Tailor-Made Structures for Molecular Junctions:

From Linear Wires to Molecular Loops

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

Von

Ksenia Reznikova

Basel 2024

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Erstbetreuer: Prof. Dr. Marcel Mayor

Zweitbetreuer: Prof. Dr. Christof Sparr

Externer Expert: Prof. Dr. Michal Juríček

Basel, den 21.02.2023

Prof. Dr. Marcel Mayor (Dekan)

Für Joel

und meine Familie

We all wish we had superpowers.

We all wish we could do more than we can do.

Stan Lee

Acknowledgment

First and foremost, I would like to acknowledge my supervisor *Prof. Dr. Marcel Mayor* for giving me the opportunity to work on so many exciting and challenging projects in his group. I am deeply grateful for your support, encouragement, and guidance throughout the last years.

I would sincerely like to thank *Prof. Dr. Christof Sparr* for agreeing to be my second supervisor and *Prof. Dr. Michal Juríček* for accepting to be the external expert for this thesis.

Collaborative work is only possible with the best partners. I would like to thank our collaborators at EMPA, *Prof. Dr. Michel Calame* and his students *Oliver Schmuck* and *Dr. Davide Beretta*, for fruitful discussions, showing and explaining the experimental setup, as well as the junction chip preparation procedure. Furthermore, I want to thank the experimental physics at TUDelft, *Prof. Dr. S. J. Herre van der Zant, Chunwei Chu*, and *Sebastiaan van der Poel* and theoretical physics *Prof. Dr. Fabian Pauly*, *Werner M. Schosser, Dr. Katawoura Beltako*, and *Matthias Blaschke* from the University of Augsburg for making and explaining the MCBJ measurements and the theory behind them during our monthly Zoom meetings. I would also like to thank my co-workers, *Dr. Almudena Gallego*, *Dr. Eric Sidler*, *Dr. Patrick Zwick*, and *Charlotte Kress*, for the great collaboration.

I want to thank *Prof. Dr. Daniel Häussinger*, his students, and his research group (mainly *Daniel*, *Raphael*, and *Pascal*) for helping with the NMR analysis.

Thanks to *Dr. Loïc Le Pleux*, *Dr. Laurent Jucker*, *Camiel C. E. Kroonen*, *Manuel U. Hugo*, *Adriano D'Addio*, *Björn Pfund*, *Jöel F. Keller*, and *Dr. Joel L. Rösslein* for proofreading my thesis and their helpful advice and corrections.

I am also grateful to be a part of the QuIET program. It was a pleasure to meet so many highly motivated scientists and be at so many conferences, meetings, and networking events, as well as to have a lot of discussions and inspiring time together.

I want to thank all current and former members of the Mayor Group for the great working atmosphere, all scientific and non-scientific discussions, time in and outside the lab, and all the fun we had together. A special thank goes to my "Lab 8 Family", *Kevin, Linda, Tomáš, Florian, Marius, Adriano, Manuel, Ramon,* and *Camiel.* I have always enjoyed working with you, and I will really miss all the bad jokes, the unique taste in music, and the unforgettable discussions. Furthermore, I would like to thank *Laurent* for always having/founding time for me and my stories/challenges. *Björn* and *Adriano,* thank you for your crash course, patience, and several explanations of spectroscopy.

I want to thank *Sylvie Mittelheisser*, *Dr. Michael Pfeffer*, and *Jonas Zurflüh* for their analytical support.

Good working conditions at the chemistry department were only possible because of the excellent technical and administrative staff. I want to thank *Markus Ast, Andres Koller, Hisni Meha, Andreas Sohler, Oliver IIg, Markus Hauri, Nathalie Plattner-Longhi, Olaf Lips,* and *Brigitte Howald*.

I want to thank Prof. Dr. Bernhard Jung and Loreno Calisse for their IT support.

I want to thank my family, future in-laws, and my friends outside the lab for their support. Especially my *Mom*. Without you, I would not be who I am. Thank you for everything you did for me.

Finally, I would like to thank my love and dearest friend *Joel*, who has been there all along to celebrate with me on the good days and cheer me up during the bad ones, and who never stopped believing in me, even when I did not.

Preface & Overview of the Thesis

In 1974, Aviram and Ratner suggested implementing molecules as the smallest building block, still providing structural diversity and functionality, allowing them to act as functional devices into electronic circuits.¹ This visionary concept still fascinates scientists worldwide, leading to the blossom of interdisciplinary research to understand charge transport through molecules in the electrode-molecule-electrode junctions.^{2–4} Over the past decades, several possibilities and techniques for probing and manipulating the molecules in the junctions were developed, for instance, scanning tunneling microscope break junctions (STM-BJ),⁵ mechanically controlled break junctions (MCBJ),⁶ electromigration breakdown junctions (EBJ),⁷ and graphene-molecule-graphene junctions.^{8–10} Beyond the initial interest in understanding electronic transport, these techniques also allowed scientists to explore interference of electron waves,^{11,12} mechanics,¹³ optical effects,¹⁴ and thermoelectric phenomena¹⁵ of molecular junctions.

This thesis contains the preparation of several molecules for investigations in molecular junctions, which were done in the scope of a highly interdisciplinary project named Quantum Interference Enhanced Thermoelectricity (QuIET), involving scientists from different disciplines and countries (theoretical and experimental physics and chemistry).

- I. The first chapter describes the design and synthesis of presumably suitable and stable molecular rods for the investigation of charge-transport properties of graphene-molecule-graphene junctions. It is a follow-up project to the one started during my master's thesis in the group of *Prof. Dr. Marcel Mayor* in collaboration with the experimental physicists from the group of *Prof. Dr. Michel Calame* at EMPA (Swiss Federal Laboratories for Materials Science and Technology) in Zurich, Switzerland. Due to the challenges that arose during the chip preparation and molecules immobilization, the synthesis was frozen in the next-to-the-last step.
- II. The second part of this thesis deals with a deeper understanding of the relationship between conductivity, quantum interference, and mechanical response of molecules implemented in mechanically controllable break junctions in dependence on difference substitution pattern. For this purpose, six molecular wires bearing the [2.2]paracyclophane as a central moiety were synthesized as model compounds. The realization of this project was only possible due to the fruitful and inspiring collaboration with the experimental physicists from the group of *Prof. Dr. S. J. Herre van der Zant* from the University of Technology in Delft, Netherlands, and theoretics from the group of *Prof. Dr. Fabian Pauly* from the University of Physics in Augsburg, Germany. The results of the first four structures are presented in the form of a

publication. The last two structures were successfully synthesized and are now under investigation; therefore, only synthesis is included in the thesis.

- III. The third chapter deals with the design and synthesis of the envisioned structure implementing molecular wire and loop scaffold, which combines two conductivity pathways: through-space and through-bond. This project was synthetically most challenging and provided surprising results. Our efforts, progress, and all challenges are summarized and will be discussed in this chapter.
- IV. The last chapter provides the elucidation of cyclic dimers. The initial structure was obtained as a by-product in the macrocyclization reaction in *Chapter 3* and was then transformed into the thiophene analogue. This synthetic step, as well as topological evidence and preliminary optical investigations of both dimers, are summarized in this chapter.

All chapters are constructed similarly, providing the introduction on the first pages to ease the reader into the topic. Afterward comes the project description, molecular design, synthetic strategy, results, and discussion. Also, each chapter is supplied with a summary and outlook. All the experimental parts can be found in the supporting information of the corresponding chapter and the spectra in the appendix.

Contents

A	AcknowledgmentI							
Ρ	reface	& O'	verview of the ThesisIII					
1	Synthesis Towards Tailor-Made Molecular Rods for Graphene Junctions							
	1.1 Intr		oduction: Graphene Junctions					
	1.1.1		Formation of Graphene Junctions 3					
	1.1.2		Immobilization: Covalent Bond vs. π-π Stacking					
	1.2 Pro		ect Description7					
1.3 Mol			ecular Design					
	1.4 Syn		thetic Strategy					
	1.5	Res	ults and Discussion11					
1.5.1		.1	Synthesis of the Anchoring Group and the OPE Linker11					
	1.5.	.2	Synthesis of the Central Moiety13					
	1.5.3		Assembly of OPE5 Precursor and OPE5 Reference14					
	1.6 Sur		16 nmary					
	1.7	Out	ook: Hydrosilylation16					
2	Qua	antur	n Interference Effects in [2.2]Paracyclophane-Based Structures21					
	2.1 General Introduction							
2.1.1		.1	Two-Fold Substituted [2.2]Paracyclophanes21					
	2.1.2		Molecular Orbital-Based Quantum Interference					
	2.2	Met	a vs. Para: "Substitution Pattern Controlled Quantum Interference in					
	[2.2]F	Paracy	vclophane-Based Single-Molecule Junctions."					
	2.3	Pse	udo-Ortho-[2.2]Paracyclophane-Based Molecular Wires41					
2.3.1		.1	Project Description and Molecular Design41					
	2.3.2		Results and Discussion					
	2.4 Sur		1mary45					
	2.5	Out	ook46					
3	Syr	nthes	is Towards a [2.2]Paracyclophane-Based Molecular Loop51					
	3.1	Intro	oduction51					
	3.1.	.1	General Macrocyclization Strategies51					
3.1.2		.2	Ring Closure of Angle-Strained Diyne-Containing Macrocycles52					
	3.2	Proj	ect Description58					
3.3 Mo		Mole	ecular Design59					
	3.4 Syn		thetic Strategy60					
	3.5	Res	ults and Discussion63					
	3.5.1		Synthesis of the Central PCP-Moiety63					
	3.5.2		Synthesis of the Terthiophene Derivative					

	3.5.3		Borylation of Terthiophene Derivate and Assemble of Loop Precursor	5		
	3.5.4		Macrocyclization	3		
	3.6	Sun	nmary8	3		
	3.7	Out	look: Redesign8	4		
4 Dimer:			An Infinity Loop8	9		
	4.1	Intro	oduction8	9		
	4.1.	1	Optical-Active Pseudo-Ortho-[2.2]Paracyclophane Containing Macrocycles8	9		
	4.1.2		Optical-Active Pseudo-Meta-[2.2]Paracyclophane Containing Macrocycles9	1		
	4.2	Proj	ect Description9	2		
	4.3 Re		ults and Discussion9	3		
4.3.1		1	Topology9	3		
4.3.2		2	Formation of Thiophene Dimer9	5		
	4.3.	3	Preliminary Optical Investigations9	7		
	4.4 Sun		nmary10	3		
	4.5 Outlook		look10	3		
4.5.1		1	Chirality10	3		
4.5.2		2	Proof-of-Concept10	5		
5 Supporting Information				9		
	5.1	Cor	tributions10	9		
	5.2 Ge		neral Information10	9		
	5.3 Su		porting Information: Chapter 111	1		
	5.4	Sup	porting Information: Subchapter 2.211	9		
	5.4.1		Synthesis and Characterization11	9		
	5.4.2 5.4.3		Transport Measurements12	7		
			Transport Calculations	2		
5.5 Suj		Sup	porting Information: Subchapter 2.313	9		
	5.6	Sup	porting Information: Chapters 3 & 414	1		
6	Abb	Abbreviations153				
7	References155					
8	Арр	Appendix169				

Chapter 1

1 Synthesis Towards Tailor-Made Molecular Rods for Graphene Junctions

This chapter presents the results towards the synthesis of tailor-made molecular rods for immobilization in graphene junctions. For this purpose, the desired molecules were designed bearing flat π -conjugated subunits as outer anchoring groups to interact with graphene electrodes via π - π stacking. Furthermore, additional anchoring groups were introduced to increase the mechanical stability of molecules between two graphene electrodes and prevent the molecule's sliding out of the junction. The first generation of possible candidates was synthesized, measured, and reported in the scope of previous research (Ksenia Reznikova, Master Thesis supervised by *Prof. Dr. Marcel Mayor*). Therefore, this chapter will outline an elongated second generation of molecular wires with an improved synthetic strategy. The preparations of graphene junctions by molecules immobilization and consequent measurements were carried out in the group of *Prof. Dr. Michel Calame* at EMPA (Swiss Federal Laboratories for Materials Science and Technology) in Zurich, Switzerland. The following pages will introduce the benefits of graphene electrodes compared to commonly used gold ones, as well as a brief overview of the formation of graphene gaps and several possibilities of molecule immobilization.

1.1 Introduction: Graphene Junctions

Because of its remarkable electrical properties, graphene has become an attractive alternative to gold as a material for electrodes in molecular junctions.^{16–18} In addition, graphene electrodes allow to overcome the synthetic challenges arising during the late-stage introduction of linkage groups since graphene electrodes do not only allow to bind covalently^{14,18,19} but also via π - π stacking interactions of the aromatic rings.^{9,20} A further advantage of this flat two-dimensional scaffold is stability at room temperature and the possibility of preparing extremely thin electrodes, which can better interact with the investigated molecules.^{8,21}

1.1.1 Formation of Graphene Junctions

Graphene junctions are commonly prepared from single-layer graphene with a size of 10 µm obtained from chemical vapor deposition (CVD) grown on a copper foil, which is then transferred to the substrate (Si/SiO₂).^{22,23} The graphene construction can have different conformations, for example, triangular, hourglass-shaped, or H-shaped.²⁴ And the nanogaps can also be formed using several techniques and setups for the fabrication of graphene electrodes, for instance, electron beam lithography,¹⁶ focused ion and electron beam milling,^{25,26} selective hydrogen plasma etching,²⁷ scanning probe methods,²⁸ and electrical

breakdown.^{8,10,21,24} In our case, graphene electrodes are prepared using the electrical breakdown (EB) protocol. For this purpose, the graphene is conformed in H-shaped constriction with 400 nm wide and 800 nm long contacted to metal electrodes, such as platinum or gold (see Figure 1a).^{22,24} The EB process is performed by applying high voltage pulses with increasing amplitude through the construction until the desired gap is formed (see Figure 1b).²² The obtained nanogap width can be only approximately estimated, making the preparation of suitable molecular wires more challenging. However, the presence of molecules implemented between two electrodes (see Figure 1c) can be determined according to the changes in the transport characteristics before and after deposition.²⁴

Figure 1: Schematic representation of H-shaped graphene junction before (a) and after (b) electrical breakdown, and (c) after molecule immobilization.

1.1.2 Immobilization: Covalent Bond vs. π - π Stacking

As mentioned above, there are several possibilities to attach molecules to graphene electrodes, and a short overview of selected examples will be presented in the following pages. The first option is a covalently binding of a molecule to the graphene electrode. For this approach, oxidized graphene edges are required (see Figure 2a), which can be obtained by reactive etching of graphene using an oxygen plasma. The carboxylic acid on the graphene edges can undergo a condensation reaction with amine anchoring groups providing the covalent bonds to the electrodes (see Figure 2). *Xu et al.* published this procedure on examples of 1,4-diaminobenzene (1) and 4,4'-diaminobiphenyl (2).¹⁹ However, the obtained yield of the electrode-molecule-electrode junction formation was pretty low, under 20%, which was presumed to be due to the lack of control during the etching process.

Figure 2: Schematic representation of oxidized graphene, which reacts with a diamine in pyridine with EDC as an activating agent providing a covalent bond between the molecule and graphene.

A second approach for the molecules to interact with graphene electrodes would be via π - π stacking, allowing to relinquish the introduction of anchoring groups either on graphene or molecular wire. This strategy requires the molecule to contain π -conjugated anchoring groups, which are flat and have suitable size, on both ends of the molecular wire to interact with electrodes. *Limburg et al.* investigated the non-covalent interfacing of different anchoring groups groups of porphyrin-based molecular wires with graphene electrodes (see Figure 3).²⁹

Figure 3: (a) Porphyrin wires with different anchoring groups. The numbers in red are junction formation probabilities that increase with the size of the anchoring group. (b) Schematic representation of graphene junction bridged by porphyrin-based molecular wire. THS is an abbreviation for trihexylsilyl.

They observed an increase in molecular junction formation probability with an increase in the size of the anchoring group from pyrene with different substitution pattern **3** and **4** (13% and 15%, respectively), over tetrabenofluorene (**5**) with 19%, up to values of 36% and 38% obtained with the best performing 1,3,8-tridodecyloxypyrene (**6**) and 2,5,8,11,14-

pentadodecylhexa-*peri*-hexabenzocoronene (**7**)³⁰ anchoring groups, respectively. These observations can be rationalized by the weak nature of π - π interactions, which leads to limited mechanical stability of molecules with small anchoring groups in the junction.

The aforementioned stability problem can be solved by introducing an additional anchoring option in the molecular design. *Calame* and co-workers demonstrated a possibility of stabilization of the molecules in the junction by implementing a silyl anchoring group in the design of investigated molecules.³¹ The silyl anchor formed a covalent bond with the silicone oxide substrate, increasing the electrode-molecule-electrode junction's mechanical robustness. On the other hand, stable electrical communication was achieved by a π - π overlap of several carbazoles arranged in a row between both graphene electrodes, as depicted in Figure 4.

Figure 4: Schematic representation of graphene junction containing a row of π - π stacked molecules bridging between two graphene electrodes and a zoom-in of silyl anchor of carbazole-based molecule forming a covalent bond in the junction.

1.2 Project Description

The use of graphene as electrode material raises a question of a suitable and reliable design of molecular rods to achieve a mechanically stable molecular junction with controllable and reproducible current-voltage (I-V) characteristics. The potential candidate should fulfill several requirements. Firstly, the molecules should be well conjugated, flat, and rigid, with an appropriate size to bridge both electrodes. Secondly, the desired structure should be connected to the graphene electrodes covalently or via π - π stacking, implicating suitable outer anchoring groups for a molecular rod. By the covalent bonding of molecules to graphene electrodes, the edge itching strongly influences the electrodes' geometry and impacts the junction's current-voltage (I-V) characteristics.^{19,32} Therefore, connecting molecules to the graphene via π - π stacking seems to be a more suitable strategy,³² even with a lack of mechanical stability.¹⁸

The main goal of this project is to find a suitable molecular design allowing a balance between mechanical and electronic stability for molecular rods in graphene junctions. Therefore, we designed a molecular rod that allows the anchoring of molecules directly to the silicon insulator instead to the graphene electrodes. This additional anchoring possibility permits the task separation of outer and central anchoring groups, as depicted in Figure 5, where one is responsible for electrical communication and the other for mechanical stabilization, respectively.

Figure 5: Schematical representation of a task separation between outer and central anchoring groups responsible for electronic transport and stability in the junction, respectively.

1.3 Molecular Design

The proposed molecular rod comprises two anchoring groups (see Figure 6): the silyl anchoring group attached to the central moiety that prevents the molecule's sliding out of the junction and the outer anchoring groups that interact with graphene. Both parts are connected via a linear π -conjugated system to establish electronic communication. For this purpose, good polarizable and rigid oligo(phenylene ethynylene) (OPE) linkers were chosen. The OPE linkers were functionalized with alkoxy chains to improve solubility of the molecular rod. The introduction of additional OPE linkers enables the prolongation of the structure and provides the possibility of preparing a library of molecules that are different in length. Further, we considered using phenanthrene as the outer anchoring groups to interact with graphene electrodes due to a flat conjugated system suitable for stable electrical communication but too small for mechanical stabilization. This feature of phenanthrene would allow us to prove our hypothesis of the possibility of additional mechanical stabilization of molecules due to the covalent attachment of the silyl anchoring group to the silicon dioxide substrate in the molecular junction.

Firstly, we considered the length of **OPE3** to be suitable to bridge the graphene electrodes. Therefore, the desired structure was synthesized and fully characterized in the scope of my master thesis in the group of *Prof. Dr. Marcel Mayor*. Also, the preliminary measurements in the laboratories of *Prof. Dr. Michel Calame* at EMPA were performed during the master thesis, proving the yield of junction formation of about 20%, which was lower than expected. Therefore, we assume that the obtained width of the graphene junctions was bigger than estimated. As a result, improvement of junction formation was investigated from one side exploring possibilities to narrow the gap further and on the other via elongation of the molecular bridge. The latter will be achieved by implementing two additional OPE moieties that increase the length from approximately 3.26 nm of **OPE3** to 4.56 nm of **OPE5** (*see* Scheme 6), which can still be elongated by introducing additional OPE building blocks.

1.4 Synthetic Strategy

The synthetic strategy toward the desired OPE5 structure is illustrated in Figure 7. The hydrosilylation step is performed as the last stage modification to facilitate the purification steps during the synthesis. In addition, the silyl anchoring group makes **OPE5** water labile; therefore, it cannot be stored for a long time and should be introduced briefly before immobilization. The assembly of the OPE backbone 8 is based on Sonogashira-Hagihara cross-coupling reactions³³, which are known to be suitable for synthesizing large OPE-based molecular architectures.^{34–36} Due to the fact that the desired structure is centrosymmetric, it can be stepwise assembled over the convergent synthesis strategy from the highly functionalized building blocks 9–11. An ethynyl group or leaving group is required for coupling the desired subunits.³⁷ The ethynyl groups are masked with a protecting group (PG), which makes the synthesis vary between Sonogashira-Hagihara cross-coupling reactions and deprotections. On the other hand, iodine was chosen as a leaving group to enable cross-coupling reactions even at room temperature. The subunits for OPE linker 10 and central moiety 11 were decorated with alkyl and terminal alkene chains to improve the solubility and allow hydrosilylation, respectively. Due to stability reasons, the terminal alkene chain of the central moiety was exchanged for a more stable butene analogue for the OPE5 molecular rod compared to the **OPE3**.

Figure 7: Synthetic strategy for the synthesis of OPE5. The abbreviation PG stands for protecting group. All disconnections in the retrosynthetic analysis are marked with colors dependent on the reaction type.

1.5 Results and Discussion

1.5.1 Synthesis of the Anchoring Group and the OPE Linker

The synthesis of the desired **OPE5** structure started with the preparation of 9-ethynylphenanthrene (**13**) (see Scheme 1), which was achieved on a gram scale in two steps following the modified procedure developed by Grunder and co-workers.³⁶ Commercially available 9bromophenanthrene (**12**) was used in a *Sonogashira-Hagihara* cross-coupling reaction with trimethylsilylacetylene (TMSA), tetrakis(triphenylphosphine)palladium, and copper iodine in triethylamine as base and solvent. The TMS-protected acetylene **9** was obtained in 76% yield after the purification by column chromatography. Afterward, the TMS protecting group was cleaved using an excess of potassium carbonate in a mixture of dichloromethane and methanol, providing the free acetylene **13** in an excellent yield of 98%.

Scheme 1: Synthesis of the outer anchoring group 13 over the introduction of acetylene.

Next, building block **16** for the OPE linker was prepared (*see* Scheme 3). The commercially available hydroquinone **14** was alkylated using 1-bromohexane and potassium carbonate in acetonitrile, providing 1,4-bis(hexyloxy)benzene (**15**) in 60% yield. Iodination of **15** was performed by modification of literature known conditions³⁸ with periodic acid and iodine in methanol. After purification via recrystallization from ethanol, the desired diiodo compound **16** was isolated in 74% yield.

Scheme 2: Synthesis of diiodo compound 16.

The bifunctional repeating unit **10** was prepared in a statistical *Sonogashira-Hagihara* crosscoupling reaction with masked acetylene (see Scheme 3). A statistically expected outcome for this reaction is starting material **16**, desired product **10**, and overreacted diacetylene **18** in a 1:2:1 ratio. Therefore, polar acetylene was required to ease the purification of this statistical mixture.³⁷ Thus, the acetylenes with a (3-cyanopropyl)dimethylsilyl (CPDMS) **17**^{36,39} and 2-hydroxyprop-2-yl (HOP) **19**⁴⁰ as protecting groups were used since they are known for being suitable for OPE-based systems. During the previous synthesis of **OPE3**, CPDMS was used as a masking group. This reaction step was limiting because of the low yield and loss of the material due to overreaction. However, by applying a HOP-acetylene **19** and an excess of diiodo **16** building block, the formation of undesired **18** was expected to be suppressed and increase yield for **10** as well as for starting material **16**. Therefore, 0.7 equivalents of HOP-acetylene **19** and 1.0 equivalent of diiodo compound **16** were used and reacted in a mixture of THF and piperidine (5:1) in the presence of bis(triphenylphosphine)palladium chloride and copper iodide. After the purification by column chromatography, the mono HOP-protected acetylene **10** was obtained in an excellent yield of **74**%.

Scheme 3: Synthesis of bifunctional repeating unit 10 of the OPE backbone. The conditions and corresponding yields for the reactions performed during the master thesis are grayed out.

Previously prepared building blocks were assembled into OPE molecular wire subunit **23** over an alternating sequence of multiple *Sonogashira-Hagihara* cross-coupling reactions and deprotections (see Scheme 4). Such stepwise elongation of the wire started by coupling free acetylene **13** and monoiodine **10** using tetrakis(triphenylphosphine)palladium and copper iodide as a catalyst in a mixture of THF and piperidine (4:1). The desired HOP-protected acetylene **20** was obtained in 87% yield after column chromatography. Refluxing of **20** in toluene in the presence of sodium hydroxide allowed the cleavage of protecting group,⁴¹ providing free acetylene **21** in an almost quantitative yield (98%). These *Sonogashira-Hagihara* cross-coupling and deprotection conditions were also used for the forthcoming reactions, providing HOP-protected acetylene **22** in 98% yield and free acetylene **23** in 99% yield.

Scheme 4: Synthesis of the OPE molecular wire building block 23 via stepwise elongation over *Sonogashira-Hagihara* cross-coupling reaction.

1.5.2 Synthesis of the Central Moiety

The synthesis of the central moiety **11** started with the iodination of hydroquinone dimethyl ether (**24**) (see Scheme 5). For this reaction, the same procedure³⁸ as for compound **16** was used to provide diiodo compound **24** in 91% yield. Next, demethylation of **25** was obtained by treatment with boron tribromide in dichloromethane at -78 °C to provide 2,5-diiodobenzene-1,4-diol (**26**)⁴² in 98% yield. Such a synthesis strategy allowed the modular etherification of **26**, which allows preparing a library of molecules with different side chain lengths. A first idea was to use allyl bromide in the design of the central moiety. However, the allyl group is known for being used as protecting group for alcohols which can be cleaved over the isomerization to more labile enol ether.⁴³ Therefore, the side chain with four carbons was more favored for stability reasons. Diol compound **26**, 4-bromo-1-butene, and potassium carbonate were dissolved in DMF and stirred at room temperature to provide central moiety **11** in 97% yield after column chromatography purification.

Scheme 5: Synthesis of the central moiety 11.

1.5.3 Assembly of OPE5 Precursor and OPE5 Reference

With all building blocks in hand, the assembly of OPE5 precursor (8) and reference compound (27) were performed by applying the same conditions for the Sonogashira-Hagihara crosscoupling (see Scheme 6). The free acetylene 23 and diiodo compound 11 or 16 were coupled in а mixture of THF and piperidine (4:1)in the presence of tetrakis(triphenylphosphine)palladium and copper iodide as a catalytic system. The deprotected acetylene 23 was used in excess, leading to the formation of a homo-coupled byproduct due to a Glaser-type reaction. However, column chromatography and manual gelpermeation chromatography (BioBeads, SX-3 in toluene) easily removed the undesired byproduct, providing OPE5 precursor (8) and OPE5 reference (27) in 50% and 57% yield, respectively. The obtained yields can be explained by poor solubility and loss of considerable amounts of the product during the purification. The identities of both OPE5 structures 8 and 27 were fully corroborated by ¹H and ¹³C{¹H} NMR, as well as by 2D NMR spectroscopy measured in 1,1,2,2-tetrachloroethane-d2 at 343 K due to low solubility at room temperature. The recorded spectra enabled the full assignment of proton and carbon atoms which are provided in the Supporting Information for Chapter 1. The elemental formulas of both molecular rods 8 and 27 were confirmed by the low-resolution matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry, where both found masses match the calculated values (OPE5 precursor 8: m/z [M]⁺ calcd. for C₁₂₆H₁₄₆O₁₀ 1819.092; found 1819.022 and OPE5 reference 27: [M]⁺ calcd. for C₁₃₀H₁₅₈O₁₀ 1879.186; found 1879.113) and isotopic distributions.

Scheme 6: Synthesis of OPE5 precursor 8 and OPE5 ref 27 via Sonogashira-Hagihara cross-coupling reaction.

The final hydrosilylation step to introduce the silyl anchoring group was not performed due to the graphene junction fabrication challenges. As mentioned above, silyl anchoring groups are water sensitive and cannot be stored for a long time; therefore, they should be freshly introduced before the immobilization into graphene electrodes. The conditions which favored hydrosilylation on the terminal alkene instead of internal alkyne were already elaborated during the previous work and will also be described in the *Outlook 1.7* of this *Chapter*.

1.6 Summary

In summary, the elongated design of a tailor-made molecular rod for graphene junctions was outlined. The envisioned design is based on assembling three different building blocks with various tasks. First, the outer anchoring groups are responsible for interaction with the graphene electrodes. The second one, OPE linker, allows the elongation of desired structure and makes the molecule suitable for larger nanogaps. The last one is the modified central moiety comprising the silyl anchoring groups, which is responsible for the mechanical stabilization of molecules in the junction. In this chapter, we presented a modified synthesis and assembly of building blocks. The exchange of the masking group for bifunctional OPE linker 10 from CPDMS to HOP increased the yield of the Sonogashira-Hagihara cross-coupling reaction and following deprotection compared to the previously published results.³⁶ In addition, replacement of the allyl chains of central moiety with the more stable butene analogue allowed to overcome isomerization and further stability issues. The precursor molecules 8 and corresponding reference compound 27 were successfully synthesized and fully characterized. However, the last step, introducing the silyl anchoring group, was not performed due to stability issues of **OPE5**, and challenges arose during the graphene junctions' preparation. Therefore, the following outlook subchapter will suggest a possible catalyst and conditions for hydrosilylation.

1.7 Outlook: Hydrosilylation

Hydrosilylation reaction allows the introduction of the previously discussed silyl anchoring group and will provide the desired **OPE5**. Typically for this type of reaction, platinum catalysts, such as Speier's (**28**)⁴⁴ and Karstedt's (**29**)⁴⁵ are used. However, platinum catalysts are also known for their advantage of forming several by-products, as well as low selectivity for terminal and internal alkenes and alkynes (*see* Figure 8).^{46,47}

Figure 8: Examples of platinum catalysts for hydrosilylations.

The iridium catalyst, for instance $[(COD)IrCI]_2$ (**30**), would be a better candidate due to the higher selectivity.⁴⁸ However, the drawback of an iridium-based catalytic system is a short

lifetime which requires a large amount of catalyst for the full conversion due to the formation of elemental iridium during the reaction.^{46,49} A large amount of a co-catalyst, namely cyclooctadiene (COD), enables overcoming of such uneconomical challenges due to the suppression of deactivation of the catalyst.⁴⁸ The best results for the hydrosilylation of **OPE3** were obtained for 0.04 equivalents of iridium and 28.0 equivalents of COD, providing the desired **OPE3** in 36% yield after GPC purification. Therefore, we assume that the same conditions would also be suitable for the hydrosilylation of **OPE5** precursor (**8**).

Scheme 7: Proposed catalyst and conditions for hydrosilylation of terminal alkene to provide OPE5.

Chapter 2

2 Quantum Interference Effects in [2.2]Paracyclophane-Based Structures

This chapter presents the results of our investigations into the intriguing conductivity properties of different constitutional isomers of [2.2]paracyclophanes (PCPs). The combination of different substitution patterns on both the PCP core and the anchoring groups has allowed us to elucidate the conductance and mechanosensitivity in PCP-based molecular wires. Furthermore, all experimental findings were interpreted in terms of the quantum interference effect between the frontier molecular orbitals by theoretical calculations based on the density functional theory (DFT) and the Landauer formalism. All measurements were performed in the group of *Prof. Dr. Herre S. J. van der Zant* from the University of Technology in Delft, Netherlands, and the theoretical calculations were carried out in the group of *Prof. Dr. Fabian Pauly* from the University of Physics in Augsburg, Germany. To ease the reader into the topic, the results are preceded by an introduction covering two-fold substituted [2.2]paracyclophanes and molecular orbital-based quantum interference.

2.1 General Introduction

2.1.1 Two-Fold Substituted [2.2]Paracyclophanes

This subchapter provides insights into the history and applications of [2.2]paracyclophane. In addition, nomenclature, chirality, reactivity, and selectivity, of two-fold substituted [2.2]paracyclophane derivatives are introduced.

2.1.1.1 Synthesis and Applications of [2.2]Paracyclophane

The history of [2.2]paracyclophane (33) started in 1949 when Brown and Farthing⁵⁰ firstly prepared it by pyrolysis of para-xylene (31) over the formation of 1,4-quinodimethane intermediate (32) under low pressure and at 550 °C (see Figure 9a). Then, two years later, Cram and Steinberg⁵¹ developed a synthetic strategy to prepare the PCP **33** in a *Wurz*-type intramolecular cyclization of 1,2-bis(4-bromomethyl)phenyl)ethane (34) with molten sodium (see Figure 9b). An alternative synthetic approach to obtaining the PCP structure would be the 1,6-Hofmann elimination (Winberg cyclization).^{52,53} The reaction also takes place over the formation of 1,4-quinodimethane intermediate (4-(32) prepared from methylbenzyl)trimethylammonium bromide (35), where the optimized reaction conditions reported by Chow et al. in 2005 are illustrated in Figure 9c.53 The several modifications and optimizations of the Hofmann elimination strategy allowed the preparation of PCP in a good yield and on a large scale,^{54,55} which allowed commercial production. Nowadays, the synthesis of PCP-based molecules mostly starts with the functionalization of commercially available PCP, which will be described in detail in Subchapter 2.1.1.4. ^{56–58}

Figure 9: Synthesis of [2.2]paracyclophane (**33**): (a) via pyrolysis, (b) via *Wurz*-type intramolecular reaction, and (c) via *Hofmann* elimination (*Winberg* cyclization).

[2.2]Paracyclophane is a remarkable three-dimensional aromatic compound with a "sandwich" orientation that has attracted the scientific community's interest due to its unique structural and electronic properties, which can be used in several applications. For instance, several PCP-based derivatives were reported in three-dimensional material chemistry^{59,60} and asymmetric catalysis.^{56,61–63} The PCP moiety is also used in molecular architectures, for example, as a building block for dendrimeric⁶⁴ and macrocyclic structures.^{65–70} Furthermore, PCP-based compounds are known for their chiroptical⁷⁰ and electronic⁷¹ properties, which makes them perfect candidates for organic electronic materials. Substituted PCPs were already incorporated into molecular wires,^{72,73} conjugated polymers,^{60,74} several emitters with circularly polarized luminescent (CPL),^{75,76} and thermally activated delayed fluorescence (TADF) ^{58,77} properties.

2.1.1.2 Structure of [2.2]Paracyclophane

[2.2]Paracyclophane (**33**) belongs to the class of so-called cyclophane (**36**) compounds that consist of an arene motif bridged by an aliphatic chain, where the numbers in brackets indicate the length of the bridge, followed by prefix *para*, which describes the substitution pattern of the aromatic unit (see Figure 10a). Therefore, the compact skeleton of the PCP consists of two benzene rings (decks) in face-to-face orientation bridged with two ethylene chains. The decks are slightly bent with a decrease in ring-to-ring distance of 3.09 Å from the centrum of the deck to 2.83 Å from the outer carbon connected to the bridge, with a bridge carbon-carbon distance of 1.55 Å (see Figure 10b). The rings' distortion out of planarity decreases the inter-annular distance of PCP compared to other π - π stacked aromatic compounds. For instance, the distance between two graphene layers in graphite is 3.40 Å.^{58,57,78} Furthermore, one of the two co-facial benzene rings is slightly twisted by approximately 6° compared to the second ring to prevent an eclipsed conformation. This distortion of aromatic planarity allows better through-space charge transfers and leads to unusual reactivity, described in more detail in Subchapter 2.1.14.^{58,59}

Figure 10: (a) General concept of cyclophane (**36**) and [2.2]paracyclophane (**33**). (b) Structural features of [2.2]paracyclophane with an aromatic-ring distance of 3.09 Å and 2.83 Å are depicted in violet and blue, respectively. The bond length between two carbons in the bridge is 1.55 Å, illustrated in purple. And the twist of co-facial benzene rings is represented in red.

2.1.1.3 <u>Nomenclature and Stereochemistry of [2.2]Paracyclophane</u>

The PCP-based molecules allow appealing structural diversity due to the spatial arrangement of substituents on its unique rigid scaffold. In the case of disubstituted PCP derivatives, the nomenclature indicates the connectivity pattern of the two substituents. The already known prefixes *ortho-*, *meta-*, and *para-* can be used for two-fold substitution on one phenyl ring, as shown in Figure 11. *Reich* and *Cram*⁷⁹ introduced an additional prefix pseudo (ps) to adequately describe the mutual arrangement of both substituents in the case of substitution on both benzene rings.

Therefore, the substitution pattern was defined by two prefixes instead of one, providing pseudo-*germinal*-, pseudo-*ortho*-, pseudo *meta*-, and pseudo-*para*- as a naming convention for the PCP structures (*see* Figure 11). This nomenclature enables us to unequivocally distinguish between the regioisomers.

Figure 11: Overview of the two-fold homo-substituted PCP pattern on the same phenyl ring and different, where the spatial arrangement is depicted in blue and red, respectively. The nomenclature is based on the prefix system and describes the substitution pattern with ps as an abbreviation for pseudo.

However, the initial nomenclature differed.⁸⁰ The numbering started with the carbons on the ethylene bridge as one and two, continuing along the first aromatic ring (see Figure 12). Then, the second aromatic ring could be numbered in either an anti-clockwise or clockwise direction. This nomenclature provided for one 4.16two names structure. namely disubstituted[2.2]paracyclophane and 4,12-disubstituted[2.2]paracyclophane. The alternative would be to start the numbering of the second phenyl ring in dependence on the substituent carrying carbon^{81,82} which leads to further confusion since two different molecules, pseudopara-PCP and pseudo-ortho-PCP, would have the same name (4,12-disubstituted[2.2]paracyclophane, see Figure 12).83 Therefore, due to the risk of confusion, only the pseudo-prefix-based nomenclature will be used in this thesis.

Figure 12: Example of different nomenclature systems used for disubstituted PCP derivatives. This figure was reproduced from *Vorontsova et al.*⁸³

The possibility of incorporating functional groups into ethylene bridges or benzene rings breaks the initial achiral D_{2h} symmetry^{83,84} of parent PCP. Introducing the substituents into ethylene bridges provides the stereogenic center chirality. On the other hand, implementing substituents in benzene rings may induce planar chirality depending on the substitution pattern. In the case of two-fold substitution with the same functional group, also called homo-substitution, on benzene rings, three substitution patterns lead to chiral molecules: *para*-, ps-*meta*-, and ps*ortho*-PCP, which differ in the orientation of the C₂-axis.

Figure 13: Chiral C2-symmetrical [2.2]Paracylophanes. This figure was reproduced from Vorontsova et al.83

In 1966, *Cahn*, *Ingold*, and *Prelog* proposed a rule for determining the absolute configuration of molecules with planar chirality.⁸⁵ The rule can be explained with the example of ps-*meta*-PCP depicted in Figure 14. Firstly, the most substituted ring is placed in the backplane. The next step is determining the first out-of-plane carbon, the pilot atom, which is then used as a point-of-view. Finally, the numbering to the highest priority substituent starts from the pilot atom. In our case, numbers from one to three were used. The configuration can be assigned depending on the direction of circulation 1-2-3 providing *R*p for clockwise and *S*p for

counterclockwise.^{57,86} In the case of several different substituents, the chirality is based on the substituent with the highest priority.

Figure 14: Absolut configuration of ps-meta-PCP derivatives; ps-meta-PCP (Rp) and ps-meta-PCP (Sp).

2.1.1.4 Derivatization of [2.2]Paracyclophane

As mentioned above, the PCP structures can be derivatized on the aromatic rings and the ethylene bridges. However, in the following part, we will only focus on the possible functionalizations of the aromatic system. Due to the unique structural features, such as abnormal distortion of aromatic planarity and a shorter distance between both rings, the substituent on the first ring can influence the reactivity and substitution pattern of the second one. The best example is the ps-*geminal*-PCP. This substitution pattern has the most sterically unfavored confirmation because of the repulsion of neighboring substituents. Indeed, the substitution in the ps-*geminal* position can be promoted due to the transannular directive effect.^{79,87} This effect is exemplified by the bromination of methyl ester monosubstituted PCP (**37**) depicted in Figure 15. The lewis base stimulates the substitution in the ps-*geminal* position in the electrophilic aromatic substitution. This specific stereoelectronic effect allows for synthesizing the ps-*geminal* core with several functional groups.^{57,58}

Figure 15: Transannular effect in methyl ester monosubstituted PCP-based molecule. The aromatic substitution of monosubstituted PCP bearing a lewis base occurs via the *Wheland* intermediate.⁵⁷

The synthesis of the derivatives based on remaining regioisomers (ps-*para*-, ps-*ortho*-, and ps-*meta*-PCP) can be achieved via direct bromination. The initial iron-catalyzed bromination in tetrachloromethane developed by Cram⁸⁸ provided a mixture of several dibrominated compounds (*see* Figure 16), with ps-*para*-PCP (**41**, 26%) and ps-*ortho*-PCP (**42**, 16%) as the major products, followed by only a lower amount of ps-*meta*-(**43**, 6%) and *para*-PCP (**44**, 5%). In 2002, *Braddock et al.*⁸⁹ increased the yield of ps-*para*-PCP (**41**, 38%) by exchange of toxic tetrachloromethane with dichloromethane. Such improvement also enabled the crystallization of ps-*para*-PCP directly from the reaction mixture. However, later studies^{83,90} demonstrated that bromination without iron as a catalyst leads to the formation of almost exclusively ps-*para*-(**41**, 34%) and ps-*meta*-PCP (**43**, 43%), where the isomers can be separated using their different solubility.

Figure 16: Synthesis of homo-substituted dibromo-PCP compounds with different connectivity pattern. The yield of catalyzed^{88,89} and uncatalyzed⁸³ reactions is given in blue and red, respectively.

Besides the direct bromination (see Figure 16), the main pathway to obtaining a ps-*ortho*dibromo PCP (**42**) isomer is a thermal isomerization starting from the ps-*para*-substituted analogue (**41**). The latter can isomerize at a temperature above 200 °C. The process begins with the homolytic cleavage of a C-C bond on an ethylene chain, leading to the formation of a diradical. Next, one of the aromatic units rotates, and the diradical recombines to reform the ethylene bridge,⁹¹ which provides a ps-*ortho*-PCP (**42**) isomer (see Figure 17a). However, quantitative isomerization is impossible since the reaction is in equilibrium. There is a 1:1 mixture of both compounds with ps-*para* (**41**) and ps-*ortho* (**42**) connectivity, which can be separated by recrystallization. Therefore, to increase the obtained yield of ps-*ortho*-substituted PCP (**42**), previously separated ps-*para*-PCP (**41**) can be reused in the thermal isomerization cycle. The best-reported yield was 73% after four cycles.^{57,90} On the other hand, the equilibrium of ps-*geminal*- (**45**) and ps-*meta*-substituted PCP (**46**) favors the ps-*meta*-PCP derivative due to the steric repulsion of the ps-*geminal* substitution pattern (see Figure 17b).^{87,91}

Figure 17: Thermal isomerization procedure. (a)Preparation of ps-*ortho*-PCP from ps-*para*-PCP via isomerization with balanced equilibrium (1:1 ratio) and (b) quantitative conversion of ps-*geminal*-derivative to ps-*meta*-analogue.

Dibromo PCP scaffolds with ps-*para*- (**41**), ps-*ortho*- (**42**), and ps-*meta*-substitution (**43**) can be employed to prepare homo- and hetero-substituted derivatives. The isomers can be converted to the desired structures in a mono- or double lithium-halogen exchange reaction followed by quenching with various electrophiles.^{35,46,49} Besides, dibromo-PCP can also react in palladium-catalyzed cross-coupling reactions to provide further PCP-based derivatives.⁵⁷ Unsurprisingly, the dibrominated PCP derivatives are essential building blocks and a common starting point for several synthetic strategies due to their incorporation possibilities.

2.1.2 Molecular Orbital-Based Quantum Interference

This subchapter provides insights into the relationship between conductivity and quantum interference. Furthermore, the possibility of predicting quantum interference using frontier molecular orbital theory is explained.

2.1.2.1 Quantum Interference

Nowadays, the phenomenon of quantum interference (QI) is one of the leading hot topics in the studies of molecular junctions.^{92–94} Firstly, the QI concept was introduced to describe the wave interference of electrons and photons in the double-slit experiments.^{95,96} Several years later, this term was adopted to describe the phase difference between the electron waves traversing different conduction pathways in a molecule in a single-molecule junction. These pathways can have either an atomic orbital or molecular orbital (MO) origin.⁹⁷ The latter is more general, was already well-established,^{98–101} and moved to the focus of interest for the investigations described in this chapter.

Constructive quantum interference (CQI) or destructive quantum interference (DQI) can enhance or suppress conductance and can be influenced by structural modifications such as variety in substituents^{102,103} or substitution pattern.^{104,105} The latter demonstrated significant conductance variations for the transmission through an aromatic ring, which were studied experimentally^{105,106} and theoretically.¹⁰⁷ The outcome of the investigation was that the phenyl ring with the anchoring groups in the *meta* position showed low conductance compared to the *para-* and *ortho*-substituted analogue. The reduction in electronic communication for *meta*connectivity can be explained by the DQI. On the other hand, *para-* and *ortho*-connectivity showed an increase in conductance due to CQI.

2.1.2.2 Molecular Orbital Theory and Symmetry Rules

Yoshizawa, Tada, and their co-workers^{98–101} provided a method to predict the increase and decrease of electronic communication due to the presence or absence of DQI in aromatic π -systems. Such orbital rules are based on the Hückel molecular orbitals (MO) theory combined with the nonequilibrium Green's function (NEGF) methods.^{108,109} The underlying formulas are not reprinted within this chapter but are presented in the *Supporting Information (see Subchapter 5.4.3.3)*. However, the following preconditions are necessary for the use of orbital symmetry rules: (a) the molecules have a weak electrode-molecule-electrode coupling, (b) there is electron-hole symmetry (pairing theorem) in orbital energies and MO expansion coefficients, and (c) the Fermi energy is located between the energy of the highest occupied MO (HOMO) and that of the lowest unoccupied MO (LUMO).^{98,99} Aromatic hydrocarbons and

their derivatives fulfill all these requirements and can be used for conductivity predictions. Therefore, the rules for symmetry and QI based on frontier MO theory can be summarized as follows.^{110,111} Firstly, the HOMO and LUMO need to have sizeable orbital coefficients to allow the contribution to transmission. Secondly, the products of the molecule's HOMO and LUMO need to be different in sign on the connection points to the electrodes to enhance transmission due to CQI. If this is not the case, the contributions of HOMO and LUMO will cancel each other out, resulting in DQI and low transmission.

The above-described rules can be used to predict the electron transport properties in benzene molecules with different connectivity pattern to electrodes. In the electrode-benzene-electrode junction, there are three configurations of how the molecule can be located: *para-*, *meta-*, and *ortho-* (*see* Figure 18a and c). Firstly, the frontier MOs should be determined to fulfill the first requirement. For *para-*substituted benzene, carbon 1 and 4 (C_1 and C_4) have a suitable size of the orbital amplitude in HOMO and LUMO, and therefore they are the relevant frontier orbitals for this case. Contrariwise, HOMO and LUMO do not achieve this requirement due to the smaller amplitude on one of the connection points in the case of *ortho-* and *meta-*connectivity. Thus HOMO' and LUMO' are used as frontier orbitals for such connectivity pattern.

Afterward, we can move to the second rule and determine the parities. In the case of *para*connection, the sign of $C_{1\text{HOMO}}C^*_{4\text{HOMO}}$ is negative due to different orbital parities. On the other hand, the sign of $C_{1\text{LUMO}}C^*_{4\text{LUMO}}$ is positive (same parities); therefore, this connection would be symmetry-allowed and lead to CQI and high conductivity. Due to symmetry restrictions, the best contacts for the *meta*-substitution are C₂ and C₆ (or C₃ and C₅). In both cases, the sign is negative. Therefore, *meta*-connectivity is symmetry-forbidden and leads to DQI and low conductivity. There are also two possibilities for the last configuration, C₂ and C₃ (or C₅ and C₆). The sign in $C_{2\text{HOMO}}, C^*_{3\text{HOMO}}$ is positive, and $C_{2\text{LUMO}}, C^*_{3\text{LUMO}}$, is negative, providing the CQI and symmetry-allowed connection for *ortho*-substitution. The same result is also obtained for the prediction based on the other pair of carbons (C₅ and C₆).¹¹² Such predictions are in accordance with the previously described experimental results^{105,106} and can be performed for several other molecules to corroborate the experimental results.^{112,113}

To summarize, the rules of thumb for through-bond conductivity in benzene for *para*- and *ortho*connectivity are CQI (high conductivity) and *meta*- DQI (low conductivity). In contrast, the trend of electronic communication in [2.2]paracyclophane-based molecules that allows the throughspace conductivity is reversed (*see* Figure 18b and d).¹¹⁴ In the case of ps-*para*-PCP, both products of MO coefficients are the same, namely negative for $C_{1HOMO}C^*_{4'HOMO}$ and $C_{1LUMO}C^*_{4'LUMO}$. Thus, 1-4'-connection is symmetry-forbidden, and the conductance is suppressed due to DQI. The same result can also be observed for the ps-*ortho*-connectivity. On the other hand, ps-*geminal* and ps-*meta* connections are now symmetry-allowed and enhance conductivity due to CQI due to the different parities in HOMO and LUMO.

Figure 18: Comparison of electron transport properties in dependence of substitution pattern of benzene and [2.2]paracyclophane-based structures. (a) π -Based MOs of benzene¹¹² with the numbering of carbon atoms in grey; (b) frontier orbitals of two stacked benzene rings¹¹⁴ (similar to the structure of PCP) with the numbering of carbon atoms in grey. In this sketch, the Fermi energy which is placed between HOMO and LUMO, is indicated as a horizontal red dashed line. (c) and (d) symmetry-allowed and symmetry-forbidden connectivity pattern for electron transport (shown in blue and red, respectively) and consequential CQI and DQI.

Such an exciting trend of the QI for three-dimensional structures became the focus of our interest. Therefore, we decided to prove the theoretical predictions experimentally and prepared a series of molecules with different connectivity patterns on PCP-core and the anchoring groups. All investigations of ps-*para*-, ps-*meta*, and ps-*ortho*-PCP derivatives are summarized and will be discussed in the remaining part of the chapter.

2.2 Meta vs. Para: "Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions."

This subchapter provides the results of our investigation of conductivity and mechanosensitivity properties of a combination of different substitution pattern in both PCP core and anchoring groups in molecular wires in the form of a publication entitled *"Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions."* published in *Journal of the American Chemical Society.*

Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions

Ksenia Reznikova,[#] Chunwei Hsu,[#] Werner M. Schosser,[#] Almudena Gallego, Katawoura Beltako, Fabian Pauly,* Herre S. J. van der Zant,* and Marcel Mayor*

Cite This: J. Am. Chem. Soc. 2021, 143, 13944–13951 Read Online			
ACCESS Ind Metrics & More Ind Article	Recommendations	3) Supporting Information	
ABSTRACT: Quantum interference (QI) of electron waves passing through a single-molecule junction provides a powerful means to influence its electrical properties. Here, we investigate the correlation between substitution pattern, conductance, and mechanosensitivity in [2.2]paracyclophane (PCP)-based molecular wires in a mechanically controlled break junction experiment. The effect of the <i>meta</i> versus <i>para</i> connectivity in both the central PCP core and the phenyl ring connecting the terminal anchoring group is studied. We find that the <i>meta</i> -phenyl-anchored PCP yields such low conductance levels that molecular features cannot be resolved; in the case of <i>para</i> -phenyl-coupled anchoring, however, large variations in conductance values for modulations of the electrode separation	IN para Constructive Quantum Interference	IN meta Destructive Quantum Interference & Mechano- sensitivity	

occur for the pseudo-*para*-coupled PCP core, while this mechanosensitivity is absent for the pseudo-*meta*-PCP core. The experimental findings are interpreted in terms of QI effects between molecular frontier orbitals by theoretical calculations based on density functional theory and the Landauer formalism.

INTRODUCTION

In recent years, great advancements have been made in the field of molecular electronics toward single-molecule junction studies.¹ The visionary idea of Aviram and Ratner² to profit from single molecules as functional units in electronic devices led to the development of several proof-of-concept molecular devices, such as molecular wires,^{3,4} switches,^{5,6} rectifiers/ diodes,^{7,8} and thermo-electronic devices.^{9,10} The design of molecules incorporated in such electrode-molecule-electrode junctions is guided by our understanding of charge transport through the molecules. Indeed, even small structural modifications such as substituent effects,^{11,12} conformational flexibility,¹³ and changes in the anchoring groups and their positions^{14–18} can result in large conductance variations. Particularly strong variations are predicted for quantum interference (QI) effects originating from the interplay between different transport pathways. Destructive QI (DQI) or constructive QI (CQI) between the pathways can occur, reflected in a low or high conductance, respectively.¹⁹ QI effects thus become essential molecular design elements, on the one hand enriching the variety of functionalities emerging from the molecular structure but on the other hand making a full comprehension of the molecule's electronic transport behavior more challenging. A detailed understanding of these QI effects and of their origin in the molecule's structure is thus crucial to realize their full potential in future electronic components and devices.

Relationships between substitution pattern and singlemolecule conductance were already theoretically predicted and experimentally confirmed in a variety of examples, ranging from simple phenyl rings²⁰ connected directly to the electrodes to more sophisticated oligo(phenylene vinylene) (OPV)²¹ and oligo(phenylene ethynylene) (OPE)-based molecular wires.¹⁵ Unanimously, these studies report a decrease in electronic transparency upon shifting the anchoring groups from the *para* to the *meta* position. This observation was rationalized by Yoshizawa and co-workers,^{22–24} who considered frontier orbital theory for simple organic molecules. Their set of rules predicts for benzene the *para* connection to be the symmetry-allowed one for charge transport, while charge transport involving the *meta* connection is symmetryforbidden, resulting in high and low conductance, respectively.

Because the effects of substitution patterns in planar π systems are well described and understood, our focus moved to three-dimensional structures like [2.2]paracyclophane (PCP), with two benzene systems facing each other interlinked by a pair of C₂H₄ bridges.²⁵ Initially, we considered the structure as

Received: July 5, 2021 Published: August 23, 2021

© 2021 The Authors. Published by American Chemical Society 13944

Journal of the American Chemical Society

pubs.acs.org/JACS

a model to investigate the through-space coupling of the stacked π -systems^{26,27} but realized quickly that their behavior is much richer. Already the first model compound²⁸ (ps-*parapara*-OPE PCP in Figure 1) displayed a sharp destructive QI

Figure 1. Schematic representation of target structures 1-4 together with the already reported model compound. The four molecules include either *para* or *meta* connection patterns in both the central PCP subunit and the peripheral phenyl subunits labeled in red and blue, respectively. For simplicity, the following text refers to the structures by their prefixes, with ps as an abbreviation for pseudo, followed by the prefix referring to the substitution pattern of the central PCP, and finally the prefix referring to the substitution pattern of the thiol anchor group in the phenyl subunits.

feature close to the Fermi level, but the phenomenon also depended substantially on the mechanical stress exposed to the molecule. It thus seemed that the rigid but squeezable PCP subunit provided mechanosensitivity to the molecular junction. Interestingly, Yoshizawa and co-workers²⁹ already provided their orbital view of PCP subunits and predicted that the charge transport through the pseudo-*para*-substituted PCP should be suppressed due to DQI, while CQI would prevail for pseudo-*meta*-substituted PCP. It thus seems that the rule-ofthumb (*para* \rightarrow good transport due to CQI; *meta* \rightarrow bad transport due to DQI) is inverted for the PCP subunit.

Excited by this hypothesis, we explored the effects of the substitution pattern in more detail and designed the four PCP model compounds 1-4 (see Figure 1) consisting of comparable subunits but with various substitution patterns. The oligo(phenylene)-type PCP structures combine the compactness favoring electronic transparency on a detectable level with straightforward synthetic accessibility. Terminal acetyl masked thiol anchor groups enable their immobilization in a mechanically controlled break junction (MCBJ) by covalent S-Au bonds, guaranteeing both electronic coupling and mechanical stability. The latter is of particular importance to enable subtle mechanical manipulation of the integrated single molecule. The investigation of their transport properties and the influence of mechanical manipulations are studied with MCBJ experiments. The findings are rationalized by QI effects emerging from the interplay of frontier molecular orbitals, discussed with a theoretical model based on density functional theory (DFT). The electronic transport is described in terms of the Landauer formalism,³⁰ expressed through nonequilibrium Green's function (NEGF) methods.

RESULTS AND DISCUSSION

The PCP-based model compounds were assembled from the corresponding *para/meta* building blocks by Suzuki–Miyaura cross-coupling reactions. The literature known pseudo (ps)-*para-* or ps-*meta-*dibromo[2.2]paracyclophane³¹ and either 4- or 3-(*tert-*butylthio)phenyl boronic acid provided the PCP derivatives with four different combinations of substitution patterns. The adaption of a protocol from Jevric et al.³² enabled the subsequent transprotection and provided the target structures **1a**–**4a** in reasonable isolated yields ranging from 63 to 85%. The identity of the new PCP derivatives was corroborated by ¹H NMR, ¹³C{¹H} NMR spectroscopy, and high-resolution mass spectrometry (HR-MS). A detailed description of the synthetic protocols and the analytical data of all new compounds are provided in the Supporting Information (section 1).

