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PROPAGATION OF LOGARITHMIC REGULARITY AND INVISCID LIMIT

FOR THE 2D EULER EQUATIONS

GENNARO CIAMPA, GIANLUCA CRIPPA, AND STEFANO SPIRITO

Abstract. The aim of this note is to study the Cauchy problem for the 2D Euler equations
under very low regularity assumptions on the initial datum. We prove propagation of regularity
of logarithmic order in the class of weak solutions with Lp initial vorticity, provided that p ≥ 4.
We also study the inviscid limit from the 2D Navier-Stokes equations for vorticity with logarithmic
regularity in the Yudovich class, showing a rate of convergence of order | log ν|−α/2 with α > 0.

“Dedicated to Pierangelo Marcati on the occasion of his 70th birthday”

1. Introduction

We consider the Cauchy problem for the two-dimensional incompressible Euler equations in
vorticity formulation











∂tω + u · ∇ω = 0,

u(t, ·) = ∇⊥(−∆)−1ω(t, ·),
ω(0, ·) = ω0,

(1.1)

where the unknowns are the vorticity ω : [0, T ] × T
2 → R and the velocity u : [0, T ] × T

2 → R
2,

while ω0 : T
2 → R is a given initial datum with zero average, i.e.

∫

T2

ω0(x) dx = 0.

The coupling between the velocity and the vorticity in the second line of (1.1) is known as the Biot-
Savart law, and in particular it implies the incompressibility condition div u = 0. The understanding
of the well-posedness of these equations represents one of the classic problems of mathematical fluid
dynamics; we refer to [31] for an overview of the available theory. In the two-dimensional case the
Euler equations in vorticity formulation are a non-linear and non-local transport equation driven
by an incompressible velocity field. Thus, a simple energy estimate for smooth solutions gives that

‖ω(t, ·)‖Lp = ‖ω0‖Lp ,

for all 1 ≤ p ≤ ∞. It is therefore natural to study weak solutions of (1.1) in an Lp framework.
We highlight from the outset that we work on the two-dimensional torus T

2 to reduce technical
details, but all the results can be adapted to the whole-space case R

2 requiring ω0 ∈ L1 ∩ Lp(R2).
The existence of weak solutions with ω ∈ L∞Lp with p > 1 has been proved by DiPerna and
Majda in [23], see also [21] for positive measures Radon measures ω0 ∈ H−1

loc and [36] for ω0 ∈ L1.
Uniqueness of weak solutions is known only in the case of bounded vorticity ω ∈ L∞ (see [40]) or
slightly less (see [20, 41]). However, the uniqueness of weak solutions in Lp with p < ∞ is still an
open and very challenging problem. Recently several non-uniqueness results have been proved (see
[7, 8, 9, 33, 37, 38]) but the complete picture is far to be fully understood.

In these notes we investigate two problems related to (1.1). The first one is the propagation of
regularity for weak solutions of (1.1). Roughly speaking, it means the following: given a Banach
space Y we want to understand whether the information that the initial datum ω0 belongs to Y
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implies that the solution ω(t, ·) ∈ Y for every t > 0. In [2] it is shown that if one considers Dini
continuous initial data ω0, the 2D Euler equations (1.1) admits a unique global solution within
these critical spaces. In particular, the propagation of the Dini semi-norm provides an L∞ bound
on ∇u with a constant that grows exponentially in time, see also [26]. In the case the velocity field
is not Lipschitz there is no propagation in general. However, one can have a control on the loss of
regularity depending on the regularity of the velocity field. This is indeed the case for Yudovich’s
solutions for which the velocity is only log-Lipschitz. In this regards, in [1] it has been shown that
if ω0 ∈ L∞ ∩Wα,p then, for all 0 < α′ < α, the unique bounded solution ω of (1.1) belongs to the

space Wα′(t),p where

α′(t) := α′ exp

(

−
∫ t

0
V (τ) dτ

)

, V (t) := sup
0<|x−x′|≤1

|u(t, x)− u(t, x′)|
|x− x′|(1− log |x− x′|) . (1.2)

We point out that the quantity
∫ t
0 V (τ) dτ is finite since u is log-Lipschitz. Later on, in [18] it

is showed that if ω0 ∈ Wα,p (with αp ≤ 2, p > 1 and α ∈ (0, 2)) is a continuous function, then

the unique bounded solution ω(t, ·) ∈ Wα′,p for any t ∈ [0, T ] and any 0 < α′ < α. These results
have been improved recently in [12], where the authors showed that solutions in the Yudovich class
ω ∈ L∞([0, T ]×T

2)∩C([0, T ];L1(T2)) satisfy the following: let 0 < α ≤ 1 and p ≥ 1, we have that

(i) If ω0 ∈ Wα,p(T2) then

[ω(t, ·)]Wα(t),p .α,p ‖ω0‖L∞ + [ω0]Wα,p ,

for any t ∈ [0, T ], where α(t) = α
1+C‖ω0‖L∞αpt .

