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Summary  

Malaria remains a significant global health concern, with sub-Saharan Africa bearing the brunt, 

especially among children under five. Despite efforts to reduce its prevalence, challenges 

persist, Kenya, particularly its western regions, sees over a third of its outpatient visits due to 

malaria. Although the disease has declined especially in the last two decades, progress has 

plateaued. Inconsistencies in data, lack of precise regional estimates, and inadequate monitoring 

are among the causes attributed to the stagnation. Effective data management and utilization 

are therefore vital in informing timely and effective policy decisions. 

Our research, focused on a Health and Demographic Surveillance System (which is a population 

surveillance cohort), located in western Kenya, an area with high malaria prevalence, between 

the year 2007 and 2015. We investigated the spatio-temporal dynamics of malaria incidence 

and prevalence (as measures of transmission) and their effects on mortality while adjusting for 

climatic, environmental and other associated factors across all age categories. Furthermore, we 

investigated the association between malaria vis-à-vis parasitic worms’ prevalence on anaemia 

risk across different age groups in order to understand the contribution of malaria to anaemia 

in this region. 

In the chapter 2, we investigated the spatial and temporal patterns of malaria incidence among 

children below 5 years using Bayesian hierarchical negative binomial models. Between 2007 

and 2012, there was a notable decline in malaria incidence, from 775 cases to 540 cases per 

1,000 person years of observation (pyo). Monthly incidence exhibited significant seasonal 

variations, with peaks during or immediately after the long and short rainy seasons.  Enhanced 

Vegetation Index (EVI), socio-economic status, altitude, and the study region were all critical 

in influencing malaria risk. Meanwhile, climatic factors i.e. temperature and rainfall known to 

be critical in malaria transmission showcased non-significant associations in this study. 
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In the chapter 3, we explored the relationship between malaria incidence, through slide 

positivity rates (SPR) captured at health facilities around the KHDSS and mortality. We fit 

Bayesian spatio-temporal survival models to investigate the relation between mortality (all-

cause/malaria-specific) and malaria incidence across all age groups. We found that a small 

increase in SPR was a driver of both all-cause/malaria-specific mortality. This was especially 

elevated in children aged 1-4 years. Interestingly, for older children aged 5-14 years, the study 

found a reduced association between SPR and malaria-specific mortality.  

In the fourth chapter, using parasite prevalence data collected at the households as the metric 

for malaria transmission, we extended the investigation to its impact on mortality. Data from 

this study revealed that malaria parasitaemia was associated with mortality across age groups 

over four-to-five-year periods. While clinical malaria showcased a strong correlation with 

mortality across all age groups, most notably in children aged 5-14 years, the effect was not 

observed in neonates, adults, and the elderly. 

The fifth chapter shifted to investigate anaemia prevalence and its link with malaria or parasitic 

worm infestations. We found a high and consistent prevalence of anaemia across all ages, 

predominantly impacting the youngest (1-11 months) and the elderly (65+). Meanwhile, 

malaria parasitaemia alone and clinical malaria were linked with a higher anaemia risk. There 

was no evidence of any effect of Schistosomiasis and helminths risk with anaemia prevalence.   

All these studies converge on the need for an understanding of the multifaceted nature of 

malaria and related conditions in Western Kenya. While the initial focus is to map out the 

incidence of malaria and its ties with environmental and socio-economic factors, the subsequent 

studies amplify the importance of assessing the broader implications of malaria on mortality 

and co-morbidities like anaemia. The consistent use of the Health and Demographic 

Surveillance System (HDSS) data across studies ensures a coherent analysis.  

From these results, we propose that SPR is a more efficient measure of gauging malaria 

transmission and its potential impact on mortality in an area of high endemicity. In essence, 
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while the global fight against malaria has made significant strides, collectively, these findings 

stress the need for targeted, multi-pronged intervention strategies to combat the complexities 

and repercussions of malaria in the region. By recognizing and addressing the unique challenges 

posed by specific regions, localized pockets like the one studied in western Kenya require 

urgent, specialized attention for more effective policy formulation and implementation. 
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Zusammenfassung  

Malaria ist nach wie vor ein wichtiges globales Gesundheitsproblem, wobei die afrikanischen 

Länder südlich der Sahara die Hauptlast tragen, insbesondere bei Kindern unter fünf Jahren. 

Trotz der Bemühungen, die Prävalenz der Krankheit zu verringern, gibt es nach wie vor 

Probleme. In Kenia, insbesondere in den westlichen Regionen, wird mehr als ein Drittel der 

ambulanten Behandlungen auf Malaria zurückgeführt. Obwohl die Krankheit vor allem in den 

letzten beiden Jahrzehnten zurückgegangen ist, sind die Fortschritte ins Stocken geraten. 

Unstimmigkeiten bei den Daten, das Fehlen genauer regionaler Schätzungen und eine 

unzureichende Überwachung gehören zu den Ursachen, die für die Stagnation verantwortlich 

gemacht werden. Eine wirksame Datenverwaltung und -nutzung ist daher von entscheidender 

Bedeutung, um zeitnahe und wirksame politische Entscheidungen treffen zu können. 

 

Unsere Forschung konzentrierte sich auf ein Health and Demographic Surveillance System 

(eine Bevölkerungsüberwachungskohorte) im Westen Kenias, einem Gebiet mit hoher 

Malariaprävalenz, zwischen 2007 und 2015. Wir untersuchten die räumlich-zeitliche Dynamik 

der Malariainzidenz und -prävalenz (als Maß für die Übertragung) und ihre Auswirkungen auf 

die Sterblichkeit, wobei wir klimatische, umweltbedingte und andere damit verbundene 

Faktoren in allen Alterskategorien berücksichtigten. Darüber hinaus untersuchten wir den 

Zusammenhang zwischen der Malariaprävalenz und der Prävalenz parasitärer Würmer und dem 

Anämierisiko in verschiedenen Altersgruppen, um den Beitrag der Malaria zur Anämie in 

dieser Region zu verstehen. 

 

In Kapitel 2 untersuchten wir die räumlichen und zeitlichen Muster des Auftretens von Malaria 

bei Kindern unter 5 Jahren mit Hilfe von hierarchischen negativen Binomialmodellen nach 

Bayes. Zwischen 2007 und 2012 gab es einen bemerkenswerten Rückgang der Malariainzidenz 

von 775 Fällen auf 540 Fälle pro 1.000 Personenjahren Beobachtung (pyo). Die monatliche 
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Inzidenz wies erhebliche saisonale Schwankungen auf, mit Spitzenwerten während oder 

unmittelbar nach den langen und kurzen Regenzeiten.  Der Enhanced Vegetation Index (EVI), 

der sozioökonomische Status, die Höhenlage und die Untersuchungsregion spielten eine 

entscheidende Rolle für das Malariarisiko. Klimafaktoren, d. h. Temperatur und Niederschlag, 

die bekanntermaßen für die Malariaübertragung entscheidend sind, wiesen in dieser Studie 

keine signifikanten Zusammenhänge auf. 

In Kapitel 3 untersuchten wir die Beziehung zwischen der Malaria-Inzidenz, die anhand der in 

den Gesundheitseinrichtungen rund um das KHDSS erfassten Slide-Positivity-Raten (SPR) 

ermittelt wurde, und der Mortalität. Mit Hilfe von Bayes'schen räumlich-zeitlichen 

Überlebensmodellen untersuchten wir die Beziehung zwischen der Sterblichkeit (alle 

Ursachen/Malaria-spezifisch) und der Malaria-Inzidenz in allen Altersgruppen. Wir fanden 

heraus, dass ein geringer Anstieg der SPR sowohl die Gesamtmortalität als auch die 

malariaspezifische Mortalität beeinflusst. Besonders ausgeprägt war dies bei Kindern im Alter 

von 1-4 Jahren. Interessanterweise ergab die Studie für ältere Kinder im Alter von 5-14 Jahren 

einen geringeren Zusammenhang zwischen SPR und malariaspezifischer Sterblichkeit.  

Im vierten Kapitel wurden die in den Haushalten erhobenen Daten zur Parasitenprävalenz als 

Maßstab für die Malariaübertragung herangezogen und die Untersuchung auf ihre 

Auswirkungen auf die Sterblichkeit ausgeweitet. Die Daten dieser Studie zeigten, dass die 

Malariaparasitämie in allen Altersgruppen über einen Zeitraum von vier bis fünf Jahren mit der 

Sterblichkeit in Zusammenhang stand. Während die klinische Malaria in allen Altersgruppen 

eine starke Korrelation mit der Sterblichkeit aufwies, insbesondere bei Kindern im Alter von 5-

14 Jahren, wurde dieser Effekt bei Neugeborenen, Erwachsenen und älteren Menschen nicht 

beobachtet. 

Im fünften Kapitel untersuchten wir die Prävalenz von Anämie und deren Zusammenhang mit 

Malaria oder parasitärem Wurmbefall. Wir fanden eine hohe und konsistente Prävalenz von 

Anämie in allen Altersgruppen, wobei vor allem die Jüngsten (1-11 Monate) und die älteren 
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Menschen (65+) betroffen waren. Gleichzeitig waren die Malariaparasitämie allein und die 

klinische Malaria mit einem höheren Anämierisiko verbunden. Es gab keine Hinweise auf eine 

Auswirkung des Schistosomiasis- und Helminthenrisikos auf die Anämieprävalenz.   

Alle diese Studien zeigen, dass ein Verständnis für die Vielschichtigkeit der Malaria und der 

damit zusammenhängenden Erkrankungen im Westen Kenias erforderlich ist. Während der 

anfängliche Schwerpunkt darauf liegt, die Häufigkeit von Malaria und ihre Verbindungen zu 

umweltbedingten und sozioökonomischen Faktoren zu erfassen, unterstreichen die 

nachfolgenden Studien die Bedeutung der Bewertung der umfassenderen Auswirkungen von 

Malaria auf die Mortalität und Komorbiditäten wie Anämie. Die einheitliche Verwendung der 

Daten des Health and Demographic Surveillance System (HDSS) in allen Studien gewährleistet 

eine kohärente Analyse.  

Auf der Grundlage dieser Ergebnisse schlagen wir vor, dass die SPR ein effizienteres Maß für 

die Messung der Malariaübertragung und ihrer potenziellen Auswirkungen auf die Sterblichkeit 

in einem Gebiet mit hoher Endemie darstellt. Auch wenn der weltweite Kampf gegen Malaria 

erhebliche Fortschritte gemacht hat, unterstreichen diese Ergebnisse insgesamt die 

Notwendigkeit gezielter, mehrgleisiger Interventionsstrategien, um die Komplexität und die 

Auswirkungen von Malaria in der Region zu bekämpfen. Durch die Anerkennung und 

Bewältigung der einzigartigen Herausforderungen, die sich in bestimmten Regionen stellen, 

erfordern lokal begrenzte Gebiete wie das untersuchte in West-Kenia dringende, spezielle 

Aufmerksamkeit für eine effektivere Politikformulierung und -umsetzung. 
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1. Chapter 1: Introduction and objectives 

1.1. Introduction and background 

Malaria remains a leading cause of morbidity and mortality in the world with an estimated 3.2 

billion people at risk. The brunt of this burden falls heavily on sub-Saharan Africa (SSA) which 

accounts for over 95% of malaria cases and 96% of related death (Weiss et al., 2019; World 

Health Organization, 2022) (Figure 1.1). In this region, children under five years make up 76% 

of the deaths due to malaria (World Health Organization, 2022). Such statistics have hindered 

the achievement of the goal to reduce malaria morbidity and mortality by 75% by the year 2025 

(World Health Organization, 2021). However, malaria is preventable and treatable if the correct 

combination of prevention, treatment and surveillance strategies are put in place (Cibulskis et 

al. 2011). For effective policymaking, especially in low-income SSA countries, there is a need 

for accurate tracking of progress in malaria control through the establishment of efficient 

surveillance systems that will ensure reliable data collection, analysis and dissemination.  

In Kenya, there has been a considerable reduction in malaria morbidity and mortality since the 

late 20th century (Division of National Malaria Programme (DNMP) & ICF, 2021; Noor, 

Gething, et al., 2009). However, malaria still accounts for over one-third of all outpatient visits. 

The risk of infection is highest in some parts of western country with an estimated parasitaemia 

prevalence of 38% around the Lake Victoria endemic region (Division of National Malaria 

Programme (DNMP) & ICF, 2021; Khagayi et al., 2019).  

Despite substantial investment in malaria control initiatives both domestically and 

internationally (World Health Organization, 2022), along with global advances in prevention, 

diagnostics and treatment (Bhatt et al., 2015; Hanboonkunupakarn & White, 2022), the rate of 

progress in reducing malaria has plateaued. Key challenges include inconsistent data, imprecise 

estimates at the sub-regional level, and inadequate surveillance systems to track localized 

outbreaks (Dhiman, 2019). Additionally, even when data exists, it often remains underutilized 
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due to inadequate management and analysis (Okello et al., 2019). It is therefore critical to 

optimally leverage all available data resources, analyse it and disseminate results in order to 

best guide policy decisions locally, regionally or globally in a timely manner. 

 
Figure 1.1: Trends in global Plasmodium falciparum endemicity (Adapted from, Weiss et al 2019) 

 

1.2. The life cycle and transmission of malaria 

Malaria is a vector borne disease caused by protozoan parasites of the genus plasmodium. There 

are four main plasmodia species known to cause malaria in humans; Plasmodium falciparum, 

P. vivax, P. malariae and P. ovale, with P. falciparum being the most common one in SSA and 

responsible for most deaths and morbidity (Greenwood et al. 2005; Snow and Omumbo 2006). 

However, in recent years cases of malaria in humans have been reported due to a fifth species 

P. knowlesi which is previously known to cause malaria among primates in certain areas of 

South-East Asia (Amir et al., 2018).  
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The malaria parasite life cycle is complex and involves multiple stages, both within humans 

and mosquitoes (Figure 1.2). The malaria parasite is transmitted to a human being through a 

bite from an infected mosquito. The mosquito transfers sporozoites (last stage of the parasite in 

the mosquito) during feeding into the human blood stream. These sporozoites then move to the 

liver, where they multiply asexually to become merozoites. These merozoites are released into 

the bloodstream where they either develop into male and female gametocytes, or, under 

repeated replication, form more merozoites which result in symptomatic disease. A subsequent 

mosquito bite on an infected human ingest these gametocytes (male/female). In the mosquito, 

the gametocytes develop into gametes that sexually reproduce to form zygotes. The zygotes 

mature into oocyst and burst, which releases sporozoites that eventually get into the mosquitos’ 

salivary glands. If this infected mosquito bites another human, they are transferred into another 

human and another life cycle starts (Beier, 1998; Greenwood et al., 2005; White et al., 2014).  

 

 
Figure 1.2: Life cycle of the malaria parasite (Adapted from the CDC-Global Health, Division of Parasitic Diseases 

and Malaria) 
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The parasite`s completion of its life cycle and ultimately determination of transmission and 

morbidity is a complex process driven largely by various environmental, topographical and 

climatic factors (Githeko et al., 2006; Zhou et al., 2004).  

Measuring malaria transmission is crucial for understanding its overall impact. Various metrics 

have been used to do this; including human infection rates such as parasite prevalence, 

incidence rates, and prevalence rates. Additionally, the interaction between mosquitoes and 

humans as measured using the entomological inoculation rate (EIR) defined as the product of 

the human biting rate (HBR) and sporozoite infection rate (SIR) or vector measures (mosquito 

density) have also been used.  

 

1.3. Malaria mortality burden  

Malaria parasite infection can lead to an array of health complications ranging from clinical 

manifestation of fever, convulsions, anaemia, respiratory distress, cerebral malaria, organ 

failures, coagulation disorders, electrolyte imbalances or splenomegaly (Weatherall et al., 

2002). Additionally, malaria often coincides with other medical conditions and infections such 

as bacteremia, sepsis, pregnancy complications and malnutrition (Bartoloni & Zammarchi, 

2012; World Health, 2000). Without timely and effective treatment, malaria can easily escalate 

to severe illness and ultimately, death (Bartoloni & Zammarchi, 2012; Miller et al., 2002; 

Phillips et al., 2017).  

Beyond its impact on individual health, malaria has been shown to negatively affect the social 

and economic wellbeing of families and society. With the disease even linked to poverty 

perpetuation (Sachs & Malaney, 2002). These complex manifestations and implications make 

it challenging to estimate the complete burden of malaria, the extent of malaria's toll, 

particularly in terms of its contribution to mortality rates, especially in sub-Saharan Africa and 
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notably in Kenya. Numerous studies have highlighted the significant burden of malaria-related 

mortality in these regions (Murray et al., 2012; Rumisha et al., 2014; World Health 

Organization, 2021). In Kenya, malaria remains the leading cause of death, most prominently 

among children under the age of five (Division of National Malaria Programme (DNMP) & 

ICF, 2021).  

 

1.3.1. Evaluating the relationship between malaria transmission measures and 

mortality  

Estimation of malaria cases and deaths globally is carried out using different methods. In 

estimating malaria-mortality, given its complex nature, cases and deaths are used separately or 

in combination with entomological measures to come up with either incidence, prevalence or 

EIR to measure trends (Amek et al., 2018; Murray et al., 2012; Weiss et al., 2019; WHO Malaria 

Policy Advisory Committee and Secretariat, 2012). However, these studies and reports use 

different methods, data and assumptions in doing so. 

The World Health Organization (WHO) employs a multipronged strategy for estimating 

malaria cases, contingent on factors like the endemic nature of the region, quality of 

surveillance systems, and data availability (World Health Organization, 2022). In most SSA 

countries with poor reporting systems, malaria incidence is predicted using models based on 

climatic predictors and adjusted over space and time (Alegana et al., 2016; Cibulskis et al., 

2011; Gething et al., 2016; Weiss et al., 2019). Among the recommendations by the WHO’s 

working group is that future estimates of malaria burden should include or adjust for insecticide 

treated mosquito nets (ITNs) and long-lasting insecticide-treated nets’ (LLINs) effectiveness. 

There should also be consideration of slide positivity among febrile children whether seeking 

care or not. And lastly, future estimations should also take into consideration the time series 

prevalence of P. falciparum in relation to seasonality (WHO Malaria Policy Advisory 

Committee and Secretariat, 2013). 
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Malaria diagnosis is widely done based on presence of parasites using rapid diagnostic tests or 

microscopy in persons with reported fever (Zimmerman & Howes, 2015). These are widely 

available and cost-effective especially in resource limited settings, where the disease is most 

experienced. With proper diagnosis, malaria incidence and prevalence can thus be established. 

However, some people would have the malaria parasite but do not exhibit any signs and 

symptoms of illness (Bousema et al., 2014; Laishram et al., 2012); therefore, disentangling the 

contribution of malaria parasites presence alone or clinical malaria to mortality is paramount. 

Cause of death identification due to malaria has also been quite challenging. Apart from the 

difficulty in diagnosing malaria as the cause of illness, many deaths occur at home in many 

low-income settings make it complex to confirm malaria as a cause of death (Adair, 2021; 

Hamel et al., 2011; Leitao et al., 2013). Verbal autopsies (VA), developed through the years, 

have been useful in determining cause of death using different tools and methodologies (Byass 

et al., 2019; Nichols et al., 2018). Despite some inherent shortcomings, especially the sensitivity 

of diagnosing malaria using VA (Herrera et al., 2017; Rakislova et al., 2021), there have been 

improvements over the years. Making it the best available tool for cause of death determination 

at population level (Bailo et al., 2022; Thomas et al., 2018) from which malaria-related deaths 

can be extracted for burden estimation. 

Another important aspect to consider when estimating malaria-related mortality is that climatic 

and environmental factors are huge drivers of the parasite development life cycle and hence 

malaria infection. Nowadays, climatic and environmental proxies at high spatial resolution are 

available from remote sensing (RS) and have been used to predict disease burden estimates at 

locations without data (Diboulo et al., 2015; Ssempiira et al., 2018; Weiss et al., 2019). 

In Kenya, malaria prevalence estimates have been obtained from malaria indicator surveys 

(MIS) carried out by the national malaria control program. Over the last two decades, results 

from these surveys indicate a reduction in malaria attributed morbidity, especially in children 

below the age of 5 years. The highest risk of infection is still experienced around the lake 
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endemic region in western Kenya (Division of National Malaria Programme (DNMP) & ICF, 

2021). However, these surveys mostly rely on one-off surveys on a national sample. The data 

are also aggregated at national and subnational level while overlooking local spatial-temporal 

disparities, at the same time their estimates are not linked to mortality.  

Bayesian geostatistical models that were used to estimate malaria risk in Kenya in 2009 

observed similar trends to the MIS and identified the lake endemic region as having the biggest 

contribution to malaria in the country (Noor, Gething, et al., 2009). However, the main 

shortcoming of this study was the use of data from different sources which were not comparable 

and covered only one year. 

In line with the WHO recommendations on malaria burden estimation, modelling at fine spatial 

resolution has in recent times explored the relationship between transmission and malaria 

specific mortality/morbidity (Amek et al., 2012; Kasasa et al., 2013; Rumisha et al., 2014). 

These studies took into consideration data well-aligned in space and time, used verbal autopsy 

for cause of death and considered climatic/environmental factors using longitudinal population 

follow-ups. While they emphasized the importance of localized data analysis, the use of spatial-

temporal techniques and use of mortality data, they failed to account for the impact of various 

interventions on malaria incidence, prevalence and mortality. 

 

1.3.2. Burden of malaria-related anaemia 

Anaemia, a condition characterized by reduction of haemoglobin (Hb) levels in the blood has 

been linked to malaria in different settings (Menendez et al., 2000; Sankaran & Weiss, 2015; 

White, 2018). While the risk of anaemia varies from place to place, studies have shown that in 

areas of high malaria transmission severe anaemia is the most common presentation of P. 

falciparum infection and results in adverse outcomes (Menendez et al., 2000; Obonyo et al., 

2007). The condition is especially widespread in low-income settings in SSA, where risk levels 

range from 47% to 67%  (World Health Organization, 2015a).  
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In Kenya, the national malaria indicator survey (MIS) shows that prevalence of any anaemia in 

children under 5 years is approximately 52% nationally. This figures jump to 62% in the 

western Kenya region around Lake Victoria (Division of National Malaria Programme (DNMP) 

& ICF, 2021). In some age-specific studies in this region, it has even been suggested that 

malaria and anaemia should be combined into one group of disease as sometimes there is no 

clear disentanglement on the direction of causality (Desai et al., 2014; Hamel et al., 2011; 

Obonyo et al., 2007; Sewe et al., 2015).  Furthermore, national trends in anaemia prevalence 

often mirror those of malaria (Division of National Malaria Programme (DNMP) & ICF, 2021). 

However, it is crucial to note that anaemia is influenced by other factors like helminths 

infection, schistosomiasis, malnutrition, infectious diseases and HIV/AIDS. Anaemia can also 

be due to genetic disorders like sickle cell disease, α-thalassaemia or G6PD deficiency among 

others. These are diverse, could coexist or may indicate the ability to resist malaria illness 

(Foote et al., 2013; GBD Anaemia Collaborators, 2023; Kassebaum, 2016; Soares Magalhães 

& Clements, 2011; World Health Organization, 2015a). Given these multiple contributing 

factors, understanding the specific role that malaria plays in causing anaemia in this region is 

essential in the elimination of malaria burden and prevention of anaemia. 

 

1.4. Health and demographic surveillance systems  

Many countries in Sub-Saharan Africa (SSA) face significant limitations in health data 

collection and use due to inadequate infrastructure and limited healthcare access (Byass, 2007; 

Fottrell, 2009; Koumamba et al., 2021). To address this, health and demographic surveillance 

systems (HDSS) sites were established in various developing countries. These systems were 

aimed at offering valuable insights into the demographic and epidemiological landscape of 

specific populations, albeit on a smaller scale (Bos, 2004; Sankoh & Byass, 2012). Over the 

years, these sites have expanded and included a lot more specialized and diverse data in their 
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routine activities. Making them an invaluable resource for health research in the developing 

world. 

 

1.4.1. The KEMRI-CGHR health and demographic surveillance system 

The Kenya Medical Research Institute’s Centre for Global Health Research launched an HDSS 

site (KHDSS) in 2001. Established in partnership with the Centers for Disease Control and 

Prevention (CDC) and others, this site originally evolved from a randomized control trial 

focusing on bed net usage in Asembo, located in the current Siaya County of western Kenya. 

The KHDSS later expanded to include Gem and Karemo areas in the same county (Figure 1.3). 

As of mid-2015, the KHDSS monitored approximately 250,000 individuals through a 

continuous tri-annual surveys in this demographically-defined area (Adazu et al., 2005; 

Odhiambo et al., 2012).  

 

Figure 1.3: Maps of the KEMRI-CGHR health and demographic surveillance system in western Kenya 

 

Once an individual is included in the KHDSS through a census, in-migration, or birth, they are 

assigned a unique Personal Identification Number (PID) based on their village, household, and 

compound numbers. This PID remains constant throughout the study. The KHDSS collects and 
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updates a variety of data, such as birth and death records, migration patterns, and socioeconomic 

indicators. 

The KHDSS site was involved in the Malaria Transmission Intensity and Mortality Burden 

across Africa (MTIMBA) project that sought to analyse data on malaria transmission intensity 

and burden in Africa from 2002 to 2004. Since then, the site has continued to collect data on 

malaria indicators. The extensive dataset, covering clinical symptoms, confirmed malaria cases, 

and entomological factors, is an invaluable resource for estimating local disease burdens. 

While HDSS sites like KHDSS offer crucial data, they have inherent limitations. First, they 

only cover a limited geographical area and thus may not fully represent broader populations. 

Second, the requirement for an individual to reside in the surveillance area for at least three 

months may skew the data towards more stable, less mobile residents. Third, accurately 

identifying and tracking individuals can pose challenges. Lastly, HDSS sites often facilitate 

additional health studies and interventions, potentially leading to better healthcare access for 

monitored populations, which may bias the data. Despite these drawbacks, the detailed and 

long-term data collected by HDSS sites are invaluable for research in resource-limited settings 

(Bos, 2004). 

 

1.5. Bayesian spatial-temporal modelling  

The KHDSS collects geo-referenced longitudinal data at household level, and due to this, the 

data is often highly correlated in space and time (Amek et al., 2011). Such data should therefore 

not be analysed using standard statistical methods that assume independence of observations, 

since such methods would cause the standard errors of estimated parameters to be over or 

underestimated (Cressie, 1993; Giardina et al., 2012; Gosoniu et al., 2012). Data from HDSS 

sites, collected over a long period of time and remote sensing data, contain large number of 

parameters that make classical analysis infeasible.  
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To address these challenges, Bayesian methods are often employed, particularly those that use 

Markov Chain Monte Carlo (MCMC) simulation algorithms (Gelfand & Smith, 1990; Robert 

& Casella, 2011). Advances in Bayesian computation have enabled integration of stochastic 

mathematical models into general statistical frameworks. This is particularly useful for spatial 

prediction and forecasting (Clancy & O'Neill, 2008; O'Hara & Sillanpää, 2009). These 

advancements have paved the way for large-scale statistical analyses in infectious disease 

studies, thereby informing public health decisions (Gemperli et al., 2006; Gething et al., 2016; 

Giardina et al., 2012). 

In Bayesian modelling, available data is combined with prior beliefs about model parameters 

through likelihood functions. This approach allows for making informed inferences about the 

model's parameters based on existing evidence (known as posteriors). Bayesian spatial-

temporal methods have been specifically applied to model malaria transmission and disease 

burden in various settings (Amek et al., 2011; Giardina et al., 2012; Kasasa et al., 2013; 

Rumisha et al., 2014; Ssempiira et al., 2017). These models yield high-resolution estimates of 

malaria risk and transmission dynamics, providing invaluable insights for public health 

interventions. 

