
Injectivity and Locality: Robust Deep Learning for
Bayesian Imaging

Inauguraldissertation
zur

Erlangung der Würde eines Doktors der Philosophie
vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

AmirEhsan Khorashadizadeh

Basel, 2024

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

Test

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf
Antrag von

Erstbetreuer: Prof. Dr. Ivan Dokmanić

Zweitbetreuer: Prof. Dr. Volker Roth

Externer Experte: Prof. Dr. Ender Konukoglu

Basel, 17.09.2024

Prof. Dr. Marcel Mayor, Dekan

2

Abstract

Imaging inverse problems are crucial in exploring and understanding various phenomena
in our universe. Astronomers decode light signals from distant galaxies, physicians use
imaging to reveal the internal body structures for clinical analysis, and geophysicists
process seismic waves to model the Earth’s interior. Each case involves reconstructing
images of hidden objects from observed data. Recently, data-driven methods based on
deep learning have shown great success in solving various imaging inverse problems
resulting in high-quality and fast image reconstruction with fewer noisy observations.
One major concern when solving inverse problems with deep learning is generalization;
we expect the deep neural network to perform well on data other than training samples.
Lack of generalization may lead to unstable reconstructions and wrong interpretations
which is problematic, particularly for medical applications.

In the first part of this thesis, we build deep-learning architectures based on implicit
neural representation. We show that these coordinate-based reconstruction pipelines
including MLPatch, Glimpse, and FunkNN for various imaging modalities like image
denoising, super-resolution, computed tomography, and magnetic resonance imaging can
produce high-quality reconstructions with strong generalization.

While deep learning models with strong generalization can improve the reliability of
reconstructions and downstream interpretations, the estimated images can significantly
deviate from the true image. Moreover, due to the noise and ill-posedness of the forward
operator, there may exist many images that align with our observations, each resulting
in a different scientific interpretation. One way to address this is to learn a distribution
of possible reconstructions instead of computing a single estimate. This strategy can
also help us evaluate an uncertainty map to pinpoint the regions of the recovered image
estimated with lower confidence.

To this end, in the second part of this thesis, we develop Bayesian frameworks based
on injective neural networks to learn the distribution of reconstructions for solving ill-
posed inverse problems. We show that our Bayesian architectures can generate multiple
high-quality reconstructions and evaluate physically meaningful uncertainty estimates for
various imaging problems including inverse scattering and computed tomography.

a

Test

To my parents and my wife for their love, support and
encouragement

b

Acknowledgements

I am deeply grateful to my wife for her unwavering support and encouragement through-
out my PhD journey. Her belief in me kept me moving forward during challenging times.
I am truly thankful to my mother, whose unconditional love has been an incentive, from
my earliest school days through the completion of my PhD. I am grateful to my late
father, who was my first mathematics teacher in childhood. His encouraging words have
always motivated me to keep moving forward. Without their encouragement, it would
have been hard to persevere and continue this journey.

I spent four fantastic years at the SADA group. I feel incredibly fortunate to have
had Ivan as my advisor. Not only is he an exceptional scientist, but he is also a kind
and generous mentor. He allowed me the freedom to explore my ideas while providing
invaluable guidance to bring them to fruition. I would also like to thank Professor Volker
Roth for his feedback and comments during my PhD. Additionally, I extend my sincere
thanks to my external reviewer, Professor Ender Konukoglu, for his interest in my work
and the time and effort he dedicated to reviewing this thesis. Furthermore, I feel fortunate
to have had the opportunity to collaborate with Professor Maarten de Hoop during our
wave-based imaging projects.

I am fortunate to have been surrounded by my dear friends at the University of
Basel. My PhD began with a collaboration with Konik Kothari which was an educational
experience in both mathematics and programming, laying a solid foundation for my
future research in machine learning. Special thanks go (in no particular order) to my
friends at the University of Basel, Valentin Debarnot, Vinith Kishore, Tianlin Liu, Anadi
Chaman, Cheng Shi, Jonas Linkerhägner, Fabian Kruse, Alexandra Spitzer, Lorenzo
Baldassari, Jonathan Aellen, Fabricio Arend Torres, Manuel Jahn, Monika Nagy-Huber,
Shijian Xu, and Marcello Negri who made my experience in Basel truly enjoyable. Our
trip to Rovinj after my defense always remains a fond memory. A special thanks to my
cousin and friend, Vahid Khorashadizadeh, whose support over the years—from high
school to co-authoring a paper together—has been invaluable. I must also acknowledge
Ali Aghababaei-Harandi and Sepehr Eskandari, whose friendship and collaboration have
been with me since our undergraduate days.

Lastly, I am very thankful for the support from the University of Basel’s promotion
of young talents, which awarded me a grant to spend nine months at University College

c

London (UCL) as a visiting researcher. This grant enabled me to collaborate with
Professor Jason McEwen and his research group. I am particularly grateful to Tobias
Liaudat and the rest of the group, I will never forget the joy of our trip to Khania in May
2024 for the Cosmo21 conference—it was a perfect blend of science and friendship.

d

Contents

1 Introduction 1

2 Scalable Local Image Reconstruction with Implicit Neural Representation 6

2.1 Background and related works . 7

2.2 MLPatch: a local coordinate-based network 11

2.3 MLPatch for inverse problems with local forward operators 15

2.4 MLPatch for general inverse problems 18

2.5 Summary . 22

2.6 Appendix . 23

3 GLIMPSE: Generalized Local Imaging with MLPs 26

3.1 Related works . 29

3.2 Computed tomography . 30

3.3 Experiments . 33

3.4 Summary . 38

3.5 Appendix . 39

4 FunkNN: Neural Interpolation for Functional Generation 44

4.1 Implicit neural representations for continuous image representation . . . 46

4.2 Our approach . 47

4.3 Continuous generative models and solving inverse problems 50

4.4 Experiments . 51

4.5 Related works . 55

e

4.6 Summary . 56

4.7 Appendix . 56

5 Trumpets: Injective Flows for Inference and Inverse Problems 63

5.1 TRUMPETs: Injective flows . 65

5.2 Inference and uncertainty quantification with TRUMPET 69

5.3 Experiments . 73

5.4 Related works . 77

5.5 Summary . 77

5.6 Appendix . 78

6 Deep Injective Prior for Inverse Scattering 86

6.1 Forward and inverse scattering . 88

6.2 MAP inference with injective flows for inverse scattering 90

6.3 Posterior modeling and uncertainty quantification 93

6.4 Experiments . 95

6.5 Summary . 102

6.6 Appendix . 102

7 Conditional Injective Flows for Bayesian Imaging 104

7.1 Related works . 107

7.2 Variational Bayesian inference . 108

7.3 C-Trumpets: conditional injective flows 110

7.4 The C-Trumpets signal model . 115

7.5 Experiments . 118

7.6 Summary . 125

7.7 Appendix . 126

8 Deep Variational Inverse Scattering 137

8.1 Wave scattering model . 138

f

8.2 U-Flow . 140

8.3 Experiments . 142

8.4 Summary . 144

9 Looking Forward 145

9.1 Locality for 3D reconstruction . 145

9.2 Bayesian modeling of local processing models 146

9.3 Solving wave-based PDEs with a generative prior 146

g

Chapter 1

Introduction

In everyday life, we often encounter situations where we need to deduce hidden informa-
tion from indirect observations. As an intuitive example, imagine you receive a sealed
package in the mail. You are curious about what is inside; you try to gather clues like
weight, shape, size, and sound. Using these observations, you start to make guesses about
what might be inside the package. This process of inferring hidden information from
observations is analogous to solving an inverse problem.

Inverse problems are prevalent in various applications including medicine [1], material
science [2], remote sensing [3] and cosmology [4]. In these problems, the goal is to
reconstruct an unknown signal, image, or 3D volume f ∈ F from noisy measurements
q ∈ Q where the measurements are obtained through the imaging process modeled as
follows,

q = Af + n, (1.1)

where A : F → Q is the forward operator modeling the physics of the imaging system
that probes the object f and we consider additive noise n for simplicity. It is worth noting
that more complicated scenarios like stochastic forward operators or non-additive noise
can also be modeled. This general framework underpins numerous inverse problems in
imaging including,

• Image denoising: Reconstructing a clean image from a noisy one. This is consid-
ered the simplest inverse problem with an identity forward operator [5]. A practical
example of image denoising is low-dose computed tomography.

• Image super-resolution: Reconstructing a high-resolution image from a low-
resolution one. This technique is used because acquiring high-resolution images
can be costly for imaging systems [6].

• Sparse- and limited-view computed tomography (CT): Reconstructing the
object’s internal structure from measurements of wave attenuation. The object is
illuminated by X-rays from multiple angles [7].

1

• Magnetic resonance imaging (MRI): Reconstructing the internal structure of an
object from signals generated by the nuclei in the body’s tissues. This medical
imaging technique uses magnetic fields and radio waves [8].

• Inverse scattering: Reconstructing the object’s wave speed from measurements of
scattered waves. The object is illuminated by electromagnetic or X-ray waves from
different angles [9].

These problems are often ill-posed, meaning that many images might be compatible
with the given measurements, though most of these solutions are not plausible. For
example, in image super-resolution, many high-resolution images may result in the same
low-resolution image.

Another concern is the stability of the inverse problem. The measurements q are often
contaminated by noise n. Unstable forward operators can result in significantly different
images from the modified measurements, which is undesirable. Ill-posedness and poor
instability together make inversion challenging. To tackle these issues, regularization
techniques can be used to constrain our search space to target image solutions and can be
formulated as follows,

f∗ = argmin
f
D(q,Af) + λR(f). (1.2)

Here, D specifies the discrepancy function between the measurements q and the applica-
tion of the forward operator A to the estimated image f . The choice of D depends on the
noise model n; for instance, Gaussian noise corresponds to the L2 norm for D. In (1.2),
R is the regularization operator that incorporates our prior knowledge of the target image
f , and λ is a pre-specified parameter that adjusts the amount of regularization. When
λ = 0, there is no regularization. The choice of regularization can significantly influence
the quality of the reconstruction.

Traditional regularization methods use hand-crafted regularizers. Total variation
(TV) regularization [10] leverages the smoothness of natural images, resulting in edge-
preserving reconstruction algorithms. While these methods perform well on images with
simple structures, hand-crafted priors often lead to poor reconstructions for complex
natural images, which are common in practice.

As of recently, methods with data-driven priors based on deep neural networks
significantly outperform traditional solvers for ill-posed inverse problems [11]. Deep
neural networks have shown promising results across various imaging problems including
image denoising [12], image super-resolution [13], CT [14], MRI [15] and inverse
scattering [16]. Despite their impressive performance, the reliability of deep learning
architectures remains a significant concern in practical applications [17]. One critical
issue is generalization, while trained on specific datasets, neural networks are expected
to generalize well to new, unseen data [18]. Poor generalization can be problematic,
especially in sensitive domains like medical imaging and autonomous driving.

2

An effective strategy to design reliable neural networks is to endow them with
capability for uncertainty quantification; the model needs to provide an uncertainty map
to pinpoint the regions of the recovered image estimated with lower confidence.

This thesis has two main parts: in Chapters 2, 3, and 4, we design our coordinate-
based image recovery pipelines for building neural networks with strong generalization.
Chapters 5, 6, 7 and 8 leverage deep generative models for uncertainty quantification.

• MLPatch: Scalable Coordinate-based Image Reconstruction
Convolutional neural networks (CNNs) have become the de facto standard machine
learning approach for solving imaging inverse problems. One limitation of CNNs
is that the memory required for training scales unfavorably with image resolution,
making them unsuitable for high-resolution problems. Another issue is that they
tend to overfit the large-scale image features; preventing this requires elaborate
designs that automatically adjust the receptive field. In this chapter, we design
a local processing network termed MLPatch, which recovers the image intensity
at a target pixel by processing a small neighborhood of the pixel in the observed
image using a simple multi-layer perception (MLP). With comparable performance
to state-of-the-art CNNs, MLPatch achieves excellent generalization to out-of-
distribution data and memory usage independent of image resolution. Remarkably,
a mere 3GB of memory suffices to train on 1024× 1024; standard CNNs require
more than 80GB. Moreover, MLPatch can effectively recover the image at any
continuous coordinate. Finally, we generalize this framework to non-localized
inverse problems by employing MLPatch denoiser as a prior in a plug-and-play
framework. Our experiments show that this framework can achieve excellent
performance on non-localized problems like image in-painting, magnetic resonance
imaging (MRI), and radio interferometry.

• GLIMPSE: Generalized Local Imaging with MLPs
In this chapter which is based on our preprint paper [19], we generalize our
local coordinated-based reconstruction pipeline to computed tomography (CT)
where the notion of locality must be adapted to the non-cartesian geometry of
the CT sinograms. We introduce GLIMPSE, a neural network that reconstructs a
pixel value by processing only the measurements in the sinogram associated with
the neighborhood of the pixel with a simple multi-layer perception (MLP). While
achieving performance comparable to or better than successful CNNs like U-Net on
in-distribution test data, GLIMPSE significantly outperforms them on OOD samples
while maintaining a memory footprint almost independent of image resolution;
5GB memory suffices to train on 1024 × 1024 images, with each epoch requires
420 seconds. Because we built GLIMPSE to be fully differentiable it can also be
used as a plug-in component of arbitrary deep learning architectures, enabling feats
such as correction of miscalibrated projection orientations.

• FunkNN: Neural Interpolation for Functional Generation

3

In this chapter which is based on our published paper [20], we showcase an im-
portant feature of the developed coordinate-based framework, continuous image
representation for learning the distribution of functions, and answer the following
question: can we build continuous generative models that generalize across scales,
can be evaluated at any coordinate, admit calculation of exact derivatives, and are
conceptually simple? Existing MLP-based architectures generate worse samples
than the grid-based generators with favorable convolutional inductive biases. Mod-
els that focus on generating images at different scales do better but employ complex
architectures not designed for continuous evaluation of images and derivatives.
We take a signal-processing perspective and treat continuous image generation as
interpolation from samples. Indeed, correctly sampled discrete images contain all
information about the low spatial frequencies. The question is then how to extrapo-
late the spectrum in a data-driven way while meeting the above design criteria. Our
answer is FunkNN—a new convolutional network that learns how to reconstruct
continuous images at arbitrary coordinates and can be applied to any image dataset.
Combined with a discrete generative model it becomes a functional generator that
can act as a prior in continuous ill-posed inverse problems. We show that FunkNN
generates high-quality continuous images and exhibits strong out-of-distribution
performance thanks to its patch-based design. We further showcase its performance
in several stylized inverse problems with exact spatial derivatives.

• Trumpets: Injective Flows for Inference and Inverse Problems
Starting with this chapter, we focus on the Bayesian approach for solving ill-posed
inverse problems using deep generative models enabling uncertainty quantification.
Deep learning models for computational imaging often regress a single recon-
structed image. In practice, however, ill-posedness, nonlinearity, model mismatch,
and noise often conspire to make such point estimates misleading or insufficient.
The Bayesian approach models images and (noisy) measurements as jointly dis-
tributed random vectors and aims to approximate the posterior distribution of
unknowns. In this chapter which is based on our published paper [21], we design a
Bayesian framework, injective generative models called TRUMPET that generalize
invertible normalizing flows. The injective generators progressively increase di-
mension from a low-dimensional latent space. We demonstrate that TRUMPETs can
be trained orders of magnitudes faster than standard flows while yielding samples
of comparable or better quality. They retain many of the advantages of the standard
flows such as training based on maximum likelihood and a fast, exact inverse of
the generator. Since TRUMPETs are injective and have fast inverses, they can be
effectively used for downstream Bayesian inference. To wit, we use TRUMPET

priors for solving ill-posed inverse problems, outperforming competitive baselines
in terms of reconstruction quality and speed. We then develop an efficient method
for posterior characterization and uncertainty quantification with TRUMPETs by
taking advantage of the low-dimensional latent space.

4

• Deep Injective Prior for Inverse Scattering
This chapter applies our unsupervised algorithm based on Trumpets to solve inverse
scattering. In electromagnetic inverse scattering, the goal is to reconstruct object
permittivity using scattered waves. While deep learning has shown promise as an
alternative to iterative solvers, it is primarily used in supervised frameworks that are
sensitive to distribution drift of the scattered fields, common in practice. Moreover,
these methods typically provide a single estimate of the permittivity pattern, which
may be inadequate or misleading due to noise and the ill-posedness of the problem.
In this chapter which is based on our published paper [22], we develop a data-driven
framework designed for inverse scattering based on Trumpets. Unlike supervised
methods that necessitate both scattered fields and target permittivities, our method
only requires the target permittivities for training; it can then be used with any
experimental setup. We also introduce a Bayesian framework for approximating
the posterior distribution of the target permittivity, enabling multiple estimates and
uncertainty quantification. Extensive experiments with synthetic and experimental
data demonstrate that our framework outperforms traditional iterative solvers,
particularly for strong scatterers, while achieving comparable reconstruction quality
to state-of-the-art supervised learning methods like the U-Net.

• Conditional Injective Flows for Bayesian Imaging
The developed Bayesian frameworks in Chapters 5 and 6 involve an iterative
process to learn the posterior distribution for each new measurement which might
be slow. In this chapter which is based on our published paper [23], we design C-
Trumpets—conditional injective flows specifically designed for imaging problems
for fast and efficient posterior learning. Injectivity reduces memory footprint
and training time while low-dimensional latent space together with architectural
innovations like fixed-volume-change layers and skip-connection revnet layers, C-
Trumpets outperform regular conditional flow models on a variety of imaging and
image restoration tasks, including limited-view CT and nonlinear inverse scattering,
with a lower compute and memory budget. C-Trumpets enable fast approximation
of point estimates like MMSE or MAP as well as physically meaningful uncertainty
quantification.

• Deep Variational Inverse Scattering
Despite good performance for uncertainty quantification, C-Trumpets are unable to
generate high-quality posterior samples and MMSE estimates, significantly worse
than that of successful point estimators like U-Net. This chapter addresses this
issue and applies our method to the inverse scattering problem. In this chapter
which is based on our published paper [24], we design U-Flow, a Bayesian U-Net
based on conditional normalizing flows, which generates high-quality posterior
samples and estimates physically meaningful uncertainty. We show that U-Flow
significantly outperforms C-Trumpets in terms of posterior sample quality while
having comparable performance with the U-Net in point estimation.

5

Chapter 2

Scalable Local Image Reconstruction
with Implicit Neural Representation

Deep learning has been, for a considerable time, the method of choice for solving major
imaging problems. Convolutional neural networks like U-Net [25] have shown remarkable
performance across diverse tasks including computed tomography (CT) [14], magnetic
resonance imaging (MRI) [15], photoacoustic imaging [26] and inverse scattering [16].
This success is primarily attributed to its multiscale architecture with a large receptive
field that extracts features from the input image at different scales [27].

Despite their strong performance on low-dimensional 2D imaging problems, deep
learning architectures can become computationally expensive for high-dimensional im-
ages. This inefficiency arises because current deep neural networks reconstruct the entire
image simultaneously, necessitating substantial memory for back-propagation during
training. Additionally, interpreting models and analyzing reconstructions can be chal-
lenging. Simplified neural architectures can enhance our understanding of reconstruction
mechanisms, enabling the design of robust models with strong generalization.

Recently, implicit neural representations (INRs) [28–30] have emerged as a promising
tool for representing continuous signals, images, and 3D volumes. Unlike most existing
deep learning models that treat signals as discrete arrays, INRs map coordinates to
signal values using a deep neural network, typically a multi-layer perceptron (MLP),
resulting in a continuous signal representation. INRs have been widely applied to various
tasks, including solving partial differential equations (PDEs) [20, 28, 31], 3D shape
modeling [32–34], and image super-resolution [20, 35]. One of the most well-known
applications of INRs is 3D scene representation using neural radiance fields (NeRF) [36],
which has received significant attention in recent years. The recent work [37] endows
INRs with uncertainty quantification for 3D reconstruction from sparse and corrupted
data.

INRs have several advantages over standard deep learning models. Rather than

6

representing signals at a single resolution, INRs can conveniently interpolate signals in
a continuous space. This capability is particularly interesting because we can conve-
niently adjust the required memory making INRs well-suited for high-dimensional 3D
reconstructions [38, 39].

In this chapter, we leverage INRs to build a scalable coordinate-based reconstruction
pipeline for solving imaging inverse problems with local forward operators. In tasks
such as image denoising and super-resolution, the image intensity at a specific pixel is
primarily influenced by the observed image in the pixel’s neighborhood. Our proposed
model, termed MLPatch, recovers the image intensity at each pixel individually, using
local information extracted from the input image around that pixel. This information
is processed by a neural network to determine the image intensity at the target pixel,
enabling image reconstruction at any resolution or arbitrary continuous coordinate.

MLPatch leverages the benefits of INRs through its coordinate-based synthesis
pipeline. This allows training on mini-batches of both objects and pixels, resulting in
resolution-agnostic memory usage. Consequently, MLPatch can handle high-resolution
images and 3D shapes with minimal memory requirements. Remarkably, it requires only
3GB of memory to train on 1024×1024 images.

MLPatch facilitates model interpretation and reconstruction analysis. Thanks to its
coordinate-based synthesis pipeline, MLPatch is a shift and rotation equivariant model,
which enhances its ability to generalize across out-of-distribution data. Additionally, we
propose a novel adaptive patch geometry framework to learn the position of the relevant
features in the input image for each pixel, providing valuable insights for image analysis.

We then show how to extend the applicability of MLPatch to non-localized inverse
problems, benefiting from its robust generalization and computational efficiency. We
pre-train MLPatch as a denoiser and incorporate it as a denoising prior in a plug-and-play
(PnP) framework [40]. We show that the resulting unsupervised framework effectively
solves diverse imaging problems, including image in-painting, MRI and radio interferom-
etry imaging. Remarkably, the proposed framework inherits the strong generalization
capability of MLPatch on OOD data. At the same time, its coordinate-based synthesis
pipeline allows a pre-trained MLPatch model, initially trained on lower dimension images,
to handle inverse problems at arbitrary dimension with modest memory usage.

2.1 Background and related works

We consider imaging inverse problems discussed in (1.1) where we assume that n is
additive white Gaussian noise (AWGN), n ∼ N (0, σ2I). With this assumption, (1.2) can
be written as,

f∗ = argmin
f

1

2σ2
∥q−Af∥22 +R(f), (2.1)

7

<latexit sha1_base64="wLfjrQIb/kJ9l10jofvHmPW6IEw=">AAAEUHicjZPfbtMwFMa9tbAR/m1wyY1FNQmhqmonYL1jE9WENDFGRbdJdTU5jpNac5zIdkYrK2/ALTwYd7wFl9yB02RxhwrCUpKj33e+c5xj2U85U7rb/b623mjeur2xece7e+/+g4db249OVZJJQkck4Yk897GinAk60kxzep5KimOf0zP/8k2hn11RqVgiPup5SicxjgQLGcHaoiEKL7ZavU53seDfg9brH2CxTi62G30UJCSLqdCEY6XGvW6qJwZLzQinuYcyRVNMLnFExzYUOKZqYhZbzeGOJQEME2kfoeGC3nAEVyxVlWdWmrwduKpmeznVlWcignpKy9KwMrWhSDQs63nL/QyOlZrHvrXGWE/Vn1oBV2njTIf9iWEizTQVpPyxMONQJ7CYMwyYpETzuQ0wkczOBpIplphoexoeGlA7O0nf2brvUyqxTuRzg7CMYiZyO8sItYvoX4l4dp1oIzujIsX+dRxjEdgOAQ3R3BhUbN0PzTzP8xLOHJzV8MDBgxoKB0UNMwezGoYOhjWkqWI8Eb7TrlGdopymajh1cFpD4iCpYepgWkAPCfqpGoFBw7xSfTMsHMvacaURzM1x4SwLHrqCh3WXgYODGh45eFS2XnFSBtnTj3KzeHve/921091O71Xn5YcXrf1+eenAJngCnoJnoAf2wD54C07ACBAQgs/gC/ja+Nb42fjVXCtT16sveAxurKb3Gzktfh4=</latexit>

f

Target Image Observed Image
Flatten

…

pixels
<latexit sha1_base64="/fjGJbMbITPGDTNQk4LB3bF++ms=">AAAET3icjZNda9swFIbVJtta76vdLncjFgpjhJCUfeRuLQtlENa1ZWkLcSiyfOyI2rKR5C5B+Bfsdvthu9y/2N3uxuTYtdKRjQlsDs973nOkI+SlEZOq2/2+tt5o3rp9Z2PTuXvv/oOHW9uPTmWSCQojmkSJOPeIhIhxGCmmIjhPBZDYi+DMu3xb6GdXICRL+Ec1T2ESk5CzgFGiDDoeXmy1ep3uYuG/B603P9BiHV1sN/qun9AsBq5oRKQc97qpmmgiFKMR5I6bSUgJvSQhjE3ISQxyohc7zfGOIT4OEmE+rvCC3nD4VyyVlWdWmpwdvKpmeznVlmc8xGoKZWlcmdqYJwqX9ZzlfprEUs5jz1hjoqbyT62Aq7RxpoL+RDOeZgo4LQ8WZBFWCS7GjH0mgKpobgJCBTOzwXRKBKHKXIbjDsDMTsB7U/dDCoKoRDzXLhFhzHhuZhm67SL6VyKZXSeayMyoSDGnjmPCfdPBh8Cda+0WW/cCPc/zvIQzC2c13Ldwv4bcQl7DzMKshoGFQQ0hlSxKuGe1a1SnSKvJGk4tnNaQWkhrmFqYFtBxOXyqRqDdk7xSPX1SOJa1w0qjJNKHhbMseGALHtRdBhYOaji0cFi2XnFT2jW3H+Z68Xec/3trp7ud3qvOy+MXrb1++ejQBnqCnqJnqIdeoz30Dh2hEaII0Gf0BX1tfGv8bPxqVqnra1XwGN1Yzc3fPyt9nQ==</latexit>

K

Observation Pipeline

Reconstruction Pipeline

<latexit sha1_base64="c6nVQC/2zny0olNXY6cHWh6ieJ4=">AAAEZnicfZPRbtMwFIa9tcAIsHUg4IIbi2rSQFWVTBv0jk1UE9LEGBPdJjVV5ThOai1xItsZrUxehlt4Id6ASx4Bp8niblRYSnT0nfP/xz6WvTSiQtr2r5XVRvPO3Xtr960HDx+tb7Q2H5+JJOOYDHASJfzCQ4JElJGBpDIiFyknKPYicu5dvi/y51eEC5qwL3KWklGMQkYDipHUaNx65koylXMfxYmfq+1pZ/YqH7fadrfX23V29qDdtefLBE4VtN/9AfN1Mt5s9Fw/wVlMmMQREmLo2KkcKcQlxRHJLTcTJEX4EoVkqEOGYiJGat44h1ua+DBIuP6YhHN6Q+Ff0VRUmmkpsrbgMs/OYqmxpyyEckJKa1iJOpAlEpZ+1mI/hWIhZrGnpTGSE3E7V8BluWEmg95IUZZmkjBcHizIIigTWEwf+pQTLKOZDhDmVM8G4gniCEt9R5bbJ3p2nHzUvp9SwpFM+GvlIh7GlOV6lqHbKaL/FaLpdaGO9IyKEn3qOEbM1x18Ergzpdxi616gZnmel3Bq4LSGBwYe1JAZyGqYGZjVMDAwqCFJBY0S5pncNapLhMmJGk4MnNQQG4hrmBqYFtByGflajUC5p3mV9dRpoVjMHVc5jCJ1XChLw0NjeFh36RvYr+GRgUdl6yU3pVx9+2Gu5n/L0m/Nuf2y/g3OdrrOm+7e5932fq98dGANvAAvwTZwwFuwDz6AEzAAGHwD38EP8LPxu7nefNp8XpaurlSaJ+DGasK/PeqFSQ==</latexit>

(x, y)

<latexit sha1_base64="8wXXtZGniMVr0ZJ921PaXEPzQr4=">AAAEbnicfZPfatswFMbVJts671+6wW7GNrFQKCOEpLRb7tayUAZlXVeWthCFIMtyImrLRpI7G+G7Pc1ut5fZW/QRJseulXZlApvD7zvnO/Y5yI0DJlWv92dltdG8c/fe2n3nwcNHj5+01p+eyCgRhI5IFETizMWSBozTkWIqoGexoDh0A3rqnn8s9NMLKiSL+DeVxXQS4hlnPiNYGTRtvUJzrDTy8zFSNFULQy2ol+u0k+WTaavd6w4G2/2tHdjr9hbHBv0qaH+4BItzNF1vDJAXkSSkXJEASznu92I10VgoRgKaOyiRNMbkHM/o2IQch1RO9KJvDjcM8aAfCfNwBRf0WoV3wWJZ1aRlkbMBb/PsLKdae8ZnUM1paQ2rog7kkYKln7PcT+NQyix0TWmI1Vze1Ap4mzZOlD+YaMbjRFFOyh/zkwCqCBZbgB4TlKggMwEmgpnZQDLHAhNlduWgITWzE/Sz8f0SU4FVJN5qhMUsZDw3s5yhThH9LxGnV4kmMjMqUsxfhyHmnungUR9lWqPi011fZ3melzC1MK3hnoV7NeQW8homFiY19C30a0hjyYKIu1a7QnWKtJqs4dzCeQ2JhaSGsYVxAR3E6fdqBBod55Xq6uOiYlk7rDSCA31YVJaG+9Zwv+4ytHBYwwMLD8rWt2xKI7P9Wa4Xb8cxd61/82b9G5xsdfvvujtft9u7g/LSgTXwArwBm6AP3oNd8AkcgREg4Af4CX6B343L5vPmy+brMnV1pap5Bq6d5uZfad+JUw==</latexit>

f̂ [x, y]

<latexit sha1_base64="BC3IHQ7yAkhmdMxKtH45viQ+40g=">AAAEcnicfZPfbtMwFMa9tcAI/za4gxtDNQlBVbXTBr0AsYpqQpooY6LbpLlMjuOk1hIntZ3Rysp7cAtvxVtwwQPgNFncjQpLiY5+3/nOsU9iNwmZVO32r5XVWv3GzVtrt507d+/df7C+8fBIxqkgdEjiMBYnLpY0ZJwOFVMhPUkExZEb0mP3/H2uH19QIVnMv6hZQkcRDjjzGcHKoK9oAt9C1EM+fAkRP1tvtFvd7nZnawe2W+35skGnDBrvfoP5OjjbqA2QF5M0olyREEt52mknaqSxUIyENHNQKmmCyTkO6KkJOY6oHOn5tjO4aYgH/ViYhys4p1cc3gVLZOmZFiZnEy6r2VxMteUZD6Aa06I0LE1NyGMFi3rOYj+NIylnkWusEVZjeV3L4TLtNFV+d6QZT1JFOSkO5qchVDHMZw49JihR4cwEmAhmZgPJGAtMlPkyDupTMztBP5q6nxIqsIrFC42wCCLGMzPLADXz6H+JeHqZaCIzozzFnDqKMPdMB4/6aKY1yrfu+nqWZVkBpxZOK9izsFdBbiGvYGphWkHfQr+CEwsnOSwoTSQLY+5a8RJVRmk1WcGxheMKEgtJBRMLk6Ivp9/KwWh0mJWqqw9zx6I2KDWCQz3InUXBPVtwr+rSt7BfwX0L94vWS76fRuafCDI9fzuOuYGd6/ft3+Boq9V51dr5vN3YfVNcRbAGnoBn4DnogNdgF3wAB2AICBDgO/gBftb+1B/Xn9YbRerqSul5BK6sevMvBLyI6A==</latexit>

q = Af + n

<latexit sha1_base64="moAZQ0/ePbxeEK+SrstI16+8drw=">AAAEZnicfZPfbtMwFMa9tcAIsD8gxAU3FtUkhKoqmTboHZuoJqSJMiq6TWqqyXGc1FripLYzWll5A27h3XgDLnkEnCaLu1FhKdHR7zvfOfZJ7KURFdK2f62tN5r37j/YeGg9evxkc2t75+mZSDKOyRAnUcIvPCRIRBkZSiojcpFygmIvIufe1YdCP78mXNCEfZXzlIxjFDIaUIykRgN3erndsjvd7r6zdwDtjr1YJnCqoPX+D1is08udRt/1E5zFhEkcISFGjp3KsUJcUhyR3HIzQVKEr1BIRjpkKCZirBZbzeGuJj4MEq4fJuGC3nL41zQVlWdWmqxduKpmeznVlKcshHJCytKwMrUhSyQs61nL/RSKhZjHnrbGSE7EXa2Aq7RRJoPuWFGWZpIwXB4syCIoE1jMGfqUEyyjuQ4Q5lTPBuIJ4ghL/TUst0f07Dj5pOt+TglHMuFvlIt4GFOW61mGbruI/peIZjeJOtIzKlL0qeMYMV938EngzpVyi617gZrneV7CmYGzGh4ZeFRDZiCrYWZgVsPAwKCGUwOnBSwpSQWNEuYZ8QbVRmE0UcOJgZMaYgNxDVMD07IvI9+qwSh3kFeqpwaFY1nrVxpGkeoXzrLgsSl4XHfpGdir4YmBJ2XrFd9PufqfCHO1eFuWvoHO3fv2b3C213Hedg6+7LcOu+VVBBvgJXgFXgMHvAOH4CM4BUOAQQC+gx/gZ+N3c7P5vPmiTF1fqzzPwK3VhH8ByYaFWw==</latexit>

q

Figure 2.1: MLPatch; a small MLP processes the patch extracted from the observed
image around the given pixel (x, y). MLPatch has strong generalization on OOD data
and requires a small memory when training on high-resolution images like 1024× 1024
thanks to its coordinate-based synthesis pipeline.

where R(·) represents the regularization term encompassing prior knowledge about the
image structure. While traditional hand-crafted priors such as total-variation (TV) [10]
can yield good reconstructions, learning-based priors have brought about substantial
improvements [21, 41, 42].

2.1.1 local forward operators

In many inverse problems, the forward operator is localized; an image pixel primarily
relates to its neighboring pixels in the observed image. Here the assumption is that the
observed data is shaped like an image with the same coordinate system as the target.
This local forward operator suggests an opportunity to design efficient deep-learning
architectures. In the following, we discuss two inverse problems characterized by this
localization property.

Image denoising

Image denoising is the most straightforward inverse problem, where its forward operator
A in (1.1) is the identity matrix; each pixel in the clean image is solely connected to the

8

corresponding pixel in the noisy image, assuming uncorrelated noise and natural images.
Despite this simplicity, the presence of noise prompts the incorporation of ‘contextual’
information from neighboring noisy pixels. In principle, the required local neighborhood
size depends on the noise level and the prior distribution; stronger noises often necessitate
larger receptive fields for natural images [43].

Over the last decade, various deep learning approaches have achieved state-of-the-art
(SOTA) performance in image denoising. Some early approaches segmented the image
into patches and employed an MLP network to denoise each patch individually [44].
However, the optimal patch size for high-quality reconstructions depends on the noise
level, which makes it challenging to estimate. Zhang et al. [12] introduced DnCNN, an
image-to-image CNN for image denoising where the network depth is adjusted based on
the required receptive field size suggested by traditional methods [45]. To expand the
CNN’s receptive field and exploit more contextual information, the authors of [46] used
dilated convolutions. Concurrently, the U-Net [25] has been the backbone model for state-
of-the-art image denoising architectures [47–49], in particular, the DRU-Net [50] achieved
remarkable performance by integrating residual blocks [51] into the U-Net architecture.
Despite their success, these CNNs lack a systematic procedure for automatic adjustment
of the required receptive field size which can lead to overfitting the global features and
poor generalization. Moreover, their required memory scales with image resolution
making them computationally expensive for high-resolution image reconstruction.

Dark matter mapping in cosmology

In addition to denoising, we will consider a more complicated inverse problem, dark
matter mapping [4], which is of utmost importance for our understanding of weak
gravitational lensing [52] in cosmology. We will study the convergence that traces
the projected mass distribution of the Universe, effectively providing a map of dark
matter. The goal is to estimate the convergence field κ, the target image, from a related
observable, the shear field γ. The convergence is associated with the magnification of
observed galaxies, while the shear corresponds to the image’s stretching due to ellipticity
changes. The two fields are related as

γ = Aκ+ n, (2.2)

where n is the shear field noise, and the forward operator A is a convolutional filter (a
Fourier multiplier) with the 2D Fourier transform given by1

Dkx,ky =
k2x − k2y + 2ikxky

k2x + k2y
, for k2x + k2y ̸= 0. (2.3)

Clearly, this inverse problem has a well-posed forward operator and we can compute the
inverse of the forward operator A−1

1This is known as the weak lensing planar forward model.

9

A simple approach to recover the convergence field κ from the shear field γ is the
Kaiser-Squires (KS) method [4], the current standard in cosmology. The method consists
of directly applying A−1, the inverse of the forward operator, to the shear field, with
a subsequent Gaussian smoothing with an ad hoc setting of the smoothing scale. We
consider the naive KS inversion, without the Gaussian smoothing step, as follows,

κKS = A−1Aγ = κ+A−1An = κ+ ñ, (2.4)

where ñ = A−1An is colored noise. The recovery of the convergence field from the
naive inverted KS image is thus a denoising problem with colored noise and can be
interpreted as an inverse problem with a local forward operator. In Section 2.3.2, we later
exploit this representation to solve the problem using MLPatch.

Several methods have been proposed to incorporate prior information for dark matter
mapping, including Gaussian priors [53], sparsity [54–57], and more recently deep
learning, including CNNs [58] and score matching techniques [59].

2.1.2 Non-local forward operators

In general, inverse problems might have non-local forward operators where the image
intensity at a given pixel could be related to features globally distributed over the observed
image. One important example of this family is magnetic resonance imaging (MRI) [8,
60, 61] where the forward operator is given as follows,

A = MΩSF, (2.5)

whereMΩ is a mask indicating the sampled Fourier points, S corresponds to the sensitivity
maps of each coil and F is the Fourier transform. The locality of the forward operator is
lost with the Fourier transform.

A similar problem is radio interferometric imaging where we also acquire samples of
the Fourier transform of the image along curves [62–64]. In radio interferometric imaging,
aperture synthesis techniques are used to acquire specific Fourier measurements giving
an incomplete coverage of the Fourier plane. The inverse problem consists of recovering
the entire intensity image from Fourier measurements. In this case, the forward operator
in a simplified form writes

A = MRIF (2.6)

where MRI is a Fourier mask indicating the Fourier coverage of the observations. We
have omitted gridding and degridding operations in between other corrections from the
forward operator for the sake of simplicity; a more detailed description of the operator
can be found in [63, §3.2].

10

2.1.3 Supervised vs unsupervised learning for inverse problems

A standard approach for solving imaging inverse problems is regression using CNNs in a
supervised learning framework. Supervised learning enables fast image recovery from
observations [14, 16, 23, 27, 65]. However, it necessitates paired training data comprising
measurements and corresponding target images which is hard to obtain in many real
scientific problems. Additionally, the related models require re-training even for small
changes in the forward model.

To address this issue, unsupervised methods learn a data-driven prior from target
images. Deep generative models have been extensively used for solving imaging inverse
problems where a pre-trained image generator is used as the prior [21, 22, 66–69]. How-
ever, training deep generative models often requires large-scale datasets and substantial
computational resources [70, 71].

An alternative is to use a Gaussian denoiser as a prior in a plug-and-play (PnP)
framework [40, 72, 73]. PnP algorithms achieved SOTA performance across a variety
of image reconstruction tasks including image super-resolution and deblurring [50, 74],
computed tomography (CT) [75] and magnetic resonance imaging (MRI) [76, 77]. Since
PnP algorithms decouple the likelihood from the image prior they enable the use of
pre-trained denoisers. Compared to generative priors they are often cheaper in both
training and inference. Recently, the authors of [78] leveraged diffusion models [71, 79]
as a pre-trained denoiser in PnP framework and achieved state-of-the-art performance for
various image restoration tasks.

2.2 MLPatch: a local coordinate-based network

Our objective is to reconstruct the target image f ∈ RN×N×C from the observed image
q ∈ RM×M×C , as described in the forward equation (1.1), where C is the channel
dimension, N and M denote the resolution of the target and observed images. The
resolutions of f and q may be different but we assume that they share the same coordinate
system and semantics; thus f [x, y] and q[x, y] refer to the same continuous location in
both images. Example problems where this is meaningful are denoising and deblurring.
More generally, for many linear inverse problems, including computed tomography, it
will hold after applying the adjoint of the forward operator.

We then consider a local forward operator A where the intensity f [x, y] at pixel
(x, y) ∈ R2 relates only to a small neighborhood of (x, y) in q. We design an efficient
deep neural network, MLPatch, based on this locality hypothesis.

To recover the image at the target pixel (x, y) individually, we extract a local patch
around (x, y) from the observed image q containing K pixels. We denote the (flattened)
extracted patch by px,y ∈ RK×C . As illustrated in Figure 2.1, we process px,y using a

11

MLPθ : RK×C → RC parameterized by θ to approximate the image intensity f [x, y],

f̂ [x, y] = MLPθ(px,y). (2.7)

This coordinate-based image representation enables image recovery at any continuous
coordinate with small memory. We call our framework MLPatch. In the following
sections, we provide further details regarding the MLPatch architecture and introduce the
pre-processing filter, patch geometry, and training strategy.

2.2.1 Patch geometry and equivariance

A straightforward method to extract a patch is to directly select the pixels adjacent to the
target pixel (x, y). This however has several drawbacks: it requires a manual selection
of the optimal patch size, akin to traditional methods, which is hard to estimate; it
only permits image evaluation at on-grid pixels resulting in a single-resolution image
reconstruction.

Learnable patch geometry

To enable image reconstruction at arbitrary continuous coordinates, we define a patch
with learnable geometry centered around the target coordinate (x, y) by first defining a
set of learnable coordinate offsets,

∆I =
[
(x∆n , y

∆
n′)
]K
n,n′=1

. (2.8)

By learning the optimal coordinate offsets ∆I we can control the scale of the receptive
field of the patch. We then extract the patch by evaluating q at coordinates I(x,y) =
(x, y) + ∆I to get

px,y = q[I(x,y)]. (2.9)

We emphasize that the coordinates I(x,y) need not be aligned with the pixel grid; we use
differentiable bicubic interpolation to enable off-the-grid evaluation. Unlike most other
work using patches, we initialize ∆I to a circular geometry; this results in better rotation
invariance as discussed in the following section.

2.2.2 Coordinate-conditioned patch geometry

While the learnable patch geometry introduced in (2.8) can provide additional flexibility
to the network, the learned patch geometry is fixed for all the pixels in the image.
In practice, the location of the relevant information changes for different pixels. To
enable coordinate-conditioned patch geometry (CCPG), we use another neural network

12

CCPGψ : RK×C → R2K which takes a local patch around pixel (x, y) and estimates the
position of the coordinates inside the patch as follows,

∆ICCPG(x, y) = CCPGψ(px,y) (2.10)

We then evaluate q at (x, y)+∆ICCPG(x, y). The learned patch geometry ∆ICCPG(x, y)
can localize the position of the relevant information for image recovery at pixel (x, y) for
corrupted image q. We can improve performance by repeating this process T times:

∆I
(i)
CCPG(x, y) = CCPG(i)

ψ (p(i−1)
x,y) (2.11)

p(i)x,y = q[(x, y) + ∆I
(i)
CCPG(x, y)] (2.12)

where in each iteration 1 ≤ i ≤ T , we feed noisy image q evaluated at the estimated
patch position in the previous step p

(i−1)
x,y to a separate neural network CCPG(i)

ψ . As
we will show in our experiments in Section 2.3.4, the learned patch geometry indeed
improves over iterations.

