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Summary 

 

Accelerated soil erosion poses a significant global threat to soil health. Sediment source fingerprinting 

aids in the identification and apportionment of the main erosion sources. Retracing sediments to their 

sources and respective land-use by sediment fingerprinting offers a semi-empirical, field-based 

approach to determine the proportional contribution of different soil erosion sources and potentially can 

provide information to policy makers, land managers and researchers. Given the pivotal role of land-

use change in historical and contemporary soil erosion systems, current tracers are often limited by 

their inability to discriminate amongst land-uses. Thus, the development of tracers which are able to 

discriminate between land-uses represents a crucial advancement in this field. While compound specific 

stable isotope (CSSI) tracers are immensely beneficial for land-use-specific sediment source 

apportionment, they still have several unresolved issues. The aim of this thesis is to enhance land-use-

specific sediment source apportionment by addressing these issues and offering advancements in the 

field to enable more accurate representations of sediment dynamics in the environment.  

Initially, I developed a simple approach to evaluate the performance of isotopic mixing models using 

mathematical mixtures. Isotopic tracers depend not only on their isotopic values and mixing proportions 

but also on the concentration of each tracer in each source. Therefore, I devised a novel concentration-

dependent mathematical mixture tool. Utilizing this tool, I employed a 'brute force' method to investigate 

how the number of fatty acid (FA) tracers influences the model's performance. Contrary to the previous 

assumption that the Bayesian framework mixing model (MixSIAR) handles all conservative tracers 

beneficially, I discovered that tracer redundancy, wherein tracers which share similar mixing spaces and 

co-linearity (one-dimensional mixing line), negatively impact the model's performance. 

Our findings using the concentration-dependent mathematical mixture tool also highlighted the need for 

an additional land-use-specific tracer to expand the one-dimensional mixing line formed by δ13C FA 

tracers with co-linearity (similar mixing spaces). Consequently, I incorporated the δ13C values of lignin-

derived methoxy groups (LMeO) as an additional tracer. This approach was applied to investigate the 

sediment history of Lake Baldegg over the past 130 years. In particular, I successfully distinguished 

between the inputs of plant debris (POMterr) and mineral-associated organic matter (MOAM). By 

assigning POMterr as its own distinct source, I was able to remove the POMterr contribution from the 

sediment source apportionments and apportion only the MOAM fraction.  

Given our focus on Lake Baldegg’s historically deposited sediment, Suess corrections are necessary 

to account for the changing atmospheric δ13C composition. For more representative Suess corrections, 

I accounted for multiple tracer turnover times (10, 30, and 100 years) in the Suess correction. This 

approach facilitated achieving a more representative account of past sediment dynamics within the 

Baldegg catchment and stands as an important component in using isotopic tracers to estimate historic 

sediment dynamics. Using both the POMterr removal and Suess correction methods, our estimates for 

sediment source apportionment aligned well with the policy and land-use change in the catchment. 
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While our results of the historic apportionment are highly credible, the conservativeness of δ13C LMeO 

during transport and deposition required further investigation. 

To assess the conservativeness of δ13C LMeO values during degradation, I utilized the dual isotopes of 

LMeO (δ2H LMeO and δ13C LMeO) across the degradation continuum from the litter layer to the MAOM 

fraction. Since δ2H MeO (lignin and pectin MeO groups) values are known to be stable during 

degradation, I was able to disentangle isotopic fractionation from source mixing and demonstrated the 

stability of δ13C LMeO values during degradation. Furthermore, and importantly, I found that the dual 

isotope approach allowed for the discrimination of the litter layer, above-ground woody material, and 

root lignin. This method then enabled the apportionment of lignin sources in organic and mineral 

horizons. By applying this method to two contrasting soil types, a podzol and stagnosol, I elucidated 

different soil type-specific lignin mixing and sources across the degradation continuum. While the 

stagnosol demonstrated minimal translocation of above-ground lignin sources to the MOAM fraction, 

the podzol showed the accumulation of lignin from above-ground sources in the MOAM. Considering 

the high percentage of lignin in the terrestrial biosphere, this novel, simple, solvent-free, and rapid 

method of demonstrating lignin dynamics may hold great potential in terms of understanding and 

modelling carbon sequestration. 

Considering the high abundance of LMeO in the terrestrial biosphere and the extremely depleted δ13C 

LMeO values of leaf litter (∼60‰), I assessed how much of the well-known but lesser understood bulk 

13C enrichment with organic matter degradation can be explained by the transition of lignin sources from 

leaf litter to roots. A mass balance approach was used to determine the δ13C values of the non-LMeO 

fraction. Using the difference in enrichment of the δ13C non-LMeO and δ13C bulk values, up to 14% can 

be explained by LMeO. Our findings suggest that models using δ13C bulk as a proxy for carbon turnover 

may overestimate degradation.  

By providing a method to test the accuracy of concentration-dependent mixing models and offering an 

alternative CSSI tracer capable of discriminating between POMterr and MOAM, this thesis makes 

significant contributions to advancing sediment fingerprinting using CSSI tracers. Additionally, the use 

of LMeO in determining lignin mixing dynamics in soils represents an important step in understanding 

carbon sequestration. Simultaneously, this thesis both resolves some of the issues with CSSI sediment 

source apportionment and opens new questions and tools awaiting exploration by curious and 

inquisitive researchers in the future. 
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Introduction 

1.1 The problem of human induced accelerated soil erosion and sedimentation has persisted globally 

throughout history, with evidence of anthropogenically induced soil erosion dating back to the era of the 

Palaeolithic-Mesolithic hunter-gatherer (Dotterweich et al. 2013). Soil erosion has then substantially 

increased in Europe since the Bronze Age (Dotterweich 2008). The rise of population pressure and 

consequent changes in land-use, leading to heightened susceptibility of soil to extreme weather events, 

have been proposed as the driving force behind the increase in historical sedimentation rates north of 

the Alps (Dotterweich 2008, 2013). The deterioration and disappearance of multiple civilisations 

throughout history has been related to the degradation of resources, accelerated soil erosion and a 

decline in crop yield (David R. Montgomery 2012 and references within). Throughout history, soil 

conservation practises were passed down between farmers through generations and have been 

embedded in traditional practices, while scientific interest in soil erosion is more recent and began at 

the end of the 18th century (Dotterweich 2013).  

Despite more than two centuries of scientific advancements, little has changed regarding soil erosion. 

Human civilisations are still driven by the effect of depleting soil resources. Soil erosion is estimated to 

cost around €1.25 billion per year to the EU agricultural sector (Panagos et al. 2018), and costs the EU 

€2.3 billion annually for sediment removal (Panagos et al. 2024). Furthermore, accelerated soil erosion 

and sedimentation have negative implications on biogeochemical cycles (Lal 2003; Alewell et al. 2020). 

Both presently and in the future, we face the additional challenge of global warming and the subsequent 

increase in extreme weather events. Soil erosion induced carbon emissions have been estimated to 

be 0.8–1.2 PgC/ year (Lal 2003), potentially generating an accelerated soil erosion feedback loop. The 

world’s population is expected to keep increasing, without effective soil erosion mitigation polices we 

can expect the problems associated with population pressure and limited resources to enhance the 

consequences of accelerated soil erosion. 

In July 2023, the European Commission introduced the Soil Monitoring Law with the aim of safeguarding 

both present-day and forthcoming soil quality. This legislation seeks to initiate measures by 2030 that 

aims to conclude in the promotion of healthy soils by 2050. The policy mandates the assessment of 

existing land degradation and the evaluation of the potential impact of the proposed legal framework. 

There is no shortage of models predicting and mapping soil erosion models (Borrelli et al. 2021), 

however, the validation and testing of these models is lacking, with spatial erosion models not 

comparing well with independent data (Batista et al. 2019a). 

Sediment source apportionment offers a method to test soil erosion models (Fox and Martin 2015; 

Wiltshire et al. 2023). It is a method of identifying and quantifying the different origins of sediment using 

the inherent properties (or tracers, characteristics, fingerprint) of source and sediment samples in 

combination with mixing models. While the application of sediment source apportionment to inform 

polices and sediment mitigations is omnipresent in literature, there are few documented instances of its 

implementation in catchment management and policy making (Olley et al. 2009; Mukundan et al. 2012). 

There is still a disconnect between sediment source apportionment research and application (Collins et 
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al. 2020; Owens 2022). Potentially this comes from the trouble of upscaling small catchments and the 

difference in information requirements between scientists, farmers and policy makers (Owens 2022). In 

general, sediment fingerprinting is not directly applied to inform polices and mitigations strategies but 

rather a research tool. However, it may be a supportive tool when used as an independent and semi-

empirical method to test soil erosion models. 

Sediment source apportionment is a semi empirical, field-based approach used to identify erosion 

hotspots both spatially and temporally. Sediment fingerprinting has been applied to a wide range of 

fluvial sediment types including; lacustrine sediment cores (Le Gall et al. 2016; Lavrieux et al. 2019), 

flood plains (Pulley et al. 2015; Kemper et al. 2022), dam reservoirs (Nosrati et al. 2011; Ben Slimane 

et al. 2016) and riverine systems (Collins et al. 2001; Upadhayay et al. 2018b; Bispo et al. 2020). The 

method uses various characteristics of potential source soils as a fingerprint. There is a plethora of 

potential soil characteristics which has been applied, including but not limited to radionuclides (Evrard 

et al. 2013), elemental geochemistry (Batista et al. 2019b), compound-specific stable isotopes 

(Upadhayay et al. 2020b; Hirave et al. 2021), colour (Martínez-Carreras et al. 2010), and ultraviolet-

visible absorbance (Lake et al. 2022), amongst others. These fingerprints are then compared to the 

sediment fingerprint and the relative proportion of each source is estimated using either linear mixing 

equations (Collins et al. 1997), Bayesian models (Stewart et al. 2015; Stock et al. 2018) or frequentist 

models (Pulley and Collins 2018). 

Given the critical role of land-use changes in both historical and contemporary soil erosion, the majority 

of tracers are limited due to a lack of ability to be land-use specific. Thus, the development of land-use-

specific tracers is a crucial advancement in this field. The compound specific stable isotopes (CSSI) of 

fatty acids (FA) and alkanes have demonstrated to be able to discriminate between different land-uses 

and have been applied to multiple catchment types and temporal scales (Cooper et al. 2015; Alewell et 

al. 2016; Brandt et al. 2018; Vale et al. 2020; Gibbs et al. 2020; Hirave et al. 2021). Although CSSI 

tracers are valuable for sediment source apportionment, they still face several unresolved problems 

(P): 

P1. One dimensional mixing line  

Fingerprinting using δ13C FA values presents limitations, with source values being located along a linear 

mixing line (Alewell et al. 2016; Lavrieux et al. 2019). This alignment can lead to misclassification of 

contributions from central sources as originating from sources at either endpoint. The linear mixing line 

problem is not confined to isotopic tracers. Colour (Barthod et al. 2015) and geochemical tracers 

(Bouchez et al. 2011) have also presented a linear mixing line. The δ13C FA one-dimensional mixing 

line problem can be seen as a product of the elongation during FA biosynthesis. The elongation process 

occurs with a δ13C depletion with increasing alkyl length (Chikaraishi et al. 2004). As this process may 

be the same for very long chain FAs of different plant groups, this could result in the δ13C FAs of different 

alkyl lengths demonstrating co-linearity, and subsequently a one-dimensional mixing line. Previous 

resolutions of this problem have involved grouping sources, leading to the apportionment between two 

sources, preventing the ability to discriminate between three or more sources (Alewell et al. 2016). 
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Intriguingly, this effect is not observed in all reported cases of land-use specific sediment source 

apportionment using δ13C FAs (Upadhayay et al. 2020b; Lizaga et al. 2021). The absence of a mixing 

line potentially suggests that the previous land-use or crop type had a higher concentration of specific 

FAs, which are now more prevalent in the current soil, resulting in their isotopic fingerprint still being 

present in the soil (Swales and Gibbs 2020; Upadhayay et al. 2020a). The expansion of the mixing line 

requires an additional tracer. δ13C FA values have been used in combination with geochemical tracers 

(Lizaga et al. 2022). However, geochemical tracers are not constrained by land-use type, hence this 

may give inaccurate source classification. As such, an additional land-use specific tracer is required.  

P2. Tracer redundancy  

A secondary effect of the mixing line is the potential for tracer redundancy, wherein tracers exhibiting 

co-linearity possess similar mixing spaces. As mixing models utilize the relative tracer values rather 

than absolute values, tracers with similar mixing spaces (co-linearity) may essentially provide redundant 

information. The current approach with MixSIAR is to include all tracers that meet two criteria: 

optimization of model performance through the Kruskal-Wallis H test and identification of non-

conservative tracers using a box and whisker plot. However, the question remains whether tracers with 

similar mixing spaces offer additional benefits to the model. 

P3. Evaluating the accuracy of concentration-dependent mixing models 

While the precision of sediment fingerprinting models can be assessed through stochastic modelling, 

determining their accuracy presents challenges (Batista et al. 2022). Artificial mixtures, including 

laboratory mixtures and mathematical mixtures (also known as ‘virtual mixtures’), have been utilized to 

test model accuracy. Laboratory and mathematical mixtures have demonstrated similar model outputs 

(Batista et al. 2022). Between 1987 and 2020, only 1.2% of studies used artificial mixtures (based on a 

Web Of Science word query) (Batista et al. 2022). Although recently, the use of artificial mixtures has 

increased (29% of studies between 2018 and 2019) (Collins et al. 2020). Considering the simplicity and 

minimal resource requirements needed for mathematical mixtures, we propose mathematical mixtures 

should be fundamental step when applying mixing models. 

Additionally, when using isotopic tracers, the sediment isotopic value depends on three factors; i) the 

source mixing proportions, ii) the tracer’s isotopic value of source soils and iii) the concentration of the 

tracer in each source soils (Upadhayay et al. 2018a). The validation of models dealing with 

concentration-dependent tracers has until recently been dependent on the labour-intensive analysis of 

a small number of laboratory mixtures (Bravo-Linares et al. 2018) or the oversimplification by assuming 

isotopic tracers mix linearly (non-concentration dependency) (Collins et al. 2019; Bahadori et al. 2019). 

While mathematical mixtures may not accurately mirror natural mixing processes due to factors such 

as signal degradation, tracer alteration, isotope fractionation, and particle size selectivity, they remain 

essential for assessing model performance (Haddadchi et al. 2014; Batista et al. 2019b; Vale et al. 

2022). Considering the increase in using isotopic tracers, the lack of testing models with concentration-

dependent mixtures is rather concerning. Such testing is necessary to establish the confidence level 

applicable to the model. 
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P4. Non-mineral associated organic matter sources. 

Sediment source apportionment aims to utilize the inherent properties of soil and sediment, any 

additional contribution from non-soil sources resulting in the inaccurate apportionment of soil 

contributions. The synthesis of FAs is not limited to terrestrial plants; algae and bacteria are known to 

produce FAs (O’leary 1962; De Carvalho and Caramujo 2018). As the predominant source of saturated 

long-chain fatty acids (LCFA) is terrestrial plants, the exclusion of short, medium, and non-saturated 

FAs has been applied to reduce the uncertainty related to input from non-terrestrial plant-derived FAs 

(Alewell et al. 2016).  

While the exclusion of short and medium FAs has been used to reduce contribution from non-soil 

sources, in Lake Baldegg (Kanton Lucerne, Switzerland) extremely isotopically depleted sediment 

values were observed for δ13C FA24, and δ13C FA26 (Lavrieux et al. 2019). The authors speculated an 

in-situ source was of FA was missing, most likely algae. Sediment from 1965 was further evidence for 

this hypothesis. Sediment from 1965 demonstrated most depleted δ13C FA values, and also had the 

highest TOC and TN content over the 130-year record, suggesting primary production was at its 

maximum (Lotter et al. 1997). In Lake Baldegg, an additional aquatic source(s) of δ13C FA24, and δ13C 

FA26 is highly probable. Without the identification and measurement of these sources, sediment source 

apportionment using δ13C FA24, and δ13C FA26 cannot be applied accurately. 

Contradicting our current understanding of erosion processes and modelling, forests are frequently 

identified as a major source of sediment (Alewell et al. 2016; Chen et al. 2016; Upadhayay et al. 2020b; 

Wiltshire et al. 2022). While this may be true in specific circumstances, forests are typically less 

vulnerable to soil erosion due to their protective canopy cover, understory or ground vegetation, and 

humus layer (Blanco-Canqui and Lal 2010). Wiltshire et al. (2022) hypothesized this overestimation 

could be a result of including terrestrial particulate organic matter (POMterr) in the sediment fingerprint. 

While the physical separation of POM and mineral associated organic matter (MOAM) has been 

achieved via density centrifugation, it requires relatively large sample amounts (5 g) (Cui et al. 2016). 

Distinguishing between MAOM and POMterr as separate endmembers using CSSI tracers is challenging 

due to small isotopic difference but is a necessary step for accurate apportionment of sediment sources 

rather than sources of organic tracers. 

P5. The incorporation of multiple mean residence times when applying the Suess correction to 

historical sediment 

To account for changes in atmospheric δ13CO2 over the past century (Verburg 2007), the CSSI tracers 

for historical sediment apportionment requires Suess corrections (Gibbs et al. 2014). However, Suess 

corrections are often omitted, assuming negligible variability induced by the Suess effect compared to 

source uncertainty (Brandt et al. 2018), or a single mean residence time (MRT) is used (Bravo-Linares 

et al. 2020). The mean residence time of FAs varies from decades to millennia (Lützow et al. 2006; 

Wiesenberg et al. 2010). Therefore, understanding how a range of MRTs affects sediment source 

apportionment results is crucial for determining the uncertainty associated with modelling sediment 

source apportionments. 
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In this thesis, I aim to resolve the problems stated above in Chapter 2 and 3. Additionally, in Chapter 4 

I test the conservativeness of a novel tracer whilst simultaneously using a new tracer  to apportion lignin 

sources. 

1.2 Objectives of the PhD thesis  

Chapter 2:  

CSSI tracers often demonstrate a one-dimensional mixing line, in which source values are located on 

a mixing line. To explore the effect of this on model peformance, I plan to analyse δ13C FA values in 

source soils from the Rhine catchment (Basel-Switzerland) and expand the δ13C FA one-dimensional 

mixing line into a more suitable multi-dimensional mixing space using δ15N (P1). As this manuscript 

solely uses mathematical mixtures, the conservativeness of δ15N and potential isotopic fractionation of 

δ15N during transport and sedimentation are less relevant. The typical approach with mixing models 

(i.e., MixSIAR) involves maximizing the number of tracers that pass conservativeness tests. However, 

I hypothesis that co-linear tracers which display a similar mixing space might not improve model output 

but rather hinder the performance (P2). Using 150 concentration-dependent mathematical mixtures, I 

will apply a “brute force” method, and evaluate all possible permutations and combinations of the δ15N 

and δ13C FA tracer set and determine the model accuracy by comparing the estimated apportionment 

to the known proportions (P2). In addition to this rigorous testing of CSSI tracer selection, I plan to 

investigate the effect of adding non-informative tracers to the model (i.e., identical replicates of δ13C 

FA). Using this method, I plan to determine how much information is gained by additional different δ13C 

FA tracers compared to adding identical replicate tracers (P3). 

Chapter 3: 

An additional tracer to δ13C FAs is required to break up the mixing line. While in Chapter 2 I used δ 15N 

values with mathematical mixtures, the use of δ 15N values has come under scrutiny due to the potential 

for isotopic fractionation. In this chapter, I novelly apply the δ 13C values of lignin derived methoxy groups 

(LMeO) as a sediment tracer (P1). δ13C LMeO values have demonstrated a considerably large 

discrimination between C3, C4 and CAM plants (Keppler et al. 2004). The conservativeness of δ13C 

LMeO is yet to be fully explored, litter bags experiments measuring bulk δ13C MeO (pectin and lignin) 

indicated small isotopic fractionation during degradation (Anhäuser et al. 2015). This was suggested to 

be because of the preferential degradation of pectin. The analysis of the bulk MeO δ13C values in the 

degradation continuum from wood to coal demonstrated significant fractionation (Lloyd et al. 2021). 

However, considering we would not expect LMeO degradation on the same scale as the wood-to-coal 

degradation continuum (remaining MeO fraction in coal ca. 10-4), we would expect isotopic fractionation 

to be minimal within LMeO concentrations in soil and sediments.  

Leaf and woody material have demonstrated an extremely large difference in δ13C LMeO (∼30‰). I 

propose that POMterr and MOAM can be differentiated using δ13C LMeO and utilised to determine the 

relative proportions of POMterr to the sediment fingerprint (P4). The POMterr signal can then be 

subsequently removed allowing for the apportionment of the MOAM fraction only. 
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As stated in P5, historical sediment source apportionments require the correction for the changing 

δ13CO2 in the atmosphere using Suess corrections. Here I investigate the effect of 3 residency times 

(10yr, 30yr, and 100yr) and no Suess corrections on the sediment source apportionment. Considering 

the MRT of specific compounds is dependent on the soil ecosystem and soil properties, by applying 

multiple corrections we can more accurately depict the uncertainty when modelling soil erosion using 

CSSI tracers. 

Chapter 4: 

In Chapter 3, I plan to use δ13C LMeO as an additional tracer for land-use-specific sediment source 

apportionment. Here, I further test the conservativeness of δ13C LMeO by the isotopic analysis of LMeO 

during the degradation continuum from sources of lignin (leaf litter and roots) to soil organic matter. 

Furthermore, considering the large discrimination between leaf and woody material, I additionally 

hypothesise that sources of lignin can apportioned using δ13C LMeO. However, the utilisation of only 

δ13C LMeO values is unable to disentangle whether the change in δ13C LMeO is a result of changing 

lignin sources or from isotopic fractionation during degradation. 

Evidence for the stability of δ2H MeO has been demonstrated by degradation in litter bag experiments 

(Anhäuser et al. 2015) and cultures of bacteria and fungi with garden waste (Lu et al. 2022). The stability 

of δ2H MeO has resulted in multiple applications e.g., climate reconstruction (Keppler et al. 2007; 

Wieland et al. 2024), determining the sources of 20-million-year-old wood deposits (Lee et al. 2019), 

identifying water sources in salt marshes (Feakins et al. 2013) and locating the sources of potato tubers 

(Keppler and Hamilton 2008). While the stability of δ2H LMeO has been demonstrated, the stability of 

δ13C LMeO values is less investigated and requires validation. 

In a two-source mixing model, using δ2H LMeO and δ13C LMeO values as tracers, isotopic fractionation 

can be illustrated as a deviation of a mixture from a 1:1 mixing line, with the mixtures being more 

enriched in 13C to that predicted by the mixing line (Lutz and Van Breukelen 2014a, b). If no isotopic 

fractionation occurs, samples will be located on the mixing line. With this in mind, I plan to use the dual 

isotope (δ13C and δ2H) analysis of LMeO to apportion the sources of lignin during the transformation of 

fresh material to SOM. Additionally, due to the highly depleted δ13C LMeO values and relatively large 

percentage in the biosphere (Keppler et al. 2004), I hypothesise that the well-known but less understood 

bulk δ13C enrichment from the Oi horizon to the mineral soil is partially explained by the changing of 

lignin sources from leaves to roots.  
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Abstract 

Purpose 

Accelerated soil erosion poses a global hazard to soil health. Understanding soil and sediment 

behaviour through sediment fingerprinting enables the monitoring and identification of areas with high 

sediment delivery. Land-use specific sediment source apportionment is increasingly determined using 

the Bayesian mixing model MixSIAR with compound-specific stable isotopes (CSSI). Here, we 

investigate CSSIs of fatty acid (FA) tracer selection with a novel method to identify and investigate the 

effect of non-informative tracers on model performance. 

Methods 

To evaluate CSSI tracer selection, mathematical mixtures were generated using source soils (n=28) 

from the Rhine catchment upstream of Basel (Switzerland). Using the continuous ranked probability 

(CRP) skill score, MixSIAR’s performance was evaluated for 11 combinations of FAs and 15 

combinations of FAs with δ15N as a mixing line offset tracer. A novel scaling and discrimination analysis 

(SDA) was also developed to identify tracers with non-unique mixing spaces. 

