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Abstract. The goal of this paper is to study weak solutions of the Fokker-Planck equation.
We first discuss existence and uniqueness of weak solutions in an irregular context, providing
a unified treatment of the available literature along with some extensions. Then, we prove a
regularity result for distributional solutions under suitable integrability assumptions, relying
on a new, simple commutator estimate in the spirit of DiPerna-Lions’ theory of renormalized
solutions for the transport equation. Our result is somehow transverse to Theorem 4.3 of [15]:
on the diffusion matrix we relax the assumption of Lipschitz regularity in time at the price of
assuming Sobolev regularity in space, and we prove the regularity (and hence the uniqueness)
of distributional solutions to the Fokker-Planck equation.
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1. Introduction

This paper deals with regularity and uniqueness issues for weak solutions to the Fokker-Planck
equation

{

∂tu+ div(bu)− 1
2

∑

i,j ∂ij(aiju) = 0 in (0, T )× R
d,

u|t=0 = u0 in R
d,

(FP)

Date: October 20, 2023.
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where u : [0, T ] × R
d → R is the unknown, b : [0, T ] × R

d → R
d is a given vector field,

a = (aij)i,j=1,...,d : [0, T ] × R
d → R

d×d is a given diffusion matrix and u0 : Rd → R is the
initial datum. We are interested here in positive definite fixed diffusivity and not in behaviors
for small (or vanishing) diffusivities and we refer to [4, 6, 13, 20, 23, 27] for some recent results
with degenerate viscosity coefficient. The equation (FP) arises frequently in fluid-dynamics
models where u is a passive scalar which is simultaneously advected (by the given velocity field
b) and diffused by the second order operator associated with the matrix a, see [28, 29]. The
Fokker-Planck equation is also intimately connected to the stochastic differential equation

{

dXt(x) = b(t,Xt(x)) dt+ σ(t,Xt(x)) dWt,

X0(x) = x,
(SDE)

where σ : [0, T ]× R
d → R

d×d is a matrix function and Wt is a d-dimensional Brownian motion
on a probability space (Ω,F ,P). For sufficiently smooth b and σ, by defining the matrix

a(t, x) = σ(t, x)σT (t, x), (1.1)

one has that the law of X satisfies the equation (FP) and the Feynman-Kac representation
formula holds

u(t, x) := E[u0(Xt(x))], (1.2)

where E denotes the expected value on the probability space (Ω,F ,P). Roughly speaking, the
connection between (FP) and (SDE) is reminiscent of the one between the linear transport
equation and the flow of the vector field b (which can be recovered as the end-point σ = 0) – see
however [15, 20, 21] and references therein for a more in-depth discussion of these connections.
Fokker-Planck equations are also relevant in Statistical Mechanics [16, 31], Mean-Field Games
theory [7, 19, 30], and Stochastic Analysis [2, 9, 15, 17, 32].

In this paper we are interested in the case in which both the driving vector field and the
diffusion matrix are irregular, i.e. we will require only integrability and/or weak differentiability
properties on b and a. Besides the purely theoretical interest, this is a common situation in fluid
dynamics models: we refer the reader to [20, Section 4] for an overview of modeling polymeric
fluids with SDEs and Fokker-Planck equations with irregular coefficients.

The well-posedness of the Cauchy problem in the smooth context is a classical result, see [18].
Out of the smooth setting the main issue are uniqueness and regularity of solutions. Indeed,
existence results can be obtained by a simple approximation argument: under global Lp-bounds
on the vector field and the diffusion matrix, one easily establishes energy estimates which allow to
apply standard (weak) compactness results. The linearity of the equation ensures that the weak
limit is a solution to (FP). At a closer look, however, different a priori estimates are available
for (FP) and this is reflected in the presence of various notions of solutions. Understanding the
relationships among different notions of solutions is one of the aims of the present work. We
recall that this was the subject of study in a recent survey for constant diffusion matrix, see [5].