2.2.3 Equivariance to shifts and rotations

In many imaging and pattern recognition tasks, it is desirable to work with functions that
are invariant or equivariant to shifts and rotations. Building such invariances into CNNs,
typically via group representation theory [80, 81] improves generalization both in and out
of distribution [82, 83].

It is easy to see that MLPatch is shift equivariant by design. Indeed, the patch at
position x+∆x in an image shifted by ∆x is exactly the same as the patch at position x
in a non-shifted image; the MLP thus receives the same input. This stands in contrast to
most mainstream multi-scale CNNs which are surprisingly sensitive even to 1-pixel shifts,
although equivariance can be restored by a careful design of pooling and downsampling
layers [84, 85].

Rotation equivariance is precluded for square patches, except for angles that are
multiples of π

2
. With circular patches, when the image is rotated the MLP receives the

same input only in a different order up to interpolation error. Rotation equivariance could
be implemented by applying the MLP to rotation invariant features [86–89] extracted
from the circular patch or by averaging the output over rotations. Even without this,
however, MLPatch is approximately rotation equivariant because natural images are
approximately locally rotation invariant and the patch geometry is initialized as circular;
cf. Section 2.3.5 for an empirical validation of this claim.

2.2.4 Noise suppression filter

The observed image q is often corrupted with significant noise making the inversion
challenging for the MLPθ in (2.7). To address this, we apply pre-processing filters

13

h ∈ Rs×s×T to the observed image before patch extraction,

q̃ = q ⋆ h, (2.13)

where ⋆ denotes the convolution operator, s is the filter size and T is the number of
filters. This process is reminiscent of filtering techniques commonly used in computed
tomography imaging [90]. We can also concatenate the filtered and noisy images along
the channel dimension.

To avoid manual adjustment of the receptive field, we apply the filter in the frequency
domain,

q̃ = F−1HFq, (2.14)

where F and F−1 are the forward and inverse 2D Fourier transforms, and the filter H is
treated as a learnable parameter derived from the data. The filter H can have large support
in image space, capturing global information, in contrast to the local convolutional
operator in (2.13). This large filter support can allow the MLP to overfit global features
and compromise model generalization. To mitigate this issue, we initialize the filter H
with an all-one Fourier representation, which corresponds to the smallest support in pixel
space. During training, the filter expands its support based on the image resolution, noise
level, and data distribution while keeping the filter support small. To further control
support size, we could add a regularization penalty based on the filter support but in
subsequent experiments presented in Appendix 2.6.2, we noticed that the learned filter
has small support even without any regularization.

2.2.5 Resolution-agnostic memory usage in training

For simplicity, we write the entire MLPatch pipeline as f̂(x) = MLPatchϕ(x,q) where
x = (x, y) is the target pixel. The model approximates the image intensity f̂(x) from
the observed image q. We denote all the trainable parameters of MLPatch by ϕ. This
includes the MLP weights θ, pre-processing filter parameters h, and CCPG weights ψ.
We consider a set of training data {(qi, fi)}Li=1 from observed and target images. We
optimize the MLPatch parameters ϕ using a gradient-based optimizer to solve,

ϕ⋆ = argmin
ϕ

L∑
i=1

N2∑
j=1

|fi(xj)−MLPatchϕ(xj,qi)|. (2.15)

At inference time, we can recover the image at any target pixel x from the observed
image qtest as f̂test(x) = MLPatchϕ⋆(x,qtest). From (2.15), it is clear that MLPatch can
be trained on mini-batches of both objects and pixels, leading to nearly constant memory
usage during training and inference. This flexibility also allows us to train MLPatch on
datasets with images in various resolutions.

14

GTMLPatchU-NetNoisy

In
-d
is
tri
bu
tio
n

O
O
D

17.2 dB 28.9 dB 29.2 dB

17.6 dB 28.1 dB21.8 dB

29.5 dB

27.5 dB

DnCNN IRCNN

29.6 dB

28.7 dB

DRU-Net

27.9 dB

29.2 dB

Figure 2.2: Performance comparison between different models on image denoising
(σ = 0.15) in resolution 128× 128.

2.3 MLPatch for inverse problems with local forward
operators

We assess the performance of MLPatch on inverse problems with local forward operators
including image denoising and dark matter mapping in cosmology. As baselines, we
consider BM3D [5] and state-of-the-art CNNs including DnCNN [12], IRCNN [46],
U-Net [25] and DRU-Net [50]. Further details regarding the MLPatch architecture and
training details are available in Appendix 2.6.1.

2.3.1 Image denoising

We consider zero-mean Gaussian noise n with σ = 0.15 and normalize images between
0 and 1. We train different models on 29900 samples from the CelebA-HQ [91] dataset.
Model performance is then assessed on 100 in-distribution test samples from CelebA-HQ,
as well as 300 OOD samples from the LSUN-bedroom dataset [92].

Figure 2.2 illustrates a visual comparison of reconstructions obtained from various
models on both in-distribution and OOD data on image denoising. It shows that MLPatch,
which uses a single MLP, can achieve comparable performance on image denoising with
SOTA CNNs on both in-distribution and OOD data and significantly outperform U-Net
on OOD data. The U-Net’s poor generalization can be attributed to its large receptive field
due to multiscale architecture. As expected, the locality of MLPatch prevents the MLP
from overfitting to global features resulting in a strong generalization out of distribution.
Table 2.1 presents the quantitative results in terms of PSNR and structural similarity index
measure (SSIM) [93]. It shows the importance of the pre-processing filters, learnable
patch geometry, and CCPG module.

15

Table 2.1: Quantitative comparison between different models on image denoising (σ =
0.15)

In-dist (CelebA-HQ) OOD (LSUN-bedroom)
PSNR SSIM PSNR SSIM

Noisy 16.0 0.29 16.3 0.30

BM3D [5] 28.3 0.84 27.6 0.81

DnCNN [12] 30.9 0.91 29.0 0.85

IRCNN [46] 31.1 0.91 29.6 0.87

U-Net [25] 30.2 0.90 24.1 0.81

DRU-Net [50] 30.7 0.91 29.0 0.86

MLPatch (no filter; ours) 30.3 0.88 29.0 0.85

MLPatch (no learnable patch shape; ours) 30.5 0.90 29.0 0.86

MLPatch (no CCPG; ours) 30.8 0.90 29.2 0.86

MLPatch (ours) 30.9 0.91 29.4 0.87

GTMLPatchU-NetKaiser-Squires DnCNN IRCNN DRU-Net

31.9 dB 33.8 dB33.4 dB 33.5 dB23.4 dB 33.8 dB

Figure 2.3: Performance comparison between different models on dark matter mapping
in resolution 128× 128.

2.3.2 Dark matter mapping

As shown in (2.4), the dark matter mapping problem can be interpreted as a denoising
problem with colored noise characterized by a local forward operator. We apply MLPatch
on the naive KS inversion κKS to recover the convergence field κ. For additional details
regarding the experimental setup, please refer to Appendix 2.6.3.

In Figure 2.3, the reconstructed convergence fields from the KS image are presented
for various models at resolution 128× 128. The performance parity between MLPatch
and SOTA CNNs indicates the relevance of the locality property derived from (2.4). In
the next section, we show that MLPatch has much better memory efficiency, particularly
for high-dimension image reconstruction tasks.

2.3.3 Computational efficiency and high dimensional image recon-
struction

As discussed in Section 2.2.5, MLPatch can run on GPUs with small memory by reducing
the pixel batch size in both training and inference. In Table 2.2, we compare the memory

16

Table 2.2: Model comparison for memory usage and training time on one epoch.

Params 128× 128 256× 256 512× 512 1024× 1024

DnCNN [12] 3M 23GB / 200s 78GB / 1680s > 80GB > 80GB

IRCNN [46] 3M 16GB / 120s 55GB / 500s > 80GB > 80GB

U-Net [25] 8M 6GB / 40s 16GB / 100s 60GB / 380s > 80GB

DRU-Net [50] 8M 7GB / 60s 22GB / 220s 79GB / 800s > 80GB

MLPatch (with filter; ours) 4M 3GB / 80s 3GB / 100s 5GB / 140s 15GB / 300s

MLPatch (no filter; ours) 3M 2GB / 60s 2GB / 80s 2GB / 120s 3GB / 260s

GTMLPatchNoisy
14.9 dB 30.6 dB

15.1 dB 29.6 dBIn
-d

is
tri

bu
tio

n
O

O
D

15.2 dB 34.2 dB

Figure 2.4: MLPatch reconstructions on in-distribution and OOD data for image denoising
(σ = 0.2) in resolution 1024× 1024.

usage and training time (per epoch) for various models when training on different image
resolutions with object batch size 64 and on a dataset with around 30000 training samples.
This comparative analysis clearly shows that MLPatch, with pixel batch size 512, has a
small memory usage and fast training even in high-resolutions like 1024× 1024, making
it suitable for real-world applications. Figure 2.4 illustrates the images reconstructed by
MLPatch on the image denoising task (σ = 0.2) in resolution 1024× 1024.

2.3.4 Adaptive patch geometry

As discussed in Section 2.2.2, MLPatch can adaptively estimate the patch geometry
based on the local information. Figure 2.5 illustrates the learned patch geometry for
different pixels. The estimated position of the relevant features aligns with intuition. The

17

(a) T = 1 (b) T = 3

Figure 2.5: The learned patch geometry for different pixels. As expected, larger T results
in more accurate localization of the relevant information.

possibility to identify features used to estimate a given pixel may be important for more
informed analysis and interpretation of the results. Moreover, this Figure shows that
larger T results in better localization of the relevant information.

2.3.5 Shift and rotation equivariance analysis

As discussed in Section 2.2.3, MLPatch is shift equivariant by design. In this section, we
assess its performance on image denoising when the input image is shifted or rotated.
As shown in Figure 2.6, we horizontally shift the input noisy image by 15 pixels. As
expected, MLPatch’s reconstruction is shifted by 15 pixels and exhibits no degradation in
the reconstruction quality.

Figure 2.7 demonstrates the MLPatch performance under 90◦ rotations. We observe
negligible degradation in reconstruction quality. Note that we did not use any data
augmentation to make the model robust under translation and rotation during training.

2.4 MLPatch for general inverse problems

As detailed in Section 2.3, MLPatch performs well on inverse problems with local
forward operators. In this section, we generalize it to non-local problems. Motivated by
strong performance on image denoising presented in Section 2.3.1, we use a pre-trained
MLPatch as a denoising prior in the plug-and-play (PnP) framework. In the following,

18

GTNoisy MLPatch

37.2 dB28.5 dB

N
o

sh
ift

Sh
ift

ed

37.2 dB28.5 dB

Figure 2.6: Shift equivariance of MLPatch; there is no degradation in reconstruction
quality when the input noisy image is shifted by 15 pixels.

we provide a brief overview of PnP.

2.4.1 Plug-and-Play ADMM

PnP [40] is a powerful framework for image reconstruction that leverages the separation
of data fidelity and regularization terms. PnP methods integrate pre-trained denoisers
into the reconstruction process, allowing them to handle a wide range of imaging tasks
without needing to train models for each specific task. The original PnP [40] framework is
developed based on the alternating direction method of multipliers (ADMM) [94], where
new variables u and v are introduced to decouple the data fidelity and regularization
terms in (1.1) using augmented Lagrangian,

min
f ,v

max
u

{
1

2σ2
∥q−Af∥22 +R(v) +

1

2η
∥f − v + u∥22

− 1

2η
∥u∥22

}
, (2.16)

where η is a parameter that controls the convergence rate. We alternate the optimization
over f , u and v as follows,

fk = h(vk−1 − uk−1;α), (2.17)
vk = proxR(fk − uk−1; η), (2.18)
uk = uk−1 + (fk − vk), (2.19)

19

GTNoisy MLPatch

N
o

ro
ta

tio
n

R
ot

at
ed

36.2 dB

36.3 dB25.8 dB

25.8 dB

Figure 2.7: Rotation equivariance of MLPatch; we observe negligible degradation in
reconstruction quality when the input noisy image is rotated by 90◦.

where α =
σ2

η
,

h(z;α) ≜ (A∗A+ α)−1(A∗q+ αz), (2.20)

proxR(z; η) ≜ argmin
f

1

2η
∥f − z∥22 +R(f), (2.21)

and A∗ is the adjoint of the forward operator. The proximal operator in (2.21) can be
interpreted as the denoiser of z with image prior R(·) and AWGN variance η. The key
idea of the PnP algorithm is to heuristically apply a powerful image denoiser, like a
pre-trained CNN, in (2.21). This has resulted in SOTA performance on various inverse
problems [50].

2.4.2 MLPatch-ADMM

We use a pre-trained MLPatch denoiser in (2.21) to solve imaging problems. Algorithm 1
describes the proposed MLPatch-ADMM framework. MLPatch-ADMM can evaluate
images at arbitrary coordinates thanks to the continuous image representation described
in (2.7). We note that by reducing the pixel batch size, it can run on machines with small
memory.

Image in-painting. We use the MLPatch denoiser trained on CelebA-HQ samples in
resolution 128× 128 as described in Section 2.3.1. We set α = 0.05 and run the ADMM

20

Algorithm 1 MLPatch-ADMM
Input: q, A, ϕ⋆

Parameter: α

f = 0, u = 0, v = 0;
for k = 0 to K − 1 do

fk ← h(vk−1 − uk−1;α);
vk(x)← MLPatchϕ⋆(x, fk − uk−1), ∀x ∈ vk;
uk ← uk−1 + (fk − vk);

end

DnCNNBM3DMasked MLPatch GT
28.0 dB 28.1 dB 28.1 dB

31.8 dB 33.8 dB 33.8 dB

Figure 2.8: Comparison on image in-painting (p = 30%) in resolution 128× 128 for PnP
algorithm with different denoising priors.

algorithm for a total of 90 iterations, a number we found sufficient to ensure convergence
for all the models involved in this study. In Figure 2.8, we compare different denoising
priors on in-painting problem at the original resolution 128× 128 where p = 30% of the
image pixels are randomly masked. We see that MLPatch-ADMM achieves high-quality
reconstructions comparable to those of DnCNN. Figure 2.9 showcases the performance
of MLPatch-ADMM at a higher resolution 512× 512 on both in-distribution and OOD
data. It shows that once MLPatch denoiser is trained, it can be used for solving general
inverse problems at any resolution with strong generalization to OOD data.

Magnetic resonance imaging (MRI). We evaluate MLPatch-ADMM on 2D MRI where
we train MLPatch denoiser on 7000 samples from single-coil brain images in FastMRI
dataset [60]. We consider an acceleration factor 4 with a Cartesian undersampling
pattern, where 4% of the central region is used, following [60]. Figure 2.10 shows
MLPatch-ADMM reconstructions on in-distribution brain images and OOD knee im-
ages in resolution 128 × 128. We see that MLPatch-ADMM is robust across different
anatomical regions.

Radio interferometry. We next apply MLPatch-ADMM to radio interferometric imaging.
We use non-uniform fast Fourier transform (NUFFT) to simulate radio interferometric

21

GTMLPatch-ADMMMasked

In
-d

is
tri

bu
tio

n
O

O
D

35.2 dB

29.6 dB

Figure 2.9: MLPatch-ADMM performance on image in-painting (p = 30%) for in-
distribution and OOD data in resolution 512× 512 when MLPatch denoiser is trained on
CelebA-HQ samples in low-resolution 128× 128.

measurements from 128× 128 images using an upsampling factor of 2 and Kaiser-Bessel
kernels with a size of 6 × 6 pixels; We use the simulated uv-coverage of the MeerKAT
telescope and the measurements with complex Gaussian noise at the SNR of 30dB.
We train MLPatch denoiser on 13000 images of simulated galaxies created from the
IllustrisTNG simulations [95]. Figure 2.11 illustrates the performance of the MLPatch-
ADMM at different resolutions. We find that MLPatch-ADMM can successfully address
inverse problems with non-local forward operators.

2.5 Summary

We introduced MLPatch, a coordinate-based local image reconstruction framework with
strong generalization to OOD data and resolution-agnostic memory usage during training.
Notably, MLPatch achieves SOTA performance on local inverse problems such as image
denoising and dark matter mapping, all while maintaining a significantly smaller memory
footprint compared to standard CNNs. MLPatch can generate reconstructions in higher
resolutions than those encountered during training. In the next chapter, we show that this
coordinate-based reconstruction pipeline can be generalized for CT image reconstruction
resulting in an efficient framework with strong generalization.

22

GTMLPatch-ADMMBP

33.7 dB

In
-d

ist
rib

ut
io

n
O

O
D

33.4 dB

21.8 dB

27.3 dB

Figure 2.10: MLPatch-ADMM performance on MRI for in-distribution and OOD data in
resolution 128× 128.

2.6 Appendix

2.6.1 Network architecture and training details

For MLPatch architecture, we use a simple MLP comprising 8 hidden layers, each with
dimensions [1024, 1024, 1024, 512, 512, 512, 256, 256] with ReLu activations. As shown
in Figure 2.12, we used circular patch geometry consisting of 5 concentric circles each
with 16 pixels plus the center pixel, in total 81 pixels. When learning the patch geometry,
we used the circular patch as initialization. We concatenated the real and complex values
of the filtered input image along the channel dimension before patch extraction.

Our model is implemented in PyTorch [96] and we use an Nvidia A100 GPU with
80GB memory. All models in Section 2.3 were trained for 200 epochs with ℓ1 loss
using Adam optimizer [97] with learning rate 10−4 and object batch size 64. In the case
of MLPatch, for each mini-batch of random objects, we performed optimization on a
random mini-batch of 512 pixels 2 times.

2.6.2 Learned filter

In this section, we analyze the learned filter H in (2.14) to understand how it processes
noisy images. As shown in Figure 2.13, the learned filter remains localized in image
space after training which prevents the MLP from overfitting the large-scale features.

23

GTMLPatch-ADMMBP

51
2×
51
2

39.6 dB

42.2 dB-6.8 dB

18.3 dB

12
8×
12
8

Figure 2.11: MLPatch-ADMM performance on radio interferometry imaging; the ML-
Patch denoiser is trained on 128×128 images, we can run the MLPatch-ADMM algorithm
at any resolution.

2.6.3 Experimental details: dark matter mapping

We used the κTNG convergence maps [98], generated from the widely used IllustrisTNG
hydrodynamical simulation suite [99–103], to build the train and test datasets for the
models presented in Figure 2.3. The κTNG dataset consists of 10 000 realizations of
5× 5deg2 convergence maps for each of the 40 different source redshifts with 0 < zs <
2.6. For the sake of simplicity, we have selected a single redshift slice, the 20th plane,
corresponding to zs = 0.858 for our experiments.

From the simulated convergence fields, κ, we have constructed the observed shear
fields using Equation 2.2. We follow [104, §5.2.1] for the noise simulation. The shear
noise n for each component of the shear and for each pixel i is simulated as ni ∼ N (0, σ2

i).
The per-pixel standard deviation can be computed as follows

σi =
σe√

(θ2/n2
grid)× ngal

, (2.22)

where σe is the standard deviation of the intrinsic ellipticity distribution, θ2 is the area of
the simulated field in arcmin2, n2

grid is the total number of pixels in the field, and ngal is
the number density of galaxy observations given in number of galaxies per arcmin2. We
have used σe = 0.37, which is the typical intrinsic ellipticity standard deviation, θ = 300
arcmin, which corresponds to the κTNG simulated area of 5×5deg2, ngal = 30 arcmin−2,
which corresponds to the projected number density expected in Stage IV surveys like
Euclid [105], and ngrid = 128.

24

Figure 2.12: Circular patch geometry

Data SpaceFourier Space

Figure 2.13: The learned filter H in (2.14); as expected, it has a small support in image
space which prevents the MLP from overfitting large-scale features.

25

Chapter 3

GLIMPSE: Generalized Local Imaging
with MLPs

In Chapter 2, we showed that our proposed local processing network can effectively solve
a variety of imaging problems including image denoising, dark matter mapping and MRI
with strong generalization on out-of-distribution data. In this chapter, we extend our local
processing framework for an important imaging modality, computed tomography.

Convolutional neural networks (CNNs) have become the standard approach for
tomographic image reconstruction [106]. U-Net [25] has emerged as an architecture
underpinning numerous deep learning reconstruction methods, applied with great success
to a variety of imaging problems including computed tomography (CT) [14], magnetic
resonance imaging (MRI) [65] and photoacoustic tomography [26]. Its success is often
attributed to its particular multi-scale architecture [27].

At the same time, certain aspects of multi-scale CNNs complicate their application to
real problems. Despite good performance on in-distribution test images similar to the
training data, they often overfit specific image content resulting in poor generalization
to distribution shifts in image content and sensing as shown in this chapter. Model-
based networks attempt to address this drawback by integrating the forward and adjoint
operators into multiple network layers or iterations [107–112]. However, the required
memory for CNNs directly scales with image resolution [113]. For instance, the widely
used U-Net requires a substantial 140GB memory and 2600 seconds per epoch when
training on 1024 × 1024 images using two Tesla A100 GPUs. This latter drawback is
further exacerbated with model-based networks such as learned primal-dual (LPD) [108],
which achieves strong performance but requires over 80GB memory and very long
training time even at a lower resolution of 512× 512. This increased memory demand
is due to the repeated application of the forward model and its adjoint in forward and
backward passes of the neural network. This makes standard CNN-based pipelines
impractical for real-world scenarios involving resolutions beyond 512× 512.

26

Image Sinogram FBP

Figure 3.1: A point source image, its sinogram, and the sparse view FBP reconstruction.
While the corresponding measurements for this pixel have sinusoidal support in the
sinogram, this information is diffused all over the FBP image. The contrast of the FBP
image has been stretched to emphasize this effect.

To better understand the mechanics behind the poor generalization of U-Net-like
CNNs which compute the reconstruction from filtered back-projections (FBP) [114], we
designed an experiment as follows. Figure 3.1 shows an object with a point source, its
sparse view sinogram measurements with sinusoidal support, and the FBP reconstruction.
It is evident that the FBP is supported over the entire field of view. This observation
raises the question of the ideal receptive field size for CNNs like U-Net: a large receptive
field may be beneficial to capture all information correlated with the value of a target
pixel [115].

However, models with large receptive fields often overfit specific image content in
training data which leads to poor generalization on out-of-distribution samples [20].
Indeed, Figure 3.2 shows that while U-Net produces good results when tested on in-
distribution data similar to training data (here chest images), it performs poorly on
out-of-distribution (here brain images). This makes CNNs like U-Net problematic in
domains such as medical imaging where robustness over distribution shifts and other
uncertain and variable factors is of relevance [116].

In this chapter, we introduce a new deep learning imaging architecture termed
GLIMPSE—a simple local processing neural network adapted to the geometry of com-
puted tomography. As shown in Figure 3.3, to recover the image intensity at a given
target pixel, we use an MLP that takes only the local sinogram measurements associated
with this pixel and its neighbors. There is no back-projection step. This localization
results in robust performance, particularly when dealing with OOD data.

At the same time, this design makes GLIMPSE highly computationally efficient; it
permits training on mini-batches of both pixels and objects. This flexibility leads to fast
and efficient training, requiring a small, fixed amount of memory almost independent
from the image resolution. This allows training GLIMPSE on large, realistic images in
resolution 1024× 1024 and beyond.

We built GLIMPSE to be fully differentiable, all the way down to the sensing and

27

GTU-NetFBP

In
lie

r (
ch

es
t)

O
ut

lie
r (

br
ai

n)

17.0 dB 29.0 dB

20.4 dB 19.8 dB

Figure 3.2: Performance of U-Net [25] trained on chest images: evaluation on in-
distribution test data (chest samples) and OOD brain samples shows that the large
receptive field of U-Net hinders its ability to generalize on OOD samples, with its PSNR
even falling below that of FBP reconstruction.

Acquisition

R
e
s
h
a
p
eReconstruction

Figure 3.3: GLIMPSE; a single MLP processes the measurements associated with the
pixel (x, y) and its neighbors extracted from the sinogram. This local processing network
has promising performance on OOD data while being computationally efficient all due to
its locality.

28

integration geometry. This has several advantages over the standard CNN-based archi-
tectures. For instance, most methods for CT image recovery strongly rely on the sensor
geometry information encoded in the forward operator, whether explicitly, as seen in
methods like FBP [114], SART [117], LGS [107], and LPD [108] or implicitly as used
in U-Net [25] when taking FBP as input. This fixed geometry is a problem when faced
with uncertainties in calibration or blind inversion problems where the sensor geometry
information is entirely unavailable. While such uncertainties might degrade the quality of
reconstructions of the standard methods [118, 119], our differentiable architecture allows
the optimization of projection angles which can estimate the right projection angles and
improve the quality of reconstructions.

3.1 Related works

Model-based vs model-free inversion. There are two major classes of deep-learning-
based approaches to CT: model-based and model-free inversion. In the model-based
approach, neural networks process raw sinograms and map them to the desired CT images
while the Radon transform is integrated into multiple network layers or iterations [107,
108, 111]. These methods perform remarkably well across various inverse problems,
but they are computationally expensive, especially during training [113]. The high
computational cost is due, among other factors, to the repeated application of the Radon
transform and its adjoint in forward and backward passes of the neural networks.

In contrast, model-free approaches offer a computationally cheaper alternative. The
Radon transform (or its adjoint) is only used once in FBP computation before the
neural network [14, 23, 120]. However, these models often require deep networks with
a large receptive field to leverage the information delocalized across the FBP image.
Recently, Hamoud et al. [121] used a measurement rearrangement technique to stratify
back-projected features by angle and thus enable the use of smaller, shallower CNNs.

MLPs for imaging A multi-layer perceptron (MLP) is a fundamental neural archi-
tecture used in a great variety of applications. Recently, vision transformers [122] and
MLP-mixers [123] have shown promising performance in various computer vision tasks
like image classification [124] and image restoration [125]. While, unlike CNNs, a vanilla
MLP lacks a good inductive bias for imaging, in particular translation equivariance, vi-
sion transformers and MLP-mixers restore it by processing patches instead of entire
images [126]. However, these strategies require large datasets and networks to achieve
performance comparable with CNNs. In our work, we propose a differentiable local
processing network for CT imaging, demonstrating that even a small MLP can achieve
performance on par with or even surpassing that of popular image-to-image CNNs.

Uncalibrated CT imaging. In CT imaging, the acquisition operator is often known
but an insufficient number of measurements is obtained. This may occur when a reduced

29

number of projections is used to minimize radiation exposure or shorten acquisition time
(sparse view) or when only a limited cone of projection angles may be used (limited
view). In certain situations, the acquisition operator is only partially or approximately
known. Neglecting this uncertainty can result in a significant drop in the quality of
the reconstructions [118]. To tackle this challenge, total least squares approaches have
been developed, involving the perturbation of an assumed forward operator [127–129].
Recently, Gupta et al. [119] used auto-differentiation and gradient descent to estimate the
uncalibrated forward operator in a self-consistent manner.

3.2 Computed tomography

CT imaging [130] plays an important role in many applications including medical diagno-
sis [1], industrial testing [131], and security [132]. We consider 2D computed tomography
where the image of interest f(x) with size D ×D is reconstructed from measurements
of (X-ray) attenuation. The forward model is the Radon transform Rf which computes
integrals of f(x) along lines L,

Rf(L) =

∫
L

f
(
x
)
|dx|. (3.1)

We parameterize a line L by its distance from the origin t and its normal vector’s angle
with the x-axis α. We can then reformulate (3.1) as

Rf(α, t) =

∫ ∞

−∞
f
(
x(z), y(z)

)
dz, (3.2)

where,

x(z) = z cos(α)− t sin(α), (3.3)
y(z) = z sin(α) + t cos(α). (3.4)

The image of interest is observed from a finite set of r different viewing directions
{αm}rm=1, each having N parallel, equispaced rays. The measurements of the attenuation
are then represented as a transform-domain “image” s ∈ RN×r called a sinogram.

Standard methods for CT image recovery discretize the image of interest f(x) into a
discrete image f ∈ RN×N supported on an N ×N grid. After discretization, the forward
model can be written as

s = Af + n. (3.5)

where A is the matrix of the discretized Radon transform and we model the measurement
noise by n. The most commonly used analytical inversion method is the filtered back-
projection (FBP),

fFBP
x,y =

r∑
m=1

s̃[y cos(αm)− x sin(αm),m], (3.6)

30

where fFBP ∈ RN×N is the FBP reconstruction, s̃[·,m] = s[·,m] ⋆ h, h is a certain high-
pass filter, ⋆ denotes the convolution and linear interpolation is used in (3.6) for evaluating
s̃[x, ·] when x is not an integer. As shown in Proposition 3.5.1 in Appendix 3.5.3,
while the Ram–Lak filter is the optimal choice for h in the case of noise-free complete
measurements, it can amplify the noise in real-world noisy measurements, leading to
poor reconstruction.

With measurement noise and an incomplete collection of projections, tomographic
image reconstruction from a sinogram becomes an ill-posed inverse problem that requires
an image prior. In the following section, we introduce our proposed method, GLIMPSE,
designed so that it respects the geometry of CT imaging.

3.2.1 GLIMPSE: Local imaging with MLPs

To recover the image f(x, y) at location x = (x, y), we identify the elements in the
sinogram s influenced by this pixel. As illustrated in Figure 3.1, the corresponding
measurements for the pixel (x, y) are supported along a sinusoidal curve in the sinogram;
we denote them SINx,y ∈ Rr, with elements being given as

SINx,y[m] = s[y cos(αm)− x sin(αm),m]. (3.7)

Similar to (3.6), we can use interpolation to evaluate s[x, ·] for non-integer x. This
localization is formally captured by the following proposition.

Proposition 3.2.1 (Impulse response of Radon transform). Let f(u, v) = δ(u− x, v− y)
be the Dirac delta distribution in R2 at location (x, y). Its Radon transform (in the sense
of distributions) is

Rf(α, t) =

{
1, if t = r cos(α + φ)

0, otherwise,

where r =
√
x2 + y2, φ = atan2(y, x), and atan2(·, ·) the four-quadrant arctangent.

The proof is standard and outlined for completeness in Appendix 3.5.4.

The sinusoidal portion of the sinogram SINx,y should have enough information to
recover the pixel intensity (x, y) as it contains all the measurements associated with this
pixel. Note however that the pixel at (x, y) influences the integral over any line passing
through it and thus also the parts of the sinogram corresponding to pixels on those lines.
This can be loosely thought of as a consequence of non-orthogonality of the Radon
transform. The above statement is thus more precisely a statement about the filtered
sinogram since information is “relocalized” by the high-pass filtering step in the FBP.

31

This is related to the celebrated support theorems of Sigurdur Helgason, Jan Boman,
and others [133–136]. These theorems state that under appropriate conditions a compactly-
supported image may be recovered from a compactly-supported subset of its Radon data.
These results do not involve filtering explicitly, but its influence is implicit. They apply
to idealized sampling and SNR conditions.

Indeed, the high-pass filtering in the FBP is derived for noiseless data and a continuum
of observed angles. In reality the projections are corrupted with noise and come from
a sparse subset of projection angles. We address this by 1) incorporating “contextual
information” about the target pixel and 2) letting the filter be learnable to adapt it to the
specifics of discretization and noise.

As shown in Figure 3.3, we exploit the spatial regularity of medical images (encoded
in training data) by using the measurements that provide local information around (x, y).
This ensures that the model does not overfit large-scale features in the training data
while maintaining low computational complexity. We thus additionally extract from the
sinogram the regions associated with the neighboring pixels around (x, y) and store this
information in vector px,y,

px,y = {SINx+dn,y+dn′ |n, n′ = −⌊C/2⌋ , · · · , ⌊C/2⌋}, (3.8)

where K = C2 determines the number of neighboring pixels around (x, y) for an odd
number C ≥ 1 and d denotes the scale of the window which adjusts the receptive field.
In order to recover the image at pixel (x, y) from px,y, we use a multi-layer perception
MLPθ : Rr×K → R parameterized by θ,

f̂(x, y) = MLPθ
[
px,y

]
, (3.9)

which estimates the pixel intensity f̂x,y from the local features around (x, y). We call
the proposed model GLIMPSE, standing for generalized1 local imaging with MLPs. In
the following section, we describe how our implementation of GLIMPSE allows to adapt
to noisy measurements. We then propose a training strategy with resolution-agnostic
memory usage in Section 3.2.3. In Appendix 3.5.2, we show how GLIMPSE compensates
for calibration errors. Further details for network architecture and training can be found
in Appendix 3.5.1.

3.2.2 Adaptive filtering for noisy measurements

The Ram–Lak high-pass filter is the optimal filter h for the FBP reconstruction in the case
of complete noise-free measurements; see Appendix 3.5.3 for a standard demonstration.
In real applications, however, we always encounter noisy projections from a subset of

1The word “generalized” emphasizes that locality is also encoded in the transform domain, not just in
real space as in some of earlier work.

32

angles. The Ram–Lak filter is then suboptimal and typically degrades the reconstruction
quality as it amplifies high-frequency noise. Alternative filters with lower amplitudes in
high frequencies like Shepp–Logan, cosine, and Hamming have been used to mitigate
the noisy measurements, but they are all ad hoc choices. It is advantageous to adapt h
to the specifics of noise and sampling strategy in the target application. To design this
task-specific filter, we let MLPθ take as input the filtered sinogram s̃[·,m] = s[·,m] ⋆ h
and consider the filter h (in Fourier space) as trainable parameters to be optimized during
training. This allows us to automatically learn a noise-adaptive filter from data, again
with almost no additional computational cost.

3.2.3 Resolution-agnostic memory usage in training

To simplify notation, we denote the entire GLIMPSE pipeline described above by f̂(x) =
GLIMPSEϕ(x, s). The inputs are the target pixel coordinates x = (x, y) and the sinogram
s; the output is an estimate of f(x, y). The parameters ϕ denote the trainable param-
eters of GLIMPSE including the MLP weights θ, the projection angles {αm}rm=1 (see
Appendix 3.5.2), the adaptive filter h and the window receptive field scale d. We consider
a set of training data {(si, fi)}Li=1 from the noisy sinograms and images. We optimize the
GLIMPSE parameters ϕ using gradient-based optimization to minimize

ϕ⋆ = argmin
ϕ

N2∑
i=1

L∑
j=1

|GLIMPSEϕ(xi, sj)− fj(xi)|2. (3.10)

At inference time, we simply evaluate the image intensity at any pixel as f̂test(x) =
GLIMPSEϕ⋆(x, stest). One major advantage of GLIMPSE compared to CNNs like U-
Net and LPD is its memory and compute complexity. CNN-based models exhibit
memory requirements that scale directly with image resolution, making them prohibitively
expensive for realistic image resolutions. As shown in (3.10), GLIMPSE can be trained
using stochastic gradient-based optimizers with the flexibility to select mini-batches
from both the objects and pixels. This adaptability in mini-batch pixel selection grants
a memory footprint agnostic to resolution making GLIMPSE suitable for training on
realistic image resolutions like 1024× 1024 and higher.

3.3 Experiments

We simulate parallel-beam X-ray CT with r = 30 projections uniformly distributed
around the object with additive Gaussian noise to reach a signal-to-noise ratio (SNR) of
30 dB. The reconstruction quality is quantified using the peak signal-to-noise ratio (PSNR)
and Structural Similarity Index (SSIM) [93]. We compare the performance of GLIMPSE

with successful CNN-based models: U-Net [25], learned gradient scheme (LGS) [107]

33

19.7 dB

In
-d

is
tri

bu
tio

n
ch

es
t i

m
ag

es
O

ut
-o

f-d
is

tri
bu

tio
n

br
ai

n
im

ag
es

GTGLIMPSELPDLGSU-NetFBP

18.2 dB 16.0 dB 24.9 dB 26.5 dB 25.3 dB

15.9 dB 12.9 dB 6.9 dB 22.9 dB 23.7 dB

GTGLIMPSELPDLGSU-NetFBP

18.2 dB 31.0 dB 30.7 dB 31.7 dB 31.5 dB

19.7 dB 30.4 dB 31.4 dB 32.0 dB 31.4 dB

Figure 3.4: Performance of different models trained on training data of chest images
evaluated on in-distribution and OOD samples for sparse view CT image reconstruction.
GLIMPSE has excellent performance on OOD data due to its localized MLP, significantly
better than U-Net [25] and LGS [107] and comparable with LPD [108].

and learned primal-dual (LPD) [108] for sparse view CT image reconstruction. We use
35820 training samples of chest images from the LoDoPaB-CT dataset [137] in resolution
128 × 128. Model performance is assessed on 64 in-distribution test samples of chest
images, while 16 OOD brain images [138] are included to evaluate the generalization
capability of the models. For further information regarding the network architectures and
training details please refer to Section 3.5.1.

In Section 3.3.1, we compare GLIMPSE to CNN-based models for sparse view CT
image reconstruction on both in-distribution and OOD data. In Section 3.3.2, we analyze
the computational efficiency of the aforementioned models. We analyze the learned
filters h across different measurement noise levels in Section 3.3.3. In Appendix 3.5.2
we consider the uncalibrated and blind scenarios.

34

Table 3.1: Comparison of different models for sparse view CT image reconstruction

(a) The reconstruction quality averaged on 64 test samples

In-distribution (chest) Out-of-distribution (brain)
PSNR SSIM PSNR SSIM

FBP [114] 17.0 0.17 17.1 0.22

U-Net [25] 30.1 0.84 15.1 0.28

LGS [107] 30.9 0.84 20.5 0.54

LPD [108] 31.6 0.86 25.5 0.76

GLIMPSE 30.9 0.84 25.1 0.79

(b) Memory usage and training time (batch size 64)

GLIMPSE U-Net [25] LGS [107] LPD [108]

Num params 900k 7800k 19k 400k

128× 128 4GB / 114s 6GB / 34s 4GB / 384s 13GB / 963s

256× 256 4GB / 123s 16GB / 117s 13GB / 575s 41GB / 1517s

512× 512 4GB / 185s 53GB / 460s 45GB / 1682s > 80GB

1024× 1024 5GB / 419s > 80GB > 80GB > 80GB

35

3.3.1 Sparse view CT image reconstruction

The upper row of Figure 3.4 and Table 3.1a show the performance of different models on
in-distribution test samples of chest images. This experiment shows that GLIMPSE, by
leveraging only a single MLP network, can outperform successful CNNs like U-Net and
achieve comparable performance with LGS and LPD methods.

The lower row of Figure 3.4 and Table 3.1a shows a comparison of the performance of
various models trained on chest images when applied to OOD brain images. This experi-
ment demonstrates that while U-Net excels on in-distribution samples, its performance
significantly deteriorates on OOD data.

On the contrary, GLIMPSE shows strong performance on OOD data. Although
LPD’s performance on OOD data is sometimes comparable or slightly better than that
of GLIMPSE, it comes at a very high memory and compute cost due to the repeated
application of the forward operator and its adjoint in the network architecture; we analyze
this in the next section.

3.3.2 Computational efficiency

The fact that LPD far outperforms U-Net on OOD data is a testament to the benefits of
incorporating the forward operator in the architecture. On the other hand, as evident from
Table 3.1b, it comes at the cost of unfavorable training time and memory footprint which
rapidly worsens with resolution. Table 3.1b shows that CNN-based models may become
impractical already at resolutions like 512× 512, even on GPUs with 80GB memory.

On the other hand, GLIMPSE is computationally efficient; the memory usage remains
almost unaffected by image resolution. Remarkably, GLIMPSE can be trained with only
5GB memory in less than a day, even when dealing with resolutions of 1024 × 1024
and higher. Figure 3.5 shows the performance of GLIMPSE on in-distribution and
OOD samples in resolution 512× 512 where we considered 40dB measurement noise.
This experiment demonstrates that a relatively small MLP, with almost 10 times fewer
parameters than a standard U-Net, can achieve strong performance in realistic high-
resolutions while maintaining a rather modest memory footprint.

3.3.3 Learned filter

In this section, we analyze the behavior of the learned filter obtained through training of
GLIMPSE introduced in Section 3.2.2 across datasets with different measurement noise
levels. This analysis provides useful signal processing insights into how the properties of
the learned filter are influenced by varying noise levels.

In Figure 3.6 we show the frequency response of the learned filters, alongside with

36

GTGLIMPSEFBP

13.5 dB 30.6 dB

14.0 dB 33.3 dB

(a) In-distribution chest samples

GTGLIMPSEFBP

18.4 dB 33.8 dB

14.2 dB 24.7 dB

(b) OOD brain samples

Figure 3.5: GLIMPSE’s performance in resolution 512 × 512 trained on chest training
data with r = 30 projections and 40dB noise; GLIMPSE requires only 4GB memory and
can be trained in less than 10 hours on a single GPU.

37

0 50 100 150 200 250
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
m

pl
itu

de

Ram-Lak
Shepp-Logan
Hamming
Learned filter (no noise)
Learned filter (40dB SNR noise)
Learned filter (30dB SNR noise)
Learned filter (20dB SNR noise)

Figure 3.6: The learned filter for datasets with different noise levels, all the filtered are
initialized by Ram-Lak filter in GLIMPSE architecture. By increasing the noise level, the
filter assigns smaller amplitudes for high-frequencies to suppress the noise and aligns
with the optimality of the Ram-Lak filter for noise-free complete measurements shown in
Section 3.5.3.

standard hand-crafted filters such as Ram-Lak, Shepp-Logan, and Hamming filters. These
learned filters are derived from GLIMPSE training on datasets characterized by different
levels of noise.

As expected from the discussion in Appendix 3.5.3, the learned filter for noise-
free measurements is similar to the Ram–Lak filter, with a relatively high amplitude
in high frequencies. As the noise level increases (by decreasing the noise SNR), the
filter progressively takes smaller values in high frequencies to suppress the noise. This
confirms that GLIMPSE can autonomously adapt the characteristics of the filter according
to the noise level observed in the training data.

3.4 Summary

We used a natural notion of locality for CT which is adapted to sinogram geometry. This
is different from CNNs which reconstruct the image as a whole, and where the notion
of locality (at small scales) is in the sense of real image space. Our approach adopts
a coordinate-based strategy, focusing on processing the sinusoidally-shaped regions of
the sinogram associated with pixels using a small MLP. Our results demonstrate that
this localized processing framework does significantly improve the robustness to OOD

38

data while maintaining nearly constant memory requirements across different resolutions,
being computationally efficient even at realistic high-resolutions.

While the memory required by GLIMPSE varies little with image resolution, a draw-
back of the current scheme is that memory and computing costs increase as the number
of projections r. A possible alternative to the standard MLP architecture which is the
culprit for this is to use mixture-of-experts layers [139–141], which selectively employ
smaller MLPs for processing inputs. This mixture-of-experts approach is an effective
drop-in replacement for standard MLP layers of language transformers [142] and vision
transformers [122].