Results 

FA only tracer combinations overestimated pasture contributions while underestimating arable 

contributions. When compared to models with only FA tracers, utilizing δ15N to offset the mixing line 

resulted in a 28% improvement in the CRP skill score. δ15N + δ13C FA26 was the optimal tracer set 

resulting in a 62% model improvement relative to δ15N + all δ13C FAs. The novel SDA method 

demonstrated how δ13C FA tracers have a non-unique mixing space and thus behave as non-

informative tracers. Importantly, the inclusion of non-informative tracers decreased model performance. 
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Conclusions  

These results indicate that MixSIAR did not handle non-informative CSSI tracers effectively. 

Accordingly, it may be advantageous to remove non-informative tracers, and where feasible, all 

combinations and permutations of tracers should be assessed to optimize tracer selection. Application 

of these tracer selection steps can help improve and advance the performance of sediment 

fingerprinting models and ultimately aid in improving erosion mitigation and management strategies.  

 

Key Words: Sediment Tracing, Sediment Source Fingerprinting, Tracer selection, MixSIAR, CSSI, 

Sediment apportionment, Stable isotopes  

**************************************************************************************************************** 

 

2.1 Introduction 

Accelerated soil erosion and sedimentation is a widely recognized global problem that reduces water 

quality and agricultural output (Bakker et al. 2004; Issaka and Ashraf 2017). Comprehensive and 

economically feasible mitigation plans are required to reduce accelerated soil erosion. Therefore, 

effective mitigation plans need to be founded on the accurate identification of erosion sources (Collins 

and Walling 2004; Walling 2005; Owens et al. 2016). 

Sediment source fingerprinting helps identify and apportion the main erosion sources in a catchment. 

Tracing sediments back to their original sources (e.g., from soils with different land uses), provides a 

direct, field-based approach that holds the potential to identify the relative contribution of different soil 

erosion sources to sediment transported downstream in various waterways (Collins et al. 1996; Gibbs 

2008; Cooper et al. 2015). The technique uses various properties of the soils and sediments as 

fingerprints to differentiate the main erosion sources (Collins et al. 1997a, 2001; Walling 2013; Smith et 

al. 2018). For properties to be able to effectively fingerprint sediment sources, they need to discriminate 

between sediment sources and remain constant through detachment, transport and deposition 

processes, or vary in a measurable and predictable way (Motha et al. 2002; Koiter et al. 2013; Belmont 

et al. 2014; García-Comendador et al. 2023). Essentially, properties of the eroded sediment should 

remain constant or any variation during these processes must be reproducible.  

Sediment fingerprinting has been applied to a wide range of fluvial sediment types including: lacustrine 

sediment cores (le Gall et al. 2016; Lavrieux et al. 2019), flood plains (Pulley et al. 2015; Kemper et al. 

2022), dam reservoir samples (Nosrati et al. 2011; Ben Slimane et al. 2013), and riverine systems 

(Collins et al. 2001; Bispo et al. 2020; Upadhayay et al. 2018b). A wide range of parameters have been 

employed to trace sediment sources, including but not limited to radionuclides (Evrard et al. 2013a), 

elemental geochemistry (Batista et al. 2019), compound-specific stable isotopes (Hirave et al. 2021), 

colour (Martínez-Carreras et al. 2010), diffuse Reflectance Infrared Fourier Transform Spectroscopy 

(Evrard et al. 2013b), ultraviolet-visible absorbance (Lake et al. 2022), and eDNA (Evrard et al. 2019) 
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among others. For more information on the sediment fingerprinting technique, please consult some of 

the reviews in the literature (Haddadchi et al. 2013; Koiter et al. 2013; Owens et al. 2016; Collins et al. 

2017, 2020). 

Sediment source apportionment is generally determined by unmixing sediment and soil fingerprints 

typically using linear equations (Collins et al. 1997b). The reliability of the model outputs is dependent 

on the mixing model used (Batista et al. 2022), the number of sources, the number of tracers and the 

dominate source contributing to the sediment load (Vale et al. 2022). Specifically, the accuracy of the 

apportionment increases when the primary source is well discriminated regardless of the discrimination 

of the other sources (Vale et al. 2022). Bayesian (e.g., MixSIAR),  (Stewart et al., 2015 Stock et al., 

2018) and frequentist models (Collins et al. 1997a; Pulley and Collins 2018) have the potential to 

provide robust and reliable erosion source information fundamental to targeting sediment management 

practices (Cooper and Krueger 2017; Evrard et al. 2022; Xu et al. 2022). 

The compound-specific stable isotopes (CSSI) of plant-derived biomarkers such as fatty acids (FA) and 

n-alkanes have been used to apportion sediment source contributions from different land uses (Gibbs 

2008; Alewell et al. 2016; Upadhayay et al. 2018b; Lavrieux et al. 2019; Hirave et al. 2021). The CO2 

fixation routes (C3, C4, or CAM) of plants generate distinct isotopic patterns with the effect being more 

pronounced in C4 plants than in C3 plants (Reiffarth et al. 2016). Even though they are not species 

specific, CSSI isotopic values can further distinguish between some plant groups, for example, 

angiosperms and gymnosperms (Collister et al. 1994; Chikaraishi et al. 2004). Additionally, biological 

and environmental factors (e.g., altitude and rainfall patterns) can induce variation in the isotopic value 

(Reiffarth et al. 2016). 

The exclusion of short, medium, and non-saturated FAs helps reduce the uncertainty related to input 

from non-terrestrial plant-derived FAs (Alewell et al. 2016; Reiffarth et al. 2016; Lavrieux et al. 2019). 

Ultimately, the 13C FA fingerprint of the sediment mixture is determined by source mixing proportions 

and two parameters in each source: FA concentration and δ13C FA (Upadhayay et al. 2018a). 

Therefore, the non-linear mixing of the isotopic tracers in the mathematical mixtures requires the 

incorporation of FA concentration dependency. Additionally, the use of FA isotopes as tracers requires 

the transformation of unmixing isotopic values to the unmixing sediment. The use of the concentration 

dependency of FA isotopes incorporates this transformation into the model and therefore requires no 

additional post organic matter corrections (Alewell et al. 2016). 

Fingerprinting with FA CSSIs has limitations, where source values regularly plot along a linear mixing 

line (Alewell et al. 2016; Lavrieux et al. 2019). Importantly, having sources plot along a mixing line can 

result in modelled contributions from the central source(s) being misclassified as a contribution from the 

sources located at the mixing line endpoints. The misclassification has previously been resolved by 

grouping sources with the subsequent apportionment occurring only between the two grouped sources 

(Alewell et al. 2016), with the drawback of not being able to distinguish between three or more sources.  

The highly correlated δ13C of FA tracers and the resultant linear mixing line are a product of the 

biosynthesis of very long chain fatty acids (VLCFA, FA22:0 - FA30:0). The elongation of long chain fatty 
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acids (LCFA, FA16:0- FA20:0) to VLCFA proceeds with a cyclic four-step process of condensation, 

reduction, dehydration, and reduction (Erdbrügger and Fröhlich 2020). The elongation of FAs occurs 

with a δ13C depletion with increasing alkyl length (Chikaraishi et al. 2004). As this relationship is 

assumed to be similar for VLCFA of different plant groups, this may result in the δ13C FA tracers of 

different alkyl lengths having a non-unique mixing space and possibly acting as non-informative tracers.  

CSSI tracers have been combined with geochemical tracers in an attempt to improve the discrimination 

between different land covers using non-land-use specific tracers (Lizaga et al. 2022). As geochemical 

tracers are not land-use specific, they require significant geological differences between land uses and 

low variability of lithology within land uses (Blake et al., 2012; Hancock and Revill 2013). δ15N has been 

used previously as a tracer for land-use-specific sediment source apportionment (Papanicolaou 2003; 

Fox and Papanicolaou 2007; Mukundan et al., 2010). However, the conservativeness of δ15N is 

questionable (Laceby et al. 2017). Here, we nonetheless use δ15N to expand the δ13C FA mixing line to 

a mixing polygon for mathematical mixtures (also known as: virtual mixtures and artificial mixtures). 

When investigating model behaviour using mathematical mixtures, the conservativeness of tracers is 

less relevant as sediment tracer values are calculated from source soil values and are not subject to 

degradation and possible isotopic fractionation effects. 

Mathematical mixtures using non-concentration-dependent tracers (e.g., geochemical tracers) were 

reported to be equivalent to laboratory mixtures (Batista et al. 2022). Although mathematical mixtures 

do not fully represent what happens during mixing processes in nature (e.g., signal degradation, tracer 

alteration in case of non-conservativeness, isotope fractionation, particle size transport selectivity), they 

are fundamental to understanding and evaluating model performance, and characterizing the 

uncertainty of the unmixing process (Haddadchi et al. 2014; Batista et al. 2019; Vale et al. 2022).   

Currently, there is a limited application of mathematical mixtures to concentration-dependent tracers, in 

which tracer values of the mixture (e.g., isotopic signatures) are dependent on another parameter in 

source soils (e.g., the concentration of isotopic tracer). Until recently the validation of concentration-

dependent unmixing models has been reliant on the generation of a small number of time-consuming 

laboratory mixtures (Bravo-Linares et al. 2018) or the over-simplification by the removal of the 

concentration dependency by assuming that isotopic tracers mix linearly (Collins et al. 2019; Bahadori 

et al. 2019). However, recently concentration-dependent mathematical mixtures have been explored 

and utilised (Lizaga et al. 2022; Vale et al. 2022) for investigating model parameters. 

The deficiency of suitable evaluation tools and metrics for CSSI tracer selection steps has resulted in 

the legacy of two commonly used assessments: a Kruskal Wallis test to optimize model performance 

and a polygon/boxplot range test to identify non-conservative tracers. When using a large number of 

tracers (e.g., geochemical tracers), linear discrimination analysis (LDA) has also been applied to reduce 

the suite of tracers to an optimal number with maximum discrimination (Gellis and Noe 2013; Walling 

2013; Laceby et al. 2015). The LDA tracer reduction step is not commonly included when using CSSIs 

due to the limited number of CSSI tracers relative to the number of sources being discriminated. 

Upadhayay et al. (2018b) used LDA with CSSI tracers to remove bulk 13C from the VLCFA tracer suite 
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as bulk 13C  did not improve source LDA reclassification. Lizaga et al. (2021) also used LDA as a tracer 

selection step for mixtures from different time points in an attempt to optimise tracer selection for each 

mixture. An argument for not including the LDA when using MixSIAR is the hypothesis that the 

covariance structure of MixSIAR (Stock et al. 2018) effectively handles conservative non-informative 

tracers resulting in a null or a beneficial impact (Smith et al. 2018). The model's output should accurately 

reflect the real-world scenarios, without being reduced in the interest of enhancing model performance. 

An additional argument for maximising the number of tracers is to reduce the potential influence of 

possible non-conservativeness within the tracer set.  

Land use-specific sediment source apportionment with CSSIs has been determined with all tracers that 

pass the two prerequisites without further validation of tracer selection. Consensus ranking (Lizaga et 

al. 2020) and consistent tracer selection (Latorre et al. 2021) methods have been recently applied to 

remove non-conservative tracers and tracers which have non-consistent results. Others have argued 

that tracer selection should be made on a robust bio-physical-chemical foundation (Laceby et al. 2015; 

Batista et al. 2019), with adjustments to the tracer set aimed at supporting the reliability and accuracy 

of the model.  

We hypothesize that the relationship between δ13C depletion and increasing alkyl length is similar for 

all land uses. If this is true, the mixing space for each FA tracer may be seen as a direct isometry 

translation of each other (i.e., every point of the mixing shape is moved the same distance and in the 

same direction), resulting in additional FA tracers having non-unique mixing spaces and being non-

informative. This effect may result in the inclusion of additional δ13C FA tracers being seen as essentially 

comparable to the addition of non-informative clone tracers (i.e., an exact copy of a tracer included as 

an additional tracer). In this study, clone tracers are used as a standard example of tracers which have 

identical mixing spaces and therefore can potentially be seen as non-informative tracers. In particular, 

clone tracers are used to determine the capacity of the mixing model to handle non-informative tracers. 

The comparison of model performance using additional FA tracers and non-informative clone tracers 

helps to quantify the information gained by using an additional FA tracer. 

Further evaluation and optimization of CSSI tracer selection in sediment source fingerprinting research 

is critical to increase the reliability of apportionment estimates and as a result the development of 

appropriate sediment management practices. In this study, we present the results for all combinations 

of δ13C FA (n = 11) and FA tracer sets including δ15N (n = 15) using concentration-dependent 

mathematical mixtures. Using a novel scaling and discrimination analysis (SDA), non-informative 

tracers that have a non-unique mixing space are identified. Importantly, we test the hypothesis that the 

covariance structure of MixSIAR can adequately handle non-informative tracers using clone tracers.  
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2.2 Materials and methods 

Site description and sampling 

The study was conducted using source soils from the Rhine catchment upstream of Basel (10,687 km2) 

(draining northern Switzerland and parts of southern Baden-Württemberg, Germany) and downstream 

of the large lakes (i.e., Konstanz, Zürich, Hallwil, Sempach, and Biel) (Fig. 1). Land use within the 

catchment area was mainly classified as arable land (28%), mixed forest (20%), and pasture (13%). 

The Basel Rhine catchment was divided into four sub-catchments: The Birs catchment, the Aare 

catchment, a Rhine catchment downstream of the Aare entering the Rhine, and a Rhine catchment 

upstream of the Aare entering the Rhine (Fig. 1). Each sub-catchment contained 3-8 sites of the major 

land-use classes: arable, pasture, and forest. With the aid of a connectivity model by Borselli et al., 

(2008), land-use specific sample locations within each sub-catchment were selected based on their 

high likelihood to contribute suspended sediment to the watercourses. To reduce analytical costs while 

maintaining the representativeness of the source samples, composite samples were generated from 

four individual samples located 2 m apart using a soil extraction cylinder (diameter 5.5 cm, length 5 

cm). As suggested by Laceby et al. (2017) and Evrard et al. (2022), the size fraction of source soils 

analysed (<100 µm), was selected based on particle size analysis of flood sediment from wider research 

project. Information on the sediment collection and size analysis is included in Online Resource 1. 

 

 

Fig. 1 Land use map of the Basel Rhine catchment area considered showing sampling locations and 

sub-catchment regions: The Birs catchment, the Aare catchment, a Rhine catchment downstream of 

the Aare entering the Rhine, and a Rhine catchment upstream of the Aare entering the Rhine  
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Laboratory Analysis  

Lipids were extracted from 0.5-1.5 g of soil using CH2Cl2: MeOH (9: 1 v∕v) in an Accelerated Solvent 

Extractor (Dionex ASE 350) with the addition of FA19:0 as an internal standard. The total lipid extract 

was separated into polar, neutral, and acidic fractions using solid-phase extraction on aminopropyl 

bonded silica as described in Jacob et al. (2005). The acidic fractions were eluted using 1% formic acid 

in diethyl ether on a pre-acidified column. The acidic fraction was subsequently methylated at 60°C for 

1 h using 1 ml of 14 % BF3 in MeOH. Fatty acid methyl esters were extracted from the solution by 

agitating it four times with 2 mL hexane in the presence of 1 mL of 0.1 M KCl. The δ13C FA isotopic ratio 

was measured using a Trace 1310 GC instrument interfaced online through a GC-Isolink II to a Conflo 

IV and Delta V Plus isotope ratio mass spectrometer (Thermo Fisher Scientific) as described by 

Lavrieux et al. (2019). Nitrogen concentrations and δ15N values for source soils were measured by 

Flash EA (Thermo Finnigan Delta plus XP mass spectrometer coupled with Flash EA 1112 series 

elemental analyser supplied by Thermo Finnigan, Waltham, MA, USA). Carbon and nitrogen stable 

isotope ratios were reported in delta notation, per mil deviation from Vienna Pee Dee Belemnite (VPDB) 

and atmospheric nitrogen (AIR) respectively.  

Mathematical mixtures  

Mathematical mixtures were generated using the mean stable isotopic ratio and mean concentration of 

tracers (i.e., bulk N, FA (24, 26, 28, 30)) for arable (n = 10), pasture (n = 7), and forest (n = 11) soil samples. 

Proportions of source contributions were created using a random number generator sampling from a 

Dirichlet distribution between 0 and 100 with the condition that the sum of source proportions must 

equal 1. The python script used to generate mathematical mixtures is appended in the Online Resource 

2 (an excel version of the mathematical mixture formulation is appended as Online Resource 3). To 

ensure evenly distributed mixing proportions of each source, 150 mathematical mixtures were 

generated (the mean of each source proportion of 150 mixtures was ~33%). Concentration-dependent 

mathematical mixtures were generated as shown in Eq.(1). 

 

∑ (Cs,t 
so
s   × Ps,t    × Vs,t)

∑ (Cs,t 
so
s   × Ps,t ) 

      =  Vt ∀ t ∈ T   Eq.1 

 

Where V is the mean isotopic value of the tracer t, C refers to the mean concentration for all (∀) tracers 

in a set (∈) of tracers T in source S. SO refers to the number of sources and P refers to the known 

proportions of the mathematical mixtures. 

End Member Mixing Model 

Mathematical mixtures were modelled using the open-source MixSIAR R package (Stock et al. 2018). 

MixSIAR was run with concentration dependency utilising the concentration of both FAs and N, 

transforming the unmixing of isotopes to the unmixing sediment/mixtures. Therefore an organic matter 

correction was not applied post hoc to prevent a secondary transformation. Priors were set to 
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uninformative and all MixSIAR runs used the same model parameters: chains = 3, chain length= 

3,000,000, thin = 500, burn = 2,700,000 with a ‘very long’ run time. The convergence of the mixing 

model was assessed by using the Gelman-Rubin diagnostic, with model output being rejected if 

variables scored >1.0. The R script used for all models is appended in the Online Resource 4. 

While the ‘residual x process’ error structure has been applied appropriately to multiple mixture samples 

(Cooper et al. 2015; Smith et al. 2018; Upadhayay et al. 2018b; Blake et al. 2018; Vale et al. 2022), 

likely the high cost and processing time of the analysis of CSSI has led to the predominant use of 

‘process only’ error structure using single mixture samples (Gateuille et al. 2019; Reiffarth et al. 2019; 

Liu and Han 2021). As such, a single sample of each mixture proportion was unmixed in MixSIAR using 

the “process only” error structure, in which the variation in the mixtures is assumed to be fully dependent 

on the variation in the sources (Smith et al. 2018).  

Model Evaluation 

The probabilistic output of MixSIAR should be evaluated using probabilistic metrics rather than 

deterministic metrics such as mean absolute error (Batista et al. 2022). The continuously ranked 

probability score (CRPS) (Matheson and Winkler 1976) is a generalization of the mean absolute error 

toward a probabilistic perspective and can be thought of as the total displacement needed to move the 

output distribution density to the observed single outcome or known mixture proportion. CRPS is 

negatively orientated with smaller values equating to better model performance. A perfect score of 0 

represents the entire density of the output placed exactly on the outcome value. Deviation from the 

perfect score results from a lower density of probability around the observed value. CRPS has provided 

a useful metric to account for both accuracy and precision of unmixing models and has been suggested 

to be particularly applicable for model comparison and tracer selection analysis (Batista et al. 2022). 

CRPS was calculated using the python package ‘properscoring’ and is used to report on individual 

model performance.  

The CRPS of all tracer combinations are further used to evaluate the accuracy of using LDA for tracer 

selection. Using the R package ‘KlaR’, the model performance of the tracer section by a stepwise 

forward variable selection using the Wilk's Lambda criterion (niveau =0.1) is compared to the empirically 

selected optimal tracer combination with the lowest CRPS. 

Model comparisons are then evaluated by the continuously ranked probability skill score (CRP skill 

score) shown in Eq. (2) (Pedro et al. 2018). The CRP skill score is a comparative metric of the accuracy 

and precision between two mode outputs. Where CRPSm and CRPSref are the CRPS of the new model 

(the model compared, e.g., δ15N+ δ13C all FA’s) and the reference model (the model compared against, 

e.g., only δ13C all FA’s.) respectively.  

CRP Skill score = 1- (CRPSm / CRPSref)  Eq.2 

 

Negative CRP skill score values indicate the new model does not outperform the reference model as 

the newer model requires more displacement of output distribution density to be shifted onto the known 
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value than the reference model. A value of one indicates that the newer model has a perfect skill score 

compared to the reference model (Pedro et al. 2018).  

Tracer selection and prediction bias analysis (PBA) 

The unmixing performance of ideal tracers should be independent of the source contribution, as 

contribution-dependent model performance is an indication of prediction bias. Predictive bias and 

dominate source effects on model output have been previously recognised and suggested to be an 

effect of poor tracer source discrimination (Vale et al. 2022). The hypothesis that FA tracers have similar 

and non-informative mixing spaces infers that additional FA tracers provide minimal additional source 

discrimination information. If the hypothesis is true, predictive bias will be decreased by reducing the 

number of tracers with a non-unique mixing spaces (e.g., FA tracers) as any added source uncertainty 

is removed. To assess if apportionment estimates occur with predictive bias, known source proportions 

of mathematical mixtures are plotted against the model performance (CRPS) for each source (predictive 

bias analysis-PBA). Two tracer sets (δ15N + all δ13C FAs and δ15N + δ13C FA26) were used to illustrate 

the effect of reducing the number of tracers on predictive bias.  

Non-informative tracers – Scaling and discrimination Analysis (SDA) 

MixSIAR uses the relative source-sediment-source positions for un-mixing. Therefore, tracers that 

exhibit differences in their mixing space by only direct isometry translation, can be seen mathematically, 

as being identical and potentially non-informative. To evaluate if δ13C FA tracers have non-unique 

mixing spaces and are direct isometry translations of each other, a novel scaling and discrimination 

analysis (SDA) was developed. Scikit-learn’s MinMaxScaler package (Pedregosa et al. 2011) was used 

to scale tracer values between 0 and 1 across all sources. Scaling retains the relative location, shape, 

and distribution of the sources for each tracer, enabling comparison of relative source locations between 

tracers. A Kruskal Wallis H-test (p<0.05) was used to evaluate the similarity between the relative source 

locations of the scaled tracers. Scaled tracers depicting a non-significant difference in source locations 

will consequently have mixing spaces which are direct isometry translations and can therefore be seen 

as non-informative.  

Non-informative tracers – Clone Tracer Analysis  

To evaluate MixSIAR's effectiveness to model tracers with non-unique mixing spaces, δ13C FA26 was 

utilized as a non-informative clone tracer (an exact copy of a tracer used as an additional tracer). This 

clone tracer was then added three times to the δ15N+ δ13C FA26 tracer set. Each addition of FA26 was 

evaluated individually by CRPS to identify the effect of additional non-informative tracers. The 

comparison of model performance using additional FA tracers and non-informative clone tracers is then 

used to quantify the information gained by using an additional FA tracer. 
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2.3 Results and Discussion  

Source tracer values  

To reduce errors associated with input from non-terrestrial plant-derived FAs, only VLCFAs (FA22:0- 

FA30:0) (hereby referred to as FAs) were considered (Alewell et al. 2016; Reiffarth et al. 2016; 

Upadhayay et al. 2017; Lavrieux et al. 2019). Forest sources contained the highest concentration of 

FAs (mean: 19.4 µg g-1, SD: 5.0 µg g-1) and the most δ13C enriched isotopic values for all FA tracers 

(mean δ13C: -33.4 ‰, SD: 1.3 ‰), (Tables 1 and 2, Fig. 2). Pasture sources had the most δ13C depleted 

isotopic values for all FAs (mean δ13C: -36.2 ‰, SD: 1.4 ‰) and mid-ranged FA concentrations (mean: 

11.9 µg g-1, SD: 1.9 µg g-1). Arable sources contained the lowest concentration of FAs (mean: 7.7 µg g-

1, SD: 1.1 µg g-1) and mid-ranged FA isotopic values (mean δ13C: -35.0 ‰, SD: 1.7 ‰). The δ13C FA 

values for these land uses are similar to previous findings in fresh biomass (Chikaraishi et al. 2004) and 

soils from the same land use classification in similar geographic and climate regions (Alewell et al. 2016; 

Lavrieux et al. 2019; Hirave et al. 2021). 

