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Summary

The diverse array of imaging modalities currently in use has profoundly impacted the
practice of medicine. In particular, X-ray computed tomography (CT) and magnetic
resonance imaging (MRI) have the capacity to record a three-dimensional image of the
body with great detail. As a consequence of their widespread use, the amount of available
data is continuously increasing at an unprecedented rate. This presents an opportunity
to apply machine learning and, in particular, deep learning. Deep learning is a subfield
of machine learning that is particularly well-suited to train on large quantities of data
and to capture complex features in high-dimensional data. Currently, deep learning
methods rely on graphics processing units (GPUs) to be evaluated with any reasonable
speed. However, GPUs with high-performance characteristics – which are directly linked
to their memory capacity – contribute significantly to the high implementation costs of
deep learning methods. To enable an easier access and a more widespread adoption, it
is crucial to reduce this barrier of entry.

In this work, we explore the potential of deep learning methods for a range of tasks
involving brain imaging data, with a focus on reducing the GPU-memory consumption.
This is particularly relevant for methods that process MR and CT scans, as they inher-
ently are three-dimensional. The first project we present is an unsupervised anomaly
detection and localization method for brain CT scans. It employs a novel self-supervised
surrogate task. The second project involves a supervised tumor segmentation in MR
scans with denoising diffusion models. This method has previously been proposed for
two-dimensional slices. As diffusion models already require substantial resources for two-
dimensional data, we explore various techniques to reduce the resource consumption, to
adapt this model to three-dimensional data. In the last project, we explore implicit
neural representations (INRs) to model the development of the neonatal brain on the
basis of MR scans. We show that INRs can be trained in sparsely sampled data, explore
techniques for disentangling the latent space and illustrate how they can be trained with
minimal resources.
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Zusammenfassung

Die vielfältigen bildgebenden Verfahren, die heute im Einsatz sind, haben die Medizin
revolutioniert. Insbesondere Computertomografie (CT) und Magnetresonanztomografie
(MRT) können verwendet werden, um dreidimensionale Bilder des Körperinneren detail-
liert zu erfassen. Infolge ihrer weitverbreiteten Nutzung stehen heute so viele Daten zur
Verfügung wie nie zuvor. Dies bietet eine Gelegenheit, maschinelles Lernen und insbe-
sondere Deep Learning einzusetzen. Deep Learning ist ein Teilbereich des maschinellen
Lernens, das sich besonders gut für das Training basierend auf grossen Datenmengen eig-
net, und besonders gut komplexe Features in hochdimensionalen Daten erfassen kann.
Derzeit sind Methoden des Deep Learnings auf performante Grafikprozessoren (GPUs)
angewiesen. Allerdings können GPUs mit hohen Leistungsmerkmalen – welche direkt
mit der Grösse ihres Speichers im Zusammenhang stehen – erheblich zu den Kosten
beitragen, die mit der Nutzung von Deep Learning Methoden verbunden sind. Um eine
breitere und einfacher zugängliche Verwendung zu ermöglichen, ist es entscheidend, die-
se Eintrittsschwelle zu senken. In dieser Arbeit untersuchen wir das Potenzial von Deep
Learning Methoden für eine Reihe von Aufgaben mit bildgebenden Daten des mensch-
lichen Gehirns, mit dem Schwerpunkt auf der Reduktion des Bedarfs an Speicher der
GPUs. Dies ist besonders relevant für Methoden, die MR- und CT-Bilder verarbeiten,
da diese von Natur aus dreidimensional sind.

Das erste Projekt, das wir vorstellen, handelt von einer unüberwachten Methode zur
Anomalieerkennungs und -lokalisierung für CT-Bilder des Gehirns. Diese Methode ver-
wendet eine neue, self-supervised Surrogate-Aufgabe vor. Das zweite Projekt dreht sich
um eine überwachte Hirntumorsegmentierungsmethode für MR-Bilder mittels Denoising
Diffusion Models, die zuvor für zweidimensionale Schnittbilder entwickelt worden ist.
Da Diffusion Models bereits für zweidimensionale Daten erhebliche Mengen an Speicher
benötigen, untersuchen wir verschiedene Techniken um mit dieser Schwierigkeit umzuge-
hen, um sie schlussendlich für dreidimensionale Daten anwenden zu können. Im letzten
Projekt untersuchen wir Implicit Neural Representations (INR), die auf dünn gesampel-
ten Daten trainiert werden können. Wir untersuchen Techniken für das Disentanglement
des Latent Space, und für das Training minimalen Ressourcen.

xi
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Chapter 1

Introduction

In 1895, Willhelm C. Röntgen discovered X-rays, which marked the dawn of medical
imaging. For the first time, it was possible to look through the human body without
cutting it open. Up to this day, it remains one of the most common imaging modalities
used for diagnostics. During the First World War, Marie Sk lodowska Curie built cars
equipped with X-ray systems – later called “petite Curies” – which were the first mobile
imaging system [1]. Soon after, the contrast agents for imaging the gastrointestinal
tract were discovered, which again opened up many new opportunities [2]. The X-rays
soon gave rise to the focal plane tomography (or planigraphy), developed during the
1920ies and 1930ies [3]. This technique consists of exposing an X-ray film several times
from different angles, which had the effect that only one specific plane inside the body
remained in focus. In that sense, it was the first tomographic modality. With the advent
of electronic computers, the possibilities grew, and in the 1970ies, ultrasound imaging,
magnetic resonance imaging (MRI) and X-ray computed tomography (CT) were used
clinically for the first time [2]. Since then, many new techniques and applications have
been developed, and they have become faster, and their imaging resolution increased.
The English national health service (NHS) reports that between 2013 and 2023, the
number of MRIs performed grew by over 70% and the number of CT scans more than
doubled [4].

The fast growth of the amount of medical imaging that is being performed also poses
challenges for the healthcare systems. This increases healthcare costs and the burden on
the radiology staff [5]. Due to the amount of data that is being recorded, it is of interest
to use automated image analysis. This is a great opportunity to apply machine learnig,
as it can make use of large amounts of data. Therefore, it has the potential to lighten
the burden on the radiology staff and it can enable or accelerate studies involving larger
cohorts.

1.1 Motivation

In this work, we focus on the brain imaging data, CT- and MR-scans specifically. Due
to their relatively high resolution, and because of their three-dimensional nature, any
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2 Chapter 1. Introduction

implementation of processing algorithms require careful consideration of the needed re-
sources.

Deep learning models can have particularly high requirements regarding the compu-
tational resources and profit from a highly parallelized graphics processing units (GPUs).
However, GPUs incur a significant cost, which can limit the use of deep learning models
in practice. Especially the GPUs memory is one of the main bottlenecks when applying
deep learning in medical image analysis. We discuss this in more detail in Section 4.2.6.
The three projects presented in this thesis explore methods that inherently do not require
a lot of GPU memory or that can be optimized to reduce the memory consumption.

1.2 Contribution

We discuss three projects involving different brain image processing tasks on CTs and
MRIs scans. We developed a novel unsupervised anomaly detection and localization
method based on patch-wise position regression as a surrogate task with a self-supervised
training. The patch-based approach makes use of relatively small networks. We present
it in Chapter 6.

The second project is about a brain tumor segmentation method using denoising
diffusion models, which has previously been proposed for two-dimensional data. As
diffusion models are generally resource-intensive, we propose multiple technical contri-
butions to enable this method for three-dimensional data. This project is presented in
Chapter 7.

In the third project, we explore the use of implicit neural representations (INRs)
as an approach for modeling the neonatal brain development over time. We show how
INRs can efficiently be trained with limited resources and evaluated on high-dimensional
data, and propose two methods that encourage the age-disentanglement within the INRs
latent space. We present this project in Chapter 8.

1.3 Outline

Chapter 2 gives a short overview over the brain anatomy in Section 2.1 and its early
development in Section 2.2. Furthermore, we discuss injuries and disorders relevant to
these projects, specifically gliomas in Section 2.3, and intracranial hemorrhages and cra-
nial fractures in Section 2.4. In Chapter 3, we introduce the imaging modalities that
were used to acquire the datasets we have used in this project. They comprise magnetic
resonance imaging in Section 3.1 and X-ray computed tomography in Section 3.2. Be-
cause all three projects involve the development of deep learning methods, we introduce
the foundational concepts of deep learning in Chapter 4, and provide more in-depth
context for our methods in Chapter 5. Finally, chapters 6 to 8 include the publications
of these projects, with a discussion in Chapter 9.



Chapter 2

Clinical Background

In this chapter, we discuss the imaging techniques used for the data we analyzed in
the projects presented in Chapter 6, Chapter 7, and Chapter 8, as well as the problem
settings and the underlying pathologies.

2.1 Overview of Skull and Brain Anatomy

The human brain is a component of the central nervous system, which also includes the
spinal cord. It controls the motor function of the body, interprets sensory information,
and regulates human behavior. The brain is located within the cranial cavity of the
skull. The bones that surround the cranial cavity are collectively referred to as the
neurocranium, while the remaining bones of the skull are known as the facial bones.
The neurocranium, shown in Figure 2.1, consists of the os occipitale, the os parietale
(dextrum et sinistrum), the os frontale, the os temporale (dextrum et sinistrum), and
the os sphenoidale. The calvaria is the superior part of the neurocranium and consists
of the pairs of frontal and parietal bones, as well as the superior parts of the occipital
bone and the temporal bones [6].

Macroscopically, the brain can be divided into four parts, namely the brainstem, the
cerebrum, the diencephalon and the cerebellum. The brainstem extends the spinal cord
and comprises the mesencephalon, pons, and medulla. The cerebrum is the largest of
the four main parts, and can again be separated into the left and right hemispheres.
The outermost layer of neural tissue of the cerebrum is the cerebral cortex, exhibiting
the characteristic folds and grooves of the human brain, called gyri and sulci. The dien-
cephalon is in the center of the cerebrum and superior to the brainstem. The cerebellum
is in the anterior part of the cranial cavity and below the cerebrum.

As illustrated in Figure 2.2, the brain and the remainder of the central nervous
system are encased in three meninges. The outermost layer is the dura mater, followed
by the arachnoid mater, and then the pia mater. In the skull, the dura mater is typically
attached to the bone and is in direct contact with the arachnoid mater. It has two notable
extensions into the cranial cavity. On the one hand, the falx cerebri extends into the
longitudinal fissure, separating the two cerebral hemispheres. On the other hand, the

3



4 Chapter 2. Clinical Background

Frontal Bone

Right Parietal Bone

Right Temporal Bone

Sphenoid Bone

Occipital Bone

Zygomatic Bone

Left Maxillary Bone

Figure 2.1: The Skull bones, with the left temporal and parietal bone removed. Data
visualized from BodyParts3D [7].

tentorium cerebelli separates the cerebrum from the cerebellum [8]. The pia mater closely
follows the surface of the brain and extends into the sulci. The subarachnoid space, i.e.,
the space between the arachnoid mater and the pia mater, is filled with the cerebrospinal
fluid (CSF) [9]. The CSF surrounds the whole central nervous system and also occupies
the space in the ventricles of the brain. It has a cushioning function, supplies nutrients,
and removes metabolites from the central nervous system [10].

The brain parenchyma can be divided into grey and white matter. The grey matter
contains primarily the cell bodies of the neurons, while the white matter mostly consists
of the myelinated axons that extend from the cell cores and connect to other neurons [8].
The neurons are the cells of the nervous system. They are responsible for transmitting
electrical signals across the body [12]. Their cell body has dendrites that extend to
other neurons to receive signals, and an axon, which can be a long process extending
from the cell body, ending in the synaptic terminals that can release neurotransmitters
and therefore transmit signals to other cells. As mentioned above, the cerebral cortex is
the cerebrum’s superficial layer, consisting of grey matter. The difference between white
and grey matter is visible in CT as well as in some MR sequences, as we will further
discuss in Section 3.

Furthermore, the brain parenchyma contains glial cells, providing physiological sup-
port to the neurons [13, 14]. The glial cells consist mainly of astrocytes, oligoden-
drocytes, ependymal cells and microglia [14]. Astrocytes form the largest group of the
glial cells and have various functions, including structural support, regulation of the
metabolism and repair of damage in the tissue [15]. Oligodendrocytes are responsible
for the myelination of the axons [16]. The ependymal cells line the ventricles and the
choroid plexus as the interface between the brain parenchyma and the CSF. They are



2.1. Overview of Skull and Brain Anatomy 5

Figure 2.2: Illustration of three meninges between the brain and the skull. Courtesy of
Frank Gaillard [11].
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Figure 2.3: Illustration of the arterial supply of the brain. Courtesy of OpenStax [19].

responsible for the production and the exchange of CSF [13]. Finally, the microglia are
part of the macrophage system and are, therefore, part of the immune system [17].

The blood is primarily supplied to the brain via the internal carotid arteries and the
vertebral arteries. The arterial system of the brain has multiple redundant paths [18] as
shown in Figure 2.3.

The vertebral arteries join each other again to form the basilar artery. The left and
right posterior cerebral arteries branch off the basilar artery and supply the posterior
brain. From each of the internal carotid arteries, the corresponding middle cerebral
arteries and anterior cerebral arteries branch off. The two anterior cerebral arteries
are connected by the anterior communicating artery, and the internal carotid arteries
are each connected to the posterior cerebral arteries via posterior communicating arter-
ies [19]. From that point, the major vessels branch out while traversing the subdural
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Figure 2.4: Illustration of the dural venuses. Courtesy of OpenStax [19].

space. Subsequently, multiple finer vessels enter into the brain parenchyma. The ves-
sels exiting the parenchyma return the blood through the veins that occupy the dural
sinuses, as shown in Figure 2.4.

2.2 Fetal and Neonatal Development of the Brain

This section aims to provide an overview of the development of the fetal and neonatal
brain. For this period of the development, there are multiple conventions for defining
the age of the subject. It is important to distinguish them and thus, we first want to
clarify them. In this section, we use two conventions: The first is the age post concep-
tion, which is the preferred terminology for discussing development, mainly during the
embryonic and fetal phase. The second convention comprises two terms, the gestational
age and postmenstrual age. Both of them refer to the age since the first day of the
last menstrual period, but the former is exclusively used during pregnancy and to indi-
cate the length of the pregnancy, while the latter is the preferred term for the perinatal
period [20]. By convention, if the date of conception is known (e.g., due to assistive
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reproductive procedures), the gestational age is computed by adding two weeks to the
age post conception [20].

First Trimester In the third week post-conception, the embryo consists of three germ
layers, specifically the ectoderm, the mesoderm, and the endoderm [18]. The central
nervous system arises from the ectoderm, the outermost layer. It develops the neural
plate, which then shapes into the neural tube, which will contain the cerebrospinal fluid.
This neural tube develops into the forebrain, midbrain and hindbrain after about four
weeks [21]. The forebrain later develops into the telencephalon, which in the adult brain
becomes the cerebrum, and the diencephalon, which in the adult brain includes notably
the thalamus and hypothalamus but also the retina [18]. The hindbrain develops into the
pons and medulla oblongata, forming the brainstem, the midbrain, and the cerebellum.
By week eight, the internal capsule is present, and the cortical plate begins to form
along with other major structures. Furthermore, the major organs are also present,
marking the end of the embryonic phase [21]. By the twelfth week, the cerebral cortex
has undergone significant growth, and the two hemispheres have been connected by the
corpus callosum, which has begun to form. [21].

Second Trimester The second trimester is approximately between week 13 and 26
post-conception. The number of synapses starts to increase rapidly at the beginning
of the second trimester. The myelination of the neurons begins at around 20 weeks
and continues until several years after birth. The vascularization of the brain starts to
develop between 22 and 24 weeks post conception [21].

Third Trimester The third trimester lasts from about week 27 post-conception up to
birth. During the end of the second and the beginning of the third trimester, the cerebral
cortex’s growth speed increases. Due to its growth, the gyrification also advances rapidly.
While the lateral-, the parieto-occipital-, and the central sulci are already developed by
the end of the second semester, most of the major sulci are formed in the window
specifically between week 26 and week 30 [22]. Afterward, until well after birth, the
gyrification continues. We display brain MRIs of neonates in this age range in Figure 2.5.

2.3 Gliomas

Various types of brain tumors can be classified by their origin. Gliomas specifically
originate from glial cells. As described in Section 2.1, these are cells in the central
nervous system that do not transmit information, but among many other tasks, regulate
the composition of the extracellular space and also make up the blood-brain barrier [8].
Based on their malignancy, the World Health Organization (WHO) classifies gliomas into
four grades (I - IV) [13, 25]. The grades I and II encompass the low grade gliomas (LGGs)
that are benign. The grades III and IV are called the high grade gliomas (high grade
gliomas) and include the malignant glioblastomas (grade IV) [25]. Glioblastomas and
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Figure 2.5: Brain MRIs of preterm and term neonates at 27-42 weeks postmenstrual age.
We show each an axial, coronal and sagittal slice of T2-weighted images. Data visualized
from the developing Human Connectome Project [23, 24].

astrocytomas are both astrocytic, i.e., tumors originating from astrocytes, but usually,
only grades I-III are called astrocytomas while grade IV are glioblastomas [13].

In general, brain tumors are rare, with an incidence of 5-13 per 100000 per year [26].
The most common ones are, however, the malignant glioblastoma: According to a study
in England [27] the most common brain tumors are glioblastoma (32%), followed by
meningoma (27%), other astrocytoma (9%), oligodendroglioma (3%), lymphoma (2%),
ependymoma (1%). Note that all of those types except for meningoma and lymphoma
are glioma. With magnetic resonance imaging, it is possible to distinguish different parts
of a glioma [25]:

◦ the GD-enhancing tumor: In MR-imaging, frequently gadolinium-based contrast
agents are used. The part of the tumor appearing hyper-intense in T1-weighted
images is called the enhancing tumor, as the contrast agent enhances said part in
this MR-sequence. This is mostly visible in Glioblastoma, but usually less visible
in low-grade-gliomas, as the blood-brain barrier is disrupted to a lesser degree.

◦ the peritumoral edema: Some parts of the surrounding tissue can also be invaded
by the tumor, resulting in edema, typically visible as hyper-intense regions in T2-
weighted images.

◦ the necrotic and non-enhancing tumor core: Within the enhancing rim of the
tumor, a necrotic core can appear.

The treatment options depend on the type, location, size, and severity of the tu-
mors, as well as the preferences of the patient. The typical options are active surveil-
lance, surgical resection, radiation therapy, chemotherapy and targeted therapy [28].
The segmentation of brain tumors can be used as a step for the diagnosis as well as
the treatment planning. For example, for radiotherapy, the radiation oncologist needs
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T1w T1w+Gd T2w T2w FLAIR Segmentation

H
G

G
L

G
G

Figure 2.6: An example of a high- and low-grade glioma (HGG, LGG) along with three
delineated segments: red: the peritumoral edema, green: the gadollinium-enhancing
part, blue: the necrotic and non-enhancing tumor core. Four different MR images of the
same subjects are shown: A T1-weighted image, a T1-weighted image after injection of
the Gadollinium-based contrast agent, a T2-weighted image as well as a fluid-attenuated
inversion recovery (FLAIR) sequence. Data visualized from BraTS2020 [25].

to define a three-dimensional volume that needs to be treated with a certain dose of
radiation [29].

2.4 Intracranial Hemorrhages and Cranial Fractures

Head injuries can have severe consequences, and it is important to detect them early and
treat them appropriately. In this section, we focus on calvarial fractures and intracranial
hemorrhages. Traumatic brain injuries (TBIs) consist of injuries to the brain by external
forces, and can be divided into two categories, namely closed head injuries, including
blunt trauma and blast injuries, and penetrating injuries, including gun shot and stab-
bing [30]. Both of them can involve fractures of the skull, notably calvarial fractures,
as well as intracranial hemorrhaging. For traumatic injuries of the head, a CT scan is
the recommended diagnostic tool [31]. Non-contrast CT is suitable to detect fractures
of the skull as well as intracranial hemorrhages. Figure 2.7 shows a non-contrast CT of
a patient with extradural hemorrhage and a calvarial fracture.

2.4.1 Cranial Fractures

Fractures of the skull are classified into three categories, i.e., mandibular, basilar, and
calvarial fractures. They are caused by high mechanical stresses, e.g., impacts from
accidents or violence [32]. Furthermore, they can be classified, on the one hand, into
closed and open fractures, the latter of which have an elevated risk of infection. On
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Figure 2.7: A CT of a case of a calvarial fracture with extradural hemorrhage, shown
as axial and coronal slices windows appropriate for soft tissue and bone, and as volume
rendering, Data visualized from CQ500 dataset [33].

the other hand, they can be classified into two categories that distinguish whether the
fragments have been displaced (often depressed, i.e., displaced into the skull). If frac-
tures are suspected, volumetric CT scans are performed. This allows the physicians to
clearly identify the fracture lines in any direction, and whether multiple fragments are
involved [32].

