
M A S S C O N S E RVAT I V E N E U R A L N E T W O R K S

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Fabricio Arend Torres

2024

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch.

edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf
Antrag von

Prof. Dr. Volker Roth, Erstbetreuer

Prof. Dr. Thomas Vetter, Zweitbetreuer

Prof. Dr. Maarten Valentijn de Hoop, externer Experte

Basel, den 30. April 2024

Prof. Dr. Marcel Mayor, Dekan

To my family.

A B S T R A C T

Neural networks have established themselves as a powerful tool for ex-
tracting insights from vast amounts of data. However, with increasing use
of deep learning in the natural sciences, there is also an increasing de-
mand to incorporate domain-specific expert knowledge. In many cases, this
knowledge comes in the form of constraints expressed as partial differential
equations (PDE). In addition to possibly improving generalization capabili-
ties, enforcing such constraints would ensure predictions that are consistent
with available domain knowledge. In this thesis, we focus on enforcing
the physical law of mass conservation in neural networks, with the aim of
modeling densities and velocities of compressible fluids. Specifically, we
enforce the continuity equation, a PDE describing mass conservation in its
local and differential form. We focus on models in continuous space and
time.

In our first contribution, we weakly enforce the continuity equation by
minimizing a PDE penalty on the so-called collocation points. Specifically,
we provide an extension to physics-informed neural networks (PINNs).
Motivated by the microscopic perspective of a fluid density, we propose
to select collocation points by sampling particles from the (normalized)
fluid density with dynamic Monte Carlo methods. This mesh-free and
adaptive sampling method improves the sample efficiency for enforcing
the continuity equation and other density-based advection-diffusion PDEs,
which we demonstrate through various experiments.

In our second contribution, we propose Lagrangian Flow Networks
(LFlows), a framework for constructing neural networks that adhere to the
continuity equation by construction. We do so by leveraging insights from
classical theory on Lagrangian flows, which allow us to model physically
consistent densities and velocities with time-conditioned diffeomorphisms,
i. e. conditional Normalizing Flows. This approach not only offers high pre-
dictive accuracy in density modeling tasks, but also proves computationally
efficient. We showcase LFlows in both 2D and 3D scenarios, and apply it to
the real-world application of bird migration modeling.

In summary, we study different approaches for incorporating PDEs,
particularly the continuity equation, into neural networks for modeling
compressible fluids. The resulting methods ensure physical consistency of
the predictions while maintaining computational efficiency.

v

A C K N O W L E D G E M E N T S

When starting my journey towards a Ph.D., I was already well aware that
research happens in collaboration rather than isolation. However, with
nearly two years of home office due to COVID measures, I have learned
that this encompasses not only planned and structured meetings. It turned
out that in the right environment seemingly small daily interactions such as
shared coffee and lunch breaks, office discussions about code, and general
small-talk were nearly as important. They contributed to the formulation
and refinement of ideas, and enabled interactions that finally culminated in
this thesis. Before acknowledging specific individuals, I would thus like to
thank everyone at the Department of Computer Science and Mathematics at
the University of Basel. The cooperative and collaborative work environment
of the last few years is one that I aim to maintain throughout my future.

Throughout my Ph.D. studies, I benefited from the freedom to explore
vastly different directions. For this opportunity as well as for the valuable
feedback and knowledge gained in the past few years, I would like to thank
my supervisor Volker Roth. It was fascinating to get a peek into some very
different application areas of Machine Learning while being part of the
BMDA group. I always enjoyed our group meetings, which provided a
space for discussion of sometimes admittedly abstract concepts and helped
shape my overall understanding of Machine Learning.

Next, I would like to thank my second supervisor, Thomas Vetter, for
his advice and insight in my Committee meetings and during the reading
groups. In addition, his “Pattern Recognition” class in my Bachelor’s de-
gree was the one that actually piqued my interest in the field of Machine
Learning. I always appreciated the joint coffee breaks, hikes, and reading
groups with the GRAVIS group.

I would like to also acknowledge my external reviewer Maarten de Hoop
for his interest in my work and his time and effort spent on reviewing this
thesis.

Furthermore, I am thankful to Ivan Dokmanić for the valuable discussions
on Machine Learning. His input pointed me towards physics-informed
neural networks and other interesting works related to physics-informed
Machine Learning.

I would be remiss not to mention Christine Alewell, who enabled me
a part-time employment in her welcoming research group. This provided

vii

me not only with a lot of flexibility in the last steps of my thesis, but also
with an interesting Machine Learning project that I am very much looking
forward to.

I am deeply grateful to all current and former members of the BMDA
group: Sonali Parbhoo, Mario Wieser, Sebastian Keller, Aleksander Wiec-
zorek, Damian Murezzan, Maxim Samarin, Daniel Hauke, Vitali Nesterov,
Stephan Unter, Monika Nagy-Huber, Jonathan Aellen, and Marcello Negri.
From teaching and co-supervising me in my undergraduate theses to jointly
correcting “Scientific Computing” exams and finally aiming for conference
deadlines in my Ph.D., you all accompanied me on my journey and I am
glad to have had you as my colleagues. Special thanks go to Marcello Negri
for providing me feedback on parts of my thesis, and for joining me on the
many late night crunches for our publications.

Likewise, I would like to thank the many former and current Ph.D.
students, researchers, and staff of our department for enjoyable lunches,
department-wide activities, and interesting research retreats. Special thanks
go (in no particular order) to Dana Rahbani, Xolisile Thusini, Dennis Mad-
sen, Thomas Sutter, Imant Daunhawer, Marcel Lüthi, Marco Vogt, Vinith
Kishore, Marco Inversi, Valentin Debarnot, Jonas Linkerhägner, AmirEhsan
Khorashadizadeh, Enea Compagnoni, Simon Dold, Enrico Giudice, Bas
Kin, as well as all other members of the former GRAVIS, SADA and the
Optimization of ML Systems groups.

I am grateful towards my family and relatives throughout the world -
from Saarland to Costa Rica. Although we meet eachother rarely, you are
always with me.

Insbesondere möchte ich meinen Eltern Elena und Peter, meiner Partnerin
Vivian, und meinem Bruder Sergio sowie seiner Partnerin Grace danken,
ohne die Ich diesen Weg nicht hätte bestreiten können. Danke, dass ich
stets auf euch zählen konnte und ihr mir immer Rat zur Hand hattet.
Zusätzlich möchte ich meiner Oma Wilfriede dafür danken, dass sie mich
stets unterstützt hat.

Zuletzt geht mein tiefster Dank an meine Freunde. Ob Bouldern, Billiard,
Musik oder einfach ein Bier im Bistro - Ihr habt mir immer einen Rück-
zugsort gegeben, an dem ich einfach ich selbst sein konnte und mir die
Möglichkeit gegeben, meine Arbeit für eine Weile zu vergessen. Mein Dank
geht ausdrücklich (in beliebiger Reihenfolge) an Daniel Forat, Tim Lüber,
Lars Lucas/Weiser, Franziska Weiser, Adrian Greiner, Felix Sattler, Denis
Lüber, Bianca Schindler, Tom Spitz, Daniel Trüby, Alain Studer, Pasqual
Karasch und Christian Schadt.

viii

C O N T E N T S

Notation xi
Tools Used xv
1 Introduction 1

1.1 Problem Setting and Motivation 2

1.2 Contribution . 4

1.3 List of Publications . 6

2 Background 9

2.1 Machine Learning . 9

2.2 Mass Conservation and the Continuity Equation 12

2.3 Neural Networks . 21

2.4 Normalizing Flows . 25

2.5 Physics Informed Neural Networks 39

3 Mesh-free Eulerian PINNs 45

3.1 Physics-Informed Neural Networks 46

3.2 Related Work . 48

3.3 Particle-density PINNs . 49

3.4 Model and Implementation . 53

3.5 Experiments . 55

3.6 Conclusion . 65

4 Lagrangian Flow Networks 67

4.1 Motivation and Setting . 67

4.2 Related Work . 69

4.3 Lagrangian Flow Networks . 72

4.4 Implementation . 75

4.5 Experiments: Lagrangian Flow Networks 80

4.6 Experiments: i-DenseNets with CSin 90

4.7 Conclusion . 92

5 Conclusion 95

5.1 Summary . 95

5.2 Limitations and Future Directions 97

5.3 Closing Remarks . 101

a Appendix - Mesh-free Eulerian PINNs 103

a.1 Implementation of competing methods (RAR, OT-RAR). . . . 103

a.2 Additional Experiment Details 104

b Appendix - Lagrangian Flow Networks 109

ix

x contents

b.1 Theoretical Background . 109

b.2 Calculating the Density and Velocity 116

b.3 Implementation . 118

b.4 Additional Information on the Experiments 119

List of Figures 131

List of Tables 132

List of Algorithms 133

Bibliography 137

N O TAT I O N

We base our mathematical notation, as well as this overview, on the template
freely provided by the authors of Goodfellow et al. (2016)1.

numbers and arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

diag(a) A square, diagonal matrix with diagonal entries given by a

a A scalar random variable

A A vector-valued random variable

sets

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of A

that are not in B

1 https://github.com/goodfeli/dlbook_notation, Accessed 01.02.24.

xi

https://github.com/goodfeli/dlbook_notation

xii notation

indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

ai Element i of the random vector a

linear algebra operations

A⊤ Transpose of matrix A

A⊙ B Element-wise (Hadamard) product of A and B

det(A) Determinant of A

calculus
dy
dx

or dxy Derivative of y with respect to x
∂y
∂x

or ∂xy Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇ · b = ∇x · b Divergence of vectorfield b : Rd 7→ Rd w.r.t. x ∈ Rd

given by ∑d
i=0

∂bi
∂xi

∆xy = ∇x · ∇xy Laplacian of y with respect to x
∂ f
∂x

(y) or J fx(y) Jacobian matrix J ∈ Rm×n of f : Rn 7→ Rm evaluated
at y∫

f (x)dx Definite integral over the entire domain of x∫
S

f (x)dx Definite integral with respect to x over the set S

tools used xiii

Probability

P(a) A probability distribution over a discrete vari-
able

p(a) A probability distribution over a continuous
variable, or over a variable whose type has not
been specified

a ∼ P Random variable a has distribution P

Ex∼p[f (x)] or E[f (x)] Expectation of f (x) with respect to p(x)

Var(f (x)) Variance of f (x) under p(x)

Cov(f (x), g(x)) Covariance of f (x) and g(x) under p(x)

DKL(P∥Q) Kullback-Leibler divergence of P and Q

N (x; µ, Σ) Gaussian distribution over x with mean µ and
covariance Σ

functions

f : A 7→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f (x; θ) A function of x parametrized by θ. We sometimes write
f (x) and omit the argument θ to lighten notation.

ln x Natural logarithm of x

σ(x) An elementwise function, s.t. [σ(x)]i = σ(xi)

||x||p Lp norm of x

||x|| L2 norm of x

sgn(x) sign of x

exp(x) ex

T O O L S U S E D

For grammar and spelling, the writing assistant tool “Writeful for Over-
leaf”2 was used for sentence-level corrections. Only “Writefull’s language
check” was used. None of the advanced widgets were used.

2 https://www.writefull.com/; Chrome Extension Version 2.2.0; Accessed March 2024.

xv

https://www.writefull.com/

1
I N T R O D U C T I O N

Machine Learning has become known for its ability to extract and act on
information obtained from previously insurmountable amounts of data and
its transformative effect on many scientific fields. Taking physical sciences
as an example, deep learning enables simulations of molecules (Schütt
et al., 2018) or weather phenomena (Pathak et al., 2022) at significantly
reduced costs compared to traditional methods. This improvement in speed
is possible by training a deep neural network on simulated data and thus
encouraging the network to learn the underlying dynamics, providing a fast
surrogate to the expensive simulators. In other words, the domain-specific
knowledge in the form of a physical model is indirectly transferred to
the neural network through massive amounts of data. While weather and
molecule simulations are just two examples of many, they already illustrate
the effect and potential of deep learning in the natural sciences.

But the interaction between different fields is, of course, not unidirec-
tional. Although not as prominently discussed and more subtle, different
scientific disciplines had a long-lasting impact on Machine Learning it-
self. Many core tools and concepts in Machine Learning draw inspiration
and conceptual ideas from areas such as neuroscience, information theory,
dynamical systems, and physics. Notable examples of physics-inspired
concepts include energy-based models (LeCun et al., 2006; Smolensky et al.,
1986), mean-field theory for variational inference (Zhang et al., 2018), or
current breakthroughs in image generation based on diffusion processes
in statistical physics (Rombach et al., 2022; Sohl-Dickstein et al., 2015). The
underlying idea is that mirroring the constraints and approximations of, for
example, physical models in the design and training of a Machine Learning
model may be beneficial for a wider class of problems.

A natural combination of these development is to not only tackle prob-
lems from the physical sciences with Machine Learning, but to also leverage
the vast expert knowledge culminated in these domains by enforcing it
into the models. This leads us to the field of physics-informed Machine
Learning (PI-ML)(Karniadakis et al., 2021). PI-ML focuses on modeling
sparse and noisy sensor data while explicitly enforcing problem-specific
physical constraints. That is, it combines a physical model available in the
form of partial differential equations (PDEs) with sparse and noisy data,

1

2 introduction

similar to a classical data assimilation (Asch et al., 2016) setting. A notable
difference between PI-ML and data assimilation is, however, that the latter
mostly assumes a reasonably correct and complete physical forward model
(Geer, 2021). If the physical model is incomplete and has more degrees
of freedom, there is a greater need for the generalization capabilities of
Machine Learning. Physics-informed Machine Learning thus mostly shines
in such ill-posed settings with partial knowledge about the physical model
(Karniadakis et al., 2021). Finally, while the previously mentioned surrogate
models can learn physical laws from large amounts of dense observations,
such data is rarely available in realistic settings.

Within this thesis, we contribute to a subset of the very broad field of PI-
ML; we constrain neural networks to predict physically consistent density
movements. Specifically, we enforce the PDE that governs the law of mass
conservation as a physical constraint.

1.1 problem setting and motivation

The setting of this thesis was motivated by some of the overarching chal-
lenges present in modeling large-scale movements of airborne animals,
where only sparse observations density and velocity are available. This
section provides a brief background on this setting, leading to the general
objective of this thesis.

Largte-scale measurements of airborne animals are a product of recent
developments in the field of radar aeroecology (Chilson et al., 2017). The
field of radar aeroecology generally concerns itself with extracting informa-
tion about airborne animals such as birds (Dokter et al., 2011; Eastwood,
1967; Gasteren et al., 2008), bats (Horn & Kunz, 2008; Stepanian et al., 2019;
Williams et al., 1973), and insects (Rainey, 1955) from (weather) radar scans.
With modern post-processing pipelines, it is possible to then estimate the
average densities of large flocks (or swarms) from the reflectivity of radar
scans, filtering out scatter and rain (Dokter et al., 2011; Stepanian et al.,
2019). In addition, even information on the average velocity can be inferred
from Doppler radars (Chilson et al., 2017). Naturally, with such large-scale
measurements available, there has been growing interest in modeling the
spatiotemporal movements of e.g. migratory birds (Nussbaumer et al., 2019;
2021). These models hold the potential to offer deeper insight into the behav-
ior of migrants. Initial approaches to modeling such data were mainly based
on Gaussian processes (Nussbaumer et al., 2019) or tree-based methods
(Van Doren & Horton, 2018). In these works, the predictions of densities and

1.1 problem setting and motivation 3

velocities are treated as completely separate regression problems, ignoring
the velocity (Van Doren & Horton, 2018) or modeling it separately (Angell
& Sheldon, 2018; Nussbaumer et al., 2019).

When the velocity and density fields are modeled separately, there is,
however, no guarantee that they are physically consistent with each other.
The predicted density might change differently over time than what is
suggested by the predicted velocity (e.g. move in a different direction),
as illustrated in Fig. 1.1. A lack of physical consistency in a model is a
fundamental problem for downstream interpretations, since there may be
two possibly disagreeing explanations. Furthermore, if only sparse measure-
ments are available and these measurements also suffer from noise and bias,
physical inconsistency of the model is all but guaranteed. Consequently, it
is of interest to ensure density and velocity predictions that agree with each
other.

This intuitive notion of consistency between density movements and
velocity has an underlying physical principle, namely the physical law of
mass conservation. This law of mass conservation can be expressed in its
local and differential form as a partial differential equation, namely, the
continuity equation. Thus, to guarantee “physically consistent” densities
and velocities, the continuity equation is to be enforced in the ML model,
which is in our case a neural network. However, towards the beginning
stages of this thesis, there was very limited work on actually enforcing mass
conservation in neural networks without relying on any discretization, with
the exception of general-purpose frameworks such as physics-informed
neural networks (Raissi et al., 2019). This led us to the pursuit of a more
specialized modeling framework for mass conservative neural networks.

Problem Setting. The general goal of this thesis is to develop neural
networks that jointly model (physical) densities ρ : [t0, T]×Ω 7→ R≥0 with∫

Ω ρ(x, t)dx < ∞ and velocities v : [t0, T]×Ω 7→ Rd, with spatial domain
Ω ⊆ Rd and time t ∈ [t0, T] ⊂ R≥0. Specifically, these are to be learned
from noisy and sparsely distributed observations of the density {ρi}n

i=1
and optionally the velocity {vj}m

j=1. Finally, we assume that the phenomena
we model follow the physical law of mass conservation and consequently
aim to enforce this constraint in the model. That is, the velocity v(t, x)
has to describe the evolution of the density ρ(t, x) by fulfilling the partial
differential equation

∂tρ = −∇ · (ρv). (1.1)

4 introduction

Figure 1.1: Visualization of the general problem setting. The left column indicates
neural network predictions of the density and velocity at t0 and
t1. The right column shows the density at t1 that would fulfill the
continuity equation given ρ̂(t0, x) and v̂(t, x). Intuitively, the density
movements from t0 to t1 must match with the movements indicated
by the velocity.

This PDE is commonly known as the continuity equation (CE) and corre-
sponds to the law of mass conservation in its local and differential form.
In summary, the objective is to develop neural network-based models that
enforce the continuity equation in Eq. (1.1) for predictions of ρ and v.

1.2 contribution

With the objective of mass conservative neural networks introduced, we
provide a short overview of our contributions. The work presented in this
thesis is split into two parts.

In the first contribution covered by Chapter 3, we focus on the existing
framework of physics-informed neural networks (PINNs) to enforce mass
conservation. Typically, PINNs weakly enforce constraints by minimizing
a PDE-penalty at randomly chosen locations within a fixed space and
time region. These locations are referred to collocation points. If, however,
the boundaries of the problem are not known or the target density only
occupies a small subset of the domain, naive sampling schemes will provide
collocation points that are mostly within low-density regions. When using

1.2 contribution 5

few collocation points, this leads to difficulties in enforcing PDEs such as
the continuity equation with few collocation points, especially in higher
dimensions. As these difficulties are not restricted to the continuity equation,
we approach this problem in a more general setting. In our work Arend
Torres et al. (2022) we consider time-dependent PDEs in which the variable
of interest can be interpreted as a density. We propose to sample collocation
points based on the normalized predicted density, which can be viewed
as uniformly sampling particle positions. The resulting particle-density
PINNs (pdPINNs) overcome the aforementioned limitations and recover a
often claimed, but in practice arguably not fulfilled, mesh-free property of
PINNs.

In our second contribution, which is covered by Chapter 4, we develop
a neural network architecture with density and velocity predictions that
satisfy the continuity equation by construction. The resulting networks are
called Lagrangian Flow Networks (LFlows), and the chapter closely follows
our work presented in Torres et al. (2024). As the name suggests, LFlows
leverage a Lagrangian viewpoint of the problem to (implicitely) model
evolving densities of parcels. Specifically, they make use of classical theory
on Lagrangian flows, which links the continuity equation to time-dependent
diffeomorphisms and the corresponding pushforward of an initial density.
In practice, the implementation of LFlows is based on conditional Normal-
izing Flows, which are commonly used to learn probability densities in
Machine Learning. The physical density is computed by rescaling the (con-
ditional) probability density of a time-conditioned Normalizing Flow. In
addition to the density, we provide an analytical expression for the velocity
that is always consistent with predicted density changes.

6 introduction

1.3 list of publications

This thesis is based on the following papers and some additional unpub-
lished work.

• Lagrangian Flow Networks for Conservation Laws. (Spotlight)

Fabricio Arend Torres, Marcello Massimo Negri, Marco Inversi,
Jonathan Aellen, and Volker Roth.

The Twelfth International Conference on Learning Representations
(ICLR), 2024.

• Mesh-free Eulerian Physics-Informed Neural Networks

Fabricio Arend Torres, Marcello Massimo Negri, Monika Nagy-Huber,
Maxim Samarin and Volker Roth.

arXiv preprint, 2022.

In addition, the subsequent publications resulted from work during the
PhD, but are not covered within the content of this thesis.

• Conditional Matrix Flows for Gaussian Graphical Models.

Marcello Massimo Negri, Fabricio Arend Torres and Volker Roth.

Advances in Neural Information Processing Systems 36, 2024.

• Learning Invariances with Generalised Input-convex Neural Networks.

Vitali Nesterov, Fabricio Arend Torres, Monika Nagy-Huber, Maxim
Samarin and Volker Roth.

arXiv preprint, 2022.

• Learning Extremal Representations with Deep Archetypal Analysis.

Sebastian Mathias Keller, Maxim Samarin, Fabricio Arend Torres,
Mario Wieser and Volker Roth.

International Journal of Computer Vision, Volume 129, pages 805–820,
2021.

Finally, the use of bijective neural networks in multiple of the aforemen-
tioned works resulted in a Python library for conditional Normalizing
Flows.

1.3 list of publications 7

• FlowConductor: (Conditional) Normalizing Flows and Bijective Layers for
PyTorch.

Fabricio Arend Torres, Marcello Massimo Negri, Jonathan Aellen.

https://github.com/FabricioArendTorres/FlowConductor

https://github.com/FabricioArendTorres/FlowConductor

2
B A C K G R O U N D

In this chapter, we provide the necessary background for following the
thesis. We begin with Section 2.1, offering a high-level overview of Machine
Learning, regularization, and physics-informed ML as a specialized form
of regularization. Following this, Section 2.2 introduces the continuity
equation from different perspectives, covering an Eulerian, Lagrangian,
and a low-level particle view. Section 2.3 continues with deep learning
concepts that we build upon, ranging from invertible neural networks to
neural ordinary differential equations. Building upon these concepts, in
Section 2.4 we discuss Normalizing Flows. Normalizing Flows are crucial
for the proposed Lagrangian Flow Networks, which we present in Chapter 4.
Finally, Section 2.5 addresses physics-informed neural networks (PINNs)
for enforcing physical constraints through penalties. These form the basis
for the particle-density PINNs in Chapter 3.

2.1 machine learning

The field of Machine Learning is centered around the construction of
models that approximate a largely unknown process based on limited and
noisy observations. The heavy reliance on data sets it apart from models
commonly employed in other scientific domains, as the process in question
is typically either partially unknown or too complex to be explicitly modeled
from first principles.

Based on the description by Vladimir Vapnik (Vapnik, 1999), (supervised)
learning problems encompass three key components. Initially, we acquire
random observations denoted as x from a generator (G) that characterizes
the data collection process. These observations are independently sampled
from a fixed but unknown probability distribution p(x). A supervisor (S)
then returns an output value or vector y to every input vector x according
to a conditional distribution p(y|x) that is fixed and also unknown. This
supervisor encapsulates the process we aim to approximate. The third and
final element is a learning machine (LM), which employs a set of parameter-
ized functions denoted as f (x; θ), with the parameters θ belonging to a set
Θ. The learning problem then consists of finding a function or model f (x; θ)

9

10 background

that approximates the outputs provided by the supervisor by estimating
p(y|x).

For selecting a function f (x; θ) the LM is restricted to a training data set
of n independent observations {xi, yi}n

i=0 drawn from p(x, y) = p(x)p(y|x).
We denote the rowwise concatenation of the training observations with the
matrices Xtrain = [xt

0, xt
1, . . . , xt

n]
t and Ytrain = [yt

0, yt
1, . . . , yt

n]
t. The param-

eters θ are then estimated by minimizing a loss function L(θ; X, Y) - the
empirical risk - on the observed training set:

θ∗ = arg min
θ

L(θ; X, Y) (2.1)

The challenge in Machine Learning is now to design function spaces,
optimization methods, and loss functions such that minimization of the
empirical loss in Eq. (2.1) also leads to a small expected loss on unseen test
data while remaining computationally feasible.

2.1.1 Regularization

Data in the real world often has limitations, such as being limited in quantity,
containing noise, or exhibiting bias. These issues pose significant challenges
in Machine Learning, where simply using models to interpolate training
data to an arbitrary extent is inadequate, as it leads to overfitting. To address
this regularization is essential, helping models perform well not only on
existing training data, but also on new unseen data. Modern deep learning
is not exempt from this. For example, the generalization capabilities of
deep learning are often attributed to the implicit regularization provided by
stochastic gradient descent methods (Gunasekar et al., 2018). More explicit
regularization methods, such as dropout (Hinton et al., 2012) or spectral
normalization (Miyato et al., 2018), are not only an active field of research,
but are also highly relevant in practice (Goodfellow et al., 2016; Kukačka
et al., 2017). In addition to improving generalization capabilities, however,
regularization also serves as a means of incorporating more general prior
knowledge. For instance, some predictions might be implausible to domain
experts, and should thus be discouraged. Generative models of molecules,
for example, often rely on latent representations that are invariant to a
range of transformations (Gebauer et al., 2019; Nesterov et al., 2020), as
they should not affect the probability of generating a molecule. If these
constraints are in the form of partial differential equations that describe
physical laws, this is commonly referred to as Physics-informed Machine
Learning.

2.1 machine learning 11

Physics-informed Machine Learning. Physics-informed Machine Learn-
ing (PI-ML) is a subfield that combines the expressive power of modern ML
methods with physical constraints that serve as meaningful regularizers.
The applications of PI-ML range widely, from those directly related to
physical systems (Greydanus et al., 2019; Raissi et al., 2019) to more general
domains such as generative models for videos (J. Li et al., 2023), or learning
cellular dynamics of single-cell RNA sequencing (Tong et al., 2020). PI-ML
can be mainly set apart from more general regularization methods by the
form in which physical prior knowledge is available, namely partial or
ordinary differential equations (PDEs and ODEs respectively). Differential
equations are capable of describing many phenomena and laws in physics,
leading to complex dynamical systems. Consequently, they provide a highly
flexible and well-studied framework for constraining functions. In addition,
the concrete mathematical formulation is highly compatible with modern
differentiable Machine Learning models. This puts the physics domain in
contrast with domains such as medicine, where it can be very difficult
to translate expert knowledge into a form amenable to modern Machine
Learning. Nevertheless, enforcing general PDEs in Machine Learning mod-
els are still a field of active research with many remaining challenges (see
e.g. Karniadakis et al. (2021)).

Regularization as Constrained Optimization. In context of this thesis, we
focus on the physics-based regularization of f (x; θ) that can be expressed
as a constraint c(θ) = 0 with a differentiable function c : θ 7→ Rdim(c). This
effectively turns Eq. (2.1) into the constrained optimization problem

θ∗ = arg min
θ∈Θ

L(θ; X, Y) (2.2)

subject to c(θ∗) = 0.

A simple method to (weakly) enforce such constraints is a penalty-based
approach. The constrained optimization problem is turned into an uncon-
strained problem by introducing an additional (weighted) penalty term to
the loss objective:

θ = arg min
θ∈Θ

L(θ; X, Y) + λ⊤m(|c(θ)|), (2.3)

where λ ∈ R
dim(c)
≥0 and m is an elementwise monotone transformation,

such as the square. For a sufficiently high λ, this objective will enforce the
given constraints without requiring any constraint-specific parameterization

12 background

or projection. Due to its simplicity, it is a particularly popular approach
in Deep Learning (Márquez-Neila et al., 2017). Physics-informed neural
networks (Dissanayake & Phan-Thien, 1994; Raissi et al., 2017) make use of
penalty based regularization for enforcing PDEs. In our first contribution
Mesh-Free Eulerian Physics-Informed Neural Networks (Arend Torres et al.,
2022) we also follow this approach for enforcing physics constraints.

While the penalty-based approach is simple to implement, it has some
severe limitations. The constraints are only weakly enforced with a loss that
is traded off with a data loss. Furthermore, additional hyperparameters
must be selected and tuned. As the loss weighted by λ is traded off with
the empirical loss, it has a strong effect on the model and its generalization.
A more direct and strict approach to such constrained optimization is to
directly constrain the search space of functions

θ∗ = arg min
θ∈Θc

L(θ; X, Y) Θc = {θ ∈ Θ : c(θ) = 0}. (2.4)

The difficulty of this approach lies in finding a parameterization that always
satisfies the constraints, or at least a projection onto such a parameteriza-
tion. Unlike the penalty-based approach, this often requires specialized
model architectures. We refer to Section 2.2 of Sharma et al. (2023) for
some examples on enforcing physical constraints via specialized neural
network architectures. In our second contribution Lagrangian Flow Networks
for Conservation Laws (Torres et al., 2024) we follow such an approach. We
present an architecture that directly parameterizes functions that fulfill the
constraint of interest, namely the continuity equation.

2.2 mass conservation and the continuity equa-
tion

The laws describing the evolution of classical fluid flows are totally defined
by the conservation of mass, momentum and energy (Hirsch, 2007) and can
be formally expressed in terms of so-called conservation equations. The
introductory text book by Hirsch (2007) describes the conservation law for
any quantity as follows:

‘The variation of the total amount of a quantity [. . .] inside a given
domain is equal to the balance between the amount of that quantity
entering and leaving the considered domain, plus the contributions
from eventual [sinks and] sources generating that quantity.’ (Hirsch,
2007, p.29)

2.2 mass conservation and the continuity equation 13

Figure 2.1: Illustration of the different viewpoints of a moving fluid.

Note that this description not only considers global conservation, but also
hints at the connection to directional movements of the quantity. In general,
a conservation law provides a fundamental link between the changes of a
quantity and its flux, and thus the velocity of the fluid.

Within this thesis, we focus on the conservation of mass (or density)
without any sinks or sources present. The following sections are intended
as an introduction to fluid densities and the continuity equation, a local
and differential formulation of mass conservation. In doing so, we touch
upon three different viewpoints:

1. A low level molecular point of view linking the distribution and
movements of particles to fluid densities and velocities.

2. The Eulerian point of view considering changes of densities within
control volumes fixed in space.

3. The Lagrangian point of view, considering the volume changes of
moving parcels with fixed mass.

An illustration of these different viewpoints is provided in Figure 2.1. The
introduction will be mostly set in a d = 3 dimensional physical space, but
generalizations to higher dimensions are straightforward.

14 background

2.2.1 Kinetic Theory: The Molecular Distribution

The field of kinetic theory shows that the essential conservation laws of
fluids can be derived from a microscopic (or molecular) viewpoint (Born &
Green, 1946). That is, the dynamics of a fluid are described starting from a
set of individual particles. Each particle moves randomly and thus defines
a velocity, be it due to particle interactions, active particle movements, or a
movement of the medium in which the particle resides. The basis of kinetic
theory is the so-called molecular distribution function Ψ in phase space.

Definition 1. (Molecular Distribution Function)
Let x ∈ Ω ⊆ Rd with Ω be the spatial domain, and let t ∈ [t0, T] ⊂ R≥0 be the
time. The molecular distribution function Ψ(t, x, u) is defined such that∫

∆t

∫
∆x

∫
∆u

Ψ(t, x, u)du dx dt (2.5)

is the probability that a molecule with a velocity u ∈ R3 within ∆u = ∆u1∆u2∆u3
occupies the volume ∆x = ∆x1∆x2∆x3 in the time interval ∆t. Consequently,
after marginalizing out u, we obtain with∫

∆t

∫
∆x

Ψ(t, x)dx dt (2.6)

the probability that a particle with any velocity occupies the volume ∆x in the
timeframe ∆t.

