate a convective hydrothermal system, which 

transports heat very fast from the deeper crust to more shallow depths.  

Considering the repeated hydrothermal activity since the Variscan orogeny 

(Werner & Franzke 1994, 2001, Wetzel et al. 2003), it could be possible that 

within the upper crust a huge amount of fluids persisted since then. That may 

explain the chance for a quick rise of temperatures in the upper crust on a 

regional scale. Additionally, the described scenario does not exclude 

increased temperatures in relationship to localized hydrothermal activity 

during Jurassic and Triassic times. Moreover, a localized Jurassic and 

Triassic hydrothermal overprint supports the development of the observed 
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heterogeneous zircon FT central ages, peak ages and single grain age 

distributions. 

In the light of the regional geologic evolution some points remains unclear. 

Although, extension of basins south, west to north of central Europe during 

the Early Cretaceous was well documented (e.g. Stampfli & Marchant 1997, 

Montadert et al. 1979, Hanisch 1984, Ziegler 1990), especially the geologic 

regime in the area of the later URG during the Cretaceous is still under 

discussion. Some authors (e.g. Illies 1977, Ziegler 1990, Geyer & Gwinner 

2004) point out the changed stress regime as responsible for uplift of parts of 

the northern Alpine foreland. While Illies (1977) and Geyer & Gwinner (2004) 

proposed continental conditions since Late Jurassic, Ziegler (1990) argued for 

uplift leading to continental conditions during the Late Cretaceous (Ziegler 

1990).   

Unfortunately, on the base of the presented data it is not possible to fix only 

one opportunity. Thermal effects on the crust are manifold and it is possible to 

find argues for both proposed theories of Early Cretaceous as well as Late 

Cretaceous uplift. Nevertheless, the FT data suggest strongly a modification 

of the thermal conditions within the upper crust probably related to a basic 

change of the regional tectonic conditions at the Jurassic - Cretaceous 

transition.  

 

 

7. Conclusions 
 
Cenozoic and Mesozoic FT ages within the Permian and Mesozoic sediments 

of the URG area prove a post-depositional thermal overprint of the apatite and 

zircon FT system. By integration of FT data and the geo-history analyses a 

preferred scenario has been evaluated. 

Triassic to Jurassic overall cooling of the lithosphere led to thermal 

subsidence in the southern URG area after the Variscan orogeny. Related to 

the reactivation of pre-existing faults in the crystalline basement Triassic and 

mainly Jurassic hydrothermal activity led to a local strong disturbance of the 

thermal regime within the upper crust; locally the temperature conditions of 

the ZPAZ were reached. Within the time frame between Late Jurassic to Early 
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Cretaceous (150 Ma - 140 Ma) the thermal regime of the studied area 

changed substantially. The combination of burial metamorphism and 

hydrothermal activity led to a regional-wide rise of the temperatures, which 

can be recognized by the observed younging of zircon FT ages and the 

complete reset of the apatite FT system of samples from Lower Mesozoic 

sediments. Such a regional wide heating episode was characterized by 

geothermal gradients in the range of 150 °C/km to 110 °C/km and a duration 

of at least 10 My. In Permian and Lower Triassic strata temperatures of at 

least 180 °C have been reached while Late Triassic to Middle Jurassic units 

were subjected to at least 120 °C.  

After this Late Jurassic to Early Cretaceous heating pulse the thermal regime 

of the upper crust cools rapidly to temperatures below 120 °C.  

During a short heating phase accompanying the initial rifting of the URG the 

cooling trend was interrupted in the Late Eocene to Early Oligocene. During 

this phase temperatures of up to 120 °C were reached in the uppermost 

crystalline basement and the Permian to Lower Triassic sediments. 

Related to the URG rifting hydrothermal anomalies developed locally leading 

to temperatures inside the ZPAZ (≥180 °C). On a regional scale no thermal 

overprint of the zircon FT system within the Mesozoic deposits occurred 

during the Cenozoic. 

The sampled stratigraphic units most probably cooled below the APAZ at 

around 25 Ma (Oligocene to Miocene transition). 
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Appendix 
 

Lithology Initial 
porosity 

Lithological 
coefficient 

Sediment 
grain density 

Reference 

  Φo c [km-1] ρ [kg m-3]   

Limestone 0.45 0.54 2710 
Sawyer et al 
(1982) 

Sandstone 0.49 0.27 2650 
Sclater and 
Christie (1980) 

Shale 0.63 0.51 2720 
Sclater and 
Christie (1980) 

shaly Sand 0.56 0.39 2680 
Sclater and 
Christie (1980) 

Dolomite 0.31 0.22 2860 
Schmoker and 
Halley (1982) 

Evaporite 0.15 0.10 3000 Borel 1995 

Siltite 0.56 0.39 2680 
Sclater and 
Christie (1980) 

 
Tab. 4 
Lithological parameters used during the subsidence analyses 
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Fig. 8 
North-south oriented transects (Fig. 3) delivers the overburden thickness of each sample at 
166 Ma and 125 Ma depending on the deposition scenario which were studied by the 
subsidence analyses. 
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III.  Thermal evolution and provenance regions of Cenozoic sediments 
from the southern Upper Rhine Graben 

 

 

Abstract 

During the rifting of the Upper Rhine Graben (URG) various fluvial drainage 
systems developed, were changed and later some disappeared during the 
Cenozoic. Several hundreds of meters of sediments related to temporary 
marine transgression and to dominant fluvial and lacustrine environments 
were deposited.  
Fission track (FT) analyses show that the Cenozoic units of the southern URG 
were not significantly reheated after their deposition. The analyses on zircon 
grains showed no young thermal overprint, while at least the geographic 
position and the related burial of syn-rift sediments of the graben are the main 
factor for a thermal overprint of the FT system in apatite. Therefore, the FT 
analyses on detrital samples from the southern Upper Rhine Graben (URG) 
area led to the identification of their source regions. Where palaeo-fluvial 
systems recognized in the southern URG area can be separated and 
characterised as “local” with source areas on the graben flanks or “regional” 
from rivers that drain areas far from the rift. Especially, their typical FT 
signature can easily identify material derived from the Alps. Time intervals 
dominated by “local” systems are the Eocene - Early Oligocene period and 
again after a short (about 5 Ma) interval of marine transgression until the 
Middle Pliocene. More or less simultaneous to the marine transgression from 
the North Sea into the URG, a connection in the South of the URG with the 
northern Alpine Molasse basin was developed. This is indicated by the Alpine 
FT signature in the “Meeressand” unit, which is the lower, most proximal 
facies of the early marine Grey Marl Formation. During the Early Miocene 
erosion was dominant in the southern URG area. Deposits were transported 
once again into the southern graben area by “local” river systems between 
Middle and Late Miocene. Alpine material was transported by the palaeo-Aare 
into the southern URG at about 4.2 Ma, proving the establishment of  
“regional” river systems originating in the Alps. 
 

