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Summary

Bruxism is a parafunctional oral behavior that can occur during sleep (sleep bruxism) or wakeful-
ness (awake bruxism). Bruxism is characterized by teeth grinding and jaw clenching. It can lead
to various health consequences such as tooth fracture, tooth wear, and muscle fatigue. Several de-
vices have been developed to treat and detect the symptoms of bruxism. Oral splints are the most
widely used device to manage sleep bruxism by eliminating tooth contact. Electromyography
(EMG) is used to monitor the activity of the masticatory muscles to detect bruxism. However,
mouth guards are passive devices that don’t necessarily reduce the occurrence of bruxism, and
EMG can be cumbersome to wear while sleeping or wakefulness. Haerables are wearable ear
devices that can record signals such as sound. Such devices may be advantageous for the detection
of bruxism induced events as they are easy to use and socially acceptable. Therefore, the question
is whether ear devices - sometimes called hearables - that use sound as a biomarker can be
affordable devices to detect bruxism. In a first study, I investigated the effect of the type of ear
occlusion on recording and found that complete occlusion of the ear with a moldable earpiece
supported recording of the characteristic feature of jaw clenching. For reasons of practicality
and hygiene, I fitted an off-the-shelf earpiece with a transducer as part of an experimental setup
in a second study to investigate the effect of transducer placement on the recording. The oral
behaviors recorded were: jaw clenching, teeth grinding, reading, eating, and drinking. The
transducers were placed on the zygomatic bone, frontal bone, temporal bone, and inside the ear.
Finally, I investigated the use of 2D sound representations to classify the different oral behaviors
recorded from the ears using deep learning. Three classifiers were tested, 2-Class (Grinding
and Pause), 4-Class (Eating, Grinding, Pause, and Eeading), and 6-Class (Clenching, Drinking,
Eating, Grinding, Pause, Reading). I observed that sounds of bruxism-induced events can be
recorded from different parts of the head. From the experiment, I observed that the ear is an ideal
location to record bruxism-induced sounds, because it compensates for head movements due to
eating or drinking that may affect the recording. I also successfully classified the sounds recorded
from the ear, but - as expected - the overall test accuracy of the classifier decreased as the number
of classes increased. This result has good practical implications, as my approach demonstrated
that bruxism-induced sounds can be recorded and distinguished from other oral behaviors. Finally,
this project focused on bruxism from a biomechanical lens with the goal of developing a method
to record and distinguish bruxism events from other oral behaviors. This method could be used to
activate bio-feedback. Future research directions would be to investigating the causes of bruxism
- which were not addressed in this work - and for this, further research is important to address
one of its main causes, chronic emotional stress, which requires viewing bruxism through a

vii
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biopsychosocial lens.



Preface

Experimental work, evaluation, and writing of this thesis was performed at the Bio-Inspired
RObots for MEDicine-Laboratory (BIROMED-Lab), Department of Biomedical Engineering
(DBE), University of Basel.

Chapter 1 is a general introduction to the clinical description of bruxism, epidemiology, and risk
factors. Also, it contains sections on the instrumental assessment on bruxism and the diagnostic
issues. Finally, it holds the research questions and the outline of the thesis.

Chapter 2, is based on journal publication [1]:
M.K. Nahhas, N. Gerig, P. Cattin, E. Wilhelm, J.C. Türp, G. Rauter, "Reviwing the potential of
hearables for the assessment of bruxism," at-Automatisierungstechnik, vol. 72, no. 5, 2024, pp.
389-398. Permission of reuse has been granted.

Chapter 3, is based on the conference publication [2]:
M.K. Nahhas, N. Gerig, J.C. Türp, P. Cattin, E. Wilhelm, G. Rauter, "Impact of Ear Occlusion
on In-Ear Sounds Generated by Intra-oral Behaviors," in New Trends in Medical and Service
Robotics. (MESROB) 2021. Permission of reuse has been requested.

Chapter 4, is based on a journal publication [3]:
M.K. Nahhas, J.C. Türp, P. Cattin, N. Gerig, E. Wilhelm, G. Rauter, "Towards wearables for
bruxism detection: voluntary oral behaviors sound recorded across the head depend on transducer
placement," Clinical and Experimental Dental Research, 2024. Permission to reuse is under
Creative Commons Attribution License.

Chapter 5, is based on the submitted journal publication [4]:
M.K. Nahhas, J.C. Türp, N. Gerig, P. Cattin, E. Wilhelm, G. Rauter, "Experimental classification
of accoustic emissions from oral behaviors including bruxism using deep learning," Submitted
for publication in IEEE Transactions on Biomedical Engineering, 2024. Permission to reuse will
be requested once the manuscript is accepted.

Each of these chapters is opened with a "Forward and Overview" that connects the different
chapters together and provides the context of the chapter within this thesis. The format of the
manuscripts has been adapted to the format of the thesis.
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Chapter 6, recaps the achievements reached during this PhD, and reflects on their relevance,
limitations, and outlook.



Chapter 1

General Introduction

I have worked during my PhD project on exploring the use of ear devices to detect bruxism-
induced sound emisisons. The motivation behind this project stems from the need to develop
easy to use and inexpensive devices to detect bruxism which can occur through out the whole
day. This chapters starts by explaining what bruxism is from a clinical perspective, followed by
three short paragraphs on the epidemiology of bruxism, its risk factors, and how bruxism can be
understood through a wider lens than the biomechanical one. Then, a description of the various
instrumental devices used to assess bruxism is presented, followed by the limitations of these
devices.

1.1 Bruxism, a parfunctional orofacial behavior

The mandible is the only movable bone of the skull. Movements in the temporomandibular joints
are achieved by the coordinated work of seven paired muscles on both sides, which attach to the
mandible. The neuromuscular interaction allows the mandible to open, close, protrude, retract,
and move laterally relative to the maxilla. The mandible has a functional relationship with the
maxilla via the teeth or tooth analogs through occlusal contacts. The mandible plays a central
role for facilitating functional behaviors such as chewing, speaking, and swallowing. These are
distinguished from so-called involuntary parafunctions, which can be divided into dental (jaw
clenching and/or teeth grinding, summarized under the term bruxism) and non-dental (e.g. tongue
pressing, lip biting, cheek sucking). The term bruxism refers to all occlusal (i.e. teeth-related)
parafunctions that occur during sleep or wakefulness and are accompanied by persistent or rhyth-
mic jaw muscle activity. A distinction is made between sleep and awake bruxism. Jaw clenching
and teeth grinding are observed during both sleep and wakefulness. However, there is no reliable
data on the frequency of occurrence of either activity during sleep or wakefulness.

In 2013, an international expert commission proposed to expand the definition of bruxism.
Accordingly, bruxism has been redefined to be "a repetitive jaw muscle activity characterized by
clenching or grinding of the teeth and/or by bracing or thrusting of the mandible" [5]. There is now
a consensus in the scientific literature that bruxism is not a peripheral (occlusal or anatomical-
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2 Chapter 1. General Introduction

morphological) phenomenon, but a central nervous phenomenon. Contrary to earlier views,
bruxism is interpreted less as a disorder or dysfunction and more as an expression of certain
physiological and behavioral processes [6]. In some cases, bruxism is even seen as having positive
aspects: it plays a role in postural and stability control (jaw clenching when lifting heavy loads),
keeps the airway open (teeth grinding during sleep), and stress management.

1.2 Epidemiology

Bruxism is common in the population. In an epidemiological study from the Netherlands
(n=1209), 5% of adults reported awake bruxism and 16.5% sleep bruxism [7]. Since the majority
of patients do not know whether they are clenching or grinding, it is reasonable to assume that the
true, unknown percentage of patients performing these parafunctions is significantly higher. To
provide an example, assuming 8% of severely pronounced forms of bruxism (and thus requiring
therapy), in Berlin (population approximately 3.7 million [8], of which approximately 3.1 million
are 18 years of age or older [9]), the number of adults requiring therapy would be approximately
250,000. In reality however, the number of people receiving appropriate therapy for bruxism is
estimated far smaller.

1.3 Risk factors

Many risk factors for bruxism have been identified in recent decades. The most common risk
factor is emotional stress, while social phobia has the highest odds ratio [10]. Bruxism, in turn,
can be a risk factor for a more frequent occurrence of defined adverse effects than non-bruxing
individuals. These may include pain in the area of the masticatory muscles [11, 12]. It may also
cause anterior displacement of the articular disc of one or both temporomandibular joints (TMJs),
that is often accompanied by clicking in the affected TMJ [11, 13].

1.4 Bruxism beyond a biomechanical assessment

In addition to the above described risk factors, psychological and social factors also play an
important role in the development of bruxism [14–16]. The biopsychosocial approach considers
biological, psychological and social factors in assessing the health of the individual [17]. The
World Health Organization places great importance on the social determinants of health "They
are the conditions in which people are born, grow, work, live, and age, and the wider set of forces
and systems shaping the conditions of daily life." [18], as research has presented that the "social
determinants can be more important than health care or lifestyle choices in influencing health"
[18]. We can therefore assume that bruxism is not just an individual issue but rather a behavior
that needs to be placed within a broader social analysis of health. Thus, considering the set of
causes of bruxism from a biopsychosocial perspective can contribute to the design of public
policies and protocols to deal with bruxism.
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1.5 Awake and sleep bruxism instrumental assessment

The gold standard for diagnosing sleep bruxism is polysomnography (PSG) with audio and video
recording (AV), but this approach is expensive, time-consuming, and cumbersome. Therefore,
several research groups conducted several studies to investigate the efficacy of wearable devices
that are relatively inexpensive and could allow for real-world assessment. Where real-world as-
sessment refers to the assessment of bruxism in the environment where the user lives. For instance,
oral splints have been fitted with a force sensor to detect sleep bruxism [19, 20]. Another sensing
modality that has been extensively studied is surface electromyography (sEMG), which monitors
the activity of the muscles involved in bruxism and has traditionally been used to study sleep
bruxism [21, 22]. Both, oral splints and sEMG have their own limitations as they respond not
only to bruxism-induced events but also to other oral (functional and parafunctional) behaviors,
which could compromise their effectiveness. Another sensing modality that has received renewed
attention is the use of sound to detect bruxism-like events. Tooth-grinding sounds propagate
across the skull via bone propagation; muscle activation also produces detectable vibrations.
Sound detection is not new to dentistry; it was used for occlusal analysis since the second half of
the 20th century [23].

A gold standard for the assessment of awake bruxism is still lacking. However, as concluded
by a panel of experienced researchers, “a comprehensive approach including a combination
of self-reported and measurement strategies (...) will likely emerge as the gold standard for
evaluating awake bruxism" [24]. Accordingly, researchers are investigating the use of mobile
phone applications for Ecological Momentary Assessment (EMA) [25]. EMA is a method of
collecting data about the patient’s behavior in a real-world environment in real-time [26].

Due to its high prevalence and potential as a risk factor, bruxism is an important public
health issue. Therefore, there is a need to develop devices that can detect and monitor bruxism
[27]. These devices should be easy to use, as wearing sEMG devices or oral splints may not
be the most convenient devices to assess both awake and sleep bruxism. In addition, since
various parafunctional behaviors other than bruxism as well as functional intra-oral behaviors,
such as eating, drinking, and talking, activate the mastication muscles, produce sounds that
propagate throughout the head, and mobilize the lower jaw, the diagnostic devices should be able
to differentiate between bruxism and other oral behaviors. In order to be able to monitor bruxism
in real-world environment during the user’s daily routine, it is necessary to develop classification
procedures to distinguish between the different sounds that the assessment device might record.

1.6 Bruxism: diagnostic issues

The clinical diagnosis of bruxism is primarily made by the patient history and clinical examination.
Self-report has been widely used to assess the onset of sleep bruxism. Self-report, in this case,
refers to the perception of bruxing behavior by the affected person, the sleep partner of in the
case of children, the parents. The validity and accuracy of self-report were compared to lab PSG;
one of the conclusions was that self-report might not reflect the presence of moderate and severe
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sleep bruxism [28]. Another research group investigated the diagnostic validity of self-report for
measuring sleep bruxism compared to a single-channel EMG device, Grind Care® (Medotech
A/S, Denmark). The authors concluded that self-report had a low validity and should be used in
combinations with other diagnostic tools [29]. The continuous monitoring of the activity of the
masticatory muscles activity during PSG and the presence of audio and video recordings help
to categorize different behaviors that might not be related to sleep bruxism, but are still visible
on the recording of the masticatory muscles. However, this tool has several disadvantages: the
environment in which the individual is sleeping and the multiple sensors and wires attached to
the participant may affect the sleep behavior and comfort; in addition, such a tool is cumbersome,
time-consuming, and expensive [30]. Approaches to reduce the costs by using portable home
PSG devices with no audio and video recording have also been tested. However, it was found that
the absence of the additional recordings may lead to an overestimation of sleep bruxism-induced
events [31].

Different research groups have used the oral splint to transform it from a passive, harm-
reducing tool into a monitoring tool by equipping it with transducers that record the forces on the
teeth generated by sleep bruxism [19, 20, 32–43]. A systematic review that included articles on
randomized controlled trials published between 2007 and 2017 concluded that several studies
supported the effectiveness of oral appliances for sleep bruxism [44]. The authors observed that
several studies support the effectiveness of oral appliance therapy for sleep bruxism, but that
further studies are needed to investigate the long-term reduction of bruxism with larger samples.