GLIMPSE could be integrated with various imaging problems involving line integrals
in forward operators such as photoacoustic [143, 144] and cryo-electron tomography
(cryoET) [145, 146]. Its future full-3D adaptation may yield efficient architectures that
resolve fundamental memory issues with applications of deep learning in 3D medical
imaging. This extension is particularly interesting given the ability of GLIMPSE to operate
locally and its near-fixed memory requirement across resolution, which makes it an ideal
choice for large 3D objects.

3.5 Appendix

3.5.1 Network architecture and training details

For GLIMPSE architecture, we use an MLP network comprising 9 hidden layers, each with
dimensions [256, 256, 256, 256, 128, 128, 128, 64, 64] with ReLu activations. The input
to the MLP network consists of sinusoidal curves sampled from K = 92 neighboring
pixels. To prevent edge artifact of the circular convolution, we apply zero-padding with
a size of 512 to the sinogram before applying the filter h. Linear interpolation is used
in (3.7). For the experiment in resolution 512 × 512 in Section 3.3.2, we use a larger
network with hidden layer dimensions [1024, 1024, 1024, 512, 512, 512, 256, 256] to
enhance the quality of reconstructions.

We implement our model in PyTorch [96] on a machine equipped with a Nvidia A100
GPU with 80GB of memory to train the different architectures. We report the maximum
capacity of the graphics card during training and the time needed to complete the training.
All models in Section 3.3 were trained for 200 epochs with MSE loss using the Adam
optimizer [97]. A learning rate 10−4 was used for GLIMPSE and U-Net, while LGS
and LPD were trained with a learning rate 10−3. All models were trained with batch
size 64. In the case of GLIMPSE, for each mini-batch of random objects, we performed
optimization on a random mini-batch of 512 pixels 3 times.

39

(a) Given projection angles (b) Estimated projection angles

GTGLIMPSE (calibrated)GLIMPSE (LSG)GLIMPSE (vanilla)FBP

In
-d

is
tri

bu
tio

n
O

O
D

17.4 dB 30.1 dB 30.6 dB 30.7 dB

16.6 dB 23.3 dB 25.0 dB 25.1 dB

(c) Reconstructions

Figure 3.7: Estimated sensor geometry by GLIMPSE (LSG) and reconstructions for
an uncalibrated system with a random sensor shift; as expected, the learnable sensor
geometry can effectively learn the projection angles and exhibits excellent robustness
with no degradation under such a big model mismatch and measurement noise (30dB).

3.5.2 Learned sensor geometry

CT imaging algorithms such as FBP [114], SART [117], LGS [107], LPD [108] assume
that the projection angles {αm}rm=1 are known. In an uncalibrated system where sensor
geometry is different from what the algorithms assume, the quality of reconstruction
deteriorates [118, 147]. GLIMPSE allows directly optimizing the projection angles during
training. We thus jointly optimize {αm}rm=1 with other trainable parameters in (3.10).
This additional angle estimation incurs a very modest computational cost.

In the absence of calibration, we cannot expect to have paired ground truth images.
In the following experiments, we only want to showcase the possibility to differentiably
optimize over angles in GLIMPSE so we assume having access to paired data (while
simulating the uncalibrated forward operator). In practice, we could use a self-supervised
loss, for example, based on equivariance [148].

We assess the performance of GLIMPSE in situations with mismatched projection
orientations. In the following experiments, we place r = 30 sensors uniformly around the

40

object at angles α = 0◦, 6◦, ..., 174◦. We conduct a comparative analysis of three models:
1) GLIMPSE (vanilla), with no learnable sensor geometry, 2) GLIMPSE (LSG), incorpo-
rating the proposed learned sensor geometry, and 3) GLIMPSE (calibrated), operating
under ideal conditions with no model mismatch (informed with correct projection angles).
We let the GLIMPSE (LSG) learn the projection angles from the training data where the
optimized values {αm}ri=1 obtained through training can provide a reliable estimate of
the actual projection angles.

Uncalibrated system with random sensor shifts: As shown in Figure 3.7a, we randomly
perturb projection angles by a normally distributed error so that αgiven

i = N (αi, σ
2);

we set σ = 2◦. We initialize the projection angles {αm}ri=1 in the GLIMPSE (LSG)
architecture with αgiven

i . Figure 3.7b shows the estimated projection angles obtained
through training—GLIMPSE (LSG) accurately recovers the angles even in the presence of
30 dB measurement noise. As shown in Figure 3.7c, this accurate estimation of projection
angles results in high-quality reconstructions by GLIMPSE (LSG) comparable with the
network trained in an ideal calibrated system.

Blind inversion with no information from projection angles: We consider the blind
scenario where the model operates without any prior knowledge of the sensor geometry
making inversion challenging. As shown in Figure 3.8a, we initialize the projection
angles {αm}ri=1 in the GLIMPSE (LSG) architecture with random values. The estimated
projection angles are shown in Figure 3.8b, highlighting GLIMPSE (LSG)’s ability for
data-driven sensor geometry estimation. Figure 3.8c presents the reconstructions achieved
by GLIMPSE in both its vanilla and LSG versions. As expected, FBP and the GLIMPSE

(vanilla) show poor reconstructions due to the missing sensor geometry information.
On the other hand, GLIMPSE (LSG) could accurately reconstruct both in-distribution
and OOD samples. Remarkably, these results are comparable to those achieved by the
calibrated GLIMPSE with informed projection angles.

3.5.3 Optimal filter for FBP reconstruction

Proposition 3.5.1 (Reconstruction for continuous Radon transform). We have the follow-
ing identity

f(x, y) =

∫ π

0

Rf(θ, ·) ⋆ ψdθ,

where ψ is the filter that has for Fourier transform | · |.

41

(a) Given projection angles (b) Estimated projection angles

GTGLIMPSE (calibrated)GLIMPSE (LSG)GLIMPSE (vanilla)FBP

18.7 dB 26.0 dB 30.2 dB 30.7 dB

16.4 dB 20.3 dB 30.5 dB 31.2 dB

In
-d

is
tri

bu
tio

n
O

O
D

(c) High-quality reconstructions by GLIMPSE (LSG) despite having no information from sensor
geometry.

Figure 3.8: Estimated sensor geometry by GLIMPSE (LSG) and reconstructions for blind
inversion; GLIMPSE (LSG) was initialized with random projection angles {αm}ri=1 (a)
could reliably estimate the projection angles purely from data (b) resulting in high-quality
reconstructions (c).

42

Proof. Let p = (x, y), ξ = (ξ1, ξ2). We have

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F2D(f)(ξ1, ξ2) exp(2iπ⟨ξ,p⟩)dξ

=

∫ +∞

0

∫ 2π

0

F2D(f)(r cos(θ), r sin(θ)) exp(2iπr⟨k,p⟩)rdrdθ,

by doing a change of variable in polar coordinates, where k = (cos(θ), sin(θ)). Observe
that F2D(f)(r cos(θ), r sin(θ)) is the Fourier Transform of f along the line of direction
k. By the Fourier slice theorem [130], we have

F2D(f)(r cos(θ), r sin(θ)) = F1D(Rf(θ, ·))(r)
By symmetry of the Radon transform, we have Rf(θ, r) = Rf(θ + π,−r). Finally,

f(x, y) =

∫ +∞

−∞

∫ π

0

F1D(Rf(θ, ·))(r) exp(2iπr⟨k,p⟩)

|r|drdθ =
∫ π

0

F−1
1D (F1D(Rf(θ, ·))⊙ | · |) dθ.

This shows that

f(x, y) =

∫ π

0

(Rf(θ, ·) ⋆ ψ) (⟨k,p⟩)dθ,

where ψ is the filter that has for Fourier transform | · |.

3.5.4 Proof of proposition 3.2.1

Proof. Using the definition of the radon transform in (3.2), we have

Rf(α, t) =

∫ +∞

−∞
δ(z cos(α)− t sin(α)− x,

z sin(α) + t cos(α)− y)dz.
Solving z cos(α)− t sin(α)− x = 0 for z leads to

z =
t sin(α) + x

cos(α)
.

Then, solving z sin(α) + t cos(α)− y = 0 for t, using the previous expression for z leads
to

t = y cos(α)− x sin(α).

43

Chapter 4

FunkNN: Neural Interpolation for
Functional Generation

In Chapters 2 and 3, we proposed a coordinate-based image reconstruction pipeline for
solving various imaging problems. This chapter explores another significant application of
our proposed coordinate-based network: continuous image generators. By integrating our
continuous image synthesis pipeline with off-the-shelf generative models, we develop a
functional generator capable of producing images at any arbitrary coordinate. We leverage
this functional generator as a strong prior for solving PDE-based inverse problems.

Deep generative models are effective image priors in applications from ill-posed
inverse problems [66, 149] to uncertainty quantification [23] and variational inference
[150]. Since they approximate distributions of images sampled on discrete grids they
can only produce images at the resolution seen during training. But natural, medical,
and scientific images are inherently continuous. Generating continuous images would
enable a single trained model to drive downstream applications that operate at arbitrary
resolutions. If this model could also produce exact spatial derivatives, it would open
the door to generative regularization of many challenging inverse problems for partial
differential equations (PDEs).

There has recently been considerable interest in learning grid-free image representa-
tions. Implicit neural representations [28, 151–153] have been used for mesh-free image
representations in various inverse problems [28,31,32,35,154,155]. An implicit network
fθ(x), often a multi-layered perceptron (MLP), directly approximates the image intensity
at spatial coordinate x ∈ RD. While fθ(x) only represents a single image, different
works incorporate a latent code z in fθ(x, z) to model distributions of continuous images.

These approaches perform well on simple datasets but their performance on com-
plex data like human faces is far inferior to that of conventional grid-based generative
models based on convolutional neural networks (CNNs) [32, 38, 154]. This is in fact
true even when evaluated at the resolution they were trained on. One reason for their

44

limited performance is that these implicit models use MLPs which are not well-suited for
modelling image data. In addition, unlike their grid-based counterparts, these implicit
generative models suffer from a significant overhead in the form of a separate encoding
hyper-network [32, 35, 38] or parameter training [154] to obtain latent codes z.

In this chapter, we alleviate the above challenges with a new mesh-free convolutional
image generator that can faithfully learn the distribution of continuous image functions.
The key feature of the proposed framework is our local continuous super-resolution
network—FunkNN— which takes a discrete image at any resolution and super-resolves
it to generate image intensities at arbitrary spatial coordinates. As shown in Figure 4.1),
our approach combines a traditional discrete image generator with FunkNN, resulting in
a deep generative model that can produce images at arbitrary coordinates or resolution.
FunkNN can be combined with any off-the-shelf pre-trained image generator (or trained
jointly with one). This includes the highly successful GAN architectures [156, 157],
normalizing flows [21, 70] or diffusion models [71, 79]. It naturally enables us to learn
complex image distributions.

Unlike prior works [32, 35, 38, 154], FunkNN neither requires a large encoder to
generate latent codes nor does it use any MLPs. This is possible thanks to FunkNN’s
unique way of integrating the coordinate x with image features. The key idea is that
resolving image intensity at a coordinate x should only depend on its neighborhood.
Therefore, instead of generating a code for the entire image and then combining it
with x using an MLP, FunkNN simply crops a patch around x in the low-resolution
image obtained from a traditional generator. This window is then provided to a small
convolutional neural network that generates the image intensity at x. The window
cropping is performed in a differentiable manner with a spatial transformer network [158].

We experimentally show that FunkNN reliably learns to resolve images to resolutions
much higher than those seen during training. In fact, it performs comparably to state-of-
the-art continuous super-resolution networks [35] despite having only a fraction of the
latter’s trainable parameters. Unlike traditional learning-based methods, our approach
can also super-resolve images that belong to image distributions different from those seen
while training. This is a benefit of patch-based processing which reduces the chance of
overfitting on global image features. In addition, we show that our overall generative
model framework can produce high quality image samples at any resolution. With the
continuous, differentiable map between spatial coordinates and image intensities, we can
access spatial image derivatives at arbitrary coordinates and use them to solve inverse
problems.

45

Spatial
transformer

Figure 4.1: The proposed architecture. The generative model (orange) produces a fixed-
resolution image that is differentiably used by FunkNN to produce the image intensity at
any location (blue).

4.1 Implicit neural representations for continuous image
representation

Let u ∈ L2(RD)c denote a continuous signal of interest with c ≥ 1 channels and u be its
discretized version supported along a fixed grid with n×n ∈ N∗ elements. For simplicity,
we consider the case with D = 2. Our discussion naturally extends to higher dimensions.

An implicit neural representation approximates u by fθ : R2 → R parameterized by
weights θ ∈ RK . In standard approaches, the weights are obtained by solving

θ⋆(u) = argmin
θ

n2∑
i=1

∥fθ(xi)− u(xi)∥22, (4.1)

where u(xi) is the image target value sampled at spatial coordinate xi. This way, implicit
neural representations can provide a continuous interpolation for u. Notice, however,
that the properties of this interpolation scheme depend on the choice of the network
architecture and do not exploit the statistics of given images.

From (4.1), we can observe that the obtained weights θ⋆(u) apply only to a single
image u, thereby making fθ(x) incapable of providing interpolating representations for
a class of images. Some prior works address this by incorporating a low dimensional
latent code z in the implicit network. The new representation then is given by the map
x 7→ fθ(x, z), where each z represents a different image. Note that this framework
often entails an additional overhead to relate the images with the latent codes. For
example, [32] and [38] jointly train fθ with an encoder network to generate the latent
codes for images. [154], on the other hand, optimize the codes as trainable parameters.
Figure 4.2 shows a general illustration of implicit generative networks.

The prior approaches to model continuous image distributions often exhibit poor
performance in comparison to their grid-based generative counterparts [32, 38]. This is
due to their reliance on MLP networks which a priori do not possess the right inductive
biases to model images.

46

4.2 Our approach

Figure 4.2: Conceptual difference between
FunkNN and existing implicit neural rep-
resentations.

To address the challenges discussed in Sec-
tion 4.1 we propose a convolutional image
generator that produces continuous images.
As shown in Figure 4.1, the proposed frame-
work relies on FunkNN, our new continu-
ous super-resolution network which interpo-
lated images to arbitrary resolution. Our ap-
proach first samples discrete fixed-resolution
images from an expressive discrete convolu-
tional generator. This is followed by continu-
ous interpolation with FunkNN. We combine
FunkNN with any state-of-the-art pre-trained
image to learn complex image distributions.

The key advantage of FunkNN is its
architectural simplicity and interpretability
from a signal processing perspective. The
main idea is that super-resolving a sharp fea-
ture from a low-resolution image at a spatial
coordinate x should only use information
from the neighborhood of x. This is because high frequency structures like edges are
spatially localized and have small correlations with pixels at far-off spatial locations in
the low-resolution image. FunkNN, therefore, selects a small patch around coordinate x
and passes it to a small CNN to regress image intensity at x. Figure 4.2 illustrates the
differences between FunkNN and prior approaches. In the following sections, we provide
a formal description of FunkNN and our continuous image generative framework.

4.2.1 FunkNN: continuous super-resolution network

Given a low-resolution image ulr ∈ Rd×d×c, FunkNN estimates the image intensity at
a spatial coordinate x ∈ R2 by a two-step process: i) it first extracts a p × p patch
w ∈ Rp×p×c from u around the coordinate x, and then ii) a CNN maps the patch to
the estimated intensity. More formally, if we denote ST : (x,u) 7→ w to be a patch
extraction module and CNNθ : Rp×p×c → Rc to be a CNN block that estimates pixel
intensity at x from w, then FunkNN can be characterized as

FunkNNθ
def.
= CNNθ ◦ ST.

While we could extract a patch in the ST module by trivially cropping it from
the image, doing so would not give access to derivatives of image intensities with

47

Figure 4.3: FunkNN architecture. Given a location (x, y), the Spatial Transformer
extracts a patch in the discrete image and a CNN produces the intensity at the query
position.

respect to spatial coordinates, a property of importance for PDE-based problems. We
address this by modelling ST with a spatial transformer network [158]. As illustrated
in Figure 4.3, spatial transformers map the low-resolution image and input coordinate
to the cropped patch in a continuous manner, thereby preserving differentiability. These
derivatives can, in fact, be exactly computed using auto-differentiation in PyTorch [96]
and TensorFlow [159]. We evaluate the accuracy of these derivatives in Figure 4.13
in the Appendix 4.7.6. This experiment clearly shows the effectivity of FunkNN for
approximating the first-order and second-order derivatives, crucially important for solving
PDE-based inverse problems. Another advantage of the ST module over trivial cropping is
that it allows us to learn the effective receptive field of the patches during training, thereby
providing better performance. For further details, please refer to the Appendix 4.7.2.

Training FunkNN

Let (um)1≤m≤M denote a dataset of M discrete images with the maximum resolution
n× n. We generate low-resolution images (ulr,m)1≤m≤M from this dataset where ulr,m ∈
Rd×d×c and d < n. FunkNN is then trained to super-resolve (ulr,m) with (um) as targets
using a patch-based framework. In particular, from each low-resolution image, small
p× p sized patches centered at randomly selected coordinates are extracted and provided
to FunkNN which then regresses the corresponding intensity at the coordinates in the
high-resolution image. We optimize the weights of the CNN as follows.

argmin
θ∈RK

M∑
m=1

n2∑
i=1

|FunkNNθ(xi,ulr,m)− um(xi)|2 . (4.2)

Note that since FunkNN takes patches as inputs, it can be used to simultaneously
train on images with different sizes. In addition, it allows us to train with mini-batches
on both images and sampling locations, thereby enabling memory-efficient training.

48

We consider three strategies to train our model, namely (i) single, (ii) continuous and
(iii) factor. In single mode, FunkNN is trained with input images of fixed resolution,
eg. d = n

2
. The continuous mode uses low-resolution input images at different scales,

i.e. d = n
s
, where the scale s can vary between [smin, smax]. In factor mode, the super-

resolution factor, s, between the low and high-resolution images is always fixed and the
low-resolution size d is varied in the range dmin and dmax. The high-resolution target
size is then correspondingly chosen as ds× ds. At test time, we can then use this model
to super-resolve images by a factor s in a hierarchical manner. For instance, with input
image u

(0)
hr = u of size d× d, it can iteratively generate high-resolution images (u(i)

hr)i≥1

of sizes (di)i≥1 satisfying u
(i)
hr = FunkNNθ(u

(i−1)
hr) and di = sid.

4.2.2 Generative network

To generate continuous samples, we can combine FunkNN with any fixed-resolution
convolutional generator. This flexibility allows our overall model to learn complex
continuous image distributions, and to produce images and their spatial derivatives at
arbitrary resolutions. More formally, let G : RL → Rd×d×c be a generative prior on
low-resolution images of size d× d that takes as input a latent code of size L. Then, G
can be combined with FunkNNθ to yield a continuous image generator FunkNNθ ◦G.

The choice of fixed-sized generator we use prior to FunkNN depends on the down-
stream application. Generative adversarial networks (GANs) [156] and normalizing
flows [70] are popular high-quality image generators. However, the former exhibits
challenges when used as generative prior for inverse problems [21, 66] and the latter
have very large memory requirements and are expensive to train [21, 67, 160]. Injective
encoders [21] were recently proposed to alleviate these challenges by using a small
network and latent space. However, since we do not necessarily require injectivity in our
applications of focus, we use a simpler architecture inspired from [21] for faster training.
In particular, we use a conventional auto-encoder to obtain a latent space for our training
images and use a low-dimensional normalizing flow to learn this latent space distribution.
The standard practice of using mean squared loss as suggested in [21, 161] results in a
loss of high frequency components in our reconstructions. We remedy this by using a
perceptual loss [162]. Further details on network architecture and training are given in
Appendix 4.7.1. It is worth noting that if generative modelling is not aimed, we can train
FunkNN independently of any generator as shown in Section 4.4.1.

49

4.3 Continuous generative models and solving inverse
problems

Continuous generative models built using FunkNN can be used for image reconstruction
at resolutions much higher than those seen during training. This is particularly useful
when solving ill-posed inverse problems commonly found in experimental sciences
like seismic [163], medical [164] and 3-D molecular imaging [165]. Due to difficulty
and high cost of measurement acquisition, obtaining training data is challenging in
these applications. Therefore, new models can not readily be trained when faced with
measurements acquired at resolution different from the ones previously seen during
training.

We consider three inverse problems: reconstructing an image given its (i) first deriva-
tives, (ii) when a fraction of derivatives are known, and (iii) limited-view computed
tomography (CT). In the following, we assume that we have low-resolution generative
prior on d × d-pixel images, G : RL → Rd×d×c, which takes as input a latent code
z ∼ N (0, I).

4.3.1 Inverting derivatives

We first apply FunkNN to reconstruct continuous image u from its spatial derivatives
∇xu(xj) in coordinates {xj}n2

j=1. Related ill-posed reconstructions appear in different
domains such as computer vision [154] or obstacle scattering [31]. We use the exact
spatial derivatives provided by FunkNN and a pre-trained generative model to obtain the
latent code z⋆ that gives us output aligned with the given derivatives,

z⋆ = argmin
z

n2∑
j=1

∥∇xFunkNNθ(xj, G(z))−∇xu(xj)∥22 + λ∥z∥22. (4.3)

We also found that updating the weights θ of the generative model further helps in
producing better reconstruction as suggested in [166]. The exact procedure is detailed in
Appendix 4.7.4. The estimated reconstruction is given by sampling the trained FunkNN
network on the high-resolution grid: û(xj) = FunkNNθ(xj, G(z

⋆)).

4.3.2 Sparse derivatives

We now make the previous problem even more ill-posed by observing not the spatial
derivatives on a dense grid, but only 20% of them that have the highest intensity. It
amounts to only sample the gradient on the ns < n2 locations that gives the largest value
∥∇xu(xj)∥. In order to account for the missing low-amplitude gradient, we add an extra

50

total-variation regularization term. Thus, we aim at solving

z⋆ =argmin
z

ns∑
j=1

∥∇xFunkNNθ(xj, G(z))−∇xu(xj)∥22

+ λ∥z∥22 + λ2∥∇G(z)∥2, (4.4)

using the same process as in the previous setting (see Appendix 4.7.4).

4.3.3 Limited-view CT

In CT, we observe projections of a 2-dimensional image u ∈ L2(R2) through the (discrete
angle) Radon operator A(α) : L2(R2)→ L2(R)I where α = {α1, . . . , αI} denotes the I
viewing directions with αi ∈ [0, 2π). Finally, the discrete observation is given by

vi = (A(αi)u)(x) + ηi, (4.5)

where x = [x1, . . . ,xn2] is the n × n sampling grid and ηi
iid∼ N (0, I) is a random

perturbation. If the view directions correspond to a fine sampling of the interval [0, 2π),
then the adjoint operator A⋆, namely the filtered back-projection (FBP) operator, allows
to recover the original signal even in the presence of noise. For application-specific
reasons it is not always possible to observe the full viewing direction set, leading to
limited-view CT. Here we sample (αi) uniformly between −70 degrees and +70 degrees.
This incomplete set of observations makes the estimation of the signal u from (4.5)
strongly ill-posed. We address limited-view CT using the FunkNN framework:

z⋆ = argmin
z

I∑
i=1

∥A(αi)FunkNNθ(x, G(z))− vi∥22 + λ∥z∥22. (4.6)

4.4 Experiments

4.4.1 Super-resolution

We first evaluate the continuous, arbitrary-scale super-resolution performance of FunkNN.
We work on the CelebA-HQ [91] dataset with resolution 128×128, and we train the
model using three training strategies explained in Section 4.2.1, single, continuous and
factor. More details about network architecture and training details are provided in
Appendix 4.7.2.

The model never sees training data at resolutions 256 × 256 or higher. Figure 4.4
shows the performance of FunkNN trained using factor strategy, which indicates that

51

10
24
×
10
24

(×
8)

51
2×
51
2
(×
4)

25
6×
25
6
(×
2)

Ground truthFunkNNBilinear Interpolation LIIF

Figure 4.4: FunkNN model is only trained over CelebA-HQ images of maximum resolu-
tion 128× 128, but it can reliably reconstruct high-quality images in higher resolutions.

FunkNN yields high-quality image reconstructions at much higher resolutions than it
was trained on. This experiment shows that FunkNN learns an accurate super-resolution
operator and generalizes to resolutions not seen during training. Table 4.1 shows that
our model demonstrates comparable performance to the state-of-the-art baseline LIIF-
EDSR [35] but with a considerably smaller network; our model only has 140K trainable
parameters while LIIF uses 1.5M parameters. Additionally, we provide a comparison
with LIIF by pruning its trainable parameters to reach 140k. The results suggest that
while FunkNN obtains comparable results to the original LIIF architecture, reducing its
parameters to be closer to FunkNN deteriorates the results. This experiment emphasizes
the capacity of FunkNN to perform similarly to state-of-the-art methods while being
conceptually simpler. It is worth mentioning that on the same Nvidia A100 GPU, the
average time to process 100 images of size 128 × 128 is 1.97 seconds for LIIF, 0.81
seconds for LIIF with 140k parameters and 0.7 seconds for FunkNN.

4.4.2 Robustness to out-of-distribution data

One exciting aspect of the proposed model is its strong generalization to out-of-distribution
(OOD) data–a boon obtained from FunkNN’s patch-based operation. We showcase it
by evaluating FunkNN originally trained on CelebA-HQ [91] at resolution 128×128
(Section 4.4.1), to super-resolve images from the LSUN-bedroom [167] dataset which
are structurally very different from the training data. Moreover, we super-resolve images
from size 128 to 256, which were not seen at training time. Figure 4.5 indicates that
the proposed model can faithfully super-resolve OOD images at new resolutions. We
compare our approach with U-Net [25] which has shown promising results for super-
resolution; however, it can only be trained to map between two fixed resolutions. We

52

Ground truthFunkNNBilinear Interpolation LIIFU-Net

Figure 4.5: Image super-resolution on 256× 256 LSUN images with the model trained
on 128× 128 images from CelebA-HQ data.

trained a U-Net to superresolve from 128 × 128 to 256 × 256; it was thus trained on
larger images than other methods. Nevertheless, Table 4.1 shows that while the U-Net
performs well on inlier samples, it gives rather bad results for OOD data. We also report
the shift-invariant SNRs [168] in Table 4.2 to compensate for the fact that U-Net is unable
to recover the correct amplitudes for OOD samples.

Table 4.1: Performance of different methods over super-resolution in SNR (dB); the
SNRs are averaged over 100 test samples of CelebA-HQ (inliers) or LSUN-bedroom
(outliers).

128→ 256 128→ 512 128→ 1024 128→ 256 (OOD) Trainable params

Bilinear Interpolation 27.5 24.9 22.4 22.9 -

U-Net [25] 31.3 - - 19.9 8800K

LIIF-EDSR [35] 31.6 28.0 23.9 28.0 1500K

LIIF-EDSR [35] (140K param.) 31.6 27.5 23.8 26.7 140K

FunkNN (single) 31.2 26.3 22.5 27.2 140K

FunkNN (continuous) 30.7 27.7 23.5 26.4 140K

FunkNN (factor) 32.6 28.2 24.2 26.6 140K

4.4.3 Inverse problems

We solve equation 4.3 using the generative framework described in Section 4.3 trained
over CelebA-HQ samples to reconstruct an image from its spatial derivatives. Experimen-
tal settings are provided in Appendix 4.7.4. Figure 4.6 illustrates FunkNN’s performance,
which provides high-quality spatial reconstructions from the observation of the spatial
derivatives. Notice that Problem (4.3) is ill-posed and it is not possible to accurately
estimate mean intensity of the original image only based on the derivatives. Despite the
different color scales, the unknown image is accurately estimated by FunkNN.

We solve equation 4.4 with the same procedure but over LoDoPaB-CT samples [137].
We compare FunkNN with the continuous GAN proposed by [38]. We solve the problem
described in Equation (4.4) but replacing our model by their GAN. The training procedure
is described in Appendix 4.7.3. Figure 4.7 shows that FunkNN significantly outperforms
the continuous GAN; while we observe an accurate estimation of the image gradients by

53

Initialization Reconstructed imageReconstructed derivatives Ground truth imageGround truth derivatives

Figure 4.6: Reconstructing an image from its spatial derivatives using the generative
prior; FunkNN could faithfully reconstruct the image details.

GAN (first row, second column), its reconstruction (second row, second column) lacks a
lot of details that were well retrieved by our method. The poor reconstruction of GANs
as a prior for solving inverse problems has already been observed in [21, 160] and is
confirmed by this experiment. Shift-invariant SNRs are reported in the bottom-left corner
of each reconstruction. This example of highly under-determined system shows that the
proposed FunkNN architecture can leverage existing prior in addition to super-resolving
both an image and its derivative.

GT derivatives Dupont et al. FunkNN

GT image Dupont et al. FunkNN

9.0dB 11.8dB

Figure 4.7: Solving PDE-based inverse
problem with sparse derivatives.

5.8dB 19.1dB

7.2dB 19.1dB

6.5dB 15.3dB

GT FBP FunkNN

Figure 4.8: Limited-view CT reconstruc-
tion.

We repeat the same procedure and solve equation 4.6 to reconstruct an image from its
limited-view sinogram. The precise experimental setting is relegated to Appendix 4.7.5.
Figure 4.8 shows FunkNN’s reconstructions compared to FBPs which confirms the power
of the learned low-resolution prior in solving Problem (4.5).

54

4.5 Related works

4.5.1 Super-resolution

Various learning based approaches have been proposed over the years for image super-
resolution. Patch-based dictionary learning [169] and random forests [170] have been
used to learn a mapping between fixed low and high-resolution image pairs. More recently,
deep learning methods based on convolutional neural networks have provided state-of-
the-art performance on super-resolution tasks [13, 171–175]. Inspired by the popular
U-Net [25], [27] proposed a multi-scale convolutional sparse coding based approach that
performed comparably to U-Net on various tasks including super-resolution. Furthermore,
[176] learned the interpolation kernel to design an implicit mapping from low to high-
resolution samples.

[66] and [21] have used generative models as priors for image super-resolution using
an iterative process. In addition, conditional generative models have been used to address
ill-posedness of super-resolution [23, 177–179]. While the prior works mentioned above
exhibit excellent super-resolution performance, they all have a limitation—these models
are restricted to be used only at the image resolution seen during training. On the contrary,
we focus on super-resolving images to arbitrary resolution.

In an attempt towards building continuous super-resolution models, [180] propose
a new upsampling module, MetaSR, that adjusts its upscale weights dynamically to
generate high-resolution images. While this approach exhibits promising results on
in-distribution training scales, it has limited performance of out of distribution factors.
The closest to our work is the network LIIF [35] that also uses local neighbourhoods
around spatial coordinates for super-resolution. However, unlike FunkNN that directly
operates on small image patches, LIIF first uses a large convolutional encoder to generate
feature maps for the image. Image intensity at a coordinate x is then obtained by passing
this coordinate along with features in its neighbourhood to an MLP. Note that FunkNN’s
approach of combining image features with spatial coordinates is architecturally much
simpler than that of LIIF. It also requires less parameters, is slightly faster to evaluate and
performs equivalently well.

4.5.2 Generative models for continuous signals

Generative models based on MLPs have been proposed in recent years to learn continuous
image distributions. [32] use implicit representations to learn 3D shape distributions but
lack expressivity to represent complex image data. [38] propose adverserial training based
on MLPs and Fourier features [151] to represent different data modalities like faces,
climate data and 3D shapes. While their approach is quite versatile, it still performs
poorly compared to convolutional image generators [156, 157, 181].

55

As a step towards building expressive continuous image generators, [182] and [183]
used positional encodings to make style-GAN generator [156] shift and scale invariant,
thereby resulting in arbitrary scale image generation. [184, 185] proposed continuous
GANs for effectively learning representations of real-world images. However, these
models do not provide access to derivatives with respect to spatial coordinates, making
them unsuitable for solving inverse problems.

In a related line of work, [186] propose to combine a cascade of a diffusion and fixed-
size super-resolution models to generate images at higher resolution. Unlike FunkNN,
they use fixed-size super-resolution blocks so their approach does not generate continuous
images.

4.6 Summary

Recent continuous generative models rely on fully connected layers and lack the right
inductive biases to effectively model images. In this chapter, we addressed continuous
generation in two steps. (i) Instead of generating continuous images directly, we first
used a convolutional generator pre-trained to sample discrete images from the desired
distribution. (ii) We then used FunkNN to continuously super-resolve the discrete images
given by the generative model. Our experiments demonstrated performance comparable
to state-of-the-art networks for continuous super-resolution despite using only a fraction
of trainable parameters.

4.7 Appendix

4.7.1 Generative model architecture

The generative networks used to address inverse problems described in Section 4.3 are
trained in two-steps: i) we train an auto-encoder (AE) neural network to map the training
samples to a lower dimensional latent code, ii) we train a normalizing flow model to learn
the distribution of the computed latent codes by using maximum likelihood (ML) loss
function.

Auto-encoder architecture

The AE network is a succession of an encoder and a decoder neural networks. The
encoder maps images to a low dimensional latent code, a L-dimensional vector. It is a
succession of 6 Conv+ReLu blocks (one convolution layer followed by a ReLu activation
unit). Between each Conv+ReLu blocks, there is a down-sampling operation. The

56

(a) Ground truth test samples (b) AE reconstructions

Figure 4.9: AE performance on CelebA-HQ in resolution 128× 128.

decoder network transforms the computed latent code to the image samples. The decoder
has the same structure as the encoder network, except that the down-sampling operations
are replaced by up-sampling layers. In order to increase the expressivity of the model, we
equip our model with local skip connections in both encoder and decoder, as suggested
in [51]. The latent code dimension is 512 for training data in resolution 128× 128 for
both RGB and gray-scale images. The AE model has around 40M and 11M trainable
parameters for limited-view CT and CelebA-HQ experiments.

Training strategy While we can train the AE model using only the MSE loss [21,161],
it often suppresses the high-frequency components of the reconstructed image. To
alleviate this issue, we combine the perceptual loss proposed in [162] with regular MSE
loss which significantly improves the quality of the reconstructions.

Experimental Result: We train AE model over 40000 images of the LoDoPaB-
CT [137] and 30000 images of CelebA-HQ [91] datasets in resolution 128× 128. We
train the model over CT and CelebA-HQ images for 600 and 200 iterations. Figures 4.10
and 4.9 display the output image produce by the AE on the test dataset. Notice that
very small details are lost by the AE. However, the final reconstruction contains the most
important details. We show that this is enough to learn an informative prior and solve
ill-posed inverse problems. We also show that it is possible to go beyond the quality of
reconstruction given by the trained AE, see Section 4.3.3.

57

(a) Ground truth test samples (b) AE reconstructions

Figure 4.10: AE performance on LoDoPaB-CT in resolution 128× 128.

Normalizing flow

We use RealNVP [187] architecture with fully-connected layers for scale and bias sub-
networks with two hidden layers of dimension 1024 and 512. The model comprises five
masked affine coupling blocks and activation normalization. As mentioned earlier, we
train the model using ML loss. The flow model has 10M trainable parameters.

Experimental Results: As soon as the flow model is trained, we take samples
from the Gaussian distribution and feed to the flow model to generate new latent codes.
Decoder then takes the generated latent codes and produce new images. Figure 4.11
demonstrates the generated samples by our generative model (flows + AE) for CT and
CelebA-HQ dataset.

4.7.2 FunkNN architecture

We crop a patch with size p = 9 from the low-resolution image by using spatial trans-
former with bicubic interpolation kernel and reflection mode for the border pixels. We
let two trainable parameters defined the size of the patch with respect to low-resolution
image, i.e. the location of the 9 pixels around the query pixel are estimated during training.
We use eight convolutional layers with filter size 2 and channel dimension 64 and ReLu
activation functions. We use two maxpooling layers with size (2,2) inside to reduce the
feature size. This downsampling layer if applied between 3 succesive applications of
convolution+ReLu layers, so that the size of the input is devided by 4 in total in each
direction. We use skip connections between each convolution layers. We then use four
fully-connected layers with latent dimension 64 with skip connections between each

58

(a) CT (b) CelebA-HQ

Figure 4.11: Generative model performance on CT and CelebA-HQ samples in resolution
128× 128.

Linear+Relu block. Finally, following inspiration from residual neural network, we add
to the output the intensity of the pixel central to the input patch. We also use mini-batches
with 512 pixels and 64 objects for each training iteration. All the models are trained using
Adam optimizer [97] with learning rate 10−4.

4.7.3 Dupont et al. architecture

We train the continuous generative model proposed in Dupont et al. [38] over the 40000
images of the LoDoPaB-CT dataset. We train their model over 100 epochs using the
default parameters given in their public repository. We visually asses the quality of the
generated sample in Figure 4.12.

4.7.4 Experimental details: PDE inverse problem

The training strategy of the networks is detailed in Appendix 4.7.1 for two datasets
used in Section 4.4.3. The low-resolution images are composed of d× d = 128× 128
pixels and the high-resolutions target images are of size n × n = 256 × 256. We use
z = 0 as the initialization as suggested by [160] and optimize for 2500 iterations using
Adam optimizer over Problem (4.3) with λ = 0 and on Problem (4.4) with λ = 0 and
λ2 = 10−2. Then, we run 1000 iterations of stochastic gradient descent to optimize the
weights of the auto-encoder of the generative model as suggested in [166].

59

Figure 4.12: CT images generated by [38]

4.7.5 Experimental details: limited-view CT

The training strategy of the networks is detailed in Appendix 4.7.1. The low-resolution
images are composed of d× d = 128× 128 pixels and the high-resolutions target images
are of size n × n = 256 × 256. We use z = 0 as the initialization. The estimated
solution is obtained by running 5000 iterations of stochastic gradient descent using Adam
optimization algorithm on Problem (4.5) with λ = 0. The observations given by equation
(4.5) are degraded by additive Gaussian noise such that the SNR of each projection is
30dB.

4.7.6 Experimental details: super-resolution

Accuracy of the derivatives provided by FunkNN

In order to quantify the quality of FunkNN derivatives, we train our network on images
with intensity given by a Gaussian functional:

g(x, y) = exp

(
−(x− x0)2 + (y − y0)2

2σ2

)
,

60

Table 4.2: Performance of different methods over super-resolution in scale-invariant SNR
(dB)

128→ 256 128→ 512 128→ 1024 128→ 256 (OOD)

Bilinear Interpolation 27.5 24.9 22.4 22.9

U-Net [25] 31.5 - - 22.8

LIIF-EDSR [35] 31.6 28.0 24.0 28.0
LIIF-EDSR [35] (140k param.) 31.6 27.6 23.8 26.7

FunkNN (single) 31.4 26.4 22.6 27.2

FunkNN (continuous) 30.8 27.7 23.5 26.4

FunkNN (factor) 32.6 28.2 24.2 26.6

where the position of the center (x0, y0) is chosen at random in the field of view and
the standard deviation σ is chosen uniformly at random in [0.1, 0.4]. We use cubic
convolutional interpolation kernel [188] in the spatial transformer of the FunkNN trained
using the training procedure described in 4.7.2. In the first row of Figure 4.13, from left
to right, we display the test function g, the norm of its gradient and its Laplacian sampled
on a discrete grid. in the second row, we display the same quantity estimated by the
trained FunkNN as well as the SNR between the estimation and the ground truth.

61

G
ro

un
d

tru
th

Fu
nk

N
N

Image
First-order
derivatives Laplacian

72.1 dB 33.8 dB 18.1 dB

Figure 4.13: The derivatives produced by FunkNN on images of a Gaussian. The true
derivatives are computed analytically.

62

Chapter 5

Trumpets: Injective Flows for Inference
and Inverse Problems

In previous chapters, we focused on developing coordinate-based neural networks with
strong generalization. Starting this chapter, we focus on Bayesian imaging; generating
multiple solutions for the target image and uncertainty quantification to improve the
reliability of our reconstruction and downstream interpretation. To this end, we develop
injective neural networks specifically designed for ill-posed inverse problems.

Modeling a high-dimensional distribution from samples is a fundamental task in
unsupervised learning. An ideal model would efficiently generate new samples and
assign likelihoods to existing samples. Some deep generative models such as generative
adversarial networks (GANs) [189] can produce samples of exceedingly high quality,
but they do not give access to the underlying data distribution. Moreover, GANs are
often hard to train, suffering from pathologies such as mode collapse [190, 191]. Since
they are generally not invertible, or computing the inverse is slow, they are not well-
suited for downstream inference tasks such as image reconstruction from compressive
measurements or uncertainty quantification.

Normalizing flows alleviate many of the drawbacks of GANs: they approximate high-
dimensional probability distributions as invertible transformations of a simple, tractable
base distribution. They allow both efficient sampling and likelihood evaluation. They
can be trained using maximum likelihood, and at inference time they provide direct
access to likelihoods. These desirable features are a consequence of clever architectural
components known as coupling layers [192].

Normalizing flows, however, are extremely compute-intensive. As a case in point,
training a Glow model [70] for the 5-bit 256× 256 CelebA dataset takes a week on 40
GPUs. This is in part because the dimension of the “latent” space in normalizing flows
equals that of the generated images. Since signals of interest are often concentrated close
to low-dimensional structures embedded in high-dimensional spaces, this is a waste of

63

resources. Beyond reducing computational cost, a low-dimensional latent space acts as a
natural regularizer when solving ill-posed inverse problems [66].

In this chapter, we propose a new generative model termed TRUMPET—an injective
flow based on convolutional layers that are injective by construction. Similarly to
traditional coupling layers, our proposed layers have fast, simple inverses and tractable
Jacobians; however, they map to a space of higher dimension. Since they are injective,
they can be inverted on their range. Our design combines standard coupling layers with
recent results on injective neural networks [193]. Further, our models can be trained via
exact maximum likelihood by separating the training of the injective part from that of the
bijective part [161].

TRUMPETs can be trained an order of magnitude faster than earlier injective models
based on traditional normalizing flows [161] while producing samples of comparable
(or better) quality. Moreover, thanks to their fast inverse, they can be used to design
fast inference algorithms based on generative priors. We apply TRUMPETs to Bayesian
inference problems in compressive sensing and limited-angle tomography. In particular,
we devise an algorithm for efficient computation of a MAP estimator using a variant of
projected gradient descent. The fast inverse yields a projection while thanks to injectivity
we can compute the likelihoods. We then adapt recent work on uncertainty quantification
for inverse problems with normalizing flows [194] to work with generative priors and a
low-dimensional latent space of TRUMPETs. We anticipate that neural-network-based
uncertainty quantification can be naturally integrated in a rigorous analysis in the context
of inverse problems [195, 196].

Our main contributions can be summarized as follows:

• We propose injective coupling layers with fast inverses and tractable Jacobians.

• We use these layers to construct TRUMPETs—injective flow generative models.
The proposed generative models train orders of magnitude faster than the usual
flow models while producing samples of comparable or better quality and giving
access to likelihoods.

• We apply the proposed models to Bayesian inference problems and uncertainty
quantification, showing remarkable gains in efficiency and reconstruction quality
over established methods. In particular, we show how the low-dimensional latent
space of TRUMPETs leads to an efficient variational approximation of the posterior
distribution.

In the following section we describe the construction of TRUMPETs; an overview of
related work is given in Section 5.4.