 

1. Introduction 
 

Foreland deposits provide information on the denudation and exhumation 

history of the hinterland. The temporal evolution of geodynamic processes 

acting in the hinterland can be recorded from the changing characteristics of 

the foreland deposits. Detrital samples taken from the foreland consist of 

grains obtained of the whole drainage area and yield, depending on their 

stratigraphic age, information on their earlier provenance regions and on 
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(palaeo-) fluvial systems (Bernet and Garver 2005). Additionally, also a post-

depositional basin-related thermal history has been archived in such 

sediments, (e.g. Brandon 1998, Carter 1999). Fission-track (FT) analyses on 

selected bedrock samples of potential source regions deliver thermo-

chronological information on localised areas and contain the low temperature 

signature of currently outcropping rocks (e.g. Wagner & Van Den Haute 

1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 
Geologic map of the southern URG area and sample location 
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Applying FT analyses on detrital samples of syn-rift deposits from the 

southern Upper Rhine Graben (URG) area gives the possibility to discriminate 

between their different source regions. Furthermore, their thermal history can 

still contain information on palaeo-geodynamic processes of the hinterland, 

which is documented in these sediments, even when their source rocks have 

been lost by erosion. 

In this study we are trying to establish the provenance regions of the various 

marine and fluvial detrital deposits of the southern URG area as well as the 

cooling and denudation history of the flanks of the southern URG by analysing 

the apatite and zircon FT grain-age distributions. 
 

 
 
Fig. 2 
Stratigraphic chart illustrating the Cenozoic evolution of the southern URG and northern Jura 
(slightly modified after Hinsken et al. 2007 and own observations; numerical ages after 
Gradstein et al. 2004). 
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2. Drainage systems attributed to the southern URG area 
 

Since the beginning of rifting in the Late Eocene, various fluvial systems have 

developed in the southern URG. First, small rivers flew from the flanks into 

several lakes within the graben delivering coarse fan-like deposits along the 

evolving rift escarpments (Fig. 1, 2, 3; Salt Formation; Duringer 1988, Hinsken 

2003).  

Fig. 3 
Eocene to Oligocene, Salt Formation; local fans in front of the graben flank (after 
Duringer 1988) 
 

A less pronounced relief and the receding of the coarse proximal facies 

accompanied a marine transgression starting during the Rupelian. A marine 

connection to the North-Sea was developed as well as a link to the Swiss 

Molasse basin from where clastic material was delivered (Fig. 1, 2, 4; Grey 

Marl Formation, including Alsacian Molasse and “Meeressand”; Fischer 1965, 

Doebl 1967, Spiegel et al. 2007). 

During the Miocene a large hiatus within the sedimentary record witness a 

period of strong erosion in the southern URG, while deposition continued in 

the northern part (Sissingh 1998). This phase of erosion is caused by the 

regional uplift of the Black Forest - Vosges dome (e.g. Roll 1979, Laubscher 

1992, 2003, Ziegler 1994, Ziegler & Dezes 2005), which is accompanied by 

the activity of the Kaiserstuhl volcanic complex localised at the culmination of 

this dome (Keller et al. 2002). 
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Fig. 4 
Early Oligocene; 
Marine transgression into the URG via the Hessian Depression, and probably from the South, 
palaeo-geography at ca. 31 Ma (slightly changed after Kuhlemann and Kempf 2002) 
 

In the Early Miocene a new fluvial system developed draining the area. 

Especially the deposits derived from south-directed alluvial systems coming 

from the Black-Forest –Vosges-dome cover wide areas in the southernmost 

URG, the Tabular and later Folded Jura (Fig. 1, 2, 5; Bois de Raube 

Formation, Jura Nagelfluh including the Heuberg gravels and “Wanderblock 

Formation”) 

.
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Fig. 5 

Drainages system of the southern URG 
area and the north-western Alpine 
foreland since Late Miocene (changed 
after Kälin 1990, Giamboni 2004, Ziegler 
2007)   

 
Therefore, their deposition age 

delimit the maximum age of the Jura 

folding. 

The Middle Pliocene deposits 

present along the northern front of 

the Jura contain Alpine material, 

which imply the development of a 

new fluvial drainage system. Coming 

from the Alps the palaeo-Aare river 

changed its flowing direction and 

dewatered into the Bresse graben by 

crossing the southern URG in a 

westward direction (Fig.1, 2, 5; 

Sundgau gravels; Villinger 1998, 

Giamboni et al. 2004). 

Since the Late Pliocene developed a 

new watershed between the URG 

and the Bresse Graben. The river 

Rhine becomes the dominant river 

and the present drainage system 

established. (Fig. 5d; Villinger 1998, 

Giamboni et al. 2004). 

A large amount of material derived 

from the Alps has accumulated in the 

URG and partially further to the North 

(e.g. Pflug 1982). Additionally, the 

exposed flanks of the graben were 

intensely denudated (Illies 1967). 
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3. Fission Track (FT) Method 
 

The FT technique is a geochronological method used on igneous, 

metamorphic and clastic sedimentary rocks, which contain the analysed 

minerals zircon and apatite. FTs are linear damages within the crystal lattice 

caused by the spontaneous nuclear fission of 238U. These damages are 

stable at low temperatures and they anneal at high temperatures. Within the 

used zircon and apatite the annealing temperatures of the tracks range 

between 180 °C to 350 °C for zircon (Tagami 2005) and between 60 °C and 

110 °C for apatite (e.g. Gleadow and Brown 2000). (for a detailed overview 

see Reiners 2005). 

Different types of FT ages should be taken into account. The FT central ages, 

analytical errors and chi-square values were calculated using the TRACKKEY 

software (Dunkl 2002). The chi-square value was used to evaluate whether 

the single grain ages from one sample belong to one or several age 

populations. All samples are reported as central ages (Galbraight & Laslett 

1993). Additionally, samples that have failed the chi-square test (Pχ<5%) are 

commonly thought to indicate a mixed age composition (e.g. Brandon 1998, 

Garver et al. 2000, Stewart & Brandon 2004). For such samples the 

BinomFit® software (e.g. Brandon et al. 1992, Brandon 2005) applying the 

binominal "peak-fitting" method (Galbright & Green 1990, Galbright & Laslett 

1993) has been used for peak age calculation. The BinomFit® software 

determines the optimal number of significant age peaks by using the F-Test 

(Brandon 1992), which calculates the improvement of the binominal peak-

fitting statistic after each added age peak (e.g. Brandon 1996, 1998, Stewart 

& Brandon 2004). Furthermore, to get a better overview of the characteristics 

of single stratigraphic units all samples of a specific unit were compiled and 

the composite peak ages were calculated by the BinomFit® software. The 

analytical procedure is described within the appendix. 
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4. Sample Material 
 

Most of the syn-rift formations containing coarse siliciclastic detrital 

components of the southern URG area were sampled. The samples were 

taken at representative outcrops (Fig. 1, Tab. 1). Several samples contain 

large amounts of carbonate material, which are normally scarce on zircon and 

apatite grains. Therefore, from several samples only a relative low number of 

countable grains could be separated.  
 

 
denotation 

 

 
stratigraphy 

 
codes 

 
locations / facies 

(for coordinates see table 2 & 3) 

 
lithology 

Pleistocene gravels Pleistocene 
< 2 Ma 
(Zollinger 1982) 

HD 30, 31, 32, 41  local fans along the eastern border 
fault 

siliciclastic sands 
and gravels  

Sundgau gravels Pliocene 
2.9 - 4.2 Ma  
(Petit et al. 1996) 