 

1.6. Rationale of the research 

Getting precise mortality data is a long-standing issue in many developing countries, especially 

in pinpointing specific causes of death (Bos, 2004). This data limitation hampers evaluation of 

how effective malaria control interventions perform. 

Earlier research within the KHDSS from 2002 to 2004 used Bayesian methods to investigate 

the relation EIR and mortality rates (Amek, 2013). The findings indicated that areas with higher 

malaria transmission also experienced elevated mortality rates, particularly among young 

children. Furthermore, they underscored the critical role that both time and space play in 
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understanding malaria dynamics. However, these earlier efforts were limited in their scope, 

covering only short time periods and omitting key variables like confirmed malaria cases and 

use of insecticide-treated bed nets (ITNs) among other interventions. 

To address these gaps, this thesis builds upon that prior work to enrich existing knowledge and 

inform policy. This was done by; 

1. Incorporating a broader range of malaria indicators as recommended by the World 

Health Organization's expert committee. 

2. Expanding the dataset to span an additional seven years and thus allowing for a more 

robust analysis over a longer timeframe. 

3. Examining a more comprehensive set of health outcomes related to malaria, such as 

rates of hospitalization, asymptomatic infections, and instances of anaemia. 

To achieve these aims, we employed advanced Bayesian geostatistical spatio-temporal models 

that leverage the extended data set collected by the KHDSS. This approach will enable a more 

nuanced and comprehensive understanding of the malaria landscape, thereby informing more 

effective interventions and policy decisions. 

 

1.7. Objectives 

The primary aim of this research was to refine malaria burden estimates in the KHDSS by 

utilizing advanced modelling techniques for the years 2007 to 2015. The specific objectives 

were as follows:  

1. To assess dynamics in malaria incidence among children under 5 in relation to space 

and time in the KHDSS. 

2. To explore the association between malaria transmission-measured by incidence rates 

and overall as well as malaria-specific mortality rates in the KHDSS for all age 

categories. 
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3. To assess the spatio-temporal association between prevalence as a measure of 

transmission and malaria mortality in the KHDSS across all age groups. 

4. To estimate, the anaemia related burden, due to malaria in the KHDSS across all age 

groups. 
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Abstract  

Background 

Malaria remains a significant public health concern in Western Kenya, particularly among 

children under 5 years old. A detailed understanding of the disease's spatio-temporal patterns 

and its associated risk factors is critical for targeted intervention in this vulnerable group. 

 

Methods 

Utilizing Bayesian hierarchical negative binomial models, we assessed the effect of climatic 

and environmental variables, including temperature, rainfall, and Enhanced Vegetation Index 

(EVI), among other factors on malaria incidence in children under 5 years within a Health and 

Demographic Surveillance System (HDSS) site located in western Kenya between 2007 and 

2012. 

 

 Results 

Overall, malaria incidence rates averaged 628 cases per 1,000 person years of observation 

(pyo), peaking at 775 cases in 2009 and declining to 540 cases by 2012. Monthly incidence 

exhibited significant seasonal fluctuations, particularly during May to July and November to 

January. Enhanced Vegetation Index (EVI) closely aligned with incidence peaks and showed a 

strong association, suggesting a composite effect of optimal climatic conditions for malaria 

transmission. An increase in mean temperature was associated with a decline in incidence while 

rainfall was associated with increased incidence, however they were not statistically important 

in their association. Socio-economic status, study area, and altitude also emerged as statistically 

important factors. 

 

Conclusion 

The study underscores the need for localized, timely preventive and control measures given the 

higher incidence rates and observed spatio-temporal variations. Socio-economic and 

environmental factors significantly influence the risk of malaria, emphasizing the necessity for 

a multi-pronged approach to malaria control. 
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2.1. Introduction 

There have been substantial strides globally in reduction of malaria-associated mortality and 

morbidity. However, malaria remains a significant contributor to the global disease burden, 

particularly in sub-Saharan Africa (SSA) (Bhatt et al., 2015; Gething et al., 2016; World Health 

Organization, 2022). In Kenya, the disease accounts for about 15% of all outpatient visits 

(Division of National Malaria Programme (DNMP) & ICF, 2021). In western Kenya, areas 

surrounding Lake Victoria have the highest burden in the country with a parasiteamia 

prevalence of 36% (Khagayi et al., 2019). While there has been notable progress in decreasing 

the burden of malaria in the hardest-hit countries, there are still difficulties in precisely 

quantifying and reporting the disease's prevalence, incidence, and annual trends (Gething et al., 

2016; World Health Organization, 2022). These challenges hinder effective planning and slow 

down advancements in combating malaria. 

The World Health Organization (WHO) advocates for surveillance as a key strategy to reduce 

the global impact of malaria by 2030, particularly in regions with high transmission rates. This 

is most crucial for children under the age of five, who are disproportionately affected (World 

Health Organization, 2021). With more than 70% of the population at risk for malaria in Kenya, 

children under five are also the most severely impacted (Division of National Malaria 

Programme (DNMP) & ICF, 2021).  

For accurate assessment of malaria infection and its impact, it is crucial to have timely and 

precise data on when and where cases occur. However, this has often been hampered by 

ineffective surveillance systems that yield unreliable data, typically based only on confirmed 

cases from hospitals (Alegana et al., 2020; Gething et al., 2006). To capture the extent of 

malaria's burden well, it is essential to consider both the spatial and temporal dimensions of its 

incidence. This requires rigorous attention to detail, using the appropriate denominator, and 

accounting for healthcare utilization as well as under-reporting of cases (Cibulskis et al., 2011).  
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Additionally, malaria's relationship with climate and environmental factors adds another layer 

of complexity to its measurement (Amek et al., 2012). Fortunately, advancements in remote 

sensing technologies now provide easier access to these variables. By incorporating climate and 

environmental factors along with other relevant covariates in models, we can produce estimates 

that are more accurate. This, in turn, supports the development of more effective, localized 

policies for malaria control and eradication (Alegana et al., 2016; Beloconi et al., 2023; 

Nyawanda et al., 2023).  

In this context, Health and Demographic Surveillance System (HDSS) sites provide the often-

missing denominator that is crucial for accurate estimates, particularly in many parts of SSA, 

where functional vital registration systems are lacking (Sankoh & Byass, 2012). When paired 

with a well-organized system for tracking illness and relevant climatic data, HDSS sites can 

become invaluable tools for gauging the burden of diseases like malaria, especially in settings 

with limited resources. 

We applied Bayesian hierarchical negative binomial models to explore how climate and 

environmental factors influence the incidence of malaria in children under five. This study was 

conducted at a long-established HDSS site in western Kenya from 2007 to 2012. By applying 

advanced statistical methodology to monthly data at the lowest administrative level, we offer a 

robust analytical framework for understanding and addressing a disease that continues to have 

a significant impact on global health.  

 

2.2. Materials and methods 

2.2.1. KEMRI-CGHR HDSS Profile 

The Kenya Medical Research Institute-Center for Global Health Research (KEMRI-CGHR) in 

collaboration with other partners has been conducting in-depth studies and monitoring diseases 

in western Kenya for over thirty years. In 2001, they established a health and demographic 
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surveillance system (KHDSS) (Figure 2.1) in the Asembo area of Siaya County, western 

Kenya, which expanded to Gem the following year (2002) and later on to Karemo in 2007 

(Adazu et al., 2005; Hamel et al., 2011; Odhiambo et al., 2012).  

Located on the northern shores of Lake Victoria, the KHDSS monitors a population of more 

than 240,000 individuals across 58,700 households. It is in a malaria endemic zone with high 

prevalence of malaria and HIV (Khagayi et al., 2019; National AIDS and STI Control 

Programme (NASCOP), 2020). Within the KHDSS area, malaria is the primary cause of death 

and hospital admissions for children under 5 years old (Amek et al., 2014; Desai et al., 2014; 

Kwambai et al., 2023). 

 

 

Figure 2.1: KHDSS study area in western Kenya showing villages and selected health facilities 

 

2.2.2. Malaria incidence 

From 2007 to 2012, in the KHDSS region encompassing 385 villages, children aged 5 and 

under who were admitted to medical facilities with confirmed or suspected fevers underwent 

malaria testing. The test involved taking a blood drop, placing it on a slide, staining it with 
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Giemsa solution, and examining it under a microscope. A confirmed case of malaria was 

identified if parasites were present along with a reported or documented fever. 

To ensure data quality and precision, microscopists specialized in blood slide reading were 

assessed for their proficiency every three months. Additionally, 10% of the slides from each 

testing site were re-examined as a quality check. Patients from the KHDSS area were pinpointed 

using unique personal identification numbers, and their data linked to their household locations. 

The analysis included only those children registered as residents of the KHDSS region. 

To measure the malaria incidence rate, we divided the number of confirmed cases by the total 

amount of time contributed by children under 5, both aggregated by village and month. The 

resulting data, monthly count of malaria-positive cases per village, served as our outcome 

variable. We also identified seasonal variations in malaria transmission, classifying "low peaks" 

in February and August and "high peaks" from January, March to July, and September to 

December, when transmission rates were significantly higher. 

 

2.2.3. Climatic and environmental factors 

We extracted remotely sensed climatic and environmental data collected by satellites and stored 

as rasters based on geocoded locations of the compounds from which participants admitted at 

local hospitals come from. Day land surface temperature (LST) at daily temporal and 1000m 

spatial resolution; Enhanced vegetation index (EVI) an advanced vegetation index created with 

higher sensitivity to biomass, atmospheric background, and soil condition at 16 days temporal 

and 500m spatial resolution; Land cover (LC) the observed physical cover and natural use of 

the land including the vegetation and human construction over the earth's surface at yearly 

temporal and 500m spatial resolution; were obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) website (16). Decadal rainfall data were downloaded via the 

United States Geological Surveys’ Famine Early Warning Systems Network (USGS FEWS) 
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data portal (https://earlywarning.usgs.gov/fews); while altitude data was extracted from the 

Shuttle Radar Topography Mission (SRTM) by the U.S. Geological Survey - Earth Resources 

Observation and Science (USGS EROS) Data Center (https://eros.usgs.gov/elevation-

products).  

To account for the climatic/environmental lag effects on malaria transmission, we extracted the 

variables up to three months prior to the month of illness for each household from which a case 

came from. We categorized temperature data into three levels as >250, 250 -350, >350, based on 

the nonlinear effect of temperature on mosquito and parasite survival and hence malaria 

transmission (Bayoh & Lindsay, 2003; Snow & Omumbo, 2006). Land cover was included as 

a continuous variable based on the year of data collection while EVI was also included as a 

continuous variable by month. Rainfall was classified into 3 categories as; greater than 28mm, 

between 28mm and 50mm, and more than 50mm; based on the biological plausibility of 

mosquito/parasite life cycle and malaria infection in humans (Rotejanaprasert et al., 2021). The 

effects were measured by looking at different lags or time periods. The first month's effect was 

referred to as "lag0", the effect from the previous month as "lag_1", the effect from two months 

prior as "lag_2", and the effect from three months prior as "lag_3". These effects were 

considered for each of the other environmental and climatic factors, including Land Surface 

Temperature (LST), Enhanced Vegetation Index (EVI), and Rainfall. 

We generated average values over different periods. The two-month average included the 

current month and one month prior to collection; the three-month average consisted of the 

current month and the two preceding months; and the four-month average incorporated the 

current month along with the three previous months prior to collection. 

 

https://earlywarning.usgs.gov/fews
https://eros.usgs.gov/elevation-products
https://eros.usgs.gov/elevation-products
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2.2.4. Household and socioeconomic data 

From the KHDSS household surveys, data on changes in migration status, deaths and births 

were used to compute person-time in years under observation (pyo) for all children aged 0-59 

months who met the KHDSS residency requirements.  The pyo was summed from 1st January 

2007 or the date of enrolment, until the child exited or lost residency status due to death, out-

migration, loss to follow-up, or reaching the observation period's end on December 31, 2012. 

Person-time was adjusted by a factor of 0.5 to account for health-seeking behaviour in case of 

fever reported at home among children in this study area (Bigogo et al., 2010).  

In addition, household level data on socio-economic indicators, house types, and bed net 

ownership were obtained. Using these data, we created a composite socio-economic status 

index through multiple correspondence analysis (MCA) as previously described (Amek et al., 

2015). Household’ scores were aggregated at village level and ranked into five quintiles, 

classified as “Richest” for the well off, “Richer”, “Middle”, “Poorer” and “Poorest” for the 

lowest rank.  

Bed net ownership was calculated as the percentage of households per village owning at least 

one net for every two people (Roll Back Malaria Monitoring & Evaluation Reference Group, 

2018). Lastly, the distance to health facilities was determined by measuring the Euclidean 

difference between the household and the nearest health facility in kilometres. These distances 

were aggregated at the village level then classified into 3 categories as; less than 1km, 1 to 2km, 

and greater than 2km. 

 

2.2.5. Bayesian modelling 

Using unique Personal Identification Numbers (PIDs), data from the health facilities were 

linked to households, and Remote Sensing (RS) data. This was the aggregated at monthly and 

village level. We calculated malaria incidence rates by dividing the number of microscopically 
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confirmed positives slide over the under-5 village population in that month. The incidence rate 

was further adjusted by multiplying the person time of years (pyo) contributed by children under 

five years by a factor of 0.5 to account for the health-seeking behaviour in this age group as 

shown in previous studies (Bigogo et al., 2010).  

To explore the factors influencing malaria incidence, Bayesian spatiotemporal negative 

binomial models were developed, adjusting for; bed net use, seasonality, peak months of 

transmission, climatic/environmental factors, distance to health facilities and water bodies, 

socioeconomic status, as well as spatial and temporal random effects. Likewise, the pyo was 

treated as an offset term in the model. An initial investigation of the association between the 

covariates and incidence rate was carried out in Stata 14 for variable selection. Only those 

variables that were statistically significant at a 95% confidence interval were included in the 

Bayesian models. Two models were constructed; a non-spatial model including only the 

aforementioned covariates; and a second model that took into consideration the spatial and 

temporal effects. The spatial variation was treated as village-specific random effects, with latent 

observations of a spatial Gaussian process with a mean of zero and a covariance assuming an 

exponential variation function of distance between two villages (Diggle et al., 1998). Temporal 

variation was modelled using a first-order autoregressive process with monthly random effects.  

Suitability of the models was checked using the Deviance Information Criteria (DIC), where 

the best model was determined by the smallest DIC value (Spiegelhalter et al., 2002). The 

Bayesian models were fitted in OpenBugs version 3.1.2 (Imperial College and Medical 

Research Council London, UK) using Markov Chain Monte Carlo (MCMC) simulation. 

 

Ethical statement 

Written informed consent was obtained from the heads of all compounds within the KHDSS, 

who agreed to participate in the studies. They provided consent on behalf of all members, 

including children, for the collection of household data. In instances where individuals from the 
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KHDSS, or caregivers in the case of minors, visited health facilities for medical care, additional 

consent was obtained for the collection and use of data gathered during the visit. The protocol 

for the KHDSS (within which this study is incorporated) and the consent procedures undergo 

annual review and approval by the ethical review boards of both KEMRI (#1801, Nairobi, 

Kenya) and CDC (#3308, Atlanta, GA). 

 

2.3. Results 

Between January 2007 and December 2018, 15,095 children under the age of 5 years were 

admitted to select sentinel health facilities in the KHDSS. During this period, children under 5 

years contributed 68,240 person-years of observation (pyo) for a malaria incidence rate of 628 

cases per 1,000 pyo. Annually, malaria incidence ranged from 448 cases per 1,000 pyo in 2007, 

peaked at 775 cases per 1,000 pyo in 2009, and gradually declined to 540 cases per 1,000 pyo 

by 2012 (Table 2.1). 

Table 2.1: Distribution of average malaria incidence rates by year of study 

Year 
Person years of 

observation (pyo) 
Malaria cases 

Adj. Malaria incidence 

rate (cases per 1000 pyo) 

2007 9571 4290 448 (435-462) 

2008 14963 10160 679 (666-692) 

2009 11736 9099 775 (759-791) 

2010 11975 8343 697 (682-712) 

2011 10523 5826 554 (540-568) 

2012 9472 5115 540 (525-555) 

Total 68240 42833 628 (622-634) 

 

From the overall surveys, the spatial distribution of the cases in all the 370 villages is shown 

below (Figure 2.2).   
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Figure 2.2: Observed malaria cases at health facilities for the period 2007-2012 

 

The distribution of cases by month ranged between 344 cases per 1000 pyo in February 2007 

to a maximum of 838 cases per 1000 pyo in December 2009. There were observable fluctuations 

in incidence rates over the course of the year, exhibiting distinct peaks and troughs. Specifically, 

these peaks occurred in two periods: Between May to July and November to January of each 

year (Figure 2.3). The temporal association between malaria incidence and selected 

environmental or climatic variables is also shown below. Notably, the peaks in monthly 

Enhanced Vegetation Index (EVI) closely matched with the peaks of malaria incidence rates, 

while increases in temperature and rainfall showed a lagged effect in relation to incidence. 

Overall, the temporal trend in incidence increased between 2007 and 2009, followed by a 

gradual decline in the subsequent months.  
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Figure 2.3: Temporal variation of climatic/environmental and factors malaria incidence in children under 5 years of 

age  

 

Model based results 

We fitted two distinct Bayesian models to assess the effects on malaria incidence: model 1, 

excluding spatial and temporal factors, and model 2, incorporating both spatial and temporal 

effects. Table 2.2 illustrates the adjusted parameter estimates along with their corresponding 

95% Bayesian credible intervals (BCI) for malaria incidence. 
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In the non-spatial model (model 1), several factors such as proximity to health facilities, socio-

economic status (ses), the year of the study, study area, transmission peaks, altitude, land cover, 

and EVI were identified as statistically important in influencing malaria incidence among 

children under 5. Conversely, in the spatio-temporal model (model 2), only socio-economic 

status, study area, transmission peaks, and altitude emerged as important factors. 

Both models pointed to the study area, altitude, and peak months of transmission as the most 

potent risk factors. Specifically, the Karemo region exhibited a three-fold increase (IRR=3.19; 

95% CI: 2.05-5.68) in malaria incidence relative to the Asembo region. Although transmission 

persists throughout the year, the risk was 1.3 times higher during the peak months of March to 

July and September to January (Figure 2.3), compared to February and August (IRR=1.32; 

95% CI: 1.20-1.47). Additionally, higher altitude areas were associated with a reduced risk of 

infection as opposed to lower-altitude regions. 

The superior model was found to be the spatio-temporal Bayesian (model 2), as it demonstrated 

a lower DIC value. Furthermore, the estimated spatial variation was strongly associated to 

malaria incidence, overshadowing temporal correlations. The minimum distance at which a 5% 

significant spatial correlation was detected stood at 10.4 km (95% CI: 8.08-32.83). 

 

  



Chapter 2: Spatio-temporal effect of climatic and environmental factors on malaria incidence among 

children under 5 years in Western Kenya 

 

   27 

Table 2.2: Spatio-temporal Posterior estimates (median) of predictors for malaria incidence among children aged >5 

years 

Covariates  Non spatio-temporal model Spatio-temporal model 

IRR (95% BCI) IRR (95% BCI) 

Distance to 

health facility 
0 – 1 km 1 1 

 1 – 2 km 1.15 (1.10-1.21) 1.05 (0.75-1.35) 

 >2 km 1.43 (1.35-1.51) 1.22 (0.80-1.55) 

Ses Poorest 1 1 

 Poorer 0.97 (0.91-1.03) 0.92 (0.86-0.97) 

 Middle 0.97 (0.91-1.03) 1.01 (0.96-1.07) 

 Richer 0.93 (0.88-0.99) 0.99 (0.93-1.04) 

 Richest 0.87 (0.82-0.93) 1.02 (0.96-1.08) 

Year 2007 1 1 

 2008 1.61 (1.50-1.73) 1.47 (0.99-2.55) 

 2009 1.76 (1.62-1.89) 1.40 (0.79-2.49) 

 2010 1.67 (1.56-1.79) 1.26 (0.62-2.77) 

 2011 1.30 (1.20-1.40) 0.86 (0.44-2.17) 

 2012 1.27 (1.17-1.37) 0.80 (0.39-1.96) 

Area Asembo 1 1 

 Gem 1.56 (1.45-1.69) 1.19 (0.60-3.11) 

 Karemo 1.76 (1.65-1.88)  3.19 (2.05-5.68) 

Transmission 

season 

Low 1 1 

High 1.33 (1.26-1.41) 1.32 (1.20-1.47) 

Altitude 1147 – 1243 1 1 

 1244 – 1293 0.89 (0.84-0.94) 0.62 (0.41-1.01) 

 1294 – 1327 0.68 (0.64-0.72) 0.45 (0.25-0.76) 

 1328 – 1365 0.82 (0.76-0.87) 0.74 (0.30-1.15) 

 >1365 0.58 (0.54-0.63) 0.69 (0.25-1.24) 

Land cover  Grassland/Savannah 1 1 

 Permanent Wetlands 1.08 (0.78-1.42) 0.88 (0.64-1.19) 

 Cropland 1.84 (1.35-2.35) 1.29 (0.97-1.73) 

 Built up/Urban 1.63 (1.20-2.08) 1.24 (0.93-1.66) 

Natural Vegetation 1.52 (1.13-1.93) 1.20 (0.90-1.62) 

EVI (Lag0)  1.34 (1.04-1.71) 1.00 (0.70-1.67) 

Rainfall (Lag_3) <28mm 1 1 

 >28mm – 50mm 1.00 (0.96-1.05) 0.99 (0.93-1.05) 

 >50mm 0.99 (0.94-1.04) 0.96 (0.88-1.04) 

LST (Day) <250c 1 1 

 250c – 350c 1.01 (0.94-1.07) 1.00 (0.93-1.08) 

 >350c 0.95 (0.84-1.07) 0.88 (0.77-1.01) 

Spatial Variation  - 381.4 (267.9-1204.0) 

Temporal 

Variation 
 - 0.04 (0.03-0.06) 

Range**  - 10.4 (8.08-32.83) 

DIC  77570.0 63860.0 

BCI=Bayesian credible interval 

DIC=deviance information criterion 

** Minimum distance in kilometres at which spatial correlation is significant at 5% 
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2.4. Discussion 

In this study, we provide robust estimates of malaria incidence at population level in children 

under five years in a malaria endemic region of western Kenya between 2007 and 2012. The 

incidence was relatively high compared to other regions of the country and remained stable 

during the whole study period. Comprising 15,095 young children admitted to designated health 

centres, this study builds a robust foundation for examining trends, contributing factors, and 

spatiotemporal links related to malaria occurrences in this at-risk group. The outcomes of this 

study elucidate a complex landscape of malaria prevalence, highlighting key findings and 

suggesting possible areas of improvement in malaria incidence estimation. These have been 

revised and explored further in guiding follow-up analyses. 

Findings this study also show that incidence among children aged five years and below was 

extremely high compared to other regional and countrywide estimates. The estimated incidence 

rates of between 450 to 775 cases per 1,000 pyo were way above the regional average of less 

than 100 cases per 1000 pyo given by the WHO/World Bank (Roser & Ritchie, 2019) and 

national indicator surveys during the same period (Division of Malaria Control [Ministry of 

Public Health and Sanitation] et al., 2011). This reinforces the need for continued and intense 

localized control measures to reduce the burden of malaria in the lake endemic region, different 

from other places in the country (Division of National Malaria Programme (DNMP) & ICF, 

2021). 

While the rate of transmission remained elevated year-round, our data point to notable 

seasonality. Transmission peaks were consistently experienced between March to July and 

September to January every year. This confirms that malaria is an enduring public health 

challenge that requires sustained monitoring and control measures. Our recent subsequent 

analysis confirmed this finding (Nyawanda et al., 2023), and had been observed in other studies 

previously (Otambo et al., 2022; Sewe et al., 2015). This warrants having control and 

preventative interventions to be enhanced during and following the peaks in the rainy seasons. 
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Interestingly, climatic elements did not serve as decisive drivers of malaria prevalence in this 

analysis. Although mean temperature and rainfall exhibited some association with the incidence 

rates, the relationship was not statistically important. Lagged peaks in mean monthly 

temperature and rainfall rose just before the peaks in monthly malaria incidence rates. A 

previous study in the same region on a less fine scale using aggregated data at the district level 

(Sewe et al., 2015) and subsequent analysis of a smaller subset in this same population that was 

followed-up more actively (Nyawanda et al., 2023) showed lagged effects of both rain and day 

temperatures. In that sub-analysis, increase in mean temperature was associated with a decline 

in malaria incidence while rainfall increase was associated with lower incidence. The lack of 

association could have been due to the surveillance in the larger population being more passive 

compared to the smaller intense region with an active surveillance. While the aggregated data 

might have masked the spatial differences in our study. Alternatively, this could have been 

because the study period was bit too short for this kind of analysis since subsequent sub-analysis 

for double the period of time showed otherwise (Nyawanda et al., 2023).  

Enhanced vegetation index (EVI), a short term vegetation indicator of a combination of suitable 

climatic conditions of optimal rainfall and temperature (Wang et al., 2022) in the previous few 

weeks was associated with increased incidence. The correlation between EVI and incidence 

rates reveals a close relationship between vegetation and malaria transmission. This could 

indicate that places with denser vegetation provide optimal breeding grounds for mosquitoes 

that carry malaria parasites (Hinne et al., 2021; Obsomer et al., 2007). This association confirms 

that a combination of suitable climatic conditions are important drivers of malaria transmission, 

rather than just one distinct variable (Nyawanda et al., 2023). 

Socio-economic status, study area, and altitude emerged as significant risk factors. These 

determinants align with other research, suggesting that malaria risk in the Karemo region was 

higher than in the Asembo and Gem regions (Khagayi et al., 2017) which could be due to other 

health systems indicators not measure but vary in the three sub-regions. The risk diminished in 
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areas of higher altitude and been observed in other studies too (Afrane et al., 2014; Oduma et 

al., 2023). Lower temperatures at higher altitudes, which directly affect development and 

survival of mosquitos and Plasmodium parasites (Githeko et al., 2006; Villena et al., 2022), 

might have caused the observed pattern. These variables hint at an intricate interplay among 

socio-economic factors, geography, and healthcare-seeking behaviours, which might be more 

significant due to the limited geographical scope of the study. 

Some limitations of the study could have been due to incorrectly adjusting for health seeking 

behaviour by village and month since the adjustment used was a one-time survey in the KHDSS 

and assumed to be uniform throughout the study period and by month. This adjustment was 

also based on children seeking hospital care for reported fever at home and not confirmed 

malaria cases. Our subsequent in-depth analysis of a smaller, actively monitored subgroup from 

the same population, however, accounted for these shortcomings. 

 

2.5. Conclusion 

Robust surveillance remains a cornerstone in the battle against malaria, particularly given the 

much higher incidence rates observed in this study compared to regional estimates. The evident 

spatial and seasonal variations, regional and socioeconomic influences stress the necessity for 

localized, timely preventive and control strategies. 
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2.6. Appendix 

Appendix 2.6.1: Bayesian models and methods  

In our study, we employ Bayesian models and methods to analyse malaria cases among children 

under 5 years of age. Let Yjt represent the average number of malaria cases in village j at time 

interval t. We assume Yjt follows a negative binomial distribution:  

Yjt ~ NegBin (Pjt, r) 

Where, Pjt, is the proportion of deaths in village j at time interval  t  and r is the dispersion 

parameter with, 

𝜇𝑗 = 𝑟
1−𝑝

𝑝
  and 𝜎𝑖

2 = 𝑟(1 − 𝑝)𝑝−2. 