64

Injective
generator

Bijective flowGaussian latent

distribution
Data manifold

Generating samples
Encoding data

Encoder

Figure 5.1: TRUMPET—A reversible injective flow-based generator

5.1 TRUMPETs: Injective flows

Flow-based generative models [187, 192] approximate the target distribution via a series
of bijective transformations of a simple latent distribution. Unlike GANs [189] or
VAEs [197] they allow for efficient exact likelihood evaluation. Crucial to the design of
flow-based models are tractable inverses and Jacobians of all the constituent bijective
transformations [70, 198], based on special coupling layers such as NICE [192] or Real-
NVP [187]. A generative model fθ : RD → RD parameterized by the weights θ maps
latent variables Z to data X . Note that we use uppercase letters for random vectors and
corresponding lowercase letters for their realizations. Log-likelihoods of the generated
samples x = fθ(z) can be evaluated as

log pX(x) = log pZ(f
−1
θ (x))− log | det Jfθ(f−1

θ (x))|. (5.1)

Given an iid training dataset {ξ(i)}ni=1 from some ground truth distribution1 pΞ, training
a normalizing flow entails maximizing the log-likelihood of the training data given as∑N

i=1 log pX(ξ
(i)) over the weights θ in order to learn a generative model fθ. Equivalently,

it entails minimizing the KL divergence between pX and pΞ. While invertibility ensures a
non-singular Jfθ at all points, defining likelihoods only requires injectivity of fθ.2

5.1.1 Making flows injective

Machine learning for high-dimensional signals such as images relies on the fact that
these signals concentrate around low-dimensional structures. We adopt the common
assumption that pΞ is concentrated close to a d-dimensional manifold in RD, with d≪ D.
We then aim to learn a generative model fθ, now mapping from Rd to RD, such that the
observed data lies in the range of fθ. When fθ is an injective map its Jacobian Jfθ ∈ RD×d

1We use ξ to denote samples from the ground truth distribution pΞ to distinguish them from the samples
x from pX , the distribution induced by our network fθ.

2With (L)ReLU activations, Jacobians are defined “only” almost everywhere; this rarely (if ever) causes
issues in practice.

65

has full column rank for all input points. Thus one can still have access to likelihoods of
samples generated by fθ by modifying (5.1) as [199]

log pX(x) = log pZ(f
†
θ (x))−

1

2
log | det[Jfθ(f †

θ (x))
TJfθ(f

†
θ (x))]|, (5.2)

which is valid for x ∈ Range(fθ). We use f †
θ to denote an inverse of fθ on its range, that

is f †
θ (fθ(z)) = z. As described later, due to the way we construct f †

θ , (5.2) corresponds
to the likelihood of a projection of x on the range of fθ for x /∈ Range(fθ).

Building on the general change of variable formula (5.2), we propose TRUMPET—a
network architecture that is injective by construction. The network architecture (Figure
5.1) consists of a “flat” invertible part which maps Rd to Rd and an expanding injective
part which maps Rd to RD, resembling its namesake in shape. Crucially, expansion is
enabled via injective revnet steps [200] generalizing the recently proposed Glow [70]
layers.

We begin by reviewing the revnet step. A forward (F) revnet step has 3 operations,
each having a simple inverse (I):

1. activation normalization,

F: y =
x− µ
σ

, I: x = σy + µ,

2. 1× 1 convolution with a kernel w,

F: y = ℓw(x) = w ∗ x, I: x = w−1 ∗ y,

3. affine coupling layer

F: y1 = x1, y2 = s(x1) ◦ x2 + b(x2),
I: x1 = y1, x2 = s(y1)

−1 ◦ (y2 − b(y1)), (5.3)

where y =

[
y1
y2

]
, x =

[
x1
x2

]
, and s and b are the scale and bias functions that are

implemented by neural networks. The coupling layers have triangular Jacobians making
their log determinants easy to compute.

We now generalize the second step to allow for an increase in dimension while
retaining computational tractability.

Injective 1 × 1 convolutions. We consider generalizations of the 1 × 1 convolution
layers (ℓw) that (1) are injective, (2) have fast (pseudo)inverse and (3) a fast Jacobian
independent of x. These requirements yield two layer variants—linear and ReLU 1× 1
convolutions:

66

LINEAR ReLU

FORWARD y = w ∗ x, y = ReLU

([
w
−w

]
∗ x
)

;

INVERSE x := w† ∗ y, x := w† ∗
([
I − I

]
y
)
.

Here w† is the left pseudoinverse of w. Since w is a 1× 1 convolution, we write it
as a matrix of size cout × c, where c, cout are the number of input and output channels
respectively; taking the pseudoinverse of this matrix yields w†.

In Appendix 5.6.2, we show that for both types of layers,

log det JT
ℓwJℓw =

c∑
i=1

si(w)
2,

where the si(w) are the singular values of w. We choose the size of w such that the
number of output channels is kc (resp. ⌊k

2
⌋c) for the linear (resp. ReLU) layer. While

k ≥ 1 is enough for the linear variant to be injective, k ≥ 2 is necessary and sufficient
for the ReLU variant [193].

Injective revnet step. By generalizing the 1×1 convolutions to increase dimensions,
we can still utilize the revnet step as in Glow by replacing the invertible 1×1 convolutions
by their injective counterparts. Therefore, if the input tensor is of size N ×N × C, the
output after an injective revnet step is of size N ×N × kC, where the expansion by a
factor k occurs in the injective convolution (ℓw) step.

5.1.2 Architecture of TRUMPETs

Injective coupling layers introduced in the previous section allow us to build an archi-
tecture that trains at a fraction of the time and memory cost of regular flows. As shown
in Figure 5.1, a TRUMPET model fθ(z) = gγ(hη(z)) with weights θ = (γ, η) has two
components: an injective map gγ(z′) = g1 ◦ g2 . . . ◦ gK(z′) which maps from Rd to RD,
and a bijective part hη implemented as a flow z′ = hη(z) = h1 ◦ h2 . . . ◦ hL(z) in the
low-dimensional latent space. Unlike normalizing flows such an architecture allows us to
progressively increase dimension and markedly reduce the number of parameters.

The role of the injective part gγ is to match the shape of the manifold that supports the
ground truth distribution pΞ, while the role of the low-dimensional flow is to match the
density on the manifold. As recently proposed by [161] and as we elaborate in Section
5.1.3, this separation enables training even though likelihood is not defined for samples
outside the range of fθ.

67

To build the injective map gγ we compose the proposed injective revnet layers,
progressively increasing dimension from that of the latent space to that of the image
space. To improve expressivity, at each resolution, we interleave a small number of
bijective revnet layers. Each injective layer increases feature dimension by a factor of 2
in a single step in the forward direction (and decreases it by a factor of 2 in the reverse
direction). Since our latent space is d-dimensional we need m ≈ log2

D
d

injective layers
interspersed with a few bijective layers. Following [187] we employ upsqueezing to
increase resolution. Our network architecture results in significantly fewer parameters
and faster training than the recently proposed variant of injective flows [161].

Finally, performance of revnets in generative modeling of images can be improved [187]
by introducing multiscale implementations of the scale (s) and bias (b) functions. For
these implementations, we propose to use U-Nets [25] in affine coupling layers as op-
posed to regular convolutional stacks used in previous normalizing flows [70, 187]. We
find that integrating U-Nets greatly improves the performance of our network.

5.1.3 Training of TRUMPETs

An advantage of injective architectures such as TRUMPETs is that they can be trained using
maximum likelihood. However, since the range of fθ is a d-dimensional submanifold in
RD, likelihoods of the samples not on this manifold are not defined. To circumvent this
difficulty we adopt a strategy recently proposed by [161]. We split the training into two
phases: (i) the mean squared error (MSE) phase where we only optimize the injective
part gγ , and (ii) the maximum likelihood (ML) training phase where we fit the parameters
η of the bijective part hη to maximize the likelihood of the preimage of training data
through gγ; this step aims to match the density of pX to that of the ground truth pΞ.

The loss function that we minimize to find the parameters of gγ is given as

LMSE(γ) =
1

N

N∑
i=1

∥ξ(i) − gγ(g†γ(ξ(i)))∥22, (5.4)

where ξ(i)-s are the training samples. We find that only a few epochs of training are
sufficient to train gγ . Note that Pgγ (x) := gγ(g

†
γ(x)) is an idempotent projection operator

on the range of gγ . The low-dimensional range of gγ acts as a regularizer in the context
of inverse problems. Injectivity implies that the range of fθ is a true manifold unlike in
the case of GANs where it may be an arbitrary low-dimensional structure [193]. This
allows us to define likelihoods as in (5.2).

After the MSE training phase, we have a manifold that near-interpolates the data
samples. In the ML training phase, we match the density (or measure) on the manifold to
pΞ by maximizing the likelihood of the preimages of the training samples {g†γ(ξ(i))} over

68

η. This gives us the loss function for the ML training phase as

LML(η) =
1

N

N∑
i=1

(
− log pZ(z

(i)) +
L∑
l=1

log | det Jhη,l|
)
, (5.5)

where z(i) = h−1
η (g†γ(ξ

(i))) and Jhη,l are evaluated at appropriate intermediate inputs.
Together with the gradually-expanding architecture of TRUMPETs this two-step procedure
yields much faster training than previous work which concatenates standard invertible
flows.

Stability of layerwise inversions. To minimize LMSE (5.4), we need to calculate the
left inverse g†γ for points that do not lie in the range of gγ . This entails computing the
pseudoinverses of injective convolutional layers ℓw. We study the stability of inversion
for out-of-range points under the assumption that y′ = ℓw(x) + ϵ, ϵ ∼ N (0, σ2

ϵ I). In
particular, we are interested in estimating the inverse error EInv(y

′) = ∥ℓ†w(y′)− x∥22 and
the re-projection error EProj(y

′) = ∥ℓw(ℓ†w(y′))− y′∥22.
We show in Appendix 5.6.2 that for both linear and ReLU injective convolutions the

average errors are

EϵEInv(y) ∝ σ2
ϵ

c∑
i=1

1

si(w)2
, EϵEProj(y) ∝ σ2

ϵ ,

where si(w)-s are the singular values of w and c is the number of input channels in the
forward direction.

The reconstruction error thus behaves gracefully in σϵ, but could blow up for poorly
conditioned w. In order to stabilize inversions and training, we regularize the inverse
via Tikhonov regularization. This changes the error terms from

∑c
i=1 1/si(w)

2 to∑c
i=1

si(w)
si(w)2+λ

which is upper bounded by c
2
√
λ

, thus effectively stabilizing training. Here,
λ is the regularization parameter.

5.2 Inference and uncertainty quantification with TRUM-
PET

From this chapter, we change our notation in Chapter 1 to the standard notation for
probabilistic modeling. We consider reconstructing an object x ∈ RD from measurements
y ∈ Rn. We assume that x and y are realizations of jointly distributed random vectors
X , Y , with the joint distribution pX,Y (x, y). In inference, we are mainly interested
in characterizing the posterior pX|Y (x|y). We note that this setting generalizes point
estimation of x given y common in inverse problems where the task is to recover x from

69

measurements y = Ax + ϵ, where ϵ is additive noise and A ∈ Rn×D is the forward
operator. The maximum a posteriori (MAP) estimate xMAP = argmaxx pX|Y (x|y) can be
obtained through Bayes theorem,

xMAP = argmin
x
− log pY |X(y|x)− log pX(x)

= argmin
x

1
2
∥y − Ax∥22 − σ2

ϵ log pX(x), (5.6)

where we assume that ϵ ∼ N (0, σ2
ϵ I).

5.2.1 MAP estimation with TRUMPET prior

We now address two inference tasks where TRUMPETs are particularly effective. Recall
that since gγ is injective one can build a fast projector Pgγ (x) = gγ(g

†
γ(x)) on the range

of gγ , i.e., the range of our generator.

Beyond simply projecting on the range, injectivity and Bayes theorem enable us
to maximize the likelihood of the reconstruction under the posterior induced by the
TRUMPET prior [201]. The injective flow (iFlow) algorithm described below in Algorithm
2 then alternates projections on the range with gradient steps on the data fidelity term and
the prior density. We study two variants—iFlow and iFlow-L that correspond to running
Algorithm 2 without and with the − log pX term.

Algorithm 2 iFlow
Input: loss function L, y, A, gγ
Parameter: step size η and λ(∝ σ2)

x[0] = A†y for i← 0 to T − 1 do
v ← Pg(x[i]) x[i+1] ← GradientStep(L(v))

end
x[T] ← Pg(x

[T])

One caveat with computing − log pX(x) is that it requires log | det[JT
fθ
Jfθ](f

†
θ (x))|

according to (5.2). While we have layer-wise tractable Jacobians, log | det JT
fθ
Jfθ | cannot

be split into layerwise log det terms due to the change of dimension. Fortunately, the
literature is abundant with efficient stochastic estimators. We describe one in Section
5.2.3 that we use to compare and report likelihoods. In order to implement the iFlow-L,
however, we propose a much faster scheme.

We define the following quantity,

R(x) = − log pZ(f
†(x)) +

1

2

K∑
k=1

log | det JT
gγ,k

Jgγ,k |+
L∑
l=1

log | det Jhη,l|, (5.7)

70

where the layer Jacobians are evaluated at the appropriate intermediate layer outputs.
Since all our layers including the injective layers have log det Jacobians readily available
we use (5.7) as a surrogate for intractable term − log pX(x). This yields the proposed
iFlow-L algorithm (Algorithm 2) for solving (5.6). The objective function is

L(x) := 1
2
∥y − Ax∥22 + σ2R(x). (5.8)

Note that when solving inverse problems we constrain the final solution x to be in the
range of f , that is, x = fθ(z) for some z ∈ Rd.

5.2.2 Posterior modeling and uncertainty quantification

The second application enabled by TRUMPETs is efficient uncertainty quantification
for inverse problems in imaging. We build on a method recently proposed by [194]
which computes a variational approximation to the posterior pX|Y (x|y) corresponding to
the measurement y and a “classical” regularizer. They train a normalizing flow which
produces samples from the posterior, with the prior and the noise model given implicitly
by the regularized misfit functional.

The injectivity of the TRUMPET generator fθ and the assumption that the modeled
data concentrates close to the range of fθ allows us to write the posterior on X , pX|Y , in
terms of pZ|Y , with X = fθ(Z). That is,

pX|Y (fθ(z)|y) = pZ|Y (z|y) · | det JTfθJfθ |
−1/2. (5.9)

We can thus derive a computationally efficient version of the algorithm proposed by [194]
by only training a low-dimensional flow.

Instead of using TRUMPETs to simply reduce computational complexity, we showcase
another interesting possibility: approximating the posterior with respect to the learned
prior given by the TRUMPET. To do this we train another network uυ which is a low-
dimensional flow, so that the distribution of fθ ◦ uυ(T) approximates the posterior pX|Y
when T is an iid Gaussian vector. The generative process for (approximate) samples from
pX|Y is then

T
uυ−→ Z

hη−→ Z ′ gγ−→︸ ︷︷ ︸
fθ

X.

We thus require that uυ(T) ∼ pZ|Y with T ∼ N (0, I) and X = fθ(Z). Letting qυ be
the distribution of uυ(T), the parameters υ are adjusted by minimizing the KL divergence
between qυ and pZ|Y ,

υ⋆ =argmin
υ

DKL
(
qυ ∥ pZ|Y

)
= argmin

υ
EZ∼qυ [− log pY |Z(y|Z)− log pZ(Z) + log qυ(Z)]

= argmin
υ

ET∼N (0,I)[− log pY |Z(y|uυ(T))− log pZ(uυ(T)) + log pT (T)

− log | det Juυ(T)|]. (5.10)

71

We revisit the inverse problem associated with y = Ax+ ϵ with ϵ ∼ N (0, σ2I). In
this setting we have

υ⋆ = argmin
υ

ET∼N (0,I)

[
1
2
∥y − Afθ(uυ(T))∥22

− σ2 log pZ(uυ(T))− σ2 log | det Juυ(T)|
]
.

(5.11)

We evaluate (5.11) by drawing k iid samples {ti}ki=1 from the base Gaussian, yielding
the following loss to train uυ,

L(υ) := 1

k

k∑
i=1

(∥y − Afθ(uυ(tk))∥22

− σ2 log pZ(uυ(tk))− βσ2 log | det Juυ(tk)|), (5.12)

where we added β as a hyper-parameter to control the diversity of samples we generate
from the posterior [194].

5.2.3 Estimating log-likelihoods

The training of TRUMPETs only requires the log det of the Jacobian of hη. Some
applications call for the log det of the Jacobian of the full network, typically evaluated
a small number of times. Here, we provide a stochastic estimate via the truncation of a
Neumann series.

As JT
fθ
Jfθ is a square matrix, we find that

log | det JT
fθ
Jfθ | = Tr(log JT

fθ
Jfθ)

= Tr

(
log

1

α
(I − (I − αJT

fθ
Jfθ))

)
= −Tr

(
∞∑
k=1

(I − αJT
fθ
Jfθ)

k

k

)
− d logα

≈ −Ev
n∑
k=1

1

k
vT(I − αJT

f Jf)
kv − d logα

where we choose α such that the maximal singular value of I−αJT
fθ
Jfθ is about 0.1. This

ensures that the series converges fast and we can truncate the expansion to about 10 terms.
We estimate the largest singular value of JT

fθ
Jfθ using power iteration. In the last step we

use the Hutchinson trace estimator [202] to evaluate the trace; the v-s are sampled iid from
N (0, I). The terms of the power series can be efficiently implemented by vector-Jacobian
and Jacobian-vector products using automatic differentiation as described in Algorithm
3 [203].

72

Algorithm 3 Stochastic log det Jacobian estimator
Input: f, n
Output: log | det JT

f Jf |
log det = 0
β = 0.9 (MaxSingularValue(Jf))

−1

Draw v from N (0, I)
wT = vT

for k=1 to n do
uT1 = jvp(w)
uT2 = vjp(u1)
w = w − βu2
log det −= wTv

k

end
log det −= d log β

5.3 Experiments

We begin by evaluating the generative performance of TRUMPETs. Next, we test TRUM-
PETs on two inference tasks in imaging: maximum a posteriori estimation and uncertainty
quantification.

5.3.1 Generative modeling

We train TRUMPETs on the MNIST [204], CIFAR10 [205], CelebA [206] and Chest
X-ray [207] datasets with image sizes 32 × 32 × 1, 32 × 32 × 3, 64 × 64 × 3 and
128× 128× 1 respectively.

We find that our networks train much faster than invertible flows and their recent
injective generalizations. As a point of comparison, training the models of [161] takes
over 10 days on the CelebA dataset. The corresponding TRUMPET trains in 38 hours
while yielding better samples in terms of the Fréchet inception distance (FID) [208] (see
Table 5.1).3

Since the range of a TRUMPET is a manifold, a relevant metric is the reconstruction

error, ∥ξ−fθ(f†θ (ξ))∥
∥ξ∥ , which we report for ξ-s on the test set in Table 5.2. We show generated

samples and reconstructions on test sets from trained TRUMPETs in Figures 5.6b, 5.7b,
5.8 and 5.9 in Appendix 5.6.3.

3Our FID scores are reported at sampling temperature T = 1, that is, we use the same prior distribution
statistics for training and sampling. We show the variation of the FID metric with the temperature in Figure
5.5 in Appendix 5.6.3

73

Table 5.1: FID scores on 8-bit 64× 64 celebA dataset.

Model FID

[209] 40.23
[161] 37.4
TRUMPET (Ours) 34.3

Table 5.2: Training times in hours for TRUMPET: all models were trained on a single
V100 GPU

Training
time (hours)

∥x− fθ(f †
θ (x)∥

∥x∥
Trainable
params

MNIST 11 0.04 9M
CIFAR10 11 0.22 9M
CelebA 38 0.15 16M
Chest X-ray 25 0.13 11M

We note that the variants with the linear and ReLU 1 × 1 convolutions perform
similarly (see Figures 5.6a,5.6b, 5.7a, 5.7b); hence, for the subsequent datasets and
experiments we only report results with the linear variant.

The negative log-likelihood values estimated for trained TRUMPET models using
Algorithm 3 on the [−1, 1] normalized MNIST and CelebA dataset are 114.82 ± 5.8
and 294 ± 7.4 nats respectively. Note that these represent likelihoods over measures
supported in a d-dimensional latent space whereas the previous literature [70,187] reports
D-dimensional likelihoods. This issue is unfortunately not resolved by simply dividing
by dimension. We thus caution the reader that such a comparison may be misleading.

5.3.2 MAP estimation

We test TRUMPETs on image reconstruction from compressive measurements. We work
with four different forward operators / corruption models: (i) RandGauss (m): we sample
an entrywise iid Gaussian matrix A ∈ Rn×D, where n = 250 and D is the dimension of
the vectorized image; (ii) RandMask (p): we mask pixels (that is, replace a pixel with
zero) with probability p = 0.15; (iii) Super-resolution (x4): we downsample the image
by a factor of 4 along each dimension; and (iv) Mask (s): we mask (replace with zero) an
s× s-size portion of the image.

Since TRUMPETs have a readily available inverse we focus on the benefits this brings
in imaging. Specifically, we use Algorithm 2 to compute an estimate using a trained
TRUMPET prior. We test the algorithm on the MNIST and CelebA datasets and use
the same TRUMPET prior for all problems. We compare our approach to two deep
learning baselines—compressed sensing with generative models (CSGM) [66] and deep

74

Input CSGM DIP Ground truth

S
u
p
er

re
so

lu
ti
o
n
 x

4
R
a
n
d
o
m

 m
a
sk

 p
=

0
.2

iFlow iFlow-L

Figure 5.2: Comparison of various reconstruction schemes. The iFlow-L and iFlow meth-
ods refer to Algorithm 2 respectively with and without the likelihood term.

image prior (DIP) [210]. CSGM solves x̂ = f(argminz ∥y−Af(z)∥22) while DIP solves
x̂ = fθ(argminθ ∥y−Afθ(z)∥22) given a randomly chosen fixed z and regularized by early
stopping. Figure 5.2 compares all methods for the superresolution and random masking
problems on the CelebA dataset while Table 5.3 gives a comprehensive evaluation for all
inverse problems.

We also perform an ablation study to assess the influence of including the prior
likelihood as opposed to simply doing a gradient descent with manifold projections [211].
The latter corresponds to setting λ = 0 in Algorithm 2. Table 5.3 clearly shows that
accounting for the prior density and not only support—that is, computing the MAP
estimate—performs better in almost all settings.

We mention that we attempted to compare with a method involving projections
proposed by [149] but found it to be 50− 100× slower than iFlow. It was thus infeasible
to finalize this comparison. On average we found that DIP converged the fastest followed
by our method which was about 2× slower. Finally, while each iteration of CSGM was
as fast as each of DIP, CSGM requires several restarts which made the method about 4×
slower than ours. We report the best results from CSGM with 10 restarts.

Note that the baselines [66,149,210] were developed without injectivity as a constraint.
As a result, they typically use off-the-shelf GAN architectures inspired by [181], but
they are by design agnostic to architectural details. To keep the comparisons fair we use
the same generative model fθ for all methods. This allows us to test the importance of
tractable inverses and likelihoods for the design of image reconstruction algorithms based
on generative priors.

75

Table 5.3: Performance on inverse problems measured in reconstruction SNR (dB)

Dataset CSGM DIP iFlow iFlow-L

RandGauss (m = 250)
MNIST 11.32 12.72 21.34 21.81
CelebA 8.98 11.25 8.90 8.91

RandMask (p = 0.15)
MNIST 3.85 4.94 4.76 10.10
CelebA 12.63 17.26 13.89 14.43

Super-resolution (×4)
MNIST 5.943 1.0 9.851 12.75
CelebA 11.08 14.12 17.36 20.07

Mask (s = 15 px)
MNIST 3.34 4.38 3.90 9.54
CelebA 13.42 21.31 21.74 21.79

Limited-view CT Chest 11.58 13.76 20.93 21.23

MAP estimate Samples from the posterior distributionGround truth Pseudoinverse

Figure 5.3: Uncertainty quantification for limited view CT.

5.3.3 Posterior modeling and uncertainty quantification

Next, we use TRUMPET priors for uncertainty quantification in computed tomography.
We work with a chest X-ray dataset and use the limited-angle CT operator as the forward
operator, A. We choose a sparse set of nangles = 30 view angles from 30◦ to 150◦, with
a 60◦ missing cone.4 We add 30dB noise to the measurements. The resulting inverse
problem is severely ill-posed and solving it requires regularization. (Note that Table 5.3
includes the performance of Algorithm 2 on this problem.)

Here we provide a pixel-wise uncertainty estimate of the form EX∼pX|Y =y
|X −⟨X⟩|p,

with p = 1, 2, | · | the pixel-wise absolute value, and ⟨X⟩ the posterior mean. In Figure 5.3,
we show the MAP estimate obtained from the iFlow-L algorithm (Algorithm 2). We
also show the Fourier spectrum of the mean absolute deviation calculated in the Fourier
domain where the mean was calculated over the Fourier transform of all samples from
the posterior. We observe a cone of increased uncertainty in the Fourier spectrum that
corresponds to the missing angles in the limited-view CT operator. Furthermore, we
observe a thick vertical bright line that corresponds to uncertainty in predicting the

4We emphasize that the purpose of this numerical experiment is to illustrate the UQ algorithm rather
than provide a realistic, competitive method. Indeed, in real CT the projections would be taken in planes
perpendicular to the spine.

76

location of the ribs (which have a strong horizontal periodic component) as shown in the
middle plot of Figure 5.3.

Reassuringly, both the spatial- and the frequency-domain representations of uncer-
tainty correlate well with our intuitive expectations for this problem. Positions of the ribs
in space and the missing cone in the spectrum exhibit higher uncertainty.

5.4 Related works

Normalizing flows have been introduced in [192]. The key to their success are invertible
coupling layers with triangular Jacobians. Different variants of the coupling layer along
with multiscale architectures [70, 187, 198] have considerably improved performance of
normalizing flows. Glow [70] uses invertible 1× 1 convolutions to improve expressivity,
producing better samples than NICE and Real-NVP. Alas, training a Glow model is
extremely compute intensive—1 week on 40 GPUs for the 5-bit 256 × 256 CelebA
dataset. A crucial drawback of the mentioned models is that they are bijective so the
dimension of the latent and data spaces coincide. This results in a large number of
parameters and slow training: since the ground data lies close to low-dimensional subset
of RD, training should encourage the model to become “almost non-invertible” which
makes the optimization more difficult.

The authors of [209] propose approximate injective flows by using spectral regular-
ization in auto-encoders. However they lack access to likelihoods. Further, their training
strategy is only a proxy for injectivity. The authors of [161] proposed injective flows to
learn a data distribution on a manifold very similar to our work, including a two-stage
training scheme we use. However, they use regular normalizing flow architectures with
zero padding in the latent space which results in architectures that are very expensive to
train. [212] build injective flows by adding noise to the range; this requires stochastic
inversion whereas ours is deterministic. More recently, the authors of [213] proposed a
canonical manifold learning flow to improve the efficiency and compactness of the latent
representation.

In a parallel development, autoregressive flows were shown to have favorable expres-
sivity compared to normalizing flows. We refer to [214–216] and the references therein
for a more extensive account.

5.5 Summary

We proposed TRUMPETs—a flow-based generative model that is injective by construction.
TRUMPETs alleviate the main drawback of invertible normalizing flows which is that
they are very expensive to train. We showed that TRUMPETs are competitive in terms

77

of generative modeling performance and that the fast inverse on the range markedly
improves reconstructions in ill-posed inverse problems. We also showed how to use
TRUMPETs to model posteriors and perform uncertainty quantification directly in the
low-dimensional latent space. Currently our reconstructions on data lack high frequency
features; this is common in normalizing flow models [187]. Strategies such as adding
the adversarial loss in the MSE phase of training may help alleviate this drawback.
Furthermore, using a richer class of coupling layers may help— [217] show that flows
based on rational quadratic splines are more expressive. Integrating such layers also holds
promise for improving the expressivity of TRUMPETs.

Our work combines several basic ideas in an intuitive way that yields gains in
computational efficiency and modeling quality. It is worth noting that recent results on
universality of globally injective neural networks [193] and universality of flows [218]
suggest that TRUMPETs are universal approximators of probability measures concentrated
on Lipschitz manifolds; a rigorous proof is left to future work.

5.6 Appendix

5.6.1 Network architecture and training details

We describe the injective portion of our network architecture that was used to train a
CelebA dataset in Figure 5.4. The bijective revnet block has 3 bijective revnet steps in
each block while the injective revnet block has just one injective revnet step which is
explained in details in Section 5.1.1. The bijective part of our network is not shown in
Figure 5.4 but it has 32 bijective revenet steps.

For the scale and bias terms of the coupling layer we used the U-Net architecture
with 2 downsampling blocks and 2 corresponding upsampling blocks. Each resolution
change is preceded by 2 convolution layers with 32 and 64 output channels. We choose
the latent space dimension as 64 for MNIST, 256 for Chest X-ray dataset and 192 for all
other datasets. We normalize the data to lie in [−1, 1].

The number of training samples for CelebA, Chest X-ray, MNIST and CIFAR10
are 80000, 80000, 60000, and 50000 respectively. We trained all models for about 300
epochs with a batch size of 64.

All models are trained with Adam optimizer [97] with learning rate 10−4. γ = 10−6

was used as the Tikhonov regularizer parameter for computing pseudoinverse of injective
convolutional layers.

78

Bijective revnet block

Injective revnet block

Upsqueeze

Injective revnet block

Injective revnet block

Bijective revnet block

Bijective revnet block

Bijective revnet block

Injective revnet block

Upsqueeze

Injective revnet block

Bijective revnet block

Upsqueeze

Bijective revnet block

Injective revnet block

Upsqueeze

4x4x24

4x4x12

4x4x12

8x8x6

8x8x6

8x8x12

8x8x24

8x8x24

8x8x48

8x8x48

16x16x12

16x16x24

16x16x24

32x32x6

32x32x12

32x32x12

64x64x3

Figure 5.4: CelebA architecture for the injective portion g of TRUMPET. The input size
to each layer is written below it.

79

5.6.2 Derivations of error

Measuring error due to deviations from range

Claim 1. Consider y′ = y + ϵ, ϵ ∼ N (0, σ2
ϵ I), y = ℓw(x) and let EInv(y

′) := ∥ℓ†w(y′)−
x∥22 and the re-projection error EProj(y

′) := ∥ℓw(ℓ†w(y′)) − y′∥22. Then for both ReLU
and linear variants of ℓw we have

EϵEInv(y
′) ∝ σ2

ϵ

c∑
i=1

1

si(w)2
, EϵEProj(y

′) ∝ σ2
ϵ , (5.13)

where si(w)’s are the singular values of w and c is the number of input channels in the
forward direction.

Proof. Consider y′ = y + ϵ, where y = ℓw(x) and ϵ ∼ N (0, σ2
ϵ I2n). We consider a

vectorized x and write the 1× 1 convolution as a matrix-vector product, Wx say. For a
ReLU injective convolution one could write the inverse as

x′ = W † [In −In] y′. (5.14)

We calculate Eϵ∥x′ − x∥22. Let M :=
[
In −In

]
and B := W †, then

x′ = BM(y + ϵ)

x′ − x = BMϵ,

whence

∥x′ − x∥22 = (BMϵ)TBMϵ

∥x′ − x∥22 = Tr
(
BMϵ(BMϵ)T

)
∥x′ − x∥22 = Tr

(
BMϵϵTMTBT

)
∥x′ − x∥22 = Tr

(
MTBTBMϵϵT

)
so that

Eϵ∥x′ − x∥22 = EϵTr
(
MTBTBMϵϵT

)
Eϵ∥x′ − x∥22 = Tr

(
MTBTBM

)
σ2
ϵ

Eϵ∥x′ − x∥22 = 2Tr
(
BTB

)
σ2
ϵ

Eϵ∥x′ − x∥22 = 2
c∑
i=1

si(w)
−2σ2

ϵ .

80

Similarly for a linear layer the inverse is given as x′ = By′. Therefore,

x′ = B(y + ϵ)

x′ − x = Bϵ

hence

∥x′ − x∥22 = (Bϵ)TBϵ

∥x′ − x∥22 = Tr
(
Bϵ(Bϵ)T

)
∥x′ − x∥22 = Tr

(
BϵϵTBT

)
∥x′ − x∥22 = Tr

(
BTBϵϵT

)
so that

Eϵ∥x′ − x∥22 =
c∑
i=1

si(w)
−2σ2

ϵ .

The re-projection error for a ReLU layer is given as√
EProj(y′) =

∥∥∥∥ReLU([W−W
]
x′
)
− y
∥∥∥∥

=

∥∥∥∥ReLU([W−W
]
x′
)
− ReLU

([
W
−W

]
x

)
− ϵ
∥∥∥∥

≤
∥∥∥∥[W−W

]
x′ −

[
W
−W

]
x

∥∥∥∥+ ∥ϵ∥
=

∥∥∥∥[W−W
]
(x+BMϵ)−

[
W
−W

]
x

∥∥∥∥+ ∥ϵ∥
=

∥∥∥∥[W−W
]
BMϵ

∥∥∥∥+ ∥ϵ∥
≤ (2∥WW †∥F + 1)∥ϵ∥

Squaring both sides, we get

EProj(y
′) = (2

√
c+ 1)2∥ϵ∥2.

Similarly, for a linear layer we have

EProj(y
′) = ∥Wx′ −Wx− ϵ∥2

=
∥∥WW †ϵ− ϵ

∥∥2
= (c+ 1) ∥ϵ∥2 .

81

log-determinants of Jacobians for ReLU injective convolutions

We vectorize x and, again, write the 1× 1 convolution as a matrix-vector product Wx.
Then, for a ReLU 1× 1 convolution, we have

y = ReLU

([
W
−W

])
x.

This could be trivially rewritten as y = W ′x, where the rows of W ′ are w′
i = wi if

⟨wi, x⟩ > 0 and w′
i = −wi otherwise. We note that changing the row signs does not

change | detW |. Hence, for such a ReLU injective convolutional layer, ℓw log | det JTℓwJℓw | =∑c
i=1 s

2
i (w), where si(w)’s are the singular values of w, where w is the 1 × 1 kernel

corresponding to the convolution matrix W .

5.6.3 Generated samples

In Figures 5.6a, 5.6b and Figures 5.7a, 5.7b we compare the performance of TRUMPETs
trained with ReLU and linear injective convolutions on the MNIST and 64× 64 CelebA
datsets. Both variants offer similar performance hence we choose to use linear convolu-
tions for the rest of our results regarding inverse problems and uncertainty quantification.
In Figures 5.9 and 5.8 we show generated samples from TRUMPET and a few reconstruc-
tions of original samples, x given as f(f †(x)) on the CIFAR10 and Chest X-ray datasets
respectively. For the CIFAR10 dataset, we do see a low frequency bias in the generated
samples. For other datasets the low-frequency bias seems to be less of a problem. In fact,
on these datasets TRUMPETs outperform previous injective variants of flows [161, 209].

The temperature of sampling has a significant effect on the FID scores as shown in
Figure 5.5. While samples in Figures 5.7a, 5.7b are for T = 1 we share some samples in
Figure 5.10 for T = 0.85.

82

0.85 0.90 0.95 1.00 1.05 1.10 1.15
Temperature

34

35

36

37

38

39

F
ID

Figure 5.5: FID score of TRUMPET with sampling temperature.

Ground truth ReconstructionsSampled

(a) ReLU 1× 1 convolutions
Ground truth ReconstructionsSampled

(b) Linear 1× 1 convolutions

Figure 5.6: TRUMPETs trained with (a) ReLU and (b) linear 1 × 1 convolutions give
similar sample quality.

83

(a) ReLU 1× 1 convolutions

(b) Linear 1× 1 convolutions

Figure 5.7: TRUMPETs trained with (a) ReLU and (b) linear 1 × 1 convolutions give
similar sample quality. On the right, we showcase the reconstruction performance—
the left column is ground truth and the right is our reconstruction (see Table 5.2 for
quantitative assessment)

84

Figure 5.8: Generated samples on the Chest X-ray. On the right, we showcase the recon-
struction performance—the left column is ground truth and the right is our reconstruction
(see Table 5.2 for quantitative assessment)

Ground truth ReconstructionsSampled

Figure 5.9: Generated samples and reconstructions of original data on the CIFAR-10
dataset.

Figure 5.10: Generated samples on the celeba dataset with linear 1× 1 convolution and
T = 0.85.

85

Chapter 6

Deep Injective Prior for Inverse
Scattering

In Chapter 5, we developed injective flows to solve linear inverse problems, demonstrating
that Trumpets can achieve high-quality MAP estimates, posterior samples, and uncertainty
estimates. In this chapter, we leverage Trumpets for a challenging non-linear inverse
problem: electromagnetic inverse scattering. We show that Trumpets can generate high-
quality posterior samples and provide a physically meaningful uncertainty quantification.

Electromagnetic inverse scattering is the problem of determining the electromagnetic
properties of unknown objects from how they scatter incident fields. This non-destructive
technique finds applications in various fields, such as early detection of breast can-
cer [219], mineral prospecting [220], detecting defects and cracks inside objects [221],
imaging through the walls [222] and remote sensing [223].

While inverse scattering is well-posed and Lipschitz stable in theory, when full-
aperture continuous measurements are available [224], it becomes a severely ill-posed
inverse problem for a finite number of measurements. This means that even a small
perturbation in the scattered fields can result in a significant error in the reconstructed
permittivity pattern [9]. Additionally, the nonlinearity of the forward operator, caused by
multiple scattering and amplified by higher permittivity contrasts [9], further complicates
the inversion process. All these together make inverse scattering a challenging problem,
especially for strong scatterers (objects with large permittivity) and noisy measurements.
To address these challenges, an effective regularization technique is necessary to constrain
the search space and achieve accurate recovery.

Several optimization-based methods have been proposed to tackle the nonlinearity
and ill-posedness of the inverse scattering problem. These include the Born iterative
method [225], distorted Born iterative method (DBIM) [226], contrast source inversion
(CSI) [227], and subspace-based optimization (SOM) [228]. While these methods have
demonstrated effectiveness in reconstructing objects with small permittivity variations,

86

they often fall short in accurately reconstructing objects with large permittivity con-
trasts. These methods typically rely on iterative optimization of a regularized objective,
incorporating manually designed regularization terms [9].

Deep learning has achieved remarkable success in inverse scattering. Most deep
learning models employed for inverse scattering adopt a supervised learning approach,
which trains a deep neural network to regress the permittivity pattern. Some studies [23,
229, 230] have utilized scattered fields as the input of the neural network. Despite
the satisfactory reconstructions [23], these methods are sensitive to changes in the
experimental configuration, such as frequency, the number of transmitters and receivers
or other real-world factors. Even slight variations in the distribution of scattered fields
in test time can lead to a significant degradation in reconstruction quality, requiring
costly acquisition of new training data. Back-projections can be used as input to tackle
some of these issues [16, 231, 232]. While this approach yields good reconstructions
for objects with small and moderate permittivity, due to the non-linearity the quality
of back-projections significantly drops in large permittivity leading to a drop in the
reconstruction quality [23]. Moreover, supervised learning methods are vulnerable to
adversarial attacks [233], which is problematic in medical applications [234]. Importantly,
incorporating the well-established physics of the scattering problem (i.e., the forward
operator) to improve the generalization capability is not straightforward in such deep
learning models [235–240].

To tackle these issues, we propose a deep learning approach to inverse scattering
using Trumpet. The proposed method adopts an unsupervised learning framework—the
training phase uses only the target permittivity patterns, and the physics of scattering is
fully incorporated into the solution. Deep generative models such as generative adver-
sarial networks (GANs) [181, 189], variational autoencoders (VAEs) [197], normalizing
flows [70, 187, 192] and diffusion models [71] belong to a class of unsupervised learn-
ing methods and train a deep neural network to transform the samples of a simple
(Gaussian) distribution into samples that resemble the target data distribution. Recently,
deep generative models (DGM) have been used as a prior for solving inverse prob-
lems [11, 20, 21, 31, 66, 68]. By leveraging a trained generator on a dataset of target
images (the solutions of a given inverse problem), one can explore the latent space of the
generator to find a latent code yielding a solution that aligns with the given measurements.

The choice of generative model is of paramount importance to provide an effective
regularization for solving ill-posed inverse problems. While GANs have been used as
generative priors for inverse problems [66,156,166,241], they are unstable in training [190,
191] and result in local minima in iterative approaches [66]. Normalizing flows resolve
some of these issues [67, 69, 201], however, they are computationally expensive to train
and often do not provide sufficient regularization for highly ill-posed inverse problems.
Injective normalizing flows [21, 161, 242], specifically designed for solving ill-posed
inverse problems, alleviated these issues; they benefit from a low-dimensional latent
space which serves as an effective regularizer for ill-posed inverse problems. In a related

87

work, Guo et al. [243] employed VAEs as generative priors for inverse scattering.

In this chapter, we use injective flows introduced in Chapter 5 as generative priors
for full-wave inverse scattering. The proposed approach has a significant advantage: it
only requires training on the target permittivity patterns and does not require any training
data from scattered fields. Once the generator is trained, it can be used to solve inverse
scattering problems in arbitrary configurations. This property endows the model with
robustness against distribution shifts in the measurements as well as to adversarial attacks.
In contrast to the work of Guo et al. [243], the invertibility of our generator allows us
to perform optimization in both latent and data spaces, providing great flexibility in
choosing the scattering solver. Additionally, while Guo et al. [243] require a data-driven
initialization, our proposed method can leverage both back-projection and data-driven
initializations (among others), making it adaptable to different scenarios and reducing
dependence on the particularities of a specific starting point. We show that the proposed
framework significantly outperforms traditional iterative solvers with reconstructions of
comparable or better quality compared to highly successful supervised methods such as
the U-Net [25].

All the aforementioned methods reconstruct a single point estimate from the permittiv-
ity pattern given the measurements. A point estimate, however, is often insufficient or mis-
leading due to the ill-posedness of the inverse scattering problem. This limitation can be
tackled by applying Bayesian frameworks based on deep learning networks [23,244,245]
to generate multiple estimates of the permittivity and perform uncertainty quantification
(UQ). However, these methods are supervised and suffer from the aforementioned issues.
Our second contribution is to leverage our pre-trained injective generator to develop a
Bayesian framework that produces multiple estimates of the permittivity pattern enabling
the uncertainty quantification. Crucially, the proposed method does not rely on scat-
tered fields during training. As we will discuss in Section 6.3, this framework requires
injectivity and is thus not practicable with non-injective generators like GANs or VAEs.

This chapter is organized as follows. Section 6.1 provides a brief review of the forward
and inverse scattering problem. Our proposed methods for MAP estimation and posterior
modeling in inverse scattering are introduced in Sections 6.2 and 6.3. Computational
experiments are presented in Section 6.4.

6.1 Forward and inverse scattering

We begin our discussion with equations governing the 2D forward and inverse scattering
problem. We focus on the 2D transverse magnetic (TMz) case, where the longitudinal
direction is along ẑ. As depicted in Figure 6.1, we consider non-magnetic scatterers with
permittivity ϵr situated in the investigation domain Dinv, which is a D ×D square. The
scatterers are surrounded by a vacuum background with permittivity ϵ0 and permeability

88

µ0. The scatterers are illuminated by Ni plane waves with equispaced directions, and Nr

receivers are uniformly positioned on a circle with radiusR to measure the scattered fields.
The forward scattering problem can be derived from the time-harmonic formulation of
Maxwell’s equations and can be expressed as follows [246],

∇× (∇× Et(r))− k20ϵr(r)Et(r) = iωµ0J(r), (6.1)

where Et represents the total electric field which has only the Ez component in the
TMz case. In addition, k0 = ω

√
µ0ϵ0 denotes the wavenumber of the homogeneous

background, and J corresponds to the contrast current density. The contrast current
density, calculated using the equivalence theorem [247], is given by J(r) = χ(r)Et(r),
where χ(r) = ϵr(r)− 1 and is referred to as the contrast. Throughout this chapter, the
time-dependence factor exp(iωt) with angular working frequency ω is assumed and will
be suppressed for simplicity.