HD 87, 96, 98 braided river deposits in the Ajoie 
and Sundgau 

siliciclastic sands 
and gravels, 
subordinate 
carbonate material 

Middle to Late 
Miocene, 
11 -14 Ma 
(Kählin 1997) 

fluvial deposits of the  
basin of Delemont 

Bois de Raube 
Formation 

 

HD 114,115 

 

mainly siliciclastic 
sands and gravels 

Middle to Late 
Miocene, 
11 -14 Ma 
 (Wittmann 1988, 
Kählin 1997, 
Kemna & Becker- 

HD 38, 39 
(Juranagelfluh) 

fluvial deposits at the  
Schloss Rötteln, Lörrach 

calcareous gravels 
to cobbles, 
subordinate 
siliciclastic gravels 
to cobbles 

Haumann 2003) 

  

HD 5, 59 
(Heuberg gravels) 

fluvial deposits at the  
Heuberg, Kandern 

siliciclastic sand and 
gravels to cobbles 

Juranagelfluh 

  HD 58 
(Wanderblock 
"Fm.") 

fluvial deposits of Breitenbach, 
basin of Laufen 

cobbles and 
boulders of Lower 
Triassic sandstone 

Early to Middle 
Miocene,  
13 - 17 Ma 

Molasse deposits, 
Glovelier, Folded Jura 

Filling of  karst 
pocket 

(Hug et al. 1997) 

HD 118 

  

sandstone, marls 

Early to Late 
Oligocene, 
 

HD 35, 40, 43, 44 
(Alsacian 
Molasse) 

brackish fluviatil; 
south eastern URG 

mica rich siliciclastic 
sand 

26.5 – 31 Ma 
(Berger et al. 2005) 

Grey Marl 
Formation  

 

HD 8, 14, 161 
(Meeressand) 

brackish to marine; 
SE-URG and area of Eguisheim 
(Colmar) 

calcareous and 
siliciclasitic 
sandstones 

HD 3, 4, 18, 19, 
25, 85, 93, 
119,138,  

local fans along the URG margins calcareous 
conglomerate and 
sandstone including 
siliciclastic sand, 
pebbles and cobbles 

Salt Formation  Middle Eocene to 
Early Oligocene, 31 
– 40 Ma (Berger et 
al. 2005) 

HD 88 basin facies at Altkirch calcareous  
sandstone 

 
Tab. 1 
sample description 
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5. Potential provenance regions 
 

The mostly coarse grained deposits in the URG area, which have been 

analysed for this study, emanate from various fluvial systems and from the 

input related to marine transgressions. Ideally, the potential source areas of 

these deposits can be identified on the basis of their characteristic FT grain-

age distributions, when three conditions are fulfilled: 1. The thermal history 

and therefore, the FT grain-age distribution of all potential source areas are 

known; 2. These FT grain-age distributions differ sufficiently from each other 

to provide their clear distinction; 3. The samples should not have experienced 

significant post-depositional heating. Such a reheating up to temperatures that 

are high enough to anneal FTs would overprint the source area signature, 

leading to a new basin related signature. 

The published FT age signatures of potential source regions are illustrated 

and listed in Fig. 6, 7 and in Tab. 2. The Alps as well as the realms of the 

southern URG (Black Forest, Vosges and Jura) must be considered as the 

most important source regions. This was already evidenced by the 

petrography of selected pebbles and the investigation of heavy minerals (e.g. 

Liniger and Hofmann 1965, Duringer 1988, Hagedorn 2004). Furthermore, this 

hypothesis is strongly supported by the known palaeo-drainage system of the 

area (e.g. Villinger 1998).  

 

Black Forest, Vosges and Jura 

Due to extensive erosion of the Black Forest and the Vosges as well as a 

subordinate sedimentary input from the Jura, large amounts of sediment were 

transported and accumulated into the Graben area. The sedimentary input 

from the Black Forest and the Vosges comprises Palaeozoic crystalline 

basement as well as Mesozoic strata. Material, which originates from the Jura 

Mountains consist of Mesozoic stratigraphic ages (e.g. Duringer 1988, Pflug 

1982). The published zircon FT central ages from the Palaeozoic crystalline 

basement range between 127 Ma and 312 Ma (Timar-Geng et al. 2004, 

2006a&b, Dresmann et al. 2009, Spiegel et al. 2007). FT ages obtained from 

investigations of apatite range between 20 Ma and 107 Ma (Michalski 1987, 
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Wyss 2001, Timar-Geng et al. 2006a & b, Dresmann et al. 2009). Whereas 

the FT central and peak ages obtained from zircons of the Mesozoic 

sedimentary cover of the southern URG range about between 125 Ma and 

349 Ma, investigations of apatite grains from similar stratigraphic units yield 

ages between 27 Ma and 155 Ma (Dresmann 2009). Additionally, thermal 

anomalies are likely to have been occurred locally during initial URG rifting. In 

such cases, this would have led to a significant disturbance of the regional 

thermal signature. In a former study, such anomalies were determined at the 

eastern graben margins, where Late Palaeocene to Early Eocene zircon FT 

ages are obtained for Upper Triassic sandstones and fault related crystalline 

basement rocks (Dresmann et al. 2009, Dresmann 2009). Furthermore, 

widespread Cenozoic volcanic activity is recognised related to the URG rifting 

(e.g. Keller et al. 2002), which also represents considerable local occurring 

thermal disturbances of the regional thermal pattern. 

 

Alps 

FT investigations on apatite of bedrock samples from the Alps provide a broad 

scattering from Mesozoic to Quaternary ages (e.g. Hunziker et al. 1992, 

Brügel et al. 2003). Therefore, the apatite FT age signatures bear only a low 

potential to characterize a distinct Alpine source region. In particular, the pre-

Miocene apatite FT ages that are of Alpine origin differ hardly from ages 

obtained from the investigation of the Black Forest and the Vosges (Michalski 

1987, Wyss 2001, Timar-Geng et al. 2006a, Dresmann et al. 2009). 

However, contrary to the apatite FT ages the zircon FT age signature of 

bedrock samples of the Alps clusters into several distinct age domains (e.g. 

Hunziker et al. 1992, Fügenschuh et al. 2000, Fügenschuh and Schmid 2003). 

Originating from the bedrock, south of the Mont Blanc Massif young zircon FT 

ages cluster between about 7 Ma and 30 Ma and older zircon FT ages 

between about 50 Ma and 90 Ma (Fügenschuh and Schmid 2003). In the 

Eastern Alps, bedrock samples yielding zircon FT ages in the range of 

10-20 Ma only from rocks of the Tauern Window (Fügenschuh et al. 1997) 

and from localities at the eastern-most extensions of the Alps (Brügel et al. 