We model the relationship between various covariates X and mortality status in each village 

using a logit model: 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑗𝑡) = 𝑙𝑜𝑔𝑖𝑡(𝑁𝑗𝑡) + 𝛽0 + ∑ 𝛽𝑢
𝑘
1 𝑋𝑢 + 𝜙𝑗 + 𝜀𝑡               , u=1,2,……k 

 

Here, 𝜇𝑗𝑡  represents the number of deaths in village j at time t, while 𝑁𝑗𝑡  denotes the total 

person-time in discrete months. 𝛽𝑖 are the regression coefficients, 𝜙𝑗 signifies village specific 

spatial effects and 𝜀𝑡 represents temporal (monthly) random effects.  

We assumed 𝜙𝑗  to be a parameter from a latent spatial process modeled by a Gaussian 

distribution with an exponential correlation function based on distance between villages 

irrespective of the direction using an exponential correlation function. 

~ MVN(0, )  , 
2

1 exp( )kl kld  = −  

Where 
2

1  is the spatial variation, kld  is the distance between villages k and l , and   is the 

rate of correlation decay with increasing distance.  The minimum distance at which the spatial 

variation is less than 5% (range) and was obtained from the value 3 / r . The temporal effect (

t ) is modelled by an autoregressive process of order 2.  
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We employed non-informative normal prior distributions for the regression coefficients with 

mean zero and large variance for the βi i=1,……; inverse gamma priors for r ~ IG(1.01, 0.001),

  
s

e

2
 and  s

2
; and a gamma prior for  , i,e. 

  
s

e

2 ,s 2 ~ IG(2.01,1.01)and  ~ G (0.01, 0.01). 

The model was implemented using Markov Chain Monte Carlo (MCMC) simulations in 

OpenBUGS version 3.1.2. (Imperial College and Medical Council, London, UK) to estimate 

model parameters (Gelfand & Smith, 1990). We ran a single chain sampler and discarded the 

initial 5,000 iterations. Convergence was assessed after 100,000 iterations using the Gelman-

Rubin diagnostics. (Gelman & Rubin, 1992). 
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Appendix 2.6.2: Posterior inclusion probabilities for climatic covariates  

Indicator  Probability of 

inclusion 

(%) 

Climatic factors  

Rainfall  

Rain_01 0.0 

Rain_01* 0.0 

Rain_012 0.0 

Rain_012* 0.0 

Rain_0123 100 

Rain_0123* 0.0 

EVI  

EVI_01 100 

EVI_01* 0.0 

EVI_012 0.0 

EVI_012* 0.0 

EVI_0123 0.0 

EVI_0123* 0.0 

LSTD  

LSTD_01 19.0 

LSTD_01* 0.0 

LSTD_012 58.0 

LSTD_012* 0.0 

LSTD_0123 21.0 

LSTD_0123* 0.0 

LSTN  

LSTN_01 0.0 

LSTN_01* 0.0 

LSTN_012 9.8 

LSTN_012* 0.0 

LSTN_0123 79.4 

LSTN_0123* 0.0 

Altitude  

Altitude 0.0 

Altitude* 100.0 
*Categorical 

In bold: variables with highest inclusion probability that were fitted in the spatio-temporal model 
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Abstract 

Introduction: 

The effect of malaria exposure on mortality using health facility incidence data as a measure of 

transmission has not been well investigated. Health and demographic surveillance systems 

(HDSS) routinely capture data on mortality, interventions and other household related 

indicators, offering a unique platform for estimating and monitoring the incidence-mortality 

relationship in space and time. 

 

Methods: 

Mortality data from the HDSS located in Western Kenya collected from 2007 to 2012 and 

linked to health facility incidence data were analysed using Bayesian spatio-temporal survival 

models to investigate the relation between mortality (all-cause/malaria-specific) and malaria 

incidence across all age groups. The analysis adjusted for insecticide-treated net (ITN) 

ownership, socio-economic status (SES), distance to health facilities and altitude. The estimates 

obtained were used to quantify excess mortality due to malaria exposure. 

 

Results: 

Our models identified a strong positive relationship between slide positivity rate (SPR) and all-

cause mortality in young children 1-4 years (HR=4.29; 95% CI: 2.78-13.29) and all ages 

combined (HR=1.55; 1.04-2.80). SPR had a strong positive association with malaria-specific 

mortality in young children (HR=9.48; 5.11-37.94), however, in older children (5-14 years), it 

was associated with a reduction in malaria specific mortality (HR=0.02; 0.003-0.33). 

 

Conclusion: 

SPR as a measure of transmission captures well the association between malaria transmission 

intensity and all-cause/malaria mortality. This offers a quick and efficient way to monitor 

malaria burden. Excess mortality estimates indicate that small changes in malaria incidence 

substantially reduce overall and malaria specific mortality. 

 

 

 

 

 

 

 

 

Key Words: Malaria mortality, Incidence, Bayesian spatio-temporal, Health and demographic 

surveillance system, Western Kenya 
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3.1. Introduction 

Morbidity and mortality estimates over the last decade across age groups in sub Saharan Africa 

(SSA) remain high compared to other regions despite an overall global reduction. The biggest 

burden is due to infectious diseases that largely affect children below 5 years of age with one 

of the main drivers of these consistently high estimates being malaria (Murray et al., 2014; 

World Health Organization, 2015b). Recent studies and estimates show that malaria in SSA has 

reduced considerably, with a drop of over 37 % for cases and 60 % of deaths between the years 

2000 and 2015 (Bhatt et al., 2015). In western Kenya, the Kenya Medical Research Institute 

and Centers for Disease Control and Prevention’s run a Health and Demographic Surveillance 

System (KHDSS) which has shown that between 2003 and 2010 there was a 67 % reduction in 

malaria mortality in all ages and 70 % in children below the age of 5 years even though it 

remains a leading cause of death (Desai et al., 2014). 

Malaria infection is driven by different factors and measuring its burden has largely been 

problematic, especially in areas where the disease’s health impact is huge. Malaria transmission 

intensity is an important measure of this burden and can largely be classified into infection in 

humans (parasite prevalence and incidence rates), interaction between mosquitos and humans 

(entomological inoculation rate (EIR)) and vector measures like (mosquito density, vectoral 

capacity and sporozoite rate). The links between the above drivers of transmission and mortality 

still need further investigation so as to understand and quantify them well. Recent studies have 

concentrated on measures of vector density and interaction between mosquitos and humans to 

measure transmission intensity and link it to both all-cause and malaria specific mortality 

(Amek, 2013; Carneiro et al., 2010; Gething et al., 2016; Rumisha et al., 2014). Meanwhile 

measures of infection in humans have largely been carried out either through parasite 

prevalence or disease rates as these can be done as one-off surveys with ease especially during 

peak transmission times. Incidence as a measure of transmission has largely been unused since 

it requires more investment of time and resources. Ensuring the correct denominator is used 
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while taking into account health seeking behaviour, poor health systems and diagnostic 

challenges limit its usability and makes quality data unavailable.  

Slide positivity rate (SPR), has been used as a surrogate for malaria incidence and a key 

indicator of temporal trends in malaria disease burden. It measures the proportion of slide 

confirmed malaria positive cases out of cases examined, and has been shown to be a good 

predictor of incidence (Bi et al., 2012; Boyce et al., 2016; Jensen et al., 2009). It is relatively 

inexpensive compared to other measures of transmission and easy to monitor at sentinel health 

facilities hence a useful measure of not only trends but the overall burden of malaria disease. 

Despite global improvements in data collection and use, there is a large gap of adequate and 

quality data on malaria cases and deaths in low and middle income countries. Estimates 

provided from these data are fraught with inherent differences in data collection methodology, 

analysis and interpretations. This could be attributed to poor health surveillance systems that 

are incapable of collecting quality data to be used in informing policy (Mikkelsen et al., 2015; 

Setel et al., 2007). It is important therefore to explore and determine the best modes of 

appropriately measuring malaria burden so as to allow for accurate determination of progress 

and assess the contribution of different interventions especially at local levels. With this in 

mind, health and demographic surveillance system (HDSS) sites were established in different 

regions of SSA, Asia and Oceania to supplement efforts in providing accurate data on 

demography and public health (Adazu et al., 2005; Ye et al., 2012). These HDSS sites have 

accumulated a wealth of information that is well aligned in both space and time, offering a 

unique platform to monitor and provide accurate estimates of disease at a local level. The other 

benefit that HDSS sites confers is the intensity and longevity of its operations which provide 

consistently regular longitudinal data that can aid policy making in resource strained settings 

(Bos, 2004). In addition to household survey data, HDSS sites, using verbal autopsy (VA) 

collect data on morality that is used to determine cause of death, which is an important tool, 
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especially where conventional autopsy data is not available (Leitao et al., 2013). HDSS sites 

are therefore an important platform for malaria burden estimation. 

The Malaria Transmission Intensity and Mortality Burden across Africa (MTIMBA) project 

sought to analyse data on malaria transmission intensity and burden in Africa from 2002 to 

2004. Project results indicated that malaria transmission as measured by EIR drives mortality 

especially in younger children and showed the importance of small scale heterogeneity in 

estimating malaria related deaths. However their analysis did not include data on malaria 

morbidity or interventions. Furthermore, the two year duration of the project could not allow 

adequate assessment of trends and changes in malaria mortality in relation to interventions. 

In this study, malaria indicator incidence data collected from selected health facilities was 

linked to household data so as to improve estimates of malaria related burden by including more 

malaria transmission indicators over a period of 6 years in the Kenya Medical Research 

Institute’s Health and Demographic Surveillance System (KHDSS) of western Kenya. We also 

sought to explore the relationship between slide positivity rate from these health facilities as a 

measure of incidence and all-cause/malaria-specific mortality derived from verbal autopsy 

(VA). Bayesian geostatistical spatio-temporal models were used to estimate the contribution of 

SPR to malaria mortality in an area of almost year round transmission. 

 

3.2. Materials and methods 

3.2.1. Study area and population 

The KHDSS has been described in details elsewhere (Adazu et al., 2005; Odhiambo et al., 

2012). In brief, the KHDSS is located in three regions (Asembo, Gem and Karemo) of rural 

western Kenya, Siaya County (Figure 3.1).  The study area borders the northern shores of Lake 

Victoria; is spread over 700km2 divided into 385 villages with a mid-year population of over 

240,600 people in 58,700 households. The population is predominantly one ethnic group who 



Chapter 3: Bayesian spatio-temporal modelling of mortality in relation to malaria incidence in western Kenya 

 

   40 

derive a big part of their livelihood from subsistence farming and fishing.  It is located in a 

malaria endemic zone having round the year transmission with peaks in May-June and 

November-December (Amek, 2013). Infectious diseases and HIV/AIDS are the other important 

causes of morbidity and mortality (Adazu et al., 2005; Division of Malaria Control [Ministry 

of Public Health and Sanitation] et al., 2011; Odhiambo et al., 2012).  

 

 

Figure 3.1: KHDSS study area in western Kenya showing villages and sentinel health facilities 

3.2.2. Slide positivity rates 

Children aged below 14 years admitted at selected sentinel health facilities within the KHDSS 

(Figure 3.1) from January 2007 to December 2012 with history of or documented fever were 

screened for malaria infection by collecting a blood slide for microscopy examination 

regardless of their residency status. Blood smears were collected and screened microscopically 

after staining with giemsa. Presence of parasites and reported or documented fever was 

classified as malaria infection. All the microscopists at these health facilities are evaluated after 

every 3 months for competency in reading malaria microscopy slides and 10 % of the slides are 
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rechecked for quality control. However for this analysis, we restricted our numbers to patients 

registered and residing in the study area to calculate the slide positivity rate (SPR). The data 

were aggregated at monthly intervals and the slide positivity rate (SPR) calculated as the 

proportion of malaria positive cases as determined by microscopy out of the total cases tested.  

 

3.2.3. KHDSS surveillance data and verbal autopsy  

The KHDSS population has been monitored from an initial census in 2001at household level 

to establish the number of people in a geographically defined region followed by tri-annual 

visits after every 4 months to establish any changes due to migration, deaths or births. In 

addition, other data was collected at household level for socio-economic indicators, house types 

and insecticide-treated net (ITN) ownership.  

The verbal autopsy (VA) methodology and data used in this study has been described in details 

elsewhere (Amek et al., 2014). After death of a registered KHDSS resident, a notification is 

filled as soon as possible by a reporter based in the same village. At least 3 weeks are given to 

allow for mourning before an interview is conducted. A detailed questionnaire is printed to 

collect data on the deceased last disease, signs, symptoms and medical history. A trained 

interviewer looks for the most appropriate interviewee who was closest to the deceased and 

knew about the illness, disease or condition that led to death to administer the questionnaire.   

The data is then captured to an electronic database, validated and processed using the InterVA 

program which is a computer based expert opinion algorithm that is based on the Bayes 

theorem. It uses probabilistic methods to interpret verbal autopsy data using a priori 

approximations of probabilities related to diseases and last symptoms exhibited by the diseased 

so as to determine the most probable cause of death based on these data (Byass et al., 2012). 

Output from the InterVA model was used to determine the most probable causes of death 

including malaria.  
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Data on household assets ownership and house characteristics was used to create a composite 

socio-economic status index using the multiple correspondence analysis (MCA) technique as 

described in previous studies (Amek et al., 2015). The household scores were then aggregated 

at village level and ranked into 3 categories, i.e. least poor for the well off, poor for the average 

and poorest for the lowest rank. Bed net ownership was used as a measure of existing 

interventions that have implemented in the area. It was calculated as a percentage of households 

owning at least one net for every two people per village (MEASURE Evaluation et al., 2013). 

The data used are described in details in appendix 1. 

 

3.2.4. Statistical analysis 

All registered residents in the KHDSS villages during the period 2007 to 2012 were included 

in the analysis. To qualify as a resident, a person has to stay continuously in the study area for 

at least 3 calendar months or is born to a resident mother while she is a resident. The participants 

were grouped into 6 age groups as follows: 0-28 days (neonates), 1-11 months (infants), 1-4 

years (child), 5-14 years (older child), 15-59 (adults) and 60+ (elderly).  

Person time at risk in months was calculated as the total time spent in the study area from date 

of enrolment until they exited through outmigration or death; alternatively they stopped being 

observed due to loss to follow-up or reached the end of the observation period set at 31st 

December 2012.  

Crude and age specific all-cause mortality and malaria rates were calculated by dividing the 

deaths in each group with the total person years observed (pyo). For each age group, Cox 

proportional hazards models were approximated using negative binomial regression (Manda 

and Meyer 2005) with time to death in person months as discrete contribution of each resident 

summed up at village level. Initial exploratory analysis was carried out in Stata 14 (Stata 

Corporation USA) to assess bivariate models of the relationship between the different factors 

and all-cause or malaria specific mortality. We included all the variables that were at 20% 
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statistical significance in bivariate analysis into the Bayesian spatiotemporal negative binomial 

regression model. Variables included in the model were incidence risk by age group and village, 

age, bed net ownership, distance to health facilities, altitude, socio-economic status, area of 

residence and year of study. Spatial variation was included in the model as village specific 

random effects through latent observations of a spatial Gaussian process with mean zero and a 

covariance that assumed an exponential variation function of distance between two villages 

(Diggle et al., 1998). Temporal variation was modelled by a first order autoregressive process 

using monthly random effects. Bayesian models were fitted in OpenBugs version 3.1.2 

(Imperial College and Medical Research Council London, UK) using Markov Chain Monte 

Carlo (MCMC) simulation. Covariate effects from the Bayesian geo-statistical model were 

considered statistically important when the credible intervals (CI) of the estimated regression 

coefficients did not include zero. Due to the nature of Bayesian statistical inference, we replace 

the terminology statistically significant by statistically important when reporting our results. 

Details of the Bayesian geostatistical temporal model are given in the Appendix 2. 

3.2.5. Excess mortality attributed to slide positivity 

To quantify the excess mortality rate (EMR), we used model coefficients for each age category 

to determine the mortality rates at different levels due to slide positivity rate (SPR). We 

calculated the difference between the mortality rates (MR) when SPR is greater than zero and 

when SPR is equal to zero. 

𝐸𝑀𝑅 = 𝑀𝑅(𝑆𝑃𝑅 > 0 − 𝑀𝑅(𝑆𝑃𝑅 = 0) 

The calculated EMR values were then plotted against SPR between 0.001 and 100 at intervals 

of 0.005. 
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3.3. Results 

3.3.1. Descriptive statistics 

During the period January 2007 to December 2012, there were a total of 375,447 uniquely 

registered residents in the study area contributing a total of 1,360,933 person years of 

observation (pyo). We observed an overall crude death rate of 13.8 deaths per 1,000 pyo, with 

a high of 18.8 deaths per 1,000 pyo in 2008 to a low of 10.2 deaths per 1,000 pyo in 2012. 

Malaria mortality was at 2.1 deaths per 1,000 pyo over the same period and followed a similar 

trend to the all-cause mortality rates. Alternatively slide positivity rate (SPR) during the same 

period was 52.5 % and followed a similar trend to the mortality rates over the years as shown 

in Table 3.1. 

Table 3.1: All-cause mortality, malaria specific mortality and malaria risk rates by year 

Year 

Slide 

positivity 

rate (%) 

Person years of 

observation* 

All-cause death rate 

per 1,000 pyo 

(95% CI) 

Malaria death rate  

per 1,000 pyo 

(95% CI) 

2007 41.3 % 181537 15.5 (14.9, 16.1) 1.3 (1.2, 1.5) 

2008 58.0 % 230374 18.8 (18.2, 19.3) 3.5 (3.3, 3.7) 

2009 59.0 % 230373 15.6 (15.1, 16.2) 2.9 (2.6, 3.1) 

2010 56.3 % 233871 12.4 (11.9, 12.8) 2.1 (1.9, 2.3) 

2011 47.5 % 238524 10.9 (10.5, 11.3) 1.4 (1.2, 1.5) 

2012 46.4 % 246254 10.2 (9.8, 10.6) 1.4 (1.2, 1.5) 

Overall 52.5 % 1360933 13.8 (13.6, 14.0) 2.1 (2.0, 1.3) 
*person years of observation (pyo) used for calculating all cause and malaria specific mortality only 

 

Figure 3.2 and Figure 3.3 show the yearly and monthly trends in all-cause deaths, malaria 

specific deaths and malaria risk. The monthly trends show some peaks for all-cause and malaria 

specific deaths but not so distinct for SPR.  The SPR rose sharply between December 2007 and 

January 2008 and stayed at these levels until the end of 2010, when there was a gradual drop 

from 2011 to 2012. 
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Figure 3.2: Yearly all-cause and malaria specific death rates versus malaria risk 

 

 

 
Figure 3.3: Monthly all-cause/malaria specific mortality versus slide positivity rate 
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Out of the total 18,729 deaths, 17,016 (91 %) had cause of death assigned by the InterVA. The 

top causes of deaths in the whole population were HIV/AIDS, malaria and pulmonary 

tuberculosis (Figure 3.4).  Over the years, there was a downwards trend for most of the diseases 

as a proportion of overall deaths, there was however an upwards spike in malaria deaths in the 

years 2008/2009 which coincided with a drop for HIV/AIDS, acute respiratory infections, 

cardio-vascular illnesses and those grouped as others.  

 
Figure 3.4: Main causes of death in the KHDSS  

 

Figure 3.5 depicts the distribution of main causes of deaths including malaria among the 

different age groups. The top causes of mortality were pneumonia and births asphyxia for 

neonates, acute respiratory infection/pneumonia and malaria for infants, malaria and HIV/AIDS 

for both younger and older children, HIV/AIDS and pulmonary tuberculosis for adults, while 

for the elderly, the main causes were neoplasms and cardio-vascular diseases. Overall, the 

proportion of malaria was highest in the child age group (45 %), followed by older children (33 

%) and infants (31 %). 
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Figure 3.5: Main causes of death in the KHDSS by age groups  

 

ITN ownership, distance to health facilities, socio-economic status, year of study, region and 

altitude were associated with either all-cause or malaria specific mortality in at least one of the 

age groups. For comparability purposes, these were included in all the seven Bayesian 

geostatistical models in both malaria-specific and all-cause mortality analysis. 
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3.3.2. Model based results 

Table 3.2 shows the results from the Bayesian spatio-temporal negative binomial regression 

models for all-cause mortality by age groups at village levels. SPR was positively associated 

with all-cause mortality among infants, child, elderly and combined age group analysis. 

However, this association was important in the child (HR=4.29; 95 % CI: 2.78-13.29) and the 

combined age-group analysis (HR=1.55; 95 % CI: 1.04-2.80). SPR was not associated with all-

cause mortality in neonates, older children and adults.  

Average distance to health facilities was positively associated with increased all-cause mortality 

among all age groups. We observed higher mortality rates for distances greater than 1km or 

greater than 2km on average from health facilities. The association was important for neonates, 

infants, child and the combined analysis. Among the 3 levels of socio-economic status, there 

was reduced mortality risk in all age group with higher socio-economic status. The highest 

socio-economic status was associated with reduced all-cause mortality in neonates, children 

below 5 years and in the combined age group analysis. We observed a higher risk of mortality 

in the year 2008 compared to 2007 for all the ages which then reduced in the subsequent years 

and followed a downwards trend; however, in 2012 there was a slight reversal back to the pre-

2008 levels among the neonates even though not statistically important. Higher altitude had a 

negative association with mortality in all the groups except the elderly and neonates but this 

association was only statistically important in the older children, adults and the combined age 

groups. 

Estimated spatial variation at village level was higher than temporal variation in all age groups 

except the elderly. The minimum distance at which spatial variation was statistically important 

at 5 % ranged from 11.5 to 34.42. 
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Table 3.2: Posterior estimates (median) of the hazard ratio (HR) for predictors of all-cause mortality by age 

categories. 

Covariates 

Neonates Infants Child Older child Adults Elderly Overall** 

(0-28days) (1-11month) (1-4yrs) (5-14yrs) (15-59yrs) (60 +) 

HR HR HR HR HR HR HR 

(95% CI*) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) 

Malaria risk 0.89 3.10 4.29 0.48 0.73 1.70 1.55 

(0.13-5.70) (0.36-13.12) (2.78-13.29) (0.15-2.05) (0.39-1.42) (0.79-4.45) (1.04-2.80) 

ITN 1.01 1.00 1.00 0.99 1.00 0.99 1.00 

(1.00-1.02) (0.99-1.01) (0.99-1.003) (0.98-1.01) (0.997-1.002) (0.99-1.00) (0.998-1.001) 

Distance to 

health facility 
       

0 – 1 km 1 1 1 1 1 1 1 

1 – 2 km 
1.21 1.24 1.12 1.01 1.15 1.00 1.11 

(0.91-1.63) (1.09-1.42) (1.01-1.26) (0.81-1.27) (1.06-1.25) (0.90-1.11) (1.05-1.17) 

>2 km 
1.49 1.23 1.27 1.13 1.09 1.03 1.12 

(1.11-2.11) (1.07-1.43) (1.12-1.44) (0.93-1.45) (0.99-1.20) (0.92-1.16) (1.05-1.20) 

Ses        

Poorest 1 1 1 1 1 1 1 

Poor 
0.91 1.08 0.92 0.81 0.94 1.03 0.98 

(0.70-1.17) (0.95-1.23) (0.83-1.03) (0.64-1.01) (0.86-1.02) (0.94-1.13) (0.93-1.03) 

Least poor 
0.64 0.97 0.79 0.83 0.94 0.99 0.94 

(0.48-0.84) (0.84-1.11) (0.70-0.88) (0.66-1.03) (0.86-1.05) (0.90-1.09) (0.89-0.99) 

Year         

2007 1 1 1 1 1 1 1 

2008 
1.25 1.29 1.23 1.31 1.05 1.07 1.15 

(0.77-2.14) (0.39-2.24) (1.02-1.70) (0.93-2.18) (0.75-1.55) (0.77-1.47) (0.82-1.55) 

2009 
0.84 1.07 0.92 1.24 0.91 1.00 1.04 

(0.49-1.47) (0.28-1.85) (0.69-1.19) (0.73-2.13) (0.64-1.33) (0.72-1.44) (0.67-1.48) 

2010 
0.54 0.84 0.74 1.00 0.73 0.92 0.88 

(0.30-0.98) (0.21-1.53) (0.52-0.97) (0.57-1.73) (0.50-1.09) (0.68-1.38) (0.58-1.66) 

2011 
0.55 0.81 0.68 0.68 0.59 0.96 0.84 

(0.31-0.97) (0.25-1.81) (0.47-0.92) (0.38-1.12) (0.41-0.89) (0.70-1.44) (0.57-2.01) 

2012 
1.02 0.72 0.62 0.85 0.56 0.89 0.80 

(0.61-1.72) (0.27-1.85) (0.43-0.87) (0.47-1.46) (0.38-0.83) (0.61-1.24) (0.49-1.84) 

Altitude        

1147 – 1243 1 1 1 1 1 1 1 

1244 – 1293 
1.41 1.07 1.07 0.95 0.97 0.96 0.97 

(0.98-2.06) (0.88-1.30) (0.93-1.26) (0.72-1.24) (0.85-1.10) (0.82-1.14) (0.87-1.08) 

1294 – 1327 
1.33 0.85 0.94 0.74 0.84 0.91 0.85 

(0.90-2.00) (0.68-1.08) (0.80-1.14) (0.54-1.02) (0.72-0.99) (0.74-1.13) (0.75-0.97) 

1328 – 1365 
1.46 0.79 0.99 0.68 0.92 1.01 0.88 

(0.96-2.30) (0.61-1.02) (0.91-1.23) (0.46-0.98) (0.77-1.09) (0.80-1.27) (0.77-1.03) 

>1365 
1.43 0.75 0.89 0.65 0.88 1.01 0.87 

(0.91-2.35) (0.55-1.01) (0.75-1.14) (0.42-0.94) (0.72-1.07) (0.78-1.31) (0.74-1.03) 

Spatial 

Variation 

0.44 2.36 2.04 0.74 0.99 0.52 1.69 

(0.14-1.90) (0.70-8.93) (0.72-7.61) (0.22-3.59) (0.33-4.42) (0.20-1.88) (0.76-6.15) 

Temporal 

Variation 

0.14 0.10 0.11 0.13 0.06 0.07 0.05 

(0.08-0.25) (0.07-0.17) (0.07-0.17) (0.08-0.22) (0.04-0.08) (0.04-0.10) (0.04-0.08) 

Range*** 
34.41 11.15 11.38 17.19 13.18 20.79 11.40 

(8.77-95.37) (8.10-39.18) (8.11-40.52) (8.27-84.45) (8.16-55.67) (8.45-83.93) (8.12-40.42) 

* CI=credible interval 

** In addition to the variables above we also adjusted for age in the overall model 

*** Minimum distance in kilometres at which spatial variation is statistically important at 5% 

 



Chapter 3: Bayesian spatio-temporal modelling of mortality in relation to malaria incidence in western Kenya 

 

   50 

In modelling malaria-specific mortality in relation to SPR, we developed a Bayesian spatio-

temporal model with similar variables used in the all-cause mortality model as shown in Table 

3.3. Neonates were excluded from the malaria-specific modelling because there were no deaths 

attributed to malaria by InterVA in this group. Malaria mortality increased with an increase in 

SPR among infants, child and overall analysis. SPR was strongly associated with increased risk 

of malaria mortality among the child group (HR=9.48; 96 % CI: 5.11-37.94); however, in, it 

was strongly associated with a reduction in malaria specific mortality (HR=0.02; 95 % CI: 

0.003-0.33). 

Similar to the all-cause mortality above, reduced average distance to health facilities, higher 

socio-economic status and year of study were associated with reduced risk of malaria mortality. 

In all models, spatial variation was higher than temporal variation with the exception of the 

model corresponding to the 60+ age group. The minimum distance at which spatial variation 

for malaria mortality by village was statistically important at 5 %, ranged from 10.74km in the 

child age group to a high of 36km among the elderly.  
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Table 3.3: Posterior estimates (median) of the hazard ratio (HR) for predictors of cause-specific mortality by age 

categories. 