Figure 6.1: The setup for the inverse scatter-
ing problem, red arrows show the incident plane
waves; the green circles are the receivers.

We discretize the investigation do-
mainDinv into N ×N units. The state
equation can be expressed as,

Et = Ei +GdχE
t, (6.2)

where Gd ∈ RN2×N2 and Et, Ei are
the total and incident electric fields, re-
spectively; χ is a diagonal matrix with
elements χ(n, n) = ϵr(n)−1 account-
ing for the contrast in the medium. On
the other hand, the data equation is
given by,

Es = GsχE
t + δ, (6.3)

where Gs ∈ RNr×N2 , Es denotes the
scattered electric fields, and δ is the
additive noise in the measurements. It
is worth mentioning that Gd and Gs

have closed-form analytical expressions [9].

We combine (6.2) and (6.3) to obtain a unified expression for the forward model [9],

Es = Gsχ(I −Gdχ)
−1Ei + δ, (6.4)

which represents a nonlinear mapping from χ to Es. For convenience, we define a
forward operator A that maps χ to Es,

y = A(x) + δ, (6.5)

89

where A(·) corresponds to the nonlinear forward scattering operator,

A(χ) = Gsχ(I −Gdχ)
−1Ei, (6.6)

with y = Es and x = χ. The objective of inverse scattering is to reconstruct the contrast
χ from the scattered fields Es, assuming that Gd, Gs, incident electric waves Ei, and
hence the forward operator A(·) are known.

6.2 MAP inference with injective flows for inverse scat-
tering

Inverse scattering with partial data is a severely ill-posed inverse problem, which means
that a small perturbation in the measurements of scattered fields can result in a significant
error in the recovered contrast [9]. As discussed in Section 6.1, inverse scattering is a
nonlinear inverse problem, with the degree of nonlinearity being strongly influenced by
the maximum contrast value. Particularly for objects with large contrasts, the problem
becomes highly nonlinear, further increasing the difficulty of the inversion. In such cases,
the presence of a robust regularizer that effectively constrains the search space becomes
crucially important.

We model the contrast χ = x ∈ X and the scattered fields Es = y ∈ Y as random
vectors. For simplicity, we assume that the additive noise δ in (6.5) is a random vector with
Gaussian distribution δ ∼ N (0, σ2I) although our framework admits other distributions.
With this assumption, the likelihood pY |X can be expressed as,

pY |X = N (A(X), σ2I). (6.7)

An effective approach for solving ill-posed inverse problems is to compute the maximum
a posteriori (MAP) estimate, where we seek the solution x that has the highest posterior
likelihood given a measurement y,

xMAP = argmax
x

log pX|Y (x|y), (6.8)

where pX|Y (x|y) denotes the posterior distribution, representing the conditional distribu-
tion of the image of interest given the measurements y. The posterior distribution pX|Y
can be computed using Bayes theorem as,

pX|Y (x|y) =
pY |X(y|x)pX(x)∫
x
pX,Y (x, y)dx

, (6.9)

which leads to the following expression for the MAP estimate,

xMAP = argmin
x

− log pY |X(y|x)− log pX(x). (6.10)

90

From (6.7) we get

xMAP = argmin
x

1

2
∥y − A(x)∥22 − λ log pX(x), (6.11)

where the first term represents the data-consistency loss while pX(x) denotes the prior
distribution of the contrast and yields a regularization term. We additionally insert λ as a
hyperparameter to adjust the weight of the regularization term as its value depends on the
unknown noise power. In general, estimating the prior distribution pX is challenging, and
a commonly used approximation is a Gaussian distribution with zero mean, leading to
Tikhonov regularization. However, a Gaussian distribution often deviates significantly
from the true prior, resulting in poor reconstructions.

This chapter explores a data-driven regularization in inverse scattering based on deep
generative models. We leverage a training set of contrast patterns {x(i)}Ni=1 and train
a deep generative model x = f(z) to produce samples from (approximately) the same
distribution as that of the training set. By sampling from a Gaussian distribution in the
latent space z ∈ Z , we expect the trained generator f to produce plausible contrast
samples. This property of deep generative models makes them an effective regularizer
for solving inverse problems [66, 243].

In this chapter, we employ injective flows, Trumpet introduced in Chapter 5, as a
generative prior due to their suitability for addressing ill-posed inverse problems [21].
We perform optimization in the latent space to find the latent code that produces a
permittivity pattern compatible with the measurements y. The optimization problem can
be formulated as follows,

zMAP = argmin
z

1

2
∥y − A(f(z))∥22 − λ log pX(f(z)), (6.12)

where the regularization term log pX is approximated via (5.1). The reconstructed contrast
is then obtained as xMAP = f(zMAP). We call this method latent space optimization (LSO).
We note that (6.12) has been previously proposed by [67, 201] for solving compressed
sensing inverse problems using regular normalizing flows.

Unlike the supervised learning methods for inverse scattering [16, 230–232], which
rely on paired training sets of contrast and scattered fields {(x(i), y(i))}Ni=1, our framework
is unsupervised, without the need for scattered fields during training. This eliminates
the need to retrain the model when the distribution of scattered fields changes due to
variations in the experimental configuration. Once the injective generator is trained on the
contrast samples, we can directly optimize (6.12) for new measurements to reconstruct the
corresponding contrast. In addition, our proposed method fully leverages the underlying
physics of the scattering problem by optimizing over the complex-valued scattered fields
in (6.12). Kothari et al. [248] have demonstrated that incorporating wave physics into
the neural network architecture can significantly enhance the quality of reconstructions,
particularly for out-of-distribution data.

91

Ground truth

BP (𝜖! = 1.2) BP (𝜖! = 2) BP (𝜖! = 4)

BA (𝜖! = 1.2) BA (𝜖! = 2) BA (𝜖! = 4)

Figure 6.2: Performance analysis of the Back-Propagation (BP) and Born Approximation
(BA) methods across objects with different maximum ϵr values. While both BP and
BA reconstructions are visually meaningful for small ϵr, their performance significantly
deteriorates for objects with larger ϵr.

Invertibility of the injective generator allows us to use an alternative method for (6.12)
explained in Section 5.2.1 for linear inverse problems. This method performs the opti-
mization directly in the data space. We call this method data space optimization (DSO)
and formulate it as follows,

xMAP = argmin
x

1

2
∥y − A(g(g†(x)))∥22 − λ log pX(x) (6.13)

where g(g†(x)) represents the projection operator described in Section 5.1.3. Similar to
LSO, the second term log pX can be approximated using (5.1) and acts as an additional
regularizer. In LSO the reconstructed point x = f(z) always lies on the learned manifold;
this is not the case for the DSO method, where the reconstructed image may deviate from
the manifold. On the other hand, as we discuss next, DSO offers more flexibility in the
choice of the initial guess.

The choice of initial guess is important for inverse scattering solvers. A poor initial-
ization may result in convergence to poor local minima due to nonlinearity. A good initial
guess facilitates efficient convergence to good minima. The authors of [226] used Born
approximation as the initialization for the distorted Born iterative method (DBIM). A
back-propagation (BP) solution was also used in [227, 249] as an initial guess of the con-
trast source inversion (CSI) method. Figure 6.2 shows the ground truth, back-propagation
(BP), and Born approximations (BA) for an object with different maximum ϵr values.
While BP and BA may yield satisfactory results for objects with small permittivity, their
performance sharply drops for large ϵr (especially numerically) which makes them a poor
initialization for strong scatterers.

In order to circumvent this issue, we adopt a data-driven initialization suggested
in [67]; mean of the Gaussian distribution (MOG) in the latent space which is set to
0. The MOG initialization z = 0 provides a fixed initialization with respect to the

92

Ground truth Projections on the manifold Generated samples

Figure 6.4: Performance evaluation of the trained injective flow on ellipses dataset;
ground truth contrasts, their projections on the learned manifold and generated samples.

measurements (scattered fields); thereby being independent of the maximum contrast
value and the problem configuration. This property leads to more robust convergence in
both (6.12) and (6.13) even for objects with large permittivity. While the DSO method
can be initialized with both BP and MOG, the LSO should exclusively be initialized with
MOG. This is due to the possibility of BP being significantly distant from the range of the
injective network, making inversion to the latent space infeasible. In Section 6.4, we will
show that the MOG significantly improves the quality of the reconstructions compared to
BP, especially for strong scatterers.

6.3 Posterior modeling and uncertainty quantification

Ellipses MNIST

Figure 6.3: Illustration of the MOG initializa-
tion in the data space fθ(z = 0) for ellipses and
MNIST datasets.

Due to ill-posedness, there are an infi-
nite number of contrasts that are con-
sistent with the measurements within
the noise level. These diverse solu-
tions can lead to different scientific
interpretations, highlighting the need
to characterize their distribution. Re-
lying on a single estimate, such as
the MAP estimate obtained in the pre-
vious section, fails to reflect the in-
evitable uncertainty and pinpoint fea-
tures recovered only with low confi-
dence. To address this drawback of
point estimates, we adopt a Bayesian perspective. Rather than solely computing the MAP
estimate, we approximate the full posterior distribution pX|Y introduced in (6.9). By
doing so, we can generate many posterior samples that explore plausible permittivity
patterns.

93

The computation of the posterior distribution, as stated in (6.9), involves the integral∫
x
pX,Y (x, y)dx which is intractable for high-dimensional imaging problems. Variational

inference [250,251] is a promising framework that approximates the posterior distribution
pX|Y (x|y) by defining a class of distributions qX(x;ψ) parameterized by ψ. The goal
is to find the optimal ψ that ensures the “closeness” between qX(x;ψ) and pX|Y (x|y)
for a given y. Examples of such approximators include Gaussian mixture models and
distributions induced by deep generative models.

In variational inference, a commonly used measure of fit is the Kullback–Leibler
(KL) distance,

KL(q∥p) =
∫
X
q(x) log

(
q(x)

p(x)

)
dx

= Ex∼q[log q(x)− log p(x)].

We optimize ψ to minimize the KL distance between qX(x;ψ) and pX|Y (x|y) for a given
y,

ψ⋆ = argmin
ψ

KL(qX(x;ψ)∥pX|Y (x|y)). (6.14)

Sun et al. [194] parameterized qX(x;ψ) using an untrained normalizing flow through (5.1)
and directly performed the optimization over the network’s weights.

We propose to leverage our pre-trained injective flow fθ as a prior to approximate the
posterior distribution. Our approach relies on the following principle: when we apply an
injective mapping to the distributions Q and P , resulting in new distributions Q′ and P ′,
respectively, the KL distance between Q′ and P ′ remains the same as the KL distance
between Q and P (refer to Section 6.6.2 in the appendix for further information). This
property of injective mappings motivates us to approximate the posterior distribution in
the latent space instead of the data space. Consequently, we minimize the KL distance
between qZ(z, ψ) and pZ|Y (z|y) as follows,

ψ⋆ =argmin
ψ

KL(qZ(z, ψ)∥pZ|Y (z|y))

= argmax
ψ

Ez∼qZ
[
log pY |Z(y|z)

]
− KL(qZ∥pZ)

= argmin
ψ

Ez∼qZ
[
∥y − A(f(z))∥22

]
+ β

(
KL(qZ∥pZ)

)
, (6.15)

where pZ = N (0, I) represents the prior distribution introduced in (5.1). We consider β
as a hyperparameter to control the diversity of the posterior samples as its value depends
on the unknown noise power.

Now we must select our posterior approximator qZ(z, ψ). While previous works
[21, 252] used an additional normalizing flow to model qZ(z, ψ), we use a Gaussian dis-
tribution for simplicity and computational efficiency. Specifically, we define qZ(z, ψ) =

94

N (z;µq, diag(σq)), where ψ = (µq, σq) represents our variational parameters. This
Gaussian parameterization of qZ(z, ψ) simplifies the KL term in (6.15) since there exists
a closed-form expression for the KL distance between two Gaussian distributions,

KL(qZ∥pZ) =
1

2

d∑
i=1

σq(i)
2 + µq(i)

2 − 1− 2 log σq(i), (6.16)

where µq(i) and σq(i) denote the ith element of µq ∈ Rd and σq ∈ Rd, respectively.
Furthermore, since we have already obtained the MAP estimate in the latent space
through (6.12), we set µq = zMAP and only optimize σq.

We cannot directly optimize (6.15) using gradient-based methods since optimization
variables are inside the expectation. We thus use the reparameterization trick [197,
253], letting z = zMAP + σq ⊙ t, where t ∼ N (0, I) and ⊙ denotes the element-
wise multiplication. By substituting (6.16) into (6.15) and incorporating the above
reparameterization,

σ⋆q =argmin
σq

Et∼N (0,I)

[
∥y − A(f(zMAP + σq ⊙ t))∥22

]
+ β

d∑
i=1

(
σq(i)

2 − 2 log σq(i)

)
. (6.17)

To evaluate the expectation, we compute the average over K iid samples drawn from the
standard normal distribution,

σ⋆q ≈ argmin
σq

K∑
k=1

(
∥y − A(f(zMAP + σq ⊙ tk))∥22

)

+ β
d∑
i=1

(
σq(i)

2 − 2 log σq(i)

)
. (6.18)

Once we obtain the optimal σ⋆q , we can generate posterior samples xpost = f(zMAP+σ
⋆
q⊙t)

where t ∼ N (0, I). Additionally, we can evaluate the empirical minimum mean-squared
error (MMSE) estimate and the associated uncertainty by calculating the pixel-wise
average and standard deviation over multiple posterior samples.

6.4 Experiments

We assess the performance of the proposed methods for MAP estimation and posterior
modeling on synthetic and experimental data. We train the model on two synthetic large-
scale datasets: 1) MNIST [204] with 60000 training samples in the resolution N = 32,

95

BP DBIM U-Net DSO (BP) DSO (MOG) LSO GT

(a) MNIST in resolution 32× 32

BP DBIM U-Net DSO (BP) DSO (MOG) LSO GT

(b) Ellipses in resolution 64× 64

Figure 6.5: Performance comparison of different methods for objects with maximum
ϵr = 4.

96

and 2) a more challenging dataset we generated comprising 60000 training samples
with resolution N = 64 of overlapping ellipses used in [23]. Figure 6.4 shows example
test contrasts, their projections on the learned manifold, and the samples generated by
the injective network, verifying the ability of the model to produce outputs of good
quality. For additional details about the network architecture and training, please refer to
Section 6.6.1 in the appendix.

6.4.1 Synthetic data

In experiments with synthetic data, the task is to reconstruct the test samples from MNIST
and ellipses datasets that have not been “seen” by the injective network during training.
We use Ni = 12 incident plane waves and Nr = 12 receivers, uniformly distributed on
a circle with radius R = 20 cm around the object with maximum permittivity ϵr and
dimension D = 20 cm. The working frequency is 3 GHz and we added 30 dB noise to
the measurements of the scattered fields.

MAP estimation We conduct a comprehensive evaluation of the DSO and LSO meth-
ods. We consider the MOG and BP initializations for DSO while only using the MOG
initialization for LSO. We compare the performance of our proposed methods with a
traditional iterative method, DBIM [226]. While our approach is unsupervised so that
the scattered fields are not used during training, we also compare its performance with a
supervised learning method, the U-Net [25], which has enjoyed tremendous empirical
success in a variety of imaging inverse problems including inverse scattering [16]. The
U-Net takes the BP image as input and regresses the corresponding permittivity.

We have fully implemented the forward operator in Tensorflow [159], enabling
efficient GPU utilization for parallel reconstruction of multiple samples. Moreover, it
allows us to use a variety of optimizers provided in Tensorflow including Adam [97]
and L-BFGS [254]. In these experiments, we optimize (6.12) and (6.13) using the Adam
optimizer with a learning rate of 0.05 for 300 iterations as it leads to more accurate
reconstructions compared to L-BFGS. We set λ = 0.01 for BP and λ = 0 for MOG. For
the MOG initialization, we begin from high-likelihood regions (mean of the Gaussian),
viewed as a hidden regularizer and we thus set λ = 0. Figure 6.3 illustrates the MOG
initializations for ellipses and MNIST datasets.

Figure 6.5 shows the performance of various methods for ϵr = 4 using 5 test samples
from MNIST and ellipses datasets. While DBIM falls short in this challenging task with a
high contrast and 30 dB noise, DSO and LSO exhibit much better reconstructions. More-
over, the MOG initialization, as expected, yields superior reconstructions compared to BP.
Notably, LSO outperforms DSO, demonstrating the advantages of running optimization
in the latent space as discussed in Section 6.2. Despite not utilizing scattered fields during
the training phase, LSO produces reconstructions of comparable or even superior quality

97

Table 6.1: Performance of different methods for solving inverse scattering (ϵr = 4)
averaged over 5 test samples.

PSNR SSIM
MNIST Ellipses MNIST Ellipses

BP 7.75 7.00 0.01 0.01

DBIM [226] 5.77 4.67 0.01 0.01

U-Net [25] 24.26 21.94 0.90 0.82

DSO (BP) 8.73 7.89 0.16 0.16

DSO (MOG) 17.47 14.56 0.61 0.44

LSO (MOG) 25.22 20.50 0.89 0.85

to the supervised method U-Net. Table 6.1 lists the numerical results in PSNR and SSIM
averaged over 5 test samples.

As discussed in Section 6.2, the maximum ϵr of the object plays a significant role
in the performance of inverse scattering solvers. Figure 6.6 shows the performance of
various methods across different maximum ϵr values on MNIST. This analysis shows
that LSO, combined with the MOG initialization, remains effective even for objects with
high ϵr, which highlights the significance of data-driven initialization and optimization in
the latent space.

Regarding the computational efficiency, we used a single Tesla V100 GPU for training
and solving the inverse scattering problem where each iteration of LSO (or DSO) takes
0.08 seconds at the resolution of N = 32 and 0.25 seconds at the resolution of N = 64.
Although good estimates can be obtained with much fewer iterations, we empirically
determined that 300 iterations ensure good convergence.

Posterior Sampling and UQ As explained in Section 6.3, we approximate the posterior
distribution of contrast as a pushforward of a Gaussian around the MAP estimate in the
latent space; the covariance is chosen to obtain the best variational approximation of the
posterior in the sense of the KL divergence. We use the MAP estimate obtained from
the LSO method in the previous section and optimize (6.18) using the Adam optimizer
with a learning rate of 0.01. The initial value for σq is set as an all-one vector, and we
use K = 25 random samples drawn from the standard Gaussian in each iteration. To
compute the MMSE estimate and UQ, we calculate the pixel-wise average and standard
deviation over 25 posterior samples. Figure 6.7 showcases 4 posterior samples along with
UQ and MMSE estimates for β = 0.01 and β = 0.05. As expected, larger β values lead
to more diverse posterior samples. The UQ map identifies regions with higher uncertainty
visually represented in red. This information is highly valuable for conducting a more

98

2 4 6 8 10
εr

0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

DSO (BP)
DSO (MOG)
LSO

Figure 6.6: Performance of various methods across objects with different maximum ϵr
values on the MNIST dataset.

Posterior samples UQ MMSE

MAP GT

23.2 dB

23.1 dB<latexit sha1_base64="Jeh3eLpUm+xsBrZ5pPq1w3YP1Uk=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKUS9iwIvHCOYB2SXMTnqTIbMPZmaFsOQ3vHhQxKs/482/8BOcbHLQxIKmi6pupqf8RHClbfvLKqysrq1vFDdLW9s7u3vl/YOWilPJsMliEcuOTxUKHmFTcy2wk0ikoS+w7Y9up377EaXicfSgxwl6IR1EPOCMaiO5ro+akmtiV+1ar1wxLQdZJs6cVG6+IUejV/50+zFLQ4w0E1SprmMn2suo1JwJnJTcVGFC2YgOsGtoRENUXpbfPCEnRumTIJamIk1y9fdGRkOlxqFvJkOqh2rRm4r/ed1UB1dexqMk1Rix2UNBKoiOyTQA0ucSmRZjQyiT3NxK2JBKyrSJqWRCcBa/vExaZ1Xnolq7P6/U7VkaUIQjOIZTcOAS6nAHDWgCgwSe4AVerdR6tt6s99lowZrvHMIfWB8/Vd6RUQ==</latexit>

�
=

0.
05

<latexit sha1_base64="e4NcZL1bUhOqGOg5O0FgesZh2EY=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr4sY8OIxgnlAdgmzk9lkyOzsMtMrhJDf8OJBEa/+jDf/wk9wsslBowVNF1XdTE+FqRQGXffTKSwtr6yuFddLG5tb2zvl3b2mSTLNeIMlMtHtkBouheINFCh5O9WcxqHkrXB4M/VbD1wbkah7HKU8iGlfiUgwilby/ZAjJVfErbpet1yxLQf5S7w5qVx/QY56t/zh9xKWxVwhk9SYjuemGIypRsEkn5T8zPCUsiHt846lisbcBOP85gk5skqPRIm2pZDk6s+NMY2NGcWhnYwpDsyiNxX/8zoZRpfBWKg0Q67Y7KEokwQTMg2A9ITmDOXIEsq0sLcSNqCaMrQxlWwI3uKX/5LmSdU7r57dnVZq7iwNKMIBHMIxeHABNbiFOjSAQQqP8AwvTuY8Oa/O22y04Mx39uEXnPdvT86RTQ==</latexit>

�
=

0.
01

22.6 dB

Figure 6.7: Posterior samples, UQ, MMSE, and MAP estimates for an object with ϵr = 4
for β = 0.01 and β = 0.05; as expected, larger β values lead to more diverse posterior
samples.

thorough and informed analysis. Finally, the MAP estimate is sharper than the MMSE as
expected.

Generalization In this section, we evaluate the generalization performance of the
proposed method under out-of-distribution changes in the permittivity patterns. We
train injective flows exclusively on MNIST digits 0-5 and use the remaining digits for
testing. The LSO solver is configured with the same setup as in the previous section.
Figure 6.8 shows the posterior samples, UQ, MMSE, and MAP estimates for two test
samples of digits 6 and 8 with β = 0.05. This experiment clearly shows the effectiveness
of the proposed method in handling out-of-distribution data. We should point out that
there exists a trade-off between regularization power and generalization performance,
governed by the dimension of the latent space. Larger latent space dimensions yield

99

GTPosterior samples UQ MMSE MAP

17.4 dB17.3 dB

18.5 dB18.5 dB

Figure 6.8: Reconstructions and UQ for out-of-distribution samples with ϵr = 4. Despite
being trained solely on MNIST digits 0-5, the proposed method exhibits excellent gener-
alization by accurately reconstructing digits 6-9.

better generalization but less effective regularization. This has also been observed in
regular normalizing flows, where matching dimensions in the latent and data space result
in excellent generalization over out-of-distribution data but less effective regularization
[67, 69].

6.4.2 Experimental data

We finally evaluate our proposed model on FoamDielExt and FoamTwinDiel: real
experimental data for two phantoms provided by the Institute Fresnel in Marseille,
France [255]. In these experiments, there are Ni = 8 transmitters and 241 receivers
located on a circle with radius R = 1.67 m. Out of those, we only use Nr = 20 receivers
to make the inversion more challenging. Additional details about the setup are discussed
in [255]. As shown in Figure 6.9, FoamDielExt and FoamTwinDiel consist of dielectric
cylinders in a vacuum background. We use the measurements at the working frequency
of 3 GHz, and the side length of the investigation domain is D = 20 cm.

We use two pre-trained injective flows on the ellipses dataset for resolutions N = 32
and N = 64. The inverse scattering problem is solved using (6.12) for MAP estimation
and (6.18) for posterior modeling. We added the total-variation (TV) regularization
term to (6.12) and (6.18) to further improve the quality of the reconstruction. The
TV-norm multiplier is 0.1 and 0.08 for resolutions N = 32 and N = 64, respectively.
Figure 6.10 shows posterior samples, UQ, MMSE, and MAP estimates. Despite the
idealized forward operator and the substantial dissimilarity between the ground truth
(two or three circles) and the training data (combinations of four ellipses with random
positions and contrasts), the proposed framework produces satisfactory reconstructions.
This experiment illustrates the robustness of the proposed method to noise and variations
in experimental configuration. It also showcases the importance of posterior modeling:
while the MAP and MMSE estimates in Figure 6.10a wrongly reconstruct the larger
circle as compared to the ground truth, the uncertainty maps clearly signal that this part
of the recovered contrast is not reliable.

100

<latexit sha1_base64="t+s6QPi++PHSWZ+fjNZJLnGxI9c=">AAACA3icbZDLSsNAFIZP6q3WW9SdbgaL4Cok0qobseDGZQV7gSaUyXTSDp1cmJkIJRTc+CpuXCji1pdw51v4CE7TLrT1h4GP/5zDmfP7CWdS2faXUVhaXlldK66XNja3tnfM3b2mjFNBaIPEPBZtH0vKWUQbiilO24mgOPQ5bfnD60m9dU+FZHF0p0YJ9ULcj1jACFba6poHLk0k4xoFukSOVakiNwmRbTnVrlm2LTsXWgRnBuWrb8hV75qfbi8maUgjRTiWsuPYifIyLBQjnI5LbippgskQ92lHY4RDKr0sv2GMjrXTQ0Es9IsUyt3fExkOpRyFvu4MsRrI+drE/K/WSVVw4WUsSlJFIzJdFKQcqRhNAkE9JihRfKQBE8H0XxEZYIGJ0rGVdAjO/MmL0Dy1nDOrelsp1yrTNKAIh3AEJ+DAOdTgBurQAAIP8AQv8Go8Gs/Gm/E+bS0Ys5l9+CPj4wfq3paD</latexit>

✏r = 1.45 ± 0.15
<latexit sha1_base64="mplEJRR1cmjeONfabfOJaPvwHPQ=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWwVVIbL1sxIIblxXsBZpQJtNJO3RyYWYilFA3voobF4q49S3c+RY+gtO0C239YeDjP+dw5vx+wplUtv1lLCwuLa+sFtaK6xubW9vmzm5DxqkgtE5iHouWjyXlLKJ1xRSnrURQHPqcNv3B9bjevKdCsji6U8OEeiHuRSxgBCttdcx9lyaScY0CXaKyZSM3CZFtlTtmybbsXGgenCmUrr4hV61jfrrdmKQhjRThWMq2YyfKy7BQjHA6KrqppAkmA9yjbY0RDqn0svyCETrSThcFsdAvUih3f09kOJRyGPq6M8SqL2drY/O/WjtVwYWXsShJFY3IZFGQcqRiNI4DdZmgRPGhBkwE039FpI8FJkqHVtQhOLMnz0PjxHLOrNPbSqlamaQBBTiAQzgGB86hCjdQgzoQeIAneIFX49F4Nt6M90nrgjGd2YM/Mj5+APFklgU=</latexit>

✏r = 3.0 ± 0.3

40 mm

55.5 mm

(a) FoamDielExt

5 mm

<latexit sha1_base64="t+s6QPi++PHSWZ+fjNZJLnGxI9c=">AAACA3icbZDLSsNAFIZP6q3WW9SdbgaL4Cok0qobseDGZQV7gSaUyXTSDp1cmJkIJRTc+CpuXCji1pdw51v4CE7TLrT1h4GP/5zDmfP7CWdS2faXUVhaXlldK66XNja3tnfM3b2mjFNBaIPEPBZtH0vKWUQbiilO24mgOPQ5bfnD60m9dU+FZHF0p0YJ9ULcj1jACFba6poHLk0k4xoFukSOVakiNwmRbTnVrlm2LTsXWgRnBuWrb8hV75qfbi8maUgjRTiWsuPYifIyLBQjnI5LbippgskQ92lHY4RDKr0sv2GMjrXTQ0Es9IsUyt3fExkOpRyFvu4MsRrI+drE/K/WSVVw4WUsSlJFIzJdFKQcqRhNAkE9JihRfKQBE8H0XxEZYIGJ0rGVdAjO/MmL0Dy1nDOrelsp1yrTNKAIh3AEJ+DAOdTgBurQAAIP8AQv8Go8Gs/Gm/E+bS0Ys5l9+CPj4wfq3paD</latexit>

✏r = 1.45 ± 0.15
<latexit sha1_base64="mplEJRR1cmjeONfabfOJaPvwHPQ=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWwVVIbL1sxIIblxXsBZpQJtNJO3RyYWYilFA3voobF4q49S3c+RY+gtO0C239YeDjP+dw5vx+wplUtv1lLCwuLa+sFtaK6xubW9vmzm5DxqkgtE5iHouWjyXlLKJ1xRSnrURQHPqcNv3B9bjevKdCsji6U8OEeiHuRSxgBCttdcx9lyaScY0CXaKyZSM3CZFtlTtmybbsXGgenCmUrr4hV61jfrrdmKQhjRThWMq2YyfKy7BQjHA6KrqppAkmA9yjbY0RDqn0svyCETrSThcFsdAvUih3f09kOJRyGPq6M8SqL2drY/O/WjtVwYWXsShJFY3IZFGQcqRiNI4DdZmgRPGhBkwE039FpI8FJkqHVtQhOLMnz0PjxHLOrNPbSqlamaQBBTiAQzgGB86hCjdQgzoQeIAneIFX49F4Nt6M90nrgjGd2YM/Mj5+APFklgU=</latexit>

✏r = 3.0 ± 0.3

<latexit sha1_base64="mplEJRR1cmjeONfabfOJaPvwHPQ=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWwVVIbL1sxIIblxXsBZpQJtNJO3RyYWYilFA3voobF4q49S3c+RY+gtO0C239YeDjP+dw5vx+wplUtv1lLCwuLa+sFtaK6xubW9vmzm5DxqkgtE5iHouWjyXlLKJ1xRSnrURQHPqcNv3B9bjevKdCsji6U8OEeiHuRSxgBCttdcx9lyaScY0CXaKyZSM3CZFtlTtmybbsXGgenCmUrr4hV61jfrrdmKQhjRThWMq2YyfKy7BQjHA6KrqppAkmA9yjbY0RDqn0svyCETrSThcFsdAvUih3f09kOJRyGPq6M8SqL2drY/O/WjtVwYWXsShJFY3IZFGQcqRiNI4DdZmgRPGhBkwE039FpI8FJkqHVtQhOLMnz0PjxHLOrNPbSqlamaQBBTiAQzgGB86hCjdQgzoQeIAneIFX49F4Nt6M90nrgjGd2YM/Mj5+APFklgU=</latexit>

✏r = 3.0 ± 0.3

40 mm

55.5 mm

(b) FoamTwinDiel

Figure 6.9: Experimental Fresnel data [255]

GT

17.4 dB17.3 dB

Posterior samples UQ MMSE MAP

18.5 dB18.5 dBFo
am

D
ie

lE
xt

Fo
am

Tw
in

D
ie

l

(a) Resolution 32× 32

Posterior samples UQ MMSE MAP GT

18.3 dB

16.7 dB

18.2 dB

17.0 dB

Fo
am

D
ie

lE
xt

Fo
am

Tw
in

D
ie

l

(b) Resolution 64× 64

Figure 6.10: Posterior samples, UQ, MMSE, and MAP estimates for experimental
Fresnel data. The uncertainty maps clearly signify the importance of posterior modeling
by assigning higher uncertainty to wrongly reconstructed areas (red regions).

101

6.5 Summary

We proposed a data-driven framework for inverse scattering using an injective prior. The
proposed method fully exploits the physics of wave scattering while benefiting from
a data-driven initialization resulting in a powerful solver even for objects with a large
contrast. The invertible generator admits optimization in both latent and data space and
uses either a data-driven initialization or a back-projection. We showed that optimization
in the latent space and with the latent Gaussian center as the initial guess significantly
outperforms traditional iterative methods and even gives reconstructions comparable to a
strong supervised method, the U-Net.

The proposed framework has several key limitations. It requires running an iterative
method at test time, which is slow and impractical for real-time applications. Moreover,
iterative methods can converge to local minima even with clever initialization. To speed
up convergence, one may consider a more accurate initial guess by exploiting physics in
the data-driven initialization via a combination of traditional back-projection (like BP) and
data-driven initializations (like MOG). Furthermore, while the L-BFGS optimizer didn’t
improve the convergence rate in our experiments, other Newton’s family optimizers may
improve the convergence rate as shown in [243]. Additionally, forcing the reconstruction
to be within the range of an injective flow can introduce undesired bias and artifacts
in certain applications. Recently, Hussein et al. [166] optimized the generator weights
with a small rate after finding the optimal latent code in (6.12) to further improve the
reconstructions; this idea might be adapted to our framework. We leave addressing these
limitations for future work.

6.6 Appendix

6.6.1 Network architecture and training details

The injective subnetwork gγ is composed of 6 injective revnet blocks described in Sec-
tion 5.6.1, each increasing the dimension by a factor of 2. To enhance the expressiveness
of the model, we insert 36 bijective revnet blocks between them. We choose a latent space
of dimension 64 which provides a compression rate of 98.5% for resolution N = 64
and 93.7% for resolution N = 32. The bijective subnetwork hη is constructed using 20
bijective revnet blocks.

We normalize the training data between 0 and 1 before training the model. We then
multiply the output of the trained network by the maximum contrast of the dataset before
using it as the generative prior. We train the injective subnetwork gγ for 150 epochs to
ensure the training samples (contrast patterns) align with the generator’s range. Following
this, we train the bijective subnetwork hη for 150 epochs to maximize the likelihood of

102

the training samples in the intermediate space.

6.6.2 The Invariance of KL distance under injective mappings

Here we show that the KL distance is invariant under injective maps. Assume that
probability distributions qZ and pZ have the same support. Let qX = f#qZ and pX =
f#pZ where f#p denotes the pushforward of p via mapping f , i.e., if x is distributed
according to p, f(x) is distributed according to f#p 1.

As discussed in 5.2, the change of variable for the injective mapping f yields [199],

log pX(x) = log pZ(z)−
1

2
log
∣∣det[Jf (z)TJf (z)]∣∣ , (6.19)

where z = f †(x) and is valid for x ∈ Range(f). We can now compute as follows,

KL(qX∥pX) = Ex∼qX [log qX(x)− log pX(x)]

= Ex∼qX [log qZ(z)−
1

2
log | det[Jf (z)TJf (z)]|

− log pZ(z) +
1

2
log | det[Jf (z)TJf (z)]|]

= Ex∼qX [log qZ(z)− log pZ(z)]

= Ez∼qZ [log qZ(z)− log pZ(z)]

= KL(qZ∥pZ),

which is what we wanted to show.

1For simplicity we lightly abuse notation by identifying a probability measure and its density.

103

Chapter 7

Conditional Injective Flows for
Bayesian Imaging

In Chapter 5, we developed injective flows for posterior sampling and uncertainty quan-
tification of various imaging problems. The proposed image recovery algorithm involves
an iterative process that is slow and can be computationally expensive particularly for
inverse problems with a costly forward operator like inverse scattering. In this chapter,
we build a Bayesian architecture based on injective flows in the context of amortized
inference enabling rapid posterior sampling and uncertainty quantification.

In Bayesian modeling of computational imaging problems, we assume that the
(unknown) object of interest x and the observed measurements y are realizations of
random vectors X ∈ X and Y ∈ Y with a joint distribution pX,Y . This general model
includes the common setting of a deterministic forward operator and additive Gaussian
noise,

y = A(x) + ϵ, (7.1)

where
Y |X ∼ N (A(X), σ2I) (7.2)

as well as other relevant models like Y = Poisson(A(X), λ) or even random or uncertain
forward operators A.

Common machine-learning approaches to ill-posed inverse problems yield point
estimates, that is, they output a single reconstruction. For example, training a deep neural
network fθ with the mean-squared error (MSE) loss E ∥X − fθ(Y)∥2 approximates the
minimum-mean-squared-error (MMSE) estimator1 E[X|Y] (the posterior mean) [14].

In many situations, however, a single point estimate can be misleading or incomplete.
For example, in radio interferometric imaging which aims to reconstruct astronomical
images from radio telescope measurements, there can be multiple solutions that fit the

1Often called the regression function in machine learning and statistics.

104

observed measurements; a now-famous example is the imaging of a black hole [194].
This can happen for a variety of reasons, all stemming from the ill-posedness of the
imaging problem. The posterior may be multimodal, in which case the MMSE estimator
blends the modes together and maximum a posteriori estimate (MAP) (or posterior
mode) argmaxx pX|Y (x|y), returns only one of the many modes. Even when the posterior
is unimodal, providing a point estimate when measurements have low signal-to-noise
ratio does not convey the amount of uncertainty in the estimate, thus requiring cautious
interpretation. As a remedy, uncertainty quantification (UQ) on top of a reconstructed
image can greatly help medical professionals make more informed decisions or order
additional measurements in uncertain regions [256].

x̂MMSE

<latexit sha1_base64="oUStaTtey+8dNiiUe2mgQKwygt0=">AAACAHicbVDLSsNAFJ34rPUVdaHgZrAIrkoiFV0WRHBTqGgf0IQwmU7boZMHMzfSErLxV9y4UMStn+HOv3HaZqGtBy4czrmXe+/xY8EVWNa3sbS8srq2Xtgobm5t7+yae/tNFSWSsgaNRCTbPlFM8JA1gINg7VgyEviCtfzh9cRvPTKpeBQ+wDhmbkD6Ie9xSkBLnnnoDAiko8xLUwfYCNJa7f4myzLPLFllawq8SOyclFCOumd+Od2IJgELgQqiVMe2YnBTIoFTwbKikygWEzokfdbRNCQBU246fSDDp1rp4l4kdYWAp+rviZQESo0DX3cGBAZq3puI/3mdBHpXbsrDOAEW0tmiXiIwRHiSBu5yySiIsSaESq5vxXRAJKGgMyvqEOz5lxdJ87xsV8oXd5VS9SiPo4CO0Qk6Qza6RFV0i+qogSjK0DN6RW/Gk/FivBsfs9YlI585QH9gfP4A02iXEg==</latexit>

x

<latexit sha1_base64="OEUcDA5YrtaUYRHDr5XcjI5F8EA=">AAAB6HicbVDLSgNBEOyNrxhfUS+Cl8EgeAq7EtFjwIvHBMwDkiXMTnqTMbOzy8ysGEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW4+oNI/lvRkn6Ed0IHnIGTVWqj/1iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JedW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZl2auUr+qVUvUkiyMPp3AGF+DBNVThDmrQAAYIz/AKb86D8+K8Ox+L1pyTzRzDHzifP9wvjNo=</latexit>

y

<latexit sha1_base64="MkxCaLVH5Rl+h/Ck8/47xcxw65k=">AAAB6HicbVBNS8NAEJ34WetX1YvgZbEInkoiFT0WvHhswX5AG8pmO2nXbjZhdyOE0l/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38389hMqzWP5YLIE/YgOJQ85o8ZKjaxfKrsVdw6ySryclCFHvV/66g1ilkYoDRNU667nJsafUGU4Ezgt9lKNCWVjOsSupZJGqP3J/NApubDKgISxsiUNmau/JyY00jqLAtsZUTPSy95M/M/rpia89SdcJqlByRaLwlQQE5PZ12TAFTIjMksoU9zeStiIKsqMzaZoQ/CWX14lrauKV61cN6rl2mkeRwHO4BwuwYMbqME91KEJDBCe4RXenEfnxXl3Phata04+cwJ/4Hz+AN2zjNs=</latexit>

x̂MAP

<latexit sha1_base64="i4fyHV1iXk4DPBya9jDpfDrateE=">AAAB/XicbVDLSsNAFJ3UV62v+FgIbgaL4KokUtFlxY0boYJ9QBPCZDpth04ezNxIawj+ihsXirj1P9z5N07bLLT1wIXDOfdy7z1+LLgCy/o2CkvLK6trxfXSxubW9o65u9dUUSIpa9BIRLLtE8UED1kDOAjWjiUjgS9Yyx9eT/zWA5OKR+E9jGPmBqQf8h6nBLTkmQfOgEA6yrzUATaC9PaqnmWeWbYq1hR4kdg5KaMcdc/8croRTQIWAhVEqY5txeCmRAKngmUlJ1EsJnRI+qyjaUgCptx0en2GT7TSxb1I6goBT9XfEykJlBoHvu4MCAzUvDcR//M6CfQu3ZSHcQIspLNFvURgiPAkCtzlklEQY00IlVzfiumASEJBB1bSIdjzLy+S5lnFrlbO76rl2mEeRxEdoWN0imx0gWroBtVRA1H0iJ7RK3oznowX4934mLUWjHxmH/2B8fkDUayVqA==</latexit>

UQ

<latexit sha1_base64="0uWTSAooFlYWFQsOFDNnYcBWKys=">AAAB6XicbVBNS8NAEJ34WetX1YvgZbEInkpSFD0WvHhsxbSFNpTNdtMu3WzC7kQopf/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMC1MpDLrut7O2vrG5tV3YKe7u7R8clo6OmybJNOM+S2Si2yE1XArFfRQoeTvVnMah5K1wdDfzW09cG5GoRxynPIjpQIlIMIpWevAbvVLZrbhzkFXi5aQMOeq90le3n7As5gqZpMZ0PDfFYEI1Cib5tNjNDE8pG9EB71iqaMxNMJlfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0W0wESrNkCu2WBRlkmBCZm+TvtCcoRxbQpkW9lbChlRThjacog3BW355lTSrFe+qct2olmuneRwFOINzuAQPbqAG91AHHxhE8Ayv8OaMnBfn3flYtK45+cwJ/IHz+QNGj40Q</latexit>

Samples from q✓ ⇡ pX|Y

<latexit sha1_base64="95YyNGRVxZeIywtP+aN5ogYfXok=">AAACEHicbVCxThtBEN0jIQFDgoEmUppVDCKVdYeISIlEQwlKDI5s6zS3nsMrdm+X3TkU6/AnpOFXaChAiJYyHX/D2rgIkCeN9PTejGbmZVZJT3H8EM28eTv77v3cfG1h8cPHpfryyqE3pRPYEkYZ187Ao5IFtkiSwrZ1CDpTeJSd7I79ozN0XpriJw0t9jQcFzKXAihIaX3jB2ir0PPcGc3XTtMuDZCAd8FaZ35zm1bt81+jtbTeiJvxBPw1SaakwabYT+t/u30jSo0FCQXed5LYUq8CR1IoHNW6pUcL4gSOsRNoARp9r5o8NOLrQenz3LhQBfGJ+u9EBdr7oc5CpwYa+JfeWPyf1ykp/96rZGFLwkI8LcpLxcnwcTq8Lx0KUsNAQDgZbuViAA4EhQxrIYTk5cuvyeFmM9lqfjvYbOx8msYxxz6zL+wrS9g222F7bJ+1mGB/2CW7ZjfRRXQV3UZ3T60z0XRmlT1DdP8IKTWcig==</latexit>

Figure 7.1: Travel-time tomography with
boundary sensors; we measure the wave
travel time between sensors in Figure 7.6c.
The column x shows the ground truth, the
column y the pseudo-inverse of the forward
operator applied to the measurements. Con-
ditional injective flows provide MMSE, sur-
rogate MAP (Section 7.3.3) and physically
meaningful uncertainty quantification (UQ).
Given no sensors in the top regions of the im-
age, the trained C-Trumpet assigns higher un-
certainty to the top half of the domain. While
both standard point estimates look close to
“9”, many posterior samples look like “4”s
which indicates the significance of posterior
sampling for ill-posed inverse problems.