The δ15N value of soil reflects the isotopic signature of nitrogen inputs, outputs and internal processes 

of the system (Amundson et al. 2003). δ15N values ranged from a mean of 6.3 ‰ (SD 0.9 ‰) in arable 

land to 4.0 ‰ (SD 0.9 ‰) in pasture and 0.0 ‰ (SD 1.6 ‰) in forest soil. Nitrogen concentrations ranged 

from a mean 0.5 mg g-1 (SD 0.1 mg g-1) in pasture to a 0.4 mg g-1 (SD 0.1 mg g-1) in forest and 0.3 mg 

g-1 (SD 0.1 mg g-1) in arable soil (Tables 1 and 2, Fig. 2). The δ15N values are comparable to previous 

results of similar land uses (Fox and Papanicolaou, 2008; Mukundan et al. 2010). Source tracer 

distribution are similar to those reported by (Fox and Papanicolaou, 2008; Mukundan et al., 2010; 

Alewell et al. 2016; Lavrieux et al. 2019; Hirave et al. 2021). As such, we found the samples 

representative of their land use classification and therefore are suitable for the mathematical mixture 

analysis of this study. However, we suggest that further source soil sampling should be done for the 

reliable unmixing of real suspended sediment. The full source value data set is appended in the Online 

Resource 5. 

Table 1 Summary of the isotopic tracer values for each land-use (δ15N ‰, δ13C ‰ FA) (see the 

supplementary data set for the full dataset) 

  δ15N ‰ δ13C ‰ FA24 δ13C ‰ FA26 δ13C ‰ FA28 δ13C ‰ FA30 

Land-
use 

Mean SD Mean SD Mean SD Mean SD Mean SD 

            

Forest 0.0 1.6 -31.9 1.2 -32.9 0.4 -33.9 0.4 -35.0 1.2 

Arable 6.3 0.9 -32.7 1.0 -34.7 0.7 -35.8 0.7 -36.6 0.8 

Pasture 4.0 0.9 -34.5 0.6 -35.8 0.4 -36.8 0.3 -37.7 0.5 
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Table 2 Summary of tracer concentrations for each land-use (see supplementary for full dataset). 

  N mg g-1 FA24 µg g-1 FA26 µg g-1 FA28 µg g-1 FA30 µg g-1 
Land-
use 

Mean SD Mean SD Mean SD Mean SD Mean SD 

            

Forest 0.4 0.1 19.6 11.2 14.7 5.9 26.2 14.9 17.1 6.6 
Arable 0.3 0.1 6.1 2.0 8.6 3.5 8.1 3.1 8.0 3.7 
Pasture 0.5 0.1 9.2 1.9 13.8 3.9 12.4 3.3 12.1 2.9 

 

  

Fig. 2 Isotopic ratios of δ13C FA and δ15N tracers for each source group. The boxes represent 25, 50 

and 75% quantiles with whiskers showing a 1.5 interquartile range (IQR) 

Source discrimination and mixing line origins 

The discriminative power of the isotopic tracers between each possible source pair was tested before 

MixSIAR modelling. 93% of all tracers significantly discriminated between all pairs of sources (Kruskal 

Wallis, p<0.05). Only δ13C FA24:0 did not discriminate between arable and forest sources (Fig. 2). All 

land uses displayed similar δ13C depletion with increasing alkyl chain length (x̄ = -1.1 ‰ δ13C per two 

additional carbon atoms, SD=0.13 ‰).  

The results are consistent with the literature that suggests a depletion of up to -2.7 ‰ in C3 plants from 

FA24:0 to FA32:0 (Agrawal et al., 2014 and references within). The small variation of δ13C enrichment and 

alkyl chain length (SD=0.13) between all sources suggests the δ13C enrichment during FA elongation 

is not land-use dependent. The similar enrichment of the mean δ13C FAs with increasing alkyl length 

(forest: R2 = 0.999, arable: R2 = 0.952 and pasture: R2 = 0.995) (Fig. 3) results in a mixing line for all FA 

tracers (Fig. 4) with the isotopic value of forest and pasture located at either end of the mixing line. 
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Fig. 3 All land uses displayed a similar δ13C depletion with increasing alkyl chain length (mean = -1.1 

‰ δ13 C per two additional carbon atoms) indicating the δ13C enrichment during FA elongation is not 

land-use dependent. Uncertainty is depicted with 95% confidence intervals 

The mixing line problem 

The FA mixing line illustrated in Fig. 4 is present in δ13C FA sediment fingerprinting studies with a similar 

land-use classification of sediment sources (Alewell et al. 2016; Lavrieux et al. 2019). The linear mixing 

line problem is not confined to isotopic tracers. Colour (Barthod et al. 2015) and geochemical tracers 

(Bouchez et al. 2011) have also presented a linear mixing line. The similar alkyl length - δ13C 

relationship of the different land uses is a result of the same mechanistic process of FA elongation for 

all land uses. Interestingly, this effect is not observed in all reported cases of arable, pasture and forest 

land uses (Upadhayay et al. 2020; Lizaga et al. 2021). Deviation from this relationship and the absence 

of a mixing line could indicate that the previous land use or crop type contained a higher concentration 

of a specific FA, which is now more present in the current soil compared to other legacy FAs. 

Conservative tracers, such as FAs, can persist in the soil after a change in land management 

(Upadhayay et al. 2020). Swales and Gibbs (2020) demonstrated that isotopic shifts occur during a land 

use transition, and therefore, past land use management should be considered when grouping source 

soils. This legacy effect has the potential to increases the uncertainty in source distributions and reduce 

source discrimination and subsequent unmixing performance. However, the legacy effect can 

potentially be used beneficially for fingerprinting if sources are grouped by their crop cycle rather than 

the current crop.  
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Fig. 4 Iso plots of δ15N and δ13C FA with colours indicating land use type. δ13C FA tracers present the 

mixing line problem that occurred using FA tracers only. It is unlikely that there will be a perfect 1:1 

mixing line when there are multiple samples for each source. Nonetheless, the central location of one 

source consistently between two other source end members will create challenges (i.e. central 

source(s) being misclassified as a contribution from endpoint sources) during the modelling process. 

The addition of δ15N expands the mixing line/space to more of a mixing polygon that provides the source 

discrimination necessary for more accurate and less uncertain model results 

Evaluation of mathematical mixtures 

All possible permutations and combinations of δ13C FA tracers (n=11) were evaluated using 150 

concentration-dependent mathematical mixtures (Fig. 5, A). Results demonstrated a general increase 

in CRPS of all sources as the number of δ13C FA tracers is increased (2 FAs mean CRPS: 0.165, 3 

FAs: 0.188, 4 FAs: 0.195). A summary of all tracer combination CRPS is appended in the Online 

Resource 1. 
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The elevated errors for the arable source contributions (mean CRPS: 0.260) are probably directly 

related to the location of arable FAs in the mixing space, resulting in the underreporting of arable 

sources with their contributions likely being misclassified as pasture. Misclassification of the arable 

source contribution potentially results in the over-estimation of pasture contributions, as suggested by 

pasture having the second highest CRPS value (mean CRPS: 0.209) for all δ13C FA tracers sets. Strong 

discrimination of forest sources resulted in a relatively low CRPS value (mean CRPS: 0.058) for all sets 

of tracers. Forest apportionment estimates were relatively independent of the number of δ13C FA 

tracers, suggesting that any additional source-based uncertainty induced by additional δ13C FAs was 

out-weighed by the beneficial source discrimination gained. This collaborates with the iso plots that 

display low source uncertainty of the forest using any δ13C FA tracer (Fig. 4). Although, our findings 

differ from those of Vale et al. (2022), who reported that the forest source apportionment had the highest 

mean absolute error (MAE) among all sources. Both studies demonstrate that the sources with a higher 

source discrimination have increased model performance. This indicates the ability to discriminate 

between sources is likely a crucial factor in model performance. Nonetheless, there is a necessity for 

catchment specific apportionment validation as source discrimination is highly variable even with similar 

land use groups. Overall, the performance of the model is more dependent on the number of δ13C FA 

tracers rather than the selection of individual tracers due to mixing space similarities.  

Including δ15N to offset the mixing line for all combinations of tracers (n=15) increased the performance 

of the model of all sources (FA combinations mean CRPS: 0.175, δ15N +FA combinations mean CRPS: 

0.091) (Fig. 5, B, Table S2). Importantly, pasture and arable source apportionment estimates decreased 

in performance with additional δ13C FA tracers (Pasture mean CRPS: δ15N +1 FA 0.073,2 FAs CRPS: 

0.102, 3 FAs: 0.161, 4 FAs: 0.184 and arable mean CRPS: δ15N +1 FA 0.079,2 FAs CRPS: 0.109, 3 

FAs: 0.172, 4 FAs: 0.184) suggesting any beneficial source discrimination by additional δ13C FA tracers 

is out-weighted by the increase in source-based uncertainty. Further evidence supporting these results 

is the iso plots that depict a large intersection between the arable and pasture source groups for all δ13C 

FA tracers (Fig. 4). Consequently, the mixing space shifts from a mixing line to a mixing polygon with 

the inclusion of δ15N, reducing pasture-arable misclassification. 
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Fig. 5 Mean CRPS of all possible permutations and combinations of A) δ13C FA tracers (n=11) and B) 

δ15N and all δ13C FA tracers (n=15). Tracer sets were evaluated using 150 concentration-dependent 

mathematical mixtures with CRPS (a higher CRPS indicates lower performance) 
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Tracer selection by the analysis of all combinations 

The benefit of using δ15N as a mixing line offset tracer is presented in Fig. 6 with the solid line indicating 

perfect fit (i.e., estimated proportion equals the known proportion). Fig. 6 (A) highlights the only δ13C 

FA tracer set’s inaccurate and underestimated apportionment of arable contribution and the 

overestimation of pasture contribution. Again, the inaccuracy can be attributed to the central location of 

arable in the mixing space for all δ13C FA tracers, causing an underestimation of arable contributions 

as they are misclassified as pasture contributions. This centralised source location challenge and 

misclassification has been presented previously by Alewell et al. (2016) and Lavrieux et al. (2019).  

 

Fig. 6 Estimated proportions vs known mixture proportion for different tracer sets, with the solid line 

indicating perfect fit (estimated proportion= known proportion). A) all FA tracers, B) δ15N+all δ13C FA 

tracers, C) δ15N+ δ13C FA26 tracer set 
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The inclusion of the δ15N tracer reduced the overestimation of pasture and the underestimation of the 

contribution of arable sources (Fig. 6, B). Using the CRP skill score as a comparative model 

performance metric, the expansion of the mixing space using δ15N had a mean 18% (median 22%) 

CRP skill score model improvement compared to using only δ13C FAs. The improvement of the model 

output using δ15N as an additional tracer was expected by the expansion of the δ13C FA linear mixing 

line into a more suitable mixing polygon. 

When examining all potential tracer combinations, δ15N + δ13C FA26 (Fig. 5, C) had the best model 

performance for all permutations with a mean 16% (median 62%) improvement compared to δ15N + all 

δ13C FAs (Fig. 5, B). The offset between mean and median is a result of the model predicting low 

contributions for all arable mixture proportions, at these low arable contributions, the model is likely 

correct for the wrong reasons. The increase in the accuracy and uncertainty of estimated source 

apportionment using δ15N + δ13C FA26 (Fig. 6, C) results in the known source proportions being 

bracketed by the estimated values. The increase in uncertainty of the model compared to using δ15N 

+all δ13C FA tracers suggests that a reduction in the number of δ13C FA tracers increases the number 

of possible solutions to the unmixing equation. 

Although LDA is commonly used to optimise the power of discrimination when handling a large number 

of tracers, it is used irregularly for CSSI tracer selection. The accuracy of using LDA for tracer selection 

was investigated with a stepwise forward variable selection using the Wilk's Lambda criterion (niveau 

=0.1), which selected δ15N + δ13C FA24+ δ13C FA26 as the optimal tracer set (LDA reclassification score 

89%). Interestingly, the model performance of the LDA selected tracers decreased by 24% compared 

to δ15N + δ13C FA26. The poor performance of the LDA selected tracers may be attributable to the mixing 

model's inclusion of concentration dependency, which is ignored by the LDA. 

Tracer Selection and prediction bias analysis (PBA) 

Predictive bias and the impact of the dominant source on model output has been identified previously 

in sediment fingerprinting and been described as a product of the source discrimination (Vale et al. 

2022). Ideal tracers should contain enough discrimination power for null predictive bias; however, this 

is not the case with real tracers. To assess if predictive bias effects are reduced by the removal of 

tracers which have non-unique mixing spaces, known source proportions of mathematical mixtures are 

plotted against the model performance (CRPS) for each source (predictive bias analysis-PBA) (Fig. 7, 

Fig. 8). PBA of δ15N + all δ13C FA and δ15N + δ13C FA26 was used to illustrate the effect of reducing 

source uncertainty by removing non-informative tracers.  

PBA of the δ15N + all δ13C FA tracer set illustrates the decrease in arable and pasture performance with 

increasing arable contribution (Fig. 7). The extremely similar and linear relationship between arable and 

pasture CRPS is strong evidence for the misclassification of arable and pasture as the model 

underestimates and overestimates contributions from arable and pasture respectively. The clear 

discrimination of the forest source for all tracers (Fig. 4) resulted in the performance of the forest 

estimates being not affected by different source contributions. The PBA of the δ15N + δ13C FA26 tracer 
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set depicts a reduction in the linear regression slope indicating a reduction in predictive bias effects 

(Fig.  8). It can be assumed that this is the result of a reduction in source uncertainty, when using a 

single FA tracer. The PBA highlights the balance between the source uncertainty error and the 

discriminative information gained by additional tracers. 

 

Fig. 7 The prediction bias analysis of δ15N + all δ13C FA illustrates how the  model's performance for 

each source is influenced by varying source proportions, with each source's contribution plotted against 

the mean model's performance (where higher CRPS values indicate lower performance) 



33 
 

 

Fig.  8 The prediction bias analysis of δ15N and δ13C FA26 shows how the model's performance for 

each source is impacted by different source proportions, with the contribution of each source plotted 

against the mean model's performance (where higher CRPS values indicate lower performance). By 

comparing the linear regression slope to Figure 7, it is clear that that there is a decrease in predictive 

bias with less non-informative tracers 

Identifying non-informative tracers by scaling and discrimination analysis (SDA) 

The tracers' balance of source discrimination and source uncertainty is determined on a regular basis 

using boxplots and a Kruskal Wallis test (Fig. 2). However, tracers are not independent factors and 

work in the mixing model simultaneously. The current approach to tracer selection is to see if individual 

tracers can distinguish between sources. As an alternative, we investigated whether it is possible to 

distinguish various FA tracers based on mixing space. 

The majority of δ13C FA tracers (94%) had significantly different source distributions (p<0.05) (except 

δ13C FA28 –FA30 in arable) (Fig. 9, A, Table 3, Left). This can lead to the assumption that each tracer 

has valuable information for the model. However, the difference between absolute source distributions 

of each tracer (distance of source distribution from 0) is caused by each FA tracer being depleted by 

approximately -1.1 ‰ δ13C per two additional carbon atoms (similarly shown by Chikaraishi et al. 2004) 

(Fig. 3). Considering that MixSIAR uses relative (source-source) tracer vales rather than the absolute 

tracer value, tracers which demonstrate modification of all source distributions by direct isometric 

translation (e.g., every point/source of the mixing shape is moved in the same distance and in the same 

direction) can be considered mathematically non-unique in terms of mixing space. 
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Fig. 9 A) δ15N and δ13C FA grouped by source, demonstrating the linear relationship of δ13C FA and 

alkyl chain length B) δ15N and δ13C FA tracers scaled and grouped by source allows comparison of 

relative source-source distributions for each tracer. Tracer values are scaled using the max and 

minimum value of each tracer over all land uses 
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Table 3 Left: Kruskal Wallis (KW) test results of the comparison of each tracer’s absolute source 

distribution, grey highlight indicates no significant difference between source distribution of tracer pairs, 

* indicates significant difference. Right: Kruskal Wallis test results of the comparison of each tracer’s 

scaled source distribution 

 

  
Non-scaled tracer values KW 

 
Scaled tracer values KW 

      

Forest 

 
     

  δ15N FA24 FA26 FA28 FA30 
 

δ15N FA24 FA26 FA28 FA30 

δ15N 1.00 
     

1.00 
    

FA24 <0.00* 1.00 
    

<0.00* 1.00 
   

FA26 <0.00* 0.03* 1.00 
   

<0.00* 0.11 1.00 
  

FA28 <0.00* <0.00* 0.00* 1.00 
  

<0.00* 0.11 0.90 1.00 
 

FA30 <0.00* <0.00* 0.00* 0.00* 1.00 
 

<0.00* 0.20 <0.00* <0.00* 1.00 

      

 

 

Arable 

 
     

  δ15N FA24 FA26 FA28 FA30 
 

δ15N FA24 FA26 FA28 FA30 

δ15N 1.00 
     

1.00 
    

FA24 <0.00* 1.00 
    

<0.00* 1.00 
   

FA26 <0.00* <0.00* 1.00 
   

<0.00* 0.41 1.00 
  

FA28 <0.00* <0.00* 0.01* 1.00 
  

<0.00* 0.29 0.88 1.00 
 

FA30 <0.00* <0.00* <0.00* 0.06 1.00 
 

<0.00* 0.03* 0.07 0.13 1.00 

      

 

Pasture 
     

  δ15N FA24 FA26 FA28 FA30 
 

δ15N FA24 FA26 FA28 FA30 

δ15N 1.00 
     

1.00 
    

FA24 <0.00* 1.00 
    

<0.00* 1.00 
   

FA26 <0.00* <0.00* 1.00 
   

<0.00* 0.44 1.00 
  

FA28 <0.00* <0.00* <0.00* 1.00 
  

<0.00* 0.37 0.80 1.00 
 

FA30 <0.00* <0.00* <0.00* <0.00* 1.00 
 

<0.00* 0.70 0.44 0.16 1.00 

 

To provide an alternative and more robust line of evidence of non-unique mixing spaces of FA tracers, 

the tracer values were scaled between 0 and 1 across all sources. Scaling retains the relative location, 

shape, and distribution of the sources for each tracer, enabling comparison of the relative source 

locations of different tracers using Kruskal Wallis test and as such is a suitable tool for evaluating if 

tracers have significantly different mixing spaces. 
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The scaled value of δ15N was shown to be significantly different (p<0.05) to all δ13C FAs for all land uses 

(Fig. 9, B, Table 3, Right). In contrast, only 17% of FA tracers had significant differences between any 

of the scaled source values. Pasture had no significant differences between any scaled δ13C FA. Forest 

and arable only had a significant difference between two and one pair of scaled tracers, respectively 

(Forest: δ13C FA26 – FA30:0 and δ13C FA28 – FA30. Arable: δ13C FA24 – FA30) (Fig. 9, B). The minimal but 

present uniqueness of mixing space for 20% of the FAs in the forest source can be assumed to be 

caused by a more biodiverse FA input, while the non-uniqueness of 10% of FAs in arable sources could 

be a result of the legacy tracer signal from crop rotation (Upadhayay et al. 2020).  

δ13C depletion during the FA elongation processes appears to be similar for all land uses, with any land-

use-specific isotopic variation during FA elongation being negligible when compared to the intra-source 

variability. The linear relationship between δ13C and FA alkyl length causes FA tracers to be direct 

isometry translations of each other and consequently, there is minimal significant differences between 

the relative source locations of each FA tracer (Fig. 9, B) and as such, the mixing space can be thought 

of as being non-unique for all δ13C FA tracers. The similarities between scaled source values for all 

tracers are illustrated in Fig. 10. δ15N is depicted to have to have non-translation transformations of the 

mixing shape compared to FAs. The similarities in the mixing shape for all FAs indicate that direct 

isometry translation is present between different FAs, making multiple FA tracers non-unique and non-

informative. 

 

Fig. 10 Scaled δ15N and δ13C FA tracer values used to compare the relative source distributions for 

each tracer. Tracer values are scaled using the max and minimum value of each tracer over all land 

uses. The mixing space is shown to be similar for all FAs while δ15N mixing space is shown to be 

modified by non-isometry translations 
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Considering MixSIAR uses the relative source-sediment-source positions for un-mixing, any 

modification of the mixing space by only direct isometry translation has a null effect on the mixing space. 

Therefore, any tracer with a mixing space that is a direct isometry translation of another tracer can be 

seen as almost identical and either one of the tracers is non-informative. 

Non-informative tracers – Clone Tracer Analysis  

To assess MixSIAR’s performance when using tracers with identical mixing spaces, a non-informative 

clone tracer (an exact copy of a tracer used as an additional tracer) was used as a direct approach to 

test non-informative tracer behaviour. Three sequential additions of the clone tracer δ13C FA26 were 

added to the δ15N + δ13C FA26 tracer set (Fig. 11, A). Increasing the number of clone tracers decreased 

the model performance (δ15N + 1x δ13C FA26 CRPS: 0.034, 2x FA26: 0.181, 3x FA26: 0.199, 4x FA26: 

0.202). This effect can be attributed to the lack of any additional beneficial information when using 

tracers with non-unique mixing spaces, whilst the source uncertainty error induced by adding multiple 

clone tracers is propagated. In this study, these results disagree with the notion that MixSIAR handles 

non-informative tracers sufficiently (Smith et al. 2018).  

Optimizing model performance strives to balance new beneficial source discrimination and the 

additional source uncertainty brought to the model by each additional tracer. Fig. 11, A, indicates that 

when using a clone tracer, the source uncertainty is propagated until the addition of a fourth tracer. The 

difference in CRPS between clone tracers and different FAs was used as a measure of information gain 

when using additional FA tracers. The mean CRPS of different FA tracer combinations with the same 

number of tracers displayed a similar trend to that when adding additional clone tracers (δ15N + 1x δ13C 

FA CRPS: 0.060, 2x FA: 0.081, 3x FA: 0.124, 4x FA: 0.138) (Fig. 11, B). Small non-translation 

modifications of FA mixing spaces resulted in the CRPS using additional different FA tracers being 

generally lower (mean 22%) than additional clone tracers. Therefore, from a mathematical perspective, 

different FAs are not completely non-informative. Although, from practical perspective additional FA 

tracers are essentially non-informative, as any beneficial information gained is outweighed by the error 

added from the propagation of source uncertainty. 

Indeed, this approach is highly experimental, and it is unlikely that you will have truly identical tracers 

in the field. Nonetheless, this method demonstrates that non-informative tracers can add bias to a 

model, as additional FA tracers may bring limited additional information for unmixing. When using 

different FAs, our results demonstrate that the error gained by mixing spaces translation effects 

outweighs the information gained from non-translation modification. This, however, may not be the case 

for all catchments and tracers.  

An intriguing area of investigation is how the balance of source discrimination and tracer mixing space 

similarities effect model performance. CSSI of FAs have a relatively narrow range of possible source 

values (ca. 10-40 ‰) compared to other tracers (e.g., geochemistry). When tracers with a higher degree 

of source discrimination, though identical mixing spaces, are modelled, the propagation of source 

uncertainty may be out weighted and potentially result in improved model performance.  
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Fig. 11 Comparison between model performance using additional clone tracers (δ13C FA26) and 

additional different δ13C FA tracers to the δ15N + δ13C FA26 tracer set. The mean CRPS of all tracer 

combinations with the same number of tracers is used for additional FA tracers to improve the 

representative of results (higher CRPS indicates lower performance) 

3.4 Conclusion 

Using mathematical mixtures, the addition of δ15N to expand the CSSI FA mixing line, improved the 

model by 22% compared to using only δ13C FAs. The evaluation of possible combinations of tracers 

indicated that δ15N + δ13C FA26 was the optimal tracer set and had a 62% improvement compared to 

δ15N + all δ13C Fas. LDA tracer selection is regularly used in the literature to select the optimal suite of 

tracers to increase model performance. However, in this case, the tracers selected by the LDA did not 

provide the optimal tracer selection. Additional δ13C FA tracers had a negative influence on model 

performance, indicating that increasing the number of conservative tracers does not necessarily result 

in improved performance, as previously suggested when using a Bayesian framework. However, the 

reduction in number of tracers will increase the influence of any non-conservative tracers. As 

mathematical mixtures, by definition, do not contain non-conservative tracers, the potential influence of 

non-conservative tracers needs careful consideration when apportioning sediment sources.  



39 
 

Our results indicated there is a reduction of predictive bias when using a single FA tracer. Using a novel 

SDA test, additional Fas were shown to have non-unique mixing spaces. Considering MixSIAR uses 

the relative source-sediment-source positions for un-mixing, any tracer which exhibits a non-unique 

mixing space can be seen as non-informative. Using a clone tracer to evaluate MixSIAR’s performance 

handling non-informative tracers resulted in strong evidence of MixSIAR’s insufficient handling of 

tracers with non-unique mixing spaces. In particular, model performance decreased when using 

additional FA as well as clone tracers.  

Land-use-specific sediment source apportionment using FA CSSIs requires a supplemental offset 

tracer that is not dependent on the C3-C4 discrimination pathway. Since a single FA CSSI had the best 

performance with an additional offset tracer, an alternative single tracer to FA CSSIs that uses the C3-

C4 discrimination pathway for source discrimination such as bulk isotopes may be more accessible and 

have similar unmixing performance. However, the conservativeness and unmixing performance of 

these tracers need to be explored further; the latter can be evaluated confidently by using mathematical 

mixtures. Even though adding δ15N as a tracer in this study outperformed the combination of several 

FA CSSI, δ15N may be prone to isotopic fractionation during the degradation of molecules and thus may 

not meet the requirement of a conservative tracer under real world situations, where molecules are 

subject to transport and possible degradation. δ15N may be useful in scenarios where the balance 

between beneficial information gained by improving source discrimination outweighs any effect of 

modification or fractionation of the tracer during sediment mobilization, transport and deposition 

processes. Here, we capitalized on the availability of δ15N data (which is analysed simultaneously with 

bulk δ13C) to demonstrate the utility of additional tracers that have an alternative mixing space.  

In fingerprinting applications, additional tracer selection steps should be considered, including: 1) 

checking the uniqueness of tracer mixing spaces by SDA, with the removal of tracers that show non-

unique mixing spaces, and 2) where feasible, analysing all combinations and permutations of tracers 

using mathematical mixtures to further optimize tracer selection. Although computationally intensive, it 

can help identify the optimal tracer suite for modelling. Even though this method is applied to FA CSSI 

and δ15N tracers in this study, this method is potentially appropriate for broader application to identify 

non-informative tracers. This includes multiple fingerprinting parameters (e.g. fallout radionuclides, 

spectra and geochemical tracers) in which the co-linearity of tracers is not uncommon. However, we 

suggest further exploration of mathematical mixtures to determine the effect of different error structures 

on model performance and the validity of organic matter or particle size corrections. We anticipate that 

the use of mathematical mixtures and tracer combinations as a decisive tracer selection step will enable 

a wider range of applications for sediment fingerprinting, improve our knowledge of the dynamics of soil 

and sediment in the environment, and enhance soil erosion mitigation techniques. 
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Abstract 

Purpose 

Soil erosion models are essential to improving sediment management strategies. Sediment source 

fingerprinting is used to help validate erosion models. Fingerprinting sediment sources with organic 

isotopic tracers faces challenges from aquatic sources and co-linearity. To address these complexities, 

integrating another land-use-specific tracer is essential. Suess corrections incorporating multiple mean-

residence-times are necessary to accurately model historical sediment apportionments. In previous 

studies, compound specific isotopic tracers indicated forest as the dominant source. We hypothesise 

there is an overestimation of forest contribution, attributed to the misclassification of particulate organic 

matter as forest. 

Methods 

In this study, we utilise stable carbon isotope (δ13C) values of fatty acid and the average chain length 

in combination with the δ13C values of lignin derived methoxy groups as an additional tracer. We apply 

different Suess corrections to explore the effect of the changing atmospheric δ13CO2 values on sediment 

apportionment. The performance of the unmixing model is evaluated with 300 mathematical mixtures. 

To determine shifts in sediment sources throughout the last 130 years, particulate organic matter 

contributions are determined, and removed to apportion sediment soil sources. We investigate the 

potential misclassification of forest contributions by merging particulate organic matter and forest 

sources to simulate tracers which are unable to discriminate. 
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Results 

The inclusion of δ13C values of lignin methoxy groups and the alkane average chain length as additional 

tracers successfully removed tracer co-linearity. Additionally, we used an updated concentration 

dependent point in polygon test to identify sediment with increased potential for incorrect source 

apportionments. Changes in the dominant sediment sources over time (Forest: pre-1990, Pasture: 

1910-1940, Arable: post 1940) highlight the effect of policy induced land-use changes. Additionally, the 

inability to discriminate particulate organic matter and forest sources was revealed to cause a 37 % 

over estimation of forest contributions from 1944-1990. 

Conclusion  

Using δ13C values of lignin methoxy groups as an additional tracer, we identified critical points in the 

130-year sediment history of Lake Baldegg. Furthermore, we highlight the importance of incorporating 

multiple Suess effects. Through mathematical mixtures, we assessed the confidence that should 

accompany apportionment estimates. While merging forest and particulate organic matter sources did 

not result in forest as the dominant source over the last 130 years, but separating these sources resulted 

in more accurate apportionment. These insights offer valuable information to enhance the accuracy of 

sediment fingerprinting, which can then be used to assist soil erosion models employed for sediment 

mitigation policies. 

Keywords  

Sediment Tracing ·sediment apportionment · Swiss Lake Baldegg · MixSIAR · CSSI · Suess 

corrections ·  

3.1 Introduction 

Soil erosion and sedimentation are recognized globally as a critical problem (Pimentel 2006). On-site 

impacts of soil erosion include the degradation of soil structure (Zhang et al. 2007), depletion in soil 

carbon and nutrients (Bashagaluke et al. 2018), and a reduction in agricultural productivity (Bakker et 

al. 2007). However, off-site impacts (e.g., sedimentation), can be equally detrimental, leading to 

pollution and eutrophication of fresh and ocean waters (Zamparas and Zacharias 2014). The accurate 

identification and apportionment of sediment sources is necessary for developing targeted and effective 

sediment mitigation strategies to ensure the long-term sustainability of aquatic ecosystems and land 

resources (Collins and Walling 2004; Walling 2005; Owens et al. 2016).  

The sediment fingerprinting method uses various characteristics of the soil and sediment to fingerprint 

possible sources, tracking back to potential land-uses, vegetation cover or geological bedrock. 

However, classic fingerprinting approaches using geochemical (Batista et al. 2019) or fallout 

radionuclide tracers (Evrard et al. 2013), are often not suitable to provide information on land-use-

specific sources. Compound specific stable isotopes (CSSI) of carbon of long chain fatty acids (LCFA) 

and alkanes have been used to apportion the relative contribution of different land-uses (Gibbs 2008; 

Alewell et al. 2016; Upadhayay et al. 2018; Lavrieux et al. 2019).  
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The linear relationship between 13C depletion and LCFA elongation during biosynthesis occurs similarly 

in all land-uses, often causing multiple 13C LCFA tracers to have co-linearity, resulting in a problematic 

one-dimensional mixing line (Alewell et al. 2016; Lavrieux et al. 2019; Cox et al. 2023). In particular, 

Cox et al. (2023) demonstrated that one-dimensional mixing lines have the potential to cause inaccurate 

apportionment estimates due to misclassification of contributions of the central source(s) as 

contributions from sources at either endpoint. Additionally, Cox et al. (2023) demonstrated that 

additional co-linear tracers decrease the performance of the un-mixing model. Lavrieux et al. (2019) 

clearly illustrated the problematic mixing line when using δ13C values of LCFA (C24-C28) as tracers at 

Lake Baldegg (Canton Luzern, central Switzerland). The δ13C LCFA one-dimensional mixing line 

prevented meaningful sediment source estimates with the δ13C LCFA of forest and grassland source 

fingerprints plotting at either endpoint of a mixing line, with orchards and arable sources plotting on a 

line in between these two endmember sources. Furthermore, sediment δ13C FA24,26 values were found 

to be extremely depleted in 13C and outside the range of the source values potentially indicative of an 

unknown source. 

Lavrieux et al. (2019) hypothesized that the missing source was of aquatic origins. The δ13C FA28 values 

of source soils bracketed all sediment δ13C FA28 values except 1956 and 1965. 1956 coincided with 

evidence of large turbidites in Lake Baldegg (Lotter et al. 1997), and 1965 had the highest TOC and TN 

levels over the 130-year record suggesting primary production was at its maximum (Lotter et al. 1997). 

Considering, the remaining sediments are within the δ13C FA28 value source range, Lavrieux et al. 

(2019) presumed that the unknown source did not significantly contribute to the δ13C FA28 sediment 

fingerprint for the majority of years. Nonetheless, for accurate land-use-specific source apportionment 

in Lake Baldegg, it is evident that the incorporation of an additional non-aquatic and land-use-specific 

tracer is necessary to expand the mixing line into a suitable mixing polygon. In this context, we propose 

the incorporation of δ13C values of lignin-derived methoxy groups (δ13C LMeO) as a promising novel 

tracer. 

Lignin and its copper oxidation products have been employed to discriminate sediment sources 

(angiosperms vs gymnosperms, terrestrial vs marine, and land-uses) (Goñigoñi et al. 1998; Goñi et al. 

2000; Kuzyk et al. 2008; Rezende et al. 2010). However, the application of lignin copper oxidation 

products has limitations. These include reduced source discrimination (Thevenot et al. 2010), 

modifications to the monomer composition during degradation (Dümig et al. 2009), and fractionation 

occurring during soil phase transitions (Hernes et al. 2007). Methoxy groups (MeO, molecular formular: 

CH3O) comprise approximately 10-25% of lignin monomers and 2.5% of the total carbon content in the 

terrestrial biosphere (Galbally and Kirstine 2002). MeO predominantly originate from lignin (ether bound 

MeO groups) and pectin (ester bound MeO groups). While pectin, a polysaccharide, can be found in 

some algae species (Domozych et al. 2014), lignin is exclusively found in higher terrestrial plants 

(Boerjan et al. 2003). The selective removal of ester bound pectin MeO by alkaline hydrolysis allows 

for the analysis of the remaining terrestrial derived lignin MeO (LMeO) through the conversion of the 

residual LMeO groups to methyl iodide (MeI) using the Zeisel method (Zeisel 1885). 
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Two prerequisites are required for a successful fingerprinting tracer: the ability to discriminate between 

land-uses (e.g., forest, arable, pasture), and secondly, to have predictable or no modification of tracer 

signature from source to sink (e.g., conservative behavior) (Motha et al. 2002; Koiter et al. 2013; 

Belmont et al. 2014; García-Comendador et al. 2023). LMeO display not only large 13C discrimination 

between C3, C4 and CAM plants (Keppler et al. 2004), but are also potentially appropriate for land-use-

specific source discrimination between C3 vegetation. The conservativeness of LMeO has yet to be 

explored fully for fingerprinting applications. Litter bag experiments in soils measuring bulk δ13C MeO 

(pectin and lignin MeO) indicated small isotopic fractionation during degradation (Anhäuser et al. 2015), 

however, this was reasoned to be due to the preferential degradation of pectin. Analysis of the bulk 

MeO δ13C continuum from wood to coal indicated significant fractionation during degradation, with 

Rayleigh coefficients of -15 ‰ being calculated. Considering we would not expect LMeO degradation 

on the same scale as the wood-to-coal continuum (remaining MeO fraction in coal ca. 10-4) (Lloyd et al. 

2021), we would expect isotopic fractionation to be minimal within LMeO concentrations in soil and 

sediments. 

The utilization of CSSI tracers to apportion sediment sources has the implicit assumption that the 

sediment isotopic fingerprint originates from the input and mixing of the isotopic fingerprint of the 

possible terrestrial source soils (i.e., mineral horizons). However, this presupposes the absence of CSSI 

tracers from additional sources present in the sediment. While lake sediments are largely comprised of 

clastic materials (i.e., clay, silt and sand), they also contain an organic fraction in the form of mineral 

associated organic matter (MAOM), plant debris (terrestrial particulate organic matter- POMterr) and 

particulate organic matter from aquatic sources (POMaq). Since the primary goal of sediment 

fingerprinting is to provide information for soil erosion mitigation policies, the main aim of using CSSI 

tracers is the apportionment of the soil MAOM fraction and the subsequent conversion to soil 

proportions using concentration dependency. Thus, any contribution of the sediment CSSI signal from 

POMterr or POMaq will result in erroneous MAOM sediment source attribution. 

POMaq is known to be an important factor in lacustrine biochemical cycles and contributes to sediment 

organic matter (Xu et al. 2019; Wynants et al. 2021). However, to accurately apportion sediment 

sources, tracers are specifically used which are not substantially present in POMaq (e.g., long chain 

fatty acids and lignin derived methoxy groups). However, non-MAOM sources of carbon (and CSSIs) 

such as POMterr, can enter the watercourses through aeolian transport, leaching and surface wash-off 

during rain events. As suggested by Wiltshire et al. (2022), the inclusion of POMterr in the sediment 

isotopic fingerprint might cause the over estimation of forest sediment input. While the physical 

separation of POM and MAOM has been achieved previously by density centrifugation (Cui et al. 2016), 

relatively large amounts of sample are required (5 g). Distinguishing between MAOM and POMterr as 

separate endmembers using δ13C LCFA is difficult due to the small isotopic difference (Wiltshire et al. 

2022). Compared to LCFAs, LMeO have a much larger δ13C discrimination between woody material 

and leaves (ca. -20 ‰) (Keppler et al. 2004), potentially resulting in a larger difference of δ13C between 

MAOM and POMterr. Although multiple studies utilize proxies, ratios and tracers to determine the POMaq 

and POMterr contribution to the sediment (Derrien et al. 2017), there are currently no studies attempting 
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to disentangle the POMterr and MAOM contribution and subsequent land-use-specific apportionment of 

MAOM.  

Currently in sediment fingerprinting research, there is extensive literature dedicated to tracer selection 

(Laceby et al. 2015; Smith et al. 2018; Batista et al. 2019; Vale et al. 2022; Cox et al. 2023). Despite 

the wealth of information surrounding this initial stage, the subsequent tracer selection steps often 

follows a reductionist approach, systematically eliminating tracers through a series of selection tests. 

Beyond whether to choose CSSI, geochemical or radionuclides tracers, there appears to be a lack in 

literature on additive tracer selection in which tracers are added for targeted discrimination. We propose 

a paradigm shift towards a more purpose-oriented tracer selection strategy, in which tracers are 

intentionally incorporated to serve a specific discrimination objective (Cox et al. 2023). Here, we use 

the average alkane chain length (ACL, 21-33 C odd alkanes). While the ACL may not be able to 

discriminate between specific land-uses (Wiltshire et al. 2022), ACL can be used as an additional tracer 

to enhance the discrimination of POMterr and MAOM in the sediment. Moreover, the extraction and 

analysis of alkanes often coincide with CSSI analysis, providing readily available data for retrospective 

and future studies. 

The use of CSSI δ13C tracers for historical sediment apportionment requires Suess correction (i.e., 

correcting the isotopic values for the changing atmospheric δ13CO2 composition), during the last 100 

years due to anthropogenic fossil fuel burning (Verburg 2007; Gibbs et al. 2014). However, in sediment 

fingerprinting, Suess corrections are often either omitted under the assumption that variability induced 

by the Suess effect is negligible when compared to the source uncertainty (Brandt et al. 2018), or a 

single mean residence time (MRT) is used (Bravo-Linares et al. 2020). To accurately model the possible 

Suess effect on isotopic tracers, a range of MRTs should be assessed. The MRTs of FAs varies from 

decades to millennia (Lützow et al. 2006; Wiesenberg et al. 2010). While the MRT of LMeO has not 

been investigated, the MRT of lignin has been estimated to be comparatively shorter than FAs (5-26 

years for pasture, 9-38 years for arable soils) (Heim and Schmidt 2007). As the exact MRT for each 

isotopic tracer is dependent on the soil ecosystem and soil properties (Schmidt et al. 2011), to 

accurately model the possible Suess effects, three MRTs (10 yr, 30 yr, and 100 yr) were considered 

when correcting for the Suess effect. 

Point in polygon/mixing space tests (e.g., range/bracket tests) are a standard procedure in sediment 

fingerprinting (Collins et al. 2020). Polygons (mixing spaces) are drawn around the sources to identify 

sediment values which are located outside the mixing space. Sediment fingerprints outside the polygon 

then indicate that with the current sources (presuming no modification of the tracer), the mixture is highly 

implausible or even impossible. However, the sediment isotopic fingerprint is known to be impacted not 

only by the proportions of each source and the sources isotopic value, but also the concentration of the 

CSSI in each source (Upadhayay et al. 2018) and as such, this should be reflected in the possible 

mixing space.  

In this study, first we test the accuracy and precision of δ13C LMeO, ACL and δ13C FA28 as a tracer set 

using mathematical mixtures. Second, the sediment contribution from the main land-uses was then 
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estimated for the last 130 years for a sediment core from Lake Baldegg. Third, we explore the impact 

of MRTs on Suess corrections, by comparing three different MRTs for both isotopic tracers. Fourth, we 

test the hypothesis that high forest contribution in sediment fingerprinting might be a result of the 

misclassification of POMterr, if POMterr, is not considered as a separate source. For this, we group forest 

and POMterr into a single source to simulate a tracer which cannot discriminate between these sources 

and compare against the ungrouped results. 

The objective of this study is to advance our understanding of CSSI sediment fingerprinting by 

addressing the challenges associated with these tracers, including the presence of one-dimensional 

mixing lines, aquatic and POMterr sources of organic tracers, accounting for tracer MRTs when applying 

Suess, and the improbable high contribution of forest soils to sediment. This study aims to enhance the 

accuracy of land-uses specific unmixing models and ultimately facilitate better techniques for monitoring 

sediment erosion mitigation strategies. This will be accomplished by i) introducing an additional land-

use-specific tracer, ii) incorporating multiple Suess effects, and iii) investigating the influence of POMterr 

on apportionment estimates. This study aims to improve land-use specific sediment source 

apportionment using CSSI tracers to aid targeted sediment management interventions. This approach 

is particularly valuable for ensuring the maintenance of both soil health and water quality and can be 

applied to regions of similar temperate climate and agricultural practices. 

3.2 Methods 

Study site 

Lake Baldegg is a glacial lake located in the central Swiss plateau situated 463 m above sea level 

(coordinates: 47◦1200 00 N, 8◦1504000 E). It extends from north to south with a maximum depth of 66 

m and mean depth of 33 m. The Lake covers a surface area of 5.2 km2 and holds a volume of 0.173 

km3. The water residence time of Lake Baldegg has been estimated to be 4.3 years, with the outflow 

located at its northern end. The catchment area surrounding the lake, excluding the lake surface area, 

spans 68.2 km2 (Wehrli et al. 1997). On the year of source sampling (2016), 77% of the catchment was 

being used for agriculture and 12% was covered by forest and 5% urbanized (Lavrieux et al. 2019).  

Over the last century, Lake Baldegg has shown an extensive history of eutrophication (Lotter et al. 

1997). Since the beginning of the 20th century, the discharge of untreated waste and agricultural runoff 

into the lake has increased due to population growth and the intensification of agriculture. The rise of 

nutrients led to an increase in primary production from 1885 to 1970. The geographical setting of Lake 

Baldegg prevents water column mixing and resulted in permanent anoxic conditions in the hypolimnion. 

The anoxic conditions prohibited bioturbation and resulted in seasonal material being preserved in 

laminated varved layers which have been used for core dating (Lotter et al. 1997; Wehrli et al. 1997). 

Additionally, the sediment core contained multiple turbidites. Most turbidites originate in the Baldegg 

catchment and are transported into the lake during heavy rainfall or flood events (Lotter et al. 1997). 
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Sampling 

In this study, we reanalyzed source samples presented in Lavrieux et al. (2019) and POMterr (leaves, 

pine needles, and the Oi organic horizon) from Hirave et al. (2020). Samples were stored dry at 4 ⁰C in 

a sample archive (Department of Environmental Sciences, University of Basel). Using a modified 

sediment connectivity index (Borselli et al. 2008), Lavrieux et al. (2019) selected source sample 

locations based on high connectivity and representing the main land-use types in the catchment (arable 

lands, permanent grasslands, temporary grasslands, forests, orchards). Importantly, only A horizons 

(mineral soil) were collected from each source sample location and sieved to 2 mm. In the case of forest 

samples, plant debris was removed from source samples.  

 

Fig. 1 Connectivity and land-use of the Lake Baldegg (Canton Luzern; Central Switzerland) catchment 

with sampling sites marked from Lavrieux et al. (2019) with source soil and coring sites marked with the 

‘O’ symbol 

Subsamples from the sediment core Ba-09-03 (Lavrieux et al. 2019) were reanalysed. As described in 

Lavrieux et al. (2019), the varved sediment allowed seasonal bi-annual dating back to 1885. 

Subsamples had a 3 cm thickness (Table S2) and the mean age is reported throughout. For further 

core sub sampling information see Lavrieux et al. (2019). Details on sampling the sediment core, as 

well as the full core age–depth model can be found in van Raden (2012) and Kind (2012). 

Usually, sediment source attributions are limited to relative source contributions. To convert these 

relative contributions to absolute sediment accumulated from each source, the mean sediment 

accumulation rate (SAR) was taken as an average of sediment cores BA93-C and BA93-BA extracted 

from Lotter et al. (1997) who determined the mean SAR by varve counting and measuring the thickness 

of sediment deposit annually. The SAR was then used to convert source proportions to annually 

deposited sediment.  

Coring site 
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For improved source discrimination, temporary and permanent grassland were grouped into one 

pasture source. Although at the time of sampling, orchards represented only 1% of the catchment, aerial 

photographs demonstrate orchards to be a more significant land cover in the catchment since 1950. 

However, orchard source samples taken by Lavrieux et al. (2019) are from modern orchard plantations, 

which consist of highly dense fruit trees in rows. Historically, fruit trees have been grown in pastures or 

meadow fields at low density and have isotopic signatures that are similar to pastures or meadows. As 

such, the orchard source samples taken by Lavrieux et al. (2019) are not representative of the orchard 

land cover for the last 130 years and therefore have not been included as a sediment source. 

Laboratory analysis  

Sample preparation 

Adapting the method of Greule and Keppler (2011), ester bound MeO groups (predominantly of pectin 

origin) were removed from the sediment and source soils by the conversion to methanol by alkaline 

hydrolysis. Briefly, 1 ml of 1 M NaOH was added to approximately 150 mg of soil/sediment in 1.5 ml 

vials, samples were capped and heated at 90 ⁰C for 4 hrs. Samples were then uncapped and dried at 

60 ⁰C in a sand bath. To ensure hydroiodic acid (HI) is not used up by the neutralization of NaOH or the 

removal carbonates, 100 µl deionized water was added to each sample followed by acid fumigation for 

24 hrs in 37 % fuming hydrochloric acid (HCl). Samples were then dried again at 60 ⁰C in a sand bath. 

Residual LMeO groups (ether bound) were converted to MeI by the addition of 500 µl HI 57 % (Sigma 

Aldrich, Stabilized) and heated for 1 hr at 130 ⁰C. Samples were left to equilibrate at room temperature 

for 1 hour before GC-FID and GC-IRMS analysis (Greule et al. 2009). 

Lignin methoxy concentration  

The analysis of MeI was conducted using static headspace analysis, adapting the procedure outlined 

in Greule et al. (2009). A headspace volume of 10-90 µl was manually injected (Hamilton, 100 µl, gas 

tight, side-port) into the Trace Ultra gas chromatograph (GC) with a flame ionization detector system 

(FID; Thermo Scientific, Walthalm, MA 02451, USA). Conditions of the GC-FID were set at 200 ⁰C inlet 

temperature, 1.8 ml/ min He flow rate, and an isothermal oven temperature at 65 ⁰C resulting in an 

approximate elution time of 4 minutes. The MeI analyte was quantified using an external calibration 

curve generated from compounds with known MeO concentrations (i.e., Vanillin, (Sigma Aldrich, 99 %) 

and HUGB3 (Greule et al. 2020)). The concentration of source samples was analysed with triplicate 

samples with single injection. Due to minimal sediment sample availability (ca. 200 mg), the 

concentration of sediment samples was analysed by triplicate injection of a single sample.  

The calibration of MeO quantification ranged from 0.001 mg g-1 (dry soil weight) to 0.5 mg g-1 MeO, with 

a r2 > 0.97 (Pearson’s correlation) for all analysis. Deviation from a linear relationship was not found 

between concentration and counts using static headspace injection as reported by Lee et al. (2019) and 

as such, we found injection of head space a simple and effective methodology of quantification for soil 

content of LMeO.  
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Lignin methoxy isotopic values 

The δ13C isotopic composition of MeI was determined using a Trace Ultra GC instrument interfaced 

online through a GC-Isolink to a Conflo IV and Delta V Advantage isotope ratio mass spectrometer 

(Thermo Scientific, Walthalm, MA 02451, USA) via an oxidation reactor. A reduction stage was fitted to 

remove potential corrosive contamination (Feakins et al. 2013) (see Fig. S1 for instrument schematic). 

The inlet temperature was set to 200 ⁰C, the column flow rate (He) was 1.8 ml min-1. The initial oven 

temperature was set to 30 ⁰C for 3.8 min, ramp at 30 ⁰C per minute until 100 ⁰C. 

In this paper, all stable carbon isotope ratios are expressed in the conventional ‘delta’ δ notation, 

meaning the relative difference of the isotope ratio of a substance compared to the standard substance 

Vienna Peedee Belemnite (VPDB). Reference materials HUGB1 (δ13CV-PDB = -50.17 ± 0.08 ‰) and 

HUGB4 (δ13CV-PDB = -30.07 ± 0.10 ‰) were used for the normalization of sample isotopic ratios (Greule 

et al. 2019, 2020). HUGB3 (δ13CV-PDB = -29.30 ± 0.10 ‰) was treated identically to samples and used 

as a quality control sample throughout the run. 

Triplicate injections of MeI were used to determine the instrumental uncertainty of isotopic analysis. We 

found the mean instrumental precision (1 SD) to be 0.16 ‰ over all sequences. Single injection of 

triplicate source samples had a mean SD of 0.3 ‰. Using a two-point calibration of HUGB1 and HUGB4, 

and HUGB3 as a quality control sample throughout. HUGB3 was shown to have a RSME of 0.4 ‰. For 

information on the FA and ACL method and analytical precision see Hirave et al. (2020) and Lavrieux 

et al. (2019). 

Suess corrections 

To account for a time lag between atmospheric changes and changes in the soil, different MRTs were 

compared (10 yr, 30 yr and 100 yr). Following an identical methodology to Lavrieux et al. (2019) isotopic 

values of both soils and sediments were corrected using the atmospheric CO2 curve of Verburg (2007) 

for multiple MRTs. Eq. (1) was applied to correct isotopic values to the pre-industrial era (1840).  

𝛿 𝐶 𝑆𝑜𝑖𝑙 (𝑡+1) = (1 −
1

𝑅
 )13 𝛿 𝐶 13 𝑆𝑜𝑖𝑙(𝑡) +

1

𝑅
(𝛿 𝐶 13 𝑆𝑜𝑖𝑙(𝑡0) 

+ (𝛿 𝐶 13 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒(𝑡+1) − 𝛿 𝐶 13 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒(𝑡0) )) 

Eq.1 

 

We assigned the variable ‘t’ as the year of observation, with ‘t0’ corresponding to the year 1840. ‘R’ 

represents the MRT of the isotopic tracer in years (10 yr, 30 yr and 100 yr). We assumed that there 

were only marginal changes in the δ13C values of atmospheric CO2 prior to 1840. The calculated change 

in δ13C values after 1840 are based on the atmospheric data from Verburg (2007). We also maintained 

the assumption of stability in the soil organic carbon pool size over time and no changes in the isotopic 

fractionation during CO2 uptake due to increased atmospheric CO2 concentrations. 
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Defining a mixing space and sediment classification 

Point in polygon/ mixing space tests (e.g., range/bracket tests) are standard practice in sediment 

fingerprinting (Collins et al. 2020). They are designed to identify mixtures which are located outside of 

the possible mixing space of the sources, which suggests the mixture is not possible from the current 

sources and will result in erroneous unmixing. Although point in polygon tests are standard practices, 

they have yet to be adapted to concentration dependent tracers (e.g., CSSI). To define a concentration 

dependent mixing space, the open-source python script of Cox et al. (2023) was used to generate 

mathematical mixtures. For each Suess correction, 300 concentration dependent mathematical 

mixtures were created by weighting the mean source isotopic tracer values by their respective mean 

concentrations of source soils and multiplying by 300 randomly selected proportions with the condition 

that all proportions must sum to one.  

A limitation of using the methodology of Cox et al. (2023) is that the source variation is not incorporated. 

We attempted to incorporate the source variation by expanding the mixing space to include all source 

samples. While MixSIAR uses the mean and SD, we suggest that even though highly improbable, 

sediment could be derived from an outlying source sample outside the SD of source value. 

Consequently, we have expanded to the mixing space beyond the SD to encompass all source values. 

As MixSIAR incorporates source variance, the mixing space is diffuse and lacks a precisely defined 

boundary. The determination whether a sediment is within the mixing space is probability based, and 

as such is non-binary. The position of the sediment fingerprint may be around the diffuse boundary of 

the possible mixing space (mixing horizon). Mixing horizons can be defined as the boundary in which 

the unmixing results are sensical. Beyond this horizon (in a three-source model of sources X, Y and Z), 

the model’s calculation is dominated by a reduction in contribution X, leading to imputation of Y and Z 

source contributions to satisfy the condition that the sum of contributions should equal 1. Importantly, 

this is the case even when the sediment moves away from the mixing space and the X, Y and Z sources. 

This must be taken into consideration when interpreting unmixing results with the comparison of bi-

plots. 

Using bi-plots, we classified sediment values into three classes: A) inside the mixing space, B) located 

around the mixing space horizon in the expanded mixing space, and C) outside the expanded mixing 

space. Sediment are classified on their lowest class in all bi-plots (A→B→C). Class C sediments are 

excluded from interpretation due to a high probability of erroneous mixing results. The coherence of the 

apportionment of sediments in Class B are tested using a range test. The range test consists of 

determining if the sediment apportionment is within the range of the Class A sediments on either side 

(the years before and after). This method of evaluating coherence apportionment relies on the 

assumption that the transition of sediment sources occurs gradually, and the sediment being evaluated 

exhibits comparable source contributions to the bracketing samples which may not hold true for all 

cases. Sediment apportionments which show non-coherence are interpreted with caution and 

potentially excluded from interpretation. 
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Unmixing  

Source apportionment was estimated using the open-source R package, MixSIAR (Stock et al. 2018). 

Using δ13C of FA28, LMeO and the ratio ACL (alkanes 21-31 C) as a tracer set, MixSIAR run with 

concentration dependency (mean concentrations of each source) and uninformative priors. As 

demonstrated by Lavrieux et al. (2019) only δ13C FA28 source values bracketed sediment values (except 

1965 and 1956), as such δ13C FA24,26 were excluded from the tracer set. Additionally, δ13C FA source 

soils in the Baldegg catchment displayed co-linearities. The use of multiple tracers with co-linearities 

has been demonstrated to decrease model performance (Cox et al. 2023). Given that ACL represents 

a ratio, the ACL concentration was set to value of 1 for all sources to remove its concentration 

dependency. All MixSIAR runs used the same model parameters: chains = 3, chain length = 3,000,000, 

thin = 500, burn = 2,700,000 with a “very long” run time. The convergence of the mixing model was 

assessed by using the Gelman-Rubin diagnostic, with model output being rejected if variables scored 

>1.05. Due to minimal amount of sediment core samples available (ca. 200 mg), a single mixture of 

each sample is unmixed using the “process only” error structure, in which the variation in the mixtures 

is assumed to be fully dependent on the weighted source variation. 

There are some often overlooked limitations when running the “process only” error structure in MixSIAR. 

Bayesian mixing models incorporate probability distributions for both sources and mixtures. In this study 

only a single sediment replicate was available to represent the mixture, as such we cannot empirically 

determine a probability distribution for each layer in a sediment core. In such cases, MixSIAR users rely 

on the “prosses only” error structure, where the model derives the probability distribution for the mixture 

from the variance of the sources (Smith et al. 2018). The intricate nature of complex mixing systems 

inevitably yields disparities in both source and mixture variances, and as such, the “process only” error 

structure has limitations in incorporating the natural variation in the sediment samples. Nevertheless, 

the “process only” error structure is frequently applied due to lack of sediment replicates or the need for 

higher resolution apportionment estimates, such as apportioning sediment sources for each layer in a 

sediment core.  

 Evaluation of unmixing performance  

To evaluate the accuracy and precision of the model, mathematical mixtures created to determine the 

mixing space were unmixed in identical manner to sediment samples. Results of the estimated 

proportions of mathematical mixtures were then compared to the known mixture proportions. As 

advocated by Batista et al. (2022), the evaluation of MixSIAR’s probabilistic output should be 

probabilistic rather than deterministic. As such, we use the continuously ranked probability score 

(CRPS) (Matheson and Winkler 1976). Model comparisons between tracer sets were evaluated using 

the continuously ranked probability skill score (CRP skill score) (Pedro et al. 2018; Cox et al. 2023). 
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Removal of the POMterr fingerprint from sediment 

Source apportionment estimates were then converted into g cm-2 y-1 deposited by mineral sources using 

Eq. (2). First, source proportions were corrected to reflect contribution from only mineral sources (i.e., 

the removal of the POMterr fraction) by converting mean source estimates to the percentage of the total 

MAOM fraction (MAOM fraction = Forest % + arable % + pasture %). To determine the sediment 

accumulated per year by each source, the MAOM apportionments were then multiplied by the mean 

SAR extracted from Lotter et al. (1997). The uncertainty of the sediment accumulated per source was 

calculated by the standard deviation (SD) of the MixSIAR outputs being treated identically to the 

apportionment estimates using Eq. (3). Furthermore, it's essential to note that the exclusion of POMterr 

was carried out using mean values, potentially introducing an unquantified source of additional 

uncertainty. 

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑏𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 

=  (𝑠%/( 𝐹% + 𝐴% + 𝑃%)) ∗  𝑆𝐴𝑅 
Eq.2 

 

𝑆𝐷 𝑜𝑓 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑏𝑦 𝑠𝑜𝑢𝑟𝑐𝑒

=  (𝑠𝑆𝐷 /( 𝐹𝑆𝐷 + 𝐴𝑆𝐷 + 𝑃𝑆𝐷)) ∗  𝑆𝐴𝑅 

 

Eq.3 

In this context, ‘s%’ is the model estimates for either forest, arable or pasture (the source undergoing 

transformation). F%, A%, P% denotes the model estimates for all MAOM sources. SAR is extrapolated 

from Lotter et al. (1997). Since SAR were only available from 1885 to 1990, source apportionment 

estimates were only converted into g cm-2 y-1 between these years. 

3. Results and Discussion 

Isotopic fingerprints of soils, POMterr and sediments 

Mean soil δ13C values of lignin methoxy groups ranged from -39.2 to -47.8 ‰. Arable MeO had the 

highest 13C content (δ13C: -41.7 ‰, SD: 1.9 ‰) followed by forest (δ13C: -43.2 ‰, SD: 0.54 ‰) then 

pasture (δ13C: -44.1 ‰, SD: 2.0 ‰) (Table 1). Similar to Lavrieux et al. (2019) discussing δ13C FA 

enrichment in arable soils, we suggest the enriched 13C MeO arable signature can be reasoned to be a 

result of rotational crop system in Switzerland, with a legacy maize (C4) signal contributing to the arable 

fingerprint. The observed similarities between forest and pasture can be explained by the dominance 

of C3 species in both sources. This suggests that the δ13C variance between C3 plants in LMeO may be 

less than in FA. In general, δ13C MeO values of the sediment fall within the source soil isotopic range 

(min-max ± SD) (Fig. 2, Table1). However, sediment from the years 1971 and 1958 are enriched in 13C 

MeO compared to the source soils and outside the mixing space (Fig. 2). In these years, large turbidites 

are recorded in the sediment core representing a flood or earthquake event. Such events may trigger 

subsurface erosion of older deep soils potentially containing isotopically enriched LMeO. The δ13C 

LMeO of POMterr had a mean value of -52.5 ‰ (SD: 5.9 ‰), with maple leaves being 13C depleted in 

comparison to the rest of the POMterr. POMterr δ13C LMeO values are within range of δ13C LMeO values 
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of leaves previously reported by Keppler et al. (2004). The δ13C LMeO values of soils is novel and not 

available in the current literature. Our results report the δ13C LMeO values of soil was between wood (-

25 to -28 ‰) and tree leaves (mean ~-60 ‰, ranging from -40 to -77‰ including C3 and C4 plants) 

(Keppler et al. 2004; Greule et al. 2009, 2020). Considering that soil organic carbon is a mixture of both 

woody (roots and above ground woody material) and leaf material, our findings of soil δ13C LMeO values 

of -39.2 to -47.8 ‰ are within a reasonable range.  

Table 4 Summary of δ13C values and concentrations of LMeO and FA28 for sources and sediment (see 

Table S1 for the full ungrouped dataset and Fig. S2 for PCA). 

 
 δ13C MeO (‰)  MeO [mg g-1]  δ13C FA28 (‰) FA28 [mg g-1] ACL SAR 

 
Mean SD Mean SD Mean SD Mean SD Mean SD g cm-2 

Source 
           

Forest -43.2 (n=4) 0.54 1.53 0.36 -34.4(n=4) 0.63 0.12 0.03 28.7 (n=2) 0.1 - 

Arable -41.7 (n=4) 1.97 1.19 0.50 -35.5(n=4) 0.28 0.07 0.04 29.5 (n=2) 0.1 - 

Pasture -44.1 (n=7) 2.04 1.80 0.46 -36.5(n=7) 0.33 0.10 0.03 29.7 (n=4) 0.3 - 

POMterr -52.5 (n=4) 5.83 28.15 9.53 -33.7(n=4) 0.69 0.02 0.03 27.1 (n=3) 0.6 - 
            

            

Sediment                        

2010 -45.8 0.37 0.50 0.01 -34.8 0.1 0.03 - 29.1 - - 

2000 -45.7 0.13 0.42 0.09 -34.7 0.3 0.04 - 29.0 - - 

1990 -47.7 0.82 0.44 0.00 -34.8 0.4 0.03 - 28.9 - 0.10 

1983 -47.8 0.24 0.40 0.01 -34.6 0.3 0.04 - 29.2 - 0.12 

1977 -45.6 0.19 0.48 0.03 -34.4 0.4 0.02 - 29.4 - 0.11 

1971 -38.5 0.61 0.33 0.02 -36.1 0.4 0.04 - 28.7 - 0.15 

1965 -43.9 0.34 0.61 0.07 -37.8 0.1 0.07 - 29.0 - 0.12 

1958 -35.8 0.22 0.15 <0.01 -34.1 0.5 0.02 - 29.0 - 0.08 

1951 -39.1 0.28 0.33 0.03 -34.3 0.2 0.02 - 29.2 - 0.09 

1945 -45.7 1.31 0.24 0.01 -34.0 0.1 0.01 - 29.1 - 0.09 

1939 -41.8 0.02 0.26 <0.01 -35.9 0.1 0.02 - 29.3 - 0.10 

1933 -41.5 0.86 0.25 <0.01 -35.6 0.4 0.01 - 29.2 - 0.10 

1927 -41.3 0.6 0.26 0.02 -35.9 0.1 0.02 - 29.2 - 0.11 

1921 -40.4 2.87 0.33 0.01 -35.1 0.2 0.01 - 29.1 - 0.10 

1915 -43.3 0.19 0.31 0.01 -36.3 0.4 0.02 - 29.1 - 0.10 

1909 -44.0 0.13 0.32 0.01 -36.0 0.1 0.01 - 29.0 - 0.10 

1903 -44.1 0.08 0.29 <0.01 -35.8 0.5 0.01 - 28.8 - 0.10 

1899 -40.9 0.31 0.25 0.01 -33.6 0.5 0.01 - 28.8 - 0.15 

1891 -45.2 0.6 0.22 0.00 -33.6 0.3 0.01 - 28.9 - 0.12 

1885 -41.9 0.16 0.11 0.01 -34.7 0.3 0.01 - 28.8 - 0.20 

1880 -47.5 0.17 0.44 0.03 -34.1 0.3 0.01 - 29.0 - - 
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The δ13C FA28 values of source soils bracket all sediment values apart from 1965 and 1958 (min-max ± 

SD). The inclusion of POMterr expanded the range to bracket 1958, with only 1965 to not be within 

range. 1965 has been suggested to be the peak of eutrophication (Lotter et al. 1997), and as such may 

contain non-terrestrial derived FA28 as production of LCFAs of aquatic origin have been hypothesized 

to be produced in hyper-eutrophic lakes (Van Bree et al. 2018; Lavrieux et al. 2019). The large 

discrimination of POMterr and MAOM using ACL indicates that ACL hold significant potential as a 

proficient tracer to aid with the estimation of POMterr contribution to the sediment. Although only a 

fraction of the source samples was analysed for alkanes by Lavrieux et al. (2019) (Table 1), ACL from 

source soils presented here agree with ACL reported in literature (Cooper et al. 2015; Chen et al. 2016; 

Wiltshire et al. 2023).  

 

Fig. 2 Isotopic values of δ13C LMeO (this study) and δ13C FA28 and ACL (from Hirave et al. (2021) and 

Lavrieux et al. (2019)) of source soils, POMterr, and sediment. The boxes represent 25, 50 and 75% 

quantiles with whiskers showing a 1.5 interquartile range 

Defining a mixing space and Suess corrected sediment classification 

Fingerprinting with δ13C FA tracers often present a one-dimensional mixing line leading to potentially 

inaccurate sediment apportionment estimates. In our findings, incorporating δ13C LMeO values as an 

additional tracer expands the FA mixing line presented in Lavrieux et al. (2019), creating a more suitable 

mixing space for adequate unmixing (Fig. 3). This expansion of the mixing space allows for the use of 

mixing models with significantly reduced misclassification of the central source as contribution from 

source(s) from either end point (Cox et al. 2023).  
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Fig. 3 Bi-plots of soil, POMterr and sediment fingerprints illustrating the expansion of the mixing space 

using ACL and δ13C LMeO tracers of non-Suess corrected values. Error bars are shown on the mean 

source values and calcauted as 1 SD of the source variation 

Concentration dependent mathematical mixtures were used to define the mixing space and identify 

sediment samples outside the mixing space. The fingerprints of mathematical mixtures illustrated on 

Fig. 4 demonstrate how the mathematical mixtures are highly weighted by the concentration 

dependency of δ13C LMeO values. Interestingly, the mixing space (green polygon-defined by the 

mathematical mixtures) is not limited to the convex hull of source means, suggesting traditional tests of 

conservatism should be questioned when concentration dependency is involved. Considering only the 

mean source values were used to generate the mixtures, we would assume the incorporation of source 

variation in the generation of mathematical mixtures would increase the mixing space (yellow polygon) 

and provide a more accurate mixing space of possible sediment fingerprints. 
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Fig. 4 Bi-plots of sources before and after Suess correction using three different MRTs (10, 30, and 100 

yr). The mean mixing space is defined as the area around the location of the mathematical mixtures 

(green polygon). The green mixing space is then expanded to incorperate all source samples (yellow 

polygon). Full labeled bi-plots are available in supplementary (Fig. S3, Fig. S4, Fig. S5 and Fig. S6) 

Isotopic fingerprints of soils, POMterr and sediment were corrected for the Suess effect using thee 

different MRTs (Table S2 and S3). Suess corrected sediment samples are classsifed into the following 

groups: sediments are within the mathmatical mixture mixing space (Class A, green), located around 

the mixing horizon (Class B, orange), or outside the expanded mixing space (Class C, red) (Fig. 5). 

Without any Suess correction,14 % (1945,1951 and 1977) are in Class B (around the mixing horizon) 
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and 24% of sediment values are in Class C (outside the mixing space, Fig. 5). Results of the 10yr MRT 

show 14 % of sediments in Class B and a higher number of sediment values in Class C (38 %). The 

30yr MRT corrected sediments had 19 % of samples in Class B and 24 % in Class C. The 100yr MRT 

corrections have a higher number of sediment values within the mixing space with 29 % in Class B and 

only 14 % being in Class C, and. All Suess corrections depict the 1971,1965 and 1958 to be outside 

the mixing space (Class C). 1970 and 1958 and coincide with high SAR (Lotter et al. 1997). 1965 was 

suggested to be the peak of eutrophication and as such, may contain significant concentrations of non-

terrestrial material (Lotter et al. 1997).  

 

Fig. 5 The identification of Suess corrected sediment samples which are within the mixing space (Class 

A, green), located around the mixing horizon (Class B, orange), and outside the expanded mixing space 

(Class C,red) 

 

Particle size is another possible area of uncertainty and reasoning for Class C sediments, the particle 

size distribution was not assessed by Lavrieux et al. (2019). The depleted isotope tracers of sediment 

years associated with turbidites were speculated to arise from the sediment originating from subsurface 

erosion. However, it may also be a result of particle size selectivity during these events (Laceby et al. 

2017). As there was insufficient material available to assess for particle size or subsurface contribution 

analysis, future research will have to assess these potential areas of uncertainty.  

While multiple MRT were applied to accurately model the effect of different Suess corrections, here we 

used the same MRT for both FA and LMeO and for each land-use type, however in reality this is unlikely. 

To improve the accuracy of modelling the Suess effect on historical records, multiple iterations of the 

different MRT for all tracers and sources separately could be applied. However, we find our approach 

as an appropriate starting point for using multiple MRT Suess corrections for CSSI fingerprinting. While 

we have modelled the Suess effect by applying a wide range of mean residency times, sediment which 
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is outside the mixing space might also arise from an overcorrection using a MRT of 10 yrs. Additionally, 

it’s important to acknowledge the relatively low number of samples associated sediment apportionment 

using CSSI tracers may impede capturing the full source variance or even missing sources.  

Assessment of model and tracer selection performance  

As suggested by Cox et al. (2023), concentration dependent mathematical mixtures (n=300) (Fig. 4) 

were used to test performance of the model and tracer suites. Considering mathematical mixtures are 

generated from only source values, Suess corrections do not significantly affect the mixing space 

(illustrated in Fig. 4) and as such we find the evaluation of the non-Suess corrected mathematical 

mixtures applicable to all MRTs. Figure 6 (A) shows the estimated proportions vs the known proportions 

of the mathematical mixtures using the δ13C FA28 and δ13C LMeO tracer set, with the 1:1 line indicating 

a perfect fit. Results show the over estimation of arable contribution (until ca. 50 % contribution), 

consequently causing an underestimation in forest and pasture contribution estimates. POMterr has a 

relatively accurate and highly certain estimate at lower contributions, while the performance of estimates 

slightly decreases with increasing POMterr contribution. Extremely low known proportions of POMterr of 

two mixtures appears to have highly inaccurate estimates, both mixtures contain almost 0 % 

contribution from POM. Using CRPS, the performance of the model was evaluated and forest, pasture, 

and POMterr had similar performances, with a median CRPS of 0.06, 0.05 and 0.05, respectively. Arable 

was demonstrated to have the lowest performance (CRPS 0.11), demonstrating the effect of a lower 

source discrimination. The higher CRPS score of arable can be attributed to more centralised position 

and reduced source discrimination between the other source (PCA supplied in Fig. S2), causing a 

higher likelihood for misclassification. The reduced source discrimination may be result of the legacy 

isotopic signal of forest present after the deforestation and conversion to arable fields. 

The inclusion of ACL improves the model performance (Fig. 6 (B)) (Forest CRPS: 0.04, arable: 0.06, 

pasture: 0.03, and POMterr:0.03). Using the CRP skill score, the inclusion of ACL improved the average 

model performance by 39 % (Forest CRP skill score: 38 %, arable: 43 %, pasture: 37 %, POMterr: 39 

%). Additionally, the higher sensitivity of the arable estimates to changing source contributions is 

illustrated in Fig. 6 (B). However, arable estimates still displayed an overestimation and underestimation 

of lower and higher known contributions, respectively. Apart from two extremely low POMterr contribution 

mixtures, POMterr estimates are very accurate. Results of unmixing the mathematical mixtures had no 

non-sensical results caused by mixtures being outside of the ‘traditional’ convex hull mixing space, 

demonstrating the need to reassess the current approach to the frequently used point in polygon tests 

for concentration dependent tracers.  
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Fig. 6 Estimated proportions vs known mixture proportion for different tracer sets, with no Suess 

correction being applied. The solid line indicating perfect fit (Estimated proportion= known proportion). 

A) δ13C LMeO and δ13C FA28, B) δ13C LMeO, δ13C FA28 and ACL. The model performance is denoted 

by the CRPS value 

 

One of the options when using the MixSiAR model is the flexible Bayesian framework incorporating 

adaptable error structures. The “process error” structure is often used in the sediment fingerprinting 

literature, where the variation in the mixtures is only dependent on variation in the sources, while not 

incorporating the variation in the mixture (e.g., target sediment) (Smith et al. 2018). While this error 

structure may not be optimal for accounting for variation in sediment core samples, the use of 

mathematical mixtures allows for the evaluation of the errors associated with the apportionment and 

how much confidence should be applied to the model results. Although both mathematical mixtures and 

sediments are unmixed identically, the omission of sediment variance limits the capability of the 

MixSIAR model to propagate the inherent variance within the sediment samples to the posterior 

distributions in the model outputs. For catchment sediment systems, the residual error only structure is 

preferable since it better represents erosion and sediment transport processes (Smith et al. 2018). Here, 

the “process only” error structure was selected due to limited sediment sample availability, which is a 

frequent issue for sediment cores due to their limited sample mass. Considering the potential 

implications of not incorporating the variation in the sediment mixtures, future sediment core 

fingerprinting approaches should incorporate multiple sediment mixtures either by i) sampling multiple 

CRPS= 0.06 CRPS= 0.05 CRPS= 0.05 

CRPS= 0.11 

CRPS= 0.04 CRPS= 0.06 CRPS= 0.03 CRPS= 0.03 
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cores, ii) increasing the number of samples per core sample or iii) grouping core sections by their age 

and/or depth. Future work testing different error structures using mathematical mixtures that incorporate 

both sediment and source variance could significantly aid in improving the fingerprinting method. 

Relative proportion of POMterr to sediment  

Here, we used the δ13C LMeO, δ13C FA28 and ACL tracer set to determine the relative contribution of 

POMterr to the sediment record. To determine the relative contribution of POMterr to the sediment, mineral 

source soils and POMterr were unmixed simultaneously using MixSIAR. Three different MRT scenarios 

are used to model the possible Suess effect on the apportionment estimates. Class B sediment are 

checked for coherence with the assumption that they should fit within the range of years bracketing 

(Table S4). Furthermore, sediment values which are Class C (Fig. 5) are not considered in Fig. 7(A) in 

our interpretation of historical POMterr trends. 

   

Fig. 7 A) Estimated proportion of POMterr to the sediment core before and after three different Suess 

corrections (10, 30, and 100 yr). Sediment samples in Class C are removed from the figure. SD of 

POMterr contributions are shown as error band B) SAR extracted from Lotter et al. (1997) 
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All MRTs show a similar trend of relatively high contributions of POMterr from 1885 to 1909 (Fig. 7(A)). 

The comparison to the high SAR (Fig. 7(B)) indicates this may be a result of flood events eroding the 

forest floor of debris. There is a gradual decline in POMterr from 1909 to 1939 in all models with the 

exception of 10yr MRT model where the Suess corrected POMterr contribution appears to further decline 

until 1951. For the other three models, the year 1939 demonstrates an increased contribution of POMterr. 

Around this time the Wahlen plan (a Swiss self-sufficiency plan) entered into force, deforesting large 

areas in Switzerland and around Lake Baldegg to increase agricultural production (Federal Statistical 

Office 1949). This may have caused an increase in sediment input from forest soils, but also eroding 

and washing off formerly forest humus layers and POMterr. The interpretation of POMterr contributions 

from the 1951 to 1971 is hindered by the exclusion of samples lying outside the mixing space. These 

exclusions are suggested to arise from subsurface erosion events during periods of elevated SAR, as 

illustrated in Fig. 7(B). Additionally, in the case of 1965, the detected signal may be influenced by the 

peak of eutrophication, potentially incorporating contributions from algae. 

For all models apart from 10 yr MRT, the shift in the estimated historical POMterr contribution matches 

with aerial photographs and pollen records (Van Der Knaap et al. 2000). These records illustrate the 

increase in trees and shrubs around the lake shore and stream banks from 1940 onwards. The 

misalignment of the 10yr MRT with the catchment's historical trends suggests errors when applying a 

10-year MRT correction to the isotopic tracers. 1977 appears to be another notable time in which 

POMterr drastically increases for all Suess corrected models, this increase in POMterr coincides with an 

increase in pollen from trees in the sediment record (Van Der Knaap et al. 2000). Despite the relatively 

low percentage of POMterr introduced, the depleted 13C LMeO values and to a lesser extent, the depleted 

13C FA values from POMterr can potentially have a substantial effect on the isotopic record in the 

sediment. Consequently, this could result in the apportionment of organic carbon rather than soil if the 

POMterr source is not grouped separately. While the exact cause for increased POMterr is somewhat 

speculative, the use of mathematical mixtures allows for the evaluation of the model and can help 

determine how much confidence we should have in the model output. Results of the model evaluation 

in Fig. 6 illustrates the increase in uncertainty with increasing POMterr contribution, which corroborates 

with Fig. 7(A), adding evidence to suggest mathematical mixtures are a valuable and representative 

tool of sediment unmixing. Additionally, Fig. 6 illustrates an underestimation of predicted POMterr 

contribution (ca. <5 %), as such we would assume our estimates of POMterr in the sediment are also 

slightly underestimated.  

Apart from the non-Suess corrected sediment of 1951, all sediments that are classified as Class B (Fig. 

5, Table S4) displayed non-outlying apportionments (i.e., the estimated sediment apportionment is 

within the range of the Class A POMterr estimates either side of the class B sediment) suggesting 

coherent results and confidence can be applied the apportionment estimates. Interestingly, the non-

Suess corrected sediment of 1951 suggests a high contribution of POM, although bi-plots illustrate 1951 

being located on the opposite side from the POMterr source. The high contribution of sediment from 

1951 is erroneous and a result of the sediment being out of the mixing space. As such we hypothesize 

that as the sediments move away from the arable, pasture and forest sources (in the direction away 
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from the mixing space) in the bi-plots, the model overcompensates and solves the model by increasing 

the estimated POMterr contribution. While this method of determining non-coherent results has 

limitations, we suggest that the identification of sediment with outlying results using the concentration 

dependent mixing space is evidence for the need to re-evaluate concentration dependent point in 

polygon tests.  

Improved sediment source apportionment by including POMterr discrimination 

When using δ13C LMeO, δ13C FA, and ACL as a tracer set, all source apportionment estimates of 

mathematical mixtures, apart from arable, are shown to be highly reliable (Fig. 6) and can be interpreted 

with confidence. Arable estimates can be seen as less reliable, with potential under and over estimation 

for high and low contributions, respectively. Considering arable contributions are minimal until 1940, 

taking over/under estimation into account, would not drastically change pre-1940 arable contributions. 

However, mathematical mixtures indicate that arable apportionment might be underestimated after 

1940, as arable land increases its dominance as a sediment source. Apportionment of Class B 

sediments (Table S5) show no outlying results, except for 1951 POMterr (Table S4), suggesting no 

additional erroneous results. 

SAR were not available in the years post 1990 and pre-1885, and therefore cannot be converted to 

sediment deposited by each land-use. Additionally, it is important to recognize that the removal of 

POMterr was accomplished using mean values, potentially introducing an additional uncertainty that was 

not incorporated. Nonetheless, the unmixing of the mineral soil sources demonstrates similar trends for 

all Suess corrections (Fig. 8, see Table S5 for values of sediment delivered by land-use). For all Suess 

corrections, the end of the 19th century is dominated by high forest input. While these years are not 

identified as turbidites by Lotter et al. (1997), the high SAR suggest high flow events likely resulting in 

large amounts of POMterr (Fig. 7) and forest soil potentially being transported into the lake (Alewell et 

al. 2016). Although all models show an increase in pasture until around 1945, land-use statistics display 

no significant change in the relative proportion of productive land cover (arable and pasture) in the 

surrounding catchment in the years 1912 and 1923 (Federal Statistical Office 1912, 1922). The high 

pasture contribution can then be reasoned to be a result of two possible scenarios: pasture fields being 

converted temporally or permanently to arable fields, with the legacy pasture signal being dominant. 

However, if this was true, the legacy effect of pasture would decrease proportionally to the increase in 

arable contribution, but this is not the case. Another rationale is the intensification of the harvesting 

pasture for silage, hay and barn feeding during World War one, as farming resources were diverted to 

support the war effort.  
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Fig. 8 Estimated sediment delivered by each land-use source after POMterr correction, before and 

after using three different Suess corrections (10, 30, and 100 yr), and the SAR extracted from Lotter 

et al. (1997) 

 

Sediment from 1920 shows a notable change of apportionment using different MRTs, demonstrating 

the sensitivity of δ13C tracers to the Suess corrections. The sensitivity of apportionment result to the 

varying MRT Suess corrections can be suggested to be dependent on source discrimination. All models 

except the 10 yr MRT depict a peak in forest contributions around 1939. This can be credited to the 



71 
 

enforcement of the Wahlen plan, leading to a 3.6-fold increase in open land in the Baldegg catchment 

(Federal Statistical Office 1949). Contributions of arable sources appears to be low and stable until 

1939, at which point arable becomes the dominant source. The timing of the arable dominance 

coincides with the introduction of maize in the catchment in the 1940s (Federal Statistical Office 1949; 

Van Der Knaap et al. 2000). The sediment record then potentially indicates maize cultivation as the 

main sediment source after the 1940s. Another explanation of increased arable contribution might be 

due to the increasing use of agricultural machinery as well as the increased connectivity of sources to 

the watercourse (e.g. land consolidation, removal of linear landscape features, improvements in 

drainage systems). Connectivity models of the Baldegg catchment indicated linear landscape features, 

especially roads, are important regulators of sediment transport (Batista et al. 2022). Additionally, it is 

important to acknowledge that while sediment samples potentially associated with subsurface erosion 

and outside the mixing space were removed from the historic interpretation, subsurface/ channel bank 

erosion is ubiquitous in sediment transport. As such our estimations of sediment delivery by each source 

may be overestimated due to the exclusion of channel bank erosion as a potential source.  

Sediment source apportionment of sediment without POMterr discrimination  

The difference in the historical sediment source trend when merging forest and POMterr is illustrated in 

Fig. 9. The difference between the three and four source model was calculated by subtracting the mean 

apportionment of the three-source model (Table S6) from the four-source model (Table S5, see Table 

S7 for differences and Fig. S7 for sediment deposition). The 10 yr MRT Suess corrected sediment are 

illustrated to be highly affected by the merging of forest and POMterr and depicts an inconsistent outcome 

to other MRT corrections. Again, we suggest this is a result of the 10 yr MRT being a less accurate 

representation of the MRT of the tracers. The 30 yr MRT, 100 yr MRT and non-Suess-corrected 

sediment contributions demonstrate similar forest sedimentation rates when in comparison with the 

three-source model, with relatively minor difference between the three and four source model until 1945 

(mean difference: -5 %). From 1945 until 1990, the three-source model then estimates a higher 

sediment contribution of forest (mean: 0.0133 g cm-2 y-1 difference, 37 %), and lower contribution of 

arable (mean: -0.014 g cm-2 y-1, -29 %) and pasture (mean: -0.002 g cm-2 y-1, -12 %). The lower 

contribution of arable can be reasoned to be a result of a reduced source discrimination between forest 

and arable (Fig. S2). 
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Fig. 9 The difference in the mean estimated sediment delivered using the three or four source model 

before and after three different Suess corrections (10yr, 30yr, and 100 yr MRT) (three-source model – 

four-source model = difference) 

Sediment fingerprinting using CSSI tracers is a semi-empirical method to determine the relative 

contribution of different land-uses. Interestingly, results regularly report forest as a major source of 

sediment (Alewell et al. 2016; Chen et al. 2016; Upadhayay et al. 2020; Wiltshire et al. 2022). While 

this may be true in specific cases, in general, this appears to contradict our current understanding of 

the mechanistic process involved in soil erosion as well as soil erosion modeling (Borrelli et al. 2021; 

Wiltshire et al. 2022). In general, forests should be less susceptible to soil erosion due to the tree canopy 

cover with additional understory or ground vegetation and a humus layer cover (Blanco-Canqui and Lal 

2010). 

As stated previously, aerial images since 1940 show an increase in trees and shrubs along the stream 

bank. Without the separation of POMterr and forest, apportionments suggest a higher sediment 

contribution from forests. A more coherent explanation for the increase in forest contribution since 1945 

can be contributed to the fact that POMterr from newly planted trees around the lake shore could have 
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the potential to contribute to the sediment isotopic fingerprint. Without the source separation of forest 

and POMterr, the POMterr contribution is then mistakenly identified as forest input. 

In the Baldegg catchment, our initial hypothesis suggests that the misclassification of POMterr as forest 

contribution would result in forest being the dominant source, this was not supported. However, we 

demonstrated the separation of POMterr improves the model performance by reducing the 

overestimation of forest (37 %). While our hypothesis was not supported in the Baldegg catchment, it 

is possible that for catchments, that are dominated with forests and/or increased connectivity of POMterr 

sources to the watercourse, there could be an increased potential for erroneous source apportionment 

results. In any case, this hypothesis does require more testing. Although the dominant source of 

sediment did not significantly change (Forest: pre-1990, Pasture: 1910-1940, Arable: post 1940), we 

recommend the inclusion of the POMterr as a separate source of CSSI tracers as being fundamental to 

helping ensure accurate and representative sediment apportionments. 

3.4 Conclusion 

The use of lignin δ13C LMeO values as an additional land-use-specific tracer is highly effective at 

improving source discrimination and subsequent expansion of the mixing space. While the results of 

the historic apportionment are highly credible and fit well with land-use history, the conservativeness of 

δ13C LMeO during transport and deposition requires further investigation. Furthermore, the use of two 

different types of CSSI tracers increases the representativeness of the soil and reduces the potential 

bias associated with specific tracers. The preparation of samples for δ13C FA analysis is a time and 

organic solvent consuming procedure. In contrast the preparation of samples for δ13C LMeO analysis 

is a relatively rapid but also a solvent free method, allowing for higher sample throughput and the 

subsequent increase in source heterogeneity testing, all while being more environmentally friendly. 

Furthermore, the minimal sample mass required for MeO analysis enables the replication of sediment 

analysis, facilitating the empirical determination of mixture variance. Consequently, this method can be 

used in the future to enhance the conclusiveness of the mixing model by directly accounting for mixture 

variance, rather than being estimated by source variance. 

A range of MRTs are used to model the possible Suess effect on CSSI fingerprints and should be 

applied as a standard protocol for historical use of CSSI tracers. Mathematical mixtures are an effective 

tool to define a concentration dependent mixing space, and identify sediment values which may give 

erroneous results. Additionally, they allow for the evaluation of the degree of confidence which should 

be put in the model output. Although the exact explanation for historical sediment trends remains 

speculative, the overall story of sediment contribution becomes significantly more credible when using 

POMterr corrected apportionments. Although our hypothesis was not supported, as the merging of 

POMterr and forest did not result in a change of forest being the dominant source, our results did 

demonstrate the possibility of an overestimation of forest contributions in the literature. Therefore, we 

suggest the discrimination of POMterr and forest is important to enhance the accuracy of sediment 

fingerprinting applications when using CSSIs or other organic tracers in order to enable future policies 

to be based on the most reliable data available.  
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By determining the past historic trends of sediment sources, we gain insight into the causes of soil 

erosion. Additionally, land-use specific apportionments allow the discrimination between natural and 

anthropogenic events leading to soil erosion. While this study was focused on Lake Baldegg, we find it 

applicable to other temperate regions with similar intensive agricultural practices. However, limitations 

may be present when using CSSI tracers for regions dominated by subsurface erosion. Nonetheless, 

this information is vital for effectively evaluating soil erosion models and consequently, their use in 

designing or evaluating sediment mitigation strategies. Improving the accuracy of land-use specific 

apportionment estimates is therefore of the utmost importance to prevent the negative consequences 

of soil erosion and sedimentation. 
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Abstract 

The relative apportion of above and below ground carbon sources is known to be an important factor in 

soil organic matter formation. Although lignin is the most abundant aromatic plant material in the 

terrestrial biosphere, our understanding of lignin source contributions to soil organic matter (SOM) is 

limited due to the complex molecular structure and analysis of lignin. In this study, we novelly apply the 

dual isotopic analysis (δ13C and δ2 H values) of lignin methoxy groups (LMeO) with the Bayesian mixing 

model, MixSIAR, to apportion lignin sources in two contrasting soil types, a podzol and a stagnosol. 

Results of the isotopic analysis of LMeO demonstrate the ability of δ2 H LMeO values to discriminate 

between above and below ground lignin sources, while δ13C LMeO values discriminated between 

photosynthesising and non-photosynthesising tissues. In the stagnosol subsurface horizons, a 

decreasing proportion of the leaf litter lignin was observed with increasing organic matter degradation, 

cumulating in the Ah horizon being dominated by lignin from roots. The podzol sites indicated a similar 

reduction in leaf litter lignin with an increase in organic matter degradation and depth. However, the Ah 

horizon was shown to accumulate lignin from the above ground woody material. Furthermore, given the 

significant abundance of LMeO groups in the terrestrial biosphere and the extremely depleted δ13C 

LMeO values in leaf litter, we employed a mass balance approach to determine the extent in which the 

δ13C bulk enrichment generally associated with isotopic fractionation during organic matter 

decomposition can be attributed to the shift in lignin sources. Analysis reveals that 14 % and 11 % of 

bulk δ13C enrichment can be attributed to the transition in LMeO sources from leaf litter to roots in the 

stagnosol and podzol, respectively. Thus, models relying on δ13C enrichment with depth as an indicator 

of carbon turnover may be partially overestimating rates. 
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********************************************************************************************************* 

4.1 Introduction 

Vascular plant-derived organic compounds constitute 75 % of the carbon content in soils (Hedges, 

1992). Lignin, the second most prevalent plant-derived compound class after cellulose (Boerjan et al., 

2003), plays a crucial role in the formation of soil organic matter and the decomposition of plant litter 

(Guo et al., 2021; Heim and Frey, 2004; Moore et al., 1999). Despite being the most abundant aromatic 

plant material in terrestrial ecosystems and representing around 30 % of the organic carbon in the global 

terrestrial biosphere (Boerjan et al., 2003), our understanding of lignin sources and mixing dynamics 

from plants to soil organic matter (SOM) is constrained by the complex molecular structures and 

analysis of lignin (Koegel-Knabner, 2002; Hatfield and Fukushima, 2005). However, understanding the 

relative contribution of above and below-ground sources of lignin into SOM can provide further insights 

in carbon and nutrient cycling. The source contributions of SOM are a complex process of input, 

transformations, transport and outputs (Prescott and Vesterdal, 2021). There seems to be no clear 

consensus on the distribution and dynamics of lignin in soils. Most studies indicate a decrease in lignin 

concentration and an increase in degradation with depth (Guggenberger and Zech, 1994; Rumpel et 

al., 2002; Peinemann et al., 2005; Heim and Schmidt, 2007), while others have shown an accumulation 

in deeper soils (Wedin et al., 1995; Sanger et al., 1997; Feng and Simpson, 2007; Mason et al., 2009). 

As lignin is transferred from plant biomass to soils, the composition of its monomers (monolignols) are 

partially preserved. However, the use of monolignols for source apportionment has limitations: minimal 

source discrimination (Thevenot et al., 2010), and the modification of the monomer composition during 

degradation (Dümig et al., 2009), irreversible sorption (Hernes et al., 2013) and soil sorption/leaching 

phase transitions (Hernes et al., 2007). Furthermore, monolignols from non-lignin sources (e.g., 
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tannins) have been observed (Hedges and Parker, 1976; Goni et al., 2000). The isotopic composition 

of specific compounds is a valuable tool for understanding carbon dynamics in soils (Glaser, 2005). 

However, the 13C values of lignin also has limited discrimination between plant tissues (Wedin et al., 

1995; Schweizer et al., 1999; Fernandez et al., 2003; Dignac et al., 2005). Moreover, during 

degradation, the isotopic composition of lignin in both leaf litter and roots exhibit isotopic fractionation 

(Wedin et al., 1995). Methoxy groups (MeO, molecular formular: -OCH3) make up approximately 2.5 % 

of the total carbon in the terrestrial biosphere (Galbally and Kirstine, 2002), and 15–20 % of lignin 

monomers. While MeO predominantly originate from lignin (as ether bound MeO groups), the 

polysaccharide pectin is also known to be a major source of MeO in the environment (ester bound MeO 

groups). Considering we focus on tracing only lignin sources, alkaline hydrolysis can be used to 

selectively remove the ester bound MeO, enabling the analysis of the residual lignin derived methoxy 

groups (LMeO) by the Zeisel reaction (Zeisel, 1885; Greule et al., 2009; Cox et al., 2024). A large δ13C 

LMeO discrimination between leaves and woody material has been observed (Keppler et al., 2004), 

suggesting the possibility of accurately attributing lignin sources within organic and mineral soil 

horizons. Accurate apportionment of sources requires that the tracer(s) (also known as: properties or 

characteristics) remain unaltered (or predictable) throughout degradation or transport (Motha et al., 

2002; Koiter et al., 2013; Belmont et al., 2014). During a 27-month litter bag experiment, European 

beech and Sycamore maple bulk methoxy groups (lignin and pectin derived MeO) showed no obvious 

isotopic fractionation. However, litter bags from Norway spruce, Scots pine and Mountain ash exhibited 

small isotopic fractionation (Anhauser et al., 2015). The relatively small correlation between δ13C MeO 

values and MeO content was attributed to the preferential degradation of pectin. The difference between 

species may be a result of variation of lignin and pectin abundance in species. Analysis of δ13C MeO 

values during the degradation continuum from wood to coal revealed notable fractionation (Lloyd et al., 

2021). However, it’s important to note that we wouldn’t expect LMeO degradation to occur on the same 

scale as the wood-to-coal continuum where the remaining MeO fraction in coal is only ~ 10− 4 and 

occurring over time scales of million years (Lloyd et al., 2021). Unlike bulk wood, cellulose, or lignin, 

MeO has the benefit of nonexchangeable hydrogen (Lee et al., 2019), resulting in the δ2 H MeO values 

being stable during metabolism and having multiple applications (Keppler et al., 2007; Keppler and 

Hamilton, 2008; Lee et al., 2019; Wieland et al., 2024). Experimental evidence for the stability of δ2 H 

MeO values has been demonstrated during litter bag degradation experiments (Anhauser  et al., 2015) 

and microbial inoculations of garden biomass (Lu et al., 2022), in which the δ2 H MeO values remained 

unchanged and were shown not to correlate with MeO degradation. While the conservativeness of δ13C 

LMeO values are not as well established as δ2 H LMeO values, in a two-source mixing model (e.g., 

using above and below ground sources as end-members), the deviation of the mixtures from the two-

source mixing line allows isotopic fractionation and the mixing of sources to be disentangled (Lutz and 

Van Breukelen, 2014a, 2014b). To gain further understanding in lignin sources and mixing dynamics of 

SOM, we novelly use the dual isotopic analysis (δ13C and δ2 H values) of LMeO and apply the Bayesian 

framework mixing model, MixSIAR, to apportion lignin sources in organic and soil horizons. Additionally, 

considering the relatively high percentage of LMeO in terrestrial biosphere which has been observed to 

reach up to 2 % of the OC in soils (Kosaka and Honda, 1956), and extremely δ13C depleted values of 
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leaf litter, we explore the possibility that the well-known, but to some extent, unexplained 13C enrichment 

with organic matter decomposition can be partially explained by the change in lignin sources from leaf 

litter to the roots. 

4.2 Methods 

Sites and sampling strategy  

Two sites were selected for the investigation of lignin mixing dynamics. These research sites are 

situated in the Black Forest in Southern Germany (Site 1: 47.658100 N, 7.784390 W; Site 2: 47.652130 

N,7.776240 W). Both sampling sites were previously studied to understand the early-stage isotopic 

degradation of very long chain fatty acids (Hirave et al., 2020). To account for spatial variations, three 

spatial replicates (A, B, C) were excavated using a spade (30 × 30 cm) at each sampling site (June 

2022) with an approximate distance of 10–20 m between them. To further improve the 

representativeness, each spatial replicate was a composite mixture of three subsamples taken at 2 m 

apart. The soil type at Site 1 is classified as a stagnosol (IUSS Working Group WRB, 2022). At Site 1A 

and 1C, Fagus sylvatica was the predominant vegetation, while Site 1B was stocked with a combination 

of Abies alba (Silver fir) and Fagus sylvatica (European beech). Site 2 soil was characterized as a 

podzol (IUSS Working Group WRB, 2022) and was predominantly stocked with Pinus sylvestris (Scots 

pine) and Calluna vulgaris (heather). Site 2B had an additional presence of Fagus sylvatica (European 

beech). leaves, while Site 2C featured an additional cover of Quercus petraea (Sessile oak) litter. Using 

the WRB classification system, four distinct classes were identified and collected: Oi (comprising of only 

leaves and needles, i.e., photosynthesizing tissues), Oe (partially decomposed layer), Oa 

(characterized by a very dark layer of well-decomposed humus, only present in the podzol), and the Ah 

horizon (mineral soil). In addition, non-photosynthesising tissues such as above-ground woody material 

(AGW), i.e., twigs and branches with a diameter < 1 mm) and large roots (LR, diameter 1–5 mm) were 

collected through all horizons. Soil aggregates were removed from the AGW and root samples using 

an ultrasonication bath. All samples then underwent homogenization using a ball mill. 

Sample preparation and analysis 

Carbon content and isotope analysis  

Bulk stable carbon isotopes and carbon content were measured by mass spectrometry coupled to an 

SL elemental analyser (Integra2, Sercon, UK). Throughout this study, all stable carbon isotope ratios 

are expressed in the conventional ‘delta’ (δ) notation, representing the relative difference in the isotope 

ratio of a substance compared to the standard substance Vienna Peedee Belemnite (VPDB). 

Lignin methoxy groups extraction  

Prior to conversion of LMeO to methyl iodide (MeI) by the Zeisel reaction (Zeisel, 1885), ester bound 

MeO groups were removed using alkaline hydrolysis (Greule and Keppler, 2011; Cox et al., 2024). To 

ensure similar amounts of analyte in each sample, 1 ml of 1 M NaOH was added to 2–50 mg of sample 

(~5 mg for Oi, Oe and Oa horizons, and ~10 mg for LR, FR and AGW, and ~30 mg for the Ah horizon) 

in 1.5 ml vials, vials were capped and heated at 90 ◦C for 4 h. Afterwards, samples were uncapped and 
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dried at 60 ◦C in a sand bath. To ensure hydroiodic acid (HI) was not used up by the neutralization of 

NaOH or the removal carbonates within the mineral soil samples (Harris et al., 2001), 100 μl deionized 

water was added to each sample followed by acid fumigation for 24 h in 37 % fuming hydrochloric acid 

(HCl). The remaining ether bound LMeO groups were converted to MeI by the addition of 500 μl of HI 

(57 %, Sigma Aldrich, Stabilized) and heated for 1 h at 130 ◦C. After allowing the samples to equilibrate 

at room temperature for 1 h, samples underwent concentration and isotopic analysis. 

Concentration of LMeO  

After the conversion of LMeO to MeI, the concentration of MeI was determined utilizing static headspace 

injection (Greule et al., 2009). A headspace volume ranging from 10 to 90 μl was manually injected 

(Hamilton, 100 μl, gas-tight, side-port) into the Trace Ultra gas chromatograph (GC) equipped with a 

flame ionization detector (FID; Thermo Scientific, Waltham, MA 02451, USA) system. GC-FID 

conditions were set as: 200 ◦C inlet temperature, a helium flow rate of 1.8 ml/min, and an isothermal 

oven temperature of 65 ◦C, resulting in an approximate elution time of 4 mins. The MeI analyte was 

quantified using an external calibration curve generated from compounds with known MeO contents, 

vanillin (Sigma Aldrich, 99 %) and birch wood reference material, HUGB3 (Greule et al., 2020). 

Additional vanillin and HUGB3 samples were treated identical to samples and used as quality control 

samples. The concentration of the samples was analysed by the single injection of triplicate samples. 

The calibration ranged from 0.001 to 0.5 mg MeO, with a r 2 > 0.97 (Pearson’s correlation) for all 

analysis. Using the HUGB3 and the vanillin quality control samples, we found the mean precision (1 

SD) to be 0.18 % and 0.41 %, respectively (root mean square error (RMSE); Vanillin 0.52 %: HUGB3 

0.18 %). 

Dual Isotopic composition of LMeO  

The δ13C isotopic composition of MeI generated by the Zeisel reaction (Zeisel, 1885) was determined 

utilizing a Trace Ultra GC instrument, connected online via a GC-Isolink to a Conflo IV and Delta V 

Advantage isotope ratio mass spectrometer (Thermo Scientific, Waltham, MA 02451, USA). To ensure 

that non-desirable compounds (e.g., HI) are not transported into the instrument components upstream 

of the combustion stage, a reduction stage was installed between the Nafion water trap and the He 

backflush valve as described in Cox et al. (2024). The inlet temperature was set at 200 ◦C, and the 

helium (He) column flow rate was maintained at 1.8 ml/min. The initial oven temperature was set to 30 

◦C for 3.8 min, with a ramp at 30 ◦C per minute until reaching 100 ◦C.  

Reference materials HUGB1 (δ13C VPDB = − 50.17 ± 0.08 ‰) and HUGB4 (δ13C V-PDB = − 30.07 ± 

0.10 ‰) were employed for the normalization of sample isotopic ratios (Greule et al., 2019, Greule et 

al., 2020). HUGB3 (δ13C V-PDB = − 29.30 ± 0.10 ‰) underwent identical treatment to the samples and 

served as a quality control sample throughout the sequence. Using a two-point calibration of HUGB1 

and HUGB4, the quality control samples of HUGB3 were observed to have a RMSE of 0.5 ‰.  

The δ2 H isotopic composition of MeI was determined using an HP 6890 N gas chromatograph (Agilent, 

Santa Clara, USA) equipped with an auto sampler A200S (CTC Analytics, Zwingen, Switzerland), 

coupled to a DeltaPLUSXL isotope ratio mass spectrometer (Thermo Fisher Scientific, Bremen, 
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Germany) via a thermo conversion reactor (ceramic tube (Al2O3), length 320 mm, 0.5 mm i.d., reactor 

temperature 1450 ◦C) and a GC Combustion III Interface (ThermoQuest Finnigan, Bremen, Germany). 

The GC was fitted with a Zebron ZB-5MS capillary column (Phenomenex, Torrance, USA) (30 m × 0.25 

mm i.d., df 1 μm). GC conditions were set as: split injection (4:1), initial oven temperature at 30 ◦C for 

3.8 min, ramp at 30 ◦C/min to 100 ◦C. Helium was used as carrier gas at a flow of 0.6 ml/min constant 

flow. 

All hydrogen isotope ratios are reported in comparison to the Vienna Standard Mean Ocean Water 

(VSMOW). Reference methyl sulfate salt material HUGB2 (δ2 H VSMOW = − 102.0 ± 1.3 ‰) and 

HUGB3 (δ2 H VSMOW = − 272.9 ± 1.5 ‰) were used for the normalization of sample isotopic ratios 

(Greule et al., 2019; Greule et al., 2020). Additional samples of HUGB3 and Tineo wood reference 

material, HUGB5 (δ2 H VSMOW = − 191.7 ± 0.8 ‰) were treated identically to samples and used as a 

quality control sample throughout the sequence (RMSE: HUGB3 3.2 ‰; HUGB5 5.3 ‰). 

Unmixing and model evaluation 

Contribution of the Oi, AGW and root sources to the organic and mineral horizons (Oe, Oa and A) were 

modelled using the open-source R package, MixSIAR (Stock et al., 2018). While simple linear equation 

can be used for source apportionments, MixSIAR incorporates uncertainty and source variance into the 

model estimates. MixSIAR was run with concentration dependency and uninformative priors. Using the 

molecular weights of hydrogen (1.008 Da), carbon (12.011 Da), and methoxy groups (31.034 Da), the 

concentrations of the δ13C and δ2 H LMeO tracers were calculated as mg of carbon/hydrogen derived 

from LMeO groups per gram of organic carbon (OC). All MixSIAR runs used the same model 

parameters: chains = 3, chain length = 3000, thin = 100, burn = 200,000 with a ‘long’ run time. The 

stagnosol and podzol sites were unmixed independently, using the spatial replicates (A, B, and C) to 

generate source distributions for each site. The variance of each horizon was incorporated into the 

model by using the “Residual only” error structure and using horizon spatial replicates as mixture 

replicates. The performance of the model was evaluated using 150 concentration dependent 

mathematical mixtures with known source proportions. Mathematical mixtures were generated using 

the open-source python script of Cox et al. (2023) using Eq. (1). Where V is the mean isotopic value of 

the tracer t, C refers to the mean concentration for all (∀) tracers in a set (∈ ) of tracers T in source S. 

SO refers to the number of sources and P refers to the known proportions of the mathematical mixtures.  

Vt =
∑ (Cs,t 

so
s   × Ps,t   × Vs,t)

∑ (Cs,t 
so
s   × Ps,t ) 

  ,  ∀ t ∈ T   Eq.1 

  

However, the use of “Residual only” error structure, which incorporates both source and mixture 

variance, requires a distribution of mathematical mixtures rather than a single value. Similar to Vale et 

al. (2022), replicate tracer values (xi) for each mixture were generated according to Eq. (2) by randomly 

drawing samples from a normal distribution using the tracer value of the single mixture (Vt) generated 

by Eq. (1) as the mean. The variance of the mixture distribution (σ2) was set as the mean SD of horizons 
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from the same soil sites. Estimated proportions were then compared to the proportions used to generate 

the mathematical mixtures.  

Vt𝑖 ∼ N(Vt, 𝜎2), 𝑖 = 1,2, … ,10, ∀t ∈ T 

 
Eq.2 

 

δ13C Non-MeO mass balance and contribution of δ13C LMeO to the δ13C bulk enrichment 

To determine the δ13C non-LMeO values, the mass balance equation Eq. (3) was applied. Where fLMeO 

is the fraction of LMeO in the total organic carbon. The molecular weights (MW) are used to convert the 

concentration of LMeO to the concentration of carbon derived from LMeO.  

𝛿 𝐶13  𝑁𝑜𝑛 𝑀𝑒𝑂 =

𝛿 𝐶13  𝑏𝑢𝑙𝑘 − 𝛿 𝐶13  𝑀𝑒𝑂 ∗ (𝑓𝐿𝑀𝑒𝑂 ∗ (
𝑀𝑊 𝐶

𝑀𝑊 𝑀𝑒𝑂
))

1 − (𝑓𝐿𝑀𝑒𝑂 ∗ (
𝑀𝑊 𝐶

𝑀𝑊 𝑀𝑒𝑂
))

 

 

Eq.3 

The enrichment of δ13C bulk from Oi to the Ah horizon attributed to LMeO was calculated by two 

methods; i) Eq. (4), calculating the difference between the Oi and Ah horizon for both the δ13C bulk and 

δ13C Non-MeO fraction, with the difference being the enrichment caused by the LMeO fraction.  

∆𝛿 𝐶13  𝐵𝑢𝑙𝑘 ∵ 𝐿𝑀𝑒𝑂 = (1 −  
𝛿 𝐶13  𝑁𝑜𝑛−𝐿𝑀𝑒𝑂 𝑂𝑖−𝛿 𝐶13  𝑁𝑜𝑛−𝐿𝑀𝑒𝑂 𝐴ℎ

𝛿 𝐶13  𝐵𝑢𝑙𝑘 𝑂𝑖−𝛿 𝐶13  𝐵𝑢𝑙𝑘 𝐴ℎ 
) ∗ 100  

 

Eq.4 

ii) Plotting a categorical line plot of the δ13C Bulk and δ13C non-LMeO values in relation to each horizon. 

As a slope of 0 would indicate no enrichment has taken place, the slope angle can be used as a semi-

quantitative proxy for degradation. The δ13C enrichment induced by LMeO is then seen as the disparity 

between these two slopes, and is reported as a percentage of the δ13C Bulk, Eq. (5). See Fig. S1 for 

further information. The uncertainty reported throughout represents the SD of the three spatial replicate 

sites (A, B, C) for each site.  

∆ 𝛿 𝐶13  𝐵𝑢𝑙𝑘 ∵ 𝐿𝑀𝑒𝑂 = (1 − (𝑆𝑙𝑜𝑝𝑒
𝐶13  𝐵𝑢𝑙𝑘

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑠/ 𝑆𝑙𝑜𝑝𝑒
𝐶13  𝑁𝑜𝑛 𝑀𝑒𝑂

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑠 )) ∗ 100  

 
Eq.5 

4.3 Results  

Measured δ13C and δ2 H LMeO values of lignin sources and mixtures  

The Oi horizon contained the lowest δ13C LMeO values in both sites (stagnosol; δ13C: − 58.8 ± 0.9 ‰: 

podzol; δ13C: − 53.9 ± 2.7 ‰) (Fig. 1, Table S1.1, S1.2, S2). The most 13C enriched LMeO values were 

found in LR of the stagnosol (δ13C: − 32.4 ± 1.5 ‰) and the AGW of the podzol (δ13C: − 34.0 ± 2.8 ‰). 

The Oi horizon δ13C LMeO values were within the range of tree leaves previously reported (Keppler et 

al., 2004). Our results of the δ13C LMeO values of woody tissue were slightly more depleted compared 

to LMeO values previously reported (Greule et al., 2009; Greule et al., 2020). The δ13C LMeO values 
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of FR and LR were found not to be different in the podzol sites, while differences were found in the 

stagnosol (Mann-Whitney-U test, p value: stagnosol 0.04; podzol 0.33). The results of the concentration 

analysis are available in the supplementary material (Fig. S2, Table S1.1, S1.2, S2).  

δ13C LMeO values of organic horizons (stagnosol: Oe; podzol: Oe, Oa) ranged from − 45.1 to − 50.8 

‰. While the δ13C LMeO of soil organic horizons has not been assessed before, soil organic horizons 

are a mixture of both leaves and non-photosynthesising tissues (roots and above ground woody 

material), as such our results of δ13C LMeO values are within a credible range (Fig. 1, Fig. 2). Mineral 

soil horizons (Stagnosol Ah; δ13C: − 41.7 ± 1.7 ‰: Podzol Ah; δ13C: − 38.8 ± 1.3 ‰) were similar to 

those reported by Cox et al. (2024) for soils in Switzerland (δ13C LMeO: − 39.2 to − 47.8 ‰). Additionally, 

the organic and mineral horizons demonstrated 13C LMeO enrichment with increasing organic matter 

decomposition.  

Stagnosol non-photosynthesising tissues (LR, FR, and AGW) displayed significant differences in δ13C 

LMeO values, whereas no differences were observed in podzol (Kruskal Wallis, p value: stagnosol 0.03; 

podzol 0.8). Differences were observed between non-photosynthesising tissues (LR, FR, AGW) and 

photosynthesising tissues (Oi) in both sites (Mann-Whitney-U test, p value: stagnosol  

Similar to the δ13C LMeO values, δ2 H values of the Oi horizon was found to be most isotopically 

depleted in 2 H in the podzol (δ2 H: − 208.4 ± 1.3 ‰). In the stagnosol, both the Oi horizon (δ2 H: − 

195.4 ± 9.5 ‰) and AGW (δ2 H: − 196.0 ± 3.4 ‰) were observed to be the most 2 H depleted. The most 

isotopically enriched 2 H LMeO values were found in the FR of the stagnosol (δ2 H: − 159.4 ± 4.6 ‰), 

and the LR of the podzol (δ2 H: − 153.8 ± 18.9 ‰). We found roots to be more enriched in 2 H compared 

to the Oi horizon, aligning with differences in δ2 H values previously reported for non-exchangeable bulk 

hydrogen (Debond et al., 2012; Ruppenthal et al., 2015; Guidi et al., 2023). No significant difference 

was found between the δ2 H LMeO values of LR and FR in both sites (Mann-Whitney-U test, p value: 

stagnosol 0.27; podzol 0.51). 

Comparable to the δ13C LMeO values, the δ2 H LMeO values of organic and mineral horizons are also 

located between the lignin sources (Fig. 1, Fig. 2). However, in comparison to the stagnosol Ah horizon 

at Sites A and B, the Site C Ah horizon was found to exceptionally 2 H enriched (δ2 H: − 144.2 ± 6.4 ‰) 

and outside the sources mixing space (Fig. 2, S2). Both sites demonstrated an enrichment of 2 H LMeO 

with increasing organic matter decomposition. In contrast to δ13C LMeO values, AGW exhibited δ2 H 

LMeO values more similar to the Oi horizon than root material. Differences were not observed between 

the δ2 H LMeO values of non-photosynthesising and photosynthesising tissues in the stagnosol but 

were present in the podzol (Mann-Whitney-U test, p value: stagnosol 0.07; podzol <0.01) Fig.1). 
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Fig. 1 δ13C and δ2H LMeO values of lignin sources and horizons. The boxes represent 25, 50 and 75% 

quantiles with whiskers showing a 1.5 interquartile range. Sources are highlighted in blue  

Fig. 2 Bi-plot of the δ13C and δ2H LMeO values of lignin sources and horizons. Mean values of both 

sites are denoted by the ‘X’ symbol, with eclipses illustrating the standard deviation of the spatial 

replicates of each source or horizon 
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Lignin source apportionment and model evaluation 

The model evaluation using mathematical mixtures indicated excellent model performance with model 

estimates compared to known proportions having a Pearson correlation coefficient of r 2 > 0.97. In the 

stagnosol, mathematical mixtures containing high proportions of AGW were shown to be 

underestimated (~10 %) (Fig. S3). Mathematical mixtures of the podzol demonstrate an overestimation 

of the lower contributions of Oi, and a small but consistent underestimation of root contribution by ~ 5 

% (Fig. S4). 

Source contributions in the stagnosol Oe horizon were found to dominated by both AGW (median 

values: 32 %) and Oi material (42 %), while contribution from root material was estimated at 25 % (Fig. 

3). Contribution from Oi (19 %) and AGW (19 %) sources decreased in the Ah horizon, with roots being 

the dominate source (55 %) (see Table S3 for source apportionment summary). 

In the Oe horizon of the podzol, the Oi horizon lignin was the dominate lignin source (80 %), with lower 

input from roots (11 %) and AGW (8 %). In the Oa horizon, there was a decrease in Oi contribution (52 

%) accompanied by an increase in root contribution (31 %), while AGW had a smaller contribution (14 

%). The Ah horizon of the podzol showed an increase in AGW lignin contribution (37 %), with similar 

contributions from Oi and roots (Oi: 30 %; Roots: 30 %). (See Table S4 for source apportionment 

summary). 

 

Fig. 3 Density plots of the contributions of lignin source (Oi, AGW and Root) to the Oe, Oa and Ah 

horizon estimated using MixSIAR 
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Calculated δ13C values of the non-LMeO fraction 

Using the mass balance equation Eq. (3), we calculated the δ13C values of the non-LMeO fraction. For 

the stagnosol and podzol Oi horizon (Table S1 and S2), the δ13C non-LMeO values were determined to 

be − 29.8 ± 0.3 ‰ and − 29.2 ± 0.2 ‰, respectively. In the Oe horizon, the δ13C non-LMeO values were 

− 29.0 ± 0.6 ‰ for the stagnosol and − 29.3 ± 0.2 ‰ for the podzol. The podzol Oa horizon exhibited 

δ13C values of the non-LMeO fraction at − 29.0 ± 0.3 ‰. The stagnosol Ah horizon displayed δ13C non-

LMeO values of 27.7 ± 0.7 ‰, while the podzol Ah horizon δ13C non-LMeO values of − 27.8 ± 0.1 ‰. 

The δ13C non-LMeO values for stagnosol AGW were − 28.7 ± 0.7 ‰, and − 27.3 ± 2.0 ‰ for the podzol 

AGW. The roots δ13C non-LMeO values were − 28.7 ± 0.7 ‰ and − 29.4 ± 1.3 ‰ in the stagnosol and 

podzol, respectively. 

Calculated bulk δ13C enrichment caused by the LMeO fraction 

The difference in δ13C enrichment between the Oi to Ah horizon for both the δ13C bulk and δ13C non-

LMeO fraction values was used as the basis for estimating the enrichment induced by LMeO. Applying 

Eq. (4), the percentage of δ13C bulk enrichment caused by LMeO was calculated at 14 ± 4 % for the 

stagnosol and 11 ± 4 % for the podzol. Using Eq. (5), an identical proportion of the δ13C bulk enrichment 

was attributed to the LMeO fraction in the stagnosol (14 ± 4 %). However, the LMeO-induced 13C bulk 

enrichment calculated using Eq. (5) was only 4 ± 3 % in the podzol. 

4. Discussion 

δ13C LMeO and δ2 H end member discrimination 

The dual isotope (δ13C and δ2 H values) analysis of LMeO revealed the ability of δ13C LMeO values to 

discriminate between woody and photosynthesising tissues, while δ2 H LMeO values demonstrated the 

capacity to differentiate between above and below ground tissues (Fig. 4). The dual isotope approach 

then allowed for the discrimination between Oi, AGW and root lignin sources. In the following discussion, 

we find it acceptable to use the term Oi interchangeably with leaves. While in this study, we did not 

measure fresh leaves, we would not expect differences in δ13C LMeO values between fresh and 

undecomposed leaf litter. Additionally, our results of Oi are similar to fresh leaves δ13C LMeO values 

previously reported (Keppler et al., 2004). 

The presence of the enriched 13C in bulk woody material compared to leaf material has been suggested 

to arise from external parameters such as stress, seasonal variations, temperature, and light, affecting 

the degree of isotopic fractionation during CO2 uptake with different plant tissue growth occurring at 

different stages (Cernusak et al., 2009). However, as MeO have a significant contribution to bulk δ13C 

values, a proportion of the enrichment in bulk δ13C values can be attributed to the enrichment in δ13C 

MeO values (Keppler et al., 2004). Additionally, the large isotopic difference between leaf litter and 

woody material δ13C LMeO values (~30 ‰) implies the involvement of more complex processes 

involving isotopic fractionation. 
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Fig. 4 The dual isotopic analysis demonstrates tissue type clustering. δ13C LMeO values distinguish 

between photosynthesising and non-photosynthesising tissues, while δ2H LMeO values differentiate 

between above and below ground tissues. This approach enables discrimination between Oi, AGW, 

and root tissues. 

 

As lignin serves as a structural component of plants, it is not considered to be transported through the 

plant’s vascular system (xylem and phloem) (Boerjan et al., 2003). However, the precursors of MeO 

groups (e.g., serine) have been reported to be both transported and synthesized across various plant 

tissues (Ros et al., 2014). As described in Greule et al. (2021) and Lloyd et al. (2023), MeO groups 

originate from the methylene group of serine. Serine has been shown to be a product of photorespiration 

(glycolate pathway), the Calvin cycle, Glycolysis (glycerate pathway), and the formate pathway (Kisluik, 

1955; Ros et al., 2014). 

The CH2-unit (methylene group) originates from the position C-3 of serine and provides the carbon atom 

and two hydrogen atoms for the methoxy group, the third H comes from NADH (Greule et al., 2021; 

Lloyd et al., 2023). The CH2 unit of serine is found to be slightly depleted in 2H and corresponds to the 

plant source water (up to − 50 mUr, Augusti et al., 2006; Zhang et al., 2002). However, when certain 

flavoproteins transfer the third hydrogen from NADH to from the CH3 unit strong hydrogen isotope 

fraction occurs (− 580 to − 790 mUr (Martin et al., 2004; Billault et al., 2001), leading to a total 2H 

fractionation of about − 200 mUr between lignin methoxy groups and precipitation (Greule et al., 2021). 

Carbon depletion in plant tissues relative to atmospheric CO2 is due to fractionation processes during 

diffusion into leaves and carbon fixation via RuBisCo (Francey and Farquhar, 1982). Leaves of C3 plants 
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are more 13C depleted than stems, roots and seeds (Cernusak et al., 2009) and lignin is found to be 

more 13C depleted than whole organic material or cellulose (Wilson and Grinsted, 1977; Cernusak et 

al., 2009). However, lignin methoxy groups showed an exceptionally depleted 13C signature (Wieland 

et al., 2022, 2024; Keppler et al., 2004) were the stronger fractionation in lignin methoxy groups could 

occur in the last step of the C1 metabolism. Here the CH3 unit is transferred from N5-CH3-THF to 

homocysteine to from methionine. This L-methionine synthase might include a large 13C depletion, 

resulting in strongly depleted L-methionine. 