2.4.2 Intracranial hemorrhage

Common risks for intracranial hemorrhage are hypertension, cerebral amyloid angiopa-
thy (i.e., the accumulation of amyloid proteins in the vessel walls weakening their struc-
ture), coagulopathy (i.e., an impairment of the blood to coagulate), structural lesions
(e.g., arteriovenous malformations, brain tumors and aneurisma), drug abuse and prior
ischemic strokes [34]. We can distinguish different types of hemorrhages depending on
their location with respect to the different tissues, especially the meninges [35]: The
first coarse distinction is between extra-axial and intra-axial hemorrhages. The former
comprises epidural and subdural ones, while the latter comprises subarachnoidal, in-
traparyncheal and intraventricular hemorrhages. The intraventricular hemorrhages are
sometimes understood to be a type of the intraparyncheal hemorrhages [36]. All of these
can be caused by non-penetrating and penetrating trauma.

When an intracranial hemorrhage is suspected, the method of choice is usually a
CT scan. In the native CT (i.e., without contrast enhancement), the blood appears
hyperdense and is visually easily perceptible, provided there is a sufficient amount of
blood [36]. The treatment can include blood pressure control to avoid hypertension,
reverse coagulopathy and surgical evacuation in sufficiently severe cases [37].
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Chapter 3

Imaging Modalities

In this chapter, we want to focus on two imaging modalities that are pervasive in
medicine: Magnetic resonance imaging (MRI) and X-ray computed tomography (CT).
Both of them are forms of tomography. Tomography means that it allows us to virtually
slice through the object of interest, that is, it let us look into the inside of a body without
actually cutting it open.

3.1 Magnetic Resonance Imaging

Magnetic resonance imaging is a non-invasive tomographic imaging modality that does
not rely on ionizing radiation. It allows us to differentiate different types of soft tissues
very well and at a high resolution, which enables its use for the diagnosis of a wide
variety of conditions.

3.1.1 Nuclear Magnetic Resonance

Hydrogen Nuclei, i.e., protons, possess an intrinsic quantum mechanical property called
spin, Spin is frequently compared to angular momentum, as a helpful analogy [38],
because it behaves similarly in the presence of an electric field as angular momentum
does in the presence of a gravitational field: We can think of the spin as the rotation
of the charge around its own axis, creating a magnetic field, even though there is no
physical rotation [39]. Without any external influences, the orientation stays the same.
In contrast to angular momentum, spin is quantized. In the presence of a magnetic field
B0, the protons attain two different energy levels (spin up and spin down), which is
called the Zeeman splitting. They align with the magnetic field in that they point in the
same or in the exact opposite direction. In this case, the number of spin up protons N ↑
is only slightly greater than the number of spin down N ↓ protons. The distribution can
be described by the Boltzmann distribution and can also be expressed as the polarization
p [40], i.e., the relative amount of protons contributing to the net magnetization:

p =
N ↑ −N ↓
N ↑ +N ↓

≈ γhB0

4πkBT
(3.1)
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where T is the temperature kB is the Boltzmann constant, and h the Planck constant.
For water at room temperature in an 1.5 T field, this is roughly 10−5, which means a
large part of the magnetic moments cancels out.

If the magnetic field changes direction, the magnetization will start to precess, just
like when a torque is applied to a spinning object with some angular momentum [40].
This precession causes the emission of an electromagnetic wave that we can measure.
As energy is slowly lost due to effects we will discuss later, the precession decays until
the spin is again aligned with the magnetic field. The frequency of the precession is
described by the Larmor equation

ω0 = γB0 (3.2)

where ω0 is the Larmor frequency, i.e., the angular frequency of the precession, B0

the magnetic field and γ the gyromagnetic ratio, which is a property of the type of
nucleus. Alternatively, we can also use an electromagnetic signal to excite the spin,
i.e., turn it away from the magnetic field, to make it precess [38]. This signal is called
a radiofrequeny-Impulse (RF), which is a signal at Larmor frequency. It allows for
flipping the spins by any angle α. For simplicity, we assume an angle of α = 90◦.
The magnetization of a single spin can always be described using a unit vector in a
Cartesian coordinate system. For imaging, we are interested in the net magnetization
M of a whole collection of protons. Outside of a magnetic field, the spins would point
in random directions and cancel each other out, i.e., the net magnetization would be
|M | = 0. Let us use a Cartesian coordinate system and use the magnetic field B0 as
our z direction. Since the spins precess around the z-axis (i.e., within an xy-plane), it is
conducive to split the net magnetization into a z-component Mz and the xy-component
Mxy, as is also shown in Figure 3.1.

3.1.2 T1- and T2-Decay and Radiofrequency Pulses

With an RF-signal, it is possible to move the precession into the xy-plane, such that
|Mxy| = M0 and Mz = 0. However, the magnetization will soon after return to the
initial state. During this transition, we can observe two independent effects: The spin-
spin-relaxation (or T2-decay) and the spin-lattice-relaxation (or T1-decay) [40].

Within a short time after the RF-excitation, the transverse magnetization |Mxy|
will decay to zero, this is called the spin-spin-relaxation. The reason for this is the
dephasing of the precession of the collection of protons we are considering are caused by
the interaction of other close-by protons. These interactions induce slight variations in
the magnetic field and therefore slight changes in the Larmor frequency. Therefore, the
energy is being redistributed among the protons. This effect is largely independent of the
magnetic field B0 [39]. This process is accelerated proportionally to the inhomogeneities
caused by the scanner itself as well as the scanned object, resulting in a shorter decay
time T ∗

2 with
1

T ∗
2

=
1

T2
+ γ∆B0 (3.3)

where ∆B0 is the variation in the magnetic field [41]. Furthermore, in a slower process
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Figure 3.1: The trajectory of the magnetization vector M over time according to Equa-
tion (3.4) after a 90◦ RF-pulse, tipping the magnetization into the xy-plane. The
37% ≈ e−1 marks the decay after the times T1 and T2 respectively.

generally, the longitudinal magnetization |Mxy| will converge to M0. This happens due
to the loss of energy, which is transferred to the surrounding tissue (i.e., the lattice). It
is dependent on B0 but also the movement of the surrounding molecules [39].

After the RF-excitation at t = 0, we can model these two decay types using

Mxy = M0 exp(−t/T2)

(
cos(ω0t)
sin(ω0t)

)
and Mz = M0(1 − exp(−t/T1)), (3.4)

where T1 and T2 are the characteristic decay times for the two processes. This process
is schematically shown in Figure 3.1.

3.1.3 MR-Scanners

An MR-scanner consists of multiple components. An electromagnet provides the mag-
netic field B0. In clinical scanners, they can be resistive or superconducting [39], along
with additional smaller electromagnets that allow to tune the homogeneity of the field
precisely, called shimming magnets. The most common form is a toroidal magnet with
its central opening horizontally, to be accessed by the patient table. Furthermore, there
are gradient coils, i.e., electromagnets that can precisely introduce gradients into the
magnetic field during a scan. Then there is an antenna, also in the form of a coil around
the central bore, that is used for the transmission of the required RF signals to excite
and steer the spins. To record the signals, smaller antennas are placed close to the body
part to be scanned. In addition, supporting equipment like the RF transmitter, receiver
and amplifiers, a cooling system, RF- and magnetic shielding for the room containing
the scanner is needed [40].
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3.1.4 MR-Sequences

There exists a vast amount of so-called (MR-) sequences for all kinds of different pur-
poses. They define a precise sequence of RF-pulses, gradients and recording windows.
The research in the design of such sequences is still ongoing and driven by new research
questions [42].

Many of the sequences used for imaging can be divided into T1- or T2-weighted
images, depending on which of those effects mainly contributes to the contrast.

For imaging, we need to relate the signals that are emitted from the protons with
locations in our volume of interest. This can be achieved using spatial encoding. It
is an important part of imaging sequences and involves different techniques that can
be combined in many ways. A simple example is the slice selection. If we want to
image a specific plane, we can apply a gradient to the magnetic field along the direction
perpendicular to the desired plane. This has the effect that only the spins within that
plane will be excited by the RF-pulse, as due to the gradient in the magnetic field, all
protons outside of said plane have a slightly different Larmor frequency. Furthermore,
phase- and frequency-encoding are used to produce signals of specific parts of the k-space,
which we will introduce below. For a complete explanation of the spatial encoding and
MR-sequences in general, we would like to refer to [42]. In many common sequences,
the contrast in the images comes, therefore primarily from the different relaxation times
of different tissues. It is also possible to image other properties, e.g., proton density
weighted images, where the effect of both T1 and T2 relaxation times are minimized, or
sequences susceptible to the flow of liquids [43].

If we consider the amplitude of the signal from two different points in two distinct
tissues, it will decay at a different rate, producing a brighter or darker value in the
final image. In addition to the common T1 and T2 weighted sequences, we also want to
highlight the fluid-attenuated inversion recovery (FLAIR) sequence. Inversion recovery
sequences allow us to suppress the signal of certain types of tissues [44]. In the BraTS
dataset, a FLAIR sequence is used to suppress the signal of the cerebrospinal fluid. For
other tissues, the contrast is similar to T2 weighted images.

The signal that we record always corresponds to the (complex-valued) amplitude of
some spatial frequency k ∈ R3 of the volume. To reconstruct an image, we need to
measure a sufficient amount of different spatial frequencies to cover the frequency space,
also known as k-space. We can, therefore, use the Fourier transform to relate the k-space
with the image.

3.1.5 Artifacts

MRI-artifacts can have sources anywhere in the pipeline, be it the sequence, the spatial
encoding, the anatomy inside and outside of the field of view, or even foreign objects
like implants [45]. We will focus only on a few important types here. Figure 3.2 shows
some examples of these. The most common image artifact comes from patient motion.
In many cases, the k-space is acquired line by line, so a movement will result in an
inconsistent k-space. It can be caused by gross patient motion but also breathing, blood
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Figure 3.2: Examples of MRI artifacts visible in the BraTS dataset [25] , from left to
right: (1) Gibbs artifact due to the sharp intensity changes along the inside of the skull,
manifesting as wave patterns parallel to the skull surface. (2) Movement artifacts. Note
that skull stripping was performed. Everything outside the brain mask is not visible.
(3) Possibly a magnetic susceptibility artifact. The signal intensity drops towards the
superior part.

flow, cardiac motion or peristalsis [39]. Furthermore, among the common artifacts are
Gibbs artifacts, which manifest themselves as wave-like patterns along sharp edges in the
image. Sharp edges have many high-frequency components, which may not be captured
if the k-space is not sampled at sufficiently high spatial frequencies in the direction of
the edge. This is usually observed in the direction of the phase encoding [40]. The final
artifact type we want to mention is the magnetic susceptibility artifact : If a material or
tissue has a higher magnetic susceptibility, that is, it becomes magnetized in the presence
of a magnetic field, it can create a local inhomogeneity and lead to a loss or distortion
of the signal [40, 39].

3.1.6 Clinical Applications

For certain applications, contrast agents are used. In MRI, they are usually Gadolinium-
based. Gadolinium is a paramagnetic element [40]. It shortens the T1-relaxation of
nearby protons, which show up as hyperintense in T1-weighted images. This is interesting
to image blood vessels, but also for imaging brain tumors, especially when compared
to the T1-native scans: If the blood-brain barrier is disrupted, the blood, including
the contrast agent can leak outside of the vessels and appear as hyperintense in that
region [40].

3.2 Computed X-Ray Tomography

X-ray computed tomography (CT) is also commonly referred to just as CT uses X-rays to
image the interior of the body. While with conventional radiography we can only record
a projection through the object we investigate, CT uses multiple of these projections
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from different angles to computationally infer what different parts inside look like, i.e.,
we perform computed tomography.

The main drawback of CT and X-ray is that X-ray radiation is ionizing, meaning it
has enough energy to ionize the molecules, which damages biological tissue and increases
the probability of cancer [46] and radiation induced hereditary diseases [47]. Therefore,
for imaging, care should be taken to minimize the exposure while providing adequate
image quality, and it should be considered whether the benefits of the exposure outweighs
the risks associated with it. This is known as the ALARA principle (“as low as reasonable
achievable”) [48].

3.2.1 X-Rays

X-Rays are electromagnetic waves with a wavelength between roughly 10−11 m and
10−8 m. Instead of wavelength λ or frequency ν, we usually prefer using the energy of
a photon, in the context of radiology. These two quantities are directly related through
the Planck-Einstein-relation

E = hν, (3.5)

where h ≈ 4.136 · 10−15 eV/Hz is the Planck-constant [38]. In X-ray machines and CT-
scanners, X-rays are produced using an arrangement of an anode and cathode with a
resistively heated filament in a vacuum tube. In these tubes, electrons are accelerated
with a high voltage in the range of 20 kV up to 140 kV and directed into an anode,
typically made of tungsten or molybdenum, depending on the application [49]. The X-
rays are then produced either as Bremsstrahlung when they lose kinetic energy by passing
sufficiently close to a positively charged atomic nucleus or as characteristic radiation
when they eject electrons from an inner shell of the anode atoms. In this case, another
electron falls into the corresponding shell, giving off the lost potential energy as radiation.
The characteristic radiation has very specific wavelengths, as they are a characteristic
of the chemical element of the target. The Bremsstrahlung, however, covers a very wide
band, as illustrated in Figure 3.3.

The attenuation of the X-ray beam is caused by different interaction types of the
photons with matter. The most important one is the photo-electric effect, which is what
we call the process in which a photon removes an electron from its shell and is absorbed
in the process. Two further effects but with a smaller impact on attenuation, are the
Compton scattering, where a photon interacts with an unbound or loosely bound (outer-
shell) electron, and transfers some of the energy to the photon, and Raleigh scattering,
where the photons do not have enough energy to ionize an atom and merely change
direction [51]. All of these effects contribute to the reduction of the number of photons
that arrive at the detector, i.e., the attenuation.

For the purposes of imaging, we do not model these interaction effects but rather use
a simplified model: When an X-ray beam of intensity I0 traverses an object, we assume
that it is attenuated according to Beer-Lambert’s law

I

I0
= exp

[
−
∫ 1

0
µ(γ(t))γ′(t)dt,

]
(3.6)
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Figure 3.3: Emission spectrum of X-ray tube with tungsten anode with 24 mAs with a
3.04 mm aluminium filter. Courtesy of Raymond Chieng [50].

where µ is the linear attenuation coefficient of the material at point x and I is the
intensity after the attenuation, and γ : [0, 1] → R3 is a parametrization of the ray from
X-ray source to the detector element [52].

Different types of tissues of the human body have different attenuation coefficients.
This lets us use X-rays to image different parts of tissues of the human body. Tradition-
ally, in X-ray, the attenuated radiation that exits the object being scanned is recorded
using photographic film. Today, various types of electronic detectors are used. The most
recent generation are photon-counting detectors, which can measure the energy of each
photon individually, providing a higher resolution and lower noise while inflicting a lower
dose to the patient [53].

The image we get from one such scan is a projection, as all the tissue one ray tra-
verses contributes to its attenuation. Therefore, one point on the image represents the
accumulation of all the tissue along a line.

3.2.2 CT-Scanners

Contrary to an X-ray radiograph, in a CT, we are not interested in a projection, but
rather a cross-sectional slice through the body. While there are more advanced scanning
methods, we will focus on this most fundamental type in this section for simplicity. In
a typical clinical CT-scanner, the X-ray source and the detector are both mounted
diametrically, and suspended on a rotating ring-shaped gantry, which is covered in a
static fairing, as shown in Figure 3.4. This arrangement allows a patient table to be
moved into the central opening to scan a certain cross-section of the body.

The detector, in its simplest form, is a single row of detector elements across from
the X-ray source. If we were to record the detector’s signal in one position, we would get
a projection just like in X-ray radiographs, but just one pixel wide. To make an actual
CT-scan, we must record many projections at slightly different angles, ideally covering
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fairing

X-ray source

central opening

detector

patient table

Figure 3.4: A CT-scanner with the fairing opened. Courtesy of user Obynel on Wiki-
media Commons [54].

a whole rotation. If we group the rays by absolute angle, we get the so-called sinogram.

In Figure 3.5, we show a simulation of the projections along with the sinogram (i.e.,
parallel projections).

3.2.3 Image Reconstruction

The projections just contain the accumulated information along the rays. From these
projections, we would like to reconstruct a cross-section. That is, we would like to find
a corresponding attenuation coefficient for each location in the slice. Simple and com-
putationally inexpensive reconstructions can be made using the filtered backprojection,
based on the Fourier slice theorem. This method makes many simplifying assumptions
and assumes highly idealized settings, that make it suffer from high noise levels and is
especially susceptible to certain image artifacts (see Section 3.2.4) [55]. Modern algo-
rithms are based on the reconstruction problem’s algebraic formulation: If we discretize
the image plane into voxels of absorption coefficients we’d like to determine, the inte-
gral in Equation (3.6) becomes a sum. Therefore, determining the value of the voxels
amounts to solving a system of linear equations. Since the system is large and usu-
ally overdetermined and inconsistent, iterative numerical algorithms are used instead.
These methods are based on accurately computing the forward projections, and their
accuracy can be adjusted by varying the accuracy of the underlying modelling of the
physics involved [55]. More recently, machine learning-based reconstructions have been
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Figure 3.5: The simulated phantom slice, along with the sinogram in red and the fan-
beam projections in blue. The location of the source for each beam is marked as a dot.
The sinogram clearly shows that points in the slices correspond to sine waves in the
sinogram space.

proposed [56].

The attenuation coefficients µ (see Equation (3.6)) we get through the reconstruction
are normalized into the dimensionless Hounsfield unit (HU) µ∗ with

µ∗ = 1000 · µ− µw

µw
(3.7)

where µw is the absorption coefficient of water. This is a handy convention to identify
tissue types.

For image reconstruction, we usually make the simplifying assumption that the ab-
sorption coefficient is not dependent on the photon energy (or, alternatively, that the
beam is monochromatic), as with most scanners, it is not possible to quantify the energy
of the detected photons [55]. This leads to artifacts like the beam hardening artifacts
(see Section 3.2.4), but also means that the HU scale is dependent on many factors like
the actual spectrum of the X-ray beam and the detector properties [57]. Still, it roughly
allows us to tell apart or identify certain types of tissues.

3.2.4 Artifacts

CT scans are susceptible to various types of artifacts [38]: A common artifact is patient
motion. Because the different projections are recorded step by step over time, we find
discontinuities across the reconstructed slices. Furthermore, there are artifacts caused
by physics: Compton scattering causes photons to change directions and be recorded by
a detector element that was not in line with the initial trajectory. This can, to some
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Figure 3.6: Examples of CT-artifacts visible in the CQ500 dataset [33] , from left to
right: (1) photon starvation artifact at the height of the shoulders, as the X-rays have
to traverse more tissue. At the height of the teeth we see metal artifacts due to dental
implants. (2) metal artifacts due to dental implants (3) movement artifact, visible as
discontinuity across the entire slice

degree, be mitigated by placing a collimator over the detector, which aims to absorb
scattered photons, i.e., photons that do not come from the direction of the X-ray source.

The X-ray beams contain a very wide spectrum of radiation. Beam hardening arti-
facts occur because not every part of this spectrum gets absorbed the same. Especially
dense objects absorb low-energy (“soft”) radiation disproportionally more, resulting in
streaking and cupping artifacts in the reconstructed image. This is visible, for instance,
in metal implants. A way to reduce this effect is to place filters in front of the X-ray
source that filter out low-energy photons. Another common type of artifact is photon
starvation. If a very absorbent material is scanned, e.g., lead with a very high absorption
coefficient, it can lead to the detector element behind to detect next to no signal. This
can also lead to streaks in the image [58]. We show some examples of artifacts in the
data we used in Figure 3.6.

3.2.5 Clinical Applications

CT is a modality that is very well suited for the use in emergency medicine, as the scans
are very fast (depending on the type of scan, taking mere seconds [55]). It has a diverse
range of applications. For instance, it can be used for cancer screening and staging, for
detecting traumatic injuries such as hematoma, hemorrhages and fractures, for detecting
pulmonary conditions and also for angiography [59]. The main advantages over MRI are
the high resolution, short scan times and safety regarding metal objects.

While the radiation dose for CT is a lot higher than for an X-ray, CT scans are still
considered to have low-level radiation exposure, i.e., far below 100 mSv per scan [60].
While exposure events above this threshold are considered harmful, it is more difficult to
quantify harm in low-level exposures, as it depends, among other things, on the affected
organs and the age and gender of the patient. But a general rule of thumb says that the
risk of developing fatal cancer increases by 0.5% per 1000 mSv of dose [60].



Chapter 4

Deep Learning – A Short
Introduction

In this chapter, we will first motivate the use of machine learning, which also encompasses
deep learning. From there, we will introduce the basics of deep learning, which will serve
as the foundation for all models developed in this thesis.

4.1 Machine Learning and Deep Learning

When we want to use a computer to automate certain tasks, we have to tell the com-
puter exactly what to do. We have a recipe – an algorithm – in mind that we want
the computer to execute, and we write programs to communicate the algorithm to the
computer. For many tasks, it is easy to develop algorithms, like performing arithmetic.
Other tasks are seemingly simple for humans, like telling apart images of cats and dogs,
reading handwritten text, or detecting cancerous lesions in MRI, however, it is not
straightforward to come up with an algorithm that allows a computer to perform these
tasks. This is the point where machine learning shines. Tasks that we humans can do,
but are difficult, if not impossible, for us to explicitly formulate as algorithms, are tasks
that we solve by relying on our experience or intuition. Machine learning enables us
to do something similar but with computers: Instead of formulating an algorithm, we
define a space of possible algorithms to perform our task. Using a large amount of data,
we search or optimize for a good algorithm within our space of possible algorithms. In
many cases, we actually just consider deterministic algorithms, i.e., a space of functions.