Based on the distribution function, it is possible to define common quan-
tities such as the mass density ρ and the (local mean) velocity v. Assuming
that each particle has mass m, and there is a total of N particles, the density
of the fluid is given by the function ρ : [t0, T]×Ω 7→ R≥0, defined by

ρ ≡
∫

mN Ψ(t, x, u) du, [ρ] =

[
kg
m3

]
. (2.7)

The average velocity, which we denote by v, is defined indirectly via the
flux ρv given by the expected momentum

ρv ≡
∫ (

mN Ψ(t, x, u)
)
· u du, [ρv] =

[
kg

m2s

]
. (2.8)

The average velocity v : [t0, T] × Ω 7→ R3 is simply referred to as the
velocity of the fluid at a specified location and time. Note that the velocity
is undefined for a density of zero.

2.2 mass conservation and the continuity equation 15

In this molecular point of view, conservation of mass implies that no par-
ticles appear or disappear. That is, any change in mass within a fixed control
volume must be explained by particles leaving or entering the volume. As
the average movements of particles are described by their (coarse-grained)
velocity, it is clear that mass conservation provides a fundamental link
between density ρ and velocity v.

2.2.2 Continuity Equation for the Conservation of Mass

With the relevant quantities defined, we continue with an introduction
to the Eulerian specification of the continuity equation. We closely follow
the introductions provided by Landau and Lifshitz (2013) and Hirsch
(2007). Similar introductions can be found in any textbook that covers the
fundamentals of computational fluid dynamics.

Let Ωvol ⊆ Ω be an arbitrary volume fixed in space (the control volume),
bounded by a closed surface S (the control surface), with Ω ⊂ R3 being the
space domain. Furthermore, let n ∈ R3 be a vector with unit length that is
normal to the surface S. By convention, this vector n points outwards, as
shown in Figure 2.1. The fluid mass flowing out of the control volume (per
unit time) is given by the surface integral∮

S
(ρv) · n dS,

[
kg
s

]
. (2.9)

A conservation law dictates that the change in a quantity for any control
volume Ωvol must be equal to all incoming fluxes plus possible sources. As-
suming there are no sinks or sources of mass, we can write the conservation
of mass in its integral form as

∂

∂t

∫
Ωvol

ρ dx︸ ︷︷ ︸
change in total quantity

= −
∮

S
(ρv) · n⃗ dS︸ ︷︷ ︸

total incoming flux

. (2.10)

With the divergence theorem (also known as Gauss’ theorem) the surface
integral can be rewritten as volume integral:

∂

∂t

∫
Ωvol

ρ dx +
∫

Ωvol

∇ · (ρv)dx = 0 (2.11)

=
∫

Ωvol

(∂tρ +∇ · (ρv))dx = 0. (2.12)

16 background

We follow the convention that the divergence and gradient are with respect
to the spatial variables, i. e.∇(·) ≡ ∇x(·). As this equation needs to hold for
any arbitrary volume Ωvol it has to be valid everywhere (Arbogast & Bona,
1999, Chapter 1 Proposition 1.39). That is, we can write the conservation
law in its differential form, leading to the PDE referred to as continuity
equation:

∂tρ +∇ · (ρv) = 0. (2.13)

The associated initial value problem (IVP) is commonly written in the
following form, where an initial density ρt0 and the full velocity field v are
known.

Definition 2. (Continuity Equation)
Let Ω ⊂ Rd be an open set, t0 ∈ [0, T) with T ∈ R+, and let v : [t0, T]×Ω 7→

Rd be a given velocity field. A density field ρ : [t0, T]×Ω 7→ R≥0 with initial
density ρt0 : Ω 7→ R≥0 is said to fulfill the continuity equation with respect to v
if it a solution to{

∂tρ(t, x) +∇ · (v(t, x)ρ(t, x)) = 0 (t, x) ∈ [t0, T)×Ω,

ρ(t0, x) = ρt0(x) x ∈ Ω.
(2.14)

We call a pair of v and ρ̂ physically inconsistent if ρ̂ is not a solution to Eq. (2.14).

Classical proofs for the existence and uniqueness of solutions to Eq. (2.14)
commonly rely on basic regularity assumptions on the velocity such as
boundedness and Lipschitz continuity, see e.g. Ambrosio and Crippa (2014).

Note that the continuity equation alone does not explain anything about
the dynamics of a fluid. Rather, it provides a link between averaged particle
velocities and density movements. The actual dynamics of the fluid are
governed by the velocity field, which has to be fully specified for the IVP
in Eq. (2.14). If only the initial velocity is known, additional equations that
dictate the evolution of the velocity have to be provided.

2.2.3 The continuity equation from a Lagrangian perspective

The previous section introduced the continuity equation starting from a
control volume that is fixed in space and time. This approach, termed
the Eulerian perspective, observes the fluid flow from a fixed position. In
contrast, the Lagrangian perspective tracks a fluid by moving along with
it, similar to monitoring from a drifting buoy. More specifically, the fluid

2.2 mass conservation and the continuity equation 17

is described from the perspective of moving infinitesimal volumes with
constant mass, the so-called fluid parcels. Fluid parcels should, however,
not be confused with individual particles, as they still describe the fluid
from a coarse-grained perspective.

In the following, we will express the continuity equation from the La-
grangian point of view, which describes how the density of a parcel changes
alongside its trajectory.

Trajectory of a Parcel. First consider the movements of a Lagrangian
parcel. Let Xt(x) ∈ Ω denote the position of the parcel at time t, with
initial position x. This initial position x can be seen as a continuous label to
identify different parcels. We further know that, by definition, the parcel
should move with the fluid, i. e. its change in position is given by the
velocity v(Xt(x), t). The position of the parcel can then be described as the
solution to an ordinary differential equation (ODE).

Definition 3. (Parcel Trajectory)
Let Ω ⊂ Rd be an open set, t0 ∈ [0, T) with T ∈ R+, and let v : [t0, T]×Ω 7→

Rd be a given velocity field. Then the function X : [t0, T)×Ω 7→ Ω refers to the
position of a parcel with initial position x and starting time t0 if it is a solution to{

∂tXt (x) = v (Xt(x), t) t ∈ [t0, T),

Xt0(x) = x x ∈ Ω.
(2.15)

We call the curve t 7→ X(t) for a fixed x the trajectory of a parcel. We refer to
X : [t0, T]×Ω 7→ Ω as the flow (map) of v starting at time t0.

Given v and a fixed x, the flow exists and is unique following the Cauchy-
Lipschitz Theorem (also known as the Picard-Lindelöf Theorem) under
the assumption that v is bounded and uniformly Lipschitz in time (see
Theorem 6 and Hartman (2002, Chapter 2)).

Density of a Parcel. Let the density of a parcel with initial position x at
time t be given by ρ(t, Xt(x)), i. e. it is now dependend on the position and
path of a parcel. Using the chain rule and ∂tXt = v, the temporal change
in parcel density is given by

dρ

dt
= ∂tρ + (∇ρ) · (∂tXt) = ∂tρ + (∇ρ) · v. (2.16)

The continuity equation can be rewritten by expanding the divergence term
using a generalized product rule:

∂tρ + (∇ · (ρv)) = ∂tρ + (∇ρ) · v + ρ(∇ · v) = 0. (2.17)

18 background

Inserting Eq. (2.16) into the expanded form of the continuity equation
(Eq. (2.17)) then provides us the continuity equation in terms of the total
derivative of ρ, i. e. from the perspective of a moving parcel:

dρ

dt
+ ρ(∇ · v) = 0. (2.18)

Log-Density of a Parcel. An alternative formulation in terms of the log-
density of a parcel (assuming ρ > 0) can be obtained similarly by first
applying the chain rule

d ln ρ

dt
=

1
ρ
(∂tρ + (∇ρ) · v) (2.19)

and then substituting Eq. (2.19) into Eq. (2.17):

d ln ρ

dt
+ (∇ · v) = 0

[
(∇ · v) = tr(Jx(v))

]
. (2.20)

In summary, the (log-)density of a parcel at time t with initial position x
and initial density ρ0(x) is then given as the solution to an IVP.

Definition 4. (Continuity Equation: Lagrangian View)
Let Ω ⊂ Rd be an open set, t0 ∈ [0, T) with T ∈ R+, and v : [t0, T]×Ω 7→ Rd

be a given velocity field. Let X : [t0, T]×Ω 7→ Ω be the flow map of v starting at
time t0 according to Definition 3. A nonzero density field ρ : [t0, T]×Ω 7→ R>0
with initial density ρt0 : Ω 7→ R>0 is said to fulfill the Lagrangian form of the
continuity equation if it is a solution to

d
dt

ln ρ(t, Xt(x)) = −∇ · v(t, Xt(x)) (t, x) ∈ [t0, T)×Ω,

ln ρ(t0, Xt0(x)) = ln ρt0(x) x ∈ Ω.
(2.21)

In fact, solutions to Eq. (2.21) coincide with solutions to the continuity
equation in Definition 2 for nonzero densities if the velocity field follows
basic regularity assumptions such as boundedness and Lipschitz continuity
(see Appendix Section B.1.4).

This formulation allows for an intuitive interpretation from the parcel
perspective. The density of the parcel at any time is defined by (i.) its density
at the initial time point and (ii.) the negative divergence of the velocity. The
divergence affects the volume of the parcel, so the density can increase
or decrease even though each parcel has a constant mass. Consequently,
all we need for inferring the density of a parcel is its initial density, and

2.2 mass conservation and the continuity equation 19

Figure 2.2: Transformation of a parcel with two different velocity fields. A posi-
tive divergence expands the volume, decreasing the density. A nega-
tive divergence contracts the volume, increasing the density.

how much the space was distorted due to the divergence of the velocity.
For an illustration of the effect of vector fields with positive and negative
divergence, see Figure 2.2.

2.2.4 Special Cases of the Continuity Equation

The continuity equation only describes a general transport of the density
with a given velocity field. That is, additional equations defining the velocity
are necessary to fully define the density movements. In a similar vein, a
range of PDEs can be reformulated by deconstructing them into an evolving
density with additional constraints on the velocity. We provide as examples
the heat equation and a subset of the Fokker-Planck equations. Other
dynamics that can be viewed in a similar manner include, for example,
dynamical optimal transport (Benamou & Brenier, 2000), porous medium
equations or collective dynamics (Carrillo et al., 2016; 2019).

Fokker-Planck Equation. The Fokker-Planck equation (FPE) describes the
evolution of the probability of stochastic particles. To recall the FPE, first
consider the stochastic trajectory of a Brownian particle subject to drift.

Definition 5. (Brownian motion with drift; (Särkkä & Solin, 2019, Sect. 5.2))
Let x(t) ∈ Rd be a stochastic process with initial distribution p0 be defined as the

solution to the stochastic differential equation (SDE)

dx = µ(t, x)dt + D(t, x)dWt (2.22)

x(t0) ∼ p0(x(t0)) (2.23)

20 background

where x(t) ∈ Rd is the state, µ(t, x) is a vector-valued function called drift, and
Wt is a Brownian motion with diffusion matrix Q such that

Wtk+1 −Wtk ∼ N (0, Q∆tk).

Theorem 1. (FPE; adapted from Särkkä and Solin (2019, Theorem 5.4))
The probability density p(t, x) of the solutions of the SDE in Definition 5 solves
the Fokker-Plank equation. Specifically, it is a solution to the IVP

∂t p(t, x) = −∇ · [µ(t, x)p(t, x)]

+
1
2 ∑

i,j

∂2

∂xi∂xj

{[
D(t, x)QD(t, x)⊤

]
ij

p(t, x)
}

p(t0, x) = p0(x)

Proof. See Särkkä and Solin (2019) Section 5.2.

Theorem 2. (FPE with time-dependent diagonal diffusion)
Let p(t, x) be a solution to the Fokker-Planck equation 1 with a matrix valued
D(t, x)QD(t, x)⊤ that is diagonal and depends only on time t. That is, let s : t 7→
Rd denote a vector-valued function such that diag(s(t)) = D(t, x)QD(t, x)⊤.
Then, the changes in density ∂t p(t, x) correspond to the changes given by the
continuity equation in Definition 2 with velocity field

v(t, x) = µ(t, x)− s(t)
2
∇
(

ln ρ(t, x)
)

. (2.24)

Proof.

∂tρ(t, x) = −∇ · (ρ(t, x)v(t, x))

= −∇ ·
(

ρ(t, x)
[
µ(t, x)− s(t)

2
∇(ln ρ(t, x))

])
= −∇ ·

(
ρ(t, x)µ(t, x)

)
+

1
2
∇ ·

(
s(t)ρ

1
ρ
∇ρ
)

= −∇ ·
(

ρ(t, x)µ(t, x)
)
+

s(t)
2

∆ρ(t, x)

= −∇ ·
(

ρ(t, x)µ(t, x)
)
+

1
2 ∑

i

∂2

∂x2
i

{[
diag(s(t))

]
ii ρ(t, x)

}

2.3 neural networks 21

The Heat Equation. As another example, consider the heat equation.

Definition 6. (Heat Equation)
Let Ω ⊂ Rd be an open set and t0 ∈ [0, T) with T ∈ R+. A nonzero density field

ρ : [t0, T]×Ω 7→ R>0 with initial density ρt0 : Ω 7→ R>0 is said to fulfill the
heat equation if it is a solution to{

∂tρ(t, x) = κ∆ρ(t, x) (t, x) ∈ [t0, T)×Ω

ρ(t, x) = ρt0(x) x ∈ Ω
(2.25)

The dynamics of the heat equation can be seen as a special case of the
Fokker-Planck equation discussed in Theorem 2, with µ(t, x) ≡ 0 and
s(t) = 2κ. The constant κ ∈ R+ is commonly referred to as the diffusion
coefficient. Consequently, it can also be written as a continuity equation
with the velocity given by

v(t, x) = −κ∇(ln ρ). (2.26)

2.3 neural networks

Deep neural networks have arisen as one of the most prominent methods
and widely used methods for modeling in Machine Learning. Reasons for
the popularity can be found in their ability to train on large amounts of data
through efficient use of modern hardware (Krizhevsky et al., 2012; Raina
et al., 2009), the rich software ecosystem that allows fast prototyping (Abadi
et al., 2016a; Jia et al., 2014; Paszke et al., 2019), the ability to automatically
learn high-level features (LeCun et al., 2015), and finally their generalization
capabilities in heavily overparameterized settings (Nakkiran et al., 2021).

On a fundamental level, a neural network f (x; θ) is a composition of
parameterized functions.

f (x; θ) = fk ◦ fk−1 ◦ · · · ◦ f2 ◦ f1(x), (2.27)

where k− 1 is the total number of hidden layers, f j(x; θ) the j-th layer in
the composition, and x a single datum as input. The parameters θ depend
on the specific structure of the layers. For the sake of notational brevity, we
sometimes omit the explicit dependence on θ, i. e., f j(x; θ) := f j(x).

A standard feedforward neural network is a special case of Eq. (2.27),
where each f j consists of an affine transformation parameterized by Wj ∈

22 background

Rdj×dj−1 and bj ∈ Rdj followed by (nonlinear) element-wise activation
functions σj:

f j(x; θ) = σj(Wj(x) + bj), (2.28)

with the learnable parameters referring to θ = {(Wj, bj)}k
j=1. Parameters are

initialized randomly before training (see e.g. He et al. (2015)). Activations
are commonly chosen to be fixed non-linearities, such as the ReLU (σ(x) :=
max{0, x}) or SiLU/Swish (σ(x) := x · 1

1+exp−x). The last activation σk is
selected based on the domain of the target variable(s) y, and can, for
example, be the identity for unbounded regression or the exponential
function to enforce positive outputs.

The training of neural networks (i. e. optimizing θ) revolves around the
minimization of a differentiable loss function L(θ; X, Y) := L(θ), which
quantifies the difference between the network predictions and the actual
target values. Aside from a data loss, additional terms might be added to
weakly enforce additional constraints or regularization. Neural networks
are typically optimized through gradient-based optimization algorithms
like stochastic gradient descent (SGD) and its variants. A simplified update
scheme for gradient descent can be written as follows, where α ∈ R>0
denotes a small constant commonly referred to as learning rate:

θt+1 = θt − α∇θL(θ) (2.29)

Consequently, efficiently calculating the gradient of function composi-
tions is an integral part of deep learning. This can be accomplished by the
application of the chain rule combined with bookkeeping of the forward-
pass results. The method is more generally known as backpropagation in
context of deep learning and we refer to introductory Machine Learning
textbooks such as Goodfellow et al. (2016) for a detailed treatment of this
topic.

2.3.1 Residual Networks

Building upon the foundation of fully connected neural networks, He et al.
(2016a) and He et al. (2016b) introduced residual networks (ResNets). The
underlying motivation was to build deeper neural network architectures
without suffering from the degradations that occurred for very deep net-
work architectures. In a residual network, each additional layer has to learn

2.3 neural networks 23

x1

x2

x3

Input
layer

Hidden
layer h1

Hidden
layer h2

y

Output
layer

Figure 2.3: Illustration of a neural networks with 3 input neurons, 2 hidden
layers, and a single output neuron.

only a correction term of the previous prediction. Following the notation of
Eq. (2.27), each residual layer can be written as

f j(x) = x + gj(x), (2.30)

where each gj is a sequence of dense layers that keeps the dimensionality,
i. e. dim(x) = dim(g(x)). The hidden states hj can then be written as an
update equation:

hj+1 = hj + gj(hj), h0 = x. (2.31)

In this notation, an interesting connection to the solution of dynamical
systems becomes apparent. Instead of discrete layers, consider gj(x) as a
function continuous in j, i. e. gj(x) : [0, k]×Rd → Rd and let, with some
abuse of notation,

gj(x) := ∆j · gj(x),

with ∆j = 1. In addition, let hj := hj(x), as the hidden value h depends on
both j and the initial input x. Then each residual layer from Eq. (2.30) re-
sembles an explicit Euler step for solving the ordinary differential equation

∂jhj(x) = g(j, hj(x)), h0(x) = x, (2.32)

with the input x serving as initial condition. That is, each layer represents
the dynamics at a discrete time step j. This perspective of modern neural

24 background

networks as a numerical discretization of a differential equation was first
established by Weinan (2017) and subsequent work took advantage of this
view to propose new network designs (Haber & Ruthotto, 2017; Y. Lu et al.,
2018; Ruthotto & Haber, 2020).

2.3.2 Infinitely Deep Neural Networks: Neural-ODEs

Motivated by the link between residual networks and ODEs, R. T. Q. Chen
et al. (2018) propose to explicitly learn continuous dynamical systems for
modeling data, resulting in neural ODEs. Instead of only interpreting a
neural network as a discretized solution to a dynamical system, a neural
ODE is directly defined as f (x; θ) = hT(x; θ) with hT being the solution to
the initial value problem{

∂tht(x; θ) = g(t, ht(x; θ); θ) t ∈ [t0, T),

ht0(x; θ) = x x ∈ Rd,
(2.33)

with 0 < t0 < T, where g : [t0, T)×Rd 7→ Rd is a trainable neural network
that takes as input continuous time t and a hidden state. The hidden state
ht : [t0, T]×Rd 7→ Rd is a function that evolves over time t and depends
on the initial input x.

Note that this resembles the trajectory of a Lagrangian parcel from
Definition 3, although in a higher dimensional space. Similarly to the parcel
trajectory, the existence and uniqueness of Eq. (2.33) require Lipschitz
continuous and bounded dynamics g. This is in practice easily achieved
with common neural network architectures.

The solution of Eq. (2.33) can be obtained with any numerical ODE
solver. R. T. Q. Chen et al. (2018) specifically suggest adaptive Runge-Kutta
methods, as they can automatically adapt their precision depending on the
dynamics given by the network.

For differentiating through the ODE solution, methods can be mainly
divided into two categories: The discretize then optimize (DTO), and the
optimize then discretize (OTD) approach. DTO relies on first discretizing
the solution with a numerical solver and then backpropagating through
it. However, this approach may result in a large computational graph and
high memory requirements due to the many individual steps of the solver.
To avoid this, R. T. Q. Chen et al. (2018) propose an efficient autograd
implementation of the adjoint sensitivity method (Cacuci, 1981a; 1981b;
Pontryagin, 1987) to calculate the gradients ∇θℓ(f (x; θ), y), which is an
OTD approach. A comprehensive discussion and excellent overview of

2.4 normalizing flows 25

neural differential equations and the calculation of their gradients can be
found in Kidger (2021).

2.4 normalizing flows

Remark. The Lagrangian flow networks presented in Chapter 4 rely heavily on
concepts related to Normalizing Flows (NFs). In this section, we provide a general
overview of (conditional) NFs, and go into some detail for the invertible residual
networks that are used in Chapter 4. In addition, continuous Normalizing Flows
are relevant in context of the semi-Lagrangian data assimilation, which serves as a
baseline comparison to Lagrangian flow networks. We note that parts of this section
are based on the related work of our publication Torres et al. (2024).

Normalizing Flows (NFs) are a general approach to warping a simple
probability distribution into a more complex target distribution with invert-
ible and differentiable transformations, i. e., diffeomorphisms. Let Z ∈ Rd

be a random variable with a known density function Z ∼ pZ(z) and let
X = T −1(Z; θ) where T is a diffeomorphism with trainable parameters. We
will often omit the explicit dependence of T on the parameters for the sake
of notational brevity. With a change of variables the probability density
of X can be expressed in terms of the base density pZ, the map T , and the
determinant of its Jacobian:

pX (x; θ) = pZ (T (x))
∣∣det JT (x)

∣∣. (2.34)

A key property of bijections is that the Jacobian determinant can be factor-
ized into their individual Jacobian determinants. That is, the determinant
of the Jacobian of T = T1 ◦ · · · ◦ Tk−1 ◦ Tk is given by

∣∣det J (T1 ◦ · · · ◦ Tk−1 ◦ Tk) (x)
∣∣ = ∣∣ k

∏
j=1

det JTj(hj−1)
∣∣ (2.35)

where hj = Tj ◦ Tj−1 ◦ · · · ◦ T1(x) are the intermediate maps of x and
h0 = x. The Jacobian determinant of T can then be computed cheaply
as long as the layer-wise Jacobian determinants are cheap. Algorithm 1

provides a description for evaluating the (log-) density at a single data
point, and Algorithm 2 describes the sampling process (optionally also
providing the density of the sample). A visualization of the transformations
in both directions is shown in Fig. 2.4. To avoid the expensive computation
of the Jacobian determinant with autograd, NF layers typically rely on

26 background

hkz = hk−1

T −1

k
hj hj−1

T −1

j
. . .

T −1

j+1
h0. . .

T −1

1
= x

Z ∼ pZ(z) = N (0, I) Hj ∼ pHj (hj) X ∼ pX(x)

h0 = xhj−1 . . .
T1

hjhk−1 . . .
Tj+1 Tj

hkz =
Tk

Figure 2.4: A Normalizing Flow warps a known base distribution pZ into a more
complex distribution pZ via diffeomorphisms T .

transformations with Jacobian determinants that are cheap to evaluate (and
differentiate). The Jacobian determinant of the inverse can be computed by
the Jacobian determinant of forward transformation with the identity

det
(

JT −1(z)
)
= det

([
JT (x)

]−1
)
=

1
det (JT (x))

, (2.36)

with x = T −1(z).
For a comprehensive review of Normalizing Flows, their applications,

and various extensions, we refer to Kobyzev et al. (2020) and Papamakarios
et al. (2021).

Direction of the Flow. As Normalizing Flows are based on invertible
transforms, it does (formally) not matter which direction is the forward
(T) or inverse (T −1) transformation. In the NF literature, the generative
direction Z → X is commonly referred to as the forward direction of
the flow, regardless of the actual implementation. In practice, inverting
a layer often adds additional computational costs if no analytical inverse
is available. Consequently, one direction of the transformation might be
preferable. To add consistency between notation and implementation, we
thus denote the direction that should be more efficient as the forward
transformation T . In our setting, the interest lies in evaluating the density
pX efficiently. Thus, we define that the forward transfom (or forward flow)
T corresponds to the direction X→ Z.

2.4 normalizing flows 27

Algorithm 1 Evaluating the log-density of a Normalizing Flow.

Input: xp; T1, T2, . . . , Tk; pZ(z);
Output: Log-Density ln pX(xp; θ)

1: h0 ← xp
2: logabsdet← 0
3: for j← 1 to k do
4: hj ← Tj(hj−1)

5: logabsdet← logabsdet + ln
∣∣det JTj(hj−1)

∣∣
6: end for
7: z← hk
8: logdensity← ln pZ(z) + logabsdet
9: return logdensity

Algorithm 2 Sampling from a Normalizing Flow.

Input: T1, T2, . . . , Tk; pZ(z);
Output: Sample xs of X ∼ pX(x; θ); Log-Density ln pX(xs; θ)

1: zs ← sample from pZ(z)
2: hk ← zs
3: logabsdet← 0
4: for j← k to 1 do
5: hj−1 ← T −1

j (hj)

6: logabsdet← logabsdet + ln
∣∣det JT −1

j (hj)
∣∣

7: end for
8: xs ← h0
9: logdensity← ln pZ(zs) + logabsdet

10: return xs, logdensity

28 background

Jacobian Structure. Normalizing Flow layers are sometimes classified in
terms of the structure of the Jacobian matrix (Kobyzev et al., 2020; Papa-
makarios et al., 2021), as this structure can simplify the computation of
the determinant. For example, if the Jacobian matrix is diagonal (element-
wise transformations) or triangular (autoregressive transformations), the
determinant is given by the product of the diagonal Jacobian entries. If
instead no restrictions are put onto the Jacobian structure, this is commonly
referred to as a free-form Jacobian.

Architectures for Normalizing Flows. As we show in the following sec-
tion, it is possible to build invertible neural networks for Normalizing Flows
that resemble multilayer perceptrons. That is, one can use (invertible) affine
transformations followed by (invertible) elementwise non-linearities. How-
ever, unlike general neural network architectures, the affine transformations
for bijective layers retain the dimension of the input by necessity. As a con-
sequence, they are limited in their flexibility, especially for low-dimensional
inputs. Even if paired with common non-linearities such as the tanh, one
would require many such layers in practice. Invertible residual networks
(Behrmann et al., 2019) provide one way to overcome this limitation, as they
allow intermediate mappings into high-dimensional spaces. Another ap-
proach to bypassing the limitation is to rely on more flexible and learnable
nonlinearities (Durkan et al., 2019; Negri et al., 2023).

2.4.1 Bijective Layers for Normalizing Flows

This subsection provides a brief overview of the bijective transforms used
in Chapter 3, covering basic affine transforms and transforms based on
invertible residual networks.

2.4.1.1 Affine Layers

The simplest bijective layers are based on affine transformations

TAFF(x) = Wx + b,

T −1
AFF(z) = W−1(z− b), (2.37)

|det (JTAFF(x)) | = |det W| ,

where x ∈ Rd, b ∈ Rd and W ∈ Rd×d is an invertible matrix with det(W) ̸=
0. To parameterize such invertible matrices, one may rely on common
matrix decompositions, such as the QR, SVD, or LU decomposition. In

2.4 normalizing flows 29

the following we provide an overview of some special instances of affine
bijective layers.

Layer Normalization. As an alternative to batch normalization, Kingma
and Dhariwal (2018) propose the use of the so-called activation normaliza-
tion (actnorm). The motivation is a more stable normalization layer for small
mini-batch sizes. It is based on an affine transformation with a simple shift
and scale given by

TLN(x) = diag(s) x + b,

T −1
LN(z) = diag(1/s) (z− b), (2.38)

|det (JTLN(x)) | =
d

∏
i=1

si,

with s ∈ Rd
>0 and b ∈ Rd.

The shift b and the scale s are initialized with the mean and standard
deviation of the first minibatch passed to the layer. After this initialization,
both vectors are left as freely learnable parameters.

Orthogonal Layers. Linear transforms with orthogonal matrices can be
parameterized indirectly via Householder reflections. To our knowledge,
Tomczak and Welling (2016) were the first to make use of Householder
transforms for Normalizing Flows, with the objective of improving vari-
ational autoencoders. Specifically, any orthogonal d × d matrices can be
decomposed into a product of d Householder matrices (Uhlig, 2001), where
a Householder matrix is defined as

H = Id − 2vv⊤, (2.39)

with v ∈ Rd and ∥v∥ = 1. An invertible Householder transformation can
then be constructed with

TH(x) = Hx = x− 2v(v⊤x) (2.40)

T −1
H (z) = H−1z. (2.41)

The determinant of a Householder matrix is -1 (see e.g Matrix Cookbook
Eq. 24 (Petersen, Pedersen, et al., 2008)), and thus

|det(JTH(x))| = 1. (2.42)

30 background

Householder transforms further enable a range of more flexible bijective
layers, such as Sylvester transforms (Berg et al., 2018) or linear transforma-
tions based on QR (Hoogeboom et al., 2019) and SVD (Mathiasen et al.,
2020) decompositions.

SVD Layers. With orthogonal matrices available, general parameteriza-
tions of matrices based on the singular value decomposition (SVD) can be
used. That is, any (in this case square) matrix W can be decomposed with
an SVD as

W = USV⊤, (2.43)

where U ∈ Rd×d and V ∈ Rd×d are orthogonal matrices, and S = diag(s)
is a positive diagonal matrix (Strang, 2022) with diagonal entries s ∈ Rd

≥0.
Note that we restrict ourselves to square matrices W ∈ Rd×d and positive
singular values s ∈ Rd

>0 since the resulting matrix should be invertible.
The orthogonal transforms, i. e. V⊤x and Uz with z = SV⊤x, are each
implemented with d consecutive Householder projections. The entries in
s ∈ Rd

>0 provide the singular values of A. This leads to a bijective SVD
transformation given by

TSVD(x) = Wx = USV⊤x (2.44)

T −1
SVD(z) = VS−1U⊤z. (2.45)

The determinant is given by

|det(JTSVD(x)| = |det(S)| =
d

∏
i=1

[S]ii. (2.46)

A conceptually similar parameterization for linear layers is explored in
Zhang et al. (2018). Their focus lies, however, on controlling the Lipschitz
constant of general, non-invertible, networks for stabilizing their gradients.

In our implementations used in Chapter 4 we enforce positive values of s
with an exponential transform, and do not restrict the Lipschitz constant of
the SVD layers.

2.4.1.2 Invertible Residual Networks

In Section 2.3.1, the similarity of residual neural networks to Euler dis-
cretizations of a differential equation was discussed. Recall that solution
maps to differential equations such as Eq. (2.32) are bijective under mild
regularity assumptions for the dynamics, which is a consequence of the

2.4 normalizing flows 31

classical Cauchy-Lipschitz (or Picard-Lindelöf) Theorem. Consequently, it
is reasonable to consider residual layers of the following form for invertible
architectures

T (x) = x + g(x), (2.47)

with g : Rd 7→ Rd given by a neural network. Similar to before, the complete
network would resemble a forward Euler discretization. However, while the
exact solution to the ODE in Eq. (2.32) is invertible, the discretized solution
given by the residual network is not necessarily invertible.

One way to ensure invertibility of Eq. (2.47) is proposed by Behrmann et
al. (2019), with the resulting model being called invertible residual networks
(i-ResNet). To do so, they leverage that Lip(gj) < 1 is a sufficient condition
for invertibility due to the Banach fixed-point theorem. It is then guaranteed
that a fixed-point iteration at each layer converges to the inverse of the
residual layer in Eq. (2.47).

Invertible residual network layers. Given a neural network g : Rd 7→ Rd

with Lip(g) < 1, an invertible residual network layer is constructed as

TRES(x) = x + g(x) (2.48)

T −1
RES(z) = lim

m→∞
h(m). (2.49)

where the inverse is obtained as the fix point solution to

h(0) = z, h(m+1) = z− g(h(m)). (2.50)

Enforcing the Lipschitz constant. The challenge is then to enforce the
Lipschitz constant of a neural network in practice. Behrmann et al. (2019)
rely on the fact that the Lipschitz constant of a function composition is
upper-bounded by the product of the individual functions’ Lipschitz con-
stants. Thus, they (i) use activation functions with a Lipschitz constant of
one (e.g. tanh) and (ii) apply spectral normalization (Miyato et al., 2018) to
ensure that the affine transformations’ Lipschitz constant remains below
one. That is, given an estimate ŝj ≈ ∥Wj∥ obtained by the power iteration
method, each layer of g is normalized via

Wj :=

cWj/ŝj if c/ŝj < 1,

Wj else,
(2.51)

with c < 1 as a scaling parameter, resulting in ∥Wj∥ < 1 and thus
Lip(g) < 1. It should be noted that ŝj is an underestimate and thus

32 background

does not guarantee the bound on the Lipschitz constant. However, in
practice, it was shown that the estimate is still sufficient to enforce the
constraint reliably. In the implementation used for the LFlows in Chap-
ter 4, as well as in our python package “Flow Conductor”, we enforce
the Lipschitz constant each time the weights are accessed. The code is
based on an adjusted version of the PyTorch spectral normalization hook
torch.nn.utils.parametrizations.spectral_norm 1, which is based on
Miyato et al. (2018).