The activity of the masseter muscle and the temporalis muscle were monitored using sEMG,
either the masseter or the temporalis muscle, to detect bruxism. To this end, several research
groups have investigated the possibility of using portable sEMG sensors to detect bruxism
[21, 22, 35, 45–55]. In addition, sEMG devices were used to activate a bio-feedback mechanism
after detecting the activity of the masticatory muscles. For example, a headband-like device
equipped with an EMG sensor was used to deliver electrical pulses to the temporalis muscle to
disrupt its activity during sleep; a reduction in the temporalis muscle activity was observed [56].
The efficacy of GrindCare® in reducing the occurrence of sleep bruxism was studied. GrindCare®

is a device that uses sEMG to detect the temporalis muscle activity associated with sleep bruxism.
It provides a low-voltage stimulation to interrupt the contraction of the muscle. The investigators
observed that more than half of the 19 participants reported a substantial reduction in headaches
and masticatory muscle pain after waking up [57]. Other researchers investigated the effectiveness
of using EMG biofeedback training for the onset of daytime clenching. To do so, an EMG sensor
was incorporated into a hearing aid-like device that monitored the activity of the temporalis
muscle. The feedback mechanism was a loudspeaker that produced a tone when a certain
threshold of clenching activity was detected [58]. In a follow-up study, the potential of using the
portable device developed by [58] to detect daytime clenching episodes was investigated in a
group of volunteers with self-reported clenching episodes [59]. Afterward, the device developed
by [58] was used to investigate the effect of biofeedback training for daytime clenching on
sleep bruxism. The results suggest that such training can have a positive effect on the onset of
sleep bruxism [60]. In 2014, a systematic review examined the validity of portable instrumental
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devices for monitoring sleep bruxism compared to the gold standard, PSG with video and audio
recordings. The authors concluded that Bruxoff® - a sEMG and ECG device that records the
activity of the masseter muscle activity and the heart rate, respectively - presents a viable option
for diagnosing sleep bruxism without PSG [48]. In 2021, a scoping review of ambulatory sEMG
recording devices and methods to assess sleep bruxism was published, considering 78 studies
published between 1977 and 2020. It was concluded that there is a need for standard reporting
of methods and the recording procedures, as well as a need to deviate from only scoring sleep
bruxism periods to scoring the full spectrum of masticatory muscle activity [61].

1.7 My research questions and outline of the thesis

The various devices mentioned above for the diagnosis and management of bruxism have their
advantages and disadvantages. EMG devices have demonstrated reliable performance in detecting
masseter muscle activity associated with the onset of bruxism. However, EMG devices are
cumbersome to wear at night because of the cables. Although wireless EMG devices have been
tested with promising results, EMG devices are limited by their susceptibility to noise when the
user touches the device or sleeps on the side to which the device is attached. Oral splints have
been prescribed as a management device that eliminates tooth contact during sleep. Mouthpieces
have been equipped with sensors to detect tooth contact using pressure sensors. Researchers
have studied the use of these devices to diagnose bruxism and reported that the devices have the
potential to detect tooth contact and the amount of force applied. However, sensor-loaded mouth
guards have some limitations because they require continuous hygiene protocols, and the wear
and tear of mouth guards would make such devices expensive to maintain.

With the advancement of wearable devices used to monitor health over time, the ear presents
itself as a location for placement of such devices; such devices are sometimes referred to as
hearables. Tooth grinding produces sounds that travel through the head via bone conduction. Jaw
clenching alters the blood flow around the ear, and activation of the middle ear muscles would
deform the eardrum. The sounds produced by teeth grinding, which propagate through bone,
can reach the ear. In addition, occluding the ear creates a medium in which sounds generated
by the change in blood flow can be recorded. In addition, the pressure in an occluded ear canal
can change as the eardrum deforms. Therefore, recording sounds from the ear to detect bruxism
events has promising potential.

Several research questions are important regarding the recording of the sounds produced by a
bruxism event. The first question is, when sounds propagate through the bone across the head, is
there a location on the head that is optimal to record the sound from? Also, there are different
levels of occlusion of the ear. So, the second question is how does the degree of ear occlusion
affect the quality of the recording? In addition, bruxism occurs throughout the day, as do other
oral behaviors such as eating, drinking, or reading, so it is important to investigate a classification
algorithm that is capable of distinguishing the different sounds. Therefore, the third research
question is can deep learning be used to classify sounds of voluntarily performed oral behaviors?
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To answer the above questions, we developed a study to record sounds of different oral
behaviors from different participants. Five oral behaviors were recorded: jaw clenching, teeth
grinding, reading, eating, and drinking. The setup consisted of eight transducers recording sound
from different locations on the head, zygomatic, frontal, temporal, and ear. To answer the various
research questions, a review of the potential of hearables to record bruxism sounds was conducted
and presented in Chapter 2. The third chapter presents the results of a pilot study conducted with
one participant to investigate the effect of ear occlusion type on the recording of sounds. The
fourth chapter presents the results of the study investigating the effect of transducer location on
the recorded sound. The fifth chapter presents the results of the experimental classification of
sounds recorded from the ear using deep learning.



Chapter 2

Reviewing the potential of hearables for
the assessment of bruxism

Foreword and Overview

This chapter contains the publication that reviews the use of ear devices for the possible detection
of bruxism. It gives a general introduction before delving into the the study I conducted in
chapters 3, 4, and 5. The online search was done using two databases PubMed and Livivo, in
additoin to individual complementary searches on Google Scholar.

Abstract

Bruxism is a parafunctional oral behavior that affects a large percentage of the population.
Bruxism is a risk factor for temporomandibular disorders. A gold standard is still lacking for
assessing bruxism while awake, whereas for sleep bruxism, polysomnography with audio and
video recording is the gold standard. Wearable devices, particularly those that detect sound
(hearables), are cost-effective and convenient and could fill the gap. With this systematic literature
review of Livivo and PubMed, extended by individual Google Scholar searches, we aimed to
assess the potential of wearable devices that use sound as a biomarker for detecting bruxism. In
summary, sounds originating from oral behaviors can be recorded from the ear, and hearables
have the potential to detect bruxism-like events.

Abstract [german]

Bruxismus ist ein parafunktionelles orales Verhalten und ein Risikofaktor für kraniomandibuläre
Dysfunktionen. Er betrifft einen großen Teil der Bevölkerung. Für die Beurteilung von Bruxismus

This chapter is based an published manuscript [1] in the journal at-Automatesirungstechnik available online at:
https://doi.org/10.1515/auto-2024-0029 (Accessed on 12 July 2024). Copyright and licensing information can be
found in the Preface.

7
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8 Chapter 2. First Paper: Reviewing the potential of hearables for the assessment of bruxism

im Schlaf gilt eine Diagnose mittels Polysomnographie begleitet von Audio- and Videoaufze-
ichnung als Goldstandard. Für den Wachzustand existiert noch kein solcher Goldstandard.
"Hearables" sind tragbare Geräte, welche Schall als Biomarker nutzen und dabei kostengünstig
und bequem zu tragen sind. Solche Hearables könnten die derzeitige Lücke in der Diagnose von
Bruxismus im Wachzustand schließen. Ziel dieser systematischen Literaturrecherche in Livivo
und PubMed, ergänzt durch eine individuelle Suche in Google Scholar, war es, das Potenzial
solcher Hearables für die Erkennung von Bruxismus zu eruieren. Zusammenfassend haben wir
festgestellt, dass durch orale Verhaltensweisen entstehende Geräusche im Ohr aufgezeichnet
werden können und der Einsatz von Hearables zur Erkennung bruxismusähnlicher Ereignisse
möglich ist.

2.1 Introduction

Bruxism is a parafunctional oral behavior defined as "a repetitive jaw muscle activity character-
ized by clenching or grinding of the teeth and/or by bracing or thrusting of the mandible" [5].
In a Dutch epidemiological study (n=1209), 5% of adults reported awake bruxism, and 16.5%
reported sleep bruxism [7]. Since most of patients do not know whether they are clenching or
grinding, it is reasonable to assume that the real, unknown percentage of patients performing
these parafunctions is significantly higher.

A gold standard for assessing awake bruxism is still lacking. However, as concluded by a
panel of experienced researchers, “a comprehensive approach including a combination of self-
reported and measurement strategies (...) will likely emerge as the gold standard for evaluating
awake bruxism" [24]. Conversely, polysomnography (PSG) with audio and video recording
(AV) is the gold standard for diagnosing sleep bruxism. However, this approach is expensive,
time-consuming, and cumbersome [30, 31]. Therefore, several studies have been conducted by
different research groups to investigate the efficacy of wearable devices for bruxism diagnosis
that are relatively inexpensive and allow for real-world assessment. One way to implement this
principle is to equip oral splints with a force sensor to detect sleep bruxism [19, 20, 32–44].
Another sensor modality that has been extensively studied is surface electromyography (sEMG),
which directly monitors the activity of the muscles involved in bruxism and has therefore been
widely used to study sleep bruxism [21, 22, 35, 45–62]. Yet, both oral splints and sEMG have
some limitations because they respond not only to bruxism-induced events but also to other oral
(functional and parafunctional) behaviors, which could compromise their effectiveness. Recently,
the use of sound to detect bruxism-related events –from the ear in particular –has received re-
newed attention. Such wearable devices are sometimes called hearables. Tooth-grinding sounds
propagate through the skull via bone propagation, while muscle activation produces detectable
vibrations [63, 64]. Sound detection is not new to dentistry; it has been used for occlusal analysis,
called gnathosonics, since the second half of the 20th century [23, 65–90]. In addition, temporo-
mandibular joint sounds have been recorded to study the position of the mandibular condyles of
the temporomandibular joints [91, 92].

Because of its high prevalence and potential as a risk factor for temporomandibular disorders



2.2. Method 9

(TMDs), tooth fractures, and chipping of ceramic restorations, both awake and sleep bruxism
are important public health issues (Figure 2.1). Therefore, there is a need for the development
of devices that can detect and monitor bruxism and help prescribe the necessary therapy [14].
Wearable devices that can assist in monitoring and assessing bruxism should be easy to use and
less intrusive than wearing sEMG electrodes or an oral splint during daily activities. To monitor
bruxism during daily activities, it is necessary to develop sound classification. Therefore, the main
objective of this review is to highlight wearable devices that record sound and have the potential
to unobtrusively assess bruxism in a real-world setting. First, the electronic search method is
explained. Then, wearable devices developed to record sounds are described, followed by the
description of classification procedures used to differentiate the sounds. Finally, the discussion
and conclusion sections reflect on the search outcome and the possible avenues for future work.

2.2 Method

A systematic literature search was performed using the electronic databases PubMed and Livivo.
The specific search strings used in the search are listed in Table 2.1. Publications were identified
as relevant to this work and were further described in the results section if they met the inclusion
criteria. The inclusion criteria were: (a) wearable devices, (b) use of sound as a biomarker, (c)
the detection of bruxism or bruxism-like events, and (d) articles published in English. As a first
screening step, the title and the abstract of the retrieved bibliographic references were screened for
relevant papers. Further online searches were performed in Google Scholar to identify additional
relevant publications available only on Google Scholar but not in PubMed and Livivo. Bramer
et al. [93], compared doing a systematic search using only Google Scholar or PubMed. They
reported that PubMed was more precise than Google Scholar and recommended using PubMed
to get a good and reproducible search outcome [93]. Hence, we have used PubMed and Livio as
our main search databases and Google Scholar as our search tool for grey literature.

2.3 Results

2.3.1 Sound of bruxism, a historical perspective

The first relevant publication appeared in 1993 by L’Estrange et al., who reported on detecting
masseter muscle sounds [94]. In 2018, Bouserhal et al. published their findings on using an
ear device to detect various verbal and nonverbal sounds [95]. Two years later, Prakash et al.
presented their experience in repurposing an earpiece to capture tooth contact sounds [96]. In
2021, Alfieri et al. presented a wearable device combining an inertial measurement system and a
microphone to detect voluntary bruxism [97]. And in 2022, publications by Nahhas et al. [2] and
Christofferson et al. [98] focused on an earpiece to detect voluntary tooth contact sounds, among
other oral behaviors.
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Bruxism through a biopsychosocial lens [14–17]

Epidemiology [7]

Risk factors [10–13] Diagnostic
methods

Therapy and Public policies

Diagnostic methods

Awake Sleep

Clinical assessment

Self-report [28, 29]

PSG & AV [30]

pPSG [31]

sEMG [19–22, 35, 45–61]

Oral appliances
[19, 20, 32–44]

EMA [25]

Hearables

Investigated only on voluntary actions

Potential for automatic classification

Figure 2.1: Overview of a biopsychosocial perspective of bruxism that considers biological,
psychological, and social factors. Developing public policies and therapy requires updated
epidemiologic information, which would require reliable diagnostic methods for awake and sleep
bruxism (left) and an overview of existing diagnostic methods (right). PSG & AV stand for
Polysomnography with Audio and Video recording, pPSG for portable Polysomnography, sEMG
for surface Electromyography, and EMA for Ecological Momentary Assessment. Boxes with
dashed lines mean that the diagnostic method in the box was tested on voluntary action only.
Boxes with a background color mean that the diagnostic method has the potential to be further
developed to perform automatic classification.
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Database Search string Hits Relevant publications Accumulated
relevant pub-
lications

PubMed

bruxism AND hearables 15 0 0
bruxism AND sound 188 0 0
bruxism AND sound AND
wearable Devices

0 0 0

tooth grinding AND sound 206 0 0
tooth grinding AND sound
AND wearable device

0 0 0

jaw clenching AND sound 40 1 [94] 1 [94]
jaw clenching AND sound
AND wearable device

0 0 1

Livivo

bruxism AND hearables 0 0 1
bruxism AND sound 242 0 1
bruxism AND sound AND
wearable Devices

0 0 1

tooth grinding AND sound 56 0 1
tooth grinding AND sound
AND wearable device

0 0 1

jaw clenching AND sound 49 0 1
jaw clenching AND sound
AND wearable device

0 0 1

Google Scholar [Individual searches] - 6 [2, 95–99] 7 [2, 94–99]

Table 2.1: List of search terms and databases and the number of publications relevant to this
work. The database Google Scholar refers to publications that were relevant for this work and
were not found on PubMed or Livivo. As a first screening step, the title and the abstract of
the retrieved bibliographic references were screened for relevant papers. References to relevant
publications that fulfilled the inclusion criteria are given in parentheses. The inclusion criteria
were (a) wearable devices, (b) use of sound as a biomarker, (c) the detection of bruxism or
bruxism-like events, and (d) article published in English.
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Publication Authors Publication year
L’Estrange et al [94] 1993
Bouserhal et al. [95] 2018
Prakash et al. [96] 2020
Alfieri et al. [97] 2021
Chabot et al. [99] 2021
Nahhas et al. [2] 2022

Christofferson et al. [98] 2022

Table 2.2: List of relevant publications to this work that fulfilled the inclusion criteria. The
inclusion criteria were (a) wearable devices, (b) use of sound as a biomarker, (c) the detection of
bruxism or bruxism-like events, and (d) article published in English

2.3.2 Contents of relevant articles

This section is divided into 2 parts. The first section elaborates on the devices described in the
publications. The second section describes the classification algorithms used to distinguish the
different sounds. In case publications report about a device and according algorithms for sound
differentiation, these publications will be mentioned in both sections. The publications included
in these sections are listed in Table 2.2.