To illustrate this, let us consider a well-known example of the CIFAR10 dataset [61]
comprising natural color images with a resolution of 32×32 pixels of ten different classes,
among which are cats and dogs. For humans, it is straightforward to tell apart cats and
dogs with high accuracy, but it is not straightforward to explicitly instruct a computer on
how to perform this task. One possible machine learning method would be performing

23



24 Chapter 4. Deep Learning – A Short Introduction

cat cat dog cat cat

cat cat cat dog dog

dog cat dog dog dog

cat cat dog dog dog

Figure 4.1: Some samples of the CIFAR10 test set with the prediction of the linear
regression (“cat” or “dog”). The prediction is colored green if it is correct and red if
false, according to the labels provided in the test set. The linear regression model with
a decision threshold of 0.5 achieved an accuracy of 0.594.

a linear regression on the labels.1 We show some examples of the test set along with the
predictions of linear regression in Figure 4.1.

Let us use the convention of labelling cat = 1 and dog = 0. The linear regression
provides us with an optimal affine function

fw(x) = w0 +

32×32×3∑
i=1

wixi (4.1)

mapping the input x – in our case, a vector containing the color intensities of an image
– to the predicted output fw(x) - here a scalar value.

Optimal in the context of linear regression usually means that it minimizes the
squared difference between the function evaluated on a given image x, and the ground
truth label y of said image

L(w) = (y − fw(x))2. (4.2)

We can now use this function f , to classify images. We predict that an image contains
a cat if the predicted value is below 0.5, and a dog if it is above. Hence, instead of
telling the computer explicitly how to perform this classification, we first defined an
objective, which consisted of minimizing the sum of squared errors of the predictions.
Then we also defined a space of possible algorithms. In our case, the algorithm consists of
evaluating a linear function followed by a case distinction via thresholding (i.e., applying
the Heaviside function). So, in short, the space of algorithms was equivalent to the space
of linear functions mapping the color intensities to a scalar. Finally, we searched for a
satisfactory algorithm in that space, by trying to minimize our objective on our dataset.

1Whether it is an appropriate method for the task is up to debate, as it is certainly not the best
performing. Here, we use it just as an illustrative example.
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For the special case of linear regression, we are actually in luck, in that we can find an
optimal solution with respect to the objective, but as we will see later, this is practically
unattainable for many search spaces.

When working with neural networks and applying them in deep learning, we do
also take this approach. We design a search space by defining some “architecture” of a
function that contains some amount of free parameters. In the example in Equation (4.1),
the free parameters are given by {wi}i. However, these architectures can be a lot more
complex. A core problem when working with neural networks is finding a satisfactory
combination of architecture and objective, that is suited for the task at hand, along with
a corresponding optimization strategy.

4.2 Neural Networks

In machine learning, the study of neural networks has undergone a long development.
We can go back as early as the mid twentieth century: Initially, neural networks were
an attempt to mathematically model biological neurons [62, 63]. Generally, artificial
neurons are modeled as nodes that aggregate multiple activations of other neurons as an
input and produces an output based on that. This simulates the behavior of biological
neurons, which aggregate the signals received via the dendrites, and if that aggregated
signal is strong enough, it will be sent through the axon to the synaptic terminals,
where other neurons are connected and can pick up the signal. In Figure 4.2, we show a
graph representation of a neuron of an artificial neural network along with a simplified
representation of a biological neuron by which the former was inspired.

The simplest (artificial) neural network, therefore, consists of a single neuron. In
typical networks, each signal is represented by a real number. The aggregation is done
by multiplying each incoming signal xi with a weight wi, and summing those products
up. The output y is then modeled by subtracting a threshold value t (sometimes also
referred to as bias), and then passing the result through an activation function φ [62].

y = φ
(∑

iwixi − t
)

(4.3)

Classically [62, 63], the sigmoid function σ(x) = 1/(1 + e−x) has been used as a
smooth approximation of the binary Heaviside function h, which models the firing/non-
firing state, as shown in Figure 4.3. Later, the rectified linear unit (ReLU), and variations
thereof, became popular, as it improved the convergence and is cheaper to compute [64].

To make more complex networks, first, multiple neurons can be used in parallel to
build a wider layer. Then, multiple of those layers can be chained in series to actually
make a deep network, i.e., a network of more than one layer of neurons. This neural
architecture is called a multilayer perceptron (MLP) [65]. Deeper network enabled the
modeling of more complex relationships. For instance, with one layer of neurons, solving
the XOR-problem is impossible. The XOR-problem consists of modeling the exclusive-or
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Figure 4.2: The upper illustration shows a simplified schematic representation of a bi-
ological neuron of the cerebral cortex, the lower graphic shows how such a neuron was
modeled in artificial neural networks. The assumption is that the dendrites receive the
information from other cells, the information gets weighted and accumulated, and if that
signal is strong enough, the neuron is “firing”, i.e., transmitting the information to other
cells via the synaptic terminals.
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Figure 4.3: Plots of three typical activation functions h(x) = 1x⩾0(x), σ(x) = 1/(1+e−x),
and ReLU(x) = max(0, x).
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Figure 4.4: A prototypical neural network with input- and output layers as well as one
hidden layer. It can be considered a two- or three-layer network, depending on whether
we omit or include the input layer in the count. For this work, we use the former
convention.

function,

XOR(0, 0) = 0 XOR(0, 1) = 1

XOR(1, 0) = 1 XOR(1, 1) = 0
(4.4)

which can be understood as a classification problem with a nonlinear decision boundary.
With a single layer network, f let us say that we decide that a sample x ∈ R2 belongs
to class 1 if f(x) ⩾ c for some constant c. Then the decision boundary is the boundary
∂P of the set of positive decisions

P = {x | f(x) ⩾ c}. (4.5)

The boundary ∂P is linear (i.e., represented by a line ax1 + bx2 + c = 0), if a strictly
monotonic activation function is used, like, e.g., the mentioned sigmoid function σ.

When we use multiple neurons in parallel, i.e., in the same layer, we can simplify
the notation using matrices and vectors. Now each row Wi,: of the matrix W ∈ Rn×m

represents the weights of one neuron, and the corresponding entry bi of the vector b ∈ Rn

refers to the bias. By convention, we flip the sign of the bias compared to Formula
Equation (4.3), and the activation function φ : R → R is applied element wise.

y = φ(Wx + b) (4.6)

Where x ∈ Rm and y ∈ Rn. This formulation of an MLP is the basis of many types of
neural networks.
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4.2.1 Convolutions

The development of MLPs also lead to the idea of using other linear transformations.
Linear filters are a cornerstone of digital signal processing, including image processing,
and are a natural candidate for an alternative linear transformation. This is espe-
cially interesting if the input x is, e.g., a time series or an image instead of a vector
of arbitrary features. In the context of neural networks, this idea surfaced first in the
Neocognitron [66].

Since then, the types of architectures kept evolving, but many deep neural networks
keep mostly the same building blocks: On the one hand, linear (or more accurately
affine-) functions with trainable weights, and fixed nonlinear functions. Examples of
the latter include, for instance, the various activation functions, the z-normalization in
Batch-Normalization and the related normalization blocks [67, 68, 69, 70], maximum
pooling operations [71], softmax blocks to convert an arbitrary vector into a probability
distribution, attention blocks [72] in sequence processing, dictionary lookups for vector
embeddings [73] and many more.

4.2.2 Deep Networks

In their early form, a network with more than one layer of neurons, i.e., more than
one hidden layer, was considered deep [65]. As the previously mentioned XOR-problem
illustrates, the depth of a network allows for learning more complex relationships or
features, as was demonstrated most prominently with the ResNet [74]. The ResNet,
which is a deep convolutional network, demonstrated that an increased depth allows for
– at the time – unprecedented performance increase in image classification competitions.

Deep networks are nontrivial to optimize, as they exhibit a highly non-convex loss
landscape [65]. What enabled ResNets to be so deep was their use of the previously
introduced Batch Normalization [67] and their proposed residual architecture.

Compared to a conventional network f = fN ◦ . . . ◦ f2 ◦ f1 they proposed using
additive skip connections known as residual connections, that is, building their network
g = gN ◦ . . . ◦ g2 ◦ g1 with

gi(x) := fi(x) + x (4.7)

In the same year, the now ubiquitous U-Net [75] architecture was proposed for image
segmentation tasks. As opposed to a ResNet, it consists of an encoder-decoder architec-
ture. It also featured skip connections but used concatenation instead of addition. These
were originally proposed to aid in the preservation of the detailed structures through-
out the network. They have, however, also a similar effect on the training as the skip
connections in ResNets.

4.2.3 Objective Functions and Losses

The training of a neural network fϑ of some given architecture and the given data
D = {d1, . . . , dm} refers to the optimization of the network parameters ϑ with respect
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to some loss function L. These loss functions are usually chosen depending on the task
at hand, and when formulated as Loss they are implicitly assumed to be minimized.
For instance for a regression problem with di = (xi, yi), i.e., predicting continuous scalar
values yi from some input xi, frequently the mean squared error (MSE) between the
prediction fϑ(xi) and the desired label yi is used:

L(D, ϑ) =
1

m

m∑
k=1

∥fϑ(xi) − yi∥22 (4.8)

Another typical task is classification: The goal is to predict the membership of some
input xi to a finite set of different classes C = {c1, . . . , ck}. To this end, the cross-entropy
between two probability distributions is used for training: We design our network to
output k different scalar values ŷ = fϑ(x) ∈ Rk for some given input x. Using the so-
called softmax -function, we can transform an arbitrary vector into a discrete probability
distribution. It consists of applying exponential functions to map all entries to positive
values and then dividing them by their sum to make those values sum to 1, i.e., provide
a valid probability distribution:

q := softmax(ŷ) =
1∑k

i=1 e
ŷi

(eŷ1 , eŷ2 , . . . , eŷk) (4.9)

The label yi of the given data xi is encoded using the one hot-encoding

p := 1C(yi) = (0, . . . , 0, 1, 0, . . . , 0) = (δc,yi)c∈C (4.10)

The cross-entropy loss is defined as the cross entropy H between these two probability
distributions

L(D, ϑ) = H(p, q) = −Ep[q] = −
k∑

i=1

pi log(qi) (4.11)

These losses presented in Equations 4.8 and 4.11 are two of the most fundamental
ones and are the basis for many more complex losses or combinations thereof.

4.2.4 Optimization

We will now discuss how these objective functions are optimized, for this, let us consider
the case of the MSE in Equation (4.8). The goal is minimizing L with respect to ϑ, that
is, by choosing the architecture of fϑ, we define the space of functions, or equivalently,
the space of parameters that we optimize in.

While any kind of optimization strategies could be applied, the by far most popular
methods are gradient-based optimizers, i.e., methods involving the derivative with re-
spect to the parameter, or, in this case, gradient descent. This, however, requires that
the architecture is differentiable (at least with respect to the parameters ϑ).2

2As we saw in Figure 4.3, the ReLU activation is not differentiable at x = 0. In practice, just defined
the derivative at that point as 0 or 1 which are subgradients at x = 0 [76]. There are other non-
differentiable operations like vector quantization [73] that use different mechanics to perform a useful
optimization [76].
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The most simple form of the gradient descent algorithm is defined as follows:

ϑ(i+1) := ϑ(i) − λ∇ϑL(D, ϑ(i)) (4.12)

In this expression, ϑ(i) is the point in the optimization space of the current iteration,
and λ is the so-called learning rate.

The losses that we want to minimize are posing another challenge as they are com-
puted across the whole dataset D. As D often contains hundreds to millions of data
points, it is not practical to compute the loss value and the corresponding derivatives in
every optimization step. Instead, stochastic gradient descent (SGD) is used. This means
that in the computation of the loss, only a random subset D(i) ⊂ D of the training data
D is used in Equation (4.12). The cardinality |D(i)| is often referred to as batch size.

In comparison to SGD, more advanced optimizers have been developed, like the
popular Adam [77], that try to estimate the first or also second moment of the stochastic
gradient using moving averages to accelerate the convergence.

With gradient descent methods, we do need to choose a suitable starting point ϑ(0).
Some heuristics have been proposed on how to choose that starting point on a layer-
by-layer basis. They are based on the idea that we want the layer fϑ to preserve some
characteristics of a distribution of inputs and outputs [78, 79]. The same idea can also
be applied to more complex blocks that consist of multiple layers.

4.2.5 Computation of Gradient

The computation of the gradient ∇ϑL = ∂L
∂ϑ at some given parameter set ϑ can be per-

formed in various ways. An efficient algorithm for this is the backpropagation-algorithm.
While it has been developed multiple times, sometimes only for specific types of net-
works [80], there have been debates over the inventor [81]. In the modern deep learning
frameworks, we now use the general notion of the more descriptive backward-mode auto-
matic differentiation [81]. Because the details of the mathematical derivation are rarely
explicitly explained (especially for general compute graphs, not just trees), this section
is an attempt to explain it a little more rigorously based on the chain rule.

The quantity we want to minimize, i.e., the loss L, can be written as a composition
of functions

L = (ln ◦ . . . ◦ l2 ◦ l1)(ϑ) (4.13)

with li : Rai → Rbi , since the weights ϑ are leaf-nodes of the computation graph of L.
Here ai, bi ∈ N for i = 1, . . . , n are the number of input- and output dimensions. Note
that, depending on the architecture, the li do not necessarily correspond to the layers
of a network: They refer to the functions that are defined by the intermediate graphs
between subsequent graph-cuts, i.e., the intermediate stages in a topological sorting of
the computation graph, as is visualized in Figure 4.5. In this diagram, the li would
correspond to the functions
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= L, (4.14)

where we used the shorthands a = a(x, ϑa), b = b(a, ϑb), c = c(a, b, ϑc), d = d(b, c, ϑd)
and e = e(y, d).

To formalize this, consider the compute graph G = (N,E) where N are the nodes.
The edges between nodes correspond to the values that are passed between the nodes,
and the nodes represent the functions that process these values. Incoming edges represent
the arguments, outgoing edges represent their (possibly vector-valued) values. Let us
use the function v to refer to the values of an edge. For instance, v((l0, l1)) = ϑ With this
formulation, we implicitly include two artificial nodes, namely a source node T emitting
the weights ϑ and a sink node L, which takes the variable of which we want to compute
the gradient with respect to the input. As the inputs to the network are considered
constant, we absorb them as constants directly into the nodes to which they contribute
to.

Since G represents a computation, we know it is a directed acyclic graph. We
can, therefore, compute a topological order, i.e., we can enumerate the nodes as T =
l0, l1, l2, . . . , ln, L = ln+1 such that we only have edges from nodes of lower numbers to
nodes of higher numbers, i.e., for all (li, lj) ∈ E we have i < j. We now consider the cut
Ck = (Lk, Hk) after node lk by setting Lk = {li ∈ E | i ⩽ k} and Hk = {lj ∈ E | k < j}.
Due to the topological ordering, E contains only edges from nodes in Lk to nodes in Hk.
we collect them as

Ek = {(li, lj) ∈ E | i ⩽ k and k < j} (4.15)

and concatenate λ(k) = (v(e))e∈Ek
, i.e., we understand λ(k) to be in Rdk for some dkinN.

Hence, the gradient with respect to ϑ can be computed recursively using the chain
rule. To illustrate this, we write the intermediate values as λ(i) = (li ◦ li−1 ◦ . . . ◦ l1)(ϑ).
In general, the chain rule is written as

Jf◦g(x) = Jf (g(x))Jg(x) (4.16)

with the Jacobian matrix Jf defined for f : Rn → Rm as

Jf (x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 . (4.17)

Therefore, for j < i, we can write

Jli◦...◦lj (λ
(j)) = Jli(λ

i−1) · Jli−1
(λ(i−2)) · . . . · Jlj+1

(λ(j)) · Jlj (λ
(j−1)) (4.18)
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Figure 4.5: On the left, we display a simple compute graph of some network, e.g., a
loss function. The circled nodes a,b,c,d represent functions and the arrows represent the
values. The values x,y can be thought of as data, the values ϑa,ϑb,ϑc,ϑd,l as weights
or parameters of the function. For the purpose of optimization, we consider the value
l that we’d like to minimize as a function of the weights ϑ, but not of x and y. If we
pull these as inputs to the left, and sort nodes topologically, i.e., in an order they can be
evaluated in, we can decompose the whole network into a chain of function compositions
li, as also shown on the right and in Equation (4.14). This decomposition can be done
by considering graph cuts, shown as dotted lines between the subsequent nodes in the
topological ordering.
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After we evaluated l = L(ϑ) (i.e., the forward pass), we store all the intermediate
activations λ(i). The backpropagation algorithm makes use of this during the backward
pass: With equation Equation (4.18), it is easy to see that in every step i we compute

∇λ(i)L = Jln(λ(n)) · . . . · Jli+1
(λ(i)). (4.19)

We can step by step compute ∇λ(n)L, ∇λ(n−1)L,. . . , ∇λ(0)L = ∇ϑL, by traversing the
composition of the li backwards, and computing recursively

∇λ(i−1)L := ∇λ(i)L · Jli(λ
(i−1)). (4.20)

This is the heart of the backpropagation algorithm.

4.2.6 Graphics Processing Units

In 2007 NVIDIA released CUDA [82], which is an application programming interface
(API) for performing general purpose computations on their graphics processing units
(GPUs). In the 2010s, the use of GPUs for performing the computations in neural net-
works became widespread and enabled speeding up the training and inference processes.
In 2014 the cuDNN library was released, which provided CUDA implementations of basic
building blocks of neural networks [83]. Shortly after, the two most popular deep learning
frameworks TensorFlow (in 2016) [84] and PyTorch (in 2017) [85] have been published,
which simplified the usage of GPUs for applications involving neural networks.

4.2.6.1 Matrix Multiplication

While GPUs have been more limited in the types of instructions they can perform
than central processing units (CPUs), they are designed to perform a large number
of computations in parallel. In graphics processing, we frequently have to perform the
same operation many times, parallelly and independently, for instance, when we compute
vertex or pixel shaders. These shaders are functions that compute certain properties, e.g.,
the color, of a geometric object (i.e., a vertex of a mesh) or a pixel. A common operation
in this context is the matrix-vector multiplication, specifically with 4 × 4 matrices, as
many geometric transformations in 3D can be expressed as such using homogeneous
coordinates [86].

This poses a great opportunity for neural networks, as discrete (finite dimensional)
linear transformations can be expressed as matrix-vector multiplications. The simplest
example is the general matrix-vector multiplication in MLPs. As convolutions are lin-
ear transformations, they can also be represented as matrix multiplications. Due to
the special structure of the corresponding matrices, there are multiple different algo-
rithms perform the corresponding matrix-vector multiplication. They include the naive
matrix multiplication, the convolution via fast Fourier transforms and the Winograd al-
gorithm [87]. The choice is dependent on the hardware, but also on the size of the input
and convolution kernels [87]. However, to illustrate how neural networks can profit form
these parallelized matrix multiplications, we will stick to the first example of general
matrix-vector multiplications.
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Matrix-vector multiplications of larger sizes can be broken into smaller ones, and
therefore be efficiently computed on GPUs. To illustrate, consider a matrix in A ∈
R2n×2n with a vector x ∈ R2n can be decomposed in submatrices Aij ∈ Rn×n and
xi ∈ Rn with i, j ∈ {1, 2} as

Ax =

[
A11 A12

A21 A22

] [
x1
x2

]
=

[
A11x1 + A12x2
A21x1 + A22x2

]
(4.21)

To put this into context, we can consider the NVIDIA A100 GPU as an example [88]:
It has 108 streaming multiprocessors (SMs) with each 64 FP32 CUDA Cores. When we
perform a matrix multiplication

FN×K × FK×M → FN×M , (4.22)

in this device (with cuBLAS 11), it is most efficient if the matrix dimensions N,K,M
are multiples of 27 if the entries F are 8-bit integers, 26 if the entries are 16-bit floating
point numbers, 25 for 32-bit tensor-float numbers, and 24 for IEEE 64-bit floating point
numbers. Hence, it is most efficient if we can partition the matrices we want to multiply
into submatrices what have these sizes. Furthermore, in this particular device, it is most
efficient if the number of submatrices is (or is slightly smaller than) a multiple of 108.

4.2.6.2 Memory

The system memory (random access memory (RAM)) is – along with the register file –
the main memory used by the CPU [89]. When the CPU needs to process data that is
stored on a disk (e.g., hard disk drive (HDD) or solid-state drive (SSD)), it will first get
loaded into RAM, from which the CPU can access and modify it.