(ii) If ω0 ∈ C(T2) ∩ Wα,p(T2) with p > 1 then ω(t, ·) ∈ Wα′,p(T2) for any 0 < α′ < α and

any t ∈ [0, T ]. When α = 1 we also have ω(t, ·) ∈ W 1,p′(T2) for any 1 ≤ p′ < p and any
t ∈ [0, T ].

(iii) If ω0 ∈ Wα,p(T2) with p > 2/α it holds ω(t, ·) ∈ Wα,p(T2) for any t ∈ [0, T ].

In a similar fashion, in [25] the author constructed an example of initial datum ω0 ∈ L∞ ∩ W 1,p

with p > 2 such that the unique bounded solution ω continuously loses integrability in time, i.e.
ω(t, ·) belongs to the Sobolev space W 1,p(t) with p(t) being a decreasing function of time. On the
other hand, log-Hölder coefficients of Yudovich’s solution of (1.1) are conserved if one assumes that
the velocity is Lipschitz, see [13].
For more irregular initial data, in [17] the authors showed that if ω0 ∈ L∞∩Bs

p,∞, for some s > 0 and

p ≥ 1, the unique solution ω of (1.1) satisfies ω(t, ·) ∈ L∞ ∩ B
s(t)
p,∞ with s(t) := s exp(−Ct‖ω0‖∞).

Here Bs
p,∞ denotes the usual Besov space. Moreover, they suggest that the loss may be improved

to a polynomial law as in [12], see [17, Remark 3].
Our purpose is to look for a (possibly more general) class of initial data so that the regularity

is propagated without any loss. The motivation comes from recent results on the propagation of
regularity for the linear transport equation driven by irregular velocity fields, i.e. the equation

{

∂tθ + b · ∇θ = 0,

θ(0, ·) = θ0.
(1.3)

In [10] it has been shown that bounded solutions of (1.3) propagate regularity of logarithmic order
provided that b is a divergence-free vector field in L1([0, T ];W 1,p(Td)). In detail, for any α > 0 we
define H log,α to be the functional space

H log,α(Td) :=

{

f ∈ L2(Td) : [f ]2Hlog,α :=

∫

B1/3

∫

Td

|f(x+ h)− f(x)|2
|h|d

dxdh

log(1/|h|)1−α
< ∞

}

,

which is a Banach space endowed with the norm ‖f‖2
Hlog,α := ‖f‖L2 +[f ]2

Hlog,α . The authors of [10]
show the following bound on the [ · ]Hlog,α semi-norm

[θ(t, ·)]Hlog,p .p,d

(
∫ t

0
‖∇b(s, ·)‖Lp ds

)

p
2

‖θ0‖L∞ + [θ0]Hlog,p , (1.4)
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with α = p > 1. The same result has been reproduced in [34] using an equivalent Besov-type
semi-norm and Littlewood–Paley’s theory. Going back to the Euler equations, it is immediate to
check that the bound (1.4) holds for solutions in the Yudovich class (as pointed out in Theorem 3.1
below). However, our aim is to go beyond the class of bounded solutions, showing that the same

result holds for weak solutions of (1.1) arising from ω0 ∈ Lp ∩H log, 1
2 with p ≥ 4. The result is the

following.

Theorem 1.1. Let ω0 ∈ L4 ∩H log, 1
2 (T2) and let ω ∈ L∞([0, T ];L4(T2)) be any weak solution of

(1.1) starting from ω0. Then, there exists a constant C > 0 such that ω satisfies the following bound

‖ω(t, ·)‖
Hlog, 12

≤ C

(

‖ω0‖
Hlog, 12

+
√
t‖ω0‖

1
2

L2‖ω0‖L4

)

, for any t ∈ [0, T ]. (1.5)

Remarkably, Theorem 1.1 holds in a class in which uniqueness is not known, but all the so-
lutions in L∞([0, T ];L4(T2)) are renormalized in the sense of DiPerna-Lions, see [30]. Moreover,
in addition to improving the result in terms of integrability of the initial datum ω0, the proof is
substantially different from the one in [10] being more Eulerian in spirit. In particular, we do not
use the Lagrangian representation of the solutions (which still holds as a consequence of the renor-
malization property) and we use a commutator estimate proved in [4, Proposition 13]. We observe
here en passant that the Littlewood-Paley approach of [34] could also work under the hypothesis
of Theorem 1.1, but we preferred not to follow this route in order to make the proof as simple as
possible.