Estimating the Jacobian Determinant. A difficulty in i-ResNets is the
efficient computation of the Jacobian determinant in high dimension. For
the low-dimensional settings considered in this thesis (≤ 3 dimensions), it is
still feasible to compute the Jacobian and its determinant by brute force (i. e.
with automatic differentiation). For experiments concerning LFlows, we
generally relied on a brute force computation of the Jacobian determinant
for all layers relying on invertible residual networks, unless explicitely
stated otherwise.

For the sake of completeness, we shortly discuss the estimation of the
Jacobian determinant of invertible residual networks which would become
necessary in higher-dimensional settings. While there is no efficient closed-
form of the Jacobian determinant for i-ResNets, it was shown that the log
absolute Jacobian determinant corresponds to the Power series

ln
∣∣det(JTRES(x))

∣∣ = ∞

∑
i=1

(−1)i+1 tr([JT (x)]i)
i

. (2.52)

Behrmann et al. (2019) propose to efficiently estimate the trace of the
matrix power using the stochastic Hutchinson trace estimator (Hutchinson,
1989). For performance reasons, the infinite sum is usually cut off after
5-10 iterations, resulting in a biased estimate of the Jacobian determinant.
Subsequent work solved this problem by randomizing the infinite sum,
leading to an unbiased estimator (R. T. Chen et al., 2019).

Invertible DenseNet. For improving the model performance of i-ResNets,
Perugachi-Diaz et al. (2021) propose invertible DenseNets (i-DenseNets).
These provide an alternative architecture of the (previously fully connected)
Lipschitz-constrained networks g. Specifically, i-DenseNets increase the hid-
den dimension within the residual blocks via concatenations, and accord-

1 https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.spectral_norm.
html; Accessed 26.03.2024.

https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.spectral_norm.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.spectral_norm.html

2.4 normalizing flows 33

ingly adjust the activations such that the required Lipschitz constraints are
still fulfilled. Consider the following high-level structure of an i-DenseNet
residual layer:

g(x) = Wm+1 ◦ϕn ◦ · · · ◦ϕ1(x), (2.53)

with ϕ denoting a DenseBlock. Each DenseBlock is a concatenation of the
input with a non-linear transformation of the input:

ϕ1(x) =

[
x

σ (W1x)

]
, ϕ2 (h1(x)) =

[
h1(x)

σ (W2ϕ1(x))

]
. (2.54)

As the output of g must be of the same dimension as the input, the
final transformation a final linear transformation Wm+1 maps the high-
dimensional embedding back to the d-dimensional space. We refer to the
number of DenseBlocks as the depth of the i-DenseNet, and to the number
of added dimensions as the growth of the i-DenseNet.

It can be shown that the Lipschitz constant of a general concatenation of
two function is upper bounded as follows:

ϕ(x) =

[
f1(x)

f2(x)

]
Lip(ϕ) ≤

√
Lip(f1)2 + Lip(f2)2. (2.55)

As f1 and f2 are in this case neural networks constrained to a Lipschitz
constant of 1, the Lipschitz constant of the concatenation is the upper bound
by
√

2. Dividing by this then enforces Lip(ϕ) ≤ 1.
In addition, Perugachi-Diaz et al. (2021) introduce the so-called concate-

nated LipSwish (CLipSwish) activation function, which is based on LipSwish
activations (R. T. Chen et al., 2019). LipSwish is a slight variation of the
Swish activation that ensures Lip(LipSwish) = 1. The elementwise formu-
lation of LipSwish is given by

LipSwish(x) =
Swish(x)

1.1
=

1
1.1

(
x

1
1 + e−x

)
. (2.56)

CLipSwish further adds concatenations to avoid the small gradients of
LipSwish for large negative inputs:

σ(x) := CLipSwish(x) =

[
LipSwish(x)/1.004

LipSwish(−x)/1.004

]
=

[
σ1(x)

σ2(x)

]
, (2.57)

where the factor 1/1.004 again ensures Lip(CLipSwish) = 1. This factor is
obtained via

Lip(σ) = sup
x
∥Jσ(x)∥2, (2.58)

34 background

which corresponds to the largest singular value of Jσ, i. e.. the square root
of the largest eigenvalue of (Jσ(x))(Jσ(x))⊤. The matrix (Jσ(x))(Jσ(x))⊤

turns out to be diagonal, as both of the concatenated functions in σ are
elementwise transformations. Consequently, the largest eigenvalue is given
by the largest entry of (Jσ(x))(Jσ(x))⊤:

Lip(σ) = sup
x

max
j

√
λj = sup

x
max

j

√√√√∂σ1,j

∂xj

2

+
∂σ2,j

∂xj

2

. (2.59)

The authors of Perugachi-Diaz et al. (2021) state that the value of 1.004 for
CLipSwish was empirically estimated.

2.4.2 Continuous Normalizing Flows

Analogous to Normalizing Flows, the bijections obtained by numerically
solving Neural-ODEs can be used to flexibly parameterize probability
distributions (R. T. Q. Chen et al., 2018). Such models are referred to as
continuous Normalizing Flows (CNFs).

In the generative direction, a CNF can be described as follows. Let
Z ∼ pZ be a known d-dimensional base distribution (e.g. pZ = N (0, I))
with a sample denoted as z ∈ Rd. In addition, let g : [t0, T]×Rd 7→ Rd be a
neural network. A continuous Normalizing Flow then defines a continuum
of probability densities Xt ∼ pXt for 0 ≤ t0 < T as the solutions to the
initial value problem

d
dt

ln pXt(h(t, z)) = −tr
(∂

∂h
g
(
t, h(t, z)

))
t ∈ [t0, T)

ln pX0(0, h(0, z)) = ln pZ(h(0, z)), z ∈ Rd,
(2.60)

where h : [t0, T]×Rd 7→ Rd is the intermediate output of a neural ODE
and as such a solution to the IVP{

∂th(t, z) = g(t, h(t, z)), t ∈ [t0, T),

h(0, z) = z, z ∈ Rd.
(2.61)

Although a continuum of probability densities is parameterized, common
probability density estimation tasks often only care about the final density
pXT (x) for an arbitrarily chosen T ∈ R>0, which can for example be used
to approximate the data distribution for generative modeling tasks.

For evaluating the density pXT (x), Eq. (2.60) has to be solved backwards
in time (x = xT → z), such that the initial density at the departure point, i. e.

2.4 normalizing flows 35

pZ(z), as well as the density changes along the trajectory can be evaluated.
For sampling from a CNF, Eq. (2.61) is to be solved in forward direction
with the initial condition z being a random sample from the known base
distribution pZ.

The main limitation of CNF-based methods is the computational cost
of evaluating the input derivative of a network potentially hundreds of
times in an adaptive ODE solver. As a possible remedy (Finlay et al.,
2020; Onken et al., 2021) suggest vector field regularizations motivated
by optimal transport theory. Specifically, straight trajectories are enforced
via transport penalties, simplifying the dynamics for the numerical solver,
and consequently enabling cheaper gradient computations during training.
Other follow-up work considers the use of the Hutchinson trace estimator
(Hutchinson, 1989) for faster divergence calculations (Grathwohl et al.,
2019).

In our implementation of the SLDA in Chapter 4 we estimate the diver-
gence exactly by brute force in 2D settings. In 3D settings we make use
of the Hutchinson trace estimator similar to Grathwohl et al. (2019). For
evaluating the density at multiple different time points in parallel, it is also
necessary to solve multiple ODEs in parallel with different time intervals.
To do so, we leverage the trick provided in Appendix F of R. T. Chen et al.
(2020), which essentially reparameterizes the time of each system by a
dummy variable such that we may globally integrate from 0 to 1.

2.4.3 Conditional Normalizing Flows

A parameterization for conditional distributions pX(x|c) can be obtained by
additionally conditioning the parameters of T on another variable c ∈ Rdc

through a hypernetwork (Ha et al., 2017). That is, the bijective layers T (x)
are simply exchanged with conditional bijective layers T (x, c) with c being
the condition. This is commonly called a conditional Normalizing Flow
(Ardizzone et al., 2019; Kobyzev et al., 2020). Conditioning bijective layers
is often straightforward, and the process is analogous for a wide range of
layers. For the hypernetwork that maps the condition c to the parameters of
T we use residual neural networks, with the number of layers and hidden
units being tunable hyperparameters.

36 background

2.4.3.1 Simple Conditional Transforms.

We illustrate the idea of conditional layers on two simple affine layers. The
generalization to other layers is often straight-forward.

Orthogonal Layers. Conditional orthogonal layers can be constructed
by conditioning the invertible Householder transformations. Let c ∈ Rdc

denote the conditioning value. Then a conditional Householder transform
is given by

TH(x, c) = H(c)x = x− 2v(c)
(

v(c)⊤x
)

(2.62)

T −1
H (z, c) = H(c)−1z =

(
Id − 2v(c)v(c)⊤

)−1

z, (2.63)

where v(c) has length 1, i. e. v(c) = v∗(c)
||v∗(c)||2 , and v∗(c) : Rdc 7→ Rd is a

neural network.
The Jacobian determinant remains the same as in the unconditional

setting:
|det(JTH(x, c)| = 1. (2.64)

SVD Layers. Analogous to the unconditional SVD layers, the transforma-
tion is given by

TSVD(x, c) = U(c)S(c)V(c)⊤x (2.65)

T −1
SVD(z, c) = V(c)S(c)−1U(c)⊤z. (2.66)

The orthogonal transformations are again implemented via d consecutive
Householder transformations, but this time conditioned on c. The diagonal
entries of S are given by a neural network followed by an exponential
transform to ensure positivity.

The determinant is given by

|det(JTSVD(x, c))| = |det(S(c))| =
d

∏
i=1

[S(c)]ii. (2.67)

2.4.3.2 Conditional Invertible Residual Networks

While many bijective layers are straightforward to condition, invertible
residual networks pose an exception. For i-ResNets and thus i-DenseNets

2.4 normalizing flows 37

it is not possible to directly parameterize the matrix weights by another
neural network.

Recall from Section 2.4.1.2 that a Lipschitz constant smaller than 1 has to
be enforced for i-ResNets. In the unconditional setting, this is done by spec-
tral normalization, i.e. the estimation of the spectral norm and subsequent
projection of the matrix weights (Behrmann et al., 2019; Perugachi-Diaz
et al., 2021). If the weights are not freely learnable parameters, but instead
outputs of a hyper-network, this is not directly applicable.

To avoid this issue, we propose to directly pass the condition c ∈ Rdc

(or an embedding of this condition) as an additional input to the i-ResNet,
effectively conditioning the first layer. Let g : Rd+dc 7→ Rd be a layer with
augmented input and Lipschitz constant K < 1. It is then straightforward
to show that for a fixed condition c the function gc : Rd 7→ Rd also has a
Lipschitz constant of at most K.

Theorem 3. Let x, y ∈ Rdtotal be vectors such that x =
[xin

xcond

]
, with xin ∈ Rdin

and xcond ∈ Rdcond , and let dtotal = din + dcond. Further, let f : Rdtotal 7→ Rd be
a Lipschitz continuous function with Lipschitz constant K, i. e.

∥ f (x)− f (y)∥2 ≤ K∥x− y∥2 ∀x, y ∈ Rdtotal . (2.68)

Then fc : Rd 7→ Rd with fc := f ([xin
c]) for a fixed c ∈ Rdcond has a Lipschitz

constant of at most K.

Proof. ∣∣∣∣ f ([xin
xcond

])
− f

([yin
ycond

])∣∣∣∣
2 ≤ K∥

[xin
xcond

]
−
[yin

ycond

]
∥2

⇒|| f ([xin
c])− f ([yin

c])||2 ≤ K∥[xin
c]− [yin

c]∥2 = K∥xin − yin∥2 (2.69)

⇒|| fc(xin)− fc(yin)||2 ≤ K∥xin − yin∥2

Conditional i-ResNets. Let g be a neural network with Lip(g) < 1. A
conditional i-ResNet and i-DenseNet layer can then be constructed with

TRES(x, c) = x + g ([x
c]) (2.70)

T −1
RES(y, c) = lim

m→∞
h(m). (2.71)

where the inverse is obtained as the fix point solution to

h(0) = y, h(m+1) = y− g
([

h(m)

c

])
. (2.72)

38 background

We are not aware of any other use of such conditional layers in the litera-
ture, but note that this kind of conditioning for i-ResNets was mentioned,
but not used or explored further, by Biloš et al. (2021).

2.5 physics informed neural networks 39

2.5 physics informed neural networks

Remark. In this section we provide an introduction to Physics-informed Neural
networks (PINNs), a general framework for enforcing PDEs as constraints in
neural networks. This introduction mainly serves as the background for the particle-
density PINNs proposed in Chapter 3. We note that parts of this section are based
on the related work section of our first contribution Arend Torres et al. (2022).

Despite the relevant progress in numerical PDE solvers, a seamless in-
corporation of data remains an open problem (Freitag, 2020; Kalnay et al.,
2007). To fill this gap, physics-informed neural networks (PINNs) have
emerged as an attractive alternative to classical methods for data-based
forward and inverse solving of PDEs. The general idea of PINNs is to use
the expressive power of modern neural architectures to solve PDEs in a
data-driven way; see (Raissi et al., 2019). To do so, a PDE-based penalty
is introduced in the optimization of the neural network. By minimizing
this penalty on points sampled throughout the signal domain, the PDE
is (weakly) enforced. As the evaluation of this PDE-penalty is based on
automatic differentiation, PINNs are straightforward to implement in both
forward and inverse settings.

Consider time-dependent parameterized PDEs of the general form

f (t, x|λ) := ∂tu(t, x) + P(u|λ) = 0, (2.73)

where u is a (possibly vector-valued) function of interest, P is a non-linear
operator parameterized by λ, and ∂t is the partial time derivative w.r.t. time
t ∈ [0, T]. The position x ∈ Ω is defined in a spatial domain Ω ⊆ Rd. The
PDE is subject to initial condition gic and boundary conditions g∂Ω

u(0, x) = gic(x), u(t, x) = g∂Ω(x), (2.74)

for x ∈ ∂Ω and t ∈ [0, T]. In classical forward problems, the interest lies in
simulating u in a setting where it is fully specified, i. e. with fully known
initial conditions, boundary conditions, and λ.

Although applicable in well-posed settings, PINNs mainly shine in ill-
posed settings with some information missing. That is, the initial conditions
might be unknown, the boundary conditions might be unknown, and even
the PDE parameters λ might be unknown, giving the problem an inverse
aspect. Instead, only a small set of N noisy observations uobs

u(t(i), x(i)) + ϵ(i) = u(i)
obs (2.75)

40 background

with noise

||ϵ(i)||22 ≪ ||u(i)||22 ∀i ∈ {0, 1, . . . , N} (2.76)

is given.
The goal of PINNs is to approximate u(t, x) with a neural network.

In addition to directly fitting the network to the observations, the PDE
Eq. (2.73) is enforced by minimizing a penalty. Possibly known initial or
boundary conditions are generally enforced by augmenting the dataset with
noise-free observations, although recent work recommends hard-encoding
boundary conditions in the network (Sukumar & Srivastava, 2021).

2.5.1 Parameterization and Loss Functions

In a PINN, u(t, x) (and thus f (t, x)) is approximated by the network uθ(t, x).
Parameters θ are adjusted by minimizing the reconstruction loss for the
available observations (Lobs), and adding a penalty term for each additional
constraint available. That is, (i) to enforce the PDE in the domain (L f), and
(ii) for the boundary conditions (Lb) and (iii) for the initial conditions (Li):

θ = arg min
θ∈Θ

[
Lobs(D, θ) + w1Lpde(θ) + w2Lbc(θ) + w3Lic(θ)

]
, (2.77)

with loss weights wj ∈ R≥0, and training data D = (tobs, Xobs, Uobs). Each
loss term works as a penalizer to weakly enforce the given constraint, be
that a boundary condition or the PDE itself.

Let ℓ(ŷ, y) be a non-negative loss function, such as, for example, the
squared Euclidean distance ℓ(ŷ, y) = ||ŷ− y||22. Then, similar to the formu-
lation of Sirignano and Spiliopoulos (2018), individual losses commonly
employed in PINNs are given by or proportional to:

Lobs(X, t, uobs, θ) =
1
N

N

∑
i=0

ℓ(uθ(t(i), x(i)), u(i)
obs), (2.78)

Lpde(θ) =
1

|[0, T]×Ω|
∫ T

0

∫
Ω
∥ fθ (t, x|λ)∥2

2 dx dt, (2.79)

Lbc(θ) =
∫ T

0

∫
∂Ω

ℓ
(

uθ(t, x), g∂Ω(x)
)

dx dt, (2.80)

Lic(θ) =
∫

∂Ω
ℓ (uθ(0, x), gic(x))dx. (2.81)

For sufficiently high weights and a sufficiently flexible neural network, the
losses enforce the PDE and other constraints within the domain. In practice,

2.5 physics informed neural networks 41

the integrals are approximated by points sampled within the signal domain
or its boundary. Of particular interest are the so-called collocation points

{t(i)pde, x(i)pde}
Npde
i=0 selected to approximate Lpde:

Lpde(θ) ≈
1

Npde

Npde

∑
i=0
∥ fθ

(
t(i)pde, x(i)pde|λ

)
∥2

2. (2.82)

Initial approaches for selecting the collocation points in PINNs relied on a
fixed grid (Lagaris et al., 1998; 2000; Rudd, 2013). Follow-up work proposed
stochastic estimates of the integral via (quasi-) Monte Carlo methods (J.
Chen et al., 2019; L. Lu et al., 2021; Sirignano & Spiliopoulos, 2018) or Latin
Hypercube sampling (Raissi et al., 2019). In general, since only a discrete
number of collocation points can be selected for the continuous domain,
resampling these collocation points during training can be performed to
cover (in expectation) the entire domain.

2.5.2 Application Settings

PINNs can be easily adapted to multiple different settings without requiring
significant changes to the method. We mainly consider two important
settings:

1. If λ is known, the PDE is fully specified and the objective is to find
a solution u in a data-driven manner by training a neural network.
The PDE takes the role of a regularizer, where the particular physical
laws provide the prior information. This is similar to classical data
assimilation settings. Applications range widely, from spatiotemporal
models for turbulent flows in fluid dynamics (Angriman et al., 2023)
to compartmental models in epidemiology (Berkhahn & Ehrhardt,
2022; Ning et al., 2023).

2. If λ is (partially) unknown, an inverse aspect is added to the problem
setting. That is, the interest lies in inferring λ from observations by
including them in the optimization process. For example, physical
properties such as the viscosity coefficient of a fluid might be learned
(Jagtap et al., 2020).

As a simple example for both settings, consider the movements of a
pendulum, where the angle u(t) is a function of time and governed by the
equation

f (t|λ) :=
d2u(t)

dt2 + λ sin(u(t)).

42 background

In the first settings, very few noisy observations of angles at different
time points are given and the parameter λ is known. A vanilla neural
network easily overfits the problem, as shown in Fig. 2.5. By additionally
regularizing the network with a PDE penalty, the generalization of the
network is substantially improved, as shown in Fig. 2.6.

If λ is also unknown as in the second setting, it can still be inferred from
the data with a PINN. The parameter λ is initialized with a guess and left
as a freely learnable parameter. By training the network with a PDE loss,
the λ parameter can be recovered given sufficient data, as shown in Fig. 2.7.

Figure 2.5: Approximation of the angle of a pendulum by a neural network given
noisy measurements. Without any regularization, the network overfits
the scarce and noisy data.

Figure 2.6: Approximate solution to the equation of motion of a pendulum by

a PINN given noisy measurements and the PDE f (t|λ) := d2u(t)
dt2 +

λ sin(u(t)). Collocation points were selected quasi-randomly.

2.5.3 Early Work and Origin

Solving PDEs minimizing penalties in neural networks was, to the best of
our knowledge, pioneered in the 1990s by Dissanayake and Phan-Thien

2.5 physics informed neural networks 43

Figure 2.7: Inverse learning of the parameter λ given noisy measurements of
pendulum angles with a PINN. Collocation points were selected quasi-
randomly. Top: The learned function uθ(t) given noisy observations.
Bottom: The estimated parameter λ as a function of training iterations.

(1994) and van Milligen et al. (1995), which focused on time-independent
settings. Later adoptions such as Parisi et al. (2003) extended it to non-steady
and time-dependent settings.

These models were repopularized with the work of Raissi et al. (2017)
and Raissi et al. (2019) that extended the concept to a wide range of non-
linear time-dependent PDEs and introduced the term physics-informed neural
network. The deep Galerkin method (DGM) (Sirignano & Spiliopoulos, 2018)
reformulated the grid-based losses in PINNs as integrals over the signal
domain that are estimated with uniformly sampled collocation points.
This sampling of collocation points was claimed as a mesh-free version of
PINNs. In addition, Sirignano and Spiliopoulos (2018) provide a formal
theoretical background for PINNs, providing a convergence theorem for a
class of quasilinear parabolic PDE. This theorem is partly based on universal
approximation theorems for neural networks.

2.5.4 Flexible Activations for Low-Dimensional Input

Although neural networks are universal function approximators, in practice
they struggle to learn high-frequency signals from low-dimensional input.
Recent work discusses that fully connected networks with ReLU or tanh
activations have a spectral bias, i. e. they prioritize learning low-frequency

44 background

modes (Rahaman et al., 2019; Wang et al., 2022; Xu et al., 2019). To overcome
this problem, concepts such as positional encoding (Mildenhall et al., 2020),
random Fourier features (Tancik et al., 2020), and sinusoidal activations
(Sitzmann et al., 2020) have been proposed.

The sinusoidal activations presented by Sitzmann et al. (2020) essentially
substitute commonly used activation functions such as the ReLU with
periodic non-linear activations, such that the transformation at layer j is
given by

gj(x) := sin(ωjWj(x) + bj). (2.83)

Sitzmann et al. (2020) propose ω0 = 30 and ωj = 1 for j > 0, and addi-
tionally propose an initialization scheme that preserves the distribution
of the activation functions throughout the network. The resulting sinu-
soidal representation networks (SIREN) show much higher flexibility than
classical activations for learning high-frequency signals in continuous rep-
resentations of 2D images, signed distance functions in 3D, and for solving
differential equations with PINNs.

3
M E S H - F R E E E U L E R I A N P I N N S

Remark. This chapter closely follows the work in Arend Torres et al. (2022).

Physics-informed Neural Networks (PINNs) have recently emerged as a
principled way to include prior physical knowledge in the form of partial
differential equations (PDEs) into neural networks. By enforcing a PDE
based loss on data points sampled in the signal domain, PINNs provide
a simple but still widely applicable framework to combine observations
with prior physical knowledge. As PINNs do not introduce any sort of
mesh, but rely on neural networks that are continuous in the signal domain,
they are often referred to as a mesh-free approach. This contrasts with the
more classical mesh-based approaches, such as finite-difference methods.
However, the enforcement of the PDE loss still relies on the discretization
of space by choosing collocation points. These points are usually selected
uniformly within a bounded region, even in settings with spatially sparse
signals. Furthermore, if the boundaries are not known, the selection of such
a region is difficult and often results in a large proportion of collocation
points being selected in areas of low relevance. To resolve this drawback of
current methods, we present a mesh-free and adaptive approach termed
particle-density PINN (pdPINN), which is inspired by the microscopic
viewpoint of fluid dynamics. The method is based on the Eulerian viewpoint
and, unlike classical mesh-free methods, does not require the introduction
of Lagrangian updates. We propose sampling directly from the distribution
over the particle positions, eliminating the need to introduce boundaries
while adaptively focusing on the most relevant regions. This is achieved
by interpreting a non-negative physical quantity (such as the density or
temperature) as an unnormalized probability distribution from which we
sample with dynamic Monte Carlo methods. The proposed method leads
to higher sample efficiency and improved performance of PINNs. These
advantages are demonstrated in various experiments based on continuity
equations, Fokker-Planck equations, and the heat equation.

45

46 mesh-free eulerian pinns

3.1 physics-informed neural networks

As discussed in the previous background Section 2.5, the fundamental idea
of PINNs is to regularize neural networks by enforcing partial differential
equations within the signal domain. Recalling the setting, we consider
time-dependent parameterized PDEs of the general form

f (t, x|λ) := ∂tu(t, x) + P(u|λ) = 0, (3.1)

where u is a (possibly vector-valued) function of interest, P is a non-linear
operator parameterized by λ, and ∂t is the partial time derivative w.r.t. time
t ∈ [0, T]. The position x ∈ Ω is defined in a spatial domain Ω ⊆ Rd. The
PDE is subject to initial condition gic and boundary conditions g∂Ω

u(0, x) = gic(x), u(t, x) = g∂Ω(x), (3.2)

for x ∈ ∂Ω and t ∈ [0, T]. However, instead of full knowledge of the
λ, initial, and boundary conditions, we are given a small set of N noisy
observations uobs

u(t(i), x(i)) + ϵ(i) = u(i)
obs (3.3)

with noise ϵ(i) ≪ u(i) ∀i ∈ {0, 1, . . . , N}.
PINNs then approximate u(t, x), and subsequently f (t, x), by the network

uθ(t, x). The parameters θ are adjusted by minimizing the combined loss
of (i) reconstructing available observations (Lobs), (ii) softly enforcing the
PDE constraints on the domain (Lpde), and (iii) fulfilling the boundary (Lbc)
and initial conditions (Lic). A common choice for individual losses is the
expected L2 loss, approximated via the average L2 loss over the observations
and via sampled boundary and initial conditions, respectively.

3.1.1 Problem Setting

PINNs rely on neural networks that are continuous in both space and time
and are commonly referred to as mesh-free, since no discretization of the
function approximation is needed. However, this ignores the way PINNs
are actually trained in practice. That is, the PDE loss Lpde requires a similar

3.1 physics-informed neural networks 47

discretization step to approximate an integral over the continuous signal
domain, that is

Lpde(θ)=
1

|[0, T]×Ω|

T∫
t=0

∫
Ω

|| fθ(t, x)||22 dx dt=Ep(t,x)

[
|| fθ(t, x)||22

]
(3.4)

≈ 1
n

n

∑
i=1
||fθ(ti, xi)||22

with p(t, x) ∝ 1 being supported on [0, T] × Ω. While Sirignano and
Spiliopoulos (2018) argue that a randomized sampling of the collocation
points qualifies as being mesh-free, an important and valued property of
such methods is missing. That is, mesh-free methods are usually able to
adapt according to the evolution of the PDE.

Although there are alternative sampling methods as discussed in Sec-
tion 2.5, all of these rely on uniform proposal distributions and cannot be
directly applied if there are no known boundaries or boundary conditions,
e.g. for Ω = Rd. In addition, problems can arise if the constrained region is
large compared to the area of interest. Considering, for example, the shock
wave (of a compressible gas) in a comparably large space, most collocation
points would fall into areas of low density. We argue that, due to the locality
of particle interactions, regions with higher density are more relevant for
regularizing the network. In addition, if the quantity of interest is a density,
it is natural to focus on such a high-density region.

To address these shortcomings of previous methods, we propose a mesh-
free and adaptive approach for sampling collocation points, illustrated
on the example of compressible fluids. By changing p(t, x) to the distri-
bution over the particle positions in the fluid we effectively change the
loss functional in Eq. (3.4). We then generalize to other settings, such as
thermodynamics, by interpreting a positive, scalar quantity of interest with
a finite integral as a particle density. Within this work, we specifically focus
on PDEs that can be derived based on local particle interactions or can
be shown to be equivalent to such a view, as, for example, is the case for
the heat equation with its connection to particle diffusion. Notably, we do
not require the introduction of Lagrangian updates, as classical mesh-free
methods do. Such a Lagrangian view would instead be based on evaluating
the PDE with respect to moving parcels or particles.

Our main contributions are as follows:

• We demonstrate that PINNs with uniform sampling strategies fail
in settings with spatially sparse signals as well as in unbounded

48 mesh-free eulerian pinns

signal domains; these problems can severely degrade the network’s
predictive performance.

• To overcome these limitations of existing approaches, we propose a
truly mesh-free version of PINNs, in which the collocation points
are sampled using physics-motivated MCMC methods. By staying
within the Eulerian framework, we avoid conceptual challenges of
classical mesh-free methods based on Lagrangian updates, such as
the enforcement of boundary conditions.

• The proposed model is applicable to a wide range of dynamical
systems governed by PDEs that share an underlying microscopic par-
ticle description, such as several hydrodynamic, electro- and thermo-
dynamic problems.

• We evaluate and compare our proposed method with existing ap-
proaches in up to 3-dimensional settings. Compared to existing mesh
refinement methods, significantly fewer collocation points are re-
quired to achieve similar or better predictive performances.

3.2 related work

3.2.1 Mesh-Free Fluid Dynamics

Classical mesh-free approaches in computational fluid dynamics are based
on non-parametric function representations. Smoothed Particle Hydrody-
namics (SPH) (Gingold & Monaghan, 1977; Lind et al., 2020) are the most
prominent example. In SPH, fluid properties such as the density and pres-
sure are represented by a discrete set of particles and interpolated using a
smoothing kernel function. For updating the function forward in time, the
particles have to be propagated according to the Lagrangian formulation
of the PDE, relying on the kernel to compute the spatial derivatives. One
of the benefits of such a representation is that the mass is conserved by
construction. However, Lagrangian updates become challenging when en-
forcing boundary conditions, requiring the introduction of ad-hoc "dummy"
or "mirror" particles (Lind et al., 2020). Instead, we present a mesh-free,
particle-based, PINN that does not require Lagrangian updates, and it is
already applicable in the Eulerian formulation. It should be noted that the
proposed pdPINNs can in principle be combined with Lagrangian updates,
such as those proposed by Raissi et al. (2019) and later by Wessels et al.

3.3 particle-density pinns 49

(2020). But as the intention of this work is to improve upon current Eulerian
PINNs, we refer to future work for the comparison and extension to the
Lagrangian formalism.

3.2.2 Alternative Meshes and Losses for PINNs

Recent work proposes local refinement methods for PINNs by adding
more samples within regions of high error (L. Lu et al., 2021; Tadiparthi &
Bhattacharya, 2021). Residual adaptive refinement (RAR) is suggested by
L. Lu et al. (2021), which is based on regularly evaluating the PDE loss on a
set of uniformly drawn samples. The locations corresponding to the highest
PDE loss are then added to the set of collocation points used in training.
Tadiparthi and Bhattacharya (2021) further enhance RAR by learning a
linear map between the uniform distribution and the distribution over
the PDE loss by optimizing an optimal transport objective. By sampling
uniformly and subsequently transforming these samples, it is attempted
to focus on regions of higher error. Due to the conceptual similarity to
RAR, we will denote this method as OT-RAR. The work of Nabian et al.
(2021) explores Importance Sampling based on the (unnormalized) proposal
distribution || fθ(t, x)||22 for a more sample efficient evaluation of Eq. (3.4).
Samples are drawn by discretizing the signal domain.

However, in all these cases the underlying mechanism for exploring
regions of high error is based on (quasi-) uniform sampling within the
boundaries. As such, they do not resolve the issues of unknown boundaries
and, furthermore, will be infeasible in higher dimensions.

3.3 particle-density pinns

In this section we introduce the concept of mesh-free particle-density PINNs
(pdPINNs). First, we examine the limitations of the common PDE loss in
Eq. (3.4) and, secondly, we present a solution by integrating over the position
of particles instead of the full support of the signal domain.

The underlying assumption of our approach is that the dynamics de-
scribed by the PDE can be explained in terms of local interactions of
particles. This is the case, for instance, for commonly considered dynamics
of gases, liquids or active particles (Hoover & Hoover, 2003; Toner & Tu,
1995), and specifically for PDEs that are based on the continuity equation
for the conservation of mass.

