Lifted Successor Generation using Query Optimization Techniques
Date Issued
2020-01-01
Abstract
The standard PDDL language for classical planning uses sev eral first-order features, such as schematic actions. Yet, most classical planners ground this first-order representation into a propositional one as a preprocessing step. While this simpli fies the design of other parts of the planner, in several bench- marks the grounding process causes an exponential blowup that puts otherwise solvable tasks out of reach of the planners. In this work, we take a step towards planning with lifted representations . We tackle the successor generation task, a key operation in forward-search planning, directly on the lifted representation using well-known techniques from database theory . We show how computing the variable substitutions that make an action schema applicable in a given state is essentially a query evaluation problem. Interestingly, a large number of the action schemas in the standard benchmarks result in acyclic conjunctive queries, for which query evaluation is tractable. Our empirical results show that our approach is competitive with the standard (grounded) successor generation techniques in a few domains and outperforms them on benchmarks where grounding is challenging or infeasible.
File(s)![Thumbnail Image]()
Loading...
Name
20200928174858_5f7205ea227eb.pdf
Size
269.68 KB
Format
Adobe PDF
Checksum
(MD5):b29a1661abefd4e52a5c5a8714f92b88