Our second interest is the inviscid limit from the 2D incompressible Navier-Stokes equations










∂tω
ν + uν · ∇ων = ν∆ων,

uν(t, ·) = ∇⊥(−∆)−1ων(t, ·),
ων(0, ·) = ων

0 ,

(NS)

where ν > 0 is a parameter related to the viscosity of the fluid, and ων
0 is a zero-average initial

datum (possibly depending on ν) such that

ων
0 → ω0, in Lp(T2).

We recall that in two dimensions solutions of the Navier-Stokes equations (NS) are regular if the
initial datum is square integrable, i.e. for ων

0 ∈ L2(T2). Here we look for rates of convergence as
the viscosity ν → 0 when the spatial domain is the torus T

2, so that no boundary layers have to
be considered. In this regards, the case of smooth initial data u0 ∈ Hs (with s > 2) was analyzed
by Masmoudi in [32] who showed that

‖uν(t, ·)− u(t, ·)‖Hs′ .

{

νt, if s′ ≤ s− 2,

(νt)(s−s′)/2, if s− 2 ≤ s′ ≤ s− 1,
(1.6)

together with the implications on the vorticity side (ω0 ∈ Hs with s > 1). We also mention the
recent work [24] in which the authors found a rate of convergence of order ν uniform in time for
time-quasi-periodic solutions of (1.1) with a small time-quasi-periodic external force.
For Yudovich’s solutions, the following rate of convergence for the velocity field was proved by
Chemin in [15]

sup
t∈[0,T ]

‖uν(t, ·)− u(t, ·)‖L2 ≤ C1(νT )
1
2
exp(−CT‖ω0‖L∞), (1.7)

for some constants C1, C > 0 with C1 depending on T and ‖ω0‖L∞ . Concerning rates of convergence
for the vorticity, a similar power law rate has been showed in [17] under the additional assumption
ω0 ∈ Bs

p,∞ with s > 0 and p ≥ 1. In particular, in [17] the authors prove the following rate

‖ων(t, ·) − ω(t, ·)‖Lp . (νt)
s(t)

1+s(t) , s(t) := exp(−Ct‖ω0‖∞). (1.8)

It is important to point out that this rate has been obtained by combining losing estimates for the

Besov regularity
(

i.e. ων(t, ·) ∈ B
s(t)
p,∞

)

together with the rate for the velocity (1.7). Notice that
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(1.7) and (1.8) are not uniform in time and they actually deteriorate exponentially fast. In this
regards, the improvement of the losing estimate proved in [12] implies that the rate (1.8) holds
with an exponent that deteriorates polynomially in time, i.e. s̃(t) = s

1+Ctsp , as pointed out in [17,

Remark 3]. In [16] we proved a related result for Yudovich’s solutions but with a different approach:
without requiring any kind of regularity on the initial data, we showed that it is possible to obtain
the rate of convergence

‖ων(t, ·)− ω(t, ·)‖Lp . max{φ(ν), νβ}, (1.9)

where β depends on ‖ω0‖∞, T , and p, while φ : R+ → R
+ is a continuous function with φ(0) = 0.

In detail, the function φ is a modulus of continuity depending on the initial datum ω0 such that

‖ω0(·+ h)− ω0‖L1 ≤ φ(|h|), for |h| small enough.

Notice that the regularity of the initial datum is somehow encoded in the function φ and it can
be made quantitative assuming some regularity on ω0. Our purpose here is somehow between [16]
and [17]: we aim to prove a rate which does not deteriorate in time requiring some regularity on
the initial datum. To this end, we look for a regularity class for the initial datum that is rougher
than Besov and which provides an explicit form for the function φ appearing in (1.9). Once again,
the inviscid limit for advection-diffusion equations with Sobolev velocity fields (see [5, 10, 34]) and
the propagation of logarithmic regularity suggest to look for a logarithmic rate of convergence.

Our second main result is the following.