The single-molecule electronic transport properties of PCPs 1-4 were investigated by integrating them into an electronic circuit using an MCBJ setup operated at ambient conditions. Two types of measurements were performed: fast-breaking and modulation experiments (see below). Details of the technique providing a pair of mechanically adjustable electrodes with a distance resolution of atomic dimensions have been reported

Figure 2. Two-dimensional conductance vs electrode displacement density histograms. The first (from the left) and second histograms are built up from 6 834 and 9 638 traces at 100 mV with ps-para-para- and ps-meta-para-PCP molecules, respectively. The third and fourth 2D histograms correspond to 3 780 and 10 000 traces at a bias voltage at 250 mV with ps-para-meta- and ps-meta-meta-PCP molecules, respectively.

13945

Figure 3. (a-c) Conductance traces of modulation experiments with ps-para-para-PCP (1), displaying (a) in-phase, (b) double frequency, and (c) anti-phase modulations. (d) Conductance traces of the modulation experiments with ps-meta-para-PCP (2). The red line in the distance-modulation traces represents the voltage applied to the piezoelectric stack, whereas blue represents the measured conductance. The total modulation time of the experiments is 15 s; for better visibility, only 5 s are displayed. (e) Calculated conductance of the ps-para-para-PCP molecular junction during the gap opening. The conductance displacement data is extracted from Figure 5b by evaluating the transmission function at the Fermi energy. The sketches rationalize the variety of conductance vs electrode displacement modulation behaviors observed for ps-para-para-PCP in dependence of the position of the DQI dip with respect to the trapping state of the molecule in the individual junction; see panels a-c and e. In particular, light background colors (yellow, red, and blue) relate the different situations of junctions, including molecules in prestretched, relaxed, or precompressed states, respectively, to the behavior in modulation experiments. (f) Same plot as in panel e but for ps-meta-para-PCP, where mechanosensitivity is basically absent. The green background color connects the conductance that is rather insensitive to electrode displacements to the observations made in the modulation measurements in panel d.

previously^{33,34} and are thus discussed in the Supporting Information (section 2.1).

In the fast-breaking experiments, several thousand conductance traces for each investigated molecule were collected and plotted as two-dimensional (2D) histograms displayed in Figure 2. For the case of ps-*para-para-* and ps-*meta-para-*PCPs with a constant bias voltage of 100 mV, clear conductance plateaus with a length of ~12.5 Å were observed. Through a reference-free clustering method³⁵ on the unfiltered data, the pure gold-to-gold tunneling traces and the molecular traces were separated. The molecular conductances of ps-*para-para*and ps-*meta-para-*PCPs were obtained through a log-normal fit distribution yielding values of $1.3 \times 10^{-5} G_0$ and $2.2 \times 10^{-5} G_0$, respectively, where $G_0 = 2e^2/h$ is the quantum of conductance, as shown in the corresponding one-dimensional (1D) conductance histograms (see Supporting Information (section 2.2)).

For the molecules with the *meta*-phenyl anchoring (ps-*para-meta*-PCP and ps-*meta*-PCP) the bias voltage in the transport experiment was increased to 250 mV in order to bring molecular levels closer to resonance, as the conductance of these PCPs was below the detection limit for a bias of 100 mV. However, even at this increased bias voltage, no clear conductance plateaus were detected, even when using the earlier-mentioned clustering method. Whether the lack of clear plateaus is due to molecular conductance below the detection threshold of the experimental setup of $10^{-6} G_0$ or the molecules' inability to form stable molecular junctions cannot be distinguished. The very short-breaking traces visible in Figure 2 at higher conductance values for both ps-*para-meta*-and ps-*meta-meta*-PCP are most likely due to direct electron

injection into the molecules' *π*-systems without controlled sulfur-to-sulfur immobilization.

Of particular interest are the distance-dependent singlemolecule junction charge-transport studies of ps-*para-para*and ps-*meta-para*-PCPs, as substantial differences in the transport behavior under mechanical stress are expected between the central ps-*para*- and ps-*meta*-PCP subunits. While the mechanosensitivity of the ps-*para*-PCP subunit was already evidenced in modulation experiments for the ps*para-para*-OPE PCP (Figure 1)²⁸ and rationalized as being due to a distance-dependent conductance dip close to the Fermi level originating from DQI, similar behavior is not expected for the ps-*meta*-PCP subunit, as CQI has been predicted.²⁹

To study the presence of DQI in more detail, modulation experiments are useful. The modulation procedure consists of constricting the gold wire down to a conductance of 2 G_0 with the piezo control.²⁸ The junction will then break by itself due to its surface tension.³⁶ The electrodes are then separated by 7.5 Å, and a pulse of a triangular waveform with an amplitude of 20 V_{peak-to-peak} is applied to the piezoelectric element, which corresponds to a modulation amplitude of 5 Å between the electrodes. The conductance is continuously monitored, and the modulation is applied at a frequency of 5 Hz for 15 s. Hereafter, the junction is fused again, and a new modulation trace is recorded. The results of electrode-modulation experiments on PCPs 1 and 2 are summarized in Figure 3.

Similar to ps-*para-para*-OPE PCP,²⁸ a rich variety of distance-modulated conductance responses has been observed for ps-*para-para*-PCP (1). The periodic electrode displacement caused a substantial conductance modulation, which was either in-phase (Figure 3a), anti-phase (Figure 3c), or even two times the frequency (Figure 3b) of the voltage applied to the piezo

13946

Figure 4. Gauge factors obtained from (a) 1 442 ps-para-para-PCP traces and (b) 2 236 ps-meta-para-PCP traces in modulation experiments. The counts are collected from fast Fourier transform (FFT) spectra over 1 s intervals of the traces, which means that there are 15 counts, with different GFs for each recording, lasting 15 s.

Figure 5. (a) Illustration of PCP derivatives 1-4 immobilized in junctions between two gold electrodes. (b) Transmission maps of the four types of PCP single-molecule junctions. The horizontal red resonances in the maps arise from molecular frontier orbitals. For the ps-para-para-PCP molecule, an antiresonance is observed inside the HOMO-LUMO gap that shifts in energy as the displacement is varied. Similar tunable DQI effects are absent for all other molecules, in particular for ps-meta-para-PCP junctions and ps-meta-meta-PCP junctions with central ps-meta-PCP systems. The position of the Fermi energy is indicated as a horizontal dashed line.

stack. As sketched in Figure 3e, this observed mechanosensitivity is caused by the DQI dip in the conductance versus molecular length relation (insets in Figure 3e), with the variety of observed behaviors reflecting the exact position of the conductance dip in the particular molecular junction. We take the in-phase case as an example to explain the observed behavior. This corresponds to a starting position in which the molecule is prestretched, as depicted in Figure 3e (top, light yellow background). In this case, whenever the molecule is stretched by increasing the voltage applied to the piezoelectric element, the conductance goes up, and the conductance goes down when the piezo voltage decreases, i.e., the conduction follows the applied piezo-voltage modulation in-phase.

The striking similarity of the mechanosensitivity of ps-*para-para*-PCP (1) and ps-*para-para*-OPE PCP, both comprising a central *para*-PCP subunit, not only points at this structural motif as the origin of the phenomenon but also further corroborates its rationalization based on the presence of a DQI dip in proximity of the Fermi level. Equally interesting are the modulation experiments performed with the ps-*meta-para*-PCP (2). As displayed in parts d and f of Figure 3, single-molecule

junctions with this structure do not feature significant conductance changes during the modulation experiments. Remarkably, the absence of mechanosensitivity of the ps-*metapara*-PCP has not been reported experimentally before. Particularly, this behavior indicates the absence of a transmission dip as a function of electrode displacement (within the displacement window probed by the experiment), suggesting that DQI does not occur in the case of ps-*meta*-PCP cores. This is in agreement with previous predictions of π -stacked systems by the groups of Solomon^{26,27} and Yoshizawa.²⁹

To quantify the mechanosensitivity of the molecule under investigation, the gauge factor (GF) was determined as the ratio between logarithmic conductance variation and linear electrode displacement (see the Supporting Information (section 2.4) for more information). Figure 4 displays the GFs for (a) ps-para-para-PCP and (b) ps-meta-para-PCP. Indeed, the GFs of the measurements of both structures visualize their difference. While the absence of mechanosensitivity of ps-meta-para-PCP results in a sharp peak close to zero (Figure 4b), the GF values recorded for ps-para-para-PCP

13947

Figure 6. HOMO and LUMO molecular frontier orbitals of the ps-para-para-, ps-meta-para-, ps-para-meta-, and ps-meta-meta-PCPs. The anchoring sulfur atoms are marked *i* and *j*, respectively. Extended representations also including GPH-1 and GPL+1 for each molecule can be found in the Supporting Information (section 3.3).

(Figure 4a) display a broad distribution with a minimum at GF = 0, documenting its pronounced mechanosensitivity.

To rationalize the experimental observations described earlier, extensive DFT calculations were performed. First, the four model compounds ps-*para-para*-PCP (**1b**), ps-*meta-para*-PCP (**2b**), ps-*para-meta*-PCP (**3b**), and ps-*meta-meta*-PCP (**4b**) were optimized in the gas phase. The hydrogen atoms of the terminal thiol groups were removed, and the molecules were placed in model junctions, consisting of pairs of tetrahedral gold leads (Figure 5a). Optimizing the junction geometry, only the top three gold atoms in the first layer of each tip were allowed to relax, while the rest of the gold cluster remained fixed. Then, the systems were stretched in steps of 0.1 Å, and a geometry optimization was performed at every single step. A detailed description of the established approach³⁷ and explanations of the calculations are provided in the Supporting Information (section 3.1).

A closer look at the two-dimensional contour plots of transmission in dependence of energy and electrode displacement in Figure 5b reveals important information about the transmission behavior of the molecular junctions inside the electronic gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). In the case of the ps-para-para-PCP, a transmission valley (blue diagonal trace) with transmission values lower than 10^{-5} is observed between the molecular frontier orbitals (red horizontal traces). The transmission valley corresponds to the DQI conductance dip, as shown in Figure 3e. The energy position of the transmission minimum can be tuned by mechanical manipulation of the junction. It should be noted that the DQI crosses the complete HOMO-LUMO gap, making it a robust feature for experimental detection, because it does not depend on the precise position of the Fermi energy. A similar valley is not present for the ps-meta-para-PCP junction. Instead, the transmission stays rather constant in the range of $\sim 10^{-3} - 10^{-4}$ inside the molecule's HOMO-LUMO gap. Rather uniform transmission values are furthermore predicted in the molecules' electronic gap for both ps-parameta- and ps-meta-meta-PCP. Interestingly, for this pair of model compounds with terminal meta-benzene linkers, ~ 1 order of magnitude lower transmission values were calculated compared to the pair with terminal para-benzene linkers. This is also in line with the absence of measurable conductance plateaus for the meta-phenyl-connected PCPs in Figure 2.

The conductance that we compute within the DFT-NEGF formalism³⁷ at the Fermi energy is plotted in parts e and f of Figure 3 for ps-*para-para-* and ps-*meta-para-*PCP derivatives, respectively. Considering the example of the ps-*para-para-*PCP single-molecule junction, the conductance features a dip that is shifted toward negative displacements and is ~2 orders of magnitude lower than the base value. Molecular contacts constructed from ps-*meta-para-*PCP show instead a rather constant behavior in the studied displacement range without a DQI dip.

The behavior of another geometry that features a more complex stick—slip motion is discussed in the Supporting Information (section 3.2). In that case, remnants of transmission valleys are visible for the ps-*para-meta*-PCP molecular junction, further consolidating the hypothesis of the central ps-*para*-PCP subunit as the origin of the DQI phenomenon. Note, however, that we argue here on a qualitative level because we did not correct DFT quasiparticle energies and therefore expect uncertainties with respect to absolute conductance values, $1^{7,38-41}$ as a comparison of experimental and theoretical data in Figures 3 and 5 confirms.

While the calculated transmission plots perfectly support the hypothesis that mechanosensitivity can exclusively be observed for structures with a central ps-*para*-PCP subunit providing DQI, another qualitative argument is provided by considering orbital symmetry rules, as suggested by Yoshizawa and co-workers.^{29,42} The qualitative prediction of QI phenomena is based on the interplay of molecular frontier orbitals, especially the HOMO and LUMO, in transport models using Landauer–Büttiker scattering theory and Green's function methods (details are provided in the Supporting Information (section 3.3)). Thus, the gas-phase frontier orbitals of the model

13948

Journal of the American Chemical Society

compounds with terminal thiol groups were calculated and are displayed in Figure 6.

Assuming that the Fermi energy of the electrodes lies between the molecule's HOMO and LUMO energies due to charge neutrality, two orbital rules apply for the electronic transport properties.^{29,42} (1) The weights of the HOMO and LUMO wave functions on the anchoring atoms i and j (see Figure 6) need to be of decent size to yield a fair contribution to the transmission. (2) If the parities of the molecule's HOMO and LUMO on the anchoring atoms are different in sign, transport is symmetry-supported through CQI, which is typically reflected in a high transmission inside the HOMO-LUMO gap. If HOMO and LUMO parities are the same instead, the related molecular orbital resonances cancel each other out at a certain energy inside the HOMO-LUMO gap. As a consequence, transport is symmetry-inhibited, resulting in a DQI dip in the energy-dependent transmission function, typically leading to a reduced conductance of the singlemolecule junction. This argument assumes that HOMO and LUMO orbital wave functions are of similar character on the termini *i* and *j*.

The analysis of the molecules started by defining the terminal sulfur atoms as anchoring sites *i* and *j* (see Figure 6). Comparing orbital wave functions on the terminal sulfur atoms shows that gas-phase HOMO (GPH) and gas-phase LUMO (GPL) of both model compounds comprising a central *para*-PCP (ps-*para-para-* and ps-*para-meta*-PCP) are of similarly oriented π -character at the sulfur atoms and have the same parities; thus, these structures should show DQI. In contrast, both molecules with a ps-*meta*-PCP subunit have different parities in their GPH and GPL on the terminal sulfur atoms and thus exhibit CQI. The orbital symmetry rules thus rationalize the experimental observations and numerical computations reported earlier, which identify the central ps-*para*-PCP subunit as the origin of DQI.

Let us point out that ferrocene recently emerged as a related 3D system to the PCP, where the angle between two cyclopentadienyl decks can be tuned rather continuously around the central Fe core atom.⁴³ The torsion can be compared to *meta* or *para* connection to the PCP. The mechanical distortion that explains the experimental results here is mainly the displacement of two benzene rings as compared to a rotation.

CONCLUSION

We have studied the electronic transport properties of singlemolecule junctions based on π -stacked hydrocarbons. Our study confirms previous theoretical predictions for model compounds in terms of molecular orbital symmetry rules with regard to the suppression of electronic transport in PCP subunits when contacted in ps-para geometry as compared to ps-meta geometry. While the ps-meta subunit generally shows high conductance in comparison to the ps-para geometry (still relatively low compared to other conjugated molecular wires such as OPE3-dithiol⁴⁴) and little sensitivity to mechanical manipulation, the ps-para subunit offers an exceptional mechanoelectric sensitivity. Notably, our theoretical calculations predict that the DQI can be tuned through the complete electronic gap region, explaining the experimental robustness of the feature, as observations should be largely independent of the precise location of the Fermi energy. Similar to an optical Fabry-Pérot interferometer, the DQI feature can be used to detect minute displacement changes and hence serves as a

pubs.acs.org/JACS

Article

quantum sensor operating at ambient conditions, i.e., at room temperature.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c06966.

Synthesis and characterization of all molecules, and details concerning transport measurements and calculations (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Fabian Pauly Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; ⁽²⁾ orcid.org/0000-0001-8017-2379; Email: fabian.pauly@uni-a.de
- Herre S. J. van der Zant Kavli Institute of Nanoscience, Delft University of Technology, 2628 GJ Delft, The Netherlands; O orcid.org/0000-0002-5385-0282; Email: h.s.j.vanderzant@tudelft.nl
- Marcel Mayor Department of Chemistry, University of Basel, 4056 Basel, Switzerland; Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany; Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. China; O orcid.org/0000-0002-8094-7813; Email: marcel.mayor@unibas.ch

Authors

- Ksenia Reznikova Department of Chemistry, University of Basel, 4056 Basel, Switzerland
- Chunwei Hsu Kavli Institute of Nanoscience, Delft University of Technology, 2628 GJ Delft, The Netherlands
- Werner M. Schosser Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Almudena Gallego Department of Chemistry, University of Basel, 4056 Basel, Switzerland
- Katawoura Beltako Institute of Physics, University of Augsburg, 86159 Augsburg, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c06966

Author Contributions

[#]K.R., C.H., and W.M.S. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a Horizon 2020 FET open project (QuIET; no. 767187). H.S.J.v.d.Z. and C.H. acknowledge support from The Netherlands Organisation for Scientific Research (NWO-Vrij program). M.M. acknowledges support from the Swiss National Science Foundation (SNF Grant no. 200020-178808) and the 111 project (90002-18011002).

ABBREVIATIONS

QI, quantum interference; DQI, destructive quantum interference; CQI, constructive quantum interference; OPE, oligo-(phenylene ethynylene); PCP, [2.2]paracyclophane; MCBJ, mechanically controlled break junction; DFT, density functional theory; NEGF, nonequilibrium Green's function; ps, pseudo; GF, gauge factor; FFT, fast Fourier transform;

20616.

Journal of the American Chemical Society

HOMO, highest occupied molecular orbital; LUMO, lowest unoccupied molecular orbital; GPH, gas-phase HOMO; GPL, gas-phase LUMO.

REFERENCES

(1) van der Molen, S. J.; Naaman, R.; Scheer, E.; Neaton, J. B.; Nitzan, A.; Natelson, D.; Tao, N. J.; van der Zant, H. S. J.; Mayor, M.; Ruben, M.; Reed, M.; Calame, M. Visions for a Molecular Future. Nat. Nanotechnol. 2013, 8 (6), 385-389.

(2) Aviram, A.; Ratner, M. A. Molecular Rectifiers. Chem. Phys. Lett. 1974, 29 (2), 277-283.

(3) Luo, L.; Choi, S. H.; Frisbie, C. D. Probing Hopping Conduction in Conjugated Molecular Wires Connected to Metal Electrodes. Chem. Mater. 2011, 23 (3), 631-645.

(4) Huber, R.; González, M. T.; Wu, S.; Langer, M.; Grunder, S.; Horhoiu, V.; Mayor, M.; Bryce, M. R.; Wang, C.; Jitchati, R.; Schönenberger, C.; Calame, M. Electrical Conductance of Conjugated Oligomers at the Single Molecule Level. J. Am. Chem. Soc. 2008, 130 (3), 1080 - 1084.

(5) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. A Digital Fluorescent Molecular Photoswitch. Nature 2002, 420 (6917), 759-760.

(6) Liao, J.; Agustsson, J. S.; Wu, S.; Schönenberger, C.; Calame, M.; Leroux, Y.; Mayor, M.; Jeannin, O.; Ran, Y.-F.; Liu, S.-X.; Decurtins, S. Cyclic Conductance Switching in Networks of Redox-Active Molecular Junctions. Nano Lett. 2010, 10 (3), 759-764.

(7) Elbing, M.; Ochs, R.; Koentopp, M.; Fischer, M.; von Hanisch, C.; Weigend, F.; Evers, F.; Weber, H. B.; Mayor, M. A Single-Molecule Diode. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (25), 8815-882.0.

(8) Lörtscher, E.; Gotsmann, B.; Lee, Y.; Yu, L.; Rettner, C.; Riel, H. Transport Properties of a Single-Molecule Diode. ACS Nano 2012, 6 (6), 4931-4939.

(9) Naher, M.; Milan, D. C.; Al-Owaedí, O. A.; Planje, I. J.; Bock, S.; Hurtado-Gallego, J.; Bastante, P.; Abd Dawood, Z. M.; Rincón-García, L.; Rubio-Bollinger, G.; Higgins, S. J.; Agraït, N.; Lambert, C. J.; Nichols, R. J.; Low, P. J. Molecular Structure-(Thermo)Electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models. J. Am. Chem. Soc. 2021, 143 (10), 3817-3829.

(10) Stadler, R.; Markussen, T. Controlling the Transmission Line Shape of Molecular T-Stubs and Potential Thermoelectric Applications. J. Chem. Phys. 2011, 135 (15), 154109.

(11) Markussen, T.; Stadler, R.; Thygesen, K. S. The Relation between Structure and Quantum Interference in Single Molecule Junctions. Nano Lett. 2010, 10 (10), 4260-4265.

(12) Jiang, F.; Trupp, D. I.; Algethami, N.; Zheng, H.; He, W.; Alqorashi, A.; Zhu, C.; Tang, C.; Li, R.; Liu, J.; Sadeghi, H.; Shi, J.; Davidson, R.; Korb, M.; Sobolev, A. N.; Naher, M.; Sangtarash, S.; Low, P. J.; Hong, W.; Lambert, C. J. Turning the Tap: Conformational Control of Quantum Interference to Modulate Single-Molecule Conductance. Angew. Chem., Int. Ed. 2019, 58 (52), 18987-18993.

(13) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of Single-Molecule Junction Conductance on Molecular Conformation. Nature 2006, 442 (7105), 904–907.

(14) Aradhya, S. V.; Meisner, J. S.; Krikorian, M.; Ahn, S.; Parameswaran, R.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Dissecting Contact Mechanics from Quantum Interference in Single-Molecule Junctions of Stilbene Derivatives. Nano Lett. 2012, 12 (3), 1643 - 1647.

(15) Mayor, M.; Weber, H. B.; Reichert, J.; Elbing, M.; von Hänisch, C.; Beckmann, D.; Fischer, M. Electric Current through a Molecular Rod-Relevance of the Position of the Anchor Groups. Angew. Chem., Int. Ed. 2003, 42 (47), 5834-5838.

(16) Koga, J.; Tsuji, Y.; Yoshizawa, K. Orbital Control of Single-Molecule Conductance Perturbed by π -Accepting Anchor Groups: pubs.acs.org/JACS

Cyanide and Isocyanide. J. Phys. Chem. C 2012, 116 (38), 20607-

(17) Arroyo, C. R.; Tarkuc, S.; Frisenda, R.; Seldenthuís, J. S.; Woerde, C. H. M.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J. Signatures of Quantum Interference Effects on Charge Transport Through a Single Benzene Ring. Angew. Chem., Int. Ed. 2013, 52 (11), 3152-3155.

(18) Kiguchi, M.; Kaneko, S. Single Molecule Bridging between Metal Electrodes. Phys. Chem. Chem. Phys. 2013, 15 (7), 2253-2267.

(19) Lambert, C. J. Basic Concepts of Quantum Interference and Electron Transport in Single-Molecule Electronics. Chem. Soc. Rev. 2015, 44 (4), 875-888.

(20) Kiguchi, M.; Nakamura, H.; Takahashi, Y.; Takahashi, T.; Ohto, T. Effect of Anchoring Group Position on Formation and Conductance of a Single Disubstituted Benzene Molecule Bridging Au Electrodes: Change of Conductive Molecular Orbital and Electron Pathway. J. Phys. Chem. C 2010, 114 (50), 22254-22261.

(21) Arroyo, C. R.; Frisenda, R.; Moth-Poulsen, K.; Seldenthuis, J. S.; Bjørnholm, T.; van der Zant, H. S. Quantum Interference Effects at Room Temperature in OPV-Based Single-Molecule Junctions. Nanoscale Res. Lett. 2013, 8, 1.

(22) Li, X.; Staykov, A.; Yoshizawa, K. Orbital Views of the Electron Transport through Polycyclic Aromatic Hydrocarbons with Different Molecular Sizes and Edge Type Structures. J. Phys. Chem. C 2010, 114 (21), 9997-10003.

(23) Yoshizawa, K.; Tada, T.; Staykov, A. Orbital Views of the Electron Transport in Molecular Devices. J. Am. Chem. Soc. 2008, 130 (29), 9406-9413.

(24) Yoshizawa, K. An Orbital Rule for Electron Transport in Molecules. Acc. Chem. Res. 2012, 45 (9), 1612-1621.

(25) Brown, C. J.; Farthing, A. C. Preparation and Structure of Di- p -Xylylene. Nature 1949, 164 (4178), 915-916.

(26) Solomon, G. C.; Vura-Weis, J.; Herrmann, C.; Wasielewski, M. R.; Ratner, M. A. Understanding Coherent Transport through π -Stacked Systems upon Spatial Dislocation. J. Phys. Chem. B 2010, 114 (45), 14735-14744.

(27) Solomon, G. C.; Herrmann, C.; Vura-Weis, J.; Wasielewski, M. R.; Ratner, M. A. The Chameleonic Nature of Electron Transport through *n*-Stacked Systems. J. Am. Chem. Soc. 2010, 132 (23), 7887-7889.

(28) Stefani, D.; Weiland, K. J.; Skripnik, M.; Hsu, C.; Perrín, M. L.; Mayor, M.; Pauly, F.; van der Zant, H. S. J. Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. Nano Lett. 2018, 18 (9), 5981-5988.

(29) Li, X.; Staykov, A.; Yoshizawa, K. Orbital Views on Electron-Transport Properties of Cyclophanes: Insight into Intermolecular Transport. Bull. Chem. Soc. Jpn. 2012, 85 (2), 181-188.

(30) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33 (12), 8822-8824.

(31) Vorontsova, N. V.; Rozenberg, V. I.; Sergeeva, E. V.; Vorontsov, E. V.; Starikova, Z. A.; Lyssenko, K. A.; Hopf, H. Symmetrically Tetrasubstituted [2.2]Paracyclophanes: Their Systematization and Regioselective Synthesis of Several Types of Bis-Bifunctional Derivatives by Double Electrophilic Substitution. Chem. - Eur. J. 2008, 14 (15), 4600-4617.

(32) Jevric, M.; Petersen, A. U.; Mansø, M.; Madsen, A. Ø.; Nielsen, M. B. Bismuth(III)-Promoted Acetylation of Thioethers into Thioacetates. Eur. J. Org. Chem. 2015, 2015, 4675-4688.

(33) Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. Lithographic Mechanical Break Junctions for Single-Molecule Measurements in Vacuum: Possibilities and Limitations. New J. Phys. 2008, 10 (6), 065008.

(34) Martin, C. A.; Smit, R. H. M.; van Egmond, R.; van der Zant, H. S. J.; van Ruitenbeek, J. M. A Versatile Low-Temperature Setup for the Electrical Characterization of Single-Molecule Junctions. Rev. Sci. Instrum. 2011, 82 (5), 053907.

(35) Cabosart, D.; El Abbassi, M.; Stefani, D.; Frisenda, R.; Calame, M.; van der Zant, H. S. J.; Perrin, M. L. A Reference-Free Clustering

Journal of the American Chemical Society	pubs.acs.org/JACS	Article
Mathad for the Analysis of Malagular Break Jungtion Massurements		

Appl. Phys. Lett. 2019, 114 (14), 143102.

(36) O'Neill, K.; Osorio, E. A.; van der Zant, H. S. J. Self-Breaking in Planar Few-Atom Au Constrictions for Nanometer-Spaced Electrodes. *Appl. Phys. Lett.* **2007**, *90* (13), 133109.

(37) Pauly, F.; Viljas, J. K.; Huniar, U.; Häfner, M.; Wohlthat, S.; Bürkle, M.; Cuevas, J. C.; Schön, G. Cluster-Based Density-Functional Approach to Quantum Transport through Molecular and Atomic Contacts. *New J. Phys.* **2008**, *10* (12), 125019.

(38) Quek, S. Y.; Venkataraman, L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B. Amine–Gold Linked Single-Molecule Circuits: Experiment and Theory. *Nano Lett.* **2007**, 7 (11), 3477– 3482.

(39) Zotti, L. A.; Bürkle, M.; Pauly, F.; Lee, W.; Kim, K.; Jeong, W.; Asai, Y.; Reddy, P.; Cuevas, J. C. Heat Dissipation and Its Relation to Thermopower in Single-Molecule Junctions. *New J. Phys.* **2014**, *16* (1), 015004.

(40) Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; Al-Owaedi, O. A.; Sadeghi, H.; Kaliginedi, V.; Hong, W.; Gulcur, M.; Wandlowski, T.; Bryce, M. R.; Lambert, C. J. A Quantum Circuit Rule for Interference Effects in Single-Molecule Electrical Junctions. *Nat. Commun.* 2015, 6 (1), 6389.

(41) Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C. Comprehensive Suppression of Single-Molecule Conductance Using Destructive σ -Interference. *Nature* 2018, 558 (7710), 415–419.

(42) Tsuji, Y.; Yoshizawa, K. Frontier Orbital Perspective for Quantum Interference in Alternant and Nonalternant Hydrocarbons. J. Phys. Chem. C 2017, 121 (17), 9621–9626.

(43) Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Inkpen, M. S.; Lovat, G.; Fung, E.-D.; Roy, X.; Venkataraman, L.; Evers, F. Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. *Nano Lett.* **2020**, *20* (9), 6381–6386.

(44) Frisenda, R.; Perrin, M. L.; Valkenier, H.; Hummelen, J. C.; van der Zant, H. S. J. Statistical Analysis of Single-Molecule Breaking Traces. *Phys. Status Solidi B* **2013**, 250 (11), 2431–2436.

> https://doi.org/10.1021/jacs.1c06966 J. Am. Chem. Soc. 2021, 143, 13944-13951

40

2.3 Pseudo-*Ortho*-[2.2]Paracyclophane-Based Molecular Wires

This subchapter covers the synthesis of envisioned molecular wires with a substitution to the [2.2]paracyclophane in the pseudo-*ortho* position. Experimental and theoretical investigations of the pseudo-*ortho* PCP-based molecular wires are currently ongoing in collaboration with *Prof. Dr. Herre S. J. van der Zant's* group and *Prof. Dr. Fabian Pauly's* group using the same techniques as described in Subchapter 2.2.

2.3.1 Project Description and Molecular Design

DQI is an intriguing phenomena leading to conductance suppression and a sharp dip in the transmission function. The closer the DQI dip to the Fermi energy of electrodes, the distinctive the resulting suppression would be.^{13,96} This feature makes the cyclophane-based scaffold with DQI appealing for the investigation of mechanosensitivity, which was demonstrated recently in the example of mechanical stimuli of a porphyrin-cyclophane-based molecular wire.^{115,116}

Figure 19: Overview of quantum interference effects and mechanosensitivity in PCP structures with different substitution pattern.

In addition, similar observations were also already confirmed for the PCP-based molecular wires (see Subchapter 2.2 and Figure 19), where only the molecular wire with a pseudo-*para*-PCP core and DQI demonstrated conductance changes upon the application of mechanical stress in the MCBJ.^{72,117} The observed strong conductance oscillation during the modulation experiments can be attributed to the shift in the overlap of the frontier orbital between the phenyl rings in the PCP scaffold. The orbital symmetry in a relaxed state with DQI is different from the one during stretching and compression, where DQI is lifted, providing a more efficient charge transport. According to the predictions of *Yoshizawa* and co-workers based on the frontier orbital analysis, pseudo-*ortho* substituted PCP would also demonstrate weak charge

transport due to the DQI (*see* 2.1.2.2).¹¹⁴ Therefore, these predictions make molecular wires comprising the pseudo-*ortho* PCP core promising candidates for a more pronounced understanding of the relationship between the DQI and mechanosensitivity.

Excited by this hypothesis, we embedded the pseudo-*ortho* PCP core into an OPE and an oligo(phenylene)-type backbone, providing two molecular wires that differ in length (see Figure 20). Both molecules comprise a thiol anchoring group which is masked by terminal acetyl to enable their immobilization in MCBJ. In junction, molecular wires will form a sulfur-gold covalent bond providing electronic communication and mechanical stability to allow mechanical manipulations.

Figure 20: Molecular design of pseudo-*ortho* OPE PCP (**47**) and pseudo-*ortho* PCP (**48**) molecular wires. The central pseudo-*ortho* PCP core is coupled to either masked ethylphenylthiol (pseudo-*ortho* OPE PCP (**47**)) or directly to masked phenylthiol (pseudo-*ortho* PCP (**48**)).

2.3.2 Results and Discussion

2.3.2.1 Synthesis of Pseudo-Ortho OPE PCP

To obtain the desired molecular wire **47**, diethynyl ps-*ortho* PCP (**50**) was prepared according to the literature-known procedure (*see* Scheme 8).^{90,118} First, the aldehydes were introduced via a formylation reaction. Two-fold lithiation of dibromo ps-*ortho* PCP (**42**)^{88–90} was carried out with *n*-BuLi in diethyl ether. Then *N*,*N*-dimethylformamide (DMF) was added, followed by quenching with aqueous hydrochloric acid (1 M) to provide ps-*ortho* dialdehyde (**49**) in 75% yield. Dialdehyde **49** was transformed to diethynyl by treating with *Bestmann-Ohira* reagent^{119,120} providing diethynyl ps-*ortho* PCP (**50**) in 64% yield.

Scheme 8: Synthesis of diethynyl ps-ortho PCP (50).

The envisaged coupling partner for а Sonogashira-Hagihara reaction was acetylthioiodobenzene (51),^{121,122} which comprised a masked sulfur moiety at the para position to the iodine and was prepared by L. Jucker. The cross-coupling reaction between free diacetylene PCP 50 and iodo compound 51 was achieved using tetrakis(triphenylphosphine)palladium and copper iodide as a catalyst in a mixture of THF and diisopropylamine (4:1). The target ps-ortho OPE PCP (47) was obtained in 53% yield after the purification by column chromatography and GPC (see Scheme 9). The ps-ortho OPE PCP (47) identity was corroborated by ¹H NMR, ¹³C{¹H} NMR spectroscopy and high-resolution mass spectrometry, where the corresponding data is provided in the Supporting Information for Subchapter 2.3.

Scheme 9: Synthesis of ps-ortho OPE PCP (47).

2.3.2.2 Synthesis of Pseudo-Ortho PCP

The synthesis of ps-*ortho* PCP **48** started with a preparation of literature known boronic acid derivative **55**. The free thiol **52** was protected by *tert*-butyl using 2-chloro-2-methylpropane (**53**) in a reaction catalyzed by aluminum trichloride to give 1-bromo-4-(*tert*-butylsulfanyl)benzene (**54**) in 95% yield.¹²³ The desired borylation of **54** was achieved via lithium-halogen exchange with *n*-BuLi, followed by the addition of trimethyl borate and aqueous hydrochloric acid (1 M), providing boronic acid **55** in 79% yield.^{124,125}

Scheme 10: Synthesis of boronic acid derivative 55.

Then, a molecular wire was assembled from dibromo ps-*ortho* PCP (**42**) and previously described boronic acid **55** by *Suzuki-Miyaura* cross-coupling reaction. Building blocks were coupled using Pd-PEPPSI-*i*Pr[™] as a palladium source and potassium carbonate as a base in toluene/methanol to provide *tert*-butyl protected ps-*ortho* PCP **56** in 79% yield. The adaption of a strategy of *Jevric et al.*¹²⁶ enabled transprotection of **56** with bismuth triflate and acetyl chloride in toluene/methanol mixture, providing the desired ps-*ortho* PCP **48** in 63% yield after the purification by column chromatography and cyclic GPC. The identity of new compounds **56** and **48** were proven by ¹H NMR, ¹³C{¹H} NMR spectroscopy and high-resolution mass spectrometry (*see* Supporting Information for 2.3).

Scheme 11: Synthesis of ps-ortho PCP (48).

2.4 Summary

In this chapter, we demonstrated the potential of the π -stacked hydrocarbons scaffold as an appealing building block that enables us to gain more insights into the field of molecular electronics. All of the described results were only possible due to the extensive collaboration with groups of experimental and theoretical physicists.

First, four PCP-based molecular wires with a combination of different substitution patterns on both the PCP-core and the anchoring group were successfully synthesized and fully characterized. Unfortunately, the molecules with the *meta* substitution in the anchoring group (ps-*para-meta* and ps-*meta-meta* PCP) demonstrated a lack of clear plateaus, presumably due to the conductance values below the detection threshold or the formation of unstable molecular junctions. On the contrary, the molecules with *para*-phenyl, such as ps-*para-para* and ps-*meta-para* PCP, were successfully integrated and measured into an electronic circuit using the MCBJ setup at ambient conditions. The ps-*para-para* PCP shows lower conductance (1.3 X 10^{-5} G₀) in comparison to the ps-*meta-para* PCP analogue (2.2 X 10^{-5} G₀) and a pronounced response to mechanical manipulations. These observations were rationalized by theoretical calculations indicating the destructive and constructive quantum interference effects for ps-*para* and ps-*meta* PCP core, respectively. Furthermore, this trend is also in accordance with the predictions of *Yoshizawa* and co-workers.¹¹⁴

In the second part of this chapter, we discussed the implementation of the ps-*ortho* PCP subunit in the molecular wires to investigate our hypothesis of the relationship between the DQI and mechanosensitivity. Therefore, ps-*ortho* OPE PCP (**47**) and ps-*ortho* PCP (**48**) were successfully synthesized, fully characterized, and are currently under investigation.

2.5 Outlook

The knowledge gained through the investigation of QI effects and mechanosensitivity can be expanded, for instance, with the following model compounds (see Figure 21).

Figure 21: Model compounds for further investigations of QI effects and mechanosensitivity with the MCBJ setup. (a) Connecting two PCP-core linear to each other to increase the DQI. (b) and (c) PCN-based molecular wires, as an analogue to the PCP, would also demonstrate DQI features for the ps-*para* substitution (**59** & **61**).

The first idea for the model compound arises from the question of whether the mechanosensitivity would be enhanced or suppressed in the presence of two PCP-core exhibiting DQI features. The easiest way to prove this assumption is a connection of two parallel arranged ps-*para* PCP cores directly (**57**) or via acetylene (**58**) (see Figure 21a). The enlargement of the π -stacked hydrocarbons scaffold would allow the improvement of electron transport. The switch from benzene to naphthalenes would provide a highly delocalized *anti*-[2.2]paracyclonaphthanes (PCN) structure which can be substituted in ps-*para* (**59** & **61**) or pseudo-*meta* (**60** & **62**) positions exhibiting DQI and CQI features, respectively (see Figure 21b and c).

To complete the investigation of the disubstitution pattern on the PCP core, the last possible option, namely ps-*geminal* PCP, can be implemented in a molecular wire. According to our predictions, the target molecular wire **63** should demonstrate similar features as the ps-*meta* PCP analogue. The desired structure **63** can be prepared using a specific stereoelectronic effect of the ps-*geminal* PCP structure, which was already discussed in detail in *General Introduction 2.1.1.4*.

One of the possible synthetic strategies is depicted in Figure 22, where the *Sonogashira-Hagihara* cross-coupling to the anchoring groups is a last-stage modification. Free acetylene **64** for the cross-coupling reaction can be converted from dialdehyde **65**, by treating the latter with *Bestmann-Ohira* reagent similar to the synthesis of ps-*ortho* analogue **50**.⁹⁰ The required

dialdehyde **65** should be accessible by profiting from the trans-annular directive effect of **37** enabling the formulation in the ps-*geminal* position to provide **67**.⁵⁷ Afterward, the obtained ester aldehyde **67** can be reduced to diol **66** and oxidized to the desired dialdehyde **65**.¹²⁷

Figure 22: Retrosynthetic analysis for the ps-geminal OPE PCP (63) molecular wire.

Chapter 3

3 Synthesis Towards a [2.2]Paracyclophane-Based Molecular Loop

This chapter provides the results of the synthetic approaches towards a macrocyclic structure combining two conductivity pathways: through-space and through-bond. The molecular design was inspired by the work of *Dr. K. J. Weiland*^{65,66,128} and our results obtained from the investigations of the influence of the connectivity pattern on the conductance properties (*see* Chapter 2).^{72,117} The envisioned molecule comprises a PCP-based backbone linked in the pseudo-*meta* position to a septithiophene moiety, providing a macrocyclic structure. The key step in the synthetic strategy is macrocyclization by acetylene coupling to obtain the macrocycle comprising diacetylene, which enables the transformation to the corresponding thiophene providing the septithiophene moiety for the loop. Therefore, the following pages will introduce the general concept and several possibilities for the macrocyclization procedure of acetylene-containing precursors.

3.1 Introduction

3.1.1 General Macrocyclization Strategies

In recent years, chemists made a lot of advancements in the synthesis of acetylene-based macrocycles.^{34,129–134} These macrocycles became the focus of interest due to the possibility of extended conjugation and preparation of carbon-rich materials.³⁴ Furthermore, acetylene building blocks are easily accessible and allow a wide range of metal-catalyzed cross-coupling reactions to construct and close cyclic structures.^{37,129} The assembly of macrocycles can be generally divided into four major strategies, ¹³⁵ illustrated in Figure 23.

Figure 23: Schematic representation of four major kinetically controlled macrocyclization strategies: (a) cyclooligomerization; (b) intramolecular; (c) intermolecular and (d) templated cyclisation. The red dashed lines represent the retrosynthetic disconnection.

The first strategy is a so-called cyclooligomerization (see Figure 23a), which allows the formation of cyclic structures from several small building blocks. The cyclization occurs via homo- or cross-coupling reactions of monomers, which first build up linear oligomers that can

undergo ring-closure, providing macrocycles. Due to the random distribution of ring closure, this approach enables the preparation of various macrocycles, which differ in size, in one step.^{69,136} However, the competitive formation of linear oligomers and polymers leads to lower yields and requires more extensive purification. The intramolecular macrocyclization strategy can be applied as an alternative to random cyclization (see Figure 23b). The predefined precursor with a particular chain length allows a more controlled formation of macrocycles and minimizes the appearance of by-products, facilitating further purification.^{137,138} There are also several drawbacks, such as usually lengthier synthesis to the macrocyclization precursor and the requirement of optimized reaction conditions such as high-dilution or pseudo-high-dilution to suppress competing intermolecular reactions. The number of synthetic steps can be reduced for symmetrical macrocycles, which are synthesized via intermolecular dimerization (see Figure 23c).^{139,140} In this synthetic strategy, linear and cyclic polymers may form, which results in a decreased reaction yield of the desired macrocyclic dimer. The last strategy is templated cyclization (see Figure 23d). This strategy benefits from the preorganized arrangement of the monomer building blocks around a suitable template to overcome the disadvantages of random cyclization and long synthetic pathways, thereby potentially providing a high cyclization yield.^{141–143} Furthermore, the template can be chemically eliminated, releasing the desired structure. The disadvantage of the template strategy is a requirement to introduce and eliminate the template. Additionally, chosen template dictates the size and geometry of the structure. Therefore, the template strategy could not be easily implemented in each design, limiting the options for possible macrocycles.¹³⁵

3.1.2 Ring Closure of Angle-Strained Diyne-Containing Macrocycles

According to the work of *Krebs* and *Wilke*,¹⁴⁴ any bond angle of an alkyne smaller than 170 ° is defined as a strained angle.¹²⁹ Strained acetylenes are more reactive than a linear analogue, and this property is often exploited in strain-promoted click chemistry.^{145–147} Furthermore, the molecules containing strained diynes with an angle below 150° were only detectable until now but not isolable.¹²⁹ There are several strategies to assemble an angle-strained diyne-containing π -conjugated macrocycle. One of the options for macrocyclization would be a one-step coupling reaction, such as copper-mediated procedures or palladium-catalyzed couplings (see Figure 24).^{148,149} On the other hand, the desired macrocycle can also be prepared in two steps via the formation of platinum(II) diacetylide complexes, followed by oxidant-induced elimination of platinum complexes to release the strained butadiyne.¹⁵⁰

Figure 24: Synthetic options for ring closure of strained diyne-containing macrocycles.

3.1.2.1 <u>Copper-Mediated vs. Palladium-Catalyzed Homocoupling for Intramolecular</u> <u>Cyclization</u>

Glaser coupling¹⁵¹ and several variations of it, such as Glaser-Eglinton,¹⁵² Glaser-Hay,¹⁵³ and Cadiot-Chodkiewicz coupling^{154,155} (see Figure 25a), are the main source for providing symmetrical and unsymmetrical diacetylenes within small molecules, macrocycles, and polymers. Despite the long history of the Glaser coupling of over 150 years, there are still ongoing theoretical^{129,156-159} and experimental^{129,160} mechanistic studies to determine the possible intermediate for the reactions. The most widely accepted intermediate is the intermediate I depicted in Figure 25b, illustrating the formation of the dicopper(II) diacetylide complex, which collapses, providing the desired butadiyne. However, the proposed intermediate might not be ideally suitable for all copper-mediated reactions. The main difference between Glaser-Hay conditions to the initial copper-mediated homocoupling is the introduction of tetramethylethylenediamine (TMEDA) as a ligand for copper halides (see Figure 25a), which enables the solubility in almost any organic solvent. In addition, it leads to the possible formation of an alternative copper(III) intermediate (see Figure 25b, intermediate II), according to the density-functional theory (DFT) calculations of *Fomine* and co-workers.¹⁵⁶ The existence of a copper(III) intermediate was supported by extensive reaction mechanism studies using ¹³C NMR and UV/Vis spectroscopy methods, which suggested a different copper(III) intermediate that coordinated two acetylides (see Figure 25, intermediate III).¹⁵⁷ In 2016, Lan and co-workers proposed another possible intermediate for the Glaser-Hay reaction based on DFT calculations. This time, the proposed intermediate comprises two copper(II) ions, and the complex is illustrated in Figure 25b as intermediate IV.¹⁵⁸ Despite the inconclusive structural investigations of the intermediate, copper-mediated conditions are still prevalent in acetylene homocoupling reactions due to the high yield. Furthermore, a wide range of modification possibilities to optimize the conditions allow the preparation of several different macrocycles with intriguing shapes and properties.^{129,148,149,155,161}

Figure 25: Proposed intermediates for Cu-mediated *Glaser*-coupling variations. The intermediates (a-d) depend on the copper catalyst which was used. This figure was reproduced from *Miki et al.*¹²⁹

An alternative to copper-mediated homocouplings are palladium-catalyzed reactions which favor strained angled molecules over linear ones. In 2004, *Haley and co-workers*¹⁶² investigated and described the selectivity differences between copper-mediated oxidative homocoupling of terminal alkynes compared to palladium-catalyzed procedures. The polyyne **68** was used as a precursor for possible homocoupling reaction, which can provide either bis[15]annulene (**69**) (cyclization across the *meta*-fused diynes) or more strained bis[14]annulene (**70**) (cyclization across the *ortho*-fused diyne) as a cyclization product (see Figure 26a). The cyclization using standard *Glaser-Eglinton* methods led to the formation of only *meta*-fused annulene (**69**) in 70% yield. Contrariwise, using a palladium catalyst with a *cis*-bidentate ligand provided the *ortho*-fused annulene (**70**) in 84% yield. However, if the monodentate ligand such as Pd(PPh₃)₂Cl₂ is used, the palladium-catalyzed reaction yields both *meta*- **69** and *ortho*-fused **70** products in 43% and 19%, respectively. The selectivity is rationalized by the geometry of the proposed intermediates (see Figure 26b). The copper-

containing intermediate prefers a pseudo-*trans* configuration and the formation of a notstrained angle (> 170°). Conversely, various ligands can influence the geometry of the attached metal center in the case of a palladium-catalyzed reaction. The strained angle is more favorable for the reactions with *cis*-bidentate palladium-catalyst, which prefers *cis* geometry over *trans* and explains the formation of exclusively *ortho*-fused annulene (**70**).

Figure 26: (a) An overview of reaction conditions for preparation of bis[15]annulene (**69**) and bis[14]annulene (**70**). (b) Proposed metal intermediates formed in copper-mediated **A** (left) and palladium-catalysed **B** (right) homocoupling reaction. This figure was reproduced from *Haley et al.*¹⁶²

3.1.2.2 Platinum Corner-Assisted Macrocyclization

The last strategy for closure of an angle-strained divne-containing π -conjugated macrocycle is performed via the formation of platinum(II) divne complexes similar to the palladium-catalyzed procedure. The desired macrocycle is assembled via the introduction of the transition metal center as a corner point in the cyclic backbone, followed by reductive elimination. However, compared to the unstable palladium-intermediate, which directly undergoes reductive elimination, the platinum-intermediate is stable even during purification and can be isolated in a good yield.¹⁵⁰ Afterward, the platinum-corner can be expelled under the simultaneous formation of a new C-C bond and provide the conjugated macrocycles via reductive elimination. A cis-platinum(II) complex is a perfect candidate for such a corner-assisted cyclization due to the unique pseudo-square planar geometry with an angle of about 90°.163,164 This particular angle allows the direct introduction of the platinum corner into the cyclic backbone and benefits the formation of a defined macrocycle. Due to this attractive geometry, the appearance of further macrocycles and linear polymers is suppressed. In addition, treating the platinum(II)-intermediate with iodine leads to the formation of octahedral platinum(IV)complexes with two iodides attached to the metal center, providing the desired macrocycles under the liberation of Pt(II)L₂I₂-complexes (see Figure 27).^{164–167}

Figure 27: Schematic representation of the introduction of a Pt-corner followed by reductive elimination (RE) with iodine. L-L is an abbreviation for a ligand, and RE is an abbreviation for reductive elimination.

In 2003, *Bäuerle and co-workers*¹⁵⁰ reported the above-described ring closing strategy on the example of the preparation of the fully conjugated octithiophene macrocycle comprising exclusively thiophenes. This strategy provided corresponding strained-angle butadiyne precursor **73** (see Scheme 12), which was not accessible yet with the copper-mediated reactions.¹⁶⁸ The precursor molecule **73** was obtained using Pt(II)(dppp)₂Cl₂ as a metal corner, providing the platinum-intermediate **72** with an excellent yield of 91%. However, it turned out that the most significant disadvantage of this strategy was reductive elimination since the platinum(IV) complex can undergo *cis-trans* isomerization providing the most stable isomer. In dependence on the isomer configuration, the reductive elimination can provide the new C-C

bond or competitive halide alkyne formation.^{167,169} Nevertheless, the desired butadiyne compound **73** was isolated in 54% yield.¹⁵⁰

Scheme 12: *Cis*-Pt-corner assisted macrocyclization of diyne-containing macrocycles **73**.¹⁵⁰ The angles, as well as the longest and shortest S-S distance for angle-stained cyclo[*8*]thiophene precursor, were adopted from *Miki et al*.¹²⁹

3.2 **Project Description**

The charge transport in single-molecule measurements can occur via two different pathways: through-bond (see Figure 28a) or through-space (see Figure 28b). The goal of this work is the preparation and examination of a molecule with competing conductivity pathways, where the envisioned design should combine the through-space and through-bond charge transport, as depicted in Figure 28c. The through-space pathway, which occurs via π - π interaction between vis-à-vis located molecular wires, can be achieved by the introduction of a PCP building block in the molecular wire, which is connected to the electrodes. The second requirement, the through-bond conductance pathway, can be accomplished by tethering the PCP moiety with a π -conjugated macrocycle. The introduction of the three-dimensional PCP building block induces a step in the macrocyclic structure, providing a loop shape for the through-bond pathway. This loop scaffold enables helical charge transport, making the pathway coil-like and susceptible to the applied magnetic field. Since the applied current can simultaneously proceed through both pathways, providing the observed conductivity as a mixture of both. This unique feature of coil-related scaffold enables the exploitation of a magnetic field, hopefully allowing unambiguous distinction between both pathways. In addition, the PCP scaffold induces the helical chirality in the macrocyclic ring, making the molecular loop not only intriguing for its potential physical properties in single-molecule junctions but also for the feasible chiroptical features.

Figure 28: Schematic representation of (a) through-bond and (b) through-space electrical pathways implemented in an electrical circuit. (c) Combination of both pathways in one model compound, where the step in the macrocycles induces the helicity and makes it sensitive to an applied magnetic field. (d) QI depends on substitution pattern in benzene (through-bond pathway) and [2.2]paracyclophane (through-space pathway).

As we already know, through-bond coupled and through-space interacting benzene-based systems with the same substitution pattern possess different QI effects influencing the

conductivity properties (see Figure 28d and Chapter 2). Therefore, for our purpose, pseudo*meta* substituted PCP core with CQI features and higher conductivity values seems to be a more appealing candidate as a pseudo-*para* analogue. Further advantages of pseudo-*meta* substitution are discussed in the following pages.

3.3 Molecular Design

Previous investigations of suitable model compounds within the group were performed by *Dr. K. J. Weiland*, where the first generation of possible candidates **75** and **76** were synthesized (see Figure 29). The first design comprises PCP-based molecular wire tethered in a pseudo*para* position to oligothiophenes, which are known for their electronic properties.^{170,171} Molecular loops **75** and **76** were assembled using an iterative approach introducing thiophenes pair-wise in a sequential procedure to investigate the appropriate macrocycle size.⁶⁶ This strategy led to a long, linear, and complex synthesis providing an unstable target macrocycle **76a**, which unfortunately decomposed during purification attempts. Therefore, **76a** was not isolated and only confirmed by high-resolution mass spectrometry.¹²⁸ Accordingly, the design of the molecule was modified, and the linear ethynyl methyl benzoate **76b** was introduced instead of gold anchoring groups. Such replacement improved the molecule's stability.⁶⁵ However, due to the absence of the anchoring groups, the molecule was not integrated into the MCBJ setup to examine the electronic properties.

Figure 29: This thesis' ultimate target structure 74 and the ps-para PCP-based molecular loops 75⁶⁶ and 76⁶⁵ investigated by *Dr. Kevin J. Weiland*.¹²⁸

A novel design of molecular loop **74** was based on an exchange of the substitution pattern in the central PCP moiety (see Figure 29). A new PCP synthon with ps-*meta* connectivity demonstrates the CQI feature for both pathways, increasing the conductivity values compared to the first generation of model compounds. In addition, the through-bond conductivity is enhanced due to the decrease in the loop size. A lower number of thiophene repeating units

also enables the introduction of thiophene chains in a highly convergent synthesis, reducing the number of synthetic steps.

Cyclo[*n*]thiophenes (C*n*T) were chosen as a motif for the helical subunit that imitates a coil and provides a through-bond conductivity in our conjugated macrocycles. The macrocyclic oligothiophenes were already prepared in different sizes (**77** and **78a – c**) and extensively studied by *Bäuerle et al.*, starting from the terminally ethynylated terthiophenes (see Figure 30).^{150,168} The library of macrocyclic terthiophene-diacetylenes **79a – c** was prepared in one pot in a statistical copper-mediated macrocyclization reaction.¹⁶⁸ However, the smallest possible so far reported macrocycle **73** was obtained via a platinum intermediate, where the synthetic pathway was discussed in the introduction 3.1.2.2.¹⁵⁰ Due to the fact that electronic properties of the molecules depend on the length of the conjugated chain, with the rule of thumb that the shorter one would lead to higher conductivity, the smallest possible cyclo[*8*]thiophene structure **77** was taken as a basis for the design of the desired structure. Therefore, one of the thiophenes units was replaced by PCP moiety, providing the desired loop structure **74a**.

Figure 30: Ring size of envisaged oligothiophene macrocycle **74a** based on the size of smallest representative **77**of cyclo[*n*]thiophene family **78a** –**c** and macrocyclic terthiophene-diacetylene **73** and **79a** – **c** developed by *Bäuerle et al.*^{150,168} For simplicity, the solubilizing and anchoring groups were hidden.

3.4 Synthetic Strategy

The elaborate retrosynthetic plan toward the desired molecular loop **74** is illustrated in Figure 31. The last stage modification would be introducing phenyl rings bearing the thioacetate functional groups via *Sonogashira-Hagihara* ³³ cross-coupling reaction. The free acetylene **80** can be formed via homologation. For instance, **80** can be obtained by treating the corresponding aldehyde **81** with the *Bestmann-Ohira*^{119,120} reagent or *Corey-Fuchs* reaction sequence.¹⁷² The envisioned molecular loop comprises an odd number of thiophene units. Therefore, the formation of a septithiophene macrocycle is expected to be achieved from the corresponding butadiyne macrocycles **81**, which can be prepared via acetylenes
intramolecular homocoupling reaction. Adequately functionalized terthiophene with hexyl chains on both β -position of central thiophene subunit for enhanced solubility and protected acetylene on a terminal α -position **83** can be introduced in a *Suzuki-Miyaura* cross-coupling. This disconnection enables the assembly of six thiophenes and the required terminal alkynes **83** in one synthetic step to the central tetrasubstituted PCP core **82**, compared to a previously used linear and iterative approach.

Figure 31: Synthetic strategy for the synthesis of molecular loop **74**. The abbreviation PG stands for protecting group. All disconnections in the retrosynthetic analysis are marked with colors dependent on the reaction type.

The terthiophene **83** should be accessible by *Sonogashira-Hagihara* cross-coupling reaction introducing the protected acetylene followed by borylation to previously prepared terthiophene scaffold, which can be constructed via a *Suzuki–Miyaura* cross-coupling reaction. The highly functionalized PCP-core **82** bearing two aldehydes and two bromines could be prepared in two different synthetic pathways. The first option would be to perform statistical four-fold bromination to get tetrabromo bis-(ps-*meta*)-*para* PCP followed by statistical lithiation¹⁷³ to obtain the desired bis-(*para*)-ps-*meta* PCP **82** on a gram scale. On the other hand, the desired structure can also be prepared from dibromo ps-*meta* PCP (**43**)⁸³ followed by regioselective double *Rieche* formylation, which has been reported so far only on mg scale.¹⁷⁴ Due to the

modification of the desired building block via several synthetic steps, the robust chemistry well established on a gram scale seems to be more appealing.

3.5 Results and Discussion

3.5.1 Synthesis of the Central PCP-Moiety

The first step of the synthesis consists of the four-fold bromination of commercially available PCP (**33**) to provide a mixture of constitutional isomers in a 1:1 ratio. There are several conditions for this bromination, for example, with *N*-bromosuccinimide (NBS)¹⁷⁵ or elementary bromine. The latter is used as bromine vapors,¹⁷⁶ neat¹⁷⁶, or iron-catalyzed in dichloromethane.¹⁷⁷ The best results on the gram scale were reported for an iodine-catalyzed reaction in neat bromine.^{176,178} Therefore, these conditions were used for the four-fold bromination, and the reaction provided a mixture of two isomers **84** and **85**, which could be separated by recrystallization. This purification strategy worked very well due to the lower solubility of undesired bis-(ps-*meta*)-*ortho*-PCP (**85**) in dichloromethane, providing tetrasubstituted PCP **84** in 42% and **85** in 36% yield, respectively.