Sound monitoring and hearables

L’Estrange et al. [94] investigated the possibility of using acoustic myography (AMG) to monitor
the activity of the masseter muscles in six participants. The researchers also attached an EMG
device to the masseter muscles. They found that the combination of both measurements, EMG
and AMG, was promising for electro-mechanical muscle assessment.

Bouserhal et al. [95] used an in-ear device with two microphones, one facing towards the ear
canal and one facing the outside of the ear. The aim was to detect and classify various verbal and
non-verbal sounds produced by humans. Voluntary tooth grinding and tooth clicking were among
the sounds studied. They concluded that an approach with an ensemble of crafted features can
improve the accuracy of the classifiers [95].

In another study [96], the speaker of an earphone was repurposed to act as a microphone to
capture sounds produced by tooth contact as they traveled across the head to the ear. The goals
were to detect the onset of tooth contact, to distinguish between voluntary tooth tapping and tooth
slipping, and finally to identify from which side of the head the sound was coming from. The
authors demonstrated that their device was capable of identifying different tooth gestures for
possible human-machine interface [96].

Alfieri et al. [97] developed a prototype of a portable device that combined acoustic emission
measurement with a microphone and a measurement of mandibular movements with an inertial
measurement unit (IMUs). The aim was to detect both voluntary jaw clenching and teeth grinding.
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The bone conduction microphone was attached to the cheek, while the IMU was attached to the
chin and the masseter muscle. They concluded that the prototype can collect the signals required
to detect bruxism-induced events [97].

Nahhas et al. [2] investigated the effect of the ear occlusion type on the recording of voluntary
tooth grinding and jaw clenching in a case study. These sounds, along with other verbal and
non-verbal sounds were recorded in a controlled environment. They observed that the type of ear
occlusion affected the strength of the recording and that full occlusion supported the recording of
clenching [2].

Christofferson et al. [98] reported using a modified commercially available active noise-
canceling earbud to record sounds produced by various intra-oral behaviors. Among the various
activities were voluntary tooth grinding and tooth clenching. The commercial earpiece consisted
of two microphones: one microphone recorded sounds from the ear canal, and the other mi-
crophone recorded sounds from the environment outside the ear. The two microphones were
connected to an external data acquisition system, and the participants were asked to voluntarily
record various sounds in their homes. They reported that their device could record bruxism-
induced sounds [98].

Classification of voluntary oral-behaviors sounds

Bouserhal et al. [95] recorded and classified a variety of voluntarily produced verbal and non-
verbal sounds using an earbud. Several temporal and spectral features, such as mel-Frequency cep-
stral coefficients (MFCC), zero crossing rate, and auditory-inspired amplitude features (AAMF),
were used. In addition, factory noise from the NOISEX-92 database was introduced post-hoc
into both the training and test data sets. The data sets were then fed to three classifiers: gaussian
mixture model (GMM), support vector machine (SVM), and multi-layer perceptron (MLP). The
authors reported that the highest average accuracy across all classes was obtained using GMM
with values of 75.54% and 73.47% for the clean and noisy data sets, respectively [95].

A follow-up investigation was conducted by Chabot et al. [99], who investigated the effec-
tiveness of using the Bag-of-Features, which is based on the Bag-of-Words method. They also
introduced a clustering step in their procedure just before the classification task; the clustering
algorithms were GMM and K-Means, and the classification algorithms were SVM and Random
Forest. The authors reported that the combination of GMM as the clustering algorithm and
SVM as the classifier yielded the highest sensitivity of 81.5% and precision of 83% in a quiet
environment. They also investigated the effect of adding noise to the data set, where two types of
noise were added separately; factory noise and babble noise. The authors found that the sensitivity
dropped to 69.9% and 78.8% for factory noise and babble, respectively. Sensitivity also dropped
to 63.4% and 55.5% for factory and babble noise, respectively [99].

In addition to methods that use handcrafted features, deep learning methods that leave the
feature extraction to the machine were investigated. The researchers used a 2D convolutional
neural network (CNN) with an integrated modified temporal shift module (TSM), which considers
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Figure 2.2: Timeline of the milestone publications related to the development of the use of sound
for diagnostic purposes in dentistry. Each box lists the transducer reported in the publication and
the sounds that were recorded.
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the context of a given period within the recording. They transformed the 1D time series into a 2D
spectrogram and classified various verbal and non-verbal classes, such as speaking, breathing,
and voluntary tooth grinding and jaw clenching. Although they classified voluntary jaw clenching
as a subclass of voluntary tooth grinding, the highest accuracy was reported to be 91%, and an F1
score of 0.845 for the multi-class classifier [98].

2.4 Discussion

A reliable diagnosis is necessary for an appropriate and timely management of bruxism. An
obstacle to a timely diagnosis of sleep bruxism is that the gold standard, PSG with AV, is costly
and requires the person to sleep in a sleep lab, which may affect sleep patterns. Meanwhile, a
gold standard for awake bruxism is still lacking. This has led to the need for the development of
special tiny sensors to record bruxism-related activities in the real-world [27].

Although most bruxing-related sounds can be recorded from different locations on the head
[2, 89], the ear is a very convenient location for sensor placement. In addition, since bruxism
can occur during wakefulness or sleep, the potential wearable device should be comfortable and
tolerable, giving ear devices an advantage over EMG devices or oral splints. In fact, we expect
that the ear to be less susceptible to external physical perturbations that could interfere with the
recording than other locations on the head such the frontal bone or the temporal bone.

The development of in-ear devices has taken a significant leap, creating a new horizon for
exploring their suitability for medical assessment in general [100]. Most research on sound as a
possible biomarker and in-ear devices has investigated the possibility of recording voluntarily
produced sounds, as shown in Figure 2.2. Since bruxism is a parafunctional behavior that occurs
involuntarily, there is a need to (a) investigate the use of these devices in real-life situations where
involuntary production of the sounds is expected and (b) to compare the device to a gold standard.
In addition, there are still other challenges in detecting sounds associated with bruxism. For
example, it is important to occlude the ears to increase the signal amplitude [2, 95]. However,
complete ear occlusion would again be intrusive and raise safety concerns because it isolates the
user from the environment.

As a consequence, a trade-off between the degree of ear occlusion and the classification accu-
racy of the device is required. It must be considered that additional activities other than bruxism
may occur during the recording, such as eating, drinking, swallowing, and other parafunctional
behaviors, which would be reflected in the recorded signal regardless of whether the biomarker
of interest is sound, force, or EMG. Therefore, it is important to develop classification algorithms
that can specifically detect bruxism-induced events.

Several research groups have investigated how to use machine learning to distinguish bruxism-
induced events –voluntary tooth grinding and jaw clenching –from other events. Approaches
that rely on typical machine learning methods, such as SVM or KNN with handcrafted features,
have been investigated to classify voluntary tooth tapping, speaking, and voluntary tooth grinding
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[95, 99]. In addition, work has been done on deep learning where a 1D sound signal was converted
into a 2D image to be classified [98]. Nonetheless, there are several challenges that need to
be addressed in terms of the data storage and power consumption that such techniques would
require, as well as the optimal size of a wearable or an in-ear device to be comfortable and
convenient. Furthermore, recording sound in real-world environments has both eithical and
technical challenges. The ethical challenges are related to the recording of sensitive conversations
of people around the user.

2.5 Conclusion

In conclusion, timely diagnosis of bruxism remains a clinical and technical challenge mainly
due to the lack of dedicated, small, and easy to use devices. Research on hearables has led
to promising developments; dedicated, affordable, and easy-to-use hearables, even outside
of controlled environments such as research laboratories have the potential to be effective in
detecting bruxism. We also anticipate that ear devices will have an advantage over EMG because
they can be conveniently worn through-out the day and are socially acceptable. However, our
experience suggests that more work is needed to develop methods to overcome ethical and
technical challenges. In addition, the ability of classification algorithms to distinguish between
the different sounds produced involuntarily by different oral behaviors and the effectiveness of
hearables in real-world settings should be investigated.
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Abbreviation Full Term
sEMG surface Electromyography
TMDs Temporomandibular Disorders
AMG Acoustic Myography
EMA Ecological Momentary Assessment

PSG & AV Polysomnography & Audio and Video
pPSG portable Polysomnography
IMU Inertial Measurement Unit

MFCC Mel-Frequency Cepstral Coefficients
AAMF Auditory-inspired Amplitude Features
GMM Gaussian Mixture Model
SVM Support Vector Machine
MLP Multi-Layer Perceptron
CNN Convolutional Neural Network
TSM Temporal Shift Module
KNN K-Nearest Neighbors

Table 2.1: List of abbreviations found in the paper and the corresponding full term.
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Chapter 3

Impact of ear occlusion on in-ear
sounds generated by intra-oral
behaviors

Foreword and Overview

After showcasing the potential for using hearables to assess bruxism, this chapter presents the
results of the pilot study that examined the effect of ear occlusion type on the recorded signal.
This work was motivated by the concern that the occlusion type would have an impact on the
recording and on the isolation of the user from the environment.

Abstract

We conducted a case study with one volunteer and a recording setup to detect sounds induced by
the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted
of two in-ear microphones, where the left ear was semi-occluded with a commercially available
earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the
time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and
reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the
ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact
that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting
in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors
such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such
as clenching require the complete occlusion of the ear if the activity should be easily detectable.

This chapter is based an accepted manuscript presented at the International Workshop on Medical and Service
Robots (MESROB), 2021. It is available online as part of conference proceedings [2] and is available online at:
https://doi.org/10.1007/978-3-030-76147-9_16 (Accessed on 12 July 2024). Copyright and licensing information can
be found in the Preface.
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Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing
capabilities.

3.1 Introduction

Our body produces sounds that can act as markers to detect, measure, or asses impaired or
abnormal physiological processes. For instance, listening to the heart beat for a relatively short
period with a stethoscope is a well established non-invasive method to detect health problems
[101]. Wearable devices allow new possibilities for health monitoring [102]. They allow the
monitoring of various physiological bio-markers over a longer period. Different research groups
used wearable devices to detect health problems with microphones: knee osteoarthritis [103]
or irritable bowl syndrome [104]. Wearable devices that are worn in the ear or around the ear
which are equipped with various sensors are called: Hearables [100]. They have been utilized by
various research groups to monitor sound based bio-markers, for example, sounds made while
eating have been monitored from the ear to detect dietary behaviors [105]. Also, breathing rate
and heart beat rate monitoring via the earcanal have also been studied [106].

We are interested in detecting the parafunctional orofacial behavior: bruxism. It is defined
as “masticatory muscle activities that occur during sleep (characterized as rhythmic or non-
rhythmic) and wakefulness (characterized by repetitive or sustained tooth contact and/or by
bracing or thrusting of the mandible)” [107]. From the literature, bruxism induces various health
implications such as teeth wear, muscles hypertrophy, toothache, and various other complications
[108].

Bruxism-induced sounds can be produced by continuous tooth grinding or jaw clenching.
They can propagate across the head and reach the earcanal. Therefore, we are firstly, interested in
developing a framework to detect sounds generated by various oral behaviors such as bruxism from
the ear. One of the important requirements to detect such sounds is to reduce the environmental
noise. Various approaches have been explored in the literature, either by adding a microphone
directed towards the environment to pick up ambient noise that can be later deducted form the
in-ear signal [109]. Alternatively, tightly occluding the ear may reduce environmental noise
as well. The aim of this case study is to investigate the possibility to detect various intra-oral
behaviors-induced sounds from one semi-occluded and one tightly occluded earcanals.

3.2 Methods

3.2.1 Setup

The setup illustrated in Figure 3.1 consisted of two bone conducting microphones (Sonion,
Hoofddorp, Netherlands) to be worn in both ears. For the left ear (L), the microphone was
mounted on a commercial solid earpiece positioning the microphone at the entrance of the ear
canal. For the right ear (R), the microphone was placed inside the earcanal and was occluded
using a mouldable silicon earplug. Thus, the occlusion of the right ear was tighter than that
of the left ear. Each microphone was connected to a data acquisition device (Daq-L/R) (MCC,
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Figure 3.1: Experimental setup: graphical user interface (GUI), left ear sensor (L): semi-occluded
with a commercial solid earpiece, right ear sensor (R): occluded with a mouldable silicon earpiece,
push button, left data acquisition unit (Daq-L) and right data acquisition unit (Daq-R), a PC to
store, label, and filter the data.

Bietigheim-Bissingen, Germany) that was connected to a PC via USB. The Daqs were set to
acquire data at a sampling rate of 16 kHz with 18 bit resolution.

In addition, a graphical user interface was developed in-house using the platform Unity (Unity
Technologies, California, US) to act as a guide for the participant through the experiment. A push
button was handed to the participant to be pressed during certain periods. The Daqs provided
the needed voltage for the microphones and the push button, one volt and five volts, respectively.
Matlab 2019 (Mathworks, Massachusetts, US) was used to post-process the acquired data.

3.2.2 Protocol

This experiment was performed on one healthy volunteer (male, age = 40 years old), who agreed
with the procedure of the study and data publication. The experiment consisted of 6 tasks that were
performed in the following order: jaw clenching, tooth grinding, jaw clenching again, reading,
eating, and water drinking. The participant was asked to sit in front of the computer screen for
instructions through the experiment. The jaw clenching tasks consisted of four clenching periods
five seconds each. The participant was asked to clench the jaw with maximum bearable pressure.
The tooth grinding task consisted of four grinding periods ten seconds each. Ten seconds pauses
were introduced between active periods during the clenching and grinding tasks. The reading
task consisted of reciting the paragraph "The North Wind and the Sun" [110]. The eating task
consisted of two periods, where the participant was asked to eat a cracker and a fruit. During the
final task, the participant had to drink a glass of water.