Covariate 

Infants Child Older child Adults Elderly Overall** 

(1-11month) (1-4yrs) (5-14yrs) (15-59yrs) (60 +) 

HR HR HR HR HR HR 

(95% CI*) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) 

Malaria risk 1.36 9.48 0.02 0.27 0.59 1.37 

(0.23-9.85) (5.11-37.94) (0.003-0.33) (0.02-3.24) (0.01-13.15) (0.51-3.73) 

ITN 1.01 1.0 1.01 0.99 1.02 1.00 

(1.00-1.02) (0.99-1.01) (0.99-1.03) (0.98-1.01) (1.00-1.04) (0.99-1.01) 

Distance to 

health facility 
      

0 – 1 km 1 1 1 1 1 1 

1 – 2 km 
1.19 1.26 1.10 1.02 0.98 1.12 

(0.89-1.60) (1.05-1.45) (0.76-2.04) (0.72-1.45) (0.50-2.01) (0.95-1.30) 

>2 km 
1.18 1.42 0.93 0.94 1.24 1.14 

(0.85-1.64) (1.35-1.66) (0.75-1.20) (0.67-1.10) (0.63-2.51) (0.95-1.37) 

Ses       

Poorest 1 1 1 1 1 1 

Poor 
1.03 0.94 1.01 1.03 1.10 0.99 

(0.79-1.37) (0.77-1.08) (0.55-1.46) (0.66-1.58) (0.60-2.13) (0.86-1.15) 

Least poor 
0.94 0.76 0.58 1.27 0.87 0.92 

(0.70-1.26) (0.62-0.89) (0.41-1.07) (0.82-1.95) (0.53-1.86) (0.79-1.07) 

Year        

2007 1 1 1 1 1 1 

2008 
9.32 2.34 1.26 1.60 1.73 2.12 

(3.34-57.79) (1.36-4.07) (0.63-4.03) (0.79-3.36) (0.49-2.67) (0.93-4.14) 

2009 
7.21 1.57 4.59 2.13 3.28 1.86 

(2.56-47.57) (1.08-2.51) (1.81-7.23) (1.52-4.36) (1.07-58.62) (0.57-3.89) 

2010 
6.95 1.87 5.19 1.43 5.75 2.02 

(2.36-45.32) (1.18-2.70) (1.85-15.48) (0.70-2.54) (1.66-15.5) (0.55-4.02) 

2011 
6.07 1.74 0.77 0.79 3.00 1.45 

(1.99-37.2) (1.25-2.87) (0.46-2.48) (0.32-1.71) (1.16-30.4) (0.32-3.02) 

2012 
5.31 2.09 2.09 0.95 2.68 1.60 

(1.66-36.72) (1.33-3.19) (1.01-6.14) (0.43-2.05) (0.99-46.27) (0.34-3.28) 

Altitude       

1147 – 1243 1 1 1 1 1 1 

1244 – 1293 
0.82 0.69 0.73 0.61 1.46 0.70 

(0.54-1.24) (0.56-0.92) (0.39-1.62) (0.28-1.14) (0.93-5.25) (0.54-0.93) 

1294 – 1327 
0.63 0.72 1.14 0.71 1.04 0.68 

(0.40-1.03) (0.57-0.98) (0.55-2.43) (0.39-1.31) (0.28-3.73) (0.50-0.92) 

1328 – 1365 
0.58 0.71 0.65 0.73 1.63 0.64 

(0.35-0.99) (0.56-1.01) (0.42-1.64) (0.37-1.42) (0.55-5.65) (0.45-0.88) 

>1365 
0.39 0.64 1.08 0.57 2.74 0.58 

(0.22-0.76) (0.46-0.91) (0.50-2.67) (0.27-1.15) (1.14-10.81) (0.40-0.85) 

Spatial 

Variation 

5.87 5.66 0.73 0.46 0.40 8.83 

(1.00-29.11) (1.30-21.34) (0.22-5.14) (0.17-2.91) (0.15-1.81) (4.11-29.28) 

Temporal 

Variation 

0.15 0.18 0.41 0.29 0.42 0.17 

(0.09-0.28) (0.11-1.30) (0.16-1.28) (0.14-0.61) (0.17-1.38) (0.11-0.27) 

Range*** 
10.95 10.74 18.37 30.11 36.0 10.9 

(8.09-40.52) (8.08-36.21) (8.27-82.37) (8.56-93.64) (8.83-95.26) (8.09-34.21) 

* CI=credible interval 

** In addition to the variables above we also adjusted for age in the overall model 

*** Minimum distance in kilometres at which spatial variation is statistically important at 5% 
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On plotting excess mortality as a function of malaria transmission (SPR), we showed that 

infants, children 1-4 years, elderly adults and the combined population exhibited an increase in 

mortality rate with SPR. However a protective effect was noted among children 4-14 years and 

adults 15-59 years.  The highest burden of mortality attributable to SPR was noted among 

children 1-4 years followed by infants 1-11 months (Figure 3.6). 

 

 
Figure 3.6: Age specific patterns of excess mortality due to malaria incidence 

 

3.4. Discussion 

Several studies have investigated the effect of malaria transmission on mortality using mostly 

entomologic inoculation rate or prevalence data as a measure of transmission (Amek, 2013; 

Gething et al., 2016; Rumisha et al., 2014). Entomological data is quite sparse while prevalence 

data does not reflect seasonal variations of transmission. Our study is the first to link HDSS 

malaria mortality and health facility incidence data collected continuously in a well-defined 

geographical area. Using these datasets well aligned in space and time, we investigated SPR as 
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a measure of transmission in relation to all-cause and malaria-specific mortality in the KHDSS 

area of western Kenya employing rigorous Bayesian spatio-temporal models to account for 

variation in space and time. We adjusted for person time observed as discrete monthly intervals, 

socio-economic status, ITN ownership, average distance to health facilities, altitude and year 

of study. In estimating excess mortality due to malaria transmission, it was noted that small 

changes in slide positivity rate (SPR), results in significant increases in overall mortality in this 

population. 

In modelling the relationship between SPR and mortality, we found that SPR predicts all-cause 

mortality in the whole population. Among different age-groups, SPR was an important measure 

of both all-cause and malaria-specific mortality for children aged 1-4 years implying that 

malaria infection in under 5 children contributes greatly to overall mortality. Other studies have 

also shown a positive association between malaria transmission and all-cause mortality in this 

age group (Amek, 2013; Gething et al., 2016; Ross & Smith, 2006; Rumisha et al., 2014), 

however, were focused mostly on the relationship between all-cause mortality and EIR or 

prevalence. Children aged 1-4 years are most affected by malaria mortality due to lower 

immunity compared to neonates or children below 6 months (Malhotra et al., 2009) (Malhotra 

et al. 2009). The effect of SPR on malaria-mortality among children aged 1-4 years could also 

be a result of delayed access to treatment and the magnitude of malaria burden in this group. 

Decreasing malaria incidence through proper and timely treatment and management can 

therefore greatly reduce both all-cause and malaria specific mortality. Slide positivity rate as a 

measure of malaria exposure appears to be a protective factor for malaria-specific mortality in 

older children (5-14 years), most likely due to acquired immunity at lower ages (Bejon et al., 

2009; Stanisic et al., 2014). This explanation is supported by data from the same area indicating 

that Plasmodium falciparum parasite prevalence is highest in this group (Khagayi et al., 2019). 

These school going children are less mobile compared to younger children who move with their 

working parents (Adazu et al., 2005), and therefore the constant exposure to infection increases 



Chapter 3: Bayesian spatio-temporal modelling of mortality in relation to malaria incidence in western Kenya 

 

   54 

their immunity. It is important to note that even though there was low overall mortality in older 

children; malaria deaths as a proportion of all deaths in this group were still high and increased 

over the years. Desai et al also reported that malaria deaths in the 5-14 age group increased over 

the years; an indication reflecting either behavioural factors or reduced attention towards this 

age-group from control programs that target mainly pregnant women and children under five 

years (Desai et al., 2014) (Desai et al. 2014). 

Our study supports earlier findings in the same study area where EIR as a measure of 

transmission was seen to drive mortality in children under 5 years (Amek et al., 2018) but not 

in the 5-14 age group. Of note, is that in our study, SPR (OR=4.29 and OR=9.48) shows a 

stronger effect than EIR (OR=1.58 and OR=1.97) for both all cause and malaria specific 

mortality respectively. With proper diagnosis and data collection, SPR can be collected more 

easily using fewer resources at local levels than EIR. This highlights the importance of 

incidence as a driver of malaria transmission and consequently a better measure of exposure 

that can be used to monitor progress towards malaria control in areas of high endemicity.  

During the study period, there was an upward spike in all-cause mortality, malaria specific 

mortality and SPR in 2008, followed by a steady decline between 2009 and 2012. The mortality 

increase in the year 2008 was observed in previous studies carried out in the same area and 

attributed to the effect of post-election violence in Kenya at the end of 2007 (Desai et al., 2014; 

Feikin et al., 2010; Hamel et al., 2011). The rise in all-cause/malaria-specific mortality and SPR 

could be attributed to these clashes, which disrupted health services, interfered with the supply 

and provision of antimalarial drugs and led to a surge in malaria among other infectious 

diseases. Our findings echo what has been observed in other conflict areas in Africa and 

demonstrated the impact of conflicts on malaria burden (Sedda et al., 2015). Malaria as a 

proportion of all deaths was most affected since its increase in 2008-2009 coincided with a drop 

in HIV/AIDS, acute respiratory infections and cardio-vascular diseases among others showing 

that malaria can easily bounce back more forcefully whenever control efforts are interrupted. 
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Malaria-specific mortality reduction in the other age groups can be attributed to the scale up of 

interventions, increased coverage of ITNs, prompt and improved malaria treatment using 

artemisinin-based combination therapies (ACT) and indoor residual spraying (Bhatt et al., 

2015; Division of Malaria Control [Ministry of Public Health and Sanitation] et al., 2011; 

Hamel et al., 2011). All-cause mortality reduction could be attributed to a reduction in malaria-

specific mortality, scaled up provision of antiretroviral therapy (ART) and improvements in 

health service delivery that saw declines in infectious diseases and HIV/AIDS (Desai et al., 

2014; Gargano et al., 2012). The reduction in mortality is expected to improve in the future 

since many health policy decisions, care and management have been devolved to the county 

levels with a view of tailoring solutions to suit local needs (Masaba et al., 2020). 

ITN ownership was not related to SPR. The expected individual effect of ITNs on mortality 

could have been lost due to aggregating the data at village level. Distance to health facilities 

was an important factor in determining all-cause mortality across all age groups; showing that 

relatively small differences in distance can substantially affect mortality, especially in younger 

children. A study in the KHDSS on paediatric hospitalization argued that longer distances act 

as barriers to seeking care making people stay away even if they are sick (Feikin et al., 2009). 

Access to antenatal services, which is an important factor for neonatal survival is largely 

influenced by distance to  health facilities (Karra et al., 2016) and may explain the large effect 

among neonates. Comparable to our rural setting, other studies have found similar results in 

sub-Saharan Africa (Kadobera et al., 2012; Ombok et al., 2010; Rutherford, 2009; Schoeps et 

al., 2011).  

People at lower socio-economic status experienced relatively higher mortality compared to 

those at a higher status. The effect was important among neonates for all-cause mortality and 

in children under the age of five for both all-cause and malaria specific mortality. This is 

consistent with other studies done in similar HDSS settings (INDEPTH Network, 2005). The 

poorest would most likely live in houses that are not well constructed hence offering little 
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protection against vectors and are less likely to pay for effective treatment. This vulnerability 

is more pronounced in younger children even with small scale economic differences visible 

through simple asset ownership (Sachs & Malaney, 2002).  

Altitude’s negative association with both all-cause and malaria-specific mortality supports 

findings showing that malaria vector abundance reduces with altitude (Githeko et al., 2006). 

Previous studies in the western Kenya region indicated that middle level and low altitude areas 

experienced higher mortality rates compared to the higher regions (Ombok et al., 2010). 

A strong spatial variation was estimated in the malaria specific model for infants, children u 1-

4 years and overall model, suggesting that mortality is influenced by spatially structured 

exposures. This finding has also been noted in previous studies in the same region and other 

places in sub-Saharan Africa (Amek et al., 2018; Kasasa et al., 2013; Rumisha et al., 2014). We 

also noted that for all age groups, spatial variation was higher than temporal variation signifying 

a reduced seasonal influence on mortality compared to spatial variability. 

The use of verbal autopsy as a tool for determining cause of death has been criticized as not 

being very specific and can either under-estimate or over-estimate malaria (Murray et al., 2012). 

The InterVA tool for verbal autopsy has however undergone rigorous tests and improvements 

recently to take care of physician failings, differences in high and low malaria transmission 

areas and found to be in high concordance with physician coding (Byass et al., 2015). It also 

agrees with other population-based projections in determining malaria as a cause of deaths, 

hence a useful tool for ascertaining cause of death in low-income settings that lack proper vital 

registration systems. In our study, the SPR estimates may be biased due to missing patients who 

do not make it to health facilities, more so the older ages with reported lower health seeking 

behaviour for fever related illnesses relative to younger children (Bigogo et al., 2010). At the 

same time, microscopy case confirmation has been shown to have lower sensitivity (Lo et al., 

2015) and the SPR may be influenced by changes in other febrile illnesses by inflating the 

denominator (Boyce et al., 2016). Using SPR from children below the age of 14 years as an 



Chapter 3: Bayesian spatio-temporal modelling of mortality in relation to malaria incidence in western Kenya 

 

   57 

indicator for transmission in the whole population could result in a bias since the behavioural 

and biological characteristics of children may not match exactly those of the whole population. 

However, we anticipated that the SPR of adults would be correlated at village level with that of 

children under the age of 14 as they come from the same community as the adults from whom 

we infer association between under 14 children’s SPR and adult mortality due to the strong 

environmental, climatic and other spatially explicit factors that drive malaria transmission 

(Mboera et al., 2010). The sudden rise of SPR although not due to changes in the diagnostic 

methods could have been due to unobserved effects due to changes in health systems and may 

have biased the results to reflect a stronger effect in the association with mortality. By using 

longitudinal data over a long period of time, consistent methodology, and rigorous quality 

control for microscopy diagnosis and assuming that SPR represents the level of malaria 

exposure in the population, we offset some of the shortcoming of using sentinel health facilities 

data.  

 

3.5. Conclusion 

Our study showed that slide positivity rate is significantly associated with all-cause/malaria-

specific mortality in this region of western Kenya. By quantifying excess mortality due to 

malaria, we show that small changes in malaria incidence can substantially reduce deaths. 

As the fight towards malaria control and elimination continues, incidence risk data from sentinel 

health facilities can be used as a measure of exposure to assess, monitor and quantify both all-

cause and malaria-specific mortality in low resource settings. 
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3.6. Appendix 

3.6.1. Spatial and temporal description of data used in the study 

Data type Description Source Temporal resolution 

Malaria slide 

positivity rates  

Measured as the number of malaria 

positive slides out of the total blood 

slides examined by light microscopy.  

Sentinel 

health 

facilities 

Continuously (Jan 2007-

Dec2012) 

Cause of death 

(Malaria-specific) 

Actual deaths are reported 

continuously by village reporters 

Household 

level 

Continuously (Jan 2007-

Dec2012) 

Socioeconomic 

status 

Constructed based on household asset 

ownership using a composite score, 

the multiple correspondence analysis 

(MCA) technique and categorized 

into 3 quintiles as least poor for the 

well off, poor for the average and 

poorest for the lowest rank 

Household 

level 

Yearly (2007-2012) 

Person time The HDSS collects data on an initial 

population at the start of the 

observation period followed by 

subsequent 4 monthly surveillance 

cycles that provide data on births, 

deaths, in-migration and out-

migrations. Using these, person time 

of observation in years was 

calculated as the total time spent by a 

registered KHDSS resident in the 

study area during the study period 

Household 

level 

Continuously (Jan 2007-

Dec2012) 

Bed net 

ownership 

Calculated as the percentage of 

households per village owning at 

least one net for every two people 

Household 

level 

Yearly (2007-2012) 

Altitude Extracted from the Shuttle Radar 

Topography Mission (SRTM) by the 

U.S. Geological Survey - Earth 

Resources Observation and Science 

(USGS EROS) Data Center 

(https://eros.usgs.gov/elevation-

products) 

Household 

level 

Once 

Distance to health 

facility 

Calculated as the Euclidean 

difference between the household and 

the nearest health facility in 

kilometres, aggregated at village 

level and classified as less than 1km, 

1 to 2km and greater than 2km 

Household 

level 

Once 

All-cause 

mortality 

From the KHDSS continuous 4 

monthly cycles, data on all deaths 

among the registered residents is 

collected to provide the number of 

deaths in the population and by age 

groups. 

Household 

level 

Continuously (Jan 2007-

Dec2012) 
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3.6.2. Bayesian model formulation 

 

Let Yjt be the average number of deaths (all-cause or malaria-specific) in village j at time 

interval t. We assume that Yjt arises from a negative binomial distribution.  

 𝐘𝑗𝑡~dnegbin(𝐏𝑗𝑡, 𝒓) 

Where Pjt, is the proportion of deaths occurring in village j at time interval t and r is the 

dispersion parameter with, 

  𝜇𝑗 = 𝑟
1−𝑝

𝑝
   and 𝜎𝑖

2 = 𝑟(1 − 𝑝)𝑝−2. 

We modelled the association above between covariates (X) and mortality status of individuals 

by village on the logit, as 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑗𝑡) = 𝑙𝑜𝑔𝑖𝑡(𝑁𝑗𝑡) + 𝛽0 + ∑ 𝛽𝑢
𝑘
1 𝑋𝑢 + 𝜙𝑗 + 𝜀𝑡               , u=1,2,……k 

where 𝜇𝑗𝑡 is the number of deaths in each village at time t, 𝑁𝑗𝑡  the total person time contributed 

by persons in each village as discrete months, 𝛽𝑖  the regression coefficients, 𝜙𝑗  the village 

specific spatial effects and 𝜀𝑡 the temporal (monthly) random effects.  

We assumed that 𝜙𝑗  are parameters from a latent spatial process modelled by a Gaussian 

distribution with covariance matrix quantifying the relation between any pair of villages as a 

function of their distance irrespective of the direction using an exponential correlation function, 

that is ∅ ~ MVN(0, ∑),  ∑𝑘𝑙 =  𝜎1
2 exp (−𝜌𝑑𝑘𝑙) where 𝜎1

2  is the spatial variation, 𝑑𝑘𝑙  is the 

distance between villages k and l, and 𝜌 is the rate of correlation decay with increasing distance.  

The minimum distance at which the spatial variation is less than 5% is called range and can be 

obtained from the value 3/𝜌 (Ecker & Gelfand, 1997). Temporal effect (𝜀𝑡) was modeled by 

an autoregressive process of order 2. We specified non-informative normal prior distributions 

with mean zero and large variance for the βi i=1,…… regression coefficients, an inverse gamma 

prior for 𝑟 ~ 𝐼𝐺(1.01, 0.001), an inverse gamma priors for 𝜎𝑒
2
 and 𝜎2. A gamma prior for 𝜌, 

that is 𝜎𝑒
2

 
, 𝜎2 ~ 𝐼𝐺(2.01, 1.01) and 𝜌 ~ 𝐺(0.01, 0.01). 
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The model was fitted using Markov Chain Monte Carlo (MCMC) simulation algorithm in 

OpenBugs version 3.1.2 (Imperial College and Medical Council, London, UK) to estimate 

model parameters (Gelfand & Smith, 1990). We ran a single chain sampler discarding the first 

10,000 iterations. Convergence was assessed by Gelman-Rubin diagnostic (Gelman & Rubin, 

1992) and attained at 100,000 iterations. 
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Abstract  

Background 

Parasite prevalence has been used widely as a measure of malaria transmission, especially in 

malaria endemic areas. However, its contribution and relationship to malaria mortality across 

different age groups has not been well investigated. Previous studies in a health and 

demographic surveillance systems (HDSS) platform in western Kenya quantified the 

contribution of incidence and entomological inoculation rates (EIR) to mortality. The study 

assessed the relationship between outcomes of malaria parasitaemia surveys and mortality 

across age groups. 

 

Methods 

Parasitological data from annual cross-sectional surveys from the Kisumu HDSS between 2007 

and 2015 were used to determine malaria parasite prevalence (PP) and clinical malaria 

(parasites plus reported fever within 24 hours or temperature above 37.50C). Household surveys 

and verbal autopsy (VA) were used to obtain data on all-cause and malaria-specific mortality. 

Bayesian negative binomial geo-statistical regression models were used to investigate the 

association of PP/clinical malaria with mortality across different age groups. Estimates based 

on yearly data were compared with those from aggregated data over four to five-year periods, 

which is the typical period that mortality data are available from national demographic and 

health surveys.  

 

Results 

Using 5-year aggregated data we established associations between parasite prevalence and 

malaria-specific mortality in the whole population (RRmalaria=1.66; 95 % Bayesian Credible 

Intervals: 1.07-2.54) and children 1-4 years (RRmalaria=2.29; 1.17-4.29). While clinical malaria 

was associated with both all-cause and malaria-specific mortality in combined ages (RRall-

cause=1.32; 1.01-1.74); (RRmalaria=2.50; 1.27-4.81), children 1-4 years (RRall-cause=1.89; 1.00-

3.51); (RRmalaria=3.37; 1.23-8.93) and in older children 5-14 years (RRall-cause=3.94; 1.34-11.10); 

(RRmalaria=7.56; 1.20-39.54), no association was found among neonates, adults (15-59 years) 

and the elderly (60+ years). Distance to health facilities, socioeconomic status, elevation and 

survey year were important factors for all-cause and malaria-specific mortality.  

 

Conclusion 

Malaria parasitaemia from cross-sectional surveys was associated with mortality across age 

groups over four-to-five-year periods with clinical malaria more strongly associated with 

mortality than parasite prevalence. This effect was stronger in children 5-14 years compared to 

other age-groups. Further analyses of data from other HDSS sites or similar platforms would 

be useful in investigating the relationship between malaria and mortality across different 

endemicity levels. 

 

 

 

 

Keywords: Malaria, mortality, parasite prevalence, Bayesian spatio-temporal, health and 

demographic surveillance system. 
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4.1. Introduction 

There has been a substantial reduction in malaria related mortality worldwide over the last 

decade, however, the burden is still disproportionately felt in sub-Saharan Africa (SSA) (Bhatt 

et al., 2015). Due to the high burden in children and pregnant women (World Health 

Organization, 2016), malaria control intervention resources in previous years have been 

targeted to these vulnerable populations. Increased quality data on malaria infection dynamics 

and mortality across all ages has created an increased awareness of the burden of disease 

amongst the other populations, and policies have been expanded to ensure universal coverage 

with effective vector control methods (e.g. long-lasting insecticidal nets [LLIN]), availability 

of diagnostics (e.g. rapid diagnostic tests [RDT]), and availability of appropriate treatments 

(e.g. artemisinin-based combination therapy [ACTs]) to all (Sankoh & Binka, 2005).   

There is evidence that the malaria burden in older children and adults in terms of mortality and 

parasite prevalence (Desai et al., 2014; Okiro et al., 2009; Walldorf et al., 2015) is higher than 

had been thought of previously. With data analysed from a health and demographic surveillance 

system (HDSS) in western Kenya run by the Kenya Medical Research Institute (KEMRI) and 

Centers for Disease Control and Prevention (CDC) showing that, largely due to increased 

malaria/HIV prevention and treatment  interventions, malaria mortality rates decreased in 

young children and persons aged ≥15 years, but remained stable in 5-14 year olds (Desai et al., 

2014); suggesting that malaria control efforts should be intensified in this group. Furthermore, 

older children and adults have been shown to act as reservoirs of transmission due to high levels 

of asymptomatic infections (Zhou et al., 2016), supporting the current policy of universal 

coverage of malaria control interventions.  

Measuring malaria transmission intensity and its effect on mortality can be used to monitor 

disease burden and assess the impact of interventions and control programs. This has been done 

previously using entomological inoculation rates (EIR) (Amek et al., 2018; Rumisha et al., 
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2014); however, measuring EIR is expensive, time consuming and is often imprecise, 

particularly in low transmission settings. Other measures of malaria transmission that have been 

explored before in relation to mortality include slide positivity rate (SPR), parasite prevalence, 

disease incidence, sporozoite rate, and vectoral capacity (Khagayi et al., 2017; O'Meara et al., 

2008; Ross & Smith, 2006; Smith et al., 2001).  

Malaria parasite prevalence (PP) surveys carried out mostly during peak transmission times 

through representative sampling of populations are a preferred method for measuring malaria 

burden because reporting from weak or non-existent health systems is inadequate to measure 

incidence (Corsi et al., 2012), at the same time health facilities do not capture asymptomatic 

infections which are important for malaria transmission. Furthermore PP survey data are easier 

to interpret and less prone to uncertainty compared to other measures (Snow, 2014). These 

surveys are however limited in their ability to capture malaria morbidity, seasonality of 

transmission and monitor temporal trends from surveys that are not seasonally aligned (Moss 

et al., 2015). With regular, consistent survey intervals, stringent methodology in sampling and 

diagnosis, PP surveys can provide measures of malaria transmission which are useful to policy 

makers.  

Due to their nature, HDSS sites can be used to collect data that are well aligned in space and 

time so as to investigate variations in malaria transmission in relation to morbidity and 

mortality. They provide data on mortality across age groups, and in conjunction with PP surveys 

offer a unique avenue through which we can investigate and understand the relationship 

between malaria transmission and mortality while taking into consideration spatio-temporal 

factors (Moss et al., 2015; Streatfield et al., 2014; Ye et al., 2012), and hence monitor the impact 

of interventions over time. One such project, the Malaria Transmission Intensity and Mortality 

Burden across Africa (MTIMBA) investigated the effect of EIR as a measure of exposure and 

its effect on mortality in several HDSS sites in Africa and showed that small changes in 
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transmission dynamics as measured by EIR, impact greatly on mortality (Amek, 2013; Amek 

et al., 2018; Rumisha et al., 2014). 

In this study, we sought to understand how malaria parasite prevalence and clinical malaria 

translate into mortality and consequently help inform national control programs on how to best 

use their survey data in estimating mortality. We investigated the relation between malaria 

prevalence and mortality across all age-groups using Bayesian geostatistical models on data 

collected between 2007 and 2015 from the KEMRI and CDC HDSS (KHDSS) site in western 

Kenya. To the best of our knowledge, there have been no studies done to investigate the 

usefulness of parasite prevalence as a proxy for malaria transmission and its association with 

mortality using data that are well aligned in space and time across different age groups in similar 

settings. 

 

4.2. Methods and data 

4.2.1. Study area and population 

The KHDSS located in Siaya County of western Kenya follows a population of over 240,000 

people as of mid-2015 in an area of over 700km2 (Odhiambo et al., 2012). This HDSS is located 

in a malaria endemic zone with a high burden of HIV/AIDS compared to the rest of the country 

(Division of Malaria Control [Ministry of Public Health and Sanitation] et al., 2011; National 

AIDS and STI Control Programme (NASCOP), 2014). 

From the HDSS, we collected data on an initial population at baseline, which was followed by 

subsequent 4 monthly cycles every year during which data were collected on births, deaths, in-

migration and out-migrations. These data were used to estimate person-years of observation 

(pyo) that served as a denominator to calculate mortality rates. Verbal autopsy (VA) was used 

to determine malaria-specific mortality rates. The methods used for verbal autopsy have been 

described in detail elsewhere(Adazu et al., 2005; Odhiambo et al., 2012); it involves capturing 
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data on a deceased person’s last illness, signs, symptoms and medical history which is then used 

to determine the most probable cause of death using a computer-based Bayesian expert 

algorithm called InterVA (Byass et al., 2012).  