2003). 

http://web5s.silverplatter.com/webspirs/doLS.ws?ss=Fuegenschuh-Bernhard+in+AU
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region apatite FT ages zircon FT ages literature 

Fenoscandian 

shield (Oslo rift) 

128 - 284 Ma 181 - 665 Ma Rohrmann et al. 1994 

Bohemian Massif western: 28 - 195 Ma north-western: 256 - 305 Ma, 

Western: 215 - 283 

Wagner 1989, Hejl et al. 1997 

Thomson & Zeh 2000,  

Rhenish Massif north-western & Ruhr 

Basin: 136 - 291 Ma,  

North-Eastern: 130 - 239 

Ma 

  Glasmacher et al. 1997, 

Karg et al. 2005 

20 - 107 Ma 127 - 312 Ma and subordinate 

at ca. 60 Ma 

Black Forest & 

Vosges 

 

(for details see text) 

Michalski 1987, Wyss 2001, 

Timar-Geng et al. 2004, 2006; 

Spiegel et al. 2007; Dresmann et 

al. 2009 

Massif de la Serre 48 – 65 Ma 227 – 131 Ma Madritsch et al 2008 

Odenwald 50 - 200 Ma   Wagner 1989,  

Massif Central  south-eastern 25 - 207 Ma 24 Ma, 103 Ma and 181 Ma Barbarand et al. 2001, 

Bernet et al. 2004 

 Alpine material recognized in 

the pre-Miocene northern & 

western Alpine Molasse:  256 

Ma, 147 Ma, 76 Ma, 42 Ma and 

30 Ma  

Spiegel et al. 2000, 2001 & 2007, 

Bernet 2002, 

Bernet et al. 2004, 

  additional in post-Oligocene  

Alpine Molasse deposits: 10 

Ma, 15 Ma,  20 Ma  

 

  Determined in the bedrock of  

the Eastern Alps: 10-20 Ma 

scarce, >20 Ma are common 

Brügel et al. 2003   

Determined in the bedrock 

of the Alps1 Ma to approx. 

Palaeozoic ages 

Determined in the bedrock of  

the central and western Alps: 7 

Ma to 30 Ma and 50 Ma and 

90 Ma 

 

Brügel et al. 2003, Hunziker et al. 

1992,  Fügenschuh & Schmid 

2003, Fügenschuh et al. 1997 & 

2000 

Alps  

                                                (for details see text)  

Mesozoic 

sediments of the 

southern URG 

area and the 

northern 

Switzerland  

Upper Rhine Graben area, 

Triassic to Early Jurassic: 

27 - 155 Ma; northern 

Switzerland Opalinuston 

165-203 Ma,

Stubensandstein 247 Ma,  

Upper Rhine Graben area, 

Triassic to Early Jurassic: 140 - 

349 Ma, Northern Switzerland 

and SW Germany: 219 – 285 

Ma 

Köppen & Carter 2000,   

Mazurek et al. 2006,   

Dresmann et al. 2009, Dresmann 

2009 

 

Tab. 2 
Potential source areas of the deposits in the URG area and their apatite and zircon FT age 
signatures. (bedrock samples: central ages, detrital samples: peak ages) 
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Early to Middle Cenozoic ages (20 Ma to 50 Ma) are scarce and ages older 

than 60 Ma scatter broadly within the Eastern Alps (Brügel et al. 2003).  

The zircon FT age signature of eroded Alpine material that stems from the 

early Alpine phase is recorded in Miocene and Oligocene Alpine Molasse 

sediments. The detrital FT ages of Miocene and Oligocene Molasse 

sediments clusters at ~256 Ma, 147 Ma, 76 Ma, and 42 Ma (e.g. Spiegel et al. 

2006). A younger age group, which yields ~33 Ma, is solely determined in 

rocks from the foreland of the Western Alps (Bernet 2002). A similar age 

group is not known from the Oligocene Sediments of the northern Alpine 

foreland. 

Zircon FT investigations of post-Early Miocene Alpine Molasse deposits and 

recent fluvial systems originating from the Alps yield age groups between 

9 Ma and 15 to 20 Ma (Spiegel et al.  2000, Bernet 2002, Bernet et al. 2004). 

In general, zircon FT analyses on samples from the Miocene and Oligocene 

foreland Molasse of the eastern Alps yield ages older than 16 Ma (Brügel et 

al. 2003). 
 

 

6. Results 
 

32 samples yielded 19 apatite and 31 zircon samples for FT analyses (Tab. 3, 

4). During the first step FT central ages of each sample were calculated, 

accompanied by applying the chi-square test, which gives information on the 

potential to contain more than one age population within one single sample. 

Generally, the apatite FT central ages are similar to the known age ranges of 

the proposed source areas. All apatite samples failed the chi-square test 

(Pχ<5%) and didn’t recommend a detailed interpretation of the FT central 

ages.  The analyses of the single grain age distributions by the peak fitting 

method using the BinomFit® software (e.g. Brandon et al. 1992, Brandon 

2005) yield 6 separate peak ages (P1-6) for apatite (Tab. 5) of the Cenozoic 

sediments from the URG. The apatite peak ages bases on relative broad grain 

age distributions within separated ranges, older than 260 ±18 Ma (P6), 

between 226 ±26 Ma and 155 ±23 Ma (P5), 128 ±9 Ma and 98 ±9 Ma (P4), 

84 ±5 Ma and 68 ±6 Ma (P3), 58 ±5 Ma and 38 ±2 Ma (P2) and at 25 ±3 Ma 
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(P1). For a regional wide characterisation of distinct stratigraphic units the 

binominal peak fitting method (Galbright & Green 1990, Galbright & Laslett 

1993) was applied to a composite data set, which contains all single grain 

analyses of one investigated unit. This calculation of composite peak ages 

should suppress outliers, which probably represents local anomalies. 

However, in spite of the low number of counted grains in several samples the 

calculated peak ages of single samples are in a good agreement with the 

calculated peaks of the composite data sets of each stratigraphic unit. 

 

 

 
 
Tab. 3 Apatite FT data 
Coordinates (x, y) of Gauss Krüger DHDN Zone 3, Number of grains counted (n). ρs, ρi and 
ρd are spontaneous, induced and dosimeter track densities in 105 tracks/cm2. N are number 
of tracks counted shown in brackets. Analyses by external detector method using 0.5 for the 
4π/2π geometry correction factor. Disp., Dispersion, according to Galbraith and Laslett (1993). 
Ages calculated as central ages according to Galbraith and Laslett (1993) using dosimeter 
glass CN5 for apatite with ζCN5 = 380.67±10.58 (H. Dresmann). P(χ2) is the probability of 
obtaining χ2 value for ν degrees of freedom where ν = number of crystals-1. 
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Tab. 4 Zircon FT data 
Coordinates (x, y) of Gauss Krüger DHDN Zone 3, Number of grains counted (n). ρs, ρi and 
ρd are spontaneous, induced and dosimeter track densities in 105 tracks/cm2. N are number 
of tracks counted shown in brackets. Analyses by external detector method using 0.5 for the 
4π/2π geometry correction factor. Disp., Dispersion, according to Galbraith and Laslett (1993). 
Ages calculated as central ages according to Galbraith and Laslett (1993) using dosimeter 
glass CN1 for zircon with ζCN1 = 145±6.88 (H. Dresmann). P(χ2) is the probability of obtaining 
χ2 value for ν degrees of freedom where ν = number of crystals-1. 
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The zircon FT analyses by TRACKEY (Dunkl 2002) yield a few samples, 

which pass the chi-square test, suggesting containing only one age 

population. For these samples only a FT central age was calculated. 

However, these results were strongly influenced by the low number of 

analysed grains of these samples. 
 