3.2.3 Data processing

The data from both microphones of the second clenching task were normalized with respect to
the maximum data point then were passed first through a low pass - FIR - filter (300 Hz) followed
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by a high pass - FIR - filter (55 Hz). In addition, spectral subtraction was introduced to reduce
the influence of the test environment noise to a minimum by taking the average of the first three
seconds of one of the pause periods as a reference. Also, the spectral flux and the spectrograms
were estimated for both sensors. The window size was 50 ms and the overlap was 50%.
To quantify the difference between clenching and pause periods, the energy level for each period
was estimated as follows:

Ew =
Nw∑
i=1

|xi|2 (3.1)

Ee = 1
N

N∑
w=1

Ew (3.2)

where, Ew is the energy of a window, Nw is the window’s number of samples, xi is the acoustic
amplitude at sample i, Ee is the energy of time period e, and N is the total number of windows
within the specified period. The energy vector of each sensor was normalized with respect to its
maximum value.

3.3 Results

Figure 3.2 illustrates the unfiltered outputs of both microphones for the whole experiment. Both
sensors detected grinding, reading, and eating. The drinking task was only detectable from the
occluded ear. In addition, both jaw clenching tasks were not visible from either outputs.

Figure 3.3 illustrates the filtered sensors outputs for the second clenching task. The semi-
occluded ear output does not show a difference between the clenching and pause periods, whereas,
the occluded ear output shows that there is a detectable difference between the different clenching
and pause periods.



3.4. Discussion 23

Figure 3.2: Unfiltered normalized acoustic signals of the complete experiment obtained from
the semi-occluded left ear (Left) and occluded right ear (Right). The blue shaded areas depict
the tasks, jaw clenching, tooth grinding, jaw clenching, reading, eating, and drinking. While the
white sections are pause periods.

Table 3.1: Energy level obtained from Equation 3.2 for each period within the second clenching
task. The energy vector of each sensor was normalized with respect to the sensor’s maximum
value.

Sensor Energy [-]
P C P C P C P C

0.62 0.77 0.66 0.58 0.76 0.78 0.63 1.00

0.24 0.95 0.28 0.58 0.31 0.73 0.39 1.00

Additionally, the energy levels for the clenching and pausing periods were calculated using
Equation 3.2 and listed in Table 3.1. The differences in the energy between the clenching periods
and the pausing periods were higher in the recordings obtained from the occluded ear compared to
the semi-occluded ear. Figure 3.4 illustrates the spectrograms of the second clenching task filtered
outputs. It illustrates that the power of the frequency range 55-300 Hz for the occluded ear was
higher during the clenching periods compared to the pause periods. Whereas, the semi-occluded
ear produced almost no visible difference. Finally, Figure 3.5 illustrates the spectral flux of the
filtered recordings. The amplitudes of the pause periods from the occluded ear were lower than
that of the clenching periods. For the semi-occluded ear the amplitudes of the pause and the
clenching periods were almost the same.

3.4 Discussion

The variation in the energy levels for the pause periods between the occluded ear and the semi-
occluded ear listed in Table 3.1 could be related to the fact that the occluded ear was isolated from
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Figure 3.3: Filtered acoustic signals of the second clenching task obtained from the semi-occluded
left ear (Left) and from the occluded right ear (Right). Where, P and C represent the sequence of
pause and clenching episodes.

Figure 3.4: Spectrograms of the second clenching task after filtering obtained from the semi-
occluded left ear (Left) and from the occluded right ear (Right). The red rectangles define the
clenching periods, whereas, pause periods are outside the rectangles. P and C represent the
sequence of pause and clenching episodes.

the environment, thus, reducing the noise level in the occluded earcanal. In addition, from the
occluded ear, the clenching periods have had higher energy than that of the pause periods. Three
reasons could explain this observation. First, clenching activated the middle ear muscles which
deformed the tympanic membrane, thus, changing the pressure inside the sealed earcanal. Also,
clenching activates the masticatory muscles that generated sounds. These sounds could propagate
to the earcanal via bone conduction. Another plausible reason could be the deformation of the
earcanal walls due to clenching-induced movement inside the temporomandibular joint, thus,
changing the pressure inside the earcanal.

The jump at the beginning and the end of the clenching periods as illustrated in Figure 3.3
could be attributed to click sounds being generated as the participant brought the upper and lower
teeth together or was trying to separate them. The spectral flux illustrated in Figure 3.5 supported
the aforementioned explanation as similar jumps at the beginning and the end of certain clenching
periods were observed.
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Figure 3.5: Normalized spectral flux for the second clenching task after filtering obtained from
the semi-occluded ear (Left) and from the occluded right ear (Right). Where, P and C represent
the sequence of pause and clenching episodes. The orange dots at the beginning and the end of
certain clenching periods resemble the jumps that were observed in Figure 3.3.

Also, tightly occluding the ear hindered the hearing capability of the volunteer. Thus,
to detect behaviors with low acoustic energy such as jaw clenching in real-world would be
challenging. Accordingly, further investigations would be required to implement the optimal
occluding approach to detect such low energy signals.

3.5 Conclusion

With this paper, we presented our experimental recording setup that successfully detected intra-
oral behaviors such as jaw clenching, teeth grinding, eating, reading, and drinking. We also
investigated the effects of either fully occluding or semi-occluding the ear on recording sounds
produced by oral behavior. Behaviors such as eating, reading, and tooth grinding were detected
from both sensors. However, detecting behaviors such as jaw clenching was not possible at the
first glance from either sensors. Eliminating the ambient and electrical noise, revealed that the
occluding the ear helped in the detection of jaw clenching. Nevertheless, an occluded ear hinders
the user’s capabilities in hearing ambient sounds which might be safety relevant in daily life.
Therefore, a transfer of the device and task identification from lab environment to the real-world
requires further investigations to find the optimal occlusion concept
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Chapter 4

Towards wearables for bruxism
detection: voluntary oral behaviors
sounds recorded across the head depend
on transducer placement.

Foreword and Overview

After investigating the impact of the occlusion type on the recording, we have decided to keep the
off-the-shelf earpiece as part of the recording setup and further conduct a larger studies. This
work was motivated by the fact that sounds can propagate through bone conduction and it is of
interest to identify the impact of transducer placement location on the recorded signal.

This chapter is based on a manuscript [3] published in the Journal Clinical and Experimental Dental Research
https://onlinelibrary.wiley.com/doi/10.1002/cre2.70001 (Accessed on 06 November 2024). This manuscript was
inserted as a file at the moment of submitting this thesis because the manuscript was under the third round of reviews
and the journal requested a word file. Copyright and licensing information can be found in the Preface.
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Abstract 
 

Objectives: Bruxism is a parafunctional orofacial behavior. For diagnosis, wearable devices that use sounds as 
bio-markers can be applied to provide the necessary information. Human beings emit various verbal and non-
verbal sounds, making it challenging to identify bruxism-induced sounds. We wanted to investigate whether the 
acoustic emissions of different oral behaviors have distinctive characteristics, and, if the transducer placement has 
an impact on recorded the sound signals.  

Material and Methods: Sounds from five oral behaviors were investigated: jaw clenching, tooth grinding, 
reading, eating, and drinking. Eight transducers were used; six were attached to the temporal, frontal, and 
zygomatic bones with the aid of medical tape, and two were integrated into two commercial earphones. Data 
from 15 participants was analyzed using: time-domain energy, spectral flux, and zero crossing rate (ZCR).  

Results: In summary, all oral behaviors showed distinct characteristic features except jaw clenching, however, 
we were able to observe a peak before its expected onset. For tooth grinding, the transducer placement had no 
significant impact (p>0.05) regardless of the metric of interest. For jaw clenching, the transducer placement had 
an impact when considering the spectral flux (p<0.01). For reading and eating, the transducer placement had a 
significant impact when considering the three metrics: energy (p<0.05 for reading, p<0.01 for eating), spectral 
flux (p<0.001 for reading, p<0.01 for eating), ZCR (p<0.001 for both reading and eating). Whereas, for drinking, 
the transducer placement had a significant impact when considering the ZCR (p<0.01).  

Conclusions: Furthermore, recording sounds from the ear was advantageous compared to other locations on 
the head because we were able to record the onset of almost all behaviors from the ears while providing a stable 
location for the transducer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

I. Introduction 

Bruxism, a parafunctional orofacial behavior, is characterized by tooth grinding or jaw clenching that can happen 
during sleep or wakefulness [1]. Approximately 8% of the population suffers from severe sleep bruxism, which requires 
therapy [2, 3]. Bruxism is related to multiple health risks such as emotional stress, drugs, or certain medications [4]. 
It may lead to many health problems, such as temporomandibular pain, tooth wear, or anterior disc displacement [5, 
6]. Polysomnography (PSG) with audio and video recordings is the gold standard to diagnose bruxism [7]. PSG is 
very resource-intensive and requires an overnight stay in a sleep laboratory. Self-reports are used to indicate the 
presence of sleep bruxism. However, a shortcoming of self-report is that it does not allow for the determination the 
severity of sleep bruxism [8]. Consequently, tiny dedicated sensors to monitor bruxism are necessary, not only to 
monitor sleep bruxism and its severity but also to monitor awake bruxism as well [9]. 

 
Development in wearable devices allowed health monitoring in real-world settings for longer duration [10]. The 
possibility to use such wearable devices for bruxism home monitoring could be a cost-effective alternative to PSG 
[2, 9, 11, 12]. For instance, monitoring sleep bruxism was investigated in real-world settings using a portable device, 
Bruxoff (Spes Medica, Battipaglia, Italy). Bruxoff consists of an electromyography (EMG) system to monitor the 
activity of the masseter muscles and an electrocardiography system to monitor the heart rate [2, 11]. In 2019, a 
wireless EMG sensor was developed to monitor masseter muscles’ activity and to classify different oral tasks such 
as smiling or chewing gum. Considering the small sample of healthy participants, the research group concluded that 
their device has the potential to be used for monitoring the activity of masticatory muscles [12]. The former device 
targeted sleep bruxism and did not monitor awake bruxism. In addition, wearing electrodes on the cheeks during 
the day may not be tolerated by potential users and is sensitive to non-bruxism-related activities. Consequently, we 
found current devices limited in their scope - focusing on either sleep or awake bruxism - and there is a lack of 
real-world testing where non-bruxism activities are present. 

 
Acoustic emissions are used in wearable devices to record or monitor oral behaviors, such as eating [13, 14] or 
talking [15, 16]. They are also used as biomarkers to detect health problems such as knee osteoarthritis [17] or 
irritable bowel syndrome [18]. In addition, monitoring heart and breathing rates from the ear has been investigated 
using an earpiece that is equipped with two microphones, one placed inside the ear canal and another that picks 
up sounds from the environment [19]. In addition, the possibility of monitoring eye movements from the ear has 
been investigated using in-ear microphones, leading to the observations that when the eyes moved, the eardrums 
moved thereby changing the pressure in the occluded ear [20]. Also, tongue movements were detected from the ear 
using an in-ear barometer for a hands-free interaction [21]. Importantly though, acoustic emissions of tooth 
contact - extracted from the ear or other locations - have been used in dentistry to assess occlusion properties. In 
the second half of the 20th century, there were attempts to use stethoscopes to detect the acoustic emissions 
generated by the temporomandibular joints or the occlusion of teeth during jaw movements, referred to as 
”gnathosonics” [22]. Later, instead of recording the sounds from the zygoma as described in [22], [23] recorded 
tooth contact sounds from the ear with transducers built into a portable audio player or over-ear device. In 2016, 
tooth contact sounds were recorded using bone conduction microphones attached to the temporal bone to realise a 
hands-free user interface [24]. We inferred from these investigations that acoustic emissions can be used to detect 
bruxism-induced events. During tooth grinding, sounds are transmitted through bone propagation in the head. 
Whereas during jaw clenching, detectable signals could be produced via two pathways: (a) middle ear muscles 
activation that can alter the pressure in an occluded ear [25, 26], (b) vibrations caused by mastication muscles 
activity that can propagate in the vicinity of the muscle [27–29]. We confirmed the likelihood of this hypothesis in 
a previous case study [30]. In addition, the possibility of detecting tooth grinding sounds and other non-verbal 
orally-induced sounds was investigated for telecommunication [31, 32], following up on the work of [19]. The latter 
investigation successfully classified various verbal and non-oral sounds using an earplug in a controlled 
environment. Another study recorded the mandibular movement in addition to the acoustic emissions to detect 
bruxism. The transducers used in their study were two 3-axis inertial measurement units (IMUs) attached to the 
chin and the masseter muscle and a microphone attached to the cheek to record the sounds [33]. 

 
It is important to note that bruxism is a parafunctional behavior that may occur throughout the day, so the 
location and the type of the detection device should be ergonomically and aesthetically tolerable. Several factors 
influence the quality of the recording, such as the accurate placement of the transducer, the relative strength 
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Figure 1: (Left picture) Experimental setup: 8 transducers were distributed symmetrically between the left side and 
right side of the head: (f) frontal bone, (z) zygomatic bone, and (t) temporal bone, (e) ear. EMG transducer: (m) 
masseter muscle. (Right picture) a graphical user interface (GUI), push button (b), and two data acquisition units 
(DAQs). 

 

of the signal when comparing different transducer placements, and the comfort of wearing the transducer for an 
extended period of time. One of the relevant questions to be answered is: if bruxism-induced acoustic emissions 
can be recorded from the head, which location on the head is most sensitive to differences in the sounds created by 
different behaviors? Therefore, in this work we aimed to investigate if the location of the transducer on the head 
affects the acoustic emissions signal of various oral behaviors including bruxism-like events. And, if there are 
identifiable characteristics for the different behaviors. 