50 mesh-free eulerian pinns

3.3.1 Existing limitations of Eulerian PINNs

Consider the problem of modeling a (possibly non-steady) compressible
fluid, i.e. a fluid with a spatially and temporally evolving density ρ(t, x)
and velocity v(t, x). For the sake of notational brevity, we will denote
these by ρ and v. Given noisy observations, our particular interest lies in
the prediction of particle movements, hence in the approximation of the
density (and potentially other physical quantities) with a neural network
ρθ . Additional quantities such as the velocity or pressure might also be
observed and modeled.

Commonly, the PDE then serves as a physics-based regularizer of the
network by enforcing the PDE loss Lpde in Eq. (3.4) during standard PINN
training. For this, Lpde is evaluated on a set of collocation points that are,
for example, uniformly distributed on a bounded region. However, the
limitations of this approach already become apparent when considering
a simple 1D advection problem with constant velocity defined by the
following PDE:

∂tρ + v · (∇ρ) = 0. (3.5)

Figure 3.1 illustrates a one-dimensional case on the domain [0, T]×Ω, with
Ω = R, and a known constant velocity v ∝ 1. We measure the density
ρ(i) at different (spatially fixed) points in time and space {(t(i), x(i))}, on
which a neural network ρθ(t, x) is trained. For optimizing the standard
PDE loss Lpde as given in Eq. (3.4), we would require a bounded region
ΩB := [a, b] ⊂ Ω with a < b and a, b ∈ R. This, in turn, leads to two issues:

1. Since the moving density occupies a small subset of Ω, uniformly
distributed collocation points within ΩB will enforce Eq. (3.5) in areas
with low-density. This results in insufficient regularization of ρθ .

2. Defining a suitable bounded region ΩB requires a priori knowledge
about the solution of the PDE, which is generally not available. Choos-
ing too tight boundaries would lead to large parts of the density
moving out of the considered area ΩB . Too large boundaries would
instead lead to poor regularization as this would worsen the sparsity
problem in issue (1.).

In practice, most Eulerian PINNs approaches opt for naively defining a
sufficiently wide region ΩB , resulting in a poor reconstruction. In the
context of our advection problem, this is showcased in Figure 3.1b. To
properly resolve the aforementioned issues, one should (i) focus on areas

3.3 particle-density pinns 51

(a) (b)

(c) (d)

Figure 3.1: Advection experiment in 1D: (a) ground truth at time t1 and (c) time
t2, (b) density prediction with uniform collocation points and (d)
particle-density-based collocation points for t ∈ {t1, t2}, with crosses
indicating sampled points.

that have a relevant regularizing effect on the prediction of ρθ and (ii) adapt
to the fluid movements without being restricted to a predefined mesh.

3.3.2 Mesh-Free Eulerian PINNs

We thus propose to reformulate the PDE loss in Eq. (3.4) as the expectation
of || fθ(t, x)||22 with respect to the molecular distribution Ψ(t, x)

Lpd(θ) ≈
∫ T

t=0

∫
Ω

Ψ(t, x)
[
|| fθ(t, x)||22

]
dx dt. (3.6)

The molecular distribution function Ψ(t, x, v) originates from kinetic theory,
where it is defined such that∫

∆x

∫
∆u

Ψ(t, x, u)du dx (3.7)

is the probability that a molecule with a velocity within ∆u = ∆u1∆u2∆u3
occupies the volume ∆x = ∆x1∆x2∆x3.

This completely removes the need of defining ad hoc boundaries while
providing the ability to flexibly focus on highly relevant regions, i.e. those
that are more densely populated. As the particle density corresponds
directly to the occupation probability of a molecule Ψ(t, x) with a changed
normalization constant, we can estimate Lpd via samples drawn from the

52 mesh-free eulerian pinns

normalized particle density, which is denoted as ρN . For homogeneous
fluids, this coincides with the normalized mass density.

In summary, we propose to draw collocation points from the normalized
density:

(ti, xi) drawn from (T, X) ∼ ρN(t, x) = 1
Z ρ(t, x). (3.8)

The true particle positions and the density ρN are however unknown in
practice. Instead, we have to rely on the learned density ρθ(t, x) as a proxy
provided by the neural network. We denote the associated normalized PDF
by qθ(t, x) = 1

Z′ ρθ(t, x) with support on [0, T]×Ω. The PDE loss is then
defined as the expectation w.r.t. qθ(t, x):

Lpdpinn(θ) = Eqθ(t,x)

[
|| fθ(t, x)||22

]
(3.9)

=
∫ T

t=0

∫
Ω

qθ(t, x) || fθ(x, t)||22 dx dt. (3.10)

In order to approximate this integral, samples need to be drawn from
qθ(t, x). This can be done in a principled way by using dynamic Monte Carlo
methods, despite the fact that the normalization constant Z is unknown.
We highlight that, in contrast to the mesh-based loss in Eq. (3.4), the loss
in Eq. (3.9) is also suitable for problems on unbounded domains such as
Ω = Rd.

3.3.3 Applicability of pdPINNs

Although motivated in the context of an advection problem, the proposed
approach is generally applicable to a wide range of PDEs. The advection
equation 3.5 can be seen as a special case of mass conservation (assuming
∇ · v = 0), which is one of the fundamental physical principles expressed
as a continuity equation. This continuity equation relates temporal changes
of the fluid density ρ to spatial changes of the flux density ρv through

∂tρ +∇ · (ρv) = 0. (3.11)

Another common physical process that is suited for our approach is diffu-
sion, such as in the Heat Equation, where local interactions of particles give
rise to the following PDE (as established by Fick’s second law):

∂tT − α∇2T = 0, (3.12)

where T denotes the temperature interpreted as density, α the thermal (or
mass) diffusivity, and ∇2 the Laplacian operator. By introducing additional

3.4 model and implementation 53

constraints to the mass-conservation, one can describe viscous fluids with
the Navier-Stokes equations or even self-propelled, active particles, for
which Toner and Tu (Toner & Tu, 1995; 1998; Tu et al., 1998) introduced
hydrodynamic equations. Other possible applications involve Maxwell’s
equations for conservation of charge in electrodynamics, as well as the
distribution of Brownian particles with drift described by the Fokker-Planck
equations. In general, our method is applicable in settings where (i) a non-
negative scalar field (with a finite integral) of interest can be interpreted as
a particle density, and (ii) the local interactions of these particles give rise
to the considered PDEs.

3.4 model and implementation

A wide range of different network architectures and optimization strate-
gies for PINNs have emerged. They emphasize well-behaved derivatives
with respect to the input domain (Sitzmann et al., 2020), allow higher ex-
pressivity for modeling high frequency data (Tancik et al., 2020; Wang,
Wang, & Perdikaris, 2021), or resolve gradient pathologies within PINNs
(Wang, Teng, & Perdikaris, 2021). As our method does not rely on a spe-
cific architecture, any such improvement can be easily combined with the
proposed pdPINNs. For the experiments in this work we will use simple
fully-connected networks with sinusoidal (Sitzmann et al., 2020) or tanh
activations. Code is available in the supplementary material 1.

3.4.1 Finite total density

For reformulating the predicted density ρθ as a probability, we have to
ensure non-negativity as well as a finite integral over the input domain
Ω. Non-negativity can for example be achieved via a squared activation
function after the last layer. An additional bounded activation function g is
then added, which guarantees the output to be within a pre-specified range
[0, cmax]. The integral Rd can then be enforced to be finite by multiplying
the bounded output with a Gaussian kernel. Summarizing these three steps,
let ρ̃θ denote the output of the last layer of our fully connected neural
network and pgauss(x) = N (x; µ, Σ), then we predict the density ρθ as

ρθ(t, x) = pgauss(x) g(ρ̃θ(t, x)2) ≤ cmax pgauss(x). (3.13)

1 https://openreview.net/attachment?id=253DOGs6EF&name=supplementary_material.

https://openreview.net/attachment?id=253DOGs6EF&name=supplementary_material

54 mesh-free eulerian pinns

In practice, the choice of cmax does not affect the model as long as it
is sufficiently large. The used mean µ and covariance Σ are maximum
likelihood estimates based on the observations Xobs, i. e. the sample mean
x̄ and covariance Σ̄ of the sensor locations. To allow more flexibility in the
network, we add a scaled identity matrix to the covariance Σ = Σ̄ + c · I.

3.4.2 Background Sampling for pdPINNs

At initialization, the network prediction ρθ is random and thus does not
carry any useful information, i. e. sampling from this density would be
meaningless. Therefore, we start training the pdPINNs with a warm-up
phase in which samples are obtained from a prespecified background
distribution:

(Tbg, Xbg) ∼ pbg(t, x) = p(t)pbg(x|t) (3.14)

with p(t) = U (0, T). For pbg(x|t) we use random linear combinations of
the convex hull of {x(i)}N

i=1 spanned by c data points summarized as rows
of the matrix Z ∈ Rc×d. This leads to x = mZ with weight m ∈ Rc which
can be drawn from a Dirichlet distribution, i. e. m ∼ Dir(α = 1). Of course,
a uniform sampling mechanism on a defined region is also suitable, if for
example the boundary of the domain is known.

We initially draw all samples from the background distribution and then
slowly increase the proportion of samples obtained from the particle density,
as we found that leaving some background samples slightly helps in the
training.

3.4.3 Markov chain Monte Carlo (MCMC) sampling

Finally, MCMC methods allow us to draw samples from the unnormalized
density ρθ(t, x). We consider several MCMC samplers and emphasize that
the wide range of well-established methods offers the ability to use a
specialized sampler for the problem considered, if the need may arise.
Gradient-based samplers such as Hamiltonian Monte Carlo (Betancourt,
2017; Duane et al., 1987) are particularly suited for our setting, as the
gradients of ρθ with respect to the input space are readily available. For
problems where boundaries are known and we have to sample from a
constrained region, a bijective transformation is used so that the Markov
chain may operate in an unconstrained space (Parno & Marzouk, 2018). In
our experience, both Metropolis Hastings and Hamiltonian Monte Carlo

3.5 experiments 55

already worked sufficiently well for a wide range of PDEs without requiring
much fine-tuning. We highlight that pdPINNs do not directly depend on
MCMC as a sampler, and alternative sampling methods such as modern
variational inference schemes (Rezende & Mohamed, 2015) can also be used
directly as a substitute.

3.5 experiments

In this section we demonstrate the advantages of pdPINNs compared
to uniform sampling, importance sampling (Nabian et al., 2021) as well as
the adaptive refinement methods RAR (L. Lu et al., 2021) and OT-RAR
(Tadiparthi & Bhattacharya, 2021). Despite the term uniform sampling, we
rely in all our experiments on quasi-random Sobol sequences for more
stable behavior in the low samples regime. To guarantee a fair comparison,
we considered slight variations of the proposed implementations of RAR
and OT-RAR, so that only a limited number of collocation points are
used. For the pdPINNs we consider multiple MCMC schemes, including
Metropolis-Hastings (MH-pdPINN), and Hamiltonian Monte Carlo (HMC-
pdPINN) methods. In addition, we consider a sampling scheme based on
the discretization of the domain similar to the one used in Nabian et al.
(2021). Due to its similarity to inverse transform sampling in 1D, we refer
to it as IT-pdPINN.

The models in sections 3.5.1 and 3.5.2 are implemented in PyTorch (Paszke
et al., 2019), with a custom Python implementation of the Monte Carlo
samplers. For the Fokker-Planck experiment in section 3.5.3, we make use of
the efficient MCMC implementations provided by TensorFlow probability
(Abadi et al., 2016b; Lao et al., 2020) and the utilities of the DeepXDE
library (L. Lu et al., 2021). Table 3.1 provides an overview of the different
experiment setting, and the used architectures.

3.5.1 Continuity equation for simulated particles

As a challenging prediction task we consider a setting motivated by the real
world problem of modelling bird densities and velocities measured from a
set of weather radars (Dokter et al., 2011; Nussbaumer et al., 2019; 2021) –
or more generally the area of radar aeroecology. A non-steady compressible
fluid in three dimensions is simulated by propagating particles through a

56 mesh-free eulerian pinns

Table 3.1: Architecture overview for the different experiments.

Experiment Input Output Layers Units σ

Continuity Eq. (2D) [0, T]×R2 ρθ ∈ R+ 2 256 sin

vθ ∈ R2
1 64 sin

Continuity Eq. (3D) [0, T]×R3 ρθ ∈ R+ 6 256 sin

vθ ∈ R3
3 256 sin

Heat Eq. [0, T]×R2 T ∈ R+ 2 32 tanh

Fokker-Planck Eq. [0, T]×R pθ ∈ R+ 5 64 sin

pre-defined velocity field, i.e. the fluid is simulated using the continuity
equation as the underlying PDE (see Eq. (3.11)):

∂tρ +∇ · (ρv) = 0. (3.15)

Data generation. To provide the network with training observations, we
introduce a set of spatially fixed sensors (comparable to radars) which
count over time the number of fluid particles within a radius r and over
21 contiguous altitude layers. Another disjoint set of sensors is provided
for the validation set while the test performance is evaluated on a grid.
The birds-eye view of the setting is shown in Figure 3.2a, where circles
indicate the area covered by the radars. Figure 3.2b additionally shows the
3D simulated data projected along the z-axis and over time. In the Appendix
section A.2.1 we describe the data generation and training setting in detail
and provide the corresponding code in the supplementary. We evaluate
pdPINNs both in complete 3D setting, as well as in a simplified 2D setting
where we discard the z-axis.

Implementation. For modeling the density and velocity, two sinusoidal
representation networks (SIREN) (Sitzmann et al., 2020) ρθ(t, x) and vθ(t, x)
are used, which are then regularized by enforcing the continuity equation
for the conservation of mass (see Eq. (3.11)). To showcase the sample
efficiency of pdPINNs, experiments are performed over a wide range of
collocation points (256 to 65536 in 3D, and 16 to 8192 in 2D). In each setting,
the weights for the PDE loss were selected using a grid search with repeated

3.5 experiments 57

(a)

(b)

Figure 3.2: Visualization of the compressible fluid experiment. (a) Bird-eye view
of the ground truth particle density. (b) z-projection of the density
over time, obtained by summing over the xy grid cells.

random runs. As metric we used the 1st quartile of the validation set R2,
which discourages settings that are unstable over multiple runs.

Results in 3D. The resulting box plots of test R2 are provided in Figure
3.3, where the Baseline corresponds to training without any PDE loss. The
proposed pdPINN approach clearly outperforms alternative (re-)sampling
methods across all numbers of collocation points. Already with very few
collocation points (512) pdPINNs achieve results that require orders of
magnitude more points (32768) for uniform sampling. Finally, we observe
that the performance gap shrinks as the number of collocation points
increases, eventually converging to the same limiting value. Even when
getting close to the memory limit of a NVIDIA Titan X GPU, other sampling
strategies at best achieve comparable results with pdPINNs.

Figure 3.4 showcases the projection of the density onto the z axis for the
OT-RAR method and the Metropolis-Hastings based pdPINN. A random
seed and 2048 collocation points were used. The OT-RAR PINN shows

58 mesh-free eulerian pinns

disconnected density predictions that clearly violate mass conservation,
whereas the Metropolis Hastings based pdPINN is capable of mostly pre-
serving it.

Figure 3.3: Explained variance of
√

ρ evaluated on the test set, for different
number of collocation points for the 3D mass conservation experiment
and for 10 different seeds.

3.5 experiments 59

Figure 3.4: Mass conservation experiment (3D): Predictions (obtained with 2048

collocation points) summed over xy grid cells to obtain z-axis projec-
tion over time. Top: OT-RAR. Bottom: MH-pdDPINN.

Results in 2D. As an additional experiment, we simplified the setting
by projecting the data onto the xy-axis, i.e. the birds-eye view, which is a
common setting for geostatistical data (e.g. in Nussbaumer et al. (2019)).
The general setup is similar to the 3D setting, although a smaller network
is used (see Table 3.1). The results in this 2D setting are shown in Figure 3.5.
The results are comparable in nature to the 3D setting, although with a
smaller performance gap with respect to alternative sampling methods.
This decrease of the gap is to be expected, as the lower dimensional space
is much easier to explore with uniform proposals.

3.5.2 Heat Equation

We further consider a 2D diffusion problem where randomly distributed
sensors provide measurements of the temperature. More specifically, the
dynamics of the data are given by the heat equation

∂tT − α∇2T = 0. (3.16)

60 mesh-free eulerian pinns

Figure 3.5: Explained variance of
√

ρ evaluated on the test set, for different num-
ber of collocation points for the 2D mass conservation experiment.

Data generation. We focus on a general setting with the initial conditions
being zero temperature everywhere except for a specified region, as shown
in Figure 3.6a, and we let the system evolve for t ∈ [0, 0.2]. The dataset
was generated by numerically solving the heat equation through the finite
difference method, precisely the Forward Time, Centered Space (FTCS)
approximation (Recktenwald, 2004). The PINN is only provided sensor
measurements of the temperature.

3.5 experiments 61

(a) (b) (c)

Figure 3.6: Temperature predictions of the heat equation experiment (trained
with 128 collocation points) at time t ∼ 0.044. (a) Ground truth (b)
uniform sampling, and (c) pdPINN.

Results. Temperature predictions for PINNs with uniform sampling and
pdPINNs are illustrated in Figure 3.6b and 3.6c, respectively, with the
ground truth in Figure 3.6a. We can observe that the uniform sampling
strategy does not allow to focus on the relevant parts of the domain, i.e.
regions with high temperature, and that it visibly fails to reconstruct the
temperature profile. In contrast, the pdPINN promotes sampling in regions
of higher density and predicts the true temperature more reliably.

Figure 3.7 illustrates the test R2 of the predicted T averaged over 20

different seeds. Error bars correspond to the 95% confidence interval for
the mean estimate, based on 1000 bootstrap samples, while the colors
indicate the different PDE weights w2 explored. As in previous settings,
we show that with few samples (16) the regularization enforced by the
PDE loss is not strong enough, leading to comparable results in both
approaches (as expected). Hence, PINNs and pdPINNs show similar results
in this regime. However, as the number of samples increases (32-64-128-
256), the PDE loss enforced by the proposed pdPINNs quickly and steadily
outperforms uniform sampling. Lastly, we also verified that in the limit of
high samples (512-1024) the two sampling strategies converge, as in such
a low-dimensional domain the uniform samples fully and densely cover
the considered area. This, again, is in line with the observed results of the
other experiments.

62 mesh-free eulerian pinns

Figure 3.7: Test R2 of predicted T in the heat equation experiment as a function
of different number of collocation points. Results are averaged over
20 different seeds and the resulting error bars correspond to 95%
confidence interval for the mean estimation, based on 1000 bootstrap
samples. Different colors indicate different PDE weights w2.

3.5.3 Fokker-Planck Equation

For a demonstration of a setting without any observed data but only initial
conditions, we solve the Fokker-Planck (FP) equations in a setting where
an analytical solution is available (cf. Särkkä and Solin (2019)). The FP
equations describe the evolution of the probability density of the movement
of Brownian particles under a drift. More specifically, assume we are given
particles at time t0, which are distributed according to p(t0, x). Let the
movements of these particles be described by the following stochastic
differential equation, where Wt denotes the standard Wiener process:

dXt = µ(t, Xt) dt + σ(t, Xt) dWt (3.17)

with known drift µ(Xt, t) and diffusion coefficient D(Xt, t) = σ2(Xt, t)/2.
The FP equation for the probability density p(t, x) of the random variable
Xt is then given by

∂

∂t
p(t, x) +

∂

∂x
[µ(t, x)p(t, x)]− ∂2

∂x2 [D(t, x)p(t, x)] = 0. (3.18)

We train a network to predict the (probability) density pθ(t, x). Data
is only provided for the initial condition, and the PDE loss is based on

3.5 experiments 63

Eq. (3.18) within space Ω = [−.1.5, 1.5] and time t ∈ [−1, 1]. As the analyti-
cal solution is available in form of a probability density, we can estimate the
KL divergence KL(p||pθ) to evaluate the performance. Furthermore, we can
sample collocation points from the true particle distribution p(t, x) (referred
to as “p(t, x) as sampler”), offering a “best case scenario” of pdPINNs. A
total of 5000 collocation points were used and the weights were manually
adjusted based on the error on a validation set. The number of steps was
fixed at 30000 for all methods.

Data Generation. We consider the following setting over the time interval
[t0, tn] = [−1, 1] with drift function µ, noise σ and initial particle positions
p(x|t = t0) given by

µ(Xt, t) = µ(t) = sin (10t) (3.19)

σ(Xt, t) = σ = 0.06 (3.20)

p(x|t = t0) = N (0, 0.022 · Id) (3.21)

The Fokker-Planck equation then has an analytical solution (cf. Särkkä
and Solin, 2019) which is given by

p(x|t) = N (µs(t), σ2
s (t)) (3.22)

p(t) = U (t0, tn) (3.23)

µs(t) = −
cos(10t)

10
+

cos(10)
10

(3.24)

σ2
s (t) = 0.0036t + 0.004. (3.25)

For evaluating the deviation of our prediction to the solution, we evaluate
the KL divergence between the analytical solution and the network ap-
proximation KL(p(x, t)| p̂Θ(x, t)) by sampling 10000 points from the true
p(x, t).

Results. Figure 3.8a shows the evolution of KL divergence during training
on a log-scale, highlighting that pdPINN based methods require fewer steps
to achieve a low divergence. In addition, sampling from the true particle
distribution leads to the fastest improvement and the lowest divergence
after 30000 training steps. A qualitative comparison of the results is given
in Figure 3.8b, showing that RAR and uniform sampling fail to propagate
the sine wave forward.

Walltime of different MCMC samplers. Within the first two experiments
we relied on custom implementations of the MCMC samplers in PyTorch

64 mesh-free eulerian pinns

(a) (b)

Figure 3.8: Fokker-Planck equation in 1D. (a) KL divergence between the true
target distribution and approximation during training, (b) predicted
log pθ(t, x) after training, cropped to x ∈ [−0.5, 0.5].

that were not optimized with respect to computational performance. For
the Fokker-Planck experiment we provide an additional implementation
in Tensorflow (probabilitiy). This implementation provides a realistic wall-
time estimate by relying on highly efficient MCMC implementations. More
specifically, we compare the following methods for selecting collocation
points:

(i) Uniform sampling

(ii) Resampling based on Residual Adaptive Refinement (RAR) (L. Lu
et al., 2021)

(iii) pdPINN based on a discrete approximation of the target distribution
(Tadiparthi & Bhattacharya, 2021) (IT-pdPINN)

(iv) pdPINN with Metropolis-Hastings (MH) MC with parallel tempering
(Earl & Deem, 2005)

(v) pdPINN with Hamiltonian MC (HMC) with parallel tempering (Earl
& Deem, 2005) and dual averaging step-size adaptation (Hoffman,
Gelman, et al., 2014, Section 3.2)

The wall times for the different methods in 1D are provided in Figure 3.9.
Wall times were evaluated on a NVIDIA GeForce RTX 2080 Ti and an Intel(R)
Xeon(R) CPU E5-1660 v3 @ 3.00GHz processor. It can be seen that the IT-
pdPINN method based on a discretized approximation achieves a similar

3.6 conclusion 65

speed to uniform sampling. Thus, in low dimensions and with known
boundaries, IT-pdPINNs provide a computationally cheap alternative. In
higher dimensions, or with unknown boundaries, it might be necessary to
rely on MCMC based methods such as MH or HMC. Although Metropolis-
Hastings and Hamiltonian Monte Carlo require more time per step, the
proposals of pdPINN only require the evaluation of the density and are
thus not dependent on the PDE at hand. Other resampling schemes rely
on evaluating the PDE loss on proposal points, which can be expensive in
memory and compute if higher order derivatives are required.

Figure 3.9: Total run-times for the Fokker-Planck experiment with fixed number
of iterations. Seeds were selected randomly.

3.6 conclusion

In this work, we introduced a general extension to PINNs applicable to
a variety of problem settings that involve physics-based regularization of
neural networks. These range from hydrodynamic flow problems to electro-
and thermo-dynamic problems, as well as more general applications of
the Fokker-Planck equations.To overcome the limitations of classical mesh-
based Eulerian PINNs, we introduce a novel PDE loss that is defined
with respect to the particle density in rather general types of PDEs. By
employing MCMC methods to sample collocation points from the density
approximated by the network, we derive an efficient and easy-to-implement
improvement for providing a more appropriate regularization objective in
PINNs. In particular, our new pdPINNs are completely mesh-free, thereby
overcoming the severe efficiency problems of classical PINNs in high-

66 mesh-free eulerian pinns

dimensional and sparse settings. Further, the absence of a mesh allows us to
elegantly handle settings with uncertain or unknown domain boundaries.

4
L A G R A N G I A N F L O W N E T W O R K S

Remark. This chapter closely follows the work in Torres et al. (2024) with some
additional unpublished work mostly restricted to additional experiments for evalu-
ating the sinusoidal activations for invertible densenets.

We introduce Lagrangian Flow Networks (LFlows) for modeling fluid den-
sities and velocities continuously in space and time. By construction, the
proposed LFlows satisfy the continuity equation, a PDE describing mass
conservation in its differential form. Our model is based on the insight that
solutions to the continuity equation can be expressed as time-dependent
density transformations via differentiable and invertible maps. This follows
from classical theory of the existence and uniqueness of Lagrangian flows
for smooth vector fields. Hence, we model fluid densities by transforming
a base density with parameterized diffeomorphisms conditioned on time.
The key benefit compared to methods relying on numerical ODE solvers
or PINNs is that the analytic expression of the velocity is always consis-
tent with changes in density. Furthermore, we require neither expensive
numerical solvers, nor additional penalties to enforce the PDE. LFlows
show higher predictive accuracy in density modeling tasks compared to
competing models in 2D and 3D, while being computationally efficient. As
a real-world application, we model bird migration based on sparse weather
radar measurements.

4.1 motivation and setting

The development of physics-informed Machine Learning (PI-ML) (Kar-
niadakis et al., 2021) opens new opportunities to combine the power of
modern ML methods with physical constraints that serve as meaningful
regularizers. These constraints might, for example, be available in the form
of partial differential equations (PDEs). Within PI-ML we consider hydro-
dynamic flow problems governed by the physical law of mass conservation.

67

68 lagrangian flow networks

This law is described in its local and differentiable form by a PDE commonly
known as the continuity equation (CE){

∂tρ +∇ · (vρ) = 0 (t, x) ∈ (t0, T)×Ω,

ρ(t0, x) = ρt0(x) x ∈ Ω.
(4.1)

For any time t ∈ [t0, T) the function ρ(t, ·) can be thought of as the density
of parcels advected by the velocity field v, with initial density ρt0 . Here,
[t0, T] × Ω is the space-time domain, which is a subset of R × Rd. The
partial derivative w.r.t. time t is denoted by ∂t and ∇ · b = ∇x · b is the
spatial divergence of a d dimensional vector field b : [t0, T]×Ω 7→ Rd.

Unlike classical initial value problems, we consider challenging settings
where exact boundary and initial conditions are unknown. That is, the
continuous density and velocity fields have to be inferred from sparse and
noisy data. The important physical constraint is that the solution must
comply with the CE in Eq. (4.1). To this end we propose a neural network
based model that fulfills the CE by construction and provides physically
consistent velocity and density fields.

Two settings. We specifically consider two distinct application settings.
In both settings, we are restricted to sparse and noisy measurements. We
are further mainly interested in accurately modeling the density, with the
velocity measurements or additional equations serving as an informative
prior.

In setting (i) we measure the fluid density ρ and velocity v, without
knowing any additional equations other than CE. This occurs, for example,
within the area of radar ornithology (Chilson et al., 2017), where the density
and velocity of birds can be inferred from radar data. Such radar-based
measurements are to date the only practical high-throughput data source
for birds. The goal is to spatio-temporally estimate bird migration densities
(Nussbaumer et al., 2019). Recent work explores a hydrodynamic view
of bird densities for post hoc model analysis (Nussbaumer et al., 2021),
modeling densities in discretized domains (Lippert, Kranstauber, Forré, &
van Loon, 2022), or in purely simulated data settings (Lippert, Kranstauber,
van Loon, & Forré, 2022). With the migration-specific dynamics of birds
unknown, the considered hydrodynamic view is synonymous with the
continuity equation for the conservation of mass.

In setting (ii) we exclusively have (sparse) density observations, but we
know additional equations constraining the velocity. This might, for exam-
ple, occur in dynamical optimal transport problems. Here, two densities are

4.2 related work 69

to be interpolated while adhering to the CE. Therefore, minimizing the total
transport cost constrains the velocity field. Other applications may include
for example the modeling of animal abundances based on spatiotemporal
count data obtain from citizen observations (see e.g. Sullivan et al. (2014)),
e.g. counts of specific bird species at a certain location and time. Based on
such data Fuentes et al. (2023) recently proposed an approach to model
population flows of birds by learning discrete transition probabilities of
particles between cells. Aside from matching densities, they encourage a
high entropy and penalize customly defined energy (or transport) cost. A
continuous generalization of this would correspond to setting (ii). More
generally, setting (ii) includes a wide range of compressible fluids dynamic
problems.

Main contributions. The main contributions of this paper are as follows:

• We outline a fundamental link between densities modeled by con-
ditional Normalizing Flows and spatiotemporal density fields that
satisfy the CE.

• We leverage this link to introduce models for ill-posed hydrodynamic
flow problems that always satisfy the CE by construction, coined
Lagrangian Flow Networks (LFlows). We do so without requiring an
explicit representation of the initial density.

• We provide a way to calculate the velocity without inverting the
conditional Normalizing Flow, enabling the use of flexible bijective
layers with otherwise costly inverses.

• We assess LFlows in multiple application settings and show better
predictive performance than existing methods while staying computa-
tionally feasible and physically consistent.

4.2 related work

Physics-informed Neural Networks Physics-informed neural networks
(PINNs) (Raissi et al., 2019) enforce PDEs in neural networks by introducing
an additional PDE-loss that penalizes pointwise deviations from the PDE.
The PDE-loss is enforced on so-called collocation points that are sampled in
the signal domain. The accuracy of PINNs is thus limited by the amount
(and distribution) of sampled collocation points, as well as the dimension
of the signal domain. For conservation laws, recent improvements in PINNs

70 lagrangian flow networks

suggest more sophisticated sampling approaches (Arend Torres et al., 2022),
or introduce domain decompositions (Jagtap et al., 2020). Although this
alleviates scaling problems, the fundamental limitation due to the number
of possible collocation points (or subdomains) still remains.

Neural Networks for Conservation Laws. To the best of our knowledge,
Richter-Powell et al. (2022) are the first to propose a parameterization of
neural networks that enforces mass conservation by design. We refer to
the proposed architecture as Divergence-free Neural Networks (DFNNs). As
the name suggests, solutions to the CE in Eq. (4.1) are represented as
divergence-free vector fields in an augmented (d + 1) dimensional space.
The input s and the vector field are defined as

b : =

(
ρ

ρv

)
, s :=

(
t

x

)
. (4.2)

The continuity equation can then be rewritten as the divergence of b with
respect to the augmented coordinate space s

∂ρ

∂t
+∇x · (ρv) =

d+1

∑
i=1

∂bi
∂si

= ∇s ·
(

ρ

ρv

)
= ∇s · b = 0. (4.3)

In 3D, a divergence-free vector may be obtained by computing the curl
of another vector, the so-called vector potential. The generalization of
this approach to higher dimensions is achieved through the concept of
differential forms. The resulting parameterization, however, heavily relies
on expensive higher-order automatic differentiation, posing limitations in
terms of scalability.

Concurrent to our work, L. Li et al. (2023) (TIPF) proposes the use of
Lagrangian flow maps to model continuous probability flows that fulfill the
CE. Unlike LFlows, TIPF considers well-posed PDE settings with known
initial conditions. Specifically, they focus on the Fokker-Planck equations
and Wasserstein gradient flows and introduce an unbiased self-consistency
loss. In contrast, we consider ill-posed data-assimilation for physical prob-
lems with sparse and noisy data where initial conditions are unknown.
Additionally, LFlows stand out as they do not require the inversion of
bijective layers for computing the velocity, allowing for more expressive
bijections.

