Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase
Date Issued
2017-01-01
Author(s)
Paquet, Tanya
Le Manach, Claire
Cabrera, Diego González
Younis, Yassir
Henrich, Philipp P.
Abraham, Tara S.
Lee, Marcus C. S.
Basak, Rajshekhar
Ghidelli-Disse, Sonja
Lafuente-Monasterio, María José
Bantscheff, Marcus
Ruecker, Andrea
Blagborough, Andrew M.
Zakutansky, Sara E.
Zeeman, Anne-Marie
White, Karen L.
Shackleford, David M.
Mannila, Janne
Morizzi, Julia
Angulo-Barturen, Iñigo
Martínez, María Santos
Ferrer, Santiago
Sanz, Laura María
Gamo, Francisco Javier
Reader, Janette
Botha, Mariette
Dechering, Koen J.
Sauerwein, Robert W.
Tungtaeng, Anchalee
Vanachayangkul, Pattaraporn
Lim, Chek Shik
Burrows, Jeremy
Witty, Michael J.
Marsh, Kennan C.
Bodenreider, Christophe
Rochford, Rosemary
Solapure, Suresh M.
Jiménez-Díaz, María Belén
Wittlin, Sergio
Charman, Susan A.
Donini, Cristina
Campo, Brice
Birkholtz, Lyn-Marie
Hanson, Kirsten K.
Drewes, Gerard
Kocken, Clemens H. M.
Delves, Michael J.
Leroy, Didier
Fidock, David A.
Waterson, David
Street, Leslie J.
Chibale, Kelly
DOI
10.1126/scitranslmed.aad9735
Abstract
As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.