II. Methods 

a. Setup 
 
The experimental setup consisted in total of eight bone-conducting transducers: six generic bone conduction 
transducers (MEAS, Dortmund, Germany) and two voice pick-up bone transducers (Sonion, Hoofddorp, 
Netherlands), as illustrated in Figure 1. The voice pick-up transducers were integrated into two commercial 
earpieces that occluded the ear (this type of ear closure will be referred to as ’semi-occluded’ in this paper). Using 
medical tape, the remaining six transducers were attached to the participant’s head at the frontal, zygomatic, and 
temporal bones. The participant was given a push-button to press during active periods of jaw clenching, tooth 
grinding, reading, eating, and drinking to label data of these activities. Also, two EMG devices (Advancer 
Technologies, USA), which were not processed for this article, were used to monitor the activity the masseter 
muscles. The transducers and the push button were directly connected to two data acquisition devices, DAQs 
(MCC, Bietigheim-Bissingen, Germany). Verbal and non-verbal sounds recorded via bone and tissue conduction 
have a limited bandwidth, less than 2 kHz [23, 24, 31, 32]. For this study, the highest informative frequency was set at 
3 kHz, leading to a sampling rate of 6 kHz. The data acquisition devices were connected to a PC via USB to store the 
data. Lastly, a graphical user interface realized with Unity, a game development platform, (Unity Technologies, 
California, US) was used to provide the participant with the cues and timers associated with the tasks. This 
graphical user interface was developed in-house to guide the participant. It consisted of multiple slides notifying 
the participant of their task. Also, a timer was displayed on the screen to inform the participant of the time required 
to perform a certain task.  

 

 

b. Participants 

Fifteen volunteers (seven males and eight females, aged 24 to 40 years, median age: 31 years) participated in this 
study. They were recruited in Basel, Switzerland. The investigation was conducted after receiving approval by the 
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regional ethics committee (Ethikkommission Nordwest- und Zentralschweiz, application number: 2021-002266). 
Each participant signed an informed consent. 

 
The inclusion criteria were: ability to speak/read/write in English or German, age between 18 and 50 years, and 
provision of a signed consent form. Exclusion criteria were: having dental implants (removable full or partial 
dentures), oro-facial pain, facial beard piercing, pregnancy, not being able to complete the required tasks due to 
language or psychological obstacles, allergy to silicon or medical tape, ear problems, wearing a hearing aid, Covid-19 
symptoms and lastly people involved in the study design, family members, and staff or individuals who are 
dependent on people involved in the study. 
 
 

 
Figure 2: Experimental tasks: T 1 (jaw clenching), T 2 (tooth grinding), T 3 (jaw clenching), T 4 (reading), T 5 
(eating), and T 6 (drinking). 

 
 

c. Experimental protocol 

First, the information about the study was discussed with the participant to prevent misunderstandings. Then, the 
participant was asked to fill out a questionnaire to collect general information on the participant’s oral health 
status, as we wanted to exclude participants that have an oral health status where voluntary oral behaviors could 
lead to damage. The transducers were then attached to the participant’s head, and a condensed version of the main 
experiment was conducted to familiarize the participant with the setup. The experiment was divided into six 
tasks: T 1 (jaw clenching), T 2 (tooth grinding), T 3 (jaw clenching), T 4 (reading), T 5 (eating), and T 6 
(drinking), between each task, the participants were allowed a one-minute break. 

 
Each participant was asked to sit in front of a computer screen that served as a guide throughout the experiment. 
The participant was asked to press the push button when performing an activity such as clenching, grinding, 
reading, eating, and drinking. As illustrated in Figure 2, each task was divided into different periods; for instance, 
T_1 and T_3 were a sequence of jaw clenching and pausing periods, T_2 was a sequence of tooth grinding and 
pause periods. During T 4, the participant read the passage ”The North Wind and The Sun” divided into five 
sentences [34]. During T 5, the participant was asked to eat three different snacks: a piece of bread, a cracker, and 
a fruit. In T 6, the participant was asked to drink at least three sips of water. Finally, the participant was asked to 
sit quietly for one minute to record a pause period. At the end of the experiment, the participant was asked to fill 
in a second questionnaire to evaluate his/her experience, with the only goal for us to improve our setup/protocol 
for future experiments. These answers were not evaluated and therefore not reported.  The evaluation of jaw 
clenching behavior was divided into two tasks (T 1 and T 3) to avoid any unnecessary loads on the participant’s 
joint. In total, the six tasks resulted in recording the five oral behaviors: jaw clenching, tooth grinding, reading, 
eating, and drinking. The study information and the questionnaires will be provided as supplementary material. 
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d. Data processing 

The data obtained from the study was processed with Matlab 2019b (Mathworks, Massachusetts, US). Recorded data 
for each transducer was filtered with a least-squares linear-phase FIR low-pass filter (1000 Hz cut-off frequency, order 
of 20, and 30 % transition window) and a least-squares linear-phase FIR high-pass filter (50 Hz cut-off fre- 
quency, order of 15, and a 20 % transition window). Spectral subtraction was applied to the filtered data following 
the work of Zavarehei [35]. Firstly, we segmented the recording into one-second windows and calculated the 
energy for each window using equation 1. The window with the lowest energy was assumed to be containing any 
remaining noise. Then, the completely filtered recording and the one-second window with the lowest energy were 
converted to the spectral domain. Afterward, the power and the phase spectrums obtained for the one-second 
window with the lowest energy were removed from the complete filtered recording. Finally, the output of the 
spectral subtraction was reconstructed from the spectral domain to the time domain. 

 
Afterwards, the processed data was   segmented into overlapping windows of 100 ms length and a 50% over- lap with 
the next window to obtain the following metrics. Three metrics were investigated: energy level in the time 
domain, flux in the spectral domain [36], and zero-crossing rate (ZCR). The energy level reflects the change 
between high-energy and low-energy periods, such as reading and drinking. The spectral flux, allows the estimation 
of the change in spectral power between two consecutive windows. In addition, the ZCR  helps distinguish between 
active periods and inactive periods because the lower the rate, the higher the likelihood that the window contains 
valuable information [36]. 

 
The energy level was estimated using the following equation: 

 

𝐸𝑤 =  
1

𝑁𝑤

 ∑|𝑥𝑖|2

𝑁𝑤

𝑖=1

 (1) 

 
 
where Ew is the average energy of a window, Nw is the window’s size, and xi is the data point at time step i 

obtained from the processed data. 

 
The spectral flux, reflecting the change in spectrum between successive windows, was obtained using Matlab 
2019b built-in function: spectralFlux. 

 
The ZCR was obtained for each transducer and for each of the fifteen participants using the following equation: 

 

𝑍𝐶𝑅𝑤 =  
1

𝑁𝑤

∑ 𝑓(𝑥𝑖+1 ∗  𝑥𝑖)

𝑁𝑤−1

𝑖=1

; 𝑤𝑖𝑡ℎ 𝑓(𝜆) =  {
1, 𝑖𝑓 (𝜆) < 0
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 
 

where, ZCRw is the window’s ZCR, Nw is the window’s size, xi+1 is the post-processed data point at time step i 
+ 1, and xi is the post-processed data point at time step i obtained from the processed data. The data point 
represents the post-processed transducer’s output at each time step. 

 
For each participant and for each transducer output, the periods when the push button was pressed and the pause 
period at the end were segmented from the full recording after the data was processed. Then, the periods were 
divided into 100 ms windows with 50% overlap to obtain the energy, flux, and ZCR; the mean value of the total 
windows per task for each participant and transducer was used to perform the statistical analysis. For the statistical 
analysis examining the significant difference between the various transducer placements on the energy, flux, and ZCR, 
a two-way ANOVA was used with a significance level of alpha 0.05. A pairwise comparison t-test between the 
different locations was performed using the Bonferroni correction. For both examinations, the two-way ANOVA and 
the pairwise tests, Matlab 2019b built-in functions were used: ANOVA2 and multcompare, respectively. In 
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addition, for some transducers an additional non-parametric test was conducted using matlab’s ranksum function. 
This step was done because from some distributions the normality assumption was strongly violated. We have 
included in the supplementary material the data (Data.xlsx) that was used for the statistical tests and a script to 
produce the qqplots for the transducers that have shown significant difference using ANOVA2 and the pairwise 
test, and to run the statistical tests.  

 

III. Results 

The output of the left ear transducer in the time and frequency domains before processing for participant number 
three is illustrated in Figures 3 (a) and (b). T 5 (eating) has the largest peak-to-peak range of [0.38 0.53] compared 
to [0.41 0.48], [0.43 0.46], and [0.42 0.46] for T 2 (tooth grinding), T 4 (reading), and T 6 (drinking), respectively, 
whereas the clenching tasks, T 1 (jaw clenching) and T 3 (jaw clenching), were not observed as illustrated in Figure 
3 (a). Figures 9 (a) and (b) in the supplementary material illustrate the output of the transducer after processing 
the data as described in section II. In Figure 9 (a) of the supplementary material, the signal range was reduced by 
a factor of ten. Similarly, T 5 has the largest peak-to-peak range  of [-0.06 0.08] compared to [-0.03 0.02], [-0.01 0.01], 
and [-0.02 0.01] for T 2, T 4, and T 6, respectively. The clenching tasks, T 1 and T 3, did not result in a change in 
audio recording in the time domain. As illustrated in Figure 3 (b) and Figure 9(b) of the supplementary 
material, T 2, T 4, T 5, and T 6 were below 1 kHz. The spectrograms obtained from the rest of the transducers are 
illustrated in Figures 2-8 of the supplementary material. 

 
Figures 4 (a) - (g) illustrate the signal’s energy in the time domain obtained using equation 1 for the third partic- 
ipant’s left ear transducer with a magnified view of the six tasks. The shaded areas represent the active periods, 
where the participant was asked to intentionally perform one of the tasks listed in Figure 2 while pressing the 
push-button input. The peak amplitude for tasks T 2, T 4, T 5, and T 6 are listed in Table 1 of the supplementary 
material. T 5 had the highest energy (arbitrary unit), which is 7-times higher than tasks T 2 and T 4 and 30-times 
higher than T 6. Figures 4 (b) and (d) show that the clenching tasks had a relatively negligible amount of energy 
within the shaded areas. However, a peak can be seen just before some of the shaded areas in both figures. Figures 
10 (a) - (h) of the supplementary material illustrate the energy of the signal for T 2 obtained from the eight transducer 
placements for the third participant. As illustrated in Figures 10 (a) - (d) of the supplementary material, the left 
ear transducer has the highest energy that is approximately 8 times higher than that of the right ear transducer 
and 30% higher than that of the right temporal transducer illustrated in Figures 10 (e) and (h) of the 
supplementary material, respectively. The recording amplitude of the remaining transducers was almost 
negligible, as illustrated in Figures 10 (c), (f) - (g), and (b)-(d) of the supplementary material. 

Different transducer placements are analyzed for each behavior, and the p-values are displayed in Table 1, obtained 

for each metric using the mean values of the behavior periods of each participant. A significant effect can be found 
for the pause period when examining energy and flux. For the clenching behavior, a significant difference can be 
found among the different transducer placements for flux and ZCR. Regardless of the metric used, the placement of 
the transducer did not have a significant effect when examining the tooth grinding behavior. However, the 
transducer placement significantly impacted the recording quality for both reading and eating regardless of the 
metric under investigation. Finally, only when 
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Figure 3: Plot of the time and frequency domains of the left ear transducer for participant number three, before 
processing). The shaded areas in (a) represent the periods during which the participant was active as recorded 
by push button input. The active periods were represented in the frequency domain plot in (b) as the area 
between the white lines. The experimental tasks were as follows: T 1: jaw clenching, T 2: tooth grinding, T 3: jaw 
clenching, T 4: reading, T 5: eating, and T 6: drinking. 
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Figure 4: The energy of the signal in the time domain. (a): represents the energy obtained from the left ear of one 
participant (in this case participant number three). (b) - (g): magnification of the various tasks illustrated in (a). 
The experimental tasks were as follows, T 1: jaw clenching, T 2: tooth grinding, T 3: jaw clenching, T 4: reading, T 
5: eating, T 6: drinking. 
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Table 1: The p-value of a two-way ANOVA test for the different behaviors using: energy, spectral flux, and ZCR. 
Here, F, is the F-statistic and the value 7 represents the degrees of freedom (the different transducer 
placements). 

Metric 
Behavior 

Clenching Grinding Reading Eating Drinking Pause 

Energy 
F(7) = 1.15 

p > 0.05 

F(7) = 1.34 

p > 0.05 
F(7) = 2.5 
p < 0.05 

F(7) = 3.6 
p < 0.01 

F(7) = 1.42 

p > 0.05 
F(7) = 2.55 

p < 0.05 

Flux 
F(7) = 3.06 

p < 0.01 

F(7) = 0.85 

p > 0.05 
F(7) = 6.77 
p < 0.001 

F(7) = 3.39 
p < 0.01 

F(7) = 1.28 

p > 0.05 
F(7) = 3.16 

p < 0.01 

ZCR 
F(7) = 2.39 

p < 0.05 

F(7) = 0.48 

p > 0.05 
F(7) = 5.24 
p < 0.001 

F(7) = 8.4 
p < 0.001 

F(7) = 3.34 
p < 0.01 

F(7) = 1.4 

p > 0.05 

 

 
investigating ZCR output of drinking did the transducer placement show a significant influence. 

 
Figure 5 presents the box plots of every behavior for each of the three metrics: energy, flux, and ZCR, obtained 

from the mean values of each behavior for the 15 participants. Superimposed on top of the box plots are the 
results of the pairwise tests for each behavior and each metric that already yielded a significant difference (p < 
0.05), as shown in Table 1. The p-values of each pairwise test are listed in Table 2 of the supplementary material. 
Notably, reading and eating behaviors had the highest medians for energy and flux. In addition, the placement of 
the transducer had a significant influence on the spectral flux, and the ZCR for both eating and reading as 
illustrated in Figures 5 (g) - (l). Also, the transducer’s location affected the energy of the eating task and the 
pause period. 

 

IV. Discussion 

We recorded sounds of tooth grinding, reading, eating, and drinking when compared to the pause period as 
illustrated in Figure 5. We have noticed that the location of the transducer did impact the amplitudes of the 
metrics used in particular for the behaviors of reading and eating. However, for tooth grinding, the location of 
the transducer did not have any significant impact, as illustrated in Figure 5. 

By examining the representation of the pause period as illustrated in Figures 5 (a) - (c), the placement of the 
transducer had no significant impact on the ZCR, and the differences between the placements could be related 
to variation in the background noise. However, for energy and flux, the sensitivity was a bit higher, and some 
placements significantly impacted the output listed in Table 2 of the supplementary material. That could also be 
related to background noise variation or the displacement of certain transducers. 