Physics-Informed Machine Learning. Deep operator learning (Z. Li et al.,
2020; L. Lu et al., 2019) was proposed as a general approach to learn dy-

4.2 related work 71

namics from dense observations. In the considered setting, the PDE is not
provided, but has to be learned from large amounts of dense data often
provided through simulations. As such, it is not applicable to our setting
with spatially sparse data obtained at irregular time steps. Further notable
mentions are Lagrangian and Hamiltonian neural networks (Cranmer et al.,
2020; Greydanus et al., 2019), which can learn conservation laws from the
observed trajectories of individual particles. Sturm and Wexler (2022) pro-
pose a photochemistry surrogate model that enforces conservation of atoms
between discrete states. A neural network predicts the time-integrated
changes in concentration of a discrete box-model, and the conservation law
is enforced by an adjustment of the last layer of the network.

Data assimilation with the Adjoint. The continuous adjoint method
(Cacuci, 1981a; 1981b; Pontryagin, 1987) allows to differentiate through
numerical solvers by integrating adjoint equations backward in time. By
minimizing an objective function, it is then possible to infer the initial
conditions and parameters of a dynamical system from data. Within adjoint
methods, the well-established semi-Lagrangian data assimilation (SLDA)
approach is conceptually the closest to our model and setting (Diamantakis
& Magnusson, 2016; Robert, 1982; Staniforth & Côté, 1991). SLDA is widely
used to integrate transport equations into atmospheric models (Diamantakis,
2013; Hersbach et al., 2020). The basic idea is to evaluate the density at
a given sensor location by propagating it back in time to its so-called
departure point. This is done by solving the Lagrangian formulation of the
continuity equation. The observed density at its departure point and time
is then compared to the parameterized initial density to calculate the loss,
which is optimized by the adjoint state method.

Relevantly, an efficient autograd implementation of the continuous adjoint
state method was presented in the context of neural ODEs by R. T. Q.
Chen et al. (2018). The implementation enables black-box differentiation for
numerically solved ODEs, and further allows to specify the dynamics of
ODEs with a neural network. Interestingly, the simultaneously introduced
Continuous Normalizing Flows (CNFs) can be seen as a special case of
SLDA. We note that a limiting factor of neural ODE based methods is
their computational cost, since the input derivatives of the network that
provides the velocity vθ are repeatedly evaluated for every step of the
solver. Furthermore, the dynamics given by neural networks can become
stiff during training, leading to problems with adaptive ODE solvers. To

72 lagrangian flow networks

avoid these issues, Biloš et al. (2021) propose time-dependent bijections
instead of neural ODEs for modeling time series data.

SLDA with neural ODEs. From a fluid dynamics perspective, the solved
equations in CNFs correspond to the continuity equation in its Lagrangian
formulation, written in terms of the log density, i. e.

d
dt

ln ρ(t, x(t, z)) = −∇ · vθ(t, x(t, z))

ln ρ(0, x(0, z)) = ln ρ0(x(0, z)).
(4.4)

with z ∈ Rd, vθ : [0, T]×Rd 7→ Rd, t ∈ [0, T], and fixed initial density with
unit integral, e.g. ρ0 = N (0, I). The so-called hidden output of the CNF,
which we denote by x(t, z), can be interpreted as the position of a moving
parcel as it is a solution to the IVP{

∂tx(t, z) = vθ(t, x(t, z))

x(0, z) = z.
(4.5)

In SLDA, the density at the departure points (i. e. at the initial time) ρ0
is represented by an interpolated mesh instead of a fixed base distribu-
tion. Similarly, the fields governing the dynamics (in our case, just the
velocity) are parameterized by spatio-temporal (3D+time) meshes that are
interpolated. The data-loss for the density is computed by mapping the
observations backward in time with Eq. (4.4) and then comparing it with
the interpolated initial density. Note that this is identical to evaluating the
log-likelihood in a CNF.

4.3 lagrangian flow networks

We first present some key results of the classical theory of Lagrangian
flows for smooth vector fields. These provide us a framework for evolv-
ing densities and velocities that always fulfill the CE. We then propose
parameterizations that result in simple expressions for the velocity and
density. The resulting LFlow models densities and velocities by building
upon conditional Normalizing Flows.

4.3.1 Flow Maps and the Continuity Equation

The Lagrangian view describes fluids from the perspective of moving fluid
parcels, i.e. infinitesimal volumes with constant mass. From this point of

4.3 lagrangian flow networks 73

t

0

0.3

0.6

Figure 4.1: Illustration of the transformations and involved fields for modeling
the temporal evolution of a 2D density with LFlows. The red lines
inbetween the planes indicate trajectories of fluid parcels.

view the CE states that density changes of the fluid are described by volume
changes of parcels. That is, spatial contraction increases the density of a
parcel, and expansion decreases it. In order to compute the density of any
parcel, we then only need to know its initial density, and how much its
volume was distorted.

More formally, let xt0 denote the initial position of a parcel at time t0. In
addition, let Xt : Ω 7→ Ω for a fixed t ∈ [t0, T] be a diffeomorphism that
maps xt0 to the parcel position at time t:

Xt(xt0) = xt, (4.6)

with Xt0 being the identity map. That is, Xt provides the continuous trajec-
tory of the parcel xt0 . We further assume basic regularity of Xt and X−1

t such
as smoothness and globally bounded derivatives. Since Xt provides the
trajectory of a parcel, the velocity of a given parcel at position xt and time
t follows naturally. First, the parcel is mapped back to its initial position
with X−1

t . The velocity is then the change in position along its trajectory
with respect to time t:

v(t, x) =
∂Xt

∂t

(
X−1

t (x)
)

. (4.7)

Following classical Cauchy Lipschitz theory, it is known that such a map Xt
is the unique flow map of v starting at time t0. Specifically, for any x ∈ Ω
the curve t 7→ Xt(x) is the unique solution to the Cauchy Problem{

∂tXt (x) = v (t, Xt(x)) t ∈ [t0, T),

Xt0(x) = x.
(4.8)

74 lagrangian flow networks

A more complete statement is given in the Appendix B.1.1 Theorem 4, and
we refer to Hartman (2002) for an extensive description of the theory of
ordinary differential equations.

With the velocity given by Eq. (4.7), we further need to define a density
to describe a fluid. Let ρt0 : Ω 7→ R+ be the (known) initial fluid density at
time t0. We can then define the time-evolved density as a transformation of
ρt0 using the change of variables formula:

ρ(t, x) = ρt0

(
X−1

t (x)
)
|det JX−1

t (x)|. (4.9)

Given the velocity in Eq. (4.7) and a smooth ρt0 , Eq. (4.9) is a solution to the
continuity equation (see B.1.1 Theorem 5).

Proofs for this statement vary significantly in their complexity and de-
pend on the regularity assumptions for the velocity. That is, they range
from classical theory to current mathematical research. For the sake of
completeness, we provide precise statements, assumptions and proofs in
the Appendix Section B.1. The appended proofs are based on the well-
established classical theory for the existence and uniqueness of Lagrangian
flows for smooth vector fields and we refer to Ambrosio and Crippa (2008)
for basic and advanced results.

4.3.2 Lagrangian Flow Networks

We can now exploit the derived connection between the CE and time-
evolving diffeomorphisms to model densities and velocities that satisfy the
CE by construction. Instead of directly parameterizing both Xt and ρt0 (as
done in the concurrent work of L. Li et al. (2023)), we model the density at
each time ρt, including ρt0 , as a transformation of a simple fixed density
ρbase. This requires only a single time-conditioned bijection Φt. We call
the resulting model Lagrangian Flow Networks (LFlows) and provide a
high-level illustration in Figure 4.1.

Let Φt : Ω 7→ Rd be a learnable diffeomorphism with t ∈ [t0, T]. We
propose to parameterize Xt as the composition

X̂t(x) = Φ−1
t (Φt0(x)) . (4.10)

In practice, we implement Φt as an invertible neural network with its
parameters conditioned on time. We further define the initial density as a
transformation of a simple base density:

ρ̂t0(x) = ρbase

(
Φt0(x)

) ∣∣det JΦt0

(
x
)∣∣ . (4.11)

4.4 implementation 75

The base density ρbase : Rd 7→ R+ is an unnormalized probability density:

ρbase(z) = c · N (0, I), (4.12)

where c ∈ R+ is the total mass of the system and a freely learnable
parameter. We now substitute Xt in Eq. (4.9) with the parameterized X̂t
from Eq. (4.10). We also substitute the density ρt0 with the parameterized
ρ̂t0 (Eq. (4.11)). The modeled density then simplifies to

ρ̂(t, x) = ρ̂t0

(
X̂−1

t (x)
)
|det JX̂−1

t (x)| = ρbase

(
Φt(x)

) ∣∣det JΦt
(
x
)∣∣ . (4.13)

We refer to the Appendix B.2.1 for the intermediate steps. Note that the
resulting expression coincides with the change of variable formula for prob-
ability densities in Eq. (2.34). This allows us to elegantly model the evolving
density through a conditional Normalizing Flow with unnormalized base
density ρbase and bijective layers conditioned on time Φt.

The parameterization of Xt with X̂t in Eq. (4.7) also results in a simple
expression for the velocity:

v̂(t, x) =
∂X̂t

∂t

(
X̂−1

t (x)
)
= −

(
JΦt
(

x
))−1 ∂Φt

∂t
(x) . (4.14)

We provide the explicit steps for arriving at Eq. (4.14) in the Appendix B.2.2.
Note that in order to evaluate ρ̂ and v̂ we now require only the forward map
Φt, but not its inverse. This proves useful for layers with expensive inverses,
or if the inverse is unknown. An illustration that unifies the Lagrangian
view and the provided parametrization of LFlows is given in Figure 4.1.

4.4 implementation

To implement LFlow as outlined in Section 4.3, we require conditional
bijective layers. That is, the diffeomorphism Φt required for Eq. (4.13)
and Eq. (4.14) has to be conditioned on time t. To allow for a flexible
parameterization, we first embed t into a higher-dimensional space with
an embedding network fΘ : [t0, T] 7→ Rk. The k-dimensional embedding
c = fΘ(t) is shared between the individual layers, and corresponds to
the conditional input c discussed in the background Section 2.4.3. That is,
individual layers consist of neural networks that take as input the time
embedding fΘ(t) and output the parameters of a diffeomorphism, resulting
in time-conditioned bijections Φt := Φ(x; fΘ(t)). A high-level visualization

76 lagrangian flow networks

Figure 4.2: General Architecture of the conditional Flows. The dotted lines (· · ·)
indicate the inverse direction). A shared embedding is created based
on the time condition, and layer-wise neural networks then parame-
terize the bijections.

of the network architecture is provided in the Figure 4.21.
We implement the embedding network fΘ(t) as MLPs with residual skip

connections and swish activations (Elfwing et al., 2018). The specific com-
position of the bijections Φ(x; fΘ(t)) varies depending on the experiment.
However, the main building blocks are always Lipschitz-constrained invert-
ible densenets (i-DenseNet) (Perugachi-Diaz et al., 2021). Specifically, we
use a conditional variant of i-DenseNets which we introduced in the back-
ground Section 2.4.3.2 as TRES(x, c). Further, we rely sinusoidal activations
(CSin) instead of the ClipSwish activations proposed by Perugachi-Diaz et
al. (2021), which we will discuss in Section 4.4.2. In addition to conditional
i-DenseNet blocks, we employ (unconditional) intermediate activation nor-
malizations (Kingma & Dhariwal, 2018) and (conditional) SVD layers, i. e.
TLN(x) and TSVD(x, c) from the background Section 2.4. The Jacobian de-
terminant of the i-DenseNet blocks is computed using brute force, which is
still feasible in ≤ 3 dimensions.

Code to our experiments is provided in the supplementary material2,
and on Github3.

Experiment Specific Implementations. For implementation and archi-
tecture details of LFlows and competing methods for all experiments,
we refer to the Appendix Section B.3. Competing models include semi-

1 This hyper-network architecture for conditional flows is based on the code provided by the
nflows library (Durkan et al., 2019) and not a contribution from our side.

2 https://openreview.net/attachment?id=Nshk5YpdWE&name=supplementary_material
3 https://github.com/bmda-unibas/LagrangianFlowNetworks

https://openreview.net/attachment?id=Nshk5YpdWE&name=supplementary_material
https://github.com/bmda-unibas/LagrangianFlowNetworks

4.4 implementation 77

No Penalty Total Mass Penalty

Figure 4.3: Predictions of the LFlow trained on two timepoints without (left) and
with (right) total mass regularization. The green box indicates training
points, the remainder is unobserved.

Lagrangian data assimilation (SLDA), divergence-free neural networks
(DFNNs) (Richter-Powell et al., 2022), and PINNs (Raissi et al., 2019).

4.4.1 Normalization Constant.

In all our settings the total mass, i.e. the normalization constant c in
Eq. (4.12), is not known. Therefore, we treat c as a freely learnable hy-
perparameter, which we initialize based on a validation set. We further
encourage solutions with a small total mass by introducing a penalty on
the total mass, i.e. on the learned normalization constant c:

Lmass = wc

∫
Ω

ρθ(t, x) dx = wc · c, (4.15)

with the hyperparameter wc ∈ R≥0 weighting the penalty. In practice, this
penalty discourages learning significant densities in areas where there are
no measurements.

To illustrate the effect of total mass regularization, we train an LFlow on
a density that is only observed in a subregion of the domain. In addition,
the normalization constant of the LFlow is initialized with a high value.
The results are shown in Figure 4.3. The green areas indicate observed
regions, i. e. the density is observed at two separate time points, once on the
left and once on the right half of the domain. Without any regularization,
the network will simply push the mass away from the observed region,
leading to large densities directly outside of the region. The penalty on the
normalization constant instead encourages the network to decrease the total
mass. This leads to an effect that is similar to a zero prior on the predicted
density.

78 lagrangian flow networks

4.4.2 Sinusoidal Activations for i-DenseNets

As mentioned in the preceding sections, we make use of i-DenseNets, a
variation of invertible residual networks, for implementing the conditional
bijections. Instead of relying on the base i-DenseNet, we, however, further
improve the flexibility of i-DenseNets for low-dimensional inputs. We
do so simply by exchanging the activation function. Specifically, we use
sinusoidal activation functions motivated by SIRENs (Sitzmann et al., 2020)
to enable more flexible Normalizing Flows in low-dimensional settings.
Each activation h is then given by the elementwise function

σsin(x) = sin(ωx)/ω, (4.16)

with ω ∈ R>0. Dividing by ω ensures Lip(σsin) = 1, as Lip(f) = sup | f ′(x)|
for a differentiable function f . Analogously to the CLipSwish activation, a
concatenated (and still element-wise) version of these activations is given
by

σcsin =

[
σsin(x)/

√
2

σsin(−x)/
√

2

]
. (4.17)

Dividing by
√

2 again ensures a Lipschitz constant of 1 for the concatenation,
following Section 2.4.1.2 Eq. (2.59). We numerically validated that, when
using the CSin activations, the probability density integrates to one, and
that the fix point iteration for the inverse converges. Figure 4.5 and Fig. 4.4
show a qualitative comparison of CSin activations with varying ω and
the default CLipSwish activation (Perugachi-Diaz et al., 2021). For a more
extensive evaluation we refer to Section 4.6.

4.4 implementation 79

2 0 2
x

2

0

2

y

Figure 4.4: 10 000 Groundtruth samples from the Four Circles toy dataset.

CSin 10

Figure 4.5: Learned probability densities and samples for the Four Circles toy
dataset. Two identical i-DenseNets with different activations are
trained on 2D densities with maximum likelihood. The numbers
of the CSin activations indicate the factor ω. The scatter plot axes for
the samples are adjusted based on the samples.

80 lagrangian flow networks

4.5 experiments: lagrangian flow networks

We showcase LFlows for two distinct settings. In setting (i), density and
velocity are observed, but no equations are available (Section 4.5.1 and 4.5.3).
In setting (ii) only the density is observed but further equations for the
velocity are known (Section 4.5.2). For details on the data and architecture
for each experiment, we refer to the Appendix B.4.1 to B.4.3. We will
compare LFlows with methods that enforce the CE through different means,
namely divergence-free neural networks (DFNNs), physics-informed neural
networks (PINNs), and semi-Lagrangian data assimilation (SLDA). For
details on the implementation we refer to the Appendix B.3.

Numerical Evaluation of Physical Consistency. Physical consistency in
terms of the CE implies that the predicted density at any time coincides
with the inital density transformed forward in time by the learnt veloc-
ity field. An inconsistent model would imply that the predicted velocity
field fundamentally disagrees with the predicted density movements. This
would make any downstream interpretation of the two learned fields futile.
We quantitatively evaluate this potential inconsistency in the following
experiments. We compare the predicted density ρ̂model(t, x) with the nu-
merical solution of the IVP defined by ρ̂model(t0, x), v̂model(t, x), and the
continuity equation, i. e. Definition 2. We evaluate the symmetric mean
absolute percentage error

sMAPE =
1
n

n

∑
i=1

|ρ̂model(ti, xi)− ρ̂ODE(ti, xi)|
|ρ̂model(ti, xi)|+ |ρ̂ODE(ti, xi)|

, 0 ≤ sMAPE ≤ 1. (4.18)

4.5.1 Simulated Densities

For a synthetic example of setting (i) we simulate densities in 2D and 3D
over time by transforming a mixture of four unnormalized Gaussians.

Experimental Setup. We parameterize time-dependent bijections in t ∈
[0, 1.2], Ω = (−4, 4)d, which provide us analytical forms for the densities
and velocities. During training, only sub-regions of the domain Ω are
observed. The dynamics in 3D are similar to the 2D setting, with the xy-
velocity being the same for all z values and the z velocity being 0. The only
added difficulty is a higher-dimensional domain. We limit all models to the
computing resources of a NVIDIA Titan X Pascal, and optimize based on

4.5 experiments : lagrangian flow networks 81

the explained variance4 (R2) of the density on the validation set. For the
PINN this resulted in 216 collocation points. We do not include consistency
results for DFNNs due to numerical instabilities. As DFNNs only provide
access to the flux F, the velocity v = F/ρ becomes numerically unstable in
low-density regions, which are abundant in this experiment.

Results. Results for 10 random seeds are provided in Figure 4.7. In addi-
tion, snapshots of the 3D prediction for z = 0 are shown. All methods aside
from the PINN have a low consistency sMAPE on the order of 1e-4 or lower.
This is expected, as LFlows enforce the CE by construction. Furthermore,
SLDA computes the density similarly to our numerical reference, although
with a lower order ODE solver. Low error tolerances or low-order solvers
for SLDA would of course still result in inconsistencies. Looking at the
predictive performance, LFlows show the highest average R2 for the density
in both 2D and 3D. While PINNs perform competitively in 2D, they severely
degrade in 3D, as the number of collocation points used (limited by GPU
memory) is insufficient to enforce the PDE. This is also reflected in their
increase of the consistency sMAPE in 3D. Finally, DFNNs and SLDA are
roughly comparable in terms of predictive accuracy, with DFNNs being in
our experience most prone to overfitting. We note that small displacements
of the density can already lead to large differences in R2.

Figure 4.6: Results on the synthetic example in 2D and 3D. Left: Test R2 for the
predicted density (higher is better). Right: Consistency loss (lower is
better). Missing for DFNN due to numerical issues.

4 R2 = 1− MSE(yobs ,ŷ)
Var(yobs)

≤ 1 with R2 = 1 indicating a perfect reconstruction.

82 lagrangian flow networks

Figure 4.7: Evaluation of the predicted density on the xy-plane with z = 0 for
different methods. Arrows indicate velocity, except for the DFNNs,
where the normalized flux is shown. The lower left plot shows the
spatial splitting into train (green), validation (yellow), and test (pur-
ple) subsets.

4.5 experiments : lagrangian flow networks 83

4.5.2 Dynamical Optimal Transport

As an example of setting (ii), in which no velocity is observed but addi-
tional equations dictating the dynamics are known, we consider dynami-
cal optimal transport problems. Our experimental setting closely follows
Richter-Powell et al. (2022). Specifically, we consider the Benamou-Brenier
formulation of the optimal transport problem between two densities pt0

and pt1 (Benamou & Brenier, 2000). In this case the optimal transport map
is the solution map Xt of a flow that is defined by the vector field v and
minimizes the following objective:

min
v,ρ

∫ t1

t0

∫
Ω
|v(t, x)|2ρ(t, x) dx dt (4.19)

subject to the constraints ρ(t0, x) = pt0(x) and ρ(t1, x) = pt1(x). Further-
more, ρ and v are subject to the continuity equation ∂tρ = −∇ · (ρv).

Both DFNNs and LFlows can solve the minimization problem in Eq. (4.19)
without needing a separate estimation of ρ. Instead, one fits the densities
at t0 and t1 and additionally minimize Eq. (4.19). However, to obtain the
transport map from the learned velocity field, DFNNs need to numerically
solve the Cauchy problem in Eq. (4.8). An ODE solver might however
struggle due to the numerical instability of the DFNNs velocity in low-
density regions. In contrast, LFlows elegantly provide an analytical form for
the continuous transport map through the learned bijections, i.e. X̂t(x) =
Φ−1

t (Φt0(x)).

Experimental Setup. We train the models by minimizing the loss

L(ρ̂, v̂) = Lobs(ρ̂, v̂) + Lot(ρ̂, v̂) (4.20)

Lobs(ρ̂, v̂) = λEp̃0 [|ρ̂(0, x)− p0(x)|] + λEp̃1 [|ρ̂(1, x)− p1(x)|] (4.21)

Lot(ρ̂, v̂) =
∫ 1

0

∫
Ω
|v̂(t, x)|2ρ̂(t, x) dx dt (4.22)

where data is drawn from p̃i, which is a mixture of pi and a uniform density
(for i = 0, 1); λ is a hyperparameter. At test time we empirically estimate the
W2

2 distance by mapping 5000 samples of p0 from t = 0 to t = 1. Different
to Richter-Powell et al. (2022) we repeat this estimate 50 times. We compare
the W2

2 estimates of (i) LFlows, (ii) DFNNs and (iii) a minimax formulation

84 lagrangian flow networks

Figure 4.8: Approximations of the 2D optimal transport map with LFlows, DFNN
and a discrete reference. Dataset: Circles→ Pinwheel.

of the optimal transport map learned via input convex neural network
(Makkuva et al., 2020). For DFNNs the samples are transported through
the estimated velocity with an ODE solver. We further compare to the W2

2
estimates of a discrete OT-solver (Bonneel et al., 2011) from the pot library
(Flamary et al., 2021) based on 50000 samples. The λ for LFlows is chosen
by matching the W2

2 distance between the moons and swissroll datasets with
the discrete estimate. For DFNNs a λ value is provided by Richter-Powell
et al. (2022). In this experiment we restrict ourselves to methods that can
exactly enforce the CE and thus exclude PINNs.

Results. We considered three different pairs of toy 2D distributions. Fig-
ure 4.8 shows the approximated optimal transport maps learned with
LFlows and the W2

2 estimates of the different methods. We verified that
the DFNN and the LFlow fit the target densities well, with a test MSEs
below 8e-5 for all settings. We excluded SLDA, as it was unstable and did
not consistently result in low errors for the two target densities. The LFlow
estimates of W2

2 are closest to the range of discrete estimates (Figure 4.9).
In contrast, the minimax model underestimates the distance which is con-
sistent with the results of Richter-Powell et al. (2022). DFNNs significantly
overestimated W2

2 and we were unable to fully reproduce results obtained

4.5 experiments : lagrangian flow networks 85

Figure 4.9: Estimated Wasserstein distances of the 2D optimal transport map
with LFlows, DFNN and a discrete reference. The red vertical lines
denote the minimum, median, and maximum estimates of 5 runs
with a discrete OT solver.

by Richter-Powell et al. (2022). We assume that this is due to the ODE solver
struggling with the unstable velocity calculation in low-density regions.

4.5.3 Modeling Bird Migration

As a real-world application for setting (i) we model bird migration within
Europe based on weather radar measurements. The data provided by
Nussbaumer et al. (2021) contains estimated bird densities (birds/km3) and
velocities (m/s). Measurements are taken from 37 weather radar stations
in France, Germany, and the Netherlands at up to 5-minute intervals at
200m altitude bins, reaching up to 5km. The velocity data does not include
a z-axis component.

Experimental Setup. We model the bird migration of 3 subsequent nights
of April 2018. We assume that the mass is mostly conserved within the
three nights during migration. We test the predictions on radars located in
the center of the covered region, which were excluded during training (see

86 lagrangian flow networks

Figure 4.10: Locations of the weather radars within central Europe that were
used to obtain bird densities for the considered data set.

Figure 4.11). Hyperparameters of all models are selected by minimizing the
density MSE on three nights of March 2018. As a baseline, we compare the
results with a 10-layer multilayer perceptron (MLP) with skip connections,
256 hidden units per layer, ReLU activations, and batch normalization.
Additionally, we evaluate the PINN, DFNN, and SLDA. The PINN has
the same general architecture as the MLP but additionally minimizes the
penalty λ · ∥∂tρ̂ +∇ · (ρ̂v̂)∥2 evaluated on 100 000 collocation points, where
λ ∈ R+ is a hyperparameter.

Results. Figure 4.11 shows snapshots of the vertically integrated density
and flux predicted by LFlows. Predictions of the other models are provided
in the Appendix B.4.3.2. Aside from the velocity and density, LFlows read-
ily provide the trajectories (shown in orange). In practice, experts could
compare these with the migration paths taken by individual birds, which
are for example obtained from bird-ringing studies.

We compare test density errors for each model in Figure 4.12 (a). The
methods that enforce the continuity equation result in a lower error than
the baseline MLP. Furthermore, the consistency sMAPE in Figure 4.12 (b)
shows that PINN and MLP lead to an inconsistent density and velocity.
LFlows, SLDA and DFNNs have a sMAPE that is on the order of 1e-4 or
lower. Figure 4.13 visualizes the pointwise values of the sMAPE for the
MLP, PINN, and LFlow at a fixed time.

4.5 experiments : lagrangian flow networks 87

Figure 4.11: Snapshots of predicted bird density at three consecutive nights
within central Europe. The 2D projection was obtained by integrating
over altitudes covered by the radars. Orange lines indicate 2D (xy)
projections of 3D trajectories from t0 to t using randomly sampled
departure points.

Figure 4.12: (a) Test MSE of the (log1p) density and (b) consistency sMAPE
evaluated at multiple timesteps.

5°W 0° 5°E 10°E 15°E

42°N

44°N

46°N

48°N

50°N

52°N

2018-04-08 00:00:00

0

0.25

0.5

0.75

1

MLP PINN LFlow

5°W 0° 5°E 10°E 15°E

42°N

44°N

46°N

48°N

50°N

52°N

2018-04-08 00:00:00
5°W 0° 5°E 10°E 15°E

42°N

44°N

46°N

48°N

50°N

52°N

2018-04-08 00:00:00

Figure 4.13: Consistency sMAPE of MLP, PINN and LFlow at single time point
(2018-04-08 00:00).

88 lagrangian flow networks

Computational Costs. While DFNNs and SLDA are nearly competitive
with LFlows in terms of the density MSE, they suffer from high compu-
tational costs. SLDA requires to evaluate a neural network many times to
numerically solve the ODE. In addition, SLDA gets slower during training
because the dynamics given by the neural network become more stiff. This
is shown by the increase in run time for each epoch in Figure 4.14 (a) and
is a known limitation of models in the neural ODE family (Biloš et al.,
2021). DFNNs on the other hand result in huge memory requirements due
to the required second-order derivatives. Figure 4.14 (b) shows the peak
memory use in terms of VRAM for varying minibatch sizes of the models.
In practice, high memory requirements result in small minibatch sizes,
which ultimately lead to a slower training and inference pipeline (Shallue
et al., 2018). The high peak memory and runtime of PINNs is due to the
large amount of collocation points, which could be alleviated with more
sophisticated sampling methods.

Figure 4.14: (a) Time per training epoch during training and (b) peak memory
usage during training in GB VRAM for varying minibatch sizes for
the bird experiment.

Total Mass Regularization. To illustrate the effect of the total mass
penalty in a real-world setting, we train an LFlow on the bird migration
problem with varying penalty weights, as shown in Fig. 4.15.

We further take a look at the variation of the density for differing penalty
weights, which can be shown in a single visualization. Similarly to before,
we train different models for varying total mass penalty weights. We calcu-
late the relative standard deviation of the predicted flux (i.e. the product of
density and velocity) at each spatial location for a fixed time. Areas with
higher relative standard deviations (std) correspond to areas with largely
varying explanations. This variation could be seen as an ad hoc measure of

4.5 experiments : lagrangian flow networks 89

Figure 4.15: Predictions of the LFlow trained without (left) and with (right) total
mass penalty. While predictions at observed radar stations barely
change, the total mass outside of the observed region is significantly
reduced.

uncertainty calculated from an ensemble of models. Figure 4.16 shows the
resulting map for a single time frame for the bird migration problem. Areas
closer to train radar stations (light green points) have, as expected, a lower
relative standard deviation, and the areas that are never observed show the
highest variation. An interesting result is, however, that the left-out central
region has a relatively low deviation of predictions. That is, the variation
does not seem to be a mere result of the distance to the measurements.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Un
ce

rta
in

ty
 (s

td
/m

ea
n)

Figure 4.16: Relative standard deviation of the predicted (ρv) with varying mass
penalties. Snapshot of a single time frame.

90 lagrangian flow networks

4.6 experiments: i-densenets with csin

As an addendum, we evaluate i-DenseNet with CSin activations on 2D
toy problems introduced in Section 4.4.2. This section solely serves as a
showcase of the CSin activations, and is independent of the proposed
LFlows.

Experimental Setup. For the evaluation, we consider probabilistic density
estimation tasks with an unconditional Normalizing Flow. The i-DenseNets
are trained via maximum likelihood on samples from the target distribution.
We refer to Appendix B.4.4 for details on architecture and training.

0 2000 4000 6000 8000 10000
Iteration

3.0

3.2

3.4

3.6

3.8

4.0

ln
p(

x)

Activation
CLipSwish
CSin03
CSin10
CSin30

(a) Dataset: Four Circles

0 2000 4000 6000 8000 10000
Iteration

2.6

2.8

3.0

3.2

3.4

3.6

3.8
ln

p(
x)

Activation
CLipSwish
CSin03
CSin10
CSin30

(b) Dataset: Two Spirals

Figure 4.17: Negative Log-Likelihood of the (a) Four Circles and (b) Two Spirals
toy dataset for an i-DenseNet with different activation functions. The
line indicates the running mean over 100 iterations and the shaded
region the corresponding standard deviation.

Results. Fig. 4.5 shows qualitative result for the Four Circles data set
using the same i-DenseNet with CLipswish or CSin activation with dif-
ferent choices for ω. Fig. 4.17 provides the corresponding log-likelihood
during training. All CSin activations lead to higher flexibility and faster
convergence during training, although high ω result in a widely spread
low density in areas without observations. Longer training or varying learn-
ing rates resulted in qualitatively similar results and differences between
activation functions for various toy datasets. For a more quantitative evalu-

4.6 experiments : i-densenets with csin 91

ation, we compare CSin (ω = 10) with the CLipSwish results reported by
Perugachi-Diaz et al. (2021) on 3 toy datasets over 5 repeated runs with
different seeds. We specifically explore a much smaller model (≈ 5600
parameters) compared to the ones used in Perugachi-Diaz et al. (2021)
(≈ 504000 parameters). Table 4.1 shows that an i-DenseNet with CSin acti-
vations is competitive or slightly outperforms the CLipSwish version while
using roughly 100 times fewer parameters. When ClipSwish activations are
used with the same number of parameters, CSin activations achieve higher
log-likelihoods.

Table 4.1: Evaluation of the CSin activation on 2D toy datasets. The entries show
the mean ± standard deviation of the negative log-likelihoods in nats
(lower is better) for 5 runs with different seeds. The asterisk * indicates
results taken from existing literature.

ClipSwish* ClipSwish CSin10

(# Parameters) (504K) (5.6K) (5.6K)

Two Moons 2.39 2.42± 0.007 2.37±0.071

Two Circles 3.30 3.64± 0.044 3.28 ±0.006

Checkerboard 3.66 3.86± 0.015 3.57 ±0.003

Four Circles - 3.44± 0.042 2.92 ±0.006

Finally, we also evaluate the i-DenseNet with CSin (ω = 15) activations
on a 6D density estimation dataset from the UCI dataset repository (Dheeru
& Taniskidou, 2017), specifically the Power dataset. table 4.3 show the test
log-likelihood compared to results of a few selected methods to put its
performance into context. Although significantly outperforming Masked
Autoregressive Flow (MAF) (Papamakarios et al., 2017) and CNF-based
FFJORD (Grathwohl et al., 2019), the (to our knowledge) current state-of-
the-art method using Neural Spline Flows (RQ-NSF) (Durkan et al., 2019)
still performs best. We note that the hyperparameter tuning on our side
was very limited, so a slight improvement is expected with further effort.