Theorem 1.2. Let ω0 ∈ L∞∩H log,α(T2) for some p > 0. Let ω and ων be, respectively, the unique
bounded solutions of the Euler and Navier-Stokes equations arising from ω0. Then, there exists a
constant C > 0 depending on p, T, ‖ω0‖Hlog,α, and ‖ω0‖L∞ such that

sup
t∈(0,T )

‖ων(t, ·) − ω(t, ·)‖L2 ≤ C

| log ν|α/2 . (1.10)

The strategy of the proof relies on the stochastic Lagrangian representation of solutions of the
Navier-Stokes equations as in [16], i.e. the solution ων has an explicit formula in terms of the
stochastic flow of uν which is given by

ων(t, x) = E[ων
0 (X

ν
t,0(x))],

with E denoting the expectation, and Xν
t,s is the solution of the stochastic differential equation

{

dXν
t,s(x, ξ) = uν(s,Xν

t,s(x, ξ)) ds +
√
2ν dWs(ξ), s ∈ [0, t),

Xν
t,t(x, ξ) = x.

The rate (1.9) is then obtained exploiting the estimate on the difference quotients of functions
belonging to H log,α (see Theorem 2.2 below) and the convergence in the zero-noise limit of the
stochastic flow Xν towards the deterministic flow of the limit solution. We remark once again that
our result provides a rate of convergence for a class of initial data more irregular than the one
considered in [17]. Moreover, it is worth noting that the constant C in (1.10) diverges for T → ∞,
but the rate of convergence is independent of T .

2. Functional setting

In this section we fix the notations and we recall some preliminary results. We start by recalling
the definitions and some properties of the spaces of functions with derivatives of logarithmic order
from [10, 11]. For any α > 0 we define the space

H log,α(Td) :=

{

f ∈ L2(Td) :

∫

B1/3

∫

Td

|f(x+ h)− f(x)|2
|h|d

dxdh

log(1/|h|)1−α
< ∞

}

,

and the corresponding semi-norm

[f ]2Hlog,α :=

∫

B1/3

∫

Td

|f(x+ h)− f(x)|2
|h|d

dxdh

log(1/|h|)1−α
. (2.1)
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The space H log,α(Td) is a Banach space endowed with the norm

‖f‖2Hlog,α := ‖f‖2L2 + [f ]2Hlog,α . (2.2)

Using the Fourier representation, the following characterization is shown to hold in [10].

‖f‖2Hlog,α ∼α,d

∑

k∈Zd

log(2 + |k|)α|û(k)|2. (2.3)

We now give a precise statement for the theorem on the propagation of regularity to which we
referred in the introduction, see [10, Corollary 1.2].

Theorem 2.1. Let b ∈ L1([0, T ];W 1,p(Td)) be a divergence-free vector field for some p > 1. Then,
any solution θ ∈ L∞([0, T ]× T

d) of (1.3) satisfies

[θ(t, ·)]Hlog,p .p,d

(
∫ t

0
‖∇b(s, ·)‖Lp ds

)

p
2

‖θ0‖L∞ + [θ0]Hlog,p , (2.4)

for any t ∈ [0, T ].

For any f ∈ H log,α(Td) we define for any x ∈ T
d the function

Lαf(x) :=

(

∫

B1/3

|f(x+ h)− f(x)|2
|h|d

dh

log(1/|h|)1−α

)
1
2

, (2.5)

and it follows that Lαf ∈ L2(Td) with

‖Lαf‖L2 = [f ]Hlog,α . (2.6)

The following estimate on the difference quotients holds, see [11, Theorem 1.11].

Theorem 2.2. Let α > 0 be fixed. For any f ∈ H log,α(Td) it holds

|f(x)− f(y)| ≤ C(d, α) log(1/(|x − y|))−α/2 (Lαf(x) + Lαf(y)) , (2.7)

for any x, y ∈ T
d such that |x− y| < 1/36.

We point out that the previous theorem is proved in [11] in functional spaces that are a general-
ization of H log,α in a non-Hilbertian framework. Precisely, one can consider the spaces Xγ,p which
are defined as follows.