 
The ranges of energy, flux, and ZCR for clenching and that of the pause period did not differ significantly, as 
illustrated in Figures 5 (a) - (c) and (d) - (f). This observation can be attributed to the occlusion type and the 
transducer placement in the earpiece. Such inference is supported by a pilot study comparing a fully occluded ear 
with a semi-occluded ear [30]. It indicated that the type of occlusion and the placement of the transducer in the 
ear canal affect the level of isolation the ear canal is enduring to record such a relatively weak signal. Nonetheless, 
for this particular study, the ”semi-occlusion” approach was used for hygiene and practical reasons. The 
clenching behavior showed a distinct feature, a peak just before the shaded areas, as illustrated in Figure 4 (b) - 
(d). This peak could be related to tooth-tooth contact as the participant was getting ready to clench. The 
interpretation of such a peak is supported by noting that its amplitude is similar to that of the grinding behavior 
as illustrated in Figure 4 (c). This could mean that either this peak is a characteristic of the behavior itself or 
due to the protocol that requires the participant to intentionally perform certain actions altering the behavior 
itself, which requires further investigation. 

 
For tooth grinding, energy and flux ranges were one-fold higher than the pause period. This observation reflects the 
possibility of recording tooth grinding sounds from different locations on the head. The placement of the 
transducer had no significant impact on the energy and flux as illustrated in Figures 5 (g) and (h) and listed in 
Table 1. The ear transducers had the highest 75th percentile, as illustrated in Figure 5 (g). Whereas for flux, 
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multiple locations including the ear were advantageous to record tooth grinding reflected in the relatively high 75th 
percentile but the location of the transducer did not have any significant impact, as illustrated in Figure 5 (h) and 
listed in Table 1. In addition, the placement of the transducer did not have a significant impact on the ZCR, as 
illustrated in Figure 5 (i), inferring that the signal-to-noise ratio might be relatively constant while recording such 
behavior as the ZCR mirrors the noisiness of the signal. 
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Figure 5: Energy, flux, and the ZCR of all participants for each transducer and for each behavior: clenching (a - 
c), grinding (d - f), reading (g - i), eating (j - l), drinking (m - o), and pause (p - r). The transducers are depicted 
on the horizontal axis as follows: left ear (LE), left zygomatic (LZ), left frontal (LF), left temporal (LT), right ear 
(RE), right zygomatic (RZ), right frontal (RF), and right temporal (RT). The boxes marks represent the median, 
the bottom and top of the boxes represent the 25th (q1) and the 75th (q3) percentiles, respectively. Significant 
differences between the different transducer placements are indicated with * for p < 0.05, ** for p < 0.01, and 
*** for p < 0.001. A full range illustration of figures (j), (k), (m), and (n) can be found in Figure 1 of the 
supplementary material. §: showed a significant difference as listed in Table 1, but was not included in the 
pairwise tests. The p-values for the pairwise tests are listed in Table 2 of the supplementary material. Note: (**), 
(*) were added to two subfigures (m and n), it refers to instances were an additional non-parametric test was 
performed and the result was opposite to that of the ANOVA. 
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For reading, energy and flux are two folds higher than that of the pause period, as illustrated in Figures 5 (j) and (k). 
Both energy and flux, reflected that the ear transducers had the highest median and 75th percentile; this might be 
related to the properties of the transducers that are tuned to record voice. Another factor could be the occlusion effect. 
Occlusion of the ear increases the strength of the bone-conducted signal, as noted by [31]. Noting that the type of 
occlusion used in this study is a ”semi-occlusion”. Both flux and ZCR were sensitive to the placement of the transducer, 
as illustrated in Figures 5 (k) and (l) and listed in Table 2 of the supplementary material. However, en- ergy was less 
sensitive to reflect the significant impact of the placement inferred by the ANOVA test listed in Table 1. 

 
For eating, the three metrics: energy, flux, and ZCR, reflected that the placement of the transducer impacted the 
recording significantly, as listed in Table 1. The left temporal transducer had the highest median and 75th percentile 
for energy and flux. Such a stark difference can be attributed to the transducer adjustment after it was detached. The 
likelihood for such explanation is supported by keeping in mind the experiment’s timetable illustrated in Figure 2, 
since a similar observation can be noticed for drinking which succeeds eating. However, such observation is absent 
in the preceding behavior, grinding and reading, as illustrated in Figures 5 (h) and (k), respectively. 

 
For both reading and eating, the impact of transducer placement on the recording can be attributed to the behavior 
itself, since the recording gets weaker or varies with time. While chewing, the signal-to-noise ratio changes with time 
as the consistency and the properties of the consumed snacks change. Additionally, other factors contribute to this 
variation, such as the distance between the location of the transducer and the source of the sound  not being the same 
and the different tissues that the signal has to pass through. While investigating reading similar observations were 
made to that of eating since the different words have different characteristics affecting the signal. In addition, the 
speed and the loudness of the act of reading or eating affect the signal-to-noise ration as well, noting that the ZCR 
reflect the noisiness of the signal [36]. 

 
For drinking, the placement of the transducer had a significant impact when using the ZCR as listed in Table 1. 
Nonetheless, the output of the transducers had a relatively prominent difference, as illustrated in Figures (l) and 
(m). The difference can be related to the transducer displacement caused by the behavior, as the participants might 
have tilted their heads. On the other hand, the noise level is significantly different between some of the placements 
as the ZCR demonstrated a relatively high sensitivity compared to energy and flux as listed in Table 2 of the 
supplementary material. 

 

V. Limitations 

The transducers’ attachment differed for each participant due to anatomy, such as the size of the head, the skin 
properties, and the size of the masseter muscles. In addition, the standard earpiece used in this study did not 
completely occlude the ear, due to the participants’ different ear sizes and the properties of the rubber tip of the 
earpiece. Also, the position of the transducer in the earpiece differs slightly between the left and the right sides. The 
volunteers were not medically assessed if they had bruxism and the tasks associated with bruxism-like events were 
done on a voluntary basis. Thus, the movements would not accurately represent the behaviors under investigation. 
The participants might have relied more on one side of the jaw while grinding and eating, resulting in an imbalanced 
distribution of sounds. 
 

 

VI. Conclusion 

 
We conclude that the acoustic emission of various oral behaviors can be recorded from the head. However, we were 
not able of recording characteristic features of jaw clenching except we observed a peak just before the probable onset. 
From the observed differences, we can conclude that the position of the transducer affected the quality of the 
recording. Although the transducer placement did not significantly impact the recording of tooth grinding sounds, the 
ear is a good location for transducer placement compared to other location, since the ear compensates for the 
variances generated by certain behaviors such as eating and reading or physical requirements such as drinking. For 
example, physical movements such as arm movement while eating to grab food or water, head movement while 
drinking and eating. EMG electrodes on the masseter muscles can be highly affected by these movements where as an 
ear device that records sounds is isolated from these movements. Therefore, wearing an earplug for an extended 
period may be a trade-off for recording such sounds during everyday activities. 
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Supplementary material 
 

 

 

Figure 1: Energy and flux of all participants obtained for each transducer for: eating (a and b) and drinking (c and 
d). The marks in each box represent the median value and the bottom and top of the boxes represent the 25th (q1) 
and the 75th (q3) percentiles, respectively. 

 
Table 1: Peak energy and spectral flux levels for each task within the shaded areas for third participant as determined 

by the left ear transducer. 

metric 
Tasks 

T 1 T 2 T 3 T 4 T 5 T 6 

Energy - 4.4e-5 - 4.57e-5 32e-5 1.09e-5 

Flux - 1.07e-5 - 1.88e-5 6.58e-5 2.26e-6 

 
 

 
 



 

 
 
 
 

 

Table 2: The p-value for the post hoc test with Bonferroni correction. The placement of the transducers is denoted by the initial letter of the side of 

the head (L: Left or R: Right) and the initial letter of the anatomical location (E: Ear, Z: Zygomatic, F: Frontal, and T: Temporal). LE: Left Ear, 
LZ: Left Zygomatic, LF: Left Frontal, LT: Left Temporal, RE: Right Ear, RZ: Right Zygomatic, RF: Right Frontal, and RT: Right Temporal. 

Metric 
Behavior 

Clenching Grinding Reading Eating Drinking Pause 

 
 

 
Energy 

 
 

 
- 

 
 

 
- 

 
 

 
- 

p(LE-LT) = 0.007 
p(LZ-LT) = 0.006 
p(LF-LT) = 0.008 
p(LT-RE) = 0.007 
p(LT-RZ) = 0.006 
p(LT-RF) = 0.006 
p(LT-RT) = 0.006 

 
 

 
- 

 
 
 

p(RE-RF) = 0.007 

 
 

 
Flux 

 
 

 
p(RE-RF) = 0.002 

 
 

 
- 

p(LE-LZ) = 0.01 
p(LE-RZ) = 0.009 
p(LE-RT) = 0.003 
p(LZ-RE) = 0.0002 
p(LF-RE) = 0.005 
p(RE-RZ) = 0.0002 
p(RE-RF) = 0.01 

p(RE-RT) = 0.0001 

p(LE-LT) = 0.01 
p(LZ-LT) = 0.009 
p(LF-LT) = 0.015 
p(LT-RE) = 0.01 
p(LT-RZ) = 0.009 
p(LT-RF) = 0.01 
p(LT-RT) = 0.009 

 
 

 
- 

 
 
 

p(RE-RF) = 0.002 

p(LE-RF) = 0.03 

 
 
 

 
ZCR 

 
 
 

 
- 

 
 
 

 
- 

p(LE-LT) = 0.02 
p(LE-RT) = 0.01 
p(LZ-RT) = 0.03 
p(LF-LT) = 0.01 

p(LF-RT) = 0.006 
p(LT-RE) = 0.01 
p(LT-RF) = 0.01 

p(RE-RT) = 0.005 
p(RF-RT) = 0.008 

p(LE-LF) = 0.005 
p(LZ-RT) = 0.0001 
p(LF-LT) = 0.001 
p(LF-RE) = 0.003 
p(LF-RZ) = 0.01 
p(LF-RT) = 3e-8 

p(RF-RT) = 0.0001 

 
 

 
p(LF-RE) = 0.01 

p(LF-RT) = 0.01 

 
 
 

 
- 
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Figure 2: Spectrogram for the unprocessed recording from the left zygomatic transducer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3: Spectrogram for the unprocessed recording from the left frontal transducer. 
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Figure 4: Spectrogram for the unprocessed recording from the left temporal transducer. 
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Figure 5: Spectrogram for the unprocessed recording from the right ear transducer. 

 

 
Figure 6: Spectrogram for the unprocessed recording from the right zygomatic transducer. 

 

 
 

 
Figure 7: Spectrogram for the unprocessed recording from the right frontal transducer. 
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Figure 8: Spectrogram for the unprocessed recording from the right temporal transducer. 
 
 
 
 
 

 
Figure 9: Plot of the time and frequency domains of the left ear transducer for participant number 
three after processing. The shaded areas in (a) represent the periods during which the participant 
was active as recorded by push button input. The active periods were represented in the frequency 
domain plots in Figure (b) as the area between the white lines. The experimental tasks were as 
follows: T_1: jaw clenching, T_2: tooth grinding, T_3: jaw clenching, T_4: reading, T_5: eating, 
and T_6: drinking. 
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Figure 10: The energy of the signal in the time domain. Subfigures a – h represent the energy 
for T_2 (tooth grinding) obtained from the eight transducers for participant number three. 

 



Chapter 5

Experimental classification of various
oral behaviors using acoustic emissions
obtained from the ear

Foreword and Overview

Looking at statistics that investigated if the transducer placement has a significant impact on
the recording of oral behaviors we concluded that the ear is an optimal location fro reasons
that includes the acceptability in society and convenience. Consequently, it is important to be
able to distinguish the sounds of various oral behaviors to be able to use possible wearable
devices in real-world environments. Therefore, this chapter describes an experimental work on
the classification using deep learning of the 2D representation of sounds recorded from the ear.

Abstract

Objective: The goal of this work is to investigate the use of deep learning to classify image
representations of voluntarily produced sounds of various functional and parafunctional oral
behaviors.

Methods: Sounds produced by jaw clenching, tooth grinding, reading, eating and drinking
were recorded from inside the ear. 18 participants participated in the study. The data were
segmented into 1 second windows with 50% overlap. RGB images were used: the time series
was assigned to the red channel, Short Time Fourier Transformation (STFT) was assigned the
green channel, and the spectrogram was assigned the blue channel. The image representation
was classified using ResNet-50 built-in Matlab-2021b. Three classifiers were examined, 2-
Class (tooth grinding and pause), 4-Class (eating, grinding, pause, reading), and 6-Class (jaw

This chapter is based on a manuscript submitted for publication to IEEE Transaction on Biomedical Engineering
in May 2024 [4]. Copyright and licensing information can be found in the Preface.
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clenching, tooth grinding, reading, eating, drinking, and pause). In addition, leave one partic-
ipant out cross-validation (lopocv) was used, with the dataset divided between testing and training.

Results: We reported that the overall accuracy of the classifier averaged over 18 participants
was 84.31%, 72.79%, and 50.97% for 2-Class, 4-Class, and 6-Class challenge, respectively.

Conclusion: In conclusion, we were able to classify image representations of different oral
behaviors, noting that the classification accuracy decreased as the number of classes increased.

