Fractional Adams-Moser-Trudinger type inequalities
Date Issued
2015-01-01
Author(s)
DOI
10.1016/j.na.2015.06.034
Abstract
Extending several works, we prove a general Adams Moser Trudinger type inequality for the embedding of Bessel-potential spaces (r2) into Orlicz spaces for an arbitrary domain,r2 with finite measure. In particular we prove
sup (u is an element of Hn/p,p (Omega), parallel to(-Delta)n/2p u parallel to LP(Omega)<= 1) integral Omega (E alpha n,p broken vertical bar u broken vertical bar p/p-1dx <= Cn,p broken vertical bar Omega broken vertical bar,)
for a positive constant amp whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. (-Delta) u is an element of L-(P,L-q)). The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the Q-curvature and some open problems.
sup (u is an element of Hn/p,p (Omega), parallel to(-Delta)n/2p u parallel to LP(Omega)<= 1) integral Omega (E alpha n,p broken vertical bar u broken vertical bar p/p-1dx <= Cn,p broken vertical bar Omega broken vertical bar,)
for a positive constant amp whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. (-Delta) u is an element of L-(P,L-q)). The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai. We also discuss an application to the problem of prescribing the Q-curvature and some open problems.
File(s)![Thumbnail Image]()
Loading...
Name
20160825200744_57bf33f061c08.pdf
Size
376.75 KB
Format
Adobe PDF
Checksum
(MD5):21453f2e9f11dd93ca032a7f1dccbd0a