Definition 2.3. Let p ∈ (0,∞) and γ ∈ (0,∞) be fixed. We define

[f ]Xγ,p(Td) :=

(

∫

B1/3

∫

Td

|f(x+ h)− f(x)|p
|h|d

dxdh

log(1/|h|)1−pγ

)1/p

, (2.8)

and we set

Xγ,p(Td) := {f ∈ Lp(Td) : [f ]Xγ,p(Td) < ∞}. (2.9)

For p ≥ 1, the space Xγ,p(Td) is a Banach space endowed with the norm

‖f‖Xγ,p = ‖f‖Lp + [f ]Xγ,p , (2.10)

and the Gagliardo semi-norm [f ]Xγ,p is lower semicontinuous with respect to the strong topology

of Lp. With these notations, we have that H log,α = X
α
2
,2. Moreover, the semi-norms [ · ]Hlog,α are

increasing in α, i.e for any 0 < α ≤ α′ < ∞ it holds

[f ]Hlog,α ≤ [f ]Hlog,α′ ,

see [11, Proposition 1.3].
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3. Propagation of regularity

The aim of this section is to analyze the propagation of the H log,α regularity for weak solutions
of the 2D Euler equations. For solutions in the Yudovich class the propagation follows immediately
by Theorem 2.1 as shown in the following.

Theorem 3.1. Let ω0 ∈ L∞∩H log,p(T2) for some p > 1. Then, the unique solution ω ∈ L∞([0, T ]×
T
2) of (1.1) satisfies

[ω(t, ·)]Hlog,p .p t
p
2 ‖ω0‖

1+ p
2

L∞ + [ω0]Hlog,p , for any 0 ≤ t ≤ T. (3.1)

Proof. By Theorem 2.1, for any 0 ≤ t ≤ T the unique bounded solution ω satisfies

[ω(t, ·)]Hlog,p .p

(
∫ t

0
‖∇u(s, ·)‖Lp ds

)

p
2

‖ω0‖L∞ + [ω0]Hlog,p . (3.2)

By the properties of the Biot-Savart operator, we have that

‖∇u(s, ·)‖Lp .p ‖ω(s, ·)‖Lp ≤ ‖ω0‖L∞ , for any 0 ≤ s ≤ T. (3.3)

where in the last inequality we used that the spatial domain is T2 together with the basic energy
estimate on ω. Substituting (3.3) in (3.2) the proof is completed. �

We now consider the case of unbounded vorticity. To this end, we need to introduce some
preliminary definitions and results from [3, 4, 6] that we adapt to our context.

Definition 3.2. Let 0 < θ < 1 and define the semi-norms

[u]2θ := sup
0<h≤1/2

| log h|−θ

∫

Td

∫

Td

Kh(x− y)|u(x) − u(y)|2 dxdy, (3.4)

where the kernel Kh is a positive, bounded and symmetric function defined as

Kh(x) =
1

(|x|+ h)d
, for |x| < 1/2, (3.5)

independent of h for |x| ≥ 2/3, equal to a positive constant outside B(0, 3/4), and periodized so as
to belong in C∞(Td \B(0, 3/4)).

Notice that (3.4) defines a semi-norm because it vanishes if u is a constant. Moreover, the
semi-norms are decreasing in θ, i.e.

[u]θ ≤ [u]θ′ , if θ′ ≤ θ. (3.6)

Correspondingly, we define the space W 2
log,θ as follows

W 2
log,θ := {u ∈ L2(Td) : [u]θ < ∞}, (3.7)

which is a Banach space endowed with the norm

‖u‖22,θ = ‖u‖2L2 + [u]2θ. (3.8)

The following proposition holds, see [4, Proposition 1].

Proposition 3.3. For any s > 0 and any 0 < θ < 1 one has the (compact) embeddings

W s,2(Td) ⊂ W 2
log,θ(T

d) ⊂ L2(Td).

In addition, using the Fourier representation it holds

‖u‖2L2 + [u]2θ ∼ sup
h

∑

k∈Zd\{0}

1 +
∣

∣

∣
log
(

1
|k| + h

)∣

∣

∣

| log h|θ |û(k)|2 ≤
∑

k∈Zd

log(1 + |k|)1−θ |û(k)|2. (3.9)

We point out that in [4, Proposition 1] the authors consider as spatial domain the space R
d.

Moreover, the converse inequality in (3.9) also holds. We prove it for completeness.
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Proposition 3.4. For any 0 < θ < 1 and u ∈ W 2
log,θ(T

d) the following holds:

‖u‖2L2 + [u]2θ &
∑

k∈Zd\{0}

log(1 + |k|)1−θ |û(k)|2. (3.10)

Proof. It follows from a straightforward adaptation of the argument in [11, Theorem 1.4]. We write
∫

Td

∫

Td

Kh(x− y)|u(x)− u(y)|2 dxdy ∼ ‖u‖L2 +

∫

B2/3

∫

Td

Kh(z)|u(· + z)− u(y)|2 dy dz

= ‖u‖L2 +
∑

k∈Zd\{0}

(

∫

B2/3

Kh(z)|eik·z − 1|2 dz
)

|û(k)|2.