5.1 Introduction

Bruxism is defined as "masticatory muscle activities that occur during sleep (characterized as
rhythmic or non-rhythmic) and wakefulness (characterized by repetitive or sustained tooth contact
and/or by bracing or thrusting of the mandible)"[107]. Approximately 8% of the population has
severe sleep bruxism requiring treatment [21, 111]. Bruxism has various health implications such
as tooth wear and temporomandibular joint disorder (TMD). The gold standard for diagnosing
sleep bruxism is polysomnography with audio and video recording (PSG & AV), which requires
patients to stay in a sleep laboratory [112]. PSG & AV require a lot of resources and can interfere
with the patient’s sleep patterns. However, a gold standard for the diagnosis of awake bruxism is
still lacking [24]. Several research groups have investigated the use of wearable electromyography
(EMG) devices to monitor bruxism [38, 45, 54], but since bruxism occurs throughout the day,
wearing EMG electrodes on the facial area is neither convenient nor socially tolerable. Another
modality are devices that are worn in or on the ear, sometimes called hearables [113, 114]. Hear-
ables could be used to record bruxism-related sounds from the ear. In dentistry, recorded sounds
have been used to study features of dental occlusion (gnathosonics) [23]. Bruxism events produce
acoustic emissions via two mechanisms: (i) tooth grinding sounds that propagate through bone,
(ii) jaw clenching sounds as a result of altering the blood flow around the ear and masticatory
muscles and can deform the eardrum by activating middle ear muscles, thus altering the pressure
the ear canal[2].

Since bruxism can occur throughout the day, wearable devices will also record non-bruxism
events and are susceptible to external interference, so it is important to distinguish non-bruxism
events from bruxism events, e.g. by classification algorithms. Various verbal and non-verbal
voluntarily produced sounds, such as speech, eye blinking, and tooth grinding, obtained from
an in-ear device were successfully classified using features such as Mel Frequency Cepstral
Coefficients (MFCC), Zero Crossing Rate (ZCR), and Auditory Inspired Amplitude Modulation
Features (AAMF) [95]. The authors used the following classifiers: Support Vector Machine
(SVM), Gaussian Mixture Models (GMM), and Multi-Layer Perceptron (MLP). They also studied
the effect of adding noise and temporal information to each frame on the accuracy of the classifiers,
achieving an average accuracy of more than 73% for the noisy dataset with the GMM classifier
[95]. A follow-up study was conducted using the Bag-of-Audio-Words (BoAW) algorithm.
This was done by first clustering the acoustic emissions using GMM to create "audio words"
histograms of different frequencies of occurrence were generated to be fed to the classifiers SVM
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and Random Forest. The classifier performed relatively well with an average sensitivity of 69.9%
and an average precision of 78.8% in a quiet environment. However, in noisy environments
like factory noise the sensitivity dropped to 63.4% and the precision to 72.9%. For babble the
sensitivity was 55.5% and the precision was 64.2% [99]. In 2022, the classification of voluntarily
produced sounds mimicking snoring, tooth grinding, and breathing was tested using 2D repre-
sentations. A modified commercial earpiece was used by connecting the internal and external
microphones to an external recorder. Data were collected from twenty participants in their homes,
and participants were asked to wear the device themselves while being instructed remotely. The
2D representation was achieved by extracting the Short-Time Fourier Transform (STFT) and
feeding it into a Convolutional Neural Network (CNN) with a modified temporal layer. The
authors placed clenching as a subclass of grinding and they observed that such a classification
approach is capable of achieving an accuracy higher than 60% [98]. Even though, in an experts
consensus on bruxism tooth grinding and jaw clenching were differentiated from each other [107].

Given that jaw clenching occurs more frequently during wakefulness and tooth grinding
during sleep, and given the different etiology and different heath implications, classifiers that are
able to distinguish between different bruxism events would be a valuable addition for bruxism
monitoring. In addition, eating is a behavior that activates similar muscles and movements as
tooth grinding, and to our knowledge, the discrimination between tooth grinding and eating
sounds has not been studied. Therefore, the purpose of this paper is to explore the classification
using deep learning of voluntarily produced oral behavior sounds that are commonly produced in
real-world environments. The oral behaviors of interest are jaw clenching, tooth grinding, eating,
reading, and drinking sounds recorded.

5.2 Methods

5.2.1 Setup

The experimental setup consisted of eight bone-conducting transducers, six generic bone conduc-
tion transducers (MEAS, Dortmund, Germany) and two voice pick-up bone transducers (Sonion,
Hoofddorp, The Netherlands), as illustrated in Figure 5.1. The voice pick-up transducers were
integrated into two commercially available earpieces that occluded the ear (this type of ear occlu-
sion will be referred to as ’semi-occluded’ in this paper). The remaining six transducers were
attached to the participant’s head at the frontal, zygomatic, and temporal bones using medical
tape. The participant was given a push-button to press during active periods of jaw clenching,
tooth grinding, reading, eating, and drinking to label these activities. Also, two EMG devices
(Advancer Technologies, USA), not processed for this article, were also attached to the masseter
muscles. The transducers and the push button were connected to two data acquisition devices,
DAQs (MCC, Bietigheim-Bissingen, Germany). Verbal and non-verbal sounds recorded via bone
and tissue conduction have a limited bandwidth, less than 2 kHz [89, 95, 99]. For this study,
the highest informative frequency was set at 3 kHz resulting in a sampling rate of 6 kHz. The
data acquisition devices were connected to a PC via USB for data storage. Finally, a graphical
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Figure 5.1: Experimental setup: 8 transducers were distributed symmetrically between the left
side and right side of the head: (f) frontal bone, (z) zygomatic bone, and (t) temporal bone, (e)
ear. EMG electrodes: (m) masseter muscle, a graphical user interface (GUI), push button (b), and
two data acquisition units (DAQs)

user interface realized with Unity (Unity Technologies, California, US) was used to provide
the participants with the cues and timers associated with the tasks. For this work, only sounds
recorded by the ear transducers were used.

5.2.2 Participants

Eighteen volunteers (9 female and 9 male, age median 30.5 years, ranging in age from 24 to 43
years) participated in this study. The investigation was conducted after receiving approval from
the regional ethics committee (Ethikkommission Nordwest- und Zentralschweiz, application
number: 2021-002266). A signed informed consent was obtained from each participant after
meeting the inclusion and exclusion criteria. Inclusion criteria were: ability to speak/read/write in
English or German, age between 18 and 50 years. Exclusion criteria were: having dental implants
(removable full or partial dentures), oro-facial pain, facial beard piercing, pregnancy, inability to
perform the required tasks due to language or psychological barriers, allergy to silicone or medical
tape, ear problems, wearing a hearing aid, Covid-19 symptoms, and finally people involved in the
study design, family members, and staff or individuals dependent on people involved in the study.
Volunteers were recruited mainly within the university and the surrounding area.

5.2.3 Protocol

First, the information about the study was discussed with the participant to clarify any misun-
derstandings, and then the participant was asked to complete a questionnaire - compiled by the
author - to determine the possible presence of bruxism. The transducers were then attached to the
participant’s head and a shortened version of the main experiment was conducted to familiarize
the participant with the setup. The experiment was divided into six tasks (Figure 5.2): T_1 (jaw
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Classifier Classes
2-Class Grinding and Pause
4-Class Eating, Grinding, Pause, and Reading
6-Class Clenching, Drinking, Eating, Grinding, Pause, and Reading

Table 5.1: List of classifiers and the relevant classes (added classes are highlighted in italic font).

clenching), T_2 (tooth grinding), T_3 (jaw clenching), T_4 (reading), T_5 (eating), and T_6
(drinking), with participants having the option of taking a one-minute break between each task.
Each participant was asked to sit in front of a computer screen that served as a guide throughout
the experiment. The participant was asked to press the push button when performing an activity
such as clenching, grinding, reading, eating, and drinking. As shown in Figure 5.2, each task
was divided into different periods; for instance, T_1 and T_3 were a sequence of jaw clenching
and pausing periods, T_2 was a sequence of tooth grinding and pause periods. During T_4, the
participant read the passage "The North Wind and The Sun" which was divided into five sentences
[115]. During T_5, the participant was asked to eat three different snacks: a piece of bread, a
cracker, and a fruit. In T_6, the participant was asked to drink at least three sips of water. Finally,
the participant was asked to sit quietly for one minute. The "pause" task refers to the time spent
by the participant during the recording but was not an active period of the five oral behaviors.
At the end of the experiment, the participant was asked to complete a second questionnaire -
compiled by the author - to rate his/her experience. The evaluation of the jaw-clenching behavior
was divided into two tasks (T_1 and T_3) to avoid any unnecessary stress on the participant’s
joint. In total, the six tasks resulted in recording the five oral behaviors: jaw clenching, tooth
grinding, reading, eating, and drinking.

5.2.4 Data processing

Previous work by Bouserhal et al. investigated the classification of verbal and nonverbal sounds
from the ear using SVM, MLP, and GMM with artificial features such as ZCR and MFCC.
They reported classification accuracies ranging from 34% to 75.5% [95]. In addition, the image
representation biosignals obtained from a PSG are usually labeled by experts to identify sleep
bruxism events. Therefore, in this work, we decided to investigate the use of a pre-trained network
to classify sounds of voluntarily produced oral behaviors using images. The data were processed
and classified using Matlab 2021b (Mathworks, Massachusetts, US). The pre-trained network
ResNet-50 from Matlab 2021b was used to classify the oral behaviors. For this work, only data
recorded from the ears were used. The data were filtered with a linear phase FIR (Finite Impulse
Response) low-pass filter (1000 Hz cut-off frequency, order of 20, and 30 % transition window)
and a linear phase FIR high-pass filter (10 Hz cut-off frequency, order of 15, and 20 % transition
window). It is described in the literature that teeth grinding or oromandibular episodes are defined
using EMG data as phasic (3 EMG bursts lasting 0.25-2.0 s), tonic (EMG burst lasting more than
2 s), or mixed [116]. Therefore, for this work, we chose to segment the recording into 1 second
windows with 50% overlap. In this way, we could be confident that bruxism-induced sounds
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Figure 5.2: Pre-recording routine was performed for every participant. Recording experimental
tasks: T_1 (jaw clenching), T_2 (tooth grinding), T_3 (jaw clenching), T_4 (reading), T_5
(eating), and T_6 (drinking). The participant had the option for a one minute break between
the tasks labeled as "break", and the final one was compulsory for all participants. In the posr-
recording period, the sensors were removed and the participant was asked to fill a questionnaire
describing their experience of the study.
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Figure 5.3: Schematic of the image generation. The 1-D signal, short time fourier transform
(STFT), and the spectrogram were assumed to fill red, green, and blue channels, respectively.

would be captured. The windows were converted to RGB images by concatenating the time series,
the STFT, and the spectrogram, as illustrated in figure 5.3. Each of the three channels had a size
of 244 pixels × 244 pixels. The behaviors had different recording lengths, which resulted in an
unbalanced data set as listed in table 5.2 in the supplementary material. The data were balanced
for each subject by defining the class with the lowest number of images and then reducing the
number of images for the remaining five classes to that particular value, as shown in tables 5.2
and 5.3 in the supplementary material. Leave One Participant Out Cross Validation (LOPOCV)
was used, meaning that the classification was performed 18 times, each time leaving out the
whole dataset of one of the participants for testing. The training data was split 70% for training
and 30% for validation as illustrated in Figure 5.4. Three independent classification tasks were
performed, which are listed in Table 5.1. Violin plots presented in this work were produced using
the script developed by Bechtold [117].

5.3 Results

The overall test accuracy of the 2-Class classifier had the highest average test accuracy of 84.31%
compared to the 4-Class and 6-Class classifiers with an average overall test accuracy of 72.79%
and 50.97%, respectively, as illustrated in Figure 5.5. However, the 4-Class classifier showed a
better performance compared to the 2-Class and 6-Class classifiers in terms of trivial prediction
as illustrated in Figure 5.5.

Figures 5.6, 5.7, and 5.8 show the confusion matrix for the 2-Class, 4-Class, and 6-Class
classifiers. The color scheme of the confusion matrices reflects the average of the accuracies
obtained using the method described in Figure 5.4. The 2-Class classifier produced average
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Figure 5.4: Scheme for classification procedure; the same procedure was used for the 2-Class,
4-Class, and 6-Class classification.

accuracies of 79.31% and 89.30% for correctly classifying grinding and pause, respectively as
illustrated in Figure 5.6. However, the distribution of each test subject’s data points has a wide
range, as shown in the violin plots within each cell of the confusion matrix. In addition, the
classifier achieved a test accuracy of 100% for some subjects.

The 4-Class classifier produced average accuracies of 83.35%, 79.06%, 74.21%, and 54.53%
for correctly classifying Pause, Reading, Eating and Grinding, respectively as illustrated in
Figure 5.7. Grinding was frequently misclassified as eating with an average of 30.69% and
misclassified as pause with an average of 14.63% as illustrated in Figure 5.7.

The highest overall average accuracies produced by the 6-Class classifier were for reading
and eating with 79.75% and 75.01%, respectively, as illustrated in Figure 5.8. Drinking had
the lowest average classification accuracy, followed by clenching, grinding, and pausing with
values of 22.09%, 34.25%, 43.12%, and 51.60%, respectively as illustrated in Figure 5.8. The
6-Class classifier often misclassified Clenching for Pause with an average misclassification of
54.25% as illustrated in Figure 5.8. It also misclassified Grinding for Eating with an average
misclassification of 33.75% as illustrated in Figure 5.8. Finally, drinking was often misclassified
as a break with an average misclassification of 39.82% as illustrated in Figure 5.8.

5.4 Discussion

The work presented in this paper aims to investigate the possibility of classifying image repre-
sentations of voluntarily produced oral behavioral sounds. Three classifiers were introduced to
classify sounds of jaw clenching, teeth grinding, reading, eating, and drinking. The classifiers suc-
cessfully achieved an overall accuracy higher than their trivial prediction, as shown in Figure 5.5.

The wide range of test accuracies, represented by the black dots in Figure 5.5 may be due to
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Figure 5.5: Total test accuracy of the classifiers, where the shaded areas are violin plots, the black
dots within the shaded areas represent the classifier test accuracy of each test participant (using
LOPOCV), the dashed lines within the shaded areas represent the average, and the white dots in
the shaded area represent the median.

the balancing procedure, which reduced the size of the data set, thereby reducing the generality
of the model. Also, the reduction in class size was done randomly, so some "mislabeled" images
may have been present in the balanced dataset. Here, with "mislabeled" we refer to the presence
of images, where the user was reporting grinding but in fact pausing, or time windows where no
grinding sound was recorded due to absence of tooth contact while the participant was changing
the movement direction of the jaw. Temporal information may help to distinguish tooth grinding
from other behaviors, such as eating. However, the balancing of the data was done by randomly
reducing the number of images of the classes to the size of the smallest class, thus losing the
temporal information. This may explain the relatively high misclassification of teeth grinding
as eating as illustrated in Figures 5.6, 5.7, and 5.8). Due to the nature of voluntary grinding
containing both pauses and time periods without tooth contact, we did not consider these relatively
high miss-classification as critical. For providing bio-feedback for grinding, we believe that
either longer time windows or combining classification of multiple windows would be appropriate.