GPUs have a more fine-grained subdivision of different memory types and parts,
but here, we want to give just a high-level overview based on the NVIDIA Ampere
architecture [89]. While many GPUs have similar components, the actual architecture
depends on the specific GPU. If we want to process data on the GPU (assuming a discrete
GPU that is independent of the CPU), we first have to transfer it to the main graphics
memory (video-RAM (VRAM)). Reading data from the disk into RAM is a relatively
slow process, usually limited by the disk reading speed. Transferring data from RAM to
VRAM is already a lot faster. The A100 has a bandwidth of up to 200 Gbit/s. Accessing
the VRAM is even faster, up to 1555 GB/s for the 40 GB model [90]. The SMs can access
the VRAM directly, but they also have each their own transparent cache, called the level
1 (or L1) cache. Furthermore, the VRAM access is also being cached using the level 2
(or L2) cache. On the NVIDIA A100 the VRAM has a size 40 GB or 80 GB - depending
on the model, an L2 size of about 40 MB and an L2 size of 192 KB [90].

It is therefore evident that the closer to the SMs the data that we want to process
can be stored, the faster the processing can be performed. To train a neural network
using a GPU, we typically store the model weights on the VRAM, and our training data
on a disk. If the dataset is small enough, it might even be possible to load it all into
RAM. Otherwise, during an optimization step, the data is read into RAM, possibly using
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Figure 4.6: Prices and Memory of discrete NVIDIA GPUs with Ampère architecture.
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multiple threads in parallel [91]. From there, the data can be transferred to VRAM, to
be processed by the SMs. Ideally, we are therefore able to store all arrays of the compute
graph in VRAM, but also the the network parameters. Depending on the type of opti-
mizers, we might even need to store multiple values per parameter [77]. Especially for
medical image processing, where we frequently use 3D volumes, sometimes with multiple
channels, sometimes even time series, the memory management becomes an important
consideration. As we have shown in [92] (see Chapter 7), it is not straightforward to
adapt deep learning models, that have been proposed for 2D data to 3D, if we take the
memory constraints into account. There are general approaches like gradient checkpoint-
ing [93], that can trade memory consumption against re-computations, and, therefore,
time and energy. This is a technique that stores only some intermediate activations
in the compute graph and recomputes them again during the backward pass. However,
they do waste resources in recomputing the same intermediate activations a second time,
which is why we are interested in techniques that are inherently more memory efficient.

In modern GPUs, the amount of memory they are equipped with, mostly correlates
with their other performance parameters, and therefore is also linked to their price.
In Figure 4.6, we compared the amount of memory and price of some popular recent
NVIDIA GPUs. We can conclude that for enabling the training of large deep learning
models, requiring substantial amount of computational resources, the hardware can be
a major contributor to the costs.

digitec.ch
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Chapter 5

Applications of Neural Networks

We have discussed the components of neural networks and their training in the previous
chapter. In this chapter, we dive deeper into their applications, and how they are used
to build more complex models.

5.1 Tasks and Supervision

In the previous chapter, we already mentioned a few well-known tasks that can be solved
using neural networks. We have seen that the optimization of these networks is often
done using gradient descent, which is performed to minimize some loss function in a
simple supervised learning setting.

Many supervised machine-learning problems can be split into classification and re-
gression tasks. Given some input, regression tasks boil down to predicting one or more
continuous values. In contrast, in a classification task, we try to predict a discrete value,
i.e., one of multiple possibilities. Examples of the classification task include handwrit-
ten character recognition [94] or object classification in images [61]. Similarly, image
segmentation tasks can also be viewed as classification tasks, considering that we per-
form a pixel-wise classification, i.e., we classify pixels as belonging to a certain segment.
Furthermore, the prediction of an entire image can be seen as a pixel-wise regression
task.

There are, however, other tasks in which the desired output given some input is not
available for the data we train on. Conversely, there are also supervised tasks where the
labels of the training data are not directly used to train the network.

While there are many supervision settings, we will now attempt to classify some
of those that are relevant for image processing: Broadly speaking, we can distinguish
methods that make predictions on an image level (e.g., classification), bounding-box level
(e.g., object detection) or pixel level (e.g., segmentation). Furthermore, with respect to
the supervision, we can distinguish methods that use pixel-level labels, bounding boxes,
image-level labels, or no labels at all. We talk about supervised or fully supervised
training, we can distinguish whether the type of predictions match the type of labels
we use during training. It is worth noting, however, that for instance in the context

37
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training labels
none image level bounding box pixel level

image level U F F F
predictions bounding box U W F F

pixel level U W W F

Figure 5.1: An attempt of categorizing different training and prediction regimes into
three supervision types: unsupervised (U), weakly supervised (W), and fully super-
vised (F).

of anomaly detection (see Section 5.4), the term unsupervised is used when a model is
trained on normal data only, i.e., when an image level label is known, but only one class is
being used. Similarly, weak supervision is sometimes equated with semi -supervison [95].
However, in this, we will use the term weak to describe the setting, where we have less
information available for training than we will predict for inference, e.g., when we use
image level labels to make pixel-level predictions. This usage is more common in the
context of medical images, as we will see in Section 5.4. We use the term semi -supervised
for methods that train on both labeled and unlabeled data.

Table 5.1 shows an attempt to summarize the types of training labels and predictions
we mentioned above and classify them into the different supervision regimes we discussed.

5.2 Generative Models

Generative models are models that have some way of generating new data similar to
the data used in training. In many cases, this takes the form of a mapping between a
well-known distribution, like a standard normal distribution, and a distribution that is
given by just some realizations, i.e., the training data.

5.2.1 Variational Autoencoders

Autoencoders are networks trained using an auto-encoding objective, i.e., they are
trained to output whatever is given as an input. While that might sound trivial at
first, the key idea is that they have a bottleneck in their architecture. Usually, autoen-
coders are a composition d ◦ e : RN → RN of an encoder network e : RN → RM and
a decoder network d : RM → RN with M ≪ N . The bottleneck refers to the reduced
dimensionality M between the two networks, which prevents an identity mapping of the
whole input domain RN . If both d and e are linear, M imposes an upper bound on the
rank of d ◦ e, i.e., a linear dimensionality reduction. If we choose d and e as deep neural
networks, then d◦ e represents a nonlinear dimensionality reduction. In any case, we try
to compress the information in the high-dimensional input- and output-space RN into a
lower-dimensional latent space in RM .

So in general, given some data point x ∈ RN the reconstruction objective of an
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autoencoder is usually formulated as

Lrec = d(x, (d ◦ e)(x)). (5.1)

where d can be any distance measure but frequently is chosen as the l2 distance

d(x, y) = ∥x− y∥22 (5.2)

Variational autoencoders (VAEs) work similarly, but they are endowed with a special
bottleneck [96]. Instead of passing the output of the encoder directly to the decoder, we
use the encoder to estimate the parameters of some probability distribution. We then
pass a realization of this distribution to the decoder. Usually, a normal distribution with
diagonal covariance is used. Therefore, the encoder is predicting a mean vector and the
diagonal covariance matrix, i.e., R2M values. The key point now is that in addition to
our reconstruction objective Lrec, we also add an objective that encourages the output of
the encoder e to follow a known distribution, i.e., a standard normal distribution. This
is done using a bound to the Kullback-Leibler divergence [96].

As we encourage the latent space to follow a known distribution, we can generate
new samples after the training just by passing new realizations of the known distribu-
tion into the decoder. A notable application of this principle is the Vector-Quantized-
VAE [73], that introduced some more refined techniques that enabled the generation of
high-resolution images.

5.2.2 Generative Adversarial Networks

Similarly to the decoder in VAEs, Generative Adversarial Networks consist of a generator
network g : RM → RN mapping a known distribution (again, e.g., a standard normal
distribution) into the space of the training set [97]. It was first demonstrated on small
images (up to 32 × 32 pixels), but can also be applied to other kinds of data. During
the training, the second network d : RN → [0, 1], called a discriminator, is trained to
distinguish between the images generated by the generator g (“fake”) and the images
from the dataset (“real”). The generator network g, however, is trained in an adversarial
way, that is, to produce output that makes the discriminator d classify them as images
originating from the dataset, even though they are fake.

While the principle is simple, it has major flaws: Even when the generator suc-
cessfully fools the discriminator, we are in no way guaranteed to get any meaningful
generated outputs, as the discriminator can be sensitive to features that are not what
humans perceive as important. Also, there is no incentive for the generator to produce
diverse output. Another major difficulty is the instability of the training of GANs due
to the adversarial training objective [98]. Various techniques have been proposed, to
alleviate these issues issue [99, 100, 98].

5.2.3 Autoregressive Models

When generating samples in autoregressive models, the model will – as the name implies
– consider the already generated content to produce an additional part. For instance,
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a text model could generate the next letter based on the previous ones or an image
model could generate a pixel based on previous ones. A notable example of the latter
is the PixelCNN [101]. It is an autoregressive image model that employs a recurrent
neural network that predicts new pixels based on some hidden state and the previously
generated pixels. Another notable class of autoregressive models comprises transformer-
based models [72]. They have been used extensively in large language models (LLMs)
like BERT [102], GPT [103] and llama [104]. While pure transformer architectures have
been used in image processing tasks [105, 106, 107], in generative image models, they
are currently used more frequently as auxiliary components in convolutional architec-
tures [108, 109, 110].

5.2.4 Implicit Neural Representation

Images or shapes can mathematically be modeled implicitly as a scalar- or vector field
I : Ω → C, mapping a coordinate in a 2D- or 3D space Ω ⊂ Rd, to e.g., a color in
C = {0, 1, . . . , 255}3, or occupancy value in C = {0, 1}. Typically, we discretize images
as pixels or voxels, and an image is therefore represented as an array of values, which
can be interpreted as image with Ω ⊂ Nd → C. Implicit neural representations (INRs),
however, model this mapping directly using a neural network

fϑ : Ω → C (5.3)

mapping the input coordinates x ∈ Ω to some output value y = fϑ(x) ∈ C. The same
approach can also be used for representing audio with Ω ⊂ R, or video with Ω ⊂ Rd+1,
containing an additional time dimension [111]. In the simplest case of representing a
single image with an INR, we can train the network fϑ by minimizing the reconstruction
error, using, e.g., an ℓ2 distance

L =
∑
x∈Ω

∥fϑ(x) − I(x)∥22 (5.4)

5.2.4.1 Applications

INRs have an advantage in that they can be directly used with any resolution or even
irregularly sampled data. A salient example is the use of an INR to represent 3D scenes
as proposed with the NeRF method [112]: The input to the network consists again of
the coordinates of the point we want to query, but also of the viewing direction. The
output consists of a color and a transparency term. A volume rendering pipeline is being
used to render perspectives of the whole 3D scene.

The same approach can be adapted to CT reconstruction [113, 114]. The view
dependence, as well as the color output, can be omitted, and the volume rendering is
replaced with a physical absorption model of the X-rays, e.g., the Beer-Lambert law as
in Equation (3.6). During training, we can, therefore, render the projections we would
get from the current state of the INR network, and compute a loss between the rendered
and the real projections.
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The representation has been used in a wide variety of applications, like image com-
pression [115], image inpainting [116], novel view synthesis [112, 117], 3D shape recon-
struction [118, 119], CT reconstruction [114, 120, 113], semantic segmentation [121],
shape generation [122], shape completion [123], and surface reconstruction from point
clouds [124].

As already alluded to above, INRs have been shown to perform well for irregularly
sampled data, as they are not dependent on a grid as for instance pixel images. In
medical imaging, especially in tomographic methods like OCT, CT or MRI, it is common
to have different in-plane and out-of-plane resolutions. INRs have successfully been used
for super-resolution tasks using two anisotropic MR scans with different contrasts and
different plane orientations [125].

Since each point x ∈ Ω can usually be processed independently, the network fϑ can
be as simple as an multilayer perceptron (MLP), and does not require more complex
building blocks like convolutional layers. It has, however, been demonstrated that INRs
with traditional activation functions are slow to converge and cannot provide very fine
detail [111], i.e., they have a spectral bias [126]. Two approaches have been investigated
to solve this issue. The first uses a positional encoding [112]: The network fϑ was
outfitted with an additional function that maps the coordinates to the Fourier features

γ(p) = (cos(20πp), sin(20πp), cos(21πp), sin(21πp), . . . , cos(2L−1πp), sin(2L−1πp)). (5.5)

where p ∈ [−1, 1] is one coordinate and L ∈ N the number of encoding levels. This
function is first applied to each input coordinate independently before being passed to
the parametrized layers. Alternative positional encodings include Fourier features with
random frequencies [127], or multi-resolution hash encoding [128] have been proposed.

The second approach focuses on the activation functions. Periodic functions, like
a sine in SIREN [111], have been shown to outperform traditional ones like the sig-
moid or the ReLU. A modification thereof has been proposed [113], which instead uses
parametrized wavelets of the form

σ(x) = exp(iω0x) · exp(−|s0x|2). (5.6)

where auxiliary layers predict ω0 and s0. Further modifications include variable fre-
quency activations [129], or implicitly via intermediate second-order polynomials [130].

5.2.4.2 Latent Space

In some applications, the architecture of INRs acts as a prior for images, shapes or
scenes. In these settings we optimize a separate set of parameters for each image or
volume [112, 114, 120, 125, 111]. In other applications, it can be interesting to train an
INR equipped with some latent space in the form of an additional input. In this case the
the trained network acts as a more specific prior for a whole distribution of images [121,
118, 122].

It has been shown that we can use denoising diffusion models [131, 132] or generative
adversarial networks [133] to directly generate the parameters of an INR. This can be
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understood as falling under the umbrella term of hypernetworks, that is, networks that
predict the weights of other networks (the INRs in this case). The subspace of the
parameter space of the INRs that these models cover, can be considered as a latent
space [111].

A latent space Λ ⊂ Rl can also be modeled more explicitly, by designing the INR
network to accept further input z ∈ Λ, that encodes some information about the image
it represents as

fϑ : Ω × Λ → C. (5.7)

A separate z can then be used for each training set image and – depending on the
application – jointly optimized with the network. For the subsequent application of the
INR, we also need to be able to project new images into this latent space Λ. It is possible
to do so by jointly training an encoder network, mapping an input image to the latent
space Λ in an auto-encoding objective [134].

Another approach that does not rely on an additional encoder is the direct optimiza-
tion of the latent representation, that is, given some image I : Ω → C, we optimize

ẑ = arg min
z∈Λ

∑
x∈Ω

d[fϑ(x, z), I(x)], (5.8)

using some distance function d. In the medical domain, this method has also success-
fully been applied for shape modelling and reconstruction, as well as semantic segmen-
tation [118, 121]. As the evaluating network only performs the decoding, this type of
INRs is also called auto-decoder.

Therefore, when equipped with a meaningful latent space, INRs are not only a rep-
resentation of data that can be generated by an external mechanism – such diffusion
models or GANs that we mentioned above – but can also be used for various applica-
tions, including generative tasks [111, 119, 134] if we introduce a meaningful latent space
Λ. In Chapter 8, we discuss the application of INRs to model the brain development
process of neonates over time.

5.2.5 Denoising Diffusion Models

Denoising Diffusion models have been proposed as generative models to generate high-
quality images [109]. In their most basic form, the model is trained to predict a real-
looking image given a sample of Gaussian noise [109], that is, it is trained similarly to
a denoising autoencoder. The major difference is that to generate a single sample, we
must apply the same network multiple times (typically up to T = 1000). While we
start with Gaussian noise, the output of the network is again fed back into the network
in each step, producing a more and more denoised image. While Gaussian noise was
initially proposed and is therefore highly popular, we can also formulate this process
with other probability distributions [135, 136, 137], or completely different methods of
image degradation [138].
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5.2.5.1 General Principle

To illustrate the principle, we first consider the diffusion process (a.k.a. the forward- or
noising-process) q as proposed in [109]. Using their notation1, we define the conditional
distribution

q(xt | xt−1) = N (xt;
√

1 − βtxt−1, βtI), (5.9)

where I is the identity matrix. The sequence of βt can be chosen in various ways,
provided that β1 = 0 and βT > 0 [109]. In practice, we chose 0 ⩽ βT ≪ 1, βT ≫ β1,
and βt is a monotonic function of t, e.g., linear, interpolating between β1 and βT . This
means we diffuse xt−1 to generate xt using

xt =
√

1 − βtxt−1 +
√
βtε (5.10)

where ε is a realization of N (0, I). Since ε is random, there is a whole distribution of
possible xt. It is possible to reformulate the process with the condition on x0 instead of
xt−1 with αt := 1 − βt and αt :=

∏t
s=1 αs as

q(xt | x0) := N (xt;
√
αtx0, (1 − αt)I). (5.11)

This equation shows us that our noising process q does indeed “interpolate” between the
standard normal distribution N (0, I) and the image x0, or in other words, it degrades the
image x0 by adding Gaussian noise. If we consider xt, xt−1, and ε as random variables,
we can use Equation (5.11) to deduce that

xt −
√
αtx0√

1 − αt

d
= ε ∼ N (0, I) (5.12)

This relation is at the core of how we employ the network. We train the network εϑ,t to
predict the (z-normalized) noise ε we have to remove it from xt to get x0. However, to
get to xt−1 we only make a small step in that direction.

Let us first look at the training objective and then at the denoising process pϑ,t(xt−1|xt).
Given a random variable following the training set distribution x0 ∼ D, and a random
variable ε ∼ N (0, I), and some random diffusion step t ∈ {1, ..., T}, we aim to minimize

E
[
∥ε− εϑ,t(

√
αtx0 +

√
1 − αtε︸ ︷︷ ︸

d
=xt

)∥2
]
. (5.13)

Note that the argument of εϑ,t actually is the distribution of xt. Hence, to perform the
training, we sample an image x0 from the training set, a realization ε of N (0, I), and
compute xt =

√
αtx0 +

√
1 − αtε. The key in this process is now that for this particular

1The rigorous distinction between random variables and their realization is not made in favor of a
shorter notation. Equation (5.9) can be read as follows: The variable xt is a realization of the random
variable Xt which has distribution Xt ∼ N (

√
1− βtxt−1, βtI), which is a function of xt−1. We will,

however, use the notation “X
d
= Y ” to indicate that both random variables X and Y have the same

distribution.
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xt, we know the realization of the noise ε, which we can use as a supervision. We
therefore aim to minimize

L = ∥ε− εϑ,t(
√
αtx0 +

√
1 − αtε)∥

2
(5.14)

with respect to ϑ. To generate a new image from xT ∼ N (0, I), in [109], the denoising
process is given by

xt−1
d
=

√
αt−1

(
xt −

√
1 − αtεϑ,t(xt)√

αt

)
+
√

1 − αt−1 − σ2
t εϑ,t(xt) + σtεt (5.15)

where εt ∼ N (0, I) and

σt =

√
1 − αt−1

1 − αt
·

√
1 − αt

αt−1
(5.16)

with α0 = 1.
As explained in [110], this process is stochastic, as in every time step t we add εt. But

if setting σt = 0 for all t, as proposed in [110], this process becomes deterministic and
only depends on xT . Then Equation (5.15) simplifies to the DDIM sampling scheme [110]
given by

xt−1 =
√
αt−1

(
xt −

√
1 − αtεϑ,t(xt)√

αt

)
+

√
1 − αt−1εϑ,t(xt). (5.17)

5.2.5.2 Conditioning

In many applications, we are not just interested in the unconditional image generation,
but we want to steer the network to an output with some desired property.

Let us consider the case of semantic segmentation: An unconditional diffusion model
could be trained to generate arbitrary plausible segmentation masks of the objects we
want to segment. However, this alone is not yet helpful if we want to segment objects
in a given image. A simple way – that has been proven effective for this task – consist
of concatenating [139, 140] of the condition to the input. We concatenate the image we
would like to segment to the input xt of the denoising network εϑ,t in every step t, as
shown in Figure 5.2.

Many other conditioning methods have been proposed and can be divided into three
categories: First, we can condition the image generation process in the latent space
of the denoising network [141, 142]. Second, we can use the gradient of an auxiliary
network to guide the image generation towards a desired property [143, 144]. Finally,
the deterministic nature of the DDIM [110] sampling can also be used to encode a given
image in the noise, which can be used as a conditioning mechanism [145, 146].

5.3 Segmentation

The image segmentation task can be understood as a per-pixel classification task. Given
an image I : Ω → C and a set of classes Γ = {c0, . . . , cn}, we would assign a class to
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xT xt

⊕
xt−1 x0

b
pϑ,t(xt−1 | xt, b)

q(xt | xt−1)

Figure 5.2: The conditioning of a denoising process to generate brain tumor segmenta-
tions [92] (see also Chapter 7).

each pixel x ∈ Ω, that is, we would like to find a function S : Ω → Γ. In the example of
the brain tumor segmentation challenge (BraTS) [25], the images I consist of four MR
sequences, i.e., C = [0,∞)4 and Γ consists of four classes as depicted in Figure 2.6 (three
classes of tumor tissue along with the background). To perform this task with a neural
network, we typically use a network that outputs an image of the same dimensions as
the input. We usually encode the classes using a one-hot encoding, that is, the network
has to be designed to output the same number of channels as we have classes (including
background).

5.3.1 Segmentation Models

The most widespread network architecture for segmentation is the U-Net [75] introduced
in 2015. The architecture and its variations have become a fundamental building block
for many tools, including denoising diffusion models [109, 110, 147]. For segmentation
tasks, the nnU-Net was proposed [147], which is self-configuring, i.e., it chooses many
parameters based on the data and task at hand, and has been shown to outperform
many manually tuned U-Nets [148].