Scheme 13: Synthesis of tetrabrominated bis-(ps-*meta*)-*para*- (84) and bis-(ps-*meta*)-*ortho*-PCP (85). The nomenclature used is based on the suggestion of *Hopf* and co-workers.⁸³ Abbreviation ps stands for pseudo and describes the spatial relation between the substituents of different PCP rings.

Next, the aldehydes were introduced via formylation reaction. The desired formylation was achieved using a selective lithiation approach.¹⁷³ For the two-fold lithiation, previously prepared tetrabrominated bis-(ps-*meta*)-*para*-PCP (**84**) was treated with a slight excess of 2.1 equivalents of *n*-BuLi followed by the addition of DMF to provide two isomers in a disadvantage 1:2 ratio of the desired structure **82** and by-product **86** determined by the crude NMR. However, the double lithiation on the same ring is not favored; therefore, **87** was not detected.

Scheme 14: Synthesis of bis-(*para*)-pseudo-*meta* (82), bis-(*para*)-pseudo-*ortho* (86) substituted PCP. Bis-(psortho)-para-PCP (87) was not formed.

3.5.2 Synthesis of the Terthiophene Derivative

The synthesis of building block **92** started with assembling terthiophene from commercially available 2,5-dibromo-3,4-dihexylthiophene (**88**) and thiophene-2-boronic acid pinacol ester (**89**) (see Scheme 15). Both compounds were coupled via *Suzuki-Miyaura* cross-coupling reaction, providing the desired terthiophene scaffold (**90**) in 98% yield on a multigram scale. The next step is the asymmetrical bromination with NBS. The selectivity of the bromination can be controlled with a low temperature favoring the *α*-position over the *β*-positions. Even a tiny excess of NBS provides an overreaction and leads to bromination on the second *α*-position of terthiophene **91**. Therefore, the reaction was performed in the dark at -20 °C with only 1.1 eq. of NBS, providing the desired *α*-monobrominated compound (**91**) in 78% yield. Nevertheless, traces of *α*-dibrominated by-product were observed but could be easily separated by column chromatography. Subsequently, the *α*-monobrominated terthiophene **91** has reacted with triisopropylsilyl (TIPS) masked acetylene in the *Sonogashira-Hagihara* cross-coupling reaction to provide terthiophene **92** in 95% yield.

Scheme 15: Synthesis of terthiophene derivate 92.

3.5.3 Borylation of Terthiophene Derivate and Assemble of Loop Precursor

With terthiophene building block **92** in hand, the next step is the introduction of a boronic acid or ester in the free *α*-position as a chemical handle for the planned *Suzuki-Miyaura* reaction. First, the preparation of boronic acid was usually more appealing since it is more reactive than a boronic ester analogue for the following *Suzuki-Miyaura* reaction. Therefore, terthiophene boronic acid **83a** was prepared by lithiation of terthiophene **92** with *n*-BuLi, followed by the addition of trimethyl borate and an acidic aqueous workup (see Scheme 16). While a color change to green was observed upon lithiation, only the mass of the starting material was detected by MALDI-ToF-MS. The reaction mixture was investigated by ¹H NMR; however, the obtained spectrum was not conclusive and showed a presence of starting material and several different borylated species. Since the purification of boric acids is difficult due to the reactivity and lability of the compounds, it was decided to use it in the next step without further purification and isolate the product after the following step.

Scheme 16: Borylation of terthiophene building block 83a.

The next step is the assembly of the previously prepared building blocks, namely PCP derivative 82 and boronic acid 83a under Suzuki-Miyaura conditions (see Table 1). Firstly, the Suzuki-Miyaura conditions with Pd-PEPPSI[™]-*i*Pr and potassium carbonate as a catalytic system in toluene and methanol were tested following the procedure of Weiland et al. from a comparable system⁶⁵ (see entry 1). The reaction was carried out at 70 °C, and after 30 minutes, full conversion of the starting material 82 was observed according to TLC. However, these reaction conditions led to a complex product mixture, which contained the desired structure 93 and debrominated intermediate 94, deborylated starting material 92, and sexithiophene derivate 95 according to the MALDI-ToF-MS analysis. These observations also explain the low yield of 29% for the desired product 93, which was obtained after purification by column chromatography. Increasing the temperature to 80°C favored the formation of byproducts (entry 2), which resulted in a lower yield of 12% for the target 93. Thus, the catalytic system was changed for (Pd(dppf)Cl₂) and tripotassium phosphate, already established for the ps-para-PCP loop by Weiland et al. 65 The reaction mixture was heated to 80 °C and stirred for two hours providing the desired loop precursor 93 in 26% yield (entry 3). Since the previous reaction was not selective enough and unsuitable for purification techniques to provide only

the desired boric acid **83a**, the following *Suzuki-Miyaura* cross-coupling can not be optimized with impure starting material. Furthermore, the impurities probably led to the formation of several by-products.

Table 1: Conditions for Suzuki-Miyaura cross-coupling reaction to obtain loop precursor 93.

Entry	Catalyst	Base	Temperature	Time ^[a]	MALDI-ToF-MS	Yield ^[b]
1	Pd-PEPPSI [™] - <i>i</i> Pr	K ₂ CO ₃	70 °C	30 min	93, 94, 92, 95	29%
2	Pd-PEPPSI [™] - <i>i</i> Pr	K_2CO_3	80°C	30 min	93, 94, 92, 95	12%
3	Pd(dppf)Cl ₂	K ₃ PO ₄	80°C	120 min	93, 92	26%

^[a] Time until full consumption of the starting material (82); ^[b] isolated yield after column chromatography.

Therefore, we decided to change the strategy and move away from the boronic acid terthiophene derivative **83a** to the more stable boronic pinacol ester **83b** analogue. First, conditions for the borylation of thiophene-based compounds described in the literature, $^{65,179-}$ ¹⁸¹ were tested. The terthiophene pinacol boronic ester **83b** was prepared by lithiation of terthiophene **92** with *n*-BuLi at -78 °C, where the reaction mixture was stirred for one hour at – 78 °C, followed by allowing warming up to room temperature for 30 minutes. Afterward, the reaction mixture was cooled to -78 °C before 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**96**) was added and stirred for additional 16 hours.

Scheme 17: Borylation of terthiophene building block 92.

The obtained green-colored reaction mixture was analyzed by low-resolution MALDI-ToF-MS spectrometry using DCTB as a matrix in a reflective polarized (RP) mode. Thereby, a mixture of several compounds was identified (see Figure 32). The desired borylated compound **83b** (m/z [M]⁺ calcd. for C₄₁H₆₃BO₂S₃Si 722.385, found 722.573; see Figure 32c) was corroborated, with a isotop pattern perfectly matching the calculated pattern. However, there were several peaks that could be identified as either starting material **92** (m/z [M]⁺ calcd. for C₃₅H₅₂S₃Si 596.300; found 596.653; see Figure 32a), terthiohene bearing boronic acid **83a** (m/z [M]⁺ calcd. for C₃₆H₅₃BO₂S₃Si 640.307; found 640.609; see Figure 32b), and numerous overreacted compounds which were also lithiated in β position **97** – **99** (m/z [M]⁺ calcd. for C₄₁H₆₄B₂O₄S₃Si 766.392; found 767.142; m/z [M]⁺ calcd. for C₅₁H₈₂B₂O₄S₃Si 904.533; found 903.490; m/z [M]⁺ calcd. for C₅₇H₉₃B₃O₆S₃S 1030.618; found 1029.324, respectively; see Figure 32d-f). Figure 32 illustrates only one of the possible constitutional isomers. Of course, there are more by-products due to the different connectivity opportunities. We also assume that the boronic acid derivatives were formed from the boronic pinacol ester analogue during the ionization in the MALDI-ToF-MS.

Figure 32: Proposed structures (a-f) and MALDI-ToF MS spectra of the reaction mixture obtained from the reaction shown in **Scheme 17** using DCTB as a matrix in reflective polarized mode. The mass assigned to according proposed structure are colored in the same color and connected with a dashed line. On the right side, the measured m/z pattern of the peak of desired structure **83b** is depicted.

The purification of the obtained complex mixture with oily texture seemed challenging since purification by column chromatography could lead to deborylation and the formation of additional by-products.¹⁸² Due to the significant difference in the size of by-products compared to the desired structure **83b**, automated cyclic gel GPC was considered as a purification technique of choice. Indeed, the separation of several compounds was achieved by GPC (*see* Figure 33a). Besides the expected overreacted compounds **97** – **99** (pink peak) and starting

material **92** (dark cyan peak), two peaks eluted a molecule with the mass (blue and violet) of the desired structure **83b**. The identity of both peaks was elucidated by NMR spectra (see Figure 33b). The blue peak (see NMR II) was identified as the desired structure **83b**, which was confirmed by ¹H NMR spectra due to the characteristic shift and symmetry of β -thiophene protons. Contrariwise, the violet peak (see NMR III) demonstrated a proton at the α -position, which interacts with both protons in the neighboring β -positions similar to the ¹H NMR of the starting material **92** (see NMR I). A further piece of evidence for the structural assignment came from the singlet at 7.27 ppm, which allowed us to assume the borylation on the β -position of the thiophene bearing the protected acetylene in terthiophene scaffold.

Figure 33: (a) GPC chromatogram traces of separation of borylated terthiophene, where the pink peak is overreacted terthiophene, blue is the desired structure **83b**, violet is a borylation in a β -position, and dark cyan is the starting material **92**. (b) Comparison of the aromatic region of ¹H NMR spectra of starting material (dark cyan) with both peaks (blue and violet) demonstrating the same peaks in the MALDI-ToF-MS. Second spectrum was assigned to the desired structure, and the third to the borylation in the β -position.

To prevent the formation of by-products, further lithiation attempts were performed, keeping the temperature permanent at -78 °C (see Table 2). The lithiation at a low temperature leads to a selective reaction at the α -position of terthiophene derivate **92**. However, it also provides a low conversion to the desired product **83b** (entry 1). Therefore, the time for the lithiation was increased, and the amount of *n*-BuLi decreased (entry 2 - 4), which improved the conversion and provided the best result of the desired **83b** in 72% yield (entry 4) according to ¹H NMR spectra. The desired terthiophene derivative **83b** was used directly in the subsequent *Suzuki-Miyaura* reaction without further purifications. However, in order to obtain a full conversion, further reaction modifications are necessary, such as increasing the lithiation time to 120 min

or using a milder base such as lithium diisopropylamine $(LDA)^{183,184}$ at higher temperature instead of *n*-BuLi.

 X_{α}

TIPS

lli

	Hex Hex 92	$\begin{array}{c} \text{conditions} \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Hex Hex 83b	
Entry	n-BuLi [eq.]	Temperature [°C]	Time [min]	92 : 83b ^[a]
1	1.1	-78	30	3:2
2	0.95	-78	30	1:1
3	1.0	-78	60	2:3
4	1.0	-78	90	1:2.8

Table 2: Optimization of the terthiophene derivative 92 borylation reaction.

TIPS

^[a] determined by ¹H NMR spectra

Parallel to the borylation investigations, we also examined another pathway to obtain terthiophene 83b via a lithium-halogen exchange, where the reaction in α -position should be more preferred. However, another pathway requires an adaption of the synthetic approach (see Scheme 18). The first step was to increase the amount of NBS to 2.1 equivalents to obtain the desired two-fold brominated terthiophene 100 in 93% yield. The subsequent statistical Sonogashira-Hagihara cross-coupling was performed using an excess of 100, and (triisopropylsilyl)acetylene to provide the desired bifunctional terthiophene **101** in a 55% yield. With the compound **101** in hand, the borylation of terthiophene was achieved analogously to the previous attempts (see Table 2). However, full conversion of starting material was still not obtained, and the yield was lower than entry 3 in the previous strategy. Furthermore, the overall yield over three reactions from the synthetic pathway with statistical bromination (see Scheme 15) to the pathway with statistical Sonogashira-Hagihara cross-coupling (see Scheme 18) dropped from 52% to 24%, respectively. Another advantage of the first synthetic pathway is the possibility of using the mixture containing 92 and 83b directly in subsequent Suzuki-Miyaura coupling without the formation of further by-products and possible reisolation of 92 after this reaction step. Therefore, we decided to go on with the borylation results summarized in Table 2.

Scheme 18: Synthesis of terthiophene building block 101 followed by borylation reaction to provide 83b.

The desired loop precursor **93** was obtained in a two-fold palladium-catalyzed *Suzuki-Miyaura* cross-coupling reaction from previously prepared building blocks **82** and **83b** (see Table 3). Initial conditions, with Pd-PEPPSITM-*i*Pr and potassium carbonate as a catalytic system in toluene and methanol, which demonstrated the best yield with the boronic acid analogue **83a**, showed no product formation and decomposition of starting material (entry 1). The conditions were modified by using water as an additive and increasing reaction time (entry 2); however, the product formation was still not observed. Therefore, the palladium source and base were changed (entries 3 and 4), and we found that using Pd(PPh₃)₄ as a catalyst with potassium carbonate as a base led to the formation of desired structure **93** in an excellent yield of 96% (entry 4).

Table 3: Condition screening for Suzuki-Miyaura cross-coupling reaction to obtain loop precursor (93).

Chapter 3: Synthesis Towards a [2.2]Paracyclophane-Based Molecular Loop

Entry	Catalyst	Base	Solvent	Temperature [°C]	Time [h]	Yield ^[a]
1	Pd-PEPPSI [™] - <i>i</i> Pr	K ₂ CO ₃	Toluene/MeOH	70	0.5	0%
2	Pd-PEPPSI [™] - <i>i</i> Pr	K ₂ CO ₃	Toluene/MeOH/H ₂ O	70	16	0%
3	Pd(dppf)Cl ₂	K_3PO_4	Toluene/H ₂ O	70	16	80%
4	Pd(PPh ₃) ₄	K ₂ CO ₃	Toluene/H ₂ O	70	16	96%

^[a] isolated yield

3.5.4 Macrocyclization

The first step in the direction of the intermediate **81** was the deprotection of the TIPS masking group of **93** with tetrabutylammonium fluoride (TBAF) in wetted THF, which afforded the loop intermediate (PCP-based terthiophene-diyne) **102** in 93% yield (see Scheme 19) after purification by column chromatography.

Scheme 19: Deprotection of loop precursor 93.

3.5.4.1 Copper-mediated Macrocyclization Method

Since macrocyclization was the bottleneck reaction step towards the desired structure, several approaches described in the introduction were examined. The first attempt to achieve the desired molecular loop 81 was done by exploration of the Eglinton-Breslow conditions.^{185,186} These conditions were previously shown to result in the ring-closing of strained butadiynes^{187,188} and the molecular loop with ps-para connectivity.^{65,66} The oxidative acetylene homocoupling was performed using copper (I) chloride and copper (II) acetate as a copper source in dry and degassed pyridine under an argon atmosphere. The reaction was carried out under pseudo-high-dilution conditions, where the diacetylene 102 was dissolved in pyridine and slowly added (over 14 hours) with a syringe pump to the reaction mixture containing a copper mixture in pyridine at 80 °C (see Scheme 20 and Table 4, Entry 1). Afterward, the reaction was stirred for additional two hours to guarantee full consumption of starting material, which was monitored by TLC. The reaction mixture was analyzed by low-resolution MALDI-ToF-MS and indicated a mass that could be attributed to the desired structure 81 (m/z [M]⁺ calcd. for $C_{70}H_{74}O_2S_6$ 1138.401, found 1138.943) and the twofold mass (m/z [M]⁺ calcd. for C₁₄₀H₁₄₈O₄S₁₂ 2276.803, found 2276.286). Indeed, TLC indicated a formation of new species, which was then purified by column chromatography, isolated, and analyzed by NMR spectroscopy. A simple ¹H NMR spectrum was very symmetrical, identifying a macrocyclic structure. However, it was impossible to distinguish between monomeric and dimeric macrocycles at this point. Therefore, diffusion-ordered spectroscopy (DOSY) was measured. The DOSY spectrum of starting material **102** and the isolated compound were compared and showed that the isolated compound had approximately double the starting material size, unambiguously identifying the new structure as a cyclic dimer **103** (see Supporting Information for Chapter 3).

Scheme 20: Synthesis of the loop precursor 81 using Eglinton-Breslow conditions.

Attempting the suppression of dimer formation, the reaction was carried out at a lower concentration (see Table 4, Entry 2). However, instead of increasing the amount of desired macrocyclic structure **81**, such dilution led to the formation of a complex mixture containing exclusively poorly soluble linear polymers.

Entry	102 conc. [mM]	Time [h]	MALDI-ToF-MS
1	1.5 ^[a]	16 (14) ^[c]	81 and 103 (35%) ^[d]
2	0.2 ^[b]	84 (48) ^[c]	Complex mixture

Table 4: Conditions to Eglinton-Breslow homocoupling reaction.

^[a] same concentration was used for the preparation of ps-*para* PCP-based molecular loop **75**;⁶⁶ ^[b] same concentration was used for the preparation of **76** (see Figure 29);⁶⁵ ^[c] addition time with syringe pump; ^[d] isolated yield.

In the next attempt, copper(II) fluoride dihydrate was used as a copper source. The advantage of such a strategy is deprotection from the masked acetylene and macrocyclization in one pot. These conditions were recently developed in our laboratories and were successful in the formation of strained butadiynes.¹⁸⁹ The initial conditions using DMSO as a solvent at 80 °C due to the low solubility at low temperatures lead only to deprotection (see Table 5, entry 1). Thus, tetramethylethylenediamine (TMEDA) was added to the reaction (entry 2). However, after stirring for 16 hours, no product or dimeric structure formation was identified in the complex mixture. Therefore, the solvent was exchanged for pyridine, in which the starting material was also well-soluble at room temperature. After one hour of stirring at room temperature, full deprotection was observed (entry 3). Again, however, there were no indications of the formation of the desired structure **81** or other cyclic oligomers. When the

reaction mixture was heated to 40 and 50 °C (entries 4 and 5), the dimer was obtained as a major product. Further increase in the temperature and reaction mixture concentration enhances the formation of linear polymers (entry 6).

 Table 5: Screening conditions for copper-mediated homocoupling with copper(II) fluoride as a copper source.

Entry	93 conc.	CuF ₂ x2H ₂ O	Solvent	Temp	Time	MALDI-ToF-MS
	[mM]	[eq]		[°C]	[h]	(Yield) ^[a]
1	0.3	6.0	DMSO	80	2	Only deprotection (102)
2	0.3	6.0	DMSO/TMEDA	80	16	Complex mixture
3	1.0	6.0	pyridine	RT	1	Only deprotection (102)
4	1.0	6.0	pyridine	40	1	103 (36%)
5	1.0	6.0	pyridine	50	1	103 (38%)
6	1.5	6.0	pyridine	80	16	103 (8%)

^[a] isolated yield

In 2014, Hopf and co-workers^{129,190} published the synthesis of several PCP-based anglestrained alkyne-containing macrocycles. All the structures were obtained in a good yield and prepared using the *Glaser-Hay* conditions (*see* Scheme 21). The main difference between the *Glaser-Hay* conditions and the previously used is the introduction of bidentate ligand (TMEDA) for copper(I) halide, which improves the solubility of copper-source and provides presumably an alternative intermediate to the previously examined *Eglinton* modifications (*see* Introduction 3.1.2.1).¹²⁹ Therefore, we also decided to investigate these conditions.

Scheme 21: Synthesis of the loop precursor 81 using *Glaser-Hay* conditions.

First, the loop precursor **102** was dissolved in dichloromethane and methanol before adding copper(I) chloride and TMEDA. The copper-mediated homocoupling reaction provided a complete conversion of starting material after two hours of stirring at room temperature. Next, the reaction mixture was analyzed and indicated the formation of the desired loop **81** (m/z [M]⁺ calcd. for C₇₀H₇₄O₂S₆ 1138.401, found 1138.434) and the dimeric macrocycles **103** (m/z [M]⁺ calcd. for C₁₄₀H₁₄₈O₄S₁₂ 2276.803 m/z, found. 2277.812) by low-resolution MALDI-ToF-MS. Notably, the isotopic pattern recorded for loop structure **81** perfectly matched the corresponding elemental composition (*see* Figure 34).

Figure 34: MALDI-ToF-MS spectrum of the reaction mixture with *Glaser-Hay* conditions.

However, isolation and characterization of the desired structure **81** was impossible due to the low amount. Since these conditions seemed to be the most promising ones, they were further investigated. The reactions were monitored by MALDI-ToF-MS and TLC, where the first analytic method indicated the formation of the desired structure, and the second allowed a distinction between the appearance of cyclic and linear oligomers and polymers, respectively. The screening began by looking for the perfect solvent and a ratio of copper chloride to TMEDA (see Table 6). Dichloromethane and toluene were selected due to the good solubility of free diacetylene **102** and the addition of methanol improved the solubility of copper chloride. However, the addition of methanol (entries 1 and 2) increased the formation of insoluble linear oligomers and polymers. On the other hand, the conditions with neat toluene led to no reaction (entry 3). If the reaction was performed in a mixture of toluene and methanol (entry 4) and stirred for 16 h, linear oligomers and polymers precipitated, and only cyclic dimer **103** could be identified from the remaining solution by MALDI-ToF-MS.

Entry	102 conc. [mM]	CuCl [eq.]	TMEDA [eq.]	Solvent	Time [h]	MALDI-TOF-MS	TLC ^[e] (main spot)
1	0.4	42.0	14.0	CH2Cl2/MeOH	2	81 and 103	polymers
2	0.4	42.0	51.0	CH ₂ Cl ₂ /MeOH	1	81 and 103	polymers
3	0.4	42.0	84.0	toluene	2	102 (SM)	102 (SM)
4	0.4	42.0	84.0	toluene/MeOH	16	103	polymers
5	1.5	42.0	84.0	CH_2CI_2	2	81 ^a and 103	polymers
6	1.0	42.0	84.0	CH_2CI_2	2	81 and 103	103 and
							polymers
7	0.2	42.0	84.0	CH_2CI_2	16	81 ^a and 103	polymers
8	0.3	10.0	20.0	CH_2CI_2	5	102 , 103 and	polymers
						polymers	
9	0.3	100.0	100.0	CH_2CI_2	3(2) ^b	102 , 103 , and	polymers
						polymers	
10	0.5	42.0	84.0	CH_2CI_2	2	81 and 103	103
11	0.5	42.0	84.0	CH_2CI_2	3(2) ^b	81 ^a and 103	103
12 ^c	0.5	42.0	84.0	CH_2CI_2	2	81 and 103 ^d	103

Table 6: Screening for *Glaser-Hay* conditions.

^[a] The mass of loop **81** was only detected after work up; ^[b] slow addition of SM; ^[c] CuCl and TMEDA were dissolved in dichloromethane and stirred for 10 min before SM was added; ^[d] most promising entry according to MALDI-ToF-MS and TLC, was purified by GPC.^[e] Linear polymers stayed at baseline in pure dichloromethane. Therefore, pure dichloromethane was chosen as the solvent for further entries. Instead of methanol, the amount of TMEDA was increased to improve the solubility of copper chloride. In the following entries 5 – 9, the influence of the concentration of the starting material was investigated. According to TLC, concentrations over 1.0 mM and under 0.4 mM lead to the exclusive formation of insoluble linear polymers. Furthermore, the increase and decrease in amount of copper chloride and TMEDA (entries 8 – 9) did not enhance formation of cyclic oligomers and of the desired structure **81**. Assuming that the slow addition of the starting material **102** would shift the equilibrium on the side of intramolecular ring closure, this hypothesis was tested (entry 11). However, both the rapid and slow addition of the starting material **102** to pre-dissolved copper chloride and TMEDA solution led to the formation of dimer as the major product according to a TLC. MALDI-ToF-MS also clearly indicated for all three attempts a product (**81**) formation. Therefore, according to the TLC, the most promising reaction mixture (entry 12) was purified by automated recycling GPC.

Figure 35: GPC traces of *Glaser-Hay* reaction, entry 12.

Already after the first cycle, the GPC purification provided surprising results (see Figure 35). Besides the linear polymers (light rosa), several cyclic macrocycles (blue to pink, from biggest to smallest) presumably differed in size according to the corresponding hydrodynamic radii of macrocycles derived from their retention time were synthesized. MALDI-ToF-MS also supported these observations, identifying violet peak as a cyclic tetramer **105**, dark cyan as a

cyclic trimer **104**, dark red as a cyclic dimer **103**, and pink as the desired loop structure **81**. Furthermore, the identity of the dimer **103** and trimer **104** was also confirmed by NMR spectroscopy. Unfortunately, the amounts of product **81** and cyclic tetramer **105** were too low for proper characterization.

3.5.4.2 Palladium-Catalyzed Macrocyclization Methode

In the next attempt, we considered using the conditions described by *Haley and co-workers*¹⁶² for palladium-catalyzed ring closure reactions. The advantage of using palladium is the preference for *cis* geometry over *trans* during intermediate formation and, therefore, the formation of a smaller ring with a strained angle, as already discussed in the introduction (*see* 3.1.2.1). The reported palladium-catalyzed homocoupling of the terminal alkyne is similar to the *Sonogashira-Hagihara* cross-coupling reaction (Pd-source, Cul, amine base) with additional oxidant (iodine) instead of organic electrophile.^{162,191}

Firstly, the palladium(II)-catalyst with the best-reported yield¹⁶² was tested (see Table 7, entry 1). Diacetylene **102** was dissolved in THF and slowly added to the reaction mixture containing a catalytic system in THF/DIPEA at 70 °C over 14 hours. The reaction with a palladium-catalyst bearing the *cis*-bidentate ligand was unsuccessful, demonstrating no conversion after 16 hours, monitored by MALDI-ToF-MS and TLC. These results were explained by the possibly not suitable angle of the bidentate ligand; therefore, palladium-catalyst with a monodentate ligand (Pd(PPh₃)₂Cl₂) was added to the reaction mixture and stirred for additional 16 hours (entry 2). Afterward, MALDI-ToF-MS only indicated the formation of cyclic dimer (**103**) and other cyclic (**104** – **105**) and linear oligomeric structures. In entry 3, the starting material was added slowly to the reaction mixture over two hours at 50 °C. Such temperature decrease and slow addition were expected to slow down the reaction and allow the formation of cyclic dimer (**103**) and other cyclic (**104** – **105**) and linear oligomeric structures was detected, similar to the previous attempts.

Entry	102 conc.	Pd-source	Solvent	Temp	Time	MALDI-ToF-MS
	[mM]			[°C]	[h]	
1	0.5	Pd(dppe)Cl _{2^[a]}	THF/DIPEA	70	16 (14) ^[b]	102 (SM)
2	0.5	Pd(PPh ₃) ₂ Cl ₂	THF/DIPEA	70	16	103 (Dimer)
3	0.5	$Pd(PPh_3)_2Cl_2$	THF/DIPA	50	16 (2) ^[b,c]	103 (Dimer)

 Table 7: Conditions screening for Pd-catalysed intramolecular homocoupling reaction.

^[a] Pd(dppe)Cl₂ (dppe = 1,2-bis(diphenylphosphanyl)ethane); ^[b] additional time with syringe pump; ^[c] open flask.

3.5.4.3 Platinum Corner-Assisted Cyclisation Methode

The next option is the introduction of platinum centers as corner points in the cyclic backbone of the molecule, followed by reductive elimination. This strategy already demonstrated the efficiency of synthesizing a cyclo[8]thiophene precursor 73,¹⁵⁰ which was used as a basis for desired molecular loop 74. A. D'Addio prepared the employed cis-Pt(dppp)Cl₂ complex, which was inserted to form the platinum σ -acetylide complex. *Cis*-Pt(dppp)Cl₂ was chosen due to the chelating ligand, suppressing *cis-trans* isomerization and privileging the *cis* geometry around a platinum-metal center. Such geometry should prevent polymerization as well as the formation of bigger macrocycles. Therefore, the precursor molecule 102 and platinum-corner were stirred in the presence of copper(I) iodide and trimethylamine in toluene. After stirring the reaction mixture for 48 hours, the full consumption of starting material was observed. However, the desired structure 106 was not indicated by MALDI-ToF-MS or NMR spectroscopy. Furthermore, ¹H and ³¹P NMR were inconclusive, providing a spectrum of several compounds. The mixture's separation appeared impossible by normal or reverse phase column chromatography. Therefore, the reaction mixture was used in the next step without further purification. The reductive elimination was carried out in the presence of 2.0 equivalents of iodine at 60 °C.^{150,169} After stirring the reaction mixture for 16 hours, there was no evidence of the formation of the desired structure 81 in MALDI-ToF-MS.

Scheme 22: Synthesis of the loop precursor 81 via the introduction of a Pt-corner followed by reductive elimination.

However, a new species was detected by MALDI-ToF-MS and TLC. High-resolution electron spray ionization-time of flight (HR-ESI-ToF) MS indicated the formation of a diiodinated PCP-based terthiophene-diyne **107** (see Figure 36). The obtained mass of 1415.1966 m/z perfectly fits the calculated mass of **107** adduct (1392.2102 m/z) comprising sodium cation (1415.1995 m/z). Yet, the isolated amount was below 5% yield over two steps and did not allow to perform the complete characterization of the isolated compound due to insufficient amount. However, the iodination of the compound can occur either during the expel of the platinum-corner or after the loop closure on highly reactive strained butadiyne. Both proposed options are depicted in Figure 36b. However, inconclusive data made the determination of the exact structure and formation thereof challenging. Indeed, several challenges which arise during the reductive elimination with iodine, such as various side products and decompositions, were already described by the preparation of cyclo[*n*]thiophenes.¹⁶⁹ Furthermore, the mechanistic studies of reductive elimination with iodine also described the possibility of iodination of closing points as a potential reaction outcome. ^{165,167,169}

Figure 36: (a) structure and mass of the desired molecular loop (81); (b) proposed structures which are fitting the mass 107a and 107b; (c) HR-ESI-ToF MS spectrum of the isolated compound 107.

With this result, we conclude that despite the evidence of the formation of desired loop **81**, investigated copper-mediated and palladium-catalyzed reactions demonstrated the preferred formation of intermolecular cyclization over intramolecular one. In the case of platinum-corner, the inconclusive data did not allow to prove the loop formation. Therefore, further investigations of the loop closure were stopped at this point due to the redesign of the initial structure. Thus, redesign ideas and new synthetic strategies are proposed and discussed in the following summary and outlook subchapter. In addition, further investigations of the isolated cyclic dimer (**103**) are outlined in Chapter 4.

3.6 Summary

In summary, a new design of the macrocyclic structure comprising two different charge pathways, namely through-space and through-bond, was outlined. The target structure consists of PCP-based molecular wire with ps-meta connectivity allowing the connection to a smaller loop size than for the ps-para-based analogue. This exchange of the connectivity pattern in the PCP core should enhance the through-space conductivity due to the CQI. In addition, the smaller loop size would make the structure more rigid, allowing better electronic communication as well as an increase in conductivity due to the lower number of thiophene moieties. Furthermore, the new design also allowed the convergent synthetic strategy and reduced the number of synthetic steps. All building blocks were synthesized and fully characterized. With the necessary building blocks in hand, the precursor molecule was assembled, followed by successful deprotection. The key step, the macrocyclization reaction, was performed using different synthetic strategies. Unfortunately, the intramolecular ring closure seems to be less favored as an intermolecular analogue, providing the formation of cyclic and linear oligomeric structures. Even the most promising reactions did not lead to the isolation of desired structure. The strategies using platinum and palladium for homocoupling were unsuccessful, providing several by-products and linear and cyclic oligomeric structures as the outcome of the reactions. The first evidence for the formation of desired loop (81) came from MALDI-ToF-MS analysis for the copper-mediated reactions. However, the amount of formed structure was too low for isolation as well as for further reaction steps. Several attempts to shift the equilibrium toward the formation of desired macrocycles were unsuccessful. A decrease in starting material concentration and concentration of catalyst, as well as a pseudohigh-dilution, lead to enhancement of the formation of poor soluble linear oligomers and polymers. The major product, mostly isolated from all investigated attempts, was a cyclic dimer formed via intermolecular ring closure, which was identified and confirmed by DOSY, twodimensional NMR techniques, and MALDI-ToF-MS (see Chapter 4).

3.7 Outlook: Redesign

Therefore, redesigning the structure will be the most promising option. One of the possibilities is the elongation of the loop structure by the implementation of additional thiophene units providing molecular loop precurcor **108**. This approach would improve the strained angle of butadiyene-based macrocycles (164.8 - 165.0° for macrocycles **81** to 168.8 - 169° for macrocycles **108**, see Figure 37). It is expected that the less strained angle and large distance of thiophenes units would enable the intramolecular ring closure.

The modified structure **108** can be synthesized as depicted in Figure 38, following pathway A (black arrow) or pathway B (grey arrows), where the precursor molecule for macrocyclization can be assembled in one step or stepwise, respectively. For example, in pathway A, quarterthiophene building block **109** can be constructed from previously established terthiophene building block (**83** or **101**) in a *Suzuki-Miyaura* cross-coupling reaction followed by borylation. Alternatively (pathway B), the quarterthiophene chain can be built-on via *Suzuki-Miyaura* cross-coupling of tetrasubstituted PCP **82** with a monothiophene building block, followed by bromination (see building block **110**) and a subsequent second *Suzuki-Miyaura* cross-coupling reaction to provide the desired precursor for the macrocyclization.

Figure 38: Possible synthetic strategies A and B for preparation of modified loop precursor **108** for nine thiophenebased molecular loop. PG is an abbreviation for protecting group.

On the other hand, the design of a loop scaffold can be revised by substituting thiophene moieties with cycloparaphenylenes (CPPs). Recently, *He et al.*⁶⁷ published a synthesis of a library of molecular loops where ps-*meta* PCP was implemented in the CPPs backbone. They prepared four molecular loops that differed in size bearing six to nine CPP moieties. The smallest of the reported structures **112** is illustrated in Figure 39 and can be used as a basis for the novel model compound **111**. Notably, all key intermediates and the final step of the reported macrocycles PCP-[*6*]CPP (**112**) were prepared in decent yield between 66 and 71%.⁶⁷

Figure 39: Development of new design 111 based on the previously published scaffold 112.

Besides a small loop size, a new design enables the direct introduction of the masked thiolbearing anchoring groups without an acetylene spacer. This direct connection would provide a higher conductivity, already demonstrated in previous work on the example of ps-para PCPbased model compounds where the molecules with acetylene spacer and without reveal conductance values of about 3.7 x 10⁻⁶G₀ and 1.3 x 10⁻⁵ G₀, respectively.^{72,117} Therefore, a novel compact design seems to be encouraging for the investigations in the MCBJ junctions. The retrosynthetic analysis of the desired molecular loop (111) is drafted in Figure 40. For the immobilization of the molecule in the junction, thioacetate-functionalized anchoring groups are required. They can be introduced as a last-step modification via a transprotection of more stable sulfur thioether. The designed molecular loop architecture can be constructed via reductive elimination from the corresponding macrocycles **113**. The bottleneck of this strategy is also the macrocyclization reaction, which should be accessible by a nickel-mediated Yamamoto coupling¹⁹² similar to the macrocycles **112**.⁶⁷ The scaffold of the precursor molecule can be assembled via two-fold Sonogashira-Hagihara cross-coupling from monoiodo 115 and free acetylene 114 building blocks. The latter should be accomplishable from a two-fold Suzuki-*Miyaura* cross-coupling reaction and by profiting from the homologation of already available dialdehyde dibromo PCP 82.

Figure 40: Proposed retrosynthetic analysis for the alternative molecular loop (111).

Chapter 4

4 Dimer: An Infinity Loop.

This chapter covers the question that arose in *Chapter 3*, namely the topology of the cyclic dimeric structure isolated during several loop closure attempts. Here we summarized all pieces of evidence for the conformation of the intriguing structure obtained from two-dimensional NMR spectroscopy and molecular mechanics geometry optimization (MM2 using Chem 3D), which allowed us to propose the possible structure. In addition, the butadiyne comprising dimer was transformed into the thiophene analogue. With both dimeric structures in hand, which were prepared from the racemic starting materials, preliminary investigations of the optical properties of PCP-containing cyclic dimers were performed to get insight into the topology and conjugation of macrocycles. The following introduction will provide an overview of already synthesized PCP-based macrocycles and elucidate their optical properties.

4.1 Introduction

4.1.1 Optical-Active Pseudo-Ortho-[2.2]Paracyclophane Containing Macrocycles

Macrocyclic structures have always fascinated scientists due to their beautiful topology and remarkable photophysical properties.^{135,193,194} The "simple" through-bond conjugated macrocycles comprising benzene, thiophene, and pyridine building blocks have already been extensively studied.^{150,195–199} But there is still a lack of studies for through-space conjugated examples, which can be constructed by implementing PCP building block in macrocyclic architecture.^{65–69}

Figure 41: Propeller- and X-shaped PCP comprising structures.

However, chiral PCP-based building blocks have already demonstrated their efficiency in constructing optically active linear oligomers/polymers,^{200,201} propeller- ^{202,203} and X-shaped structures (*see* Figure 41).²⁰⁴ All compounds showed good photoluminescence quantum yields (Φ_{PL}), intense circularly polarized luminescence (CPL) emission^{205,206} with excellent CPL dissymmetry factors (g_{lum}).²⁰⁷ Due to their potential application as CPL–active materials, PCP-based macrocycles with a right- and left-handed helicity induced by the three-dimensional scaffold are intriguing candidates for chiroptical investigations (*vide infra*).^{76,208}

Figure 42: Overview of ps-*ortho*-PCP-based dimeric and trimeric macrocycles with selected optical characteristics. In parentheses are the λ_{max} values of pronounced shoulders. Abs is an abbreviation for absorption and em for emission. Φ_{PL} is photoluminescence quantum yield, and g_{lum} is the CPL dissymmetry factor.

In 2017, *Hasegawa et al.* reported a pronounced enhancement in circular dichroism spectra of cyclic oligothiophene enantiomers bridged by two pseudo-*ortho* PCP corners (see Figure 42, **116**).⁷⁰ Furthermore, the oligothiophene double-decker exhibit an intriguing twisted topology according to single-crystal X-ray diffraction analysis and DFT calculations. Four years later, the same research group reported a similar conformation twist for the cyclic dimer **117**, where both ps-*ortho* PCP moieties were bridged by biphenyl.²⁰⁹ Besides the dimeric structure **117**; also cyclic trimer **118** was synthesized and analyzed. Both structures possess at least three-

fold higher photoluminescence quantum yields as thiophene bridged dimer **116**. In addition, both **117** and **118** demonstrated a similar high dissymmetry factor of 1.6×10^{-3} in CPL measurements. Not only the disubstituted (**116** – **118**) but also the tetrasubstituted PCP-based building blocks were implemented in a cyclic dimeric scaffold (see Figure 42, **119**), demonstrating excellent CPL emitters' behavior with significant CPL dissymmetry factors of 1.5×10^{-3} and good photoluminescence quantum yields of 62%.²⁰⁷ However, recently reported cyclic dimer analogue **120** by *Tanaka et al.* did not emit CPL. On the other hand, trimeric **121** analogue exhibited intense CPL emissions and showed high dissymmetry factors (2.5×10^{-3}) with a high quantum yield of 77% compared to the corresponding dimer **120** with only 41%.²¹⁰ A comparison of absorption and emission spectra of all four dimers revealed that thiophene bridged dimer **116** showed a bathochromic shift in absorption and emission (see Figure 42).

4.1.2 Optical-Active Pseudo-Meta-[2.2]Paracyclophane Containing Macrocycles

Notably, all the above-discussed molecules refer to the macrocycles with pseudo-*ortho* connectivity to the PCP building blocks. Implementing PCP with a pseudo-*meta*-connectivity in the macrocycles is not as popular as for pseudo-*ortho* analogue and still remains pretty underexplored. *He et al.* recently reported a library of cycloparaphenylenes (CPP)-based macrocycles with a ps-*meta*-diethynyl-PCP core, which differed in size from six (**112**) to nine (**124**) CPP units (see Figure 43).⁶⁷

Figure 43: Schematical overview of prepared macrocycles and selected spectroscopical data. Abs is an abbreviation for absorption and em for emission. Φ_{PL} is quantum yield, and g_{lum} is the CPL dissymmetry factor.

The macrocycles exhibit a size-dependent increase in quantum yield from 69% to 82% and moderately large CPL dissymmetry factor from 2.9 x 10^{-3} to 1.9×10^{-3} . In addition, the absorption maxima showed a slight bathochromic shift from 326 nm to 330 nm according to the loop increase from the smallest macrocycles with six CPPs (**112**) to the biggest one with nine (**124**). Interestingly, the absorption maxima of CPP macrocycles are size-independent. In addition, emission spectra demonstrated a size-dependent hypochromic shift from 472 nm to 456 nm.⁶⁷

4.2 **Project Description**

The aim of this chapter is the corroboration of the topology of the dimeric structure isolated in Chapter 3. The intriguing cyclic dimer **103** was established via an intermolecular homocoupling reaction as a major by-product of the desired molecular loop **81**. Thus, the dimeric framework comprises two PCP moieties connected over butadiynes on thiophene chains (*see* Figure 44a). Initially, we considered the dimer as a proof-of-concept structure to investigate the conductivity from the first PCP moiety to the second via septithiophene chains (*see* 4.5.2). However, the dimeric topology's behavior is comprehensive and may provide unexpected photophysical properties.

Figure 44: (a) Dimeric structure obtained via intermolecular homocoupling described in Chapter 3. (b - c) Sketch of proposed parallel (b) and crossed (c) topology for the investigated dimer.

Therefore, our focus of interest moved to the elucidation of the dimeric structure (**103**). In principle, there are two possible options for intermolecular ring closure: parallel or crossed (see Figure 44b-c). The first option implies that the thiophene chains are arranged parallel, and the second demonstrates the cyclic ribbon twisted around the central axis. The latter provides the figure-of-eight type (lemniscate) structure, indicating a higher degree of stability and symmetry than a parallel constitution. Furthermore, the lemniscate-type ribbon induces a helical chirality through a three-dimensional thiophene moiety, which is not intrinsically chiral. Besides the initial planar chirality of the PCP, such a helical chirality provides several possible enantio- and diastereoisomers of the dimer **103**.

4.3 Results and Discussion

4.3.1 Topology

The dimer was formed as a major product in the copper-mediated and palladium-catalyzed attempts to synthesize the macrocyclic loop structure (**81**) described in Chapter 3. The best yield was obtained for copper-mediated reactions (8 - 38%), depending on the used conditions (see Tables 4 and 6). An example of used conditions is illustrated in Scheme 23. Furthermore, the following scheme demonstrates a dimer topology on the instance of an enantiopure dimer **103** prepared from enantiopure starting material **102**. The further options for the configuration will be discussed in subchapter 4.5.1.

Scheme 23: Synthesis of the dimer **103** using *Glaser-Hay* conditions. The dimer is depicted as an enantiopure lemniscate structure as one of the possible configurations.

First insights concerning the macrocyclic dimeric structure **103** were observed in MALDI-ToF-MS and were supported by the retention times obtained in the GPC chromatogram (see Figure 35). The GPC separation allowed the isolation of macrocyclic dimer **103**, trimer **104**, and tetramer **105**. Unfortunately, the amount of the isolated tetrameric structure (**105**) was too low for a proper ¹H NMR characterization. Therefore, solely the dimer **103** and trimer **104** were examined. Comparing ¹H NMR spectra of starting material **102** to the obtained dimer **103** and trimer **104** validates the absence of free acetylene. Hence, this observation and assignment of all other protons verified the macrocyclic structure for dimer **102** and trimer **103**. Interestingly, the most pronounced chemical shift was indicated for the protons of thiophene moiety in both dimer **103** and trimer **104** (see Figure 45, yellow dashed frame) compared to starting material **102**. Furthermore, a slight chemical shift allows distinguishing between the dimeric and trimeric constitutions.

Figure 45: Comparison of ¹H NMR spectra (400/500 MHz, CH₂Cl₂, 298 K) of starting material **102**, dimer **103**, and trimer **104**. For better visibility, the solvent peak was removed, and the main protons were assigned with dashed colored frames corresponding to the colors in depicted structure: violet for aldehyde, blue for aromatic protons for PCP-core, and yellow for thiophene. The protons of ethynyl bridges are indicated with a black dashed line. For simplicity, the protons corresponding to hexyl chains were not marked.

The ¹H NMR spectra of both the dimer (**103**) and trimer (**104**) demonstrated a high degree of symmetry. In the case of the dimer (**103**), such symmetry leads to the conclusion of a definite twist in the thiophene ribbon similar to the twist in the previously discussed structures **116** and **117**. To prove this hypothesis, the identity of the dimer **103** was corroborated by nuclear overhauser effect (NOE) spectroscopy to distinguish between crossed and parallel constitutions (spectrum is presented in the *Supporting Information*). However, the NOESY results were inconclusive, demonstrating that the structure is either crossed or opened. Therefore, combining all results and MM2 energy-minimization calculations, we proposed a possible configuration for the enantiopure dimer depicted in Figure 46. The front view demonstrated the figure-of-eight configuration and crossed topology. Nevertheless, the detailed view from the side indicates a considerable distance between the protons from *vis-à-vis* located thiophenes connected to the butadiynes (*see* Figure 46, red arrow in side view). This observation is in accordance with the aforementioned results of NOE spectroscopy.

4.3.2 Formation of Thiophene Dimer

The next synthetic step was the transformation of the butadiyne motif of dimer **103** into a more stable bridging thiophene leading to the septithiophene-linked dimer 125. Surprisingly, this transformation demonstrated several challenges leading to several side reactions and conclusively providing a complex mixture. The transformation investigation started with the mild method recently used in our laboratories and showed an almost quantitative yield of 96% after 10 minutes at room temperature.¹⁸⁹ Firstly, these conditions were appealing due to the short reaction time and complete conversion without the usage of elevated temperatures. The transformation occurred over the formation of trisulfur radical anions from elemental sulfur and base in DMF.^{211,212} Therefore, the sulfur was stirred with sodium hydrogen sulfide in DMF (see Table 8, entry 1), providing the desired product **125** and several by-products which were hardly separable. To facilitate the purification, screening for the most suitable conditions was performed. Next, we investigated the standard conditions for transformation using the disodium sulfide as a sulfur source for the thiophene cyclization. The reaction mixture was dissolved in wet DMF and stirred at 90 °C for 120 minutes providing the complex mixture with inconclusive products (entry 2). To exclude the insufficient amount of water as a proton source, 2-methoxy ethanol was added to the next attempt. The combination of 2-methoxy ethanol and DMF allowed increasing the temperature to 120 °C to accelerate the product formation (entry 3). Unfortunately, this modification also lead to a complex mixture. To circumvent the solubility issues of the starting material in DMF, THF was added to the reaction to improve the solubility (entry 4). After stirring at 80 °C for 90 minutes, by MALDI-ToF-MS the formation of the desired thiophene dimer and several by-products was detected. Thereby, we recognized that the exchange of the solvent is crucial for the reaction to provide the full conversion and minimize formation of by-products.

Table 8: Screening conditions for the transformation of butadiyne motif of dimer **103** into bridging thiophene **125**. For clarity, the schematical representation of the reaction is depicted in the example of enantiopure dimeric structure.

Entry	Regent	Additive	Solvent	Temp	Time	MALDI-TOF-MS
				[°C]	[min]	
1	S ₈ , NaSH x	-	DMF	RT	10	Traces of 125,
	H ₂ O					several by-products
2	Na₂S x	-	DMF	90	120	Complex mixture
	9H2O					-
3	Na₂S x	-	DMF/2-methoxy	120	120	Complex mixture
	9H ₂ O		ethanol			
4	Na ₂ S x	-	DMF/THF	80	90	125 and several by-
	9H2O					products
5	Na₂S x	-	xylene/2-	140	90	125 and several by-
	9H ₂ O		methoxyethanol			products
6	Na₂S x	Cul	xylene	140	90	No product,
	9H ₂ O					complex mixture
7	Na₂S x	15-	xylene	140	90	125 (49%) ^[a]
	9H2O	Crown-5	-			

^[a] isolated yield after upscaling of the reaction conditions.

Therefore, a high boiling solvent such as *para*-xylene was chosen. To our delight, the new solvent combined with 2-methoxy ethanol at 140 °C provided the formation of desired structure (entry 5).^{150,213} However, several by-products were still detected. For the next attempt, a catalytic amount of Cul, which is known to be an accelerator during the thiophene-cyclization step, was used.^{214,215} This strategy led to the formation of the complex mixture (entry 6), where the desired **125** structure was not detected. Therefore, 15-crown-5 ether was used as an additive, leading to the formation of desired structure almost exclusively according to the MALDI-Tof-MS (entry 7). Using the last discussed conditions, the desired thiophene dimer **125**
was isolated in 49% yield after purification by GPC. The isolated structure was identified and fully characterized by ¹H and ¹³C{¹H} NMR spectroscopy. The latter was extracted from the two-dimensional NMR spectra due to the insufficient amount (see Supporting Information for Chapter 4).

4.3.3 Preliminary Optical Investigations

This subchapter summarizes and discusses the preliminary results of optical investigations of the molecules prepared in Chapters 3 and 4. All measurements were performed in chloroform at room temperature when nothing else was explicitly mentioned.

4.3.3.1 Steady-State Optical Spectroscopy

First, the absorption and emission spectra of linear building blocks, namely terthiophene derivative 92 and protected loop precursor 93, were compared to the macrocyclic dimer 103 and thiophene dimer **125** structures, as depicted in Figure 47. Terthiophene derivate bearing TIPS-acetylene 92 shows its absorption maximum at 363 nm. After introducing a PCP moiety as the central subunit, the absorption maximum of the dimer precursor 93 demonstrates a bathochromic shift concerning the thiophene derivative 92 and is located at 424 nm. This redshift of 61 nm can be rationalized by an increase in π -conjugation length, which indicates the conjugation through the PCP core. In addition, the evidence of conjugation can be confirmed with the comparative literature known linear septithiophene, where the maximal absorption wavelength was found at 440 nm in chloroform.²¹⁶ Furthermore, **93** demonstrates a more or less pronounced shoulder around 375 nm, which disappears after the macrocyclization. The absorption maximum of dimer (103) and thiophene dimer (125) are also redshifted compared to the linear building blocks (92 and 93) and were found at 427 nm and 435 nm, respectively. These observations can also be associated with the further increase of conjugation for the macrocycles, implying higher conjugation due to better delocalization of the thiophene dimer **125** (sp² carbon) compared to the dimer **103** (sp center of acetylene), which is in accordance with previously published results.⁶⁶

The emission spectra of all four compounds (**92**, **93**, dimer (**103**), and thiophene dimer (**125**)) follow the same trend as the absorption spectra and demonstrate a bathochromic shift corresponding to the increased conjugation. Aside from that, the terthiophene derivate **92** has a distinctive shoulder at 445 nm nearby the intense emissions peak maxima at 466 nm, resulting in a comparable *Stokes* shift of 103 (82) nm. Unsurprisingly, the remaining **93**, dimer **103**, and thiophene dimer **104** demonstrated a further increase in *Stokes* shift of 148, 154, and 191 nm according to the corresponding emission maxima at 572, 581, and 626 nm,

respectively. These observations were assigned to increased molecules' size and probably an enhanced degree of freedom.

Figure 47: (a) Schematic representation of measured structures. For clarity, the dimer (103) and thiophene dimer (125) are depicted on the enantio pure example. (b) Absorption (solid lines) and emission (dashed lines) spectra of terthiophene derivative 92 (mustard yellow), protected loop precursor 93 (pink), dimer 103 (dark red), and thiophene dimer 125 (blue) in chloroform. Terthiophene derivative 92, protected loop precursor 93, dimer 103, and thiophene dimer 125 were exited at excited at 365, 424, 400, and 440 nm, respectively. Due to the limited substrate quantities, both absorption and emission spectra for all compounds were normalized. (c)Table 9: Comparison of the main absorption and emission values of terthiophene derivative 92, loop precursor 93, dimer 103, and thiophene dimer 125. In parentheses are the λ_{max} values of pronounced shoulders.

Previously isolated trimer (**104**) and tetramer (**105**) structures allowed us to elucidate the photophysical properties of macrocycles depending on their size (see Figure 48(b)). The absorption maxima of dimer (**103**), trimer (**104**), and tetramer (**105**) appeared at 427, 438, and 443 nm providing a redshift upon increasing the size, as depicted in Figure 48(a) and summarized in Figure 48(c). This observation also suggests an increase of a cyclic π -conjugation with the increasing ring size. Notably, this observation differed from the recently published results of the library of 1,3-butadiyne-linked pseudo-*meta*-PCP macrocycles providing the same absorbance and emission maxima independently of the size.⁶⁹

Furthermore, the emission spectra demonstrated a slight hypsochromic effect for trimer and tetramer relative to a dimer. Conclusively providing the decrease in *Stokes* shift from dimer to tetramer (154, 137, and 135 nm). The comparable size-dependent redshift in absorption and blueshift in emission trends were also found for cyclo[*n*]thiophene²¹⁷ and the pseudo-*meta*-PCP core implemented in cycloparaphenylene (CPP)⁶⁷ macrocycles (*see* Figure 43).

Figure 48: (a) Absorption (solid lines) and emission (dashed line) spectra of a dimer (**103**, dark red), trimer (**104**, dark cyan), and tetramer (**105**, purple) in chloroform. All three compounds were excited at 400 nm. Both absorption and emission spectra for all compounds were normalized due to the low quantity. (b) Schematic representation of measured structures. (c)**Table 10:** Comparison of the main absorption and emission values of dimer (**103**), trimer (**104**), and tetramer (**105**).

4.3.3.2 <u>Solvatochromism</u>

Next, the influence of solvent effects on the optical properties of terthiophene **92**, loop precursor **93**, dimer (**103**), and thiophene dimer (**125**) was explored (see Figure 49). Firstly, commonly used solvents in spectroscopy, such as acetonitrile and methanol, were investigated. Unfortunately, the desired loop precursor and macrocycles were not sufficiently soluble in these solvents. Therefore, the behavior of **92**, **93**, dimer (**103**), and thiophene dimer (**125**) was examined only in solvents allowing sufficient solubility, such as cyclohexane, toluene, ethyl acetate, and chloroform. Typically, the absorption spectra are less influenced by the solvent effects due to the short time in which absorption occurs.

In contrast, the first excited state of the investigated substrates can be stabilized with the surrounding (mostly polar) solvent molecules leading to a decrease in energy and hence a red shift in emission, the so-called solvatochromic effect. Such a solvatochromic effect is usually observed for excited state transitions where a charge transfer state is populated, and hence a dipole moment is generated. Such a charge transfer state can generally be stabilized with a more polar solvent, providing a red-shift emission with an increase in polarity (*vide infra*).²¹⁸

As mentioned above, the emission spectra provide apparent solvatochromic shifts, and therefore in the following discussion, we will focus on the comparison of fluorescence spectra of selected molecules in different solvents (see Figure 49). The emission peak maxima of terthiophene derivative (**92**) stay identical for the cyclohexane, toluene, and ethyl acetate measurements at 461 nm, demonstrating only a light redshift in chloroform to 466 nm. On the other hand, the shoulder gets more pronounced in the cyclohexane measurement compared to the other solvents. The solvatochromic shift is more distinct in the emission data of loop precursor (**93**), providing the solvent-dependent wavelength maxima at 510, 529, 540, and 572 nm in cyclohexane, toluene, ethyl acetate, and chloroform, respectively. Macrocycles also follow the same trend (the data is summarized in Figure 49f), demonstrating a bathochromic shift from cyclohexane to chloroform which is visualized in Figure 49e under 366 nm light. Notably, chloroform obscures the vibronic structures of **93**, dimer (**103**), and thiophene dimer (**125**). In contrast, they get more pronounced with decreased polarity from ethyl acetate to cyclohexane, demonstrating a defined shoulder in cyclohexane.

Figure 49: Absorption (solid lines) and emission (dashed lines) spectra of thiophene derivative (**92**), loop precursor (**93**), dimer (**103**), and thiophene dimer (**125**) in different solvents (a-d). Both absorption and emission spectra for all compounds were normalized. (e) Photograph showing the fluorescence for loop precursor (**93**), dimer (**103**), and thiophene dimer (**125**) in different solvents and solid state was taken under 366 nm wavelength light with a TLC visualizer. (f)**Table 11:** Comparison of the main absorption and emission values of **92**, **93**, dimer (**103**), and thiophene dimer (**125**) in different solvents. In parentheses are the λ_{max} values of pronounced shoulders.

4.3.3.3 Quantum Yield

Intrigued by the solvatochromic results, we determined the absolute quantum yields (QY) for loop precursor (93) and macrocycles 103 and 125 in cyclohexane, toluene, ethyl acetate, and chloroform. The average of three cycles for each measurement was taken to decrease the noise level, and the obtained data are summarized in Table 12. Interestingly, the lowest efficiency was observed for dimer (103) with values of 9.3 (\pm 0.15) and 10.6 (\pm 0.19)% in apolar solvents compared to loop precursor (93) and thiophene dimer (125). On the other hand, this trend was turned in ethyl acetate and chloroform, providing the highest values for the dimer with efficiency of 8.9 (\pm 0.14) and 10.9 (\pm 0.52)%, respectively.

Table 12: Comparison of quantum yields of 93, dimer (103), and thiophene dimer (125), which were taken in different solvents.

	Φ _f (%) ^[a]			
Compound	Cyclohexane	Toluene	Ethyl Acetate	Chloroform
93	10.1 (±0.23)	11.6 (±0.24)	8.2 (±0.05)	7.7 (±0.06)
103	9.3 (±0.15)	10.6 (±0.19)	8.9 (±0.14)	10.9 (±0.52)
125	11.4 (±0.35)	11.4 (±0.20)	8.5 (±0.07)	9.6 (±0.30)

^[a]The data summarized in the table above are the average values calculated from three measurements to decrease the noise level. Standard deviation is given in paratheses. The measurements were done together with *A. D'Addio*.