In Figure 7.1 we use a toy problem to
illustrate access to the posterior can help in
the presence of multiple modes. Both stan-
dard point estimates look close to a “9”,
but many posterior samples look like “4”s.
While innocuous on MNIST [204], such
failure modes come with risks in medical
imaging.

Another approach is then to character-
ize the posterior pX|Y upon observing y.
Given the joint distribution pX,Y , comput-
ing the posterior pX|Y generally involves
intractable high-dimensional integrations.
A standard way to circumvent this is by
sampling methods such as Markov chain
Monte Carlo (MCMC) [257, 258]. These
methods work well in low-dimensional
problems but become computationally in-
tensive when used in high-dimensional
imaging tasks due to the need to compute
the forward operator many times [259]. An
alternative is to perform variational infer-
ence. This requires defining a tractable,
parameterized family of distributions Q
and choosing a q ∈ Q that is “close” to
pX|Y .

In this chapter, we define a new class of approximate posteriors Q using injective
deep neural networks, suitable for imaging problems. We build on the Trumpet intro-
duced in Chapter 5 and conditional coupling layers [260]. Conditional normalizing
flows [260] inherit the favorable properties of their non-conditional counterparts—easy
access to the likelihoods and inverses of generated samples. They were applied to inverse

105

problems [261, 262] where they enable posterior estimation, efficient sampling and even
uncertainty quantification. In this work, we propose conditional injective flows termed
C-Trumpets. While injective flows model image datasets supported on low-dimensional
manifolds, the range of a C-Trumpet is a (potentially) different low-dimensional manifold
of posterior samples for each measurement. As we show in Section 7.4, this makes them
an effective model for data distributions supported on fiber bundles with the base space
corresponding to the space of measurements Y , and in particular effective models of pos-
terior distributions in imaging inverse problems. Moreover, thanks to a low-dimensional
latent space, they can be trained for high-dimensional data (256 × 256) using a single
GPU while training conditional bijective flows at this resolution requires significantly
more memory.

While generating approximate posterior samples is important, many applications still
call for Bayesian point estimates such as the MAP or the MMSE estimator, and it is
convenient if those can be computed with the same model. While it is clear (at least
conceptually) how to do it for the MMSE estimator—generate many samples and average
them—the MAP estimator is more elusive. There are not many deep learning approaches
to imaging which compute (or approximate) the MAP estimator since the corresponding
training loss (purely formally) is the highly irregular δ(x− x′) as opposed to the “nice”
∥x−x′∥2 [263]. (A notable exception is amortized MAP for image super-resolution [264],
although it is limited to noiseless linear low-rank projections.) We could in principle
obtain a MAP estimate from C-Trumpets via iterative maximization; however, that is
slow and it is not guaranteed to converge. We thus propose a modification of coupling
layers which results in a fixed volume change with respect to the input. We use this newly
designed layer to efficiently approximate MAP estimators without the need to run an
iterative process or evaluate the forward operator.

Our main contributions can be summarized as follows:

• We define a class of deep learning models for amortized variational inference called
C-Trumpets, with a smaller memory and compute footprint compared to bijective
flows; C-Trumpets can be trained on 256× 256 images on a single V100 GPU in a
day.

• The new flows include bespoke architectural innovations: fixed-volume-change
layers provide efficient MAP estimates without iterative optimization, while skip
connections improve the quality of the generated samples and uncertainty quantifi-
cation.

• We show that C-Trumpets outperform conditional bijective flows in solving compu-
tational imaging problems including nonlinear electromagnetic scattering, limited-
view CT and seismic travel-time tomography; C-Trumpets produce much better
posterior samples and uncertainty estimates that are consistent with the physics of
the forward operators in various inverse problems.

106

• While standard injective flows parameterize manifolds and are thus a natural
(regularizing) choice when we believe the manifold assumption holds, we show
that conditional injective flows can parameterize fiber bundles [265].

7.1 Related works

There is by now a very large body of work on solving inverse imaging problems using
deep neural networks. On the supervised regression end of the spectrum arguably the
most important architecture is the U-Net [25]. It has been applied with great success to a
variety of imaging problems including CT [14], magnetic resonance imaging (MRI) [15]
and electromagnetic inverse scattering [16]. Its success may be attributed to the particular
multiscale structure [27,164] which matches both the physical description of the imaging
problems and the representation of the involved image classes. Many alternatives have
been proposed for specific problems where the assumptions that make the U-Net a natural
choice do not hold, for example for wave-based problems [248, 266].

On the other hand, trained generative models have been shown to be effective pri-
ors [66, 267] in ill-posed inverse problems that can be trained in an unsupervised manner.
Normalizing flows in particular were used to approximate MAP estimates using itera-
tive optimization [201, 267]. However, normalizing flows are bijective, requiring large
memory and compute budget even at moderate resolution. Moreover, they lack a low-
dimensional latent space which has been shown to effectively regularize the inversion.
Brehmer and Cranmer [161] proposed the first injective model for densities supported on
low-dimensional manifolds. Kothari et al. [21] proposed injective flows with significantly
optimized compute and memory requirements which were shown to outperform earlier
variants of injective and bijective flows in computational imaging problems.

A variety of methods have been proposed for Bayesian imaging. The latter aims to
approximate posterior distribution and / or the various point estimators related to the
posterior. The authors of [268] consider a convex log-likelihood function for posterior
distribution around the MAP estimate, which is suitable for modeling unimodal posteriors.
Normalizing flows have been proposed as variational approximators to the posterior
distribution for a given measurement [194]. The authors of [21,252] propose to train a flow
model to approximate the posterior corresponding to a prior which is also modeled using
a flow model. More recently, pre-trained GANs were used in conjunction with MCMC to
generate posterior samples in non-linear inverse problems [269]. The authors of [270]
leveraged the low-dimensional latent space of variational autoencoders to efficiently
sample from posterior for MRI image reconstruction. The authors of [271, 272] use a
style-GAN generator [156] to regularize ill-posed inverse problems and generate posterior
samples. All these methods train a new generative model or run an iterative process for
every measurement, which makes them slow when applied to multiple reconstructions.
Further, training for each conditioning sample requires many calls to the forward operator.

107

To tackle these issues, one may consider amortized inference to make the generative
models conditioned based on the measurements.

Conditional versions of generative adversarial networks (GANs) [189, 273] and
variational autoencoders (VAEs) [197, 274] rely on injecting conditioning data into the
different layers of the generator model. However, the lack of access to the posterior
distribution make conditional GANs difficult to be used in inference tasks. On the
other hand, VAEs provide lower bounds on likelihoods of generated samples. While
these bounds can be made tighter by importance weighting [275], C-Trumpets allow
one to compute exact end-to-end likelihoods via stochastic estimation, as well as to
obtain fast exact values of likelihoods before the high-dimensional expansion. These
generative models also suffer from mode collapse and training instabilities. Conditional
normalizing flows were introduced in [260] to estimate the posterior by modifying the
scale and shift terms of the coupling layers. The authors of [261] additionally make the
mean and covariance of the base Gaussian distribution depend on the measurements.
More recently, [276] proposed to append the measurements to all layers of the Glow
network [70] in order to enable greater information flow from conditioning data to the
generated samples. A different approach to conditioning the flow models has been
developed by [277, 278], benefitting from two parallel flow models for simultaneously
modeling of target and conditioning samples. All these conditional normalizing flows are
bijective mappings from latent space to the target domain for each measurement. It is
worth mentioning that all these models can be used in the bijective part of C-Trumpets
to exploit their advantages in posterior modeling. On the side of theory, Puthawala et
al. [279] establish universality of density and manifold approximation of injective flows
such as those in [21, 161].

7.2 Variational Bayesian inference

In this section, we work formally and assume that all probability measures have a
density; this allows us to simply present the main ideas. A training strategy suitable for
distributions supported on low-dimensional manifolds is detailed in Section 7.3.

We consider random vectors X ∈ X (representing the unknown object) and Y ∈
Y (representing the observed noisy measurements). As discussed in Section 6.3, the
posterior distribution pX|Y can be expressed by (6.9). In high-dimensional imaging
applications, calculating

∫
x
pX,Y (x, y)dx is intractable. Moreover, the prior distribution

pX is unknown and needs to be estimated [41, 269]. MCMC-based sampling methods
do not require access to

∫
x
pX,Y (x, y)dx but they are slow if one desires likely posterior

samples [259,280]. An alternative to MCMC is to perform variational inference [250,251]
as discussed in Section 6.3: we define a parameterized class of distributions

Q = {qθ ∈ P(X) : θ ∈ Θ},

108

where P(X) is the space of probability distributions over X , and we search for θ such
that qθ is close to pX|Y . Examples of Q include Gaussian mixtures and densities induced
by generative neural networks.

The remaining ingredients are a measure of “closeness” and a fitting algorithm. In
Section 6.3, we used Kullback–Leibler (KL) divergence as a measure of fit. Given a
measurement y, we choose qθ by solving either

θ∗rev(y) = argmin
θ∈Θ

KL(qθ∥pX|Y (· | y)),

or
θ∗fwd(y) = argmin

θ∈Θ
KL(pX|Y (· | y)∥qθ),

respectively called reverse and forward KL minimization [258, 281]. The two estimates
are in general different due to the asymmetry of the KL divergence.

In Section 6.3, we used reverse KL to approximate the posterior distribution. As
discussed, minimizing the reverse KL requires computing the expectation
EX∼qθ log pY |X(y|X)pX(X). While pY |X is usually assumed known in imaging problems
with a known forward operator—in (7.2) it corresponds to additive Gaussian noise—the
prior distribution pX is unknown. In Section 6.3, normalizing flows were used to estimate
pX to then allow for downstream minimization of the reverse KL divergence. The authors
of [282] leveraged variational autoencoders to approximate the prior density. On the
other hand, minimizing the forward KL does not require access to the prior distribution,
the noise model or the forward operator [283, 284].

Computing θ⋆(y) in both forward and reverse KL formulation involves solving a
separate optimization problem for every new measurement y. The reason is that qθ ∈ Q
is a function of x alone, not x and y, and we hope that for each y,

qθ⋆(y)(x) ≈ pX|Y (x|y).
This separate optimization for every y may be inefficient if implemented via standard
iterative solvers as shown in Section 6.3.

We could, however, work directly with a family of conditional distributions qθ(x|y)
which depend on both x and y,

Qcond = {(x, y) 7→ qθ(x|y) : θ ∈ Θcond},
where for each y, qθ(·|y) ∈ P(X) is a probability distribution over X .

We can now compute a conditional variational approximator qθ(x|y) by minimizing
the average KL divergence over all measurements y: this procedure is known as amortized
inference. It leads to the following optimization problem:

θ⋆ = argmin
θ

EY∼pY KL(pX|Y (· |Y)∥qθ(· |Y))

= argmax
θ

EX,Y∼pX,Y
log qθ(X|Y).

(7.3)

109

. . .

.

. . .

Latent space

Conditional data manifold

Figure 7.2: Conditional injective flows. Different measurements y1, y2 and y3 give
different manifolds.

The key observation is that the population expectation over pX,Y can now be approximated
by an empirical expectation over the training data {(x(i), y(i))}Ni=1.

The question that remains is: how to parameterize qθ(x|y) so that we can 1) learn
θ⋆ efficiently from data, 2) easily obtain conditional samples from qθ⋆(x|y) ≈ pX|Y (x|y)
for a given y, and 3) efficiently compute standard point estimators such as the MAP
estimator? We answer this question in the remainder of the chapter by describing
conditional injective flows called C-Trumpets.

In a nutshell, we will define a family of neural networks fθ(Z; y) where y is the
conditioning input. The first argument, Z, will be a standard Gaussian random vector
over a low-dimensional latent space, and the parameter θ adjusted so that for each y, the
random vector fθ(Z; y) is close in distribution to X|Y=y. In other words, denoting the
standard Gaussian distribution by pZ , we will obtain qθ(· | y) as a pushforward of pZ via
fθ(z; y),2

qθ(· | y) = [fθ(· ; y)]# pZ . (7.4)

The approximate posterior samples can then be obtained in a standard way as fθ(Z; y).

7.3 C-Trumpets: conditional injective flows

For many natural and medical image classes, the posterior distribution pX|Y is low-
dimensional as its support is a subset of the support of the prior distribution pX which
is assumed to concentrate close to a low-dimensional manifold [285, 286]. C-Trumpets
(Figure 7.2) are conditional injective normalizing flows that map a low-dimensional
latent space to a high dimensional data space using an injective transformation for each
conditioning sample. Injectivity guarantees that for each conditioning sample the range

2For simplicity we lightly abuse notation by identifying a probability measure and its density.

110

of the network is a manifold. Moreover, the efficiently-invertible layers facilitate training
and inference. As shown in Figure 7.2, the proposed model has two subnetworks: an
injective generator gγ that maps a low-dimensional space Z = Rd to the data space
X = RD, d≪ D, and a bijective mapping hη : Z → Z maintaining dimensionality. The
end-to-end mapping is then given as,

fθ(z; y) = gγ(hη(z; y); y)

with learnable parameters θ = (γ, η).

C-Trumpets are inspired by non-conditional injective flows [21] Trumpets, proposed
in Chapter 5. They comprise a sequence of injective [21] and bijective [70] revnet blocks.
Each revnet block consists of three components as explained in Section 5.1.1: activation
normalization, (injective or bijective) 1× 1 convolution and affine coupling layer. It is
worth noting that all these components are non-conditional.

To make the generative process conditional, we adapt the conditional affine coupling
layers proposed in [260]. Conditional affine coupling layers keep the advantages of a
regular flow model—fast inverses and tractable Jacobian computations, while benefiting
from the conditioning framework. Since scale s(·) and shift b(·) networks in (5.3) are
never inverted, we can concatenate the features of the conditioning sample y to their input
without losing invertibility and tractable log det Jacobian computation. Accordingly, s(·)
and b(·) are replaced by s(·, cφ(y)) and b(·, cφ(y)),

FORWARD: x1 = z1
x2 = s(z1, cφ(y)) ◦ z2 + b(z2, cφ(y))

INVERSE: z1 = x1
z2 = s(x1, cφ(y))

−1 ◦ (x2 − b(x1, cφ(y))),

where z = [z1, z2]
T , x = [x1, x2]

T and cφ(·) represents the conditioning network that
extracts appropriate features from y. We deploy conditional affine coupling layers in both
injective and bijective subnetworks of C-Trumpets.

7.3.1 Conditioning network

The role of the conditioning network cφ(·) is to extract features from conditioning
samples y to be used by the affine coupling layers. The architecture of the conditioning
network depends on the nature of the conditioning samples. When y is structured as an
image, we use convolutional layers; when it is an unstructured 1D vector, we use fully
connected layers, as for example in class-based image generation (see Appendix 7.7.4)
where the conditioning data are one-hot class encodings. The output dimension of the
conditioning network is set to match the input dimension of the scale and shift modules
of the coupling layers. The weights of the conditioning networks are trained jointly with
the remaining parameters in C-Trumpets via back-propagation using paired training data.

111

Further details about conditioning networks in all numerical experiments are given in the
Appendix 7.7.2 and 7.7.4.

7.3.2 Skip connections

The fact that we use expanding revnet layers allows us to augment the architecture with
elements that are not compatible with the standard injective layers. The conditioning
samples often have a pixel-wise dependency on target signals. For example, in image
inpaiting with a fixed mask location, the out-of-mask pixels should be simply forwarded
to the output. In order to not re-learn these features, we introduce skip connections after
every revnet block between the measurements, y and the different resolution levels of the
injective subnetwork of C-Trumpets,

FORWARD: x = (1− S) ◦ rev(z; y) + S ◦ resize(y)

INVERSE: z = rev−1

(
x− S ◦ resize(y)

1− S ; y

)
,

(7.5)

where rev(·) is the conditional revnet block, S is a learnable matrix with entries between
0 and 1; S adjusts the amount of the direct mixing of the measurements in the generated
posterior sample. We empirically find that skip connections help the injective part of
C-Trumpets converge faster and they yield better reconstruction in several imaging
problems.

7.3.3 Fast MAP estimation via fixed volume-change layers

As shown in Section 6.2, MAP estimation often requires an iterative solution of a max-
imization problem. Deep neural networks for image reconstruction are traditionally
trained with an ℓp loss (p = 2 giving the ubiquitous MSE loss and ultimately an approx-
imation of the MMSE estimator E[X|Y]). There are, however, few attempts at using
deep neural networks to approximate the MAP estimate in imaging, possibly because the
associated “loss” would be a tempered distribution δ(x− x′) [263]. While the MAP and
the MMSE estimates coincide when X and Y are jointly Gaussian, they are in general
different. For posteriors supported on a low-dimensional manifold, the MMSE estimate
will generally not lie on the manifold. (We show a qualitative manifestation of this effect
in Section 7.5.4)

A notable deep-learning approach to amortized MAP inference for image super-
resolution has been proposed by Sønderby et al. [264]. However, their method is only
applicable for super-resolution in the ideal noise-free scenario. In this section, we propose
a new variant of affine coupling layers, which enables us to obtain the MAP estimate
instantaneously with a single forward pass of the trained network. This method is exact

112

when used with bijective flows and approximate for injective flows where it computes the
MAP estimate of the pre-image samples z′ in Figure 7.2.

Consider a trained conditional normalizing flow model x = f(z; y). The MAP
estimate can be obtained by solving

xMAP = argmax
x

log(pX|Y (x|y))

= argmax
x

log(pZ(z))−
K∑
k=1

log | det Jfk |,
(7.6)

where z = f−1(x; y). In principle, we can run an iterative maximization process to
compute xMAP like what we did in Section 6.2. In general, this may be slow and it is not
guaranteed to converge, even with multiple random restarts.

Let us analyze (7.6) more closely. While the first term, log(pZ(z)), has the highest
value at z = µz (the mean of the Gaussian), the second term has three components:
activation normalization, 1 × 1 convolution, and the conditional affine coupling layer.
The first two components are linear layers with data-independent Jacobians; their log dets
are thus constant with respect to x and can be omitted from (7.6). The log det of the
Jacobian of conditional affine coupling layers is

log(| det J(z)|) =
l∑

i=1

log(si(z1, cφ(y))), (7.7)

where si(·) is the ith element of the output of the scale network. This term is in general
data-dependent. In order to make it data-independent, we propose to use the following
activation for the scale network,

sFVC(z, cφ(y)) = exp(softmax(m(z, cφ(y)))), (7.8)

where m(·) is an arbitrary neural network and softmax(x) is defined as

softmax(x)i =
exi∑l
j=1 e

xj
for i = 1, 2, ..., l.

Then we have,

log(| det JFVC(z)|) =
l∑

i=1

log(siFVC(z1, cφ(y))) = 1. (7.9)

The newly proposed layer has a data-independent log det Jacobian, without losing ex-
pressivity, as verified empirically in Sections 7.5.2 and 7.5.3.

Now all terms in (7.6) are independent of x, so that

xMAP = argmax
x

log(pX|Y (x|y))
= argmax

x
log(pZ(z))

= f(µz; y); y),

(7.10)

113

which is to say that the MAP estimate is obtained simply by feeding the mean of the
Gaussian base distribution into the (bijective) flow.

While the proposed technique is exact for bijective conditional flows, however the
log det term for conditional injective flows is given as

log pX|Y (x|y) = log pZ(f
†
θ (x; y)) −

1

2
log | det[Jfθ(f †

θ (x; y))
TJfθ(f

†
θ (x; y))]|, (7.11)

and equation (7.11) cannot be decomposed into a sum of the log dets of its constituent
components. We can nevertheless use this technique to obtain a MAP estimate in the
intermediate z′-space as in Figure 7.2. Therefore, we obtain a surrogate of the end-to-end
MAP estimate and call it surrogate MAP and denote it as g†-MAP.

7.3.4 Training strategy

Thanks to simple, tractable inverses and log dets of layer Jacobians, the parameters of
normalizing flows can be fitted via maximum likelihood (ML). However, as C-Trumpets
have a low-dimensional latent space, the likelihood is only defined in the range of the
injective generator. Since the weights of the networks are initialized randomly, prior
to training this range does not contain the targets in the training set and their end-to-
end likelihoods are not defined. We thus split the training of C-Trumpets, fθ(z; y) =
gγ(hη(z; y); y), into two phases, following the method of Brehmer and Cranmer [161]
for non-conditional injective flows as discussed in Section 5.1.3: (1) The MSE training
phase where we only fit the trainable parameters γ of the injective network with the
goal of adjusting the range of fθ to contain the training data, and (2) The ML training
phase where we optimize the trainable parameters η of the low-dimensional bijective part,
maximizing the likelihood of the pre-image (through gγ) of the training data.3

In the first phase, we optimize γ by minimizing

LMSE(γ) =
1

N

N∑
i=1

∥x(i) − gγ(g†γ(x(i); y(i)); y(i))∥22, (7.12)

where {(x(i), y(i))}Ni=1 are the training samples and g† is the layer-wise inverse of the
injective subnetwork; therefore, the projection operator on the range of gγ(· ; y) is given
as Pgγ (x; y) := gγ(g

†
γ(x; y); y). After training the injective network for a fixed number

of epochs, the range of the network approximately contains the training data.

We now switch to the second phase: maximizing the likelihood of the projected
training samples in the intermediate space (z′ in Figure 7.2), {g†γ(x(i))}Ni=1, by minimizing

3For simplicity we denote all trainable parameters of the injective network, including the weights of the
conditioning networks and the skip connections by γ, and all trainable parameters of the bijective network,
including the weights of the conditioning networks by η.

114

the following KL divergence over η (cf. Section 7.2):

LML(η) =
1

N

N∑
i=1

(
− log pZ(z

(i)) + log | det Jhη |
)
, (7.13)

where z(i) = h−1
η (g†γ(x

(i); y(i)); y(i)) and pZ(z) is a standard Gaussian distribution in Rd.
In summary, this training strategy first ensures that the range of the injective generator
“interpolates” the training data and then maximizes the intermediate space likelihoods as
proxies to the image-space likelihoods. After training, sampling an approximate posterior
sample for a given y is performed by sampling a z from a normal distribution and using
the forward pass: xgen = gγ(hη(z; y); y).

7.4 The C-Trumpets signal model

In this section, we briefly discuss the geometric and topological aspects of C-Trumpets.
Readers who care mostly about the practical aspects and numerical results may safely
skip ahead to Section 7.5.

The primary motivation for introducing (non-conditional) injective flows is to model
data supported on low-dimensional manifolds [21, 161, 193, 279]. It was empirically
shown that for common structured datasets these models are indeed simpler, faster to train
and generate higher quality samples than globally invertible normalizing flows which
maintain the same dimension across all layers.

On the other hand, we introduce C-Trumpets from the point of view of uncertainty
quantification and posterior sampling rather than geometrical and topological considera-
tions about the class of signals it models. It is nevertheless important to make this class
explicit, since this understanding will guide design choices and circumscribe the range of
problems in which C-Trumpets are the right tool of choice.

For every (fixed) conditioning sample y, a C-Trumpet becomes a conditional flow
modeling the corresponding conditional distribution. Thus for every conditioning sample
y the range is a low-dimensional manifold

My = {fθ(z; y) : z ∈ Z}
with topology induced by the topology of the latent space (the support of pZ). The range
of a C-Trumpet as a function of z and y then corresponds to the union of the family of
these manifolds indexed by y,

Rθ = {fθ(z; y) : z ∈ Z, y ∈ Y} =
⋃
y∈Y

My.

For a given (y, z) let
β(y) = {x : x = fθ(z; y), z ∈ Z},

115

denote the set of all possible signals x that could have caused the observation y, or in
other words the support of the distribution pX|Y=y.

Let us now assume a slightly stronger condition than injectivity of fθ in the first
argument: that the Jacobian (with respect to both z and y) of fθ has full rank dim(Z) +
dim(Y). Note that this does not guarantee global injectivity of the map (z, y) 7→ fθ(z; y),
but it does imply that there is a (finite) collection of open sets {Ui} (thought of as
neighborhoods in Y) which cover Y ,

⋃
i Ui = Y , such that fθ is injective on Z × Ui for

all i and in fact a homeomorphism between Z × Ui and β(Ui). The signal model we just
described is called a fiber bundle [265, 287].

Formally, a generic fiber bundle comprises sets (E ,B,Z) called the total space (E),
the base space (B), and the (typical) fiber (Z), together with a surjective map π : E → B,
with the property that for each b ∈ B, there exists an open neighborhood b ∈ Ui ⊆ B on
which ϕ : Z × Ui → π−1(Ui) is a homeomorphism. The definition can be illustrated by
a commutative diagram [265],

π−1(Ui) Z × Ui

Ui

π

ϕ−1

ϕ

proj
(7.14)

where proj : Z × Ui → Ui. We have the following correspondence between the standard
fiber bundle notation and the notation specific to C-Trumpets used in this chapter:

C-Trumpets Fiber bundles

Rθ ←→ E
Z ←→ Z
Y ←→ B
β ←→ π−1

fθ ←→ ϕ.

Fiber bundles model a variety of situations in imaging, scientific computing, and
physics. In CryoEM we can see the 3D rotation group as a bundle of circles over the
2-sphere, which leads to denoising algorithms [288, 289]. Symmetries for the forward
operator (for example in phase retrieval) naturally split the data space into equivalence
classes that can be modeled as fiber bundles. More generally, any many-to-one ma-
chine learning task is well-modeled by a fiber bundle [265]. We also mention natural
connections with gauge equivariance and geometric deep learning [81].

That said, our aim here is to identify a natural assumption we make when modeling
data with a conditional generative model, analogously to how unconditional generative
models are naturally compatible with data that lives close to a low-dimensional manifold.
Continuing the analogy, just like manifolds are used to regularize ill-posed inverse

116

Base Space

Total Space

(a) Torus

Base Space

Total Space

(b) Elliptic Möbius

Figure 7.3: Two examples of fiber bundles: Torus and elliptic Möbius as fiber bundles
over the base circle.

problems, we imagine fiber bundle models can be used as regularizers with additional
structure even when the data only approximately lives on a fiber bundle.

Fiber bundles model spaces that are locally product spaces but may have non-trivial
topology globally. An example of a space that is globally a product space is the cylinder
E = S1× [0, 1] with the base space being the circle B = S1 and all fibers being translates
of the line segment Z = [0, 1]. The projection π associates to each point x ∈ E its
position along the base circle; π−1 takes a position along the base circle and returns the
corresponding line segment. The same B andZ can generate a rather different space—the
Möbius band—which is globally not a product space.4

Thus (under appropriate conditions) the range of a C-Trumpet is locally homeomor-
phic to a product space (it is a product space up to a stretch), even though it globally
need not be depending on the topologies of Z and Y . The requirement that ϕ be a
homeomorphism on Ui implies that (locally) the fibers do not intersect. This can of
course only hold if dim(Y) + dim(Z) ≤ dim(X) and the appropriate conditions on the
Jacobian are satisfied, but in any case it gives a useful intuition for the kind of problems
and datasets that admit modeling by C-Trumpets.

We show that C-Trumpets can indeed model simple low-dimensional fiber bundles: an
embedded solid5 torus in Figure 7.3a and a solid Möbius band with elliptic cross-sections
(fibers) in Figure 7.3b. As shown in Figure 7.3, the conditioning samples for both the
torus and the elliptic Möbius are taken to live on the base circle (y ∈ [0, 2π)). For each
angle y, C-Trumpets generate samples from a distribution on the disk for the torus and
an elliptical disk for the elliptic Möbius band. Accordingly, we train C-Trumpets with
latent dimension two. Figure 7.4 demonstrates the generated samples by C-Trumpets; we
sample the resulting models in increments of 6◦ to make the fiber bundle structure clear.

4To explain this mathematically we would need to introduce the transition maps and the fundamental
group, which is beyond the scope of our sketch.

5By a “solid” torus we refer to a bundle whose fibers are disks. Modeling a standard torus is challenging
with coupling layers which can only be defined starting in dimension 2. Even in this case their expressivity
is limited so this low-dimensional example is only meant as illustration.

117

(a) Torus (b) Elliptic Möbius

Figure 7.4: Samples on fiber bundles generated by a C-Trumpet; in both (a) and (b) the
base manifold S1 is sampled every 6◦.

7.5 Experiments

We start by showcasing how C-Trumpets provide MMSE, MAP and uncertainty esti-
mates in a variety of imaging inverse problems. The MMSE estimate, E[X|Y = y],
is approximated by averaging a fixed number of posterior samples from a C-Trumpet
fitted to the training data. The MAP estimate can be efficiently approximated using fixed
volume-change layers in Section 7.3.3, without iterative maximization over x. Finally, we
compute the uncertainty estimate (UQ) through a simple pixel-wise standard deviation as

M̂MSE =
1

K

K∑
k=1

fθ(zk; y),

UQ =

√√√√ 1

K

K∑
k=1

|fθ(zk; y)− M̂MSE|2,
(7.15)

where | · |2 is applied to each pixel. In all experiments, we use K = 25 posterior samples
to approximate the MMSE and UQ estimates (we find that the quality of MMSE and UQ
saturate for a higher number of posterior samples).

We experiment with limited-view computed tomography (CT), nonlinear electro-
magnetic inverse scattering [9], and (linearized) seismic travel-time tomography [290].
Additional evaluations on popular compressed-sensing-style benchmarks—denoising,
inpainting, super-resolution and random masking—are given in Section 7.5.3.

We compare C-Trumpets with two different types of conditional bijective flows,
C-INN [260] and C-Glow [277]. C-INN used conditional coupling layers for the first
time, while C-Glow has a rather different architecture by using two parallel bijective
flows for simultaneously modeling the target and conditioning samples. In order to
emphasize the importance of an expansive injective model over a bijective one, we build a
comparison baseline model, C-Rev, which consists of the bijective portion of C-Trumpets
with latent-space dimension equaling that of the image data, i.e., hη(z, y). Finally, in
Section 7.5.4, we visually compare the MMSE and MAP estimates for several ill-posed
inverse problems.

118

7.5.1 Gaussian random fields

We choose realizations of Gaussian random fields (GRF) as instances of pX(x) where
we have access to exact posterior distributions. We compare the quality of the posterior
approximated by C-Trumpets with the true posterior obtained by analytical solution. The
closed-form posterior distribution pX|Y (x|y) where y = Ax + n, x ∼ N (µx,Σx) and
n ∼ N (0, λ2I) as follows,

pX|Y (x|y) = N (µx|y,Σx|y),

µx|y = µx + ΣxA
T (AΣxA

T + λ2I)−1(y − Aµx),
Σx|y = Σx − ΣxA

T (AΣxA
T + λ2I)−1AΣx.

(7.16)

We consider GRFs in resolution 64×64, λ = 5×10−3, and letA be the mask operator
that replaces a 32× 32 patch at the center of the image with zeros. We train C-Trumpets
over 60000 training samples. In Figure 7.5 (second to fifth columns), we show the MMSE
estimate followed by three posterior samples, and finally the UQ obtained from both
the analytical solution (7.16) and C-Trumpets. MMSE and UQ are computed over 500
random posterior samples. We compare the MMSE estimates obtained from C-Trumpet
and the analytical solution (7.16) against the ground truth. In Table 7.1 we find that
C-Trumpet performs similar to the analytical solution in both SNR and SSIM metrics.
Since the analytical posterior distribution is Gaussian, MAP and MMSE estimators are
equal. We find that the MAP and MMSE estimates obtained from C-Trumpet are quite
close: an SNR of 44.43dB hinting at the efficacy of our way of computing MAP estimates.

Table 7.1: Performance comparison of MMSE estimates between C-Trumpets and the
analytical solution obtained from 7.16; C-Trumpets presents MMSE estimates close to
the analytical solution, which shows the effectivity of the proposed method.

SNR (dB) SSIM
C-Trumpets 19.71 0.89
Analytical solution 20.22 0.91

7.5.2 Computational imaging

Limited-view CT In limited-view CT (cf. cryo-electron tomography [145] and dental
CT [291]), a contiguous cone of angles is missing from the acquisition; Figures 7.6a and
7.6b, illustrate vertical and horizontal missing cones of 60◦. As there are no measurements
in a vertical (horizontal) missing cone, we should expect higher uncertainty in horizontal
(vertical) components. We use the filtered back projection (FBP) reconstruction as our
measurements y, and train on 40000 256× 256 samples from the LoDoPaB-CT [137]
dataset. The measurement SNR is set to 40 dB. In Figure 7.7, we show posterior samples,

119

(a) CT vertical (b) CT horizontal (c) Travel time (d) Scattering

Figure 7.6: Sensing geometry for the various imaging problems explored in Section 7.5.
The red regions show the locations of the sensors. In the case of CT ((a) and (b)), the line
segments indicate that “sensors” measure entire projection images as opposed to complex
scalars in nonlinear scattering (d).

g†-MAP, MMSE, and uncertainty quantification (UQ) estimates from C-Trumpets. The
real-space UQ estimate shows higher uncertainty in the vertical (horizontal) components
where we have horizontal (vertical) missing cone. This is consistent with our expectations
from the physics of CT.

Gr
ou

nd
 tr

ut
h

C-
Tr

um
pe

t
An

al
yt

ic
al

So
lu

tio
n

M
as

ke
d

Posterior Samples UQ

Figure 7.5: Performance comparison between
C-Trumpet and analytical solution (true poste-
rior) (7.16) in mask problem where the target
signals come from a Gaussian distribution; C-
Trumpets present MMSE and UQ close to the
analytical solution.

We further show the UQ estimate
in the Fourier domain computed by
averaging over the individual DFT
bins. Quite pleasingly, this estimate
aligns perfectly with the theoretical
prediction from the Fourier slice the-
orem; higher uncertainty (bright re-
gions) are indeed inside the missing
cone while it is worth emphasizing
that C-Trumpets are not specifically
designed for the forward operator of
the CT problem. Moreover, as ex-
pected, there is higher uncertainty
in higher frequency components (see
Figure 7.15 in the appendix). We
emphasize that C-Trumpets are the
only conditional generative architec-
ture that gives such physically mean-
ingful posterior samples.

It is also worth mentioning that
C-Trumpets model this 256× 256 res-
olution dataset with only 10M trainable parameters in less than 24 hours of training time
on a single NVIDIA V100 GPU. Due to memory constraints, we could simply not train
the baseline bijective models C-INN, C-Glow, and C-Rev on 256 × 256 images. The

120

Ground truthFBP

MMSE

Posterior Samples

UQ log(fft(UQ))

-MAP

(a) Vertical missing cone (60◦ to 120◦)

Ground truthFBP

MMSE

Posterior Samples

UQ log(fft(UQ))

-MAP

(b) Horizontal missing cone (−30◦ to 30◦)

Figure 7.7: Limited-view CT in resolution 256× 256. The frequency-domain uncertainty
estimate shows the log-scale standard deviation of DFT-bins. Alignment with the theoret-
ical prediction from the Fourier slice theorem signifies physically-meaningful uncertainty
quantification; higher uncertainty (bright regions) inside the missing cone.

large latent space dimension of these models leads to very large memory footprints.

We can still compare our uncertainty estimates with these models at a lower resolution
of 64× 64. Figure 7.8 shows such an experiment at the SNR of 25dB. In the first panel
(second to fifth row), we show MMSE estimates of different flow models and three
random posterior samples. We further provide UQ estimates in real and Fourier space. As
we can see, not only do C-Trumpets outperform the conditional bijective flows in terms
of reconstruction quality (MMSE estimate) (see also Table 7.2) but they also give a more
meaningful uncertainty estimate even in high noise. Bijective models generate significant
uncertainty outside the missing cone, indicating that they do not learn a reconstruction
map consistent with the physics of CT.

Electromagnetic inverse scattering We consider the non-linear electromagnetic in-
verse scattering reviewed in Section 6.1. In the first experiment, we use 36 incident
plane waves and 36 receivers, distributed uniformly around the object with maximum
permittivity of ϵr = 6 and dimension 20 cm × 20 cm. We work at the frequency of 3
GHz. and simulate the measurements by solving the Helmholtz equation explained in
Section 6.1. We add noise to the measurements for a target measurement SNR of 30 dB.
We build a dataset of 64× 64 images of overlapping ellipses with 60000 samples.

Figure 7.9 shows the performance of C-Trumpets where the scattered fields are used

121

G
ro

un
d

tr
ut

h
C-

Tr
um

pe
t

C-
Re

v
FB

P
C-

G
lo

w

Posterior Samples UQ log(fft(UQ))

(a) Vertical missing cone (60◦ to 120◦)
G

ro
un

d
tr

ut
h

C-
Tr

um
pe

t
C-

Re
v

FB
P

C-
G

lo
w

Posterior Samples UQ log(fft(UQ))

(b) Horizontal missing cone (−30◦ to 30◦)

Figure 7.8: Performance comparison in limited-view CT with resolution 64× 64. The
frequency-domain uncertainty estimate shows the log-scale standard deviation of DFT-
bins. The estimated log(fft(UQ)) by C-Trumpets aligns with the theoretical prediction
from the Fourier slice theorem; higher uncertainty (bright regions) inside the missing
cone.

Ground truthPosterior SamplesScattered field UQ MMSE -MAP

Figure 7.9: Performance of C-Trumpets on nonlinear inverse scattering with ϵr = 6 with
a full-view sensing geometry. Conditioning inputs are scattered fields.

122

as conditioning samples. This experiment clearly shows that C-Trumpets can generate
meaningful posterior samples, even for a highly non-linear (ϵr = 6) and ill-posed problem.
Additional experiments with different contrasts ϵr and conditioning schemes (scattered
fields vs back projections) are illustrated in Figures 7.16, 7.17, 7.18 and 7.19 in the
appendix.

In order to assess the performance of different conditional flows in uncertainty
quantification, we design another experiment with 180 incident plane waves and 180
receivers only on the top side of the object (7.6d). In this setup, we expect higher
uncertainty in the lower part of the object.

Figure 7.11 illustrates the performance of C-Glow, C-Rev and C-Trumpets for ϵr = 6.
We use a simple back projection (BP) [292] as conditioning measurements y. In the first
panel (from the second row to the fifth row), we show MMSE estimates of different flow
models: C-Trumpets perform better than bijective flows (see also Table 7.2). As expected,
however, the reconstructions are not as good as in the previous experiment since we only
have measurements on one side of the domain. We see that C-Trumpets again provide
meaningful uncertainty estimates, with more uncertainty in the lower part of the object
(red regions in the UQ panel correspond to higher uncertainty).

Seismic travel-time tomography (NS) We work with the linearized seismic tomog-
raphy operator as described in [290]. Here we are given travel times of a seismic wave
between each sensor pair in a network of NS sensors placed on the ground. The travel
times are assumed to linearly depend on the “slowness” map which is taken to be an
MNIST image [204]. We use NS= 10 sensors on the boundary of the lower part of the
domain which yields 33 measurements as shown in Figure 7.6c. We use the pseudo-
inverse of the measurements y as the conditioning samples and work at the SNR of 40dB.
Figure 7.10 compares the performance of C-Trumpets and C-Rev. In the first panel, the
second and the third rows show MMSE estimates of C-Rev and C-Trumpets. C-Trumpets
outperform C-Rev in both MMSE estimate and posterior sampling (see also Table 7.2).
Furthermore, given no sensors (Figure 7.6c) in the top regions of the image (or slowness
map), we would expect higher uncertainty there. The UQ column shows that estimates
from C-Trumpets assign higher uncertainty to the top half of the domain compared to
C-Rev. Additional results are shown in Figure 7.20 in the appendix.

7.5.3 Image restoration

In this section, we compare C-Trumpets with models on various image restoration tasks.
Similarly as in computational imaging problems, each task requires training a different
model but once trained, the model can be used instantaneously for arbitrary measurements
y. We consider four standard restoration tasks: (i) Image denoising: We train a model
to generate plausible clean images given a noisy image at an SNR of −1 dB; (ii) Image

123

Gr
ou

nd
 tr

ut
h

C-
Tr

um
pe

t
C-

Re
v

Ps
eu

do
-In

ve
rs

e

Posterior Samples UQ

Figure 7.10: Performance comparison in
seismic travel-time tomography with 10
sensors. C-Trumpets demonstrate better
posterior samples and MMSE estimate,
both models assign higher uncertainty in
top of the image (black regions) which
lacks measurements.

Gr
ou

nd
 tr

ut
h

C-
Tr

um
pe

t
C-

Re
v

BP
C-

Gl
ow

Posterior Samples UQ

Figure 7.11: Performance comparison in
electromagnetic inverse scattering (ϵr =
6, top-view, BP conditioned); C-Trumpets
demonstrate more meaningful UQ by as-
signing higher uncertainty in the bottom of
the object (red regions), which lacks mea-
surements.

super-resolution (f): Generate high-resolution images given an image downsampled by
a factor of f along each axis; (iii) Random mask (p): The degradation process replaces
every pixel with zero with probability p; and (iv) Mask (s): The degradation process
replaces an s× s patch of the image with zeros.

We used the 8-bit RGB CelebA [206] dataset with 80000 64× 64 training samples.
Figure 7.14 in the appendix compares the performance of flow models on different image
restoration tasks. Table 7.2 further gives the SNR and SSIM of the MMSE estimate.
C-Trumpets consistently outperform other conditional bijective flows. The difference
in the performance of C-Rev and C-Trumpets suggests that the low-dimensional latent
space of C-Trumpets acts as an effective regularizer in the restoration mapping, fθ. C-
Trumpets also provide a meaningful uncertainty quantification. For example, although
the forward operator is random in the random mask problem, C-Trumpets still capture
a meaningful uncertainty estimate by assigning higher uncertainty inside the masked
region (see Figure 7.14d).

In order to assess the memory requirements of the different models, we compare the
number of trainable parameters used for training over 64×64 RGB images: C-INN: 13M,
C-Glow: 14M, C-Rev: 22M and C-Trumpets: 4M. We did not have sufficient resources
to train bijective models over 256× 256 images but it is clear that the differences in the
memory footprint at that resolution would be further exacerbated.

124

Table 7.2: Performance of MMSE estimate (computed over 25 posterior samples) of
different models on solving inverse problems averaged over 5 test images

(a) SNR (dB)

C-INN C-Glow C-Rev C-Trumpets

Denoising 15.98 15.67 15.99 16.86
Super-resolution (×4) 18.57 19.24 19.22 20.70
RandMask (p = 0.2) 20.84 19.70 13.31 20.11

Mask (s = 32) 18.91 17.86 18.54 21.01
Limited-view CT - 11.63 13.13 13.58
Scattering (ϵr = 6) - 1.45 1.19 4.04
Travel-time (NS = 10) - - 14.83 18.19

(b) SSIM

C-INN C-Glow C-Rev C-Trumpets

Denoising 0.63 0.60 0.66 0.70
Super Resolution (×4) 0.79 0.82 0.79 0.84
RandMask (p = 0.2) 0.86 0.82 0.57 0.87
Mask (s = 32) 0.83 0.80 0.84 0.88
Limited-view CT - 0.59 0.71 0.74
Scattering (ϵr = 6) - 0.67 0.65 0.73
Travel-time (NS = 10) - - 0.59 0.64

7.5.4 MAP vs MMSE for ill-posed inverse problems

Figure 7.12 demonstrates the MMSE, g†-MAP and a random posterior sample for four
types of ill-posed inverse problems. The MMSE estimate is obtained by averaging over
25 posterior samples. Although the MMSE estimate is the optimal reconstruction in
terms of the ℓ2-error, we see from Figure 7.12 that it is often blurry, especially when the
true posterior is multi-modal; g†-MAP estimates are sharper. Moreover, as the MMSE
estimate is obtained by averaging over the posterior samples, it is not generally on the
manifold, while the g†-MAP estimate is always on the manifold.