 
 

Tab. 5 
Apatite FT peak ages (P1-P6), 
Samples that have failed the chi-square test (Pχ<5%) the BinomFit® software (e.g. Brandon 
et al. 1992, Brandon 2005) applying the binominal "peak-fitting" method (Galbright & Green 
1990, Galbright & Laslett 1993) has been used for peak age calculation. Shaded fields are 
calculations of composite data sets  
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Tab. 6  
Zircon FT peak ages (P1-P7), 
Samples that have failed the chi-square test (Pχ<5%) the BinomFit® software (e.g. Brandon 
et al. 1992, Brandon 2005) applying the binominal "peak-fitting" method (Galbright & Green 
1990, Galbright & Laslett 1993) has been used for peak age calculation. Shaded fields are 
calculations of composite data sets  
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Generally, the zircon grain age distributions related to distinct peak ages were 

clearly separated of each other. Within 7 age peaks (P1-7) some subordinate 

peaks can be recognized. Some of the peak ages are restricted to one or two 

or three stratigraphic units, other like the Upper Jurassic and the Palaeozoic 

peak ages are well represented in nearly all deposits. Note that by calculating 

of the peak ages of the composite data sets the Lower Jurassic age peak 

vanished. 

The most pronounced age peak is an old one with Palaeozoic ages (P7), 

which was found nearly in all analysed units. Especially, in the Pliocene and 

Pleistocene units a mainly Triassic peak age (P6) between 247 ±19 Ma 

and 193 ±23 Ma is missing, while it was well represented in the older units. A 

Jurassic peak age (P5) between 174 ±18 Ma and 154 ±16 Ma is separated 

from a mainly Cretaceous one between 149 ±15 Ma and 103 ±35 Ma (P4), a 

Late Cretaceous to Eocene peak age (P3) between 80 ±17 Ma and 38 ±3 Ma 

are relatively broad but clear separated from younger peak ages (P1-2). Peak 

age P2 based on only a low number of analyses yield different sub-peaks in 

the different stratigraphic units. In Oligocene samples the peak age (P2) was 

calculated at about 27 ±5 Ma, in Miocene to Pliocene samples the peak age 2 

(P2) date at 23 ±2 Ma and in Pleistocene samples a  less constrained 

Miocene peak age at 15 ±3 Ma was found. The youngest peak age (P1) lays 

between 11 ±1 Ma and 13 ±1 Ma estimated in Pliocene samples.  
 

 

7. Discussion and interpretation 
 

Post-depositional heating 

Palaeo-temperature indicators like vitrinite reflectance values of Cenozoic 

units from the Tabular - and Folded Jura, as well as from the southern URG 

(Todorov et al. 1993) yield temperature estimations, which are not high 

enough to influence the pre-depositional apatite FT age pattern of the syn-rift 

samples that have been analysed in this study. On the other hand, vitrinite 

reflectance data determined for the Mesozoic units of the area suggests 

palaeo-geothermal gradients of up to 100 °C/km (e.g. area of Muttenz/Basel) 

during Oligocene and Early Miocene times (Todorov et al. 1993). 
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Additionally, Roll (1979) proposed thickness values of about 750 m to 1250 m 

of Late Oligocene to Middle Miocene deposits that are missing from the 

current stratigraphy of the southern URG.  

The estimations of Roll (1979) and the temperature calculations of Todorov et 

al. (1993), who supposed convective thermal systems along fault zones, 

reflect heterogeneous and geographically fast changing geothermal 

conditions for today outcropping syn-rift sediments of Oligocene units at the 

southern end of the URG. Combining the overburden estimated by Roll (1979) 

with the proposed palaeo-geothermal gradients of Todorov et al. (1993), in the 

today outcropping Oligocene sediments palaeo-temperatures of about 75 °C 

to 125 °C can be expected for Early Miocene times.  

On the other hand, measured temperatures in boreholes suggest that 

temperatures higher than 60°C are not or only hardly reached in the southern 

URG area today. Only in the area of the Dannemarie basin, West and North-

West of a line Altkirch/France to Mulhouse/France, 60°C and higher were 

reached within deep (>1500m) buried layers (Munch et al. 1979).  

Although, a recent thermal overprint at the sampled localities is not expected 

considering the borehole data. The above estimated palaeo-temperatures (75 

°C to 125 °C) would affect the apatite FT system in Oligocene units and led to 

a post-depositional apatite FT age signature.  

Beside these independent data sources, it is important to focus the apatite 

and zircon FT ages itself for understanding the thermal syn-rift evolution and 

the possibility of a rifting related post-depositional heating of the analysed 

units. 

Due to the pre-depositional apatite FT ages in nearly all analysed samples 

(Tab.: 3, 5; Fig.: 6a) a post-depositional reheating to temperatures, which are 

able to affect the apatite FT system during significant durations seems to be 

unlikely. Furthermore, due to a thermal sensitivity of higher temperatures 

compared to the apatite FT system the zircon FT system should not be 

influenced post-depositional. Nevertheless, the interpretations of Todorov et 

al. (1993) suggest accelerated thermal conditions at least along fault 

structures during Oligocene and Early Miocene times. 
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Fig. 6a  
Apatite FT central and peak ages 
Error bars are 1σ 
 

Most of the FT samples were collected along the graben margins, where the 

today observable step-like structural architecture argues against a former 

burial in the range as estimated for the graben interior by Roll (1979). 

Additionally, hydrothermal activity along faults or fault zones could be 

responsible for a perturbation of the regional thermal background.  Therefore, 

samples from highly fractured zones as the escarpments could mask the 

“normal” temperature conditions, these samples should not be interpreted in 

the same way, as samples from the inner graben. 

Some samples were taken from units showing lithologies in basin facies, but 

the best candidate to discuss the regional geologic/thermal evolution in more 

detail is only sample (HD88). This sample from the Salt Formation was taken 

at the village Altkirch/France, where Roll (1979) proposed a thickness of about 

1250 m today missing Oligocene to Miocene deposits. Due to the 

pre-depositional apatite FT ages of the Altkirch sample (HD88) a post-

depositional reheating up to temperatures of ca. 60°C is excluded. 
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Considering a burial of about 1250 m combined with a constant surface 

temperature of 0 °C (conservative estimation) a maximum palaeo-geothermal 

gradient of 48 °C/km is allowed to reach the 60 °C isotherm but do not exceed 

them in the proposed sample depth. Otherwise, if such and higher gradients 

persist long enough, they would have led to temperatures of 60°C and higher, 

which should caused annealing of FTs in apatite and therefore younging of FT 

ages. The last is not observable in the FT samples here. Therefore, palaeo-

geothermal gradients below 48 °C/km were expected right before the 

overburden of the proposed 1250 m of Oligocene sediments were eroded and 

during the proposed doming of the southern URG area in Early Miocene 

times. This value is only comparable to the lower values as estimated by 

Todorov et al. (1993), who calculated palaeo-geothermal gradients of about 

100 °C/km for the southern most URG and about 40 to 50 °C/km for the 

southern part of the northern Jura for Oligocene to Miocene times. They 

related their high values to convective thermal systems and a “constructive 

interference” of the URG rifting with the Alpine forebulge, which suggests a 

combination of thermal and tectonically induced uplift of the southern Black 

Forest, Vosges and URG area in the Early Miocene. 