4.4 Summary

In summary, the topology of dimeric structure (**103**) obtained by several macrocyclization attempts in *Chapter 3* was elucidated using several NMR techniques and molecular modeling on MM2 level of theory. Elaborated configuration consists of two PCP moieties connected via two parallel arranged chains of thiophenes joined in the middle via butadiyne. Due to the PCP and thiophene distortion, both chains exhibit a twisted geometry, leading to the topology of the dimer as a figure-of-eight structure from the front view. To further verify our findings, more insightful DFT calculations or single crystal X-ray diffraction are necessary, where the crystal breeding was ongoing during the writing of this thesis.

Initially, we considered the dimer (**103**) as a proof-of-concept structure (see 4.5.2) to investigate the conductivity from the first PCP moiety to the second via septithiophene chains. Therefore, the next step was successfully transforming butadiyne dimer into the thiophene analogue (**125**). The thiophene dimer (**125**) identity was proven by MALDI-ToF-MS and two-dimensional NMR techniques allowing the assignment of ¹H and ¹³C{¹H} NMR spectra, where the latter was extracted from two-dimensional NMR.

Furthermore, the prepared dimers (**103** and **125**) demonstrated more comprehensive behavior and provided intriguing optical results. Firstly, the electronic communication through the PCP core and size-dependent conjugation in isolated macrocycles was confirmed by absorption data. In addition, PCP moiety bearing thiophene chains (**93**) and both dimers (**103** and **125**) demonstrated solvatochromism which can be assigned to the charge transfer from the pulling aldehydes. Unfortunately, the quantum yield was up to seven times lower than in PCPcontaining cyclic structures discussed in the introduction. However, despite the already performed investigations, both dimeric structures have more exciting properties discussed in the following outlook.

4.5 Outlook

4.5.1 Chirality

Planar chirality of PCP-based derivatives was already discussed in detail in chapter 2.1.1.3, on the example of two-fold substituted PCP structures. Tetrasubstituted bis-(para)-pseudometa derivate (**93**) also demonstrates planar chirality (see Figure 50a). Therefore, the molecular loops bearing chiral PCP building block as central moiety would also lead to a planar chirality and have either *R*p or *S*p configuration. On the other hand, both thiophene moiety and cyclo[*8*]thiophene macrocycle (**77**) are achiral. However, replacing one thiophene building block with PCP-moiety introduces a step in the planar macrocycle (**74**), which induces helical chirality (*see* Figure 50b).

The dimeric structures which were discussed (**103** and **125**) in this chapter consist of two chiral PCP-building blocks and, on account of this, can have the following configuration, namely (Rp,Rp), (Sp,Rp), and (Sp,Sp). Furthermore, the configuration of one PCP is twisted concerning the other one (see Figure 50). This twist in the double helix gets more pronounced after the transformation of butadiene to thiophene dimer. The distortion may also induce the helical chirality (*M* or *P*) in dimer (**103**) and thiophene dimer (**125**), providing another exciting point for further structural investigations.

Figure 50: Development of possible chiralities in prepared dimers (103 and 125) compared to chiralities in initial molecular loop design 74. (a) Schematical representation of planar chirality in building block 93 induced by tetrasubstituted PCP moiety used in the preparation of dimers. (b) Achiral cyclo[8]thiophene (77) and helical chirality in loop 74, which is influenced by replacing thiophene with PCP-moiety. Dimer 103 (c) and thiophene dimer 125 (d) illustrate a double helix twist, which may also induce helical chirality. Red arrows demonstrate the twist direction. Aldehydes, solubility, and anchoring groups were hidden for clarity.

Tetrasubstituted *rac*-bis-(*para*)-pseudo-*meta* derivate **82** can be separated by chiral HPLC providing enantio pure isomers. However, in the scope of this thesis, only one of the enantiomers was converted to the corresponding dimer **103**. Therefore, all the previously discussed preliminary investigations were performed with dimeric structures **103** and **125** prepared from racemic starting material **82**.

4.5.2 Proof-of-Concept

Furthermore, the dimer skeleton can still be investigated in electrode-molecule-electrode junction as a proof-of-concept structure to approve whether the length of the thiophene chain is suitable or not, consequently facilitating further molecular design modifications. For this purpose, an appropriate compound **127** can be prepared in two or three steps from the already available thiophene dimer (**125**), as depicted in Figure 51. As previously described in the retrosynthetic analysis for the molecular loop **74**, the electrode anchoring groups can be introduced in the last step. However, the new architecture of the main skeleton requires a fourfold *Sonogashira-Hagihara* cross-coupling instead of a two-fold one to provide desired **127**. The free acetylene intermediate (**126**) for cross-coupling reaction should be accessible from the corresponding aldehyde **125** by treating with the *Bestmann-Ohira* reagent or *Corey-Fuchs* reaction sequence.

Figure 51: Synthetic strategy for the synthesis of proof-of-concept dimer 127. All disconnections in the retrosynthetic analysis are marked with colors dependent on the reaction type.

Supporting

Information

5 Supporting Information

5.1 Contributions

All compounds were synthesized and characterized by Ksenia Reznikova, except compound **51**, prepared by *Dr. Laurent Jucker*, and *cis*-Pt(dppp)Cl₂-complex, prepared by *Adriano D'Addio*. The measurement of two-dimensional NMR spectra and the full assignments for **OPE5** precursor (**8**), **OPE5** reference (**27**), and thiophene dimer (**125**) were done by *Prof. Dr. Daniel Häussinger* and his students. *Prof. Dr. Daniel Häussinger* also performed the NOESY and DOSY experiments for the dimer (**103**) and the following interpretation.

All MCBJ experiments were performed by *Chunwei Hsu* from *Prof. Dr. Herre S. J. van der Zant's group. Werner M. Schosser* and *Dr. Katawoura Beltako* from *Prof. Dr. Fabian Pauly's* group did theoretical calculations.

5.2 General Information

All commercially available chemicals and solvents were purchased from Sigma-Aldrich, Acros, Apollo Scientific, Alfa Aesar, and Fluorochem and used without further purification. Anhydrous solvents were purchased from Sigma-Aldrich and stored over molecular sieves (4 Å). All reactions with easily oxidized or hydrolyzed reagents were performed under Argon 4.8 or 5.0 from PanGas using Schlenk techniques and oven-dried glassware. Normal Phase column chromatography was performed on silica gel P60 (40-63 µm) from SilicycleTM using technical grade solvents. TLC was performed with silica gel 60 F254 aluminum sheets with a thickness of 0.25 mm purchased from Merck. Recycling gel permeation chromatography (GPC) was performed on a Shimadzu Prominence System equipped with SDV preparative columns from Polymer Standards Service (two Showdex columns in series, 20 x 600 mm each, exclusion limit: 30000 g/mol) with chloroform as solvent. NMR measurements were recorded using a Bruker DPX-400 (400 MHz for ¹H and 101 MHz for ¹³C), a Bruker DRX-500 (500 MHz for ¹H and 126 MHZ for ¹³C), or a Bruker Ascend Avance III HD (600 MHz for ¹H and 151 MHz for ¹³C) spectrometer at 298 K it nothing else is explicitly noticed. The instruments were equipped with a direct observe 5 mm BBFO smart probe (400 and 600 MHz), an indirect detection 5 mm BBI probe (500 MHz), or a five-channel cryogenic 5 mm QCI probe (600 MHz). The chemical shifts are reported in parts per million (ppm) referenced to the residual solvent peak. The coupling constants (J) are given in hertz (Hz), and multiplicity is reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). All NMR solvents were purchased from Cambridge Isotope Laboratories, Sigma- Aldrich or Fluorochem. MALDI-ToF mass spectra were recorded on a Brucker MicroFlex LRF spectrometer using trans-2-[3-(4*tert*-Butylphenyl)-2-methyl-propenylidene]malononitrile (DCTB) as a matrix. High-resolution mass spectra (HR-MS) were measured as HR ESI-ToF-MS with a Bruker Maxis 4G instrument, where some of the investigated compounds were less prone to form adducts with common ions like H⁺, K^{+,} or Na⁺. Therefore, silver ions were used to increase the signal intensity.^{219,220} UV-Vis absorption spectra were recorded on a Jasco V-770 spectrophotometer equipped with a Peltier-thermostatted cell holder (ETCR-762) set to 25°C. Emission spectra in solution were recorded on a Jasco FP-8600 spectrofluorometer equipped with a Peltier-thermostatted cell holder (ETC-815) set to 25°C. Quantum yields were determined on the same spectrofluorometer equipped with a nitrogen-flushed integrating sphere (ILFC-847S). Each measurement was repeated three times, and the average of the three calculated quantum yields was then reported. The UV-Vis and fluorescence spectra were measured in a 1 cm quartz glass cuvettes and quantum yield in 0.5 cm quartz glass cuvettes.

5.3 Supporting Information: Chapter 1

Previously reported compounds: 9-ethynyl-phenanthrene (**13**), 1,4-bis(hexyloxy)benzene (**15**) and 2,5-diiodobenzene-1,4-diol (**26**) were prepared following reported procedures.^{36,42,221}

Synthesis of 1,4-bis(hexyloxy)-2,5-diiodobenzene (16):

Periodic acid (10.9 g, 47.4 mmol, 0.7 eq.) was dissolved in methanol (180 ml) and stirred for 10 minutes before iodine (23.7 g, 93.3 mmol, 1.3 eq.) and hexyloxybenzene **15** (20.0 g, 71.8 mmol, 1.0 eq.) were added. The reaction mixture was stirred at 70 °C for 16 h. Afterwards, NaOH (aq. 1 M) was slowly added to the hot reaction mixture until the brown-red color disappeared. The precipitate was filtered off and recrystallized from ethanol to give the product **16**

(28.2 g, 53.1 mmol, **74%**) as a colorless solid.

¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 2H), 3.93 (t, *J* = 6.5 Hz, 4H), 1.84 – 1.75 (m, 4H), 1.53 – 1.46 (m, 4H), 1.38 –1.31 (m, 8H), 0.94 – 0.89 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCI3): δ 153.03, 122.97, 86.47, 70.53, 31.62, 29.27, 25.86, 22.74, 14.18 ppm.

The analytical data are in agreement with the ones reported in ref.^{36,222}

Synthesis of 4-(2,5-bis(hexyloxy)-4-iodophenyl)-2-methylbut-3-yn-2-ol (10):

1,4-bis(hexyloxy)-2,5-diiodobenzene (**16**) (5.60 g, 10.6 mmol, 1.4 eq.) and 2-methyl-3-butyn-2-ol (**19**) (0.7 ml, 7.42 mmol, 1.0 eq.) were dissolved in THF (50 mL) and piperidine (10 mL). The reaction mixture was degassed with Argon for 20 min. $Pd(PPh_3)_2Cl_2$ (223 mg, 318 µmol, 3 mol%) and Cul (62 mg, 318 µmol, 3mol%) were added and the reaction mixture was stirred for 16 h at RT. Afterwards, the reaction mixture was

plugged over Celite[®] and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (CH₂Cl₂) to give compound **10** (2.68 g, 5.50 mmol, **74%**) as a yellow oil which solidified at room temperature.

¹H NMR (400 MHz, CDCl₃): δ 7.25 (s, 1H), 6.79 (s, 1H), 3.92 (t, *J* = 6.4 Hz, 4H), 2.10 (s, 1H), 1.83 – 1.73 (m, 4H), 1.62 (s, 6H), 1.53 – 1.44 (m, 4H), 1.37 – 1.29 (m, 8H), 0.94. – 0.87 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 154.50, 151.88, 123.84, 116.30, 113.12, 98.70, 87.59, 78.33, 70.24, 69.84, 65.90, 31.70, 31.62, 31.55, 29.41, 29.27, 25.87, 25.81, 22.77, 22.73, 14.19, 14.18 ppm.

HR-MS (ESI, +): *m*/z calcd. for C₂₃H₃₅IO₃Na [M+Na]⁺ 509.1523, found 509.1523.

Synthesis of Compound 20:

Previously prepared free acetylene **13** (594 mg, 2.94 mmol, 1.1 eq.) and iodo-compound **10** (1.30 g, 2.67 mmol, 1.0 eq.) were dissolved in THF (40 mL) and piperidine (10 mL). The reaction mixture was degassed with Argon for 20 min. Pd(PPh₃)₄ (309 mg, 267 µmol, 10 mol%) and Cul (52 mg, 267 µmol, 10 mol%) were added and the reaction mixture was stirred for 16 h at RT. Afterwards, the reaction mixture was plugged over celite and the solvent was evaporated under reduced pressure. The crude was

purified by column chromatography (silica gel, cyclohexane/ CH_2Cl_2 (1:2) to (pure CH_2Cl_2)) to give HOP-protected acetylene **20** (1.30 g, 2.32 mmol, **87%**) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.75 – 8.64 (m, 3H), 8.08 (s, 1H), 7.86 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.74 – 7.63 (m, 3H), 7.62 – 7.57 (m, 1H), 7.11 (s, 1H), 6.97 (s, 1H), 4.10 – 4.00 (m, 4H), 2.26 (s, 1H), 2.03 – 1.92 (m, 2H), 1.89 – 1.79 (m, 2H), 1.67 (s, 6H), 1.61 – 1.49 (m, 4H), 1.43 – 1.28 (m, 8H), 0.97 – 0.90 (m, 3H), 0.90 – 0.83 (m, 3H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 153.95, 153.72, 131.62, 131.42, 131.31, 130.45, 130.20, 128.69, 127.55, 127.49, 127.18, 127.06, 127.05, 122.80, 122.77, 120.08, 116.86, 116.56, 113.90, 113.56, 99.44, 93.41, 90.76, 78.76, 69.66, 69.52, 65.92, 31.79, 31.76, 31.59, 29.64, 29.47, 25.89, 25.87, 22.80, 22.76, 14.22, 14.15 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₉H₄₄O₃Na [M+Na]⁺ 583.3183, found 583.3173.

Synthesis of Compound 21:

HOP protected compound **20** (1.0 g, 1.78 mmol, 1.0 eq.) and NaOH (712 mg, 17.8 mmol, 10 eq.) were dissolved in toluene (40 mL) and the reaction mixture was put in previously preheated oil bath and stirred for 16 h at 110 °C. Afterwards, the reaction mixture was diluted with toluene, washed with water (3x), brine, dried over Na₂SO₄, filtered, and the solvent was evaporated under reduced pressure. The crude was purified by column

chromatography (dry load, silica gel, cyclohexane/CH₂Cl₂) to give free acetylene **21** (880 mg, 1.75 mmol, **98**%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.75 – 8.65 (m, 3H), 8.08 (s, 1H), 7.87 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.75 – 7.65 (m, 3H), 7.64 – 7.58 (m, 1H), 7.12 (s, 1H), 7.04 (s, 1H), 4.11 – 4.04 (m, 4H), 3.38 (s, 1H), 2.02 – 1.94 (m, 2H), 1.90 – 1.81 (m, 2H), 1.63 – 1.47 (m, 4H), 1.42 – 1.28 (m, 8H), 0.96 – 0.90 (m, 3H), 0.86 (t, *J*= 7.1 Hz, 3H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 154.28, 153.86, 131.74, 131.42, 131.32, 130.50, 130.22, 128.73, 127.61, 127.49, 127.22, 127.10, 122.83, 122.80, 120.02, 117.25, 116.93, 114.60, 112.79, 93.62, 90.60, 82.54, 80.24, 69.86, 69.57, 31.80, 31.70, 29.63, 29.30, 25.90, 25.77, 22.78, 22.76, 14.19, 14.16 ppm.

The analytical data are in agreement with the ones reported in ref.³⁶

Synthesis of Compound 22:

Previously prepared free acetylene **21** (880 mg, 1.75 mmol, 1.3 eq.) and monoiodine **10** (640 mg, 1.32 mmol, 1.0 eq.) were dissolved in THF (50 mL) and DIPA (10 mL). The reaction mixture was degassed with Argon for 20 min. Pd(PPh₃)₄ (92 mg, 79.6 µmol, 6 mol%) and Cul (25 mg, 132 µmol, 10 mol%) were added and the reaction mixture was stirred for 16 h at room temperature. Afterwards, the reaction mixture was plugged over celite and the solvent was evaporated under reduced pressure. The crude was purified by column chromatography (silica gel, cyclohexane/ CH₂Cl₂ (1:1) to (pure CH₂Cl₂)) to give HOP-protected acetylene **22** (1.11 g, 1.29 mmol, **98%**) as a yellow amorphous solid.

¹H NMR (400 MHz, CDCl₃): δ 8.76 – 8.65 (m, 3H), 8.09 (s, 1H), 7.87 (dd, J = 7.9, 1.5 Hz, 1H), 7.76 – 7.64 (m, 3H), 7.63 – 7.58 (m, 1H), 7.15 (s, 1H), 7.07 (s, 1H), 7.00 (s, 1H), 6.92 (s, 1H), 4.10 (t, J = 6.6 Hz, 4H), 4.00 (dt, J = 18.0, 6.5 Hz, 4H), 2.03 – 1.95

(m, 2H), 1.92 – 1.77 (m, 6H), 1.65 (s, 6H), 1.62 – 1.48 (m, 8H), 1.42 – 1.28 (m, 16H), 0.95 – 0.84 (m, 12H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 154.06, 153.79, 153.63, 153.57, 131.65, 131.47, 131.36, 130.48, 130.24, 128.72, 127.57, 127.53, 127.21, 127.09, 122.83, 122.80, 120.14, 117.40, 117.18, 117.11, 116.62, 114.54, 114.43, 113.98, 113.46, 99.33, 93.60, 91.63, 91.58, 90.94, 78.74, 69.95, 69.85, 69.54, 65.95, 31.82, 31.79, 31.77, 31.76, 31.60, 29.69, 29.49, 29.47, 29.43, 25.94, 25.88, 25.84, 25.81, 22.80, 22.78, 14.21, 14.16 ppm.

MALDI-ToF-MS (RP, DCTB): *m*/*z* calcd. for C₅₉H₇₂O₅: 860.538, found 860.503.

Synthesis of Compound 23:

HOP-protected acetylene **22** (325 mg, 377 μ mol, 1.0 eq.) and NaOH (151 mg, 3.77 mmol, 10 eq.) were dissolved in toluene (30 mL) and the reaction mixture was put in previously preheated oil bath and stirred for 16 h at 110 °C. Afterwards, the reaction mixture was diluted with toluene, washed with water (3x), brine, dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure to give free acetylene **23** (300 mg, 374 μ mol, 99%) as a yellow solid which was used in the next step without further purification.

 $\| ^{1}H NMR (400 MHz, CDCI_{3}): \delta 8.77 - 8.66 (m, 3H), 8.09 (s, 1H), 7.88 (dd, J = 7.9, 1.5 Hz, 1H), 7.76 - 7.65 (m, 3H), 7.64 - 7.58 (m, 1H), 7.15 (s, 1H), 7.07 (s, 2H), 7.03 (s, 1H), 7.00 (s, 1H), 4.10 (t, J = 6.6 Hz, 4H), 4.02 (q, J = 6.5 Hz, 4H), 3.36 (s, 1H), 2.06 - 1.95 (m, 2H), 1.93 - 1.78 (m, 6H), 1.64 - 1.45 (m, 8H), 1.42 - 1.29 (m, 16H), 0.95 - 0.84 (m, 12H) ppm.$

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 154.31, 154.06, 153.67, 153.48, 131.66, 131.46, 131.35, 130.48, 130.24, 128.72, 127.58, 127.53, 127.21, 127.09, 122.83, 122.80, 120.13, 118.08, 117.18, 116.62, 115.10, 114.44, 114.06, 112.72, 93.63, 91.79, 91.47, 90.93, 82.46, 80.21, 69.94, 69.87, 69.76, 69.54, 31.82, 31.78, 31.76, 31.69, 29.69, 29.46, 29.40, 29.30, 25.94, 25.84, 25.81, 25.76, 22.80, 22.74, 14.20, 14.16 ppm.

The analytical data are in agreement with the ones reported in ref.³⁶

Synthesis of 1,4-bis(but-3-en-1-yloxy)-2,5-diiodobenzene (11):

2,5-Diiodobenzene-1,4-diol (**26**) (1.20 g, 3.32 mmol, 1.0 eq.), 4-bromo-1-butene (2.6 mL, 3.45 g, 25.6 mmol, 7.7 eq.) and K_2CO_3 (3.50 g, 25.2 mmol, 7.6 eq.) were dissolved in dry DMF (40 mL) and stirred at room temperature for 16 h. The reaction mixture was quenched with water, extracted with Et₂O (3x), washed with aq. HCl (aq., 1 M) and brine, dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The crude was purified by column

chromatography (pure cyclohexane to cyclohexane: EA 9/1) to provide the central moiety **11** (1.52 g, 3.23 mmol, 97%) as a beige oil that solidified at room temperature.

¹**H NMR (400 MHz, CDCl₃):** δ 7.18 (s, 2H), 6.01 – 5.88 (m, 2H), 5.23 – 5.16 (m, 2H), 5.15 – 5.10 (m, 2H), 3.98 (t, J = 6.6 Hz, 4H), 2.60 – 2.53 (m, 4H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 152.96, 134.33, 123.14, 117.52, 86.49, 69.88, 33.79 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₁₄H₁₆I₂O₂Na [M+Na]⁺ 492.9132, found 492.9122.

Previously prepared free acetylene **23** (200 mg, 249 μ mol, 2.4 eq.) and diiodo compound **11** (49 mg, 104 μ mol, 1.0 eq.) were dissolved in toluene (10 mL) and piperidine (4 mL). The reaction mixture was degassed with Argon for 20 min. Pd(PPh₃)₄ (6 mg, 5.2 μ mol, 5 mol%) and Cul (2 mg, 10.4 μ mol, 10 mol%) were added. The reaction mixture was stirred for 16 h at room temperature. Afterwards, the reaction mixture was plugged over celite and the solvent was evaporated under reduced pressure. The crude was purified by column chromatography (silica gel, toluene) and manual gel-permeation chromatography (Biobeads SX-3 in toluene) to give product (94 mg, 51.6 μ mol, **50%**) as a yellow amorphous solid.

¹H NMR (600 MHz, TCE-d2, 343 K): δ 8.78 – 8.74 (m, 4H, H27/30), 8.72 (d, *J* = 8.3 Hz, 2H, H24), 8.14 (s, 2H, H19), 7.93 (d, *J* = 7.8 Hz, 2H, H21), 7.80 – 7.69 (m, 8H, H23/28/29), 7.68 – 7.65 (m, 2H, H22), 7.22 (s, 2H, H13'), 7.13 (s, 2H, H13), 7.10 (s, 6H, H7/7'/1), 6.10 – 6.02 (m,

4H, H34), 5.30 – 5.25 (m, 2H, H35a), 5.20 -5.17 (m, 2H, H35b), 4.21 – 4.16 (m, 12H, H42/42'/32), 4.15 – 4.10 (m, 8H, H36/36'), 2.68 (q, *J* = 6.7 Hz, 4H, H33), 2.02 (p, *J* = 6.9 Hz, 4H, H43'), 1.97 – 1.88 (m, 12H, H43/37/37'), 1.69 – 1.57 (m, 16H, H44/44'/38/38'), 1.49 – 1.36 (m, 32H,H46/46'/45/45'/40/40'/39/39), 1.01 – 0.91 (m, 24H, H47/47'/41/41') ppm.

¹³C{¹H} NMR (151 MHz, TCE-d2, 343 K): δ 154.10 (C14'), 153.74(C8/8'/2), 153.71 (C14), 153.67 (C8/8'/2), 134.34 (C34), 131.40 (C19), 131.22 (C20), 131.09 (C31), 130.21 (C25), 130.01 (C26), 128.39 (C21), 127.25 (C23), 127.00 (C29), 126.89 (C22), 126.88 (C28), 122.58 (C24/27), 122.54 (C24/27), 119.99 (C18), 118.43 (C7/7'/1), 118.13 (C7/7'/1), 118.02 (C13'/7/7'/1), 117.21 (C13), 116.82 (C35), 115.04 (C9/6/3), 114.98 (C12), 114.92 (C9/6/3), 114.69 (C9/6/3), 114.31 (C15), 93.34 (C17), 91.92 (C10/5/4), 91.76 (C11), 91.71 (C10/5/4), 91.41 (C10/5/4), 90.94 (C16), 70.32 (C42'), 70.20 (C36/36'), 70.15 (C36/36'), 69.88 (C42), 69.59 (C32), 33.69 (C33), 31.44 (C45/45'/39/39'), 31.42 (C45/45'/39/39'), 31.41 (C45/45'/39/39'), 29.47 (C43/43'/37/37'), 29.44 (C43/43'/37/37'), 29.33 (C43/43'/37/37'), 29.29 (C43/43'/37/37'), 25.59 (C44/44'/38/38'), 25.54 (C44/44'/38/38'), 25.52 (C44/44'/38/38'), 22.41 (C46/46'/40/40'), 22.40 (C46/46'/40/40'), 22.38 (C46/46'/40/40'), 22.38 (C46/46'/40/40'), 13.79 (C47/47'/41/41') ppm.

MS (MALDI-ToF, RP, DCTB): *m*/*z* calcd. for C₁₂₆H₁₄₆O₁₀ [M]⁺ 1819.0916, found 1819.022.

Synthesis of Referenz OPE5 (27):

Previously prepared free acetylene **27** (118 mg, 147 µmol, 2.6 eq.) and diiodo compound **16** (30 mg, 56.5 µmol, 1.0 eq.) were dissolved in toluene (4 mL) and piperidine (1 mL). The reaction mixture was degassed with Argon for 20 min. Pd(PPh₃)₄ (3 mg, 2.8 µmol, 5 mol%) and Cul (1 mg, 5.6 µmol, 10 mol%) were added and the reaction mixture was stirred for 16 h at room temperature. Afterwards, the reaction mixture was plugged over Celite® and the solvent was evaporated under reduced pressure. The crude was purified by column chromatography (silica gel, cyclohexane/ CH₂Cl₂ (1:2) to pure CH₂Cl₂) and manual gel-permeation chromatography (*BioBeads, SX-3* in toluene) to give product **27** (60 mg, 32.2 µmol, **57%**) as a yellow amorphous solid.

¹H NMR (600 MHz, TCE-d2, 343 K): $\delta 8.77 - 8.73$ (m, 4H, H27/30), 8.71 (d, J = 8.3 Hz, 2H, H24), 8.14 (s, 2H, H19), 7.92 (d, J = 7.8 Hz, 2H, H21), 7.79 - 7.70 (m, 6H, H23/28/29), 7.68 - 7.64 (m, 2H, H22), 7.21 (s, 2H, H13'), 7.12 (s, 2H, H13), 7.10 - 7.07 (m, 6H, H7/7'/1), 4.20 - 4.15 (m, 4H, H44/44'), 4.14 - 4.09 (m, 14H, H38/38'/32), 2.02 (p, J = 6.9 Hz, 4H, H45'), 1.92 (m, 16 H, H45/39/39'/33), 1.96 - 1.87 (m, 20H, H46/46'/40/40'/34), 1.48 - 1.35 (m, 40H, H47/47'/48/48'/41/41'/42/42'/35/36), 0.99 - 0.90 (m, 30 H, H49/49'/43/43'/37) ppm.

¹³C{¹H} NMR (151 MHz, TCE-d2, 343 K): δ 154.09 (C14'), 153.75 (C8/8'/2), 153.70 (C14), 131.40 (C19), 131.22 (C20), 131.08 (C31), 130.20 (C25), 130.00 (C26), 128.39 (C21), 127.36 (C23), 127.26 (C30), 127.01 (29), 126.90 (C22), 126.89 (C28), 122.58 (C27), 122.54 (C24), 119.99 (C18), 118.08 (C13'/7/7'/1), 117.19 (C13), 114.98 (C12), 114.82 (C9/6/3), 114.28 (C15), 93.33 (C17), 91.67 (C11/10/5/4), 90.94 (C16), 70.31 (C44'), 70.18 (C38/38'/32), 69.87 (C44), 31.44 (C47/47'/41/41'/35), 31.43 (C47/47'/41/41'/35), 29.47 (C45/45'/39/39'/33), 29.44 (C45/45'/39/39'/33), 29.32 (C45/45'/39/39'/33), 29.30 (C45/45'/39/39'/33), 25.60 (C46/46'/40/40'/34), 25.55 (C46/46'/40/40'/34), (C46/46'/40/40'/34), 22.41 25.53 (C48/48'/42/42'/36), 22.40 (C48/48'/42/42'/36), 22.39 (C48/48'/42/42'/36), 22.38 (C48/48'/42/42'/36), 13.86 (C49/49'/43/43'/37), 13.79 (C49/49'/43/43'/37), 13.78 (C49/49'/43/43'/37), 13.75 (C49/49'/43/43'/37) ppm.

117

MS (MALDI-ToF, RP, DCTB): m/z calcd. for $C_{130}H_{158}O_{10}$ [M]⁺ 1879.1855, found 1879.113.

5.4 Supporting Information: Subchapter 2.2

The following Supporting Information was integrated as published with NMR and HR-MS spectra provided in the appendix.

Reznikova, K.; Hsu, C.; Schosser, W. M.; Gallego, A.; Beltako, K.; Pauly, F.; van der Zant, H. S. J.; Mayor, M. Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions. *J. Am. Chem. Soc.* **2021**, *143* (*34*), 13944–13951.

5.4.1 Synthesis and Characterization

General Remarks: All commercially available compounds were purchased from Sigma-Aldrich, Acros, Apollo Scientific, Alfa Aesar, and Fluorochem and used without further purification. Anhydrous solvents were purchased from Sigma-Aldrich and stored over molecular sieves (4 Å). All reactions with reagents that are easily oxidized or hydrolyzed were performed under argon using Schlenk techniques with anhydrous solvents in oven-dried glassware. Column chromatography was performed on silica gel P60 (40-63 µm) from Silicycle[™] using technical grade solvents. TLC was performed with silica gel 60 F254 aluminum sheets with a thickness of 0.25 mm purchased from Merck. Melting points were measured on a Büchi M-565 melting point apparatus and are uncorrected. ¹H NMR and ¹³C{¹H} NMR experiments were performed on Bruker Avance III NMR spectrometers operating at 500 MHz and 126 MHz proton frequencies, respectively. The instruments were equipped with an indirect-detection 5 mm BBI probe and with actively shielded z-gradients. The chemical shifts are reported in parts per million (ppm) referenced to the residual solvent peak, and the coupling constants (J) are given in hertz (Hz). All spectra were recorded at 298.15 K. For high-resolution mass spectra (HR-MS), a HR-ESI-ToF-MS measurement on a *maXis*[™] 4G instrument from Bruker was used. Since the synthesized compounds 1a-4a as well as 9-12 shown in this publication were less prone to form adducts with common ions like H⁺, NH₄⁺, K⁺ or Na⁺, the characteristic binding of silver ions to aromatic hydrocarbons^{219,220} was used to increase the signal intensity in the HR-ESI-ToF-MS analysis.

5.4.1.1 Experimental Procedures

Scheme S 1: Synthesis Overview: i) boronic acid **7** or **8**, K_2CO_3 , Pd(PPh₃)₄, toluene/H₂O (6:1), 110 °C, 16 h; b) Bi(OTf)₃, AcCl, dry toluene/MeCN (1:1), RT, 2-3 h. The substitution patterns of the molecules in both the central PCP subunit and in the peripheral subunits are labeled in red and blue for *para*- and *meta*-substitution, respectively. For simplicity, the naming of structures was done according to the prefixes with ps as an abbreviation for pseudo, followed by the prefix referring to the substitution pattern of the central PCP subunit and the second one to the substitution pattern of the thiol anchoring group in the phenyl subunits.

Pseudo-*para*-dibromo[2.2]paracyclophane **5** and pseudo-*meta*-dibromo[2.2]paracyclophane **6** were synthesized over the bromination of [2.2]paracyclophane according to literature known procedure.⁸³ (3-(*Tert*-butylthio)phenyl)boronic acid **8** was commercially available. (4-(*Tert*-butylthio)phenyl)boronic acid **7** was prepared according to literature known procedures, starting from the respective 4-bromothiophenol and *tert*-butyl chloride in the presence of AlCl₃ to give the desired thioether¹²³, followed by lithium-halogen exchange, reacting with B(OMe)₃ and hydrolysis to the desired boronic acid **7**.¹²⁴

General Procedure 1: Suzuki-Miyaura Cross-Coupling Reaction

Dibromo[2.2]paracyclophane **5** or **6** (1.0 eq.), boronic acid **7** or **8** (2.4 eq.), and potassium carbonate (2.0 eq.) were dissolved in toluene/water (6:1). The reaction mixture was sparged with argon for 20 min. Pd(PPh₃)₄ (10 mol%) was added, and the reaction mixture was heated to 110 °C for 16 h. Afterward, the reaction mixture was cooled to room temperature, diluted with toluene and washed with water (3x), brine (1x), dried over Na₂SO₄, and filtered. The

solvent was removed under reduced pressure, and the crude product was purified by flash column chromatography.

General Procedure 2: Transprotection Reaction

This reaction procedure was adopted from literature.²²³

Previously prepared compounds 9 - 12 (1.0 eq.) and acetyl chloride (50 eq.) were dissolved in dry toluene/MeCN (1:1) under argon atmosphere. Bismuth(III)trifluoromethanesulfonate (3.0 eq.) was added and the reaction mixture was stirred at room temperature till full conversion was observed by TLC (2-3 h). Then, water was added, and the aqueous layer was extracted with CH₂Cl₂ (3x). The combined organic layers were dried over Na₂SO₄ and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography.

Pseudo-*para*-bis((4'-*tert*-butylthio)phenyl)[2.2]paracyclophane (ps-*para-para* S*t*Bu PCP 9):

Compound **9** was synthesized according to general procedure 1 using pseudo-*para*-dibromo[2.2]paracyclophane **5** (200 mg, 546 µmol, 1.0 eq.), (4-(*tert*-butylthio)phenyl)boronic acid **7** (275 mg, 1.31 mmol, 2.4 eq.),

 K_2CO_3 (151 mg, 1.09 mmol, 2.0 eq.), Pd(PPh_3)₄ (63 mg, 54.6 µmol, 10 mol%), toluene (12 mL) and water (2 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 2:1) to give ps-*para-para* S*t*Bu PCP **9** (201 mg, 386 µmol, 69%) as a white solid.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 2:1): R_f =0.15

m.p. > 270 °C (decomposition)

¹**H NMR (500 MHz, CDCI₃):** δ 7.68 – 7.62 (m, 4H, Ar-H), 7.51 – 7.47 (m, 4H, Ar-H), 6.69 – 6.64 (m, 4H, PCPAr-H), 6.60 (dd, J = 7.7, 1.9 Hz, 2H, PCPAr-H), 3.45 (ddd, J = 13.9, 9.9, 4.3 Hz, 2H, CH₂), 3.04 (ddd, J = 13.9, 10.0, 4.7 Hz, 2H, CH₂), 2.87 (ddd, J = 14.1, 10.0, 4.2 Hz, 2H, CH₂), 2.78 (ddd, J = 13.7, 9.9, 4.7 Hz, 2H, CH₂), 1.36 (s, 18H, *t*Bu-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 141.8, 141.5, 140.1, 137.7, 137.0, 135.0, 132.5, 131.4, 129.9, 129.6, 46.2, 34.9, 34.0, 31.2 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₆H₄₀S₂Ag [M+Ag]⁺ 643.1617; found: 643.1604.

Pseudo-para-bis((4'-acetylthio)phenyl)[2.2]paracyclophane (ps-para-para PCP 1a):

Compound **1a** was synthesized according to general procedure 2 using compound **9** (51 mg, 95 µmol, 1.0 eq.), acetyl chloride (0.34 mL, 4.75 mmol, 50 eq.), bismuth(III)trifluoromethane-sulfonate (189 mg, 282 µmol,

3.0 eq.), toluene (10 mL) and acetonitrile (10 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 1:4) to give ps-*para-para* PCP **1a** (41 mg, 81 μ mol, 85%) as a white solid.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 1:4): R_f =0.19

m.p. > 290 °C (decomposition)

¹H NMR (500 MHz, CDCI₃): 7.59 – 7.52 (m, 8H, Ar-H), 6.68 – 6.64 (m, 4H, PCPAr-H), 6.59 (dd, *J* = 7.8, 1.9 Hz, 2H, PCPAr-H), 3.44 (ddd, *J* = 14.0, 9.9, 4.4 Hz, 2H, CH₂), 3.05 (ddd, *J* = 14.0, 9.9, 4.8 Hz, 2H, CH₂), 2.90 – 2.78 (m, 4H, CH₂), 2.48 (s, 6H, SAc-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 194.2, 142.5, 141.2, 140.2, 137.1, 135.1, 134.6, 132.5, 130.6, 129.8, 126.6, 34.9, 33.9, 30.4 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₂H₂₈O₂S₂Ag [M+Ag]⁺ 615.0576; found: 615.0572.

Pseudo-*para*-bis((3'-*tert*-butylthio)phenyl)[2.2]paracyclophane (ps-*para-meta* S*t*Bu PCP 10):

Compound **10** was synthesized according to general procedure 1 using pseudo-*para*-dibromo[2.2]paracyclophane **5** (150 mg, 410 μmol, 1.0 eq.), (3-(*tert*-butylthio)phenyl)boronic acid **8** (207 mg, 984 μmol, 2.4 eq.),

 K_2CO_3 (113 mg, 820 µmol, 2.0 eq.), Pd(PPh₃)₄ (47 mg, 41 µmol, 10 mol%), toluene (12 mL) and water (2 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 3:1) to give ps-*para-meta* S*t*Bu PCP **10** (154 mg, 287 µmol, 70%) as a white solid.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 3:1): $R_f = 0.15$

m.p.: 168 – 170 °C

¹H NMR (500 MHz, CDCl₃): δ 7.72 (t, *J* = 1.7 Hz, 2H, Ar-H), 7.55 (m, 4H, Ar-H), 7.46 (t, *J* = 7.6 Hz, 2H, Ar-H), 6.69 – 6.66 (m, 4H, PCPAr-H), 6.60 (dd, *J* = 7.9, 1.9 Hz, 2H, PCPAr-H), 3.45 (ddd, *J* = 13.9, 10.0, 4.3 Hz, 2H, CH₂), 3.05 (ddd, *J* = 14.0, 10.0, 4.7 Hz, 2H, CH₂), 2.87 (ddd, *J* = 14.1, 10.0, 4.3 Hz, 2H, CH₂), 2.79 (ddd, *J* = 13.7, 9.9, 4.7 Hz, 2H, CH₂), 1.38 (s, 18H, *t*Bu-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 141.7, 141.5, 140.1, 138.9, 137.0, 136.0, 135.0, 133.0, 132.4, 130.4, 129.5, 128.8, 46.3, 34.9, 33.9, 31.2 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₆H₄₀S₂Ag [M+Ag]⁺ 643.1617; found: 643.1610.

Pseudo-para-bis((3'-acetylthio)phenyl)[2.2]paracyclophane (ps-para-meta PCP 3a):

Compound **3a** was synthesized according to general procedure 2 using compound **10** (50 mg, 93.1 µmol, 1.0 eq.), acetyl chloride (0.33 mL, 4.66 mmol, 50 eq.), bismuth(III)trifluoromethane-sulfonate (187 mg, 279 µmol,

3.0 eq.), toluene (4 mL) and acetonitrile (4 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 1:2) to give ps-*para-meta* PCP **3a** (30 mg, 59 μ mol, 63%) as a white amorphous solid.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 1:2): R_f =0.15

¹H NMR (500 MHz, CDCl₃): δ 7.59 – 7.56 (m, 4H, Ar-H), 7.54 (t, *J* = 7.8 Hz, 2H, Ar-H), 7.43 (dt, *J* = 7.4, 1.6 Hz, 2H, Ar-H), 6.67 – 6.62 (m, 6H, PCPAr-H), 3.48 (ddd, *J* = 13.8, 9.9, 4.2 Hz, 2H, CH₂), 3.04 (ddd, *J* = 14.0, 10.0, 4.9 Hz, 2H, CH₂), 2.92 – 2.78 (m, 4H, CH₂), 2.49 (s, 6H, SAc-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 194.0, 142.4, 141.1, 140.2, 137.1, 136.0, 135.0, 132.5, 132.4, 130.9, 129.7, 129.5, 128.3, 34.8, 33.8, 30.5 ppm.

HR-MS (ESI, +): m/z calcd. for $C_{32}H_{28}O_2S_2Ag$ [M+Ag]⁺ 615.0576; found: 615.0576.

Pseudo-*meta*-bis((4'-*tert*-butylthio)phenyl)[2.2]paracyclophane (ps-*meta-para* S*t*Bu PCP 11):

Compound **11** was synthesized according to general procedure 2 using pseudo-*meta*dibromo[2.2]paracyclophane **6** (200 mg, 546 µmol, 1.0 eq.), (4-(*tert*-butylthio)phenyl)boronic acid **7** (275 mg, 1.31 mmol,

2.4 eq.), K_2CO_3 (151 mg, 1.09 mmol, 2.0 eq.), $Pd(PPh_3)_4$ (63 mg, 54 µmol, 2.0 eq.), toluene (12 mL) and water (2 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 3:1). The remaining impurities were precipitating in CH₂Cl₂ by adding MeOH, followed by filtration and evaporation of mother liquor to give ps-*meta-para* PCP **11** (175 mg, 344 µmol, 60%) as a colorless oil.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 2:1): R_f =0.23

¹H NMR (500 MHz, CDCl₃): δ 7.65 – 7.61 (m, 4H, Ar-H), 7.48 – 7.44 (m, 4H, Ar-H), 6.72 (d, J = 1.9 Hz, 2H, PCPAr-H), 6.69 (d, J = 7.8 Hz, 2H, PCPAr-H), 6.58 (dd, J = 7.7, 1.9 Hz, 2H, PCPAr-H), 3.28 – 3.06 (m, 6H, CH₂), 2.56 – 2.48 (m, 2H, CH₂), 1.35 (s, 18H, *t*Bu-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 141.9, 141.6, 139.8, 137.7, 137.5, 132.5, 132.0, 131.6, 131.4, 129.8, 46.2, 35.3, 33.6, 31.2 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₆H₄₀AgS₂ [M+Ag]⁺ 643.1617; found: 643.1615.

Pseudo-meta-bis((4'-tert-acetylthio)phenyl)[2.2]paracyclophane (ps-meta-para PCP 2a):

Compound **2a** was synthesized according to general procedure 2 using compound **11** (20 mg, 37.3 µmol, 1.0 eq.), acetyl chloride (0.13 mL, 1.86 mmol, 50 eq.), bismuth(III)trifluoromethane-sulfonate (74.9 mg, 112 µmol,

3.0 eq.), toluene (2 mL) and acetonitrile (2 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 1:2) to give ps-*meta-para* PCP **2a** (13.6 mg, 33 μ mol, 72%) as a white amorphous solid.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 1:2): R_f =0.32

¹H NMR (500 MHz, CDCl₃): δ 7.54 – 7.50 (m, 8H, Ar-H), 6.72 (d, *J* = 1.9 Hz, 2H, PCPAr-H), 6.67 (d, *J* = 7.9 Hz, 2H, PCPAr-H), 6.57 (dd, *J* = 7.8, 1.9 Hz, 2H, PCPAr-H), 3.27 – 3.07 (m, 4H, CH₂), 2.62 – 2.54 (m, 2H, CH₂), 2.47 (s, 6H, SAc-H) ppm. ¹³C{¹H} NMR (126 MHz, CDCI₃): δ 194.2, 142.4, 141.7, 139.9, 137.6, 134.6, 132.6, 132.1, 131.8, 130.5, 126.6, 35.3, 33.5, 30.4 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₂H₂₈O₂S₂Ag [M+Ag]⁺ 615.0576; found: 615.0583.

Pseudo-*meta*-bis((3'-*tert*-butylthio)phenyl)[2.2]paracyclophane (ps-*meta-meta* S*t*Bu PCP 12):

Compound **12** was synthesized according to general procedure 2 using pseudo-*meta*-dibromo[2.2]paracyclophane **6** (150 mg, 410 µmol, 1.0 eq.), (3-(*tert*-butylthio)phenyl)boronic acid **8** (200 mg, 952 µmol, 2.4 eq.), K₂CO₃ (113 mg, 820 µmol, 2.0 eq.), Pd(PPh₃)₄ (47.4 mg, 41 µmol, 10 mol%), toluene (12 mL) and water (2 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 4:1). The remaining impurities were precipitating in CH₂Cl₂ by adding MeOH, followed by filtration and evaporation of mother liquor to give ps-*meta-meta* S*t*Bu PCP **12** (149 mg, 278 kµmol, 68 %) as a colorless oil.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 4:1): R_f =0.13

¹H NMR (500 MHz, CDCl₃): δ 7.68 (t, *J* = 1.7 Hz, 2H, Ar-H), 7.54 (dt, *J* = 7.5, 1.5 Hz, 2H, Ar-H), 7.49 (dt, *J* = 7.7, 1.5 Hz, 2H, Ar-H), 7.44 (t, *J* = 7.6 Hz, 2H, Ar-H), 6.72 (d, *J* = 1.9 Hz, 2H, PCPAr-H), 6.68 (d, *J* = 7.8 Hz, 2H, PCPAr-H), 6.59 (dd, *J* = 7.8, 1.9 Hz, 2H, PCPAr-H), 3.27 – 3.06 (m, 6H, CH₂), 2.58 – 2.49 (m, 2H, CH₂), 1.36 (s, 18H, *t*Bu-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 141.9, 141.6, 139.9, 138.7, 137.5, 136.0, 133.0, 132.4, 132.0, 131.6, 130.2, 128.8, 46.3, 35.3, 33.6, 31.2 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₆H₄₀AgS₂ [M+Ag]⁺ 643.1617; found: 643.1604.

Pseudo-*meta*-bis((3'-*tert*-acetylthio)phenyl)[2.2]paracyclophane (ps-*meta-meta* PCP 4a):

Compound **4a** was synthesized according to general procedure 2 using compound **12** (50 mg, 93.1 μ mol, 1.0 eq.), acetyl chloride (0.33 mL, 4.66 mmol, 50 eq.), bismuth(III)trifluoromethane-sulfonate (187 mg, 279 μ mol, 3.0 eq.), toluene (4 mL) and acetonitrile (4 mL). The crude was purified by flash column chromatography (cyclohexane/CH₂Cl₂ 1:2) to give ps-*meta-meta* PCP **4a** (31 mg, 61 μ mol, 66%) as a white amorphous solid.

TLC (SiO₂, cyclohexane/CH₂Cl₂ 1:2): R_f =0.26

¹H NMR (500 MHz, CDCl₃): δ 7.56 – 7.49 (m, 6H, Ar-H), 7.41 (dt, J = 6.7, 1.9 Hz, 2H, Ar-H), 6.73 (d, J = 7.8 Hz, 2H, PCPAr-H), 6.69 (d, J = 1.9 Hz, 2H, PCPAr-H), 6.58 (dd, J = 7.8, 1.9 Hz, 2H, PCPAr-H), 3.27 – 3.16 (m, 4H, CH₂), 3.14 – 3.06 (m, 2H, CH₂), 2.60 – 2.51 (m, 2H, CH₂), 2.47 (s, 6H, SAc-H) ppm.

¹³C{¹H} NMR (126 MHz, CDCI₃): δ 194.0, 142.2, 141.5, 139.8, 137.7, 135.7, 132.6, 132.5, 132.0, 131.7, 130.8, 129.5, 128.3, 35.2, 33.5, 30.5 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₃₂H₂₈O₂S₂Ag [M+Ag]⁺ 615.0576; found: 615.0577.

5.4.2 Transport Measurements

5.4.2.1 Mechanically Controlled Break Junction

Figure S 1: Schematic illustration of the MCBJ setup.

The single-molecule measurements, described in the main text, were carried out with a mechanically controlled break junction. The MCBJ sample consists of a lithographically fabricated gold wire suspended on a flexible substrate made out of phosphor bronze (PB) with an insulating coating of polyimide (PI). The gold wire was defined with electron-beam lithography and evaporated with an electron-beam evaporator with a thickness of 80 nm together with a 3 nm titanium adhesive layer. In a typical room temperature MCBJ measurement, the gold wire is stretched through a three-point bending mechanism with a piezoelectric element and eventually ruptures, forming a nanogap between atomically sharp electrode surfaces for single-molecule characterization. During the breaking of the gold wire, the electrical conductance is recorded with or without the presence of molecules, and the closing of the junction is performed when the contact is broken, as signaled by a conductance below $10^{-6}G_0$. During the successive breaking and making of the gold contacts through the bending/unbending of the substrate, the electrical conductance is monitored, and a large number of "breaking traces" is collected. With a molecule of interest inside the junction, we can determine the single-molecule electrical conductance statistically.

5.4.2.2 Fast-Breaking Measurements

In the measurements performed for the PCP molecules, the MCBJ junctions were first characterized without the molecules for reference purposes. After the reference gold measurement, we deposited molecular solutions with concentrations ranging from 1 to 100 μ M in CH₂Cl₂ onto the MCBJ samples. The fast-breaking measurements were performed at a constant DC bias voltage with the electrical current recorded by a homemade logarithmic current amplifier. During the fast-breaking measurements, the molecular junctions were continuously opened and closed by the piezoelectric element, creating thousands of

conductance breaking traces. The thousands of breaking traces were then plotted together to form a two-dimensional conductance histogram.

Figure S2: One-dimensional histogram of a fast-breaking measurement of ps-para-para and ps-meta-para PCP.

The one-dimensional conductance histogram, which is illustrated in Figure S2, was obtained by summing the counts at a fixed conductance level across all displacement values from a two-dimensional conductance vs. displacement histogram (see Figure 2). With a log-normal fit, the most probable conductance values for the ps-*para-para* and ps-*meta-para* PCP molecules are $1.3 \times 10^{-5}G_0$ and $2.2 \times 10^{-5}G_0$, respectively.

Figure S3: Distance-modulation traces of ps-*para-para* PCP. The blue lines display three different types of conductance measurements, namely in-phase, double frequency, and anti-phase, and the red line displays the voltage applied to the piezoelectric stack. Note that an increase in piezo voltage corresponds to an increase in electrode displacement. The total modulation time of the experiment is 15 seconds.

An additional set of measurements of ps-*para-para* PCP is presented in Figure S3. The modulation traces clearly show in-phase and anti-phase behavior for the whole duration of 15 s. Note that the ascribed double frequency signal changes to the in-phase configuration after around 8 s during the modulation experiment. There are 112 traces in total showing a clear modulation signal in this modulation experiment, and the ratio of each behavior is provided in Figure S4.

The ratio between the in-phase, anti-phase, and double-frequency is 60:13:27. The in-phase case is clearly dominating the modulation behavior compared to the anti-phase case. This

difference also results in much fewer counts in the negative gauge factor shown in Figure 4a. The scarceness of the anti-phase behavior can be understood by looking at the starting electrode position in the modulation experiment. There, we first opened the junction up to 7.5 Å and then started modulating the junction with an amplitude of 5 Å. The total length of the molecular plateau is about 12.5 Å according to the fast-breaking measurement shown in Figure 2. Although the modulation size in the junction may not directly transform into the deformation of the molecule, we thus expect that the modulation occurs mostly in the strained molecular state. Considering the transmission vs. displacement chart for ps-*para-para* PCP shown in Figure 5b and the conductance dip depicted in Figure 3e, the in-phase behavior should be prevalent for a strained molecule.

5.4.2.4 Estimation of the Gauge Factor

In the main text, we introduced the gauge factor to quantify the mechano-sensitivity of the molecules. We define it as:

$$GF(f) \equiv FFT\left[\log\frac{G}{G_0}\right](f) / FFT\left[d/d_0\right](f)$$
(1)

where GF(*f*) is the frequency-dependent gauge factor, which we evaluate at *f*=5 Hz. In Eq. (1), FFT is the amplitude of the Fast-Fourier transform, *G* is the conductance, *G*₀ is the conductance quantum, *d* is the electrode displacement estimated from the piezo voltage, and *d*₀ is the length of the molecule estimated from the most probable molecular length in fast-breaking measurements. Essentially, GF involves a Fast-Fourier transform of the conductance signal on a logarithmic scale and of the electrode displacement on a linear scale. The obtained FFT amplitudes at the driving frequency *f* of 5 Hz are then taken to define GF by taking the ratio of the two. Note that the sign of GF is fixed by the phase of the signal obtained from the FFT spectra, where in-phase gives a positive GF and anti-phase a negative GF. For example, if we use a highly mechano-sensitive molecule with mainly anti-phase behavior, we expect to see GF <0, and a large absolute value $|GF| \neq 0$ indicates a large conductance change. In the case of a non-mechano-sensitive molecule, such as ps-*meta-para* PCP, |GF| is close to 0, while we find |GF| > 1 for the mechano-sensitive ps-*para-para* PCP.

Figure S5: Individual fast-breaking traces for ps-meta-para and ps-para-para molecules.

In the fast-breaking experiment described in the main text, thousands of breaking traces for ps-meta-para and ps-para-para molecules were obtained. As suggested by Figure S2, the average conductance value of ps-meta-para is slightly larger and exhibits a narrower conductance distribution than those of ps-para-para. This is explained by the absence of DQI in the case of ps-meta-para. When the individual traces shown in Figure S5 are examined further, it is clear that ps-para-para features conductance oscillations during the displacement of electrodes, indicating the presence of DQI. However, oscillations can repeat up to 3 or 4 times instead of the single oscillation expected from crossing a DQI dip. Such a behavior was already observed in the previous experiment with OPE PCP, and we explained it by the stickslip motion of the molecule in the junction.²²⁴ This stick-slip motion happens, when the molecule is strained sufficiently. As the gold-sulfur connection breaks due to the high strain, the molecule contracts before it establishes a new connection between the sulfur anchor and a nearby electrode gold atom. This process leads to multiple conductance oscillation as observed in the breaking traces. A similar motion can be conceived, if the molecule drags along with it a gold adatom or generally a smaller gold cluster that slides along a macroscopic gold surface. The stick-slip motion is discussed further in the theory section below.

5.4.3 Transport Calculations

5.4.3.1 DFT Calculation Setup

We describe electronic transport through the PCP-based single-molecule junctions as phasecoherent and elastic in terms of the Landauer scattering theory.²²⁵ The conductance at sufficiently low temperatures simplifies to

$$G = G_0 \tau(E_F), \tag{1}$$

i.e. the product of the energy-dependent transmission function $\tau(E)$, evaluated at the Fermi energy $E_{\rm F}$, and the conductance quantum $G_0 = 2e^2/h$. The elastic transmission $\tau(E)$ is computed in a parameter-free approach by combining DFT with NEGF techniques. The established theoretical methods have been discussed in detail previously.²²⁶

The calculations to obtain the transmission as a function of energy and electrode displacement for the four PCP derivatives comprise the following steps: First, the molecular structures are optimized in the gas phase. Then terminal hydrogens at each sulfur atom are removed, and the molecules are placed between two tetrahedral gold leads. We distinguish "top-top" and "hollow-hollow" junction geometries, where we use either atomically sharp tips, ending with a single Au tip atom for "top-top", or blunt tips for hollow-hollow, where the tip atoms are removed on each side. The resulting junction structures are subsequently optimized by relaxing both the molecule and the four (for top-top geometries) or three (for hollow-hollow geometries) gold atoms of each pyramid that are located at the top of each tip. The rest of the gold atoms are fixed in a face-centered cubic lattice configuration. The resulting geometries are displayed in Figure 5a of the main text for the hollow-hollow junction configuration and in Figure S6a for the top-top junction configuration. In the stretching process we separate the gold contacts in steps of 0.1 Å, optimize the geometries as described before, and keep increasing the electrode separation d until the contact ruptures. For compression we proceed in an analogous way until the molecular structure starts to strongly deform. Finally the transmission $\tau(E, d)$ and from Eq. (1) the conductance G(d) are computed for the static geometries within the DFT-NEGF formalism.226

The DFT calculations are performed with the quantum chemistry code TURBOMOLE²²⁷, employing the def-SV(P) Gaussian basis set²²⁸ for all atoms and the PBE exchange-correlation functional.²²⁹ Total energies are converged to an accuracy of better than 10^{-8} a.u., while geometries are optimized until the change of the maximum norm of the Cartesian gradient is below 10^{-3} a.u. The transport program²³⁰ that we use for computing the elastic transmission is custom-built and interfaced with TURBOMOLE. For evaluating the transmission function, we employ 16×16 transverse *k*-points to properly describe the semi-infinite gold electrodes.
5.4.3.2 <u>Transmission Maps and Stick-Slip Motion in the Top-Top Configuration</u>

In the main text, we discuss conduction properties of the four PCP molecules immobilized in hollow-hollow junctions. In this part we now focus on a different geometry, namely the behavior of the PCP derivatives in the top-top configuration, see Figure S6a. The conductance and the total energy of DFT are illustrated in Figure S6b for all four PCP derivatives. Considering the example of the ps-para-para PCP single-molecule junction, both quantities show pronounced jumps at certain stretching steps during the electrode displacement process. Starting from the initial junction geometry at zero displacement, conductance and total energy grow to a local maximum at 1.5 Å. At this point an anchoring sulfur slips to the next gold atom, see Figure S7a, and the molecule releases the mechanical tension that has been built up due to the mechanical stretching process. An instantaneous decrease of both conductance and energy is observed, restoring the latter to a lower value. After reaching the final tip gold atom, the junction breaks at 5.6 Å, and the molecule snaps back and loses contact to one electrode as the mechanical tension becomes too high, which leads to a sharp drop in the conductance. Molecular contacts based on the other three PCP derivatives show a similar interplay of elastic and plastic stretching stages. The sliding of the anchor group along the surface of the electrode, as presented in Figure S7 and called stick-slip motion, is evident from the experimental data in Figure S5 and has also been observed in our previous work.²²⁴

In the two-dimensional contour maps of transmission in dependence of energy and electrode displacement, see Figure S6c, sudden geometric rearrangements in the junctions (such as the slipping of the anchor group to a neighboring gold atom) result in a discontinuous distance dependence (for ps-*para-para* PCP at 1.5 Å and 4.6 Å, for ps-*meta-para* PCP at 2.3 Å, for ps-*para-meta* PCP at 3.1 Å and 5.0 Å, and for ps-*meta-meta* PCP at 0.8 Å and 2.4 Å).