While the U-Net architecture is common, there are also many other approaches. It
has been shown that we can use INRs to segment anatomical structures in 4D (3D+t)
data [121]. Segmentation models have also been proposed using recurrent networks [149]
and GANs [150]. A denoising diffusion model has been proposed for brain tumor seg-
mentation [140]. Due to the inherently stochastic nature of denoising diffusion models,
we can perform the segmentation of a given input image multiple times and use different
seeds for the random generators to get slightly different segmentation masks. In that
sense, we can think of segmentation as a generative task. It has been shown, that the
fusion of these segmentations improves the performance in terms of various metrics but
also allows capturing the uncertainty within the model [140].

The same effect has been shown in humans: When an expert is asked to segment
the same image multiple times, the segmentations will differ, which is known as the
intra-rater variability. The differences between different raters is called the inter-rater
variability. However, if multiple segmentations are fused, the performance can be im-
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proved [151].

Chapter 7 discusses the segmentation approach proposed in [140] and what further
techniques were necessary to implement it in a memory-efficient way for 3D volumes, as
opposed to 2D slices.

5.3.2 Losses and Metrics

An important question is what loss functions we use to train these supervised segmen-
tation models, and what validation metrics we use to compare their performance.

In the following part, we will discuss some loss functions and metrics, for which we
want to introduce some notation: For simplicity, we assume that we have two classes:
one class c1 for the feature we are interested in, and c0 for the background. Furthermore,
we denote the ground truth and the prediction as Y, Ŷ : Ω → S respectively. As Y and
Ŷ each partition Ω into foreground and background, we can alternatively consider the
foreground set as the preimage of Y and Ŷ . We denote them with A = Y −1(c1) ⊂ Ω and
B = Ŷ −1(c1) ⊂ Ω. Furthermore, for a given set X ⊂ Ω, we use the notation Xc ⊂ Ω for
the complement, i.e., Xc = {x ∈ Ω | x ̸∈ X}.

The (pixel-wise) cross entropy (see Section 4.2.3) can be used as a loss function for
segmentation tasks, but many other loss functions and combinations thereof have been
proposed [152, 153]. We can broadly categorize them into three different categories [152]:
pixel-level, region-level and boundary-level. The pixel-level losses include the MSE and
the cross entropy, as they can be computed for each pixel independently.

The region-level losses include the Accuracy

ACC =
|(A ∩B) ∪ (A ∪B)c|

|Ω|
, (5.18)

borrowed from classification tasks, measuring the relative amount of pixels that has
accurately been classified. A disadvantage is that for small classes (i.e., |A| ≪ |Ω|), the
accuracy can be high even if the foreground class has not been captured (A ∩B = ∅).

A popular metric that ameliorates this issue is the Dice score (also known as F1-score)

DSC =
|A ∩B|

1
2(|A| + |B|)

, (5.19)

and equivalently, the Intersection-over-Union

IoU =
|A ∩B|
|A ∪B|

. (5.20)

They normalize the intersection area, such that we get a relative error. They in turn
have the disadvantage of producing low scores for small foreground classes, even if only
a small area has been misclassified. To be used as a loss L in practice, both of them have
to be formulated as a differentiable function of the prediction, and need to be inverted,
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e.g., using LDSC = 1 − DSC. If we assume Ŷ : Ω → [0, 1] and c0 = 0, c1 = 1 (i.e.,
Y : Ω → {c0, c1} = {0, 1}), we can define

LDSC = 1 −
2
∑

x∈Ω Y (x)Ŷ (x) + ε∑
x∈Ω Y (x)2 +

∑
x∈Ω Ŷ (x)2 + ε

(5.21)

where ε > 0 is a constant for avoiding numerical issues when a class is empty, i.e., when
Y (x) = 0 for all x ∈ Ω.

Finally, the boundary-level metrics include the Hausdorff distance

HD = sup [{d(a,B) | a ∈ A} ∪ {d(b, A) | b ∈ B}] ,

where d(S, r) = inf
s∈∂S

∥r − s∥2 (5.22)

is the set-point distance. It is possible to also formulate it in a way that is differentiable
with respect to Ŷ [154], in order to be able to use as a loss in gradient-based optimization.
As a validation metric, it is also common to report the HD95, i.e., the “95th-percentile
Hausdorff distance”. This is a variation of Equation (5.22), where the supremum is
replaced by the 95th percentile, as the pure Hausdorff distance is susceptible to noise
and single pixel outliers. From these examples, we can conclude that there is a lot of
freedom in the choice of loss functions for segmentation tasks. Often it is worth using a
combination of multiple loss functions [152].

For the subsequent validation, the measures highly depend on the task at hand and
on the clinical question. Furthermore, relationships within the data have to be taken
into account, for instance if for some patients multiple images are included. The Metrics
Reloaded consortium, analyzed many of these potential issues and provides an extensive
framework to guide through the choice of metrics [153].

5.4 Anomaly Detection

Anomaly detection is the task of detecting anything that is not considered normal. There
is, however, no clear path on how we can go about that, and it also depends on the type
of data we can use for training and of the type of predictions we want to make. In this
section, we focus on anomaly detection that also includes anomaly localization within
an image.

We focus on methods that try to extract more specific information about the location
of an anomaly in an image. This is an information that is not available as a label during
training, that is, we consider the weakly- and unsupervised regime. As we try to extract
additional information, the prediction of labels (if they are available) is insufficient. To
train a model, we instead have to rely on a surrogate task.

As a first example, we can consider [155], which proposed an unsupervised approach.
An autoencoder is trained to reconstruct healthy (“normal”) brain MRIs. To localize
the anomalies, the residual, i.e., the difference between the input and the reconstruction,
is considered. This principle is called restoration, and an important concept that many
anomaly detection methods are based on. Similar methods were proposed by [156,



48 Chapter 5. Applications of Neural Networks

157, 158], using a variational autoencoders instead. [159] compared multiple of these
autoencoder-based restoration approaches using common architectures.

Another class of approaches includes GAN-based weakly supervised anomaly detec-
tion. [160] used CycleGAN [161] as a basis for anomaly detection and localization. The
method proposed a translation between images with and without brain tumors and im-
plicitly included a masking mechanism to provide the tumor localization. We consider
this a weakly supervised method, as the presence of brain tumors has been used as an
image-level label.

DeScarGAN [162] proposed another weakly supervised GAN-based approach, which
however used the restoration directly for the localization, as did the autoencoder-based
approaches mentioned above. f-AnoGAN [163] also uses a GAN but in an unsupervised
setting. The restoration is again used for anomaly localization, but also includes latent-
space restoration for image level anomaly detection.

Denoising Diffusion models have also been leveraged for anomaly detection. [164]
uses a weakly supervised approach for anomaly localization by leveraging a classifier
network to perform a gradient-based conditioning. The image undergoes a partial nois-
ing and denoising process using the DDIM-scheme [110]. The gradient of the classifier
is used to condition the denoising process to generate a healthy-looking image. Simi-
larly, AnoDDPM [145] uses the same partial noising and denoising scheme, but in an
unsupervised manner: The diffusion model is only trained on normal images. Therefore,
the denoised images also appear normal and are then also used for a restoration-based
localization.

We can conclude that there is a variety of methods that finally use a restoration
as a surrogate task for anomaly detection. [165] criticizes the use of restoration-based
anomaly detection. They mention that those methods frequently were evaluated on
datasets using brain-MRIs that include FLAIR sequences, in which brain tumor or mul-
tiple sclerosis (MS) lesions can appear hyperintense. The authors showed, that a simple
approach consisting of skull stripping, histogram normalization, thresholding and fil-
tering connected components by size can outperform many restoration-based anomaly
detection methods.

The “medical-out-of-distribution”-challenge [166], the participants are asked to come
up with general out-of-distribution-detection, which is not necessarily specific to a cer-
tain type of anomaly. While the test data is not public, the challenge is known to include
lesions, but also, technical or artificial anomalies, to pose a more general anomaly de-
tection problem. [167] and [168] tackled this problem by training classic segmentation
models in a supervised manner, but also adding in synthetic image corruptions, for
which possible segmentations are available, hence we can identify the self-supervision
on synthetic corruptions as a surrogate task. In [169] (see Chapter 6), we proposed a
patch-based approach to tackle this problem. The surrogate task we proposed is iden-
tifying the location of a small patch within the image. When this is performed for as
many patches as desired, we can measure how far the predictions were off, and use this
to detect and localize anomalies.
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Position Regression for
Unsupervised Anomaly Detection

In this publication, we propose a surrogate task for unsupervised anomaly detection and
localization. The method is evaluated on a dataset of co-registered head CT scans that
were collected from patients with suspected brain injuries [33]. The proposed network
is trained on CT of patients that did not exhibit any injuries. It is trained using a
surrogate task which consists of extracting small patches of the image, and predicting
their position within the image, i.e., position-regression. We show that the proposed
network fails to recover the position of patches that exhibit fractures and hemorrhages,
and can solve the task well on patches of tissue without any injuries. This enables the
detecting and localizing anomalies. The proposed architecture can use relatively small
networks, and with the patch-wise processing, can be run with very little memory.

Publication. The following paper was presented at the Medical Imaging with Deep
Learning (MIDL) Conference, July 2022, Zürich. It was published as part of the confer-
ence proceedings [169].
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Abstract

In recent years, anomaly detection has become an essential field in medical image
analysis. Most current anomaly detection methods for medical images are based on image
reconstruction. In this work, we propose a novel anomaly detection approach based on
coordinate regression. Our method estimates the position of patches within a volume, and
is trained only on data of healthy subjects. During inference, we can detect and localize
anomalies by considering the error of the position estimate of a given patch. We apply
our method to 3D CT volumes and evaluate it on patients with intracranial haemorrhages
and cranial fractures. The results show that our method performs well in detecting these
anomalies. Furthermore, we show that our method requires less memory than comparable
approaches that involve image reconstruction. This is highly relevant for processing large
3D volumes, for instance, CT or MRI scans.

Keywords: medical image analysis, anomaly detection, unsupervised

1. Introduction

In recent years, anomaly detection has become an essential direction of research in medical
image analysis. Compared to supervised segmentation methods, anomaly detection methods
do not rely on pixel-wise annotations but on image-level labels instead. This leads to a much
simpler way of annotating the training data and reduces the human bias to the model.

We can distinguish two major types of anomaly detection methods in the literature: The
first type only uses data that is considered normal. In terms of medical images, these are
images of healthy subjects. The second type additionally requires examples of anomalous
data (Battikh and Lenskiy, 2021; Wolleb et al., 2020), and can also be considered as weakly
supervised methods. However, in this work we will focus on the first type that uses only
normal data for the training.

The most widely used methods for image anomaly detection are based on reconstruction
errors (Baur et al., 2021). These methods aim to capture the distribution of the training
set of healthy subjects by learning a low dimensional representation of the input and the
reconstruction from this representation back to the original image. The core idea is that
the correct reconstruction of the input will fail in some regions if an anomaly is present in
the input image. Comparing the output with the input will provide a reconstruction error
in the pixel space, which can be used as an indicator for anomalies (Chen and Konukoglu,
2018; M.D. et al., 2018; Baur et al., 2021). A challenge in these methods is generating
an output image of high quality and rich in detail. This requirement contributes to the
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computational cost in terms of training time and hardware requirements, i.e., GPUs and
memory. (Tong et al., 2021) have also observed that autoencoders can have a bias towards
data that can easily be reconstructed and are sensitive to outliers in the training set.

This paper presents a novel anomaly detection method for medical images based on
position regression. In contrast to the image reconstruction-based methods our approach
operates on patches of the input image. Instead of learning a reconstruction of the patch in
pixel space, our method predicts the location of the input patch in the original image. Our
method is trained only on data of healthy subjects and implicitly learns the distribution of
the data as a result of the position regression task. During inference, a significant error in the
position prediction of a patch indicates that an anomaly is present within that patch, which
was not present in the training distribution. A detailed overview of our method is shown
in Figure 1. We evaluate our method on the head CT dataset presented by (Chilamkurthy
et al., 2018), which contains images of patients with intracranial haemorrhages and cranial
fractures.

Coordinate regression problems have been explored for point-of-interest localization (Ni-
bali et al., 2018) or to propose bounding boxes in object detection (Girshick et al., 2014;
Ren et al., 2015). However, these methods focus on finding the location of particular objects
within the input image. Compared to this, our method predicts the coordinates of the input
patch with respect to the remaining part of the source image. (Lei et al., 2021) proposed
a method of estimating positions of patches to locate specific organs or other anatomical
structures within whole-body CT scans. In contrast to our method, they simultaneously
feed two patches into their network and perform a regression over the relative position of
the two patches.

2. Method

The method we propose is based on position regression. From an input volume image
I ∈ RN×N×N we extract patches px ∈ Rsp×sp×sp , with a patch size of sp at position x ∈ R3

within I. The voxels in I can be indexed using three dimensional coordinates (x, y, z)
with the coordinates x, y, z ∈ {0, 1, 2, . . . , N − 1}. For our purposes we normalize these
coordinates to the range [0, 1] such that x = (x, y, z) ∈ [0, 1]3.

Input Volume I Sampled Patch px Regression Network fϑ

Position Estimate
y

z

x

x

x̂

Lcoord = ‖x− x̂‖

Figure 1: Conceptual overview of the our proposed method.
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Using Cartesian coordinates works well for head CT scans, as they always have the
same structures in a similar position. For scans of other anatomical structures different that
may have different poses, other coordinate systems might be better suited, for instance, a
barycentric coordinate system based on some key points.

Given some patch, our network fϑ : Rsp×sp×sp → R3 with parameters ϑ is trained to
output an estimate x̂ = fϑ(px) of the source position x of the given patch, as shown in
Figure 1. Thus we can consider the training of the network as solving a regression problem.

For training, we iterate over our training set: In each iteration, we consider an input
volume I. We randomly sample coordinates x from the input volume I and extract the
surrounding patch px. Then we pass the patch through the network to get the estimated
coordinates x̂ = fϑ(px) and use the ℓ2-norm of the difference between the coordinates of
the patch x and the estimated coordinates x̂ as our training loss

Lcoords(x, x̂) = ∥x− x̂∥.
In practice, we use multiple patches in each iteration and average the individual losses

Lcoords to get our training loss that we optimize. These patches are sampled independently
from a uniform distribution over input coordinates.

During inference, we compute an output volume E of the same size as the input I. For
every voxel Ix at coordinates x we sample the surrounding patch px of the input I, and
pass it through the network to get an estimate x̂. Note that the patches centered at the
coordinates of two neighbouring voxels will overlap. Then we define the output volume E
by computing the reconstruction error for each voxel as Ex = Lcoords(x, x̂).

This allows us to see the output volume E as an error map. Each Ex shows how well
the network fϑ could predict the position of the patch px centered at x. If the value of a
voxel in the output volume E is above a certain threshold, the network failed to predict the
correct position of the associated input patch. This is the case if the input patch exhibits
a structure that is not present at that position in the training images. Therefore, we can
check for high values in the output volume E to find regions that appear anomalous.

2.1. Architecture

The network we used for the patch position regression (PPR) has a generic image classifica-
tion network architecture. The detailed structure is displayed in Figure 2. The architecture
is parametrized by a network size parameter m to consider a whole range of networks with
a different number of parameters. This parameter determines the number of channels in the
convolutional blocks as well as the size of the affine layers. We define two blocks, “Down-
sample” and “Residual” that are used throughout the network. Here “AvgPool” stands for
average pooling with a kernel of size 2 and stride of size 2 in every direction. “Conv(c, k, s)”
stands for a 3D convolution with c output channels, a kernel size of k and a stride of s
with spectral normalization. “Linear(n)” is an affine transformation with a codomain of
dimension n.

3. Experiments

All runs were trained for 2000 epochs with the Adam optimizer (Kingma and Ba, 2014) with
a learning rate lr = 10−4. We selected the learning rates empirically based on the training

3
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# Block
1 Residual(m)
2 Downsample(m)
3 Residual(2m)
4 Downsample(2m)
5 Residual(4m)
6 Downsample(4m)
7 Residual(8m)
8 Downsample(8m)
9 Residual(16m)

10 GlobalAvgPool
11 Linear(16m)
12 LeakyRelu(0.2)
13 Linear(3)
14 Sigmoid

Downsample(x)

Conv(c = x, k = 3, s = 2)

InstanceNorm

LeakyReLU(0.2)

+

AvgPool

Residual(x)

Conv(c = x, k = 1, s = 1)

InstanceNorm

LeakyReLU(0.2)

+

Figure 2: Architecture of the Patch Position Regression Network.

loss after 200 epochs. We manually selected a fixed patch size of sp = 31 (i.e. 31× 31× 31)
voxels for all experiments. (We performed an experiment to examine the influence of the
patch size on the performance (Appendix A) and found that in this setting the influence
is small.) The size of the patch determines the amount of context: Thus, the amount of
information the network gets, but also the sensitivity: There is a trade-off between more
context, for a more accurate localization but less sensitivity to anomalies for larger patches
and a greater sensitivity but inferior localization accuracy of smaller patches.

3.1. Sampling

In each iteration, we sample 256 patches from one volume. This number can be adjusted
to the memory budget of the given hardware. We set this number to get a similar run-time
as the baseline method (see Section 4.2). Patches that exclusively contain background (i.e.
no part of the subject’s anatomy) are discarded for the computation of the loss.

3.2. Dataset

For training and evaluation we used the public CQ500 dataset (Chilamkurthy et al., 2018),
which contains head CT scans. For some patients, there are multiple scans present, for
instance with and without contrast enhancement. Three experts determined for each vol-
ume whether there is as an intracranial haemorrhage (ICH) for each brain hemisphere and
whether a cranial fracture is present. If there was a disagreement between the three raters,
we used the majority vote as our ground truth. For our experiments, we used one scan from
each patient without contrast enhancement, and discarded all scans that had faulty data
(missing slice, wrong anatomical structure etc). The final dataset used in our experiments
contains 131 images without anomaly (111 of which are used for training), and 65 images
with anomalies. The details of the composition of the dataset are given in Appendix B.

3.3. Preprocessing

The volumes are resampled to voxels of size 1×1×1mm with a total size of 256×256×256
(that is N = 256) voxels. Then each volume is rigidly registered to a manually selected
reference volume from the training set using AirLab (Sandkühler et al., 2018). Since CT
images have a high dynamic range, we perform a histogram equalization. We segment the
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skull and the two brain hemispheres in the images. This segmentation is only used for the
evaluation of the method. Furthermore, we separate foreground from background to be able
to filter out irrelevant patches during training.

3.4. Autoencoder Baseline

We use the basic autoencoder (AE) architecture from (Baur et al., 2021) as a baseline and
adapt it to accommodate 3D volumes and to the resolution of the volumes in our dataset.
The exact architecture is show in Figure 8 in Appendix C. As a post-processing step, we
applied a filter (suggested in (Baur et al., 2021)) of size 5 to the reconstruction error map.
We used a median filter for the fractures task, and a grayscale erosion for the ICH task. We
optimized over both filter types and multiple kernel sizes to make the comparison as fair as
possible.

4. Results

For comparison, we trained both our proposed method and the baseline exclusively on
normal (healthy) data. We used the coordinate reconstruction error to detect anomalies:
If the error between the actual and the predicted coordinates is high, we use that as an
indication of an anomalous region. The dataset only includes labels of whether an anomaly
is present in a given structure (e.g. left hemisphere). For each of these three structures
we check whether the error exceeds a certain threshold, in order to predict whether an
anomaly is present. Since the performance metrics of the detection, therefore, depends on
this threshold, we report the receiver operating characteristic (ROC) and the corresponding
area under ROC (AUROC).

4.1. Computational Resources

To evaluate the performance of our method and the baseline method with respect to the
computational resources, we trained both methods with various values of the model size
parameter m = 20, 21, . . . , 26 to compare the anomaly detection performance to the size of
the network. Figure 3 shows the performance as a function of the number of parameters
of the networks. We can see that the performance of the networks increases up to some
limit, but then decreases again. We conjecture that at a specific size, the training would
benefit from more iterations or a better initialization. If we consider the best performing
AE networks, we can see that the PPR network requires roughly one (fractures) or two
(ICH) orders of magnitude fewer parameters to exceed the performance of the AE. For
the remainder, we discuss the best performing PPR models of those that both have fewer
parameters and used less GPU memory for the training than the best performing AE
models. These are marked with an asterisk in Figure 3.

We want to point out though, that even though the memory requirements correlate
with the number of parameters, they are also influenced by the actual architecture of the
networks as well as the used software frameworks. Furthermore the batch size also influences
the memory requirements.

In our experiments, we used batch sizes that would be used for practical purposes, that is
we have bsPPRexp = 256 patches (sampled from one volume) for the PPR models and bsAE

exp = 4
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Figure 3: Performance for multiple values of the network size parameter m = 20, 21, . . . , 26.
Each of the two plots shows the performance on the test set as a function of the
number of network parameters for the two types of anomalies (ICH, Fracture).
The asterisk marks the best performing PPR model using fewer parameters and
less GPU memory than the best performing AE model (also marked with ”∗”).