 

4.2.2. Malaria prevalence 

Annual all-age malaria and anaemia prevalence surveys were conducted by randomly sampling 

compounds within the HDSS, and testing all consenting members of the compound for malaria 

by blood smear microscopy, from the population during the peak malaria transmission period 

in July. Details of the sampling by year are shown in Additional file 1. Trained interviewers 

then visited the compounds, administered a questionnaire to collect information on 

demographics, risk factors for malaria infection, healthcare seeking, previous illness, 

socioeconomic status, LLIN ownership/use, and collected a blood sample to prepare thick and 

thin smears for microscopy. The blood slides were transported to a central laboratory, stained 

with 10% Giemsa and examined for malaria parasites by expert microscopists. 

We considered two measures of transmission; prevalence of malaria parasites and clinical 

malaria for comparative purposes. Parasite prevalence by age group, village, and year was 

defined as the proportion of participants in each village that had malaria by microscopy out of 

all the participants from the same village who were tested for malaria. Similarly, clinical malaria 

prevalence was defined as the proportion of participants in each village who had malaria 

parasites of any density by microscopy in combination with either a reported fever in the 

previous 24 hours or a temperature of 37.50C and above out of all those tested. 

 

4.2.3. Data management and statistical analysis 

Rates of clinical malaria and PP were aggregated at village level and linked to mortality data 

by village, year of study and age group. The age groups were defined as: 0-28 days (neonates), 
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1-11 months (infants), 1-4 years (child), 5-14 years (older child), 15-59 (adults) and 60+ 

(elderly). Crude and age specific all-cause/malaria-specific mortality rates were calculated by 

dividing the deaths in each group with the total person-years observed (pyo) in that group. 

A measure of socioeconomic status was constructed based on household asset ownership using 

a composite score, derived from multiple correspondence analysis (MCA) (Amek et al., 2015) 

and categorized into 3 levels as least poor for the well off, poor for the average and poorest for 

the lowest rank while LLIN coverage was calculated as the percentage of households in a 

village owning at least one net per two people in a given year. Distance to health facilities was 

calculated as the networked distance of each household from the nearest health facility, and 

classified into 3 categories as less than 1km, 1 to 2km and greater than 2km. the elevation of 

each household was downloaded from the remote sensing United States geological survey 

(USGS) Earth Resources Observation and Science (EROS) website (NASA JPL).These 

variables were also aggregated at village level and linked to the parasitaemia and mortality data.  

The analysis considered two approaches; in one approach, the data were aggregated on a yearly 

basis, hence 9 years of observation; the second approach was aggregating the data into two 

periods (2007-2010 and 2011-2015).  

For each age group, we fit Bayesian negative binomial geostatistical models on the mortality 

outcome to assess the relationship between PP and all-cause/malaria-specific mortality. 

Variable selection based on bivariate negative binomial models was used to identify potential 

confounders. Variables with a p-value below 0.1 were included in the final geostatistical 

models. Spatial correlation was taken into account by village specific random effects modelled 

via a Gaussian process with a mean of zero and an exponential correlation matrix of the distance 

between villages in the study (Diggle et al., 1998). Bayesian models were fitted in OpenBugs 

version 3.1.2 (Imperial College and Medical Research Council London, UK) using Markov 

Chain Monte Carlo (MCMC) simulation for parameter estimation. Regression coefficients from 

the Bayesian geostatistical model were exponentiated to obtain prevalence rate ratios (PRR) 
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and summarized by their posterior median and 95% Bayesian Credible Intervals (BCI).  

Covariate effects were considered statistically important when the BCI of the corresponding 

regression coefficients on the log scale did not include zero. Due to the nature of Bayesian 

statistical inference, we replace the terminology of statistically significant by statistically 

important effect when reporting our results. In this paper, we present the results for the 

association between clinical malaria and all-cause mortality; clinical malaria and malaria-

specific mortality; and lastly PP and both all-cause/malaria-specific mortality in that order. 

Model formulation details are provided in Additional file 2.  

 

4.3. Results 

4.3.1. Descriptive statistics 

Between the year 2007 and 2015, over 441,000 individuals were enrolled/monitored in the 

HDSS contributing a total of 2,114,223 pyo and 26,283 deaths, for an average crude death rate 

of 12.4 (95% Confidence Interval; 12.3-12.6) deaths per 1,000 pyo as shown in Table 4.1.  

All-cause mortality during the study period rose from 15.5 (14.9-16.1) deaths per 1,000 pyo in 

2007 to 18.8 (18.2-19.3) in 2008 then dropped to a low of 9.4 (9.0-9.8) in the year 2015 with 

malaria-specific mortality following a similar trend; rising from 1.3 (1.2-1.5) deaths per 1000 

pyo in 2007 to a high of 3.5 (3.3-3.7) in 2008 but eventually dropping to 0.9 (0.7-1.0) deaths 

per 1000 pyo in 2015 (Table 4.1). The average PP during the whole study period was 35.8% 

(35.2-36.5); ranging between 27.3% in 2008 to a high of 39.7% in 2010 but then dropped over 

the years to 29.8% in 2015.  
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Table 4.1: All-cause/malaria specific mortality, clinical malaria and malaria parasite prevalence by year 

Year 

Person 

years of 

observation 

Sampled 

population 

Malaria parasite 

prevalence 

Clinical malaria 

prevalence 

All-cause mortality 

rate per 1,000 pyo* 

Malaria-specific 

mortality rate per 

1,000 pyo* 

2007 181537 1270 29.6% (27.1-32.2) 7.2% (5.8-8.7) 15.5 (14.9-16.1) 1.3 (1.2-1.5) 

2008 230374 1039 27.3% (24.6-30.2) 6.0% (4.6-7.6) 18.8 (18.2-19.3) 3.5 (3.3-3.7) 

2009 230373 2508 39.0% (37.1-40.9) 7.5% (6.5-8.6) 15.6 (15.1-16.2) 2.9 (2.6-3.1) 

2010 233871 5243 39.7% (38.4-41.0) 7.9% (7.2-8.6) 12.4 (11.9-12.8) 2.1 (1.9-2.3) 

2011 238524 2091 39.2% (37.1-41.3) 8.5% (7.3-9.7) 10.9 (10.5-11.3) 1.4 (1.2-1.5) 

2012 246254 2719 34.1% (32.3-35.9) 7.8% (6.8-8.8) 10.2 (9.8-10.6) 1.4 (1.2-1.5) 

2013 249757 2358 34.5% (32.6-36.5) 10.5% (9.3-11.8) 10.5 (10.1-10.9) 1.6 (1.4-1.7) 

2014 252173 1934 35.6% (33.4-37.8) 8.4% (7.2-9.7) 10.2 (9.8-10.6) 1.0 (0.9-1.2) 

2015 251360 1756 29.8% (27.7-32.0) 7.5% (6.2-9.1) 9.4 (9.0-9.8) 0.9 (0.7-1.0) 

Overall 2114223 20918 35.8% (35.2-36.5) 8.1% (7.7-8.4) 12.4 (12.3-12.6) 1.8 (1.7-1.9) 

*pyo=person years of observation 

 

A further breakdown of the positive slides showed that 8.1% (7.7-10.4) of the respondents had 

clinical malaria (parasites and fever); on average one fifth of all the positives had clinical 

malaria (Figure 4.1). 

 

 
Figure 4.1: All-cause and malaria specific mortality rates versus malaria parasite and clinical malaria prevalence 
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The highest parasite prevalence was observed among older children aged 5-14 years, with an 

average PP of 56% (95% CI, 54-57), followed by children aged 1-4 years at 40% (39-41), adults 

at 22% (21-24), and infants at 22% (19-25); the elderly at 14% (12-16) had the lowest rate. The 

age distribution of prevalence indicates an increase in parasite prevalence from infanthood to 

older children followed by a drop as the population ages (Figure 4.2a). However, by including 

the presence of fever, we observed a rise in clinical malaria from infants to children aged 1 to 

4 years after which it drops in the 5-14 age-group and in adults but rises slightly among the 

elderly. The highest prevalence of clinical malaria was in infants with a peak of 18.4% among 

those tested in the year 2007 (Figure 4.2b).  
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Figure 4.2: Malaria parasite prevalence (a) and clinical malaria (b) by age groups 
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4.3.2. Model based results 

Relationship between clinical malaria and all-cause mortality 

The following variables met the criteria for inclusion in the age-specific geostatistical mortality 

models: reported net usage, distance to health facilities, socioeconomic status, year of study and 

altitude. For comparability, these variables were included in the Bayesian models fitted by age 

group. Results in Table 4.2 show that the prevalence of confirmed malaria when aggregated 

over four and five-year periods, was associated with all-cause mortality in the combined age 

groups (RR=1.32; 95 % BCI: 1.01-1.74), in the 1–4-year-olds (RR=1.89; 1.00-3.51) and in the 

5–14-year-olds (RR=3.94; 1.34-11.1). Increase in distance to health facilities was associated 

with higher mortality among neonates, children aged 1-4 years and the combined age group 

analysis. Risk of all-cause mortality was higher in the period 2007-2010 compared to 2011-

2015 in all ages except in neonates. Higher SES and increased elevation were both associated 

with lower mortality. The association between reported net use and mortality was not 

statistically important across most age groups save for the elderly. The minimum distance at 

which spatial correlation was below 5% ranged from 13.2km to 50km for all the age groups. 

The analyses of the yearly prevalence data did not show a statistically important relation 

between confirmed malaria and all-cause mortality (see Additional file 4). 
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Table 4.2: Posterior estimates showing effects of prevalence (PP and confirmed malaria) on malaria-specific 

mortality† 

  Neonates Infants 1-4 yrs. 5-14 yrs. 15-59 yrs. 60 plus Overall** 

Covariate RR RR RR RR RR RR RR 

  (95% BCI*) (95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) 

PP*** 

 

0.64 1.32 1.50 1.38 1.23 1.04 1.15 

(0.29-1.34) (0.86-2.04) (0.98-2.23) (0.69-2.69) (0.94-1.57) (0.78-1.35) (0.96-1.37) 

Clinical 

malaria***  
1.05 1.65 1.89 3.94 0.99 1.07 1.32 

 (0.30-3.51) (0.81-3.26) (1.00-3.51) (1.34-11.1) (0.64-1.54) (0.69-1.66) (1.01-1.74) 

Net use 
1.18 1.06 0.82 0.97 0.88 0.78 0.91 

(0.70-2.03) (0.80-1.44) (0.63-1.08) (0.60-1.59) (0.73-1.06) (0.64-0.94) (0.81-1.02) 

Distance to 

health facility 
         

0 – 1 km 1 1 1 1 1 1 1 

1 – 2 km 
1.05 1.04 1.06 1.01 1.08 0.03 1.07 

(0.81-1.37) (0.90-1.20) (0.93-1.22) (0.80-1.28) (0.99-1.18) (0.94-1.13) (1.01-1.14) 

>2 km 
1.33 1.06 1.16 1.28 1.09 1.07 1.12 

(1.01-1.76) (0.91-1.24) (1.00-1.34) (0.99-1.65) (0.99-1.20) (0.97-1.18) (1.05-1.20) 

SES          

Poorest 1 1 1 1 1 1 1 

Poor 
1.01 0.93 0.94 0.86 0.91 0.97 0.95 

(0.78-1.29) (0.80-1.07) (0.82-1.07) (0.68-1.08) (0.83-0.99) (0.88-1.06) (0.90-1.01) 

Least poor 
0.83 0.85 0.84 0.91 0.88 0.95 0.89 

(0.63-1.07) (0.74-0.98) (0.73-0.96) (0.73-1.13) (0.81-0.97) (0.87-1.04) (0.83-0.95) 

Period          

2007-2010 1 1 1 1 1 1 1 

2011-2015 
1.05 0.57 0.60 0.77 0.68 0.96 0.71 

(0.85-1.30) (0.51-0.64) (0.54-0.68) (0.64-0.93) (0.63-0.73) (0.89-1.04) (0.68-0.75) 

Elevation          

1147 – 1243 1 1 1 1 1 1 1 

1244 – 1293 
1.13 1.09 1.15 0.81 1.03 0.98 1.01 

(0.80-1.59) (0.88-1.34) (0.94-1.42) (0.59-1.01) (0.89-1.18) (0.86-1.10) (0.89-1.12) 

1294 – 1327 
0.84 0.80 0.97 0.98 0.99 0.92 0.87 

(0.57-1.23) (0.62-1.03) (0.78-1.24) (0.71-1.36) (0.85-1.15) (0.80-1.05) (0.76-0.99) 

1328 – 1365 
1.17 0.82 0.99 0.96 0.93 0.96 0.89 

(0.79-1.73) (0.63-1.07) (0.78-1.27) (0.67-1.39) (0.78-1.10) (0.83-1.11) (0.75-1.01) 

>1365 
0.92 0.61 0.80 1.09 0.92 0.98 0.80 

(0.59-1.44) (0.45-0.81) (0.62-1.06) (0.74-1.63) (0.75-1.12) (0.84-1.15) (0.68-0.93) 

Spatial 

Variance 

0.49 0.86 0.77 0.51 0.57 0.34 0.96 

(0.17-2.74) (0.25-4.11) (0.23-4.03) (0.18-2.02) (0.14-2.27) (0.15-0.97) (0.32-3.69) 

Range$ 
24.07 15.25 17.38 23.59 19.77 50.09 13.23 

(8.41-90.88) (8.22-83.71) (8.27-81.66) (8.43-88.54) (8.34-93.87) (11.87-96.65) (8.17-51.33) 
†Mortality and malaria data aggregated by four to five-year periods (i.e. 2007-2010 and 2011-2015) 

The effects are presented as the median of mortality rate ratios (RR) and 95% Bayesian credible intervals (BCI) adjusted for 

geographical variation and other predictors 
** Age-adjusted  
*** They are obtained from different models. Estimates of the rest of the predictors are from the models with confirmed 

malaria and do not differ from the PP model. PP estimates are only provided for comparison purposes 
$ Minimum distance in kilometres at which spatial correlation is less than 5%  

 

Relationship between clinical malaria and malaria-specific mortality 

The pattern of association between clinical malaria and malaria-specific mortality across all age 

groups was similar to that of clinical malaria and all-cause mortality, however, the magnitude 
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of the estimates was higher. The effect of clinical malaria risk on malaria-specific mortality was 

statistically important and strong among children 5-14 years (RR=7.56; 1.20-39.54) and 1–4-

year-olds (RR=3.37; 1.23-8.93). Meanwhile in the overall population, malaria-mortality rate 

increases two and half times for every increase in the proportion of clinical malaria by 1% 

(RR=2.50; 1.27-4.81) as shown in Table 4.3. Similar to all-cause mortality analysis, statistically 

important variables were elevation, distance to health facilities, year of study and 

socioeconomic status. Reported net use was not statistically important for malaria-specific 

mortality in any ages except among the elderly (RR=2.05; 1.04-4.34) in the yearly analysis, 

where we observed an elevated risk with higher levels of net use. The minimum distance at 

which spatial correlation was not important (<5%) ranged from 13.4 km to 50.42 km. The 

analyses of the yearly aggregated data did not show a statistically important relation between 

confirmed malaria risk and malaria-specific mortality (See Appendix 4)    
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Table 4.3: Posterior estimates for the effects of prevalence (PP and confirmed malaria) on malaria-specific mortality  

  Infants 1-4 yrs. 5-14 yrs. 15-59 yrs. 60 plus Overall** 

Covariate RR RR RR RR RR RR 

  (95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) 

PP*** 
1.73 2.29 0.56 1.55 2.24 1.66 

(0.74-4.21) (1.17-4.29) (0.14-2.03) (0.48-4.86) (0.67-7.44) (1.07-2.54) 

Clinical malaria*** 
2.23 3.37 7.56 0.60 0.77 2.50 

(0.55-8.36) (1.23-8.93) (1.20-39.54) (0.08-3.91) (0.09-5.64) (1.27-4.81) 

Net use 
1.11 0.74 1.02 0.64 0.72 0.81 

(0.61-1.97) (0.48-1.14) (0.40-2.35) (0.28-1.35) (0.30-1.77) (0.61-1.11) 

Distance to facility 
 

  
  

  
 

0 – 1 km 1 1 1 1 1 1 

1 – 2 km 
1.11 0.89 1.17 1.36 1.10 1.02 

(0.85-1.48) (0.72-1.11) (0.75-1.86) (0.93-2.03) (0.71-1.72) (0.89-1.17) 

>2 km 
1.19 1.00 1.56 1.13 1.15 1.09 

(0.88-1.61) (0.80-1.27) (0.97-2.52) (0.73-1.76) (0.72-1.87) (0.94-1.27) 

SES         

Poorest 1 1 1 1 1 1 

Poor 
0.90 0.83 1.10 0.92 1.08 0.92 

(0.67-1.19) (0.67-1.03) (0.72-1.65) (0.61-1.35) (0.70-1.63) (0.80-1.06) 

Least poor 
0.96 0.78 0.94 0.86 1.05 0.88 

(0.73-1.26) (0.63-0.98) (0.62-1.44) (0.59-1.25) (0.68-1.61) (0.76-1.03) 

Period                            

2007-2010 1 1 1 1 1 1 

2011-2015 
0.58 0.56 0.72 0.64 0.68 0.56 

(0.45-0.72) (0.47-0.67) (0.51-1.03) (0.47-0.88) (0.47-0.96) (0.50-0.63) 

Elevation         

1147 – 1243 1 1 1 1 1 1 

1244 – 1293 
1.05 1.17 0.94 1.05 0.89 1.08 

(0.75-1.46) (0.85-1.61) (0.54-1.60) (0.62-1.77) (0.50-1.55) (0.87-1.34) 

1294 – 1327 
0.47 1.10 1.02 0.79 1.00 0.84 

(0.31-0.70) (0.78-1.58) (0.56-1.79) (0.45-1.41) (0.55-1.75) (0.67-1.08) 

1328 – 1365 
0.65 1.00 0.99 0.89 1.15 0.88 

(0.43-0.98) (0.70-1.47) (0.51-1.88) (0.49-1.65) (0.60-2.14) (0.68-1.13) 

>1365 
0.36 0.88 1.39 0.58 1.29 0.71 

(0.21-0.58) (0.58-1.34) (0.69-2.76) (0.28-1.16) (0.65-2.50) (0.52-0.94) 

Spatial variance 
0.53 0.75 0.49 0.78 0.64 0.95 

(0.17-2.43) (0.21-4.40) (0.16-2.43) (0.18-4.08) (0.22-2.65) (0.21-7.62) 

Range$ 
22.40 16.00 28.82 15.40 16.87 15.27 

(8.42-92.52) (8.22-74.12) (8.47-91.99) (8.21-86.65) (8.32-75.36) (8.19-78.32) 
†Mortality and malaria data aggregated by four to five-year periods (i.e. 2007-2010 and 2011-2015) 

The effects are presented as the median of mortality rate ratios (RR) and 95% Bayesian credible intervals (BCI) adjusted for 

geographical variation and other predictors 
** Age-adjusted  
*** They are obtained from different models. Estimates of the rest of the predictors are from the models with confirmed 

malaria and do not differ from the PP model. PP estimates are only provided for comparison purposes 
$ Minimum distance in kilometres at which spatial correlation is less than 5%  

 

Relationship between parasite prevalence and all-cause/malaria specific mortality 

The relation between PP and all-cause mortality was not statistically important across all ages 

(Table 4.2). However, there was a statistically important association between PP and malaria-

specific mortality (Table 4.3) among children aged 1-4 years (RR=2.29; 95% BCI: 1.17-4.29), 
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and in the combined age group (RR=1.66; 95% BCI: 1.07-2.54) when data was aggregated over 

5 to 4 year. Analyses of yearly data did not reveal statistically important associations except 

between PP and all-cause mortality among the adults (RR=1.23; 95% BCI: 1.01-1.50) (See 

Additional file 4) and with malaria-specific mortality among the elderly (RR=3.42; 95 % CI: 

1.39-8.63) (Appendix 5). 

 

4.4. Discussion 

Using data from community level cross-sectional surveys, our study shows that; parasite 

prevalence is associated with malaria-mortality in the overall population, while clinical malaria 

is associated with both all-cause and malaria-specific mortality more so in the age groups 1-4 

years and 5-14years. This relationship was established by fitting over 50 different Bayesian 

geo-statistical models across different age groups on large data from verbal autopsies, 

longitudinal household surveys, and cross-sectional malaria parasitaemia surveys carried out 

annually over nine years in the HDSS located in a malaria endemic region of western Kenya. 

These data aggregated over four to five-year periods showed statistically important relations 

between clinical malaria and mortality (all-cause and malaria-specific) in the overall 

population, in children 1-4, and older children aged 5-14 years old, while PP had a statistically 

important association with malaria-specific mortality in 1–4-year-olds and in the overall 

population. Meanwhile, analyses of the same data, annually aggregated did not establish any 

association between prevalence of clinical malaria nor PP with either all-cause or malaria-

specific mortality across most age groups except for all-cause mortality in adults aged 15-59 

years and malaria-specific mortality in the elderly. 

Studies in malaria-endemic areas have also shown that children above the age of 5 years are 

least affected by the malaria burden in terms of confirmed symptomatic malaria and mortality 

compared to other age groups, even though they remain the biggest reservoir of the malaria 
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parasites (Walldorf et al., 2015; Zhou et al., 2011). However, the long-term effects of declining 

transmission on mortality in this age group have not been well explored. This study showed a 

7-fold increase in malaria-specific mortality for every 1% increase in clinical malaria 

prevalence, which was more than twice the effect in children 1–4-year-old.  This finding could 

be attributed to low utilization of ITNs by older children compared to other age groups in this 

study as well as previous ones (Desai et al., 2014) or poor health care seeking behaviour 

reported in the same group (Bigogo et al., 2010), resulting in higher mortality rates when data 

is captured at household level compared to sentinel health facilities. This reinforces the 

importance of universal coverage of malaria control interventions particularly in high 

transmission areas.  

The absence of an association between PP and all-cause mortality could be due to several 

factors. First, parasite prevalence from the community might capture more asymptomatic 

carriers who have acquired immunity from malaria disease, eventually recover without adverse 

outcomes and hence survive. Second, malaria mortality is usually preceded by severe illness, 

and therefore our PP data may be biased, as most of those who were severely ill may have gone 

to the hospital or succumbed to the disease prior to the time of the survey. Furthermore, an 

increase or decrease in mortality could be also due to other unmeasured factors that are 

unrelated to parasite prevalence; an example was shown by the influence of political instability 

on mortality in the year 2008 in Kisumu (Feikin et al., 2010) that resulted in massive disruption 

of health delivery. 

The lack of association between PP or clinical malaria and mortality in the 15-49 age groups 

may be an indicator of misclassification of malaria as a cause of death by verbal autopsy. This 

weakness of verbal autopsy in identifying malaria as a cause of death among adults (Murray et 

al., 2012) could result in fewer deaths being classified as malaria than there really are in the 

population. Evidence suggests that people with HIV have more frequent episodes of 

symptomatic malaria (Whitworth et al., 2000) and that malaria increases HIV plasma viral load 
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and decreases CD4+ T cells (Alemu et al., 2013). Therefore, an alternative explanation could 

be that malaria specific mortality among adults may be classified by verbal autopsy as 

HIV/AIDS-related rather than malaria related. 

The estimated effects of PP and clinical malaria were higher for malaria-specific mortality 

compared to all-cause. Furthermore, clinical malaria was a better predictor of mortality than 

PP. In fact, some of the asymptomatic infections may neither lead to severe disease nor death 

and therefore prevalence of clinical malaria is a better indicator for monitoring the disease 

burden at the population level. The stronger effect of clinical malaria and PP on malaria-specific 

mortality compared to all-cause mortality indicates that an increase in malaria transmission 

measures results in more malaria deaths which in turn inflate overall mortality. The stronger 

effect of prevalence on malaria specific mortality is because there is a clear biological cause 

and effect (Miller et al., 2002) and malaria infection can and does lead to mortality, however, 

the relationship between prevalence and all-cause mortality is diluted by other causes of 

mortality.  

From our findings, it is worth noting that prevalence as a measure of transmission shows more 

stability in determining mortality over longer periods of time (4-5 years) compared to annual 

measures. Comparing estimates of the relation between  mortality and malaria transmission 

measured by prevalence (of parasitaemia and confirmed malaria) in the current study, incidence 

(Khagayi et al., 2017) and EIR (Amek et al., 2018) in our previous studies, we note that 

incidence measured as slide positivity rate (SPR) followed by log EIR capture better the 

relationship between malaria transmission and mortality (Table 4.4). Confirmed malaria 

prevalence averaged over 4-5 years  is likely to be more stable in areas of high transmission 

and therefore a useful measure of transmission over a long period while incidence and EIR 

capture the malaria-mortality relationship better over shorter periods (Amek et al., 2018; 

Khagayi et al., 2017). These differences could be due to the fact that PP one-off estimates can 

be misleading indicators of long-term transmission potential, since they vary markedly with 
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season (Drakeley et al., 2005) (Drakeley et al. 2005). These short-term fluctuation would then 

make it harder to associate yearly PP measures with mortality occurring all year round; 

suggesting that population based prevalence surveys do represent long term transmissions as 

opposed to short term changes. 
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Table 4.4: Comparison of estimates measuring the relation between malaria transmission and mortality from previous studies and current work 

  Transmission measure Neonates Infants Child Older child Adults Elderly All ages 

 

(All-cause) 
Log EIR1 3.91 (3.53 - 4.32)* 3.64 (3.40 - 3.89) 4.29 (3.89 - 4.73) - - - - 

Slide Positivity Rate 

(Incidence)2 
0.89 (0.13 - 5.70) 3.10 (0.36 - 13.12) 4.29 (2.78 - 13.29) 0.48 (0.15 - 2.05) 0.73 (0.39 - 1.42) 1.70 (0.79 - 4.45) 1.55 (1.04 - 2.80) 

Annual parasite 

prevalence3 
1.23 (0.71 - 2.10) 1.04 (0.75 - 1.42) 1.11 (0.80 - 1.52) 1.15 (0.67 - 1.98) 1.23 (1.01 - 1.50) 1.04 (0.86 - 1.28) 1.10 (0.97 - 1.25) 

Annual clinical malaria 

prevalence3 
1.03 (0.44 - 2.32) 1.22 (0.68 - 1.84) 1.38 (0.87 - 2.19) 1.97 (0.88 - 4.17) 1.16 (0.86 - 1.58) 0.99 (0.72 - 1.36) 1.16 (0.97 - 1.40) 

Five-year parasite 

prevalence4 
0.64 (0.29 - 1.34) 1.32 (0.86 - 2.04) 1.50 (0.98 - 2.23) 1.38 (0.69 - 2.69) 1.23 (0.94 - 1.57) 1.04 (0.78 - 1.35) 1.15 (0.96 - 1.37) 

Five-year clinical malaria 

prevalence4 
1.05 (0.30 - 3.51) 1.65 (0.81 - 3.26) 1.89 (1.00 - 3.51) 3.94 (1.34 - 11.1) 0.99 (0.64 - 1.54) 1.07 (0.69 - 1.66) 1.32 (1.01 - 1.74) 

 

(Malaria-

specific) 

Log EIR1 - 4.35 (3.72 - 4.95) 4.29 (3.61 - 5.06) - - - - 

Slide Positivity Rate 

(Incidence)2 
- 1.36 (0.23 - 9.85) 9.48 (5.11 - 37.94) 0.02 (0.003 - 0.33) 0.27 (0.02 - 3.24) 0.59 (0.01 - 13.15) 1.37 (0.51 - 3.73) 

Annual parasite 

prevalence3 
- 1.31 (0.71 - 2.37) 1.50 (0.92 - 2.41) 0.80 (0.32 - 2.06) 0.78 (0.32 - 1.80) 3.42 (1.39 - 8.63) 1.31 (0.95 - 1.78) 

Annual clinical malaria 

prevalence3 
- 0.94 (0.34 - 2.47) 1.58 (0.73 - 3.23) 3.65 (0.94 - 12.79) 0.36 (0.08 - 1.49) 1.67 (0.38 - 6.52) 1.34 (0.82 - 2.14) 

Five-year parasite 

prevalence4 
- 1.73 (0.74 - 4.21) 2.29 (1.17 - 4.29) 0.56 (0.14 - 2.03) 1.55 (0.48 - 4.86) 2.24 (0.67 - 7.44) 1.66 (1.07 - 2.54) 

Five-year clinical malaria 

prevalence4 
- 2.23 (0.55 - 8.36) 3.37 (1.23 - 8.93) 7.56 (1.20 - 39.5) 0.60 (0.08 - 3.91) 0.77 (0.09 - 5.64) 2.50 (1.27 - 4.81) 

Estimates are Bayesian posterior medians and 95% Bayesian Credible Intervals (BCI) 

 

Source 

      1 Amek et al (2018). Infant and child mortality in relation to malaria transmission in KEMRI/CDC HDSS, Western Kenya: validation of verbal autopsy. Malar J. 17(1):37 
      2 Khagayi et al (2017). Bayesian spatio-temporal modelling of mortality in relation to malaria incidence in Western Kenya. PLOS ONE.;12(7):e0180516 
      3 Annually aggregated data. Current work. 
      4 Data aggregated over 4-5 years. Current work. 