Then, it is clear that it is enough to estimate the term inside the parenthesis. First of all, notice
that

|eik·z − 1|2 = 1− cos(k · z).
Then, for 0 < |k| < 10 we use that 1− cos(ξ) ∼ ξ2 for ξ ∈ (−2, 2) to obtain

∫

B2/3

Kh(z)|eik·z − 1|2 dz ≥ |k|2 ≥ 1. (3.11)

On the other hand, for |k| > 10 using the Coarea formula we have that

∫

B2/3

Kh(z)(1 − cos(k · z)) dz =

∫ 2
3

0

∫

Sd−1

(1− cos(|k|rθ1))
rd−1

(r + h)d
dr dHd−1,

whereHd−1 denotes the (d−1)-dimensional Hausdorff measure and θ1 is such that k·z = |k||z| cos θ1.
Then, since for every k ∈ Z

d and r > 0 with r|k| > 1, it holds
∫

Sd−1

(1− cos(|k|rθ1)) dHd−1 &d 1,

we obtain that
∫

B2/3

Kh(z)(1 − cos(k · z)) dz ≥
∫ 2

3

1/|k|

∫

Sd−1

(1− cos(|k|rθ1)
rd−1

(r + h)d
dr dHd−1

&d

∫ 2
3

1/|k|

rd−1

(r + h)d
dr ∼ log

(

h+
1

|k|

)

.

We conclude using the simple estimate

1

| log h|θ log
(

h+
1

|k|

)

≥ log

(

h+
1

|k|

)1−θ

≥ | log |k||1−θ . �

In view of the above proposition together with the equivalence in (2.3), for 0 < θ < 1 the norms
‖ · ‖2,θ and ‖ · ‖Hlog,1−θ are equivalent and thus we can identify the spaces

H log,1−θ(Td) = W 2
log,θ(T

d). (3.12)

We now recall the following commutator estimate from [4] and adapted to our context, see [4,
Proposition 13].

Proposition 3.5. Let a ∈ W 1,p(Td) be a divergence-free vector field with 1 ≤ p ≤ 2. Then, there

exists a constant C > 0 depending only on p and d such that for all g ∈ Lp′(Td) with 1
p + 1

p′ = 1,
∫

Td

∫

Td

∇Kh(x− y)(a(x)− a(y))|g(x) − g(y)|2 dxdy ≤ C| log h| 12‖∇a‖Lp‖g‖2
L2p′ . (3.13)

We can finally prove our first main result.
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Theorem 3.6. Let ω0 ∈ L4 ∩ H log, 1
2 (T2) and let ω ∈ L∞([0, T ];L4(T2)) be any weak solution of

(1.1) starting from ω0. Then, there exists a constant C > 0 such that ω satisfies the following bound

‖ω(t, ·)‖
Hlog,12

≤ C

(

‖ω0‖
Hlog, 12

+
√
t‖ω0‖

1
2

L2‖ω0‖L4

)

, for any t ∈ [0, T ]. (3.14)

Remark 3.7. The constant in the statement of Theorem (3.6) depends depends on the constant in
(3.13) of Proposition 3.5 with d = 2 and p = p′ = 2.

Proof. Let ω ∈ L∞([0, T ];L4(T2)) be a weak solution of (1.1) and let ρε be a family of smooth
mollifiers. Then, the function ωε = ω ∗ ρε satisfies the equation











∂tω
ε + u · ∇ωε = rε,

u(t, x) = K ∗ ω(t, ·)(x),
ωε(0, ·) = ω0 ∗ ρε,

(3.15)

where the commutator rε is defined as

rε := u · ∇(ω ∗ ρε)− (u · ∇ω) ∗ ρε. (3.16)

In particular, since ω,∇u ∈ L∞([0, T ];L4(T2)) we have that rε → 0 in L1([0, T ];L2(T2)), see [22,
Lemma II.1]. Thus, by using the equation (3.15), the function |ωε(t, x) − ωε(t, y)|2 satisfies the
equation

∂t|ωε(t, x)− ωε(t, y)|2 + [u(t, x) · ∇x + u(t, y) · ∇y]|ωε(t, x)− ωε(t, y)|2

= 2(rε(t, x) + rε(t, y))(ωε(t, x) − ωε(t, y)). (3.17)

Then, we use (3.17) and div u = 0 to compute

d

dt

∫

T2

∫

T2

Kh(x− y)|ωε(t, x)− ωε(t, y)|2 dxdy

=

∫

T2

∫

T2

∇Kh(x− y)(u(t, x) − u(t, y))|ωε(t, x)− ωε(t, y)|2 dxdy

+ 2

∫

T2

∫

T2

Kh(x− y)(rε(t, x) + rε(t, y))(ωε(t, x)− ωε(t, y)) dxdy.