Table 1: GPU Memory requirements (in MB) during training, given some batch size.

ICH Fracture
Batch Size PPR AE PPR AE

bsexp 4452 12548 1760 7894
1 2194 6730 1000 2742

volumes for the AE models. The GPU memory used with these settings for this is shown in
the first row of Table 1, and we see that our proposed method uses about a factor of 4 less
memory. But even if we only use a batch size of one for the AE models (see second row)
the best performing PPR model still uses a factor of about 1.5 less memory. (The memory
consumption for all our experiments is shown in Figure 10 in Appendix E.)

It should also be noted that in the ICH experiment, there were PPR models that out-
performed the best performing AE model, and used even less memory during training. This
illustrates, on the one hand, the general issue of the cost of handling 3D volume data and
on the other hand the cost of the image reconstruction branch of the AE models that is not
present in the PPR network.

4.2. Training and Testing Time requirements

We chose the batch sizes, and number of patches respectively, to result in a similar training
time for all models. The time for the AE models was about 26 hours on average, the time
for our PPR models is about 22 hours. While the PPR models require less memory for
training, they are slower than AE models during inference, which is the price for the patch
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based processing: The AE models used needed around 2 seconds to process one volume,
while the PPR models needed around 1.5 minutes at the highest resolution.

4.3. Qualitative Results

ICH healthy

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

Figure 4: Slices of some selected examples that show the original CT scan with appropriate
scaling of the brightness on the left, as well as the error map of our proposed
PPR model (with m = 16). The images on the left and in the center exhibit an
anomaly (ICH) while those on the right are normal (healthy).

We show some slices with examples of ICH in Figure 4 as well as surface renderings
of scans of subjects with cranial fractures in Figure 5. (As a reference we also included
the same examples for the AE in Appendix D in Figure 9.) It is noticeable that the
reconstruction error is high where there is an anomaly. The reconstruction error generally
seems to continuously depend on the amount of the patch that is anomalous, as the error
maps generally seem to be rather smooth.

The performance for the models used for Figure 4 and 5 are shown in Figure 6. We
observe see that the detection of fractures is the more challenging task for our method than
the detection of ICH. This might be due to the smaller number of scans available to evaluate
it on (see Appendix B). To put these results in context we provided a table with the inter
rater agreement on these tasks in Appendix B: The performance in terms of AUROC is
around 15− 16% lower than the average raters.

5. Discussion

We have shown that with our proposed approach, we can get a similar performance to
AE models with a memory footprint that is up to an order of magnitude lower. This is
especially interesting for processing volume data that are common in medical applications,
for instance CT- or MRT scans. The lower memory requirements come at a price of a longer
inference time. The time needed is still low enough for most applications in the medical
field.
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Figure 5: Surface renderings of scans of two subjects with cranial fractures. Both subjects
suffer from from fractures of the frontal bone. The left side each shows the scanned
part of the skull and the right part shows the same surface coloured according to
the error.
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Figure 6: Left: ROC curve for the detection of ICH (AUROC = 0.81), Right: ROC curve
for cranial fractures (AUROC = 0.79).

We see the proposed network as a proof-of-concept that would be interesting for further
investigation. One of the drawbacks of this method is the limited spatial resolution. This
could be addressed with a multi stage coarse-to-fine approach similar to what was proposed
in (Lei et al., 2021).

Furthermore, it would be interesting to investigate the influence of the patch size in
relation to the spatial extent of the anomalies, and to see if it would be possible to combine
it with a tissue classification task. In addition to the patch size it would also be to vary the
shape of the patch that is passed into the network
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Appendix A. Patch Size

To examine the influence of the patch size (see Section 3) we evaluated the ICH task with
identical settings but different patch sizes. For each of the patch sizes we trained a model
from scratch with the same configuration as in the other experiments. In Figure 7 we show
the AUROC score as a function of the patch size for the detection of the haemorrhages
in each brain hemisphere (red and blue) as well as the total score for both hemispheres
combined. Across all six patch sizes the performance slightly changes by about ±0.06.
Comparing that value with the variation of the individual brain hemispheres we conclude
that the influence of the patch size in these experiments in negligible. For other anomalies
or modalities this might be different though.
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Figure 7: Performance of the PPR network in terms of AUROC as a function of the patch
size sp = 19, 23, 27, 31, 35, 39 for the ICH task.

Appendix B. CQ500 Dataset

The scans with bleeding or a fracture were considered anomalous, while the scans without
any of these findings were considered healthy. The test set contains 86 volumes in total,
including 21 from the healthy set (i.e. without anomalies), 20 with a fracture, 39 with
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bleeding in the left hemisphere and 47 with bleeding in the right hemisphere. Note that
these sets are not disjoint, Table 2 shows the actual distribution. Our test set consists of the
anomalous scans as well as 21 randomly chosen scans from the healthy set. The remaining
scans of the healthy set were used for training.

Table 2: Distribution of the anomalous data in the test set. Overlined column/row names
indicate the absence of the given feature. Each entry shows the number of volumes
with that combination of the presence/absence of these three features.

Bleeding Left Bleeding Left

Bleeding Right Bleeding Right Bleeding Right Bleeding Right

Fracture 4 3 7 6

Fracture 16 16 13 21

To characterize the variability of the ground truth within the three raters, we compute
the Fleiss-Kappa as well as the pairwise AUROC in Table 3.

Table 3: Inter rater agreement expressed using the Fleiss-Kappa as well as AUROC for each
rater compared to the majority vote for each feature.

κ AUROC
R1 R2 R2 AVG

Bleeding Left 0.745 0.877 0.982 0.985 0.948
Bleeding Right 0.705 0.893 0.945 0.964 0.934
Fracture 0.632 0.901 0.955 0.921 0.926

Appendix C. Autoencoder Baseline

We trained the AE network for 2000 epochs with the Adam optimizer with lr = 0.001. The
architecture of the AE is shown in Figure 8: The architecture is parametrized by m to
be able to consider networks of different sizes. We define two blocks, “Downsample” and
“Upsample”, that are used throughout the network. “[Transp]Conv(c, k, s)” stands for a
3D [transposed] convolution with c output channels, a kernel size of k and a stride of s.
The AE models were trained using a pixel-wise L1-loss.
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# Block

1 Downsample(m)
2 Downsample(2m)
3 Downsample(4m)
4 Downsample(8m)
5 Downsample(16m)
6 Upsample(8m)
7 Upsample(4m)
8 Upsample(2m)
9 TranspConv(c = 1, k = 4, s = 2)

10 Sigmoid

Downsample(x)

Conv(c = x, k = 4, s = 2)

BatchNorm

LeakyReLU(0.01)

Upsample(x)

TranspConv(c = x, k = 4, s = 2)

BatchNorm

LeakyReLU(0.01)

Figure 8: Architecture of the AE network.

Appendix D. Qualitative Results AE
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Figure 9: Slices of some selected examples that show the original CT scan with appropriate
scaling of the brightness on the left, as well as the error map the baseline AE
method. The images on the left and in the center exhibit an anomaly (ICH)
while those on the right are normal (healthy).
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Appendix E. Memory Consumption
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Figure 10: GPU Memory consumption as a function of the number of parameters for the
AE and PPR with network size parameter m = 20, 21, . . . , 26 and batch sizes
bsexp as used in the experiments.

13

62 Chapter 6. Position Regression for Unsupervised Anomaly Detection



Chapter 7

Memory-Efficient 3D Denoising
Diffusion Models for Medical
Image Processing

In this paper, we try to enable the use of denoising diffusion models for 3D data. Specif-
ically, we build on a segmentation method[140] that was previously proposed for 2D
data. We propose techniques to make the underlying model more memory efficient, and
enable it to be applied to 3D data, in this case MR scans of the BraTS challenge[25].
With these techniques, we enable a significant reduction in resource consumption and
therefore the processing of high resolution 3D volumes using denoising diffusion models.

Publication. The following paper was presented at the Medical Imaging with deep
Learning (MIDL) Conference, July 2023, Nashville, TN, USA. It was published as part
of the conference proceedings [92].
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Abstract

Denoising diffusion models have recently achieved state-of-the-art performance in many
image-generation tasks. They do, however, require a large amount of computational re-
sources. This limits their application to medical tasks, where we often deal with large 3D
volumes, like high-resolution three-dimensional data. In this work, we present a number of
different ways to reduce the resource consumption for 3D diffusion models and apply them
to a dataset of 3D images. The main contribution of this paper is the memory-efficient
patch-based diffusion model PatchDDM, which can be applied to the total volume during
inference while the training is performed only on patches. While the proposed diffusion
model can be applied to any image generation task, we evaluate the method on the tu-
mor segmentation task of the BraTS2020 dataset and demonstrate that we can generate
meaningful three-dimensional segmentations.

Keywords: diffusion models, three-dimensional, supervised segmentation

1. Introduction

Denoising diffusion models (Ho et al., 2020; Nichol and Dhariwal, 2021) have lately shown
an impressive performance in image generation and experienced increasing popularity in
medical image analysis (Kazerouni et al., 2022). However, the processing of large three-
dimensional (3D) volumes, which often is required in medical applications, is still a chal-
lenge. Limitations related to the computational resources only allow the processing of small
3D volumes, which impedes the processing of high-resolution magnetic resonance (MR) or
computer tomography (CT) scans.

Contribution In this work, we introduce architectural changes to the state-of-the-art
diffusion model implementation (Nichol and Dhariwal, 2021), enabling to train on large 3D
volumes with commonly available GPUs. We adapt the U-Net-like architecture to improve
the speed and memory efficiency. Furthermore, we propose a novel method illustrated in Fig-
ure 1. With this method, the diffusion model is trained only on coordinate-encoded patches
of the input volume, which reduces the memory consumption and speeds up the training
process. During sampling, the proposed method allows processing large volumes in their full
resolution without needing to split them up into patches. To evaluate our method, we per-
form diffusion model based image segmentation (Wolleb et al., 2022b) that has previously
been proposed for 2D segmentation on the BraTS2020 dataset (Menze et al., 2014; Bakas
et al., 2017, 2018). The code is available at github.com/florentinbieder/PatchDDM-3D.

© 2023 CC-BY 4.0, F. Bieder, J. Wolleb, A. Durrer, R. Sandkühler & P.C. Cattin.
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Figure 1: Overview of our proposed method PatchDDM. The diffusion model is optimized
in memory efficiency and speed by training only on coordinate-encoded patches.
The input consists of noised xt, the volumes b that are to be segmented and which
are provided as a condition for the segmentation, as well as a coordinate encoding
CE for the patches. During sampling, the whole 3D volume can be processed at
once.

Related Work Denoising diffusion models have seen a quick adoption in research, replac-
ing the more traditional generative models in many tasks such as such as unconditional and
conditional image generation (Ho et al., 2020; Song et al., 2021; Nichol and Dhariwal, 2021),
text-to-image translation (Nichol et al., 2021; Saharia et al., 2022b; Ramesh et al., 2021;
Kim et al., 2022) and inpainting (Ramesh et al., 2021; Nichol et al., 2021). Diffusion models
have also been used for various applications in the medical field, for instance, for anomaly
detection (Wolleb et al., 2022a), synthetic image generation (Dorjsembe et al., 2022; Peng
et al., 2022) and segmentation (Guo et al., 2022; Wu et al., 2022; Wolleb et al., 2022b).
Medical images, however, often are 3D volumes, such as MR- or CT-scans. These volumes
create challenges regarding the memory consumption of processing methods. Consequently,
many of the current methods are limited to two-dimensional (2D) slices only (Wu et al.,
2022; Wolleb et al., 2022b; Guo et al., 2022) or to 3D volumes restricted to a limited reso-
lution of at most 128× 128× 128 (Khader et al., 2022; Peng et al., 2022; Dorjsembe et al.,
2022). To the best of our knowledge, we are the first to tackle the challenge of applying
denoising diffusion models to large 3D volumes.

2. Method

We explore how denoising diffusion implicit models (DDIMs) presented in Section 2.1 can
be improved regarding memory efficiency and time consumption. The required architectural
changes are presented in Section 2.2. We present the training and sampling scheme of our
method PatchDDM in Section 2.3. For evaluation, we use the segmentation approach using
denoising diffusion models presented in Section 2.4.
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2.1. Denoising Diffusion Models

In the following, we will use the notation introduced by (Ho et al., 2020). Denoising diffusion
models rely on an iterative noising and denoising process. The forward noising process q is
given by

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt is a predefined sequence of variances. We can directly compute xt from a given x0
with

q(xt | x0) := N (xt;
√
αtx0, (1− αt)I) (2)

with αt := 1 − βt and αt :=
∏t

s=1 αs. This corresponds to degrading the input image by
adding Gaussian noise. For image generation tasks we are interested in the reverse process
pϑ.

pϑ,t(xt−1 | xt) = N (xt−1;µϑ,t(xt),Σϑ,t(xt)) (3)

Both µϑ,t and Σϑ,t can be estimated by a U-Net-based network εϑ,t with parameters ϑ. The
loss used to train the network εϑ,t can be written as

∥ε− εϑ,t(xt, t)∥2 = ∥ε− εϑ,t(
√
αtx0 +

√
1− αtε, t)∥2, with ε ∼ N (0, I). (4)

Using the DDIM (Song et al., 2021) sampling scheme, we can define

xt−1 =
√

αt−1

(
xt −

√
1− αtεϑ,t(xt)√

αt

)
+
√
1− αt−1εϑ,t(xt), (5)

where εϑ(xt) is the output of the network. This sampling scheme has the advantage that
the denoising process is deterministic and we do not need to sample random vectors in every
step. Thus, the only source of stochasticity during inference originates from the random
initial sample xT which is sampled from N (0, I). During inference, a sequence of images xi
for i = T, T − 1, . . . , 0 of decreasing noise level is being generated, the initial xT is sampled
from a standard normal distribution N (0, I).

2.2. Architecture

We adapt the 2D-U-Net-based network architecture proposed by (Ho et al., 2020; Nichol
and Dhariwal, 2021) and used by (Nichol et al., 2021; Bansal et al., 2022; Wu et al., 2022;
Song et al., 2021) for the application on 3D data. The previously proposed architecture
features two or three residual convolutional blocks at each down- and upsampling step.
Furthermore, it uses attention blocks at multiple resolutions as well as in the bottleneck.
(Saharia et al., 2022a) determined that adding global self attention can slightly improve the
quality of the generated images as compared to an increase in convolutional blocks. For
3D data, the attention blocks use disproportionally more memory, which made it infeasible
to use them on current hardware, which is why we removed them completely. The second
fundamental change we implemented was the use of additive skip connections, as shown
in Figure 2. In the previous architecture as well as in the original U-Net implementation
(Ronneberger et al., 2015), the skip connection uses concatenation to combine xs from the
encoder with the upsampled tensors xu from the lower resolution path of the decoder. This
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⊕
⊕

⊕
⊕ ⊕xs

xu

x

Figure 2: The architecture of the U-Net-like network with averaging skip connections. In
the original network as well as in the U-Net the

⊕
operator is a concatenation

x = (xs, xu), in our case it is an averaging operator x = (xs + xu)/2.

implies that the decoder requires significantly more resources than the encoder, especially
at the highest resolution levels.

To alleviate this issue, we propose to average them as x = 1
f (xs+xu) with f = 2. Unlike

in ResNet (He et al., 2016), where the skip connections are added (f = 1), we found the
averaging to be crucial for avoiding numerical issues like exploding gradients. Intuitively
this can be justified by considering xs and xu as random variables with xu, xs iid. N (0, σ2).
Therefore, 1

f (xu + xs) ∼ N (0, 2
f2σ

2). This means that for f = 1 (the summation as in

ResNet), each concatenation the variance doubles. To prevent the variance from increasing
should chose f ⩾

√
2. We chose heuristically f = 2, i.e. averaging.

The savings in memory from replacing the concatenation with the averaging allow us
to increase the network width, i.e. the number of channels within the whole network, by a
factor of 1.61, while preserving the total memory usage.

Furthermore, the resulting network architecture allows for training on varying input
sizes. This property is crucial for our proposed patch-based method. For all of our experi-
ments, we use the same network configuration.

2.3. Patch-based Approach with Coordinate-encoding

To benefit from the lower requirements of computational resources but still to operate on
the original resolution, we propose a novel patch-based training method named PatchDDM
that trains on randomly sampled patches of the input but can afterwards be applied to the
full resolution volume during inference. This means for the training we can benefit from
using smaller inputs, which means we need fewer computations per iteration as well as less
memory. For the inference, however, we can pass the entire input volume at once without
having to sample patches and reassemble them. This means no boundary artifacts due to
the separate padding of the patches within the CNN are introduced, and also the stitching
artifacts that that can appear in traditional patch-based approaches are eliminated.

To add information about the position of the patch, we condition the network on the
position of the sampled patch. We implemented this by concatenating a grid of Cartesian
coordinates to the input. Each coordinate is represented by one channel as a linear gradient
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ranging from -1 to 1. This is similar to the method proposed in (Liu et al., 2018). They
propose to add the coordinates as additional channels before all convolutions.

In our case, we append the coordinates to the whole input just like in (Liu et al., 2018),
but then sample a patch, where the coordinates serve as a position encoding for the sampled
patch. An overview of this coordinate encoding is given in Figure 1. For the BraTS2020
data, the subject is centered within the volume. We use a patch sampling strategy, assigning
a higher probability to the center of the volume, as shown in Figure 6 in the Appendix A.

Baseline methods For our ablation study, we use two baselines with the same network
as our proposed approach, but without patch-based training. Furthermore, we also per-
formed an experiment with our patch based approach but without the proposed coordinate
encoding. The training did not converge and did not produce any usable results. Therefore,
we will not report any metrics from this experiment. The two baseline methods are the
following:

• Training on full resolution (FullRes): We implemented a distributed version of the
proposed architecture that splits the task to two GPUs if necessary. This allows for
training directly on full resolution (2563) data, given that the expensive specialized
GPU hardware is available.

• Training on half resolution (HalfRes): A straightforward way to reduce the require-
ments in terms of computational resources is training the model on downsampled data.
In our experiments, we downsampled the input image before passing it to the network,
but then upsampled the output of the network again to evaluate the performance on
the full size. For three spatial dimensions (i.e. 3D) this means that reducing the input
size from 2563 to 1283 results in a reduction of a factor of 8 in terms of memory and
computation time, allowing this model to be run on widely available GPUs.

2.4. Denoising Diffusion Models with Ensembling for Segmentation

In order to generate the segmentation of an input image b, we need to condition the gen-
eration of the segmentation mask x0 on that given image b. We will follow the method
proposed by (Wolleb et al., 2022b), where the input images b are being concatenated to ev-
ery xt as a condition. It was shown that ensembling several predicted segmentation masks
per input image increases the segmentation performance (Amit et al., 2021; Wolleb et al.,
2022b). An overview of this segmentation approach is given in Figure 3. An advantage
of the denoising diffusion based segmentation approach is the implicit ensembling we get
when using different samples xT from the noise distribution N (0, I), which can be used
to increase the performance and estimate the uncertainty. To evaluate the performance of
our proposed method PatchDDM described in Section 2.3 and the two baseline methods
FullRes and HalfRes, we apply our method to a segmentation task as proposed in (Wolleb
et al., 2022b). Therefore, we train our diffusion model to generate semantic segmentation
masks.
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xT xt

⊕

xt−1 x0

b
pϑ,t(xt−1 | xt, b)

q(xt | xt−1)

Figure 3: The ground truth segmentation x0 is degraded by the noising process q. We train
a network to perform the denoising process pϑ, that is, given some noised image
xt, we train it to denoise it with the MR-sequences b as a condition.

3. Experiments

Dataset For our experiments, we used the BraTS2020 dataset (Menze et al., 2014; Bakas
et al., 2017, 2018). It contains 369 head MR-scans, each including four sequences (T1,
T1ce, T2, FLAIR) with a resolution of 1 × 1 × 1 mm3, resulting in a total scan size of
240× 240× 155, which we padded to a size of 256× 256× 256. The background voxels were
set to zero and the range between the first and 99th percentile was normalized to [0, 1]. We
used an 80%/10%/10% split for training, validation and testing. The label masks consist
of three classes, namely the Gadolinium-enhancing tumor, the peritumoral edema, and the
necrotic and non-enhancing tumor core. For the binary segmentation experiments, all three
classes were merged into one.

Training Details We performed our experiments on NVIDIA A100 GPUs with 40GB
of memory each. To directly train on the full resolution 2563 images, we distribute the
model over 2 GPUs. The methods HalfRes and PatchDDM were trained on one GPU
only. The optimizer we used was AdamW (Loshchilov and Hutter, 2017) with the default
parameters. We chose the learning rate lr = 10−5 by optimizing the average Dice coefficient
on the validation set after 150k optimization steps over a range of values between 10−6 and
10−3. We trained the models for the same amount of time for all experiments (420h). For
the evaluation, we selected the best-performing models based on the average Dice score on
the validation set based on a single evaluation, i.e., without ensembling. For the denoising
process, we set the number of steps to T = 1000 and use the affine variance schedule
proposed in (Ho et al., 2020) with β1 = 0.02, βT = 10−4.