   *Statistical important effects are indicated in bold.  
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Higher socioeconomic status, shorter distance to health facilities and increasing altitude are 

known protective factors that were statistically important for both, all-cause and malaria-

specific mortality. Individuals at a higher social status are more likely to live in well-constructed 

houses that offer better protection against endophagic/endophilic malaria vectors that transmit 

malaria in sub-Saharan Africa, afford better nutrition and pay for superior treatment (Sachs & 

Malaney, 2002). Increasing elevation is associated with lower temperatures which increase the 

development time of both vector and parasite (Githeko et al., 2006), resulting in lower 

transmission. Similarly, it has been shown that  distance to health facilities  influences mortality 

(Karra et al., 2016).  

Lack of association between net use and mortality across ages except for yearly data among the 

elderly could be due to data aggregation at village level which diminished the expected 

individual level protection associated with net use reported in earlier studies during the 90’s 

and early 2000’s in the same region (Amek et al., 2018; Hawley et al., 2003). This change from 

earlier years could have been due to a number of factors among them ITN’s having achieved 

maximum benefits, compromised effectiveness due to misuse/pyrethroid resistance or other 

unmeasured factors which countered their protective effect (Bayoh et al., 2014; Zhou et al., 

2014). The diminished effect of net use might also be due to use of self-reported net use 

information which could lead to bias as it does not measure constant use. The negative effect 

of net use on malaria-specific mortality among the elderly, a group that has not been well 

researched in malaria cannot be explained adequately, and requires further investigation. We 

however hypothesize that since mortality is generally high in this age-group, at the same time 

society considers them vulnerable, issuance and use of ITNs could be higher and hence their 

protective effect is masked.  

There are inherent limitations in survey data and in estimating malaria mortality using verbal 

autopsy that could influence our results. First, the surveys were conducted in specific months 

(i.e. in April, just before the rains (or just as they were starting) or June/July after the rains were 
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ending.); therefore, the prevalence estimates of may be biased by unexpected changes in 

climatic and environmental factors in other. Use of verbal autopsy as a tool for determining 

cause of death has been criticized (Murray et al., 2012), even though recent improvements in 

the InterVA coding have been said to reduce classification errors, especially at population level 

(Byass et al., 2015). Despite these limitations, the 9-year data in the study have been collected 

consistently in the same area using rigorous data collection methods and strict quality control 

measures. These data are thus unique in studying the relation between malaria prevalence and 

mortality across all groups in this population within a high endemic area.  

 

4.5. Conclusion 

Data from cross-sectional malaria prevalence were used to assess the relationship between 

malaria transmission and all-cause/malaria-specific mortality across age groups. The main 

findings were; i) prevalence as a measure of transmission is more stable over longer periods of 

time and its impact on mortality can be well investigated over periods of four to five years 

compared to incidence and EIR which better capture the malaria-mortality relationship on a 

yearly basis; ii) the risk of clinical malaria was strongly associated with mortality among 5-14 

year olds; supporting the extension of control and prevention strategies to older children and 

adults; iii) symptomatic malaria from prevalence surveys at the population level can be used as 

a marker for increased malaria mortality. Therefore, strengthening health systems to capture 

high quality data on incidence would be useful and have greater relevance in predicting 

mortality.  It is likely that the relationships between PP/clinical malaria and all-cause or malaria 

specific mortality are influenced by several factors such as the baseline endemicity of malaria, 

access to effective anti-malaria treatment and other factors. Therefore, analyses of data from 

other HDSS sites or similar platforms with differing levels of malaria endemicity different 

socio-economic status, or different access to effective anti-malarial drugs would be useful in 

understanding the contribution of PP to mortality across age groups.  
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4.6. Appendix 

Appendix 4.5.1: Study designs for the malaria survey data during 2007-2015 
Month/Year of 

Study Area(s) 

Design and 

Context Sampling design 

Sample 

Size 

April 2007 Whole HDSS area HDSS Systematic Random Sampling 1270 

April 2008 Whole HDSS area HDSS Systematic random sampling 1039 

April 2009 Whole HDSS area HDSS Cluster randomization (cluster 

unit = village) Villages selected 

by random sampling 

proportional to size 

2508 

April 2010 Whole HDSS area HDSS Systematic random sampling 5243 

June-July 2011 Whole HDSS area HDSS Systematic random sampling 2091 

June-July 2012 Whole HDSS area HDSS Systematic random sampling 2719 

June-July 2013 Whole HDSS area HDSS Systematic random sampling 2358 

2014 Whole HDSS area HDSS Systematic random sampling 1934 

2015 Whole HDSS area HDSS Systematic random sampling 1756 
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Appendix 4.5.2: Bayesian model formulation  

Let Yjt be the observed number of deaths (all-cause or malaria-specific) in village j at time t, 

j=1,2,…n and t=1,2,…9 for the model fitted on the annual data. We assume that Yjt arises from 

a negative binomial distribution, Y𝑗𝑡~NB(μ𝑗𝑡, 𝑟) where μ𝑗𝑡, is the expected number of deaths 

and r is the dispersion parameter. We modelled malaria prevalence and other covariates (X) by 

on the log scale of μ𝑗𝑡  

𝑙𝑜𝑔(𝜇𝑗𝑡) = 𝑙𝑜𝑔(𝑁𝑗𝑡) + 𝛽0 + ∑ 𝛽𝑘
𝑘
1 𝑋𝑗𝑡𝑘 + 𝜙𝑗                , k=1,2,…K 

where 𝑁𝑗𝑡  the total person time contributed by persons in village j at time t  (in person years, py),  

𝜷 = (𝛽1, 𝛽2, … , 𝛽𝐾)𝑇 are the regression coefficients (malaria prevalence and other predictors) 

and 𝜙𝑗 the village specific spatial effects.  We assumed that 𝝓 = (𝜙1, 𝜙2, … 𝜙𝑛)𝑇 are modeled 

by a Gaussian process, that is 𝝓 ~ MVN(0, 𝜎1
2𝑅) and that 𝑅 is an exponential correlation matrix 

of the distance between villages, i.e. 𝑅𝑖𝑗 = exp (−𝜌𝑑𝑘𝑙) where 𝑑𝑘𝑙  is the distance between 

villages k  and l , 𝜌 is the rate of correlation decay with distance. The minimum distance at 

which the spatial correlation is less than 5% is called effective range and is defined by the value 

of 3/𝜌 (1). The 𝜎1
2 is the variance of the spatial process.  We specified non-informative normal 

prior distributions with mean zero and large variance for the regression coefficients 

𝛽𝑖~𝑁(0, 103), an inverse gamma prior for 𝜎1
2, that is 𝜎1

2 ~𝐼𝐺(2.01, 1.01) and a Uniform  prior 

distribution for 𝜌, that is 𝜌~𝑈(𝑎, 𝑏), where 𝑎  and 𝑏 are chosen such as the effective range is 

within the maximum and minimum distances of the village’s locations. 

The Bayesian models were then fitted using Markov Chain Monte Carlo (MCMC) simulation 

algorithm in OpenBugs version 3.1.2 (Imperial College and Medical Council, London, UK) to 

estimate model parameters (Gelfand & Smith, 1990). We ran a two-chain sampler for 100,000 

iterations, discarding the first 10,000 iterations. Convergence was assessed by the Gelman-

Rubin diagnostic (Gelman & Rubin, 1992). 
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Appendix 4.5.3: Posterior estimates of the effects of prevalence on all-cause mortality 

aggregated annually. † 
 Neonates Infants 1-4 yrs. 5-14 yrs. 15-59 yrs. 60 plus Overall** 

Covariate RR RR RR RR RR RR RR 

  (95% CI*) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) 

PP*** 

 

1.23 1.04 1.11 1.15 1.23 1.04 1.1 

(0.71-2.10) (0.75-1.42) (0.80-1.52) (0.67-1.98) (1.01-1.50) (0.86-1.28) (0.97-1.25) 

Clinical 

malaria***  
1.03 1.22 1.38 1.97 1.16 0.99 1.16 

 (0.44-2.32) (0.68-1.84) (0.87-2.19) (0.88-4.17) (0.86-1.58) (0.72-1.36) (0.97-1.40) 

Net use 
1.3 0.85 0.87 0.77 1.07 0.9 0.96 

(0.87-1.93) (0.68-1.07) (0.70-1.07) (0.52-1.11) (0.93-1.22) (0.77-1.04) (0.88-1.04) 

Distance to facility         

0 – 1 km 1 1 1 1 1 1 1 

1 – 2 km 
1.06 1.08 1.09 1.05 1.1 1.04 1.09 

(0.82-1.95) (0.93-1.24) (0.95-1.26) (0.83-1.33) (1.01-1.22) (0.95-1.14) (1.03-1.16) 

>2 km 
1.4 1.1 1.18 1.35 1.1 1.08 1.15 

(1.06-2.71) (0.94-1.29) (1.01-1.37) (1.05-1.74) (1.00-1.22) (0.97-1.19) (1.07-1.22) 

SES          

Poorest 1 1 1 1 1 1 1 

Poor 
1.09 0.95 0.94 1.06 0.97 0.93 0.98 

(0.52-1.20) (0.82-1.09) (0.82-1.08) (0.84-1.35) (0.88-1.06) (0.85-1.02) (0.92-1.03) 

Least poor 
0.93 0.92 0.81 1.02 0.94 0.95 0.92 

(0.35-0.84) (0.79-1.07) (0.70-0.94) (0.80-1.32) (0.86-1.03) (0.86-1.05) (0.86-0.99) 

Year          

2007 1 1 1 1 1 1 1 

2008 
1.67 1.57 1.59 1.6 1.07 1.14 1.3 

(1.14-2.45) (1.28-1.94) (1.28-2.00) (1.03-2.54) (0.93-1.23) (0.96-1.35) (1.19-1.42) 

2009 
1.29 1.25 1.45 1.43 0.93 1.1 1.11 

(0.82-2.02) (0.97-1.61) (1.13-1.88) (0.87-2.36) (0.80-1.09) (0.91-1.33) (1.00-1.23) 

2010 
0.58 0.9 0.97 1.27 0.71 1 0.84 

(0.39-0.86) (0.74-1.11) (0.80-1.20) (0.87-1.95) (0.63-0.80) (0.87-1.16) (0.78-0.91) 

2011 
0.64 0.77 0.8 0.91 0.63 1.01 0.75 

(0.41-0.98) (0.61-0.97) (0.63-1.01) (0.58-1.46) (0.55-0.72) (0.86-1.18) (0.68-0.82) 

2012 
1.14 0.57 0.66 1.21 0.59 1.01 0.71 

(0.79-1.64) (0.45-0.72) (0.49-0.87) (0.81-1.89) (0.52-.067) (0.87-1.18) (0.65-0.77) 

2013 
1.1 0.73 0.77 1.02 0.55 0.96 0.71 

(0.77-1.58) (0.59-0.91) (0.62-0.96) (0.68-1.58) (0.49-0.63) (0.83-1.12) (0.65-0.77) 

2014 
1.24 0.66 0.66 0.99 0.6 0.97 0.69 

(0.80-1.91) (0.49-0.88) (0.49-0.87) (0.59-1.66) (0.51-0.70) (0.81-1.16) (0.62-0.77) 

2015 
0.86 0.52 0.52 1.28 0.5 1.02 0.63 

(0.50-1.42) (0.38-0.72) (0.38-0.69) (0.82-2.08) (0.42-0.59) (0.86-1.21) (0.57-0.70) 

Elevation          

1147 – 1243 1 1 1 1 1 1 1 

1244 – 1293 
1.16 1.07 1.15 0.83 1.05 0.99 1.01 

(0.85-1.61) (0.86-1.33) (0.95-1.42) (0.60-1.15) (0.90-1.22) (0.86-1.12) (0.90-1.11) 

1294 – 1327 
0.87 0.77 1.01 0.96 1.03 0.93 0.89 

(0.61-1.23) (0.59-0.98) (0.81-1.26) (0.68-1.35) (0.87-1.22) (0.79-1.07) (0.79-1.00) 

1328 – 1365 
1.23 0.79 1.02 0.99 0.96 0.97 0.9 

(0.85-1.77) (0.61-1.03) (0.80-1.30) (0.67-1.44) (0.79-1.15) (0.83-1.14) (0.78-1.02) 

>1365 
0.99 0.54 0.81 1.1 0.96 1 0.82 

(0.65-1.52) (0.40-0.73) (0.61-1.07) (0.71-1.67) (0.78-1.20) (0.83-1.19) (0.70-0.95) 

Spatial Variance 
0.06 0.23 0.19 0.17 0.19 0.08 0.24 

(0.03-0.33) (0.05-0.37) (0.04-0) (0.04-0.36) (0.05-0.36) (0.03-0.33) (0.06-0.37) 

Range$ 
54.34 13.2 15.53 17.69 15.54 38.26 12.39 

(9.05-98.08) (8.17-55.31) (8.20-84.11) (8.29-78.62) (8.24-65.62) (9.14-95.12) (8.13-50.99) 

The effects are presented as the median of mortality rate ratios (RR) and 95% Bayesian credible intervals (BCI) adjusted for 

geographical variation and other predictors 
** Age-adjusted  
*** They are obtained from different models. Estimates of the rest of the predictors are from the models with confirmed 

malaria and do not differ from the PP model. PP estimates are only provided for comparison purposes 
$ Minimum distance in kilometres at which spatial correlation is less than 5%   
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Appendix 4.5.4: All-cause mortality, malaria-specific mortality and clinical 

malaria/parasite prevalence by year and age group 
Year Indicators All Neonates Infants Child Older child Adult Elderly 

2007 Person years of observation 181537 521 6222 22379 49372 83225 14059 

All-cause death rate 15.5 243.7 59.3 17.1 2.0 13.4 50.6 

Malaria death rate 1.3 - 9.0 3.8 0.3 0.6 1.1 

Sampled population 1270 - 53 228 363 526 100 

PP (clinical malaria) 30% (7%) - 9% (9%) 43% (18%) 51% (7%) 19% (3%) 10% (5%) 

2008 Person years of observation 230374 679 8203 29455 63830 107040 17498 

All-cause death rate 18.8 328.5 86.6 28.1 2.4 13.5 54.9 

Malaria death rate 3.5 - 26.3 12.5 0.5 0.7 2.4 

Sampled population 1039 - 34 171 304 440 81 

PP (clinical malaria) 27% (6%) - 9% (2%) 33% (12%) 52% (7%) 16% (4%) 14% (7%) 

2009 Person years of observation 230373 609 7666 29535 64664 106636 17915 

All-cause death rate 15.6 246.3 68.2 22.0 2.3 11.3 51.5 

Malaria death rate 2.9 - 20.2 8.8 0.8 0.8 2.9 

Sampled population 2508 - 117 521 708 939 223 

PP (clinical malaria) 39% (8%) - 21% (7%) 49% (15%) 61% (7%) 25% (4%) 15% (8%) 

2010 Person years of observation 233871 575 7165 29773 66475 108038 18316 

All-cause death rate 12.4 132.2 51.1 16.2 2.0 9.1 46.5 

Malaria death rate 2.1 - 15.1 6.4 0.8 0.4 2.7 

Sampled population 5243 - 191 1177 1717 1861 297 

PP (clinical malaria) 40% (8%) - 30% (13%) 45% (14%) 60% (8%) 23% (4%) 14% (4%) 

2011 Person years of observation 238524 550 6817 29790 68937 111025 18393 

All-cause death rate 10.9 130.9 44.3 13.2 1.6 7.8 47.0 

Malaria death rate 1.4 - 11.0 4.7 0.4 0.3 1.3 

Sampled population 2091 - 130 776 495 592 98 

PP (clinical malaria) 39% (8%) - 20% (11%) 44% (12%) 56% (7%) 26% (4%) 21% (9%) 

2012 Person years of observation 246254 575 6863 30021 72024 115190 18871 

All-cause death rate 10.2 219.2 32.5 11.0 1.8 7.2 45.8 

Malaria death rate 1.4 - 9.18 4.13 0.68 0.36 1.38 

Sampled population 2719 - 209 1336 473 599 102 

PP (clinical malaria) 34% (8%) - 21% (4%) 37% (10%) 55% (9%) 21% (4%) 12% (6%) 

2013 Person years of observation 249757 584 7146 29858 74793 118096 19669 

All-cause death rate 10.5 256.8 40.9 12.6 1.7 6.8 45.4 

Malaria death rate 1.6 - 11.8 4.6 0.6 0.4 2.6 

Sampled population 2358 - 141 1044 492 592 89 

PP (clinical malaria) 34% (10%) - 27% (12%) 36% (14%) 51% (11%) 23% (4%) 12% (6%) 

2014 Person years of observation 252173 519 6778 29289 75891 119903 20305 

All-cause death rate 10.2 275.5 34.7 11.7 1.6 7.2 44.2 

Malaria death rate 1.0 - 7.5 3.3 0.3 0.4 1.5 

Sampled population 1934 - 54 232 664 804 180 

PP (clinical malaria) 36% (8%) - 17% (6%) 34% (12%) 56% (12%) 25% (5%) 13% (5%) 

2015 Person years of observation 251360 448 5979 27917 75876 120924 20695 

All-cause death rate 9.4 185.4 26.6 9.1 1.9 6.6 46.2 

Malaria death rate 0.9 - 3.2 1.9 0.3 0.1 1.0 

Sampled population 1756 - 29 227 570 783 147 

PP (clinical malaria) 30% (7%) - 17% (10%) 32% (13%) 46% (11%) 20% (3%) 16% (5%) 
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Appendix 4.5.5: Posterior estimates of the effects of prevalence on malaria-specific 

mortality aggregated annually  
  Infants 1-4 yrs. 5-14 yrs. 15-59 yrs. 60 plus Overall** 

Covariate RR RR RR RR RR RR 

  (95% BCI*) (95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) 

PP*** 
1.31 1.50 0.8 0.78 3.42 1.31 

(0.71-2.37) (0.92-2.41) (0.32-2.06) (0.32-1.80) (1.39-8.63) (0.95-1.78) 

Clinical malaria*** 
0.94 1.58 3.65 0.36 1.67 1.34 

(0.34-2.47) (0.73-3.23) (0.94-12.79) (0.08-1.49) (0.38-6.52) (0.82-2.14) 

Net use 
1.08 0.94 0.64 0.75 2.05 0.97 

(0.68-1.65) (0.67-1.31) (0.33-1.27) (0.40-1.42) (1.04-4.34) (0.79-1.21) 

Distance to facility 
 

  
  

  
 

0 – 1 km 1 1 1 1 1 1 

1 – 2 km 
1.13 0.93 1.23 1.38 1.04 1.06 

(0.86-1.50) (0.76-1.15) (0.78-1.98) (0.94-2.07) (0.67-1.63) (0.92-1.22) 

>2 km 
1.16 1.03 1.61 1.14 1.11 1.11 

(0.86-1.57) (0.82-1.30) (1.00-2.65) (0.74-1.79) (0.68-1.81) (0.94-1.22) 

SES         

Poorest 1 1 1 1 1 1 

Poor 
0.89 0.94 0.84 0.81 0.98 0.89 

(0.67-1.19) (0.75-1.16) (0.55-1.28) (0.55-1.19) (0.63-1.53) (0.78-1.03) 

Least poor 
0.87 0.81 0.71 0.77 1.18 0.84 

(0.64-1.18) (0.64-1.03) (0.45-1.13) (0.51-1.15) (0.74-1.88) (0.72-0.98) 

Year                     2007 1 1 1 1 1 1 

2008 
3.05 3.37 2.09 1.36 2.44 2.74 

(1.94-4.94) (2.32-5.02) (0.71-6.82) (0.73-2.57) (1.01-6.23) (2.14-3.48) 

2009 
1.93 2.37 4.76 2.06 1.35 2.17 

(1.11-3.38) (1.54-3.69) (1.74-15.02) (1.07-3.96) (0.47-3.84) (1.66-2.86) 

2010 
1.72 1.69 3.72 0.9 2.52 1.66 

(1.11-2.76) (1.18-2.48) (1.56-10.63) (0.52-1.62) (1.17-5.82) (1.32-2.11) 

2011 
1.3 1.35 1.82 0.73 1.12 1.14 

(0.78-2.24) (0.91-2.06) (0.65-5.75) (0.37-1.43) (0.45-2.84) (0.88-1.48) 

2012 
1.15 1.08 3.07 0.67 1.13 1.05 

(0.70-1.94) (0.72-1.63) (1.22-9.07) (0.36-1.27) (0.47-2.87) (0.81-1.35) 

2013 
1.34 1.3 2.72 0.97 1.81 1.25 

(0.83-2.22) (0.88-1.94) (1.09-7.86) (0.56-1.77) (0.82-4.33) (0.99-1.60) 

2014 
0.78 0.82 1.57 0.79 1.08 0.79 

(0.39-1.52) (0.48-1.38) (0.47-5.40) (0.37-1.63) (0.39-3.05) (0.57-1.08) 

2015 
0.19 0.51 1.24 0.16 0.41 0.36 

(0.01-0.56) (0.27-0.93) (0.35-4.37) (0.03-0.50) (0.05-1.53) (0.23-0.54) 

Elevation         

1147 – 1243 1 1 1 1 1 1 

1244 – 1293 
1.07 1.19 0.89 1.05 0.9 1.1 

(0.76-1.50) (0.88-1.61) (0.51-1.53) (0.62-1.77) (0.49-1.63) (0.88-1.37) 

1294 – 1327 
0.49 1.23 0.97 0.81 1.05 0.9 

(0.32-0.75) (0.88-1.68) (0.55-1.72) (0.47-1.41) (0.55-1.98) (0.69-1.17) 

1328 – 1365 
0.72 1.13 0.98 0.96 1.12 0.95 

(0.47-1.11) (0.78-1.58) (0.51-1.86) (0.54-1.71) (0.56-2.25) (0.72-1.23) 

>1365 
0.4 0.94 1.28 0.61 1.21 0.75 

(0.23-0.66) (0.62-1.38) (0.64-2.54) (0.31-1.19) (0.56-2.61) (0.55-1.00) 

Spatial Variance 
0.19 0.16 0.06 0.14 0.22 0.22 

(0.04-0.36) (0.04-0.36) (0.03-0.29) (0.03-0.36) (0.05-0.37) (0.05-0.37) 

Range$ 
15.91 18.22 50.42 20.75 13.44 13.36 

(8.23-74.54) (8.25-84.10) (10.35-97.07) (8.39-90.56) (8.18-60.19) (8.17-63.63) 

The effects are presented as the median of mortality rate ratios (RR) and 95% Bayesian credible intervals (BCI) adjusted for geographical 

variation and other predictors 
** Age-adjusted  
*** They are obtained from different models. Estimates of the rest of the predictors are from the models with confirmed malaria and do not 

differ from the PP model. PP estimates are only provided for comparison purposes 
$ Minimum distance in kilometres at which spatial correlation is less than 5%   
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Abstract  

Background 

Anaemia remains a leading cause of morbidity and mortality worldwide with a disproportionate 

burden in low and middle-income countries. However, previous studies of anaemia 

epidemiology have been geographically limited with little detail about severity or aetiology 

across different age groups in the same population. 

 

Methods 

We collated malaria parasitaemia data from annual cross-sectional surveys between 2007 and 

2015 together with Schistosomiasis/helminths data from geo-statistical models aggregated at 

village level. Using these, we fitted Bayesian geo-statistical regression models to investigate 

the association between malaria and parasitic worms’ prevalence with anaemia risk across 

different age groups. 

 

Results 

We established a persistently high prevalence of anaemia affecting 42.3% (CI: 41.2-43.4%) of 

the population, which is classified as a severe public health indicator. Across all age groups, 

our analysis showed on average, a consistently high prevalence of anaemia across the years, 

mostly affecting young children 1-11 months at 67.1% (CI: 62.5-71.6%), 1-4 years at 61.0% 

(CI: 58.9-63.1%); the elderly at 47.1% (CI: 43.6-50.6%) and women at 45.3% (CI: 43.8-46.8%). 

Malaria parasitaemia, clinical malaria, age, sex and socioeconomic status as a proxy for 

malnutrition were significantly associated with a higher anaemia risk and lower levels of 

Haemoglobin (Hb) concentration. Schistosomiasis and helminths risk were not associated with 

anaemia prevalence in this study area. 

 

Conclusions 

The high, stable anaemia prevalence across all age groups and the multifaceted nature of factors 

determining anaemia prevalence underscore the need for an integrated approach to reduce its 

burden in this and other populations with endemic malaria and similar health challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Anaemia, Malaria, Soil transmitted helminths, Schistosomiasis, Bayesian spatio-

temporal, Health and Demographic Surveillance system.  
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5.1. Introduction 

Despite its decline in recent years, anaemia remains a major public health problem affecting 

over 1.9 billion people with the biggest burden experienced in Sub-Saharan Africa (SSA) (GBD 

Anaemia Collaborators, 2023; Kassebaum, 2016; Safiri et al., 2021; Stevens et al., 2013). In 

Kenya, available data estimates anaemia prevalence of 40-50% and 20-40% in children less 

than 5 years and women of reproductive age respectively (Division of National Malaria 

Programme (DNMP) & ICF, 2021; World Health Organization, 2015a). In the  

Anaemia disproportionately affects the poorest, marginalised groups and is associated with a 

wide range of poor health outcomes across all age groups (Balarajan et al., 2011). It increases 

the risk of maternal and child mortality/morbidity, promotes poor birth outcomes, increases 

chances of lifelong conditions, exacerbates existing or acquired health conditions and impairs 

normal bodily functions (Anand, 2008; Balarajan et al., 2011; Cavill et al., 2006; Haider et al., 

2013; Terekeci et al., 2010). The aetiology of anaemia varies from place to place, with iron 

deficiency identified as the main cause in SSA. Its manifestation, is also complex in low-income 

countries due to the presence of other factors, among them infectious diseases such as malaria, 

parasitic worms, HIV/AIDS, malnutrition and genetic disorders (Ejigu et al., 2018; Foote et al., 

2013; Kassebaum, 2016; Soares Magalhães & Clements, 2011). 