A closer look at Figure S6c reveals a similar transport behavior of the top-top molecular junctions compared to the hollow-hollow junctions of Figure 5 in the main text. Again, inside the electronic gap between the HOMO and the LUMO the ps-*para-para* PCP junction shows transmission valleys (blue diagonal traces) with transmission values lower than 10⁻⁶, which cause DQI conductance dips. In contrast the ps-*meta-para* PCP junction features a rather constant transmission in the range of about 10⁻³ to 10⁻⁴. Different from the observations in the main text, remnants of transmission valleys are faintly visible close to the LUMO for the ps-*para-meta* PCP molecular junction in top-top configuration, further consolidating the hypothesis of the central ps-*para* PCP subunit as origin of the DQI phenomenon. Again, rather uniform transmission values are predicted in the molecule's electronic gap for ps-*meta-meta* PCP as structural analogue with a central ps-*meta* PCP subunit.

Figure S6: (a) Illustration of the PCP derivatives **1-4**, immobilized in top-top junctions between two gold electrodes. (b) Calculated conductance and total energy of the PCP molecular junctions during the gap opening. (c) Transmission maps of the four types of PCP single-molecule junctions. Horizontal red resonances in the maps arise from molecular frontier orbitals. For the ps-*para-para* PCP molecule, an anti-resonance is observed inside the HOMO-LUMO gap that shifts in energy as the displacement is varied. Analogous behavior can be found for the ps-*para-meta* PCP molecule as well, but the effect is masked by the DQI, resulting from the meta coupling at the terminal benzene rings. Tunable DQI effects are neither found in the simulations of ps-*meta-para* PCP junctions nor ps-*meta-meta* PCP junctions with central ps-*meta* PCP systems. The position of the Fermi energy $E_{\rm F}$ is indicated as a horizontal dashed line in each plot. The conductance curves of panel b are obtained by tracing the transmission along this line.

Figure S7: Snapshots illustrating the stick-slip motion of the sulfur anchor group on the gold electrode at different electrode displacements *d* for the (a) ps-*para-para*, (b) ps-*meta-para*, (c) ps-*para-meta*, and (d) ps-*meta-meta* PCP molecules.

5.4.3.3 Quantum Interference Effects and Symmetry Rules

Figure S8: Illustration of frontier molecular orbitals of ps-*para-para*, ps-*meta-para*, ps-*para-meta* and ps-*meta-meta* PCP molecules in the gas phase. Shown are the gas phase HOMO (GPH) and gas phase LUMO (GPL), as in Figure 6 of the manuscript, supplemented by the corresponding lower and higher states GPH-1 and GPL+1. The DFT energies of all orbitals are indicated.

We relate the valleys of low transmission in Figures 5 and S6 to DQI effects, resulting from molecular frontier orbital contributions. The appearance or absence of these valleys can be explained by using orbital symmetry rules for the molecules' gas-phase orbitals, which are documented in the literature.^{98,113,231} For off-resonant transport inside the HOMO-LUMO gap, embedding self-energies of the electrodes can be neglected to first approximation. Therefore, the retarded Green's function $G_{i\alpha,j\beta}^{r}(E)$ that describes the probability amplitude for the propagation of electrons from orbital α at atom *i* to orbital β at atom *j* through the molecule can be approximated by the zeroth-order Green's function

$$G_{i\alpha,j\beta}^{\mathbf{r},(0)}(E) = \sum_{k} \frac{C_{i\alpha,k}C_{j\beta,k}^{*}}{E+i\eta-\epsilon_{k}}$$
(2)

with the energy ϵ_k of molecular orbital *k*, its coefficient $C_{i\alpha,k}$ at atom *i* and atomic orbital α , and a positive infinitesimal broadening parameter η . We identify the sites *i* and *j* with the terminal sulfur atoms of the respective PCPs (see Figure S9). The relation between the transmission and the Green's function

$$\tau(E) \propto \left| G_{i\alpha,j\beta}^{r,(0)}(E) \right|^2 \tag{3}$$

ultimately connects transmission to molecular orbital contributions *k*. In Eq. (3) a sum should be carried out over all orbitals α and β that couple well to the electrodes, and there should be a weighting factor included that depends on this molecule-electrode coupling. For simplicity and under the assumption that the energy *E* is located between the HOMO energy ϵ_{HOMO} and the LUMO energy ϵ_{LUMO} , we reduce the Green's function in Eq. (2) to the largest terms and thus only consider the HOMO and LUMO contributions

$$G_{i\alpha,j\beta}^{\mathrm{r},(0)}(E) \approx \frac{C_{i\alpha,\mathrm{HOMO}}C_{j\beta,\mathrm{HOMO}}^*}{E+i\eta-\epsilon_{\mathrm{HOMO}}} + \frac{C_{i\alpha,\mathrm{LUMO}}C_{j\beta,\mathrm{LUMO}}^*}{E+i\eta-\epsilon_{\mathrm{LUMO}}}.$$
(4)

For a full description of the transmission behavior further orbital contributions k may need to be taken into account¹¹³, but Eq. (4) still allows for a qualitative explanation of the occurrence or absence of DQI in the case of the studied PCP systems. We will omit the atomic orbital indices α and β in Eqs. (2)-(4) in the following and not specify them further, similar to the presentation in the paper. They will simply be of the form of the HOMO and LUMO wavefunctions at the atoms i and j. It is important though that the orbital characters of HOMO and LUMO wavefunctions are of compatible character in order to interfere as given in Eq. (4). Figure S8 reveals that this is the case here, i.e. all of the relevant HOMOs and LUMOs exhibit the same π -character and spatial orientation at the respective terminal sulfur atoms for each of the four PCP derivatives. The form of the Green's function in Eq. (4) combined with Eq. (3) allows to draw the following conclusions^{229,230}: First, the products of the orbital coefficients $C_{iHOMO}C_{jHOMO}^*$ of the HOMO and $C_{iLUMO}C_{jLUMO}^*$ of the LUMO need to be of decent size in order to contribute to the transmission. For this reason, the weight of HOMO and LUMO wave functions need to be sufficiently large on the anchoring atoms *i* and *j*, meaning that these are delocalized orbitals. Second, the parities of the molecule's HOMO and LUMO need to be different (sign($C_{iHOMO}C_{iHOMO}^*$) = -sign($C_{iLUMO}C_{iLUMO}^*$)) in order to achieve high transmission, as in this case the terms in Eq. (4) add up. If the parities of HOMO and LUMO are the same instead, the two terms cancel each other inside the gap, and DQI occurs, resulting in a low transmission. Figure S8 shows relevant frontier molecular orbitals and their energies, from which orbital weights on terminal sulfurs as well as their parity can be inferred. The quantities

are needed to rationalize the transport behavior in Figure 5 of the main text as well as Figure S6 in terms of the orbital symmetry rules.

5.4.3.4 Transmission Eigenchannels

Figure S9 visualizes the wave function of those left-incoming transmission eigenchannels with the highest transmission for each of the four studied PCP isomers at the Fermi energy and at a particular electrode separation *d*. We see that the amplitude of the eigenchannels decays along the propagation direction inside the molecules, as expected in an off-resonant transport situation.

The spatial distribution of the wave function is quite similar for all four molecules, exhibiting a high weight on the molecular deck that is directly connected through a sulfur anchor to the left electrode and a low weight on the molecular deck that is directly connected to the right electrode. Note the low weight of the wave function on the ethylene braces of the central paracyclophane units. It indicates that they do not contribute to the phase-coherent electronic transmission through the PCP molecules at $E_{\rm F}$.

Figure S9: Illustration of the wave function of the most transparent left-incoming transmission eigenchannel, evaluated at the Fermi energy E_F , for electron transport through (a) ps-*para-para*, (b) ps-*meta-para*, (c) ps-*parameta*, and (d) ps-*meta-meta* PCP molecules connected to gold electrodes. The selected electrode displacement *d* is indicated separately for each junction.

5.5 Supporting Information: Subchapter 2.3

Previously reported compounds: pseudo-*ortho*-dibromo[2.2]paracyclophane (**42**), pseudo*ortho*-diethynyl[2.2]paracyclophane (**50**), acetylthioiodobenzene (**51**), (4-(*tert*butylthio)phenyl)boronic acid (**55**) were prepared following reported procedures.^{89,118,121–125}

Synthesis of pseudo-ortho-bis(((4'-acetylthio)phenyl)ethynyl)[2.2]paracyclophane (47):

Pseudo-*ortho*-diethynyl[2.2]paracyclophane (**50**) (100 mg, 390 μ mol, 1.0 eq.) was added to a degassed solution of 4-acetylthioiodobezene (**51**) (434 mg, 1.56 mmol, 4.0 eq.) in THF (10 mL) and DIPA (2.5 mL). The reaction mixture was degassed by bubbling through a stream of argon for 20 min. Then Pd(PPh₃)₄

(45 mg, 39 μ mol, 10 mol%) and CuI (8 mg, 39 μ mol, 10 mol%) were added under Argon. The reaction mixture was placed in preheated oil bath and was stirred at 55 °C for 16 h. Afterwards, the reaction mixture was cooled to RT, filtered over celite and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (cyclohexane/EA 1:1) and GPC to give *pseudo-ortho*-bis(((4'–acetylthio)phenyl)[2.2]paracyclophane (**47**) (115 mg, 207 μ mol, 53%) as a white amorphous solid.

¹H NMR (500 MHz, CDCl₃): δ 7.62 - 7.58 (m, 4H), 7.45 - 7.42 (m, 4H), 7.11 (t, *J* = 1.1 Hz, 2H), 6.57 (d, *J* = 1.1 Hz, 4H), 3.65 (ddd, *J* = 13.0, 10.4, 2.6 Hz, 2H), 3.24 - 3.16 (m, 2H), 3.12 - 3.06 (m, 2H), 2.95 - 2.87 (m, 2H), 2.46 (s, 6H) ppm.

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 193.71, 142.44, 139.80, 134.50, 134.36, 133.68, 133.52, 132.21, 127.92, 125.31, 124.61, 92.45, 91.39, 34.48, 33.91, 30.44 ppm.

HRMS (ESI, +): *m*/*z* calcd. for C36H28O2S2Ag [M+Ag]⁺ 663.0576; found: 663.0567.

Synthesis of pseudo-ortho-bis((4'-tert-butylthio)phenyl)[2.2]paracyclophane (56):

*P*seudo-*ortho*-dibromo [2.2]paracyclophane (**42**) (200 mg, 564 μ mol, 1.0 eq.), 4-(*tert*-butylthio)benzeneboronic acid (**55**) (344 mg, 1.64 mmol, 3.0 eq.) and K₂CO₃ (226 mg, 1.64 mmol, 3.0 eq.) were suspended in toluene (8 mL) and MeOH (8 mL). The reaction mixture was degassed

by bubbling through a stream of argon for 20 min. Then, Pd-PEPPSITM-*i*Pr (19 mg, 27.3 µmol, 5 mol%) was added and the reaction mixture was placed in preheated oil bath and stirred at 70 °C for 1 h. Afterwards, the reaction was cooled to RT and aq. HCl (1 M) was added. The org. layer was separated and the aq. layer was extracted with toluene (3x). The combined organic layers were washed with water, brine and dried over Na₂SO₄, filtered and the solvent

was evaporated under reduced pressure. The crude was purified by column chromatography (cyclohexane/CH₂Cl₂ 4:1) to give pseudo-*ortho*-bis((4'-*tert*-butylthio)phenyl)[2.2]paracyc-lophane (**56**) (232 mg, 432 µmol, 79%) as a white amorphous solid.

¹H NMR (400 MHz, CD₂Cl₂): δ 7.56 – 7.50 (m, 4H), 7.30 – 7.24 (m, 4H), 6.74 (d, *J* = 7.6 Hz, 2H), 6.68 – 6.63 (m, 4H), 3.57 – 3.48 (m, 2H), 3.18 – 3.09 (m, 2H), 3.04 – 2.95 (m, 2H), 2.82 – 2.73 (m, 2H), 1.33 (s, 18H) ppm.

¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 141.96, 140.20, 139.99, 137.82, 137.53, 136.04, 132.98, 131.54, 130.41, 129.48, 46.21, 34.79, 34.50, 31.18 ppm.

HRMS (ESI, +): *m*/*z* calcd. for C36H40S2Ag [M+Ag]⁺ 643.1617; found: 643.1610.

Synthesis of pseudo-ortho-bis((4'-tert-acetylthio)phenyl)[2.2]paracyclophane (48):

This reaction was adopted from literature.¹²⁶

Pseudo-*ortho*-bis((4'-*tert*-butylthio)phenyl)[2.2]paracyclophane (56) (30 mg, 55.9 μ mol, 1.0 eq.) and acetyl chloride (200 μ L, 2.79 mmol, 50 eq) were dissolved in dry toluene (3 mL) and dry MeCN (3 mL) under argon atmosphere. Bismuth(III)trifluoromethanesulfonate (112 mg,

168 μ mol, 3.0 eq.) was added and the reaction mixture was stirred at RT for 3 h. Afterwards, water was added. The aq. layer was extracted with CH₂Cl₂ (3x). The combined org. layers were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (cyclohexane/CH₂ 1:3) and GPC to give pseudo-*ortho*-bis((4'-*tert*-acetylthio)phenyl)[2.2]paracyclophane (**48**) (18 mg, 35.4 μ mol, **63%**) as a white amorphous solid.

¹H NMR (500 MHz, CD₂Cl₂): δ 7.47 – 7.43 (m, 4H), 7.38 – 7.34 (m, 4H), 6.76 (d, *J* = 7.7 Hz, 2H), 6.69 (dd, *J* = 7.7, 1.9 Hz, 2H), 6.65 (d, *J* = 1.9 Hz, 2H), 3.55 – 3.49 (m, 2H), 3.17 – 3.11 (m, 2H), 3.05 – 2.99 (m, 2H), 2.82 – 2.57 (m, 2H), 2.44 (s, 6H) ppm.

¹³**C NMR (126 MHz, CD₂Cl₂):** 194.36, 142.65, 140.23, 139.73, 137.62, 136.10, 134.98, 133.23, 130.40, 130.14, 126.93, 34.82, 34.48, 30.47 ppm.

HRMS (ESI, +): m/z calcd. for C₃₂H₂₈O₂S₂Na [M+Na]⁺ 531.1423; found: 531.1422 m/z calcd. for (C₃₂H₂₈O₂S₂)₂Na [2M+Na]⁺ 1039.2954; found: 1039.2943.

5.6 Supporting Information: Chapters 3 & 4

Synthesis of 4,7,12,15- (84) and 4,5,12,13-tetrabromo[2.2]paracyclophane (85):

Commercially available [2.2]paracyclophane (20.0 g, 96.0 mmol, 1.0 eq.) and iodine (292 mg, 1.15 mmol, 0.01 eq.) were placed in the flask wrapped with aluminum foil to exclude the daily light. Bromine (60 ml, 1166 mmol,

12 eq.) was slowly added over a dropping funnel and vigorously stirred for 8 d at RT. Afterwards, the excess of bromine was quenched with aq. NaOH (20 %) solution. The precipitate was collected by filtration, washed with hot ethanol (3x) and CH₂Cl₂ to give the pure by-product **85** as a white solid. The CH₂Cl₂ fraction was dried under reduced pressure and showed a mixture of *ortho*-PCP (**85**) and *para*-PCP (**84**) in almost equal amounts. The reaction mixture was recrystallized several times from CH₂Cl₂ to give the pure by-product **85** (18.2 g, 34.7 mmol, 36%) as a white solid. The remained filtrate was concentrated under reduced pressure to give the desired *para*-tetrabromo-PCP **84** (21.2 g, 40.5 mmol, 42%) as a white solid.

4,7,12,15- tetrabromo[2.2]paracyclophane (84):

¹H NMR (400 MHz, CDCl₃): δ 7.20 (s, 4H), 3.29 – 3.18 (m, 4H), 3.03 – 2.93 (m, 4H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 140.47, 134.57, 125.44, 32.84 ppm.

4,5,12,13-tetrabromo[2.2]paracyclophane (85):

 1 H NMR (400 MHz, CDCl₃) δ 6.99 (s, 4H), 3.40 – 3.29 (m, 4H), 3.16 – 3.04 (m, 4H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.84, 129.42, 128.79, 34.70 ppm.

The analytical data are in agreement with the ones reported in ref.¹⁷⁸

Synthesis of 4,15-dibromo-7,12-diformyl[2.2]paracyclophane (82) and 4,12-dibromo-7,15-diformyl[2.2]paracyclophane (86):

Compound **84** (1.00 g, 1.91 mmol, 1.0 eq.) was dissolved in dry THF (100 mL). The reaction mixture was cooled to - 78 °C and *n*-BuLi (2.5 M, 1.6 mL, 4.01 mmol, 2.1 eq.) was added. The solution was stirred for 30 min at -78 °C.

Afterward, dry DMF (1.2 mL, 15.6 mmol, 8.1 eq.) was added. The reaction mixture was allowed to warm to RT and stirred for 16 h. Then, the reaction mixture was quenched with dilute

ammonium hydroxide solution and THF was removed under reduced pressure. The resulting solid was extracted with CH_2Cl_2 (3x). The combined org. layers were washed with aq. HCl (1M), water, brine, dried over Na₂SO₄, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (toluene) to give dialdehyde with ps-*meta* (**82**) (197 mg, 466 µmol, 24%) and ps-*ortho* conectivity (**86**) (402 mg, 953 µmol, 50%) as white solids.

4,15-Dibromo-7,12-diformyl[2.2]paracyclophane (82):

¹H NMR (400 MHz, CDCI₃): δ 9.90 (s, 2H), 7.58 (s, 2H), 6.60 (s, 2H), 4.10 – 4.00 (m, 2H), 3.44 - 3.34 (m, 2H), 3.23 - 3.13 (m, 2H), 2.96 - 2.86 (m, 2H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 191.32, 143.77, 139.85, 138.56, 135.48, 134.63, 133.52, 32.89, 32.76 ppm.

HR-MS (ESI, +): *m*/*z* calcd. for C₁₈H₁₄Br₂O₂Na [M+Na]⁺ 442.9253, found 442.9250.

4,12-Dibromo-7,15-diformyl[2.2]paracyclophane (86):

¹H NMR (400 MHz, CDCI₃): δ 9.79 (s, 2H), 7.27 (s, 2H), 6.88 (s, 2H), 3.99 – 3.88 (m, 2H), 3.55 – 3.42 (m, 2H), 3.12 – 2.95 (m, 4H) ppm.

¹³C{¹H } NMR (101 MHz, CDCI₃): δ 191.22, 143.53, 140.20, 137.45, 136.01, 135.55, 133.10, 35.05, 30.59 ppm.

HR-MS (ESI, +): *m*/z calcd. for C₁₈H₁₄Br₂O₂Na [M+Na]⁺ 442.9253, found 442.9247.

The analytical data are in agreement with the ones reported in ref.^{173,174}

Synthesis of 3',4'-dihexyl-2,2':5',2"-terthiophene (90):

2,5-Dibromo-3,4-dihexylthiophene (**88**) (3.0 mL, 9.59 mmol, 1.0 eq.), thiophene-2-boronic acid pinacol ester (**89**) (4.13 g, 19.7 mmol, 2.05 eq.) and K₂CO₃ (7.95 g, 57.5 mmol, 6.0 eq.) were dissolved in toluene (30 mL) and MeOH (30 mL). The reaction mixture was degassed for 20 min with Argon before Pd-PEPPSITM-IPr (98%, 332 mg, 489 µmol, 5 mol%) was added. The reaction mixture was placed in preheated oil bath and stirred at 70 °C for 30 min. Afterwards, the reaction was allowed to reach room temperature and aq. HCl (1M) was added. The aq. layer was extracted with toluene (3x). The combined organic layer was washed with aq. HCl (1M), water, brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (pentane) to give dihexylterthiophene **90** (3.92 g, 9.41 mmol, **98%**) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, J = 5.2, 1.2 Hz, 2H), 7.16 (dd, J = 3.6, 1.2 Hz, 2H), 7.08 (dd, J = 5.1, 3.6 Hz, 2H), 2.75 – 2.69 (m, 4H), 1.64 – 1.54 (m, 4H), 1.48 – 1.40 (m, 4H), 1.39 – 1.30 (m, 8H), 0.96 – 0.89 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl3): δ 140.21, 136.35, 129.95, 127.46, 125.96, 125.40, 31.65, 30.89, 29.73, 28.28, 22.78, 14.23 ppm.

HRMS (ESI, +): *m*/*z* calcd. for C₂₄H₃₂S₃H [M+H]⁺ 417.1739; found: 417.1731.

The analytical data are in agreement with the ones reported in ref.²³²

Synthesis of 5-bromo-3',4'-dihexyl-2,2':5',2"-terthiophene (91):

Hex Hay CO

Compound **90** (1.66 g, 3.98 mmol, 1.0 eq.) was dissolved in DMF (30 mL) in the flask wrapped with aluminum foil to exclude the daily light and cooled to -20 °C. *N*-Bromosuccinimide (787 mg, 4.38 mmol, 1.1 eq.) was

added in one portion. The reaction mixture was allowed to warm up to RT and stirred for 16 h. Afterwards, water was added and the reaction mixture was extracted with CH_2Cl_2 (3x). The combined org. layers were washed with aq. HCl (1M), water (2x) and brine (2x), dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (pentane) to give monobrominated terthiophene **91** (1.54 g, 3.10 mmol, **78%**) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, J = 5.1, 1.2 Hz, 1H), 7.14 (dd, J = 3.6, 1.2 Hz, 1H), 7.07 (dd, J = 5.2, 3.6 Hz, 1H), 7.02 (d, J = 3.9 Hz, 1H), 6.88 (d, J = 3.9 Hz, 1H), 2.73 – 2.63 (m, 4H), 1.62 – 1.52 (m, 4H), 1.48 – 1.39 (m, 4H), 1.38 – 1.28 (m, 8H), 0.98 – 0.88 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 140.73, 140.23, 137.90, 136.07, 130.53, 130.29, 128.94, 127.49, 126.18, 126.13, 125.61, 111.87, 31.63, 31.62, 30.93, 30.86, 29.71, 29.69, 28.26, 28.24, 22.77, 22.76, 14.22 ppm.

HRMS (ESI, +): *m*/*z* calcd. for C₂₄H₃₁BrS₃ [M+]⁺ 494.0766; found: 494.0757.

Synthesis of ((3',4'-dihexyl-[2,2':5',2"-terthiophen]-5-yl)ethynyl)triisopropylsilane (92):

Brominated terthiophene **91** (816 mg, 1.65 mmol, 1.0 eq.) was dissolved in trimethylamine (16 mL) and degassed for 20 min with Argon. Afterwards, TIPSA (0.5 mL, 2.31 mmol, 1.4 eq.) was added

and the reaction mixture was degassed for a further 10 min. $Pd(PPh_3)_2Cl_2$ (58 mg, 8.25 µmol, 5 mol%) and Cul (8 mg, 4.13 µmol, 2.5 mol%) were added and the reaction mixture was put in preheated oil bath for 16h. Then, the reaction mixture was cooled to RT, plugged over Celite and the solvent was removed under reduced pressure. The crude was purified by column chromatography (pentane) to give the compound **92** (935 mg, 1.57 mmol, **95%**) as a yellow oil.

¹**H NMR (400 MHz, CDCI₃):** δ 7.32 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.18 (d, *J* = 3.8 Hz, 1H), 7.14 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.07 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.98 (d, *J* = 3.8 Hz, 1H), 2.76 - 2.64 (m, 4H), 1.63 - 1.52 (m, 4H), 1.49 - 1.39 (m, 4H), 1.39 - 1.29 (m, 12H), 1.20 - 1.09 (m, 21H), 0.96 - 0.86 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 140.78, 140.38, 137.77, 136.13, 132.93, 130.50, 129.41, 127.51, 126.11, 125.60, 125.35, 123.16, 99.42, 96.83, 31.64, 31.58, 30.86, 30.74, 29.73, 29.68, 28.34, 28.35, 22.78, 22.76, 18.81, 14.23, 14.21, 11.46 ppm.

HRMS (ESI, +): *m*/*z* calcd. for C₃₅H₅₂S₃Si [M+]⁺ 596.2995; found:596.2984.

UV/Vis: λ_{max} = 358 nm (cyclohexane), 358 nm (toluene), 360 nm (ethyl acetate), 363 nm (chloroform).

Fluorescence: $\lambda_{max} = 461$ (438) nm (cyclohexane), 461 (441) nm (toluene), 461 (441) nm (ethyl acetate), 466 (445) nm (chloroform).

Synthesis of ((3',4'-dihexyl-5"-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[2,2':5',2"-terthiophen]-5-yl)ethynyl)triisopropylsilane (83b):

Terthiophene **92** (530 mg, 888 μ mol, 1.0 eq.) was dissolved in dry THF (90 mL). The reaction mixture was cooled to - 78 °C and *n*-BuLi (1.6 M, 0.6 mL, 960 μ mol, 1.0 eq.) was added. The solution was stirred for 90 min at -78 °C. Afterwards, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.7 mL,

3.43 mmol, 4.0 eq.) was added. The reaction mixture was allowed to warm to RT and stirred for 16 h. Then, HCI (1M) was added and the reaction mixture was extracted with CH_2CI_2 (3x). The combined org. layers were washed with aq. HCI (1M), dried over Na₂SO₄, filtered and the

solvent was evaporated under reduced pressure to give a crude product (600 mg) as a mixture of starting material **92** (137 mg, 227 μ mol, **26%**) and the desired borester **83b** (432 mg, 639 μ mol, **72%**) in ratio 1 to 2.8 (determined in NMR spectrum) as a green oil which was used in the next step without further purification.

The analytical amount was purified by GPC.

¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 3.6 Hz, 1H), 7.20 (d, J = 3.6 Hz, 1H), 7.17 (d, J = 3.8 Hz, 1H), 6.97 (d, J = 3.8 Hz, 1H), 2.77 – 2.65 (m, 4H), 1.62 – 1.50 (m, 4H), 1.48 – 1.39 (m, 4H), 1.36 (s, 12H), 1.35 – 1.28 (m, 8H), 1.18 – 1.08 (m, 21H), 0.94 – 0.87 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 143.16, 140.95, 140.79, 137.70, 137.66, 132.94, 130.54, 129.87, 127.26, 125.47, 123.28, 99.39, 96.91, 84.30, 31.60, 31.57, 30.72, 30.63, 29.68, 29.66, 28.33, 28.21, 24.91, 22.75, 18.81, 14.23, 14.20, 11.46 ppm.

MS (MALDI-ToF, RP, DCTB): *m*/*z* calcd. for C₄₁H₆₃BO₂S₃Si [M]⁺ 722.385, found 722.142.

Synthesis of 5,5"-dibromo-3',4'-dihexyl-2,2':5',2"-terthiophene (100):

Terthiophene **90** (960 mg, 2.30 mmol, 1.0 eq.) was dissolved in DMF (60 mL) in the flask wrapped with aluminum foil to exclude the daily light and cooled to -20 °C. *N*-Bromosuccinimide (868 mg, 4.83 mmol, 2.1 eq.) was added in one portion. The reaction mixture was allowed to warm up

to RT and stirred for 16 h. Afterward, water was added and the reaction mixture was extracted with CH_2Cl_2 (3x). The combined org. layers were washed with aq. HCl (1M), water (2x), dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (pentane) to give two-fold brominated terthiophene **100** (1.23 g, 2.14 mmol, **93%**) as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, *J* = 3.8 Hz, 2H), 6.86 (d, *J* = 3.9 Hz, 2H), 2.68 – 2.59 (m, 4H), 1.59 – 1.47 (m, 4H), 1.45 – 1.28 (m, 12H), 0.95 – 0.86 (m, 6H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 140.80, 137.60, 130.36, 129.50, 126.40, 112.15, 31.61, 30.92, 29.68, 28.23, 22.75, 14.22.ppm.

HRMS (ESI, +): m/z calcd. for C₂₄H₃₀Br₂S₃ [M]⁺ 571.9871; found:571.9860.

Synthesis of ((5"-bromo-3',4'-dihexyl-[2,2':5',2"-terthiophen]-5-yl)ethynyl)triisopropyl-silane (101):

Two-fold brominated terthiophene **100** (700 mg, 1.22 mmol, 1.0 eq.) was dissolved in trimethylamine (30 mL)/toluene (30 mL) and degassed for 20 min with Argon. Afterwards, TIPSA (0.2 mL, 892 μ mol, 0.7 eq.) was added and the reaction mixture was degassed for a further 10 min. Pd(PPh₃)₂Cl₂ (43 mg, 61.0 μ mol,

5 mol%) and Cul (6 mg, 30.5 µmol, 2.5 mol%) were added and the reaction mixture was put in preheated oil bath for 16 h. Then, the reaction mixture was cooled to RT, plugged over Celite and the solvent was removed under reduced pressure. The crude was purified by column chromatography (pentane) to give the terthiophene **101** (320 mg, 473 µmol, **55%**) as a yellow oil.

¹H NMR (400 MHz, CD₂Cl₂): δ 7.18 (d, J = 3.9 Hz, 1H), 7.05 (d, J = 3.9 Hz, 1H), 7.00 (d, J = 3.9 Hz, 1H), 6.90 (d, J = 3.9 Hz, 1H), 2.73 – 2.62 (m, 4H), 1.59 – 1.48 (m, 4H), 1.47 – 1.38 (m, 4H), 1.36 – 1.28 (m, 8H), 1.17 – 1.10 (m, 21H), 0.93 – 0.87 (m, 6H) ppm.

¹³C NMR {¹H} (101 MHz, CD₂Cl₂): δ 141.5, 141.4, 138.0, 137.8, 133.2, 130.8, 130.1, 129.6, 126.7, 125.9, 123.6, 112.2, 99.5, 97.4, 31.9, 31.9, 31.1, 30.9, 29.9, 29.9, 28.5, 28.4, 23.0, 23.0, 18.8, 14.2, 14.2, 11.7 ppm.

HRMS (ESI, +): *m/z* calcd. for C₃₅H₅₂BrS₃Si [M]⁺ 675.2178; found:675.2186.

m/z calcd. for (C₃₅H₅₂BrS₃Si)₂Ag [2M+Ag]⁺1455.3257; found:1455.3264.

Synthesis of Compound 93:

Dialdehyde **82** (45 mg, 107 μ mol, 1.0 eq.), borester **83b** (309 mg, 428 μ mol, 4.0 eq.) and K₂CO₃ (89 mg, 642 μ mol, 6.0 eq.) were dissolved in toluene (5 mL) and MeOH (1 mL). The reaction mixture was degassed for 20 min with Argon before Pd(PPh₃)₄ (12 mg, 10.7 μ mol, 10 mol%) was added. The reaction mixture was placed in preheated oil bath and stirred at 70 °C for 2 h. Afterward, the reaction was allowed to reach room temperature and ag. HCI

(1M) was added. The aq. layer was extracted with toluene (3x). The combined organic layer was washed with aq. HCI (1M), water, brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography

(cyclohexane to cyclohexane/CH₂Cl₂ 3:2) to give a compound **93** (150 mg, 103 μ mol, **96%**) as a red/orange amorphous solid.

¹H NMR (400 MHz, CDCl₃): δ 10.09 (s, 2H), 7.40 (s, 2H), 7.26 (d, *J* = 3.7 Hz, 2H), 7.21 (d, *J* = 3.8 Hz, 2H), 7.19 (d, *J* = 3.8 Hz, 2H), 7.02 (d, *J* = 3.8 Hz, 2H), 6.65 (s, 2H), 4.21 – 4.08 (m, 2H), 3.89 – 3.74 (m, 2H), 3.10 – 2.95 (m, 2H), 2.83 – 2.64 (m, 10H), 1.68 – 1.55 (m, 8H), 1.52 – 1.44 (m, 8H), 1.39 – 1.32 (m, 16H), 1.18 – 1.10 (m, 42H), 0.95 – 0.88 (m, 12H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 191.04, 143.70, 141.15, 141.10, 140.98, 140.26, 138.54, 137.47, 137.46, 136.43, 135.04, 134.30, 132.97, 130.09, 129.97, 127.77, 126.89, 125.61, 123.50, 99.32, 97.13, 33.74, 33.64,* 31.73, 31.60, 30.82, 30.76, 29.82, 29.67, 28.54, 28.35, 22.81, 22.76, 18.81, 14.27, 14.21, 11.47 ppm.

* was extracted from DEPT-135 experiment

HRMS (ESI, +): m/z calcd. for C₈₈H₁₁₆O₂S₆Si₂H [M+H]⁺1453.6911; found:1453.6871;

m/*z* calcd. for C₈₈H₁₁₆O₂S₆Si₂Na [M+Na]⁺1475.6730; found:1475.6700;

m/*z* calcd. for C₈₈H₁₁₆O₂S₆Si₂K [M+K]⁺1491.6470; found:1491.6453.

UV/Vis: λ_{max} = 415 nm (cyclohexane), 421 nm (toluene), 413 nm (ethyl acetate), 424 nm (chloroform).

Fluorescence: $\lambda_{max} = 510 (540) \text{ nm} (cyclohexane), 529 \text{ nm} (toluene), 540 \text{ nm} (ethyl acetate), 572 nm (chloroform).$

 Φ_{f} (%): 10.1 (cyclohexane), 11.6 (toluene), 8.2 (ethyl acetate), 7.7 (chloroform).

Synthesis of Compound 102:

Compound **93** (205 mg, 141 μ mol, 1.0 eq.) was dissolved in THF/water (40/1). The reaction mixture was degassed for 20 min with Argon before TBAF (1.4 mL, 1.41 mmol, 10 eq.) was added. The reaction was stirred at room temperature for 16 h. Afterward, the reaction mixture was diluted with toluene and water. The organic layer was separated and washed with brine (3x), water, dried over Na₂SO₄ filtered and the solvent

was removed under reduced pressure. The crude product was purified by column chromatography (cyclohexane/CH₂Cl₂ 3:2) to give the compound **102** (150 mg, 131 μ mol, **93%**) as a red/orange amorphous solid.

¹H NMR (400 MHz, CD₂Cl₂): δ 10.10 (s, 2H), 7.40 (s, 2H), 7.29 (d, *J* = 3.9 Hz, 2H), 7.26 (d, *J* = 3.8 Hz, 2H), 7.25 (d, *J* = 3.9 Hz, 2H), 7.06 (d, *J* = 3.9 Hz, 2H), 6.67 (s, 2H), 4.20 - 4.07 (m, 2H), 3.89 - 3.75 (m, 2H), 3.51 (s, 2H), 3.07 - 2.95 (m, 2H), 2.88 - 2.78 (m, 4H), 2.78 - 2.63 (m, 6H), 1.68 - 1.55 (m, 8H), 1.53 - 1.42 (m, 8H), 1.40 - 1.28 (m, 16H), 0.97 - 0.82 (m, 12H) ppm.

¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 191.08, 143.92, 141.80, 141.64, 141.44, 140.36, 138.53, 138.44, 137.94, 136.34, 135.43, 134.47, 134.02, 130.47, 129.83, 128.13, 127.35, 125.92, 121.91, 82.72, 76.99, 33.97,* 33.75,* 32.00, 31.92, 31.04 (2C), 30.02, 29.93, 28.71, 28.62, 23.09, 23.05, 14.30, 14.26 ppm.

* better visible in DEPT-135 experiment

HRMS (ESI, +): *m*/*z* calcd. for C₇₀H₇₆O₂S₆Na [M+Na]⁺ 1163.4062; found:1163.4059.

Synthesis of Diyne Dimer (103):

Eglinton-Breslow

CuCl and Cu(Ac)₂ were purified according to the procedure described in the ref.¹⁸⁷

CuCl (104 mg, 1.05 mmol, 30 eq.) and Cu(Ac)₂ (267 mg, 1.47 mmol, 42 eq.) were dissolved in dry pyridine (18 mL) and stirred at 80 °C for 20 min. To this reaction mixture, a solution of 102 (40 mg, 35.0 µmol, 1.0 eq.) in dry pyridine (6 mL) was added with a syringe pump over 14 h and stirred for a further 2 h. Afterward, pyridine was removed under reduced pressure, and the residue was redissolved in CH₂Cl₂. The organic

layer was washed with NH₄Cl (2x), HCl (1M), water, dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (CH_2CI_2) to give the product (14 mg, 6.13 µmol, **35%**) as a red amorphous solid.

General Procedure I: One-Pot Deprotection and Macrocyclisation

This procedure was modified from ref.¹⁸⁹

Compound 93 was dissolved in pyridine in a round bottom flask equipped with a large magnetic stirrer. Copper(II) fluoride hydrate (6.0 eq.) was added and the reaction mixture was placed in preheated oil bath (40 – 80 °C) and stirred vigorously at open ambient atmosphere for 1-16 h. Afterward, the reaction mixture was allowed to reach room temperature. The organic layer was washed with aq. NH₄Cl (sat., 2x), water, brine, dried over Na₂SO₄, filtered over a plug of silica. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (CH₂Cl₂) and/or GPC to provide the dimer **103** as a red amorphous solid.

General procedure II: Glaser-Hay

Compound 102 was dissolved in CH₂Cl₂. CuCl and TMEDA were added and the reaction mixture was stirred for 1 - 16 h at room temperature. Afterward, the reaction mixture was diluted and washed with aq. NH₄Cl (sat., 2x), water, filtered over a plug of silica. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (CH₂Cl₂) and/or GPC to provide the dimer **103** as a red amorphous solid.

¹H NMR (500 MHz, CD_2CI_2): δ 10.12 (s, 4H), 7.39 (s, 4H), 7.35 (d, J = 3.9 Hz, 4H), 7.31 (d, J = 3.8 Hz, 4H), 7.27 (d, J = 3.9 Hz, 4H), 7.08 (d, J = 3.9 Hz, 4H), 6.72 (s, 4H), 4.18 – 4.08 (m, 4H), 3.93 – 3.84 (m, 4H), 3.05 – 2.97 (m, 4H), 2.84 – 2.71 (m, 16H), 2.71 – 2.64 (m, 4H), 1.66 – 1.56 (m, 16H), 1.50 – 1.42 (m, 16H), 1.39 – 1.32 (m, 32H), 0.94 – 0.89 (m, 24H) ppm.

¹**H NMR (600 MHz, CD_2CI_2):** δ 10.11 (s, 4H), 7.38 (s, 4H), 7.35 (d, J = 3.7 Hz, 4H), 7.30 (d, J = 3.8 Hz, 4H), 7.27 (d, J = 3.8 Hz, 4H), 7.07 (d, J = 3.8 Hz, 4H), 6.71 (s, 4H), 4.15 – 4.09 (m, 4H), 3.93 – 3.82 (m, 4H), 3.04 – 2.97 (m, 4H), 2.83 – 2.71 (m, 16H), 2.70 – 2.60 (m, 4H), 1.65 – 1.56 (m, 16H), 1.50 – 1.42 (m, 16H), 1.38 – 1.33 (dqt, J = 10.4, 5.7, 2.7 Hz, 32H), 0.94 – 0.90 (m, 24H) ppm.

¹³C NMR (126 MHz, CD₂Cl₂): δ 190.97, 143.93, 142.23, 141.73, 141.57, 140.53, 140.29, 138.99, 138.10, 135.70 (2C),* 135.43, 133.88, 130.95, 129.69, 128.24, 126.71, 125.61, 79.34, 34.20,** 33.89,** 31.99, 31.93, 31.01, 30.93, 29.99, 29.95, 28.62 (2C),** 23.09, 23.06, 14.31, 14.26 ppm. (No clear resonance for the second quarternary carbon atom of acetylene and some of quartier carbons could be observed due to the insufficient amount of prepared dimeric structure).

* overlap is visible in HSQC spectrum

** were detected in DEPT-135 experiment.

MS (MALDI-ToF, RP, DCTB): *m*/*z* calcd. for C₁₄₀H₁₄₈O₄S₁₂ [M]⁺ 2276.803, found 2276.907.

UV/Vis: λ_{max} = 415 nm (cyclohexane), 426 nm (toluene), 420 nm (ethyl acetate), 427 nm (chloroform).

Fluorescence: $\lambda_{max} = 530$ (564) nm (cyclohexane), 541 (577) nm (toluene), 540 (568) nm (ethyl acetate), 581 nm (chloroform).

Φ_f (%): 9.3 (cyclohexane), 10.6 (toluene), 8.9 (ethyl acetate), 10.9 (chloroform).

Synthesis of Thiophene Dimer (125):

Diyne dimer (**103**) (10 mg, 4.39 μ mol, 1.0 eq.) and 1,4,7,10,13-pentaoxacyclopentadecan (77 mg, 351 μ mol, 80 eq.) were dissolved in *p*-xylol (1 mL) and degassed for 20 min. Afterward, sodium sulfide nonahydrate (42 mg, 176 μ mol, 40 eq.) was added. The reaction mixture was put in preheated oil bath and stirred for 90 min at 140 °C. Then, the reaction

was cooled to room temperature, diluted with toluene and washed with aq. HCl (1M), water, brine, dried over Na₂SO₄, filtered over a plug of silica. The solvent was removed under reduced pressure and the crude product was purified by GPC to give the desired thiophene dimer (**125**) (5 mg, 2.15 µmol, **49%**) as a red amorphous solid.

¹H NMR (600 MHz, C_6D_6): δ 9.91 (s, 4H, H23), 7.38 (s, 4H, H19), 7.27 – 7.22 (m, 8H, H12/13), 7.05 (dd, J = 3.7, 1.4 Hz, 4H, H5), 6.94 (d, J = 3.6 Hz, 4H, H4), 6.86 (d, J = 1.1 Hz, 4H, H1), 6.64 (s, 4H, H16), 3.87 – 3.79 (m, 4H, H21), 3.75 – 3.68 (m, 4H, H22), 2.91 – 2.79 (m, 16H, H24/30), 2.74 – 2.66 (m, 4H, H21), 2.56 – 2.49 (m, 4H, H22), 1.76 – 1.66 (m, 16H, H25/31), 1.51 – 1.45 (m, 16H, H26/32), 1.31 – 1.27 (m, 32H, H27/28/33/34), 0.98 – 0.90 (m, 24H, H29/35 (overlap with the H grease)) ppm.

¹³C{¹H} NMR (151 MHz, C₆D₆):* 190.24 (C23), 143.77 (C17), 141.84 (C14), 141.38 (C8), 140.18 (C15), 139.30 (C11), 137.92 (C20), 137.43 (C3), 136.50 (C2), 136.00 (C6), 135.70 (C19), 135.67 (C18), 135.47 (C9), 133.91 (C16), 131.11 (C7), 130.66 (C10), 128.25 (C12), 126.72 (C5), 126.71 (C13), 124.99 (C1), 124.81 (C4), 34.03 (C22), 33.06 (C21), 32.07 (C27), 31.92 (C33), 31.27 (C25), 31.08 (C31), 30.20 (C26), 29.94 (C32), 28.78 (C24), 28.68 (C30), 23.23 (C28), 23.03 (C34), 14.44 (C29), 14.41 (C35).

* Was extracted from 2D NMR experiments

MS (MALDI-ToF, RP, DCTB): *m*/*z* calcd. for C₁₄₀H₁₅₂O₄S₁₄ [M]⁺ 2344.778, found 2344.979.

UV/Vis: λ_{max} = 425 nm (cyclohexane), 433 nm (toluene), 426 nm (ethyl acetate), 435 nm (chloroform).

Fluorescence: $\lambda_{max} = 559$ (597) nm (cyclohexane), 573 (610) nm (toluene), 601 nm (ethyl acetate), 626 nm (chloroform).

 $\boldsymbol{\Phi}_{f}$ (%): 11.4 (cyclohexane), 11.4 (toluene), 8.5 (ethyl acetate), 9.6 (chloroform).

6 Abbreviations

°C	degrees centigrade
aq.	aqueous
COD	1,5-cyclooctadien
COSY	correlation spectroscopy
CPDMS	(3-cyanopropyl)dimethylsilyl
CPL	circularly polarized luminescent
СРР	cycloparaphenylenes
CQI	constructive quantum interference
CVD	chemical vapor deposition
DCTB	${\it trans-2-[3-(4-{\it tert}-{\sf Butylphenyl})-2-{\it methyl-propenylidene}]} malonon it rile$
DFT	density-functional theory
DIPA	diipropylamine
DIPEA	N,N-diisopropylethylamine, or Hünig's base
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
DOSY	diffusion-ordered spectroscopy
dppe	1,2-bis(diphenylphosphino)ethane
DQI	destructive quantum interference
EA	ethyl acetate
EB	electrical breakdown
eq.	equivalent
ESI-MS	electrospray ionization mass spectrometry
FFT	Fast Fourier transformation
GC	gas chromatography
GF	gauge factor
GPC	gel permeation chromatography
GPH	gas-phase HOMO
GPL	gas-phase LUMO
h	hour(s)
Hex	$hexyI = C_6H_{13}$
НМВС	heteronuclear multiple-quantum correlation
НОМО	highest occupied molecular orbital
НОР	2-hydroxyprop-2-yl
HSQC	heteronuclear single quantum correlation
Hz	hertz [s ⁻¹]

J(NMR)	coupling constant [Hz]
LDA	lithium diisopropylamide
LUMO	lowest unoccupied molecular orbital
Μ	molarity [mol/L]
т	meta
MALDI-TOF	matrix-assisted laser desorption ionization-time of flight
MCBJ	mechanically controlled break junction
МеОН	methanol
min	minutes
MS	mass spectrometry
NBS	N-Bromosuccinimide
NEGF	nonequilibrium Green's function
NEt ₃	triethylamine
NMR	nuclear magnetic resonance
NOESY	nuclear overhauser effect spectroscopy
0	ortho
OPE	oligo(phenylene ethynylene)
p	para
PCP	[2.2]paracyclophane
PG	protecting group
ppm	parts per million
ps	pseudo
QI	quantum interference
QuIET	Quantum Interference Enhanced Thermoelectricity
RT	room temperature
sat.	saturated
STM	scanning tunneling microscope
TADF	thermally activated delayed fluorescence
TBAF	tetra- <i>n</i> -butylammonium fluoride
TCE	tetrachloroethane
TLC	thin layer chromatography
THF	tetrahydrofuran
TMEDA	tetramethylethylenediamine
UV-Vis	ultraviolet-visible spectroscopy
δ (NMR)	chemical shift [ppm]

7 References

- (1) Aviram, A.; Ratner, M. A. Molecular Rectifiers. *Chem. Phys. Lett.* **1974**, *29* (2), 277–283. https://doi.org/10.1016/0009-2614(74)85031-1.
- (2) Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. *Chem. Rev.* **2016**, *116* (7), 4318–4440. https://doi.org/10.1021/acs.chemrev.5b00680.
- (3) Mathew, P. T.; Fang, F. Advances in Molecular Electronics: A Brief Review. *Engineering* **2018**, *4*(6), 760–771. https://doi.org/10.1016/j.eng.2018.11.001.
- (4) Tang, C.; Ayinla, R. T.; Wang, K. Beyond Electrical Conductance: Progress and Prospects in Single-Molecule Junctions. J. Mater. Chem. C 2022, 10 (37), 13717–13733. https://doi.org/10.1039/D2TC01155G.
- (5) Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy. IBM J. Res. Dev. 2000, 44 (1/2), 279.
- (6) Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Mechanically Controllable Break Junctions for Molecular Electronics. *Adv. Mater.* **2013**, *25* (35), 4845–4867.
- (7) Liang, W.; Shores, M. P.; Bockrath, M.; Long, J. R.; Park, H. Kondo Resonance in a Single-Molecule Transistor. *Nature* 2002, 417 (6890), 725–729. https://doi.org/10.1038/nature00790.
- (8) Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M. K.; van der Zant, H. S. J. Room-Temperature Gating of Molecular Junctions Using Few-Layer Graphene Nanogap Electrodes. *Nano Lett.* **2011**, *11* (11), 4607–4611. https://doi.org/10.1021/nl202065x.
- (9) Mol, J. A.; Lau, C. S.; Lewis, W. J. M.; Sadeghi, H.; Roche, C.; Cnossen, A.; Warner, J. H.; Lambert, C. J.; Anderson, H. L.; Briggs, G. A. D. Graphene-Porphyrin Single-Molecule Transistors. *Nanoscale* **2015**, *7* (31), 13181–13185. https://doi.org/10.1039/C5NR03294F.
- (10) Lau, C. S.; Mol, J. A.; Warner, J. H.; Briggs, G. a. D. Nanoscale Control of Graphene Electrodes. *Phys. Chem. Chem. Phys.* **2014**, *16* (38), 20398–20401. https://doi.org/10.1039/C4CP03257H.
- (11) Vazquez, H.; Skouta, R.; Schneebeli, S.; Kamenetska, M.; Breslow, R.; Venkataraman, L.; Hybertsen, M. S. Probing the Conductance Superposition Law in Single-Molecule Circuits with Parallel Paths. *Nat. Nanotechnol.* 2012, 7 (10), 663–667. https://doi.org/10.1038/nnano.2012.147.
- (12) Guédon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; van der Molen, S. J. Observation of Quantum Interference in Molecular Charge Transport. *Nat. Nanotechnol.* **2012**, 7 (5), 305–309. https://doi.org/10.1038/nnano.2012.37.
- (13) Vezzoli, A. Mechanoresistive Single-Molecule Junctions. *Nanoscale* **2022**, 14 (8), 2874–2884. https://doi.org/10.1039/D1NR06891A.
- (14) Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; Liu, Z.; Zhang, G.; Qu, D.-H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. Covalently Bonded Single-Molecule Junctions with Stable and Reversible Photoswitched Conductivity. *Science* **2016**, *352* (6292), 1443–1445. https://doi.org/10.1126/science.aaf6298.
- (15) Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P. Electrostatic Control of Thermoelectricity in Molecular Junctions. *Nat. Nanotechnol.* **2014**, *9* (11), 881–885. https://doi.org/10.1038/nnano.2014.209.
- (16) Cao, Y.; Dong, S.; Liu, S.; He, L.; Gan, L.; Yu, X.; Steigerwald, M. L.; Wu, X.; Liu, Z.; Guo, X. Building High-Throughput Molecular Junctions Using Indented Graphene Point Contacts. *Angew. Chem.* **2012**, *124* (49), 12394–12398. https://doi.org/10.1002/ange.201205607.
- (17) Braun, O.; Overbeck, J.; El Abbassi, M.; Käser, S.; Furrer, R.; Olziersky, A.; Flasby, A.; Borin Barin, G.; Sun, Q.; Darawish, R.; Müllen, K.; Ruffieux, P.; Fasel, R.; Shorubalko, I.; Perrin, M. L.; Calame, M. Optimized Graphene Electrodes for Contacting Graphene Nanoribbons. *Carbon* **2021**, *184*, 331–339. https://doi.org/10.1016/j.carbon.2021.08.001.
- (18) Sadeghi, H.; Sangtarash, S.; Lambert, C. Robust Molecular Anchoring to Graphene Electrodes. *Nano Lett.* **2017**, *17* (8), 4611–4618. https://doi.org/10.1021/acs.nanolett.7b01001.

- (19) Xu, Q.; Scuri, G.; Mathewson, C.; Kim, P.; Nuckolls, C.; Bouilly, D. Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. *Nano Lett.* **2017**, *17* (9), 5335–5341. https://doi.org/10.1021/acs.nanolett.7b01745.
- (20) Lee, C.-H.; Lee, G.-H.; van der Zande, A. M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F.; Guo, J.; Hone, J.; Kim, P. Atomically Thin p–n Junctions with van Der Waals Heterointerfaces. *Nat. Nanotechnol.* 2014, 9 (9), 676–681. https://doi.org/10.1038/nnano.2014.150.
- (21) Nef, C.; Pósa, L.; Makk, P.; Fu, W.; Halbritter, A.; Schönenberger, C.; Calame, M. High-Yield Fabrication of Nm-Size Gaps in Monolayer CVD Graphene. *Nanoscale* **2014**, 6 (13), 7249–7254. https://doi.org/10.1039/C4NR01838A.
- (22) Abbassi, M. E.; Pósa, L.; Makk, P.; Nef, C.; Thodkar, K.; Halbritter, A.; Calame, M. From Electroburning to Sublimation: Substrate and Environmental Effects in the Electrical Breakdown Process of Monolayer Graphene. *Nanoscale* **2017**, *9* (44), 17312–17317. https://doi.org/10.1039/C7NR05348G.
- (23) Thodkar, K.; El Abbassi, M.; Lüönd, F.; Overney, F.; Schönenberger, C.; Jeanneret, B.; Calame, M. Comparative Study of Single and Multi Domain CVD Graphene Using Large-Area Raman Mapping and Electrical Transport Characterization. *Phys. Status Solidi RRL Rapid Res. Lett.* **2016**, *10* (11), 807–811. https://doi.org/10.1002/pssr.201600211.
- (24) Schmuck, O.; Beretta, D.; Furrer, R.; Oswald, J.; Calame, M. A Method to Fabricate Nanoscale Gaps in Graphene Nano-Constrictions by Electrical Breakdown. *AIP Adv.* **2022**, *12* (5), 055312. https://doi.org/10.1063/5.0087564.
- (25) Zhou, Y.; Maguire, P.; Jadwiszczak, J.; Muruganathan, M.; Mizuta, H.; Zhang, H. Precise Milling of Nano-Gap Chains in Graphene with a Focused Helium Ion Beam. *Nanotechnology* **2016**, *27* (32), 325302. https://doi.org/10.1088/0957-4484/27/32/325302.
- (26) Song, B.; Schneider, G. F.; Xu, Q.; Pandraud, G.; Dekker, C.; Zandbergen, H. Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures. *Nano Lett.* **2011**, *11* (6), 2247–2250. https://doi.org/10.1021/nl200369r.
- (27) Xie, L.; Liao, M.; Wang, S.; Yu, H.; Du, L.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X.; Wang, G.; Xie, G.; Yang, R.; Shi, D.; Zhang, G. Graphene-Contacted Ultrashort Channel Monolayer MoS2 Transistors. *Adv. Mater.* **2017**, *29* (37), 1702522. https://doi.org/10.1002/adma.201702522.
- (28) Zhang, K.; Fu, Q.; Pan, N.; Yu, X.; Liu, J.; Luo, Y.; Wang, X.; Yang, J.; Hou, J. Direct Writing of Electronic Devices on Graphene Oxide by Catalytic Scanning Probe Lithography. *Nat. Commun.* **2012**, *3* (1), 1194. https://doi.org/10.1038/ncomms2200.
- (29) Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C.-Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J.; Briggs, G. A. D.; Mol, J. A.; Anderson, H. L. Anchor Groups for Graphene-Porphyrin Single-Molecule Transistors. *Adv. Funct. Mater.* **2018**, 28 (45), 1803629. https://doi.org/10.1002/adfm.201803629.
- (30) Elmahdy, M. M.; Dou, X.; Mondeshki, M.; Floudas, G.; Butt, H.-J.; Spiess, H. W.; Müllen, K. Self-Assembly, Molecular Dynamics, and Kinetics of Structure Formation in Dipole-Functionalized Discotic Liquid Crystals. J. Am. Chem. Soc. 2008, 130 (15), 5311–5319. https://doi.org/10.1021/ja7113618.
- (31) El Abbassi, M.; Sangtarash, S.; Liu, X.; Perrin, M. L.; Braun, O.; Lambert, C.; van der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S.-X.; Sadeghi, H.; Calame, M. Robust Graphene-Based Molecular Devices. *Nat. Nanotechnol.* **2019**, *14* (10), 957–961. https://doi.org/10.1038/s41565-019-0533-8.
- (32) Sadeghi, H.; Mol, J. A.; Lau, C. S.; Briggs, G. A. D.; Warner, J.; Lambert, C. J. Conductance Enlargement in Picoscale Electroburnt Graphene Nanojunctions. *Proc. Natl. Acad. Sci.* 2015, 112 (9), 2658–2663. https://doi.org/10.1073/pnas.1418632112.
- (33) Sonogashira, K.; Tohda, Y.; Hagihara, N. A Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes, and Bromopyridines. *Tetrahedron Lett.* **1975**, *50* (16), 4467–4470. https://doi.org/10.1016/S0040-4039(00)91094-3.
- (34) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Polyethynylated Cyclic P-Systems: Scaffoldings for Novel Two and Three-Dimensional Carbon Networks. 13.