Accelerated Sampling By default, we need T = 1000 denoising steps for the inference.
As shown in (Song et al., 2021), we can interpret the the DDIM denoising step (5) as the
Euler discretization of an ordinary differential equation (ODE).

This insight motivates the use of larger step sizes with respect to t during inference,
which allows for accelerated sampling. The drawback is that the output quality deteriorates
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with fewer samples. We investigate how we can trade off fewer sampling steps (larger step
sizes) and ensembling (more samples).

4. Results

In the following, we will assess the performance of our proposed model and compare it to
the two baseline approaches. For each model, we computed the average Dice score on the
validation set and used this to choose the best-performing checkpoint. We provide some
qualitative outputs in Figure 7 in the Appendix B.

To assess the training progress, we display the Dice score as well as the HD95 (Hausdorff
distance, 95th percentile) of PatchDDM over the course of the training in Figure 8 in the
Appendix C. The metrics of the best-performing checkpoint with respect to the Dice score
when using a single evaluation (no ensembling) is reported in Table 2 in Appendix D along
with the score of the state of the art nnU-Net (Isensee et al., 2021).

4.1. Segmentation Ensembling

To evaluate the impact of ensembling, we compute the Dice- and HD95-score of the three
methods (PatchDDM, FullRes, HalfRes) with respect to ensemble size, see Figure 4. Both
scores significantly improve using ensembles for our proposed PatchDDM and the FullRes
method. In Table 3 in Appendix E the metrics for different ensemble sizes are provided.
The curves show that ensembling can further improve the performance and get very close
to the best performing ensembles with an ensemble size of as small as five to nine.
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Figure 4: The evaluation metrics on the test set as a function of the ensemble size.

4.2. Computational Resources & Time Requirements

We report the memory consumption and the time required for one model evaluation for all
comparing methods. As displayed in Table 1, the training of FullRes needs close to 80GB
of memory. This requires at the time of writing still highly expensive hardware. The other
baseline HalfRes as well as our proposed PatchDDM method both need less than 12GB for
training and can therefore be trained on much cheaper and widely available hardware. The
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reduced resolution also results in a reduction in the number of computations, and therefore
a larger number of optimization steps that can be performed in a given time interval. A
drawback of our proposed method is the increased memory consumption and reduced speed
during inference, both of which are comparable to the FullRes model.

Table 1: Memory consumption in GB and time in seconds for one network evaluation.
The memory requirements for the distributed run also include a small amount of
overhead, as some arrays are duplicated on both GPUs.

Memory Time
Method Training Inference Training Inference

FullRes 78.5 25.7 2.12 1.01
HalfRes 10.5 4.90 0.351 0.124
PatchDDM 10.6 24.0 0.340 1.02

4.3. Ensembling and Accelerated Sampling

Figure 5 shows the trade-off between the ensemble size and the number of sampling steps.
With as little as 20 sampling steps (i.e. a step size of 50), the performance is already close
to the results obtained with T = 1000 steps, implying a speedup of a factor of 50. But
even with fewer step sizes, we can trade the number of steps for a greater ensemble size to
achieve a similar performance. Consequently, for a fixed budget of network evaluations (i.e.
steps), we can profit from using ensembling with accelerated sampling.
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Figure 5: The average Dice score and HD95 metric on the test set as a function of the
number of sampling steps and the ensemble size. The white sections indicate
that we did not evaluate that combination.
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5. Discussion

We propose PatchDDM, a novel patch-based diffusion model architecture that allows the
training of diffusion models on high-resolution 3D datasets. This enables denoising diffu-
sion models to be used for image analysis and -processing tasks in medicine on commonly
available hardware. We could demonstrate the effectiveness by applying it to a recently
developed segmentation framework for medical images. In the future, we would like to
investigate the performance of our proposed approach for tasks involving image generation.
Furthermore, we will investigate the role of the patch size used and whether it can be made
smaller for processing even higher resolution volumes. In order to preserve high quality,
(Karras et al., 2022) proposed using higher-order ODE solvers, like the Heun method, when
choosing larger step sizes. This might further reduce the number of iterations needed. Fi-
nally, it would be interesting to investigate an extension of this segmentation framework
that includes multiple classes.
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Appendix A. Sampling Distribution

p

xi

− 1 − 1/3 0 1/3 1

Figure 6: The sampling distribution was chosen empirically to favor the central patches.
The distribution p is defined over the normalized coordinates of admissible patches
(normalized to [−1, 1]) and can be interpreted as the probability density function
the sum X + Y of two random variables X ∼ U [−1/3, 1/3], Y ∼ U [−2/3, 2/3].
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Appendix B. Qualitative Results
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Figure 7: We display an axial slice of three volumes. The first column shows T1ce-sequence
and the ground truth segmentation. Then we display three outputs E1-E3 of the
ensemble for each of the models and finally the mean- and (normalized) variance
map across the ensemble of size 15.
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Appendix C. Training Progress
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Figure 8: Performance of our method PatchDDM on the validation- and test set over the
course of the training. The x-axis indicates the number of training iterations as
a multiple of 1000.

Appendix D. Single Evaluation Scores

Table 2: Segmentation scores of our methods and nnU-Net on different metrics on our test
set based on a single evaluation.

Method Dice HD95

FullRes 0.82± 0.12 16.80± 18.96
HalfRes 0.86± 0.09 6.61± 9.37
PatchDDM 0.88± 0.07 9.04± 8.75
nnU-Net 0.96± 0.02 1.24± 0.48
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Appendix E. Ensembling Scores

Table 3: Segmentation scores of the three methods with various ensemble sizes.

Method Ensemble size 1 3 5 7 15

FullRes Dice 0.821 0.846 0.849 0.851 0.856
HD95 16.80 9.91 8.00 7.72 8.13

HalfRes Dice 0.862 0.858 0.860 0.859 0.862
HD95 6.61 7.00 6.79 6.70 6.65

PatchDDM Dice 0.888 0.894 0.892 0.897 0.899
HD95 9.04 9.94 8.49 7.67 7.34
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Chapter 8

Modeling the Neonatal Brain
Development using Implicit
Neural Representations

This work explores the use of implicit neural representations for modelling the brain
development process of neonates. Using data of the developing Human Connectome
Project (dHCP) [24, 23], which includes head MR scans of neonates along with their age,
we try to model the development of the brains between 26 and 45 weeks of postmenstrual
age.

Publication. The following paper will be presented at the Predictive Intelligence in
Medicine Workshop (PRIME) at the Medical Image Computing and Computer Assisted
Intervention (MICCAI) Conference, October 2024, Marrakesh. It will be published as
part of the conference proceedings.
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Abstract. The human brain undergoes rapid development during the third
trimester of pregnancy. In this work, we model the neonatal development of the
infant brain in this age range. As a basis, we use MR images of preterm- and
term-birth neonates from the developing human connectome project (dHCP).
We propose a neural network, specifically an implicit neural representation
(INR), to predict 2D- and 3D images of varying time points. In order to
model a subject-specific development process, it is necessary to disentangle
the age from the subjects’ identity in the latent space of the INR. We propose
two methods, Subject Specific Latent Vectors (SSL) and Stochastic Global
Latent Augmentation (SGLA), enabling this disentanglement. We perform an
analysis of the results and compare our proposed model to an age-conditioned
denoising diffusion model as a baseline. We also show that our method can be
applied in a memory-efficient way, which is especially important for 3D data.

Keywords: implicit neural representations, neonatal development, MRI

1 Introduction

The development of the central nervous system begins early in pregnancy and can be
detected using ultrasound as early as eight weeks of gestation [14]. At around 20 weeks,
the corpus callosum is fully developed, and the first structures of the cortical surface
begin to form [15]. The process of cortical folding, or gyrification, continues well after
term birth. Across most individuals, the gyrification is similar on a macroscopic level for
the major structures, but differs on the level of the smaller sulci, even for monozygotic
twins [2]. Before 20 weeks postmenstrual age (PMA) their brains’ appearance have a
high degree of similarity, but then progressively develop an individual character [25].
In this work, we try to model the subject specific development of the preterm and
term neonatal brain, based on the dHCP dataset (see Section 3), containing brain
MR images of neonates between 26 and 45 weeks PMA. This dataset poses challenges
due to limited data availability, with each subject having scans from at most two or
three different points in time, and the majority having only a single scan available.
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Using an implicit neural representation (INR), we want to predict the healthy brain
development from a given scan at a given PMA. That is, we want to predict an image
of the same subject at a later or earlier point in time. Therefore, we have to find an age-
agnostic representation of the identity of the subject, meaning we need to disentangle
the age from the identity to be able to represent the same subject at different points
in time. Modelling the development of the healthy brain could then serve as a basis for
further downstream tasks, e.g. detection of abnormal brain development. INRs work by
representing images (and other signals) as networks that take the coordinates of a pixel
as input, and return the corresponding intensities. This is in contrast to convolutional
neural networks (CNNs) or transformers, which process an entire image, i.e., a grid of
pixels, at once. INRs have been successfully applied to the representation and modelling
shapes [3,13], images [21], and recently also natural 3D scene reconstruction [20]. In the
medical domain, they have been used for various tasks, such as image segmentation [22],
shape completion [1], tomographic reconstruction [20,5], and image registration [23].

Contribution We show that an INR can be trained to model the neonatal brain
development based on sparsely- and highly irregularly sampled data with respect to
the time axis. Figure 1 provides an overview of the model. To enable the disentangle-
ment along the time axis, we propose the following two methods that can be applied
independently during training:
– A method to disentangle the subject’s PMA at the time of the scan from its

identity by enforcing a subject-specific latent space (SSL).
– An augmentation method with a global latent vector in the latent space. We call it

stochastic global latent augmentation (SGLA). This performs similarly to SSL but
is intended to make better use of subjects with only a single scan in the dataset.

We show how SSL and SGLA can improve the disentanglement, and with that, the
predictions. Furthermore, we show that our INR approach can be run on hardware
with limited GPU memory.

fϑ Îx

x = [x, y, z]

tI l

lG

B
at
ch

L
at
en
t p

Loss L(Îx, Ix)

Fig. 1: Overview: The input to the network fϑ consists of the spatial coordinates
x of the desired output pixel Îx, the desired PMA t∈T , and a latent vector l∈Λ,
encoding the subject identity. The switch with probability p between l and the global
latent vector lG represents the SGLA.
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2 Method

This work presents an approach based on an INR. This means that we model our
images I ∈ I = {I : Ω → [0,1]} at different points of time t ∈ T as a function
fϑ :Ω×T×Λ→ [0,1] parametrized by ϑ, where Ω⊂Rd is the spatial image domain,
T=[0,1] is the time domain (i.e. normalized PMA), and Λ⊂Rλ is our latent space.
For any image I∈I we denote the intensity at x∈Ω as Ix. In the forward pass, for
each pixel, the normalized input coordinates x∈Ω are concatenated with the latent
vector l and the corresponding PMA t and then passed to the network. Therefore,
during training, for some given image I with corresponding PMA t and latent vector l,
and some input coordinates x, we predict Îx :=fϑ(x,t,l), and we optimize the ℓ2-loss
L(Îx,Ix)=∥Îx−Ix∥22 with respect to ϑ and l. This is described in more detail in Sec-
tion 2.2. For inference, we can project an input image into the latent space by optimiz-
ing the latent vector with respect to the reconstructed image. To then predict images Î

i

for different points of time ti, for a given latent vector l, we can sample Î
i

x :=fϑ(x,ti,l)

over the whole image domain x∈Ω for every ti. This is described in detail in Sec-
tion 2.2. The architecture of the network fϑ is described in Supplementary Material A.

2.1 Age Disentanglement in the Latent Space

In our setup, the latent space represents the identity of a subject. We want to disen-
tangle the identity of the subject from its age. To this end, we propose the following
two methods, which can be employed independently of each other:

Subject Specific Latent Vectors (SSL) Previously developed INRs for similar tasks
use one latent vector per input image [1,22,3,13]. This is sufficient if we want our
network to model a specific input image. In our case, we want the model to generalize
the representation of a specific subject across the time domain T and to encode the
subject’s identity independently, i.e., disentangle the identity from the age. Given the
availability of images from multiple time points for one subject, we propose using
the same latent vector for all images of the same subject, with the goal of forcing
the model to use only the age inputs t∈T to encode the age of the subject and use
the latent vector for encoding the identity of the subject only.

Stochastic Global Latent Augmentation (SGLA) The second method we propose for
disentangling the subjects’ age from their identity is based on a specific type of data
augmentation during training: We introduce an additional global latent vector lG
for training. In each iteration of the stochastic gradient descent, the latent vector of
the current batch is replaced with this global latent vector lG with some probability
p. It is intended to mimic SSL for those subjects that have only a single scan in
the dataset: Similarly as in SSL, the network is trained to predict scans at different
developmental stages for the same latent vector. Instead of a subject specific latent
vector, we use the global vector lG instead. This forces the network to take the age
input t into account. We set the probability p=10% to make it comparable to SSL,
as about 10% of the subjects in the training set have more than one scan. We have
performed an ablation with respect to p in Supplementary Material D.1.
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2.2 Training & Inference

The network, along with the latent vectors of the training set, is jointly optimized
using the AdamW optimizer [11] with a learning rate of lr=10−4 and an ℓ2-loss.
Since the INRs can be processed pixel by pixel, we do not necessarily need to use
the whole image for each training step. In our model, we can adjust the percentage
of pixels that we randomly sample from a given image in each training step by a
hyperparameter. We chose to use 5% for our experiments to fit the training of the
3D INRs on a GPU with 12GB memory. For simplicity, we used identical settings
for the 2D case. This lets us easily adjust for the available memory size of a given
GPU. The details of the pixel sampling are described in Supplementary Material D.2

If we want to use the entire image (be it for training or inference), we can still profit
from the pixel-wise evaluations: We can serialize the whole input into micro-batches
that are processed sequentially and accumulate the gradients with a constant amount of
memory. We use this for the inference of the 3D images. The amount of memory used is
then mainly dictated by the micro-batch size. These methods allow us to train models
on devices with very little memory. We discuss the resource consumption in Section 3.

Inference During inference, we use the same loss as during training, but we keep the
network fixed and only optimize the latent vector l. Therefore, for a given image I1

with age t1 as input, we optimize a latent vector l to minimize the difference between
reconstruction Î

1

x=fϑ(x,t1,l) and the image I1
x over all x∈Ω, i.e.

l̂ :=argmin
l∈Λ

∑
x∈Ω

∥fϑ(x,t1,l)−I1
x∥22. (1)

We then use this vector l̂∈Λ to generate a prediction Î for some desired age t2∈T
by computing Îx=fϑ(x,t2,̂l). The latent vectors are initialized with zeros and then
optimized over 1000 step for the 3D case and 2000 for the 2D case, using AdamW
with a learning rate of lr=10−3.

2.3 Baseline: Denoising Diffusion Models

As a baseline, we use a denoising diffusion model with gradient guidance (DDM+GG)
[26] to predict an image for a certain PMA, given some image of a different PMA.
This method has been implemented for 2D images and has been shown to perform
well on similar tasks such transforming portraits into younger or older versions, and
simulating tumor growth over time.

DDM + GG uses two networks in tandem: the denoising and the regression net-
work. The age conditioning is performed using the gradients of a regression network
during the denoising process, which is trained to predict the subject’s PMA. The
denoising and the regression networks were trained to convergence (1M and 150k
iterations, respectively) with T=1000 noising and denoising steps. The number of
noising and denoising steps for inference was L=600 and the gradient scale c=3·105.
We optimized both parameters L and c on the test set to make a fair comparison.
Since this method was proposed for 2D images, we also trained our INR on the same
2D data (axial slices). The details are reported in Supplementary Material B.
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3 Experiments & Results

In the following section, we report the results of our experiments. If not otherwise
noted, the setup is as follows: From each subject in the test set, we consider two
scans that were made at a different point of time, i.e., at a different PMA of the
subject. As explained in Section 2.2, for a given subject, we first determine the latent
vector l̂ based on the input image I1 and PMA t1, that is, we optimize l̂ as defined
in Equation (1). We then use this latent vector l̂ to generate a prediction Î

2
for the

PMA t2 of the second scan I2 by computing Î
2

x :=fϑ(x,t2,̂l) for every x∈Ω. We then
compare the predicted image Î with the second scan I2, which serves as the ground
truth for all metrics that we will introduce below. This allows us to quantify how well
our model predicts the development process of the brain. To justify our contributions,
we perform an ablation of our proposed method, that is, we conduct our experiments
with and without SGLA and SSL, respectively, in 2D as well as in 3D.

Dataset We used the dHCP (third data release) dataset for our experiments [12,2].
It contains T1- and T2-weighted neonatal MR-scans of 329 subjects. We use the
T2-weighted scans as these are preferred for assessing brain structure in fetal and
neonatal MRI [12], due to the immature myelination. The postmenstrual age (PMA,
in weeks) is available for each scan, ranging from 26 to 45 weeks with a median of
40.57. Our preprocessing is described in Supplementary Material C.

Ablation of SSL and SGLA and comparison to the Baseline To compare our pre-
dictions on the test set with the corresponding ground truths, we compute the
peak-signal-noise-ratio (PSNR), the structural similarity index (SSIM) and the mean
absolute error (MAE). We report the same metrics for the baseline DDM+GG in
Table 1. Our proposed 2D INR with SGLA and SSL outperforms DDM+GG with
respect to every metric. Furthermore, the performance decreases without SGLA or
SSL (or neither). However, it should be noted that in the 2D case we only consider a
slice of the 3D volume. Much of the anatomical context is therefore missing, making it
more difficult to predict changes that are influenced by tissue not shown on the slice in
question. For this purpose, we train our INR model on the 3D volumes as a whole and
perform the same ablation of SGLA and SSL again. The results are reported in Ta-
ble 1. The difference between the different models in terms of PSNR, SSIM and MAE
is relatively small in absolute terms, because the image background is black, which is
easy to predict for a model. In other words, if the background remains constant and
only the foreground improves, this reduces the effect on these scores. However, we can
still see that both SSL and SGLA improve all three scores. Furthermore, even in the
presence of a number of subjects with multiple scans available, SGLA can be used
in conjunction with SSL and still improve the performance, in 2D as well as in 3D.

In addition to the three metrics we use in the 2D case, in the 3D case, we
can compute the head circumference (HC) based on our predictions (details in
Supplementary Material E). Along with several other measurements, the HC is one
of the most important factors in determining prenatal development [10]. Therefore,
we used it to measure how well our proposed method performs concerning the
disentanglement of the subjects’ age. We compare the measured HC of our predictions

86 Neonatal Brain Development using INRs



6 F. Bieder et al.

with the HC reported in the dHCP dataset, which we consider the ground truth.
Table 1 displays the standard deviation σ (in cm) of the error between the measured
HC of our prediction and the ground truth. Furthermore, we report the correlation
coefficient r between the predicted HC and the ground truth HC. Notably, we can see
that with neither SGLA nor SSL, the HCs of the predictions are almost uncorrelated
with the ground truth HCs. Again, our proposed INR with SGLA and SSL outperforms
the other ablated models in each of these measures or performs at least as well.

Table 1: Average scores over the test set for the 2D INRs and the 2D DDM+GG
baseline, as well as for the 3D INRs.

2D 3D
Model SGLA SSL PSNR SSIM MAE PSNR SSIM MAE HC σ HC r

INR

n n 19.5±2.6 0.642±0.058 0.0701±0.0178 22.9±3.1 0.804±0.036 0.0352±0.0091 3.850 0.173
y n 20.6±2.5 0.683±0.065 0.0571±0.0146 23.8±2.8 0.832±0.049 0.0274±0.0083 2.137 0.835
n y 21.3±2.1 0.715±0.075 0.0489±0.0124 24.5±2.4 0.850±0.054 0.0232±0.0079 1.071 0.962
y y 21.4±2.0 0.722±0.075 0.0468±0.0129 24.6±2.4 0.853±0.055 0.0225±0.0078 0.964 0.968

DDM+GG - - 19.3±2.1 0.632±0.088 0.0682±0.0158 - - - - -

To better understand these results, we plot the ground truth HC and the measured
HC of our predictions in Figure 2 for all four INRs. We can see that the INR with
neither SGLA nor SSL completely fails to capture the developmental process. Using
either SGLA or SSL significantly improves the correlation between the HC of the
prediction and the ground truth HC. Finally, using both jointly enables the model
to capture the development process even better.