Malaria and parasitic worms, especially Schistosoma mansoni and soil transmitted helminths 

STH (Hookworms, Ascaris lumbricoides and Trichuris trichiura) have been shown in different 

studies to be among the major contributors of anaemia (GBD Anaemia Collaborators, 2023; 

White, 2018). Malaria parasites are known to cause haemolysis and disrupt the normal 

development of red blood cells (Menendez et al., 2000). Soil transmitted helminths burrow their 

teeth into the digestive system mucosa, feed on host tissues and cause blood loss, leading to 

anaemia (Caldrer et al., 2022). While schistosomiasis causes anaemia through a combination 

of effects, including blood loss, red blood cell destruction in the spleen, immune mechanisms, 

hence iron deficiency, and general inflammation (Butler et al., 2012). 
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Due to the complex malaria-anaemia relationship, some studies recommend reporting them as 

one disease (Hamel et al., 2011; Ondeto et al., 2022; Sewe et al., 2015). In some instances, 

anaemia is used to estimate the burden of malaria (White, 2018). Furthermore, regions with 

high malaria prevalence also tend to have a high burden of schistosomiasis and soil-transmitted 

helminths (STH) (Foote et al., 2013; Odiere et al., 2011; Wiegand et al., 2017). 

One significant aspect of malaria, helminths, schistosomiasis and other anaemia related 

environmental/climatic factors is that they are spatially correlated. Which means that nearby 

neighbourhoods could be very similar to each other compared to those at a distance in terms of 

infection spread (Ejigu et al., 2018). This spatial relationship is vital to consider when studying 

anaemia spread and its associations. 

While global studies have estimated the burden of anaemia across all age groups, (GBD 

Anaemia Collaborators, 2023; Stevens et al., 2013; World Health Organization, 2015a). local 

studies have often focused on specific age brackets, such as children under 5 years (Desai et al., 

2005; Foote et al., 2013), women of reproductive age (Ouma et al., 2007) or school going 

children (Koukounari et al., 2008). However, there is a lack of comprehensive research profiling 

of anaemia across different age groups. 

Considering the various factors at play, it is crucial to pinpoint the exact impact of malaria on 

anaemia prevalence. In this study, we profile the burden of anaemia, and explores its association 

with malaria, STH, and schistosomiasis using Bayesian geo-statistical models in a health and 

demographic surveillance system (HDSS) located in western Kenya. 

 

5.2. Materials and methods 

5.2.1. Study area and population 

This study was carried out in the KEMRI health and demographic surveillance system 

(KHDSS), a longitudinal follow up of all residents in a specified geographical area. Details of 
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the KHDSS are published elsewhere. Briefly, the KHDSS follows a population of over 280,000 

people in 393 villages located in Siaya in western Kenya covering 700km2. (Odhiambo et al., 

2012). It is located in a region with high malaria prevalence, year round transmission (Division 

of National Malaria Programme (DNMP) & ICF, 2021; Hamel et al., 2011; Ondeto et al., 2022), 

and a relatively high prevalence of both schistosomiasis and STH (Odiere et al., 2011; Wiegand 

et al., 2017). 

 

5.2.2. Haemoglobin levels and malaria data 

Annual parasitaemia surveys were carried out between 2007 and 2015 at randomly selected 

compounds within the HDSS to obtain individual level haemoglobin concentration and malaria 

parasite presence. The in-depth sampling and sample size determination have been described 

in elsewhere (Were et al., 2018). In brief, households were selected by systematic random 

sampling and stratified by sub-regions of the HDSS. Starting from a randomly chosen number 

in an ordered list of compounds for each region, households were systematically chosen until 

the desired sample size was met. 

Trained interviewers then visited these compounds, and administered a structured questionnaire 

to collect information on demographics, risk factors for malaria infection, healthcare seeking, 

previous illness, socioeconomic status and history of fever. The participant’s finger was pricked 

to obtain a blood specimen from all individuals present in the sampled households. 

Haemoglobin concentration levels were measured using a portable photometer (HemoCue®, 

Ängelholm, Sweden). Thick and thin blood smear slides were prepared for malaria microscopy, 

stained with a 10% Giemsa and examined for parasite presence by expert microscopists.  

Using the World Health Organizations (WHO) guidelines for anaemia classification (World 

Health Organization, 2011), we classified the respondents as anaemic or not based on the cut-

offs below (Table 5.1). Since we did not have the pregnancy status of women, we classified all 
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women above 15 years in the same category. Likewise, because all study locations were on 

average at elevations below 1,000m and did not vary widely, we did not apply altitude 

correction as recommended 

Table 5.1: WHO Haemoglobin thresholds for defining anaemia 

Age or gender Hb threshold (g/dL) 

Children (Amek, 2013) 11.0 

Children (5-12 years) 11.5 

Older children (12-15 years) 12.0 

Women (>15 years) 12.0 

Men (>15 years) 13.0 

 

From the microscopy results, the participants were classified into either parasitaemia positive 

or negative. Clinical malaria was defined as having positive malaria parasitaemia together with 

either reported fever in the last 24 hours, or a temperature of 37.50 and above. 

 

5.2.3. Helminths and Schistosomiasis data 

Helminths data was derived from prevalence estimates of ascaris, trichurias, and hookworm 

infection extracted from high resolution geostatistical maps derived using Bayesian hierarchical 

models across Sub-Saharan Africa (Kokaliaris et al., 2022). In brief, hierarchical models were 

used to predict the prevalence of schistosomiasis and STH by relating cross-sectional 

schistosomiasis/STH survey data with socioeconomic and environmental predictors. We 

extracted the STH and schistosomiasis prevalence estimates to the household level from 

Kokaliaris’s spatial maps using geocoded HDSS locations. Since these data was predicted for 

two periods (<2011 and ≥2011), we allocated the Helminths and Schistosomiasis estimates 

from pre-2011 period to the years between 2007 and 2010 and the post-2011 period to the years 

between 2011 and 2015.  
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5.2.4. Socioeconomic data 

Socioeconomic status (SES) is a significant determinant of nutritional well-being, especially in 

areas with limited resources (Fotso, 2007; Müller & Krawinkel, 2005; World Health 

Organization, 2017a). People at the lower end of the SES spectrum often face challenges like 

inadequate diets, restricted access to formal healthcare, and exposure to unsanitary 

environments. This results in micronutrient deficiencies and a higher risk of infections. 

Consequently, SES was chosen as an indirect measure to assess the impact of malnutrition on 

anaemia. To determine SES, household assets were used to construct a composite score through 

the multiple correspondence analysis (MCA) method. This score was then divided into three 

categories: 'least poor' for the affluent, 'poor' for the middle group, and 'poorest' for those at the 

bottom, as outlined in previously (Amek et al., 2015). 

 

5.2.5. Data management and statistical analysis 

Data from annual parasitaemia surveys were combined into a single file, which was then 

cleaned and matched with socioeconomic status (SES) data from households. This linkage was 

achieved using unique identifiers for individuals and households. Using the households’ GPS 

locations, we extracted STH and schistosomiasis prevalence estimates from geostatistical maps 

produced by Kokaliaris et al (Kokaliaris et al., 2022). Schistosomiasis and Helminthiasis 

prevalence were treated as continuous variables. 

Age was calculated by subtracting the date of birth from the interview date and grouped into 5 

categories: infants (1-11 months), children (1-4 years), older children (5-14 years), adults (15-

59 years), and the elderly (60 years and above). Average haemoglobin levels and anaemia 

prevalence were assumed to follow a Gaussian distribution, similar to the overall population. 

In this paper we present the adjusted average haemoglobin (Hb) levels and the prevalence of 

anaemia for the population. 
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Initial data handling, bivariate analysis, and choice of variables for the final model were 

conducted using Stata version 14.1 (Stata Corporation USA). Only variables with a p-value less 

than 0.1 were incorporated into the final geostatistical models. After the initial variable 

selection, we included the following covariates in the final Bayesian geostatistical models; 

malaria parasite presence/clinical malaria, sex, year of study, Schistosomiasis prevalence, soil 

transmitted helminth prevalence, elevation, and socio-economic status to investigate their effect 

on anaemia risk in this region.  

We fitted two Bayesian models; one logistic regression model to analyze the odds of anaemia 

across the entire population. The second model was fitted to assess the risk of anaemia due to 

malaria, Schistosomiasis, and helminthiasis in school-aged children (5-14 years). The second 

model was restricted to the school going ages because the schistosomiasis and helminthiasis 

prevalence data was predicted from surveys in this group (Kokaliaris et al., 2022), and did not 

fit well for the other ages and high extremely high uncertainty. The models were fitted in 

OpenBugs version 3.1.2 (Imperial College and Medical Research Council, London, UK), using 

the Markov Chain Monte Carlo (MCMC) simulation for parameter estimation. Spatial variation 

was treated as village-specific random effects, with latent observations of a spatial Gaussian 

process with a mean of zero and a covariance assuming an exponential variation function of 

distance between two villages (Diggle et al., 1998). We present the median posterior estimates 

from the Haemoglobin concentration Bayesian geostatistical models, while the anaemia 

categorical model's estimates were exponentiated to obtain odds ratios (OR). Each is 

accompanied by their 95% Bayesian Credible Intervals (BCI). 

 

5.2.6. Bayesian model formulation  

Let Yij be equal to 1 be the positive anaemia status and 0 otherwise of child i in village j at time 

t, j=1,2,…385 and t=1,2,…9  for the model fitted on the annual data. To estimate the odds of 
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being anaemic, we assume that Yij arises from a Bernoulli distribution, Y𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑝𝑖𝑗). We 

modelled the probability of being anaemic and other covariates (x) on the log scale of 𝑝𝑖𝑗  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = (𝛽0 + 𝛽𝑥 + 𝜙𝑗)               , k=1,2,…K 

where 𝑁𝑗𝑡  the total person time contributed by persons in village j at time t  (in person years, py),  

𝜷 = (𝛽1, 𝛽2, … , 𝛽𝐾)𝑇 are the regression coefficients (malaria prevalence and other predictors) 

and 𝜙𝑗 the village specific spatial effects.   

For the model predicting the Hb concentration among 5–14-year-olds; the haemoglobin level 

of children in a village is assumed to come from normal distribution, that is 

Y𝑖𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(µ𝑖𝑗 , 𝜏) . Where the mean haemoglobin concentration of a child i, given the 

location j is given by:  

µ𝑖𝑗 = (𝛽0 + 𝛽𝑥𝑋 + 𝜙𝑗  

In all the models, we assumed that 𝝓 = (𝜙1, 𝜙2, … 𝜙𝑛)𝑇  follows a Gaussian process, i.e. 

𝝓 ~ MVN(0, 𝜎1
2𝑅) . Here, 𝑅  is an exponential correlation matrix of the distance between 

villages, i.e. 𝑅𝑖𝑗 = exp (−𝜌𝑑𝑘𝑙) where 𝑑𝑘𝑙 is the distance between villages  and , 𝜌 is the 

rate of correlation decay with distance. The "effective range" refers to the shortest distance at 

which spatial correlation falls below 5% and is defined by  3/𝜌. The 𝜎1
2, is the variance of the 

spatial process.  We specified non-informative normal prior distributions with mean zero and 

large variance for the regression coefficients 𝛽𝑖~𝑁(0, 103), an inverse gamma prior for 𝜎1
2, 

that is 𝜎1
2 ~𝐼𝐺(2.01, 1.01) and a Uniform  prior distribution for 𝜌, that is 𝜌~𝑈(𝑎, 𝑏), where 𝑎  

and 𝑏 are chosen such that the effective range is within the maximum and minimum distances 

of the village’s centroids.  

The Bayesian models were then fitted using Markov Chain Monte Carlo (MCMC) simulation 

algorithm in OpenBugs version 3.1.2 (Imperial College and Medical Council, London, UK) to 

estimate model parameters (Gelfand & Smith, 1990). We initialized a single chain sampler for 

k l
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50,000 iterations, discarding the first 5,000. Convergence was assessed by the Gelman-Rubin 

diagnostic (Gelman & Rubin, 1992) and was achieved after 5000 iterations. 

 

5.2.7. Population attributable fraction of anaemia due to malaria, schistosomiasis 

and helminth infections 

We estimated the Population attributable fraction (PAF) to anaemia due to either malaria 

prevalence or helminthiasis/schistosomiasis as shown below (Greenland et al., 2008);  

𝑃𝐴𝐹 =
𝑃(𝑂𝑅 − 1)

𝑃(𝑂𝑅 − 1) + 1
 

Where P is the posterior median prevalence of malaria or helminthiasis/schistosomiasis by age 

group, and OR the odds ratio (OR) for being anaemic in the same age group. The OR for malaria 

parasite presence or helminths prevalence were estimated by exponentiation of the median 

posterior estimates for anaemia obtained from the Bayesian geostatistical models above. 

 

Ethical consideration 

The study protocols for the KHDSS and parasite prevalence surveys received approval from 

the KEMRI's Scientific and Ethics Review Unit (SERU) as well as the CDC's Institutional 

Review Board (IRB). We obtained informed written consent from compound heads to conduct 

household surveys and only collected malaria prevalence data from those who provided 

individual consent, or in the case of minors, from their parents or guardians. 
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5.3. Results 

5.3.1. Descriptive characteristics 

Between 2007 and 2015, blood haemoglobin levels of 20,923 individuals were analysed. The 

average Hb concentration was 12.03 g/dL with a 95% Confidence Interval (CI) ranging between 

11.98 and 12.07. The population anaemia prevalence was 42.3% (CI: 41.2-43.4%). Children 

aged 1-11 months had the highest anaemia rate at 67.1% (CI: 62.5-71.6%), followed by children 

aged 1-4 years at 61.0% (CI: 58.9-63.1%), and the elderly population at 47.1% (CI: 43.6-

50.6%). Females had an anaemia prevalence of 45.3% (CI: 43.8-46.8%), notably higher than 

males. While individuals with malaria had a higher anaemia rate of 49.0% (CI: 47.2-50.8%) 

compared to those without malaria at 39.2% (CI: 37.8-40.5%). Those with clinical malaria had 

an even higher rate at 57.4% (CI: 53.5-61.3%), as opposed to those without clinical malaria at 

41.3% (CI: 40.2-42.5%).  

Malaria parasitaemia was relatively high at 36% (CI: 35.2-36.5%), and so was clinical malaria 

at 8.1% (CI: 7.7-8.4%). The prevalence of soil-transmitted helminths varied from 17% to 66%, 

averaging at 45.0% (CI: 44.9-45.2%), while schistosomiasis fluctuated between 1% and 29%, 

averaging 6.9% (CI: 6.8-7.0%).  

Throughout this period, annual anaemia rates ranged between 20% and 34%, remaining 

relatively constant. A similar stable trend was observed for yearly Hb concentrations (Figure 

5.1). Anaemia prevalence trends mirrored those of mean Hb concentrations within the same 

demographic groups. Children between the ages of 1-11 months and 1-4 years had the lowest 

mean Hb levels of 10.13% (CI: 9.93-10.34%) and 10.34% (CI: 10.26-10.41%) respectively. 

There were no significant differences in Hb levels or anaemia rates based on the risk associated 

with soil-transmitted helminths and Schistosomiasis ( 
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Table 5.2). 

 

Figure 5.1: Box plot of Hb concentration over the years 
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Table 5.2: Population adjusted mean Hb concentration and anaemia prevalence among KHDSS residents between 

2007 and 2015 

Variable Participants (%) Mean HB level, g/dL 

(95% CI) 

Anaemia prevalence (%) 

(95% CI) 

Overall 
 

20,923 12.03 (11.98-12.07) 42.3% (41.2%-43.4%)      
Clinical Malaria Negative 18,988(91.9) 12.10 (12.05-12.14) 41.3% (40.2%-42.5%)  

Positive 1,669 (8.1) 11.09 (10.89-11.28) 57.4% (53.5%-61.3%)      

Parasite presence Negative 13,216 (64.0)  12.25 (12.20-12.31) 39.2% (37.8%-40.5%)  
Positive 7,441 (36.0) 11.57 (11.49-11.64) 49.0% (47.2%-50.8%)      

Schistosomiasis 

risk 

<3.2% 6,714 (32.1) 12.07 (11.99-12.14) 42.2% (40.4%-43.9%) 

3.2-6.8% 6,955 (33.2) 12.00 (11.92-12.08) 42.7% (40.9%-44.6%) 

>6.8 7,254 (34.7) 12.02 (11.94-12.12) 41.9% (39.8%-44.0%)      

Soil transmitted 

helminths risk 

<39% 6,601 (31.5) 12.19 (12.11-12.26) 38.6% (36.8%-40.3%) 

39-50% 7,316 (35.0) 11.96 (11.88-12.05) 44.7% (42.7%-46.7%) 

>50% 7,006 (33.5) 11.96 (11.89-12.04) 42.8% (41.0%-44.6%)      

Sex Female 11,897 (55.6) 11.73 (11.67-11.78) 45.3% (43.8%-46.8%)  
Male 9,594 (44.4) 12.46 (12.39-12.54) 38.1% (36.6%-39.6%)      

Age 1-11 months 971 (4.6) 10.13 (9.93-10.34) 67.1% (62.5%-71.6%)  
1-4 years 5,734 (27.4) 10.34 (10.26-10.41) 61.0% (58.9%-63.1%)  
5-14 years 5,809 (27.8) 11.93 (11.87-11.99) 36.5% (34.6%-38.3%)  
15-59 years 7,100 (33.9) 12.63 (12.56-12.71) 38.6% (36.9%-40.4%)  
60+ years 1,309 (6.3) 12.22 (12.07-12.36) 47.1% (43.6%-50.6%)      

Year  2007 1,267 (6.1) 11.94 (11.75-12.13) 44.1% (40.0%-48.3%)  
2008 1,169 (5.6) 12.50 (12.33-12.67) 31.6% (27.7%-35.5%)  
2009 2,505 (12.0) 11.73 (11.62-11.85) 47.6% (44.4%-50.7%)  
2010 5,255 (25.1) 11.67 (11.59-11.75) 49.8% (47.8%-51.7%)  
2011 2,111 (10.1) 12.14 (12.00-12.28) 39.6% (36.2%-43.0%)  
2012 2,718 (13.0) 12.05 (11.93-12.17) 37.9% (35.0%-40.8%)  
2013 2,352 (11.2) 11.80 (11.67-11.93) 47.8% (44.7%-50.9%)  
2014 1,840 (8.8) 12.37 (12.24-12.50) 37.9% (35.1%-40.7%)  
2015 1,706 (8.2) 12.17 (12.05-12.30) 40.6% (37.6%-43.7%)      

Elevation >1200 3,646 (17.6) 12.07 (11.96-12.18) 40.1% (37.5%-42.8%)  
1201-1265 4,925 (23.7) 11.98 (11.88-12.08) 44.2% (41.6%-46.8%)  
1266-1300 3,508 (16.9) 12.02 (11.90-12.13) 41.7% (39.2%-44.3%)  
1301-1345 4,651(22.4) 11.98 (11.89-12.07) 43.9% (41.7%-46.1%)  
>1345 4,031 (19.4) 12.11 (12.02-12.21) 40.4% (38.1%-42.6%)      

Region Asembo 7,628 (36.5) 12.07 (11.99-12.15) 40.4% (38.4%-42.4%)  
Gem 6,421 (30.7) 12.03 (11.96-12.10) 43.0% (41.2%-44.8%)  
Karemo 6,874 (32.9) 11.97 (11.89-12.06) 43.8% (41.9%-45.6%)      

SES Poorest 6,126 (32.7) 11.98 (11.89-12.06) 43.5% (41.6%-45.4%)  
Poor 3,643 (19.5) 12.06 (11.95-12.16) 41.6% (39.1%-44.1%)  
Least Poor 8,956 (47.83) 12.12 (12.05-12.19) 40.9% (39.2%-42.5%) 

Predicted risk of anaemia across all age groups  

The logistic regression model for anaemia risk identified several factors that influenced the 

likelihood of anaemia in the population. Individuals with malaria parasitaemia had a higher 
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likelihood of anaemia (Odds ratio: OR = 1.82, 95% credible interval (CI): 1.69-1.96) compared 

to those without parasites. Interestingly, those diagnosed with clinical malaria had an even 

greater risk, with an OR = 2.03 (95% CI: 1.80-2.28), compared to individuals who only had the 

parasite or those who had the parasite but did not have fever. 

Age was an important factor in determining the risk of anaemia. Children between the ages of 

1 and 4 had the highest likelihood of developing anaemia, with an OR = 9.29 (95% CI: 7.49-

11.51), followed by the 5-14 age bracket, with an OR = 5.49 (95% CI: 4.67-6.45). Compared 

to those under one year of age, these age groups were more vulnerable. On the other hand, the 

elderly, those aged 65 and above, showed the least susceptibility to anaemia. 

Gender and socioeconomic factors were also important. Men had lower odds of anaemia (OR 

= 0.76, 95% CI: 0.71-0.82) compared to women. While, individuals at the top socioeconomic 

status were less likely to be anaemic (OR = 0.88, 95% CI: 0.82-0.96) compared to those from 

lower statuses. While a higher prevalence of conditions like soil-transmitted helminth and 

Schistosomiasis seemed to increase the anaemia risk, these variables were not statistically 

significant (  
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Table 5.3). 
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Table 5.3: Estimated posterior median odd ratios for anaemia risk and posterior median Hb concentrations for effects 

of malaria, schistosomiasis and soil transmitted helminth on Hb concentration  

Variable 

Odds ratios (95% BCI) 

(All age groups) 

Median (95% BCI) 

(5-14 years) 
*Clinical Malaria 2.03 (1.80 - 2.28) -0.52   (-0.67 to -0.36)     

 

Parasite presence 1.82 (1.69 - 1.96) -0.53   (-0.62 to -0.44)     
 

Male 
 

0.76 (0.71 - 0.82) -0.07   (-0.15 to 0.02) 
    

 

Age 1-11 months 1 -  
1-4 years 9.29 (7.49 - 11.51) -  
5-14 years 5.49 (4.67 - 6.45) -  
15-59 years 0.94 (0.80 - 1.11) -  
60+ years 0.78 (0.67 - 0.92) -     

 

Year  2007 1 1  
2008 0.62 (0.50 - 0.77) 0.68   (0.42 to 0.94)  
2009 1.03 (0.85 - 1.24) -0.14   (-0.37 to 0.09)  
2010 1.26 (1.08 - 1.48) -0.41   (-0.60 to -0.21)  
2011 0.76 (0.59 - 0.99) -0.00   (-0.33 to 0.32)  
2012 0.82 (0.64 - 1.06) -0.11   (-0.44 to 0.22)  
2013 1.21 (0.94 - 1.57) -0.44   (-0.77 to -0.12)  
2014 0.85 (0.65 - 1.11) -0.17   (-0.49 to 0.15)  
2015 0.99 (0.76 - 1.30) -0.26   (-0.59 to 0.06)     

 

Schistosomiasis risk 2.89 (0.43 - 20.42) -1.17   (-3.39 to 0.98)     
 

Soil transmitted helminths risk 1.62 (0.67 - 3.94) -0.73   (-1.83 to 0.28)     
 

Elevation >1200 1 1  
1201-1265 0.91 (0.79 - 1.05) -0.01   (-0.19 to 0.17)  
1266-1300 0.87 (0.74 - 1.02) 0.08   (-0.15 to 0.29)  
1301-1345 0.91 (0.77 - 1.07) 0.03   (-0.19 to 0.25)  
>1345 0.85 (0.71 - 1.02) 0.09   (-0.15 to 0.34)     

 

Region Asembo 1 1 
 

Gem 1.22 (0.71 - 1.02) -0.19   (-0.61 to 0.23) 
 

Karemo 1.15 (0.85 - 1.66) -0.12   (-0.57 to 0.41) 
    

 

SES Poorest 1 1  
Poor 0.94 (0.79 - 1.65) -0.01   (-0.12 to 0.10)  
Least Poor 0.88 (0.82 - 0.96) 0.08   (-0.03 to 0.18     

 

Range 
 

8.09 (0.33 - 10.84) 11.24   (8.10 to 42.07) 
$ Spatial variance 1.75 (0.27 - 6.87) 4.53   (1.22 to 16.81) 

The estimates presented are the median of anaemia risk (OR) and 95% Bayesian credible intervals (BCI) 
* Clinical malaria model estimates for other covariates not included but do not differ from the parasite presence model. Only 

provided here for comparison purposes 
$ Minimum distance in kilometres at which spatial correlation is less than 5% 
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5.3.2. Predicted median haemoglobin concentration (4-5 years) 

Similar variables from the logistic anaemia risk model were included in the model predicting 

factors affecting Hb concentration among school going children (  
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Table 5.3). Malaria parasitaemia was an important factor for predicting Hb concentration. 

Individuals with malaria parasitaemia had lower Hb concentration compared to those without 

malaria parasites [-0.53, (95%CI: -0.62 to -0.44)]. On the other hand, those with clinical malaria 

had lower median Hb concentrations compared to those without clinical malaria [-0.52, 

(95%CI: -0.67 to -0.36)]. There was not significant statistical differences on comparing the 

effects of parasite presence only versus clinical malaria even by age groups. Even though 

schistosomiasis prevalence showed a stronger influence on reduction of Hb concentration 

compared to soil transmitted helminths, this effect was not significant. 

In this adjusted model, the year of survey was an important factor. There was a statistically 

significant downwards trend in the median Hb concentration by year of survey in comparison 

to the first survey, from 2007 [0.68 (0.42 to 0.94)] to 2015 [-0.26, (-0.59 to 0.06)] 

Despite not being statistically important in this age group; being male was not protective, the 

highest socioeconomic status increased the median Hb concentration compared to the lower-

level stratum. The minimum distance at which spatial correlation was below 5% was 11km in 

this age group, highlighting the importance of spatial variation in each group. 

 

5.3.3. Population anaemia risk attributable to malaria parasites and helminths 

prevalence 

The median Population Attributable Fraction (PAF) of anaemia due to the presence of malaria 

parasites was estimated to be 26% (95% CI: 23-29%), while for clinical malaria, the PAF was 

slightly higher at 31% (95% CI: 26%-36%). The impact of these factors varied across age 

groups. Among children aged 1-11 months, the attributable burden was the highest at 70%, 

followed by the 1–4-year age group at 48%. In contrast, the 15–59-year age group experienced 

the lowest attributable burden from these factors. While parasitaemia and clinical malaria 

accounted for a substantial proportion of the anaemia burden in the population Schistosomiasis 

and soil-transmitted helminths they were not statistically important.  
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5.4.  Discussion 

Based on cross-sectional population surveys, our study shows a persistently high prevalence of 

anaemia affecting more than two-fifths of the population, which is classified as a severe 

according to the WHO (World Health Organization, 2011). Our findings across various age 

groups reveal a sustained high prevalence of anaemia over time, predominantly affecting young 

children, women, and the elderly. Malaria parasitaemia, clinical malaria, age, gender, and 

socioeconomic status (which can be an indicator for malnutrition) were found to have a 

significant association with anaemia. However, there was no evident association between the 

prevalence of schistosomiasis/helminths and anaemia in this region. 

The consistently high anaemia prevalence of over 42% over the 9-year span was on average 

above any available regional estimates (28% - 35%) (GBD Anaemia Collaborators, 2023; 

World Bank) also poses a major public health problem. Particularly alarming is the anaemia 

rate among children. Specifically, those between 1-11 months and 1-4 years, with prevalence 

rates of 67% and 40% respectively. These figures starkly contrast the 40% and 26% results 

from a concurrent national malaria survey (Ngesa & Mwambi, 2014) carried out during the 

same period. Research suggests that children under the age of 5 years are more prone to anaemia 

when exposed to malaria. This heightened vulnerability can be attributed to their still-evolving 

immune systems, which leaves them more susceptible to infections like malaria, subsequently 

intensifying anaemia (Alusala et al., 2008; Marsh & Snow, 1999; Menendez et al., 2000). In 

contrast, adults and the elderly population might experience increased anaemia risk due to age-

related declines in overall health, combined with exposure to other risk factors like malaria and 

HIV/AIDS, which are also drivers of anaemia (Safiri et al., 2021). 

