edoc

Linker molecules between laminins and dystroglycan ameliorate laminin-alpha2-deficient muscular dystrophy at all disease stages

Meinen, S. and Barzaghi, P. and Lin, S. and Lochmuller, H. and Ruegg, M. A.. (2007) Linker molecules between laminins and dystroglycan ameliorate laminin-alpha2-deficient muscular dystrophy at all disease stages. The Journal of cell biology, Vol. 176, H. 7. pp. 979-993.

[img]
Preview
PDF - Published Version
Available under License CC BY-NC-SA (Attribution-NonCommercial-ShareAlike).

7Mb

Official URL: http://edoc.unibas.ch/dok/A5258382

Downloads: Statistics Overview

Abstract

Mutations in laminin-alpha2 cause a severe congenital muscular dystrophy, called MDC1A. The two main receptors that interact with laminin-alpha2 are dystroglycan and alpha7beta1 integrin. We have previously shown in mouse models for MDC1A that muscle-specific overexpression of a miniaturized form of agrin (mini-agrin), which binds to dystroglycan but not to alpha7beta1 integrin, substantially ameliorates the disease (Moll, J., P. Barzaghi, S. Lin, G. Bezakova, H. Lochmuller, E. Engvall, U. Muller, and M.A. Ruegg. 2001. Nature. 413:302-307; Bentzinger, C.F., P. Barzaghi, S. Lin, and M.A. Ruegg. 2005. Matrix Biol. 24:326-332.). Now we show that late-onset expression of mini-agrin still prolongs life span and improves overall health, although not to the same extent as early expression. Furthermore, a chimeric protein containing the dystroglycan-binding domain of perlecan has the same activities as mini-agrin in ameliorating the disease. Finally, expression of full-length agrin also slows down the disease. These experiments are conceptual proof that linking the basement membrane to dystroglycan by specifically designed molecules or by endogenous ligands, could be a means to counteract MDC1A at a progressed stage of the disease, and thus opens new possibilities for the development of treatment options for this muscular dystrophy.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Neurobiology > Pharmacology/Neurobiology (Rüegg)
UniBasel Contributors:Rüegg, Markus A.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Rockefeller University Press
ISSN:0021-9525
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:31 Dec 2015 10:42
Deposited On:22 Mar 2012 13:20

Repository Staff Only: item control page