We integrate in time and we use Proposition 3.5 to obtain that
∫

T2

∫

T2

Kh(x− y)|ωε(t, x)− ωε(t, y)|2 dxdy ≤
∫

T2

∫

T2

Kh(x− y)|ωε
0(x)− ωε

0(y)|2 dxdy

+ 2

∫ T

0

∫

T2

∫

T2

Kh(x− y)(rε(t, x) + rε(t, y))(ωε(t, x) − ωε(t, y)) dxdy dt

+ Ct| log h| 12‖∇u‖L∞L2‖ωε‖2L∞L4 .

Since any weak solution ω ∈ L∞([0, T ];Lp(T2)) with p ≥ 2 is renormalized (see [30]), the following
bounds hold

‖ωε‖L∞L4 ≤ ‖ω0‖L4 ,

‖∇u‖L∞L2 ≤ C‖ω‖L∞L2 ≤ C‖ω0‖L2 ,

and then we get that
∫

T2

∫

T2

Kh(x− y)|ωε(t, x)− ωε(t, y)|2 dxdy ≤
∫

T2

∫

T2

Kh(x− y)|ωε
0(x)− ωε

0(y)|2 dxdy

+ 2

∫ T

0

∫

T2

∫

T2

Kh(x− y)(rε(t, x) + rε(t, y))(ωε(t, x) − ωε(t, y)) dxdy dt

+ Ct| log h| 12‖ω0‖L2‖ω0‖2L4 .
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Finally, the convergence of the commutator rε allows us to take the limit ε → 0 obtaining that
∫

T2

∫

T2

Kh(x− y)|ω(t, x) − ω(t, y)|2 dxdy ≤
∫

T2

∫

T2

Kh(x− y)|ω0(x)− ω0(y)|2 dxdy

+ Ct| log h| 12‖ω0‖L2‖ω0‖2L4 ,

and the definition of the semi-norm [ · ] 1
2
in (3.4) implies that

[ω(t, ·)]21
2

≤ [ω0]
2
1
2

+ Ct‖ω0‖L2‖ω0‖2L4 . (3.18)

Then, the conclusion follows from the equivalence of the norms ‖ · ‖2, 1
2
and ‖ · ‖

Hlog, 12
. �

4. Vanishing viscosity limit

In this last section we study the inviscid limit of the 2D Navier-Stokes equations (NS). Our goal
is to provide a logarithmic rate of convergence (in the viscosity) assuming that the initial vorticity
belongs to the space H log,α.

We start by introducing the Stochastic Langrangian representation of (NS). Let (Ω,F ,P) be
a given probability space, we define the map Xν : [0, T ] × [0, T ] × T

2 × Ω → T
2 as follows. For

P-a.e. ξ ∈ Ω and for any t ∈ (0, T ) and any s ∈ [0, T ] we consider a T
2-valued Brownian motion

Ws adapted to the backward filtration, i.e. satisfying Wt = 0. The map s 7→ Xν
t,s(x, ξ) is obtained

by solving
{

dXν
t,s(x, ξ) = uν(s,Xν

t,s(x, ξ)) ds +
√
2ν dWs(ξ), s ∈ [0, t),

Xν
t,t(x, ξ) = x.

(4.1)

For P-a.e. ξ ∈ Ω the map x ∈ T
2 7→ Xν

t,s(x, ξ) ∈ T
2 is measure-preserving for any t ∈ [0, T ] and

s ∈ [0, t] (see [29]). Moreover, by the Feynman-Kac formula (see [27, 29]), the function

ων(t, x) = E[ων
0 (X

ν
t,0(x))], (4.2)

satisfies the advection-diffusion equation

∂tω
ν + uν · ∇ων − ν∆ων = 0,

with initial datum ων
0 , where we have denoted by E[f ] the expectation, i.e. the average with respect

to P. As usual, we will omit the explicit dependence on the parameter ξ ∈ Ω. Therefore, the couple

uν(t, x) := ∇⊥(−∆)−1ων(t, ·)(x), (4.3)

ων(t, x) := E[ων
0 (X

ν
t,0(x))], (4.4)

solves the Cauchy problem for the Navier-Stokes equations (NS). The couple (uν , ων) defined by
the equations (4.3) and (4.4) is the Lagrangian representation of solutions to (NS).