Considering the calculated palaeo-geothermal gradients of about 100 °C/km 

(Todorov et al. 1993) and the inner graben position of sample HD88 at 

Altkirch, where an overburden of 1250m (Roll 1979) is proposed, higher 

gradients as the calculated value of about 48 °C/km should be expected 

during a thermal doming event. Additionally, no apatite FT age of this study 

shows a relationship to a Miocene thermal event. Therefore, the theory of 

uplift of the Black Forest – Vosges dome by thermal doming seems to be 

unlikely during Miocene times. Otherwise, the proposed burial of the Altkirch 

area (Roll 1979) is overestimated. These findings argue for the Early Miocene 

uplift of the Black Forest – Vosges dome by lithospheric folding as proposed 

by Ziegler & Dezes (2007) and Bourgeois et al. (2007). Such a scenario would 

have led to uplift coinciding with decreasing geothermal gradients and cooling 

of the uppermost sediment bed. 
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Discussion of possible source areas 

Concluding, that no post-depositional thermal overprint affected the FT 

samples, it is possible to discuss in more detail the source areas where the 

material comes from. 

Salt Formation 

The Salt Formation represented by 7 samples was taken from local fans, 

which are developed along the graben flanks and one sample (HD88) from 

distal sandstone in a basin interior related facies. The petrography of 

crystalline pebbles from local fan material indicates incision of rivers down to 

the Palaeozoic crystalline basement in the area of the Vosges, whereas at the 

margins along the Black Forest only Mesozoic components could be found 

(Duringer 1988 and own observations). 

 

 
Fig. 7 
Zircon FT central and peak ages, error bars are 1 σ 
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The sampled marginal fans display FT peak ages in the compiled dataset for 

zircon at 314 ±48 Ma, 193 ±23 Ma and 64 ±7 Ma and for apatite at 226 

±26 Ma, 120 ±9 Ma, 72 ±5 Ma and 42 ±5 Ma, which are in general 

comparable to ages found by former studies of the crystalline basement of the 

Black Forest and Vosges (Michalski 1988, Wyss 2001, Timar-Geng et al. 

2006a, Spiegel et al. 2007) as well as of their Mesozoic cover (Dresmann et 

al. 2009, Dresmann 2009). Therefore, the source area of the sampled local 

fan material along the escarpments has to be located at the graben flanks. 

The graben interior basin facies were represented only by sample HD88 from 

a quarry at Altkirch, it shows apatite FT ages as well as zircon FT ages 

comparable to the age peaks estimated in the samples along the margins. A 

characteristic zircon age peak at about 80 Ma determined for Alpine material 

(Spiegel et al. 2007) cannot be found. Therefore, it is suggested that only the 

graben flanks deliver material into the southern URG at the transition between 

Eocene to Oligocene. 

A comparison of the zircon FT results from the eastern (Black Forest) and 

western (Vosges) graben margin shows no clear differences. At both margins 

dominate the single grain ages corresponding to the Early Triassic and 

Palaeozoic (86-90%). Younger ages found only in 10-14% of the analysed 

grains.  

Obviously, the youngest zircon FT peak age at 64 ±7 Ma from the western 

marginal fan deposits does not match the known zircon FT age pattern 

documented within the source areas in general and of the Vosges in 

particular. The samples (HD119, HD4) containing these young zircon FT age 

signatures were taken near Eguisheim southwest of Colmar (Fig. 1). These 

findings in a relative close sampled area suggest the occurrence of a thermal 

anomaly in the source area of this local alluvial fan.  Best candidate known 

from this area seems to be Cenozoic volcanism (Keller et al. 2002) in the 

nearby Vosges, which is dated at 60.9 ±0.6 Ma.  However, the responsible 

anomaly was likely related to the initial rifting of the URG during the Early 

Cenozoic. Anomalies with comparable zircon FT ages are recognized at the 

south-eastern Main Border Fault (Dresmann et al. 2009, Dresmann 2009). 

Due to the large error of the young peak age at 139 ±50 Ma from the 

composite file of the eastern margin this age is relatively uncertain. 



85 

Nevertheless, this upper Jurassic age match the proposed, last high thermal 

event, which affected the zircon FT system within Mesozoic deposits of the 

southern URG area (Dresmann 2009). 

 

Grey Marl Formation 

The Grey Marl Formation was deposited under marine conditions, which 

developed to a more brackish fluvio-deltaic facies at the end of its deposition. 

In the Early Rupelian at about 31 Ma the North Sea connected the URG via 

the Hessian depression (Fig. 4; Doebl 1967, Berger et al. 2005). This marine 

transgression is documented across the entire graben by the deposition of the 

Foraminifera marls (NP 23). 

A link to the northern alpine Molasse Sea is also proposed (Doebl 1967). In 

the Meletta beds (Grey Marl Fm.) at Mulhouse zircon FT age signatures were 

found, which are characteristic for material delivered from the alpine realm 

(Spiegel et al. 2007). Therefore, a connection between the Alpine Molasse 

basin and the URG is suggested via the area of the later Jura Mountains at 

least during the deposition of the Meletta beds (Spiegel et al. 2007). Several 

studies proposed a gateway along the southern prolongation of the URG, 

through the so-called “Rauracien depression” (e.g. Fischer 1965) or to the 

southwest into the Bresse Graben (Brianza et al. 1983).  Brianza et al (1983) 

obtained a heavy mineral signature of the proximal facies of the Lower Grey 

Marl Fm., the “Meeressand”, which was interpreted by material transported 

from the Massif Central to the East. However, the exact location of such a 

marine gateway is still unknown.  

The zircon FT analyses of the samples HD8-1 and HD8-2 of the 

“Meeressand” at Dornach (south of Basel) shows one weak documented age 

peaks at 195 ±123 Ma and three age peaks at 121 ±13 Ma, 76 ±9 Ma and 

38 ±3 Ma, which reflect a strong similarity to the characteristically Alpine age 

peaks at about 42 Ma and the more indicative peak at about 76 Ma (Spiegel 

et al. 2007). Considering the three zircon FT age peaks known from the 

Massif Central at 181 Ma, 103 Ma and 24 Ma (Tab. 2; Barbarand et al. 2001, 

Bernet et al. 2004) an influence of this area was not very likely to the 

“Meeressand” samples at Dornach. This analysis suggests a connection to 

the northern Alpine Molasse Sea via the adjacent area of the later Jura at 
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about 31 Ma at the same age as the North-Sea linked the northern URG. 

Considering a tectonic activity along the eastern URG Main Border Fault a 

gateway along their southern prolongation through the area of Laufen into the 

Molasse Basin seem possible, which represent about the eastern margin of 

the Rauracien depression. Alternatively, the zircon grains causing the young 

“Alpine” FT peak ages could also be delivered by thermal anomalies from the 

eastern URG main border fault (Dresmann et al. 2009, Dresmann 2009) by 

south directed currents along the coast according to Brianza et al (1983). But, 

considering transport along the coast, the relation of quantities should shift to 

older ages, due to the erosion of mainly Jurassic and Triassic units in the area 

of the Dinkelberg (south of the Black Forest), which yield higher values of 

grains with old FT ages (Dresmann 2009). Therefore, a local source region 

situated in the area of the Black Forest seems to be highly unlikely. 

At the transition from Early to Late Oligocene, the deposition environment 

changed from marine to brackish and fluvio-deltaic, which was expressed by 

the increasing dominance of a proximal facies the so-called “Alsacian 

Molasse” (Upper Grey Marl Fm.). 