7.6 Summary

We proposed C-Trumpets, a conditional injective flow model that enables amortized
inference with approximate posteriors that live on low-dimensional manifolds. Our
proposed model is considerably cheaper to train in terms of memory and compute costs
compared to the regular conditional flows. The experiments we performed indicate that
C-Trumpets generate better posterior samples and more accurate uncertainty estimates
over a variety of ill-posed inverse problems. The proposed fixed-volume-change coupling
layers enable us to approximate the sharp MAP estimates instantaneously after training.
High computational demands of training bijective flows at high-resolution have thus
far impeded their wider adoption in computational imaging workflows. The compara-
bly lightweight memory footprint of C-Trumpets together with physically-consistent
UQ makes them an attractive architecture for imaging problems where characterizing
uncertainty is paramount.

C-Trumpets have several limitations that warrant discussion. The latent space di-
mension in C-Trumpets is chosen arbitrarily and it may be quite different from the true
dimension of the posterior support. Recent work [293] proposes an injective flow archi-
tecture that estimates the dimension of the data manifold. Similar ideas may extend to
C-Trumpets but for the moment we rely on rules of thumb rather than principled choices.

125

Another limitation is that it is not straightforward to estimate the likelihoods of samples
generated by C-Trumpets (cf. Section 7.3.3), the reason being that the Jacobian determi-
nant of compositions of maps between spaces of different dimensions cannot be written
as a product of Jacobian determinants of the constituent maps. Likelihood estimates can
still be obtained by sampling but that is considerably slower than what is possible with
bijective flows. Recently, Ross et al. [242] proposed an injective generator which provides
access to the exact likelihood of the generated samples, but the constraints they impose
on the architecture in order to enable this feat seem to severely limit expressivity. The
design of an injective model that is at once expressive, lightweight, and gives fast exact
likelihoods remains an open problem. On the theoretical side, further studies are needed
to characterize the types of posterior distributions that can be modeled by C-Trumpets,
especially with fixed-volume-change layers. The important open question is that of
universality of C-Trumpets as models of conditional distributions. Finally, Siahkoohi et
al. [294, 295] fully exploit the depth-independent memory complexity of normalizing
flows to handle high-dimensional data. This strategy can also be used in C-Trumpets
to further improve memory efficiency and apply the model to super high-dimensional
imaging problems.

7.7 Appendix

7.7.1 Fast inverses

Ground truth-MAPInput

SR
 (f

=4
)

Random sample

SR
 (f

=8
)

Tr
av

el
-ti

m
e MMSE

Sc
at

te
rin

g

Figure 7.12: MMSE and g†-MAP estimations in
different inverse problems; the proposed g†-MAP
estimate gives much sharper reconstruction than
MMSE.

Inverting the revnet coupling layers
requires the matrix inverse of the ker-
nel of the 1× 1 convolution layer. As
this may be slow, Kingma and Dhari-
wal [70] proposed to use the LU de-
composition to reduce the computa-
tional complexity,

w = PL(U + diag(s)), (7.17)

where P is a permutation matrix, L is
a lower-triangular matrix with ones on
diagonal and s is a vector. Computing
the log det of the layer Jacobian then
simplifies to

log | det(w)| =
d∑
i=1

log(|si|). (7.18)

The LU decomposition thus reduces
the complexity of computing the log det of the Jacobian of the 1× 1 convolution layer

126

from O(c3) to O(c) (and one-time factorization cost). This trick, however, was only used
in inference (when sampling from the model), but not for training the bijective flows
as matrix inversion is not critical in that case. Unlike bijective flows, C-Trumpets do
require matrix inversion during the MSE training phase (cf. (7.12)). In order to reduce
the computational cost of inversion, we leverage the LU decomposition as follows

w−1 = (U + diag(s))−1L−1P−1. (7.19)

Since L and U are triangular matrices and P is a fixed rotation, computing the inverses
costs O(2 × c) instead of O(c3). This significantly reduces the training time of the
injective part of C-Trumpets, especially in high-dimensional problems.

7.7.2 Experimental details

Fiber bundles

Datasets: We analyzed the performance of C-Trumpets on two fiber bundle datasets:

• Torus
x = cos(t)[R + r cos(s)]
y = sin(t)[R + r cos(s)]
z = r sin(s)

(7.20)

where t ∈ [0, 2π) and s ∈ [0, 2π). We set R = 1 and r = 0.25 and generate 18000
training samples.

• Elliptic Möbius

x = cos(t)[R− b sin(t/2) sin(s) + a cos(t/2)cos(s)]
y = sin(t)[R− b sin(t/2) sin(s) + a cos(t/2)cos(s)]
z = b cos(t/2) sin(s) + a sin(t/2) cos(s)

(7.21)

where t ∈ [0, 2π) and s ∈ [0, 2π). We set R = 1, a = 0.4 and b = 0.1 and generate
18000 training samples.

Network architecture and training details: The injective part of C-Trumpets maps R2 →
R3 and consists of an expansion layer (a matrix of size R3×2) followed by 24 revent
blocks without activation normalization layer. The bijective part which maps R2 → R2

also consists of 32 revent blocks. We use coupling layers proposed in [70] with 3
fully-connected layers for scale and bias. We train for 100 epochs using the Adam
optimizer [97] with a learning rate of 10−3 for both the injective and the bijective parts of
C-Trumpets. We note that this minimal input dimension of the coupling layers has yields
poor expressivity, but we only use this example for illustration.

127

Limited-view CT

We consider the 2D parallel-beam CT problem with a missing cone of sensors.

Network architecture: We describe the architecture of C-Trumpets for 256× 256 images.
The injective part consists of 6 injective revnet blocks, each increasing the dimension by
a factor of 2. Between the injective layers, we intersperse 36 bijective revnet blocks. We
choose a latent space of size 2048. The bijective part consists of 48 bijective revnet blocks.
We use 3 convolutional layers for the scale and bias networks of fixed-volume-change
coupling layers. The conditioning networks have 3 conv layers along with a ‘squeeze’
layer that helps match the dimension of the conditioning sample to the input of the scale
network.

The architecture of C-Trumpets for 64× 64 images is similar to the 256× 256 variant
except that we use 18 (resp. 24) revnet blocks in injective (resp. bijective) subnetworks
and choose a 64-dimensional latent space. The C-Rev model used for comparison has 24
revnet blocks, all at the highest resolution (i.e 64× 64).

We initialize the weights of the revnet blocks as in [70]. All elements of the skip
connection matrix S are initialized to 0.5. All models are trained for 300 epochs (150 per
phase) using the Adam optimizer [97] with a learning rate of 10−4.

Linearized travel-time tomography

Linearized travel-time tomography is inspired by seismic travel-time tomography that
aims to reconstruct the wavespeed variation inside a planet. Sensors are placed on the
ground and we measure arrival times of surface waves. We assume that the receivers and
transmitting sensors are co-located. We further assume that the pixel intensities represent
the “slowness” (inverse wave speed). We can therefore measure the travel times between
a transmitting sensor, si and a receiving sensor sj as

t(si, sj) =

∫ 1

0

f(si + λ(sj − si))dλ, (7.22)

where f represents the image. Note that t(si, sj) = t(sj, si).

Network architecture: The injective subnetwork consists of 4 injective revnet blocks, each
increasing the dimension by a factor of 2. We use 12 bijective revnet blocks interspersed
in between the injective layers. The bijective part takes 64-dimensional latent vectors and
consists of 12 bijective revnet blocks. C-Rev used in comparison has 16 revnet blocks all
at the 32× 32 resolution. The training hyperparameters are same as the CT problem.

128

(a) MNIST (b) Voxceleb

Figure 7.13: Class-based image generation

Image restoration tasks

We use the same architecture and training hyperparameters as that of the CT problem
except that we work with 64 × 64 × 3 resolution images. The latent dimension of
C-Trumpets is chosen to be 192 (64× 3).

7.7.3 Additional experiments

7.7.4 Class-based image generation

We perform class-based image generation over MNIST digits [204] and a subset of 10
people from the voxceleb [296] face dataset with 5000 64× 64 training samples. We use
the one-hot class labels as conditioning vectors to generate samples from the given class
and use two fully-connected layers followed by a reshaping module for the conditioning
network of C-Trumpets. Figure 7.13 shows the class-based generated samples by C-
Trumpets. This experiment indicates that our proposed model can generate good quality
class-conditioned samples.

7.7.5 Image restoration and inverse problems

Figure 7.14 compares the performance of conditional normalizing flows in image restora-
tion tasks. Figures 7.15 to 7.24 demonstrate further results on different ill-posed inverse
problems. We can observe that C-Trumpets have a significant edge over the baselines.

129

Ground truthC-TrumpetC-RevInput C-INN C-Glow

Po
st

er
io

r S
am

pl
es

UQ

(a) Super-resolution (f = 4)

Ground truthC-TrumpetC-RevInput C-INN C-Glow

Po
st

er
io

r S
am

pl
es

UQ

(b) Random mask (p = 0.2)
Ground truthC-TrumpetC-RevInput C-INN C-Glow

Po
st

er
io

r S
am

pl
es

UQ

(c) Denoising

Ground truthC-TrumpetC-RevInput C-INN C-Glow

Po
st

er
io

r S
am

pl
es

UQ

(d) Mask (s = 32)

Figure 7.14: Performance comparison over image restoration problems.

130

Ground truthPosterior SamplesFBP UQ MMSE -MAPlog(fft(UQ))

(a) Vertical missing cone (60◦ to 120◦)
Ground truthPosterior SamplesFBP UQ MMSElog(fft(UQ)) -MAP

(b) Horizontal missing cone(−30◦ to 30◦)

Figure 7.15: Limited-view CT in resolution 256× 256

131

Ground truthPosterior SamplesBP UQ MMSE -MAP

Figure 7.16: Inverse scattering (ϵr = 1.5, full-view)

Ground truthPosterior SamplesBP UQ MMSE -MAP

Figure 7.17: Inverse scattering (ϵr = 2, full-view)

132

Ground truthPosterior SamplesBP UQ MMSE -MAP

Figure 7.18: Inverse scattering (ϵr = 6, full-view)

Ground truthPosterior SamplesBP UQ MMSE -MAP

Figure 7.19: Inverse scattering (ϵr = 6, top-view)

133

Ground truthPosterior SamplesPseudo-Inverse UQ MMSE -MAP

Figure 7.20: Travel-time tomography (NS = 10)

Ground truthPosterior SamplesInput UQ MMSE -MAP

Figure 7.21: Denoising

134

Ground truthPosterior SamplesInput UQ MMSE -MAP

Figure 7.22: Mask (s = 32)

Ground truthPosterior SamplesInput UQ MMSE -MAP

Figure 7.23: Super-resolution (f = 4)

135

Ground truthPosterior SamplesInput UQ MMSE -MAP

Figure 7.24: Random mask (p = 0.2)

136

Chapter 8

Deep Variational Inverse Scattering

In Chapter 7, we introduced C-Trumpets for rapid posterior sampling and uncertainty
quantification across various imaging modalities. While C-Trumpets provide physically
meaningful uncertainty quantification, the quality of the posterior samples, including
the MMSE estimate, is significantly lower compared to single-point estimators like
U-Net, especially for challenging tasks such as inverse scattering. In this chapter, we
present a Bayesian version of U-Net, leveraging conditional normalizing flows for high-
quality posterior sampling and uncertainty quantification. We demonstrate the model’s
performance in non-linear inverse scattering.

This variety of solutions for inverse scattering suggests using methods that recover
more than a single reconstruction [23, 194]. As discussed earlier, a probabilistic char-
acterization of solutions enables us more reliable interpretation of reconstructions and
gives an important measure of uncertainty as the problem gets more ill-posed. Estimating
uncertainty is paramount in safety-critical tasks such as medical imaging [297], nuclear
stockpile [298, 299], and more recently self-driving vehicles [300, 301].

There are a number of approaches to approximate or sample the posterior. Tarantola
[302], as well as Stuart [303], provided a comprehensive review of inverse problems
from a statistical point of view. Traditional approaches include variants of Markov chain
Monte Carlo [304, 305] which exploits the operator structure. The main challenge is a
large number of required forward simulations. To alleviate the computational cost, a
class of methods [306, 307] employ data-driven model reduction. More recently, neural
networks have shown promising results for posterior approximation. Variational U-Net
is proposed by Esser et al. [308] to generate images from poses and exploited by Jin
et al. [309] for reservoir simulations where the network is trained with the evidence
lower bound (ELBO), similar to variational autoencoders [197]. The authors of [310]
propose a hierarchical probabilistic model to generate posterior samples and uncertainty
estimates for image segmentation. Bayesian convolutional neural networks are used for
posterior sampling in several computational imaging problems [244, 311]. As shown in

137

Chapter 7, conditional injective flows [23] can generate physically meaningful uncertainty
estimates for inverse scattering. However, the quality of reconstructions is inferior to
highly successful image-to-image regression models like the U-Net [25], especially for
non-linear inverse problems.

In this chapter, we propose U-Flow, a Bayesian U-Net based on conditional normaliz-
ing flows. U-Flow benefits from favorable aspects of the U-Net: it yields high-quality
reconstructions even for non-linear inverse problems, while enabling regularized poste-
rior sampling and meaningful uncertainty estimates. We show that the MMSE estimate
from U-Flow has comparable quality to that of U-Net and it significantly outperforms
C-Trumpet in posterior sampling and uncertainty quantification.

8.1 Wave scattering model

We use the Helmholtz (time-harmonic wave) equation as the forward model,1

△u− ω2

c2
u = −ig in Ω. (8.1)

The medium is characterized by the wave speed c. In this work, we restrict ourselves to
the structural heterogeneity in the wave speed, while leaving the density constant and
the attenuation zero. The source g is a point source. The domain is unbounded, thus we
append perfectly matched layers [313] to the computation domain. We use the default
GMRES method to solve (8.1).

8.1.1 Measurement setup

To image the heterogeneity, we place the (collocated) sources and sensors on a circle.
Each source takes a turn to emit a circular wave that scatters through the medium and
gets measured at all the sensors. Thus our measurement data are square matrices of
complex-valued entries.

The inverse problem is to recover the medium from the measurement data. To set up
the notation, let us denote the unknown parameters as x := c|Ω and the (back-projected)
measurements as y := u|∂Ω. Figure 8.1 illustrates two examples of the measurement
setup.

The j-wave package [312] gives easy access to the back-projection (BP) images
thanks to automatic differentiation. The BP is obtained by applying the Jacobian of
the discrete forward model to the measurement mismatch. This auto-diff is the main
component in the discretize-then-optimize regime. The advantage is that the Jacobian

1Here we numerically solve the equation using the j-wave package [312].

138

Figure 8.1: Examples of the inverse medium scattering problem. Top row: full-view
measurement. Bottom row: limited-view measurement. We add 30 dB noise to the
measurements. The back-projections are computed from auto-differentiation.

exactly matches the numerical model being used and it can easily extend to other medium
parameters such as density and attenuation.

The BP image is computed by taking the derivative of the measurement loss

y 7→ ∂

∂x
∥y − ŷ(x)∥22.

With a slight abuse of notation, we will use these BP images, denoted as y, to estimate
the posterior distribution of medium wave speed.

8.1.2 Training data

We generate 4000 medium samples, each containing a set of random ellipsoidal scatterers,
along with their discrete boundary measurements. The computation domain is a 128×128
grid with resolution ∆x = 10−3 m. The background wave speed is 1540 m/s and
the maximum contrast is close to 4 times the background. The angular frequency is
ω = 7 · 105 s−1, which corresponds to 13 grid points per wavelength. We use 32 complex-
valued measurements corrupted with Gaussian noise.

139

conv
block

skip connection

 2x upconv

2x maxpool

C-flow

input
backprojection

latent code

output
medium

128x128x8

conv
block

conv
block

conv
block

conv
block

conv
block

conv
block

64x64x16

4x4x128

2x2x256

Figure 8.2: Network architecture of U-Flow. In our implementation, the U-Net com-
ponent has 6 scale levels (s1, s2, . . . , s6). At the coarsest level, the latent variable s6 is
a 2× 2× 256 tensor, which is the output of a conditional flow model, conditioned by
original input.

8.2 U-Flow

We propose U-Flow, a probabilistic model combining U-Net [25] and conditional nor-
malizing flows [314] to approximate the posterior distribution.

8.2.1 U-Net

Ronneberger et al. [25] originally developed the U-Net for medical image segmentation.
It has since been adapted to many image-to-image tasks, often achieving (near-)state-of-
the-art performance. The U-Net is an encoder-decoder network

UNetϕ
def.
= dec ◦ enc.

The encoder and the decoder are both convolutional neural networks with pooling layers.
The encoder takes the measurements y as input and produces features in different scales.
The decoder then takes the computed features and reconstructs the target signal x.

The encoder and decoder are jointly optimized using the mean-square error (MSE)
loss

ϕ⋆ = argmin
ϕ

1

N

N∑
i=1

∥xi − UNetϕ(yi)∥22. (8.2)

While the U-Net produces high-quality reconstructions, its output is a single estimate.
In this chapter, we present a probabilistic version of the U-Net for amortized Bayesian
inference.

140

8.2.2 Conditional normalizing flows

As explained in Section 5.1.1, normalizing flows [21, 70, 187] are a class of likelihood-
based generative models. They transform a simple and known distribution into an
unknown data distribution by a sequence of invertible mappings. Invertibility enables
efficient likelihood estimation and maximum-likelihood (ML) parameter fitting. Vlašić et
al. [31] demonstrated the effectiveness of flow-based generative models in regularizing the
inverse obstacle scattering problem. In Section 7.3, we reviewed conditional versions of
normalizing flows [314] that allow for approximation of posterior distributions. However,
regular conditional flows require the latent space dimension to equal the data dimension,
which leads to a large network and slow training. Moreover, as the range of conditional
flows covers the entire space, the posterior samples are not constrained to an image
distribution and are often of low quality in ill-posed nonlinear inverse problems [23].

8.2.3 Our approach

Since the input and output of flow models must have the same dimension, it is oppor-
tune to use flows to model low-dimensional latent spaces rather than images directly.
We use flows to approximate the posterior distribution of the coarsest scale in the U-
Net. Concretely, as shown in Figure 8.2, the encoder of the U-Net takes the BPs and
produces features in six scales, enc(y) = (s1, s2, . . . , s6) for y ∈ RD. These multi-
scale features feed to the decoder to reconstruct a single estimate of the target signal
x̂(y) = dec(s6, s5, . . . , s1). To generate posterior samples, we let a flow model learn the
conditional distribution of features at the coarsest scale ps6|Y where s6 ∈ Rd and d≪ D.
We first train a U-Net with the loss in (8.2) and compute the coarsest scale features of the
BPs samples in the training set. Having obtained a paired training set of the BPs and the
corresponding features {(s6i ,yi)}Ni=1, we then train a flow model. We use the conditional
version of Glow [70], where we deploy conditional coupling blocks proposed in [314]
to condition the generation on back-projections. The conditional flow model is trained
using amortized inference loss as,

θ⋆ = argmin
θ

1

N

N∑
i=1

(− log pZ(zi) + log | det Jfθ |) , (8.3)

where zi = f−1
θ (s6i ,yi), Jfθ is the Jacobian matrix of fθ and pZ is a multivariate Gaussian

distribution. In this chapter, instead of directly approximating pX|Y , we approximate
the posterior distribution of the features in the lowest scale of the U-Net ps6i |Y using
conditional normalizing flows as shown in Figure 8.2. When the conditional flow model
is trained, we can generate posterior samples for each BP y⋆,

xpost(y
⋆) = dec(fθ(z), s5, ..., s1) (8.4)

141

Table 8.1: SNR of MMSE estimate (computed over 25 posterior samples for flow-based
models) of different models over inverse medium scattering in two setups

BP C-Trumpets [23] U-Net [25] U-Flow

Full-view -17.8 5.7 11.3 11.3
Side-view -17.7 5.2 9.7 9.4

where z ∼ N (0, I) and (s1, ..., s5, ·) = enc(y⋆). The key advantage of the proposed
model is that the posterior samples have a low-dimensional structure, which acts as a
strong regularizer for ill-posed inverse problems.

8.3 Experiments

We trained U-Flow for 600 epochs in total, 300 for the U-Net and 300 for the conditional
flow model. We used the Adam optimizer [97] with the learning rate set to 10−4. The
conditional flow model was composed of 24 Glow-blocks, each containing activation
normalization, the 1 × 1 convolution, and a conditional coupling layer. We compared
U-Flow with C-Trumpet [23], a conditional injective flow which is well-suited for solving
ill-posed inverse problems. In our experiments, U-Flow and C-Trumpet had 9M and 14M
trainable parameters, respectively. The MMSE estimate was calculated by averaging 25
posterior samples. The UQ is performed by dividing the pixel-wise standard deviation on
25 posterior samples to the MMSE estimate to show the relative error.

Figure 8.3a illustrates the performance of U-Flow on inverse medium scattering with
a limited-view sensing configuration, where the receivers and incident waves are located
on the right-hand side of the medium. This experiment shows that U-Flow can generate
various posterior samples and capture a physically meaningful UQ. Notice that U-Flow
assigned more uncertainty to the left-hand side of the medium (red region) which aligns
with the measurements configuration. This experiment can clearly show the significance
of posterior sampling and uncertainty quantification in practice which can help the
practitioners to make a more informed decision or order more measurements in the
critical regions. The results for the full-view configuration are shown in Figure 8.3b. As
expected, the full-view configuration yields better posterior samples than the limited-view
configuration.

Figure 8.4 compares the performance of U-Flow and C-Trumpet. The experiment
shows that U-Flow remarkably outperforms C-Trumpet both in posterior sampling and
UQ. Table 8.1 gives a quantitative comparison of U-Flow with baselines, including the
basic U-Net [25]. U-Flow exhibits comparable results to the U-Net while giving access
to posterior samples and UQ.

142

Ground truthPosterior SamplesBP UQ MMSE

(a) Limited-view: the receivers and incident waves are only on the right-hand side of the object;
U-Flow could reliably capture a physically meaningful uncertainty estimate by showing more
uncertainty (red regions) on the left part of the object.

Ground truthPosterior SamplesBP UQ MMSE

(b) Full-view: the receivers and incident waves are uniformly distributed around the object.

Figure 8.3: Performance of U-Flow over inverse medium scattering

143

Ground truth

Posterior Samples
BP

UQ MMSE

U-Flow

C-Trumpet

Figure 8.4: Performance comparison of U-Flow and C-Trumpet [23] for the limited-view
problem (no sensors on the left-hand side); U-Flow outperforms C-Trumpet in both
posterior sampling and uncertainty quantification by assigning more uncertainty in the
left part of the object (red regions).

8.4 Summary

We demonstrated that the dichotomy between high-quality inversions without UQ by
standard point-estimate networks, and low-quality inversions with UQ by the various
conditional generative models is a false one. By combining a low-dimensional flow with
a U-Net, we get the best of both worlds. The reconstructions are very fast—orders of
magnitude faster than with the standard iterative methods.

144

Chapter 9

Looking Forward

In this thesis, we focused on enhancing the reliability of deep learning models for imaging
inverse problems. In the first part, we introduced the notion of locality in the context
of implicit neural representation for various imaging modalities from image denoising,
super-resolution, and CT imaging. Our experiments demonstrated that the proposed local
processing model not only exhibits strong generalization capabilities but also benefits
from computationally efficient training, making it a practical and scalable approach for
diverse imaging tasks.

In the second part of this thesis, we investigated injective neural networks within the
context of Bayesian imaging. We developed both unsupervised and supervised learning
frameworks using variational inference to approximate the posterior distribution. Through
extensive experiments on various imaging problems, such as inverse scattering and CT
imaging, we demonstrated that the proposed framework generates high-quality posterior
samples and provides physically meaningful uncertainty quantification. This is essential
for ensuring reliable analysis and accurate downstream interpretation. In the following,
we briefly discuss the potential opportunities for future research.

9.1 Locality for 3D reconstruction

While deep learning has shown promising results in solving 2D imaging problems, its
application to 3D reconstruction remains challenging due to high computational and
memory demands. In Chapters 2, 3, and 4, we developed local processing models for 2D
imaging tasks. Future research could extend these models to handle large 3D volumes,
leveraging their strong generalization capabilities and computational efficiency. Such an
extension would make deep learning more accessible for scientific applications, helping
bridge the implementation gap for real-world, high-dimensional problems [2, 315, 316].

145

9.2 Bayesian modeling of local processing models

One interesting avenue for future research is the development of probabilistic versions of
the proposed local imaging frameworks. This approach is particularly relevant for imaging
problems characterized by significant uncertainties arising from noise, ill-posedness, and
model mismatches. In scenarios where pixel-wise uncertainty is sufficient, we can
streamline our methodology by estimating the associated uncertainty for each recovered
coordinate independently. Although this method may not yield meaningful posterior
samples, it is well-suited for uncertainty quantification, as it allows for the estimation of
pixel-wise uncertainties with reduced computational complexity.

9.3 Solving wave-based PDEs with a generative prior

In Chapter 4, we introduced our functional generator, FunkNN, which learns the distri-
bution of functions by combining any off-the-shelf generator with our local processing
super-resolution network. We utilized this functional generator as a prior for addressing
simple stylized PDE-based inverse problems. For future work, this expressive framework
could be applied to solve scientific PDEs, such as the Helmholtz or wave equations. This
robust prior holds promise for ill-posed scenarios, particularly when measurements are
limited.

146

Bibliography

[1] G. Wang, H. Yu, and B. De Man, “An outlook on x-ray ct research and develop-
ment,” Medical physics, vol. 35, no. 3, pp. 1051–1064, 2008.

[2] M. Holler, M. Guizar-Sicairos, E. H. Tsai, R. Dinapoli, E. Müller, O. Bunk,
J. Raabe, and G. Aeppli, “High-resolution non-destructive three-dimensional
imaging of integrated circuits,” Nature, vol. 543, no. 7645, pp. 402–406, 2017.

[3] R. E. Blahut, Theory of remote image formation. Cambridge University Press,
2004.

[4] N. Kaiser and G. Squires, “Mapping the dark matter with weak gravitational
lensing,” Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 404, no. 2, p.
441-450., vol. 404, pp. 441–450, 1993.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d
transform-domain collaborative filtering,” IEEE Transactions on image processing,
vol. 16, no. 8, pp. 2080–2095, 2007.

[6] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges
in super-resolution,” International Journal of Imaging Systems and Technology,
vol. 14, no. 2, pp. 47–57, 2004.

[7] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic
x-ray computed tomography,” IEEE transactions on medical imaging, vol. 21,
no. 2, pp. 89–99, 2002.

[8] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The application of com-
pressed sensing for rapid mr imaging,” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine,
vol. 58, no. 6, pp. 1182–1195, 2007.

[9] X. Chen, Computational methods for electromagnetic inverse scattering, vol. 244.
Wiley Online Library, 2018.

147

[10] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regulariza-
tion method for total variation-based image restoration,” Multiscale Modeling &
Simulation, vol. 4, no. 2, pp. 460–489, 2005.

[11] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett,
“Deep learning techniques for inverse problems in imaging,” IEEE Journal on
Selected Areas in Information Theory, vol. 1, no. 1, pp. 39–56, 2020.

[12] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising,” IEEE transactions on image
processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[13] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep
convolutional networks,” IEEE transactions on pattern analysis and machine
intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[14] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural
network for inverse problems in imaging,” IEEE Transactions on Image Processing,
vol. 26, no. 9, pp. 4509–4522, 2017.

[15] C. M. Hyun, H. P. Kim, S. M. Lee, S. Lee, and J. K. Seo, “Deep learning for
undersampled MRI reconstruction,” Physics in Medicine & Biology, vol. 63, no. 13,
p. 135007, 2018.

[16] Z. Wei and X. Chen, “Deep-learning schemes for full-wave nonlinear inverse
scattering problems,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 4, pp. 1849–1860, 2018.

[17] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accu-
rate method to fool deep neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2574–2582, 2016.

[18] X. Li, Y. Dai, Y. Ge, J. Liu, Y. Shan, and L.-Y. Duan, “Uncertainty modeling
for out-of-distribution generalization,” in International Conference on Learning
Representations, 2022.

[19] A. Khorashadizadeh, V. Debarnot, T. Liu, and I. Dokmanić, “Glimpse: Generalized
local imaging with mlps,” arXiv preprint arXiv:2401.00816, 2024.

[20] A. Khorashadizadeh, A. Chaman, V. Debarnot, and I. Dokmanić, “Funknn: Neural
interpolation for functional generation,” in The Eleventh International Conference
on Learning Representations, 2023.

[21] K. Kothari, A. Khorashadizadeh, M. de Hoop, and I. Dokmanić, “Trumpets:
Injective flows for inference and inverse problems,” in Uncertainty in Artificial
Intelligence, pp. 1269–1278, PMLR, 2021.

148

[22] A. Khorashadizadeh, V. Khorashadizadeh, S. Eskandari, G. A. Vandenbosch, and
I. Dokmanić, “Deep injective prior for inverse scattering,” IEEE Transactions on
Antennas and Propagation, 2023.

[23] A. Khorashadizadeh, K. Kothari, L. Salsi, A. A. Harandi, M. de Hoop, and I. Dok-
manić, “Conditional injective flows for bayesian imaging,” IEEE Transactions on
Computational Imaging, vol. 9, pp. 224–237, 2023.

[24] A. Khorashadizadeh, A. Aghababaei, T. Vlašić, H. Nguyen, and I. Dokmanić,
“Deep variational inverse scattering,” in 2023 17th European Conference on Anten-
nas and Propagation (EuCAP), pp. 1–5, IEEE, 2023.

[25] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, Springer,
2015.

[26] N. Davoudi, X. L. Deán-Ben, and D. Razansky, “Deep learning optoacoustic
tomography with sparse data,” Nature Machine Intelligence, vol. 1, no. 10, pp. 453–
460, 2019.

[27] T. Liu, A. Chaman, D. Belius, and I. Dokmanić, “Learning multiscale convolutional
dictionaries for image reconstruction,” IEEE Transactions on Computational
Imaging, vol. 8, pp. 425–437, 2022.

[28] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit
neural representations with periodic activation functions,” Advances in Neural
Information Processing Systems, vol. 33, pp. 7462–7473, 2020.

[29] M. Atzmon and Y. Lipman, “Sal: Sign agnostic learning of shapes from raw
data,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2565–2574, 2020.

[30] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. New-
combe, “Deep local shapes: Learning local sdf priors for detailed 3d reconstruc-
tion,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXIX 16, pp. 608–625, Springer, 2020.

[31] T. Vlašić, H. Nguyen, A. Khorashadizadeh, and I. Dokmanić, “Implicit neural
representation for mesh-free inverse obstacle scattering,” in 2022 56th Asilomar
Conference on Signals, Systems, and Computers, pp. 947–952, IEEE, 2022.

[32] Z. Chen and H. Zhang, “Learning implicit fields for generative shape modeling,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5939–5948, 2019.

149

[33] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional
occupancy networks,” in Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp. 523–540,
Springer, 2020.

[34] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, T. Funkhouser, et al., “Local
implicit grid representations for 3d scenes,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6001–6010, 2020.

[35] Y. Chen, S. Liu, and X. Wang, “Learning continuous image representation with
local implicit image function,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8628–8638, 2021.

[36] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,”
Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.

[37] A. Susmelj, M. Macuglia, N. Tagasovska, R. Sutter, S. Caprara, J.-P. Thiran, and
E. Konukoglu, “Uncertainty modeling for fine-tuned implicit functions,” arXiv
preprint arXiv:2406.12082, 2024.

[38] E. Dupont, Y. W. Teh, and A. Doucet, “Generative models as distributions of
functions,” arXiv preprint arXiv:2102.04776, 2021.

[39] E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum, “From data to
functa: Your data point is a function and you can treat it like one,” arXiv preprint
arXiv:2201.12204, 2022.

[40] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors
for model based reconstruction,” in 2013 IEEE global conference on signal and
information processing, pp. 945–948, IEEE, 2013.

[41] A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir, “Robust com-
pressed sensing mri with deep generative priors,” Advances in Neural Information
Processing Systems, vol. 34, pp. 14938–14954, 2021.

[42] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye, “Diffusion posterior
sampling for general noisy inverse problems,” arXiv preprint arXiv:2209.14687,
2022.

[43] A. Levin and B. Nadler, “Natural image denoising: Optimality and inherent
bounds,” in CVPR 2011, pp. 2833–2840, IEEE, 2011.

[44] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain neural
networks compete with bm3d?,” in 2012 IEEE conference on computer vision and
pattern recognition, pp. 2392–2399, IEEE, 2012.

150

[45] D. Zoran and Y. Weiss, “From learning models of natural image patches to whole
image restoration,” in 2011 international conference on computer vision, pp. 479–
486, IEEE, 2011.

[46] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser prior for
image restoration,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3929–3938, 2017.

[47] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-cnn for
image restoration,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pp. 773–782, 2018.

[48] B. Park, S. Yu, and J. Jeong, “Densely connected hierarchical network for image
denoising,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 0–0, 2019.

[49] F. Jia, W. H. Wong, and T. Zeng, “Ddunet: Dense dense u-net with applications in
image denoising,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 354–364, 2021.

[50] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-
play image restoration with deep denoiser prior,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6360–6376, 2021.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[52] R. Mandelbaum, “Weak lensing for precision cosmology,” Annual Review of
Astronomy and Astrophysics, vol. 56, no. 1, pp. 393–433, 2018.

[53] B. Horowitz, U. Seljak, and G. Aslanyan, “Efficient optimal reconstruction of
linear fields and band-powers from cosmological data,” Journal of Cosmology and
Astroparticle Physics, vol. 2019, p. 035, oct 2019.

[54] Lanusse, F., Starck, J.-L., Leonard, A., and Pires, S., “High resolution weak lensing
mass mapping combining shear and flexion,” A&A, vol. 591, p. A2, 2016.

[55] M. A. Price, X. Cai, J. D. McEwen, M. Pereyra, T. D. Kitching, and L. D. E. S.
Collaboration, “Sparse Bayesian mass mapping with uncertainties: local credible
intervals,” Monthly Notices of the Royal Astronomical Society, vol. 492, pp. 394–
404, 12 2019.

[56] M. A. Price, J. D. McEwen, X. Cai, T. D. Kitching, C. G. R. Wallis, and (for the
LSST Dark Energy Science Collaboration), “Sparse Bayesian mass mapping
with uncertainties: hypothesis testing of structure,” Monthly Notices of the Royal
Astronomical Society, vol. 506, pp. 3678–3690, 07 2021.

151

[57] Starck, J.-L., Themelis, K. E., Jeffrey, N., Peel, A., and Lanusse, F., “Weak-lensing
mass reconstruction using sparsity and a gaussian random field,” A&A, vol. 649,
p. A99, 2021.

[58] N. Jeffrey, F. Lanusse, O. Lahav, and J.-L. Starck, “Deep learning dark matter map
reconstructions from DES SV weak lensing data,” Monthly Notices of the Royal
Astronomical Society, vol. 492, pp. 5023–5029, 01 2020.

[59] Remy, B., Lanusse, F., Jeffrey, N., Liu, J., Starck, J.-L., Osato, K., and Schrabback,
T., “Probabilistic mass-mapping with neural score estimation,” A & A, vol. 672,
p. A51, 2023.

[60] J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio,
R. Stern, P. Johnson, M. Bruno, M. Parente, K. J. Geras, J. Katsnelson, H. Chan-
darana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent, N. Yakubova,
J. Pinkerton, D. Wang, E. Owens, C. L. Zitnick, M. P. Recht, D. K. Sodickson,
and Y. W. Lui, “fastMRI: An open dataset and benchmarks for accelerated MRI,”
2018.

[61] Z. Ramzi, P. Ciuciu, and J.-L. Starck, “Benchmarking mri reconstruction neural
networks on large public datasets,” Applied Sciences, vol. 10, no. 5, 2020.

[62] A. R. Thompson, J. M. Moran, and J. Swenson, George W., Interferometry and
Synthesis in Radio Astronomy, 3rd Edition. 2017.

[63] L. Pratley, J. D. McEwen, M. d’Avezac, R. E. Carrillo, A. Onose, and Y. Wiaux,
“Robust sparse image reconstruction of radio interferometric observations with
purify,” Monthly Notices of the Royal Astronomical Society, vol. 473, pp. 1038–
1058, 09 2017.

[64] T. I. Liaudat, M. Mars, M. A. Price, M. Pereyra, M. M. Betcke, and J. D. McEwen,
“Scalable Bayesian uncertainty quantification with data-driven priors for radio
interferometric imaging,” arXiv e-prints, p. arXiv:2312.00125, Nov. 2023.

[65] M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks for inverse
problems in imaging: A review,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 85–95, 2017.

[66] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using
generative models,” in International conference on machine learning, pp. 537–546,
PMLR, 2017.

[67] M. Asim, M. Daniels, O. Leong, A. Ahmed, and P. Hand, “Invertible generative
models for inverse problems: mitigating representation error and dataset bias,” in
International Conference on Machine Learning, pp. 399–409, PMLR, 2020.

152

[68] B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion restoration
models,” Advances in Neural Information Processing Systems, vol. 35, pp. 23593–
23606, 2022.

[69] T. Liu, T. Yang, Q. Zhang, and Q. Lei, “Optimization for amortized inverse
problems,” in International Conference on Machine Learning, pp. 22289–22319,
PMLR, 2023.

[70] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convo-
lutions,” Advances in neural information processing systems, vol. 31, 2018.

[71] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[72] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play admm for image restora-
tion: Fixed-point convergence and applications,” IEEE Transactions on Computa-
tional Imaging, vol. 3, no. 1, pp. 84–98, 2016.

[73] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: Regularization
by denoising (red),” SIAM Journal on Imaging Sciences, vol. 10, no. 4, pp. 1804–
1844, 2017.

[74] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising prior driven
deep neural network for image restoration,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 10, pp. 2305–2318, 2018.

[75] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, H. Huang, and C.-B. Schönlieb, “Tf-
pnp: Tuning-free plug-and-play proximal algorithms with applications to inverse
imaging problems,” The Journal of Machine Learning Research, vol. 23, no. 1,
pp. 699–746, 2022.

[76] R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu, E. T. Reehorst, and
P. Schniter, “Plug-and-play methods for magnetic resonance imaging: Using
denoisers for image recovery,” IEEE signal processing magazine, vol. 37, no. 1,
pp. 105–116, 2020.

[77] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schönlieb, and H. Huang, “Tuning-
free plug-and-play proximal algorithm for inverse imaging problems,” in Interna-
tional Conference on Machine Learning, pp. 10158–10169, PMLR, 2020.

[78] Y. Zhu, K. Zhang, J. Liang, J. Cao, B. Wen, R. Timofte, and L. Van Gool, “De-
noising diffusion models for plug-and-play image restoration,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1219–
1229, 2023.

[79] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,”
Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.

153

[80] T. Cohen and M. Welling, “Group equivariant convolutional networks,” in Interna-
tional conference on machine learning, pp. 2990–2999, PMLR, 2016.

[81] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges,” arXiv preprint arXiv:2104.13478,
2021.

[82] T. S. Cohen and M. Welling, “Steerable cnns,” arXiv preprint arXiv:1612.08498,
2016.

[83] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Rotation
equivariant cnns for digital pathology,” in Medical Image Computing and Computer
Assisted Intervention–MICCAI 2018: 21st International Conference, Granada,
Spain, September 16-20, 2018, Proceedings, Part II 11, pp. 210–218, Springer,
2018.

[84] A. Chaman and I. Dokmanić, “Truly shift-equivariant convolutional neural net-
works with adaptive polyphase upsampling,” in 2021 55th Asilomar Conference
on Signals, Systems, and Computers, pp. 1113–1120, IEEE, 2021.

[85] A. Chaman and I. Dokmanić, “Truly shift-invariant convolutional neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3773–3783, 2021.

[86] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceed-
ings of the seventh IEEE international conference on computer vision, vol. 2,
pp. 1150–1157, Ieee, 1999.

[87] O. Puny, M. Atzmon, H. Ben-Hamu, I. Misra, A. Grover, E. J. Smith, and Y. Lip-
man, “Frame averaging for invariant and equivariant network design,” arXiv
preprint arXiv:2110.03336, 2021.

[88] A. Sannai, M. Kawano, and W. Kumagai, “Equivariant and invariant reynolds
networks,” arXiv preprint arXiv:2110.08092, 2021.

[89] Z. Zhao and A. Singer, “Rotationally invariant image representation for viewing
direction classification in cryo-em,” Journal of structural biology, vol. 186, no. 1,
pp. 153–166, 2014.

[90] M. Diwakar and M. Kumar, “A review on ct image noise and its denoising,”
Biomedical Signal Processing and Control, vol. 42, pp. 73–88, 2018.

[91] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

154

[92] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop,” arXiv
preprint arXiv:1506.03365, 2015.

[93] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE transactions on image
processing, vol. 13, no. 4, pp. 600–612, 2004.

[94] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[95] D. Nelson, A. Pillepich, V. Springel, R. Pakmor, R. Weinberger, S. Genel, P. Torrey,
M. Vogelsberger, F. Marinacci, and L. Hernquist, “First results from the tng50
simulation: galactic outflows driven by supernovae and black hole feedback,”
Monthly Notices of the Royal Astronomical Society, vol. 490, no. 3, pp. 3234–3261,
2019.

[96] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
2019.

[97] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[98] K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak
lensing with IllustrisTNG simulations,” Monthly Notices of the Royal Astronomical
Society, vol. 502, pp. 5593–5602, 02 2021.

[99] A. Pillepich, D. Nelson, L. Hernquist, V. Springel, R. Pakmor, P. Torrey, R. Wein-
berger, S. Genel, J. P. Naiman, F. Marinacci, and M. Vogelsberger, “First results
from the IllustrisTNG simulations: the stellar mass content of groups and clus-
ters of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 475,
pp. 648–675, Mar. 2018.

[100] V. Springel, R. Pakmor, A. Pillepich, R. Weinberger, D. Nelson, L. Hernquist,
M. Vogelsberger, S. Genel, P. Torrey, F. Marinacci, and J. Naiman, “First results
from the IllustrisTNG simulations: matter and galaxy clustering,” Monthly Notices
of the Royal Astronomical Society, vol. 475, pp. 676–698, Mar. 2018.

[101] J. P. Naiman, A. Pillepich, V. Springel, E. Ramirez-Ruiz, P. Torrey, M. Vogels-
berger, R. Pakmor, D. Nelson, F. Marinacci, L. Hernquist, R. Weinberger, and
S. Genel, “First results from the IllustrisTNG simulations: a tale of two elements -
chemical evolution of magnesium and europium,” Monthly Notices of the Royal
Astronomical Society, vol. 477, pp. 1206–1224, June 2018.