- (35) Le Pleux, L.; Kapatsina, E.; Hildesheim, J.; Häussinger, D.; Mayor, M. A Molecular Turnstile as an E-Field-Triggered Single-Molecule Switch: Concept and Synthesis. *Eur. J. Org. Chem.* 2017, 2017 (22), 3165–3178. https://doi.org/10.1002/ejoc.201700318.
- (36) Grunder, S.; Muñoz Torres, D.; Marquardt, C.; Błaszczyk, A.; Krupke, R.; Mayor, M. Synthesis and Optical Properties of Molecular Rods Comprising a Central Core-Substituted Naphthalenediimide Chromophore for Carbon Nanotube Junctions. *Eur. J. Org. Chem.* **2011**, *2011* (3), 478–496. https://doi.org/10.1002/ejoc.201001415.
- (37) Jenny, N. M.; Mayor, M.; Eaton, T. R. Phenyl–Acetylene Bond Assembly: A Powerful Tool for the Construction of Nanoscale Architectures. *Eur. J. Org. Chem.* **2011**, *2011* (26), 4965–4983. https://doi.org/10.1002/ejoc.201100176.
- (38) Ko, S.-B.; Cho, A.-N.; Kim, M.-J.; Lee, C.-R.; Park, N.-G. Alkyloxy substituted organic dyes for high voltage dye-sensitized solar cell: Effect of alkyloxy chain length on open-circuit voltage. *Dyes and Pigments.* **2012**, *94* (1), 88–98. https://doi.org/10.1016/j.dyepig.2011.10.014.
- (39) Höger, S.; Bonrad, K. [(3-Cyanopropyl)Dimethylsilyl]Acetylene, a Polar Analogue of (Trimethylsilyl)Acetylene: Synthesis and Applications in the Preparation of Monoprotected Bisacetylenes. *J. Org. Chem.* **2000**, *65* (7), 2243–2245. https://doi.org/10.1021/jo991746m.
- (40) Wang, C.; Batsanov, A. S.; Bryce, M. R. Convergent Synthesis of 10 Nm Aryleneethynylene Molecular Wires by an Iterative Regioselective Deprotection/Sonogashira Coupling Protocol. J. Org. Chem. 2006, 71 (1), 108– 116. https://doi.org/10.1021/jo0517110.
- (41) Havens, S. J.; Hergenrother, P. M. Synthesis of Arylacetylenes by the Sodium Hydride Catalyzed Cleavage of 4-Aryl-2-Methyl-3-Butyn-2-Ols. *J. Org. Chem.* **1985**, *50* (10), 1763–1765. https://doi.org/10.1021/jo00210a042.
- (42) Zhang, J.; Cui, Y.; Wang, M.; Liu, J. Synthesis of Double-Conjugated-Segment Molecules and Their Application as Ultra-Broad Two-Photon-Absorption Optical Limiters. *Chem. Commun.* **2002**, No. 21, 2526–2527. https://doi.org/10.1039/B208190C.
- (43) Wuts, P. G.; Greene, T. W. Greene's protective groups in organic synthesis. John Wiley & Sons., 2006.
- (44) Speier, J. L.; Webster, J. A.; Barnes, G. H. The Addition of Silicon Hydrides to Olefinic Double Bonds. Part II. The Use of Group VIII Metal Catalysts. *J. Am. Chem. Soc.* **1957**, *79* (4), 974–979. https://doi.org/10.1021/ja01561a054.
- (45) Lewis, L. N.; Stein, J.; Gao, Y.; Colborn, R. E.; Hutchins, G. Platinum Catalysts Used in the Silicones Industry: Their Synthesis and Activity in Hydrosilylation. *Platin. Met. Rev.* **1997**, *41* (2), 66–75.
- (46) Nakajima, Y.; Shimada, S. Hydrosilylation Reaction of Olefins: Recent Advances and Perspectives. *RSC Adv.* **2015**, *5* (26), 20603–20616. https://doi.org/10.1039/C4RA17281G.
- (47) Gigler, P.; Drees, M.; Riener, K.; Bechlars, B.; Herrmann, W. A.; Kühn, F. E. Mechanistic Insights into the Hydrosilylation of Allyl Compounds – Evidence for Different Coexisting Reaction Pathways. *J. Catal.* 2012, 295, 1–14. https://doi.org/10.1016/j.jcat.2012.06.006.
- (48) Riener, K.; Meister, T. K.; Gigler, P.; Herrmann, W. A.; Kühn, F. E. Mechanistic Insights into the Iridium-Catalyzed Hydrosilylation of Allyl Compounds. *J. Catal.* **2015**, *331*, 203–209. https://doi.org/10.1016/j.jcat.2015.09.003.
- (49) Troegel, D.; Stohrer, J. Recent Advances and Actual Challenges in Late Transition Metal Catalyzed Hydrosilylation of Olefins from an Industrial Point of View. *Coord. Chem. Rev.* **2011**, *255* (13), 1440–1459. https://doi.org/10.1016/j.ccr.2010.12.025.
- (50) Brown, C. J.; Farthing, A. C. Preparation and Structure of Di- p -Xylylene. *Nature* **1949**, *164* (4178), 915–916. https://doi.org/10.1038/164915b0.
- (51) Cram, D. J.; Steinberg, H. Macro Rings. I. Preparation and Spectra of the Paracyclophanes. J. Am. Chem. Soc. **1951**, 73 (12), 5691–5704. https://doi.org/10.1021/ja01156a059.
- (52) Winberg, H. E.; Fawcett, F. S.; Mochel, W. E.; Theobald, C. W. Dimethylenedihydroheteroaromatic Compounds and Heterocyclophanes by 1,6-Hofmann Elimination Reactions. *J. Am. Chem. Soc.* **1960**, *82* (6), 1428–1435. https://doi.org/10.1021/ja01491a037.

- (53) Chow, H.-F.; Low, K.-H.; Wong, K. Y. An Improved Method for the Regiospecific Synthesis of Polysubstituted [2.2]Paracyclophanes. *Synlett* **2005**, 2005 (14), 2130–2134. https://doi.org/10.1055/s-2005-872270.
- (54) Otsubo, T.; Horita, H.; Misumi, S. Studies on the Syntheses of Multilayered [2. 2] Paracyclophanes. Synth. Commun. 1976, 6 (8), 591–596. https://doi.org/10.1080/00397917608063553.
- (55) Pan, D.; Wang, Y.; Xiao, G. A New Protocol for the Synthesis of 4,7,12,15-Tetrachloro[2.2]Paracyclophane. Beilstein J. Org. Chem. 2016, 12 (1), 2443–2449. https://doi.org/10.3762/bjoc.12.237.
- (56) Paradies, J. [2.2]Paracyclophane Derivatives: Synthesis and Application in Catalysis. *Synthesis* **2011**, *2011* (23), 3749–3766. https://doi.org/10.1055/s-0031-1289296.
- (57) David, O. R. P. Syntheses and Applications of Disubstituted [2.2]Paracyclophanes. *Tetrahedron* **2012**, *68* (44), 8977–8993. https://doi.org/10.1016/j.tet.2012.08.009.
- (58) Hassan, Z.; Spuling, E.; Knoll, D. M.; Bräse, S. Regioselective Functionalization of [2.2]Paracyclophanes: Recent Synthetic Progress and Perspectives. *Angew. Chem. Int. Ed.* **2020**, *59* (6), 2156–2170. https://doi.org/10.1002/anie.201904863.
- (59) Weiland, K. J.; Gallego, A.; Mayor, M. Beyond Simple Substitution Patterns Symmetrically Tetrasubstituted [2.2]Paracyclophanes as 3D Functional Materials. *Eur. J. Org. Chem.* **2019**, 2019 (20), 3073–3085. https://doi.org/10.1002/ejoc.201900061.
- (60) Hopf, H. [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angew. Chem. Int. Ed. 2008, 47 (51), 9808–9812. https://doi.org/10.1002/anie.200800969.
- (61) Dahmen, S.; Bräse, S. The Asymmetric Dialkylzinc Addition to Imines Catalyzed by [2.2]Paracyclophane-Based N,O-Ligands. J. Am. Chem. Soc. 2002, 124 (21), 5940–5941. https://doi.org/10.1021/ja025831e.
- (62) Bolm, C.; Focken, T.; Raabe, G. Synthesis of Iridium Complexes with Novel Planar Chiral Chelating Imidazolylidene Ligands. *Tetrahedron Asymmetry* **2003**, *14* (12), 1733–1746. https://doi.org/10.1016/S0957-4166(03)00353-7.
- (63) Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. A New Planar Chiral Bisphosphine Ligand for Asymmetric Catalysis: Highly Enantioselective Hydrogenations under Mild Conditions. J. Am. Chem. Soc. 1997, 119 (26), 6207–6208. https://doi.org/10.1021/ja970654g.
- (64) Gon, M.; Morisaki, Y.; Sawada, R.; Chujo, Y. Synthesis of Optically Active, X-Shaped, Conjugated Compounds and Dendrimers Based on Planar Chiral [2.2]Paracyclophane, Leading to Highly Emissive Circularly Polarized Luminescence. Chem. Eur. J. 2016, 22, 2291–2298. https://doi.org/10.1002/chem.201504270.
- (65) Weiland, K. J.; Brandl, T.; Atz, K.; Prescimone, A.; Häussinger, D.; Šolomek, T.; Mayor, M. Mechanical Stabilization of Helical Chirality in a Macrocyclic Oligothiophene. *J. Am. Chem. Soc.* **2019**, *141* (5), 2104–2110. https://doi.org/10.1021/jacs.8b11797.
- (66) Weiland, K. J.; Münch, N.; Gschwind, W.; Häussinger, D.; Mayor, M. A Chiral Macrocyclic Oligothiophene with Broken Conjugation – Rapid Racemization through Internal Rotation. *Helv. Chim. Acta* 2019, *102* (1), e1800205. https://doi.org/10.1002/hlca.201800205.
- (67) He, J.; Yu, M.; Pang, M.; Fan, Y.; Lian, Z.; Wang, Y.; Wang, W.; Liu, Y.; Jiang, H. Nanosized Carbon Macrocycles Based on a Planar Chiral Pseudo Meta-[2.2]Paracyclophane. *Chem. – Eur. J.* **2022**, *28* (13), e202103832. https://doi.org/10.1002/chem.202103832.
- (68) Wu, Y.; Zhuang, G.; Cui, S.; Zhou, Y.; Wang, J.; Huang, Q.; Du, P. Through-Space π-Delocalization in a Conjugated Macrocycle Consisting of [2.2]Paracyclophane. *Chem. Commun.* **2019**, *55* (97), 14617–14620. https://doi.org/10.1039/C9CC06492C.
- (69) Sidler, E.; Zwick, P.; Kress, C.; Reznikova, K.; Fuhr, O.; Fenske, D.; Mayor, M. Intense Molar Circular Dichroism in Fully Conjugated All-Carbon Macrocyclic 1,3-Butadiyne Linked Pseudo-Meta [2.2]Paracyclophanes. Chem. Eur. J. 2022, 28, e2022017. https://doi.org/10.1002/chem.202201764.
- (70) Hasegawa, M.; Kobayakawa, K.; Matsuzawa, H.; Nishinaga, T.; Hirose, T.; Sako, K.; Mazaki, Y. Macrocyclic Oligothiophene with Stereogenic [2.2]Paracyclophane Scaffolds: Chiroptical Properties from π-Transannular Interactions. *Chem. – Eur. J.* **2017**, *23* (14), 3267–3271. https://doi.org/10.1002/chem.201605842.

- (71) Marrocchi, A.; Tomasi, I.; Vaccaro, L. Organic Small Molecules for Photonics and Electronics from the [2.2]Paracyclophane Scaffold. Isr. J. Chem. 2012, 52 (1–2), 41–52. https://doi.org/10.1002/ijch.201100091.
- (72) Stefani, D.; Weiland, K. J.; Skripnik, M.; Hsu, C.; Perrin, M. L.; Mayor, M.; Pauly, F.; van der Zant, H. S. J. Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. *Nano Lett.* **2018**, *18* (9), 5981–5988. https://doi.org/10.1021/acs.nanolett.8b02810.
- (73) Wielopolski, M.; Molina-Ontoria, A.; Schubert, C.; Margraf, J. T.; Krokos, E.; Kirschner, J.; Gouloumis, A.; Clark, T.; Guldi, D. M.; Martín, N. Blending Through-Space and Through-Bond π–π-Coupling in [2,2]-Paracyclophane-Oligophenylenevinylene Molecular Wires. *J. Am. Chem. Soc.* **2013**, *135* (28), 10372–10381. https://doi.org/10.1021/ja401239r.
- (74) Morisaki, Y.; Chujo, Y. Through-Space Conjugated Polymers Based on Cyclophanes. *Angew. Chem. Int. Ed.* **2006**, *45* (39), 6430–6437. https://doi.org/10.1002/anie.200600752.
- (75) Sharma, N.; Spuling, E.; Mattern, C. M.; Li, W.; Fuhr, O.; Tsuchiya, Y.; Adachi, C.; Bräse, S.; Samuel, I. D. W.; Zysman-Colman, E. Turn on of Sky-Blue Thermally Activated Delayed Fluorescence and Circularly Polarized Luminescence (CPL) via Increased Torsion by a Bulky Carbazolophane Donor. *Chem. Sci.* **2019**, *10* (27), 6689–6696. https://doi.org/10.1039/C9SC01821B.
- (76) Teng, J.-M.; Zhang, D.-W.; Chen, C.-F. Recent Progress in Circularly Polarized Luminescence of [2.2]Paracyclophane Derivatives. *ChemPhotoChem* **2022**, 6 (3), e202100228. https://doi.org/10.1002/cptc.202100228.
- (77) Spuling, E.; Sharma, N.; Samuel, I. D. W.; Zysman-Colman, E.; Bräse, S. (Deep) Blue through-Space Conjugated TADF Emitters Based on [2.2]Paracyclophanes. *Chem. Commun.* **2018**, *54* (67), 9278–9281. https://doi.org/10.1039/C8CC04594A.
- (78) Hassan, Z.; Spuling, E.; Knoll, D. M.; Lahann, J.; Bräse, S. Planar Chiral [2.2]Paracyclophanes: From Synthetic Curiosity to Applications in Asymmetric Synthesis and Materials. *Chem. Soc. Rev.* 2018, 47 (18), 6947–6963. https://doi.org/10.1039/C7CS00803A.
- (79) Reich, H. J.; Cram, D. J. Transannular Directive Influences in Electrophilic Substitution of 2.2-Paracyclophane. J. Am. Chem. Soc. **1968**, 90 (5), 1365–1367. https://doi.org/10.1021/ja01007a055.
- (80) Cram, D. J.; Bauer, R. H.; Allinger, N. L.; Reeves, R. A.; Wechter, W. J.; Heilbronner, E. Macro Rings. XXI. Mono- and Polysubstituted [2.2]Paracyclophanes1. J. Am. Chem. Soc. 1959, 81 (22), 5977–5983. https://doi.org/10.1021/ja01531a032.
- (81) Hopf, H.; Mlynek, C. Cyclophanes. 32. Bridging of the [2.2]Paracyclophane Nucleus by a Phenanthrene Unit. *J. Org. Chem.* **1990**, *55* (4), 1361–1363. https://doi.org/10.1021/jo00291a052.
- (82) Staab, H. A.; Haffner, H. Orientierungseffekte auf Charge-Transfer-Wechselwirkungen, VIII. Diastereomere 4,7-Dimethoxy-12,15-dinitro[2.2]paracyclophane. *Chem. Ber.* **1977**, *110* (10), 3358–3365. https://doi.org/10.1002/cber.19771101015.
- (83) Vorontsova, N. V.; Rozenberg, V. I.; Sergeeva, E. V.; Vorontsov, E. V.; Starikova, Z. A.; Lyssenko, K. A.; Hopf, H. Symmetrically Tetrasubstituted [2.2]Paracyclophanes: Their Systematization and Regioselective Synthesis of Several Types of Bis-Bifunctional Derivatives by Double Electrophilic Substitution. *Chem. – Eur. J.* 2008, 14 (15), 4600–4617. https://doi.org/10.1002/chem.200701683.
- (84) Dodziuk, H.; Szymański, S.; Jaźwiński, J.; Ostrowski, M.; Demissie, T. B.; Ruud, K.; Kuś, P.; Hopf, H.; Lin, S.-T. Structure and NMR Spectra of Some [2.2]Paracyclophanes. The Dilemma of [2.2]Paracyclophane Symmetry. J. Phys. Chem. A 2011, 115 (38), 10638–10649. https://doi.org/10.1021/jp205693a.
- (85) Cahn, R. S.; Ingold, C.; Prelog, V. Specification of Molecular Chirality. *Angew. Chem. Int. Ed. Engl.* 1966, 5 (4), 385–415. https://doi.org/10.1002/anie.196603851.
- (86) Felder, S.; Wu, S.; Brom, J.; Micouin, L.; Benedetti, E. Enantiopure Planar Chiral [2.2]Paracyclophanes: Synthesis and Applications in Asymmetric Organocatalysis. *Chirality* **2021**, 33 (9), 506–527. https://doi.org/10.1002/chir.23335.
- (87) Reich, H. J.; Cram, D. J. Macro Rings. XXXV. Transannular Directive Influences in Electrophilic Substitution of Monosubstituted[2.2]Paracyclophanes. J. Am. Chem. Soc. 1969, 91 (13), 3505–3516. https://doi.org/10.1021/ja01041a015.

- (88) Reich, H. J.; Cram, D. J. Macro Rings. XXXVII. Multiple Electrophilic Substitution Reactions of [2.2]Paracyclophanes and Interconversions of Polysubstituted Derivatives. J. Am. Chem. Soc. 1969, 91 (13), 3527–3533. https://doi.org/10.1021/ja01041a017.
- (89) Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Improved Synthesis of (±)-4,12-Dihydroxy[2.2]Paracyclophane and Its Enantiomeric Resolution by Enzymatic Methods: Planar Chiral (*R*)- and (*S*)-Phanol. *J. Org. Chem.* 2002, 67 (24), 8679–8681. https://doi.org/10.1021/jo020451x.
- (90) Bondarenko, L.; Dix, I.; Hinrichs, H.; Hopf, H. Cyclophanes. Part LII:Ethynyl[2.2]Paracyclophanes New Building Blocks for Molecular Scaffolding. Synthesis 2004, 2004 (16), 2751–2759. https://doi.org/10.1055/s-2004-834872.
- (91) Reich, H. J.; Cram, D. J. Macro Rings. XXXVI. Ring Expansion, Racemization, and Isomer Interconversions in the [2.2]Paracyclophane System through a Diradical Intermediate. J. Am. Chem. Soc. 1969, 91 (13), 3517– 3526. https://doi.org/10.1021/ja01041a016.
- (92) Tsuji, Y.; Hoffmann, R.; Movassagh, R.; Datta, S. Quantum Interference in Polyenes. J. Chem. Phys. 2014, 141 (22), 224311. https://doi.org/10.1063/1.4903043.
- (93) Tsuji, Y.; Estrada, E.; Movassagh, R.; Hoffmann, R. Quantum Interference, Graphs, Walks, and Polynomials. *Chem. Rev.* **2018**, *118* (10), 4887–4911. https://doi.org/10.1021/acs.chemrev.7b00733.
- (94) Lambert, C. J. Basic Concepts of Quantum Interference and Electron Transport in Single-Molecule Electronics. *Chem. Soc. Rev.* 2015, 44 (4), 875–888. https://doi.org/10.1039/C4CS00203B.
- (95) Taylor, G. I. Interference Fringes with Feeble Light. In *Proceedings of the Cambridge Philosophical Society*; 1909; Vol. 15, pp 114–115.
- (96) Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical Principles of Single-Molecule Electronics. *Nat. Rev. Mater.* **2016**, *1* (3), 16002. https://doi.org/10.1038/natrevmats.2016.2.
- (97) Gunasekaran, S.; Greenwald, J. E.; Venkataraman, L. Visualizing Quantum Interference in Molecular Junctions. *Nano Lett.* **2020**, *20* (4), 2843–2848. https://doi.org/10.1021/acs.nanolett.0c00605.
- (98) Yoshizawa, K.; Tada, T.; Staykov, A. Orbital Views of the Electron Transport in Molecular Devices. *J. Am. Chem. Soc.* **2008**, *130* (29), 9406–9413. https://doi.org/10.1021/ja800638t.
- (99) Yoshizawa, K. An Orbital Rule for Electron Transport in Molecules. Acc. Chem. Res. 2012, 45 (9), 1612–1621. https://doi.org/10.1021/ar300075f.
- (100) Koga, J.; Tsuji, Y.; Yoshizawa, K. Orbital Control of Single-Molecule Conductance Perturbed by π-Accepting Anchor Groups: Cyanide and Isocyanide. *J. Phys. Chem. C* **2012**, *116* (38), 20607–20616. https://doi.org/10.1021/jp3068156.
- (101) Tsuji, Y.; Yoshizawa, K. Frontier Orbital Perspective for Quantum Interference in Alternant and Nonalternant Hydrocarbons. J. Phys. Chem. C 2017, 121 (17), 9621–9626. https://doi.org/10.1021/acs.jpcc.7b02274.
- (102) Liu, X.; Sangtarash, S.; Reber, D.; Zhang, D.; Sadeghi, H.; Shi, J.; Xiao, Z.-Y.; Hong, W.; Lambert, C. J.; Liu, S.-X. Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution. *Angew. Chem. Int. Ed.* **2017**, *56* (1), 173–176. https://doi.org/10.1002/anie.201609051.
- (103) Jiang, F.; Trupp, D. I.; Algethami, N.; Zheng, H.; He, W.; Alqorashi, A.; Zhu, C.; Tang, C.; Li, R.; Liu, J.; Sadeghi, H.; Shi, J.; Davidson, R.; Korb, M.; Sobolev, A. N.; Naher, M.; Sangtarash, S.; Low, P. J.; Hong, W.; Lambert, C. J. Turning the Tap: Conformational Control of Quantum Interference to Modulate Single-Molecule Conductance. *Angew. Chem. Int. Ed.* **2019**, *58* (52), 18987–18993. https://doi.org/10.1002/anie.201909461.
- Arroyo, C. R.; Tarkuc, S.; Frisenda, R.; Seldenthuis, J. S.; Woerde, C. H. M.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J. Signatures of Quantum Interference Effects on Charge Transport Through a Single Benzene Ring. *Angew. Chem. Int. Ed.* 2013, *52* (11), 3152–3155. https://doi.org/10.1002/anie.201207667.
- (105) Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; Al-Owaedi, O. A.; Sadeghi, H.; Kaliginedi, V.; Hong, W.; Gulcur, M.; Wandlowski, T.; Bryce, M. R.; Lambert, C. J. A Quantum Circuit Rule for Interference Effects in Single-Molecule Electrical Junctions. *Nat. Commun.* **2015**, *6* (1), 6389. https://doi.org/10.1038/ncomms7389.

- (106) Mayor, M.; Weber, H. B.; Reichert, J.; Elbing, M.; Hänisch, C. von; Beckmann, D.; Fischer, M. Electric Current through a Molecular Rod—Relevance of the Position of the Anchor Groups. *Angew. Chem. Int. Ed.* **2003**, *42* (47), 5834–5838. https://doi.org/10.1002/anie.200352179.
- (107) Sautet, P.; Joachim, C. Electronic Interference Produced by a Benzene Embedded in a Polyacetylene Chain. *Chem. Phys. Lett.* **1988**, *153* (6), 511–516. https://doi.org/10.1016/0009-2614(88)85252-7.
- (108) Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-Functional Method for Nonequilibrium Electron Transport. *Phys. Rev. B* 2002, 65 (16), 165401. https://doi.org/10.1103/PhysRevB.65.165401.
- (109) Stokbro, K. First-Principles Modeling of Electron Transport. J. Phys. Condens. Matter 2008, 20 (6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.
- (110) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
- (111) Bürkle, M.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Schön, G.; Mayor, M.; Wandlowski, T.; Pauly, F. Conduction Mechanisms in Biphenyl Dithiol Single-Molecule Junctions. *Phys. Rev. B* 2012, *85* (7), 075417. https://doi.org/10.1103/PhysRevB.85.075417.
- (112) Tada, T.; Yoshizawa, K. Molecular Design of Electron Transport with Orbital Rule: Toward Conductance-Decay Free Molecular Junctions. *Phys. Chem. Chem. Phys.* **2015**, *17* (48), 32099–32110. https://doi.org/10.1039/C5CP05423K.
- (113) Tsuji, Y.; Yoshizawa, K. Frontier Orbital Perspective for Quantum Interference in Alternant and Nonalternant Hydrocarbons. *J. Phys. Chem. C* **2017**, *121* (17), 9621–9626. https://doi.org/10.1021/acs.jpcc.7b02274.
- (114) Li, X.; Staykov, A.; Yoshizawa, K. Orbital Views on Electron-Transport Properties of Cyclophanes: Insight into Intermolecular Transport. *Bull. Chem. Soc. Jpn.* **2012**, *85* (2), 181–188. https://doi.org/10.1246/bcsj.20110256.
- (115) Hsu, C.; Schosser, W. M.; Zwick, P.; Dulić, D.; Mayor, M.; Pauly, F.; van der Zant, H. S. J. Mechanical Compression in Cofacial Porphyrin Cyclophane Pincers. *Chem. Sci.* 2022, 13 (27), 8017–8024. https://doi.org/10.1039/D2SC00937D.
- (116) Schosser, W. M.; Hsu, C.; Zwick, P.; Beltako, K.; Dulić, D.; Mayor, M.; Zant, H. S. J. van der; Pauly, F. Mechanical Conductance Tunability of a Porphyrin–Cyclophane Single-Molecule Junction. *Nanoscale* **2022**, 14 (3), 984–992. https://doi.org/10.1039/D1NR06484C.
- (117) Reznikova, K.; Hsu, C.; Schosser, W. M.; Gallego, A.; Beltako, K.; Pauly, F.; van der Zant, H. S. J.; Mayor, M. Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions. J. Am. Chem. Soc. 2021, 143 (34), 13944–13951. https://doi.org/10.1021/jacs.1c06966.
- (118) Meyer-Eppler, G.; Vogelsang, E.; Benkhäuser, C.; Schneider, A.; Schnakenburg, G.; Lützen, A. Synthesis, Chiral Resolution, and Absolute Configuration of Dissymmetric 4,12-Difunctionalized [2.2]Paracyclophanes. *Eur. J. Org. Chem.* **2013**, 2013 (21), 4523–4532. https://doi.org/10.1002/ejoc.201300412.
- (119) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. An Improved One-Pot Procedure for the Synthesis of Alkynes from Aldehydes. *Synlett* **1996**, *1996* (06), 521–522. https://doi.org/10.1055/s-1996-5474.
- (120) Ohira, S. Methanolysis of Dimethyl (1-Diazo-2-Oxopropyl) Phosphonate: Generation of Dimethyl (Diazomethyl) Phosphonate and Reaction with Carbonyl Compounds. Synth. Commun. 1989, 19 (3–4), 561– 564. https://doi.org/10.1080/00397918908050700.
- O'Driscoll, L. J.; Wang, X.; Jay, M.; Batsanov, A. S.; Sadeghi, H.; Lambert, C. J.; Robinson, B. J.; Bryce, M. R. Carbazole-Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. *Angew. Chem.* 2020, *132* (2), 892–899. https://doi.org/10.1002/ange.201911652.
- (122) Li, R.; Zhang, C.-C.; Wang, D.; Hu, Y.-F.; Li, Y.-L.; Xie, W. Reaction Pathway Change on Plasmonic Au Nanoparticles Studied by Surface-Enhanced Raman Spectroscopy. *Chin. Chem. Lett.* **2021**, *32* (9), 2846– 2850. https://doi.org/10.1016/j.cclet.2021.02.014.

- (123) Søndergaard, R.; Krebs, F. C. The Challenge of Synthesizing Oligomers for Molecular Wires. *Polymers* **2011**, 3 (1), 545–557. https://doi.org/10.3390/polym3010545.
- (124) Kahrs, C.; Wickleder, M. S.; Christoffers, J. Biphenyl Sulfonic and Disulfonic Acids with Perfluorinated Alkyl Residues. *Eur. J. Org. Chem.* **2018**, 2018 (41), 5754–5762. https://doi.org/10.1002/ejoc.201800882.
- (125) Zeng, X.; Wang, C.; Batsanov, A. S.; Bryce, M. R.; Gigon, J.; Urasinska-Wojcik, B.; Ashwell, G. J. Synthesis and Properties of Functionalized Oligo(Arylene) Molecular Wires with Thiolated Termini: Competing Thiol-Au and Nitro-Au Assembly. *J. Org. Chem.* **2010**, *75* (1), 130–136. https://doi.org/10.1021/jo902205p.
- (126) Jevric, M.; Petersen, A. U.; Mansø, M.; Madsen, A. Ø.; Nielsen, M. B. Bismuth(III)-Promoted Acetylation of Thio-ethers into Thioacetates. *Eur. J. Org. Chem.* 2015, No. 21, 4675–4688. https://doi.org/10.1002/ejoc.201500420.
- (127) Hopf, H.; Greiving, H.; Beck, C.; Dix, I.; Jones, P. G.; Desvergne, J.-P.; Bouas-Laurent, H. One-Pot Preparation of [n]Ladderanes by [2π + 2π] Photocycloaddition. *Eur. J. Org. Chem.* **2005**, 2005 (3), 567–581. https://doi.org/10.1002/ejoc.200400596.
- (128) Weiland, K. J. Molecular Loops Mating Cyclophanes and Macrocycles. Thesis, University_of_Basel, 2018. https://doi.org/10.5451/unibas-007140708.
- (129) Miki, K.; Ohe, K. π-Conjugated Macrocycles Bearing Angle-Strained Alkynes. *Chem. Eur. J.* 2020, 26 (12), 2529–2575. https://doi.org/10.1002/chem.201904114.
- (130) Gholami, M.; Tykwinski, R. R. Oligomeric and Polymeric Systems with a Cross-Conjugated π-Framework. *Chem. Rev.* 2006, 106 (12), 4997–5027. https://doi.org/10.1021/cr0505573.
- (131) Maraval, V.; Chauvin, R. From Macrocyclic Oligo-Acetylenes to Aromatic Ring Carbo-Mers. *Chem. Rev.* **2006**, *106* (12), 5317–5343. https://doi.org/10.1021/cr050964e.
- (132) Spitler, E. L.; Johnson, C. A.; Haley, M. M. Renaissance of Annulene Chemistry. *Chem. Rev.* 2006, *106* (12), 5344–5386. https://doi.org/10.1021/cr050541c.
- (133) Hisaki, I.; Sonoda, M.; Tobe, Y. Strained Dehydrobenzoannulenes. *Eur. J. Org. Chem.* **2006**, 2006 (4), 833–847. https://doi.org/10.1002/ejoc.200500705.
- (134) Iyoda, M.; Yamakawa, J.; Rahman, M. J. Conjugated Macrocycles: Concepts and Applications. *Angew. Chem. Int. Ed.* **2011**, *50* (45), 10522–10553. https://doi.org/10.1002/anie.201006198.
- (135) Zhang, W.; Moore, J. S. Shape-Persistent Macrocycles: Structures and Synthetic Approaches from Arylene and Ethynylene Building Blocks. *Angew. Chem. Int. Ed.* **2006**, *45* (27), 4416–4439. https://doi.org/10.1002/anie.200503988.
- (136) Mayor, M.; Lehn, J.-M. Reducible Nanosize Macrocycles. J. Am. Chem. Soc. 1999, 121 (48), 11231– 11232. https://doi.org/10.1021/ja992617q.
- (137) Zhang, J.; Pesak, D. J.; Ludwick, J. L.; Moore, J. S. Geometrically-Controlled and Site-Specifically-Functionalized Phenylacetylene Macrocycles. J. Am. Chem. Soc. 1994, 116 (10), 4227–4239. https://doi.org/10.1021/ja00089a012.
- (138) Toyota, S.; Suzuki, S.; Goichi, M. Chemistry of Anthracene–Acetylene Oligomers: Synthesis and Enantiomeric Resolution of a Chiral 1,8-Anthrylene–Ethynylene Cyclic Tetramer. *Chem. – Eur. J.* 2006, *12* (9), 2482–2487. https://doi.org/10.1002/chem.200501111.
- (139) Höger, S.; Enkelmann, V. Synthese Und Struktur Eines Formtreuen Makrocyclischen Amphiphils. *Angew. Chem.* **1995**, *107* (23–24), 2917–2919. https://doi.org/10.1002/ange.19951072331.
- (140) Baxter, P. N. W. Cyclic Donor-Acceptor Circuits: Synthesis and Fluorescence Ion Sensory Properties of a Mixed-Heterocyclic Dehydroannulene-Type Cyclophane. J. Org. Chem. 2004, 69 (6), 1813–1821. https://doi.org/10.1021/jo0302410.
- Höger, S. Highly Efficient Methods for the Preparation of Shape-Persistent Macrocyclics. J. Polym. Sci. Part Polym. Chem. 1999, 37 (15), 2685–2698. https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2685::AID-POLA1>3.0.CO;2-S.

- (142) Kondratuk, D. V.; Perdigao, L. M. A.; O'Sullivan, M. C.; Svatek, S.; Smith, G.; O'Shea, J. N.; Beton, P. H.; Anderson, H. L. Two Vernier-Templated Routes to a 24-Porphyrin Nanoring. *Angew. Chem.* 2012, 124 (27), 6800–6803. https://doi.org/10.1002/ange.201202870.
- (143) Cremers, J.; Haver, R.; Rickhaus, M.; Gong, J. Q.; Favereau, L.; Peeks, M. D.; Claridge, T. D. W.; Herz, L. M.; Anderson, H. L. Template-Directed Synthesis of a Conjugated Zinc Porphyrin Nanoball. *J. Am. Chem. Soc.* 2018, *140* (16), 5352–5355. https://doi.org/10.1021/jacs.8b02552.
- (144) Krebs, A.; Wilke, J. Angle Strained Cycloalkynes. In *Wittig Chemistry*; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 1983; pp 189–233. https://doi.org/10.1007/BFb0018059.
- (145) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted [3 + 2] Azide–Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126 (46), 15046–15047. https://doi.org/10.1021/ja044996f.
- (146) Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. A Comparative Study of Bioorthogonal Reactions with Azides. ACS Chem. Biol. 2006, 1 (10), 644–648. https://doi.org/10.1021/cb6003228.
- (147) MacKenzie, D. A.; Sherratt, A. R.; Chigrinova, M.; Cheung, L. L.; Pezacki, J. P. Strain-Promoted Cycloadditions Involving Nitrones and Alkynes—Rapid Tunable Reactions for Bioorthogonal Labeling. *Curr. Opin. Chem. Biol.* **2014**, *21*, 81–88. https://doi.org/10.1016/j.cbpa.2014.05.023.
- (148) Siemsen, P.; Livingston, R. C.; Diederich, F. Acetylenkupplungen: eine leistungsfähige Methode für den Aufbau von Molekülen. Angew. Chem. 2000, 112 (15), 2740–2767. https://doi.org/10.1002/1521-3757(2000804)112:15<2740::AID-ANGE2740>3.0.CO;2-F.
- (149) Alonso, F.; Yus, M. Heterogeneous Catalytic Homocoupling of Terminal Alkynes. ACS Catal. 2012, 2 (7), 1441–1451. https://doi.org/10.1021/cs300195r.
- (150) Fuhrmann, G.; Debaerdemaeker, T.; Baeuerle, P. C—C Bond Formation Through Oxidatively Induced Elimination of Platinum Complexes — A Novel Approach Towards Conjugated Macrocycles. *ChemInform* **2003**, *34* (31). https://doi.org/10.1002/chin.200331189.
- (151) Glaser, C. Beiträge Zur Kenntniss Des Acetenylbenzols. Berichte Dtsch. Chem. Ges. 1869, 2 (1), 422–424. https://doi.org/10.1002/cber.186900201183.
- (152) Eglinton, G.; Galbraith, A. R. Chem. Ind.(London); 1956.
- (153) Hay, A. S. Oxidative Coupling of Acetylenes. II1. J. Org. Chem. 1962, 27 (9), 3320–3321.
- (154) Li, J. J. Cadiot–Chodkiewicz Coupling. In Name Reactions; Springer, 2021; pp 67–69.
- (155) Sindhu, K. S.; Thankachan, A. P.; Sajitha, P. S.; Anilkumar, G. Recent Developments and Applications of the Cadiot–Chodkiewicz Reaction. Org. Biomol. Chem. 2015, 13 (25), 6891–6905. https://doi.org/10.1039/C5OB00697J.
- (156) Fomina, L.; Vazquez, B.; Tkatchouk, E.; Fomine, S. The Glaser Reaction Mechanism. A DFT Study. *Tetrahedron* **2002**, *58* (33), 6741–6747. https://doi.org/10.1016/S0040-4020(02)00669-5.
- (157) Vilhelmsen, M. H.; Jensen, J.; Tortzen, C. G.; Nielsen, M. B. The Glaser–Hay Reaction: Optimization and Scope Based on 13C NMR Kinetics Experiments. *Eur. J. Org. Chem.* **2013**, 2013 (4), 701–711. https://doi.org/10.1002/ejoc.201201159.
- Qi, X.; Bai, R.; Zhu, L.; Jin, R.; Lei, A.; Lan, Y. Mechanism of Synergistic Cu(II)/Cu(I)-Mediated Alkyne Coupling: Dinuclear 1,2-Reductive Elimination after Minimum Energy Crossing Point. *J. Org. Chem.* 2016, *81* (4), 1654–1660. https://doi.org/10.1021/acs.joc.5b02797.
- (159) Travis, C. R.; Mazur, L. E.; Peairs, E. M.; Gaunt, G. H.; Young, D. D. Mechanistic Investigation and Further Optimization of the Aqueous Glaser–Hay Bioconjugation. *Org. Biomol. Chem.* **2019**, *17* (13), 3396–3402. https://doi.org/10.1039/C9OB00327D.
- (160) Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes. J. Am. Chem. Soc. 2014, 136 (3), 924–926. https://doi.org/10.1021/ja410756b.

- (161) Sindhu, K. S.; Anilkumar, G. Recent Advances and Applications of Glaser Coupling Employing Greener Protocols. *RSC Adv* **2014**, *4* (53), 27867–27887. https://doi.org/10.1039/C4RA02416H.
- (162) Marsden, J. A.; Miller, J. J.; Haley, M. M. Let the Best Ring Win: Selective Macrocycle Formation through Pd-Catalyzed or Cu-Mediated Alkyne Homocoupling. *Angew. Chem. Int. Ed.* 2004, 43 (13), 1694–1697. https://doi.org/10.1002/anie.200353043.
- (163) Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. *Angew. Chem. Int. Ed.* **2010**, *49* (4), 757–759. https://doi.org/10.1002/anie.200905659.
- (164) Majewski, M. A.; Stępień, M. Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. *Angew. Chem. Int. Ed.* **2019**, *58* (1), 86–116. https://doi.org/10.1002/anie.201807004.
- (165) Yahav, A.; Goldberg, I.; Vigalok, A. Iodine Oxidative Addition to Isomeric Platinum(II) Phosphine Complexes. *Organometallics* **2005**, *24* (23), 5654–5659. https://doi.org/10.1021/om0505070.
- (166) Yahav-Levi, A.; Goldberg, I.; Vigalok, A. Aryl-Halide versus Aryl-Aryl Reductive Elimination in Pt(IV)-Phosphine Complexes. J. Am. Chem. Soc. 2006, 128 (27), 8710–8711. https://doi.org/10.1021/ja062166r.
- (167) Vigalok, A. Metal-Mediated Formation of Carbon–Halogen Bonds. Chem. Eur. J. 2008, 14 (17), 5102– 5108. https://doi.org/10.1002/chem.200701738.
- (168) Krömer, J.; Rios-Carreras, I.; Fuhrmann, G.; Musch, C.; Wunderlin, M.; Debaerdemaeker, T.; Mena-Osteritz, E.; Bäuerle, P. Synthesis of the First Fully α-Conjugated Macrocyclic Oligothiophenes: Cyclo[n]Thiophenes with Tunable Cavities in the Nanometer Regime. *Angew. Chem. Int. Ed.* **2000**, *39* (19), 3481–3486. https://doi.org/10.1002/1521-3773(20001002)39:19<3481::AID-ANIE3481>3.0.CO;2-O.
- (169) Fuhrmann, G. L. Synthesis and Characterization of Fully P-Conjugated Oligothiophene-Based Macrocycles. Dissertation, Universität Ulm, 2006. https://doi.org/10.18725/OPARU-454.
- (170) Iyoda, M.; Shimizu, H. Multifunctional π-Expanded Oligothiophene Macrocycles. *Chem. Soc. Rev.* 2015, 44 (18), 6411–6424. https://doi.org/10.1039/C5CS00388A.
- (171) Mishra, A.; Ma, C.-Q.; Bäuerle, P. Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications. *Chem. Rev.* **2009**, *109* (3), 1141–1276. https://doi.org/10.1021/cr8004229.
- (172) Corey, E. J.; Fuchs, P. L. A Synthetic Method for Formyl→ethynyl Conversion (RCHO→RC□CH or RC□CR'). *Tetrahedron Lett.* **1972**, *13* (36), 3769–3772. https://doi.org/10.1016/S0040-4039(01)94157-7.
- (173) Bartholomew, G. P.; Bazan, G. C. Synthesis, Characterization, and Spectroscopy of 4,7,12,15-[2.2]Paracyclophane Containing Donor and Acceptor Groups: Impact of Substitution Patterns on Through-Space Charge Transfer. J. Am. Chem. Soc. 2002, 124 (18), 5183–5196. https://doi.org/10.1021/ja0121383.
- (174) Biliz, F.; Cakici, M. Regioselective Synthesis of 4,7,12,15-Tetrasubstituted [2.2]Paracyclophanes: A Modular Route Involving Optical Resolution. *Eur. J. Org. Chem.* **2021**, *2021* (34), 4828–4834. https://doi.org/10.1002/ejoc.202100762.
- (175) Nishii, Y.; Ikeda, M.; Hayashi, Y.; Kawauchi, S.; Miura, M. Triptycenyl Sulfide: A Practical and Active Catalyst for Electrophilic Aromatic Halogenation Using N-Halosuccinimides. J. Am. Chem. Soc. 2020, 142 (3), 1621–1629. https://doi.org/10.1021/jacs.9b12672.
- (176) König, B.; Knieriem, B.; Meijere, A. D. Double-Layered 1,4-Distyrylbenzene Chromophores–Synthesis, UV and Fluorescene Spectra. *Chem. Ber.* **1993**, *126* (7), 1643–1650. https://doi.org/10.1002/cber.19931260723.
- (177) Reich, H. J.; Cram, D. J. Macro Rings. XXXVII. Multiple Electrophilic Substitution Reactions of [2.2]Paracyclophanes and Interconversions of Polysubstituted Derivatives. 7.
- (178) Vaghi, L.; Cirilli, R.; Pierini, M.; Rizzo, S.; Terraneo, G.; Benincori, T. PHANE-TetraPHOS, the First D2 Symmetric Chiral Tetraphosphane. Synthesis, Metal Complexation, and Application in Homogeneous Stereoselective Hydrogenation. *Eur. J. Org. Chem.* **2021**, 2021 (17), 2367–2374. https://doi.org/10.1002/ejoc.202100109.

- (179) Dienes, Y.; Durben, S.; Kárpáti, T.; Neumann, T.; Englert, U.; Nyulászi, L.; Baumgartner, T. Selective Tuning of the Band Gap of π-Conjugated Dithieno[3,2-b:2',3'-d]Phospholes toward Different Emission Colors. *Chem. – Eur. J.* **2007**, *13* (26), 7487–7500. https://doi.org/10.1002/chem.200700399.
- (180) Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher, J.; Moser, J.-E.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M.; Bäuerle, P. Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in π-Conjugated Donor–Acceptor Dyes. *Adv. Funct. Mater.* **2012**, *22* (6), 1291–1302. https://doi.org/10.1002/adfm.201102519.
- (181) Casoni, G.; Myers, E. L.; Aggarwal, V. K. Synthesis of 3-Aryl-1-Aminopropane Derivatives: Lithiation– Boryl-ation–Ring-Opening of Azetidinium Ions. Synthesis 2016, 48 (19), 3241–3253. https://doi.org/10.1055/s-0035-1562447.
- (182) Hitosugi, S.; Tanimoto, D.; Nakanishi, W.; Isobe, H. A Facile Chromatographic Method for Purification of Pinacol Boronic Esters. *Chem. Lett.* **2012**, *41* (9), 972–973. https://doi.org/10.1246/cl.2012.972.
- (183) Zotti, G.; Zecchin, S.; Vercelli, B.; Pasini, M.; Destri, S.; Bertini, F.; Berlin, A. Electrochemical, Magnetic, and Electrical Properties of α,ω-Capped Sexithiophene Films. 2. Conduction in Sexithiophenes with α,ω-Aryl-Extended Conjugation. *Chem. Mater.* **2006**, *18* (13), 3151–3161. https://doi.org/10.1021/cm060671h.
- Porzio, W.; Destri, S.; Pasini, M.; Giovanella, U.; Ragazzi, M.; Scavia, G.; Kotowski, D.; Zotti, G.; Vercelli, B. Synthesis and Characterisation of Fluorenone–Thiophene-Based Donor–Acceptor Oligomers: Role of Moiety Sequence upon Packing and Electronic Properties. *New J. Chem.* **2010**, *34* (9), 1961–1973. https://doi.org/10.1039/C0NJ00045K.
- (185) Scott, L. T.; Cooney, M. J.; Otte, C.; Puls, C.; Haumann, T.; Boese, R.; Smith, A. B.; Carroll, P. J.; de Meijere, A. Enhancement of Through-Space and Through-Bond. Pi.-Orbital Interactions. Syntheses and Properties of Permethylated and Perspirocyclopropanated Cyclotetradeca-1,3,6,9,12-Pentayne. *J. Am. Chem. Soc.* **1994**, *116* (22), 10275–10283. https://doi.org/10.1021/ja00101a051.
- (186) de Meijere, A.; Kozhushkov, S.; Haumann, T.; Boese, R.; Puls, C.; Cooney, M. J.; Scott, L. T. Completely Spirocyclopropanated Macrocyclic Oligodiacetylenes: The Family of "Exploding" [n]Rotanes. *Chem. Eur. J.* **1995**, *1* (2), 124–131. https://doi.org/10.1002/chem.19950010206.
- (187) Bannwart, L. M.; Jundt, L.; Müntener, T.; Neuburger, M.; Häussinger, D.; Mayor, M. A Phenyl-Ethynyl-Macrocycle: A Model Compound for "Geländer" Oligomers Comprising Reactive Conjugated Banisters. *Eur. J. Org. Chem.* **2018**, 2018 (26), 3391–3402. https://doi.org/10.1002/ejoc.201800586.
- (188) Bannwart, L. M.; Müntener, T.; Rickhaus, M.; Jundt, L.; Häussinger, D.; Mayor, M. Bicyclic Phenyl–Ethynyl Architectures: Synthesis of a 1,4-Bis(Phenylbuta-1,3-Diyn-1-YI) Benzene Banister. *Chem. – Eur. J.* **2021**, *27* (20), 6295–6307. https://doi.org/10.1002/chem.202005207.
- (189) D'Addio, A.; Malinčik, J.; Fuhr, O.; Fenske, D.; Häussinger, D.; Mayor, M. Geländer Molecules with Orthogonal Joints: Synthesis of Macrocyclic Dimers. *Chem. Eur. J.* **2022**, *28*, *e2022016*. https://doi.org/10.1002/chem.202201678.
- (190) Dix, I.; Bondarenko, L.; Jones, P. G.; Oeser, T.; Hopf, H. Building Complex Carbon Skeletons with Ethynyl[2.2]Paracyclophanes. *Beilstein J. Org. Chem.* **2014**, *10*, 2013–2020. https://doi.org/10.3762/bjoc.10.209.
- (191) Liu, Q.; Burton, D. J. A Facile Synthesis of Diynes. *Tetrahedron Lett.* **1997**, *38* (25), 4371–4374. https://doi.org/10.1016/S0040-4039(97)00969-6.
- (192) Yamamoto, T.; Wakabayashi, S.; Osakada, K. Mechanism of C□C Coupling Reactions of Aromatic Halides, Promoted by Ni(COD)2 in the Presence of 2,2'-Bipyridine and PPh3, to Give Biaryls. J. Organomet. Chem. 1992, 428 (1), 223–237. https://doi.org/10.1016/0022-328X(92)83232-7.
- (193) Grave, C.; Schlüter, A. D. Shape-Persistent, Nano-Sized Macrocycles. *Eur. J. Org. Chem.* **2002**, *2002* (18), 3075–3098. https://doi.org/10.1002/1099-0690(200209)2002:18<3075::AID-EJOC3075>3.0.CO;2-3.
- (194) Kawase, T.; Kurata, H. Ball-, Bowl-, and Belt-Shaped Conjugated Systems and Their Complexing Abilities: Exploration of the Concave–Convex Π–π Interaction. *Chem. Rev.* 2006, 106 (12), 5250–5273. https://doi.org/10.1021/cr0509657.

- (195) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures. *J. Am. Chem. Soc.* **2008**, *130* (52), 17646– 17647. https://doi.org/10.1021/ja807126u.
- (196) Wassy, D.; Pfeifer, M.; Esser, B. Synthesis and Properties of Conjugated Nanohoops Incorporating Dibenzo[a,e]Pentalenes: [2]DBP[12]CPPs. J. Org. Chem. 2020, 85 (1), 34–43. https://doi.org/10.1021/acs.joc.9b01195.
- (197) Zhang, F.; Bäuerle, P. A Controlled Approach to Well-Defined Oligothiophenes via Oxidatively Induced Reductive Elimination of Stable Pt(II) Oligothienyl Complexes. J. Am. Chem. Soc. 2007, 129 (11), 3090–3091. https://doi.org/10.1021/ja070083k.
- (198) Zhang, Z.; Cha, W.-Y.; Williams, N. J.; Rush, E. L.; Ishida, M.; Lynch, V. M.; Kim, D.; Sessler, J. L. Cyclo[6]Pyridine[6]Pyrrole: A Dynamic, Twisted Macrocycle with No Meso Bridges. *J. Am. Chem. Soc.* 2014, 136 (21), 7591–7594. https://doi.org/10.1021/ja503451m.
- (199) Ito, H.; Mitamura, Y.; Segawa, Y.; Itami, K. Thiophene-Based, Radial π-Conjugation: Synthesis, Structure, and Photophysical Properties of Cyclo-1,4-Phenylene-2',5'-Thienylenes. *Angew. Chem.* **2015**, *1*27 (1), 161–165. https://doi.org/10.1002/ange.201409389.
- (200) Morisaki, Y.; Inoshita, K.; Chujo, Y. Planar-Chiral Through-Space Conjugated Oligomers: Synthesis and Characterization of Chiroptical Properties. *Chem. – Eur. J.* **2014**, *20* (27), 8386–8390. https://doi.org/10.1002/chem.201402930.
- (201) Morisaki, Y.; Hifumi, R.; Lin, L.; Inoshita, K.; Chujo, Y. Through-Space Conjugated Polymers Consisting of Planar Chiral Pseudo-Ortho-Linked [2.2]Paracyclophane. *Polym. Chem.* **2012**, 3 (10), 2727–2730. https://doi.org/10.1039/C2PY20530K.
- (202) Gon, M.; Morisaki, Y.; Chujo, Y. Optically Active Cyclic Compounds Based on Planar Chiral [2.2]Paracyclophane: Extension of the Conjugated Systems and Chiroptical Properties. J. Mater. Chem. C 2014, 3 (3), 521–529. https://doi.org/10.1039/C4TC02339K.
- (203) Gon, M.; Kozuka, H.; Morisaki, Y.; Chujo, Y. Optically Active Cyclic Compounds Based on Planar Chiral [2.2]Paracyclophane with Naphthalene Units. *Asian J. Org. Chem.* **2016**, 5 (3), 353–359. https://doi.org/10.1002/ajoc.201500468.
- (204) Gon, M.; Morisaki, Y.; Chujo, Y. Highly Emissive Optically Active Conjugated Dimers Consisting of a Planar Chiral [2.2]Paracyclophane Showing Circularly Polarized Luminescence. *Eur. J. Org. Chem.* 2015, 2015 (35), 7756–7762. https://doi.org/10.1002/ejoc.201501181.
- (205) Riehl, J. P.; Richardson, F. S. Circularly Polarized Luminescence Spectroscopy. *Chem. Rev.* **1986**, *86* (1), 1–16. https://doi.org/10.1021/cr00071a001.
- (206) Chen, Y. Circularly Polarized Luminescence Based on Small Organic Fluorophores. *Mater. Today Chem.* 2022, 23, 100651. https://doi.org/10.1016/j.mtchem.2021.100651.
- (207) Morisaki, Y.; Sawada, R.; Gon, M.; Chujo, Y. New Types of Planar Chiral [2.2]Paracyclophanes and Construction of One-Handed Double Helices. *Chem. – Asian J.* **2016**, *11* (18), 2524–2527. https://doi.org/10.1002/asia.201601028.
- (208) Tsuchiya, M.; Maeda, H.; Inoue, R.; Morisaki, Y. Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: Fusing Helical and Planar Chiralities. *Chem. Commun.* **2021**, *57* (73), 9256–9259. https://doi.org/10.1039/D1CC03320D.
- (209) Hasegawa, M.; Ishida, Y.; Sasaki, H.; Ishioka, S.; Usui, K.; Hara, N.; Kitahara, M.; Imai, Y.; Mazaki, Y. Helical Oligophenylene Linked with [2.2]Paracyclophane: Stereogenic π-Conjugated Dye for Highly Emissive Chiroptical Properties. *Chem. Eur. J.* **2021**, *27*(65), 16225–16231. https://doi.org/10.1002/chem.202103158.
- (210) Tanaka, K.; Inoue, R.; Morisaki, Y. Optically Active Cyclic Oligomers Based on Planar Chiral [2.2]Paracyclophane. *Chem. Asian J.* **2022**, *17* (2), e202101267. https://doi.org/10.1002/asia.202101267.
- (211) Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaO *t* Bu. Org. Lett. **2014**, *16* (23), 6156–6159. https://doi.org/10.1021/ol503015b.