In summary, we have shown in this section that sinusoidal activations
improve the flexibility of invertible residual networks in low-dimensional
settings, which makes them suitable for LFlows.

92 lagrangian flow networks

Table 4.3: Test negative log-likelihoods for probabilistic density estimation on
the 6D UCI power dataset (lower is better). The entries show the mean
estimate ± 2 times the standard error of the mean for a single run,
following the evaluation method of Durkan et al. (2019). The asterisk *
indicates that the result is taken from existing literature. The dagger
† indicates that the mean and standard deviation are with respect to
multiple independent runs.

UCI Power

i-DenseNet + CSin10 −0.57± 0.01

i-DenseNet + CLipSwish −0.46± 0.01

FFJORD†* −0.46± 0.01

MAF* −0.45± 0.01

RQ-NSF* −0.66 ±0.01

4.7 conclusion

We introduced LFlows for modeling densities and velocities that adhere
to the continuity equation by construction. We did so by establishing a
link between time-conditioned diffeomorphisms and Lagrangian solution
maps for the continuity equation. The resulting parametrization allows us
to elegantly model time evolving densities with a single time-conditioned
Normalizing Flow. Furthermore, we can calculate the velocity without
inverting the conditional bijections, allowing the use of expressive bijective
layers. We showed that LFlows can be applied to settings where we have
sparse data on both density and velocity, and to settings where we have no
data on velocity, but instead enforce additional equations.

In terms of density prediction LFlows outperform all competing models
on both synthetic and real experiments. Different to methods like PINNs,
which weakly enforce the continuity equation, LFlows always provide phys-
ically consistent predictions. In addition, LFlows avoid scaling limitations of
DFNNs (peak memory usage) and neural adjoint based methods (training
time). For downstream tasks, LFLows directly provide Lagrangian maps
without the need for additional numerical solvers. In dynamical optimal
transport settings, LFLows directly provide the analytic expression of the

4.7 conclusion 93

transport map. When modeling bird migration, the Lagrangian maps pro-
vide access to trajectories, which could be compared to migration paths
obtained from different data modalities.

5
C O N C L U S I O N

One of the big challenges in the field of physics-informed Machine Learning
lies in the enforcement of physical constraints in form of PDEs in Machine
Learning models. Our contribution focused on the continuity equation for
the conservation of mass, which provides a fundamental link between the
density changes of a fluid and its velocity. Satisfying this equation ensures
physically consistent predictions in a model, and thus avoids contradictive
interpretations of the velocity and density fields. To this end, the research
surrounding this thesis has been dedicated to developing neural networks
that adhere to the continuity equation in continuous space and time. In this
final chapter, we summarize our main findings, review limitations of our
proposed methods, and provide an outlook for future directions.

5.1 summary

The presented contributions consists of i) an extension to penalty-based
enforcement of the continuity equation, and ii) a general framework for
strict enforcement of the continuity equation.

Physical constraints via penalties. In our first contribution in Chapter 3

we make use of the penalty-based framework of physics-informed neural
networks. We identify shortcomings of PINNs in settings with sparse
and localized signals in larger domains or unknown boundaries. That is,
standard PINN approaches struggle under these conditions due to their
reliance on uniform sampling of the collocation points within a fixed region.
Although alternative strategies for (re-)sampling collocation points exist,
they often still rely on uniform proposals, which are inevitably unable to
explore high-dimensional spaces.

To address these challenges, we introduced a variant of PINNs, called
particle-density PINNs. By sampling collocation points from the particle
density, pdPINNs not only adapt the location of the collocation points,
but also provide an alternative loss objective. That is, the PDE loss is uni-
formly weighted over the particle positions, rather than being uniformly
weighted over space. For obtaining samples from the unnormalized particle

95

96 conclusion

distribution, we rely on dynamic Monte Carlo methods. As the colloca-
tion points in the resulting pdPINNs are adaptively chosen based on the
predicted density, pdPINNs can be considered truly mesh-free without
relying on a Lagrangian viewpoint. Although motivated by the continuity
equation, pdPINNs are generally applicable to time-dependent PDEs where
the variable of interest can be viewed as a density. We evaluated pdPINNs
in a series of synthetic experiments that covered applications to the con-
tinuity equation, the heat equation, and the Fokker-Planck equations. In
regimes with few collocation points, pdPINNs result in lower test errors for
predicted densities compared to competing methods, indicating a higher
sample efficiency. This effect is more pronounced in high dimensions, and
diminishes with large amounts of collocation points in low-dimensional
settings, where uniform samples are capable of extensively covering the
domain.

Physical constraints by construction. In our second contribution, which
is covered by Chapter 4, we present a neural network architecture that
adheres to the continuity equation by construction, called Lagrangian flow
networks (LFlows). Instead of regularizing universal function approxima-
tors via penalties, we directly parameterize velocities and density that are
always physically consistent. The proposed LFlows are based on a La-
grangian view of the continuity equation, which can essentially be split
into two components. First, the trajectories and thus velocities of parcels are
given by time-dependent diffeomorphisms, the so-called Lagrangian map.
Second, any change in the density of a parcel is only due to a change in its
volume. Given the Lagrangian map, the change in volume is available in
the form of the (absolute) Jacobian determinant of the map. Consequently,
the density of any parcel may be evaluated by mapping it back to its initial
time, evaluating its initial density, and scaling it with the corresponding
(absolute) Jacobian determinant.

The presented approach implements Lagrangian maps indirectly via a
time conditioned Normalizing Flows, warping a fixed and rescaled base
density to the target density. By doing so, there is no need to separately
parameterize the initial density, which would, for example, be required for
classical data assimilation methods. An important property of LFlows is that
the inverse transform of the bijective layers is not needed to evaluate either
density or velocity. This enables the use of flexible invertible layers that lack
an analytical inverse, such as invertible residual networks. LFlows demon-
strate high predictive accuracy and flexibility in both synthetic experiments

5.2 limitations and future directions 97

and real-world applications. However, the outstanding property of LFlows
is the ability to enforce the continuity equation without the drawbacks of
current alternatives. Namely, neural ODE based methods can lead to stiff
dynamics and thus increasingly slow training without careful regularization
and encouragement of straight trajectories. Divergence-free neural networks
instead lead to prohibitively high memory requirements due to the required
higher-order derivatives for parameterizing non-negative densities. Finally,
PINNs fail to enforce the continuity equation with sufficient accuracy, even
with many collocation points. While extensions such as pdPINNs can alle-
viate these problems, the lack of any formal guarantee, combined with the
additional need for tuning hyperparameters, remains.

5.2 limitations and future directions

After summarizing the main contributions and findings of our research,
we now turn our attention to examining the limitations of pdPINNs and
LFlows. Since limitations often suggest potential areas for improvement,
we directly discuss possible avenues for future research.

5.2.1 Particle-density PINNs

Generalization to different settings. We proposed pdPINNs for general
settings, where the variable of interest can be viewed as the physical density.
In addition, we assumed that the interest lies in accurately predicting
the density with a focus on enforcing the PDE in high-density regions.
However, these assumptions strongly depend on the application at hand.
For example, the interest may not be on the main bulk of density, but
rather on the behavior of the velocity in regions of low density. With such
an objective, pdPINNs on their own would not be beneficial. However,
the mesh-free properties of pdPINN can still be advantageous. It should
also be noted that pdPINNs are not mutually exclusive with additional
residual-based refinement methods, such as RAR. Instead of relying on
uniform proposals, it would be straightforward to draw proposals for such
refinement methods from the particle distribution.

98 conclusion

5.2.2 Lagrangian Flow Networks

Although Lagrangian flow networks provide strict enforcement of the
continuity equation, the reliance on bijective layers also results in some
restrictions and limitations inherent to the framework.

Expressiveness of bijective layers. LFlows model fluid densities and ve-
locities by transforming a base density with bijective layers. As such, similar
limitations as for Normalizing Flows apply. If the target density has discon-
nected modes, the base density must have the same number of disconnected
modes due to topological constraints (Papamakarios et al., 2021). If not,
the space inbetween disconnected modes will be covered by a small but
non-zero density. Furthermore, LFlows are limited by the expressive power
of the bijective layers. Even though state-of-the-art bijective layers are highly
flexible, each layer might still be limited in terms of the number of modes
that can be modeled (Liao & He, 2021).

Going beyond physical densities. We introduced LFlows as a model for
hydrodynamic flow problems, with the goal of modeling physical densities.
However, such an application domain could be considered rather niche
and limited. To expand the possible application areas, it might be useful to
change the perspective of our contribution. Instead of modeling physical
densities and velocities with the help of conditional Normalizing Flows,
we could view LFlows as a way to equip conditional Normalizing Flows
with a velocity. For probabilistic density estimation tasks that depend on
time, this would open up a range of interpretable regularization methods
for conditional NFs.

For example, Tong et al. (2020) model cellular dynamics in data from
single-cell RNA sequencing, focusing on interpolating a time series of dis-
tributions. The presented TrajectoryNets are based on maximum likelihood
density estimation with continuous Normalizing Flows. The data samples
correspond to low-dimensional (5D) embeddings of sequencing data at dif-
ferent time points. Borrowing concepts from fluid dynamics, TrajectoryNet
additionally regularizes the velocity of the continuous NF with a dynamical
optimal transport objective. LFlows would allow conditional NFs to be used
in a similar manner for any time-dependent probability density estimation
task, without the need for neural ODE solvers.

For a more speculative direction, it would be interesting to study the
effect of e. g. optimal transport regularizations for Normalizing Flows with

5.2 limitations and future directions 99

multiple conditioning variables. That is, Lagrangian flow networks with
multiple variables that could be interpreted as “time”. A dynamical optimal
transport penalty would encourage straight trajectories of constant speed
with respect to each conditioning variable. That is, changes in probability
would be less abrupt under changing conditions. Such an approach might
provide an attractive regularization objective, especially in settings with
many conditioning variables and few observations.

Finally, there is the potential to go beyond currently established reg-
ularization methods, such as dynamical optimal transport, and instead
look more towards methods that characterize flows in fluid dynamics. For
example, the finite time Lyapunov exponent measures the divergence of
trajectories with infinitesimal close starting points and is, for example,
used for studying the geophysical fluid transport in oceans (Ser-Giacomi
et al., 2015). Its computation is based on the Lagrangian flow map Xt, and
with LFlows we are in the rare position to have closed-form access to this
map. Penalizing (an approximation to) the finite-time Lyapunov exponent
could provide an attractive regularization objective for encouraging stable
dynamics.

Enforcing additional constraints. Additional constraints and equations
other than the continuity equation still have to be enforced through PDE
penalties similar to PINNs. Furthermore, computing the velocity requires
first-order differentiation as a trade-off for the direct density evaluation
without numerical integration.

However, some additional constraints should be enforcable by con-
struction. For an example of which we are aware, consider incompress-
ible flows problems. Such problems require divergence-free velocities, i. e.
∇ · v(t, x) = 0. The flow Xt of such a divergence-free velocity field is vol-
ume preserving i. e. det JXt = 1, a property which is sometimes referred to
as Liouville’s Theorem (see e.g. Hairer et al. (2006, Chapter 06, Lemma 9.1)).
With LFlows it is possible to construct such volume preserving Lagrangian
maps by leveraging volume preserving layers, such as the Householder or
shift transforms. Let the conditional bijection in a LFlow be given by

Φt = B ◦ At (5.1)

Φ−1
t = A−1

t ◦ B−1 (5.2)

100 conclusion

with At being a time-conditioned, volume-preserving layer, and B any
bijective layer that is independent of time. By definition, the Jacobian
determinant of At is |det JAt| = 1. Then the Lagrangian Map is given by

Xt = Φ−1
t ◦Φt0 = A−1

t ◦
(
B−1 ◦ B

)
◦ At0 (5.3)

= A−1
t ◦ At0 (5.4)

and consequently |det JXt| = 1. Future work might, for example, investi-
gate how to enforce other constraints on the velocity in a similar manner.
In addition, it is probably necessary to study the representational power of
such LFlows, that is, can we construct LFlows whose velocity can universally
approximate any divergence-free vector field?

Sinks and Sources. Depending on the problem at hand, the introduction
of mass sources (or sinks) into the system might be of interest. This would
change the conservation law to additionally consider volume sources qv :
[t0, T]×Ω 7→ R:, resulting in the differential Eulerian formulation (see e.g.
Hirsch (2007))

∂tρ = −∇ · (ρv) + qv, (5.5)

or in the Lagrangian formulation

d ln ρ

dt
= −(∇ · v) + qv/ρ. (5.6)

That is, the density of a parcel no longer depends only on the distortion
of volume and its initial position, but also on all the sinks and sources
encountered along its trajectory. In our estimation, it is not straightforward
to extend LFlows to such settings. Nontrivial sources/sinks qv that depend
both on space and time would require numerical integration over the parcel
trajectory. However, we note that this limitation is in our understanding
shared by similar work on mass conservative neural networks such as
DFNNs (Richter-Powell et al., 2022). To overcome this restriction, two
directions for LFlows might be explored in future work.

A rather crude and ad hoc solution would be to discretize time into
multiple bins and allow instantaneous changes to the density between
different bins. For example, for the bird migration setting, this would
correspond to modeling individual nights separately. That is, one would
effectively resort to multiple disconnected flows. For LFlows, this could be
achieved by additionally conditioning the base density on the binned time.

A possibly more elegant, but also more speculative direction for over-
coming this limitation is to augment the d-dimensional physical space with

5.3 closing remarks 101

an additional dimension. Consider d = 3, with physical space x = [x, y, z]⊤

and an augmented space x′ = [x, y, z, w], the continuity equation is then
given by

∂tρ = −∇x′ · (ρv) = −∇x · (ρvx)− ∂w(ρvw)︸ ︷︷ ︸
=−qv

. (5.7)

The total mass will be conserved in the augmented space x′, but the total
mass within a slice ∆w in the new dimension would be subject to the influx
and outflow along the new dimension.

5.3 closing remarks

In this thesis, we focused on providing a set of tools to enforce the conti-
nuity equation and, more broadly, physical constraints in neural networks.
In doing so, we explored different perspectives on densities and the con-
tinuity equation, as well as different ways to enforce mass conservation.
Especially our introduction to LFlows presents not only a novel neural archi-
tecture, but also aims to offer the Machine Learning community insight into
the Lagrangian perspective of the continuity equation. Together with the
promising existing work on mass conservative neural networks, this could
ideally serve as a jumping-off point for future research. Indeed, as high-
lighted in the previous section, the remaining limitations and challenges
invite further exploration and research.

A
A P P E N D I X - M E S H - F R E E E U L E R I A N P I N N S

This chapter contains the supplementary text from Arend Torres et al.
(2022) corresponding to Chapter 3. Appendix A.1 provides the algorithm
used for implementing the competing methods RAR and OT-RAR, and
Appendix A.2 includes additional information on the experiments.

a.1 implementation of competing methods (rar,
ot-rar).

For the experimental evaluation we compare with the adaptive refinement
methods RAR (L. Lu et al., 2021) and OT-RAR (Tadiparthi & Bhattacharya,
2021). Both methods rely on consecutive refinements of a fixed grid in the
initial proposal. The number of collocation points is steadily increased, and
collocation points once added will not be removed. To allow for a fairer
comparison, we adapt both methods to use a limited budget of points, and
in addition we regularly resample them. This leads to slightly modified
versions of the methods, that are similar in spirit. For learning the linear
mapping proposed by Tadiparthi and Bhattacharya (2021), we rely on the
PyOT (Flamary et al., 2021) implementation of Knott and Smith (1984). The
pseudo-code for sampling a set of collocation points is given in Algorithm 3

and Algorithm 4. The required input fθ refers to the PDE approximated by
the network, as discussed in Section 3.1. For more details on the methods,
we refer to the original papers.

Algorithm 3 Adapted RAR

Input: fθ , uniform distribution UB ,
number of col. points k, previous col. points Xprev.

Xprop ← [x1, x2, . . . , xk]
T with xi sampled from UB

Xcomb ← concat(Xprev, Xprop)
Xnew ← topk(Xcomb, || fθ(Xcomb)||22, k)

Output: Xnew

103

104 appendix - mesh-free eulerian pinns

Algorithm 4 Adapted OT-RAR

Input: fθ , uniform distribution UB ,
number of col. points k,
number of points for empirical distribution j < 2k,
previous col. points Xprev.

Xprop ← [x1, x2, . . . , xk]
T with xi sampled from UB

Xcomb ← concat(Xprev, Xprop)
Xtarget ← topk(Xcomb, || fθ(Xcomb)||22, j)
Xsource ← [x1, x2, . . . , xj]

T with xi sampled from UB
MOT ← LinOT(Xsource, Xtarget)
Xnew ← [x1, x2, . . . , xk]

T with xi sampled from UB
Xmap ← MOT(Xnew)

Output: Xmap

a.2 additional experiment details

a.2.1 Experiments: Continuity Equation

All experiments were run on a computing cluster using Nvidia GeForce GTX
Titan X GPUs with 12 GB VRAM. Up to 16 Titan X GPUs could be used
in parallel. In most settings, training in each experiment took less than 10

minutes.

a.2.1.1 Data Generation

Here we provide a more detailed description of the generated data, namely
the velocity field used and the method for obtaining simulated radar mea-
surements.

Velocity field. The velocity field in the xy-plane was generated from a
scalar potential field Φ : R2 → R and the z-component of a vector potential

A.2 additional experiment details 105

a : R2 → R. Through the Helmholtz decomposition1 we can construct the
velocity field vxy : R2 → R2:

vxy

([
x

y

])
= −∇Φ +

[
δa/δy

−δa/δx

]
. (A.1)

For both experiments, the following fields were used:

Φ

([
x

y

])
= −1

2
(x− 2) · (y− 2), (A.2)

a

([
x

y

])
= −1

5
exp

(
−
(2

3
x
)2
−
(2

3
y
)2
)

. (A.3)

The derivatives were obtained using the symbolic differentiation library
SymPy (Meurer et al., 2017). To add a non-steady component, the resulting
velocity field is modulated in amplitude as a function of time t ∈ [0, 3]:

vxyt

(
t,

[
x

y

])
= vxy

([
x

y

])(
3
2

∣∣∣∣sin
(

2
3

πt
)∣∣∣∣+ 0.05

)
. (A.4)

The z (altitude) component of the velocity depends only on time and is
given by:

vz(t) = 1.6 · sin
(

4
3

πt
)

. (A.5)

Simulation. For the initial distribution of the fluid, the particle positions
were drawn from Gaussian mixtures. For t ∈ [0, 3], these particles were
simulated using the above constructed velocity field. Overall, the paths of
the roughly 240000 parcels were simulated using a basic backward Euler
scheme.

Measurements. The measurements at the sensors were obtained by count-
ing the number of particles within a given radius over multiple timesteps.
The density corresponds to the mass divided by the sensor area, and the
velocity is an average over all the particle velocities. For the training data,
additional zero-mean isotropic Gaussian noise is added to all measurements.

1 This is the 2D formulation of the Helmholtz decomposition, where the vector potential has
non-zero components only along the z-axis as in a

3d = [0, 0, a]T . The full decomposition is
commonly written as v

3d = −∇Φ
3d +∇× a

3d.

106 appendix - mesh-free eulerian pinns

In the 3D setting, data measurements of density and velocity are obtained
by 132 sensors on the xy plane, within the region [−3, 3]2 at 11 equidistant
time steps. In the 2D setting, the same set of sensors is used.

a.2.1.2 Architecture and Training

In both experiments, the neural networks for predicint the density ρθ and
velocity vθ consist of fully connected layers with sinusoidal activation func-
tions, as proposed by Sitzmann et al. (2020). The number of layers and units
for each setting is shown in Table 3.1. The sine frequency hyperparameter
required in the SIREN architecture was tuned by hand according to the
validation loss of the baseline model (i. e. without a PDE loss), leading to a
sine frequency of 12 for the 2D setting and 5 for the 3D setting. We note that
the proposed default value of 30 in Sitzmann et al. (2020) leads to a heavy
overfitting of our relatively low-frequency data, and thus we recommend
an adjustment of this hyperparameter for usage in PINNs.

For training the network, the ADAM optimizer (Kingma & Ba, 2014)
with a learning rate of 8× 10−4 (2D Setting) or 10−4 (3D Setting) was used.
The learning rate was multiplied by a factor of 0.99 each epoch. All models
were trained for 300 (3D setting) or 500 (2D setting) epochs. The 2D setting
was trained using full batch gradient descent, whereas for the 3D setting we
used a mini-batch size of 6931. In all experiments, we trained and evaluated
on 10 different random seeds.

a.2.2 Experiments: Heat Equation

a.2.2.1 Data Generation

Overall, the dataset is composed of 1000 training points, 1971120 test points
and 492780 validation points. We made sure that training points contained
enough information about the initial condition, i. e., we selected a sufficient
number of points around the initial source of non-zero temperature. In
contrast, the validation and test points are taken uniformly in time and
space.

a.2.2.2 Architecture in Training.

Unlike previous experiments, the architecture used is a fully connected
two-layer neural network with 32 hidden units and tanh activations. We use
the ADAM optimizer (Kingma & Ba, 2014) combined with an exponential

A.2 additional experiment details 107

learning rate scheduler that multiplies the learning rate by a factor of
0.9999 at each epoch. The initial learning rate is 10−4 and decreases until a
minimum value of 10−5. Training was terminated through early stopping,
as soon as the validation R2 did not improve for more than 3000 epochs.
During the warm-up phase of the pdPINN training, the collocation points
were sampled uniformly. After the warm-up 90% of the samples were
drawn from the particle density distribution, which is proportional to the
modeled temperature. Collocation points were resampled every 500 epochs.

a.2.3 Experiments: Fokker-Planck Equation

We additionally sample (5000) collocation points at the initial time step,
which is the default behavior of DeepXDE.

B
A P P E N D I X - L A G R A N G I A N F L O W N E T W O R K S

This appendix provides additional information on Chapter 4. Appendix B.1
covers additional theoretical background and proofs on Lagrangian flows.
Appendix B.2 provides the steps to obtain the equations for calculating
the density and velocity of LFlows. The following section B.3 discusses
implementation details of the different methods, i. e. LFlows, SLDA, DFNNs,
and PINNs. Finally, Appendix B.4 provides further information on the
individual experiments, ranging from data generation to training details
and additional results.

b.1 theoretical background

Remark. This section is an excerpt from Torres et al. (2024) and thus (nearly)
identical to its Appendix Section A.1.

In this section we provide proofs and theoretical background for the
method in Section 4.3. Although the underlying theory is well established
and not a novel contribution from our side, we were unable to find a
single source that concisely contained all required statements written in an
accessible and directly citeable manner. Section B.1.1 contains the statements
we rely on in Section 4.3. The proofs for these theorems are provided in
Sections B.1.2 to B.1.4

b.1.1 Time Dependent Bijections and the Continuity Equation

Theorem 4 provides us a velocity field given time-dependent bijections.
Theorem 5 links the push-forward of the density to the solution of the
continuity equation defined by an initial density and the velocity given by
Theorem 4.

Theorem 4. Let 0 ≤ t0 < T and let Ω ⊂ Rd be a convex open set. Let
X : [t0, T]×Ω → Ω be a family of maps such that Xt : Ω → Ω is a bijection
for any t ∈ [t0, T] and Xt0(x) = x for any x ∈ Ω. Assume that X and X−1 are
C∞([t0, T]×Ω; Ω) with globally bounded derivatives.

109

110 appendix - lagrangian flow networks

Then, the velocity field v(t, x) = ∂Xt
∂t
(
X−1

t (x)
)

is C∞. In particular, v satisfies
the assumptions of the Cauchy–Lipschitz Theorem 6 and X is the unique flow map
of v starting at time t0. Specifically, for any x ∈ Ω the curve t 7→ Xt(x) is the
unique solution to the Cauchy Problem{

∂tXt (x) = v (t, Xt(x)) t ∈ [t0, T),

Xt0(x) = x
(B.1)

Proof. See Appendix Section B.1.3.

Theorem 5. Let Ω, T, t0, X be as in Theorem 4. Given an initial density ρt0 ∈
L1(Ω), we define

ρ(t, x) = ρt0(X−1
t (x))|det JX−1

t (x)|. (B.2)

Then ρ(t, x) is a distributional solution to the continuity equation in Eq. (4.1)
according to Definition 7, i.e. the following condition is satisfied for any test
function ϕ ∈ C∞

c ([t0, T)×Ω):∫ T

t0

∫
Ω
(∂tϕ + v · ∇ϕ)ρ dx dt = −

∫
Ω

ρt0(x)ϕ(t0, x) dx. (B.3)

Moreover, if ρt0 ∈ C∞(Ω), then ρ ∈ C∞([t0, T) × Ω) and ρ is a point-wise
solution to the continuity equation Eq. (4.1). If we assume in addition that ρt0(x) >
0 for any x ∈ Ω, then the same holds for ρ(t, x) for any (t, x) ∈ [t0, T)×Ω and
ρ satisfies the log-density formula of the continuity equation

d
dt

ln(ρ(t, Xt(x))) = −∇ · v(t, Xt(x)). (B.4)

Proof. See Appendix Section B.1.2 and B.1.4.

B.1 theoretical background 111

b.1.2 The flow associated to a Lipschitz vector field

We recall the setting of the classical Cauchy–Lipschitz Theorem. For simplic-
ity, let Ω ⊂ Rd be a convex open set. Given 0 ≤ t0 < T, let v : [t0, T]×Ω→
Rd be a bounded vector field. We say that v is Lipschitz continuous in space
uniformly in time if there exists a constant L > 0 such that

|v(t, x)− v(t, y)| ≤ L|x− y| ∀t ∈ [t0, T] ∀x, y ∈ Ω. (B.5)

Throughout this section, we consider maps X : [t0, T]×Ω → Ω with the
following properties:

• for any x ∈ Ω the map t 7→ Xt(x) is C1([t0, T]) with uniform bounds,
namely there exists a constant M > 0 such that

|∂tXt(x)| ≤ M ∀t ∈ [t0, T] ∀x ∈ Ω; (B.6)

• for any t ∈ [t0, T] the map x 7→ ∂tXt(x) is Lipschitz with uniform
bounds, namely there exists a constant L > 0 such that

|∂tXt(x)− ∂tXt(y)| ≤ L|x− y| ∀t ∈ [t0, T] ∀x, y ∈ Ω; (B.7)

• for any t ∈ [t0, T] the map x 7→ Xt(x) is a bilipschitz transformation
of Ω uniformly in time, namely Xt is a bijection of Ω and there exists
a constant C > 0 such that

C−1|x− y| ≤ |Xt(x)− Xt(y)| ≤ C|x− y| ∀x, y ∈ Ω ∀t ∈ [t0, T].
(B.8)

We state the Cauchy–Lipschitz Theorem in the case of Rd and for the
forward flow. We refer to Hartman, 2002 for an extensive description of
the theory of ordinary differential equations, as well as any book in basic
differential calculus.

Theorem 6. Given T > 0 and t0 ∈ [0, T), let v : [t0, T]×Rd → Rd be a bounded
vector field that satisfies Eq. (B.5) for some constant L > 0. For any x ∈ Rd there
exists a unique trajectory t 7→ Xt(x) solving the Cauchy problem{

∂tXt (x) = v (Xt(x), t) t ∈ [t0, T),

Xt0(x) = x
(B.9)

in the integral sense. The map X : [t0, T)×Rd → Rd is the flow of v starting at
time t0 and it satisfies Eq. (B.6), Eq. (B.7), Eq. (B.8).

112 appendix - lagrangian flow networks

Remark 1. Under the assumptions of Theorem 6, we point out that the maps
Xt, X−1

t are Lipschitz continuous for any time. Thus, given a time slice t ∈ [t0, T),
we infer that Xt, X−1

t are differentiable almost everywhere in Rd. Hence, the
Jacobian matrices JXt(x), JX−1

t (x) are well defined for almost every x ∈ Rd and
we have that

JXt(X−1
t (x)) = [JX−1

t (x)]−1 for almost every x ∈ Rd.

Moreover, there exists a constant M > 0 such that

|JXt(x)|+ |JX−1
t (x)| ≤ M for almost every x ∈ Rd.

Here, |·| is a given matrix norm (recall that all norms are equivalent in finite
dimensional vector spaces). We point out that the uniqueness part of Theorem 6
and the regularity properties of the flow, as well as the existence of the Jacobian
matrix, extend to Lipschitz vector field defined on a general convex domain Ω, as
soon as we assume that the trajectories do not touch the boundary of Ω. In this
case, we get that the flow map is a bilipschitz transformation of Ω for any time
slice.

b.1.3 Velocities from 1-Parameter Groups of Diffeomorphism

Theorem 4 is a particular case of the following more general result. For
simplicity, we consider convex domains.

Theorem 7. Let 0 ≤ t0 < T, let Ω ⊂ Rd be a convex open set and let X :
[t0, T]×Ω→ Ω be a family of maps on Ω such that Xt0(x) = x for any x ∈ Ω.
Assume that X satisfies Eq. (B.6), Eq. (B.7) and Eq. (B.8). Then, the velocity field
v(t, x) = ∂Xt

∂t
(
X−1

t (x)
)

satifies the assumptions of the Cauchy–Lipschitz Theorem
6 and X is the unique flow map of v starting at time t0. Specifically, for any x ∈ Ω
the curve t 7→ Xt(x) is the unique solution to the Cauchy problem Eq. (B.1).

The reader might note that Theorem 7 is the inverse of Theorem 6. Indeed,
given a map X satisfying all the properties of a flow map, it is natural to
ask whether we can find a velocity field v within the Cauchy–Lipschitz
framework whose flow starting at time t0 is X.

Proof of Theorem 4. Given (t, x) ∈ [t0, T)×Ω, we define

v(t, x) = lim
h→0

Xt+h(X−1
t (x))− Xt(X−1

t (x))
h

= ∂tXt(X−1
t (x)). (B.10)

B.1 theoretical background 113

Since the map s 7→ Xs(X−1
t (x)) is C1([t0, T]) by assumption for any x ∈ Ω,

the velocity field v is well defined. Moreover, by Eq. (B.10), the curve
t 7→ Xt(x) solves the Cauchy problem Eq. (B.9) with v given by Eq. (B.10).
We study the regularity of v to ensure that X is the unique flow associated
to v starting at time t0. To begin, we remark that v is uniformly bounded by
Eq. (B.6). Moreover, since X−1

t , ∂tXt are Lipschitz maps for any time slice
t ∈ [t0, T] by Eq. (B.7) and Eq. (B.8), we infer that v satisfies Eq. (B.5). Thus,
v satisfies the assumptions of Theorem 6. In particular, X is the unique flow
starting at time t0 of the vector field v.

b.1.4 The continuity equation

Let Ω ⊂ Rd be an open set, let T > 0 and t0 ∈ [0, T). Given a vector field
v : [t0, T]×Ω→ Rd, we shall consider the continuity equation Eq. (4.1) on
(t0, T)×Ω with initial condition ρt0 . To deal with irregular vector fields and
densities, we consider solutions to Eq. (4.1) in the sense of distributions. We
refer to Ambrosio and Crippa (2008) for some basic and advanced results
on the theory of continuity equation.

Definition 7. Let Ω ⊂ Rd be an open set and 0 ≤ t0 < T. Let v ∈ L∞([t0, T]×
Ω; Rd) be a vector field and let ρt0 ∈ L1(Ω). We say that ρ ∈ L∞([t0, T]; L1(Ω))
is a distributional solution to Eq. (4.1) if the following condition is satisfied for any
test function ϕ ∈ C∞

c ([t0, T)×Ω):∫ T

t0

∫
Ω
(∂tϕ + v · ∇ϕ)ρ dx dt = −

∫
Ω

ρt0(x)ϕ(t0, x) dx. (B.11)

Remark 2. We point out that Definition 7 is well posed without differentiability
assumptions on v, ρ. However, if v, ρ are C1 functions in time and space and ρt0 is
a continuous function, after integrating by parts the left hand side of Eq. (B.11),
for any test function ϕ ∈ C∞

c ([t0, T)×Ω) we obtain that∫ T

t0

∫
Ω
(∂tρ+∇· (vρ))ϕ dx dt+

∫
Ω

ρ(t0, x)ϕ(t0, x)dx =
∫

Ω
ρt0(x)ϕ(t0, x)dx.