Its heavy mineral content proves an Alpine origin in addition to an influence of 

local material (e.g. Liniger & Hofmann 1965, Hagedorn 2004). As well, the 

zircon FT peak age signature of the upper part of the Grey Marl Fm., the 

Alsacien Molasse, shows the typical Alpine zircon FT age signature reflecting 

the proposed influence by a source area within the Alps. 

Their relation of quantities of FT grain ages in comparison to the 

“Meeressande” is shifted to older FT ages may indicating a decreasing 

influence by alpine material to favours of local sources. This seems to be a 

signal showing the change from marine (Early Gray Marl Fm. as the 

Meeressande) to brackish (Alsacien Molasse) to lacustrine environments as 

recognised within the layers of the Late Oligocene (Tüllingen-Delsberg 

Limestones; Fig.:2) 

 

Bois de Raube Formation 
The FT analyses of the samples from the Bois de Raube Formation show 

zircon and apatite FT age peaks comparable to the proposed source area in 

the Vosges (Liniger 1967, Kählin 1997). Only one single zircon grain shows a 
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young age at about 23 Ma, which is not compatible with the known zircon FT 

age pattern of the Vosges (Timar-Geng et al. 2004). Reworking of today 

eroded alpine material, which was included in the Grey Marl formation, may 

explain such an outlier in the dataset.  

 

Juranagelfluh 

The lower part of the Juranagelfluh lends the formation its name (Kemna & 

Becker-Haumann 2003). The samples are collected in the area of Schloss 

Rötteln near Lörrach (Fig.1). While the zircon FT analyses yield the common 

age spectrum known from the crystalline basement and the Mesozoic units of 

the southern URG area (Timar-Geng et al. 2004, 2006a, Dresmann et al. 

2009, Dresmann 2009), the apatite FT ages tend to the old part (119 ±15 Ma 

to 79 ±6 Ma) of the known apatite FT age range of the URG area (Timar-Geng 

et al. 2006a, Dresmann 2009). Today, the Black Forest, the proposed source 

area of the Juranagelfluh (Kälin 1990) delivers “older” apatite FT ages 

(>80 Ma) more often in the southernmost part today than in the central part of 

the southern Black Forest (Michalski 1987, Wyss 2001, Timar-Geng et al. 

2006a&b). Supposing a comparable setting at the Late Miocene most likely a 

locally more restricted source area of the Juranagelfluh can be indicated in 

contrast to a broad network of rivers delivering the material to the south. 

Considering this the source area was probably located south of the 

Badenweiler-Lenzkirch zone (Fig.1). 

“Wanderblock Formation”:  In the area of Breitenbach a single boulder (HD58) 

of the “Wanderblock Formation“was taken and analysed by the zircon FT 

method. The Jurassic to Triassic FT ages shown in the results (Tab. 6) are 

characteristic for the Lower Triassic sandstones analysed in the area of the 

southern URG (Dresmann 2009). Therefore, the suggested source area in the 

Black Forest (Kemna & Becker-Baumann 2003) is also confirmed by the FT 

method. 

Heuberg gravels: The Heuberg gravels consist of components derived of the 

crystalline basement of the Black Forest as well as of Middle to Lower Triassic 

sandstones. Therefore, the expected zircon FT age pattern as known from the 

BF and the Mesozoic units of the area (Timar-Geng et al. 2004, 2006a, 
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Dresmann et al. 2009 Dresmann 2009) are recognized in the strongly 

weathered Heuberg gravels. 

 

Karst pocket of Glovelier 

Hug et al. (1997) described the material as delivered from the Alpine Molasse 

basin. The FT analyses of the sandy material allows no clear decision 

between an Alpine source or a source area north of the Jura like the Bois de 

Raube Fm. or the Juranagelfluh. But it should be noted that the typical young 

Alpine zircon FT age peaks at 42 Ma and 76 Ma are nearly completely 

missing from the determined zircon FT age pattern within the analysed 

sample from the karst pocket. 

 

Sundgau gravels 

While the FT analyses of apatite yielded results of only 5 grains, the statistics 

within the zircon FT analyses is quite better with 115 dated grains. The pebble 

petrography clearly supports a large value of Alpine material (ca. 70 %) within 

the Sundgau gravels, which also contain pebbles of Vosges and Black Forest 

basement rocks (Liniger 1967). These, source areas are also reflected in the 

results of the zircon FT analyses, which display a narrow young and a broad 

old grain cluster shown in the radial plot (Fig. 8). Four peak ages can be 

calculated by the peak-fitting method showing two young peaks at 23 ±2 Ma 

and 11 ±1 Ma and to old peaks at 265 ±18 Ma and 105 ±8 Ma. Especially, the 

both young peaks are very typical for an Alpine source. But significant 

differences between these samples ask for discussion in more detail. 

Sample HD87 from the northern most part of the Sundgau gravels at Altkirch 

yield grains with an old age group at ca. 268 ±20 Ma and a subordinate peak 

(n=2) at 13 ±1 Ma. The old peak age seems to be dominated by a provenance 

region localised in the Vosges and/or Black Forest, which indicate a stronger 

influence by local material along the northern margin of the Sundgau gravels. 
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Fig. 8 
Zircon FT data; 
Radial plots (Galbraith 1988, 1990) of the samples from Faverois (HD98) and Seppois (HD96) 
 

The both other samples from Faverois (HD98; n=40) and Seppois (HD96; 

n=56) within the Ajoie are from the central part of the Sundgau gravels. The 

old peak age (268 ±20 Ma) found in sample HD87 are not represented in 

these samples, which imply no or only a subordinate influence of material 

from the neighbouring areas in the north. 

Additionally, also they display a clear difference within the young FT ages. 

While the Seppois sample contains (HD96) 22 grains of the 11 ±1 Ma age 

peak and only 13 grains of the second peak at 23 ±2 Ma, the Faverois sample 

(HD98) yield no grain within the youngest age group at about 11 Ma and 33 

grains in the 23 ±2 Ma age group (Fig. 8, Tab. 6). 

It has to be noted, that the sample from Seppois (HD96) originates from sand 

in contrast to the Faverois sample (HD98), which originates from gravels. 

Therefore, a kind of sorting by different transport and/or deposition 

characteristics of the material within a fluvial environment cannot ruled out.  

On the other hand, even changes of the shape of the drainage area could 

explain the different age spectra of both samples. By the loss of drainage 

areas a loss of parts of the characteristic FT age signatures of the sediment 

seems to be possible. Such a change in the upper palaeo-Aare system, which 

drained parts of the Alps enclosing various FT age patterns, would be 

responsible for a narrowing of the spectrum of the FT ages of palaeo-Aare 
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sediments. Otherwise, it could be possible that an increasing drainage area 

and/or deeper incision of the upper reaches are responsible for an access to 

regions or depths with additional FT age signatures, which could support a 

spreading of the FT age spectrum. Such a spreading of the FT age spectrum 

should occur quickly by getting new reaches, which delivers new FT age 

patterns. Reworking of remnants, which are deposited along the whole Aare 

river, argues against a substantial and quick change within the FT age 

spectrum due to the loss of parts of the drainage area. 