- (212) Feng, L.; Hu, T.; Zhang, S.; Xiong, H.-Y.; Zhang, G. Copper-Mediated Deacylative Coupling of Ynones via C–C Bond Activation under Mild Conditions. *Org. Lett.* **2019**, *21* (23), 9487–9492. https://doi.org/10.1021/acs.orglett.9b03684.
- (213) Krömer, J.; Bäuerle, P. Homologous Series of Regioregular Alkylsubstituted Oligothiophenes up to an 11-Mer. *Tetrahedron* **2001**, *57* (17), 3785–3794. https://doi.org/10.1016/S0040-4020(01)00254-X.
- (214) Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. Copper(I)-Catalyzed Synthesis of 2,5-Disubstituted Furans and Thiophenes from Haloalkynes or 1,3-Diynes. *J. Org. Chem.* **2012**, 77 (11), 5179–5183. https://doi.org/10.1021/jo300692d.
- (215) Rao, M. L. N.; Islam, S. S.; Dasgupta, P. Rapid Access to Unsymmetrical 1,3-Diynes and 2,5-Disubstituted Thiophenes under Ligand and Pd/Ni-Free Cu-Catalysis. RSC Adv. 2015, 5 (95), 78090–78098. https://doi.org/10.1039/C5RA15705F.
- (216) Nakayama, J.; Konishi, T.; Murabayashi, S.; Hoshino, M. Preparation of A-Quater-, a-Sexi-, and a-Octithiophenes. *HETEROCYCLES* **1987**, *26* (7), 1793. https://doi.org/10.3987/R-1987-07-1793.
- (217) Zhang, F.; Götz, G.; Winkler, H. D. F.; Schalley, C. A.; Bäuerle, P. Giant Cyclo[n]Thiophenes with Extended π Conjugation. *Angew. Chem. Int. Ed.* **2009**, *48* (36), 6632–6635. https://doi.org/10.1002/anie.200900101.
- (218) Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. *Chem. Rev.* **1994**, *94* (8), 2319–2358. https://doi.org/10.1021/cr00032a005.
- (219) Duncan, K. D.; Fang, R.; Yuan, J.; Chu, R. K.; Dey, S. K.; Burnum-Johnson, K. E.; Lanekoff, I. Quantitative Mass Spectrometry Imaging of Prostaglandins as Silver Ion Adducts with Nanospray Desorption Electrospray Ionization. *Anal. Chem.* **2018**, *90* (12), 7246–7252. https://doi.org/10.1021/acs.analchem.8b00350.
- Munakata, M.; Wu, L. P.; Sugimoto, K.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Maeno, N.; Fujita, M. Silver(I) Complex Assemblies with Nonplanar Aromatic Compounds. *Inorg. Chem.* 1999, 38 (25), 5674–5680. https://doi.org/10.1021/ic990391m.
- (221) Ko, S.-B.; Cho, A.-N.; Kim, M.-J.; Lee, C.-R.; Park, N.-G. Alkyloxy Substituted Organic Dyes for High Voltage Dye-Sensitized Solar Cell: Effect of Alkyloxy Chain Length on Open-Circuit Voltage. *Dyes Pigments* **2012**, *94* (1), 88–98. https://doi.org/10.1016/j.dyepig.2011.10.014.
- (222) Swager, T. M.; Gil, C. J.; Wrighton, M. S. Fluorescence Studies of Poly(p-Phenyleneethynylene)s: The Effect of Anthracene Substitution. *J. Phys. Chem.* **1995**, *99* (14), 4886–4893. https://doi.org/10.1021/j100014a003.
- (223) Jevric, M.; Petersen, A. U.; Mansø, M.; Madsen, A. Ø.; Nielsen, M. B. Bismuth(III)-Promoted Acetylation of Thio-ethers into Thioacetates: Bismuth(III)-Promoted Acetylation of Thioethers into Thioacetates. *Eur. J. Org. Chem.* **2015**, 2015 (21), 4675–4688. https://doi.org/10.1002/ejoc.201500420.
- (224) Stefani, D.; Weiland, K. J.; Skripnik, M.; Hsu, C.; Perrin, M. L.; Mayor, M.; Pauly, F.; van der Zant, H. S. J. Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. *Nano Lett.* **2018**, *18* (9), 5981–5988. https://doi.org/10.1021/acs.nanolett.8b02810.
- (225) Cuevas, J. C.; Scheer, E. *Molecular Electronics: An Introduction to Theory and Experiment*, 2nd ed.; World Scientific series in nanoscience and nanotechnology, v. 15.; World Scientific: Singapore, **2017**.
- (226) Pauly, F.; Viljas, J. K.; Huniar, U.; Häfner, M.; Wohlthat, S.; Bürkle, M.; Cuevas, J. C.; Schön, G. Cluster-Based Density-Functional Approach to Quantum Transport through Molecular and Atomic Contacts. *New J. Phys.* **2008**, *10* (12), 125019. https://doi.org/10.1088/1367-2630/10/12/125019.
- (227) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. *Chem. Phys. Lett.* **1989**, *162* (3), 165–169. https://doi.org/10.1016/0009-2614(89)85118-8.
- (228) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. *J. Chem. Phys.* **1992**, 97 (4), 2571–2577. https://doi.org/10.1063/1.463096.
- (229) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

- (230) Bürkle, M.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Schön, G.; Mayor, M.; Wandlowski, T.; Pauly, F. Conduction Mechanisms in Biphenyl Dithiol Single-Molecule Junctions. *Phys. Rev. B* **2012**, *85* (7), 075417. https://doi.org/10.1103/PhysRevB.85.075417.
- (231) Nozaki, D.; Lucke, A.; Schmidt, W. G. Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing. *J Phys Chem Lett* 2017, No. 8 (4), 727–732. https://doi.org/10.1021/acs.jpclett.6b02989.
- (232) Vidal, P.-L.; Divisia-Blohorn, B.; Bidan, G.; Hazemann, J.-L.; Kern, J.-M.; Sauvage, J.-P. π-Conjugated Ligand Polymers Entwined around Copper Centres. *Chem. – Eur. J.* **2000**, *6* (9), 1663–1673. https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1663::AID-CHEM1663>3.0.CO;2-Q.
8 Appendix

¹H and ¹³C{H} NMR (400/101 MHz, CDCI₃) spectra of 1,4-bis(hexyloxy)-2,5-diiodobenzene (16):

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of 4-(2,5-bis(hexyloxy)-4iodophenyl)-2-methylbut-3-yn-2-ol (10):

High Resolution Mass Spectrometry Report

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	z	
504.1959	1	C 23 H 39 I N O 3	100.00	504.1969	1.0	1.9	4.7	4.5	even	1+	
509.1523	1	C 23 H 35 I Na O 3	100.00	509.1523	-0.0	-0.1	21.1	5.5	even		
990.3614	1	C 46 H 74 I 2 N O 6	100.00	990.3600	-1.4	-1.4	18.8	9.5	even		
995.3181	1	C 46 H 70 I 2 Na O 6	100.00	995.3154	-2.7	-2.7	13.0	10.5	even		
1011.2908	1	C46H70I2KO6	100.00	1011.2893	-1.4	-1.4	26.3	10.5	even		

Mass list

#	m/z	1%	1
1	141.0019	1.2	16611
2	185.1146	0.6	9148
3	198.9565	0.7	10373
4	198.9927	1.3	18648
5	201.1096	4.4	62538
6	212.9720	2.6	37759
7	226.9514	0.8	10728
8	229.0034	0.6	9031
9	242.9827	1.6	22198
10	256.9620	4.6	65398
11	257.0630	0.6	9205
12	266.9814	1.4	20258
13	280.9404	2.2	31140
14	280.9609	2.3	32827
15	286.9724	3.3	46541
16	294.9195	1.0	14041
17	296.9906	0.8	10732
18	315.1925	0.6	8992
19	316.9826	0.9	13184
20	319.2602	0.7	10160
21	327.0009	0.7	10451
22	340.9801	0.7	9379
23	370.9906	1.1	16233
24	378.9568	0.6	8768
25	379.2992	0.7	9479
26	383.2545	0.9	12145
27	408.9674	0.9	12621
28	413.2652	0.7	9385
29	414.9804	1.4	19779
30	438.9780	0.6	8846
20	441.2962	0.7	9634
32	467.1009	0.0	125012
24	409.1091	9.0	133912
35	476 9544	1.0	13081
36	487 1690	1.0	22418
37	490 9338	1.0	14102
38	504 1959	3.0	43428
39	505 1989	0.8	11335
40	506 9652	1.0	14463
41	509 1523	100.0	1426841
42	510.1552	21.7	309902
43	511.1577	2.9	40785
44	520,9442	1.3	19053
45	525,1251	3.6	51427
46	526.1281	1.0	13962
47	531.1328	0.9	13122
48	536.1638	0.7	10340
49	541.1193	1.3	18639
50	542.1203	0.7	10079
51	550.9546	1.3	18920
52	553.4577	2.0	29005
53	554.4611	0.8	11971
54	574.9521	0.8	11663
55	580.9650	0.8	11998
56	588.9318	1.1	15874
57	604.9623	0.7	9964
58	607.1490	1.7	24882

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2022 18:36:53

Page 2 of 3

			High F	Resolution Mass Spectrometry Report
#	m/z	1%	1	
59	618.9421	1.5	21042	
60	648.9527	1.4	19970	
61	656.9194	1.0	14930	
62	678.9634	0.7	9997	
63	685,4340	0.7	9971	
64	686.9298	1.9	27589	
65	688.9259	1.6	23386	
66	689.9256	0.8	11923	
67	690.9206	4.4	63062	
68	691,9216	1.4	19536	
69	692.9212	0.7	10619	
70	716,9409	1.9	27532	
71	724,9069	0.7	9511	
72	746.9511	1.2	17102	
73	754.9174	1.4	20069	
74	784.9285	1.8	25393	
75	814.9384	1.5	21117	
76	822,9050	0.8	11830	
77	844,9492	0.8	11121	
78	852.9163	1.2	17003	
79	860,9479	1.1	15243	
80	861,9469	0.8	11067	
81	862.9432	2.0	29098	
82	863,9429	1.2	17725	
83	864,9421	0.6	9210	
84	882,9272	1.2	16534	
85	912,9380	0.9	12213	
86	916.9501	0.8	12111	
87	920,9048	0.7	10256	
88	950,9158	0.9	12473	
89	980.9259	0.8	10845	
90	990.3614	2.0	28334	
91	991.3648	1.0	14551	
92	995.3181	35.5	507055	
93	996.3210	17.2	245362	
94	997.3238	4.4	62430	
95	998.3260	0.9	12148	
96	1011.2908	1.6	23158	
97	1012.2941	0.9	12753	
98	1018,9043	0.6	8629	
99	1039.6234	0.9	13451	
100	1048 9139	0.7	9852	

Acquisition Parameter

General	Fore Vacuum Scan Begin	3.36e+ 75 m/z	000 mBar	High Vacuum Scan End	9.18e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	y)	4.0 eV			100.01	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
lon Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 10).0 μs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2022 18:36:53

Page 3 of 3

High Resolution Mass Spectrometry Report

Bruker Compass DataAnalysis 4.0

Acquisition Date 31.03.2022 10:30:08

Page 1 of 3

High Resolution Mass Spectrometry Report

Measured	m/z	VS.	theo	retical	m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
583.3173	1	C 39 H 44 Na O 3	100.00	583.3183	1.0	1.7	10.9	17.5	even	1+
1143.6477	1	C 78 H 88 Na O 6	100.00	1143.6473	-0.4	-0.3	13.1	34.5	even	

Mass	list
muss	11.36

#	m/z	۱%	I
1	141.0023	0.4	10006
2	143.9591	0.5	12196
3	201.1095	0.7	19633
4	205.0596	0.4	11326
5	217.1043	0.5	14505
6	226.9512	1.6	41021
7	229.0500	0.7	17331
8	243.9412	0.5	14259
9	249.1092	0.9	24702
10	253.1405	0.3	8696
11	261.1305	0.3	7368
12	263.0554	0.4	9932
13	279.0927	1.0	27350
14	294.9194	0.4	9992
15	301.0747	4.6	122377
16	301.1402	0.8	21135
17	302.0778	0.9	22710
18	309.1299	0.8	20516
19	337.0743	0.5	12837
20	353.1563	0.4	10861
21	353.2655	0.3	7644
22	362.9258	0.4	11741
23	381.2963	0.4	11823
24	393.2968	0.3	8562
25	399.0806	0.3	9145
26	411.0929	0.5	12847
27	413.2652	0.4	11789
28	430.9133	0.4	10492
29	461.1650	0.8	19819
30	463.1631	0.7	18857
31	469.1594	11.1	293803
32	470.1623	2.7	69969
33	471.1652	0.4	10768
34	481.2644	0.5	13093
35	485.1112	0.4	11300
36	487.1690	0.8	22083
37	504.1959	2.6	67412
38	505.1990	0.6	16543
39	509.1167	0.6	15398
40	509.1533	100.0	2639470
41	509.7169	0.4	9478
42	510.1557	28.6	755332
43	511.1579	3.4	90623
44	512.1603	0.4	9000
40	525.1254	2.1	14200
40	520.1200	0.5	14290
47	543 3244	0.4	9424 22053
40	543.3244	0.0	22000
50	553 4579	0.4	9082
51	555 1444	2.1	56069
52	556 1466	0.8	20846
53	557 1445	0.0	10836
54	559 1303	0.4	9400
55	571 1215	03	9135
56	577.1385	12	32129
57	578 1418	04	9319
58	583,3173	3.8	101077
59	584.3204	1.7	44782
60	585.3235	0.4	9611
61	589.0945	0.7	19524

Bruker Compass DataAnalysis 4.0

Acquisition Date 31.03.2022 10:30:08

Page 2 of 3

			High I	Resolution Mass Spectrometry Report
#	m/z	1%		· · · ·
62	591.0905	0.3	8242	
63	594.1290	0.5	12248	
64	681.3722	0.4	9820	
65	787.2378	4.2	111477	
66	787.3009	0.4	10464	
67	788.2409	1.9	50589	
68	789.2439	0.4	11207	
69	861.4031	0.3	7669	
70	899.4287	0.5	12223	
71	947.3283	0.8	20365	
72	948.3320	0.4	10543	
73	949.3273	0.8	21745	
74	950.3301	0.4	10030	
75	990.3596	1.7	45965	
76	991.3629	0.9	24604	
77	995.3172	69.3	1828200	
78	996.3200	33.4	880908	
79	997.3224	7.4	196200	
80	998.3247	1.4	36469	
81	1011.2890	1.2	31350	
82	1012.2923	0.6	16331	
83	1063.3026	0.9	22750	
84	1064.3060	0.4	11219	
85	1064.5256	0.6	15082	
86	1065.5285	0.4	10901	
87	1069.4822	12.8	338561	
88	1070.4854	8.6	227679	
89	1071.4881	2.9	76900	
90	1072.4904	0.8	20615	
91	1085.4555	0.5	13676	
92	1086.4577	0.3	8932	
93	1121.2124	0.3	8364	
94	1143.6477	2.3	61083	
95	1144.6508	2.0	52372	
96	1145.6539	0.9	23626	
97	1167.5366	1.0	26599	
98	1168.5398	0.8	21066	
99	1169.5423	0.4	9403	
100	1171.5984	0.3	8094	

Acquisition Parameter

General	Fore Vacuum Scan Begin	3.27e+ 75 m/z	000 mBar	High Vacuum Scan End	9.05e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.037	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 10	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 31.03.2022 10:30:08

Page 3 of 3

¹H and ¹³C{H} (400/101 MHz, CDCI₃) NMR spectra of Compound 21:

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR and MALDI-ToF-MS Spectra of Compound 22:

Zoom in of MALDI-ToF-MS (RP, DCTB) Spectrum of Compound 22:

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR Spectra of Compound 23:

¹H, ¹³C{H} (400/101 MHz, CDCl₃) NMR and HR-ESI-MS Spectra of 1,4-bis(but-3-en-1yloxy)-2,5-diiodobenzene (11):

[ppm]

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
492.9122	1	C 14 H 16 I 2 Na O 2	100.00	492.9132	1.0	2.0	14.6	5.5	even	1+
962.8382	1	C 28 H 32 I 4 Na O 4	100.00	962.8372	-1.0	-1.1	31.9	10.5	even	

#	m/z	۱%	1
1	143.9584	18.9	14286
2	205.0601	29.9	22643
3	217.0831	23.7	17908
4	217.1047	29.0	21964
5	226.9515	26.1	19737
6	229.0505	67.9	51390
(241.0681	26.6	20117
0	243.0764	40 0	42764
10	249.1095	10.2	19092
11	203.0339	23.5	23532
12	301 1407	67.2	50867
13	309.1305	19.9	15092
14	337.0746	35.6	26986
15	337.2344	32.3	24455
16	353.2656	21.0	15895
17	381.2971	35.9	27147
18	411.0930	36.5	27669
19	413.2656	22.5	17060
20	485.1115	34.9	26407
21	492.9122	54.9	41601
22	559.1303	30.7	23237
20	610.1629	10.5	20044
24	615 1385	57.4	43455
26	616 1388	33.7	25493
27	617 1358	25.9	19641
28	633.1485	26.0	19722
29	684.2020	38.1	28837
30	685.2024	24.1	18218
31	686.2003	18.0	13628
32	689.1577	100.0	75709
33	690.1580	63.5	48041
34	691.1560	52.6	39808
35	692.1550	24.5	18530
27	707.1003	20.5	15491
38	759 2215	26.3	10006
39	760 2196	19.4	14683
40	763.1766	95.7	72459
41	764.1775	66.0	49968
42	765.1751	54.0	40856
43	766.1747	28.2	21341
44	832.2401	26.8	20306
45	833.2407	23.1	17458
46	834.2395	19.5	14755
4/	837.1961	83.3	63045
40	030.1909	50.D	12072
49 50	840 1938	30.1	22863
51	841 1911	17.6	13350
52	906.2599	24.9	18832
53	907.2605	21.1	15943
54	908.2585	20.2	15321
55	911.2155	88.0	66617
56	912.2169	79.3	60061
57	913.2143	67.1	50834
58	914.2138	36.0	27289
59	915.2120	20.7	15668
60 61	980.2799	22.1	15011
01	301.2730	41.U	10011

Bruker Compass DataAnalysis 4.0

Acquisition Date 31.03.2022 10:27:00

Page 2 of 3

			High	Resolution Mass Spectrometry Report
#	m/z	١%		<u>·</u>
62	982.2789	20.1	15232	
63	985.2358	88.2	66771	
64	986.2361	83.4	63116	
65	987.2345	78.2	59178	
66	988.2336	47.6	36024	
67	989.2324	28.3	21420	
68	1054.2988	18.8	14225	
69	1055.3008	20.0	15136	
70	1056.2980	20.5	15556	
71	1059.2554	81.1	61420	
72	1060.2564	84.3	63820	
73	1061.2547	79.2	59981	
74	1062,2539	52.3	39623	
75	1063.2524	31.3	23726	
76	1130.3193	18.0	13610	
77	1133.2756	68.0	51505	
78	1134 2761	73.8	55850	
79	1135.2751	74.7	56591	
80	1136.2746	52.4	39696	
81	1137.2729	31.8	24088	
82	1207 2963	52.1	39472	
83	1208 2969	58.4	44233	
84	1209 2955	63.6	48153	
85	1210.2955	45.1	34116	
86	1211.2936	30.2	22886	
87	1281 3174	35.9	27195	
88	1282 3178	43.7	33096	
89	1283 3163	48.6	36790	
90	1284 3158	34.4	26076	
91	1285 3144	24.9	18825	
92	1355 3373	23.7	17942	
93	1356 3390	30.6	23139	
94	1357 3376	34.7	26242	
95	1358 3368	27.1	20493	
96	1359 3358	18.5	13975	
97	1430 3600	20.2	15330	
98	1431 3590	25.5	19276	
99	1432 3586	19.9	15104	
100	1505.3816	17.3	13077	

Acquisition Parameter

General	Fore Vacuum Scan Begin	3.28e+ 75 m/z	000 mBar	High Vacuum Scan End	9.09e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.037	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 1	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 31.03.2022 10:27:00

Page 3 of 3

¹H, ¹³C{H}, 2D (600 MHz, TCE-d2, 343 K) NMR and MALDI-MS Spectra of OPE5 Precursor (8):

.) [ppm]

187

ROESY Spectrum of OPE5 Precursor (8):

f1 (ppm)

Zoom in of MALDI-ToF-MS (RP, DCTB) Spectrum of OPE5 Precursor (8):

¹H, ¹³C{H}, 2D (600 MHz, TCE-d2, 343 K) NMR and MALDI-MS Spectra of OPE5 Reference (27):

HMBC Spectrum of OPE5 Reference (27):

192

Zoom in of MALDI-ToF-MS (RP, DCTB) Spectrum of OPE5 Reference (27):

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-para-para StBu PCP:

	High Resolution Mass Spectrometry Report														
	Measured m/z vs. theoretical m/z														
Measu	ured	m/z v	s. tr	eoretica	l m/z										
ſ	Meas. 643.1	m/z 1604	# 1	Formula C 36 H 40	Ag S 2	Score 100.00	m/z 643.1617	err [mDa] 1.3	err [ppm] 2.0	mSigma 258.3	rdb 16.5	e Conf even	z 1+		
Mass	list														-1
	#		m/z	1%		L									
-	1	106.	9052	1.2	20279	Ā									
	2	108.	9048	1.4	23458	3									
	3	147.	9315	96.0	1581629	9									
	4	148.	9343	1.0	20334										
	6	150	9330	100.0	28649	, 1									
	7	165.	9418	1.6	25731										
	8	167.	9415	1.7	27880)									
	9	188.	9575	16.0	263703	5									
	10	189.	9602	0.8	13354										
	11	190.	9572	15.6	25/458	5									
	12	277	7962	14 0	230062	5									
	14	279	7962	6.5	107139	,									
	15	316.	8237	17.6	290533	5									
	16	318.	8236	35.9	591526	5									
	17	320.	8230	15.2	250711										
	18	357.	8499	4.4	72285										
	19	359.	8495	8.6	141120) :									
	20	395	0494 5457	4.1	20663										
	22	396.	5457	2.4	39104										
	23	397.	0472	1.1	18085	5									
	24	397.	5456	1.5	24121										
	25	405.	5510	0.8	13571										
	26	416.	0588	2.5	41310)									
	28	410.	0580	5.1	84232										
	29	417.	5602	2.4	38866	5									
	30	418.	0588	3.0	50053	5									
	31	418.	5600	1.3	21243	5									
	32	446.	6891	1.3	21215	i .									
	33	448.	6888	1.2	20346	5									
	35	479.	9921 4938	2.1	14740	, 1									
	36	480.	9922	6.2	102317										
	37	481.	4935	2.7	44129)									
	38	481.	9921	6.2	101927										
	39	482.	4933	2.7	44896	i									
	40	482.	4032	2.6	42563	5									
	42	485	7161	2.6	43245	5									
	43	487.	7160	7.2	117873	5									
	44	489.	7158	6.6	108685	5									
	45	491.	7152	2.0	33477										
	46	501.	5051	1.2	19699)									
	47	502.	2002	1.2	20438	5									
	49	519.	2945	1.6	25673	, 5									
	50	526.	7423	0.8	13289)									
	51	528.	7423	2.2	37020)									
	52	530.	7422	2.1	34571										
	53	565.	4383	2.0	33729										
	55	566	9095 4384	0.9	14453	,									
	56	566	9396	1.3	22132										
	57	567.	4383	2.2	35497										
	58	567.	9397	0.9	14124	-									
	59	612.	4247	0.8	13127										
	60	637.	3733	3.2	53324	-									
	62	639	3734	32	52899										
		000.		0.2	02000	2									

Bruker Compass DataAnalysis 4.0

Acquisition Date 04.02.2021 15:44:33

Page 2 of 3

			High I	Resolution Mass Spectrometry Report
#	m/z	1%	1	<u>·</u>
63	640.3765	1.2	19479	
64	658.6079	0.8	13811	
65	684.1878	29.0	478559	
66	685.1907	11.7	192316	
67	686.1878	33.2	547250	
68	687.1903	12.4	205018	
69	688.1882	5.8	95824	
70	689.1889	1.8	29673	
71	690.1874	1.2	19446	
72	728.6070	2.2	35542	
73	729.1084	1.8	29596	
74	729.6072	2.7	45273	
75	730.1081	1.9	31479	
76	730.6076	1.5	25081	
77	731.1080	0.9	14453	
78	812.0534	6.7	110291	
79	813.0553	4.1	67761	
80	813.5548	1.4	22506	
81	814.0537	16.4	270196	
82	814.5546	2.0	33543	
83	815.0555	7.5	124269	
84	815.5542	1.5	25068	
85	816.0535	8.6	141865	
86	817.0554	3.1	50592	
87	818.0534	1.0	16277	
88	898.4994	1.3	20785	
89	899.0009	1.0	16009	
90	899.4999	1.4	23565	
91	900.0006	1.0	16252	
92	900.5002	0.9	15574	
93	980.9450	1.3	21169	
94	982.9453	4.2	68581	
95	983.9475	2.2	35753	
96	984.9452	4.5	73890	
97	985.9476	1.8	30258	
98	986.9451	1.6	27076	
99	1153.8370	1.2	20362	
100	1155.8374	0.9	14825	

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.48e+ 75 m/z	000 mBar	High Vacuum Scan End	1.14e-007 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Ba 180 °C	r	Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS or	ıly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfe	r Time	75.0 µs	Set Ion Cooler Pre Pul	se Storage Time	10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 04.02.2021 15:44:33

Page 3 of 3

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-para-para PCP:

	High Resolution Mass Spectrometry Report													
Meas	Measured m/z vs. theoretical m/z													
Meas. m/z # Formula Score m/z err [mDa] err [ppm] ms											rdb	e ⁻ Conf	z	
	615.0	572	1 C	32 H 28	Ag O 2 S 2	100.00	615.0576	0.4	0.7	32.6	18.5	even	1+	
Mass	list													
	#		m/z	1%	L									
	1	106.9	9050	1.9	23660									
	2	108.9	9047	2.2	27107									
	4	148.9	9341	1.6	20441									
	5	149.9	9310	100.0	1257418									
	6	150.9	9336	1.9	24031									
	7	165.9	9417	1.5	18271									
	9	188.9	9414	13.2	165848									
	10	190.9	9570	13.2	166362									
	11	275.	7968	10.4	130154									
	12	277.	7966	20.3	255627									
	14	301 9	9602	9.5	27662									
	15	303.9	9597	2.1	26151									
	16	316.0	3234	15.5	194421									
	17	318.	3234	31.3	393288									
	19	333.0	0967	1.5	19119									
	20	335.0	0968	1.5	18864									
	21	347.	1123	1.6	19538									
	22	349.	1124	1.5	19008									
	23	359.0	3497	6.7	43273 83930									
	25	361.	1284	13.4	168196									
	26	361.0	3491	3.2	40623									
	27	362.	1314	12.4	30025									
	29	364.	1313	2.1	26811									
	30	365.	1430	2.1	26027									
	31	375.	1436	2.7	33855									
	32	3/7.	1435	2.4	30415									
	34	389.	1592	12.4	156450									
	35	390.1	1626	2.3	29459									
	36	391.	1595	10.9	137667									
	38	392.	1627	2.3 1.8	28500									
	39	396.	1492	1.7	21480									
	40	446.0	5889	2.6	32334									
	41	448.0	5886	2.4	30221									
	42	487	7157	2.4	29742									
	44	489.	7153	6.4	79962									
	45	491.	7148	1.9	24464									
	46	517.2	2946	6.6	82573									
	48	519.3	2945	6.3	79621									
	49	520.3	2973	2.1	26123									
	50	528.	7421	1.7	21944									
	51	530.	7417	1.7	21017									
	53	533.	2590	3.1	39554									
	54	533.	2885	3.5	44438									
	55	534.3	2902	1.3	16864									
	56 57	535.	2891 2845	3.4	42412									
	58	551.3	2844	2.2	27751									
	59	581.3	2738	1.4	17629									
	60	583.	2738	1.3	16908									
	62	615.0)572	31.7	397975									

Bruker Compass DataAnalysis 4.0

Acquisition Date 04.02.2021 15:51:00

Page 2 of 3

			High	Resolution Mass Spectrometry Report
#	m/z	1%	1	
63	616.0597	11.4	143376	
64	617.0569	31.9	400812	
65	618.0595	11.2	140297	
66	619.0563	3.3	41228	
67	639.4242	1.7	21173	
68	641.4300	1.6	20709	
69	656.0835	24.3	304927	
70	657.0861	8.8	110302	
71	658.0834	25.1	315449	
72	659.0858	9.1	114072	
73	660.0834	3.0	38024	
74	686.1875	5.9	74801	
75	687.1904	2.1	26466	
76	688.1876	11.1	139410	
77	689.1900	3.7	46245	
78	690.1875	5.2	65533	
79	691.1900	1.7	21000	
80	704.1818	2.5	31264	
81	783.9490	5.5	69485	
82	784.9517	2.1	26566	
83	785.9491	11.1	139938	
84	786.9515	4.0	49781	
85	787.9487	6.2	78496	
86	788.9512	2.2	27129	
87	857.0797	1.4	17593	
88	952.8408	1.6	20109	
89	954.8413	4.6	57478	
90	955.8442	1.7	21908	
91	956.8412	4.6	57220	
92	957.8440	1.7	21398	
93	958.8405	1.8	22896	
94	1123.2074	2.3	29368	
95	1124.2112	1.7	21832	
96	1125.2086	3.0	38040	
97	1126.2109	2.0	25531	
98	1294.1004	2.8	34667	
99	1295.1035	1.9	23566	
100	1296.1016	2.1	26333	

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.48e+ 75 m/z	000 mBar	High Vacuum Scan End	1.14e-007 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bai 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole Set Ion Energy (MS only) 4.0 e						100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Pulse Storage Time		10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 04.02.2021 15:51:00

Page 3 of 3

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-para-meta StBu PCP:

_	High Resolution Mass Spectrometry Report													
Мозец	rod	m/7 v	e ti	eoretica	al m/z									
weasu	leas	m/z v	ร. u #	Formula	ai 11172	Score	m/z	err [mDa]	err (ppm)	mSigma	rdh	e Conf	7	
1	643.1	1610	1	C 36 H 40	Ag S 2	100.00	643.1617	0.7	1.1	293.0	16.5	even	1+	
Mass I	ist													
	#		m/z	7 1%										
	1	147.	9312	2 18.8	389268	3								
	2	149.	9309	21.8	451621	1								
	3	188.	95/3	3 3.4 G 3.5	70271	2								
	5	275.	7966	5 1.3	26828	-								
	6	277.	7963	3 2.4	49709	Э								
	7	316.	8233	3 2.9	59523	3								
	8 9	318.	8231	1 5./ 7 25	51865	+ 5								
	10	359.	8496	5 1.5	30367	7								
	11	517.	2948	3 1.7	35064	1								
	12	519.	2946	6 1.6	33150	0								
	13	525.	2118	3 1.4	28896	5								
	14	637	3733	5 1.4 3 1.9	39343	3								
	16	639.	3734	1.8	37374	1								
	17	643.	1610) 4.6	94388	3								
	18	643.	6626	5 3.2 7 0.0	65222	2								
	20	644.	6627	9.0 66	135848	3								
	21	645.	1618	3 7.7	159043	3								
	22	645.	6625	5 4.4	90336	5								
	23	646.	1620	2.4	49784	1								
	24	685	100/	91.4	722384	1								
	26	686.	1887	7 100.0	2068073	3								
	27	687.	1910	37.8	781310)								
	28	688.	1890) 11.2	232171	1								
	29	727	1880	5 3.3 7 3.0	61701) 1								
	31	728.	1089	2.4	50471	i								
	32	728.	6080	9.9	204185	5								
	33	729.	1092	2 7.4	152583	3								
	34	729.	1091	3 12.2 I 8.4	252757	6 A								
	36	730.	6083	6.7	137821	1								
	37	731.	1089	3.7	77529	Э								
	38	731.	6082	2 1.9	38610)								
	39 40	813	0566	2 22.5 S 10.1	208728	3								
	41	814.	0545	5 54.0	1116478	3								
	42	814.	5542	2 1.7	34172	2								
	43	815.	0568	3 20.1	415004	1 1								
	45	816.	0541	27.3	565402	2								
	46	817.	0560	9.3	192527	7								
	47	818.	0539	9 3.1	64765	5								
	48	980.	9454	1 3.5 0 1.6	73172	2								
	50	982	9458	3 10.7	220944	1								
	51	983.	9483	4.3	88879	9								
	52	984.	9457	11.6	239374	1								
	53	985.	94/9	4.3	89671									
	55	987	9474	4.0	33557	7								
	56	1082.	1818	3 1.8	37301	1								
	57	1082.	6822	2 1.7	35271	1								
	58	1083.	1822	2 1.9	39448	5								
	60	1165	6273	3 14	28661	1								
	61	1166.	1287	1.5	31878	3								
	62	1166.	6280	3.3	68509	Э								

Acquisition Date 04.02.2021 15:40:49

	High Resolution Mass Spectrometry Report									
#	m/z	1%	J							
63	1167.1289	3.4	71073							
64	1167.6284	4.5	92192							
65	1168.1291	4.0	81940							
66	1168.6287	3.7	75907							
67	1169.1287	2.7	55121							
68	1169.6286	1.9	38691							
69	1251.0740	2.1	43450							
70	1251.5746	2.1	44035							
71	1252.0743	3.5	72679							
72	1252.5750	3.3	67484							
73	1253.0750	3.5	73035							
74	1253.5752	2.9	60775							
75	1254.0745	2.4	49800							
76	1254.5745	1.7	34763							
77	1336.5209	2.2	44598							
78	1337.0211	2.1	43377							
79	1337.5204	2.8	57168							
80	1338.0212	2.3	48449							
81	1338.5205	2.3	47646							
82	1339.0212	1.7	36012							
83	1339.5213	1.4	28790							
84	1350.3075	2.6	53334							
85	1351.3095	2.0	42288							
86	1352.3077	2.1	42464							
87	1353.3093	1.3	27181							
88	1421.9673	1.3	26904							
89	1517.1988	2.0	41485							
90	1518.2023	1.7	35710							
91	1519.1994	6.6	136915							
92	1520.2019	5.3	108861							
93	1521.2004	8.2	169619							
94	1522.2019	5.7	118640							
95	1523.2006	4.8	99479							
96	1524.2012	2.7	56865							
97	1525.2011	1.3	27609							
98	1690.0927	2.2	46019							
99	1691.0952	1.9	38978							
100	1692.0936	2.0	41471							

General	Fore Vacuum Scan Begin	2.48e+ 75 m/z	000 mBar	High Vacuum Scan End	1.14e-007 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 1	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 04.02.2021 15:40:49

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-para-meta PCP:

Acquisition Date 17.03.2020 12:15:39

Page 1 of 3

	High Resolution Mass Spectrometry Report												
Meas	ured	m/z vs	s the	oretica	l m/z								
	Meas. 615.0	m/z i 1576	# Fo 1 C	ormula 32 H 28	Aq O 2 S 2	Score 100.00	m/z 615.0576	err [mDa] 0.0	err [ppm] 0.1	mSigma 16.1	rdb 18.5	e [⊂] Conf even	z 1+
Mass	list				9								12
	#		m/7	1%									
	1	275.7	970	12.3	23666								
	2	277.7	967	22.7	43541								
	3	279.7	964	10.9	20989								
	4	301.8	333	4.7	8952								
	5	316.8	1238	38.0	125252								
	7	320.8	232	35.5	67977								
	8	357.8	505	14.6	28038								
	9	359.8	501	27.5	52648								
	10	361.8	498	12.7	24275								
	11	367.8	3210	4.5	8543								
	12	369.8	757	7.1	14/3/								
	14	390.1	755	6.9	13274								
	15	399.1	079	11.2	21421								
	16	401.1	078	11.6	22306								
	17	415.1	025	7.1	13581								
	18	417.1	030	7.1	13648								
	19	437.1	813	24.4	46812								
	20	430.1	810	21.5	41285								
	22	440.1	843	4.8	9149								
	23	446.6	898	6.4	12260								
	24	448.6	6894	6.1	11629								
	25	465.2	2125	22.4	42981								
	26	466.2	2157	5.2	9877								
	28	468.2	123	52	9938								
	29	485.7	166	10.9	20803								
	30	487.7	165	28.1	53844								
	31	489.7	163	25.6	49023								
	32	491.7	158	8.8	16811								
	33	517.2	954	13.7	26180								
	35	519.2	950	13.8	26420								
	36	528.7	429	9.3	17923								
	37	530.7	430	8.9	17110								
	38	615.0	576	95.3	182661								
	39	616.0	606	34.5	66068								
	40	618.0	C/C(34.1	65355								
	42	619.0	570	11.8	22541								
	43	656.0	838	24.7	47436								
	44	657.0	868	10.1	19450								
	45	658.0	836	26.2	50185								
	46	659.0	0866	9.8	18720								
	47	685.1	907	4.7	21903								
	49	686.1	880	16.1	30859								
	50	687.1	912	6.5	12434								
	51	688.1	886	10.5	20116								
	52	690.1	886	4.5	8541								
	53 54	769.3	546	15.1	28960								
	55	771.3	518	15.7	30076								
	56	772.3	543	6.8	12965								
	57	783.9	514	9.3	17846								
	58	785.9	9511	18.3	35043								
	59	786.9	9539	7.0	13439								
	61	780 4	1001	31.0	20142								
	62	790.5	021	14.3	27368								

Acquisition Date 17.03.2020 12:15:39

	High Resolution Mass Spectrometry Report										
#	m/z	1%	1								
63	791.4993	31.0	59338								
64	792.5019	14.3	27416								
65	793.5031	4.8	9112								
66	805.4939	5.1	9735								
67	807.4933	5.3	10187								
68	812.0556	7.7	14702								
69	814.0559	15.8	30282								
70	815.0584	6.4	12320								
71	816.0558	9.3	17892								
72	945.3382	5.8	11083								
73	947.3400	6.7	12824								
74	954.8482	4.9	9299								
75	956.8479	5.0	9552								
76	973 3714	54	10322								
77	975.3718	6.7	12895								
78	982,9529	5.1	9782								
79	984,9532	5.7	10870								
80	1023 5182	4.5	8544								
81	1025.5196	4.8	9255								
82	1123 2227	13.6	26119								
83	1124.2248	10.5	20112								
84	1125.2229	17.8	34134								
85	1126 2255	11.7	22372								
86	1127.2249	6.5	12370								
87	1277.5239	8.8	16794								
88	1278.5268	7.7	14792								
89	1279.5247	11.6	22234								
90	1280.5284	8.3	15920								
91	1294,1245	6.2	11821								
92	1296.1262	4.9	9423								
93	1297.6717	7.4	14116								
94	1298.6742	5.9	11274								
95	1299.6735	10.1	19295								
96	1300.6760	6.8	13109								
97	1451.9765	5.2	9917								
98	1452,9797	4.7	8968								
99	1453.9773	7.0	13482								
100	1454.9801	5.5	10472								

General	Fore Vacuum Scan Begin	2.59e+ 75 m/z	000 mBar	High Vacuum Scan End	9.65e-008 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bai 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV				
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	500.0 Vpp		
Ion Cooler	Set Ion Cooler Transfer	Time	100.0 µs	Set Ion Cooler Pre Puls	se Storage Time	18.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2020 12:15:39

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-meta-para StBu PCP:

Acquisition Date 17.03.2020 12:00:18

Page 1 of 3

	High Resolution Mass Spectrometry Report													
Messe	ecourd m/z ve theoretical m/z													
weas	urea	m/z vs	5. T	neoretica	i m/z							6.00		
	Meas. 643.1	m/z 615	# 1	Formula C 36 H 40	Ag S 2	Score 100.00	m/z 643.1617	err [mDa] 0.2	err [ppm] 0.3	mSigma 320.0	rdb 16.5	e Conf even	z 1+	
Mass	list				1000									 1.6
	#		ml	7 1%										
12	1	388.1	74:	3 6.2	47551									
	2	390.1	74	4 6.1	46954									
	3	395.5	6449	9 5.3	40379									
	4	396.5	6450	0 10.6	81329									
	5	397.0	46	3 4.7	35899									
	5	397.5	06	8 6.1 0 50	46/52									
	8	401 1	06	o 5.5 7 5.1	38760									
	9	416.0	58	8 8.8	67005									
	10	416.5	60	3 4.1	31707									
	11	417.0	58	8 17.3	132215									
	12	417.5	60	2 7.9	60584									
	13	418.0	58	8 10.2	77837									
	14	418.0	800	9 4.4 6 75	57425									
	16	439 1	80	4 69	52638									
	17	465.2	2119	9 6.1	46456									
	18	467.2	2120	0 5.9	44976									
	19	480.9	924	4 5.0	38205									
	20	481.9	92:	3 5.3	40557									
	21	643.1	61	5 31.5	241523									
	22	643.0	62	1 22.5	574700									
	24	644.6	63	3 51.3	393098									
	25	645.1	62	3 59.1	452473									
	26	645.6	630	0 32.0	245069									
	27	646.1	62	7 17.0	130443									
	28	646.6	62	4 6.4	49310									
	29	661.1	48	1 6.1	46837									
	31	662 1	49.	3 133	102037									
	32	662.6	49	4 9.8	74769									
	33	663.1	48	6 10.0	76413									
	34	663.6	49	3 6.4	48658									
	35	670.1	45	4 6.5	49687									
	36	670.6	46	5 4.9	37150									
	3/	679 1	3/1	b 4.9	3/3/3									
	39	681 1	340	0 50	38066									
	40	684.1	87	8 90.9	696002									
	41	685.1	90	8 33.8	258945									
	42	686.1	87	7 100.0	765771									
	43	687.1	90	2 35.0	268172									
	44	722 1	60	5 37	28313									
	46	727.6	508 ⁻	1 8.5	65380									
	47	728.1	098	8 7.4	56802									
	48	728.6	608	6 28.5	218196									
	49	729.1	100	0 21.4	164250									
	50	729.6	090	0 36.8	281/90									
	52	730.	09:	9 24.0 1 10.8	151516									
	53	731 1	09	5 11.1	85163									
	54	731.6	09	1 5.6	42881									
	55	746.5	950	0 5.2	40065									
	56	747.0	964	4 4.2	32029									
	57	747.5	95	4 6.2	47777									
	50	748.0	96	2 4.4	33584									
	60	755 1	011	3 3.8	21333									
	61	755.5	96	8 3.9	30188									
	62	789.4	97	9 13.8	105944									

Acquisition Date 17.03.2020 12:00:18

			High	Resolution Mass Spectrometry Report
#	m/z	1%	1	
63	790.5011	6.3	48168	
64	791.4984	14.6	111681	
65	792.5008	6.2	47337	
66	812.0555	8.3	63347	
67	813.0570	8.6	65615	
68	813.5575	4.6	35135	
69	814.0561	24.0	183512	
70	814.5574	7.1	54609	
71	815.0575	13.9	106166	
72	815.5572	5.6	42509	
73	816.0559	11.5	87919	
74	817.0572	4.0	30375	
75	996.7461	6.9	52893	
76	997.2474	7.4	56659	
77	997.7468	10.6	81004	
78	998.2476	9.2	70069	
79	998.7474	7.9	60636	
80	999.2476	5.6	42799	
81	1015.7345	4.6	35450	
82	1016.2350	4.1	31313	
83	1081.1986	3.6	27249	
84	1081.7001	4.1	31706	
85	1082.1988	6.8	52334	
86	1082.7001	6.7	51416	
87	1083.1995	7.3	55656	
88	1083.7001	6.1	46619	
89	1084.1997	4.5	34534	
90	1167.6527	4.2	32220	
91	1168.1536	3.7	27996	
92	1307.6452	3.7	28642	
93	1325.7937	6.3	48324	
94	1326.7968	5.6	43181	
95	1327.7948	9.3	70911	
96	1328.7971	6.6	50597	
97	1350.3554	3.8	29426	
98	1351.3569	3.8	28985	
99	1454.0035	3.7	28562	
100	1474.1527	4.6	35176	

General	Fore Vacuum Scan Begin	2.59e+ 75 m/z	000 mBar	High Vacuum Scan End	9.68e-008 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bai 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV				
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	500.0 Vpp		
Ion Cooler	Set Ion Cooler Transfer	Time	100.0 µs	Set Ion Cooler Pre Puls	se Storage Time	18.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2020 12:00:18

217

	High Resolution Mass Spectrometry Report													
Meas	sured r	m/z v	s. th	eoretica	l m/z							72=		
	Meas. 615.0	m/z 583	# F 1 C	ormula 32 H 28	Ag O 2 S 2	Score 100.00	m/z 615.0576	err [mDa] -0.7	err [ppm] -1.1	mSigma 21.8	rdb 18.5	e Conf even	z 1+	
Mass	list												2.000	
	щ			1.0/										
		275	m/z	29	15572									
	2	277.	7966	5.6	29917									
	3	279.	7962	2.7	14576									
	4	316.8	3237	9.2	48685									
	5	318.0	3235	17.7	94297									
	6	320.8	3231	8.7	46407									
	8	359	3504	5.5	35050									
	9	361.0	3498	3.2	17014									
	10	369.0	3208	2.0	10659									
	11	399.	1080	2.1	10943									
	12	401.	1078	2.1	11011									
	13	408.9	9479	2.9	15206									
	14	410.3	1811	2.0	13830									
	16	439	1810	2.0	12853									
	17	465.	2123	2.9	15522									
	18	467.3	2123	2.8	14650									
	19	485.	7170	2.4	12578									
	20	487.	7167	6.4	33854									
	21	489.	7152	5.0	31872									
	22	517 3	2955	3.2	17090									
	24	519.3	2953	3.0	15974									
	25	528.	7431	2.4	12655									
	26	530.	7431	2.3	11977									
	27	549.	1231	69.1	367566									
	28	550.	1258	19.0	100959									
	30	552	1254	18.7	99249									
	31	553.	1240	4.7	25228									
	32	615.0	0583	94.5	502324									
	33	616.0	0610	31.9	169795									
	34	617.0	0581	100.0	531631									
	30	619.0	1574	10.3	54831									
	37	620.0	0578	3.0	15970									
	38	656.0	0848	73.4	390175									
	39	657.0	0875	25.5	135747									
	40	658.0	0846	76.0	404282									
	41	659.0	18/1	26.9	143168									
	42	661	3846	9.5	13816									
	44	686.	1882	3.0	16134									
	45	688.	1886	3.0	15711									
	46	718.0	0153	2.9	15285									
	47	720.0	0153	5.4	28801									
	48	722.0	2515	3.1	16334									
	50	783.	9518	74	39281									
	51	784.	9548	2.8	15080									
	52	785.9	9520	14.7	78353									
	53	786.9	9543	5.5	29277									
	54	787.9	9513	8.3	44202									
	55	788.	1027	3.0	15/9/									
	57	790	5015	2.1	10989									
	58	791.4	4990	4.6	24343									
	59	792.	5020	2.1	10963									
	60	836.9	9494	1.9	10349									
	61	954.0	3485	3.5	18500									
	02	900.0	5403	3.6	19338									

Acquisition Date 17.03.2020 12:29:57

	High Resolution Mass Spectrometry Report										
#	m/z	1%	1								
63	993.3463	2.1	11403								
64	1057.2832	3.7	19418								
65	1058.2867	2.5	13131								
66	1059.2844	4.8	25461								
67	1060.2867	2.8	14742								
68	1123.2219	14.6	77491								
69	1124.2250	10.9	57889								
70	1125.2226	19.8	105219								
71	1126.2249	12.5	66588								
72	1127.2239	6.6	34831								
73	1128.2242	3.0	15696								
74	1162.2461	3.2	17017								
75	1164.2462	2.2	11530								
76	1211.5842	2.1	11396								
77	1213.5855	2.7	14210								
78	1228.1846	3.7	19687								
79	1229.1874	2.2	11647								
80	1230.1847	2.6	13826								
81	1231.7312	2.6	13719								
82	1232.7343	2.0	10898								
83	1233.7322	3.2	17227								
84	1234.7355	2.2	11817								
85	1279.5236	2.0	10381								
86	1292.1233	4.8	25440								
87	1293.1259	3.6	19259								
88	1294.1236	10.9	57960								
89	1295.1266	7.6	40302								
90	1296.1241	8.1	43236								
91	1297.1257	5.0	26326								
92	1298.1258	2.5	13353								
93	1567.4685	2.2	11848								
94	1568.4704	2.0	10397								
95	1631.4078	6.0	32062								
96	1632.4114	6.6	34919								
97	1633.4101	10.4	55447								
98	1634.4121	9.1	48363								
99	1635.4116	6.0	31975								
100	1636.4123	3.4	18131								

General	Fore Vacuum Scan Begin	2.59e+ 75 m/z	000 mBar	High Vacuum Scan End	9.65e-008 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bai 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV				
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	500.0 Vpp		
Ion Cooler	Set Ion Cooler Transfer	Time	100.0 µs	Set Ion Cooler Pre Puls	se Storage Time	18.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2020 12:29:57

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-*meta-meta* StBu PCP:

	High Resolution Mass Spectrometry Report														
Measu	ured i	m/z vs	s. tł	neoretica	l m/z										
ļ	Meas. 643.1	m/z 604	# 1	Formula C 36 H 40	Aq S 2	Score 100.00	m/z 643.1617	err [mDa] 1.3	err [ppm] 2.0	mSigma 117.6	rdb 16.5	e Conf even	z 1+		
Mass	list														-
maoo	#		m/;	7 1%											
-	1	316.8	3236	5 4.6	24986										
	2	318.8	3234	8.3	45604										
	3	320.8	3227	4.3	23530										
	5	390.1	753	3 3.9	19860										
	6	396.5	457	3.8	20814										
	7	399.1	078	3 10.0	54398										
	8	401.1	076	6 9.5 7 5.6	52178										
	10	417.0	596	5.6	30334										
	11	417.1	026	5.7	30925										
	12	437.1	809	10.5	57229										
	13	439.1	807	9.8	53698										
	14	465.2	2122	2 0.7	47604										
	16	517.2	2951	4.2	23177										
	17	519.2	2951	4.3	23572										
	18	643.1	604	14.6	79965										
	20	644.6	622	2 5.1	27922										
	21	645.1	609	18.1	98801										
	22	645.6	625	5 3.6	19877										
	23	646.1	629	6.6	35912										
	25	685.1	908	3 28.2	154362										
	26	686.1	879	76.9	420044										
	27	687.1	903	3 29.2	159770										
	28	689.1	884	12.3 a 3.9	6/288 21402										
	30	727.6	5082	2 5.9	32090										
	31	728.1	098	3 4.6	25168										
	32	728.6	8089	9 17.2	94229										
	34	729.1	1095 5088	3 22.1	120896										
	35	730.1	105	5 15.1	82433										
	36	730.6	5092	2 12.3	67078										
	37	731.1	092	2 1.1	20790										
	39	789.4	1978	3 14.4	78770										
	40	790.5	5009	6.9	37825										
	41	791.4	1983	3 13.9	76074										
	4∠ 43	797.0)640) 5.8	28820										
	44	812.0)559	48.1	262717										
	45	813.0	585	5 18.7	102440										
	46	814.0	1558	3 100.0	546516										
	48	816.0)556	52.3	285774										
	49	817.0	577	21.2	116037										
	50	818.0)548	6.9	37945										
	51	863.0)527	3.5	19289										
	53	867.0)524	4.1	22672										
	54	980.9	9515	5 9.1	49798										
	55	981.9	9555	5 3.9	21308										
	56 57	982.9	1522	2 24.7	135017										
	58	984.9	9522	2 26.8	146340										
	59	985.9	9546	5 10.5	57646										
	60	986.9	9519	9 11.0	59988										
	62	1033.9)503	4.5 3 4.0	24765										

Acquisition Date 17.03.2020 12:12:52

	High Resolution Mass Spectrometry Report										
#	m/z	۱%	1								
63	1035.9504	4.0	21808								
64	1166.6426	5.4	29345								
65	1167.1446	5.8	31622								
66	1167.6432	7.0	38369								
67	1168.1436	6.1	33314								
68	1168.6431	6.2	33678								
69	1169.1443	4.6	25312								
70	1251.0944	5.4	29249								
71	1251.5949	5.4	29270								
72	1252.0945	8.1	44178								
73	1252.5948	7.4	40386								
74	1253.0941	9.1	49640								
75	1253.5948	7.0	38241								
76	1254.0950	6.6	35916								
77	1254.5948	4.2	23118								
78	1336.5457	5.3	29085								
79	1337.0462	5.1	27864								
80	1337.5466	6.4	35244								
81	1338.0460	6.0	33061								
82	1338.5467	5.5	29998								
83	1339.0456	4.4	24125								
84	1339.5456	3.6	19556								
85	1350.3331	5.9	32257								
86	1351.3357	4.7	25724								
87	1352.3338	4.3	23570								
88	1453,9729	3.8	20621								
89	1517.2378	4.8	26472								
90	1518.2414	4.2	22788								
91	1519.2386	15.3	83590								
92	1520.2410	12.7	69337								
93	1521.2396	19.3	105338								
94	1522.2412	13.7	74884								
95	1523.2403	11.5	62782								
96	1524.2408	6.5	35322								
97	1525.2425	3.7	20461								
98	1690.1485	5.6	30777								
99	1691.1477	4.4	24241								
100	1692.1488	4.7	25510								

General	Fore Vacuum Scan Begin	2.59e+ 75 m/z	000 mBar	High Vacuum Scan End	9.68e-008 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bai 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV				
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	500.0 Vpp		
Ion Cooler	Set Ion Cooler Transfer	Time	100.0 µs	Set Ion Cooler Pre Puls	se Storage Time	18.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2020 12:12:52

¹H, ¹³C{H} (500/126 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of ps-meta-meta PCP:

Bruker Compass DataAnalysis 4.0 Acquisition Date 17.03.2020 16:09:30

Page 1 of 3

	High Resolution Mass Spectrometry Report											
Mea	sured	m/z vs. th	eoretica	al m/z								
	Meas.	.m/z # F	ormula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
	615.0	0577 1 C	32 H 28	Ag O 2 S 2	100.00	615.0576	-0.1	-0.2	15.3	18.5	even	1+
Mas	s list											
	#	m/z	1%	1								
	1	275.7992	15.4	26512								
	3	279.7987	14.2	24413								
	4	316.8265	51.4	88348								
	5	318.8265	100.0	171959								
	6	320.8259	47.4	81549								
	/	353.2684	4.0	6807 33557								
	9	359.8529	36.7	63055								
	10	361.1314	4.0	6819								
	11	361.8525	17.7	30482								
	12	363.1313	4.1	7072								
	13	369 8230	5.2	9028								
	15	371.8229	4.6	7919								
	16	377.1469	3.1	5314								
	17	381.2997	3.8	6591								
	18	388.1784	10.0	17203								
	20	390 1780	10.3	17783								
	21	391.1625	4.4	7627								
	22	399.1103	12.6	21689								
	23	401.1100	11.4	19679								
	24	403.8031	4.1	14093								
	26	417.1048	7.7	13228								
	27	437.1833	32.3	55554								
	28	438.1865	6.9	11904								
	29	439.1830	29.9	51439								
	31	444.6914	3.4	5930								
	32	446.6916	8.8	15122								
	33	448.6913	8.0	13787								
	34	465.2141	29.6	50825								
	36	460.2172	28.1	48272								
	37	468.2171	6.5	11138								
	38	485.7180	13.8	23713								
	39	487.7178	38.3	65811								
	40	409.7174	34.3	18361								
	42	517.2963	14.3	24560								
	43	518.2999	4.7	8097								
	44	519.2963	13.0	22326								
	45	526 7442	4.5	7400								
	47	528.7439	12.4	21365								
	48	530.7434	11.7	20151								
	49	532.7430	4.1	6979								
	50	615 0577	21.8	37519								
	52	615.4221	4.0	6802								
	53	616.0610	7.8	13376								
	54	617.0576	22.9	39358								
	55	617.4258	3.4	5845								
	57	643 4553	0.2 4 0	6958								
	58	656.6103	3.1	5342								
	59	658.6102	4.5	7730								
	60	686.1893	7.3	12564								
	62	689.1927	0.0 3.2	5437								

Acquisition Date 17.03.2020 16:09:30

	High Resolution Mass Spectrometry Report										
#	m/z	1%	1								
63	690.1901	4.2	7267								
64	763.3371	4.3	7432								
65	765.3372	4.3	7334								
66	769.3550	21.8	37412								
67	770.3582	10.3	17688								
68	771.3556	21.4	36859								
69	772.3586	9.9	16981								
70	785.9552	4.2	7207								
71	789.5033	37.4	64311								
72	790.5061	18.7	32143								
73	791.5036	41.1	70609								
74	792.5060	18.5	31751								
75	793.5064	5.4	9248								
76	805.4991	6.3	10839								
77	806.5019	3.1	5345								
78	807.4992	6.7	11603								
79	810.3834	3.6	6199								
80	812.3844	3.8	6576								
81	1023.5381	6.1	10574								
82	1024.5412	3.8	6541								
83	1025.5395	6.3	10860								
84	1026.5436	3.8	6528								
85	1279.5806	3.8	6578								
86	1283.7650	4.1	7072								
87	1284.7677	3.3	5674								
88	1285.7654	5.0	8604								
89	1286.7686	3.6	6123								
90	1299.7346	3.5	6063								
91	1433.9135	3.9	6698								
92	1452.0633	6.2	10611								
93	1453.0679	5.5	9397								
94	1454.0664	8.0	13748								
95	1455.0693	6.0	10399								
96	1456.0706	3.2	5578								
97	1472.2177	3.9	6669								
98	1473.2212	3.7	6396								
99	1474.2197	5.5	9448								
100	1475.2217	4.2	7274								

General	Fore Vacuum Scan Begin	2.54e+ 75 m/z	000 mBar	High Vacuum Scan End	9.65e-008 mBar 1700 m/z	Source Type Ion Polarity	ESI Positi∨e
Source	Set Nebulizer0.4 BarSet Dry Heater180 °C			Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV				
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	500.0 Vpp		
Ion Cooler	Set Ion Cooler Transfer	Time	100.0 µs	Set Ion Cooler Pre Puls	se Storage Time	18.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 17.03.2020 16:09:30

¹H, ¹³C{H} (500/126 MHz, CDCl₃) NMR and HR-ESI-MS Spectra of ps-ortho-bis(((4'-acetylthio)phenyl)ethynyl)[2.2]paracyclophane (47):

[ppm]

	High Resolution Mass Spectrometry Report													
Mea	sured i	n/z vs	. the	oretica	ıl m/z									
	Meas. 663.0	m/z # 567 1	Fo Fo	ormula 36 H 28	Ag O 2 S 2	Score 100.00	m/z 663.0576	err [mDa] 0.9	err [ppm] 1.4	mSigma 16.6	rdb 22.5	e Conf even	z 1+	
Mas	s list													D.
	#	5		1 %										
	1	106.9	047	0.9	17040									
	2	108.9	043	1.1	20241									
	3	124.9	157	1.3	23670									
	5	147.9	322	89.2	1652485									
	6	148.93	349	1.7	31592									
	7	149.9	319 344	100.0	1851735									
	9	165.9	426	1.4	25959									
	10	167.9	423	1.4	25401									
	11	178.9	526 201	0.4	8274									
	13	188.9	584	9.5	176613									
	14	189.9	511	0.5	8665									
	15	190.9	580	9.6	177266									
	10	191.0	5∠5 509	0.4	8237									
	18	193.8	822	0.9	17288									
	19	222.9	886	2.8	51322									
	20	224.9	581 090	2.5	46815									
	22	234.9	087	0.6	11808									
	23	260.8	067	0.4	7673									
	24	275.7	973	4.6	84300 153644									
	26	279.7	967	3.8	70663									
	27	288.9	747	0.4	7660									
	28	290.9	/46 333	0.4	7556 12874									
	30	301.8	331	1.3	24724									
	31	303.8	330	0.7	12060									
	32	316.8	237	13.5	128770									
	34	319.8	254	0.4	6696									
	35	320.83	230	5.9	110074									
	36	357.8	500 495	1.6	28910 55777									
	38	361.1	281	0.6	10701									
	39	361.8	489	1.4	25308									
	40 41	362.7	738	0.4	7627									
	42	383.0	762	0.5	9785									
	43	385.0	752	0.5	9589									
	44 45	388.1	746 593	1.4	25444									
	46	390.1	744	1.3	23652									
	47	391.1	592	0.6	11906									
	48 49	399.10	069	0.6	10690									
	50	403.1	737	0.5	10147									
	51	403.8	000	0.4	8096									
	52	405.1	742 019	0.5	9533									
	54	417.1	018	0.7	12344									
	55	424.1	023	0.3	6163									
	56 57	437.1	500 796	0.7	13028 12434									
	58	446.6	886	0.6	10344									
	59	448.6	879	0.6	10346									
	60 61	465.2	106 109	0.8 0.8	14082 13993									
	62	485.7	152	0.8	14898									

Acquisition Date 01.12.2021 14:12:44

	High Resolution Mass Spectrometry Report										
#	m/z	1%	1								
63	487.7151	2.3	41928								
64	489.7148	2.1	39512								
65	491.7146	0.7	12449								
66	497.1791	0.5	9777								
67	499.1793	0.4	7501								
68	517.2938	0.8	14153								
69	519.2940	0.8	13982								
70	528.7416	0.7	12166								
71	530.7413	0.6	11440								
72	531.2577	0.3	6217								
73	663.0567	11.5	213111								
74	664.0596	4.6	85398								
75	665.0567	12.2	226266								
76	666.0589	4.7	87764								
77	667.0566	1.6	29606								
78	668.0573	0.5	8825								
79	688.1871	0.6	10866								
80	769.3499	1.6	30437								
81	770.3532	0.8	14798								
82	771.3505	1.7	30912								
83	772.3524	0.7	13633								
84	789.4970	2.0	36887								
85	790.5004	0.9	17496								
86	791.4971	2.1	38939								
87	792.4999	1.0	18180								
88	831.9506	0.6	10658								
89	833.9504	1.3	23422								
90	834.9529	0.5	9375								
91	835.9507	0.7	13252								
92	1221.2219	0.4	6926								
93	1325.5187	0.5	8959								
94	1326.5205	0.4	7102								
95	1327.5186	0.7	12173								
96	1328.5207	0.5	8589								
97	1431.8147	0.3	6316								
98	1433.8178	0.5	8650								
99	1434.8210	0.3	6276								
100	1453.9650	0.4	7326								

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	9.21e-008 mBar 1700 m/z	Source Type Ion Polarity	ESI Positi∨e
Source	Set Nebulizer Set Dry Heater	0.4 Bai 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100 0 77	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Pul	se Storage Time	10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 01.12.2021 14:12:44

¹H, ¹³C{H} (500/126 MHz, CDCl₃) NMR and HR-ESI-MS Spectra of ps-ortho-bis((4'-tertbutylthio)phenyl)[2.2]paracyclophane (56):

[ppm]