Fig. 2: Ablation of our model w.r.t. the HC. The blue circles show the HC ground truth,
while the red x-es show the HC of our models’ predictions on the test set. The slope of
the linear regression of the target GT (blue dots) is 0.79. The slopes of linear regression
of the predictions are none: -0.04, SGLA: 0.36, SSL: 0.65, SGLA & SSL: 0.69.
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Qualitative Results In Figure 3, we show two examples from the test set. We show
four images per subject: (1) the input I1 with its age t1 that gets encoded into a latent
vector, (2) the reconstruction Î

1
of the input at t1, (3) the target ground truth I2 from

t2 and (4) the prediction Î
2

at age t2. Note that for our model, t2 does not necessarily
have to be greater than t1, we can also choose to look back in time to predict what a
given brain has looked like in the past. The reconstructions display the input images
with some loss of details due to the bottleneck created by the low-dimensional latent
space. The predictions generally match the size and the contrast of the target ground

MICCAI-PRIME 2024 87



Neonatal Brain Development using INRs 7

truth well, but have trouble predicting the exact shape of the cortical folds. This is,
however, a difficult task, as even for monozygotic twins, the folds exhibit individual
patterns [25]. On the bottom right, we see an interesting example where the mid-
sagittal plane of the input is slightly off the vertical, in contrast to the target ground
truth. Interestingly, however, the reconstruction, as well as the prediction, display
this slight rotation, which means it must have been encoded in the latent vector.

t1, t2 Input Reconstruction Target GT Prediction t1, t2 Input Reconstruction Target GT Prediction

29.9
38.4

31.0
41.7

36.3
42.9

43.1
35.3

33.6
40.9

42.9
35.6

Fig. 3: Six 2D samples from the test set, along with the PMA t1 of the input, and
the PMA t2 of the target ground truth image.

Predicted Average Development To gain insight into the development process that the
trained network captured, we consider two methods of extracting an “average” brain
for each age, similar to creating an age-resolved atlas. Firstly, since we have designed
the latent space to represent the characteristics of a subject, it can be expected that
averaging the latent vectors of a population (i.e., our training set) would result in
an average-looking brain. Secondly, because we initialize the latent vectors with a
zero-vector, it is also possible to use it for the generation of an “average” brain. Thus,
we use these two (zero- and average-) latent vectors to generate a temporal sequence
of images of the trained model with SSL and SGLA. Furthermore, we compare the
two approaches with the IMAGINE fetal atlas [8], as well as the neonatal atlas of
Schuh et al. [19]. The latter is also based on the dHCP dataset. In Figure 4, we report
the measured HCs along with percentiles of a fetal-infant preterm growth chart [6,7].
For instance, for diagnosing microcephaly, bounds like the 1st or 3rd percentile or
three standard deviations of the HC are being used [4]. Under these criteria, all four
growth curves are within the normal range. Notably, the HC lines of our generated
“average”-brains agree very well with the atlas of [19], which is based on the same
dataset. The IMAGINE atlas [8], exhibits slightly larger HCs, but is created using a
set of fetal MR-images, with a significantly smaller sample size of 81 scans. However,
it also remains within the normal interval. The quality of the two generated sequences
using the zero- and average latent vectoris different: The series generated by the
average latent vector is more detailed and has less blurry features.
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Fig. 4: Comparison of our “average” brain development with the IMAGINE atlas and
the atlas of Schuh et al. in terms of HC growth curves Figure 4a, along with the quan-
tiles reported in [6]. Furthermore, we show the corresponding axial slices in Figure 4b.

Computational Resources In Table 2, we report the time and GPU memory used. We
used the same settings regarding pixel-sampling and micro-batching for the 2D- and
3D case. As elaborated in Section 2.2, we can reduce the number of pixels sampled per
optimization step. Alternatively, we have the option to use micro-batching to trade
memory for time. Finally, the number of parameters used in the 2D and 3D INRs
is more than two orders of magnitude smaller than in the 2D DDM+GG baseline.

Table 2: Resources used for the INRs in 2D and 3D and the DDM+GG baseline.

GPU Memory (in MB) Time
Model Training Inference Training (total) Inference (per Sample) # Parameters
INR 3D 10350 10286 81.6h 5.20min 232 450

INR 2D 284 232 2.5h 0.73min 232 194

DDM 2D 7412 1332 76.8h 1.80min 113 669 762
Regression 2D 6412 7.9h 86 786 817

4 Conclusion

We present a method for modelling the neonatal brain development using INRs.
We show that it is necessary to disentangle the subject’s identity from its age. We
propose and evaluate two novel methods, SSL and SGLA. We implement them in
2D as well as in 3D. On the one hand, we compare the predictions with the ground
truth with respect to image quality, and on the other hand also indirectly via the
HC as an important development metric. We demonstrate how our two proposed
solutions improve the results through the disentanglement. However, we note that the
image synthesis with INRs still has open challenges such as the image quality, and
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the modelling of processes like the cortical folding, which are additionally influenced
by other factors than time. We anticipate that larger datasets would enable more
expressive networks to be trained, which could in turn alleviate these issues to some
degree. To avoid the need for coregistration of the scans as a preprocessing step, it
would be interesting to extend the disentanglement also to geometric transformations.
In future work, we would like to explore extending the model to predict segmentations,
which could be used to generate actual atlases.
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Chapter 9

Discussion and Conclusion

The goal of this work was to develop image analysis methods that can deal with the
inherent size challenges of three-dimensional MRI and CT brain images.

As we elaborated in Section 4.2.6, GPUs are instrumental for the use of deep learn-
ing, especially for image processing. A crucial property of GPUs for training for deep
learning models is the memory size. However, the memory size is directly linked to
the computation power of GPUs and is associated with their cost, as discussed in Sec-
tion 4.2.6.2. To enable a more widespread adoption of deep learning models, and also to
promote research in lower-income countries, it is an important step to lower the barrier
of entry.

9.1 Discussion

In the first project (see Chapter 6), we developed and validated an unsupervised anomaly
detection and localization method. At the core of the method is a novel self-supervised
training objective that is used as a surrogate task for anomaly detection. It consists
of predicting the location of small patches within coregistered scans. When trained on
images free of anomalies, the network implicitly learns a representation of the anatomy.
In an inference step, the model predicts the patches’ position and compares them to
the actual positions from where the patch was sampled. The error is what we base the
anomaly detection on. Many anomaly detection methods rely on a restoration approach
(see Section 5.4). Many of them used datasets with anomalies that appear hyperintense,
which was criticized [165], as there may be much more straightforward methods that
can perform equally well.

We showed that our proposed model can detect and localize brain hemorrhages and
fractures in head CT scans. While hemorrhages appear hyperintense, cranial fractures
consist of small fracture lines or displacement of the fractured pieces. This shows that our
method is not as much affected by the concerns mentioned above. However, the patch-
based approach limits the spatial resolution: If we consider two patches with a great
overlap, the error in the predicted positions will only change by a small amount, as the
network is a continuous function. This is clearly visible in the examples of intracranial
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hemorrhages. Around the border of the hyperdense regions, the error continuously
increases. Similarly, if the anomalies have a small extent, this proposed method may fail
to detect them. Also, if multiple anomalies of different sizes are present, just thresholding
the error maps might overestimate the size of the larger ones and underestimate the size
of the smaller ones. To address this limitation, we think that it could be attractive to
extend the method into a multiscale approach.

We showed that the network used in the proposed approach can be chosen relatively
small, without significantly sacrificing performance. The patch-based approach and the
small network size allow the network to be trained on consumer-GPUs with 1 to 5 GB
of memory, depending on the specific settings.

The second project we presented (see Chapter 7) built on a novel segmentation
method based on denoising diffusion models [140]. This method uses denoising diffusion
models to generate the segmentation through the denoising process, which is conditioned
on the image we would like to segment. The inherent stochasticity of the denoising
diffusion models defines a distribution of segmentation masks and an implicit ensemble.
This allows us to quantify the uncertainty in these generated segmentation masks. The
method was implemented for two-dimensional images. To make it more suitable for
medical images, we aimed to implement it for 3D volumes.

Using a naive reimplementation of the same architecture for 3D data was impossible,
as it would have consumed too many resources, including memory. We therefore explored
ways to reduce the resource consumption. A few changes were architectural, i.e., we
optimized the architecture of the network itself, but we also introduced the patch-wise
training. The architecture we ended up with is purely convolutional and can, therefore,
process images of various sizes. During training, we used patches of half the size of the
original, which reduced the memory requirements to a manageable level. Simultaneously,
as such a patch only contains an eighth of the original image, each optimization step
also just consumes roughly one eighth of the number of operations, decreasing the time
per step. As we also explored the accelerated sampling during the denoising process,
we chose to use the DDIM sampling scheme instead of the DDPM, as a higher image
quality was reported during the sampling, with very few sampling steps [142]. While
the quality of the segmentations decreases with the accelerated sampling, we could also
show how that can be traded with the ensemble size.

Our proposed model performs the segmentation task quite well, but does not out-
perform state-of-the-art methods. This was, however, also not our primary focus. As
we used the DDIM sampling scheme, the only source of noise was the initial noise vec-
tor xT . The experiments showed that there can be isolated misclassified voxels in the
segmentation. We attribute this to extreme samples (i.e., in the tails of the initial
N (0, I)-distribution) that could not be corrected through the denoising process. It is
plausible that using the DDPM sampling process could alleviate this issue.

While we could successfully bring these diffusion models to the 3D domain, our
proposed approach also introduced more complexity into an already rather complex type
of model. Alternative solutions that have tackled the issue of the resource consumption
have since been proposed and include latent diffusion models [170], as well as wavelet
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diffusion models [171].

The goal of the third project (see Chapter 8) was modeling the brain development
in the neonatal period. The dataset included one MRI for most subjects. For a few
subjects, it included and multiple MRIs from different points in time. We explored the
use of implicit neural representations to train a prior that can be used to model the
development process on a per-subject basis. A key problem was the disentanglement
of the subject-specific development process (we called it the subjects’ identity) from
the age. We developed a method that enabled this disentanglement, which makes use
of the few subjects that have multiple scans available. Based on similar principles, we
developed a second method that makes use of the subjects, of which there is only a
single scan in the dataset. We showed that combined, these methods greatly improve
the disentanglement, which helps the INR to capture the process more accurately. A
concurrently developed method was proposed to generate atlases that are not subject-
specific to avoid the need for the disentanglement by regressing over the learned latent
vectors of the training set based on the age [172].

We have shown that when processing high dimensional data (here we have three spa-
tial dimensions as well as time), INR-based methods can be advantageous with respect
to the computational resources. As individual pixels or voxels can be processed indepen-
dently, we can split the evaluation of an INR into a set of these voxels (a microbatch) to
fit the memory constraint that is imposed by the available hardware.

Our proposed model used gradient descent to directly optimize a latent vector to
encode an image during inference. We adopted this encoder-less technique from [122,
121, 118]. However, it has been shown [119] that a separate convolutional encoder can
be used as well. This could eliminate this optimization step during inference.

While the generative power of INRs has already been widely explored for shape
representations [122, 119], it has not yet been explored as much for images. A challenge
of current INRs for images with generative capability is their spectral bias, as discussed
in Section 5.2.4. Our proposed model struggles to capture finer details. They most
prominently include the formation of gyri and sulci. This process is challenging to model
due to many influences that are not yet completely understood. It is also dependent on
environmental factors [173], which can partially explain why a network can fail to capture
its complexity. Furthermore, it is possible that the chosen architecture can be improved.

Specifically, using prior knowledge about the growth, [172] proposed a decomposed
parametrization of “scale” and “shift” in sinusoidal activations functions to specifically
encourage lower frequencies along the time dimension.

We focussed on a pure INR-based method. Other methods combine multiple tech-
niques, like, e.g., in [174], where a GAN was proposed to produce a triplane represen-
tation that included an INR as a decoder, to recover 3D structure from multiple 2D
views.
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9.2 Conclusion

In this work, we presented three different applications of deep learning for processing
brain MR and CT scans. We showed that while deep learning generally is a resource-
hungry machine learning technique, it is possible to tackle certain problems with more
limited resources. For MR and CT scan this is especially important, as they consist
largely of three-dimensional, or four-dimensional data when we include time series, and
therefore inherently have a large memory footprint to begin with. In this work, we
proposed novel memory-efficient methods for anomaly detection and localization, brain-
tumor segmentation via diffusion models and the modeling of early brain development.
Deep learning continues to progress and enables things that might have been considered
impossible even just a decade back. But currently, the trend seems to be making models
bigger, also increases the energy consumption and limits their use to those who can afford
the necessary hardware. With this work, we hope to raise awareness about the resource
consumption of deep learning models and to encourage researchers to also investigate
methods that are less resource-hungry, in order to make them more accessible.



Bibliography

[1] J. Ferrandis and A. Segal. “L’essor de la radiologie osseuse pendant la guerre
de 1914-1918”. In: Rhumatologie Pratique 266 (2009), pp. 48–50. url: https :
//horizon14-18.eu/wa files/l 27essor 20de 20la 20radiologie 20osseuse.pdf.

[2] W. G. Bradley. “History of Medical Imaging”. In: Proceedings of the American
Philosophical Society 152.3 (2008), pp. 349–361. issn: 0003049X. url: http://
www.jstor.org/stable/40541591 (visited on 08/27/2024).

[3] D. Wheeler and E. Spencer. “Simplified planigraphy”. In: Radiology 34.4 (1940),
pp. 499–502.

[4] N. England. Diagnostic Imaging Dataset Annual Statistical Release 2022/23.
Tech. rep. NHS England, 2023. url: https://www.england.nhs.uk/statistics/wp-
content/uploads/sites/2/2023/11/Annual-Statistical-Release- 2022-23-PDF-
1.3MB-1.pdf.

[5] C. X. Y. Goh and F. C. H. Ho. “The growing problem of radiologist shortages: per-
spectives from Singapore”. In: Korean Journal of Radiology 24.12 (2023), p. 1176.

[6] A. Al Kabbani, T. Walizai, J. Feger, et al. Skull. Reference article, Radiopae-
dia.org. https://radiopaedia.org/articles/skull. Accessed: 2024-07-02.

[7] The Database Center for Life Science. BodyParts3D: A 3D Human Body Parts
Dataset. Accessed: 2024-08-15. 2011. url: https://lifesciencedb.jp/bp3d/?lng=
en.

[8] E.-J. Speckmann and W. Wittkowski. Handbuch Anatomie: Bau und Funktion
des menschlichen Körpers. Elsevier, 2009.

[9] J. Jones, R. Sharma, B. Botz, et al. Subarachnoid space. Reference article, Ra-
diopaedia.org. https://doi.org/10.53347/rID-5857. Accessed: 2024-07-14.

[10] C. Hacking, T. Walizai, D. Bell, et al. Cerebrospinal fluid. Reference article, Ra-
diopaedia.org. https://doi.org/10.53347/rID-58893. Accessed: 2024-09-02.

[11] Frank Gaillard. Layers of the scalp and meninges. Accessed: 2024-08-14. 2010.
url: https : / / radiopaedia . org / cases / layers - of - the - scalp - and - meninges -
illustrations.

[12] F. Gaillard, T. Foster, D. Bell, et al. Neuron. Reference article, Radiopaedia.org.
https://doi.org/10.53347/rID-51710. Accessed: 2024-09-05.

97

https://horizon14-18.eu/wa_files/l_27essor_20de_20la_20radiologie_20osseuse.pdf
https://horizon14-18.eu/wa_files/l_27essor_20de_20la_20radiologie_20osseuse.pdf
http://www.jstor.org/stable/40541591
http://www.jstor.org/stable/40541591
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2023/11/Annual-Statistical-Release-2022-23-PDF-1.3MB-1.pdf
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2023/11/Annual-Statistical-Release-2022-23-PDF-1.3MB-1.pdf
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2023/11/Annual-Statistical-Release-2022-23-PDF-1.3MB-1.pdf
https://radiopaedia.org/articles/skull
https://lifesciencedb.jp/bp3d/?lng=en
https://lifesciencedb.jp/bp3d/?lng=en
https://doi.org/10.53347/rID-5857
https://doi.org/10.53347/rID-58893 
https://radiopaedia.org/cases/layers-of-the-scalp-and-meninges-illustrations
https://radiopaedia.org/cases/layers-of-the-scalp-and-meninges-illustrations
https://doi.org/10.53347/rID-51710 


98 Bibliography

[13] H. Blumenfeld. Neuroanatomy through Clinical Cases 2nd Ed. Sinauer Associates
Incorporated, 2009. isbn: 978-0-87893-058-6.

[14] F. Gaillard, D. Bell, C. Hacking, et al. Brain. Reference article, Radiopaedia.org.
https://radiopaedia.org/articles/glial-cells. Accessed: 2024-07-02.

[15] F. Gaillard, C. Hacking, and H. Knipe. Astrocytes. Reference article, Radiopae-
dia.org. https://doi.org/10.53347/rID-51707. Accessed: 2024-07-14.

[16] F. Gaillard, C. Hacking, and A. Skandhan. Oligodendrocytes. Reference article,
Radiopaedia.org. https://doi.org/10.53347/rID-51712. Accessed: 2024-07-14.

[17] F. Gaillard, D. Bell, C. Hacking, et al. Microglia. Reference article, Radiopae-
dia.org. https://doi.org/10.53347/rID-51717. Accessed: 2024-07-14.

[18] E. N. Marieb and K. N. Hoehn. Human Anatomy & Physiology, Global Edition.
Pearson Education, 2018. isbn: 978-1-292-26093-8.

[19] J. G. Betts et al. Anatomy and Physiology. Accessed: [Insert Access Date]. Hous-
ton, Texas: OpenStax, 2013. url: https://openstax.org/books/anatomy-and-
physiology/pages/1-introduction.

[20] W. A. Engle et al. “Age terminology during the perinatal period.” In: Pediatrics
114.5 (2004), pp. 1362–1364.

[21] R. R. O’Rahilly and F. Müller. The Embryonic Human Brain: An Atlas Of De-
velopmental Stages. John Wiley & Sons, 2006. isbn: 978-0-471-97307-2.

[22] B. Cohen-Sacher et al. “Sonographic developmental milestones of the fetal cere-
bral cortex: a longitudinal study”. In: Ultrasound in Obstetrics and Gynecology:
The Official Journal of the International Society of Ultrasound in Obstetrics and
Gynecology 27.5 (2006), pp. 494–502.

[23] A. Makropoulos et al. “The developing human connectome project: A minimal
processing pipeline for neonatal cortical surface reconstruction”. In: Neuroimage
173 (2018), pp. 88–112.

[24] J. Bozek et al. “Construction of a neonatal cortical surface atlas using multimodal
surface matching in the developing human connectome project”. In: NeuroImage
179 (2018), pp. 11–29.

[25] S. Bakas et al. “Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features”. In: Scientific data 4.1 (2017),
pp. 1–13.

[26] F. Gaillard, R. Chieng, H. Knipe, et al. Brain tumors. Reference article, Ra-
diopaedia.org. https://doi.org/10.53347/rID-4986. Accessed: 2024-07-18.

[27] H. A. Wanis et al. “The incidence of major subtypes of primary brain tumors in
adults in England 1995-2017”. In: Neuro-Oncology 23.8 (2021), pp. 1371–1382.

https://radiopaedia.org/articles/glial-cells
https://doi.org/10.53347/rID-51707 
https://doi.org/10.53347/rID-51712 
https://doi.org/10.53347/rID-51717 
https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
https://doi.org/10.53347/rID-4986 


Bibliography 99

[28] PDQ Adult Treatment Editorial Board. PDQ Adult Central Nervous System Tu-
mors Treatment. Bethesda, MD: National Cancer Institute. Updated 2024-01-
05. Available at: https://www.cancer.gov/types/brain/patient/adult- brain-
treatment-pdq. [PMID: 26389458]. Accessed: 2024-07-22.

[29] F. Sciacca. Organs at risk. Reference article, Radiopaedia.org. https://doi.org/
10.53347/rID-80650. Accessed: 2024-07-21.

[30] H. Knipe, M. Elfeky, M. Saber, et al. Traumatic brain injury. Reference arti-
cle, Radiopaedia.org. https://radiopaedia.org/articles/traumatic-brain- injury.
Accessed: 2024-07-02.

[31] N. I. for Health and C. Excellence. Head Injury: assessment and early manage-
ment, guideline NG232. https://www.nice.org.uk/guidance/ng232. Accessed:
2024-07-02.

[32] F. Gaillard. Skull Fractures. Reference article, Radiopaedia.org. (Visited on 07/04/2024).

[33] S. Chilamkurthy et al. “Deep learning algorithms for detection of critical find-
ings in head CT scans: a retrospective study”. In: The Lancet 392.10162 (2018),
pp. 2388–2396.

[34] J. M. Gebel and J. P. Broderick. “Intracerebral hemorrhage”. In: Neurologic clin-
ics 18.2 (2000), pp. 419–438.

[35] S. Tenny and W. Thorell. “Intracranial Hemorrhage”. eng. In: StatPearls. Trea-
sure Island (FL): StatPearls Publishing, 2024. url: http://www.ncbi.nlm.nih.
gov/books/NBK470242/ (visited on 07/04/2024).

[36] F. Gaillard, R. Sharma, H. Knipe, et al. Intracranial hemorrhage. Reference ar-
ticle, Radiopaedia.org. https://doi.org/10.53347/rID-1518. Accessed: 2024-07-21.

[37] Vascular Neurology Board Review: An Essential Study Guide. Springer Interna-
tional Publishing, 2020. isbn: 978-3-030-52551-4 978-3-030-52552-1. (Visited on
07/04/2024).

[38] Medical Imaging Systems: An Introductory Guide. Vol. 11111. Lecture Notes
in Computer Science. Springer International Publishing, 2018. isbn: 978-3-319-
96519-2 978-3-319-96520-8. (Visited on 07/26/2024).
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