Repository logo
Log In
  1. Home
  2. Unibas
  3. Publications
  4. Self-correcting quantum memory with a boundary
 
  • Details

Self-correcting quantum memory with a boundary

Date Issued
2012-01-01
Author(s)
Hutter, Adrian
Wootton, James R.
Roethlisberger, Beat
Loss, Daniel  
DOI
10.1103/physreva.86.052340
Abstract
We study the two-dimensional toric-code Hamiltonian with effective long-range interactions between its anyonic excitations induced by coupling the toric code to external fields. It has been shown that such interactions allow an arbitrary increase in the lifetime of the stored quantum information by making L, the linear size of the memory, larger [Chesi et al., Phys. Rev. A 82, 022305 (2010)]. We show that for these systems the choice of boundary conditions (open boundaries as opposed to periodic boundary conditions) is not a mere technicality; the influence of anyons produced at the boundaries becomes in fact dominant for large enough L. This influence can be either beneficial or detrimental. In particular, we study an effective Hamiltonian proposed by Pedrocchi et al. [Phys. Rev. B 83, 115415 (2011)] that describes repulsion between anyons and anyon holes. For this system, we find a lifetime of the stored quantum information that grows exponentially in L-2 for both periodic and open boundary conditions, although the exponent in the latter case is found to be less favorable. However, L is upper bounded through the breakdown of the perturbative treatment of the underlying Hamiltonian.
University of Basel

edoc
Open Access Repository University of Basel

  • About edoc
  • About Open Access at the University of Basel
  • edoc Policy

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement