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1 Introduction

The basic building block of a quantum computer is a quantum bit (qubit), a
quantum two level system, that stores information in the superposition of the
two quantum states [1]. Ideally, a qubit should have a long coherence time, fast
manipulation, and a small footprint [2]. For over two decades, the quest for
stable large-scale qubit systems that can execute useful computational tasks
has fueled intense research in condensed matter physics. As a result of a jour-
ney of proof-of-principle experiments, demonstrating single-qubit operations
[3, 4], long range qubit-qubit interactions [5, 6] and a two-qubit quantum pro-
cessor [7, 8], the spin qubits in semiconductors and superconducting qubits have
claimed the leading positions in solid-state-based qubit platforms, which have
been solidified more than ever through significant improvements in quantum
gate fidelities [9–17]. For all the highlights these two platforms possess, spin
and superconducting qubits have their own characteristic limitations. Single
electron spin qubits in a quantum dot in isotropically enriched 28Si devices
have shown a dephasing time on the order of tens of microseconds far below
the energy relaxation time in a high magnetic field environment (∼ 1 T), where
the limiting factor was found to be charge noise [18]. When reducing the mag-
netic field to ∼ 100 mT, the dephasing time of the spin qubit drops to a few
microseconds and becomes limited by spin flips of residual 29Si nuclei [19].
Superconducting qubits with reduced sensitivity to charge noise were found to
perform better in terms of dephasing time, usually ranging from tens of mi-
croseconds to just over a hundred microseconds [20]. However, the relaxation
time of a superconducting qubit barely exceeds half of a millisecond, which
will ultimately limit the qubit dephasing [21]. In addition, the high coherence
in superconducting qubits comes at a cost of increased footprint, rendering
a difficult roadmap for up-scaling. After all these arguments, an experimen-
tal question becomes relevant, that is, does an intermediate nanoelectronic
device exist, that can combine the best from both worlds? In this regard, a
novel type of qubit, known as Andreev qubits, has emerged in recent years.
It is encoded in the electron-like states emerging in a transparent few-modes
Josephson weak link.

A Josephson weak link is an electronic device that is composed of two su-
perconducting electrodes, connected via a non-superconducting segment. In
a transparent few-modes Josephson weak link, superconducting quasiparticles
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1. Introduction

can undergo phase-coherent Andreev reflections at the interfaces to the su-
perconducting electrodes, resulting in discrete energy levels bounded in a sub-
micrometer-scale volume, as small as the weak link itself [22, 23]. Recently,
experimental works have demonstrated the dynamics and coherent manipu-
lation of these quasiparticle states in superconducting atomic point contacts
[24] and epitaxial InAs/Al nanowire Josephson junctions [25, 26]. In the latter
material platform, the strong intrinsic spin-orbit coupling has been utilized to
unlock the spin degree of freedom, enabling control and readout of Andreev
spin qubits [27]. The hallmark features of these fermionic states of being
electrically controlled, small size, and carrying supercurrent make the semi-
conducting nanowire-based Josephson junctions an interesting candidate for
scalable Andreev qubits [28–33].

To fully exploit the potential of Andreev qubits, there are still several mile-
stones to accomplish. First, a controllable exchange interaction of qubits is
elementary to a quantum computer. It should feature a long range coupling
scheme and a tunable interaction strength, forming a building block for two-
qubit operations [6, 34]. So far, there has been only a single report on the
coupling of an Andreev spin qubit to a superconducting transmon qubit [35].
However, the presented Andreev spin qubit resides in the same Josephson weak
link, which is used to form the transmon qubit, thus depriving this approach
of scalability. Furthermore, their exchange interaction is based on the physical
proximity of the qubits and not an actual tunable parameter. In this thesis,
we propose a long range coupling scheme for Andreev qubits using a supercon-
ducting cavity coupler, whose qubit-cavity interaction strength can be tuned
by aligning the qubit frequency with respect to the cavity frequency. We will
present the development of our superconducting cavity coupler in-depth and
demonstrate long range coupling of two Andreev level qubits.

On the single qubit level, the coherence properties of Andreev qubits have
not reached the state-of-the-art of solid-state-based qubits yet, with the latest
studies pointing out a spin-specific limitation in dephasing time [27]. That nat-
urally rises the question, is there a different semiconductor material, that fea-
tures transparent semiconductor-superconductor interfaces, high crystal qual-
ity and perhaps spin-orbit coupling, but less nuclear spin magnetic field fluc-
tuation? In the second part of the thesis, we will employ the Ge/Si core/shell
nanowires, a group IV semiconductor with spin-orbit coupling, and establish
Josephson weak links using this material, building the base for Andreev qubits
in group IV semiconductors.

Outline of this thesis

Ch. 2 presents the theoretical concepts of Andreev bound states in semicon-
ducting nanowire-based Josephson junctions, followed by the introduction

2



to the implementation of Andreev qubits using full-shell epitaxial InAs/Al
nanowires. The control and readout of Andreev qubits presented in this thesis
rely on the coupling to a superconducting microwave resonator. Ch. 3 provides
an overview of the qubit-resonator coupling and concludes the theory part of
this thesis. Ch. 4 presents the DC electrical characterization of full-shell epi-
taxial InAs/Al nanowire Josephson junctions. The electrical performance of
these nanowire devices is evaluated in terms of junction transparencies. The
extracted high transparency parameters encourage us to further proceed to
fabricate the microwave chip. Ch. 5 thoroughly discusses the design consider-
ations for the superconducting cavity coupler for Andreev qubits. From the
experimental requirements, we derive design rules for each relevant electronic
component, which are checked using numerical simulation tools. We then com-
bine the knowledge about our full-shell epitaxial InAs/Al nanowire Josephson
junctions and superconducting cavity coupler. In Ch. 6, we demonstrate the
operation of the cavity coupler as a microwave spectroscopy tool and qubit
state detector for individual NWJJ devices. In Ch. 7, we simultaneously cou-
ple both Andreev pair qubits to the cavity and demonstrate distant, strong
coupling of two Andreev pair qubits. With the demonstration of the capability
of our superconducting cavity coupler to entangle two Andreev pair qubits, we
close the investigation of qubits formed with epitaxial InAs/Al nanowires. In
Ch. 8, we motivate the use of Ge/Si core/shell nanowire Josephson junctions
and demonstrate coherent manipulation of a superconducting gatemon qubit,
that manifests Josephson supercurrent in these nanowire devices. In Ch. 9, we
summarize the important experimental techniques, which are the backbone
of the presented thesis, helping the readers to understand and reproduce the
experiments. This thesis is concluded in Ch. 10 with a brief outlook of possible
future experiments.
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2 Andreev bound states in SNS Josephson
junctions

Andreev bound states (ABSs) are the key mechanism for electrical trans-
port in semiconducting nanowire-based Josephson junctions. In this chapter,
we present the concepts of ABSs in a superconductor-metal-supercondcutor
Josephson junction (SNS JJ). It is a condensed version of the Ch. 2-3 from
the dissertation from Cyril Metzger in Ref. [36], in which we outline the es-
sential microscopic processes investigated in this thesis. Sec. 2.1-2.4 introduce
an intuitive picture of the occurrence of ABSs, followed by the implications
of back-scattering, finite junction length and spin-orbit coupling (SOI). Here-
after, the implementation of Andreev qubits is discussed in Sec. 2.5, with focus
on the material platform in Sec. 2.6.

2.1. Andreev reflection

We consider a system with a segment of normal metal that is in elctrical con-
tact with another segment of superconductor (Fig. 2.1a). The superconductor
is described by a complex order parameter ∆ = |∆|eiδ, where |∆| is the su-
perconducting gap and δ the superconducting phase. In the normal metal,
free electrons have the energy dispersion E = ℏ2k2/2m∗, with k being the
wave-vector and m∗ the effective mass of the electron. For now, there is no
mechanism to differentiate spin-up electrons from spin-down electrons such
that the electron band is two-fold degenerate. In the ground state, all the
fermionic states up to the electrochemical potential µ are filled by electrons,
where µ is related to the Fermi wave-vector kF by µ = ℏ2k2

F/2m∗.
Now, we consider a right-moving spin-up electron excitation e1 in the normal

metal with a wave-vector k1 = kF + δk and energy E1 = ℏ2k2
1/2m∗, see

Fig. 2.1b. A right-moving Cooper pair in the superconductor is generated
with the e1 incident on the metal-superconductor interface. The Cooper pair
possesses a momentum of 2ℏδk, an energy of 2µ and charges with opposite
spin orientations. To complete this process, e1 has to pair up with a spin-
down electron e2 with k2 = −kF + δk and E2 = µ − ℏ2k2

2/2m∗ in the metal.
The missing electron e2 is equivalent to a left-moving spin-up hole excitation
with k2 and E2 [37]. This process is known as Andreev reflection, discovered by
A.F. Andreev in 1964, and describes the charge transfer of 2e across the metal-
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2. Andreev bound states in SNS Josephson junctions

Δ = Δ

µ

E

−∆

+∆

−

e1

e2

Normal metal Superconductora

b

Figure 2.1. Andreev reflection. a, A metal-superconductor interface. The
superconductor is characterized by the superconducting gap ∆ and phase δ.
b, At the interface, a right-moving electron e1 in the gap pairs up with a left-
moving electron e2, creating a right-moving Cooper pair in the superconductor
and leaving a left-moving hole in the normal metal. Figure adapted from
Ref. [36].

superconductor interface by retro-reflecting an electron with a low excitation
energy (E1 − µ < ∆) as a hole [22].

After explaining what happens before and after an Andreev reflection, let’s
regard what happens during an Andreev reflection. The superconducting or-
der parameter ∆ does not have a sharp boundary, it rather possesses a smooth
transition into the normal metal over the coherence length ξ = ℏvF/|∆|,
i.e., ∆(x). Upon approaching the superconductor, the right-moving elec-
tron becomes a quasiparticle with a fixed energy Eqp =

√
ϵ(x)2 + ∆2(x) =√

(ℏ2δk(x)2/2m∗)2 + ∆2(x) and a charge −e · ϵ(x)
Eqp

. This formula shows that
the wave-vector δk(x) gradually reduces as ∆(x) increases towards the super-
conductor. Hence, the electron-to-hole conversion does not happen sponta-
neously at a certain distance to the interface and is rather a gradual process
over a characteristic length scale ξAR, that depends on the energy of the im-
pinging quasiparticle Eqp (Details in Sec. 2.1.2, [36]). It can be shown that
the phase difference ϕ(Eqp) between the right-going electron-like quasiparticle
and the left-going hole-like quasiparticle depends on the particle energy and
reads

ϕ(Eqp) = −arccos
(

Eqp

|∆|

)
− δ. (2.1)
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2.2. Andreev bound states

For an impinging quasiparticle at µ (Eqp = 0), the Andreev reflection is acom-
panied by a phase shift of π/2. In the next section, we will discuss about the
formation of ABSs.

2.2. Andreev bound states

Now, we consider a device with a segment of normal metal that is contacted
with two segments of superconductor on both sides, featuring a superconduct-
ing phase of −δ/2 and δ/2 (Fig. 2.2a). We further assume that the normal
metal is much shorter than the coherence length, L ≪ ξ, and mean free path,
L ≪ λMFP. The former assumption neglects the phase acquired along the
trip in the metal while the latter ensures that Andreev reflection is the only
quasiparticle scattering mechanism. Fig. 2.2b illustrates the so-called ABS
that arises from phase-coherent Andreev reflections of a quasiparticle at two
interfaces. One also loosely speaks of a quasiparticle being trapped in the JJ
[38]. The total acquired phase of this round-trip is [39]

ϕ−
tot = ϕL + ϕR

=
(

− arccos
(

Eqp

|∆|

)
+ (−δ/2)

)
+

(
− arccos

(
Eqp

|∆|

)
− δ/2

)
= −2 arccos

(
Eqp

|∆|

)
− δ.

(2.2)

Note that the additional phase from the superconductor is added with opposite
signs for an electron-to-hole conversion and a hole-to-electron conversion. Sim-
ilarly, we obtain a total phase of ϕ+

tot = −2 arccos( Eqp
|∆| ) + δ when we consider

a right-move hole as the starting point. Because we are interested in energy
levels that are associated with trapped quasiparticles in the junction, we look
for solutions Eqp = EA(δ), where the quasiparticle becomes itself again after
two Andreev reflections. Hence, the total acquired phase should be a multiple
of 2π. In the simplest case, ϕ±

tot
!= 0:

⇒ E±
A (δ) = ±|∆|cos

(
δ

2

)
. (2.3)

E+
A corresponds to the round-trip with the electron-like quasiparticle going to

the left superconducting electrode and E−
A to the round-trip with the electron-

like quasiparticle going to the right superconducting electrode (Fig. 2.2c).

2.3. Effects of back-scattering and finite length

The Eq. (2.3) is associated with the energy level of two perfect ABSs without
normal scattering events. In a realistic junction, Andreev reflection is not the
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2. Andreev bound states in SNS Josephson junctions

/2− /2

µ

−∆

AR AR

E

≪a

b

c

+∆

1-EA
+

EA
-

Figure 2.2. Andreev bound state. a, A short SNS JJ (L ≪ ξ) with
superconducting phases −δ/2, δ/2 at the electrodes. A star symbolizes scat-
tering center in the normal metal, leading to a junction transparency τ . b,
ABS with a right-moving electron-like quasiparticle. A right-moving Cooper
pair (full circles) is generated in the right superconducting electrode while a
left-moving hole pair (open circles) is generated in the left electrode. c, Two
quasiparticle round-trips in the short SNS junction with the associated energy
levels E±

A . Figure adapted from Ref. [36].
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2.3. Effects of back-scattering and finite length

only scattering process. An electron can as well be reflected as an electron in
the normal metal due to impurities or at the interfaces. This normal reflec-
tion couples the quasiparticle round-trips E+

A (δ) and E−
A (δ), as illustrated in

Fig. 2.2c. The probability is associated with 1 − τ , with τ being the trans-
parency of the junction. With that, the Eq. (2.3) can be extended to [40]

E±
A (δ) = ±|∆|

√
1 − τsin2

(
δ

2

)
(2.4)

to include normal reflections.
In the introduction of ABSs in Sec. 2.2, we assume that a quasiparticle does

not acquire phase when traveling along the normal metal. This assumption is
not valid when the quasiparticle dwells in the normal metal for a considerable
time. The phase acquired by the quasiparticle over a length of L is L

ξ

Eqp
|∆| . In

case of a long junction (L ≳ ξ) or a highly energetic quasiparticle (Eqp ≲ ∆),
the phase acquisition can not be neglected. One can further embed the normal
reflection into the problem, as treated in the Ref. [40]. The phase δ acquired
at the metal-superconductor interface is then replaced by an effective phase
α, taking a scatter potential at the position x = a and the transparency τ of
the junction into account:

α = arccos
{

τ cos(ϕ) + (1 − τ) cos
[ (

L − 2a

ξ

) (
Eqp

∆

) ]}
. (2.5)

Finally, we obtain the formula for the total acquired phase ϕ±
tot for a round-

trip:

ϕ±
tot = −2 arccos

(
Eqp

|∆|

)
± α + 2L

ξ

(
Eqp

|∆|

)
. (2.6)

To illustrate the ABSs under the effects of transparency and finite junction
length, we now plot some Andreev energy levels as a function of the phase dif-
ference δ. Fig. 2.3 shows the numerically calculated positive ABSs (E > 0) us-
ing Eq. (2.6) for three different junction lengths (L = 0ξ, L = 1.1ξ, L = 2.6ξ).
For each positive ABS at E = EA, there is a negative ABS at E = −EA
due to electron-hole symmetry. The dashed energy levels are associated to a
junction with unity transparency, τ = 1, whereas the solid energy levels corre-
spond to τ = 0.7. Normal reflection lifts the degeneracy at δ = π and couple
states that arise from right-moving electron-like quasiparticles with that from
right-moving hole-like quasiparticles. In case of a "zero"-length junction, we
restore the results Eq. (2.4). At δ = π, there is a gap of 2∆

√
1 − τ between

the positive ABS and negative ABS. As the junction length is increased above
ξ, more ABS manifolds fall into the gap. For L = 1.1ξ, there are four man-
ifolds (two positive, two negative), and for L = 2.6ξ, there are six manifolds
(three positive, three negative). The energy of ABS of higher manifolds can

9



2. Andreev bound states in SNS Josephson junctions

be computed using the condition ϕ±
tot

!= 2πn, with n ≥ 1. The correspond-
ing quasiparticles have such a high excitation energy, that a multiple of 2π is
acquired along the path in the normal metal. Additional gaps at δ = 0 open
when the scatter potential is not placed in the middle of the normal metal
segment (Here: a = 0.3L).
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Figure 2.3. Realistic ABSs. Numerically calculated positive ABS energy
levels in the gap ∆ with (a) L = 0ξ, (b) L = 1.1ξ and (c) L = 2.6ξ. Solid lines
account for a scattering potential at a = 0.3L and a junction transparency of
τ = 0.7. Dashed lines account a τ = 1. The calculation is inspired by Ref. [36].

2.4. Spin-orbit coupling

When a charge particle moves in an electric field, it experiences an effective
magnetic field that couples to its spin degree of freedom. This effect is known
as spin-orbit coupling (SOI) and the corresponding Hamiltonian is written as

HSO = α⃗ · (σ⃗ × k⃗), (2.7)

where α⃗ is the SO coupling strength, σ⃗ is the vector of Pauli matrices in
the spin space and k⃗ is the electron wavevector. In solid state devices, one
distinguishes between two types of SOIs. When the unit cell of the crystal
itself lacks an inversion center, the crystal structure is known as bulk inversion
asymmetric and can develop an intrinsic electric field. The corresponding SOI
is known as Dresselhaus type [41]. On the other hand, the Rashba type SOI
is associated with structural inversion asymmetry that arises from extrinsic
electric potential such as externally applied gate voltages or crystal surfaces
[42].

10



2.4. Spin-orbit coupling

m1m2
1↑

2↑

1↓

2↓

↑

↓

-∆

∆
µ↑

↑
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E

↓

AR

AR AR

AR

1-

↓
↑

↑

↑

↑

a

↑

W

b

c

d

Figure 2.4. SOI splitting of ABSs. a, Similar schematic as Fig. 2.2a with
a finite junction width W introducing transverse bands. b, A system with four
transverse bands. SOI mixes transverse bands with opposite spins, yielding a
spin texture dependent Fermi velocity, indicated with a different slope at ∼ µ.
c, Quasiparticle round-trips that give rise to four ABSs. d, Energy diagram
as a function of δ. For each δ value, there are four manifolds (two positive,
two negative), each with two spin texture dependent ABSs. The lineshape
of the thin lines corresponds to the lineshape of the round-trips in c. Back-
scattering leads to avoided crossing of the ABSs at open circles, yielding the
realistic states (thick black lines). Figure adapted from Ref. [36].
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2. Andreev bound states in SNS Josephson junctions

We consider a normal metal wire along the e⃗x-direction and assume that the
electric field due to inversion asymmetry is in the e⃗z-direction. The Hamilto-
nian of the system can be written as

H = H0 + HSO = ℏ2k⃗2

2m∗ + U(y, z) + αe⃗z · (σ⃗ × k⃗), (2.8)

with m∗ being the effective mass of the electron in the solid and U(y, z) the
confinement potential in the transverse direction. The confinement in the e⃗y-
and e⃗z-direction leads to a discretization of ky and kz. By further assuming a
harmonic potential U(y, z) = mω2

0(y2 + z2), the terms in the Eq. (2.8), which
are associated with the kinetic and potential energy, can be reformulated as a
2D quantum harmonic oscillator: ℏ2(k2

y + k2
z)/2m∗ + U(y, z) = ℏω0(n + 1/2),

with n ∈ N0 being the transverse band number. Eq. (2.8) then reads

H = ℏ2(kx − kασy)2

2m∗ + αkyσx + ℏω0(n + 1
2) − m∗α2

2ℏ2 , with kα = m∗α

ℏ2 . (2.9)

The SOI and transverse confinement in combination lead to the follow effects:
• At first, the spin degeneracy of the electron band E(kx) is lifted yielding

two parabolic bands, shifted with respect to each other by ∆kx = kα

(grey in Fig. 2.4b). A spin orientation along the e⃗y-axis can be assigned
to each of the band splitting (↑,↓).

• The spin-splitting occurs for all transverse bands. Hence, each band is
characterized by the index nσy with n being the transverse band number
and σy the spin orientation along the e⃗y-axis.

• The term αkyσx mixes different transverse bands with opposite spins,
leading to the green energy bands in Fig. 2.4b.

As a result of band mixing, the band 1 ↓ hybridizes with the band 2 ↑ and the
band 1 ↑ with the band 2 ↓. At the avoided crossings, the electron spin is in
superposition of ↑ and ↓. Usually, the term "spin texture" is used for referring
to the different spin superpositions.

We consider now the system with the lowest four transverse bands (Fig. 2.4b).
When the chemical potential µ is aligned to a level, where avoided crossings
occur due to band mixing, quasiparticles can have four round-trips with dif-
ferent Fermi velocities induced by different spin textures. Hereafter, normal
scattering events can be introduced to the system again, as was done earlier in
this chapter, to couple round-trips of right-moving electrons and left-moving
electrons (Fig. 2.4c). Hence, SOI enriches the Andreev spectrum tremendously.

Fig. 2.4d shows a representative Andreev spectrum as a function of the su-
perconducting phase difference δ. In total, there are four manifolds (two pos-
itive, two negative), each with two spin texture dependent ABSs. To under-
stand it, we first regard the spectrum with perfect transparency (τ = 1) at a
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2.5. Andreev level and Andreev spin qubits

fixed δ, indicated by a green mark. The lower lying positive manifold (dashed
thin lines) is formed by the two energetically more favorable left-moving elec-
tron round-trips, which are also dashed lines in Fig. 2.4c. Their energy levels
are shifted with respect to each other because of the spin texture dependent
Fermi velocities. The higher lying manifold (solid thin lines) has a slope with
opposite signs and thus is associated with the two right-moving electron round-
trips generating a supercurrent in opposite direction to the prior manifold. In
this manifold, an additional phase of 2π is acquired by the quasiparticles after
a round-trip. Similarly, the ABSs are shifted with respect to each other due to
different Fermi velocities. Normal scattering events along the round-trips lead
to avoided crossings indicated with open circles, yielding the realistic ABSs in
thick solid lines.

2.5. Andreev level and Andreev spin qubits

The discrete energy spectrum of ABSs has been employed to realize qubits.
It is fundamental to quantum computation that the qubit can be prepared in
any linear combination of the ground state |0⟩ and excited state |1⟩. In the
representation of a Bloch sphere, |0⟩ can be at the north pol and |1⟩ at the
north pol (Fig. 2.5a). Any superposition state can be visualized as a vector on
the Bloch sphere |Ψ⟩ = cos(θ/2)|0⟩ + eiϕ sin(θ/2)|1⟩.

a b c

0
E1

E1

E2

E2

E-1

E-1

E-2

E-2

0
E1

E1

E2

E2

E-1

E-1

E-2

E-2

Figure 2.5. Andreev level and Andreev spin qubits. a, Bloch sphere
representation of a qubit with the ground state |0⟩ being at the north pole and
|1⟩ at the south pole. Many-body occupation of the Andreev spectrum for an
Andreev level qubit (b) and an Andreev spin qubit (c). Full dots above E = 0
represent an electron-like quasiparticle excitation and hollow dots below E = 0
represents a hole-like quasiparticle excitation.

Two kinds of qubits have been realized using the Andreev spectrum. Fig. 2.5b-
c show the definition of the qubit ground and excited states in the represen-
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2. Andreev bound states in SNS Josephson junctions

tation of the Andreev spectrum for the two kinds of Andreev qubit. In the
Andreev level qubit, the excited state is formed by an electron-like quasiparticle
excitation above E = 0 and a hole-like quasiparticle excitation below E = 0
while the qubit gound state has all the negative ABSs occupied. The Andreev
pair qubit frequency then reads fe = (E1↓ −E−1↘)/h = (E1↓ +E1↗)/h. In the
Andreev spin qubit, the qubit ground state has an electron-like quasiparticle
excitation from the beginning. The qubit excited state is formed by having
the quasiparticle excitation in an ABS associated with a different spin texture.
Here, the qubit frequency is given by fo = (E1↓ − E1↗)/h.

Based on the number of quasiparticle excitations, one assigns the term even
parity to the Andreev level qubit and odd parity to the Andreev spin qubit. A
parity switching happens when the junction traps or detraps a quasiparticle,
leading to a leakage out of the computational subspace.

2.6. Full-shell epitaxial InAs/Al nanowires

Full-shell epitaxial InAs/Al nanowires are the material platform used for form-
ing Andreev qubits in this thesis (cross-section in Fig. 2.6a). These nanowires
were grown in the wurzite crystal structure using molecular-beam epitaxy
technique (MBE) by Prof. P. Krogstrup in the Niels Bohr Institute [43]. After
the growth of the InAs nanowires, Al was grown by angled deposition within
the MBE chamber, covering each facet of the nanowires with an Al shell with
a domain-matched and impurity free superconductor-semiconductor interface
(Fig. 2.6b). The epitaxial superconductor-semiconductor interface is often as-
sociated with the suppression of the so-called "sub-gap" states, which appear
below the superconducting gap ∆ and can be a source of unwanted interaction
with the intentional formation of bound states [44]. Further characteristics of
the InAs/Al nanowires are a quasi-1D confinement and a large SOI. A num-
ber of findings quickly followed after the release of this material platform,
demonstrating qubit applications [25, 45] and exotic properties in the super-
conductivitiy such as the emergence of Majorana bound states [46, 47] and
skewed current-phase relations [48]. All these observations have hightlighted
the reliability and robustness of these nanowires, motivating us to realize our
experiments on this material platform.

To fabricate a Josephson junction using the full-shell InAs/Al nanowires,
a short segment of the Al-shell has to be stripped away. The top panel of
Fig. 2.6c shows a scanning electron micrograph of a typical nanowire Joseph-
son junction (NWJJ) device after the wet etching process, which possesses
a semiconductor segment of ∼ 150 nm with a narrower diameter. In the
lower schematic, the superconductor-semiconductor interface, that is cylin-
drical around the nanowire’s circumference, is indicated in blue.

This concludes our introduction to ABS in semiconducting nanowire-based
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2.6. Full-shell epitaxial InAs/Al nanowires
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Figure 2.6. Full-shell epitaxial InAs/Al nanowires a, Schematic
transversal cross-section of the epitaxial InAs/Al nanowire. Al is in grey and
InAs is in green. b, Tranmission electron micrograph showing the epitaxial
InAs/Al interface. c, (Top) Scanning electron micrograph of a NWJJ. The Al
shell is stripped in the middle. The scale bar is 200 nm. (Bottom) A schematic
longitudinal cross-section of the NWJJ. Superconductor-semiconductor inter-
faces are indicated in blue.

JJs with SOI as a novel platform for solid state quantum computation. In the
next chapter, we will see how Andreev qubits can be manipulated and read
out.
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3 Integration of superconducting resonators
with Andreev qubits

Circuit quantum electrodynamics (cQED) is the study of well-designed, non-
linear superconducting circuits, usually known as "artificial atoms", with con-
finement of electromagnetic fields in the microwave frequency domain [49–52].
Originally, leading the field of research for quantum information processing
using robust, coherent superconducting qubits, cQED has also advanced the
development of linear superconducting microwave resonators as an exploratory
toolkit to discover new phenomena in novel solid-state devices [53, 54]. In fact,
the planar superconducting microwave resonator on silicon substrates lies in
the core of the study of the few-mode Josephson elements [24, 38, 55–57].

In this chapter, we will introduce the qubit-resonator coupled system which
contains a superconducting resonator and a few-mode Josephson junction.
First, Sec. 3.1 and 3.2 present the linear quantized LC-circuit and then the
more specific quarter-wavelength transmission line type resonator. After that,
the radio-frequency superconducting quantum interference device (RF-SQUID)
is described in the Sec. 3.3. Hereafter, the inductively coupled SQUID-resonator
system is presented in Sec. 3.4, merely capturing the essential aspects. A more
detailed derivation of the coupling scheme can be found in the Sec. 4.2 in the
dissertation from Cyril Metzger [36]. The final section discusses the implica-
tion of qubit-resoantor coupling in the dispersive limit, a limit that allows fast,
non-demolitian measurement of the qubit state.

3.1. Hamiltonian description of superconducting resonators

We consider a non-dissipative parallel circuit composed of an inductance Lr
and a capacitance Cr, as illustrated in the Fig. 3.1a. The capacitive energy
stored in the circuit is given by the accumulated charge Q on the capacitor
plates and reads EC = Q2/2Cr. Similarly, the inductive energy is related to
the phase drop Φ across the inductance as EL = Φ2/2Lr. Because Q and
Φ are canonically conjugated variables, the system can be treated quantum
mechanically by replacing the classical variables (Q, Φ) with corresponding
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3. Integration of superconducting resonators with Andreev qubits

operators (Q̂, Φ̂) [58]. The Hamiltonian of the quantum LC-circuit reads [49]

Ĥ = Q̂2

2Cr
+ Φ̂2

2Lr
(3.1)

with the canonical commutator relation
[
Φ̂, Q̂

]
= iℏ. Because the Hamiltonian

Eq. (3.1) is equivalent to a quantum harmonic oscillator, we can introduce the
creation operator â† for a quantum harmonic oscillator and express it in terms
of Φ̂ and Q̂ with

â† = 1√
2ℏ

(√
Cr

Lr
Φ̂ + i

√
Lr

Cr
Q̂

)
. (3.2)

The Hamiltonian for the quantum LC-circuit then reads

Ĥ = hfr(â†â + 1
2), (3.3)

where fr = (2π
√

LrCr)−1 is the resonance frequency, usually in the few GHz
range, and h the Planck’s constant. The eigenenergies are plotted as a function
of the flux Φ across the inductance in Fig. 3.1b, with the parabolic inductive
energy EL(Φ). The levels are discrete and equidistant. When excited with
microwave at fr, the quantum LC-circuit starts to resonate and populate the
excited states. The number of excitations in the quantum LC-resonator is also
loosely referred to as the photon number.

Lr Cr

a

−π −π/2 0 π/2 π
Φ

0

1

2
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E/
ħω

hfr

hfr

hfr
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+Q

-Q
Φ

V

I

Figure 3.1. Non-dissipative LC-circuit. a, LC-circuit with charge Q on
the capacitance and flux drop Φ across the inductance. b, Energy level of the
quantized LC-circuit as a function of the flux Φ across the inductance. Figures
adapted from [59].

A realistic resonator is characterized by both the resonance frequency fr
and photon energy decay rate κ. There are different energy relaxation paths
which lead to a non-zero κ. Usually, one distinguishes between the intrinsic
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3.2. Quarter-wavelength transmission line resonator

κi and coupling κc decay rates. While κi quantifies the photon energy dacay
into unwanted loss channels, κc quantifies the wanted decay into the readout
circuit. The total photon energy decay rate can be obtained by adding the
individual contributions κ = κi + κc [60]. Equivalently, one can define the
resonator’s quality factor Q = 2πfr/κ and distinguish between the intrinsic
Qi = 2πfr/κi and coupling Qc = 2πfr/κc quality factors.

The quantized LC-resonator can be realized in many different designs and
material platforms. One of the common constructions uses a superconducting
planar transmission line geometry of finite length with deterministic boundary
conditions on highly resistive substrates. The boundary conditions imposed
by the geometry lead to a confinement of electromagnetic fields. The fields
are discretized into a set of modes with distinct frequencies, where each mode
can be thought of as an harmonic oscillator by itself.

3.2. Quarter-wavelength transmission line resonator

Among different on-chip planar transmission line resonator types, the quarter-
wavelength coplanar transmission line resonator was the first used geometry
for Andreev level qubits [24]. It is a transmission line of length L with a char-
acteristic impedance Z0. One end of the transmission line is opened and the
other end is shorted to the ground (Fig. 3.2). In the figure, the coplanar trans-
mission line resonator is symbolized by the coaxial cable, featuring a center
conductor that is surrounded by a cylindrical ground. With these boundary
conditions, a current can not flow across the open end whereas a voltage can
not build up at the short end. This gives rise to the discretization of the
electromagnetic fields with a wavelength λn determined by the length of the
transmission line and mode number n ∈ N0, λn = 2L/(n + 1/2). The term
quarter-wavelength emphasizes the fact that the fundamental mode (n = 0)
is quarter-wavelength long, L = λ0/4. It manifests a voltage anti-node at the
open end and a current anti-node at the short end, as illustrated in Fig. 3.2.
The current and voltage oscillates at the frequency fn = ν/λn, where ν is the
speed of light in the transmission line.

The so-formed transmission line resonator can be excited using microwave
sources. The excitation is typically coupled either capacitively to the open
end or inductively to the short end of the transmission line, as displayed in
the grey dashed boxes in Fig. 3.2. The average number of circulating photons
on the resonator reads [61]

⟨n̂⟩ = ⟨â†â⟩ = 2
hf2

r

Zenv

ZR

Q2

Qc
Pexc, (3.4)

where Pexc is the applied microwave power at the resonator, Zenv the environ-
mental impedance seen by the resonator, ZR the resonator impedance, Q is
the resonator’s total quality factor and Qc the coupling quality factor.
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3. Integration of superconducting resonators with Andreev qubits

x
L0

Z0 IVa
b

Figure 3.2. Quarter-wavelength transmission line resonator. The
voltage and current are distributed along the wire according to the boundary
conditions. The resonator can be excited capacitively through the open end
(a) or inductively through the short end (b).

Because of the state-to-current conversion which comes naturally with ABSs,
Andreev qubits are usually located at the resonator’s current anti-node while
the resonator is excited at the voltage anti-node.

3.3. RF SQUID

To study the wide range of the Andreev spectrum, tunability of the supercon-
ducting phase difference δ across the NWJJ is needed. The superconducting
phase difference of a JJ can be set with the junction embedded in a so-called
radio frequency superconducting quantum interference device (RF SQUID). It
is a continuous superconducting ring that is interrupted by the junction at
one point, as displayed in Fig. 3.3a. In this arrangement, an out-of-plane mag-
netic field B penetrates the enclosed area A and generates a threading flux
Φ = B ·A. Because the superconducting order parameter in the ring has to be
identical after a round-trip, the total phase drop ϕtot around the ring should
add up to a multiple of 2π. Realistically, we need to further consider a loop
inductance Lloop that accounts for the inductance of the superconducting ring
and a loop current I(δ). Fig. 3.3b displays the equivalent circuit for the RF
SQUID. The periodic flux leads to a boundary condition that reads [62, 63]

ϕtot = δ + 2π

ϕ0
LloopI(δ) − 2π

ϕ0
Φ != 2πn. (3.5)

A large loop inductance leads to hysteresis in δ(Φ) due to the so-called screen-
ing effect in the SQUID, see Sec. 2.3.2 in [64]. A usual practise to overcome this
problem is to design a sufficiently small Lloop such that most of the external
flux bias drops across the junction [65]. In that limit, there is a linear depen-
dence between the external flux bias and the superconducting phase difference
that reads

δ ≈ 2π

ϕ0
(B · A). (3.6)
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Φ Φ

a b Lloop

I

Figure 3.3. RF SQUID with a Josephson junction. a, Schematic
of an RF SQUID. The superconducting loop (grey) is interrupted by the JJ
(green). The superconducting phase difference δ across the weak link depends
on the threading magnetic flux Φ. b, Equivalent circuit of the RF SQUID.
The inductance of the superconducting loop is modelled as a lumped element
inductance Lloop.

The RF SQUID is usually mutually or inductively coupled to a tank circuit
for measurement, hence the adjunct radio frequency [66].

3.4. Inductive coupling

After treating the resonator and NWJJ as two separate systems, the coupled
system is now described. For that, we consider an inductively coupled SQUID-
resonator system, see the schematic and equivalent circuit in Fig. 3.4. The
SQUID composed of the NWJJ and a superconducting loop is connected to a
small portion of the resonator inductance ls with ls/Lr ≪ 1. We recall that
the resonator is fully described by the Hamiltonian eq. (3.3):

Ĥr = hfr(â†â + 1
2). (3.7)

On the other hand, a superconducting phase difference dependent Hamiltonian
for the ABSs in the NWJJ can be constructed, ĤJJ(δ). Its eigenenergies
are subject of Ch. 2. We assume that the resonator is in the ground state.
The zero-point fluctuation of the resonator then generates a phase fluctuation
across the weak link that reads [36]

δzp = l

L

√
πZr

RQ
, (3.8)

where Zr =
√

Lr/Cr is the resonator impedance and RQ = h/4e2 the quantum
resistance. Because of the small fluctuation amplitude, the Hamiltonian of the

21



3. Integration of superconducting resonators with Andreev qubits

coupled system can be approximated by an expansion at a flux bias value δ0
to the second order as

Ĥtot(δ0) ≈ Ĥr + ĤJJ(δ0) + δzpĤ
′
JJ(δ0)(a + a†) +

δ2
zp

2 Ĥ
′′
JJ(δ0)(a + a†)2, (3.9)

where Ĥ
′
JJ(δ0) = dĤJJ(δ0)/dδ is the first derivative and Ĥ

′′
JJ(δ0) = d2ĤJJ(δ0)/dδ2

the second derivative of the NWJJ Hamiltonian with respect to the phase dif-
ference δ. It becomes clear that the ABS-resonator coupling is manifested
in a change of the energy of the total system induced by the zero-point flux
fluctuation of the resonator.

Φ

Lr - ls

Cr
ls

Lloop- ls

zp

a b

I

Figure 3.4. Inductively coupled SQUID-resonator system. a, A
schematic of a quarter-wavelength transmission line resonator coupled to an
RF SQUID. The current amplitude profile is plotted in orange. b, Equivalent
circuit of the hybrid system with resonator capacitance Cr and inductance
Lr. A small portion of the resonator inductance ls defines the coupling to the
SQUID. The resonator’s ground state generates a zero-point flux fluctuation
δzp across the NWJJ leading to the SQUID-resonator coupling.

One can further derive the shift of the resonance frequency δfr,i due to an
ABS [36]. Assuming |i⟩ is an ABS with the eigenenergy Ei|i⟩ = ĤJJ|i⟩, then
|− i⟩ is also an ABS with eigenenergy −Ei due to electron-hole symmetry. The
resonance shift reads [67]

hδfr,i

δ2
zp

= E
′′
i︸︷︷︸

2.order

+
∑
i ̸=j

|⟨i|Ĥ
′
JJ|j⟩|2

(
2

Ej − Ei︸ ︷︷ ︸
2.order

− 1
Ej − Ei + hfr

− 1
Ej − Ei − hfr︸ ︷︷ ︸

1.order

)

= E
′′
i +

∑
i ̸=j

h2g2
ij

δ2
zp

Vij.

(3.10)
The two fr-dependent terms result from the first order expansion while the
other two terms result from the second order expansion. The frequency shift
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3.4. Inductive coupling

has two contributions. The first contribution is the term before the sum
bracket and arises from the curvature of the ABS |i⟩. The remaining three
terms in the sum bracket, forming the second contribution, account for all
other ABSs that couple to the ABS |i⟩ via a coupling current matrix ele-
ment |⟨i|Ĥ ′

JJ|j⟩|. The coupling strength between an Andreev transition j → i
and the resonator is introduced in the second line of the equation as gij =
δzp|⟨i|Ĥ ′

JJ|j⟩|/ℏ.
After establishing the shift of resonance frequency induced by one ABS, it is

straightforward to compute the resonance frequency shift for any many-body
occupation of an Andreev spectrum. In general, the state index i is replaced
by iσ, where i < 0 (i > 0) accounts for ABSs below (above) E = 0 and σ for
the spin degree of freedom. An interesting case is the resonance shift due to
the many-body ground state |g⟩, which is also the ground state of the Andreev
level qubit, occupying all negative ABSs and vacating all positive ABSs. The
resonance frequency shift for the many-body ground state reads (p. in [36])

hδfr,|g⟩

δ2
zp

= 1
2

( ∑
i<0,σ

E
′′
iσ +

∑
i<0,σ

j>0,σ
′

h2g2
iσ,jσ′

δ2
zp

Viσ,jσ′

)
. (3.11)

The first sum accounts for the curvature of all the occupied states whereas
the second sum results from the coupling of each occupied state at E < 0 to
all unoccupied states at E > 0. Finally, the resonance frequency shift for an
arbitrary many-body occupation |Ψ⟩ can be expressed as

δfr,|Ψ⟩ = δfr,|g⟩ +
∑

i>0,σ

[
niσδfr,iσ − (1 − n−iσ)δfr,−iσ

]
, (3.12)

where niσ ∈ {0, 1} indicates the occupation of the ABS iσ.
In general, the coupling between the ABS and resonator is distinguished be-

tween adiabatic-, dispersive- and resonating-type, depending on the ratio of the
qubit-resonator energy detuning and coupling strength (|Ej − Ei| − hfr)/ℏgij.
In the adiabatic limit, the qubit and resonator frequencies are far detuned such
that the resonance frequency mainly shifts due to the second order term of the
expansion. When the Andreev transition energy is much greater than the res-
onance frequency |Ej −Ei| ≫ hfr, e.g., for the pair transition at δ = 0, the cur-
rent matrix element vanishes, further simplifying the formula to hδfr,i

δ2
zp

≈ E′′
i .

In the resonating limit |Ej − Ei| = hfr, the Andreev transition is under con-
tinuous energy exchange with the cavity photon. It results in the occurrence
of a symmetric and an anti-symmetric entangled matter-light state with an
energy difference of 2ℏgij.
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3. Integration of superconducting resonators with Andreev qubits

3.5. Dispersive limit

When the Andreev transition frequency is a few gij detuned from the resonator
frequency, an interesting case arises that is known as the dispersive limit.
Superconducting qubits are usually dispersively coupled to a superconducting
resonator for non-demolition qubit state readout[68].
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Figure 3.5. Energy diagrams of the ABS-resonator hybrid system.
a, The energy spectrum of one ABS with the resonator energy level that is
offset by hfr from the ground state. b, Coupling current matrix element
between the ABS | − 1⟩ and |1⟩. c, Resonance frequency shift computed using
the coupling Hamiltonian with both the first and second order terms ("total")
and with only the first order terms ("JC"). In the dispersive limit, the first
order terms are sufficient to capture the frequency shift.

To illustrate this regime, we consider two ABSs in the zero-length limit with
a transparency of 0.99. The coupling current matrix element can be analyti-
cally computed using ⟨1|H ′

JJ(δ)| − 1⟩ = ∆
√

1−τ
2 ( ∆

E+
A (δ)

− E+
A (δ)
∆ )[67]. The shift

of the resonance as a function of δ can then be computed using the Eq. (3.10),
by inserting ⟨1|H ′

JJ(δ)| − 1⟩, E−1(δ), E1(δ) and hfr. Figure 3.5a shows the
energy of the ABSs as a function of the superconducting phase difference δ.
The number 1 (-1) denotes the ABS above (below) E = 0. Additionally, the
resonator transition is plotted in green. The coupling current is shown in Fig-
ure 3.5b. It increases as both ABSs approach each other. The analytically
computed resonance frequency shift for the ABS ground state is plotted in
Figure 3.5c, as well as a function of δ. A divergence of the resonator frequency
is expected as the Andreev transition frequency approaches the photonic tran-
sition frequency, The red curve, labelled as "total", uses the full expression
Eq. (3.10) and the blue curve, labelled as "JC", only uses the first order terms
in the expansion. The region where the red curve is in good agreement with
the blue curve is identified as the dispersive limit. In fact, the red curve is the
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3.5. Dispersive limit

result of the well-known Jaynes-Cummings model. It describes the interaction
between a superconducting resonator and a generic qubit (|g⟩, |e⟩) in the form
of [69, 70]

ĤJC = hfr(â†â + 1
2) + hfqb

2 σ̂z + ℏg(âσ̂+ + â†σ̂−), (3.13)

where fqb is the qubit frequency, σ̂z = |e⟩⟨e| − |g⟩⟨g| is the inversion operator
and σ̂± the raising (lowering) operator of the qubit. The latter two terms
describe the energy exchange between the resonator and qubit with a coupling
strength g. This is very convenient as it implies that control and readout
techniques previously developed for superconducting qubits can be transferred
to the Andreev qubits [49].
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4 DC transport measurement of full-shell
epitaxial InAs/Al nanowire Josephson
junctions1

Epitaxial InAs/Al nanowires are the first semiconducting nanowire material in
which the applcation as Andreev qubits was demonstrated. These nanowires
feature highly transparent semiconductor-superconductor interfaces, gate tun-
able charge carrier density and strong spin-orbit coupling. A reliable routine to
fabricate highly transparent Josephson junctions (JJs) using these nanowires
is therefore key technology. Among all the fabrication steps, the etching of
nanowire’s Al shell turned out to be least reproducible, manifesting in vari-
able junction lengths and sharpness of the Al edges. The existing Al etch
recipe in the nanoelectronics lab was adapted and modified, where the use of
Microposit MF-321 developer as Al etchant was replaced by Transene type
D [64]. The replacement of etchant was motivated by cleaner junctions and
sharper Al edges. The Al etch recipe can be found in Sec. 9.1.

In Ref. [71], Goffmann et al. have developed a quantitative understanding
of the channel numbers and transparencies in an epitaxial InAs/Al nanowire
Josephson junction (NWJJ) by analysing its IV -characteristics. This moti-
vated us to employ DC transport measurement techniques to test the perfor-
mance of these NWJJs, before integrating them to microwave circuits. The
full-shell epitaxial InAs/Al NWJJ device is described in Sec. 4.1, followed by
the description of the cryogenic measurement techniques in Sec. 4.2. The study
of the Josephson supercurrent is presented in Sec. 4.3. The measured multiple
Andreev reflection features are discussed in Sec. 4.4, resulting in an estimation
of channel transparencies in Sec. 4.5. The last section concludes our findings.

4.1. Device

Full-shell epitaxial InAs/Al NWJJs are fabricated on an undoped Si wafer
with 160 nm thermally grown SiO2 oxide. An Al segment of ∼ 150 nm is
stripped by wet etching technique. Subsequently, NbTiN is sputtered on the

1This experiment was conducted with Alexei Orekhov, a semester project student from
the Chalmers University of Technology. L.Y. Cheung and A. Orekhov shared the device
fabrication, measurement and data analysis.
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Josephson junctions

NWJJ after removal of the surface AlOx by means of Ar-milling. Two side
gates (Ti/Au) are evaporated flanking the semiconductor region. A scanning
electron micrograph of the NWJJ is shown in Fig. 4.1-Fig. 4.2, together with
the measurement setups. The device was measured in a dilution refrigerator
at 20 mK.

4.2. Measurement techniques

The NWJJ is contacted with four superconducting probes on the chip in a
quasi-four-probe measurement scheme. We consider two types of transport
measurement. In the voltage bias measurement, a DC voltage bias and a small
AC voltage modulation are combined with a 1:4 transformer and subsequently
divided by a 1:1000 voltage divider before reaching the device (Fig. 4.1). For
finite device resistance, the voltage bias and modulation generate a current
that can be amplified with a room temperature IV -converter. The output
of the IV -converter is then routed to the lock-in or a multimeter for data
acquisition. The side gates are connected to the DC voltage source with a
1 MΩ resistor. All lines are heavily filtered with room temperature π-filters and
LC low-pass filters at ∼ 100 mK with a cutoff frequency of 80 MHz. Usually,
this measurement scheme is used when the device has the highest resistance
among all the resistances along the line.

On the other hand, the device can as well be measured in the current bias
configuration at high carrier doping in the semiconductor. By inserting a large
room temperature resistor R between the voltage source and NW, a current is
generated by the ratio of voltage and resistance I = V/R. Two other probes
across the NW can be connected to a differential voltage amplifier followed by
a lock-in or multimeter for measuring the voltage across the NW (Fig. 4.2).

4.3. Josephson current

We now show the gate dependent supercurrent of our nanowire. Fig. 4.3 shows
the differential resistance R, measured with a lock-in, as a function of the
side gates VG in the current bias configuration. The differential resistance
is ∼ 10 kΩ in the normal state (at high bias), it abruptly drops to lower
values at lower bias. The current value, at which the abrupt drop happens,
depends on the gate voltage. The drop in resistance indicates the onset of
a Josephson current Ic [78]. For a highly transparent SNS JJ, quasiparticles
below the superconducting gap (Eqp < ∆) undergo phase coherent Andreev-
reflections at the interfaces, transferring Cooper pairs from one electrode to
the other. Hence, a dissipationless current can flow through the junction.
Fig. 4.3c shows cross-sections at three different gate voltage values. In the
normal state (|I| > Ic), the resistance decreases at higher gate voltages due
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Figure 4.1. Setup for voltage bias measurement. The AC and DC
voltage are combined with a 4:1 transformer before reaching the device through
a 1:1000 voltage divider. On the other side of the nanowire, an IV -converter
is used to amplify the signal. The side gates are connected to a DC voltage
source via a 1MΩ resistor. All lines are filtered with room temperature π-filters
and rf-filters at ∼ 100 mK (fcutoff ≈ 80 MHz). A scanning electron micrograph
of the NWJJ device is shown. The scale bar is 200 nm. Figure adapted from
[72–77].
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For the current bias measurement, the voltage divider is replaced with a 10 MΩ
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Figure adapted from [72–77].
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to increased number of charge carriers in the semiconductor. The resistance
in the Josephson branch (|I| < Ic) is finite. This can be caused by voltage
fluctuation generated by finite temperature [79]. Moreover, Ic increases at
higher VG and reaches 20 nA at VG = 10 V.

Fig. 4.3d shows the extracted IcRn-product as a function of VG. Ic is esti-
mated as the first positive current bias value that features R = 1kΩ and Rn is
estimated as the differential resistance at I = 0.2 µA. One observes that the
IcRn-product has an overall upwards trend and reaches ∼ 40 µV at VG = 5 V.
For a short clean metallic weak link at T ≪ Tc, an IcRn = π∆/e is expected
[80]. Considering the bulk Al gap ∆Al ≈ 210 µeV [81], the measured IcRn-
product is only a fraction of the expectation value, indicating that the NWJJ
is not in the short clean limit. The reduction of IcRn-product can be explained
by finite length effects, as the Ic falls exponentially with the junction length
l as e−l/ξ, with ξ being the coherence length of the proximity effect in the
semiconductor.

4.4. Multiple Andreev reflections

We will now investigate resonance features in the normal branch. Resistance
peaks are observed above the Josephson current, appearing at different I as
a function of VG. Overall, they follow the increase of the Josephson current
and appear at higher bias current when VG is increased. To understand these
resistance peaks, the differential conductance is computed as the inverse of
the differential resistance G = R−1. The voltage drop V across the junction
is obtained by numerically integrating the differential resistance, V =

∑
i
Ri ·

∆Ii and V (I0) = 0, with ∆Ii = Ii+1 − Ii being the bias current difference
between two adjacent data points. Fig. 4.4a shows the computed differential
conductance G as a function of I and VG. The same dataset with a converted
voltage axis V is plotted in Fig. 4.4b. The modulating conductance peaks in
the current axis appear to be at fixed voltage values. Fig. 4.4c shows a linecut
at VG = 4.5 V. The conductance peaks are interpreted as signature of multiple
Andreev reflections (MARs) [82, 83].

In voltage bias measurement, when an electron-like quasiparticle travels
from one superconducting electrode to the other, it gains an energy of eV .
At a transparent superconducting-semiconducting interface, the electron-like
quasiparticle can be Andreev reflection as a hole-like quasiparticle, travelling
back, again with a gain of eV . For highly transparent junctions, this process
repeats until a quasiparticle obtains enough energy to escape to the unoc-
cupied quasiparticle branch in the superconducting electrode, giving rise to
an additional conduction channel. A relation between the voltage value Vn,
at which an increase of conductance occurs due to MAR, and the number
of completed Andreev reflections n can be simply derived from this picture
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resistance R as a function of gate voltage VG and bias current I. c, Vertical
linecuts at gate voltage values marked in the map. d, The IcRn-product as a
function of VG.
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4.4. Multiple Andreev reflections

as Vn = 2∆/en [82]. Using the formula from above, a superconducting gap
∆′ = 134 µeV is estimated from the voltage difference between the two outer-
most conductance peaks in Fig. 4.4c, which is significantly lower than the bulk
value. The voltage values, at which conductance peaks for the first five orders
of MARs are expected, are indicated with grey lines. We can find conductance
peaks that correspond up to the 5th-order MAR. In general, it is difficult to
distinguish the order for high order MAR as the voltage difference between
two adjacent peaks decreases for increasing order numbers. The observation
of MARs indicate transparent interfaces which is beneficial for forming ABSs.
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Figure 4.4. Multiple Andreev reflection. a, Computed differential con-
ductance G as a function of bias current I and gate voltage VG. b, Same data
set as a. However, the current bias values are converted into voltage drop
across the NWJJ using the method described in the main text. c, Vertical
linecut from b at VG = 4.5 V. Voltage values with expected conductance en-
hancement are indicated with dashed grey lines and the order of MARs.
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4.5. Transparency estimation

The study of the MAR features gives a qualitative understanding of the junc-
tion transparency. Now, we attempt to quantitatively understand the num-
ber of channels in the nanowire and their transparencies. The IV -curve of
a few-mode transparent JJ can be decomposed into distributions of n chan-
nels with individual transparencies using the theory of MARs [84–86]. In
practice, we use a computer script to generate IV -curves using transparen-
cies {τ1, τ2, ..., τn} and the superconducting gap ∆ as input parameters to
mimic our experiment [87]. Fig. 4.5 shows the IV -curve at two representa-
tive gate voltage values. The lines are simulated using τi from Tab. 4.1 and
∆ = ∆′ = 134 µeV. The objective of the simulated IV -curves is to mimic
the data up to V = 0.3 mV > 2∆/e as good as possible, so that the IV -
characteristics are well described both in the superconducting and normal
regimes.

We observe that three modes are enough to explain the data at low gate
voltage, VG = 0.1 V, while the data at high gate voltage, VG = 4.5 V, require
at least five channels. The increased number of ABSs can be explain by the
higher carrier doping at larger gate voltage values. Overall, the transparencies
are also higher at high carrier doping, perhaps due to more electric screening
of impurities and lower potential fluctuations along the semiconducting part.
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I (
μA

)

Figure 4.5. Transparency estimation. The IV -curves at two representa-
tive gate voltage values are plotted. The lines indicate simulated IV -curves
using the transparency values in Tab. 4.1 that achieve the best correspondence
with the experiment.

4.6. Conclusion

In summary, we have presented an electrical study of a full-shell epitaxial
InAs/Al NWJJ in different carrier density regimes in the semiconductor, all
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4.6. Conclusion

VG (V) τ1 τ2 τ3 τ4 τ5

0.1 72.4 44.8 3.7 0 0
4.5 98.7 85.8 74.6 57.5 40.3

Table 4.1. Transparencies τ1 . . . τ5 in percentage used to reproduce the IV -
curves in Fig. 4.5.

accessible via field-effect control. The device featured a tunable Josephson su-
percurrent in the investigated gate range. At high carrier doping, we estimated
reasonably high transparencies for the numerous ABSs residing in the junc-
tion, verifying our etching recipe to form Andreev levels in the GHz range. In
addition, the nanowire device was measured close to depletion, with quantum
dot features forming in the junction area. The dataset is plotted and described
in the App. C. In the next chapter, we will discuss the functionalities of our
superconducting microwave circuitry.
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5 Designing a superconducting cavity coupler
for Andreev qubits

Superconducting resonators have been employed to inductively couple to An-
dreev bound states (ABSs), allowing coherent manipulation of Andreev pair
transitions and even Andreev spins in the presence of spin-orbit interaction
[24, 25, 27]. Now, our aim is to design a superconducting cavity coupler to
entangle two spatially separated Andreev qubits using the inductive coupling
scheme. Such a superconducting microwave cavity coupler should ideally pos-
sess of

• low photon energy decay rate to the environment and

• two current anti-nodes at distance.

In the Sec. 5.1, the coplanar transmission line coupler design from Majer et al.
[6] is introduced together with our adaptation. The first generation coupler
design was strongly susceptible to the environmental factors and could only
show low internal quality factor. We later progressed to a capacitively coupled
transmission line resonator pair geometry that reduces this susceptibility. The
specifics are elaborated in Sec. 5.2. This chapter closes with the final design
of the superconducting cavity coupler for Andreev qubits in the last section.

5.1. Half-wavelength transmission line resonator

The Fig. 5.1a illustrates the cavity coupler for two conventional superconduct-
ing qubits. It is a half-wavelength coplanar transmission line resonator which
is opened at both ends such that two voltage anti-nodes develop. By plac-
ing the two superconducting qubits in the vicinity of the voltage anti-nodes,
the charge degree of freedom of the qubits is coupled to the cavity voltage
fluctuation and the qubits can exchange quantum information.

We adapted the half-wavelength coplanar transmission line resonator design
and constructed the first generation cavity coupler for Andreev qubits in a
similar fashion. Because the Andreev qubits couple inductively to the cavity,
as discussed in the Sec. 3, the ends of the transmission line are shorted to
the ground forming current anti-nodes. Fig. 5.1b displays the first generation
coupler. The black arrows indicate the current amplitude maximum and thus
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Va

I

b

Figure 5.1. Half-wavelength transmission line resonator. a, Illustra-
tion of the cavity coupler for two spatially separated superconducting qubits.
The resonator is measured in transmission. The voltage amplitude profile is
plotted along the transmission line. b, First generation cavity coupler design
for distant Andreev qubits. Here, the current amplitude profile is plotted along
the transmission line. Arrows indicate the ideal location for the corresponding
qubits in the two resonator types.

the ideal location of Andreev qubits for strong coupling to the cavity. The
center of the cavity coupler is capacitively coupled to a feedline or directly to
a readout circuit for reflection measurement.

It is common to test the resonator design prior the integration of nanowire
devices. We hence fabricated a test chip using the layout as shown in Fig. 5.2a.
The structures were patterned on NbTiN on an undoped Si wafer. The main
part of the layout consists of a feedline, the cavity coupler and a quarter-
wavelength test resonator in hanger configuration. The test chip was measured
in a dilution refrigerator at base temperature. The qubit control lines (gate
and flux lines) are grounded on a room temperature breakout box through sev-
eral low-pass filter stages. Fig. 5.2b-c show the transmission spectrum |S21(f)|
through the feedline. A prominent dip is measured at 6.35 GHz, which corre-
sponds to the test resonator. The internal quality factor is deduced from fitting
the resonance curve in the complex plane [60]. We obtain Qi,λ/4 ≈ 2.5 · 105

indicating low microwave loss to the environment. Surprisingly, the resonance
of the cavity coupler is a shallow dip. A fit to the spectrum yields an internal
quality factor of merely Qi,λ/2 ≈ 0.9 · 103.

The low quality factor and the large mismatch between Qi,λ/2 and Qi,λ/4
hint towards a flawed coupler design. We hence tested more chips with changes
which we believe can help increasing the quality factor. It includes

• using a Si/SiO2 wafer instead of a Si wafer,

• adding more bondwires on the ground plane,
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Figure 5.2. Cavity coupler test chip. a, The layout of the cavity coupler
test chip. NbTiN is in grey. b-c, Transmission spectra through the feedline.

• removing the qubit control lines and

• more cautious cleaning of the chip.

At the end, we could experimentally exclude incautious handling of the chip,
inhomogeneous superconductor or substrate, and microwave leakage through
the qubit control lines as the reasons for the reduced internal quality factor.
Furthermore, the reduced internal quality factor for the cavity coupler can not
be reproduced using the Sonnet simulation software.

We suspect that shorting the center conductor on both ends to the ground
opens a path for ground loop current to flow through the entire center con-
ductor. It has been shown that a large supercurrent could weaken the pair
correlation in a superconductor [88], which can be detrimental for the res-
onator’s quality factor. Such a ground loop current could be prevented by
breaking the center conductor. In the next section, we will see how the center
conductor is broken and its implications.

5.2. Capacitively coupled quarter-wavelength transmission line
resonator pair

In the second generation coupler design, the transmission line resonator is in-
terrupted in the middle with the aim to prevent low frequency current on the
center conductor. In the following, we discuss the resonance properties and de-
sign parameters in more detail. Fig. 5.3a shows the transmission line model of
the so-called capacitively coupled transmission line resonator pair. It consists
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5. Designing a superconducting cavity coupler for Andreev qubits

of two transmission lines with exactly the same length ∼ L/2 and a character-
istic impedance Z0 that are shorted to the ground on two ends and connected
via a coupling capacitor Cm at x = L/2 in the middle. In the limit of a small
capacitive coupling, this geometry yields two identical quarter-wavelength res-
onators with the same frequency. Because the coupling capacitance allows
current to oscillate across the capacitor, this resonator design hybridizes two
resonating modes with opposite symmetries. We can heuristically derive the
current and respectively voltage amplitude profile of the resonating modes and
their resonance frequencies. The readers are referred to App. B for details.

x
L0 L/2

a Z0 Z0

x
L0 L/2

I V

x
L0 L/2

I V
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c
Iexc

Iexc

Cm
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Figure 5.3. Capacitively coupled transmission line resonator pair.
a, Transmission line model for the capacitively coupled resonator pair. A
coupling capacitance is introduced to the center of the transmissioin line. b-c,
Current and voltage amplitude profiles of the two resonating modes. Mode in
b possesses an anti-symmetric current profile and a symmetric voltage profile
at the coupling capacitance, whereas mode in c possesses a symmetric current
profile and an anti-symmetric voltage profile.

Here, we solely plot the current and respectively voltage amplitude profile
of the resonating modes (Fig. 5.3b-c). For the mode in b, the current is anti-
symmetric at the coupling capacitor, while the voltage profile is symmetric.
This mode is identical to the half-wavelength resonator without Cm, discussed
in Sec. 5.1. For the mode in c, the current is symmetric at the coupling capaci-
tance and its amplitude is non-zero across the capacitance. The voltage profile
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5.2. Capacitively coupled quarter-wavelength transmission line resonator pair

is anti-symmetric and its amplitude across the capacitance is reduced in com-
parison to the first mode due to the finite current across the capacitor. The
resonance frequency f2 of the second resonating mode can be derived from that
of the first mode f1 under the assumption of a small variation (f1−f2)/f1 ≪ 1.
The formula reads

f2 ≈ f1 ·
(

1 − 4CmZ0

π
f1

)
. (5.1)

For the rest of this chapter, the mode with symmetric voltage is referred to as
the symmetric mode with resonance frequency fs and that with anti-symmetric
voltage is referred to as the anti-symmetric mode with resonance frequency fa
for brevity.

5.2.1. Resonator excitation
Microwaves can couple in different ways to a superconducting resonator. We
decide to route microwave excitation through an open-ended coplanar trans-
mission line to the middle of the capacitively coupled resonator pair, at the
coupling capacitor, and measure the resonator response in reflection. The
location of the voltage anti-nodes of the symmetric mode ensures a strong
coupling to the resonator drive line. Moreover, the reflection measurement
uses one port and thus captures all the reflected photons from the resonator
that are not lost to the environment. This improves the signal-to-noise ratio
in comparison to a transmission- or notch-type resonator measurement, where
the resonator sees two ports. We name this design of the drive line the common
port to emphasize the fact that it commonly excites both quarter-wavelength
transmission lines resonators with the same phase. Technically, the common
port can not excite the anti-symmetric mode which would require an excitation
with a phase difference of π.

We use Sonnet to simulate the resonant behavior of the cavity coupler. The
simulation file contains the design of the capacitively coupled coplanar trans-
mission line resonator pairs with realistic material properties. Si is chosen as
the substrate and a sheet inductance of 2.4 pH/□ to mimic the kinetic induc-
tance in the NbTiN film, which is calibrated from independent measurements
using coplanar transmission line resonators of variable length. The reflection
of the cavity coupler is simulated with two different excitation ports: a) a
differential port with the signal being 180° out-of-phase on the two traces, b)
a common port with a single trace. Fig. 5.4 shows the simulated reflection
spectrum of the capacitively coupled resonator pairs. The figure contains a
red curve that is simulated using a differential port and a blue curve that is
simulated using a common port. The design of the ports is displayed in the
insets close to the corresponding resonances. The port comes from left to right
and ends before the center conductor of the resonator.
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Figure 5.4. Simulation of the capacitively coupled resonator pair. a,
The reflection amplitude |S11| is simulated against the excitation frequency.
The red curve uses a differential port driving the anti-symmetric voltage mode,
whereas the blue curve uses a common port driving the symmetric voltage
mode of the same capacitively coupled resonator pair. The design of the
drive lines are shown in the insets close to the corresponding resonances. The
label R indicates the center conductor of the resonator. b, Illustration of the
interdigitated coupling capacitor. The position of the capacitance is indicated
with yellow boxes in the inset of a.

As expected from the transmission line model, the symmetry of the cavity
drive reflects itself in the symmetry of the cavity. The anti-symmetric mode
with a lower resonance frequency is excited when using the differential port
while the symmetric mode with a higher resonance frequency is excited when
using the common port. Thus, we are able to selectively establish a strong
coupling to one of the two cavity modes, by adjusting the resonator drive line
design.

The coupling rate from the drive line to the resonator’s symmetric mode
can be tuned by varying the distance between the resonator and drive line and
the width of the drive line. Since we aim to engineer a coupled qubit-cavity
system where the quantum decoherence is limited by the qubits, we design
the photon energy decay rate to the drive line to be in the lower MHz-range,
lower than the typical linewidth of Andreev pair transitions [24]. The coupling
quality factor can be fitted from both the simulation and experiment. Usually,
they differ by a factor of less than two.

5.2.2. Inter-resonator coupling capacitance

The next question arises: How should the inter-resonator coupling capacitance
Cm be designed? In the previous section, it is shown that the resonance fre-
quency fa of the anti-symmetric voltage mode depends on the coupling capac-
itance. The frequency difference between the anti-symmetric and symmetric
voltage mode increases for a larger coupling capacitance.
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5.2. Capacitively coupled quarter-wavelength transmission line resonator pair

Since we are interested in measuring a clean qubit spectrum, we require
the frequency difference of the two resonating modes to be five times greater
than the qubit-resonator coupling strength, ∆f = fs − fa ≳ 5g. Typical
coupling strength of Andreev pair transitions with the resonator is found to
be ∼ 100 MHz [24, 36]. The lower bound for the coupling capacitance can be
computed using Eq. (5.1). For fs = 6.5 GHz, Z0 = 50 Ω, a design rule for the
coupling capacitance is obtained that reads

Cm ≳ 186 fF. (5.2)

The frequency difference between the two resonating modes was simulated
in Sonnet to confirm the analytically computed coupling capacitance. It was
found through numerical simulation that the requirement of ∆f ≳ 5g is
achieved with a smaller simulated capacitance. At the end, the interdigitated
capacitance design in Fig. 5.4b is applied to the actual device. It consists of 8
finger pairs with a finger width of 2 µm, an interdigital gap of 1 µm and a finger
length of 40 µm. It generates a simulated frequency difference of ∼ 500 MHz
between the modes, and a simulated capacitance of 43 fF at 6.5 GHz, which is
about a factor of four different from the analytical value. To derive the ex-
pression Eq. (5.1), an assumption is made that is a small ratio of the frequency
difference and the resonance frequency of the symmetric mode. In our case,
the target ∆f/fs ≈ 0.08 is quite substantial and could be the reason for the
inaccurate prediction from the analytical expression.

5.2.3. Shared inductance
The coupling strength also imposes a design rule for the shared inductance
between the resonator and the RF SQUID. For that, the resonator inductance
and capacitance have to be found first. We require a 50 Ω-resonator with a
symmetric mode resonance frequency of 6.5 GHz. Using ZR =

√
Lr/Cr and

fs = 1/2π
√

LrCr, the resonator inductance and capacitance can be computed
to be L = 1.22 nH, C = 0.49 pF.

We consider one ABS in the short-junction limit with a junction trans-
parency τ and a superconducting gap ∆. For estimating the shared induc-
tance, we consider the equation that relates the light-matter coupling strength
to the zero-point flux fluctuation and the coupling current matrix element of
the Andreev pair transition:

hg = δzp|⟨1|H ′
JJ| − 1⟩|. (5.3)

The coupling current matrix element |⟨1|H ′
JJ| − 1⟩| in general depends on

∆, τ and the superconducting phase difference δ across the junction. Here,
a conservative estimation is made by choosing ∆ = 30 GHz [25] such that
|⟨1|H ′

JJ| − 1⟩| ≈ 0.3 · 30 GHz. Applying the condition g = 100 MHz hence
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5. Designing a superconducting cavity coupler for Andreev qubits

yields a zero-point flux fluctuation of δzp = 0.011. Using Eq. (3.8), which
relates the zero-point flux fluctuation to the shared inductance, we finally
obtain a lower bound for the shared inductance ls for a coupling strength
greater than 100 MHz, that reads

l ≳ 86 pH. (5.4)
This is much smaller than the Josephson inductance of the NWJJ, which is
typically on the order of nH. Thus, the phase drop across the shared inductance
can be neglected.

5.3. Final design

The final layout of the superconducting cavity coupler for the experiment that
links two Andreev qubits is shown in Fig. 5.5a. The entire capacitively coupled
transmission line resonator pair extends over 6 mm, with a short to the ground
at both ends. Small holes in the superconducting ground plane are left to trap
flux vortices. Bondpads indicated with Vi are for the nanowire bottom gates.
Because a qubit drive on the bottom gates is desired as well, the gate lines are
designed to match 50 Ω. Ii indicates the bondpads for DC current bias.

Fig. 5.5b presents the simulated current amplitude at resonance frequency
in the nanowire area. Indeed, a current amplitude maximum occurs on the
shared inductance. The SQUID loop is not closed for the simulation such that
there is no current flow on the strip parallel to the shared inductance. Further
considerations are discussed below.

Resonance frequency
We aim for a resonance frequency of fs = 6.5 GHz to be in the intermedi-
ate regime to dispersively couple to both even and odd parity transitions.
The Sonnet simulation reveals a symmetric mode resonance frequency of fs =
6.46 GHz.

Characteristic impedance of the transmission line
We see from Eq. (3.8) that the zero-point flux fluctuation across the NWJJ
scales with the inverse of the square root of the resonator impedance δzp ∝
1/

√
Zr. We attempt to enhance the zero-point flux fluctuation by lowering the

characteristic impedance of the transmission line. A center conductor with a
width of 50 µm and a gap of 5 µm is used, yielding a simulated characteris-
tic impedance of Z0 ≈ 38 Ω. The characteristic impedance is related to the
resonator impedance via

ZR =
√

L

C
= 2

π
Z0 ≈ 24 Ω. (5.5)
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Figure 5.5. The cavity coupler for the experiment with two Andreev
qubits. a, The cavity coupler layout. The lines indicated with Vi are for the
nanowire bottom gates and the lines indicated with Ii are for passing a current
next to the SQUID to phase bias. b, Simulated current amplitude in the qubit
area at the resonance frequency. A maximum is found on the center conductor
at the short end. c, Simulated reflection coefficient S11 of the capacitively
coupled resonator pair.
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5. Designing a superconducting cavity coupler for Andreev qubits

Using the resonator impedance and the resonance frequency, we compute a
simulated resonator inductance L ≈ 0.59 nH and capacitance C ≈ 1.03 pF.

Current bias line
Unlike existing experiments that apply a background magnetic field to flux
bias single Andreev qubits, the two-qubit experiment requires independent flux
biasing of two RF-SQUIDs. Our solution is to pass a current near each RF-
SQUID. Through the study of simulation, we found that having single stripes
with 50 Ω-resistive termination close to the cavity current anti-nodes induces
substantial microwave leakage from the resonator. This problem is resolved
by splitting the flux biasing stripes into two, as shown in the Fig. 5.5b. In this
configuration, the resonator locally induces similar current in both flux biasing
stripes such that no net current is induced on the stripe to the termination.
This suppresses the transmission towards the current source by ∼ 20 dB.

Shared inductance
We narrow down the center conductor at the short ends of the resonator to
locally increase the inductance, as seen in Fig. 5.5b. With δzp ∝ ls, the narrow
stripe further increases the coupling to the Andreev transitions. Because of the
symmetric design of the flux biasing stripes, only half of the narrowed center
conductor is connected to the loop and contributes to the shared inductance.
Assuming that the inductance is mainly given by the kinetic inductance, the
share inductance is estimated to be l ≈ 0.12 nH.

The zero-point flux fluctuation can be recalculated using simulated circuit
parameters, δzp ≈ 0.022. This exceeds the value we impose earlier by a factor
of two. Again, the factor of two comes from a larger ls and a smaller ZR than
that which are derived from the design rules. Such a zero-point fluctuation
would generate a coupling strength to the pair transitions of ∼ 200 MHz,
putting us in the strong coupling limit for the even parity Andreev states.

Coupling quality factor
A fit to the simulated reflection coefficient S11 in Fig. 5.5c yields a simulated
Qc = 5300.

5.4. Conclusion

We have developed two generations of half-wavelength superconducting cavity
couplers and identified a problem of low internal quality factors when ground-
ing a coplanar transmission line resonator on two sites. In the second genera-
tion, this problem is solved by introducing an interdigitated coupling capacitor
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in the middle of the transmission line. We have discussed in-depth the design
parameters by relating them to experimental conditions. The proposed cavity
coupler design couples via cavity flux fluctuation to the qubits and hence is
complementary to the cavity coupler in Ref. [6, 34], which are commonly used
now for spin and superconducting qubits.

In the next chapter, we will integrate Andreev qubits into the cavity coupler
and investigate the qubits using the coupler as qubit state detector.
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6 Microwave spectroscopy of Andreev bound
states in epitaxial InAs/Al nanowire
Josephson junctions

In this chapter, we present the cavity coupler in operation with two Andreev
pair qubits. For now, we do not intend to couple the Andreev qubits, such that
only one qubit is measured at a time and the coupler is only used for qubit
state readout. Sec. 6.1 shows the device consisting of the cavity coupler and
two InAs/Al nanowire Josephson junctions (NWJJs). Sec. 6.2 discusses the
qubit-field interaction, followed by the study of the pair transition linewidth
in Sec. 6.3. After the investigation in the frequency domain, we demonstrate
coherent manipulation of an Andreev pair qubit in both NWJJs in Sec. 6.4.
Finally, we present the measurement of single quasiparticle transitions in a
wider range of superconducting phase difference in Sec. 6.5.

6.1. Device

The device under investigation has two full-shell epitaxial InAs/Al NWJJs that
are both inductively coupled to a superconducting cavity coupler. Fig. 6.1a
shows a scanning electron micrograph of one of the two full-shell epitaxial
InAs/Al NWJJs. Each qubit is controlled by a Ti/Pd bottom gate and a bias
of the superconducting phase difference between the Al shells. The nanowire
is suspended on NbTiN over the bottom gate. In the middle of the left (right)
nanowire, an Al segment of 280 nm (190 nm) is stripped with wet-etching tech-
nique. Qubit control lines are shown in Fig. 6.1b. A DC current bias IL next
to the SQUID can tune the threading flux inside the loop and hence adjust
the superconducting phase difference ΦL across the NWJJ. The bottom gate
is connected to a DC voltage source VL and a microwave signal generator
via an RC bias tee. Finally, Al contacts are evaporated on the Al-shell after
the removal of surface AlOx using Ar-milling, embedding the NWJJ in the
NbTiN SQUID that is connected in parallel to the shared inductance (red) of
the superconducting cavity coupler.

The superconducting microwave coupler is a NbTiN capacitively coupled
coplanar transmission line resonator pair. A simplified schematic of the coupler
and readout circuit is illustrated in Fig. 6.1d. The ends of the transmission line
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Figure 6.1. Microwave cavity coupler for distant Andreev pair
qubits. a, False-colour scanning electron micrograph of the left full-shell
InAs/Al NWJJ. The Al-shell (light blue) is etched to form a semiconducting
NW-based JJ. The NWJJ is suspended on NbTiN (light grey) over a Ti/Pd
bottom gate (yellow). The scale bar is 300 nm. b, Optical micrograph showing
the left qubit. The NWJJ is contacted to a loop in the NbTiN layer form-
ing an RF SQUID, which shares an inductance with the cavity (red in b and
c). The Andreev qubit is controlled by a DC current bias IL and a DC gate
voltage VL. Additional microwave signal on the gate allows excitation of the
ABSs. The scale bar is 10 µm. c, Optical micrograph of the resonator pair
coupling capacitance. The scale bar is 20 µm. d, Schematic of the device
showing two distant gate- and flux-tunable NWJJs coupled to the short ends
of a capacitively coupled λ/4-coplanar transmission line resonator pair with
the microwave readout setup (simplified).
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6.1. Device

are shorted to the ground forming two spatially separated current anti-nodes.
Each half of the transmission line forms a quarter-wavelength mode and is
capacitively coupled with each other via an interdigitated coupling capacitor
in the center. Fig. 6.1c shows an optical micrograph of the coupling capacitor.
Resonator probe and qubit excitation tones are routed through an open-ended
transmission line to the coupling coupling capacitor.
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Figure 6.2. Symmetric mode resonance response. a, Normalized reflec-
tion coefficient A/A0 as a function of probe frequency fprobe. A dip appears
at the symmetric mode resonance frequency ∼ 6.461 GHz. Measurement of
the resonance in a smaller frequency span in normalized IQ-values (b) and
normalized reflection coefficient (c). Red lines are fits to extract resonator
parameters. d, Reflection coefficient measurement as a function of fprobe and
the flux bias IL.

A characterization of the cavity coupler is performed prior to the investi-
gation of the NWJJs. For this, the NWJJs are pinched off at VL,R = −4 V.
As discussed in the Ch. 5, the cavity coupler possesses a strongly coupled
symmetric mode with resonance frequency fs and a weakly coupled anti-
symmetric mode with fa. Fig. 6.2a shows the normalized reflection ampli-
tude A/A0 as a function of frequency fprobe of a weak microwave probe tone.
The observed resonance at ∼ 6.461 GHz corresponds to the resonance of the
symmetric mode. In fact, no resonance feature is observed at the frequency
of the anti-symmetric mode, which is found by simulation to be at around
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6 GHz, highlighting the weak coupling to the anti-symmetric mode from the
cavity drive line. By fitting the resonance in the IQ-plane using the tech-
nique from Ref. [60], we extract the resonator parameters fs = 6.4612 GHz,
κint/2π = 0.7 MHz and κs/2π = 1.2 MHz, with κs being the coupling rate
(Fig. 6.2b-c). Since κs > κint, the resonator is overcoupled to the readout cir-
cuit. The fitting process captures most of the line shape of the resonance, but
does not work well for the right half of the spectrum. We suspect that it is
caused by standing wave patterns on the sample holder or chip which gives a
modulating reflection coefficient as background.

After the basic characterization of the cavity coupler, we determine the flux
periodicity of the RF SQUIDs by monitoring the resonance shift as a function
of current bias IL, with the nanowire operating as a Josephson junction at
VL = 0 V . Fig. 6.2d shows the normalized reflection amplitude around fs as
a function of IL. The periodic shift of the resonance frequency occurs due
to a periodic change of the Josephson inductance. The periodicity of the
left SQUID is determined from this measurement as I

(L)
2π = 0.72 mA. Similar

measurement was performed on the right NWJJ to obtain the periodicity of
the right SQUID I

(R)
2π = 0.71 mA. The discrepancy can result from a slightly

different area of the SQUID loops due to the manual placement of NWs.
Furthermore, the π-points of each NWJJ can be identified from this mea-

surement as the current bias point with the largest downwards resonance shift
[24].

6.2. Qubit-resonator interaction

First, we search for Andreev pair transitions in each NWJJ individually, with
the idling NWJJ being pinched off. The cavity coupler is probed with a weak
microwave tone around symmetric mode fs as a function of gate voltages at
the π-points. The circulating photon number in the resonator is estimated
to be ∼ 1.54, when applying an excitation power of 10−17 W at the device.
Fig. 6.3a shows a single tone spectrum as a function of the gate voltage VL
at ϕL = π. We observe that the cavity resonance disperses when sweeping
VL. Fig. 6.3b shows a single tone spectrum as a function of the flux bias
ϕL at VL = 0.756 V, marked in the gate dependent map. Similar resonance
frequency shift is also observed when sweeping VR and ϕR, see Fig. 6.3c-d.
The observation of avoided-crossings indicates a strong coupling of the cavity
coupler to Andreev pair transitions in both NWJJs. The transition frequency
of a pair of ABSs depends on the junction transparency, which is tuned by the
electric field-effect.

Fig. 6.3b and d are different because of the difference in junction trans-
parency. The pair transition always remains above fs in the former mea-
surement and it is tuned below fs when approaching ϕR = π in the latter
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Figure 6.3. Hybridization of the Andreev pair transitions and sym-
metric cavity mode. Normalized reflection coefficient A/A0 as a function
of gates (a, c) and flux bias (b, d). Avoided-crossings are observed due to
the inductive coupling of an Andreev pair transition and the symmetric cavity
mode. White arrows indicate double dips featuring quasiparticle poisoning in
the junctions.
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measurement. Lower pair transition frequency at ϕ = π can be achieved with
a higher junction transparency or in a finite-length junction. Furthermore, a
double dip pattern is observed sometimes, e.g. in Fig. 6.3.b and d, indicating
parity switching events in both NWJJs [24]. In both plots, the second reso-
nance seems to be constant at fs, suggesting that no single particle transition
is coupled to the cavity in the measured flux range.

6.3. Qubit linewidth

After the demonstration of strong coupling of Andreev pair transitions to the
symmetric cavity mode, the qubit spectral lines are measured by means of
pulsed two-tone spectroscopy. We focus on one Andreev pair transition in the
right qubit. Fig. 6.4a-b shows the single tone spectrum as a function of VR
and ϕR. Again, a pull of the resonance frequency is observed due to a disper-
sively coupled Andreev pair transition. In the pulsed two-tone spectroscopy
measurement, a saturating qubit drive pulse with variable frequency fdrive is
sent to the device at the same time as a weak resonator probe pulses with
frequency fprobe ≈ fs. Afterwards, both pulses are turned off for 8 µs such
that the qubit can relax to the ground state. A second probe pulse is then
sent to probe the resonator when the qubit is in the ground state. Fig. 6.4c-d
show the normalized change I/I0 of the quadrature values between the two
reflected resonator probe pulses as a function of VR and ϕR. The measured
resonances are the transition frequency fqb of the Andreev pair qubit.

We extract the qubit-cavity detuning ∆f = fqb −fs from the two-tone spec-
trum and the dispersive shift χ from the single-tone spectrum at the operation
point where the qubit is insensitive to gate and flux noise to the leading or-
der. Using χ/2π = −(g/2π)2/∆f , the coupling strength between the Andreev
pair qubit and symmetric cavity mode is found to be g/2π = 119 MHz at this
operation point. The qubit-cavity coupling strength is not a constant value,
but depends on the coupling matrix element of the transition and the presence
of additional Andreev transitions in the microwave range [67]. Both physical
quantities have strong gate and flux dependence.

Interestingly, the qubit linewidth becomes wider when tuned away from
the π-point in the flux space. Such a behaviour is not observed in the gate
space. This observation suggests a flux-noise limited coherence time for the
Andreev pair qubit at ϕR ̸= π. To quantify the effect of the control param-
eters VR and ϕR on decoherence, the measured qubit spectrum is fitted with
a Lorentzian function and the slope of the qubit frequency dispersion is com-
puted numerically as fqb(xi+1)−fqb(xi)

xi+1−xi
, with x ∈ {VR, ϕR} being the control

parameters. Fig. 6.4e shows two exemplary spectra and fits at ϕR = π (blue)
and ϕR = 1.09π (black).

The extracted full width at half maximum FWHM and slope are plotted as a
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Figure 6.5. Gate and flux noise. The extracted qubit linewidth FWHM
and numerically computed slope of the dispersion relations plotted as a func-
tion of VR (a) and ϕR (b). c, FWHM as a function of the slope in the flux
space. The solid line is a linear fit.

function of the control parameters in Fig. 6.5a-b. It becomes apparent that the
qubit linewidth and slope in the gate space are uncorrelated, while that in the
flux space indeed increases with the slope. In Fig. 6.5c, the extracted FWHM is
plotted against the slope in the flux dispersion to emphasize their correlation.
Using a phenomenological linear model: ∆fqb = ∂fqb/∂ϕR · σϕ + ∆fqb,π, we
can estimate the flux fluctuation σϕ and the qubit linewidth at the flux sweet-
spot ∆fqb,π. The fit to the data in Figure 6.5c yields a σϕ = 0.0053π and
∆fqb,π = 93 MHz. The value of ∆fqb,π value at the flux sweet spot suggests
a maximum coherence time of T2 = 1.3/π∆fqb,π ≈ 4 ns [89].

In the next section, we will operate the NWJJs as Andreev pair qubits and
demonstrate coherent manipulation of the pair transitions.

6.4. Coherent manipulation of pair transitions

First, we investigate the left Andreev pair qubit. Fig. 6.6a presents two-tone
spectroscopy with the qubit spectrum as a function of VL at ϕL = π. At
the gate sweet-spot VL = 1.8 V, we apply a coherent qubit drive pulse of
variable pulse width trabi to address the qubit transition. The response of the
cavity is measured twice, immediately after the manipulation period and after
the qubit decays to the ground state, each time with a 1µs-long probe pulse.
The qubit state vector rotates between the excited and ground state under
the influence of the coherent drive pulse, yielding oscillations, also known
as Rabi oscillations, in the cavity response. The normalized change of the
quadrature value Q/Q0 between the two cavity readout pulses is plotted as a
function of trabi and drive power in Fig. 6.6b. As the drive power increases,
the oscillation becomes faster showing up to 10 full periods within 50 ns. A
finite decoherence time leads to a reduction in the contrast over time. We
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note that the measured Q/Q0 does not oscillate symmetrically about a mean
value, but tends to saturate at a value that is higher than the mean value
at large trabi, which we do not fully understand. This behaviour is more
apparent in the Fig. 6.6c, showing a linecut from Fig. 6.6b at -5dBm. We use
a fit function: A exp(−trabi/T2,rabi) sin(2πfrabitrabi + ϕ) + Btrabi + C to fit
the Rabi oscillation, where the term Btrabi accounts for this tendency. The
decay of Rabi oscillation is estimated to be T

(L)
2,rabi = 19 ns. Furthermore, a

T1 measurement is performed by preparing the qubit in the excited state and
letting it decay over the time twait before readout. An exponential fit to the
data shows an energy relaxation time of T

(L)
1 = 1.07 µs.

Similar studies can be conducted at other gate voltages and on the right
qubit. Here, Fig 6.6e-g show the study of an Andreev pair transition in the
right qubit at the gate sweet-spot VR = 1.457 V and ϕR = π. We obtain a
qubit frequency of fqb,R = 5.6 GHz, T

(R)
2,rabi = 58 ns and T

(R)
1 = 0.28 µs.

Because the right qubit frequency is closer to the symmetric mode reso-
nance frequency fs, the shorter energy relaxation time (T (R)

1 < T
(L)
1 ) could

be caused by spontaneous emission into the environment via the resonator,
described by the Purcell-effect [90, 91]. The Purcell-limited energy relaxation
time T Purcell

1 = 2π
(g/∆f )2κ

becomes longer with larger qubit-resonator detuning
∆f . For the right qubit, the Purcell-limited energy relaxation time is estimated
to be T Purcell

1 ≈ 16 µs which can not explain the measured short T
(R)
1 . Because

T
(R)
1 corresponds to a frequency uncertainty that is larger than the measured

qubit linewidth from the previous section, we learn that the linewidth in the
two-tone spectroscopy is limited by qubit dephasing.

The reasons for the short energy relaxation and decoherence time remain
unclear. But the facts that both nanowires are fabricated and measured nom-
inally in the same way on the same chip and a difference of almost a factor of
three is seen in the T rabi

2 suggests that there is a large variation in the NW
device parameters.

6.5. Spin-orbit splitting of ABSs

In addition to the characterization of the pair transitions, single quasiparti-
cle transitions (SQPTs) were also measured using the cavity coupler. The
transition frequency of the SQPTs are often lower around ϕ = 0 than ϕ = π
[56]. Hence, two-tone spectroscopy was performed beyond the narrow range
around ϕ = π. A typical half-range two-tone spectrum is shown in Fig. 6.7.
The spectrum is taken at VR = 0.884 V. At this gate voltage value, there is
no evident pair transition below 20 GHz. However, multiple resonances are
observed around ϕR = 0. In particular, the four resonances indicated with
arrows seem to merge at ϕR = 0 and to split for ϕR ̸= 0 or ϕR ̸= π. These
resonances are associated with four SQPTs between four Andreev spin states
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Figure 6.6. Time domain measurement of Andreev pair transitions.
a, Two-tone spectroscopy, demonstrating the qubit spectrum as a function of
VL at ϕL = π. b, Normalized change of the quadrature value Q/Q0 between
the two cavity readout pulses as a function of drive pulse width trabi and drive
power. c, Rabi oscillation as a function of trabi at −5 dBm. The solid line
is a fit function according to the text. d, T

(L)
1 measurement. The line is

an exponential fit to the data. Similar measurements for the right qubit are
plotted in e (Qubit spectrum), c (Rabi oscillation at −5 dBm), and g (T (R)

1
measurement).
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6.6. Conclusion

that are split due to strong spin-orbit coupling in the InAs nanowire. The
dispersion of these transitions depends on mesoscopic parameters such as the
junction length, junction transparencies, charging energy in the normal region
and the SOI strength, as analysed in [55, 56]. With the wide gate and flux
tunability of the InAs/Al NWJJ, a zoo of different SQPT configurations can
be accessed. Since the SQPTs are not subject of this thesis, we move addi-
tional measurement that demonstrates the local gate dependence of some of
the SQPTs in one device in App. D.
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Figure 6.7. Spin-orbit splitting of single quasiparticle transitions.
Normalized change of the quadrature value of the resonator probe pulse Q/Q0
as a function of ϕR and fdrive, measured at VR = 0.884 V. Resonances indicated
with white arrows correspond to single quasiparticle transitions.

6.6. Conclusion

We have fabricated a device with two full-shell epitaxial InAs/Al NWJJs,
which were inductively coupled to a superconducting cavity coupler. We have
demonstrated that both NWJJs were strongly coupled to the symmetric mode
of the cavity coupler, supported by the measurement of avoided-crossings be-
tween Andreev pair transitions and the cavity mode. We were able to operate
the same cavity mode as a spectroscopy tool to obtain both pair transitions
and SQPTs in the Andreev spectrum, from both NW devices. In another ex-
periment, we have demonstrated that the cavity coupler could be used as a
qubit state detector, when the NWJJs operated as Andreev pair qubits. the
dynamic characteristics of both Andreev pair qubits were measured.

59



6. Microwave spectroscopy of Andreev bound states in epitaxial InAs/Al
nanowire Josephson junctions

In the next chapter, we want to demonstrate qubit-qubit coupling via the
harmonic modes of the superconducting microwave coupler.
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7 Photon-mediated long-range coupling of
two Andreev pair qubits

In the previous chapter, we have shown that the Andreev pair qubits can inter-
act with the symmetric mode of the cavity coupler. This chapter is dedicated
to the demonstration of long-range coupling of two Andreev pair qubits via the
microwave cavity coupler. Parts of this chapter were submitted for publishing.
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7.1. Abstract

In a superconducting weak link, the supercurrent is carried by Andreev bound
states (ABSs) formed by the phase-coherent reflection of electrons and their
time-reversed partners. A single, highly transmissive ABS can serve as an
ideal, compact two-level system, due to a potentially large energy difference
to the next ABS [28]. While the coherent manipulation of such Andreev pair
qubits (APQs) has been demonstrated [24, 25], a long-range coupling between
two APQs, necessary for advanced qubit architectures [92, 93], has not been
achieved, yet. Here, we demonstrate a coherent remote coupling between two
APQs, mediated by a microwave photon in a novel superconducting microwave
cavity coupler. The latter hosts two modes with different coupling rates to an
external port. This allows us to perform fast readout of each qubit using the
strongly coupled mode, while the weakly coupled mode is utilized to mediate
the coupling between the qubits. When both qubits are tuned into resonance
with the latter mode, we find excitation spectra with avoided-crossings, in very
good agreement with the Tavis-Cummings model [94]. Based on this model,
we identify highly entangled two-qubit states for which the entanglement is
mediated over a distance of six millimeters. This work establishes APQs as
compact and scalable solid-state qubits.

7.2. Main

The fundamental quantum states in superconducting weak links are Andreev
bound states (ABSs) that form as superpositions of propagating electrons and
holes near a superconductor [22, 95, 96]. In Fig. 7.1a), we illustrate the forma-
tion of a single, highly transmissive ABS in a short normal metal or semicon-
ductor region (N) between two superconducting reservoirs (S) with a supercon-
ducting gap ∆. The condition for constructive interference of the electron and
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hole partial waves contains phase shifts due to Andreev reflections at the NS in-
terfaces and the propagation in N [40, 97, 98]. For a single channel in the short
junction limit, the constructive interference results in two time-reversed, spin-
degenerate Andreev levels, with eigenenergies tuned by the phase difference δ
between the two superconducting order parameters. Including a transmission
probability τ in the N part between the two superconductors, one obtains the
energy spectrum E±(δ) = ±∆

√
1 − τ sin2(δ/2) around the Fermi energy, as

shown in Fig. 7.1b) [28, 39, 99, 100]. We choose these two states at constant
δ = π to define the Andreev pair qubit (APQ) with a tunable excitation gap
of ∆E = 2∆

√
1 − τ . The APQ subspace is spanned by the even parity ground

state of the weak link and an excited state with two quasiparticle excitations.
The corresponding qubit transition frequency is then given by fqb = ∆E/h,
with the Planck constant h. Since the next ABSs are typically found at much
larger energies near ∆, the next excited state can in principle be engineered
with a much greater energy difference than the qubit transition. This unique
gate-tunable energy spectrum stands in strong contrast to other, more estab-
lished superconducting qubits, e.g., transmon qubits [101], in which dynamical
driving of the qubits is severely limited by the leakage out of the computational
subspace into higher excited states [102, 103].

To implement a general quantum algorithm, it is necessary to couple two
qubits coherently. While the coupling between two ABSs over short distances
is being explored in various systems [96, 104–106], a long-distance coupling
could not be established so far. On the other hand, the versatile long-distance
coupling and quantum state readout have been established for other qubit plat-
forms, for example superconducting [92] or semiconductor qubits [93, 107], us-
ing superconducting microwave resonators. The reproducibility and low losses
of superconducting microwave resonators, and the potentially strong coupling
to the APQs make these techniques ideal to transfer quantum information
between APQs [108].

Despite significant progress in understanding coupled ABS-resonator sys-
tems using circuit quantum electrodynamics, only experiments with single
APQs have been performed so far [24, 25, 27, 29, 29, 31, 35, 55, 56, 108–
110]. Here, we first demonstrate a strong coupling of two individual APQs
to the same superconducting resonator mode, with qubit decay rates lower
than the coupling strengths to the resonator mode. In a second step, we si-
multaneously bring the APQ transition energies into resonance with a specific
resonator mode that only couples weakly to the measurement circuit. A coher-
ent, exchange-type coupling between the two APQs is then established, with
the mutual coupling mediated by a microwave photon, and not disturbed by
the out-coupling. The resulting excitation spectrum is fully captured by the
Tavis-Cummings model, solely using independently determined single qubit
parameters [94]. This allows us to identify highly entangled two-qubit states,
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possibly allowing the implementation of future remote two-qubit gate opera-
tions for Andreev qubits.

The investigated quantum circuit is illustrated schematically in Fig. 7.1c-
d) and consists of two InAs nanowire weak links, each with a single, highly
transparent ABS forming the APQ. The nanowires have an epitaxially grown
Al shell [43], etched away in a short semiconducting region to form the left
APQ (L-APQ) and the right APQ (R-APQ). Local bottom gates are used
to separately control the qubit frequency of each APQ. A scanning electron
micrograph of the R-APQ is shown in Fig. 7.1e). This nanowire weak link
is embedded in a superconducting pick-up loop forming an rf-SQUID [80],
as shown in Fig. 7.1f). The threading magnetic fluxes ΦL,R = Φ0δL,R/2π,
controlled by an external current line, is used to set the corresponding phase
differences δL,R, with Φ0 = h/2e the superconducting flux quantum [108].
The cavity coupler is composed of two nominally identical quarter-wavelength
resonators (Fig. 7.1g). One of the key elements in our design is a coupling
capacitor designed between the two resonators at the respective voltage anti-
nodes. The coupling capacitor prohibits low frequency dissipative current
flowing through the center conductor and thus ensures low internal loss of the
cavity coupler. This design combines the two quarter-wavelength modes of
the individual coplanar transmission line resonators into two half-wavelength
modes, one mode with a symmetric voltage profile along the transmission line
with a resonance frequency of fs = 6.461 GHz (Fig. 7.1c) and the other mode
with an anti-symmetric voltage profile with a resonance frequency of fa =
6.075 GHz (Fig. 7.1d). The readout port, designed as an open-ended coplanar
transmission line to the center of the cavity coupler, can be used to apply a
symmetric voltage excitation to the cavity coupler and thus couples strongly
to the symmetric coupler mode with a coupling strength κs/2π = 1.2 MHz.
In contrast, the excitation of the anti-symmetric coupler mode through the
readout port is suppressed due to the mismatch of the symmetries between
the voltage excitation and coupler mode. The pick-up loops are galvanically
connected to the central conductor of the respective resonator current anti-
nodes (Fig. 7.1f).

We first demonstrate a strong coupling between each APQ and the anti-
symmetric coupler mode. Owing to a weak coupling to the readout port, the
anti-symmetric coupler mode has a long lifetime and can strongly hybridise
with an APQ at small detunings (fqb ≈ fa). We probe the excitation spec-
tra of the qubit-coupler hybrid system using pulsed two-tone spectroscopy
techniques. The transition from the ground state of the qubit-coupler sys-
tem to an excited state can be addressed by an excitation pulse with variable
microwave frequencies fdrive. The population of such a hybrid excited state
shifts the resonance frequency of the symmetric coupler mode, measured in
the reflection coefficient of a microwave probe pulse at a frequency near fs,
routed through a Josephson parametric amplifier operating close to the quan-
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tum limit [111]. The APQ-coupler coupling strength for the symmetric coupler
mode gs,L/R/(2π) is measured to be ∼ 120 MHz (not shown). In our experi-
ment, both the qubit excitation and resonator probe pulses are routed through
the readout port to the qubit-coupler system. The resonator probe pulse is
applied twice, once during the qubit excitation and the other time after the
system relaxes back to the ground state (Details in the Methods). The dif-
ferential quadrature ∆Q is obtained by subtracting the two reflected probe
pulses to reject slow drifts.

To investigate a single APQ-coupler system, we tune the respective phase
of the investigated APQ to the sweet-spot, δi = π, where the qubit frequency
is insensitive to small phase fluctuations. The other, idling APQ is phase
biased such that its transition frequency is far above fa. Fig. 7.2a) shows
the differential quadrature ∆Q as a function of fdrive and VL. We find an
avoided crossing between the qubit and cavity resonances, demonstrating a
coherent coupling between the L-APQ and the anti-symmetric coupler mode
[49]. A fit of ∆Q with two Lorentzians and a linear background on resonance,
fa = fqb,L, results in a qubit-coupler coupling rate of ga,L/(2π) = 141 MHz,
which exceeds the qubit decay rate γL/(2π) = 77 MHz. We find a similarly
strong qubit-resonator coupling for the R-APQ, with ga,R/(2π) = 104 MHz
and γR/(2π) = 82 MHz (Fig. 7.2b).

In Fig. 7.2b), we find a weak, gate-independent resonance at a frequency
fa = 6.075 GHz between the APQ-coupler hybrid states. We attribute this line
to the excitation of the bare anti-symmetric coupler mode without a coupled
APQ. In the short junction limit, there are two degenerate current-less odd
parity states, that are insensitive to the resonator current and thus do not
couple to the resonator [25]. Parity switching with a rate faster than the
measurement time can thus result in a reflected signal by exciting the bare
anti-symmetric resonator mode.

When a bare qubit state is degenerate with the cavity excitation, they form
a new set of eigenstates due to the exchange of excitations between them. This
new set of qubit-coupler hybrid states is best seen as an avoided crossing in the
spectrum described by the Jaynes-Cummings Hamiltonian [24, 55, 56, 69, 108].
The measured spectra are very well reproduced by the latter for one resonator
mode coupled to a qubit HJC = ℏga,i(aσ+,i + a†σ−,i), with σ+ (σ−) and a†

(a) being the qubit and resonator raising (lowering) operators. It describes
the coherent exchange of one excitation between a qubit i and the cavity
mode at a rate of ga,i. In Fig. 7.2c), we plot the corresponding calculated
spectrum for the R-APQ as a function of VR using the extracted ga,R (See
Methods for Details). The voltage axis is calibrated by equating the lowest
and highest resonance frequencies with the corresponding qubit frequencies.
The two resonances corresponding to the qubit-coupler hybrid states |±R⟩
are colored according to the qubit weight |⟨0, eR|±R⟩|2. As the R-APQ qubit
frequency is tuned across fa by VR, the eigenstate |+R⟩ evolves gradually from
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a bare photonic state |1, gR⟩ to a bare qubit excited state |0, eR⟩, while |−R⟩
evolves from |0, eR⟩ to |1, gR⟩. At the degeneracy point at VR = 2.5225 V,
the coherent exchange of one excitation forms the two maximally hybridized
states |±R⟩ = 1/

√
2(|1, gR⟩ ± |0, eR⟩), with a vacuum Rabi splitting of ga,R/π.

The odd state |1, oR⟩ does not couple to the resonator, so that the resonance
is purely given by the bare anti-symmetric mode frequency fa.

The main result of our work is shown in Fig. 7.3). We investigate the circuit
with both qubit frequencies tuned into resonance with the anti-symmetric
coupler mode. First, the left APQ-coupler maximally hybridized states |±L⟩
is generated by setting VL = 1.810 V and δL = π. Then, we perform again
pulsed two-tone spectroscopy while sweeping VR, such that the qubit frequency
fqb,R of the R-APQ crosses fa. The differential quadrature ∆Q between the
two probe pulses is plotted as a function of VR and fdrive in Fig. 7.3a). The
measurement exhibits a spectrum showing that a resonance evolves from |−L⟩
for fqb,R ≪ fa to |+L⟩ for fqb,R ≫ fa. As the single qubit frequency fqb,R
is tuned into resonance with |−L⟩, the R-APQ hybridises with the left-site
coupled system, forming an avoided crossing between the resonances of |−L⟩
and the R-APQ excited state. Likewise, a second avoided crossing emerges
when fqb,R crosses with the transition frequency to |+L⟩, giving rise to the
sigmoid-like dispersion [93, 107, 112]. This resonance is characteristic for the
two-qubit hybrid state |D⟩ with an anti-symmetric superposition of the two
qubit states and demonstrates a strong coupling between the two APQs over
a macroscopic distance.

To identify the eigenstates of the complete circuit, we calculate the excita-
tion spectrum as a function of VR using the Tavis-Cummings model HTC =∑N

i ℏga,i(aσ+,i + a†σ−,i) [94]. It describes the interaction between one res-
onator mode and N > 1 qubits. Inserting the qubit-coupler coupling rates
extracted from single qubit measurements in Fig. 7.2), the resulting disper-
sion relation of the eigenstates reproduces the experimental data very well
(Fig. 7.3b). The solid black line indicates the transition to the excited state
|D⟩. This model now allows us to identify the eigenstates, where the sigmoid-
like resonance is a superposition of the two bare qubit excited states and the
resonator state. When all three bare transition frequencies are resonant (black
arrows), the coherent exchange between the qubits result in an eigenstate |D0⟩
devoid of the photonic excitation. This state explicitly reads

|D0⟩ = 1√
g2

c,L + g2
c,R

(
gc,R|0, eL, gR⟩ − gc,L|0, gL, eR⟩

)
. (7.1)

The dashed black lines are associated with transitions to the two two-qubit
hybrid states |±⟩ with a symmetric superposition of the two APQ excited
states. The existence of these strongly correlated quantum states formed by
the exchange of a cavity photon shows that both APQs, in the even parity EE ,
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coherently interact with an exchange-type coupling and is the main result of
this work. However, the spectrum is more complex and requires an additional
consideration of parity switching events.

Because parity switching events are expected to occur locally and uncor-
related on the two APQs, four parity configurations can randomly happen
during the measurement, namely a single APQ in an odd parity and the other
in the even parity, denoted OE and EO, or both APQs in the odd or even
parity, denoted OO and EE , respectively. The eigenenergies of the coupled
system in the OE , EO and OO configurations are all shown in Fig. 7.3b). The
parity configuration EO gives rise to two constant resonances that are asso-
ciated with the transition to the states |±L⟩, reproducing the measurement
Fig. 7.2b, because the R-APQ in the odd parity is not coupled to the res-
onator. The parity configuration OE adds an avoided crossing between the
bare anti-symmetric mode and the R-APQ excited state, because, here, the L-
APQ in the odd parity is decoupled from the resonator. These four resonances
are seen in the experiment, showing that both APQs switch between parities
during a measurement time of 1.5 s. More data of the L-APQ slightly detuned
from fa plotted in the Extended data Fig. E3 can be reproduced in this model
with the same device parameters, showing that this quantum system is very
versatile, well controlled and well-understood.

7.3. Dual-mode superconducting cavity coupler

In the ramainder of this chapter, we disucss about the symmetric of the cav-
ity coupler. We recall the energy level diagram of the capacitively coupled
quarter-wavelength coplanar transmission line resonator pair in Fig. 7.4a. The
formation of the anti-symmetric voltage mode |a⟩ arises from the coupling
capacitance Cm, which hybridizes the two quarter-wavelength modes. The
resonator drive tone is capacitively coupled to the middle of the transmission
line at Cm such that it couples strongly (weakly) to the symmetric (anti-
symmetric) cavity mode with the resonance frequency fs (fa), according to
the symmetry of the voltage amplitude profiles (Fig. 7.4b-c). We note that the
symmetric voltage amplitude is accompanied by the anti-symmetric current
amplitude and vice versa.

As explained in Ch. 3, the qubit-cavity coupling is given by the cavity in-
duced phase fluctuation δϕ across the NWJJs via the cavity current. This
has the consequence that the symmetry of the cavity current implies a phase
difference ∆ϕ in the qubit-cavity coupling strength between the two qubits.
In the following, we will derive ∆ϕ from the symmetry of the cavity current.
We consider the current amplitude at an arbitrary fixed time (Fig. 7.4b-c).
In the symmetric mode |s⟩, the cavity current at the short ends is drained
in counter directions along the x-axis, from the ground to the cavity. In the
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anti-symmetric mode |a⟩, the cavity drains current from ground at one short
end and forces current into the ground at the other short end. Because the
inductance of the NWJJ is much greater than the shunt inductance, we can
assume that the cavity current mainly flows through the shunt inductance and
generates a mode dependent flux fluctuation threading the SQUIDs. In the
symmetric cavity mode, the external flux fluctuation is along the z-axis and
has opposite signs for the two qubit SQUIDs, whereas, in the anti-symmetric
mode, it has the same sign.

We now relate the orientation of the external flux fluctuation to ∆ϕ (Fig. 7.4d).
First, the superconducting phase in the two grounded epitaxial Al electrodes
is set to an equal value ϕ0 for both NWJJs because of the galvanic connection.
As the Lenz’s law describes, a change of the magnetic flux through a loop is
opposed by a magnetic field in the opposite direction, inducing a current in
the loop. For a flux fluctuation in −z-direction, an opposing magnetic field
in the z-direction is generated, inducing an anti-clock-wise flowing current in
the SQUID. Similarly, a flux fluctuation in z-direction induces a clock-wise
flowing current in the SQUID. Using the superconducting phase ϕ0 on the
grounded electrodes and the current direction, we can deduce the phase of
the remaining two superconducting electrodes. Fig. 7.4d shows the supercon-
ducting phase modulation δϕ for both cavity modes. While the absolute value
δϕ is given by circuit parameters, we are interested in the signs in front of
δϕ, that corresponds to the relative phase difference value. Finally, we ob-
tain a relative phase difference ∆ϕ = 0 for the qubit-cavity coupling strength
between the two qubits for the symmetric cavity mode |s⟩ and ∆ϕ = π for
the anti-symmetric cavity mode |a⟩. The phase of the qubit-cavity coupling
strength is an insignificant quantity for single qubit experiments, but becomes
important in a multi-qubit system.

7.4. Conclusion

In summary, we demonstrate the remote coupling of two APQs over a dis-
tance of six millimeters, mediated by a specifically designed superconducting
resonator with a strongly and a weakly coupled mode for qubit readout and
qubit coupling, respectively. In the resonant regime, the corresponding eigen-
states of the full hybrid circuit can be identified using independently deter-
mined parameters inserted into the Tavis-Cummings Hamiltonian with two
qubits and one cavity mode. At the point at which all energies are degener-
ate, we find a maximally entangled two-qubit state, mediated by the cavity
coupler. Our experiments form a proof-of principle for cavity-mediated inter-
actions between APQs which might be potentially useful for complex quantum
computer architectures. In the future, our results could be transferred to re-
mote Andreev spin qubits in which the spin of an Andreev level is exploited
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Figure 7.1. Andreev pair qubit (APQ) coupling device. a, Andreev
bound state (ABS) formation in an S-N-S weak link. In the N region, electron
(e) and hole (h) partial waves can constructively interfere to form discrete
subgap levels below the gap ∆. The phases of the partial waves obtain contri-
butions from Andreev reflections at the N-S interfaces (curved grey lines) and
from the propagation in the N-region (horizontal grey lines). The two spin-
degenerate and time-reversed trajectories can be coupled by single-particle
scattering (green lines) with probability τ . b, The discrete Andreev levels
E±(δ) are plotted as a function of the phase difference δ between the two su-
perconducting reservoirs. An energy gap of 2∆

√
1 − τ is opened by a finite τ

at δ = π. c-d, Schematics of the complete device containing two APQs (cir-
cles) with qubit decay rates γL/R and APQ-coupler coupling strength gs/a,L/R
to the two cavity coupler modes. The symmetric mode (green) is used to read
out qubit states, while the anti-symmetric mode (purple) is used to coupling
the two APQs, with mode dependent coupling rate κa ≪ κs to the readout
port. e, A scanning electron micrograph of the right APQ (R-APQ) with epi-
taxially grown superconducting Al shells (purple), suspended over a metallic
bottom gate (grey). The scale bar is 300 nm. f, An optical micrograph of
the qubit control lines. The junction is galvanically connected to the center
conductor in a RF-SQUID geometry (yellow), such that the qubit-coupler cou-
pling is mediated by the currents in the common superconducting leads. The
qubit frequency is controlled by a DC gate voltage VR and the phase control
δR is generated by a DC current IR in a flux line. The scale bar is 10 µm. g,
Composite optical micrographs of the full device. It consists of two capaci-
tively coupled quarter-wavelength coplanar transmission line resonators (light
green).
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Figure 7.2. Strong coupling between individual APQs and the anti-
symmetric coupler mode. a, The differential quadrature ∆Q between the
two reflected resonator probe pulses at fs as a function of the qubit excita-
tion frequency fdrive and VL at δL = π, revealing an avoided crossing be-
tween the qubit and coupler resonances. The qubit-resonator coupling rate
of gc,L/(2π) = 141 MHz and the qubit decay rate of γL/(2π) = 77 MHz can
be directly read out at VL = 1.810 V, as illustrated in the cross-section on
the right of the plot. An illustration of the interaction between the resonator
and the L-APQ is shown in the bottom insert. The interaction with the R-
APQ is suppressed by tuning the R-APQ frequency to a larger value with
δR = 1.2 π, while keeping VR = 2.5225 V. b, Similarly, an individual strong
coupling between the R-APQ and the anti-symmetric coupler mode is observed
at VR = 2.5225 V, with gc,R/(2π) = 104 MHz and γR/(2π) = 82 MHz. The
horizontal resonance at fdrive ≈ 6.075 MHz occurs as the occupation of the
odd state due to quasiparticle poisoning. It is missing in a because of small
excitation power seen by the circuit. c, Calculated excitation spectrum as
a function of the VR using the listed parameters, quantitatively reproducing
the measured spectrum in b). The two resonances correspond to the qubit-
coupler hybrid states |±R⟩, with the color indicating the single qubit weight
|⟨0, eR|±R⟩|2.
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Figure 7.3. Remote coupling of two APQs. a, The differential quadra-
ture ∆Q plotted as a function of VR for the case when both APQs are tuned
into resonance with the anti-symmetric resonator mode (δL = δR = π, VL =
1.810 V). The states causing the individual resonances are identified in b and
explained in the main text. Most relevant is the resonance |D⟩, which corre-
sponds to a two-qubit hybrid state with an anti-symmetric superposition of
the two APQ excited states. The increase contrast for features at high fdrive is
caused by the vicinty to the symmetric coupler mode frequency. b, Calculated
excitation spectrum as a function of the VR using the Tavis-Cummings model
with two qubits, one resonator mode and the parameters found indepdently
in Fig. 7.2. The plotted spectrum contains excitation spectra of different par-
ity configurations distinguished by colors (E = single APQ even parity, O =
single APQ odd parity). The dashed black lines correspond to the two hybrid
states with a symmetric superposition of the two qubit states while the solid
line corresponds to that with an anti-symmetric superposition of the two qubit
states.
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Figure 7.4. Symmetric and anti-symmetric mode of the cavity cou-
pler. a, Energy level diagram of the two cavity modes (fs > fa). Cavity probe
frequency fprobe is set to populate the symmetric mode |s⟩ while the qubits
are tuned close to the anti-symmetric mode |a⟩. fdrive is varied in the blue
window for the qubit spectroscopy. b-c, Current (solid) and voltage (dashed)
amplitude of the symmetric voltage mode |s⟩ and anti-symmetric voltage mode
|a⟩ along the cavity. The long arrows indicate the relative flow direction of the
cavity current with respect to each other, while the symbols in the loops show
the relative direction of the induced external flux. d, The superconducting
phase difference across the NWJJs generated by the cavity current in both
cavity modes. In the symmetric cavity mode, the induced phase difference is
in-phase, whereas, in the anti-symmetric cavity mode, ∆ϕ = π.

73



7. Photon-mediated long-range coupling of two Andreev pair qubits

6 6.05 6.1 6.15 6.2 6.25 6.3 6.35 6.4 6.45 6.5

fprobe (GHz)

-400

-200

0

De
gr

ee

Figure E1. Coupler spectrum. The phase of a weak microwave probe
pulse as a function of the probe frequency fprobe. No phase shift is observed
at 6.075 GHz, showing that the anti-symmetric coupler mode is weakly coupled
to the readout port with considerably smaller κa. At 6.461 GHz, a phase shift
of 360° is measured, which results from the reflection of the symmetric coupler
mode.
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Figure E2. Reflection spectrum of the symmetric coupler mode. a,
The voltage of a reflected weak coupler probe pulse as a function of the probe
frequency fprobe and DC current IL near the symmetric mode frequency fs.
The symmetric mode resonance is periodically modulated by flux biasing the
left rf-SQUID. Similar behavior is observed when changing IR, as depicted in
b. The π-points are identified as the current values with the lowest resonance
frequency. c-d, A transition of the L-APQ (R-APQ) is tuned across fs at δL =
π (δR = π), creating a gate dependent shift of the symmetric mode resonance.
The resonance at fs in addition to the shifted resonance is characteristic for
Andreev qubits and indicates finite dwell time in the odd parity. The gate
voltage independent background is caused by the finite bandwidth of the JPA.
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Figure E3. Extended spectroscopy measurements of the full hybrid
circuit at different VL. a and d are also shown in the Fig. 7.3 in the main
text. The spectra in b and c are measured by step-wise reducing VL. e and f
are calculated spectra using the Tavis-Cummings model with fqb,L = 0.993 fa
and fqb,L = 0.985 fa. Crucially, as the L-APQ is detuned from the anti-
symmetric mode frequency fa, the sigmoid-shaped two-qubit entangled state
|D⟩ (solid black) approaches the single APQ-coupler state |−R⟩ (blue) from
the parity configuration OE , in agreement to the measured spectra in b and
c.
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8 Gatemon qubit using Ge/Si core/shell
nanowire Josephson junctions1

The study of InAs/Al nanowire Josephson junctions unfolds the spin degree of
freedom in the Andreev spectrum in the presence of spin-orbit interaction. A
qubit can be encoded in the spin space, featuring a long energy relaxation time
because of the weak coupling to the small magnetic moment of a spin. Albeit
having a longer T1 than that of an Andreev pair qubit, previous experiments
with Andreev spin qubits in InAs nanowires have shown short dephasing time
due to spin-specific noise [27]. In fact, group III/V semiconductors have the
inherent shortcoming of a nuclear spin bath which causes nuclei spin exchange
flip-flops, a mechanism that generates a random fluctuating magnetic field
acting on the qubit spin and hence leads to qubit decoherence [113]. For normal
spin qubits, the nuclei-induced dephasing time could be improved by two orders
of magnitude by just exchanging the group III/V semiconductor with group
IV semiconductor as host material [114]. This exchange of material is a step
that is downright transferable to Andreev based qubits. We propose using
Ge/Si core/shell nanowires as the weak link, a group IV semiconductor that
possesses a strong lateral confinement, direct Rashba spin-orbit interaction
and highly transparent semiconductor-superconductor interface with Al.

To verify the fabrication processes and integrability of a few-modes trans-
parent SNS Josephson junctions using Ge/Si core/shell nanowires, we took
the step to first fabricate and characterize a gatemon qubit integrating the
Ge/Si nanowire as Josephson element. In particular, the measurement of the
qubit transition frequency will reveal the critical current of the Josephson ele-
ment. The fabrication of first a gatemon device was preferred over an Andreev
qubit device. Because of the numerous transitions in the Andreev spectrum,
sometimes an Andreev qubit is more cumbersome to understand.

This chapter starts with a brief introduction to the Ge/Si core/shell nanowire
and the superconducting gatemon qubit, involving the qubit manipulation and
readout2. Sec. 8.1 presents the device under test, followed by the measurement

1This experiment was conducted in collaboration with Han Zheng, a PhD student in the
Nanoelectronics lab, Nikunj Sangwan, a master’s thesis student from EPFL, Switzer-
land, and Tom Jenniskens, a master’s thesis student from University of Twente.

2The sections about qubit manipulation and readout read very similar to the ones for
Andreev qubit. However, the transition and coupling for gatemon qubits are addressed
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8. Gatemon qubit using Ge/Si core/shell nanowire Josephson junctions

in the frequency domain in Sec. 8.2 and in the time domain in Sec. 8.3.

Ge/Si core/shell nanowires

Coherently strained Ge/Si core/shell nanowires accumulate holes as charge
carriers in the Ge core due to its bandgap alignment. It was proposed as an
interesting material platform primarily for quantum dot related applications,
such as spin qubits, due to its large spin-orbit energy allowing electrical spin
control [115, 116].

Electrical studies on the performance of the nanowire devices have been con-
ducted to correlate the hole mobility and crystal orientation with the nanowire
diameters [117]. A field-effect mobility at liquid He temperature as high as
4000 cm2/Vs was measured in the Ge/Si nanowires, with an average value of
2500 cm2/Vs, for small nanowire diameters (< 30 nm), growing preferably in
the [110]- and [112]-direction. In comparison, the field-effect mobility in Al-
etched InAs/Al nanowires from the group of Professor Peter Krogstrup at the
University of Copenhagen was found to be 1000 cm2/Vs on average, about two
times lower than that in the Ge/Si nanowires [118]. This finding highlights
the use of Ge/Si core/shell nanowires for electronic nanodevices. Later, Flo-
rian Froning et al. demonstrated coherent manipulation of a hole spin qubit
in these nanowires, together with an enhanced, gate-tunable g-factor that is
expected from the predicted strong direct Rashba SOI [119, 120].

A crucial step towards superconductor-semiconductor hybrid devices using
the Ge/Si nanowire was made by Joost Ridderbos et al., when they managed
to induce Josephson current through the nanowire [82, 121, 122]. For that, a
non-trivial fabrication technique was developed to thermally activate an inter-
diffusion process between Ge and evaporated Al that are in electrical contact,
creating an Al/Ge/Al nanowire Josephson junction (NWJJ). Electrical mea-
surements manifested high interface transparencies and a hard superconduct-
ing gap for this type of hybrid devices [121, 123].

Motivated by the promising transport measurements of the superconductiv-
ity in these hybrid devices, we would like to enable the use of these nanowires
in our lab. The first step is the establishment of highly transparent JJs using
these nanowires. By shunting the nanowire device with a large capacitance,
we fabricated a transmon qubit, where the non-linearity originates from the
Josephson coupling [101]. Following the device architecture of Ref. [45, 124],
we embed our Ge/Si NWJJ in a gate tunable transmon, denoted by "gatemon",
and investigate its quantum coherence properties.

via the complementary charge degree of freedom.
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Gatemon qubits
As with conventional transmon qubits, semiconducting nanowire transmons
operate as a non-linear quantized LC-circuit in the lowest two collective elec-
tromagnetic excitations (|0⟩, |1⟩), where the non-linearity is given by the NW
Josephson inductance. The hallmark feature of a transmon is the increased
shunt capacitance in comparison to a Cooper pair box[101]. It reduces the
charge dispersion and hence suppresses charge noise. In our device, the qubit
capacitance Cqb is given by a large planar superconducting island with respect
to the ground yielding a charging energy of EC = e2/2Cqb. On the other hand,
the semiconducting region of the NWJJ allows a gate tunable supercurrent
Ic(VG) that gives rise to a tunable Josephson energy EJ(VG) = Φ0Ic(VG)/2π.
Due to the increased capacitance in the transmon limit 50 < EJ/EC < 100, the
first two transition frequencies of the non-linear spectrum is very close. Their
difference is given by the anharmonicity parameter α = f21 − f10 = −Ec, the
qubit frequency is given by f01 ≈

√
8ECEJ(VG)/h.

Gatemon manipulation
We consider a qubit with the Hamiltonian Ĥqb = hfqbσ̂z/2 and an electric
dipole moment d̂ = de⃗xσ̂x. The qubit experiences a drive pulse that is a
coherent light of the form E⃗(t) = E cos(2πfdt)e⃗x. The interaction is described
by the Hamiltonian Ĥint = −E⃗(t) · d̂. The total Hamiltonian describing the
qubit under interaction with a drive pulse then reads [125]

Ĥ(t) = hfqb

2 σ̂z − A cos(2πfdt)σ̂x, (8.1)

where A = Ed is the coupling strength between the coherent drive and the
qubit. To eliminate the time dependence, we transform the Hamiltonian using
the unitary operator U(t):

Ĥ = U(t)ĤU†(t) − iU(t)U̇†(t). (8.2)

In particular, U(t) = e−πfdtσ̂z transforms the Bloch sphere from the lab frame
to a frame rotating about the z-axis at a frequency fd. In this so-called rotating
frame approximation, The Hamiltonian is time-independent:

Ĥ = −∆d

2 σ̂z − A

2 σ̂x, (8.3)

with ∆d/2π = fqb − fd being the detuning. The total Hamiltonian can be
exactly diagonalized, yielding the eigenvalues E± = ±

√
A2 + ∆2

d/2 and eigen-
states

|V−⟩ = cos(θ)|e⟩ − sin(θ)|g⟩, (8.4)
|V+⟩ = sin(θ)|e⟩ + cos(θ)|g⟩, (8.5)
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8. Gatemon qubit using Ge/Si core/shell nanowire Josephson junctions

where θ = tan−1( A√
A2+∆2

d−∆d
). Then, the evolution of a state |Ψ(t)⟩ under

the action of Ĥ has the form

|Ψ(t)⟩ =
∑

j∈{+,−}

Cie
−iEj t|Vj⟩, (8.6)

where Ci is determined by the starting point. Finally, for a qubit starting in
|g⟩, the evolution reads [125]

|Ψ(t)⟩ = −i sin(E+t/ℏ) sin(2θ)|e⟩ + cos(E+t/ℏ) sin(2θ)|g⟩. (8.7)

In the presence of the drive pulse, the qubit vector rotates at a frequency of
E+/h =

√
A2 + ∆2

d/2h. The oscillation is the slowest and has the highest
contrast (sin(2θ) = 1) when the drive frequency matches the qubit frequency
(∆2

d = 0). Later in the device section, we will relate the coupling strength A
to circuit parameters.

Gatemon readout
Qubit state readout is performed via a microwave resonator that is dispersively
coupled to the qubit. The interaction, which is identical to a Jaynes-Cummings
Hamiltonian, is slightly modified due to the reduced anharmonicity. Because
of the large shunt capacitance, frequencies of higher transitions become similar
to the qubit transition frequency, i.e., f01 ≈ f12, leading to a renormalization of
the characteristic energies. The effective total Hamiltonian of the dispersively
coupled qubit-resonator system reads [101]

Ĥeff = hf ′
01

2 σ̂z + (hf ′
r + hχ

2π
σ̂z)â†â, (8.8)

where f ′
01 = f01 + χ01/2π is the renormalized qubit frequency, f ′

r = fr −
χ12/4π the renormalized resonance frequency and χ = χ01−χ12/2 the effective
dispersive shift. The dispersive shift is defined as χij = g2

ij/2π(fj − fi − fr).
In case the anharmonicity is large, the coupling of the transition |1⟩ ↔ |2⟩
to the resonator is negligible (χ12 ≈ 0) and we restore the Jaynes-Cumming
Hamiltonian with a true two-level qubit, f ′

r ≈ fr and χ ≈ χ01. The qubit
occupation is reflected in the shift of the resonance frequency, that can be
probed with a resonator probe pulse at ∼ f ′

r .

8.1. Device

Fig. E1a shows a scanning electron micrograph of the Ge/Si core/shell nanowire
used to form a NWJJ3. The nanowire consists of a monocrystalline Ge core

3The resonators were fabricated by L.Y. Cheung and N. Sangwan. The nanowires were
deposited and contacted by H. Zheng, T. Jenniskens and N. Sangwan.
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8.1. Device

with a diameter of ∼ 20 nm and a Si shell thickness of 2 nm covered by a
native SiO2 [121]. It is deposited on the resonator chip using a microma-
nipulator. A side gate and contacts of Al for the nanowire are evaporated
(dark blue), after removing the SiOx and Si shell in the contact area with wet
etching techniques. Subsequently, the chip is placed on a hotplate at 200°C
for 10 minutes to initiate Al diffusion into the Ge core, forming an Al/Ge/Al-
junction with a Ge segment of ∼ 30 nm long and sharp interfaces (light blue).
With the contact metallization, the nanowire junction is electrically connected
to the NbTiN island that generates a parallel capacitance Cqb to the ground
(Fig E1b). We use Sonnet simulation to estimate the qubit capacitance and
find Cqb ≈ 78 fF, yielding a charging energy of Ec/h ≈ 250 MHz. An equiva-
lent circuit is illustrated in Fig E1c, featuring the readout resonator, which is
a NbTiN quarter-wavelength coplanar transmission line resonator, mutually
coupled with a feedline in a hanger configuration. The gatemon is capacitively
coupled to the resonator (Cg). The metallic gate is connected to a voltage
source VG for tuning the semiconducting region of the nanowire junction. In
the final step, Al is evaporated, electrically contacting the NbTiN gound plane.
The presence of Al can drain non-equilibrium quasiparticles that reside in the
NbTiN due to the smaller superconducting gap [126].

For the gatemon qubit, the coupling strength between the coherent electro-
magnetic drive and the qubit can be expressed in circuit parameters, A =
2eβ⟨0|n̂|1⟩v, where e is the elementary charge, β is the capacitance ratio
Cg/Cqb, ⟨0|n̂|1⟩ is the matrix element that couples both states and v is the
drive voltage amplitude. Both the qubit drive pulse and resonator readout
pulse are routed through the feedline. The resonator readout pulse is am-
plified with a Josephson parametric amplifier at base temperature, a HEMT
amplifier at 4 K and a room temperature amplifier before reaching the hetero-
dyne detection setup.

Fig. E1d shows the normalized transmission line coefficient A/A0 through
the feedline as a function of the nanowire gate voltage VG at low probe power.
The resonance, stemming from the readout resonator, is observed to vary as
a function of VG. Because Ge/Si core/shell nanowires have hole-type conduc-
tion, a more negative gate voltage induces more charge carriers in the semicon-
ducting region. The resonance frequency is shifted upwards due to dispersive
coupling to the gatemon transition |0⟩ ↔ |1⟩, whose frequency increases with
the gate-tunable supercurrent, ∝

√
IC(VG). As marked with arrows, the dis-

persive shift exhibits resonance features, indicating fluctuation in the junction
transparency [122, 127]. The bare resonance frequency can be deduced at large
positive VG, where the Ge core is depleted, to be fr = 6.353 GHz, where the
semiconducting region is depleted.
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Figure E1. Ge/Si core/shell nanowire Josephson junction. a, False-
colored scanning electron micrograph of the Ge/Si core/shell NWJJ. Al is
evaporated to electrically contact the nanowire and form a side gate (dark
blue). Al atoms diffuse into the Ge core (bright blue) forming a ∼ 30 nm-long
Al/Ge/Al-junction. The scale bar is 100 nm. b, Optical micrograph of the
NbTiN gatemon island that is capacitively coupled to a readout resonator. The
surrounding NbTiN ground plane is coated with evaporated Al for trapping
quasiparticles. The scale bar is 150 µm. c, Equivalent circuit diagram of the
full device. The resonator is mutually coupled to the readout circuit in a hanger
configuration. Microwave pulses are transmitted through the feedline and
amplified before the heterodyne detection scheme. d, Normalized transmission
A/A0 through the feedline around fr as a function of VG. The white dashed
line indicates the bare resonance frequency deduced from the depletion regime.
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8.2. Gatemon spectroscopy

8.2. Gatemon spectroscopy

We now demonstrate the gatemon transition in the frequency domain. The
qubit transition frequency is measured using pulsed two tone spectroscopy: a
saturating drive pulse of 500 ns is sent to the feedline to address the qubit
transition before a resonator probe pulse with 1 µs pulse width is sent. The
difference between the quadrature values of the transmitted probe pulse and
that with the qubit in its ground state integrated over 1 µs yields the quadra-
ture value Q. It is further normalized to obtain the normalized change of the
quadrature value Q/Q0.
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Figure E2. Gatemon spectroscopy. a, Normalized transmission A/A0
through the feedline around fr as a function of VG. The dispersive shift
χ01(VG) can be extracted as the difference to fr. b, Normalized change of
the quadrature value Q/Q0 of the weak resonator probe pulse as a function
of fdrive in pulsed two-tone spectroscopy. Color correspond to the marks in
(a). The inset shows the pulse scheme with a long saturating drive pulse and
a cavity readout pulse. c, Q/Q0 of the weak resonator probe pulse as a func-
tion of fdrive and VG in pulsed two-tone spectroscopy. This spectrum is taken
weeks after the measurement in (a) and shifted with respect to the single tone
measurement due to gate drifts. The drive frequency fdrive is converted to a
critical current Ic on the right y-axis.
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First, the junction is gated to a region where a dispersive shift occurs
(Fig. E2a). The dispersive shift χ01 can be estimated from the difference
of the shifted resonance frequency and fr [101]. We then measure Q/Q0 as
a function of the qubit drive frequency fdrive at the two marked gate volt-
age values. Fig. E2b shows the qubit spectral lines where the resonances
are associated to the qubit transition |0⟩ ↔ |1⟩. The qubit transition fre-
quency f01 is estimated by fitting a Lorentzian lineshape to the resonance.
Using g01 =

√
(f01 − fr)χ01, we obtain the cavity coupling strength g01/2π =

47.7 MHz ± 1.4 MHz to the transition |0⟩ ↔ |1⟩ from data at these two gate
voltage values.

Fig. E2c shows the qubit dispersion as a function of VG in a large range. The
gatemon transition comes from low frequencies and saturates at VG ≈ −30.6 V.
The abrupt change of the dispersion at around −30.45 V is caused by charge
rearrangement. The signal Q/Q0 at low f01 starts to fade out due to reduced
qubit-cavity coupling. This two tone spectrum was measured weeks after the
single tone measurement in Fig. E2a. Although it is shifted with respect to
the previous measurement, most of the features are similar, hightlighting the
stability of our NWJJ-based gatemon. The critical current Ic in the NWJJ
can be extracted by using f01 ≈

√
8ECEJ(VG)/h. Its value is plotted to the

right y-axis of the spectrum, showing a maximum supercurrent of ∼ 40 nA,
which is in agreement with dc transport measurements with nanowires with
similar diameter and junction length in Ref. [122]. The estimated EJ/EC ratio
for the highest transition frequency at ∼ 6.3 GHz is ∼ 90, well in the transmon
limit featuring reduced sensitivity to charge fluctuation [101].

8.3. Quantum coherence

We now study the gatemon in the time domain. The transition frequency
is set to the gate sweetspot for the study to mitigate electric noise induced
by charge fluctuation. First, the gatemon is rotated around the x-axis to a
superposition state with a X̂ϕ-gate of variable power and pulse width trabi
at fdrive = 6.345 GHz before the cavity readout pulse is sent in (Fig. E3a,
top). The normalized change of the quadrature value Q/Q0 of the cavity
probe pulse is plotted in Fig.E3a. The rotation of the qubit state vector
around the x-axis results in so-called Rabi oscillations, indicating a coherent
control about the x-axis. As the power of the X̂ϕ-gate increases, the Rabi
oscillation becomes faster. We extract the oscillation frequency frabi by fitting
a sinusoidal function with an exponential decay to the data and plot it as a
function of the normalized drive amplitude Vd that is defined with respect to
5 dBm: Vd =

√
10(power[dBm]−5 dBm)/10 (Fig. E3b). The measured oscillation

frequency frabi deviates from the linear model at frabi ≳ α. This is expected in
the presence of a multilevel quantum system due to leakage to higher excited
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8.3. Quantum coherence

states at high power, when the Rabi frequency exceeds the anharmonicity
[128–130].

Fig. E3c shows Rabi oscillations as a function of drive frequency fdrive at
a power of -10 dBm in the linear drive power range. We identify f01 as the
drive frequency with the slowest oscillation frequency. When addressing the
gatemon at exactly f01, the qubit drive pulse as well populates the cavity
due to finite qubit-cavity coupling, saturating the Rabi contrast in Q at high
drive pulse width which complicates the qubit state discrimination. The large
signal below f01 is identified as the frequency f02/2 associated with a two-
photon excitation for the gatemon transition |0⟩ ↔ |2⟩, which also commonly
appears in other transmon platforms [131, 132]. Using α = 2(f02/2 − f01), we
obtain an anharmonicity of ∼ −116 MHz. The measured α is about two times
smaller than the simulated value (αsim = −Ec ≈ 250 MHz). This behaviour
was observed in InAs/Al nanowire gatemons as well. In Ref. [45], the authors
argue that the reduced anharmonicity in the measurement could be caused by
a non-sinusoidal current phase relation. In fact, Albert Hertel showed in his
dissertation that highly transparent channels, with tranparencies approaching
the unity, can reduce the anharmonicity by a factor of four in comparison to
a tunnel junction with sinusoidal current phase relation (Sec. 2.6 from the dis-
sertation [59]). Further study using a flux-tunable device is needed to confirm
this speculation for our Ge/Si core/Shell NWJJs.

We studied the coherence of our NWJJ gatemon using Ramsey interferom-
etry techniques. The qubit state vector is first rotated into the xy-plane with
a 6 ns-long X̂π/2 gate, using a calibrated drive amplitude from previous mea-
surement. At finite detuning ∆f = fdrive −f01, the qubit precesses around the
z-axis and acquires over a wait time twait a phase ϕ = 2π∆f twait. Depending
on ϕ, a second X̂π/2 gate promotes the state vector towards |1⟩ or |0⟩. The cor-
responding oscillations along the z-axis is evident for a coherent control about
the z-axis [132]. With the coherent control about the x- and z-axis, the whole
Bloch sphere becomes accessible. Fig. E3d shows the Ramsey fringes as a func-
tion of fdrive and twait. Precession about the z-axis is observed up to 200 ns.
At some twait ≈ 110 ns, the fringes vanish and reenter after a short time, dis-
playing a beating pattern. We perform a discrete Fourier transform (DFT)
on the time traces to study the frequency components of these fringes, see
Fig. E3e. The Ramsey oscillation frequency indeed increases linearly with the
detuning ∆f , following the linear dashed lines. A second oscillation frequency,
that creates the beating pattern in the time domain, can not be resolved from
this study.

Finally, we also measure the energy relaxation and dephasing time of the
gatemon. We first prepare the qubit in the |1⟩ with a 10 ns-long X̂π gate and
let it decay without perturbation over a time twait, before switching on the
cavity probe pulse. The quadrature value Q is converted into the occupation
of the excited state P|1⟩ using Q/Qmax, with Qmax being the quadrature value
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Figure E3. Coherent manipulation of the gatemon. a, The qubit is
excited with a drive pulse before the qubit state readout. Q/Q0 of the weak
resonator probe pulse is plotted as a function of the drive pulse width trabi and
drive power. fdrive is set to 6.345 GHz. b, Rabi frequency frabi as a function
of the relative drive amplitude. The dashed line is a linear fit to the low power
range. c, Q/Q0 of the weak resonator probe pulse as a function of trabi and
fdrive. Transition frequency f01 and f02/2 are indicated. The drive power is
set to -10 dBm. d, Ramsey experiment as a function of wait time twait and
fdrive. The drive pulse sequence contains two 6 ns-long X̂π/2 pulses separated
by a wait time. e, A discrete Fourier transform (DFT) of (d). The x-axis is
DFT frequency. Dashed lines indicate the expected frequency at which the
Ramsey fringes should oscillate.
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immediately measured after the preparation. P|1⟩ is plotted against twait in
Fig. E4a, following an exponential decay. An exponential fit to the probability
yields an energy relaxation time of T1 = 1.27 µs.

Ramsey fringes were measured at a detuning of ∆f ≈ 80 MHz, using two
6 ns-long X̂π/2 pulses and a wait pulse in between. The drive detuning is
set to obtain many oscillations for an accurate fitting. Fig. E4b shows the
converted P|1⟩ as a function of twait. The conversion to the excited state oc-
cupation uses the same Q-axis conversion as for the T1-measurement. The
oscillations with a beating pattern is fitted using two sinusoidal functions
with different exponential envelops: A1 exp(−twait/T ∗

2,i) sin(2πf1twait + ϕ1) +
A2 exp(−twait/T ∗

2,ii) sin(2πf2twait + ϕ2) + B. The two extracted oscillation fre-
quencies are f1 ≈ 86.03 MHz and f2 ≈ 80.21 MHz with characteristic decay
times of T ∗

2,i ≈ 57 ns and T ∗
2,ii ≈ 144 ns.

In fact, the two oscillation frequencies are very close to each other, which can
also be the reason why these two two-level systems are not resolved in the Rabi
measurement in Fig. E3c. We speculate that the two oscillation frequencies
could stem from charge parity fluctuation, caused either by charge traps in
the oxide near the qubit capacitance or NW, or by quasiparticle poisoning in
the junction [133, 134]. Future devices with an enhanced charge dispersion and
a lower EJ/EC ratio could act as a charge parity detector and be measured to
deduce the poisoning rates [135].

8.4. Conclusion

We have fabricated a superconductor-semiconductor-based nanowire gatemon
using a Ge/Si core/shell nanowire. Owing to the Al/Ge interdiffusion process,
an Al/Ge/Al JJ of ∼ 30 nm was formed and found to host large critical cur-
rent. We have demonstrated for the first time coherent control around both
the x- and z-axis and measured both the relaxation and dephasing time in
a Ge/Si core/shell nanowire based gatemon, highlighting the quantum coher-
ence of our qubit4. A continuation of current work could be a quantitative
study of the quantum coherence as a function of gate. Because the Ge/Si
core/shell nanowire with interdiffused Al is a material platform with trans-
parent superconductor-semiconductor interfaces and limited number of modes
due to its quasi-1D confinement, it will be interesting to perform microwave
spectroscopy of the ABSs in such a NWJJ. Particularly, the strong direct
Rashba SOI, which was predicted for this type of nanowires, could lead to

4During the preparation of this experiment, we became aware of a preprint of similar
works from an independent group, see [136]. To our best knowledge, the authors of that
work have not shown direct measurement of Ramsey fringes due to fast qubit dephasing
in their gatemon qubit. In addition, the energy relaxation time of their gatemon qubit
seems to be only 10% of ours. We believe that our findings are still interesting to
report on, which could better represent the full potential of Ge/Si core/shell nanowire
Josephson junctions.
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Figure E4. Quantum coherence. a, Energy relaxation time measurement.
The qubit is prepared in the excited state |1⟩ with a 10 ns-long X̂π-gate. The
wait time twait between excitation and readout is varied. The quadrature
value Q of the readout pulse is converted to an excited state probability P|1⟩.
The line is an exponential fit to P|1⟩. b, Ramsey fringes measurement. The
Ramsey sequence is performed at a drive detuning ∆f ≈ 80 MHz. The line is
a fit function to P|1⟩ with two oscillation frequencies, each enveloped with an
exponential decay.
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8.4. Conclusion

new intriguing Andreev physics. Moreover, unlocking the spin degree of free-
dom of localized ABSs in group IV material could significantly improve the
spin dephasing time in comparison to platforms using semiconductors of the
group III/V, following the path for normal spin qubits (III/V: [3, 137–139],
IV:[114, 140, 141]).
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9 Experimental techniques

This chapter is dedicated to the description of the important experimental
methods for this thesis. It starts with the explanation of device fabrication
in the Sec. 9.1, followed by the discussion of the microwave sample holder in
Sec. 9.2. After that, Sec. 9.3 and Sec. 9.4 illustrate the wiring of the cryostat
and room temperature setups for the two major experiments of this thesis.
Finally, Sec. 9.5 presents a protocol to characterize superconducting qubits,
summarizing the technical knowledge we obtained about qubit measurement
in this doctoral study.

9.1. Device fabrication

The starting point of nanowire devices is always an undoped Si wafer, some-
times with a layer of thermally grown SiO2. The first step is the fabrication
of high-Q superconducting resonators on the wafer.

NbTiN resonators

For all the presented experiments, NbTiN coplanar transmission line res-
onators were used as qubit state detectors. The steps for wafer cleaning and
NbTiN sputtering are identical as described in Ref. [142]. Because the res-
onators are big structures on the scale of micrometers, they are patterned
using a Heidelberg instrument µMLA direct laser writer. The 85 nm NbTiN
film is first covered with a 500 nm-thick layer of Microposit S1805 optical re-
sist and baked at 125°C for 120 s. The regions which are exposed to the laser
is then stripped in Microposit MF-319 developer with a development time of
50 s. Subsequently, the resonators are formed by dry etching the gaps in an
inductively coupled reactive ion etching plasma machine (ICP) in an Ar/Cl2
environment. Afterwards, the remaining optical resist is removed by sonica-
tion in AR 300-70 remover (NEP) for 10 mins at 100% power. The chip is then
rinsed in acetone and IPA, followed by blow-drying with pressurized air. The
sonication in NEP is crucial for the removal of the optical resist. We found
out that sonication in acetone is not strong enough to fully remove the optical
resist and suspected that the ICP cross-linked and hardened the resist. Now,
the resonator chip is ready for nanowire deposition.
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9. Experimental techniques

Nanowire deposition

Nanowires were transferred to the resonator chip from the growth chip using
a micromanipulator (Fig. E1a). This instrument consists of a microscope and
an arm that controls a glass needle with micrometer precision. Using the glass
needle, the nanowires are mechanically picked up and then deposited on the
resonator chip. Finally the chip was rinsed in IPA to increase the adhesion of
the nanowires to the surface and blow-dried.

20μm

glass
needle

NWs

Transene D
DI-water

DI-water

a b

Figure E1. a, Optical micrograph of the chip in the micromanipulator setup.
The nanowires are seen with the glass needle coming from the left. The cyan
structure illustrates an Al etch window. b, A beaker of Transene type D and
a beaker of DI-water can be seen in the 50°C water bath. An additional DI-
water beaker is at room temperature.

Al etching

The next step is the etching of a short segment of the Al shell. To protect the
Al-shell, the chip is masked with a 450 nm thick layer of e-beam resist EL6 and
baked for 5 mins at 185°C. A small window for the etchant to get in contact
with the Al is opened by e-beam lithography and subsequent development.
An illustrative design of the etch window is drawn in Fig. E1a. It contains a
single pixel line perpendicular to the nanowire, ending in two micrometer-scale
squares. We found that the big squares help giving more reproducible etching
results.

Since there can be a thin layer of e-beam resist residing on the nanowire
after the development, the chip is additionally treated in O2 plasma for 60 s at
30 W to fully uncover the nanowire. Afterwards, the chip is post-baked again
for 120 s at 125°C.
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9.2. Sample holder

The actual Al etching process contains four steps and requires a beaker of
Transene D at 50°C, a beaker of DI-water at 50°C, a beaker of DI-water at
room temperature and a beaker of IPA at room temperature. The beakers for
Transene D and DI-water are placed in a thermal water bath (Fig. E1b). We
sequentially place the chip in the Transene D (18 s), DI-water at 50°C (20 s),
DI-water at room temperature (40 s) and IPA (10 s) and shake it with moderate
amplitude and frequency to etch the Al-shell. Finally, the chip is placed in
acetone at 50°C for 30 mins to remove the e-beam mask. Occasionally, an
additional 60 s O2 plasma treatment is needed to free the chip fully from the
resist mask.

Metallization
Depending on the experiment, the chip with resonator and nanowires could
need additional metallization steps, for example, for contacting the nanowires
to the microwave circuit.

Again, the chip is covered in a layer of e-beam resist. The structures to be
metallized are patterned and developed in the e-beam resist. Before evapo-
rating superconducting material on the epitaxial Al, the surface AlOx is re-
moved by Ar-milling. Material is then evaporated onto the chip at a pressure
∼ 2 · 10−6 mbar. Finally, the chip is placed in acetone at 50°C for 30 mins
to lift off the metal and e-beam resist. Now, the device chip is finalized and
ready for wire-bonding.

9.2. Sample holder

Fig. E2 shows a photograph of the entire microwave sample holder. It consists
of a two-layer printed circuit board (PCB) (a), a bottom copper plate and a
top copper plate (b). The PCB, designed during the doctoral study, features
DC connections and multiple microwave connections with the option of on-
PCB bias tees in a compact size. We use Rogers 4350B as the PCB dielectric
and electroless nickel immersion gold as plating. DC lines are connected via
an Omnetics double row nano-D connector to the PCB (green hexagon). From
the 25 pins, only 18 pins are routed onto the PCB due to limited space. Two
customized connectors can be placed at the position indicated with white
hexagons to short all the DC lines to the ground of the PCB. This feature
prevents electrostatic discharge for sensitive electric devices during the sample
transfer. One common practice in our lab is to have all the DC traces grounded
when the device chip is wire-bonded to the PCB. The customized connectors
have to be remove after mounting the sample to the cold finger and connecting
the PCB ground to the ground of the dilution refrigerator. From the nano-D
connector, the DC traces continue over several stages of surface mount devices
(blue hexagon) to the chip area (black hexagon). To enable a compact design,
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9. Experimental techniques

a large portion of the traces is routed onto the bottom layer using vias through
the dielectric.

This PCB design allows up to eight RF connections, using Rosenberger
surface mount mini-SMP 18S102-40ML5. The position of one of the RF con-
nectors is indicated with a red hexagon. The RF connectors are placed as
close as possible to the chip area with the aim to reduce standing waves along
the traces. The RF traces on the PCB are designed in coplanar transmission
line geometry. Simple electric circuits such as low- or high-pass filters and
bias-tees can be built using surface mount components on the PCB at mixing
chamber temperature.

a b

up

down

bo�om

top
c

1cm

Figure E2. Sample holder for microwave measurement. a, A PCB
as an interface between millimeter scale connectors and the device chip. b,
Copper plates to enclose the PCB and device chip. c, A gatemon device chip
wire-bonded to the PCB.

After tailoring the PCB with surface mount components, it can be mounted
on the bottom copper plate by screws. Because a large portion of the device
chip is a superconducting ground plane, slot-line modes can form with the
bottom copper plate, which could create an additional loss channel. The
coupling of the slot-line modes to quantum devices is reduced by removing a
large portion of the copper below the chip. The chip can be glued into the chip
area on the rest of the bottom copper plate, followed by wire-bonding. Fig. E2c
presents an optical image of a gatemon chip bonded to the PCB. Finally, the
top plate can be screwed onto the PCB such that the chip is surrounded by a
normal metal shield.

9.3. Cryostat wiring

The two major experiments in this thesis were both conducted in the Bluefors
cryostat. Small modifications were done between the two experiments.
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9.3. Cryostat wiring
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Figure E3. Wiring of the Bluefors for the Andreev qubit measurement.
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Figure E4. Wiring of the Bluefors for the gatemon qubit measurement.

Fig. E3 shows the wiring in the Bluefors for the Andreev qubit experiment.
Both the qubit drive and resonator readout lines are filtered with home-made
epoxy filters (3 dB-cutoff frequency = 18 GHz) and heavily attenuated (∼
89 dB @ 6 GHz). The amplification chain consist of a Josephson parametric
amplifier1 (JPA), an epoxy filter and a dual junction isolator in the mixing
chamber. It is followed by another dual junction isolator at the coldplate
before it goes to the 4 K HEMT amplifier. There are two additional RF gate
lines not drawn in the schematic, each with an attenuation of 10 dB (50K) +
10 dB (4K) + 3 dB (still) + 10 dB (coldplate) + 3 dB (MC) = 36 dB.

The DC flux and gate lines are filtered with Ag epoxy filters at the cold-
plate and a 3-stage low-ohmic LC-filter box with cutoff frequency at 80 MHz,
225 MHz and 400 MHz at the mixing chamber. The DC and RF gate lines are
combined on the PCB with an RC bias tee using 1 kΩ resistance and 2.2 nF
capacitance.

The wiring is almost identical for the gatemon qubit experiment. However,
the 3-stage LC filter box and the Ag epoxy filter box are exchanged, since
having the Ag epoxy filter box at lower temperature can better cool down the
DC lines and hence reduce the noise amplitude. The RC bias tee on the PCB
now has 1 kΩ resistance and 30 nF capacitance.

To be sure that the sample holder and RF wiring in the cryostat are correct,

1It is a dimer Josephson-junction-array amplifier developed in the group of Dr. Ioan
Pop at the Karlsruhe institute of technology and fabricated by Carlo Ciaccia, a PhD
student in the Nanoelectronics lab [111].
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9.4. Room temperature microwave setup

we measure the transmission of the RF lines from the top of the fridge to the
sample holder at room temperature before the experiments. Fig. E5 shows the
transmission spectrum of the RF gate and readout lines up to 20 GHz. Indeed,
both lines are transmissive. The difference in transmission is determined by
the attenuation added along the chain, with the readout line being more at-
tenuated. For the readout line, the attenuation above 10.5 GHz is so heavy
that it can not be measured. We observe dips in the transmission spectrum of
the RF gate line with a spacing of 6.5 GHz, as indicated with the black arrows.
We suspect that this feature arises from impedance mismatch between the ca-
pacitance of the bias tee and the RF connector or between the capacitance of
the bias tee and the bondwire to the device. This feature is not observed for
the readout line which also does not have a bias tee. Nevertheless, this extra
attenuation at certain frequency range does not harm the measurement as it
can be compensated with increased power at the signal generator.
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Figure E5. Room temperature transmission from the top of the cryostat to
the sample holder.

9.4. Room temperature microwave setup

We have established two new room temperature microwave setups in the Na-
noelectronics lab. The first setup is for standard qubit characterization with a
large parameter space to program qubit drive and resonator readout pulses to
fit the requirements for individual qubit experiments. A large set of parame-
ters including pulse amplitude, phase, width, delay and shape can be modified
in this setup using arbitrary waveform generation. The second setup, per-
forming as chopped two-tone spectroscopy, is for microwave spectroscopy of
excited states of a quantum device that are addressable through electromag-
netic waves. Hereby, the parameters for the qubit drive pulse is only deter-
mined by a square modulation. Since the precise measurement of coherence
properties is not the target in this setup, it is a fast and ’dirty’ measure-
ment that gives information about the excitation spectrum of a device up to
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20 GHz. Both setups were developed with intensive scientific exchanges with
Dr. Marcelo Goffman from the Quantronics group, CEA-Saclay.

Standard qubit characterization setup
Fig. E6 shows the room temperature setup for standard qubit measurement.
The qubit control parameters for the presented experiments are usually gate
voltage and flux current. In our lab, we use the Yokogawa 7651 as current
source and the Basel SP 927 as voltage source, often with room temperature
low-pass filters with a cut-off frequency of fcutoff ≈ 100 kHz. The JPA pump
tone is provided by an Agilent N5183B signal generator. We use an Agilent
E8257D vector signal generator in combination with an AWG 5014C arbitrary
waveform generator (AWG) to execute qubit drive pulses. Moreover, we use
the marker output of the AWG to trigger the Zurich instruments (ZI) SHFQA
for resonator readout. Both the Agilent E8257D and ZI SHFQA are synchro-
nised to the 10 MHz syncronisation output of the AWG.

The output of the ZI SHFQA is AC coupled to the device via a room tem-
perature DC block. The resonator probe pulse sees, after passing through the
amplification chain inside the fridge, a room temperature circulator, a high-Q
tunable microwave bandpass filter and a room temperature amplifier before
reaching the input of the ZI SHFQA. The JPA pump tone is a microwave signal
with elevated power close to the resonance frequency (fpump − fr ≈ 150 MHz),
which also couples to the input of the SHFQA. In fact, we experienced a sat-
uration of the analog-to-digital conversion range due to the pump tone. This
can be minimized via the tunable bandpass filter that only allows transmission
in a narrow band around fr

2. Reflected signals in the stopband, especially the
pump tone at fpump, are then terminated to the ground via the circulator.

Chopped two-tone spectroscopy
Fig. E7 shows the room temperature setup for chopped two-tone spectroscopy.
Here, the drive tone is pulsed modulated with a fixed period, much longer than
the characteristic time scales of the quantum device, with a 50% duty cycle.
The pulse sequence is generated by the Stanford SG386 signal generator and
fed in to the R&S SMB 100A signal generator, which then generates the pulse
modulated drive pulse. Within one period, the quantum device is driven for
50% of the time, yielding a resonance frequency shift also for 50% of the time
when an excited state transition is addressed.

A R&S vector network analyzer (VNA) generates a continuous-wave tone for
the cavity readout, that splits into two paths. On one path, the signal travels
to the LO port of a Marki IQ4509MXP IQ-mixer for the room temperature

2The high-Q tunable bandpass filter is a re-entrant cavity resonator designed and fabri-
cated by the group of Dr. Ioan Pop at the Karlsruhe Institute of Technology.
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9.4. Room temperature microwave setup

Figure E6. Room temperature microwave setup for standard qubit charac-
terization measurement.

homodyne detection scheme. On the other path, the signal travels down to
the resonator device, with a room temperature attenuator. The IQ-mixer
requires a power of ∼ 10 dBm on the LO port to operate, which usually means
a large photon number on the resonator without additional attenuation. The
reflected or transmitted readout pulse enters the RF port of the mixer and
is down-converted to the base-band into the I- and Q-ports. We then use a
ZI HF2LI to acquire the quadrature values of the readout pulse after several
stages of low-pass filters and demodulate them at a frequency given by the
inverse of the pulse modulation period, which then results in a signal when
the resonance frequency is shifted. Both the ZI HF2LI and R&S SMB 100A
are syncronised to the 10 MHz syncronisation output of the Stanford SG386.

Figure E7. Room temperature microwave setup for chopped two-tone spec-
troscopy.
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9.5. Qubit measurement protocol

A protocol with measurement scripts for characterization of superconducting
qubits and Andreev qubits was developed during the doctoral study. In the
following, we will explain the protocol step-by-step with exemplary measure-
ments.

Single-tone spectroscopy

After the chip is cooled down to base temperature, almost no information is
known about the device. To obtain a fast overview about the device, sin-
gle tone measurement is performed either with the VNA or the SHFQA. If
the resonance of the superconducting resonator is present, a narrow spectrum
of typically a few tens of MHz is measured at the resonance frequency when
sweeping the qubit control parameters, such as gates or magnetic field. A shift
of the resonance frequency is observed when the qubit frequency approaches
that of the resonator due to dispersive coupling. Hereby, the resonator excita-
tion power has to be set at low values to remain in the few photon limit. A too
high excitation power would restore the bare resonance. As an example, for
an overcoupled resonator with a resonance frequency of 6.5 GHz and a total
quality factor of 3000, a single photon is loaded with an excitation power of
−143 dBm at the resonator. Observing avoided-crossing indicates a strongly
coupled qubit-resonator system and a crossing of the qubit frequency with the
resonance frequency. However, qubit characterization is usually not performed
in this limit, but in the dispersive limit.

If spectroscopy measurement using the SHFQA is anticipated, simply cre-
ating an instance from the class Continuous_spectroscopy with corresponding
input parameters prepares the SHFQA for the measurement. Explanation of
the input parameters can be found in the package qucs.

Continuous two-tone spectroscopy

After observing a dispersive shift of the resonator, the qubit transition fre-
quency as a function of the qubit control parameters should be measured. A
continuous two-tone spectroscopy can be performed to solve this task. The
qubit is driven continuously with variable drive frequencies using a signal gen-
erator while a second probe tone with fixed frequency is set close to the reso-
nance frequency of the resonator and sent to the resonator. The second tone
can be generated by a VNA. When the drive frequency matches the qubit
frequency, the qubit is driven from the ground state yielding a shift of the
resonator frequency. Hence, a change in the amplitude or phase of the probe
tone is observed.
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9.5. Qubit measurement protocol

Here, the spectroscopy measurement can start at elevated drive power. This
will broaden the linewidth of the qubit spectrum and hence make it more
visible. Once the approximate qubit frequency is found, a detail measurement
can be performed at lower drive power. The power for the probe tone should
be kept in a few photon limit. High photon number shifts the qubit frequency
yielding multiple qubit spectral lines.

Because the dispersive shift varies with the qubit-resonator frequency de-
tuning, the optimal readout frequency changes at different operation points.
Thus, the frequency of the resonator probe tone should be adjusted when
sweeping the qubit control parameter. A good way to track the optimal read-
out frequency is to measure a single-tone spectrum after updating the qubit
control parameter and to numerically find the resonance frequency. The VNA
or SHFQA should then be updated with the new resonance frequency before
performing the two-tone measurement. An example with probe frequency up-
date for gate sweep can be found in the class meta_gate.

The goal of this step is to find a local maximum in the qubit spectrum
that is ∼ 10g detuned from the resonance frequency, with g being the qubit-
resonator coupling strength. This ensures a good suppression of spontaneous
qubit decay into the resonator, which harms the qubit energy relaxation time
T1, and simultaneously a sufficiently large dispersive shift for distinguishing
the qubit excited state from the ground state.

Pulse design and upload
The next step is to design qubit drive pulse sequences for time domain mea-
surement. In the simplest case, a drive pulse sequence is composed with one
or multiple square pulses with variable pulse amplitude and width.

A time domain measurement is performed in unit of scans. Each scan is
composed by a period of qubit manipulation and a period of resonator readout.
If there is no scheme to actively reset the qubit to the ground state, the wait
time of subsequent scans should be much longer than the energy relaxation
time T1 of the qubit such that it is relaxed to the ground state before a new
qubit manipulation period starts. Although the T1 is an unknown parameter
at the beginning, realistic values can be estimated from literature.

The resonator readout is performed using the SHFQA that needs a trigger
pulse for synchronisation. This trigger pulse can be provided for example by
the marker 1 of the channel 1 of the AWG. A high value of 3.3 V and a duty
cycle of 50% of the scan length will do the job. On the SHFQA, the threshold
voltage shall be set to 1.65 V.

The python package qkit.measure.timedomain.pulse_sequence is used for de-
signing individual pulses. First, pulse instances are created using the class
Pulse with pulse length, shape, name, amplitude and intermediate frequency
as input parameters. Second, these pulse instances are concatenated in a
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pulse sequence instance that is created from the class PulseSequence. Third,
the pulse sequence is prepared in form of an array, that it can be uploaded
to the AWG. An array can be created by calling the pulses from the sequence
instance using sampling rate, heterodyne and start_phase as input parameters.
Single sideband upconversion can be performed by setting the corresponding
intermediate frequency and start_phase and passing True to heterodyne. The
so-created arrays shall then be concatenated into one pulse sequence array.

After that, a set of four ordering parameters need to be set for each pulse
in the pulse sequence. They are n_reps, trig_waits, jump_tos, go_to_states
determining the order which the sequence plays in. In most of the cases,
n_reps is an array of one while trig_waits and jump_tos are both arrays of
zero. go_to_states is an array of zero except for the last element which is
one. This way, the drive sequence is played in repetition. Finally, the method
make_send_and_load_file is applied together with the sequence arrays and
ordering parameters to upload the drive sequence to the AWG.

The design of resonator readout pulse is simpler. By simply creating an
instance from the class Flat_top_gaussian_pulse_readout from the package
qucs with corresponding parameters, the SHFQA is prepared in a way such
that a flat top Gaussian shaped readout pulse is stored in the first waveform
memory in the channel 1. There are a lot of input parameters for a high design
degree of freedom to fit the experimental requirements. Detail explanation of
the input parameters are documented in the file qucs.py.

Before applying the drive pulse sequences to the VSG or device, they should
be checked on an oscilloscope. The oscilloscope Keysight MSOX6004A with
four input channels is fast enough to monitor the pulse sequences. Connect
the outputs of the AWG to the oscilloscope. The oscilloscope input impedance
should be set to 50 Ω to observe the actual voltage later seen by the inputs
of the VSG or RF lines of the fridge. The oscilloscope measurement can be
triggered at the rising slope of the marker pulse. Importantly, the peak-to-peak
voltage of the drive sequence should not exceed 1 V as this is the maximum
voltage that the wide-band IQ-inputs of the VSG can take. After confirming
that the drive pulse sequences do not harm instruments or the device, the
outputs of the AWG can be connected to the VSG or RF lines of the fridge.

Pulse alignment
Albeit careful design of the qubit drive and readout sequences, they are not
aligned precisely due to different cable length and instrument latency times.
Here, the alignment shall be performed using the oscilloscope again. Connect
the outputs of the signal generators to the oscilloscope and estimate the mis-
alignment using the marker feature of the oscilloscope. Typical misalignment
can be as large as ∼ 100 ns. Adjust the probe_delay parameter for the readout
pulse to correct the misalignment.
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9.5. Qubit measurement protocol

Now, the room temperature calibration is completed and the microwave
signal generators can be connected to the device.

Calibration of integration delay

The readout pulse travels within a certain time period from the output of
the SHFQA to the input of it. This period of time, known as time-of-flight
(TOF), is given by the ratio of the length of the transmission line and the
signal propagation velocity in the transmission line. TOF can be measured
using the scope feature of the SHFQA. Creating an instance from the class
F lat_top_gaussian_pulse_scope_trace prepares the SHFQA to send out a
flat top Gaussian readout pulse and to start the scope to record incident voltage
as a function of time. The TOF is the time difference between the output of
the readout pulse and the incident of it. It is typically ∼ 330 ns in our setup.

When sending a readout pulse at the resonance frequency of a resonator,
the transient behaviour of the resonator can be measured with the scope fea-
ture. The total quality factor Q of the resonator can be computed from the
characteristic timescale τ of the resonator decay as Q = πfrτ with fr being
the resonance frequency, after exciting the resonator with a pulse at exactly
the resonance frequency.

For the rest of the characterization, a Josephson junction parametric am-
plifier (JPA) can be turned on to improve the signal-to-noise ratio. Usually, a
signal voltage increase by a factor of ten can be achieved, see Fig. E8a. The
finite rise time in the plot is an artefact created by the room temperature
re-entrant cavity filter.
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Figure E8. a, Transient measurement of a resonator response with and
without Josephson parametric amplification. b, The change of the quadrature
value Q of the readout pulse as a function for qubit drive power and frequency.
Here the drive pulse width is 10 ns.
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Calibration of the Xπ-gate
Next, perform a pulsed two-tone spectroscopy by first exciting the qubit with
a short drive pulse and subsequently measure the resonator response as a
function of the drive frequency and drive power. Typical drive pulse length
can be 10 ns long. A Xπ-gate can be calibrated from this measurement. An
example is plotted in Fig. E8b. In this measurement, one obtains five Rabi
oscillations as a function of the drive power. The hexagon indicates the drive
parameters for a Xπ-gate.

The SHFQA can be set to mode single or timedomain_differential. While
the former mode outputs one readout pulse that follows the qubit drive pulse
immediately, the latter mode outputs a second readout pulse in addition that
measures the qubit in the ground state. The mode timedomain_differential is
useful as it directly shows the contrast between the qubit excited and ground
state.

Optimization of readout power and frequency
With the knowledge of a short Xπ-gate, the readout power and frequency
can be optimized. Prepare the qubit in the excited state with the Xπ-gate
and measuring the resonator response in the single mode as a function of
the readout power and frequency. The parameter set which gives the highest
contrast can be used for the time domain measurement. The readout frequency
of a readout pulse is the sum of a center frequency fcenter and an intermediate
frequency fIF. The SHFQA is engineered in a way that multiple fIF can be
mixed to a center frequency, allowing multiplexed qubit readout. Fig. E9 shows
a measurement of the quadrature values of the resonator response in the qubit
excited (Ie, Qe) and ground state (Ig, Qg) as a function of fIF. The readout
power is set to -30 dBm at room temperature. From this measurement, one can
derive that setting a fIF = 55.4 MHz will enable a qubit state discrimination
fully in the I-quadrature.

Rabi measurement
A proper Rabi oscillation measurement can be taken again with optimal read-
out parameters. Here, the oscillation shall be measured as a function of qubit
drive frequency, drive power and drive pulse length.

Energy relaxation time measurement
Qubit energy relaxation can be measured by preparing the qubit in the excited
state and delaying the readout pulse. The class P robe_delay creates a meta
instrument that sweeps the starting time of the readout pulse. The character-
istic relaxation time scale T1 can be fitted from the data using an exponential
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Figure E9. a, IQ quadrature values of the cavity readout pulse as a function
of the intermediate frequency. Blue lines are measured after preparing the
qubit in the excited state, red lines after relaxing to the ground state. b,
Difference of the quadrature values.

fit. The parameter intergration_time for the readout pulse might need to be
adjusted to be shorter than T1 with the knowledge T1.

Coherence time measurement
Dephasing time of the qubit can be estimated from the decay of Ramsey
fringes. Hereby, the qubit is prepared in the mixed state with a Xπ/2-gate.
After a variable wait time τ , a second Xπ/2-gate is applied. As the wait time
τ increases, the second Xπ/2-gate creates an oscillating pattern between the
excited state and ground state if the drive frequency does not exactly matches
the qubit frequency. The dephasing time T ∗

2 can be obtained from fitting the
exponential decay of these oscillations. An additional refocusing Xπ-gate can
be applied between the two Xπ/2-gates to mitigate low frequency fluctuation
of the qubit frequency, a technique known as Hahn-echo sequence.
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10 Conclusion and outlook

The main goal of this thesis is the development of a long-range coupling scheme
for two Andreev qubits. The two requirements for such an experiment are, on
the one hand, reproducible highly transparent few-mode Josephson junction
devices and, on the other hand, a high quality factor superconducting cavity
coupler.

In Ch. 4, we have demonstrated our capability of fabricating InAs/Al nanowire
Josephson junction (NWJJ) devices. An etching recipe using the Al etchant
Transene D was established to form JJ on the length scale of a few hundreds
of nanometers. The observation of multiple Andreev reflections (MARs) in
these NW devices revealed transparent semiconductor-superconductor inter-
faces. Fitting the MAR pattern, we extracted the junction transparency and
found highly transparent channels. This experiment showed the reproducible
fabrication of highly transparent InAs/Al NWJJ which forms the base for
encoding qubits in the Andreev spectrum.

For the second requirement, in Ch. 5, we proposed and studied a novel su-
perconducting cavity coupler, which was designed to inductively couple to two
quantum systems at distance. It was complementary to the well-established
cavity coupler design for spin and superconducting qubits, which relied on the
susceptibility of a qubit to voltage fluctuations [5, 6, 34, 93, 107, 143]. In our
coupler design, the cavity induced coherent flux fluctuations at the two spa-
tially separated qubits and established in this way a light-matter interaction
on both sites. We identified that our initial coupling scheme, based on two
spatially-separated current anti-nodes, resulted in an undesired ground-loop
through the resonator which was detrimental to its internal quality factor due
to low-frequency noise. In our experiment, we circumvented this negative ef-
fect by employing a capacitively coupled quarter-wavelength resonator pair,
blocking low-frequency noise.

We verified the possibility to use the developed coupler for the readout
and control of single Andreev qubits, benchmarking the performance of our
InAs/Al NWJJ devices at the same time in Ch. 6. Using our cavity coupler,
we could reveal Andreev transitions in both NWJJs and measure the energy
relaxation and Rabi decay time for the Andreev pair transitions, reproducing
consistent results with the literature [25, 56]. This set of experiments was built
on the reproducible fabrication processes of the InAs/Al nanowire devices from
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Ch. 4.
The main findings of this thesis were reported in Ch. 7, where the resonator

pair was indeed operated as a coupler. We have demonstrated, for the first
time, a coherent coupling of two spatially separated Andreev pair qubits. By
aligning both qubit transition frequencies into the near-resonant or resonant
regime of the two cavity modes, we have measured dispersing quantum states
using microwave techniques, consistent with a three-sites Tavis-Cummings
model that manifested long range hybridization of the Andreev pair qubits.
All the studies in previous chapters have prepared and contributed to this
keen demonstration, that now evidently extended the circuit quantum electro-
dynamics toolbox by a complementary cavity coupler circuit using the current,
respectively the flux, degree of freedom. This encouraging discovery opens up
new possibilities to investigate distant quantum entanglements of the systems
that are exclusively susceptible to flux fluctuations.

Andreev qubit dephasing

Now, we would like to take a step back and discuss about the coherence of single
Andreev qubits. So far, Andreev qubits have been shown on three platforms,
namely the pair transitions in Al atomic point contacts ("Al weak-link"), the
pair transitions in epitaxial InAs/Al NWJJs ("InAs pair") and the odd tran-
sitions in epitaxial InAs/Al NWJJs ("InAs spin"). In the latter platform, two
kinds of Andreev spin qubits were demonstrated, formed either by two spin
states in different Andreev manifolds, with a ralaxation time ∼ 3 µs, or in
the same manifold. When regarding the same manifold, the relaxation time
of a polarized spin could be as high as Ts = 90 µs, as measured in Ref. [38],
highlighting the possibility of long coherence of an Andreev spin qubit. While
semiconducting nanowires were a prosperous material platform due to their
in-situ electrical tunability and physically hard confinement potentials, their
performance as Andreev qubits were still limited by spin flips of nuclei in the
semiconductor.

Fig. E1 summarizes the coherence time data from different Andreev qubit
experiments. Fig. E1a presents the energy relaxation time T1, with the data
point associated with a Ts = 90 µs being omitted, Fig. E1b the dephasing
time T ∗

2 , measured using Ramsey interferometry techniques, and Fig. E1c the
Hahn-echo decay time T2E across all three Andreev qubit platforms. The
large discrepancy between the T ∗

2 , respectively T2E, and T1 for the column
"InAs spin" signifies the hidden potential of an Andreev spin qubit. With
the summary of coherence data from available Andreev qubit experiments, we
hope to encourage new efforts to explore "clean" Andreev spin qubits, whose
dephasing time is enhanced to the limit by the energy relaxation, T1 ≈ 2T2 [89].
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Figure E1. Quantum coherence data. a, Energy relaxation time T1
plotted against the Andreev qubit platforms (The definition of platforms can
be found in the main text). b, Dephasing time T ∗

2 . c, Hahn-echo decay time
T ∗

2 . Data for the "Al weak-link" column are extracted from Ref. [24], for the
"InAs pair" column from Ref. [25, 36, 144], for the "InAs spin" column from
Ref. [35, 36, 144]. From our experiment, a T1 of 0.28 µs and 1.07 µs were
measured for the column "InAs pair".

In the remaining scope of this thesis, we accomplished a first step towards
a cleaner Andreev spin qubit by exploring Ge/Si core/shell nanowires as a
Josephson weak link candidate. Because Ge/Si core/shell nanowires consist
of type IV materials, they have a lower abundance of nuclei spin promising
longer qubit dephasing. We have measured the energy relaxation and, for the
first time, dephasing time of a superconducting gatemon qubit using a Ge/Si
core/shell NWJJ. This experiment required substantial supercurrent in the
Josephson element with increased mode numbers, which puts the operation of
the NWJJ, with increased electrochemical potential, in the opposite regime of
an Andreev qubit. Hence, a continuation of works could be integrating the
Ge/Si core/shell nanowire devices as Andreev spin qubits and studying their
quantum coherence. If an improvement of dephasing time is evident in these
nanowires, one may proceed to a spin-spin entanglement experiment, using
the here demonstrated superconducting cavity coupler scheme.

So far, the vertically grown nanowires, be it InAs/Al or Ge/Si core/shell
nanowires, have to be transferred from the nanowire growth chip to the mi-
crowave device chip, which is obviously not a scalable procedure. Alternative
group IV semiconductor platforms that allow a top-down fabrication could
further be investigated, such as selective area grown Ge nanowires [145] or
gate-defined weak links in strained Ge/GeSi quantum wells [146].

Despite the interesting findings of this thesis, Andreev qubits still remain a
vastly unexplored terrain. To promote Andreev qubits as a serious competitor,
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a demonstration of a large Rabi oscillation quality factor, that is defined as
Q = frabiT

∗
2 , with frabi being the Rabi frequency and T ∗

2 the dephasing time,
is persuasive.
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Figure E1. Cavity readout in time domain.

For time domain measurement, qubit drive pulse and cavity readout pulse
have to be aligned. Reflected (or transmitted, depending whether the mea-
surment is in reflection or transmission) waves have to be recorded with a
sampling rate of a few GSa per second. In our lab, we use the SHFQA from
Zurich instrument to readout cavity photons. It has a local oscillator frequency
synthesis from 0.5 to 8.5 GHz and a bandwidth for intermediate frequencies of
1 GHz. Since the modulation does not use mixers, the instrument can be used
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A. Cavity readout

without mixer calibration.

In practise, we choose a local oscillator frequency fLO and design a cavity
readout pulse with an intermediate frequency fIF and pulse shape A(t)1:

sIF(t) = A(t)ei2πfIFt. (A.1)

The frequencies are chosen such that the resonator can be excited, fres ≈
fLO+fIF. To demonstrate the readout pulse, its in-phase component is plotted
in Figure A.1.b in grey. Then, the readout pulse is mixed with the local
oscillator to ei2πfLOt · A(t)ei2πfIFt. We set the phase offset of the readout
pulse to be zero for convenience. The wave travels towards the sample in the
cryostat. After exciting the resonator, the wave coming back from the cryostat
now carries information about the resonator. The first demodulation step of
the instrument is done internally at fLO. After that, the wave s′

IF(t) can
be acquired and stored in time steps with a step size of 0.5 ns. An example
measurement is shown in blue in Figure A.1.b. Again, this is the in-phase
component of the measurement. One observes that its oscillation starts at a
later point at around 0.33 µs which is due to the travelling time of the wave.
The reflected wave s′

IF(t) is further demodulated to the baseband:

sbase(t) = s′
IF(t) · e−i2πfIFt. (A.2)

Figure A.1.c shows the in-phase and quadrature components of sbase(t). Dif-
ferent qubit occuption shifts the resonator frequency. When measuring a mi-
crowave pulse with a fixed frequency close to the resonator frequency, different
qubit occupation reflects itself as different traces of in-phase and quadrature
components of the microwave pulse.

1We usually use a Gaussian flat top pulse with a rise time of 10 ns.
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B Derivation of the capacitively coupled
quarter-wavelength transmission line
resonator

We assume that the voltage and current of a resonance is a superposition of a
forward- and backward-propagating wave with the wavevector βi:

V1 = V +
1 e−iβix + V −

1 eiβix, V2 = V +
2 e−iβi(x−L/2) + V −

2 eiβi(x−L/2)

I1 = V +
1

Z0
e−iβix − V −

1
Z0

eiβix, I2 = V +
2

Z0
e−iβi(x−L/2) − V −

2
Z0

eiβi(x−L/2),
(B.1)

where V1 and I1 are voltage and current profile on the left transmission line
and V2 and I2 that on the right transmission line. The first mode with a
wavelength of 2L is a resonance which also exists when there is no coupling
capacitance, i.e., β1 = 2π/λ = π/L. According to the design, it possesses a
voltage node at x = 0 and x = L such that

V1(0) != 0 ⇒ V +
1 = −V −

1

V2(L) != 0 ⇒ V +
2 = V −

2 .
(B.2)

A second condition arises as the voltage at x = L/2 is continuous:

V1(L

2 ) != V2(L

2 ) ⇒ V +
1 = iV +

2 . (B.3)

Now, we have all the information for the first resonating mode. For deriving
the second mode, the first condition Eq. (C.2) still holds but give different
results:

V1(0) != 0 ⇒ V +
1 = −V −

1

V2(L) != 0 ⇒ V +
2 = −V −

2 eiβ2L,
(B.4)

where β2 is the wavevector of the second mode. Moreover, the current at the
capacitance has to be continuous which leads to a further condition:

I1(L

2 ) != I2(L

2 ) ⇒ V +
1 = V +

2
1 + eiβ2L

e−iβ2L/2 + eiβ2L/2
(B.5)
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B. Derivation of the capacitively coupled quarter-wavelength transmission
line resonator

By introducing the coupling capacitance, an alternating current can exist
at the capacitance. Its amplitude is related to the voltage across via the
impedance 1/iω2C.

V1(L

2 ) − V2(L

2 ) != 1
iω2C

I1(L

2 ). (B.6)

Inserting eq. (1.11) and (1.12) into (1.13) gives a condition which determines
the resonance frequency ω2:

⇒ ω2 = 1
2CZ0

tan−1(β2L

2 ). (B.7)

Since β2 is a deviation from β1, we can Taylor expand the tangent at β2L
2 =

π/2: tan−1( β2L
2 ) ≈ −( β2L

2 − π
2 ). Inserting the Taylor expansion into eq. (1.14)

leads to

ω2 = − 1
2CZ0

(β2L

2 − π

2
)
. (B.8)

Then the relation for constant speed of light in the transmission line is used,
β2 = (β1/ω1)ω2 = (π/Lω1)ω2. That yields

ω1ω2

ω2 − ω1
= − π

4CZ0
(B.9)

Finally, an expression for the frequency difference is obtained when identifying
ω2ω1 ≈ ω2

1 :

∆ω = ω2 − ω1 = −4CZ0

π
ω2

1 . (B.10)

The wave-vector β2 can be computed as

β2 = π

L

(
1 − 4CZ0

πL
ω1

)
. (B.11)

One can see that 1 − 4CZ0ω1/πL is the correction factor to obtain β2 from
β1. Furthermore, this formula is valid when the characteristic impedance of
the transmission line is much smaller than the impedance of the coupling
capacitance, Cω1Z0 ≪ 1.
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C Additional DC transport measurement of
full-shell epitaxial InAs/Al nanowire
Josephson junctions

Now, we will investigate the transport behaviour of our nanowire (NW) at low
gate voltages. The differential conductance G was measured as function of
voltage bias V at low VG, close to the depletion of the semiconductor. Fig. E1
shows the differential conductance as a function of VG and voltage bias V
at negative VG. At low gate voltage, one can recognize an opening of a gap
with multiple resonances in the gap (Fig. E1a). Some of the resonances are
gate independent at a value of |eV | = 2∆′, while some clearly show gate
dependence. As the gate voltage increases, more "in-gap" resonances appear,
giving rise to very complicated resonance spectra (Fig. E1c). These "in-gap"
resonances appear to be pushed to low bias when resonance features occur
outside the gap.

In previous experiments [147], similar characteristics were found for well-
defined in-situ grown tunnel barriers dividing the NW up into three segments.
Here, we can imagine a similar scenario with unintentional quantum dots
(QDs) forming at potential minima, when the NW is near pinch-off. Un-
like the crystal-phase defined QDs in nanowires, the barriers of these unin-
tentional QDs are not controlled in our experiment. They could arise from
potential fluctuation in the semiconductor or mismatch in the Fermi veloc-
ity at the superconductor-semiconductor interfaces [148–150]. Andreev bound
states (ABSs) can form in the semiconducting lead segments that are coupled
to the superconducting contact (S-contact) [147, 151, 152].

Fig. E1b shows an energy level diagram of the nanowire device close to the
depletion. The resonances outside the gap can be understood as Coulomb
blockade (CB) resonances, where a QD state is aligned to a superconducting
coherence peak in the superconducting electrodes S1 or S2, shifted in bias
voltage e∆V = ±2∆′ by the superconducting gap. The additional resonances
in the bias window e|∆V | < 2∆′ suggest the presence of ABSs in the lead
segments.

In the following, we will focus on the description of the ’in-gap’ resonances,
denoted with Roman numerals i-iv and i’-iv’, in the Coulomb blockade at
around VG = −2 V. In this regime, transport of electrons through the QD

125



C. Additional DC transport measurement of full-shell epitaxial InAs/Al
nanowire Josephson junctions

involves simultaneous tunneling of two or more electrons, a process known
as cotunneling [153]. We find a pair of strong resonances i(i’) at constant
eV = ±2∆′ and a pair of weak resonances iii(iii’) at constant eV = ±∆′,
consistent with an increased quasiparticle density of states (DoS) at an energy
∆′ = 190 µeV in the LS1, mapped by an increased single particle DoS in the
LS2 at eV = ±∆′ or by the superconducting coherence peak in S2. Because
the resonances i(i’) are at constant eV = ±2∆′, we attribute them to a short-
junction ABS residing in LS1, with the resonance energy pinned at the gap
values. The replicas iii(iii’) can be understood as quasiparticle tunneling from
the short-junction ABS in LS1 to residual quasiparticle DoS in LS2.

At multiple CB resonances, for example VG = −2.022 V, we find that the
horizontal resonances i and i’ are bent to lower bias voltage values and con-
tinue as resonances with positive and negative slopes, as pointed out by green
arrows. We attribute the resonances with positive and negative slopes to QD
resonances, where the QD level is aligned to one of the ABSs. The avoided
crossing between the horizontal resonances and QD resonances can be under-
stood as hybridization between the ABSs on the LSs with an QD level, which
occurs at enhanced tunnel coupling between the LSs and the QD [148]. In
particular, the avoided crossing with a QD resonance of negative slope (posi-
tive slope) indicates hybridization of an ABS on the LS1 (LS2) with the QD
level, mapped by a short-junction ABS in LS2 (LS1) or by the superconduct-
ing coherence peak in S2 (S1). We note that the observation of symmetric
avoided-crossings with QD resonances of both slopes suggests the presence of
short-junction ABSs on both LSs.

At lower bias voltage e|V | < 2∆′, we find again a pair of strong resonances
ii(ii’) and a pair of corresponding replicas iv(iv’). Following a similar argument
as above, we attribute the resonances ii(ii’) to a second ABS in LS1, that is
not pinned to ∆′ and is accompanied with finite quasiparticle dwell time in
the non-superconducting part in the long-junction limit [154].

To conclude, we have performed tunneling spectroscopy measurement in a
epitaxial InAs/Al NWJJ using an unintentionally formed QD in the semicon-
ductor. We have observed resonances that are consistent with ABSs residing
in the semiconducting lead segments between the epitaxially grown S-contacts
and the QD. In the investigated gate range, the coupling strength between the
ABSs and the QD is sufficiently strong to form an hybridized system.
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D Additional microwave spectroscopy
measurement of full-shell epitaxial
InAs/Al nanowire Josephson junctions

This appendix presents a systematic study of single quasiparticle transitions
(SQPTs) as a function of the gate voltage VR and superconducting phase differ-
ence ϕR, measured in the right InAs/Al nanowire Josephson junction (NWJJ).
The SQPTs are revealed using pulsed two-tone spectroscopy techniques.

Fig. E1a shows a two-tone spectrum as a function of VR at ϕR = 0. We find
five gate dependent resonances, two are weak and the other three are strong.
In the following, we will focus on the three strong resonances, denoted with
the Roman numerals i)-iii) and measure the superconducting phase dependent
two-tone spectra at four selected gate voltage values, indicated with alphabets
b-e.

At VR = −0.189 V, we find the two weak resonances decreasing in frequency
towards ϕR = ±π. Thus, we attribute them to pair or mixed pair transitions.
At slightly higher gate voltage value (Fig. E1c), we find that the resonances
i)-iii) all split into four resonances for ϕR ̸= 0 or ϕR ̸= ±π, indicating that each
of them is indeed associated with SQPTs between two Andreev manifolds. The
observation of three groups of SQPTs can be understood as the presence of four
Andreev manifolds, caused by a small transverse subband spacing or increased
eletrochemical potential in the semiconducting nanowire, with the resonance
group i) corresponding to the transitions between the first and second mani-
fold, the resonance group ii) to that between the first and third manifold, and
the resonance group iii) to that between the first and forth manifold. We find
that all the SQPTs possess a higher transition frequency at ϕR = ±π than at
ϕR = 0. Additional resonances featuring minima at ϕR = ±π arise from pair
transitions and indicate the large number of channels in the junction.

At VR = −0.175 V, we find that the dispersion of the SQPTs is reversed
(Fig. E1d). Now, the transition frequencies at ϕR = 0 become higher than
that at ϕR = ±π. Overall, the transition frequencies of the group i) and iii)
are pushed to higher values, while that of the group ii) remain nearly constant.
Finally, at VR = −0.175 V, the resonance group iii) is pushed above 18 GHz
for an extended range in ϕR (Fig. E1e). All SQPT groups appear to remain
at higher frequencies at ϕR = 0 than at ϕR = ±π. Looking at the SQPT
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D. Additional microwave spectroscopy measurement of full-shell epitaxial
InAs/Al nanowire Josephson junctions

group ii), we observe two interesting features (Fig. E1f). First, the frequency
splitting of the SQPTs is rather small, not exceeding a few hundreds of MHz.
Second, the SQPT remain flat over an extended range of ϕR around ϕR = 0,
before abruptly drop to lower values, when approaching ϕR = ±π. The first
observation indicates a small difference in the spin-dependent Fermi velocity of
the quasiparticles. This can arise by tuning the electrochemical potential away
from the point where two subbands of opposite spins hybridize, or by a gate
tunable spin-orbit coupling strength. The reason for the second observation is
unclear yet.
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