155

[102] D. Nelson, A. Pillepich, V. Springel, R. Weinberger, L. Hernquist, R. Pakmor,
S. Genel, P. Torrey, M. Vogelsberger, G. Kauffmann, F. Marinacci, and J. Naiman,
“First results from the IllustrisTNG simulations: the galaxy colour bimodality,”
Monthly Notices of the Royal Astronomical Society, vol. 475, pp. 624–647, Mar.
2018.

[103] F. Marinacci, M. Vogelsberger, R. Pakmor, P. Torrey, V. Springel, L. Hernquist,
D. Nelson, R. Weinberger, A. Pillepich, J. Naiman, and S. Genel, “First results
from the IllustrisTNG simulations: radio haloes and magnetic fields,” Monthly
Notices of the Royal Astronomical Society, vol. 480, pp. 5113–5139, Nov. 2018.

[104] M. A. Price, J. D. McEwen, L. Pratley, and T. D. Kitching, “Sparse Bayesian
mass-mapping with uncertainties: Full sky observations on the celestial sphere,”
Monthly Notices of the Royal Astronomical Society, vol. 500, pp. 5436–5452, 11
2020.

[105] R. Laureijs, J. Amiaux, S. Arduini, J. L. Auguères, J. Brinchmann, R. Cole,
M. Cropper, C. Dabin, L. Duvet, A. Ealet, B. Garilli, P. Gondoin, L. Guzzo,
J. Hoar, H. Hoekstra, R. Holmes, T. Kitching, T. Maciaszek, Y. Mellier, F. Pasian,
W. Percival, J. Rhodes, G. Saavedra Criado, M. Sauvage, R. Scaramella, L. Valen-
ziano, S. Warren, R. Bender, F. Castander, A. Cimatti, O. Le Fèvre, H. Kurki-
Suonio, M. Levi, P. Lilje, G. Meylan, R. Nichol, K. Pedersen, V. Popa, R. Rebolo
Lopez, H. W. Rix, H. Rottgering, W. Zeilinger, F. Grupp, P. Hudelot, R. Massey,
M. Meneghetti, L. Miller, S. Paltani, S. Paulin-Henriksson, S. Pires, C. Sax-
ton, T. Schrabback, G. Seidel, J. Walsh, N. Aghanim, L. Amendola, J. Bartlett,
C. Baccigalupi, J. P. Beaulieu, K. Benabed, J. G. Cuby, D. Elbaz, P. Fosalba,
G. Gavazzi, A. Helmi, I. Hook, M. Irwin, J. P. Kneib, M. Kunz, F. Mannucci,
L. Moscardini, C. Tao, R. Teyssier, J. Weller, G. Zamorani, M. R. Zapatero Osorio,
O. Boulade, J. J. Foumond, A. Di Giorgio, P. Guttridge, A. James, M. Kemp, J. Mar-
tignac, A. Spencer, D. Walton, T. Blümchen, C. Bonoli, F. Bortoletto, C. Cerna,
L. Corcione, C. Fabron, K. Jahnke, S. Ligori, F. Madrid, L. Martin, G. Morgante,
T. Pamplona, E. Prieto, M. Riva, R. Toledo, M. Trifoglio, F. Zerbi, F. Abdalla,
M. Douspis, C. Grenet, S. Borgani, R. Bouwens, F. Courbin, J. M. Delouis, P. Du-
bath, A. Fontana, M. Frailis, A. Grazian, J. Koppenhöfer, O. Mansutti, M. Melchior,
M. Mignoli, J. Mohr, C. Neissner, K. Noddle, M. Poncet, M. Scodeggio, S. Serrano,
N. Shane, J. L. Starck, C. Surace, A. Taylor, G. Verdoes-Kleijn, C. Vuerli, O. R.
Williams, A. Zacchei, B. Altieri, I. Escudero Sanz, R. Kohley, T. Oosterbroek,
P. Astier, D. Bacon, S. Bardelli, C. Baugh, F. Bellagamba, C. Benoist, D. Bianchi,
A. Biviano, E. Branchini, C. Carbone, V. Cardone, D. Clements, S. Colombi,
C. Conselice, G. Cresci, N. Deacon, J. Dunlop, C. Fedeli, F. Fontanot, P. Franzetti,
C. Giocoli, J. Garcia-Bellido, J. Gow, A. Heavens, P. Hewett, C. Heymans, A. Hol-
land, Z. Huang, O. Ilbert, B. Joachimi, E. Jennins, E. Kerins, A. Kiessling, D. Kirk,
R. Kotak, O. Krause, O. Lahav, F. van Leeuwen, J. Lesgourgues, M. Lombardi,

156

M. Magliocchetti, K. Maguire, E. Majerotto, R. Maoli, F. Marulli, S. Mauro-
gordato, H. McCracken, R. McLure, A. Melchiorri, A. Merson, M. Moresco,
M. Nonino, P. Norberg, J. Peacock, R. Pello, M. Penny, V. Pettorino, C. Di Porto,
L. Pozzetti, C. Quercellini, M. Radovich, A. Rassat, N. Roche, S. Ronayette,
E. Rossetti, B. Sartoris, P. Schneider, E. Semboloni, S. Serjeant, F. Simpson,
C. Skordis, G. Smadja, S. Smartt, P. Spano, S. Spiro, M. Sullivan, A. Tilquin,
R. Trotta, L. Verde, Y. Wang, G. Williger, G. Zhao, J. Zoubian, and E. Zucca,
“Euclid Definition Study Report,” arXiv e-prints, p. arXiv:1110.3193, Oct. 2011.

[106] G. Wang, J. C. Ye, and B. De Man, “Deep learning for tomographic image
reconstruction,” Nature Machine Intelligence, vol. 2, no. 12, pp. 737–748, 2020.

[107] J. Adler and O. Öktem, “Solving ill-posed inverse problems using iterative deep
neural networks,” Inverse Problems, vol. 33, p. 124007, Nov 2017.

[108] J. Adler and O. Öktem, “Learned primal-dual reconstruction,” IEEE Transactions
on Medical Imaging, vol. 37, no. 6, pp. 1322–1332, 2018.

[109] D. Gilton, G. Ongie, and R. Willett, “Neumann networks for linear inverse prob-
lems in imaging,” IEEE Transactions on Computational Imaging, vol. 6, pp. 328–
343, 2019.

[110] A. K. Maier, C. Syben, B. Stimpel, T. Würfl, M. Hoffmann, F. Schebesch, W. Fu,
L. Mill, L. Kling, and S. Christiansen, “Learning with known operators reduces
maximum error bounds,” Nature machine intelligence, vol. 1, no. 8, pp. 373–380,
2019.

[111] A. Hauptmann, J. Adler, S. Arridge, and O. Öktem, “Multi-scale learned iterative
reconstruction,” IEEE Transactions on Computational Imaging, vol. 6, pp. 843–
856, 2020.

[112] Y. B. Sahel, J. P. Bryan, B. Cleary, S. L. Farhi, and Y. C. Eldar, “Deep unrolled
recovery in sparse biological imaging,” 2021.

[113] J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban, A. Denker,
D. Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, and M. van Eijnatten, “Quan-
titative comparison of deep learning-based image reconstruction methods for
low-dose and sparse-angle CT applications,” Journal of Imaging, vol. 7, no. 3,
2021.

[114] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,”
Josa a, vol. 1, no. 6, pp. 612–619, 1984.

[115] H. K. Aggarwal, M. P. Mani, and M. Jacob, “Modl: Model-based deep learning
architecture for inverse problems,” IEEE transactions on medical imaging, vol. 38,
no. 2, pp. 394–405, 2018.

157

[116] A. Graas, S. B. Coban, K. J. Batenburg, and F. Lucka, “Just-in-time deep learning
for real-time x-ray computed tomography,” Scientific Reports, vol. 13, no. 1,
p. 20070, 2023.

[117] A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique
(sart): a superior implementation of the art algorithm,” Ultrasonic imaging, vol. 6,
no. 1, pp. 81–94, 1984.

[118] S. Lunz, A. Hauptmann, T. Tarvainen, C.-B. Schonlieb, and S. Arridge, “On
learned operator correction in inverse problems,” SIAM Journal on Imaging Sci-
ences, vol. 14, no. 1, pp. 92–127, 2021.

[119] S. Gupta, K. Kothari, V. Debarnot, and I. Dokmanić, “Differentiable uncalibrated
imaging,” IEEE Transactions on Computational Imaging, 2023.

[120] E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network using
directional wavelets for low-dose X-ray CT reconstruction,” Medical physics,
vol. 44, no. 10, pp. e360–e375, 2017.

[121] B. Hamoud, Y. Bahat, and T. Michaeli, “Beyond local processing: Adapting cnns
for ct reconstruction,” in European Conference on Computer Vision, pp. 513–526,
Springer, 2022.

[122] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth
16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[123] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al., “Mlp-mixer: An all-mlp archi-
tecture for vision,” Advances in neural information processing systems, vol. 34,
pp. 24261–24272, 2021.

[124] Z. Pan, B. Zhuang, J. Liu, H. He, and J. Cai, “Scalable vision transformers with
hierarchical pooling,” in Proceedings of the IEEE/cvf international conference on
computer vision, pp. 377–386, 2021.

[125] Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer: A general u-shaped
transformer for image restoration,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 17683–17693, 2022.

[126] G. Bachmann, S. Anagnostidis, and T. Hofmann, “Scaling mlps: A tale of inductive
bias,” arXiv preprint arXiv:2306.13575, 2023.

[127] G. H. Golub and C. F. Van Loan, “An analysis of the total least squares problem,”
SIAM journal on numerical analysis, vol. 17, no. 6, pp. 883–893, 1980.

158

[128] I. Markovsky and S. Van Huffel, “Overview of total least-squares methods,” Signal
processing, vol. 87, no. 10, pp. 2283–2302, 2007.

[129] S. Gupta and I. Dokmanić, “Total least squares phase retrieval,” IEEE Transactions
on Signal Processing, vol. 70, pp. 536–549, 2021.

[130] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging. SIAM,
2001.

[131] L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, and A. Weckenmann,
“Industrial applications of computed tomography,” CIRP annals, vol. 63, no. 2,
pp. 655–677, 2014.

[132] K. Wells and D. Bradley, “A review of x-ray explosives detection techniques for
checked baggage,” Applied Radiation and Isotopes, vol. 70, no. 8, pp. 1729–1746,
2012.

[133] S. Helgason, “The radon transform on euclidean spaces, compact two-point ho-
mogeneous spaces and grassmann manifolds,” Acta Mathematica, vol. 113, no. 1,
pp. 153–180, 1965.

[134] S. Helgason, “Support of radon transforms,” Advances in Mathematics, vol. 38,
no. 1, pp. 91–100, 1980.

[135] J. Boman and E. T. Quinto, “Support theorems for real-analytic radon transforms,”
1987.

[136] J. Boman, “Helgason’s support theorem for radon transforms—a new proof and
a generalization,” in Mathematical Methods in Tomography: Proceedings of a
Conference held in Oberwolfach, Germany, 5–11 June, 1990, pp. 1–5, Springer,
2006.

[137] J. Leuschner, M. Schmidt, D. O. Baguer, and P. Maass, “Lodopab-ct, a benchmark
dataset for low-dose computed tomography reconstruction,” Scientific Data, vol. 8,
no. 1, p. 109, 2021.

[138] M. Hssayeni, M. Croock, A. Salman, H. Al-khafaji, Z. Yahya, and B. Ghoraani,
“Computed tomography images for intracranial hemorrhage detection and seg-
mentation,” Intracranial Hemorrhage Segmentation Using A Deep Convolutional
Model. Data, vol. 5, no. 1, p. 14, 2020.

[139] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
“Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,”
in International Conference on Learning Representations, 2017.

159

[140] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton, A. Susano Pinto,
D. Keysers, and N. Houlsby, “Scaling vision with sparse mixture of experts,”
Advances in Neural Information Processing Systems, vol. 34, pp. 8583–8595,
2021.

[141] W. Fedus, J. Dean, and B. Zoph, “A review of sparse expert models in deep
learning,” arXiv preprint arXiv:2209.01667, 2022.

[142] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[143] A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson,
A. R. Pizzey, B. Philip, T. Marafioti, et al., “Deep in vivo photoacoustic imaging of
mammalian tissues using a tyrosinase-based genetic reporter,” Nature Photonics,
vol. 9, no. 4, pp. 239–246, 2015.

[144] J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou,
and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of
mouse brain in action,” Nature methods, vol. 12, no. 5, pp. 407–410, 2015.

[145] A. Doerr, “Cryo-electron tomography,” Nature Methods, vol. 14, no. 1, pp. 34–34,
2017.

[146] V. Debarnot, V. Kishore, R. D. Righetto, and I. Dokmanić, “Ice-tide: Implicit
cryo-et imaging and deformation estimation,” arXiv preprint arXiv:2403.02182,
2024.

[147] A. Hauptmann and J. Poimala, “Model-corrected learned primal-dual models for
fast limited-view photoacoustic tomography,” arXiv preprint arXiv:2304.01963,
2023.

[148] D. Chen, J. Tachella, and M. E. Davies, “Equivariant imaging: Learning beyond
the range space,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4379–4388, 2021.

[149] V. Shah and C. Hegde, “Solving linear inverse problems using gan priors: An
algorithm with provable guarantees,” in 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp. 4609–4613, IEEE, 2018.

[150] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in
International conference on machine learning, pp. 1530–1538, PMLR, 2015.

[151] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Sing-
hal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let networks learn
high frequency functions in low dimensional domains,” Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 7537–7547, 2020.

160

[152] J. N. Martel, D. B. Lindell, C. Z. Lin, E. R. Chan, M. Monteiro, and G. Wetzstein,
“Acorn: Adaptive coordinate networks for neural scene representation,” arXiv
preprint arXiv:2105.02788, 2021.

[153] V. Saragadam, J. Tan, G. Balakrishnan, R. G. Baraniuk, and A. Veer-
araghavan, “Miner: Multiscale implicit neural representations,” arXiv preprint
arXiv:2202.03532, 2022.

[154] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf:
Learning continuous signed distance functions for shape representation,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 165–174, 2019.

[155] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy
networks: Learning 3d reconstruction in function space,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4460–4470,
2019.

[156] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4401–4410, 2019.

[157] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing
and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8110–8119, 2020.

[158] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer networks,”
Advances in neural information processing systems, vol. 28, 2015.

[159] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,”
in 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), pp. 265–283, 2016.

[160] J. Whang, Q. Lei, and A. Dimakis, “Solving inverse problems with a flow-based
noise model,” in International Conference on Machine Learning, pp. 11146–11157,
PMLR, 2021.

[161] J. Brehmer and K. Cranmer, “Flows for simultaneous manifold learning and density
estimation,” arXiv preprint arXiv:2003.13913, 2020.

[162] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer
and super-resolution,” in European conference on computer vision, pp. 694–711,
Springer, 2016.

161

[163] K. J. Bergen, P. A. Johnson, M. V. de Hoop, and G. C. Beroza, “Machine learning
for data-driven discovery in solid earth geoscience,” Science, vol. 363, no. 6433,
p. eaau0323, 2019.

[164] D. Lee, J. Yoo, and J. C. Ye, “Deep residual learning for compressed sensing MRI,”
in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017),
pp. 15–18, 2017.

[165] H. Arabi and H. Zaidi, “Applications of artificial intelligence and deep learning in
molecular imaging and radiotherapy,” European Journal of Hybrid Imaging, vol. 4,
no. 1, pp. 1–23, 2020.

[166] S. A. Hussein, T. Tirer, and R. Giryes, “Image-adaptive gan based reconstruction,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3121–
3129, 2020.

[167] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a large-
scale image dataset using deep learning with humans in the loop,” arXiv preprint
arXiv:1506.03365, 2015.

[168] P. Weiss, P. Escande, G. Bathie, and Y. Dong, “Contrast invariant snr and isotonic
regressions,” International Journal of Computer Vision, vol. 127, no. 8, pp. 1144–
1161, 2019.

[169] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse
representation,” IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–
2873, 2010.

[170] S. Schulter, C. Leistner, and H. Bischof, “Fast and accurate image upscaling with
super-resolution forests,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3791–3799, 2015.

[171] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network
for image super-resolution,” in European conference on computer vision, pp. 184–
199, Springer, 2014.

[172] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolu-
tional neural network,” in European conference on computer vision, pp. 391–407,
Springer, 2016.

[173] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very
deep convolutional networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1646–1654, 2016.

[174] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks
for single image super-resolution,” in Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 136–144, 2017.

162

[175] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid
networks for fast and accurate super-resolution,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 624–632, 2017.

[176] X. Jia, H. Chang, and T. Tuytelaars, “Super-resolution with deep adaptive image
resampling,” arXiv preprint arXiv:1712.06463, 2017.

[177] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image super-resolution
using a generative adversarial network,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681–4690, 2017.

[178] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esr-
gan: Enhanced super-resolution generative adversarial networks,” in Proceedings
of the European conference on computer vision (ECCV) workshops, pp. 0–0, 2018.

[179] A. Lugmayr, M. Danelljan, L. V. Gool, and R. Timofte, “Srflow: Learning the
super-resolution space with normalizing flow,” in European conference on com-
puter vision, pp. 715–732, Springer, 2020.

[180] X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, and J. Sun, “Meta-sr: A magnification-
arbitrary network for super-resolution,” in Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 1575–1584, 2019.

[181] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[182] R. Xu, X. Wang, K. Chen, B. Zhou, and C. C. Loy, “Positional encoding as spatial
inductive bias in gans,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13569–13578, 2021.

[183] E. Ntavelis, M. Shahbazi, I. Kastanis, R. Timofte, M. Danelljan, and L. Van Gool,
“Arbitrary-scale image synthesis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11533–11542, 2022.

[184] I. Skorokhodov, S. Ignatyev, and M. Elhoseiny, “Adversarial generation of contin-
uous images,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10753–10764, 2021.

[185] I. Anokhin, K. Demochkin, T. Khakhulin, G. Sterkin, V. Lempitsky, and D. Ko-
rzhenkov, “Image generators with conditionally-independent pixel synthesis,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 14278–14287, 2021.

163

[186] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded
diffusion models for high fidelity image generation.,” J. Mach. Learn. Res., vol. 23,
pp. 47–1, 2022.

[187] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,”
arXiv preprint arXiv:1605.08803, 2016.

[188] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE
transactions on acoustics, speech, and signal processing, vol. 29, no. 6, pp. 1153–
1160, 1981.

[189] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

[190] H. Thanh-Tung and T. Tran, “Catastrophic forgetting and mode collapse in gans,”
in 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–10,
IEEE, 2020.

[191] M. Arjovsky and L. Bottou, “Towards principled methods for training generative
adversarial networks,” International Conference on Learning Representations,
ICLR, 2017.

[192] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components
estimation,” in International Conference on Learning Representations, ICLR,
2015.

[193] M. Puthawala, K. Kothari, M. Lassas, I. Dokmanić, and M. de Hoop, “Globally
injective relu networks,” arXiv preprint arXiv:2006.08464, 2020.

[194] H. Sun and K. L. Bouman, “Deep probabilistic imaging: Uncertainty quantification
and multi-modal solution characterization for computational imaging,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2628–2637,
2021.

[195] K. Mosegaard and A. Tarantola, “Monte carlo sampling of solutions to inverse
problems,” Journal of Geophysical Research: Solid Earth, vol. 100, no. B7,
pp. 12431–12447, 1995.

[196] F. Monard, R. Nickl, and G. P. Paternain, “Consistent inversion of noisy non-
abelian x-ray transforms,” Communications on Pure and Applied Mathematics,
2020.

[197] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

164

[198] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud, “Ffjord:
Free-form continuous dynamics for scalable reversible generative models,” arXiv
preprint arXiv:1810.01367, 2018.

[199] W. M. Boothby, An introduction to differentiable manifolds and Riemannian
geometry. Academic press, 1986.

[200] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-revnet: Deep invertible networks,”
arXiv preprint arXiv:1802.07088, 2018.

[201] J. Whang, Q. Lei, and A. Dimakis, “Compressed sensing with invertible generative
models and dependent noise,” in NeurIPS 2020 Workshop on Deep Learning and
Inverse Problems, 2020.

[202] M. F. Hutchinson, “A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines,” Communications in Statistics-Simulation and
Computation, vol. 18, no. 3, pp. 1059–1076, 1989.

[203] R. T. Chen, J. Behrmann, D. Duvenaud, and J.-H. Jacobsen, “Residual flows for
invertible generative modeling,” arXiv preprint arXiv:1906.02735, 2019.

[204] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[205] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[206] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the
wild,” in Proceedings of the IEEE international conference on computer vision,
pp. 3730–3738, 2015.

[207] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2097–2106,
2017.

[208] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilibrium,” arXiv
preprint arXiv:1706.08500, 2017.

[209] A. Kumar, B. Poole, and K. Murphy, “Regularized autoencoders via relaxed
injective probability flow,” in International Conference on Artificial Intelligence
and Statistics, pp. 4292–4301, PMLR, 2020.

165

[210] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454,
2018.

[211] A. Raj, Y. Li, and Y. Bresler, “Gan-based projector for faster recovery with con-
vergence guarantees in linear inverse problems,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5602–5611, 2019.

[212] E. Cunningham, R. Zabounidis, A. Agrawal, I. Fiterau, and D. Sheldon, “Normal-
izing flows across dimensions,” arXiv preprint arXiv:2006.13070, 2020.

[213] K. Flouris and E. Konukoglu, “Canonical normalizing flows for manifold learning,”
Advances in Neural Information Processing Systems, vol. 36, pp. 27294–27314,
2023.

[214] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive flow for den-
sity estimation,” in Advances in Neural Information Processing Systems, pp. 2338–
2347, 2017.

[215] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and
M. Welling, “Improving variational inference with inverse autoregressive flow.,”
URL http://arxiv. org/abs/1606.04934, 2016.

[216] A. V. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-
works,” in Proceedings of The 33rd International Conference on Machine Learning
(M. F. Balcan and K. Q. Weinberger, eds.), vol. 48 of Proceedings of Machine
Learning Research, (New York, New York, USA), pp. 1747–1756, PMLR, 20–22
Jun 2016.

[217] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline flows,”
arXiv preprint arXiv:1906.04032, 2019.

[218] T. Teshima, I. Ishikawa, K. Tojo, K. Oono, M. Ikeda, and M. Sugiyama, “Coupling-
based invertible neural networks are universal diffeomorphism approximators,”
arXiv preprint arXiv:2006.11469, 2020.

[219] A. Pardo, S. S. Streeter, B. W. Maloney, J. A. Gutiérrez-Gutiérrez, D. M. Mc-
Clatchy, W. A. Wells, K. D. Paulsen, J. M. López-Higuera, B. W. Pogue, and
O. M. Conde, “Modeling and synthesis of breast cancer optical property signatures
with generative models,” IEEE Transactions on medical imaging, vol. 40, no. 6,
pp. 1687–1701, 2021.

[220] Q. Dai, Y. H. Lee, H.-H. Sun, G. Ow, M. L. M. Yusof, and A. C. Yucel, “3din-
vnet: A deep learning-based 3d ground-penetrating radar data inversion,” IEEE
Transactions on Geoscience and Remote Sensing, 2023.

166

[221] Q. Cao, I. L. Al-Qadi, and L. Abufares, “Pavement moisture content prediction:
A deep residual neural network approach for analyzing ground penetrating radar,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022.

[222] V. Khorashadi-Zadeh and M. Dehmollaian, “Through a cinder block wall refo-
cusing using sar back projection method,” IEEE Transactions on Antennas and
Propagation, vol. 67, no. 2, pp. 1212–1222, 2018.

[223] J. Song, H. Chen, C. Du, and J. Li, “Semi-mapgen: Translation of remote sensing
image into map via semisupervised adversarial learning,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 61, pp. 1–19, 2023.

[224] A. I. Nachman, “Global uniqueness for a two-dimensional inverse boundary value
problem,” Annals of Mathematics, pp. 71–96, 1996.

[225] Y. Wang and W. C. Chew, “An iterative solution of the two-dimensional electro-
magnetic inverse scattering problem,” International Journal of Imaging Systems
and Technology, vol. 1, no. 1, pp. 100–108, 1989.

[226] W. C. Chew and Y.-M. Wang, “Reconstruction of two-dimensional permittivity
distribution using the distorted born iterative method,” IEEE transactions on
medical imaging, vol. 9, no. 2, pp. 218–225, 1990.

[227] P. M. Van Den Berg and R. E. Kleinman, “A contrast source inversion method,”
Inverse problems, vol. 13, no. 6, p. 1607, 1997.

[228] X. Chen, “Subspace-based optimization method for solving inverse-scattering
problems,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 1,
pp. 42–49, 2009.

[229] Y. Khoo and L. Ying, “Switchnet: a neural network model for forward and
inverse scattering problems,” SIAM Journal on Scientific Computing, vol. 41, no. 5,
pp. A3182–A3201, 2019.

[230] P. Ran, Y. Qin, and D. Lesselier, “Electromagnetic imaging of a dielectric micro-
structure via convolutional neural networks,” in 2019 27th European Signal Pro-
cessing Conference (EUSIPCO), pp. 1–5, IEEE, 2019.

[231] L. Li, L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, “DeepNIS:
Deep neural network for nonlinear electromagnetic inverse scattering,” IEEE
Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1819–1825, 2018.

[232] J. E. Fajardo, J. Galván, F. Vericat, C. M. Carlevaro, and R. M. Irastorza, “Phaseless
microwave imaging of dielectric cylinders: An artificial neural networks-based
approach,” Progress In Electromagnetics Research, vol. 166, pp. 95–105, 2019.

167

[233] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” International Conference on
Learning Representations, ICLR, 2018.

[234] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen, “On instabilities of
deep learning in image reconstruction and the potential costs of AI,” Proceedings
of the National Academy of Sciences, vol. 117, no. 48, pp. 30088–30095, 2020.

[235] X. Chen, Z. Wei, M. Li, and P. Rocca, “A review of deep learning approaches
for inverse scattering problems (invited review),” Progress In Electromagnetics
Research, vol. 167, pp. 67–81, 2020.

[236] J. Fei, Y. Chen, M. Zhong, and F. Han, “Fast 3-d electromagnetic full-wave
inversion of dielectric anisotropic objects based on resu-net enhanced by variational
born iterative method,” IEEE Transactions on Antennas and Propagation, vol. 70,
no. 8, pp. 6229–6239, 2022.

[237] T. Shan, Z. Lin, X. Song, M. Li, F. Yang, and S. Xu, “Neural born iterative method
for solving inverse scattering problems: 2d cases,” IEEE Transactions on Antennas
and Propagation, 2022.

[238] H. Zhou, Y. Cheng, H. Zheng, Q. Liu, and Y. Wang, “Deep unfolding contrast
source inversion for strong scatterers via generative adversarial mechanism,” IEEE
Transactions on Microwave Theory and Techniques, vol. 70, no. 11, pp. 4966–4979,
2022.

[239] Y. Liu, H. Zhao, R. Song, X. Chen, C. Li, and X. Chen, “Som-net: Unrolling the
subspace-based optimization for solving full-wave inverse scattering problems,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.

[240] R. Guo, Z. Lin, T. Shan, X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, “Physics
embedded deep neural network for solving full-wave inverse scattering problems,”
IEEE transactions on antennas and propagation, vol. 70, no. 8, pp. 6148–6159,
2021.

[241] V. A. Kelkar and M. Anastasio, “Prior image-constrained reconstruction using
style-based generative models,” in International Conference on Machine Learning,
pp. 5367–5377, PMLR, 2021.

[242] B. Ross and J. Cresswell, “Tractable density estimation on learned manifolds with
conformal embedding flows,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[243] R. Guo, Z. Lin, M. Li, F. Yang, S. Xu, and A. Abubakar, “A nonlinear model com-
pression scheme based on variational autoencoder for microwave data inversion,”
IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 11059–
11069, 2022.

168

[244] Z. Wei and X. Chen, “Uncertainty quantification in inverse scattering problems
with Bayesian convolutional neural networks,” IEEE Transactions on Antennas
and Propagation, vol. 69, no. 6, pp. 3409–3418, 2020.

[245] S. He, G. Zhang, and Z. Wei, “Uncertainty calibrations of deep-learning schemes
for full-wave inverse scattering problems,” IEEE Transactions on Geoscience and
Remote Sensing, 2023.

[246] P. Y. Chen, D. J. Bergman, and Y. Sivan, “Spectral decomposition of the lippmann-
schwinger equation applied to cylinders,” arXiv preprint arXiv:1705.01747, 2017.

[247] S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: Illus-
tration of the establishment of the non-intuitive null fields,” IEEE Antennas and
Propagation Magazine, vol. 42, no. 4, pp. 122–128, 2000.

[248] K. Kothari, M. de Hoop, and I. Dokmanić, “Learning the geometry of wave-based
imaging,” in Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 8318–8329,
Curran Associates, Inc., 2020.

[249] P. M. van den Berg, A. Van Broekhoven, and A. Abubakar, “Extended contrast
source inversion,” Inverse problems, vol. 15, no. 5, p. 1325, 1999.

[250] G. E. Hinton and D. Van Camp, “Keeping the neural networks simple by mini-
mizing the description length of the weights,” in Proceedings of the sixth annual
conference on Computational learning theory, pp. 5–13, 1993.

[251] A. Graves, “Practical variational inference for neural networks,” Advances in
neural information processing systems, vol. 24, pp. 2348–2356, 2011.

[252] J. Whang, E. Lindgren, and A. Dimakis, “Composing normalizing flows for inverse
problems,” in International Conference on Machine Learning, pp. 11158–11169,
PMLR, 2021.

[253] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” in International conference on
machine learning, pp. 1278–1286, PMLR, 2014.

[254] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[255] J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering
database continuation: experimental set-up and measurement precision,” inverse
Problems, vol. 21, no. 6, p. S117, 2005.

[256] F. Vasconcelos, B. He, N. Singh, and Y. W. Teh, “UncertaINR: Uncertainty Quan-
tification of End-to-End Implicit Neural Representations for Computed Tomogra-
phy,” arXiv preprint arXiv:2202.10847, 2022.

169

[257] M.-H. Chen, Q.-M. Shao, and J. G. Ibrahim, Monte Carlo methods in Bayesian
computation. Springer Science & Business Media, 2012.

[258] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning,
vol. 4. Springer, 2006.

[259] J. Marino, Y. Yue, and S. Mandt, “Iterative Amortized Inference,” in Proceedings
of the 35th International Conference on Machine Learning (J. Dy and A. Krause,
eds.), vol. 80 of Proceedings of Machine Learning Research, pp. 3403–3412,
PMLR, 10–15 Jul 2018.

[260] L. Ardizzone, J. Kruse, C. Lüth, N. Bracher, C. Rother, and U. Köthe, “Conditional
invertible neural networks for diverse image-to-image translation,” in Pattern
Recognition: 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen,
Germany, September 28–October 1, 2020, Proceedings 42, pp. 373–387, Springer,
2021.

[261] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learning likelihoods
with conditional normalizing flows,” arXiv preprint arXiv:1912.00042, 2019.

[262] G. A. Padmanabha and N. Zabaras, “Solving inverse problems using conditional
invertible neural networks,” Journal of Computational Physics, vol. 433, p. 110194,
2021.

[263] R. Gribonval, “Should penalized least squares regression be interpreted as maxi-
mum a posteriori estimation?,” IEEE Transactions on Signal Processing, vol. 59,
no. 5, pp. 2405–2410, 2011.

[264] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár, “Amortised map
inference for image super-resolution,” International Conference on Learning
Representations, ICLR, 2017.

[265] N. Courts and H. Kvinge, “Bundle networks: Fiber bundles, local trivializations,
and a generative approach to exploring many-to-one maps,” International Confer-
ence on Learning Representations, ICLR, 2022.

[266] Y. Fan and L. Ying, “Solving inverse wave scattering with deep learning,” Annals
of Mathematical Sciences and Applications, pp. 23–48, 2022.

[267] M. Asim, M. Daniels, O. Leong, A. Ahmed, and P. Hand, “Invertible generative
models for inverse problems: mitigating representation error and dataset bias,” in
Proceedings of the 37th International Conference on Machine Learning, vol. 119
of Proceedings of Machine Learning Research, pp. 399–409, PMLR, 13–18 Jul
2020.

170

[268] A. Repetti, M. Pereyra, and Y. Wiaux, “Scalable Bayesian uncertainty quantifi-
cation in imaging inverse problems via convex optimization,” SIAM Journal on
Imaging Sciences, vol. 12, no. 1, pp. 87–118, 2019.

[269] P. Bohra, T.-a. Pham, J. Dong, and M. Unser, “Bayesian Inversion for Nonlinear
Imaging Models using Deep Generative Priors,” arXiv preprint arXiv:2203.10078,
2022.

[270] K. C. Tezcan, N. Karani, C. F. Baumgartner, and E. Konukoglu, “Sampling possible
reconstructions of undersampled acquisitions in mr imaging with a deep learned
prior,” IEEE Transactions on Medical Imaging, vol. 41, no. 7, pp. 1885–1896,
2022.

[271] S. Bhadra, U. Villa, and M. A. Anastasio, “Mining the manifolds of deep generative
models for multiple data-consistent solutions of ill-posed tomographic imaging
problems,” arXiv preprint arXiv:2202.05311, 2022.

[272] R. V. Marinescu, D. Moyer, and P. Golland, “Bayesian image reconstruction using
deep generative models,” arXiv preprint arXiv:2012.04567, 2020.

[273] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiv:1411.1784, 2014.

[274] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using
deep conditional generative models,” Advances in neural information processing
systems, vol. 28, pp. 3483–3491, 2015.

[275] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,”
International Conference on Learning Representations, 2015.

[276] Y. Lu and B. Huang, “Structured output learning with conditional generative
flows,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 5005–5012, 2020.

[277] M. Sorkhei, G. E. Henter, and H. Kjellström, “Full-glow: Fully conditional glow
for more realistic image generation,” in Pattern Recognition: 43rd DAGM German
Conference, DAGM GCPR 2021, Bonn, Germany, September 28–October 1, 2021,
Proceedings, pp. 697–711, Springer, 2022.

[278] A. Pumarola, S. Popov, F. Moreno-Noguer, and V. Ferrari, “C-flow: Conditional
generative flow models for images and 3d point clouds,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7949–
7958, 2020.

[279] M. Puthawala, M. Lassas, I. Dokmanic, and M. De Hoop, “Universal joint approx-
imation of manifolds and densities by simple injective flows,” in International
Conference on Machine Learning, pp. 17959–17983, PMLR, 2022.

171

[280] K. Wang, T. Bui-Thanh, and O. Ghattas, “A randomized maximum a posteriori
method for posterior sampling of high dimensional nonlinear Bayesian inverse
problems,” SIAM Journal on Scientific Computing, vol. 40, no. 1, pp. A142–A171,
2018.

[281] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and B. Laksh-
minarayanan, “Normalizing flows for probabilistic modeling and inference.,” J.
Mach. Learn. Res., vol. 22, no. 57, pp. 1–64, 2021.

[282] K. C. Tezcan, C. F. Baumgartner, R. Luechinger, K. P. Pruessmann, and
E. Konukoglu, “Mr image reconstruction using deep density priors,” IEEE trans-
actions on medical imaging, vol. 38, no. 7, pp. 1633–1642, 2018.

[283] T. P. Minka, “Expectation propagation for approximate bayesian inference,” in
Uncertainty in Artificial Intelligence, p. 362––369, PMLR, 2001.

[284] T. P. Minka, A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology, 2001.

[285] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[286] B. C. Brown, A. L. Caterini, B. L. Ross, J. C. Cresswell, and G. Loaiza-Ganem,
“Verifying the union of manifolds hypothesis for image data,” in The Eleventh
International Conference on Learning Representations, 2023.

[287] Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics
Revised Edition. Gulf Professional Publishing, 1982.

[288] Y. Fan and Z. Zhao, “Cryo-electron microscopy image denoising using multi-
frequency vector diffusion maps,” in 2021 IEEE International Conference on
Image Processing (ICIP), pp. 3463–3467, IEEE, 2021.

[289] V. Debarnot, V. Kishore, C. Shi, and I. Dokmanić, “Manifold rewiring for unlabeled
imaging,” arXiv preprint arXiv:2209.05168, 2022.

[290] S. Gupta, K. Kothari, M. V. de Hoop, and I. Dokmanić, “Random mesh projectors
for inverse problems,” in 7th International Conference on Learning Representa-
tions, ICLR 2019, 2019.

[291] E. Venkatesh and S. V. Elluru, “Cone beam computed tomography: basics and
applications in dentistry,” Journal of istanbul University faculty of Dentistry,
vol. 51, no. 3 Suppl 1, p. S102, 2017.

[292] K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal
reflection tomography,” JOSA A, vol. 22, no. 9, pp. 1889–1897, 2005.

172

[293] M. Zhang, Y. Sun, S. McDonagh, and C. Zhang, “Flow based models for manifold
data,” arXiv preprint arXiv:2109.14216, 2021.

[294] A. Siahkoohi, G. Rizzuti, M. Louboutin, P. A. Witte, and F. J. Herrmann, “Precondi-
tioned training of normalizing flows for variational inference in inverse problems,”
arXiv preprint arXiv:2101.03709, 2021.

[295] A. Siahkoohi, G. Rizzuti, R. Orozco, and F. J. Herrmann, “Reliable amortized
variational inference with physics-based latent distribution correction,” Geophysics,
vol. 88, no. 3, pp. 1–137, 2023.

[296] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale speaker
identification dataset,” in Interspeech, 2017.

[297] E. Begoli, T. Bhattacharya, and D. Kusnezov, “The need for uncertainty quantifica-
tion in machine-assisted medical decision making,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 20–23, 2019.

[298] M. Stoyer, D. McNabb, J. Burke, and L. Bernstein, “Science based stockpile stew-
ardship, uncertainty quantification, and surrogate reactions,” tech. rep., Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), 2009.

[299] D. Brown, M. Herman, S. Hoblit, E. McCutchan, G. Nobre, B. Pritychenko, and
A. Sonzogni, “Uncertainty quantification in the nuclear data program,” Journal of
Physics G: nuclear and particle physics, vol. 42, no. 3, p. 034020, 2015.

[300] F. Arnez, H. Espinoza, A. Radermacher, and F. Terrier, “A comparison of uncer-
tainty estimation approaches in deep learning components for autonomous vehicle
applications,” arXiv preprint arXiv:2006.15172, 2020.

[301] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating uncertainty quantifica-
tion in end-to-end autonomous driving control,” arXiv preprint arXiv:1811.06817,
2018.

[302] A. Tarantola, Inverse problem theory and methods for model parameter estimation.
SIAM, 2005.

[303] A. M. Stuart, “Inverse problems: a Bayesian perspective,” Acta numerica, vol. 19,
pp. 451–559, 2010.

[304] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, “A stochastic newton mcmc
method for large-scale statistical inverse problems with application to seismic
inversion,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1460–
A1487, 2012.

[305] Z. Zhao and M. K. Sen, “A gradient based mcmc method for fwi and uncertainty
analysis,” in SEG International Exposition and Annual Meeting, OnePetro, 2019.

173

[306] T. Cui, Y. M. Marzouk, and K. E. Willcox, “Data-driven model reduction for
the Bayesian solution of inverse problems,” International Journal for Numerical
Methods in Engineering, vol. 102, no. 5, pp. 966–990, 2015.

[307] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of multifidelity methods
in uncertainty propagation, inference, and optimization,” Siam Review, vol. 60,
no. 3, pp. 550–591, 2018.

[308] P. Esser, E. Sutter, and B. Ommer, “A variational u-net for conditional appearance
and shape generation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8857–8866, 2018.

[309] L. Jin, H. Lu, and G. Wen, “Fast uncertainty quantification of reservoir simulation
with variational u-net,” arXiv preprint arXiv:1907.00718, 2019.

[310] C. F. Baumgartner, K. C. Tezcan, K. Chaitanya, A. M. Hötker, U. J. Muehlematter,
K. Schawkat, A. S. Becker, O. Donati, and E. Konukoglu, “Phiseg: Capturing
uncertainty in medical image segmentation,” in Medical Image Computing and
Computer Assisted Intervention–MICCAI 2019: 22nd International Conference,
Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22, pp. 119–127,
Springer, 2019.

[311] A. Siahkoohi, G. Rizzuti, and F. J. Herrmann, “Deep Bayesian inference for
seismic imaging with tasks,” Geophysics, vol. 87, no. 5, pp. S281–S302, 2022.

[312] A. Stanziola, S. R. Arridge, B. T. Cox, and B. E. Treeby, “j-wave: An open-source
differentiable wave simulator,” arXiv preprint arXiv:2207.01499, 2022.

[313] A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodrı, et al., “An optimal perfectly
matched layer with unbounded absorbing function for time-harmonic acoustic
scattering problems,” Journal of computational Physics, vol. 223, no. 2, pp. 469–
488, 2007.

[314] L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe, “Guided image genera-
tion with conditional invertible neural networks,” arXiv preprint arXiv:1907.02392,
2019.

[315] C. Donnelly, S. Gliga, V. Scagnoli, M. Holler, J. Raabe, L. J. Heyderman, and
M. Guizar-Sicairos, “Tomographic reconstruction of a three-dimensional magneti-
zation vector field,” New Journal of Physics, vol. 20, no. 8, p. 083009, 2018.

[316] M. Holler, M. Odstrcil, M. Guizar-Sicairos, M. Lebugle, E. Müller, S. Finizio,
G. Tinti, C. David, J. Zusman, W. Unglaub, et al., “Three-dimensional imaging
of integrated circuits with macro-to nanoscale zoom,” Nature Electronics, vol. 2,
no. 10, pp. 464–470, 2019.

174

	Introduction
	Scalable Local Image Reconstruction with Implicit Neural Representation
	Background and related works
	MLPatch: a local coordinate-based network
	MLPatch for inverse problems with local forward operators
	MLPatch for general inverse problems
	Summary
	Appendix

	GLIMPSE: Generalized Local Imaging with MLPs
	Related works
	Computed tomography
	Experiments
	Summary
	Appendix

	FunkNN: Neural Interpolation for Functional Generation
	Implicit neural representations for continuous image representation
	Our approach
	Continuous generative models and solving inverse problems
	Experiments
	Related works
	Summary
	Appendix

	Trumpets: Injective Flows for Inference and Inverse Problems
	Trumpets: Injective flows
	Inference and uncertainty quantification with Trumpet
	Experiments
	Related works
	Summary
	Appendix

	Deep Injective Prior for Inverse Scattering
	Forward and inverse scattering
	MAP inference with injective flows for inverse scattering
	Posterior modeling and uncertainty quantification
	Experiments
	Summary
	Appendix

	Conditional Injective Flows for Bayesian Imaging
	Related works
	Variational Bayesian inference
	C-Trumpets: conditional injective flows
	The C-Trumpets signal model
	Experiments
	Summary
	Appendix

	Deep Variational Inverse Scattering
	Wave scattering model
	U-Flow
	Experiments
	Summary

	Looking Forward
	Locality for 3D reconstruction
	Bayesian modeling of local processing models
	Solving wave-based PDEs with a generative prior