				Hiç	gh	Res	olutio	n Mas	s Spe	ctrom	etry	/ Rep	ort	
Aeasured	m/z v	/s.1	heoret	cal m/z										
Meas 643.	. m/z 1610	# 1	Formula C 36 H	a 40 Ag Si	2	Score 100.00	m/z 643.1617	err [mDa] 0.7	err [ppm] 1.1	mSigma 15.5	rdb 16.5	e Conf even	z 1+	
Aass list				1000										 14
#		m	7	%	н									
1	106	.904	6 1	.1 53	313									
2	108	.904	3 1	1 54	153									
3	124	.915	6 1	1 53	350									
4	144	.910	3 1	3 65	576									
6	147	.931	6 93	1 4583	322									
7	148	.934	4 1	7 83	378									
8	149	.931	3 100	0 4925	539									
10	165	.942	1 1	6 76	662									
11	167	.941	7 1	5 75	592									
12	188	.957	7 7	2 352	298									
13	190	.957	4 7	3 357	753									
14	203	930	4 I 7 1	1 53	301									
16	205	.060	3 1	1 55	574									
17	209	.021	6 2	.4 118	348									
18	226	.951	4 4	3 213	308									
20	243	941	53 72	6 127	762									
21	277	.009	0 0	9 43	364									
22	277	.921	2 2	1 104	135									
23	328	.918	3 0	9 45	551									
24	345	.908	1 1	7 82	264									
26	362	.925	8 1	3 6	73									
27	399	.307	1 0	9 45	530									
28	413	.896	4 1	0 50)66									
29	423	.627	0 1	0 47	88									
31	420	.630	4 2	0 240	380									
32	430	.886	4 1	3 63	869									
33	430	.912	6 1	2 58	358									
34	443	.333	4 1	1 50	52									
36	487	.359	4 1	1 54	138									
37	498	.873	5 1	2 56	689									
38	515	.864	1 1	0 47	709									
39	517	.294	5 4	1 199	152									
40	519	.294	- 1	2 204	62									
42	520	.297	9 1	3 66	536									
43	531	.385	8 0	9 45	591									
44	643	161	U 36	4 709	34									
46	645	.160	9 39	3 1935	580									
47	646	.163	4 15	4 759	918									
48	647	.161	3 4	8 234	81									
49	648	.160	v 1 3 c	5 72	218									
50	786	.034	6 2	∠ 300 7 133	350									
52	787	.034	1 14	1 695	597									
53	788	.036	8 5	7 280	075									
54	789	.033	5 11 0 1	2 204	29									
56	790	.032	3 3	2 159	41									
57	792	.033	9 1	2 57	51									
58	795	.062	5 2	8 137	17									
59	796	.065	6 1 2 5	0 50)74									
6U 61	79/	066	∠ 5 ? ?	4 264 2 105	103									
62	799	.062	9 3	0 146	543									

Acquisition Date 09.12.2021 12:52:47

	High Resolution Mass Spectrometry Report										
#	m/z	1%	1	<u>·</u>							
63	800.0647	1.2	5742								
64	812.0533	1.4	6756								
65	814.0540	2.3	11324								
66	815.0565	1.0	4834								
67	816.0530	1.4	6766								
68	849.2701	1.3	6218								
69	851.2592	2.0	9631								
70	852.2684	1.1	5360								
71	1179.4191	3.8	18733								
72	1180.4225	3.3	16352								
73	1181.4196	5.3	26102								
74	1182.4214	3.8	18769								
75	1183.4227	2.0	10050								
76	1184.4210	1.0	4784								
77	1321.2945	5.1	25121								
78	1322.2971	4.0	19645								
79	1323.2946	12.8	63282								
80	1324.2971	10.1	49739								
81	1325.2948	13.0	64188								
82	1326.2960	8.6	42578								
83	1327.2950	5.6	27767								
84	1328.2945	3.1	15219								
85	1329.2943	1.4	6735								
86	1331.3230	2.3	11463								
87	1332.3249	2.0	9960								
88	1333.3234	4.7	23338								
89	1334.3255	3.7	18333								
90	1335.3236	4.0	19612								
91	1336.3259	2.5	12544								
92	1337.3261	1.4	6804								
93	1348.3142	4.2	20904								
94	1349.3164	3.6	17785								
95	1350.3136	9.3	46020								
96	1351.3169	7.3	35769								
97	1352.3147	7.5	36874								
98	1353.3158	5.4	26385								
99	1354.3149	2.5	12436								
100	1355.3146	1.1	5430								

General	Fore Vacuum Scan Begin	3.36e+ 75 m/z	000 mBar	High Vacuum Scan End	9.61e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
lon Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 10	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 09.12.2021 12:52:47

¹H, ¹³C{H} (500/126 MHz, CDCl₃) NMR and HR-ESI-MS Spectra of ps- ortho-bis((4'-tertacetylthio)phenyl)[2.2]paracyclophane (48):

High Resolution Mass Spectrometry Report

High Resolution Mass Spectrometry Report

Measured	m/z vs.	theoretical	m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
531.1422	1	C 32 H 28 Na O 2 S 2	100.00	531.1423	0.1	0.2	39.5	18.5	even	1+
1039.2943	1	C 64 H 56 Na O 4 S 4	100.00	1039.2954	1.0	1.0	31.4	36.5	even	

Mass	list

#	m/z	1%	1
1	144.9820	0.5	6344
2	146.9799	0.3	3861
3	185.1146	0.3	3842
4	203.9304	0.7	8994
5	205.0595	1.5	20136
6	205.9273	0.4	5758
7	209.0213	1.0	13004
8	217.1045	0.7	9525
9	226.9511	1.1	14791
10	261.1303	0.5	6595
11	277.0085	0.3	4460
12	288.2888	0.8	10080
13	316.3202	0.3	3937
14	341.2650	0.3	4579
15	350.2658	0.4	5632
16	355.2811	0.3	3796
17	362.9256	0.4	5092
18	385.2914	0.3	4530
19	399.3070	0.4	5676
20	429.3179	0.4	4928
21	430.9126	0.4	4692
22	443.3329	0.5	7248
23	453.7844	0.4	4808
24	457.3483	0.3	4269
25	467.1482	0.5	6098
26	469.3123	0.3	4513
27	473.3433	0.3	4368
28	487.3592	0.5	6994
29	494.8106	0.4	5880
30	509.1585	0.9	11532
31	510.1623	0.3	4338
32	513.3383	0.4	5546
33	517.3700	0.3	4152
34	526.1858	6.2	82588
35	527.1885	2.2	29481
36	528.1860	8.0	103/4
37	531.1422	100.0	1338616
38	531.3866	0.5	/142
39	532.1450	30.4	407289
40	533.1419	9.2	123709
41	535 1410	2.0	36919
42	535.1416	0.6	72565
43	547.1151	2.4	72303
44	540.1100	2.0	14266
45	550 1158	0.3	4670
40	557 3644	0.0	5424
48	575 4114	0.3	4097
49	589 0993	0.9	11524
50	590 1026	0.3	4304
51	591.0971	0.4	5472
52	599,1282	5.1	68644
53	600.1312	1.8	24747
54	601.1282	0.7	9089
55	601.3899	0.4	5450
56	611.1872	0.4	5959
57	616.1188	0.4	5948
58	645.4172	0.3	4550
59	667.1151	0.3	4138
60	717.1725	0.4	4809
61	725.0734	0.7	8797

Bruker Compass DataAnalysis 4.0

Acquisition Date 03.01.2022 15:26:37

	High Resolution Mass Spectrometry Report						
#	m/z	1%	1				
62	727.0706	0.3	4368				
63	735.1021	1.6	21099				
64	736.1066	0.6	8306				
65	793.0612	0.3	3956				
66	803.0903	0.6	8410				
67	804.0942	0.3	3834				
68	861.0485	0.3	3782				
69	871.0772	0.4	5200				
70	1034.3366	0.6	7422				
71	1035.3399	0.4	5382				
72	1039.2943	34.5	461849				
73	1040.2974	24.6	328665				
74	1041.2962	13.4	178880				
75	1042.2958	5.7	76090				
76	1043.2948	2.1	27464				
77	1044.2951	0.7	8973				
78	1055.2668	2.6	35225				
79	1056.2696	1.9	25534				
80	1057.2682	1.2	16256				
81	1058.2690	0.6	8612				
82	1097.2505	0.6	7525				
83	1098.2537	0.4	5688				
84	1099.2518	0.4	4827				
85	1107.2809	3.4	45662				
86	1108.2839	2.4	31977				
87	1109.2835	1.4	18887				
88	1110.2823	0.6	8460				
89	1124.2693	0.4	5362				
90	1125.2713	0.3	3962				
91	1165.2390	0.4	5374				
92	1166.2410	0.3	4434				
93	1167.2383	0.3	4098				
94	1175.2685	0.7	9564				
95	1176.2711	0.5	7300				
96	1177.2692	0.3	4258				
97	1233.2274	0.3	4178				
98	1243.2559	0.3	4214				
99	1244.2606	0.3	3905				
100	1311.2435	0.3	3857				

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	9.92e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer2.0 BaSet Dry Heater200 °C		5	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ıly)	4.0 eV			100.017	
Coll. Cell	ell Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 1	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 03.01.2022 15:26:37

 $< \frac{129.42}{128.79}$

-

		1		
ynt feiriachail gan an gan har Bailliar fear sa na air an an an Airth Gan air an Airth Gan ach a air an Ann Ann An Ann	, 1999, Fylinia († 1994) († 1994) 1999, Fylinia († 1994) († 1994)	ŴŢŦŢŎŶĊĸŎĸĸĸĸĊŎĊĸĹŶŢŶŎŖĸĊŎĬĬŎĊĸŎŔĸĊŎĸĿĸŎŎĸĿĬŔĸĸŔŶŎĬĬŎĸŎĬĊĸĿĸĿĊĬĊĬĬŎĸŎĸĿĊŎŎŎĬŎŎĬĬĿĸĬŢĬĬĔĬ	n ™ Mallan Manazinan ((12) 400 angka ya ku bahan saki jaraha Manya (17 mil Manya ya ku bahan ku bahan ku bah	가 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 가격 것 같은 가격 것 같은 것 같이 있는 것 같이 있다. 것 같은 것 같

[ppm]

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of 4,15-dibromo-7,12diformyl[2.2]paracyclophane (82):

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	z
442.9250	1	C 18 H 14 Br 2 Na O 2	100.00	442.9253	0.3	0.7	22.2	10.5	even	1+
474.9514	1	C 19 H 18 Br 2 Na O 3	100.00	474.9515	0.1	0.2	15.5	9.5	even	
862.8607	1	C 36 H 28 Br 4 Na O 4	100.00	862.8613	0.6	0.7	13.3	20.5	even	
894.8878	1	C 37 H 32 Br 4 Na O 5	100.00	894.8875	-0.3	-0.3	14.5	19.5	even	
926.9137	1	C 38 H 36 Br 4 Na O 6	100.00	926.9138	0.1	0.1	8.2	18.5	even	

Mass list

#	m/z	۱%	1
1	173.0783	4.4	16022
2	185.1145	5.9	21492
3	201.1096	9.8	35577
4	205.0599	24.6	89302
5	217.0467	4.1	14740
6	217.1043	5.8	21217
7	226.9514	25.6	92824
8	229.0503	13.8	49888
9	239.0886	4.6	16780
10	243.9414	6.8	24778
11	245.0781	8.6	31338
12	261.1305	8.2	29566
13	299.1613	6.2	22405
14	301.1406	16.1	58562
15	304.2607	8.3	30218
16	313.2345	5.0	18216
1/	317.1716	3.6	13087
18	317.2444	4.2	15248
19	319.2601	4.0	1/333
20	341.2656	10.7	18282
21	303.2007	12.7	40942
22	302.9200	0.4	51292
23	303 2067	14.1	1/922
24	411 0030	4.1	13579
25	413 2260	7.5	27093
27	413 2655	16.6	60275
28	414 2690	43	15764
29	430 9134	8.1	29417
30	441 2966	7.5	27371
31	442,9250	25.6	92904
32	443.9279	5.1	18491
33	444.9233	55.1	200028
34	445.9262	9.7	35049
35	446.9211	25.9	93784
36	447.9043	3.8	13893
37	447.9232	5.3	19143
38	455.3123	4.6	16796
39	469.3285	67.9	246423
40	470.3316	20.6	74869
41	471.3343	3.7	13425
42	474.9514	48.4	175562
43	475.9543	10.0	36092
44	476.9497	100.0	362702
45	477.9524	18.9	68587
40	4/8.94/5	47.6	172694
4/	4/9.9003	9.3	20207
40	403.3434	0.1	29397
50	508 9749	3.9	1/223
51	541 1200	51	18609
52	553 4581	8.9	32191
53	554,4612	3.6	13076
54	566.8881	5.5	20030
55	615,1386	6.0	21593
56	634.8755	4.9	17756
57	685.4342	5.6	20415
58	689.1576	8.7	31641

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 13:12:56

			High	Resolution Mass Spectrometry Report
#	m/z	1%	1	
59	690,1583	5.6	20396	
60	691.1562	4.8	17243	
61	702.8633	5.2	19019	
62	705.5816	6.5	23727	
63	763.1767	7.1	25679	
64	764.1784	5.1	18612	
65	765.1752	4.1	14866	
66	770.8508	4.3	15674	
67	837.1951	5.3	19095	
68	838.1962	4.1	14896	
69	838.8379	3.8	13927	
70	839.1938	3.8	13683	
71	862.8607	4.7	17003	
72	864.8597	17.5	63457	
73	865.8626	7.2	26070	
74	866.8582	27.1	98115	
75	867.8605	10.6	38621	
76	868.8561	18.1	65615	
77	869.8584	6.8	24734	
78	870.8554	5.3	19215	
79	894.8878	6.1	22205	
80	896.8861	22.2	80344	
81	897.8886	9.3	33695	
82	898.8845	35.6	129151	
83	899.8871	13.4	48483	
84	900.8827	24.2	87717	
85	901.8848	9.0	32680	
86	902.8813	6.8	24535	
87	911.2143	4.2	15284	
88	912.2153	3.7	13524	
89	913.2127	3.7	13312	
90	915.6678	5.0	18305	
91	926.9137	7.7	28026	
92	928.9125	31.2	113163	
93	929.9156	12.5	45237	
94	930.9111	46.4	168391	
95	931.9136	18.7	67689	
96	932.9094	33.2	120591	
97	933.9116	12.7	45937	
98	934.9084	9.1	33167	
99	935.9104	3.6	13220	
100	985.2338	3.5	12752	

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	9.61e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer2.0 BaSet Dry Heater200 °C			Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	у)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 10).0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 13:12:56

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of 4,12-dibromo-7,15diformyl[2.2]paracyclophane (86):

High Resolution Mass Spectrometry Report

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
442.9247	1	C 18 H 14 Br 2 Na O 2	100.00	442.9253	0.6	1.3	12.9	10.5	even	1+
474.9508	1	C 19 H 18 Br 2 Na O 3	100.00	474.9515	0.7	1.5	10.7	9.5	even	
862.8596	1	C 36 H 28 Br 4 Na O 4	100.00	862.8613	1.7	2.0	15.9	20.5	even	
926.9119	1	C 38 H 36 Br 4 Na O 6	100.00	926.9138	1.8	2.0	21.1	18.5	even	

Mass list

#	m/z	1%	I_
1	173.0783	6.5	16559
2	185.1146	4.9	12347
3	195.0989	6.5	16382
4	201.1095	16.3	41409
5	205.0599	25.2	63909
6	209.1144	4.6	11719
7	217.0468	7.8	19693
8	217.1043	9.4	23796
9	226.9514	36.2	91707
10	229.0501	8.3	21062
11	239.0887	5.0	12708
12	241.0679	6.5	16520
13	241.1405	4.7	11833
14	243.9414	15.5	39186
15	245.0780	8.2	20753
16	249.1818	5.5	13884
17	261,1305	16.4	41622
18	299.1613	8.3	21139
19	301,1406	27.5	69616
20	302.1438	4.9	12327
21	304,2603	4.4	11238
22	313,2343	4.3	11006
23	315.2288	4.1	10426
24	317.1718	6.4	16197
25	317.2445	10.9	27619
26	319,2602	12.2	30789
27	331,1871	4.9	12295
28	335.2548	4.8	12183
29	341.2658	4.9	12410
30	348.9894	5.7	14444
31	350.9865	5.8	14719
32	353.2657	22.6	57281
33	354.2688	4.9	12343
34	360.3229	10.1	25597
35	362.3384	11.4	28824
36	362.9262	10.4	26418
37	381.2970	35.2	89218
38	382.3003	7.8	19878
39	393.2968	4.6	11769
40	413.2654	20.3	51326
41	414.2690	5.4	13559
42	430.9135	10.7	27150
43	441.2965	10.0	25372
44	442.9247	23.2	58725
45	443.9274	4.6	11590
46	444.9230	44.1	111815
47	445.9258	7.8	19732
48	446.9209	21.2	53717
49	447.9041	4.8	12075
50	447.9222	4.5	11524
51	455.3121	6.5	16471
52	464.8935	4.2	10545
53	469.3285	100.0	253400
54	470.3314	28.6	72393
55	471.3340	5.2	13060
56	474.9508	26.6	67525
57	475.9540	5.7	14554
58	476.9492	51.4	130359
59	477.9521	11.5	29233

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 13:16:04

			High	Resolution Mass Spectrometry Report
#	m/z	1%		i <u> </u>
60	478.9471	25.5	64595	
61	479.9500	5.5	13940	
62	483.3436	10.1	25635	
63	498,9007	5.6	14073	
64	498.9868	13.2	33505	
65	500.9854	25.5	64495	
66	501.9883	5.9	15054	
67	502.9835	13.0	33053	
68	541.1195	7.1	17873	
69	553,4581	18.1	45772	
70	554.4613	7.2	18213	
71	566.8881	7.2	18223	
72	634.8754	7.2	18145	
73	685.4338	7.4	18829	
74	690.9204	5.1	12920	
75	702.8630	8.5	21457	
76	705.5808	10.5	26658	
77	706.5841	4.9	12427	
78	721.5755	4.3	10785	
79	770.8504	7.0	17811	
80	838.8374	5.6	14231	
81	864.8583	13.2	33411	
82	865.8609	5.4	13619	
83	866.8565	20.6	52183	
84	867.8591	7.8	19657	
85	868.8541	14.4	36555	
86	869.8573	5.8	14802	
87	870.8531	4.5	11403	
88	896.8843	13.1	33204	
89	897.8874	5.5	13910	
90	898.8828	21.7	55074	
91	899.8855	8.2	20685	
92	900.8814	14.6	36924	
93	901.8836	5.6	14287	
94	902.8801	4.4	11187	
95	928.9108	12.6	32014	
96	929.9139	5.1	12851	
97	930.9090	18.0	45655	
98	931.9116	7.7	19467	
99	932.9071	12.4	31445	
100	933.9101	5.4	13775	

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	9.61e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer2.0 BaSet Dry Heater200 °C			Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole Set Ion Energy (MS only) 4.0 eV						100.011	
Coll. Cell	cell Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 1	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 13:16:04

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of 3',4'-dihexyl-2,2':5',2"terthiophene (90):

High Resolution Mass Spectrometry Report

	High Resolution Mass Spectrometry Report												
				•									
Meas	ured	m/z	vs.t	heoretic	al m/z	-	600 100 a 100	201 200 C					
	Meas 417.	. m/z 1731	#	Formula C 24 H 33	3 S 3	Score 100.00	m/z 417.1739	err [mDa] 0.8	err [ppm] 1.8	mSigma 29.3	rdb 8.5	e Conf even	z 1+
Mass	lict						1200.0000000000000000000000000000000000						3007 22
Wass	115L ,/												
	#	131	9616	1%	2033	-							
	2	144	.9818	16.5	4432								
	3	146	.9802	8.5	2292								
	4	14/	.9309	9.6	2592								
	6	158	.9639	13.8	3700	li -							
	7	185	.1143	12.0	3229	(
	9	205	.0599	5.8	1561								
	10	209	.0214	13.8	3706	8							
	11	216	.9224	10.4	2808	i.							
	12	217	.1043	93.4	25133								
	14	243	.9413	8.3	2235								
	15	265	.9620	13.4	3592								
	16	270	0087	0 7.8 80	2104								
	18	294	.9385	8.7	2336								
	19	301	.1402	10.9	2935								
	20	302	2661	8.5	2288	i i							
	22	355	.2814	7.3	1974								
	23	358	.9798	9.9	2651								
	24	360	.9771	7.1	1916								
	26	385	.2916	7.3	1974	1							
	27	399	.3074	9.1	2441								
	28	411	.0933	9.1	2450	(
	30	415	.0421	11.9	3200								
	31	416	.1655	75.2	20224								
	32	41/	.0402	8.3	2242								
	34	418	.1750	24.2	6509	6 6							
	35	419	.1702	14.8	3980	6							
	36	420	2865	5.7	1525								
	38	429	.3176	7.9	2130	6							
	39	430	.9139	29.2	7860	r							
	40 41	441	.2969	6.8 12.0	1836	0 6							
	42	447	.9040	7.2	1949								
	43	457	.3498	6.0	1624	1							
	44 45	459	.0173	5.9	1633								
	46	467	.1017	11.1	2987								
	47	469	.3138	9.7	2615								
	48 49	471	.1450	20.5	5517								
	50	473	.3443	6.6	1789	Ē.							
	51	485	.1119	17.8	4786								
	52 53	486	.1123	8.9 63	2397	6							
	54	487	.3598	10.2	2743								
	55	498	.9010	18.4	4948	5							
	56 57	506	.9449	6.8	1824								
	58	515	.8913	5.6	1503	8							
	59	517	.2957	8.8	2369	(
	60 61	517	.3712	6.0	1609	C.							
	62	531	.3863	7.9	2136								

Acquisition Date 06.01.2022 14:11:39

			High	Resolution Mass Spectrometry Report
#	m/z	۱%	L	
63	536.1654	14.3	3838	
64	537.1654	7.7	2081	
65	538.1631	5.6	1498	
66	541.1205	82.2	22104	
67	542.1210	40.2	10817	
68	543.1186	28.9	7779	
69	544.1193	11.8	3172	
70	557.0944	6.1	1630	
71	557.3653	10.8	2900	
72	559.1312	24.7	6640	
73	560.1322	11.2	3009	
74	561.1288	10.3	2760	
75	566.8887	20.8	5585	
76	575.4138	5.9	1585	
77	601.3917	8.3	2224	
78	610.1837	18.7	5029	
79	611.1847	13.1	3529	
80	612.1819	7.6	2040	
81	615.1400	6.2	1669	
82	633.1504	22.1	5942	
83	634.1508	13.0	3500	
84	634.8762	13.8	3709	
85	635.1475	9.9	2672	
86	645.4182	7.2	1941	
87	685.4335	6.2	1680	
88	702.8637	13.0	3490	
89	707.1693	15.3	4124	
90	708.1692	11.9	3205	
91	709.1670	8.6	2308	
92	770.8517	10.1	2709	
93	781.1880	12.7	3425	
94	782.1899	7.9	2126	
95	783.1872	6.5	1740	
96	838.8388	9.6	2578	
97	855.2064	7.6	2038	
98	856.2064	5.7	1537	
99	857.2064	6.3	1692	
100	906 8271	5.6	1499	

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	9.88e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer2.0 BaSet Dry Heater200 °C			Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole Set Ion Energy (MS only) 4.0 eV							
Coll. Cell	I. Cell Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	se Storage Time	10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 06.01.2022 14:11:39

¹H, ¹³C{H} (400/101 MHz, CDCI₃) NMR and HR-ESI-MS Spectra of 5-bromo-3',4'-dihexyl-2,2':5',2''-terthiophene (91):

	High Resolution Mass Spectrometry Report														
Meas	sured r	n/z vs	. th	eoretica	l m/z										
meuc	Meas.	m/z #	ŧ F	ormula	BrS3	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb 9 0	e [—] Conf	Z 1+		
Maga	Higt	151 1		241131		100.00	434.0700	0.5	1.0	20.0	5.0	ouu	1.5	 	
wass	inst "														
	 	173.0	m/z 780	80	30015										
	2	201.1	091	7.5	28017										
	3	205.0	596	15.7	58959										
	4	217.0	827	16.4	61671										
	5	226.9	510	89	44270 33381										
	7	239.0	883	11.1	41637										
	8	241.0	676	6.4	24122										
	9	245.0	780	70.1	263232										
	10	246.0	301	0.9	54803										
	12	263.0	553	11.3	42476										
	13	299.1	609	6.6	24869										
	14	301.1	403	17.3	86066										
	16	317.1	713	6.3	23599										
	17	337.0	741	20.5	76872										
	18	353.2	656	27.8	104534										
	19 20	354.2	688 971	56 1	22992										
	21	382.3	001	12.9	48336										
	22	411.0	932	23.2	87309										
	23	412.0	936	8.3	31230										
	24	415.2	120	22.3	83711										
	26	486.1	125	9.5	35648										
	27	487.1	099	6.5	24470										
	28	541.1	198	12.0	45180										
	30	560.1	313	9.9	37195										
	31	561.13	290	7.1	26644										
	32	615.13	393	55.0	206578										
	34	617.13	374	22.2	83319										
	35	618.13	368	8.9	33248										
	36	633.1	497	17.0	63739										
	38	635.1	204 476	10.0	27836										
	39	689.1	584	100.0	375627										
	40	690.1	590	57.2	214980										
	41	690.9	208	6.7	25343										
	43	692.1	562	19.4	72759										
	44	693.1	540	9.1	34066										
	45 46	707.1	686	14.2	53213										
	40 47	700.1	666	0.5 7 0	26267										
	48	763.1	773	85.5	321096										
	49	764.1	778	60.0	225454										
	50	766.1	15/	48.4 21.9	82176										
	52	767.1	733	10.8	40392										
	53	781.1	872	10.9	40967										
	54 55	782.1	878	7.8	29175										
	56	837 1	958	64 1	23000										
	57	838.1	966	49.8	187204										
	58	839.1	944	42.1	158314										
	59	840.1	935	21.7	81620 42507										
	61	855.2	061	8.6	32404										
	62	856.2	067	6.1	22873										

Acquisition Date 23.02.2022 15:40:35

	High Resolution Mass Spectrometry Report										
#	m/z	۱%	1								
63	911.2147	49.3	185293								
64	912.2152	43.9	165037								
65	913.2133	39.3	147521								
66	914.2125	21.7	81450								
67	915.2105	11.7	43811								
68	929.2256	6.1	22983								
69	985.2332	40.1	150709								
70	986.2339	37.9	142359								
71	987.2320	34.5	129511								
72	988.2315	21.1	79422								
73	989.2295	11.9	44650								
74	990.2287	5.7	21522								
75	1059.2519	32.3	121146								
76	1060.2526	31.8	119532								
77	1061.2508	31.5	118473								
78	1062.2501	20.4	76746								
79	1063.2480	12.3	46342								
80	1064.2470	5.9	22167								
81	1133.2706	24.3	91220								
82	1134.2717	24.9	93440								
83	1135.2698	24.9	93632								
84	1136.2694	17.5	65560								
85	1137.2680	10.5	39559								
86	1182.1650	5.8	21793								
87	1183.1633	6.5	24549								
88	1207.2893	16.3	61336								
89	1208.2899	18.8	70788								
90	1209.2888	18.8	70726								
91	1210.2881	14.2	53178								
92	1211.2862	8.9	33337								
93	1281.3080	10.1	38000								
94	1282.3087	12.2	45908								
95	1283.3074	13.6	51134								
96	1284.3069	9.9	37339								
97	1285.3053	6.7	25178								
98	1356.3270	7.8	29156								
99	1357.3261	8.9	33482								
100	1358.3251	6.9	25901								

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	9.88e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 1	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 15:40:35

High Resolution Mass Spectrometry Report

					High Resolution Mass Spectrometry Report											
Moa	surad	m/7 \	(c †	heoretics	al m/z											
ivica:	Meas.	m/z	ש. נ #	Formula	111172	Score	m/z	err (mDal	err (ppm)	mSigma	rdb	e ⁻ Conf	z			
	596.2	984	1	C 35 H 52	S 3 Si	100.00	596.2995	1.1	1.9	26.9	11.0	odd	1+			
Mass	s list															
	#		m/	z 1%												
	1	136	112	2 1.7	7870											
	2	147	931	4 99.4	457899											
	3	148	934	2 1.9	460668											
	5	150	934	0 2.0	9134											
	6	167.	941	6 1.6	7287											
	7	171.	099	3 1.8	8396											
	8 9	1/3	114	6 2.5 7 3.6	11583											
	10	188.	957	8 10.3	47499											
	11	190	957	4 10.4	48050											
	12	192	944	5 2.1	9460											
	13	205	1090	4 Z.1 7 19	9004											
	15	213	146	0 2.5	11738											
	16	215	125	2 1.8	8350											
	17	217.	104	6 10.4	47695											
	19	220.	125	3 3.Z 2 1.7	7990											
	20	229	141	0 14.7	67774											
	21	230	144	5 1.5	7033											
	22	239	089	0 1.8	8220											
	23	243	941 078	b 7.2 2 63	28988											
	25	260	931	9 3.7	16840											
	26	261	130	8 14.1	65099											
	27	262	133	9 1.6	7240											
	28	265	104	7 1.6 3 1.7	7252											
	30	271	187	7 2.1	9512											
	31	273	167	3 2.7	12289											
	32	277.	922	0 2.7	12332											
	33	291.	804	4 2.4 2 1.7	7976											
	35	301	140	7 3.8	17683											
	36	305	156	9 9.5	43630											
	37	328	919	4 1.8	8508											
	38	337.	909	b 3.b 2 2.8	16510											
	40	349	182	9 3.7	16875											
	41	361	234	8 1.7	8050											
	42	362	899	4 2.2	10099											
	43 44	405.	093	6 4.7 5 60	27451											
	45	412	094	4 2.0	9272											
	46	413.	897	0 1.8	8347											
	47	429	318	3 2.0	9335											
	40 49	430	333	o 1.0 8 1.6	0240 7156											
	50	449	286	6 4.2	19254											
	51	473.	344	2 2.0	9186											
	52	481.	884	4 1.7	7941											
	54	485	113	0 37	16842											
	55	487	110	3 2.4	11115											
	56	493	312	7 2.6	11911											
	57	498	874	1 1.7	7884											
	59	517	293	1 4.8 5 1.7	∠1960 7614											
	60	519	295	1 4.7	21553											
	61	541	119	9 2.0	9338											
	62	559	131	1 10.2	47213											

Acquisition Date 23.02.2022 16:18:42

	High Resolution Mass Spectrometry Report									
#	m/z	1%	1	<u> </u>						
63	560.1316	5.0	23050							
64	561.1290	3.6	16377							
65	573.1463	1.7	7747							
66	596.2984	3.3	15280							
67	597.3020	1.5	7129							
68	610.1835	3.9	18182							
69	611.1843	2.4	11197							
70	612.1815	1.9	8787							
71	633.1499	8.5	38956							
72	634.1503	4.7	21515							
73	635.1478	3.8	17499							
74	636.1481	1.5	6996							
75	685.4344	3.6	16552							
76	686,4387	1.7	7721							
77	707.1684	6.6	30204							
78	708.1691	4.4	20356							
79	709.1671	3.4	15489							
80	781.1875	4.8	22171							
81	782.1880	3.4	15893							
82	783.1857	2.7	12492							
83	855.2064	3.3	15386							
84	856.2067	2.7	12395							
85	857.2047	2.4	11247							
86	929.2249	2.6	11942							
87	930.2256	2.2	10071							
88	931.2242	2.0	9156							
89	1003.2446	2.1	9646							
90	1004.2437	1.9	8736							
91	1005.2420	1.8	8257							
92	1077.2616	1.6	7307							
93	1078.2631	1.5	7017							
94	1299.5046	9.0	41558							
95	1300.5076	8.3	38010							
96	1301.5051	15.5	71271							
97	1302.5066	11.0	50738							
98	1303.5053	7.5	34471							
99	1304.5058	4.1	19014							
100	1305.5031	2.1	9729							

General	Fore Vacuum Scan Begin	3.36e+ 75 m/z	000 mBar	High Vacuum Scan End	9.92e-008 mBar 2000 m/z	Source Ion Pol	Type arity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Ba 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry	Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS or	ly)	4.0 eV					
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	10	00.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Pul	se Storage Time	10.0 µs		

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 16:18:42

MALDI-ToF-MS

Zoom in of MALDI-ToF-MS (deborylated, see compound 92)

¹H, ¹³C{H} (400/101 MHz, CDCl₃) NMR and HR-ESI-MS Spectra of 5,5"-dibromo-3',4'dihexyl-2,2':5',2"-terthiophene (100):

-	High Resolution Mass Spectrometry Report												
Measi	ıred	m/z vs	theoretic	al m/z									
1	Veas	.m/z #	Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z	
1	571.	9860 1	C 24 H 3	0 Br 2 S 3	100.00	571.9871	1.1	1.9	42.7	9.0	odd	1+	-
Mass	list												
-	#	m/	z 1%	I									
	1	173.078	4 4.6 7 1.7	28687									
	3	189.073	2 3.4	20797									
	4	195.098	8 2.2	13447									
	6	201.109	0 10.6	65709									
	7	209.114	4 1.4	8470									
	8 9	212.971	9 2.3 2 2.1	14520									
	10	217.046	8 3.0	18511									
	11	217.104	5 5.7	35109									
	12	225.109	3 1.6 4 4.6	9611 28213									
	14	239.088	8 2.6	16109									
	15	241.067	9 2.6	16007									
	17	241.140	6 1.4 2 3.1	19215									
	18	249.182	2 1.8	11132									
	19 20	256.961	9 4.1 5 3.1	25516									
	21	263.055	9 2.1	13197									
	22	273.167	0 2.1	13215									
	23	276.229	3 3.5 0 1.4	21455 8920									
	25	283.151	4 1.5	9036									
	26	297.239	7 1.5	9562									
	28	301.140	4 5.1 7 13.1	81180									
	29	302.143	9 2.4	14557									
	30	302.245	1 3.6 8 22.5	21976									
	32	305.263	9 4.6	28652									
	33	309.202	9 1.5	9546									
	34 35	311.255	3 1./ 3 2.8	10370									
	36	317.171	8 4.5	27966									
	37	317.244	6 2.6	15802									
	39	325.234	2 2.7 3 4.7	28869									
	40	333.168	2 1.7	10247									
	41	333.239	4 1.5 0 1.5	9279 9522									
	43	337.074	7 3.9	23879									
	44	341.265	5 2.1	12953									
	45	340.969	8 2.0	12055									
	47	353.266	2 45.3	280065									
	48 49	354.269	2 9.1 4 1.4	56473 8578									
	50	360.323	0 3.3	20496									
	51	362.240	8 2.3	14182									
	52 53	362.338	8 1.8 1 1.6	11219 9633									
	54	367.281	4 2.6	16150									
	55	381.297	7 100.0	618154									
	ою 57	383.303	7 19.9 2 2.9	123318									
	58	391.208	7 2.0	12589									
	59 60	393.297	0 1.6	9748									
	61	411.093	4 4.6	28544									
	62	412.093	9 1.7	10488									

Acquisition Date 23.02.2022 15:43:45

	High Resolution Mass Spectrometry Report										
#	m/z	1%		<u>·</u>							
63	413.2657	8.4	52148								
64	414.2688	2.1	12945								
65	430.9136	1.5	9517								
66	441.2964	2.0	12312								
67	443.3335	1.4	8401								
68	475.3246	2.2	13305								
69	485.1118	4.2	25846								
70	486.1127	2.1	12870								
71	511.2717	1.5	9262								
72	541.1204	2.4	15095								
73	553.4583	4.9	30530								
74	554.4617	1.9	11646								
75	555.2983	1.4	8418								
76	559.1306	4.0	24606								
77	560.1311	1.8	11110								
78	561.1289	1.5	9249								
79	573.9845	2.3	14290								
80	575.9822	1.4	8808								
81	633.1498	3.1	19132								
82	634.1504	1.8	11091								
83	634.5368	1.6	9607								
84	635.1480	1.4	8579								
85	662.5688	2.5	15237								
86	683.5421	1.4	8666								
87	685.4348	2.9	18054								
88	688.9250	1.6	9706								
89	690.9211	4.2	26024								
90	707.1686	2.4	14550								
91	708.1693	1.6	9909								
92	711.5737	3.8	23260								
93	712.5774	1.8	11049								
94	739.6049	4.6	28389								
95	740.6083	2.0	12432								
96	781.1871	1.8	11410								
97	782.1886	1.4	8519								
98	855.2060	1.5	9516								
99	862.9436	2.1	13154								
100	916.9517	2.2	13765								

General	Fore Vacuum Scan Begin	3.45e+ 75 m/z	000 mBar	High Vacuum Scan End	9.88e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	se Storage Time	10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 23.02.2022 15:43:45

	High Resolution Mass Spectrometry Report														
Meas	sured	m/z	VS.	the	oretica	ıl m/z							-		
	Meas. 675.2	m/z	#	Fo	ormula 35 H 52	Br S 3 Si	Score 100.00	m/z 675 2178	err [mDa] -0 7	err [ppm] -1 1	mSigma 202.6	rdb 10.5	e Conf even	z 1+	
Maa		100		0	001102	5,000	100.00	010.2110	0.1		202.0	10.0	oven	107 10	
Was	s list														
	#	15	n 8 96	n/z 32	10.3	19574									
	2	18	3.09	82	8.8	16643									
	3	18	5.11	41	5.6	10686									
	4	20	1.10	89	38.9	73642									
	5	20	2.97	12	4.2	7913									
	7	21	7.10	37	6.9	13089									
	8	22	5.10	90	11.7	22119									
	9	22	6.95	10	100.0	189425									
	10	24	9.10	942 90	12.2	23187									
	12	25	4.15	09	20.3	38437									
	13	25	5.15	49	4.2	7987									
	14	25	6.96	514 26	7.8	14699									
	16	26	1.13	04	5.1	9603									
	17	26	7.15	63	6.2	11772									
	18	29	4.93	88	8.5	16107									
	19 20	30	9.13	10	11.0	20865									
	21	30	9.20	34	5.3	10001									
	22	31	0.23	51	4.0	7642									
	23	31	1.25	52	4.1	7855									
	24	31	5.18	91	3.7	6948									
	26	31	7.24	48	7.2	13679									
	27	31	8.04	63	12.0	22799									
	28	31	9.26	42	10.6	20102									
	30	33	3.16	82	4.0	7558									
	31	33	5.25	57	3.6	6744									
	32	35	3.15	0/1	5.3	10013									
	34	36	2.92	268	48.4	91602									
	35	38	1.29	78	3.6	6893									
	36	39	3.29	79	4.0	7546									
	38	39 41	9.30 3.26	68 168	3.7 9.2	17395									
	39	43	0.91	52	57.4	108741									
	40	43	1.91	81	4.1	7719									
	41	43	1.34	40	3.6	12063									
	43	44	3.33	49	4.2	7897									
	44	46	0.92	257	5.6	10515									
	45	46	7.10	28	13.0	24626									
	47	46	9.10	16	3.6	6755									
	48	48	1.35	12	4.5	8462									
	49	48	7.36	25	4.3	8079									
	50	49	7.58	32	36.4	68993									
	52	50	6.94	64	3.5	6710									
	53	52	8.91	33	4.3	8169									
	54 55	53	1.38	172	3.5	9401									
	56	53	6.16	71	5.8	10894									
	57	54	1.12	29	21.6	40842									
	58	54	2.12	32	10.3	19458									
	60	55	3.46	10	22.3	42243									
	61	55	4.46	43	8.8	16649									
	62	56	6.89	13	46.8	88639									

Acquisition Date 28.04.2022 12:08:17

			High	Resolution Mass Spectrometry Report
#	m/z	1%	1	
63	567.8949	4.4	8302	
64	569.4346	4.6	8805	
65	596.9017	5.6	10545	
66	600.8856	4.8	9184	
67	624.8505	3.6	6897	
68	634.8796	40.6	76969	
69	635.8823	4.6	8692	
70	664.8895	5.7	10837	
71	668.8734	6.2	11798	
72	685.4387	13.1	24898	
73	686.4415	6.5	12335	
74	688.9296	7.8	14793	
75	689.9298	4.3	8209	
76	690.9251	21.6	40938	
77	691.9260	6.9	13004	
78	702.8677	42.5	80443	
79	703.8705	4.9	9247	
80	732.8779	6.0	11335	
81	736.8619	7.5	14252	
82	770.8561	30.1	56997	
83	771.8586	4.1	7692	
84	800.8661	4.7	8859	
85	804.8497	6.4	12107	
86	838.8439	25.3	47832	
87	839.8467	3.8	7228	
88	839.9380	5.3	10066	
89	860.9529	5.3	10123	
90	861.9537	4.1	7807	
91	862.9488	10.6	20147	
92	863.9499	4.8	9037	
93	868.8539	4.5	8449	
94	871.9646	4.7	8880	
95	872.8390	4.9	9351	
96	906.8324	14.0	26538	
97	940.8265	3.9	7396	
98	974.8206	9.5	18061	
99	1042.8085	6.5	12292	
100	1110.7971	4.7	8884	

General	Fore Vacuum Scan Begin	3.36e+ 75 m/z	000 mBar	High Vacuum Scan End	1.02e-007 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Ba 200 °C		Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS or	ıly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	r Time	75.0 µs	Set Ion Cooler Pre Pul	se Storage Time	10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 28.04.2022 12:08:17

	High Resolution Mass Spectrometry Report													
Mea	sured	m/7 v	's t	heoretica	l m/7									
	Meas.	m/z	#	Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z	
	1455.3	3264	1	C 70 H 10	2 Ag Br 2 S 6	Si 2 100.00	1455.3257	-0.8	-0.5	25.4	20.5	even	1+	
Mas	s list													
	#		m/	z 1%										
	1	141.	002	4 15.5	14905									
	23	185.	114	6 10.3	9874									
	4	201.	109	6 66.0	63386									
	5	205.	059	7 9.0	8609									
	7	217.	104	4 9.4	9046									
	8	226.	951	4 100.0	96090									
	9	243.	941	4 77.3	74257									
	10	249.	931	5 17.5	16852									
	12	261.	130	4 8.6	8220									
	13	277.	921	7 8.4	8116									
	14 15	288.	921	5 10.2 5 17.9	9845 17204									
	16	301.	140	5 13.3	12778									
	17	309.	130	0 11.9	11449									
	18	315.	792	4 12.1 3 12.2	11748									
	20	318.	045	6 8.9	8516									
	21	319.	260	1 16.2	15556									
	22	320.	918	/ 8./ 4 10.2	8388 9781									
	24	345.	909	0 12.0	11540									
	25	353.	265	4 12.3	11853									
	26	362.	926	0 27.5 2 9.8	26413 9461									
	28	381.	296	7 14.0	13472									
	29	396.	905	9 9.8	9394									
	30	413.	265	4 11.4 2 10.4	10914 9980									
	32	430.	913	2 27.7	26630									
	33	441.	296	9 9.4	9053									
	34	447.	903 893	4 18.1 7 19.8	17428 19028									
	36	467.	101	4 22.8	21908									
	37	468.	102	9.8	9422									
	38	481.	875	0 17.5	12574									
	40	498.	899	9 15.3	14680									
	41	515.	889	7 9.9	9485									
	42	517.	294	8 10.3	9943									
	44	532.	880	3 13.9	13399									
	45	536.	164	4 13.7	13127									
	40	541.	120	2 39.4 6 19.1	18386									
	48	543.	118	5 13.5	12945									
	49	549.	871	4 15.4	14757									
	50	554.	450	2 34.7 3 13.2	12648									
	52	566.	863	2 14.4	13880									
	53	566.	887	3 19.6	18804									
	55	583.	875	9 10.1	10090									
	56	600.	867	6 13.9	13324									
	57	617.	858	2 15.7	15111									
	59	634.	873	7 17.9	17205									
	60	651.	841	3 13.3	12826									
	61	668.	854	9 14.1	13592									
	02	0/4.	200	0 10.2	10000									

Acquisition Date 28.04.2022 13:10:39

High Resolution Mass Spectrometry Report								
#	m/z	۱%	1					
63	675.2135	11.0	10609					
64	676.2080	20.7	19934					
65	677.2119	13.5	12982					
66	685.4346	18.7	17951					
67	685.8451	14.3	13705					
68	686.4375	8.4	8088					
69	688.9251	17.0	16317					
70	689.9256	8.9	8547					
71	690.9210	43.9	42151					
72	691.9226	13.7	13183					
73	702.8408	15.5	14864					
74	702.8616	20.2	19364					
75	719.8293	14.3	13747					
76	736.8431	12.0	11484					
77	753.8319	12.5	11989					
78	770.8483	16.5	15811					
79	787.8163	11.4	10980					
80	804.8116	10.0	9564					
81	804.8272	9.1	8708					
82	821.8176	9.6	9262					
83	838.8345	13.7	13209					
84	839.9324	9.9	9548					
85	855.8040	9.4	9011					
86	860.9477	10.5	10122					
87	862.9433	22.4	21502					
88	863.9441	9.2	8826					
89	871,9598	10.1	9671					
90	872.7980	8.8	8485					
91	906.8212	9.0	8628					
92	1389.3834	8.5	8211					
93	1391.3833	8.6	8223					
94	1457.3263	26.2	25197					
95	1458.3279	20.9	20097					
96	1459.3249	33.8	32464					
97	1460.3272	26.3	25318					
98	1461.3247	24.0	23015					
99	1462.3255	15.6	15014					
100	1463.3234	8.7	8392					

General	Fore Vacuum Scan Begin	3.39e+000 mBar 75 m/z		High Vacuum Scan End	1.01e-007 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Durce Set Nebulizer 2.0 Bar Set Dry Heater 200 °C			Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Pul	se Storage Time	10.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 28.04.2022 13:10:39

High Resolution Mass Spectrometry Report

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
1453.6871	1	C 88 H 117 O 2 S 6 Si 2	100.00	1453.6911	4.0	2.7	65.4	32.5	even	1+
1475.6700	1	C 88 H 116 Na O 2 S 6 Si 2	100.00	1475.6730	3.0	2.1	22.2	32.5	even	
1491.6453	1	C 88 H 116 K O 2 S 6 Si 2	100.00	1491.6470	1.7	1.1	66.6	32.5	even	

Mass list

#	m/z	۱%	1
1	365.1062	4.8	1313
2	447.3435	5.5	1499
3	464.9891	8.0	2190
4	599.1169	10.2	2812
5	685.4359	7.8	2134
6	686.4387	5.0	1376
7	699.5957	4.3	1185
8	705.5828	11.9	3271
9	706.5856	6.2	1690
10	721.5774	21.4	5870
11	722.5808	9.7	2662
12	829.7241	4.1	1127
13	1453.6871	26.2	7177
14	1454.6901	29.0	7948
15	1455.6896	22.0	6035
16	1456.6904	13.0	3564
17	1457.6896	8.0	2196
18	1475.6700	90.7	24876
19	1476.6733	100.0	27441
20	1477.6725	81.7	22407
21	1478.6726	49.4	13566
22	1479.6719	26.3	7222
23	1480.6727	12.1	3321
24	1481.6712	6.0	1651
25	1491.6453	10.0	2736
26	1492.6484	11.9	3264
27	1493.6465	10.9	2993
28	1494.6472	7.0	1934
29	1495.6461	4.4	1210
30	1508.6952	4.8	1305
31	1509.6895	4.3	1192

Acquisition Parameter

General	Fore Vacuum Scan Begin	3.46e+ 75 m/z	000 mBar	High Vacuum Scan End	8.83e-008 mBar 2000 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C		Set Capillary Set End Plate Offset	3600 V -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			200.0.17	
Coll. Cell	Collision Energy		10.0 eV	Set Collision Cell RF	1000.0 Vpp	300.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	160.0 µs	Set Ion Cooler Pre Pulse	e Storage Time 18	8.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 16.03.2022 09:47:22

Page 2 of 2

¹H, ¹³C{H} (400/101 MHz, CD₂Cl₂) NMR and HR-ESI-MS Spectra of Compound 102:

Chapter 8: Appendix

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z	
1140.4141	1	C 70 H 76 O 2 S 6	100.00	1140.4164	2.3	2.0	73.3	33.0	odd	1+	
1163.4059	1	C 70 H 76 Na O 2 S 6	100.00	1163.4062	0.3	0.3	24.8	32.5	even		
1179.3803	1	C 70 H 76 K O 2 S 6	100.00	1179.3801	-0.2	-0.2	86.5	32.5	even		

Mass list

#	m/z	۱%	1
1	353.2663	2.4	1855
2	355.0700	1.4	1101
3	381.2958	7.3	5751
4	382.2986	1.6	1255
5	553.4571	2.5	1930
5	561.2198	1.7	1355
6	647.2109	4.7	1566
0 0	685 4345	11.2	8779
10	686 4381	59	4606
11	687.4413	1.7	1322
12	705.5816	5.4	4204
13	706.5842	2.2	1737
14	721.5764	12.9	10099
15	722.5805	6.7	5244
16	723.5801	2.2	1762
17	732.1891	5.5	4288
18	733.1913	2.3	1833
19	737.5700	1.9	1504
20	787.3190	5.4	4230
21	788.3219	3.1	2462
22	801.6927	1.4	1104
23	823.6943	1.5	1460
24 25	841 7250	1.9	1402
26	853 7255	1.4	1275
27	907 7729	1.0	1215
28	959.3227	1.6	1268
29	1140.4141	3.3	2599
30	1141.4193	2.7	2129
31	1142.4191	2.1	1680
32	1143.4193	1.4	1108
33	1163.4059	100.0	78451
34	1164.4097	83.9	65822
35	1165.4078	54.5	42762
36	1166.4081	28.9	22638
3/	1167.4069	13.9	10872
30	1169 4037	1.1	1381
40	1179 3803	6.6	5191
41	1180 3828	47	3721
42	1181.3816	4.1	3210
43	1182.3819	2.2	1729
44	1193.4171	3.4	2694
45	1194.4189	2.4	1918
46	1195.4282	5.7	4437
47	1196.4327	4.3	3387
48	1197.4313	3.1	2448
49	1198.4321	1.9	1472
50	1199.7720	1.5	1194
51	1653.4015	1.4	1137
⊃∠ 53	1004.4035	1.5	1140
00	1727.4190	1.0	1101

Acquisition Parameter

General	Fore Vacuum	3.36e+000 mBar	High Vacuum	9.38e-008 mBar	Source Type	ESI
	Scan Begin	75 m/z	Scan End	2000 m/z	Ion Polarity	Positi∨e

Bruker Compass DataAnalysis 4.0

Acquisition Date 06.04.2022 14:39:40

Page 2 of 3

Source	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C		Set Capillary Set End Plate Offset	3600 ∨ -500 V	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	y)	4.0 eV			200.01/	
Coll. Cell	Collision Energy		100.0 eV	Set Collision Cell RF	2000.0 Vpp	300.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	160.0 µs	Set Ion Cooler Pre Puls	e Storage Time	22.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 06.04.2022 14:39:40

Page 3 of 3

¹H, ¹³C{H}, DEPT, 2D (500/126 and 600/151 MHz, CD_2CI_2) NMR and MALDI-ToF-MS Spectra of Divne Dimer (103):

HSQC Spectrum of Dyine Dimer (103):

.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 [ppm]

- 144 - 146 - 148

Aromatic region of the NOESY Spectrum of Dyine Dimer (103):

DOSY Spectrum:

Compound 102

			- 16
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 15
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 14
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2Cl2, 298 K, QCI, dosy			- 13
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 12
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy	<u> </u>		- 11
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 10
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy		- 0	- 9
KR-374-11.2.ser KR-PCP-thiophene monomer, open. deprotected in CDD2CI2, 298 K, QCI, dosy			- 8
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy		Å	- 7
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 6
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 5
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2CI2, 298 K, QCI, dosy			- 4
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2g12, 298 K, QCI, dosy	-	mal. I	- 3
KR-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2412, 298 K, QCI, dosy	-		- 2
KP-374-11.2.ser KR PCP-thiophene monomer, open. deprotected in CD2 μ 229 KK, QCI, Jdosy	v~		- 1

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 [ppm]

Dyine Dimer (103)

KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy						_
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy	,					
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy	<u>_</u>				^	L
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy	<u> </u>					
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy						
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy						
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy	- hu i l					
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy	hu					
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy	hll					
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy				<u>_</u>		
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy						
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy		L				
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy		L				
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy		(
KR-dimer.6.ser DA-KR figure of 8 in CD2Cl2, 298 K, QCI, dosy		Į				
		4				
9.5 9.0 8.5 8.0	7.5 7.0 6.5	6.0 5.5 5.0	4.5 4.0 3.5	5 3.0 2.5	2.0 1.5 1.0	0.5 0.0

KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H 8 KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H 4 KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H La a d. KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H L. KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H 3 11 KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H 2 11 KR-374-11.5.ser KR monomer (high c.) + dimer (low c.) in CD2Cl2, 298 K, BBI, 1H

1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.0 [ppm] 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 5.5 4.0 3.5

HSQC Spectrum of Thiophene Dimer (125):

7.10 7.05 [ppm] 7.00 6.95 6.90 6.85

6.80

6.75 6.70

6.60 6.55

6.65

7.55 7.50

7.40 7.35

7.30

7.45

7.25 7.20

7.15

Zoom in of MALDI-ToF-MS of Thiophene Dimer (125)

Curriculum Vitae:

PERSONAL INFORMAT	ION
Name:	Ksenia Reznikova
Date & Place of Birth	18.12.1993, St. Petersburg, Russia
Citizenship	russian
EDUCATION	
06/2018 – 02/2023	Ph. D. studies in organic chemistry, University of Basel, Basel
	"Tailor-Made Structures for Molecular Junctions: From Linear Wires to
	Molecular Loops."
	Thesis Advisor: Prof. Dr. Marcel Mayor
02/2017 – 04/2018	Master of Science in Chemistry, University of Basel, Basel
10/2017 – 04/2018	Master Thesis: "Tailor-Made Molecular Rods for Graphene Junctions."
	Advisor: Prof. Dr. Marcel Mayor
06/2017 – 07/2018	Internship: "Development of Novel Amide Catalysts for Transfer
	Functionalization of C(sp3)-H Bonds."
	Advisor: Prof. Dr. Konrad Tiefenbacher
09/2016 - 10/2016	Internship: "Synthetic Strategies Toward the Synthesis of a Concave
	Ligand for the Encapsulation and Stabilization of Nanoparticles."
	Advisor: Prof. Dr. Marcel Mayor
08/2013 – 01/2017	Bachelor of Science in Chemistry, University of Basel, Basel
2006 – 2013	High School Degree (Abitur), Kant – Gymnasium, Weil am Rhein,
	Germany
TEACHING EXPERIENC	E
2018 – 2021	Teaching Assistant, University of Basel, Basel
HONOR AND AWARDS	
03/2021 – 11/2021	ZOOM@Novartis 2021, Mentoring Program of the University of Basel in
	cooperation with Novartis
2018	Emilie-Louise-Frey Prize 2018, for outstanding master thesis
EXTRACURRICULAR	
2019 – 2021	Board Member of the "PhD Chemistry Community (PCC)", University
	of Basel
SELECTED CONFEREN	ICES
16/02/2022	8th QuIET Meeting, via ZOOM, Talk
	"Synthetic Approaches for Molecular Thermoelectronics"
07/07/2021	7th QuIET Meeting, via ZOOM, Talk
	"Synthetic Approaches for Molecular Thermoelectronics"
08/02/2021	6th QuIET Meeting, via ZOOM, Talk
	"Synthetic Approaches for Molecular Thermoelectronics"
04/12/2020	Christmas Symposium Basel 2020, University of Basel, Switzerland,
	Poster

	"Tailor-Made Molecular Rods for Graphene Junctions"
25/09/2020	5th QuIET Meeting, Durham, England, Poster
	"Synthetic Approaches for Molecular Thermoelectronics"
25/08/2020	SCS Fall Meeting, Online Conference, Poster
	"Tailor-Made Molecular Rods for Graphene Junctions"
27 – 31/01/2020	International Conference on Molecular-Scale Charge and Thermal
	Transport, Engelberg, Switzerland, Posters
	"Tailor-Made Molecular Rods for Graphene Junctions"
	"Compact[2.2]Paracyclophane-Based Systems"
09 – 10/07/2019	4th QuIET Meeting, Durham, England, Poster
	"Synthetic Approaches for Molecular Thermoelectronics"
07 – 08/02/2019	3rd QuIET Meeting, Dubendorf, Switzerland, Poster
	"Synthetic Approaches for Molecular Thermoelectronics"
04/10/2018	Clariant Chemistry Day, University of Basel, Switzerland, Poster
	"Tailor-Made Molecular Rods for Graphene Junctions"
LANGUAGE SKILLS	
Russian	native language
German	fluent

PUBLICATION LIST

English

• "Intense Molar Circular Dichroism in Fully Conjugated All-Carbon Macrocyclic 1,3-Butadiyne Linked pseudo-meta [2.2]Paracyclophanes."

Eric Sidler, Patrick Zwick, Charlotte Kress, <u>Ksenia Reznikova</u>, Olaf Fuhr, Dieter Fenske, Marcel Mayor, *Chem. Eur. J.* **2022**, *28*, e2022017.

• "Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions."

Ksenia Reznikova, Chunwei Hsu, Werner M. Schosser, Almudena Gallego, Katawoura Beltako, Fabian Pauly, Herre S. J. van der Zant, and Marcel Mayor, *J. Am. Chem. Soc.* **2021**, *143 (34)*, 13944–13951.

• "Christmas Symposium Basel 2020"

fluent

Daniel Joss, Alain Baiyoumy, Vittoria Chimisso, Claire E. Meyer, Dzmitry A. Miarzlou, Gosia M. Murawska, Nadja Niggli, Björn Pfund, <u>Ksenia Reznikova</u>, and Pascal Rieder, *Chimia*, **2021**, *75*, 112.

• "Christmas Symposium Basel 2019"

Daniel Joss, Jaicy Vallapurackal, Alain Baiyoumy, Vittoria Chimisso, Fadri Christoffel, Patrick Herr, Claire Meyer, Dzmitry Miarzlou, Gosia Murawska, Nadja Niggli, <u>Ksenia Reznikova</u>, Ivan Urosev, and Puck van Gerwen, *Chimia*, **2020**, *74*, 63.