We remark that the probability space and the Brownian motion can be arbitrarily chosen. Thus,
the Lagrangian representation does not depend on the probability space. Indeed, since uν is a
smooth function, the equation (4.1) is satisfied in the strong sense [27, 29], namely one can find
a solution Xν

t,· to (4.1) on any given filtered probability space with any given adapted Brownian
motions as described above.

Finally, we recall the following theorem proved in [16, Theorem 2.8].

Theorem 4.1. Let ω0 ∈ L∞(T2) with ‖ω0‖L∞ = M . Let (u, ω) and (uν , ων) be, respectively, the
unique bounded solutions of the Euler and Navier-Stokes equations with the same initial datum ω0.
Denote with X and Xν the corresponding deterministic and stochastic flows. Then, for any T > 0
there exists a constant β(M,T ) such that

sup
s,t∈[0,T ]

E

[
∫

T2

|Xν
t,s(x)−Xt,s(x)|2 dx

]

≤ Cνβ(M,T ). (4.5)

We can now prove our second main result, which we rewrite for the reader’s convenience.
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Theorem 4.2. Let ω0 ∈ L∞∩H log,α(T2) for some α > 0. Let ω and ων be, respectively, the unique
bounded solutions of the Euler and Navier-Stokes equations arising from ω0. Then, there exists a
constant C > 0 depending on p, T, ‖ω0‖Hlog,α, and ‖ω0‖L∞ such that

sup
t∈(0,T )

‖ων(t, ·) − ω(t, ·)‖L2 ≤ C

| log ν|α/2 . (4.6)

Proof. Let ε > 0 be a parameter that we will fix later. We use the Feynman-Kac formula to write

‖ων(t, ·)− ω(t, ·)‖2L2 =

∫

T2

|ων(t, x)− ω(t, x)|2 dx

=

∫

T2

|E[ω0(X
ν
t,0)]− ω0(Xt,0)|2 dx

≤
∫∫

{|Xν
t,0−Xt,0|≤ε}

|ω0(X
ν
t,0)− ω0(Xt,0)|2 dP dx

+

∫∫

{|Xν
t,0−Xt,0|>ε}

|ω0(X
ν
t,0)− ω0(Xt,0)|2 dP dx

:= I + II.

We start by estimating I: if we assume that ε < 1/36, we apply Theorem 2.2 and we have that
∫∫

{|Xν
t,0−Xt,0|≤ε}

|ω0(X
ν
t,0)− ω0(Xt,0)|2 dP dx ≤ C(α)

| log ε|αE
[
∫

T2

[

Lα ω0(X
ν
t,0)

2 + Lα ω0(Xt,0)
2
]

dx

]

≤ C(α)

| log ε|α [ω0]
2
Hlog,α ,

where in the last line we used (2.6) and the measure preserving property of Xν and X. To estimate
II we use the fact that ω0 is bounded, Chebishev’s inequality and the convergence of the flows in
Theorem 4.1 to obtain that

∫∫

{|Xν
t,0−Xt,0|>ε}

|ω0(X
ν
t,0)− ω0(Xt,0)|2 dP dx ≤ C‖ω0‖2L∞

ε2
E

[
∫

T2

|Xν
t,0(x)−Xt,0(x)|2 dx

]

≤ C‖ω0‖2L∞

ε2
νβ(M,T ).

Thus, by defining ε := νβ(M,T )/4, we finally get

‖ων(t, ·)− ω(t, ·)‖2L2 ≤
C(α)[ω0]

2
Hlog,α

| log ε|α + C‖ω0‖2L∞νβ(M,T )/2

=
C(α)α(M,T )−α[ω0]

2
Hlog,α

| log ν|α + C‖ω0‖2L∞νβ(M,T )/2

≤ C(α, T, ‖ω0‖Hlog,α , ‖ω‖L∞)

| log ν|α ,

where in the last line we used that the logarithm converges slower than any power. This concludes
the proof. �

Remark 4.3. An easy interpolation argument implies the convergence of ων towards ω in all Lq

spaces with 1 ≤ q < ∞ and rate

sup
t∈(0,T )

‖ων(t, ·) − ω(t, ·)‖Lq ≤ C

| log ν|f(α,q) , with f(α, q) := min

{

α

2
,
α

q

}

. (4.7)
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