In addition, the test accuracy of 100% accuracy achieved for the 2-Class classifier as illus-
trated in Figure 5.5 can be attributed to either the data set being too small, causing the classifier to
converge prematurely, or to the Grinding and Pause classes having a clearly identifiable difference
within this particular test participant. In addition, the test accuracy of Grinding ranged from 0% to
100%, which can be attributed to either some images being "mislabeled" due to pauses between
grinding instances. For the confusion matrices of the 4-Class and 6-Class classifiers shown in
Figures 5.7 and 5.8, the misclassification of mostly Grinding as Eating can be attributed to the
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Figure 5.6: Confusion matrix of the 2-Class classifier averaged over 18 participants, where the
black dots represent the test accuracy of each test participant (using LOPOCV), the dashed lines
represent the average, and the white dots represent the median. The grey boxes in each cell
represent the box plot. The color shading reflects the average test accuracy averaged over eighteen
participants.
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Figure 5.7: Confusion matrix of the 4-Class classifier averaged over eighteen participants, where
the black dots represent the test accuracy of each test participant (using LOPOCV), the dashed
lines represent the average, and the white dots represent the median. The grey boxes in each
cell represent the box plot. The color shading reflects the average test accuracy averaged over
eighteen participants.
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Figure 5.8: Confusion matrix of the 6-Class classifier averaged over eighteen participants, where
the black dots represent the test accuracy of each test participant (using LOPOCV), the dashed
lines represent the average, and the white dots represent the median. The grey boxes in each cell
represent the box plot.The color shading reflects the average test accuracy averaged over eighteen
participants.
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fact that both behaviors use similar jaw movements and tooth contact may have occurred during
eating. It can also be attributed to the lack of temporal information that can help discriminate
between these two classes. However, the confusion between clenching and pausing as illustrated
in Figure 5.8 may be due to the limitations of the setup, as the ear was not fully occluded, which
may have affected the presumably weak clenching sounds. This observation is supported by a
pilot study we conducted that compared the sound characteristics recorded from a fully occluded
and semi-occluded ear [2].

In addition, it is assumed that during sleep bruxism, tooth grinding occurs more regularly,
while during wake bruxism, jaw clenching may occur more frequently. Therefore, the average
accuracy obtained with the 2-Class classifier would be sufficient to detect tooth grinding as shown
in Figures 5.5 and 5.6. However, in the literature, tooth grinding has mainly been labeled by
experts using data from EMG bursts with defined episodes, phasic, tonic, and mixed [116]. The
definition of bruxism episodes based on sound is still missing. This would provide even more
support for decisions about window size and other parameters that affect data segmentation.

An additional approach to overcome the low average accuracy of the 4-Class and 6-Class
classifiers is to first develop multiple algorithms that perform binary classification of each of the
"active" classes (jaw clenching, eating, reading, drinking), while "pause" can be the remaining
class, and then introduce a sensitivity level that switches the device from binary to multi-class
classifier based on user preference. Finally, future work should also address the question of
what level of classification accuracy is clinically meaningful. For instance, a clinical study
could be designed to compare the performance of the ear device with the gold standard for
diagnosing sleep bruxism and to assess its efficacy on reducing the onset of sleep bruxism when
using implementing bio-feedback in the ear device. This would help developers working on
classification algorithms and bio-feedback mechanisms integrated into wearable devices.

5.5 Limitations

There are a few limitations that must be considered when interpreting the results. The performance
of the ear devices may be affected by the anatomical differences between participants and may
be influenced by the size of the ear and the location of the transducer within the earpiece. In
addition, it should be noted that the behaviors studied in this study were performed voluntarily,
so the intentional performance of an involuntary action could affect the characteristics of the
recorded sounds. Also, the study was performed in a controlled environment.

5.6 Conclusion and future research

We were able to classify the sounds of jaw clenching, tooth grinding, eating, reading, drinking,
and pause using ResNet50. The overall accuracy of the classifiers, averaged over eighteen
participants, decreased as the number of classes increased, , which is not surprising since the
overall task gets more challenging and the particularities of the different behaviors need to reach
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a higher level of refined recognition. At the same time, our classifiers resulted in accuracies way
beyond chance. In addition, the current classification procedure resulted in higher accuracies
compared to trivial prediction. Future work on the use of sound as a biomarker to detect bruxism
events should focus on two main points. First, the recording and classification of involuntarily
produced sounds of various oral behaviors, which is difficult to record in a lab environment.
Second, further work should investigate the different levels of sensitivity, which refers to the
number of classes that should be classified at a given time. In addition, it would be important to
integrate a bio-feedback mechanism to the ear device and investigate its impact on the frequency
of bruxing.
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Class
Participant Jaw Clenching Tooth grinding Reading Eating Drinking Pause

1 216 190 138 902 34 1906
2 192 176 138 698 38 2000
3 176 162 160 524 40 2768
4 228 200 158 1322 60 2026
5 160 164 138 264 24 1772
6 174 176 154 538 50 1908
7 182 176 164 230 30 1870
8 178 174 196 458 40 1876
9 190 170 200 392 98 2920

10 190 174 156 540 90 1930
11 184 172 190 558 36 1666
12 190 178 152 1004 68 2154
13 190 174 184 590 38 1728
14 190 178 188 492 52 1854
15 188 178 148 726 86 2344
16 206 186 132 740 96 1724
17 184 188 212 794 56 1826
18 216 204 152 310 68 1838

Table 5.2: Number of images for each participant per each class. The class with the least number
of images was highlighted with an italic font. In this work, drinking had the least number of
images for all participants.



66
Chapter 5. Fourth Paper: Experimental classification of various oral behaviors using acoustic

emissions obtained from the ear

Dataset
Test Train

Test
participant

Jaw
clenching

Tooth
grinding

R
eading

E
ating

D
rinking

Pause

Total Jaw
clenching

Tooth
grinding

R
eading

E
ating

D
rinking

Pause

Total

1 34 34 34 34 34 34 204 970 970 970 970 970 970 5820
2 38 38 38 38 38 38 228 966 966 966 966 966 966 5796
3 40 40 40 40 40 40 240 964 964 964 964 964 964 5784
4 60 60 60 60 60 60 360 944 944 944 944 944 944 5664
5 24 24 24 24 24 24 144 980 980 980 980 980 980 5880
6 50 50 50 50 50 50 300 954 954 954 954 954 954 5724
7 30 30 30 30 30 30 180 974 974 974 974 974 974 5844
8 40 40 40 40 40 40 240 964 964 964 964 964 964 5784
9 98 98 98 98 98 98 588 906 906 906 906 906 906 5436
10 90 90 90 90 90 90 540 914 914 914 914 914 914 5484
11 36 36 36 36 36 36 216 968 968 968 968 968 968 5808
12 68 68 68 68 68 68 408 936 936 936 936 936 936 5616
13 38 38 38 38 38 38 228 966 966 966 966 966 966 5796
14 52 52 52 52 52 52 312 952 952 952 952 952 952 5712
15 86 86 86 86 86 86 516 918 918 918 918 918 918 5508
16 96 96 96 96 96 96 576 908 908 908 908 908 908 5448
17 56 56 56 56 56 56 336 948 948 948 948 948 948 5688
18 68 68 68 68 68 68 408 936 936 936 936 936 936 5616

Table 5.3: Number of images for tain and test datasets after balancing the data.



Chapter 6

General Discussion

6.1 Achieved milestones

Polysomnography with audio and video (PSG A&V) recording is the gold standard for the
diagnosis of sleep bruxism, while a gold standard for jaw clenching is being developed. Advances
in wearable devices have the potential to be used in medical applications. During my Ph.D., I in-
vestigated the potential of using sound as a biomarker in a wearable device to detect bruxism-like
events, that is a contribution towards the development of a hearable for the detection of bruxism.

Hearables have the potential to be used for the detection of bruxism. Hearables are convenient
to use and inexpensive compared to PSG with A&V electromyographic (EMG) devices. In
addition, hearables can be worn throughout the day, as the use of ear devices is widespread and
socially tolerated compared to EMG devices that would be worn on the head (Chapter 2). This
feature makes it a viable potential tool for detecting both sleep and awake bruxism.

Sound as a biomarker has been used in dentistry to detect malocclusion, but it hasn’t been
investigated whether sound can be used to detect bruxism and from which location it is best
recorded. To answer the research question on whether the type of ear occlusion would affect the
recording, I first conducted a pilot study with the help of one subject. Full occlusion of the ear
canal with a deformable earpiece helped to record both jaw clenching and teeth grinding, as well
as eating, reading, and drinking (Chapter 3). However, complete occlusion of the ear raises safety
concerns, as the user would be isolated from the environment. I then investigated the possibility of
recording sounds of bruxism-induced events, among other oral behaviors, from different locations
on the head in order to answer the research question on the impact of transducer location on the
recording.

I conducted a study - with the help of 18 participants - to record such sounds from the
temporal bone, zygomatic bone, frontal bone and ear. I observed that sounds of different oral
behaviors were recorded from different locations. However, I have found that identifying the
characteristic feature of jaw clenching is difficult, except for a peak that is present just before
the expected onset of clenching. I think that one of the main reasons for this challenge is the

67
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type of occlusion and the placement of the transducer in the ear, as I demonstrated in the pilot
study (Chapter 3). Nevertheless, the ear still represents a strategic position from which to record
the sounds, and by simply detecting tooth grinding sounds, a massive step has been taken in
demonstrating the possibility of using hearables to detect bruxism (Chapter 4).

Finally, bruxism occurs throughout the day, and sounds are produced by bruxism-induced
events and by other events such as talking or eating. Therefore, I investigated the potential of
classifying 2D representations of sounds recorded from the ears using ResNet50. I investigated
three classifiers: a 2-Class classifier (Grinding and Pause), a 4-Class classifier (Eating, Grinding,
Pause, and Reading), and a 6-Class classifier (Clenching, Drinking, Eating, Grinding, Pause, and
Reading). The overall test accuracy of the classifier decreased as the number of classes increased:
2-Class with a test accuracy of 84.31 %, 4-Class with a test accuracy of 72.79%, and 6-Class with
a test accuracy of 50.97 % (Chapter 5). The accuracies of the classifiers were higher than that
of the trivial prediction, as shown in Figure 5.5. I think that this is an important contribution to
the ongoing research on the development of instrumental tools for the detection of bruxism in
real-world environments.

6.2 Limitations

Throughout my dissertation, I noticed several limitations. First, bruxism is a parafunctional
behavior that occurs unconsciously; for my work, I asked participants to consciously perform
bruxism-like events. I believe that this has an impact on the recorded signal, as I demonstrated
in the pilot study, as the amount of force exerted on the teeth and joint. This may also have
affected the temporal characteristics of the bruxism events. Also, I invited participants who did
not necessarily have bruxism, which could have an impact on the tasks performed related to
bruxism. In addition, I had to balance the data for the deep learning investigation, which reduced
the amount of data and resulted in the loss of temporal sequences that could affect the output of
the classifiers. Nevertheless, I believe that the decision I made helped I move forward with the
project and reduced some of the complexity and helped I show the potential of using sound and
hearables for bruxism detection.

6.3 Outlook

6.3.1 Hearables for bruxism

For my Ph.D., I conducted a study in a controlled environment where participants had to con-
sciously perform bruxism-like events. However, bruxism is a parafunctional behavior that occurs
without the individual being aware of it. I believe that performing the behavior in a conscious man-
ner affects the temporal structures of the behavior and the forces that the individual exerts on their
teeth, muscles, and joints, thus affecting the sound levels. Therefore, future investigations should
address the following: conduct studies that investigate the potential of recording bruxism-induced
sounds from real-world environments using hearables, followed by a large clinical study to better
understand the prevalence of bruxism in a population. Finally, the effectiveness of a biofeedback
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mechanism in a hearable to reduce the occurrence of bruxism events will be investigated. I
also believe that the temporal information can be very helpful in improving the classification
accuracy. Therefore, the development of categorization criteria similar to those used for EMG
measurements, phasic, tonic and mixed [116], would help to better label the recorded sounds and
better design study procedures, consequently improving classification accuracy.

6.3.2 Causes of the problem vs its symptoms

It is important to treat the symptoms of health problems in general. However, it is equally
important and urgent to address the causes of the problem as well. Bruxism as a risk factor
leads to various health consequences such as tooth wear, TMD, and other physical pain. One of
the main causes of bruxism is emotional stress (chronic stress). In addition, the relatively high
number of affected individuals supports the argument that bruxism can be listed as a public health
issue. Keeping these two points in mind helps I realize that to deal with the roots of bruxism,
structural determinants of bruxism need to be identified in order to design public policies that
address them [18].

6.4 Conclusion

In conclusion, with this PhD thesis, I have demonstrated that it is possible to record bruxism
induced events in particular tooth grinding from different locations of the head, however the
ear was the ideal location as it can compensate for physical movements of the head and ear
devices are socially tolerable. In addition, it is important to distinguish bruxism-induced from
other oral behaviors as well as sounds from the environment. ResNet50 was used to classify 2D
representations of sounds recorded from ear for the oral behaviors clenching, grinding, reading,
eating, and drinking. I have achieved an overall test accuracy for the different classifiers: 2-
Class classifier (Grinding and Pause) of 84.31%, 4-Class classifier (Eating, Grinding, Pause,
and Reading) of 72.79%, 6-Class classifier (Clenching, Drinking, Eating, Grinding, Pause, and
Reading) of 50.97 %. I believe that the accuracies achieved are good as they have practical
implications on the occurrence of bruxism events. Finally, managing the symptoms of a health
issue is important and further devices and methods should be developed, in addition, an important
research direction that must be explored is to investigate the causes of bruxism by looking at it
through the biopsychosocial model.
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