Malaria was the most important determinant of Hb concentration and anaemia risk. Malaria, is 

known to cause haemolysis and hinders the normal development of red blood cells (Menendez 
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et al., 2000; White, 2018), resulting in anaemia. The significant reduction in median Hb 

concentration associated with malaria and the substantially heightened risk of anaemia in 

individuals exhibiting clinical malaria symptoms compared to those with parasitaemia only 

underlines its impact on haemoglobin concentration. This strong association between malaria 

parasite prevalence and anaemia bolsters existing research highlighting its contribution to the 

anaemia, especially in malaria-prone areas (Ejigu et al., 2018; Kassebaum, 2016; Soares 

Magalhães & Clements, 2011; Sumbele et al., 2013). Age-specific studies in the region have 

also evidenced this connection, particularly among adolescents and expectant mothers (Desai 

et al., 2005; Foote et al., 2013; Koukounari et al., 2008; Ouma et al., 2007).  The fact that nearly 

half of those with malaria parasitaemia suffer from anaemia, as opposed to two out of five 

without the parasite, further emphasizes the association between malaria and anaemia. It 

underlines the importance of continued robust malaria control measures in regions with high 

transmission rates (Noor, Kirui, et al., 2009), not just in this area but to a larger extend the 

whole lake region of western Kenya and  others regions with a similar malaria profiles.  

Surprisingly, our study did not observe any significant association between anaemia and the 

prevalence of soil-transmitted helminths or Schistosomiasis. This stands in contrast to several 

studies that have previously linked these infections to anaemia (Douglas et al., 2012; 

Koukounari et al., 2008; Ouma et al., 2007; Sumbele et al., 2013; White, 2018). Despite this 

lack of association in our study, their prevalence is still of public health concern. It is possible 

that the interplay between malaria, STH, and helminths is complex, with malaria potentially 

overshadowing or altering the impact of helminths. Additionally, the two might have intricate 

interactions that necessitate more in-depth investigations (Brooker et al., 2007; Mwangi et al., 

2006; Nacher, 2011). The absence of a clear link could also stem from our study's limited 

geographical scope, possibly creating a consistent effect of Schistosomiasis and helminths 

prevalence. Moreover, it is plausible that the prevalence estimates for STH and helminths, based 

on school-age children's surveys, might not truly reflect the broader community's situation. 
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Gender, as seen in our study plays a significant role in anaemia prevalence, with females 

exhibiting a higher likelihood and prevalence than males. Previous research (Kassebaum, 2016; 

Safiri et al., 2021; Stevens et al., 2013) supports this observation, linking it to unique challenges 

women face, especially in low-income countries. These challenges include menstrual blood 

loss, pregnancy complications, childbirth, and inadequate diets, which contribute to reduced 

iron levels in their bodies (Derman & Patted, 2023), Consequently, women are more burdened 

by anaemia than men.  

Higher socio-economic status was a protective factor against anaemia. Socio-economic status 

has been shown to be a key indicator of malnutrition in low-income countries (Müller & 

Krawinkel, 2005; World Health Organization, 2017b; Yang et al., 2018). Those with at lower 

socio-economic status often face poor food quality, food insecurity, and inadequate nutrition 

(Safiri et al., 2021). It could also be that benefits of a higher socio-economic status, such as 

better nutrition, healthcare access, and living conditions, can mitigate the effects of malaria and 

other factors causing anaemia, especially in high-risk age groups. 

Anaemia prevalence across the nine-year period was stable, which could be indicative of 

existing interventions including folic iron supplementation (Division of National Malaria 

Programme (DNMP) & ICF, 2021; Ministry of Health, 2013), not achieving the intended 

objectives. However, many of these interventions target primarily pregnant women and younger 

children.  

Anaemia prevalence's spatial correlations hint at common environmental, social, or healthcare 

influences. This spatial distribution could also highlight localized interactions, such as soil-

transmitted helminth prevalence, that might be overlooked in broader analysis. Recognizing 

these specific patterns can inform targeted interventions and community strategies.  

Our study lacked data on dietary habits, genetic factors, HIV/AIDS, and other regional 

infectious diseases. Additionally, the use of aggregated data for STH and schistosomiasis 

introduced significant uncertainty. Assuming that prevalence data, modelled from surveys of 
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school-aged children, is representative may have introduced bias. These limitations should be 

factored in when interpreting our results. Nonetheless, the use of village-aggregated data 

enabled us to assess the anaemia burden across all age groups, distinguishing our research from 

numerous other studies. 

 

5.5. Conclusion 

The high prevalence of anaemia in this region of western Kenya, especially among specific 

vulnerable groups, necessitates urgent and targeted interventions. Multiple important 

predictors, including age, gender, socio-economic status, and malaria status, indicate a complex 

interplay that reinforces the notion that anaemia is not solely a one direction problem but rather 

a multifaceted public health challenge that requires an integrated approach. The importance of 

malaria control, gender-specific strategies, age-targeted care, and the consideration of 

underlying socio-economic factors in designing comprehensive public health interventions for 

anaemia control should be considered.  
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5.6. Appendix 
5.6.1. Posterior estimates for effects of malaria, Schistosomiasis and soil transmitted 

helminths prevalence and other factors on Hb concentration 

Covariate 

1-11 mon 1-4 yrs. 5-14 yrs. 15-59 yrs. 60 plus Overall* 

Median Median Median Median Median Median 

(95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) (95% BCI) 

Clinical malaria** -1.45 -0.99 -0.52 -0.19 -0.33 -0.70   
(-1.89 to -1.01) (-1.13 to -0.84) (-0.67 to -0.36) (-0.44 to 0.06) (-0.84 to 0.19) (-0.81 to -0.60)               

Parasite presence -1.52 -0.92 -0.53 -0.19 -0.19 -0.55   
(-1.79 to -1.23) (-1.02 to -0.82) (-0.62 to -0.44) (-0.31 to -0.08) (-0.53 to 0.15) (-0.61 to -0.49)               

Sex (Male) -0.30 -0.10 -0.07 2.05 0.81 0.64   
(-0.54 to -0.07) (-0.19 to 0.00) (-0.15 to 0.02) (1.95 to 2.15) (0.56 to 1.07) (0.59 to 0.70)         

Year  2007 1 1 1 1 1 1  
2008 0.39 0.22 0.68 0.57 1.01 0.52   

(-0.35 to 1.14) (-0.15 to 0.59) (0.42 to 0.94) (0.31 to 0.83) (0.37 to 1.64) (0.36 to 0.68)  
2009 0.46 -0.50 -0.14 0.01 0.56 -0.08   

(-0.19 to 1.10) (-0.80 to -0.20) (-0.37 to 0.09) (-0.23 to 0.24) (0.00 to 1.13) (-0.23 to 0.07)  
2010 -0.44 -0.58 -0.41 0.005 0.32 -0.25   

(-1.00 to 0.12) (-0.84 to -0.32) (-0.60 to -0.21) (-0.20 to 0.21) (-0.18 to 0.81) (-0.37 to -0.13)  
2011 0.16 -0.19 0.00 0.51 0.99 0.23   

(-0.55 to 0.89) (-0.60 to 0.18) (-0.33 to 0.32) (0.19 to 0.85) (0.26 to 1.72) (0.01 to 0.44)  
2012 0.53 -0.28 -0.11 0.37 1.42 0.21   

(-0.17 to 1.23) (-0.67 to 0.09) (-0.44 to 0.22) (0.05 to 0.70) (0.70 to 2.15) (0.00 to 0.42)  
2013 -0.07 -0.86 -0.44 0.25 0.59 -0.23   

(-0.80 to 0.66) (-1.26 to -0.49) (-0.77 to -0.12) (-0.07 to 0.59) (-0.17 to 1.35) (-0.45 to -0.02)  
2014 0.35 -0.42 -0.17 0.00 0.00 0.25   

(-0.46 to 1.17) (-0.86 to 0.01) (-0.49 to 0.15) (0.28 to 0.92) (0.13 to 1.49) (0.03 to 0.47)  
2015 0.11 -0.69 -0.26 0.27 0.65 0.03   

(-0.99 to 1.21) (-1.14 to -0.24) (-0.59 to 0.06) (-0.05 to 0.60) (-0.06 to 1.38) (-0.19 to 0.25)               

Schistosoma risk -0.74 -1.55 -1.17 0.16 2.69 -1.71   
(-4.43 to 3.10) (-4.01 to 0.98) (-3.39 to 0.98) (-1.73 to 2.04) (-0.78 to 6.06) (-3.50 to -0.04) 

Helminths risk 0.83 -1.44 -0.73 -0.68 1.15 -0.61   
(-1.47 to 3.07) (-2.81 to -0.27) (-1.83 to 0.28) (-1.68 to 0.40) (-1.05 to 3.28) (-1.40 to 0.12)           

Elevation >1200 1 1 1 1 1 1  
1201-1265 0.25 0.23 -0.01 -0.02 0.11 0.07   

(-0.18 to 0.69) (0.03 to 0.43) (-0.19 to 0.17) (-0.21 to 0.16) (-0.32 to 0.53) (-0.04 to 0.19)  
1266-1300 0.11 0.13 0.08 0.09 0.14 0.07   

(-0.39 to 0.62) (-0.10 to 0.36) (-0.15 to 0.29) (-0.13 to 0.31) (-0.35 to 0.64) (-0.07 to 0.21)  
1301-1345 0.09 0.27 0.03 0.08 0.28 0.12   

(-0.40 to 0.59) (0.04 to 0.52) (-0.19 to 0.25) (-0.14 to 0.30) (-0.24 to 0.78) (-0.02 to 0.27)  
>1345 0.09 0.26 0.09 0.13 0.43 0.11   

(-0.45 to 0.64) (-0.01 to 0.52) (-0.15 to 0.34) (-0.10 to 0.37) (-0.12 to 0.98) (-0.04 to 0.28)         

Region Asembo 1 1 1 1 1 1  
Gem -0.69 -0.14 -0.19 -0.14 -0.25 -0.08   

(-1.18 to -0.19) (-0.63 to 0.38) (-0.61 to 0.23) (-0.44 to 0.15) (-0.71 to 0.23) (-0.59 to 0.37)  
Karemo -0.51 -0.04 -0.12 -0.16 -0.30 -0.01   

(-1.01 to -0.02) (-0.57 to 0.48) (-0.57 to 0.41) (-0.47 to 0.25) (-0.76 to 0.15) (-0.62 to 0.48)         

SES Poorest 1 1 1 1 1 1  
Poor 0.05 0.14 -0.01 0.02 0.26 0.06   

(-0.23 to 0.33) (0.02 to 0.26) (-0.12 to 0.10) (-0.10 to 0.14) (-0.06 to 0.57) (-0.01 to 0.13)  
Least Poor -0.0758 0.07 0.08 0.15 0.21 0.11   

(-0.37 to 0.21) (-0.05 to 0.19) (-0.03 to 0.18) (0.04 to 0.27) (-0.07 to 0.49) (0.04 to 0.18)               

Range 24.13 11.02 11.24 20.39 28.94 11.00   
(8.37 to 92.48) (8.10 to 36.25) (8.10 to 42.07) (8.28 to 90.43) (8.54 to 94.49) (8.10 to 39.99) 

Spatial variance$ 0.70 6.58 4.53 1.00 0.45 13.56 

    (0.18 to 5.51) (1.86 to 23.03) (1.22 to 16.81) (0.24 to 7.01) (0.16 to 2.11) (7.36 to 47.76) 

Estimates presented here are median of Hb concentrations  and 95% Bayesian credible intervals (BCI) adjusted for other covariates 
* Age-adjusted  
** Clinical malaria model estimates for other covariates not included but do not differ from the parasite presence model. Only provided here 

for comparison purposes 
$ Minimum distance in kilometres at which spatial correlation is less than 5% 
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6. Chapter 6: General discussion  

Using data from the KEMRI Health and Demographic Surveillance System (KHDSS) located 

in western Kenya, we investigated the spatio-temporal dynamics of malaria incidence and 

parasite prevalence as measures of transmission and their association with both all-cause and 

malaria-specific mortality across all age categories. We also explored the anaemia-related 

burden due to malaria in the same area.  

This thesis comprises of four objectives addressed in chapters 2-5, where detailed methodology, 

results, discussions and conclusions have been provided. Based on these findings and prevailing 

knowledge, we provide an overall discussion of all the chapters. Specifically, we relate the 

findings and come up with, significant key findings, contribution to epidemiological methods, 

malaria epidemiology, future outlook and extension of this work. 

6.1. Malaria epidemiology 

6.1.1. High malaria burden and the effect of climatic/environmental factors 

In the KHDSS, the epidemiology of malaria paints a concerning picture, especially for children 

under the age of five. With incidence rates ranging between 450 and 775 cases per 1,000 person-

years of observation (pyo), the statistics are staggeringly higher than the regional average of 

less than 100 cases pyo during the same period. This vast difference underscores an immediate 

need for specific and localized interventions for malaria control. 

Given that these high incidences are not just temporary spikes, the stability of such high rates 

over an extended period renders the situation even more pressing. Analysing the transmission 

patterns, a distinct cyclical nature becomes evident, with peaks consistently observed between 

March-July and September-January. This seasonality aligns with the short and long rainy 

seasons. Recognizing this pattern provides a clear window of opportunity where preventive 

measures can be deployed more intensively, potentially curbing the rates of transmission. 
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Individual climatic conditions, such as temperature and rainfall, do not seem to have a 

statistically important relationship with malaria transmission. However, considering their 

cumulative effect through the lens of the Enhanced Vegetation Index (EVI), the narrative 

shifted. There was a significant association between denser vegetation, as represented by higher 

EVI values, and the incidence of malaria. This suggests that while individual climatic factors 

might not stand out on their own, their combined effect creates a conducive environment that 

drives malaria transmission. 

Such insights highlight the importance of understanding the intricacies of malaria transmission 

even on a small scale. Yet, it is essential to note that this thesis identified certain shortcomings 

in the data, which led to subsequent analyses that were not covered here, but considered in our 

discussions. The subsequent studies on a KHDSS subpopulation that is monitored more 

intensely, further shed light on the critical role of climate variability in malaria transmission 

(Beloconi et al., 2023; Nyawanda et al., 2023). Their findings revealed that climate factors have 

a higher significant influence on malaria transmission than interventions like mosquito nets and 

indoor residual spraying. Echoing these findings, others studies have also established that 

adverse climate parameters further challenge malaria control efforts, amplifying transmission 

conditions through favourable temperature and rainfall environments (Lubinda et al., 2021). 

 

6.1.2. Malaria mortality  

Apart from environmental, climatic and other known interventions like bed nets, indoor residual 

spraying and treatment, malaria mortality is directly impacted in a broader context by the 

community's social and economic landscape. This can encompass various factors including, the 

political environment, concurrent health threats like epidemics (for instance, COVID-19) 

(Weiss et al., 2021), civil unrest (Feikin et al., 2010), and natural calamities. One noticeable 

observation from our data is the prominent influence of external shock events, such as post-
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election violence in 2008, on mortality rates. The aftermath of such events clearly demonstrates 

that while the transmission rates of malaria (incidence and prevalence) did not skyrocket 

immediately, the mortality rates did. The disparity between these rates during such times 

highlights the vulnerability of health systems under societal stress. Interestingly, while death 

rates saw a steep decline post-2008, the incidence and prevalence exhibited a more gradual 

reduction, indicating a lingering effect of the violence on overall malaria transmission. 

In light of these findings, we postulate that incidence data from functional health information 

registration systems at health facilities (as measured from select health facilities in the KHDSS) 

offer a more accurate picture of the malaria-mortality relationship than intermittent prevalence 

surveys. The reasoning is twofold: not only does a well-functioning health reporting system 

provide more reliable estimates, it also plays a pivotal role in ensuring a comprehensive capture 

of cases, facilitating proper diagnosis and treatment. 

 

6.1.3. Measures of malaria transmission and their relationship with mortality 

Comparing different measures of transmission, we noted that incidence is a better predictor of 

mortality than EIR or PP in the short term (Khagayi et al., 2017; Khagayi et al., 2019). In the 

realm of malaria transmission measures and their impact on mortality, both incidence and 

parasite prevalence (PP) hold significant value, albeit serving distinct purposes.  

Incidence delineates the number of new cases emerging within a population over a specific 

timeframe. It is particularly adept at capturing short-term impacts, far more so than 

Entomological Inoculation Rate (EIR) and PP. This immediacy allows incidence data to 

promptly spotlight changes in malaria transmission and underscores its sensitivity to abrupt 

disruptions to the health system. Such disruptions can range from economic downturns and civil 

unrest to sudden epidemics. On the other hand, despite its potential to capture immediate factors 

pivotal for monitoring malaria burdens, such as seasonal shifts, its sensitivity can be a limitation. 
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For instance, the study revealed that incidence was not a robust predictor of overall population 

mortality. However, the research encountered challenges in gauging health-seeking behaviours 

accurately, which can considerably influence incidence measurements. 

Contrastingly, PP offers a snapshot of the proportion of a population infected with the malaria 

parasite at a given moment. Its strength lies in its capacity to provide a consistent, long-term 

view of malaria transmission. For instance, five-year aggregated PP, as a transmission 

parameter, provides a comprehensive picture of the region's malaria status since it is not 

affected by seasonality, civil unrest, or other instantaneous shocks to the health system. Within 

the study's framework, PP, particularly the slide positivity rate, outperformed incidence as a 

predictor of mortality. This can be attributed to the observation that symptomatic adults, who 

are often captured by prevalence data, do not consistently seek medical care as compared to 

children (Bigogo et al., 2010). Yet, just like incidence, PP is not devoid of limitations. It may 

fall short in capturing on-the-spot factors that influence malaria transmission, especially when 

juxtaposed with the dynamic data that incidence offers. 

The subtle difference between these two measures underscores the importance of a multi-

faceted approach in studying malaria transmission. For a holistic view, there is a pressing need 

for regular household surveys to integrate components addressing health-seeking behaviours, 

ensuring robust data collection. Embracing the strengths and understanding the limitations of 

both incidence and prevalence can usher in more targeted and effective interventions, 

particularly in regions grappling with external challenges. 

 

6.1.4. Malaria in the 5-14 age group 

Although older children displayed lower overall and malaria-specific mortality rates, this 

should not lead to complacency. Interestingly, despite a lower clinical malaria incidence and 

slide positivity rate (SPR) in these children (Khagayi et al., 2017), they exhibit a high 
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prevalence of parasitaemia (Khagayi et al., 2019). This high parasitaemic state underscores their 

potential role as reservoirs, threatening not just their health but the wider community through 

the potential for disease transmission (Beloconi et al., 2023). Recent research emphasizes the 

role of older, asymptomatic children as significant contributors to the transmission dynamics 

of malaria in areas with high disease prevalence (Andagalu et al., 2023; Rek et al., 2022). 

Moreover, climate change, has begun to play an increasingly influential role in determining the 

disease patterns and impacts among older children (Lubinda et al., 2021). 

Mortality rates in these older children were the lowest compared to other age groups, however, 

the overall contribution of malaria as a cause of death in the group was quite high. Persistent 

parasitaemia, although subtle, exposes these children to continuous bouts of clinical malaria, 

subsequently increasing the risk of severe complications or even death. This hypothesis gains 

strength when considering that home-based measurements of clinical malaria, which provide 

an almost immediate insight into a child's health status, closely mirrored the incidence data 

from hospitals. Both point towards a strong correlation between clinical malaria and mortality 

in older children. However, one of the most pressing concerns in addressing malaria in this age 

group is the potential delay in seeking treatment. There's a prevailing notion that older children, 

due to their perceived resilience compared to infants, might not be prioritized when it comes to 

seeking immediate medical care (Bigogo et al., 2010). This potential delay or negligence can 

lead to exacerbated health complications, turning an otherwise treatable condition into a life-

threatening one. Another area of concern is the evolving mortality patterns. With a spotlighted 

potential shift in mortality from infants to older children (Desai et al., 2014), suggesting that 

current malaria interventions might not be benefiting the latter as much. This becomes even 

more concerning when paired with findings about the high rates of treatment failures using 

artemether-lumefantrine among older children (Andagalu et al., 2023). 
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Understanding malaria in older children is therefore of concern. While they might initially seem 

less vulnerable than infants, various biological, societal, and environmental factors may 

compound their risk, and increase the reservoir for infection to more vulnerable categories like 

pregnant women and younger children. 

 

6.1.5. Malaria anaemia relationship 

Malaria parasitaemia and clinical malaria were identified as significant determinants of 

anaemia. This intricate relationship, suggesting that malaria infection does act as a direct 

causative agent of anaemia. This presents a 'double jeopardy' phenomenon in this region, 

because extremely high levels of malaria not only exacerbate anaemia but also accentuate the 

effects of certain genetic conditions that lead to anaemia. Such conditions have been highlighted 

in other studies (Foote et al., 2013), indicating a persistent problem in the region. Complicating 

this relationship further are other potential determinants of anaemia, such as HIV/AIDS, 

malnutrition, other infectious diseases, and inherent genetic conditions (GBD Anaemia 

Collaborators, 2023). This paints a multi-faceted picture of anaemia's aetiology in the region, 

emphasizing the need for a more comprehensive understanding. 

Considering the intricacies of anaemia in this region, further studies are needed. These studies 

should not only focus on the direct relationship between malaria and anaemia but also aim to 

elucidate how multiple conditions and factors converge to influence anaemia's prevalence and 

severity. While the immediate health implications of this intricate relationship are evident, the 

long-term effects on the population remain less clear. Does persistent malaria-induced anaemia 

lead to other chronic health conditions? Does it decrease life expectancy, reduce the quality of 

life, or impair cognitive development in children? Addressing these questions is imperative to 

implementing effective public health interventions. 
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6.2. Contribution of the thesis  

This research on the geo-statistical modelling of malaria mortality and its association with 

anaemia in the KHDSS, Kenya, is multi-faceted in its significance. It uncovers the complexities 

of malaria transmission in the region, emphasizing that a comprehensive approach, which 

considers seasonality, climate, socio-economic conditions, and geography, is vital. Targeted 

interventions in high-risk zones during peak transmission periods may yield better results than 

broad, generalized strategies.  

The study underscores the need for enhanced malaria control measures. By highlighting the 

strong correlation between malaria transmission intensity and mortality, it offers a clear 

roadmap for health officials. With resources now devolved to local regions after the devolution 

of health policy (Masaba et al., 2020), there is an opportunity for better resource allocation, 

especially in regions like KHDSS that bear a substantial malaria burden as documented in this 

study and also shown by the Division of National Malaria Programme (DNMP) (Division of 

National Malaria Programme (DNMP) & ICF, 2021). Given that older children serve as a 

significant parasite reservoir in this region, it is essential that resources be optimized for 

comprehensive malaria prevention and treatment – from universal bed-net coverage to prompt 

provision of antimalarial drugs at health centres. 

Moreover, the research draws attention to the secondary impacts of malaria, notably anaemia, 

across all age groups. By establishing a link between malaria and the consistent prevalence of 

anaemia, it calls for integrated health strategies that address both the primary disease and its 

cascading health effects. It is a clarion call to widen the scope of interventions beyond just 

young children and pregnant women, given the pervasive anaemia burden. 

The statistical methodologies used in this study, such as Bayesian hierarchical negative 

binomial models and spatio-temporal survival models, further enrich the global scientific 

community's toolkit. While this study is domiciled in the KHDSS, its methodologies and 
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findings can serve as a template for similar research in other malaria-affected areas, 

underscoring the importance of understanding regional disparities for global malaria 

eradication initiatives. 

In summary, this research is pivotal for reshaping malaria control measures, both within 

KHDSS and beyond. By presenting a detailed overview of malaria's patterns, mortality, and 

associated complications, it equips a range of stakeholders—from local health experts to global 

entities—to tackle malaria with enhanced precision and efficacy. 
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6.3. Limitations and challenges  

Potential challenges and limitations during our research would have been due to the following: 

Time period covered: Our research spanned from 2007 to 2015, with some datasets extending 

only to 2012. This timeframe may not fully capture the evolving dynamics of malaria's impact. 

Moreover, changes in malaria incidence or management post-2015 might not be reflected in 

our findings. However, this work has led to further refined work spanning an extra five years. 

Malaria-anaemia association: While our study showed a strong association of malaria and 

anaemia prevalence, it is crucial to recognize that anaemia can arise from various causes. 

Although we controlled for Schistosomiasis/helminthiasis prevalence, other unknown factors 

whose data was not collected i.e., pregnancy status, dietary habits, genetic conditions, 

HIV/AIDS and other underlying health conditions that are prevalent in this region could also 

contribute to anaemia's high prevalence. 

Health-seeking behaviour adjustments: The limitations around adjusting for health-seeking 

behaviour (one-time survey in the KHDSS) might have some bearing on the results. The 

behaviour might have been modified over the years or influenced by changes in policy. 

However, subsequent in-depth analysis of a smaller sub-population that was actively monitored 

for illnesses provides a more nuanced understanding and rectify the shortcomings of this 

broader study. 

Other external factors: Even though our study incorporated numerous variables, it might not 

have fully considered the influence of factors like local health campaigns, presence of other 

endemic diseases, shifts in micro-policy, emerging diseases, outbreaks, or alterations in 

healthcare practices. Any of these elements could potentially affect malaria incidence and 

mortality.  

Recognizing and understanding these challenges and limitations is essential for refining future 

research and ensure that the study findings are interpreted within the appropriate context. 
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6.4. Extension and future research  

Given the findings, significance, and limitations of the study, the following would be valuable 

extensions of our work for future research: 

1. Extended temporal analysis and model fine-tuning: An updated and extension of the 

temporal scope of the study to include data from post-2015 to the present to assess any recent 

trends or changes in the malaria landscape. This would take into consideration other recent 

events of public health importance, including the COVID-19 pandemic (Weiss et al., 2021), 

policy changes in other diseases like test and treat for HIV which has been implemented in 

Kenya among others. The effect of these events could inform more on ways of dealing with 

similar public health shocks in future. In line with this, better fine-tuned models should be 

developed to address potential issues in Bayesian modelling assumptions and refine models 

based on improved statistical methodologies or algorithms, better-informed priors, updated 

data, and potential confounders not included in our research would be useful in improving 

accuracy and predictive power. Such models have been implemented (Beloconi et al., 2023; 

Nyawanda et al., 2023) and other are being developed in line with our findings with an aim 

of developing localised early warning systems. 

2. Comprehensive anaemia-malaria studies on the whole population: Due to the notable 

anaemia prevalence, research across all age groups, focusing on its varied causes in the 

region, not limited to malaria and Schistosomiasis/helminths but extending to iron 

deficiency, HIV/AIDS, malnutrition, and genetic factors, is essential. 

3. Health systems research and implementation studies: Given the understanding of 

malaria's burden in the KHDSS region, implementation studies on the effectiveness of 

various interventions, tailored to the local context would be the logical next step. In addition, 

understanding how health systems' responsiveness, efficiency, and access can influence 

malaria incidence, prevalence and mortality.  
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4. Climate change and malaria: Given the observed relationships with climatic variables, 

studying how climate change might impact future malaria patterns in the region would be 

pertinent. Emerging evidence (Lubinda et al., 2021; Mafwele & Lee, 2022; Ryan et al., 

2020), suggests that climate change will result in increased risk of malaria transmission. 

Making this an important research theme to explore. 

5. Malaria mortality determination: With the important role of mortality data in tracking 

malaria control progress, VA in general and as a tool for malaria-mortality diagnosis needs 

to be improved despite the noted shortcomings. Minimally invasive tissue sampling (MITS) 

- a simplified post-mortem examination technique - that has shown to be an adequate 

approach for cause of death investigation in low-resource settings (Bassat et al., 2013; 

Rakislova et al., 2019), could potentially provide data to help quantify the relative 

contribution of malaria. A thorough investigation of cause of death using MITS techniques 

could potentially provide data to help quantify the relative contribution of the role of malaria 

to mortality. The data should subsequently be utilized to improve VA cause of death 

determination algorithms and hence its diagnostic ability. 
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