Since ∂tρ + ∇ · (vρ) is a continuous function, by the so-called Fundamental
Lemma of Calculus of Variations (see Brezis (2011), for instance) we infer that
∂tρ +∇ · (vρ) = 0 for any (t, x) ∈ (t0, T)×Ω and ρt0(x) = ρ(t0, x) for any
x ∈ Ω, thus recovering the pointwise formulation of Eq. (4.1).

Solving the Continuity Equation. The proof of the first part of Theorem
5 is a corollary of the following general statement.

114 appendix - lagrangian flow networks

Theorem 8. Let Ω ⊂ Rd be an open set and let 0 ≤ t0 < T. Let v : [t0, T]×Ω→
Rd be a globally bounded velocity field that satisfies Eq. (B.5). Assume that the
flow of v starting at time t0, denoted by X, is well defined in [t0, T]×Ω and that
Xt : Ω → Ω is a bilipschitz transformation of Ω. Letting ρ(x, t) be defined by
Eq. (B.2), then ρ is a distributional solution to the continuity equation Eq. (4.1)
according to Definition 7.

We remark that, under the assumptions of Theorem 5, the flow map X
is given and we build velocity field v that has X as a unique flow map.
Hence, by construction, Ω is invariant under Xt for any t ∈ [t0, T]. Thus,
the assumptions of Theorem 8 are satisfied.

Proof of Theorem 8. By Theorem 6, the flow map X starting at time t0 associ-
ated to v is well defined. Hence, defining ρ by Eq. (B.2), for any t ∈ [t0, T]
we have that ρ(t, ·) is defined almost everywhere in Rd. We check that ρ
is a distributional solution to Eq. (4.1) according to Definition 7. To begin,
we check that ρ ∈ L∞([t0, T]; L1(Rd)). Indeed, after the change of variables
X−1

t (x) = y, using the Area formula with dy = |det JX−1
t (x)|dx, we have

that∫
Ω
|ρ(t, x)| dx =

∫
Ω
|ρt0(X−1

t (x))||det JX−1
t (x)| dx =

∫
Ω
|ρt0(y)| dy.

Therefore, the total mass is preserved along the time evolution. Then, fix
a test function ϕ ∈ C∞

c ([t0, T)×Ω) and, performing again the change of
variables y = X−1

t (x), we have that∫ T

t0

∫
Ω
[∂tϕ + v · ∇ϕ]ρ dx dt

=
∫ T

t0

∫
Ω
[∂tϕ(t, x) + v(t, x) · ∇(t, x)ϕ]ρt0(X−1

t (x))|det JX−1
t (x)| dx dt

=
∫ T

t0

∫
Ω
[∂tϕ(t, Xt(y)) + v(t, Xt(y)) · ∇ϕ(t, Xt(y))]ρt0(y) dy dt.

Recalling that Xt is the flow map generated by the velocity field v starting
at time t0, the latter is equal to∫ T

t0

∫
Ω
[∂tϕ(t, Xt(y)) + ∂tXt(y) · ∇ϕ(t, Xt(y))]ρt0(y) dy dt

=
∫

Ω
ρt0(y)

∫ T

t0

d
dt

ϕ(t, Xt(y)) dt dy,

B.1 theoretical background 115

after using Fubini’s Theorem and the chain rule for the derivatives. Thus,
by the Fundamental Theorem of Calculus, we have that∫

Ω
ρt0(y)

∫ T

t0

d
dt

ϕ(t, Xt(y)) dt dy =
∫

Ω
ρt0(y)[ϕ(T, XT(y))− ϕ(0, Xt0(y))] dy

= −
∫

Ω
ϕ(t0, y)ρt0(y) dy,

since ϕ(T, ·) ≡ 0 and Xt0 is the identity map.

Finally, we are able to conclude the proof of Theorem 5.

Conclusion of the proof of Theorem 5. We discussed the fact that ρ is a point-
wise solution to the continuity equation Eq. (4.1) in Remark 2. Indeed, by
the explicit formula Eq. (B.2) it is clear that ρ is C∞([t0, T)×Ω) and that ρ
is nonnegative whenever ρt0 is nonnegative. Thus, we check that Eq. (B.4)
is satisfied. Indeed, by the chain rule we have that

d
dt

ln(ρ(t, Xt(x))) =
1

ρ(t, Xt(x))

[
∂tρ(t, Xt(x)) +∇ρ(t, Xt(x)) · d

dt
Xt(x)

]
=

1
ρ(t, Xt(x))

[∂tρ(t, Xt(x)) +∇ρ(t, Xt(x)) · v(t, Xt(x))]

=
1

ρ(t, Xt(x))

[
∂tρ(t, Xt(x)) +∇ · (v(t, Xt(x))ρ(t, Xt(x)))

− (∇ · v(t, Xt(x)))ρ(t, Xt(x))
]

= −∇ · v(t, Xt(x)),

since ρ satisfies the continuity equation at any point (t, x) ∈ (t0, T)×Ω.

116 appendix - lagrangian flow networks

b.2 calculating the density and velocity

In this subsection we explicitly provide the steps to get to the analytical
expressions for the velocity and density in Eq. (4.13) and Eq. (4.14).

b.2.1 Calculating the Density

We now report explicitly the steps to get to Eq. (4.13).
Let f and g be diffeomorphisms on Rd, and A and B positive definite

matrices. We denote with J(f)(g(x)) the Jacobian of f evaluated at the
point g(x). In the following part we make use of identities that follow
from the chain rule, the inverse function theorem, and properties of the
determinant:

J(f ◦ g)(x) = J(f)(g(x)) J(g)(x), (B.12)

|det J(f)(x)| =
∣∣∣det J(f−1)(f (x))

∣∣∣−1

, (B.13)

|det(A · B)| = |det(A)| · |det(B)| . (B.14)

ρ̂(t, x) = ρ̂t0(X̂−1
t (x))|det J(X̂−1

t)(x)| (B.15)

= ρ̂base

(
(Φt0 ◦ X̂−1

t)(x)
) ∣∣∣det J(Φt0)(X̂−1

t (x))
∣∣∣ ∣∣∣det J(X̂−1

t)(x)
∣∣∣

ρ̂base

(
(Φt0 ◦ X̂−1

t)(x)
)
= ρ̂base

(
(Φt0 ◦Φ−1

t0
◦Φt)(x)

)
(B.16)

= ρ̂base(Φt(x))

∣∣∣det J(Φt0)(X̂−1
t (x))

∣∣∣ = ∣∣∣det J(Φt0)
(
(Φ−1

t0
◦Φt)(x)

)∣∣∣ (B.17)

=
∣∣∣det J(Φ−1

t0
)
(
(Φt0 ◦Φ−1

t0
◦Φt)(x)

)∣∣∣−1

=
∣∣∣det J(Φ−1

t0
)(Φt(x))

∣∣∣−1

∣∣∣det J(X̂−1
t)(x)

∣∣∣ = ∣∣∣det J(Φ−1
t0
◦Φt)(x)

∣∣∣ (B.18)

=
∣∣∣det J(Φ−1

t0
)(Φt(x))

∣∣∣ · |det J(Φt)(x)|

B.2 calculating the density and velocity 117

Combing the three terms we get:

ρ̂(t, x) = ρ̂t0(X̂−1
t (x))|det J(X̂−1

t)(x)| (B.19)

= ρ̂base(Φt(x)) · 1 · |det J(Φt)(x)| (B.20)

= ρ̂base(Φt(x)) |det J(Φt)(x)| (B.21)

where we used in Eq. (B.20) the identity∣∣∣det J(Φ−1
t0
)(Φt(x))

∣∣∣−1

·
∣∣∣det J(Φ−1

t0
)(Φt(x))

∣∣∣ = 1 (B.22)

b.2.2 Calculating the Velocity without Inverting the Flow.

We now report explicitly the steps to get to Eq. 4.14. Firstly, we show that
the velocity can be expressed in terms of the flow bijection Φt and its inverse
Φ−1

t .

v̂(t, x) =
∂X̂t

∂t

(
X̂−1

t (x)
)

(B.23)

=
∂
(
Φ−1

t ◦Φt0

)
∂t

(
(Φ−1

t0
◦Φt)(x)

)
(B.24)

=
∂
(
Φ−1

t
)

∂t

(Φt0 ◦Φ−1
t0︸ ︷︷ ︸

=1

◦Φt)(x)

 (B.25)

=
∂Φ−1

t
∂t

(
Φt(x)

)
(B.26)

In a second step, the velocity can be written without the need for explicit
inversion of the bijective layer Φt, allowing for efficient computation in
practice.

Let Φt and Φ−1
t be the maps from xt to z and vice versa respectively.

Φt(xt) = z, Φ−1
t (z) = xt (B.27)

Clearly, Φt

(
Φ−1

t (z)
)
= z and z does not depend on time, i.e.

d
dt

z = 0. We
can now explicitly compute the total derivative and find a formulation for
the velocity that requires inverting a Jacobian instead of inverting the map
Φt.

118 appendix - lagrangian flow networks

d
dt

(
Φt

(
Φ−1

t (z)
))

=
d
dt

z = 0 (B.28)

⇒ ∂Φt

∂t
(=xt︷ ︸︸ ︷

Φ−1
t (z)

)
+

=JΦt(xt)︷ ︸︸ ︷
∂Φt

∂xt

(
Φ−1

t (z)
) ∂Φ−1

t
∂t

(Φt(xt)︷︸︸︷
z
)
= 0 (B.29)

⇒ ∂Φ−1
t

∂t
(
Φt(xt)

)
= −[JΦt(xt)]

−1 ∂Φt

∂t
(xt) (B.30)

b.3 implementation

This section provides high-level descriptions of the implementations of
the models used in all experiments. For details on experiment-specific
implementations, we refer to the corresponding sections B.4.1 to B.4.3.

LFlows. Our code for LFlows is based on the nflows library for bijec-
tive neural networks (Durkan et al., 2020). We extended nflows by provid-
ing a range of additional (conditional) transformations, such as invertible
densenets with sinusoidal activation, in addition to the modifications re-
quired for the LFlows. The LFlow code is provided as supplementary
material of our work (Torres et al., 2024).

SLDA. We represent the density ρt0 at the departure time t0 with a bilinear
interpolation of a learnable equidistant mesh in 2D or 3D. We parameterize
the velocity with a neural network with smooth activation functions. In
2D settings, we evaluate the divergence in Eq. (4.4) exactly via autograd,
whereas we stochasticly estimate it in 3D during training (Grathwohl et al.,
2019). To solve multiple ODEs with different start times in parallel, we
leverage the rescaling trick discussed in Appendix F of R. T. Chen et al.
(2020). In all settings we use a Dormand-Prince solver of order 5 with
absolute and relative tolerance of 1e-5. The adjoint is computed with the
torchdiffeq library (R. T. Q. Chen, 2018).

DFNNs. We rely on the vector-based parameterization of DFNNs given
in Section 7.1 of Richter-Powell et al. (2022), which ensures non-negative
densities. We use the code provided by the authors.

PINNs. We implement standard PINNs without additional resampling
schemes or loss terms, and use either ReLu (Section 4.5.1) or sinusoidal

B.4 additional information on the experiments 119

activations (Sitzmann et al., 2020) (Section 4.5.3). The collocation points are
resampled each training iteration with quasi-random Sobol sequences.

b.4 additional information on the experiments

b.4.1 Experiment: Simulated Densities

Data Generation. We generate the data by defining a Lagrangian flow
map for an initial unnormalized Gaussian mixture density. The initial
density of the simulated problem is based on a mixture of 4 independent
Gaussians arranged around the origin with varying radii and a standard
deviation of 0.1. We defined the density to be restricted to Ω = (−4, 4)d

with (ρv)|δΩ = 0:

ρ0(x) =

∑4
i=1

1
4N (µi, 0.1I) if x ∈ (−4, 4)d

0 else
(B.31)

The changes in density on the xy axes are simulated by directly param-
eterizing the Lagrangian solution map Xt(x0) : (−4, 4)2 7→ (−4, 4)2 for
t ∈ [0, 1.2]:

Xt(x0) = 4 · tanh

(
(0.5t + 1)

4
Arot(t)Ascale(t)

(
4 · atanh(0.25x0)+ shift(t)

))
(B.32)

with

Arot(t) =

[
cos(2πt) − sin(2πt)

sin(2πt) cos(2πt)

]
(B.33)

Ascale(t) =

[
1 + 0.1t 0

0 1 + 0.1t

]
(B.34)

shift(t) = sin(πt)

[
0.6

−0.6

]
(B.35)

In 3D, the z component of Xt is always an identity map, limiting the
dynamics to the xy axis.

120 appendix - lagrangian flow networks

The density and velocity are then given by:

ρ(t, x) = ρ0

(
X−1

t (x)
)
|det JX−1

t (x)| (B.36)

v(t, x) =
∂Xt

∂t
(X−1

t (x)) (B.37)

where all involved derivatives are computed using automatic differentiation.
Observations are available at 21 equidistant timesteps in the range [0, 1]. The
test data set covers the time range [0, 1.2]. To simulate noisy measurements,
additional Gaussian noise is added to the observed velocities and log
densities during training.

b.4.1.1 Training and Architecture details

Hyperparameter Optimization. We optimize each model based on the ex-
plained variance (R2) of the density on validation data. Firstly, we manually
performed a general architecture selection. Subsequently, we tuned parame-
ters such as the number of layers, units, learning rate, loss- and regulariza-
tion weights with the black-box optimization framework Optuna 1(Akiba
et al., 2019), using the default Tree-structured Parzen Estimator as sampler.
We trained the LFlows and PINNs on a minibatch size of 16384 and the
SLDA on a minibatch size of 4096. As the 2nd order derivatives of the
DFNNs require a lot of GPU memory, DFNNs were limited to a minibatch
size of 2048. For the optimized hyperparameters of each model, we refer to
the code provided in the supplementary material of Torres et al. (2024).

LFlows. For the initial layer we first rescale the domain and then use
a atanh bijection for restricting the domain to [−4, 4]d. For the remaining
layers we used blocks consisting of invertible Dense Nets (i-DenseNet)
(Perugachi-Diaz et al., 2021) followed by SVD layers conditioned on the em-
bedding. For the i-DenseNet we rely on concatenated sinusoidal activations
(CSin) with a ω of 15. Each i-DenseNet has a depth of 3 and before each
block, we use an Activation Normalization layer. We enforce the Lipschitz
constant of the i-DenseNet to be 0.97.

DFNNs. The Divergence-Free Neural Networks do not directly provide
access to the velocity v, but only to the flux F = (ρv). Hence, calculating the
velocity v = F/ρ in low-density regions leads to numerical issues. To avoid

1 https://optuna.org/

https://optuna.org/

B.4 additional information on the experiments 121

this, we train DFNNs directly on the flux instead of the velocity. Further-
more, we require non-negative densities, so we use the parameterization
with subharmonic functions discussed in Section 7.1 of Richter-Powell et al.
(2022). As the predicted densities can still be zero, we train the DFNNs on
the MSE of the densities (instead of log densities).

PINNs. To facilitate training of the PINN, we use sinusoidal activation
functions as presented by (Sitzmann et al., 2020). We use a frequency multi-
plier of ω0 = 12 in the first layer. Collocation points are sampled within the
full domain, uniformly distributed in [0, 1.2]×Ω. Instead of a purely ran-
dom sampler, we rely on quasi-random low-discrepancy samples obtained
via Sobol Sequences. In each minibatch, 216 collocation points are sam-
pled. The minimized PDE loss is L(t, x) = ||∂tρ(t, x) +∇ · (ρ(t, x)v(t, x))||2,
averaged over the collocation points.

SLDA. Relative and absolute tolerances of the solver during hyperparam-
eter optimization were 10−3 and for the final run with the tuned hyperpa-
rameters 10−5. Lower tolerances during hyperparameter search were not
feasible, as they significantly increased the runtime for the problem at hand.
For stable dynamics, the hypernetworks provided by the code of Grathwohl
et al. (2019) were necessary. These hyper networks are conditioned on time
and provide a network taking the space coordinates as input, i.e. vΘ(t)(x)
with Θ being the hyper network. Using instead fully connected layers (that
still fulfill the smoothness requirements) led in our experience to difficult
dynamics for the adaptive ODE solvers.

Boundary Conditions. For PINNs, SLDA, and DFNNs the boundary
condition ρ(x)v(x)|δΩ = 0 is enforced via an additional penalty on points
sampled at the boundary. For LFlows, the boundary was enforced via a
bijection to Ω \ δΩ.

Numerical Evaluation of Physical Consistency. We compare the pre-
dicted density ρ̂(t, x) with the numerical solution of the initial value prob-
lem uniquely defined by ρ̂(t0, x), v̂(t, x) and Eq. (4.4). We obtain the numeri-
cal solution with an 8th order Dormand-Prince ODE solver with an absolute
and relative tolerance of 1e-5. We set t0 = 0. For the locations where we
evaluate the sMAPE, we consider 10 equidistant timesteps in [0.1, 1.2]. For
each timestep, we first randomly sample locations in (4, 4)d, and we then
randomly subsample 2500 locations with groundtruth densities larger than

122 appendix - lagrangian flow networks

a threshold of 0.1 in 2D or 0.01 in 3D. With this procedure we avoid regions
with near-zero density.

Total Mass Regularization. We penalize the total mass of the system
for all methods except PINNs. For the LFlows and SLDA, we penalize
the learnable normalization constant. For the DFNNs, no equivalent to
the normalization constant is available. We instead introduce the penalty
at points sampled on the domain [0, 1.2]×Ω. For PINNs additional reg-
ularization is not necessary. This is due to the side effect of the PDE loss
being numerically small for small densities, leading to an automatic built-in
penalty for large total mass.

Computational Resources. Each individual experiment for the synthetic
data was run on individual NVIDIA TITAN X GPUs (12GB VRAM), using
20 CPU cores and 20GB RAM. To speed up hyperparameter tuning, up to 8

experiments were run in parallel using a SLURM-based compute cluster.

b.4.2 Experiment: Dynamical Optimal Transport

In Figure B.1 and Figure B.2 interpolated densities are shown for the
8Gaussians↔Circles dataset and the Pinwheel↔8Gaussians dataset.

b.4.2.1 Evaluating the Integral

For evaluating the integral required for the objective in Eq. (4.19), we
reuse the code and method provided by Richter-Powell et al. (2022). The
integral is estimated via importance sampling, with the sampling dis-
tribution q(t, x) = q(t)q(x). Samples in time are drawn uniformly with
q(t) ∼ U (t0, t1). Samples in space are drawn from a uniform mixture

q(x) =
1
3

pt0(x) +
1
3

pt1(x) +
1
3
UΩ(x) (B.38)

with UΩ being the uniform distribution on the domain.

b.4.2.2 Discrete estimate of W2

For estimating the W2
2 distance with a discrete reference method we rely on

50000 samples. In our setting, more samples lead to convergence issues of
the numerical solver.

B.4 additional information on the experiments 123

LF
lo
w

D
FN

N
D
is
cr
e
te

Figure B.1: Approximations of the 2D optimal transport map for the
8Gaussians↔Circles dataset with LFlows, DFNNs, and a discrete
reference.

As the discrete W2
2 estimate depends on the number of samples n, we

explore an increasing number of samples and repeated runs. For each fixed
n we repeat the estimate 10 times with different seeds and visualize the
resulting box plots in B.3. We note that the differences with increasing
sample size are comparatively small relative to the differences between the
continuous methods in Section 4.5.2.

b.4.2.3 Implementation

LFlows. For LFlows we use 10 blocks of i-DenseNets, each preceded by
an Activation Normalization layer. Each i-DenseNet has a depth of 5 with
CSin activations using an ω of 15. We enforce the Lipschitz constant of the
i-DenseNet to be 0.97. For the embedding of the time condition we use a
residual neural network with 1 hidden layer, swish activations, and 128

hidden features. The dimension of the time embedding, i.e. the output of
the embedding network, is of dimension 10. The model was trained with
the ADAM optimizer for 5000 iterations with a learning rate of 2e-3 and
2048 data points per iteration.

124 appendix - lagrangian flow networks

LF
lo
w

D
FN

N
D
is
cr
e
te

Figure B.2: Approximations of the 2D optimal transport map for the
Pinwheel↔8Gaussians dataset with LFlows, DFNNs, and a discrete
reference.

DFNNs. For DFNNs we directly used the experiment code provided
by Richter-Powell et al. (2022). That is, the DFNNS are based on the pa-
rameterization with subharmonic functions discussed in Section 7.1 of
Richter-Powell et al. (2022). The 128 mixtures of the subharmonic function
are parameterized with a 4 layer neural network with 96 hidden features
and swish activations. A fixed λ weight of 50 is set for the OT-penalty for
all datasets. The DFNN is trained with the ADAM optimizer and a learning
rate of 1e-3 over 10 000 iterations with 256 data points per iteration.

Computational Resources. The experiment was run on individual NVIDIA
TITAN X GPUs (12GB VRAM), using 20 CPU cores and 20GB RAM.

b.4.3 Experiment: Bird Migration

About the data. The data provided by Nussbaumer et al. (2021) is orig-
inally based on weather radar measurements made available by the Eu-
ropean Operational Program for Exchange of Weather Radar Information (EU-
METNET/OPERA). The vertical profiles, i.e. density and velocity estimates
at different altitude levels, were provided by the European Network for the

B.4 additional information on the experiments 125

10000 20000 30000 40000 50000
#samples

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Di
sc

re
te

 W
2 2

Es
tim

at
e

Circles - Pinwheel

10000 20000 30000 40000 50000
#samples

0.22

0.23

0.24

0.25

0.26

0.27 Pinwheel - 8 Gaussians

10000 20000 30000 40000 50000
#samples

0.140

0.145

0.150

0.155

0.160

0.165

0.170 8 Gaussians - Circles

Figure B.3: Change of the discrete W2
2 estimate based on increasing number of

samples. Each boxplot is based on 10 repeated runs with different
seeds.

Radar surveillance of Animal Movement (ENRAM), based on vol2bird2, an algo-
rithm for preprocessing raw radar scans. The raw data consists of volume
scans from Doppler radars, measuring reflectivity and radial velocity of
the surroundings. By filtering out biological and environmental scatters, it
is possible to retain scans that mostly contain bird movements. Based on
the reflectivity and radial velocity, the average bird density and velocity
within a 15km radius is estimated for multiple altitude bins. For details
about this process, we refer to Dokter et al. (2011). The final density and
velocity measurements we use are openly available3.

Preprocessing. The positions of the radars are given in the WGS84 co-
ordinate reference system. We project it to the Cartesian reference system
ETRS89-extended (EPSG:3035), effectively projecting longitude/latitude to
x and y coordinates given in meters. As an additional preprocessing step,
we excluded velocities that were measured together with a near-zero density.
To generate the data set used in our experiment, we directly concatenated
multiple nights and remove the daytime during which no measurements are
available. In the supplementary material of Torres et al. (2024) we provide
code for downloading and preprocessing the data.

Numerical Evaluation of Physical Consistency. We compare the pre-
dicted density ρ̂(t, x) with the numerical solution of the initial value prob-
lem uniquely defined by ρ̂(t0, x), v̂(t, x) and Eq. (4.4). The time of the earliest
available datapoint within the three nights serves as t0. We evaluated the
error at a spatial equidistant grid of sidelength 50 in the xy dimension. The

2 https://github.com/adokter/vol2bird
3 https://zenodo.org/record/4587338/

https://github.com/adokter/vol2bird
https://zenodo.org/record/4587338/

126 appendix - lagrangian flow networks

z coordinate is randomly sampled for each of the grid entries. We evaluate
the consistency loss at these xyz coordinates 10 time steps between the
start and end of the three selected nights, and average the sMAPE over all
xyzt coordinates. For all models we use a 8th order Dormand-Prince ODE
solver with an absolute and relative tolerance of 1e-5, which is one order
higher than the ODE solver used for SLDA. The MLP has no z-component
of the velocity, as no measurements of it are in the data. We thus set this
component of the MLP to zero for computing the numerical ODE solution.
The other models indirectly learn a z-component by enforcing the CE in 3D.

b.4.3.1 Training and Architecture details

LFlows. As first layer of the LFlow we use a atanh bijection that constrains
Ω to a rectangular volume that is multiple times larger than the spatial
extent of the radar positions. The following layers consist of 10 blocks of
invertible Dense Nets (i-DenseNet) (Perugachi-Diaz et al., 2021), where we
instead use CSin activations with an ω of 10. Each block has a depth of 5

and before each block we use an Activation Normalization layer. We enforce
the Lipschitz constant of the i-DenseNet to be 0.97. We use a 2 layer residual
network with a width of 128 for embedding the time before passing it to
the i-DenseNet.

We initialized the log of the normalization constant ln(c) with 18.2 and
set the weight of the total mass penalty to 1e-3. We trained for 50 epochs
with a minibatch size of 16384 using the ADAM optimizer with a learning
rate of 1e-2, a weight decay of 2e-3 and a cosine annealing learning rate
schedule.

SLDA. For the SLDA we represent the initial density with a grid of size
20× 20× 20. Values inbetween mesh points are evaluated with bilinear
interpolation. We parameterize the velocity network with a hypernetwork
as provided by the code of Grathwohl et al. (2019), similar to the simulated
fluid flow experiment. The network consists of 5 layers with 512 hidden
features and swish activations. We trained for 300 epochs with a minibatch
size of 16384 using the ADAM optimizer with a learning rate of 1e-3, a
weight decay of 5e-3 and a cosine annealing learning rate schedule.

DFNN. For the DFNN we use the parameterization for non-negative
densities based on subharmonic functions (Section 7.1 Richter-Powell et
al., 2022). The model consists of 4 layers with 256 hidden features and
Swish activations, which parameterize 64 mixture components for the

B.4 additional information on the experiments 127

subharmonic function. We used a minibatch size of 2048 due to memory
constraints. The model was trained for 100 epochs with a cosine annealing
learning rate schedule.

MLP. We trained a 10 layer residual neural network with relu activations,
intermediate batch normalization and 256 hidden features. The model was
trained for 100 epochs with a minibatch size of 16384 using the ADAM
optimizer with a learning rate of 1e-3, a weight decay of 1e-3 and a cosine
annealing learning rate schedule.

PINN. For the PINN we use the same architecture as for the MLP, but
with an additional PDE loss. We use 100 000 collocation points sampled
from a quasi-random Sobol sequence and weight the PDE loss with 7e-4.
The PINN was trained for 300 epochs with a minibatch size of 16384 using
the ADAM optimizer with a learning rate of 1e-2, a weight decay of 1e-2,
and a cosine annealing learning rate schedule

Computational Ressources. The experiment was run on an A100 GPU
(40GB VRAM), using 20 CPUs and 30GB RAM. Repeated experiments were
parallelized on a SLURM-based compute cluster.

128 appendix - lagrangian flow networks

b.4.3.2 Predictions of all models

D
FN

N
S

LD
A

P
IN

N
M

LP
LF

lo
w

2018-04-07 00:00:00 2018-04-08 00:00:00

2018-04-08 00:00:002018-04-07 00:00:00

10

20

30

50

90

2018-04-08 00:00:002018-04-07 00:00:002018-04-06 00:00:00

2018-04-06 00:00:00

2018-04-06 00:00:00

2018-04-06 00:00:00 2018-04-07 00:00:00 2018-04-08 00:00:00

2018-04-06 00:00:00 2018-04-07 00:00:00 2018-04-08 00:00:00

Figure B.4: Predicted density and normalized velocity integrated over z-axis for
all considered models.

B.4 additional information on the experiments 129

b.4.4 Experiment: CSin for i-DenseNets

b.4.4.1 Qualitative Experiment for 2D Toy Data

All flows were based on 10 i-DenseNet layers, each with a depth of 3

and a block-wise growth of 32. Inbetween the i-DenseNet layers we used
activation normalization layers. The networks only differed with respect to
the activation function.

We enforced a Lipschitz constant of 0.98 with spectral normalization.
Before each i-DenseNet layer an activation normalization layer is added.
The flow was trained for 10 000 iterations, with a minibatch size of 500.
We used the ADAM optimizer with a default learning rate of 1e-3 and
a weight decay of 1e-5. During training, the learning rate was decreased
by a multiplicative factor of 0.9995 each iteration. Different learning rates
led to qualitatively similar results when comparing the different activation
functions.

b.4.4.2 Quantitative evaluation on 2D Toy Data

All flows were based on 10 i-DenseNet layers, each with a depth of 3 and
a block-wise growth of 16, and just varied with respect to the activation
function. No intermediate activation normalization was used to allow for a
fair comparison with the CLipSwish results reported by Perugachi-Diaz et
al. (2021). The remaining training parameters are identical to the qualitative
2D experiment desribed in Appendix B.4.4.1.

b.4.4.3 Evaluation on UCI Data

We rely on the preprocessed UCI data provided by (Papamakarios et al.,
2017). A total of 30 i-DenseNet layers with intermediate activation normal-
ization were used. Each i-DenseNet layer had a depth of 3, and a growth of
128. The CSin activations are set to ω = 15. The model was trained with a
batch size of 512 and trained for 400 000 iterations. The initial learning rate
with the ADAM optimizer was set to 1e-3 with a multiplicative decay of
0.9999 per epoch, until a minimum learning rate of 5e-5 is reached.

L I S T O F F I G U R E S

Figure 1.1 Visualization of the thesis problem setting. 4

Figure 2.1 Illustration of the different viewpoints of a fluid. . . . 13

Figure 2.2 The effect of the divergence on a volume. 19

Figure 2.3 Illustration of a neural networks with 3 input neu-
rons, 2 hidden layers, and a single output neuron. . . 23

Figure 2.4 Concept of a Normalizing Flow 26

Figure 2.5 Vanilla neural network for modeling the angle of a
pendulum. 42

Figure 2.6 PINN for modeling a pendulum with known param-
eters. 42

Figure 2.7 PINN for modeling a pendulum with partially un-
known parameters. 43

Figure 3.1 PINN limitations: Advection in 1D. 51

Figure 3.2 pdPINNs: Visualization of the continuity equation
experiment. 57

Figure 3.3 pdPINNs: R2 of
√

ρ for the 3D continuity equation
experiment. 58

Figure 3.4 pdPINNs: z-axis predictions for the 3D continuity
equation experiment. 59

Figure 3.5 pdPINNs: R2 of
√

ρ for the 2D continuity equation
experiment. 60

Figure 3.6 pdPINNs: Heat equation experiment predictions. . . 61

Figure 3.7 pdIPNNs: Heat equation experiment R2. 62

Figure 3.8 pdPINNs: Fokker-Planck experiment. 64

Figure 3.9 pdPINNs: Run-times with different samplers. 65

Figure 4.1 Visual abstract of LFlows. 73

Figure 4.2 General Architecture of the conditional Flows. 76

Figure 4.3 The effect of total mass regularization on predictions. 77

Figure 4.4 Groundtruth samples from the Four Circles toy dataset. 79

Figure 4.5 CSin activations: Learned probability densities for
the Four Circles toy dataset. 79

Figure 4.6 Quantitative results of the 2D and 3D experiment
with simulated densities. 81

Figure 4.7 Qualitative results of the 3D experiment with simu-
lated densities. 82

131

132 list of figures

Figure 4.8 Qualitative results for the optimal transport experi-
ment. 84

Figure 4.9 Estimated Wasserstein distances for the optimal trans-
port experiment. 85

Figure 4.10 Weather radar locations for the bird migration ex-
periment. 86

Figure 4.11 Snapshots of predicted bird density at three consec-
utive nights within central Europe. 87

Figure 4.12 Quantiative results for the bird migration experiment. 87

Figure 4.13 Map showing the consistency sMAPE for the bird
migration experiment. 87

Figure 4.14 Training time and memory usage of different models
compared to LFlows. 88

Figure 4.15 The effect of total mass penalty on the bird migration
experiment. 89

Figure 4.16 Relative standard deviation of the predicted (ρv)
with varying mass penalties. 89

Figure 4.17 Negative Log-Likelihood of i-DenseNets with CSin
activations during training. 90

Figure B.1 Approximations of the 2D optimal transport map
for the 8Gaussians↔Circles dataset with LFlows,
DFNNs, and a discrete reference. 123

Figure B.2 Approximations of the 2D optimal transport map
for the Pinwheel↔8Gaussians dataset with LFlows,
DFNNs, and a discrete reference. 124

Figure B.3 Change of the discrete W2
2 estimate based on increas-

ing number of samples. Each boxplot is based on 10

repeated runs with different seeds. 125

Figure B.4 Predicted density and normalized velocity integrated
over z-axis for all considered models. 128

L I S T O F TA B L E S

Table 3.1 pdPINNs: Architecture Overview for the Experiments 56

Table 4.1 Quantitative evaluation of the CSin activation on 2D
toy datasets. 91

Table 4.3 Quantitative evaluation of the CSin activation on the
6D UCI power dataset 92

133

L I S T O F A L G O R I T H M S

Figure 1 Evaluating the log-density of a Normalizing Flow. . . 27

Figure 2 Sampling from a Normalizing Flow. 27

Figure 3 Adapted RAR . 103

Figure 4 Adapted OT-RAR . 104

135

B I B L I O G R A P H Y

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. (2016a). {Tensorflow}: A
system for {large-scale} machine learning. 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 265 (cit. on p. 21).