We see strong differences between photosynthesising and nonphotosynthesising tissues in δ13C LMeO 

values similar as reported by Cernusak et al. (2009) and large differences between above and below 

plant material in δ2H LMeO values. There are four possible scenarios for the observed LMeO isotopic 

values, which involve precursor production or transport: i) all serine is formed in the chloroplast and are 

transported from the leaves through the phloem to lignifying cells, ii) serine formation significantly occurs 

in non-photosynthesising plant tissues through different pathways, iii) methionine is formed in the 

chlorophyll and transported to different plant compounds or iv) a mixture of these formation pathways. 

The third hydrogen (from NADH) is product of either photosynthesis or the pentose phosphate cycle, 

with two possible scenarios here: a) the NADH used in different plant tissues comes for the same 

product or b) photosynthesis cells use NADH from the photosynthesis while non-photosynthesising 

tissues use NADH from the pentose phosphate cycle (Schnell et al., 2012; Shin, 2004). 

Combining the different scenarios for the methoxy formation we have then following possibilities: i–a; 

would mean that δ13C LMeO and δ2H LMeO values should be similar in different plant tissues, but in 

scenario i-b, δ2H LMeO values are NADH-H source pathway dependent. NADH formed by 

photosynthesis has been observed to be extremely (> 100 ‰) depleted in 2H compared to the pentose 

phosphate pathway (Luo et al., 1991; Schmidt et al., 2003). As such, the third hydrogen (from NADH) 

may result in overprinting and concealing any δ2H differences in serine formation pathways. 

  ii-a Differences in δ13C LMeO values, however as above, differences in δ2H values may be overprinted 

by the third NADH-H from the same source. While ii-b would lead to differences in both δ2H and δ13C 

LMeO values. 

  iii-a; Would imply uniform δ2H and δ13C LMeO values across all plant tissues, which contradicts 

observed data. 

  iv) The isotopic signature of LMeO, influenced by both transported serine and serine formed through 

various pathways, would be dictated by the dominant process, whether it is transportation or formation. 

Therefore, it becomes challenging to precisely identify the specific process contributing more 

significantly to the isotopic signature. 

Using the results of the dual-isotope approach of this study, we suggest scenario ii to be the most 

probable pathway for explaining the patterns of δ13C LMeO values, as large differences between wood 

and leaf δ13C LMeO values are observed. However, the variability between leaf and AGW δ2H LMeO 

values are much smaller - indicating a similar NADH-H source (a), whereas roots are strongly enriched 

in δ2H indicating a different NADH-H source (b). The discrimination between above and below ground 
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tissues suggests LMeO precursors formed by photosynthesising tissues might not be transported to the 

roots. As such, it is likely that the isotopic variation of LMeO observed in our data arises from several 

serine formation pathways and different NADH sources (photosynthesis or the pentose phosphate 

cycle) of above and below wood material. Presently, there is limited understanding of the isotopic 

fractionation associated with each serine formation pathways. For more discussion regarding the 

potential isotope fractionation of LMeO methyl groups derived from serine and involved in C1 carbon 

metabolism we refer to the Supplementary Information. 

The 13C depleted LMeO values observed in leaves in comparison to the AGW could also come from a 

partially open photorespiration cycle, in which isotopically enriched serine is taken out of the 3PGA 

cycle and transported to the xylem and used in the woody tissue (Lloyd et al., 2023). Additionally, 

another plausible explanation may be the reassimilation of isotopically light CO2 produced by 

photorespiration, resulting in a fraction of isotopically depleted CO2 being re-assimilated back into the 

leaves and into subsequently converted to serine. Kinetic fractionation effects would consequently lead 

to the rapid metabolism of the isotopically depleted serine near the assimilation site, resulting in 

isotopically depleted 13C values in leaves. Furthermore, as non-photosynthesising tissues cannot re-

assimilate respired CO2, the 13C LMeO of heterotopic would be enriched in 13C compared to the 

phototropic tissue, as our findings demonstrate. While the proportion of reassimilated CO2 from tree 

leaves is currently unknown, rice and wheat plants have shown to significantly re-assimilate respired 

CO2 (24–38 %) (Busch et al., 2013). 

Organic horizons isotopes 

In general, the δ13C and δ2H LMeO values observed in the organic and mineral horizons were within 

the range defined by the LMeO sources. However, the mineral Ah horizon of the Stagnosol site C 

demonstrated exceptionally depleted δ2H LMeO values and was located outside the possible mixing 

space of the sources. As all other Ah horizons were within the source range, we propose the outlying 

site C Ah horizon is due to the contribution of lignin from a missing source in the Site C Ah horizon. As 

this Ah horizon demonstrates an isotopic fingerprint more comparable to the root material than leaf 

material, we suggest the outlier is from roots of a plant/ tree species not included in the Oi and root 

sampling. Therefore, as our sampling appears to of missed a potential source, the site C Ah horizon is 

left out the following source apportionment. 

While δ2H MeO values have been demonstrated to be stable during MeO degradation (Anhauser  et 

al., 2015; Lu et al., 2022), the stability of δ13C LMeO during degradation processes of organic matter is 

less investigated. Fig. 2 illustrates the Stagnosol organic and mineral horizons plotting on the linear 

mixing line between Oi and root sources, suggesting minimal contribution from AGW. In a two-source 

system, if 13C LMeO fractionation was to occur with compound degradation, there would be a deviation 

from the expected mixing line. This deviation would be characterized by an enrichment of 13C compared 

to the prediction outlined by the mixing line (Fig. S5) (Lutz and Van Breukelen, 2014a, 2014b). This is 

not observed in the Stagnosol, suggesting the isotopic stability of δ13C LMeO values and its applicability 

for tracing lignin sources. 
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In the case of the podzol Ah horizon, a deviation from the two-source mixing line is observed. Two 

reasons for this are proposed: i) Contribution from AGW material in the Ah horizon, ii) 13C fractionation 

occurring during LMeO degradation. The LMeO fraction remaining in the podzol is significantly higher 

than that remaining in the stagnosol (Fig. S2, Table S1 and S2). If isotopic fractionation occurred with 

LMeO degradation, one would expect to observe this also in the stagnosol, as this is not observed, we 

propose that the deviation from the mixing line is the result of contribution from AGW. Furthermore, the 

formation of podzol soils is reliant on precipitation being considerably greater than evapotranspiration, 

leading to the leaching of organic compounds. Consequently, we propose that lignin from the slower 

degrading above ground woody material is leached through the organic horizons and accumulating in 

the Ah horizon (Fig. 3) and stabilized by organic mineral associations (Schmidt et al., 2000). 

Apportionment of lignin sources 

The relative above and below ground contributions are reported to be an important factor in SOM 

formation (Freschet et al., 2013; Griepentrog et al., 2015; Berhongaray et al., 2019). Our observations 

at the stagnosol site reveal a relatively small contribution of root and AGW tissues in the upper Oe 

horizon, with both AGW and root lignin contributions being similar (Fig. 3). As AGW degradation occurs 

at a slow pace (Freschet et al., 2012), the accumulation of AGW lignin can be attributed to the minimal 

leaching and translocation of organic compounds in the stagnosol. This discrepancy between lignin 

sources in the Oe and Ah horizons highlights the reduced leaching processes occurring in the stagnosol, 

ensuing in a reduced input of lignin from above-ground sources in lower horizons. Our estimates of 

lignin contribution from roots (56 %) align well with global estimates of OM input, which suggest that 

root litter accounts for 48 % of the plant litter OM input in the forest soils (Freschet et al., 2013) with a 

higher proportion of root litter (45 %) being transferred to the SOM than leaf litter (8 %) (Jackson et al., 

2017). In the stagnosol our results of roots being the dominate source aligns with that previously 

reported using lignin monomers (Wang et al., 2018). 

In the podzol profile, we observed a dominance of lignin derived from the Oi layer in the Oe horizon, 

with a gradual decrease of Oi contribution towards the Ah horizon. This trend aligns with expectations, 

as the distance from the Oi horizon increases with depth through the soil horizons. Notably, lignin from 

AGW was found to be minimal until the Ah horizon. Our findings in the Ah horizon illustrate the gradual 

leaching of the slowly degrading AGW lignin through the Oe and Oa horizons, ultimately accumulating 

in the Ah horizon due to mineral associations. While the mechanism for lignin stabilisation by 

physicochemical processes has not been elucidated (Rumpel et al., 2004; Spielvogel et al., 2008), the 

stability of lignin has been revealed to be related to the fine mineral and clay fraction (Thevenot et al., 

2010). While meta-analysis has indicated a higher proportion of root litter OM being transferred to the 

SOM than leaf litter OM (Freschet et al., 2013), in the case of the podzol Ah horizon this is not 

withstanding. However, analysis of deeper mineral horizons would likely show a further increase of root 

lignin proportion. Our result show that while plant roots are an important source of carbon to SOM 

(Berhongaray et al., 2019; Meena et al., 2019), the relative contribution of lignin sources is dependent 

on the specific characteristics of each site. 
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Driving force behind the enrichment of bulk 13C in organic horizon 

The mass balance equation, Eq. (3), was applied to determine the δ13C values of the non LMeO fraction 

of organic and mineral horizons. Eq. (4) and Eq. (5) were applied to estimate the amount of 13C 

enrichment explained by LMeO groups. Using Eq. (4) our results indicate that the changing LMeO 

sources explain 14 % and 11 % of the enrichment of 13C Bulk from the Oi to Ah horizons in podzol and 

stagnosol, respectively. Estimates using Eq. (5) showed identical results for the stagnosol, however 

using Eq. (5), only 4 % of the podzol bulk 13C enrichment could be explained by LMeO. The variance 

between these two values can be assumed to be a result of the non-linear 13C enrichment found in the 

podzol. While various factors contribute to the enrichment of bulk 13C with soil depth and organic matter 

degradation, our study reveals that a significant portion of the enrichment, up to 14 %, can be attributed 

to the transition of lignin sources from Oi to woody tissues. This discovery holds considerable 

importance, particularly in terms of carbon sequestration and understanding the movement of carbon 

with organic and soil horizons. Our findings suggest that models relying on 13C enrichment with depth 

as an indicator of carbon turnover might be exaggerating turnover rates. Importantly, Keppler et al. 

(2004) and Cox et al. (2024) demonstrated that needle litter δ13C LMeO values are more similar to 

woody material than leaf litter. This similarity between woody material may diminish the effect of shifting 

lignin sources in coniferous forests, in which case only turnover rates in deciduous forests may be 

significantly overestimated. 

Conclusion 

The appointment of lignin sources in SOM regularly faces challenges from the complex structures of 

lignin. Our methodology represents a significant advancement over previous techniques by offering a 

relatively rapid and solvent free dual isotopic (δ13C and δ2H values) analysis of LMeO enabling the 

discrimination of different lignin sources, and ultimately the apportionment of lignin in SOM. Here, we 

were able to show that the relative contribution of lignin sources is not only dependent on the specific 

characteristics of each site but also dependent on the different horizons within the soil profile. This not 

only enhances our understanding of carbon dynamics and sequestration in soils but also helps elucidate 

the intricate mechanisms these processes. Our results contribute to the understanding and modelling 

of carbon turnover and sequestration in soils. While the mechanism for the large LMeO isotopic 

discrimination between different plant tissues is currently not well understood, the dual isotopic analysis 

of LMeO in specific trees may hold the potential for understanding serine forming pathways, and 

potentially how these pathways respond to external factors (e.g., temperature, drought). 

Our findings suggest that the substantial δ13C enrichment observed with depth partly arise from the 

changes in the composition of lignin sources, particularly from leaf litter to root tissues, which is usually 

attributed to organic matter decomposition. As such, the use of bulk δ13C values as a tool to determine 

carbon turnover may result in an overestimation. Interestingly, this effect may not be as dominant in 

coniferous forests in which the needle litter may have a δ13C LMeO values more similar to woody 

tissues. 
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Isotopic analysis (δ13C and δ2H) of lignin methoxy 

groups in forest soils to identify and quantify lignin 

sources 

Supplementary 

 

Fig. S1 Demonstration of Equations 4 and 5 is provided through the examples of the stagnosol and 

podzol sites. In the stagnosol, Equation 5 is exemplified where the slope of 0 (dashed line) indicates no 

isotopic enrichment during organic matter decomposition. The slope observed in the categorical line 

plot serves as a semi-quantitative measure for isotopic enrichment. The disparity between the slopes 

of δ13C bulk and δ13C non-LMeO represents the enrichment attributed to LMeO. The podzol site 

demonstrates the application of Equation 4. Instead of relying on the slope, the distinction between the 

Oi and Ah horizons is employed to determine isotopic enrichment. The variation between δ13C bulk and 

δ13C non-LMeO represents the enrichment induced by LMeO. In both scenarios, the enrichment is 

expressed as a percentage of δ13C Bulk enrichment. 

LMeO concentration  

The highest concentration of LMeO was observed in the AGW at both sites (stagnosol: 61.4 ± 18.2 mg 

g OC-1; podzol: 76.4 ± 7.4 mg g OC-1), followed by the Oe horizon in the stagnosol (42.7 ± 6.7 mg g 

OC-1) and large roots in the podzol (50.4 ± 6.1 mg g OC-1) (Fig S1). Fine roots exhibited the low LMeO 

concentration at both sites (stagnosol: 29.8 ± 10.0 mg g OC-1; podzol: 36.0 ± 4.6 mg g OC-1). Large 

roots displayed a higher LMeO content compared to fine roots in both sampling sites.  
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The stagnosol showed a decrease in LMeO concentration from the Oe (42.7 ± 6.7 mg g OC-1) to Ah 

(29.6 ± 0.4 mg g OC-1). The LMeO concentration in the podzol was found to be similar in the Oe and 

Oa horizons (Oe: 30.8 ± 2.3 mg g OC-1; Oa: 27.8 ± 4.6 mg g OC-1), with a decrease LMeO content in 

the Ah horizon to 24.6 ± 3.7 mg g OC-1
.  

 

Fig. S2 Concentrations of LMeO in lignin sources and horizons. The boxes represent 25, 50 and 75% 

quantiles with whiskers showing a 1.5 interquartile range 

Table S1 Summary of isotopic values and concentrations of LMeO in lignin sources and horizons of 

site 1, stagnosol (See Table S3 for full data set). 

  OC % δ13C Bulk (‰) LMeO [mg g OC-1] 

δ13C LMeO δ2H LMeO 
δ13C Non-

LMeO  
(‰) 

(‰) (‰) 

    

Stagnosol Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Oi 45.9 1.6 -30.3 0.3 41.1 3.7 -58.8 0.9 -195.4 9.5 -29.8 0.3 

Oe 35.6 6.2 -29.4 0.6 42.7 6.7 -48.0 4.9 -188.3 2.3 -29.0 0.6 

Ah 6.1 0.4 -27.9 0.7 29.6 7.6 -41.7 1.7 -175.3 7.2 -27.7 0.7 

FR 48.9 1.8 -29.0 0.8 29.8 10.0 -36.3 1.0 -159.4 4.6 -28.9 0.8 

LR 47.2 2.4 -28.6 0.8 38.5 16.5 -32.4 1.5 -167.8 7.2 -28.5 0.8 

AGW 45.4 1.5 -29.0 0.8 61.4 18.2 -42.2 2.1 -196.0 3.4 -28.7 0.7 

Roots 48.0 2.1 -28.8 0.8 34.1 13.1 -34.4 2.4 -163.6 7.1 -28.7 0.7 
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Table S2 Summary of isotopic values and concentrations of LMeO in lignin sources and horizons of 

site 2, podzol (See Table S3 for full data set). 

  OC % δ13C Bulk (‰) LMeO [mg g OC-1] 

δ13C LMeO δ2H LMeO 
δ13C Non-LMeO 

(‰) 
(‰) (‰) 

    

Podzol Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Oi 46.9 0.5 -30.3 0.1 33.2 6.1 -53.9 2.7 -208.4 1.3 -29.2 0.2 

Oe 42.4 2.7 -30.3 0.1 30.8 2.3 -50.8 2.7 -198.9 3.6 -29.3 0.2 

Oa 37.5 3.3 -29.8 0.3 27.8 4.6 -45.1 4.3 -184.8 12.5 -29.0 0.3 

Ah 12.4 0.6 -28.5 0.2 24.6 3.7 -38.8 1.3 -187.5 3.5 -27.8 0.1 

FR 48.9 0.1 -29.9 0.3 36.0 4.6 -35.2 1.9 -166.3 8.1 -29.0 0.3 

LR 49.0 0.5 -31.2 1.7 50.4 6.1 -34.1 1.6 -153.8 18.9 -29.9 1.7 

AGW 46.8 0.8 -29.1 2.0 76.4 7.4 -34.0 2.8 -192.6 9.8 -27.3 2.0 

Roots 49.0 0.4 -30.5 1.3 43.2 9.2 -34.7 1.7 -160.1 14.7 -29.4 1.3 

 

 

Fig. S3 150 concentration-dependent mathematical mixtures were generated to test the performance 

of the unmixing of the Stagnosol horizons using MixSIAR. The 25% and 75% IQR of ‘real’ mixtures are 

highlighted in the colour boxes. In general, results indicate excellent model performance (Pearson’s r2: 

Oi 0.99, AGW 0.97, and Roots,0.98), however an underestimation of AGW contribution (ca. 10%) in the 

higher AGW proportions is demonstrated. 
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Fig. S4 Results of mathematical mixtures indicate excellent model performance (Pearson’s R2: Oi > 

0.99, AGW 0.98, and Roots 0.98), however a consistent underestimation of root lignin contribution (ca. 

5%). The 25% and 75% IQR of ‘real’ mixtures are highlighted in the colour boxes 

Table S3 Summary of source apportionment of the stagnosol 

 
Source contributions (%) 

Stagnosol 
 

Mean median SD lower IQR  upper IQR 

Oe Oi 40 42 17 29 52  
Roots 25 25 13 15 35  
AGW 34 32 21 18 47 

Ah Oi 21 19 14 10 29  
Roots 55 59 19 44 69  
AGW 24 19 18 9 33 

 

Table S4 Summary of source apportionment of the Podzol 

 
Source contributions (%) 

Podzol 
 

Mean Median SD Lower IQR Upper IQR 

Oe Oi 76 80 14 72 85  
Roots 13 11 10 6 17  
AGW 11 8 11 4 14 

Oa Oi 50 52 18 40 76  
Roots 32 31 17 20 61  
AGW 18 14 16 6 51 

Ah Oi 30 30 15 19 41 

 Roots 31 30 17 18 42 

 AGW 39 37 20 24 52 
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Fig. S5 Bi-plot of δ13C and δ2H LMeO values of lignin sources and horizons, with mean values of both 

sites being denoted by the ‘X’ symbol. Eclipse illustrates the SD of each source or horizon. In a two-

source system (Oi and roots), mixtures will be located on the mixing line. Deviation from this mixing line 

in a two-source system illustrates 13C fractionation. In a three-source system the deviation is a result of 

13C fraction or contributing from the third source, AGW 

  

13C fractionation? 
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Chapter 5 

Final remarks and outlook 
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5.1 Final remarks  

Given the increasing problem of human-induced accelerated soil erosion and the significant influence 

of land-use types, land-use-specific sediment source apportionment may play a crucial role in 

implementing effective erosion mitigation strategies in the future. Hence, it is crucial for sediment 

fingerprinting to be as accurate and representative of the environmental system as possible to yield 

correct information for land managers and researchers. In this thesis, I have developed tools that can 

be utilized for both evaluating and enhancing sediment fingerprinting using CSSI tracers and overcome 

some of the problems related to using CSSI tracers.  

I emphasized the necessity of an additional tracer to extend the one-dimensional mixing line (P1), 

preventing the misclassification of sources located between source endmembers. I also developed a 

method to identify tracers that may negatively impact model output. By employing concentration-

dependent mixtures and a 'brute force' method, I illustrated that maximizing the number of conservative 

tracers in mixing models does not always improve model output (P2). Furthermore, the use of 

concentration-dependent mixtures enables the assessment of confidence associated with the model 

output (P3). Without this step, model outputs remain unevaluated, potentially leading to erroneous 

interpretations of the unmixing results. 

As demonstrated in Chapter 2, an additional land-use-specific tracer is required to expand the one-

dimensional δ13C FA mixing line. In Chapter 3, I utilized the δ13C LMeO values and the alkane average 

chain length (P1). Using this novel tracer, I was able to discriminate between POMterr and MOAM 

fractions, allowing for the removal of the POMterr fraction and enabling the apportionment of the MOAM 

fraction only (P4). This has significant implications regarding the use of CSSI tracers for sediment 

source appointments, suggesting that the reoccurring high estimates of forest soils to the sediment is 

overestimated due to the misclassification of POMterr input as forest soil input.  

Additionally, when dealing with historical sediment and isotopic tracers, Suess corrections are required. 

In Chapter 3, for the first time, I provided a more representative picture of sediment dynamics by 

incorporating multiple tracer turnover times (P5). I also used mathematical mixtures to assess model 

performance (P3) and develop an updated concentration-dependent mixing space-range test. Results 

of this suggest that the conventional point-in-polygon test is not sufficient for concentration-dependent 

tracers. 

The conservativeness of tracers in sediment source apportionment is a fundamental and necessary 

tracer property. As such, the dual isotopes (δ13C and δ2H) of LMeO were used to assess the 

conservativeness of δ13C LMeO values during organic matter degradation from the litter layer to SOM. 

By using the isotopic stability of δ2H MeO values during degradation, I disentangled isotopic 

fractionation from source mixing and demonstrated the stability of δ13C LMeO values. Furthermore, the 

dual isotope analysis enabled the discrimination of the litter layer, above-ground woody material, and 

root lignin, allowing the apportionment of lignin sources in organic and mineral horizons. I then applied 

this method to two soil types (stagnosol and podzol), revealing that lignin mixing and source dynamics 

are soil type specific.  
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Additionally, I explored the possibility that δ13C bulk enrichment during organic matter degradation in 

forest organic and soil layers can be partially explained by the transition of lignin sources from leaf litter 

to woody material. Results indicated that 14% and 11% of the bulk δ13C enrichment in the podzol and 

stagnosol, respectively, can be explained by the changing of lignin sources. Our findings suggest that 

the use of δ13C enrichment in soils as a proxy for carbon turnover may overestimate turnover. 

5.2 Outlook 

Chapter 2 introduces a tool for assessing model performance using concentration-dependent mixtures, 

which was developed and tested. In Chapter 4, this tool was enhanced to incorporate the variability of 

the mixtures. However, mean source values are used to generate the mixtures, neglecting source 

variance. Enhancing the model evaluation method by generating concentration-dependent mixtures 

that incorporate source variance would significantly improve its effectiveness and representativeness 

of ‘real’ sediment data. Furthermore, mathematical mixtures may be used to investigate how the balance 

of source discrimination and tracer mixing space similarities effect model performance. As δ13C FA 

tracers have a relatively narrow range of possible source values compared to other tracers (e.g., 

geochemistry). When tracers with a higher degree of source discrimination, despite having identical 

mixing spaces, are modelled, the propagation of source uncertainty may be outweighed, potentially 

resulting in improved model performance. 

In Chapter 3, I integrated tracer turnover times into the Suess corrections by employing a range of 

turnover times (10, 30, and 100 years) for all isotopic tracers. However, in reality, tracers are unlikely to 

possess identical turnover times due to variations in both the tracer type and land-use characteristics. 

A potential solution for addressing the variance in turnover times specific to tracers and land use may 

involve employing a 'brute force' method, wherein all plausible combinations of land-use and tracer 

turnover times are passed through the model. 

In this thesis, I utilized δ13C LMeO values as an additional tracer for sediment source apportionment. 

The application of δ²H LMeO for land-use specific sediment source apportionment remains unexplored 

and could potentially make a significant contribution. Furthermore, this thesis marks the novel 

application of the LMeO isotopic values in the field of soil science. Given the high abundance of LMeO 

in the terrestrial biosphere, I eagerly await further use and research of LMeO isotopes resulting in a 

deeper understanding of the environment. 
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