The statistic significance of only two samples with different FT age signatures 

is not very high. Additionally, the outcrops of Seppois and Faverois are 

indistinguishable in matters of their relative or absolute deposition ages. 

Nevertheless, a widening of the FT age spectrum, as recognized within the 

Faverois sample (HD98), related to an increasing and/or deeper incision of 

the river system seems to be more probable, than a decreasing drainage area 

of the Aare river. Such an argumentation suggests a younger deposition age 

of the Faverois sample compared to the Seppois sample. 

 

Pleistocene gravel 
The samples from the local fan deposits along the eastern graben margin of 

Pleistocene age yield the same apatite and zircon FT age pattern as known 

from the Black Forest crystalline basement and the Mesozoic units of the 

URG area (Michalski 1987, Wyss 2001, Timar-Geng et al. 2004 & 2006a, 

Spiegel et al. 2007, Dresmann et al. 2009, Dresmann 2009). An unusual 

outlier represented by the subordinate zircon FT age peak at ca. 15 ±3 Ma 

(n=2) within the sample HD30 was found at Bollschweil. These young zircon 

FT ages are so far not known from the Black Forest. Considering the elevated 

position in respect to the altitude of Pleistocene graben sediments containing 

Alpine material a contamination by them can be excluded. The sampled 

outcrop at Bollschweil is located about 15 km away of the about 14 to 19 Ma 

old Kaiserstuhl volcano complex (Keller et al. 2002, Wimmenauer 2003). 

Additionally, around Bollschweil further Cenozoic volcanoes are known. 

Therefore, volcanic sources could be responsible for the 15 Ma zircon FT age 

peak. 
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8. Conclusions 
 

A comprehensive characterisation of the apatite and zircon FT age signatures 

of the Cenozoic sediments from the URG area has been performed. These 

analyses show that the Cenozoic units of the southern URG were not 

significantly reheated after their deposition. As well as the analyses on zircon 

grains, that showed no young thermal overprint, in general, the FT system in 

apatite were also not effected. Nevertheless, strong heterogeneities of the 

thermal pattern due to convective thermal anomalies along fault zones or 

deep burial (e.g. Dannemarie basin), in small parts of the area a thermal 

overprint of the FT system in apatite can not ruled out.  

However, especially FT analyses of zircons encompass a high potential for 

analysing their provenance areas. Therefore, by comparing the known FT 

signatures of potential provenance areas of these deposits from the URG area 

with the new FT data for the Cenozoic deposits, changes in the drainage 

system becomes clearer. 

During the initial rifting of the URG solely the transport of material delivered 

from the graben flanks can be recognised. This fluvial to lacustrine 

environment changed abruptly after a marine transgression during the Early 

Oligocene. A first connection between the URG and the Northern Alpine 

Molasse Basin has been indicated by the characteristically Alpine zircon FT 

age signature obtained from the lower, most proximal facies, of the Grey Marl 

formation (“Meeressand”) near Dornach. The locality at the south-eastern 

Border of the URG suggests a connection to the Alpine Molasse basin via the 

southern prolongation of the URG the so-called “Rauracien depression”. The 

upper Grey Marl formation shows clearly the sedimentation of Alpine-derived 

material in its zircon FT age signature as well.  

After a hiatus in the depositional record of the southern URG area in the 

Miocene, sedimentation started again and was dominated by material derived 

from local source areas in the Vosges and the Black Forest. This observation 

has been confirmed by the known zircon FT signature of the Vosges and the 

Black Forest, which have been found in the Bois de Raube Formation as well 

as in the Juranagelfluh and their equivalents. 
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The Pliocene Sundgau gravels, which are basically composed of Alpine 

material, may hint on a widening of the drainage area between the deposition 

of the samples of Seppois and Faverois. 

Since the Pleistocene the river Rhine has dominated the fluvial systems and 

the content of the young deposits of the URG interior. Additionally, along the 

margins of the URG many fans developed leading to a growing influence of 

local material while the flanks were uplifted and denuded. 

 

 

 

 
Appendix 
 

Analytical procedure 

Apatite and zircon grains were separated from each sample (2 to 8 kg rock 

material) following standard mineral separation procedure including crushing, 

magnetic and heavy liquid separation. The zircon samples were mounted in 

Teflon PFA®, while the apatite samples were embedded in epoxy resin. After 

polishing, the apatites were etched for 40 s in 6.5 % HNO3 at ~18 °C and the 

zircons for 5 to 14 h in an eutectic-melt of KOH-NaOH (220 °C). Muscovite 

was used as an external detector (Naeser 1976, Gleadow 1981) and CN-5 

(apatite) and CN-1 (zircon) standards as dosimeter glasses. Irradiation with 

thermal neutrons was carried out at the Australian Nuclear Science and 

Technology Organisation facility (ANSTO).  

Muscovite detectors were etched in 40 % HF for 40 min at ~18 °C. Tracks 

were counted with a 1600x magnification (dry) for apatite and zircon samples 

on a Zeiss (Axioplan2) optical microscope with a computer-controlled 

motorised scanning stage, run by the "FT-STAGE 3.11" software (Dumitru, 

1993). The FT age determination followed the zeta calibration method 

(Hurford & Green 1983) with a zeta value of 380.67 ±10.58 (Durango, CN-5) 

for apatite and 145 ±6.88 (Fish Canyon Tuff, CN-1) for zircon.  
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IV. Key conclusions of the thesis 
 
Cenozoic and Mesozoic FT ages within the Permian and Mesozoic sediments 

of the URG area prove a post-depositional thermal overprint in a regional 

scale of the apatite and partly the zircon FT system. 

At the end of a period of widespread hydrothermal activity during the Triassic 

and Jurassic a last intense regional hydrothermal pulse appears. Probably 

between 150 Ma and 140 Ma temperatures of at least 180 °C in the 

uppermost crystalline basement and the Permian to Triassic sediments were 

reached. After this Jurassic to Early Cretaceous event the thermal regime of 

the upper crust cools rapidly to temperatures below 120 °C, before, during the 

Late Eocene to Early Oligocene temperatures of up to 120 °C were reached 

and effected the apatite FT system in the uppermost crystalline basement and 

the Permian to Mesozoic sediment cover, followed once more by a cooling 

regime. 

Accompanying, the initial phase of the Cenozoic URG rifting several localised 

thermal anomalies developed along the main border faults of the southern 

URG leading occasionally to temperatures in excess of 180 °C. Such partly 

short-lived thermal anomalies caused by hydrothermal fluid migration and 

convection are probably related to tectonic and volcanic activity. 

FT analyses on Cenozoic to Quaternary sediments in the area of the URG 

confirm generally the knowledge of the syn-rift drainage system history.  

During the Cenozoic and Quaternary fluvial systems dominates the southern 

URG. At an age of about 31 Ma south of Basel a connection developed to the 

Northern Alpine Molasse Sea and persisted during about 5 Ma interrupting the 

dominance of fluvial environments. This is evidenced by the characteristically 

Alpine zircon FT age signature found in the deposits of the lower and upper 

units of the Grey Marl Formation.  
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VI. Appendix 
 

Fission Track data 

Radial plots, which in the manuscript are not shown; containing single grain 

data of apatite and zircon FT analyses. The radial plots (Galbraith 1988, 1990) 

were calculated using the software Trackkey (Dunkl 2002) 
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