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al. (2016b). {Tensorflow}: A
system for {large-scale} machine learning. 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 265 (cit. on p. 55).

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A
next-generation hyperparameter optimization framework. Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, 2623 (cit. on p. 120).

Ambrosio, L., & Crippa, G. (2008). Existence, uniqueness, stability and dif-
ferentiability properties of the flow associated to weakly differentiable
vector fields. In Transport equations and multi-D hyperbolic conservation
laws (pp. 3–57, Vol. 5). Springer, Berlin. (Cit. on pp. 74, 113).

Ambrosio, L., & Crippa, G. (2014). Continuity equations and ode flows with
non-smooth velocity. Proceedings of the Royal Society of Edinburgh Section
A: Mathematics, 144(6), 1191 (cit. on p. 16).

Angell, R., & Sheldon, D. R. (2018). Inferring latent velocities from weather
radar data using gaussian processes. Advances in Neural Information
Processing Systems, 31 (cit. on p. 3).

Angriman, S., Cobelli, P., Mininni, P. D., Obligado, M., & Clark Di Leoni,
P. (2023). Assimilation of statistical data into turbulent flows using
physics-informed neural networks. The European Physical Journal E,
46(3), 13 (cit. on p. 41).

Arbogast, T., & Bona, J. L. (1999). Methods of applied mathematics. Depart-
ment of Mathematics, University of Texas, 2008 (cit. on p. 16).

Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U. (2019). Guided
image generation with conditional invertible neural networks. arXiv
preprint arXiv:1907.02392 (cit. on p. 35).

Arend Torres, F., Negri, M. M., Nagy-Huber, M., Samarin, M., & Roth, V.
(2022). Mesh-free eulerian physics-informed neural networks. arXiv
preprint arXiv:2206.01545 (cit. on pp. 5, 12, 39, 45, 70, 103).

137

138 bibliography

Asch, M., Bocquet, M., & Nodet, M. (2016). Data assimilation: Methods,
algorithms, and applications. SIAM. (Cit. on p. 2).

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J.-H.
(2019). Invertible residual networks. International Conference on Machine
Learning, 573 (cit. on pp. 28, 31, 32, 37).

Benamou, J.-D., & Brenier, Y. (2000). A computational fluid mechanics
solution to the monge-kantorovich mass transfer problem. Numerische
Mathematik, 84(3), 375 (cit. on pp. 19, 83).

Berg, R. v. d., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018).
Sylvester normalizing flows for variational inference. arXiv preprint
arXiv:1803.05649 (cit. on p. 30).

Berkhahn, S., & Ehrhardt, M. (2022). A physics-informed neural network
to model covid-19 infection and hospitalization scenarios. Advances in
Continuous and Discrete Models, 2022(1), 61 (cit. on p. 41).

Betancourt, M. (2017). A conceptual introduction to hamiltonian monte
carlo. arXiv preprint arXiv:1701.02434 (cit. on p. 54).

Biloš, M., Sommer, J., Rangapuram, S. S., Januschowski, T., & Günnemann,
S. (2021). Neural flows: Efficient alternative to neural odes. Advances in
neural information processing systems, 34, 21325 (cit. on pp. 38, 72, 88).

Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011). Displace-
ment interpolation using lagrangian mass transport. Proceedings of the
2011 SIGGRAPH Asia conference, 1 (cit. on p. 84).

Born, M., & Green, H. S. (1946). A general kinetic theory of liquids i.
the molecular distribution functions. Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences, 188(1012), 10 (cit. on
p. 14).

Brezis, H. (2011). Functional analysis, Sobolev spaces and partial differential
equations. Springer, New York. (Cit. on p. 113).

Cacuci, D. G. (1981a). Sensitivity theory for nonlinear systems. i. nonlinear
functional analysis approach. Journal of Mathematical Physics, 22(12),
2794 (cit. on pp. 24, 71).

Cacuci, D. G. (1981b). Sensitivity theory for nonlinear systems. ii. extensions
to additional classes of responses. Journal of Mathematical Physics, 22(12),
2803 (cit. on pp. 24, 71).

Carrillo, J. A., Craig, K., & Yao, Y. (2019). Aggregation-diffusion equations:
Dynamics, asymptotics, and singular limits. Active Particles, Volume 2:
Advances in Theory, Models, and Applications, 65 (cit. on p. 19).

bibliography 139

Carrillo, J. A., Ranetbauer, H., & Wolfram, M.-T. (2016). Numerical simula-
tion of nonlinear continuity equations by evolving diffeomorphisms.
Journal of Computational Physics, 327, 186 (cit. on p. 19).

Chen, J., Du, R., Li, P., & Lyu, L. (2019). Quasi-monte carlo sampling
for machine-learning partial differential equations. arXiv preprint
arXiv:1911.01612 (cit. on p. 41).

Chen, R. T. Q. (2018). Torchdiffeq. (Cit. on p. 118).
Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018).

Neural ordinary differential equations. Advances in neural information
processing systems, 31 (cit. on pp. 24, 34, 71).

Chen, R. T., Amos, B., & Nickel, M. (2020). Neural spatio-temporal point
processes. International Conference on Learning Representations (cit. on
pp. 35, 118).

Chen, R. T., Behrmann, J., Duvenaud, D. K., & Jacobsen, J.-H. (2019). Resid-
ual flows for invertible generative modeling. Advances in Neural Infor-
mation Processing Systems, 32 (cit. on pp. 32, 33).

Chilson, P. B., Stepanian, P. M., & Kelly, J. F. (2017). Radar aeroecology.
Aeroecology, 277 (cit. on pp. 2, 68).

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D., & Ho, S.
(2020). Lagrangian neural networks. arXiv preprint arXiv:2003.04630
(cit. on p. 71).

Dheeru, D., & Taniskidou, E. K. (2017). Uci machine learning repository
(cit. on p. 91).

Diamantakis, M. (2013). The semi-lagrangian technique in atmospheric
modelling: Current status and future challenges. ECMWF Seminar in
numerical methods for atmosphere and ocean modelling, 183 (cit. on p. 71).

Diamantakis, M., & Magnusson, L. (2016). Sensitivity of the ecmwf model
to semi-lagrangian departure point iterations. Monthly Weather Review,
144(9), 3233 (cit. on p. 71).

Dissanayake, M., & Phan-Thien, N. (1994). Neural-network-based approx-
imations for solving partial differential equations. communications in
Numerical Methods in Engineering, 10(3), 195 (cit. on pp. 12, 42).

Dokter, A. M., Liechti, F., Stark, H., Delobbe, L., Tabary, P., & Holleman, I.
(2011). Bird migration flight altitudes studied by a network of oper-
ational weather radars. Journal of the Royal Society Interface, 8(54), 30

(cit. on pp. 2, 55, 125).
Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid

monte carlo. Physics letters B, 195(2), 216 (cit. on p. 54).

140 bibliography

Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2019). Neural
spline flows. Advances in neural information processing systems, 32 (cit. on
pp. 28, 76, 91, 92).

Durkan, C., Bekasov, A., Murray, I., & Papamakarios, G. (2020, Nov.). nflows:
Normalizing flows in PyTorch. (Cit. on p. 118).

Earl, D. J., & Deem, M. W. (2005). Parallel tempering: Theory, applications,
and new perspectives. Physical Chemistry Chemical Physics, 7(23), 3910

(cit. on p. 64).
Eastwood, E. (1967, Oct.). Radar ornithology. Methuen young books. (Cit. on

p. 2).
Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units

for neural network function approximation in reinforcement learning.
Neural networks, 107, 3 (cit. on p. 76).

Finlay, C., Jacobsen, J.-H., Nurbekyan, L., & Oberman, A. (2020). How to
train your neural ode: The world of jacobian and kinetic regularization.
International conference on machine learning, 3154 (cit. on p. 35).

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Cham-
bon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron,
L., Gayraud, N. T., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A.,
Schutz, A., Seguy, V., Sutherland, D. J., . . . Vayer, T. (2021). Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78), 1 (cit. on
pp. 84, 103).

Freitag, M. A. (2020). Numerical linear algebra in data assimilation. GAMM-
Mitteilungen, 43(3), e202000014 (cit. on p. 39).

Fuentes, M., Van Doren, B. M., Fink, D., & Sheldon, D. (2023). Birdflow:
Learning seasonal bird movements from ebird data. Methods in Ecology
and Evolution, 14(3), 923 (cit. on p. 69).

Gasteren, H. v., Holleman, I., Bouten, W., Loon, E. v., & Shamoun-baranes,
J. (2008). Extracting bird migration information from c-band doppler
weather radars. Ibis, 150(4), 674 (cit. on p. 2).

Gebauer, N., Gastegger, M., & Schütt, K. (2019). Symmetry-adapted genera-
tion of 3d point sets for the targeted discovery of molecules. Advances
in neural information processing systems, 32 (cit. on p. 10).

Geer, A. J. (2021). Learning earth system models from observations: Machine
learning or data assimilation? Philosophical Transactions of the Royal
Society A, 379(2194), 20200089 (cit. on p. 2).

Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics:
Theory and application to non-spherical stars. Monthly notices of the
royal astronomical society, 181(3), 375 (cit. on p. 48).

bibliography 141

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
(Cit. on pp. xi, 10, 22).

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., & Duvenaud, D. (2019). Ffjord:
Free-form continuous dynamics for scalable reversible generative mod-
els. International Conference on Learning Representations (cit. on pp. 35,
91, 118, 121, 126).

Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural net-
works. Advances in neural information processing systems, 32 (cit. on pp. 11,
71).

Gunasekar, S., Lee, J. D., Soudry, D., & Srebro, N. (2018). Implicit bias of
gradient descent on linear convolutional networks. Advances in neural
information processing systems, 31 (cit. on p. 10).

Ha, D., Dai, A. M., & Le, Q. V. (2017). Hypernetworks. International Confer-
ence on Learning Representations (cit. on p. 35).

Haber, E., & Ruthotto, L. (2017). Stable architectures for deep neural net-
works. Inverse problems, 34(1), 014004 (cit. on p. 24).

Hairer, E., Hochbruck, M., Iserles, A., & Lubich, C. (2006). Geometric
numerical integration. Oberwolfach Reports, 3(1), 805 (cit. on p. 99).

Hartman, P. (2002). Ordinary differential equations (Vol. 38) [Corrected reprint
of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490

(83e:34002)], With a foreword by Peter Bates]. Society for Industrial;
Applied Mathematics (SIAM), Philadelphia, PA. (Cit. on pp. 17, 74,
111).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. Pro-
ceedings of the IEEE international conference on computer vision, 1026 (cit.
on p. 22).

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for
image recognition. Proceedings of the IEEE conference on computer vision
and pattern recognition, 770 (cit. on p. 22).

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep
residual networks. Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part
IV 14, 630 (cit. on p. 22).

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-
Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al. (2020).
The era5 global reanalysis. Quarterly Journal of the Royal Meteorological
Society, 146(730), 1999 (cit. on p. 71).

142 bibliography

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580 (cit. on p. 10).

Hirsch, C. (2007). Numerical computation of internal and external flows: The
fundamentals of computational fluid dynamics. Elsevier. (Cit. on pp. 12, 15,
100).

Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn sampler: Adap-
tively setting path lengths in hamiltonian monte carlo. J. Mach. Learn.
Res., 15(1), 1593 (cit. on p. 64).

Hoogeboom, E., Van Den Berg, R., & Welling, M. (2019). Emerging con-
volutions for generative normalizing flows. International conference on
machine learning, 2771 (cit. on p. 30).

Hoover, W. G., & Hoover, C. (2003). Links between microscopic and macro-
scopic fluid mechanics. Molecular Physics, 101(11), 1559 (cit. on p. 49).

Horn, J. W., & Kunz, T. H. (2008). Analyzing nexrad doppler radar images to
assess nightly dispersal patterns and population trends in brazilian free-
tailed bats (tadarida brasiliensis). Integrative and Comparative Biology,
48(1), 24 (cit. on p. 2).

Hutchinson, M. F. (1989). A stochastic estimator of the trace of the influence
matrix for laplacian smoothing splines. Communications in Statistics-
Simulation and Computation, 18(3), 1059 (cit. on pp. 32, 35).

Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020). Conservative
physics-informed neural networks on discrete domains for conserva-
tion laws: Applications to forward and inverse problems. Computer
Methods in Applied Mechanics and Engineering, 365, 113028 (cit. on pp. 41,
70).

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093 (cit. on p. 21).

Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., & Ballabrera-Poy, J. (2007). 4-
d-var or ensemble kalman filter? Tellus A: Dynamic Meteorology and
Oceanography, 59(5), 758 (cit. on p. 39).

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang,
L. (2021). Physics-informed machine learning. Nature Reviews Physics,
3(6), 422 (cit. on pp. 1, 2, 11, 67).

Kidger, P. (2021). On neural differential equations [Doctoral dissertation, Uni-
versity of Oxford]. (Cit. on p. 25).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (cit. on p. 106).

bibliography 143

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible
1x1 convolutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 31). Curran Associates, Inc. (Cit. on pp. 29, 76).

Knott, M., & Smith, C. S. (1984). On the optimal mapping of distributions.
Journal of Optimization Theory and Applications, 43(1), 39 (cit. on p. 103).

Kobyzev, I., Prince, S. J., & Brubaker, M. A. (2020). Normalizing flows:
An introduction and review of current methods. IEEE transactions on
pattern analysis and machine intelligence, 43(11), 3964 (cit. on pp. 26, 28,
35).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25 (cit. on p. 21).

Kukačka, J., Golkov, V., & Cremers, D. (2017). Regularization for deep
learning: A taxonomy. arXiv preprint arXiv:1710.10686 (cit. on p. 10).

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions
on neural networks, 9(5), 987 (cit. on p. 41).

Lagaris, I. E., Likas, A. C., & Papageorgiou, D. G. (2000). Neural-network
methods for boundary value problems with irregular boundaries. IEEE
Transactions on Neural Networks, 11(5), 1041 (cit. on p. 41).

Landau, L. D., & Lifshitz, E. M. (2013). Fluid mechanics: Landau and lifshitz:
Course of theoretical physics, volume 6 (Vol. 6). Elsevier. (Cit. on p. 15).

Lao, J., Suter, C., Langmore, I., Chimisov, C., Saxena, A., Sountsov, P., Moore,
D., Saurous, R. A., Hoffman, M. D., & Dillon, J. V. (2020). Tfp. mcmc:
Modern markov chain monte carlo tools built for modern hardware.
arXiv preprint arXiv:2002.01184 (cit. on p. 55).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553),
436 (cit. on p. 21).

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A
tutorial on energy-based learning. Predicting structured data, 1(0) (cit. on
p. 1).

Li, J., Song, Z., & Yang, B. (2023). Nvfi: Neural velocity fields for 3d physics
learning from dynamic videos. Thirty-seventh Conference on Neural Infor-
mation Processing Systems (cit. on p. 11).

Li, L., Hurault, S., & Solomon, J. M. (2023). Self-consistent velocity matching
of probability flows. In A. Oh, T. Neumann, A. Globerson, K. Saenko,
M. Hardt, & S. Levine (Eds.), Advances in neural information processing

144 bibliography

systems (pp. 57038–57057, Vol. 36). Curran Associates, Inc. (Cit. on
pp. 70, 74).

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart,
A., & Anandkumar, A. (2020). Fourier neural operator for parametric
partial differential equations. arXiv preprint arXiv:2010.08895 (cit. on
p. 70).

Liao, H., & He, J. (2021). Jacobian determinant of normalizing flows. (Cit. on
p. 98).

Lind, S. J., Rogers, B. D., & Stansby, P. K. (2020). Review of smoothed
particle hydrodynamics: Towards converged lagrangian flow modelling.
Proceedings of the Royal Society A, 476(2241), 20190801 (cit. on p. 48).

Lippert, F., Kranstauber, B., Forré, P. D., & van Loon, E. E. (2022). Learning
to predict spatiotemporal movement dynamics from weather radar
networks. Methods in Ecology and Evolution, 13(12), 2811 (cit. on p. 68).

Lippert, F., Kranstauber, B., van Loon, E. E., & Forré, P. (2022). Physics-
informed inference of aerial animal movements from weather radar
data. NeurIPS 2022 AI for Science: Progress and Promises (cit. on p. 68).

Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear
operators for identifying differential equations based on the universal
approximation theorem of operators. arXiv preprint arXiv:1910.03193
(cit. on p. 70).

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). Deepxde: A deep
learning library for solving differential equations. SIAM Review, 63(1),
208 (cit. on pp. 41, 49, 55, 64, 103).

Lu, Y., Zhong, A., Li, Q., & Dong, B. (2018). Beyond finite layer neural
networks: Bridging deep architectures and numerical differential equa-
tions. International Conference on Machine Learning, 3276 (cit. on p. 24).

Makkuva, A., Taghvaei, A., Oh, S., & Lee, J. (2020). Optimal transport
mapping via input convex neural networks. International Conference on
Machine Learning, 6672 (cit. on p. 84).

Márquez-Neila, P., Salzmann, M., & Fua, P. (2017). Imposing hard con-
straints on deep networks: Promises and limitations. arXiv preprint
arXiv:1706.02025 (cit. on p. 12).

Mathiasen, A., Hvilshøj, F., Rødsgaard Jørgensen, J., Nasery, A., & Mottin, D.
(2020). What if neural networks had svds? Advances in Neural Information
Processing Systems, 33, 18411 (cit. on p. 30).

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin,
M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,
Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson,

bibliography 145

F., Pedregosa, F., . . . Scopatz, A. (2017). Sympy: Symbolic computing
in python. PeerJ Computer Science, 3, e103 (cit. on p. 105).

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R.,
& Ng, R. (2020). Nerf: Representing scenes as neural radiance fields
for view synthesis. European conference on computer vision, 405 (cit. on
p. 44).

Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normal-
ization for generative adversarial networks. International Conference on
Learning Representations (cit. on pp. 10, 31, 32).

Nabian, M. A., Gladstone, R. J., & Meidani, H. (2021). Efficient training of
physics-informed neural networks via importance sampling. Computer-
Aided Civil and Infrastructure Engineering, 36(8), 962 (cit. on pp. 49, 55).

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I.
(2021). Deep double descent: Where bigger models and more data hurt.
Journal of Statistical Mechanics: Theory and Experiment, 2021(12), 124003

(cit. on p. 21).
Negri, M. M., Torres, F. A., & Roth, V. (2023). Conditional matrix flows for

gaussian graphical models. Thirty-seventh Conference on Neural Informa-
tion Processing Systems (cit. on p. 28).

Nesterov, V., Wieser, M., & Roth, V. (2020). 3dmolnet: A generative network
for molecular structures. arXiv preprint arXiv:2010.06477 (cit. on p. 10).

Ning, X., Guan, J., Li, X.-A., Wei, Y., & Chen, F. (2023). Physics-informed
neural networks integrating compartmental model for analyzing covid-
19 transmission dynamics. Viruses, 15(8), 1749 (cit. on p. 41).

Nussbaumer, R., Bauer, S., Benoit, L., Mariethoz, G., Liechti, F., & Schmid, B.
(2021). Quantifying year-round nocturnal bird migration with a fluid
dynamics model. Journal of the Royal Society Interface, 18(179), 20210194

(cit. on pp. 2, 55, 68, 85, 124).
Nussbaumer, R., Benoit, L., Mariethoz, G., Liechti, F., Bauer, S., & Schmid, B.

(2019). A geostatistical approach to estimate high resolution nocturnal
bird migration densities from a weather radar network. Remote Sensing,
11(19), 2233 (cit. on pp. 2, 3, 55, 59, 68).

Onken, D., Fung, S. W., Li, X., & Ruthotto, L. (2021). Ot-flow: Fast and accu-
rate continuous normalizing flows via optimal transport. Proceedings of
the AAAI Conference on Artificial Intelligence, 35, 9223 (cit. on p. 35).

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshmi-
narayanan, B. (2021). Normalizing flows for probabilistic modeling and
inference. The Journal of Machine Learning Research, 22(1), 2617 (cit. on
pp. 26, 28, 98).

146 bibliography

Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive
flow for density estimation. Advances in neural information processing
systems, 30 (cit. on pp. 91, 129).

Parisi, D. R., Mariani, M. C., & Laborde, M. A. (2003). Solving differential
equations with unsupervised neural networks. Chemical Engineering
and Processing: Process Intensification, 42(8-9), 715 (cit. on p. 43).

Parno, M. D., & Marzouk, Y. M. (2018). Transport map accelerated markov
chain monte carlo. SIAM/ASA Journal on Uncertainty Quantification, 6(2),
645 (cit. on p. 54).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
. . . Chintala, S. (2019). Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. (Cit. on
pp. 21, 55).

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A.,
Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., et al. (2022).
Fourcastnet: A global data-driven high-resolution weather model using
adaptive fourier neural operators. arXiv preprint arXiv:2202.11214 (cit.
on p. 1).

Perugachi-Diaz, Y., Tomczak, J., & Bhulai, S. (2021). Invertible densenets
with concatenated lipswish. Advances in Neural Information Processing
Systems, 34, 17246 (cit. on pp. 32–34, 37, 76, 78, 91, 120, 126, 129).

Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix cookbook. Technical
University of Denmark, 7(15), 510 (cit. on p. 29).

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.
(Cit. on pp. 24, 71).

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Ben-
gio, Y., & Courville, A. (2019). On the spectral bias of neural networks.
International Conference on Machine Learning, 5301 (cit. on p. 44).

Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsuper-
vised learning using graphics processors. Proceedings of the 26th annual
international conference on machine learning, 873 (cit. on p. 21).

Rainey, R. (1955). Observation of desert locust swarms by radar. Nature,
175(4445), 77 (cit. on p. 2).

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed
neural networks: A deep learning framework for solving forward and

bibliography 147

inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378, 686 (cit. on pp. 3, 11, 39, 41, 43, 48,
69, 77).

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential
equations. arXiv preprint arXiv:1711.10561 (cit. on pp. 12, 43).

Recktenwald, G. W. (2004). Finite-difference approximations to the heat
equation. Mechanical Engineering, 10(01) (cit. on p. 60).

Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing
flows. International conference on machine learning, 1530 (cit. on p. 55).

Richter-Powell, J., Lipman, Y., & Chen, R. T. (2022). Neural conservation
laws: A divergence-free perspective. Advances in Neural Information
Processing Systems (cit. on pp. 70, 77, 83–85, 100, 118, 121, 122, 124, 126).

Robert, A. (1982). A semi-lagrangian and semi-implicit numerical integra-
tion scheme for the primitive meteorological equations. Journal of the
Meteorological Society of Japan. Ser. II, 60(1), 319 (cit. on p. 71).

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-
resolution image synthesis with latent diffusion models. Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 10684

(cit. on p. 1).
Rudd, K. (2013). Solving partial differential equations using artificial neural

networks [Doctoral dissertation, Duke University]. (Cit. on p. 41).
Ruthotto, L., & Haber, E. (2020). Deep neural networks motivated by partial

differential equations. Journal of Mathematical Imaging and Vision, 62, 352

(cit. on p. 24).
Särkkä, S., & Solin, A. (2019). Applied stochastic differential equations (Vol. 10).

Cambridge University Press. (Cit. on pp. 19, 20, 62, 63).
Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A., & Müller,

K.-R. (2018). Schnet–a deep learning architecture for molecules and
materials. The Journal of Chemical Physics, 148(24) (cit. on p. 1).

Ser-Giacomi, E., Rossi, V., López, C., & Hernandez-Garcia, E. (2015). Flow
networks: A characterization of geophysical fluid transport. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 25(3) (cit. on p. 99).

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E.
(2018). Measuring the effects of data parallelism on neural network
training. arXiv preprint arXiv:1811.03600 (cit. on p. 88).

Sharma, P., Chung, W. T., Akoush, B., & Ihme, M. (2023). A review of
physics-informed machine learning in fluid mechanics. Energies, 16(5),
2343 (cit. on p. 12).

148 bibliography

Sirignano, J., & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for
solving partial differential equations. Journal of computational physics,
375, 1339 (cit. on pp. 40, 41, 43, 47).

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020).
Implicit neural representations with periodic activation functions. Ad-
vances in Neural Information Processing Systems, 33, 7462 (cit. on pp. 44,
53, 56, 78, 106, 119, 121).

Smolensky, P., et al. (1986). Information processing in dynamical systems:
Foundations of harmony theory (cit. on p. 1).

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015).
Deep unsupervised learning using nonequilibrium thermodynamics.
International conference on machine learning, 2256 (cit. on p. 1).

Staniforth, A., & Côté, J. (1991). Semi-lagrangian integration schemes for
atmospheric models—a review. Monthly weather review, 119(9), 2206

(cit. on p. 71).
Stepanian, P. M., Wainwright, C. E., Frick, W. F., & Kelly, J. F. (2019). Weather

surveillance radar as an objective tool for monitoring bat phenology
and biogeography. The Journal of Engineering, 2019(20), 7062 (cit. on
p. 2).

Strang, G. (2022). Introduction to linear algebra. SIAM. (Cit. on p. 30).
Sturm, P. O., & Wexler, A. S. (2022). Conservation laws in a neural network

architecture: Enforcing the atom balance of a julia-based photochemical
model (v0. 2.0). Geoscientific Model Development, 15(8), 3417 (cit. on
p. 71).

Sukumar, N., & Srivastava, A. (2021). Exact imposition of boundary con-
ditions with distance functions in physics-informed deep neural net-
works. Computer Methods in Applied Mechanics and Engineering, 114333

(cit. on p. 40).
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper,

C. B., Damoulas, T., Dhondt, A. A., Dietterich, T., Farnsworth, A., et al.
(2014). The ebird enterprise: An integrated approach to development
and application of citizen science. Biological conservation, 169, 31 (cit. on
p. 69).

Tadiparthi, V., & Bhattacharya, R. (2021). Optimal transport based re-
finement of physics-informed neural networks. arXiv preprint arXiv:
2105.12307 (cit. on pp. 49, 55, 64, 103).

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan,
N., Singhal, U., Ramamoorthi, R., Barron, J., & Ng, R. (2020). Fourier
features let networks learn high frequency functions in low dimensional

bibliography 149

domains. Advances in Neural Information Processing Systems, 33, 7537

(cit. on pp. 44, 53).
Tomczak, J. M., & Welling, M. (2016). Improving variational auto-encoders

using householder flow. arXiv preprint arXiv:1611.09630 (cit. on p. 29).
Toner, J., & Tu, Y. (1995). Long-range order in a two-dimensional dynamical

XY model: How birds fly together. Physical review letters, 75(23), 4326

(cit. on pp. 49, 53).
Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory

of flocking. Physical review E, 58(4), 4828 (cit. on p. 53).
Tong, A., Huang, J., Wolf, G., Van Dijk, D., & Krishnaswamy, S. (2020).

Trajectorynet: A dynamic optimal transport network for modeling
cellular dynamics. International conference on machine learning, 9526 (cit.
on pp. 11, 98).

Torres, F. A., Negri, M. M., Inversi, M., Aellen, J., & Roth, V. (2024). La-
grangian flow networks for conservation laws. The Twelfth International
Conference on Learning Representations (cit. on pp. 5, 12, 25, 67, 109, 118,
120, 125).

Tu, Y., Toner, J., & Ulm, M. (1998). Sound waves and the absence of Galilean
invariance in flocks. Physical review letters, 80(21), 4819 (cit. on p. 53).

Uhlig, F. (2001). Constructive ways for generating (generalized) real orthog-
onal matrices as products of (generalized) symmetries. Linear Algebra
and its Applications, 332, 459 (cit. on p. 29).

Van Doren, B. M., & Horton, K. G. (2018). A continental system for forecast-
ing bird migration. Science, 361(6407), 1115 (cit. on pp. 2, 3).

van Milligen, B. P., Tribaldos, V., & Jiménez, J. (1995). Neural network
differential equation and plasma equilibrium solver. Physical review
letters, 75(20), 3594 (cit. on p. 43).

Vapnik, V. (1999). The nature of statistical learning theory. Springer science &
business media. (Cit. on p. 9).

Wang, S., Teng, Y., & Perdikaris, P. (2021). Understanding and mitigating
gradient flow pathologies in physics-informed neural networks. SIAM
Journal on Scientific Computing, 43(5), A3055 (cit. on p. 53).

Wang, S., Wang, H., & Perdikaris, P. (2021). On the eigenvector bias of
fourier feature networks: From regression to solving multi-scale pdes
with physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 384, 113938 (cit. on p. 53).

Wang, S., Yu, X., & Perdikaris, P. (2022). When and why pinns fail to train:
A neural tangent kernel perspective. Journal of Computational Physics,
449, 110768 (cit. on p. 44).

150 bibliography

Weinan, E. (2017). A proposal on machine learning via dynamical systems.
Communications in Mathematics and Statistics, 1(5), 1 (cit. on p. 24).

Wessels, H., Weißenfels, C., & Wriggers, P. (2020). The neural particle
method–an updated lagrangian physics informed neural network for
computational fluid dynamics. Computer Methods in Applied Mechanics
and Engineering, 368, 113127 (cit. on p. 48).

Williams, T. C., Ireland, L. C., & Williams, J. M. (1973). High altitude flights
of the free-tailed bat, tadarida brasiliensis, observed with radar. Journal
of Mammalogy, 54(4), 807 (cit. on p. 2).

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., & Ma, Z. (2019). Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint
arXiv:1901.06523 (cit. on p. 44).

Zhang, J., Lei, Q., & Dhillon, I. (2018). Stabilizing gradients for deep neural
networks via efficient svd parameterization. International Conference on
Machine Learning, 5806 (cit. on pp. 1, 30).

	Abstract
	Acknowledgements
	Contents
	Notation
	Notation
	Tools Used

	Tools Used
	1 Introduction
	1.1 Problem Setting and Motivation
	1.2 Contribution
	1.3 List of Publications

	2 Background
	2.1 Machine Learning
	2.2 Mass Conservation and the Continuity Equation
	2.3 Neural Networks
	2.4 Normalizing Flows
	2.5 Physics Informed Neural Networks

	3 Mesh-free Eulerian PINNs
	3.1 Physics-Informed Neural Networks
	3.2 Related Work
	3.3 Particle-density PINNs
	3.4 Model and Implementation
	3.5 Experiments
	3.6 Conclusion

	4 Lagrangian Flow Networks
	4.1 Motivation and Setting
	4.2 Related Work
	4.3 Lagrangian Flow Networks
	4.4 Implementation
	4.5 Experiments: Lagrangian Flow Networks
	4.6 Experiments: i-DenseNets with CSin
	4.7 Conclusion

	5 Conclusion
	5.1 Summary
	5.2 Limitations and Future Directions
	5.3 Closing Remarks

	A Appendix - Mesh-free Eulerian PINNs
	A.1 Implementation of competing methods (RAR, OT-RAR).
	A.2 Additional Experiment Details

	B Appendix - Lagrangian Flow Networks
	B.1 Theoretical Background
	B.2 Calculating the Density and Velocity
	B.3 Implementation
	B.4 Additional Information on the Experiments

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Algorithms
	List of Algorithms

	 Bibliography