1.1. Distributional and parabolic solutions. Let b ∈ L1
tL

p
x, a ∈ L1

tL
p
x, and let u0 ∈ Lq

x for
some 1 ≤ p, q ≤ ∞ such that 1/p + 1/q ≤ 1. With these assumptions it is possible to introduce
distributional solutions to (FP), i.e. functions u ∈ L∞

t L
q
x solving the equation in the sense of

distributions. Define the vector field

b̃ := b− 1

2

∑

j

∂jaij . (1.3)

Note that, formally, the equation (FP) is equivalent to

∂tu+ div(b̃u)− 1

2

∑

i,j

∂i(aij∂ju) = 0, (FP-div)
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which is also known as the Fokker-Planck equation in divergence form. Then, we consider the
following set of assumptions:

Assumptions

(A1) the diffusion matrix a is uniformly bounded, i.e.

a ∈ L∞([0, T ];L∞(Rd;Rd×d));

(A2) the diffusion matrix a satisfies

d∑

j=1

∂jaij ∈ L∞([0, T ]× R
d), for all i ∈ {1, ..., d};

(A3) the vector field b̃ satisfies

(div b̃)− =

(

div b− 1

2

d∑

i,j=1

∂ijaij

)−

∈ L∞([0, T ]× R
d);

(A4) the diffusion matrix is uniformly elliptic, i.e. there exists α > 0 such that
for every ξ ∈ R

d it holds

⟨ξ,a(t, x)ξ⟩ ≥ α|ξ|2, for a.e.(t, x) ∈ [0, T ]× R
d.

One a priori estimate for smooth solutions is the following

∥u(t, ·)∥qLq ≤ ∥u0∥qLq + (q − 1)∥(div b̃)−∥∞
∫ t

0
∥u(s, ·)∥qLqds, (1.4)

and a standard approximation argument provides the existence of a distributional solution to
(FP). However, distributional solutions are not, in general, unique, not even in the case of
constant coefficient diffusion matrices, see [24, 25, 26]. This motivates the introduction of another
notion of solution. Exploiting the presence of the second order operator in the equation, one
can show another energy estimate for smooth solutions, namely

∥u(t, ·)∥2L2 + α

∫ t

0

∫

Rd

|∇u(s, x)|2dxds ≤ ∥u0∥2L2 −
∫ t

0

∫

Rd

div b̃(s, x)|u(s, x)|2dxds

for every t ∈ [0, T ], which suggests that one should look for solutions possessing L2 gradient,
i.e. solutions that are H1 in the space variable. We therefore say that a distributional solution
u ∈ L∞

t L
q
x to (FP) is parabolic if it holds u ∈ L2

tH
1
x.

Parabolic solutions carry the exact regularity needed to establish their uniqueness under
suitable integrability assumptions on b and a. In the setting of rough drift/diffusion coefficients,
two uniqueness results for parabolic solutions are available under slightly different assumptions:

• in [15] it is shown that a parabolic solution u ∈ L∞
t L

2
x ∩ L2

tH
1
x is unique provided that

u0 ∈ L2
x and b ∈ L∞

t,x satisfy (A1), (A2), (A3) and (A4);

• in [20] it is proved that a parabolic solution u ∈ L∞
t (L2

x ∩ L∞
x ) ∩ L2

tH
1
x is unique in the

set

{u ∈ L2
tH

1
x : σT∇u ∈ L2

t,x},
where σ is defined accordingly to (1.1), provided that

– u0 ∈ L2
x ∩ L∞

x ;
– b ∈ L2

tL
2
x,loc satisfy the growth assumption b

1+|x| ∈ L1
tL

1
x + L1

tL
∞
x ;
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– the matrix σσ
T is uniformly positive definite;

– σ ∈ L∞
t L

∞
x,loc satisfy the growth assumption σ

1+|x| ∈ L2
tL

2
x + L2

tL
∞
x ;

– div b̃ ∈ L1
tL

∞
x .

The main difference between the two results lies in the L∞ assumption: [15] assumes b,a ∈ L∞
t,x,

while [20] assumes u0 ∈ L∞
x . Moreover, the proofs of these two results are based on different

techniques: in [15, Theorem 4.3] the author uses a functional analytic approach closer to the one
commonly used for elliptic/parabolic equations which make use of a Lax-Milgram type argument;
on the other hand, the result in [20] is more “hyperbolic” in nature resorting to commutator
estimates and on the theory of renormalized solutions as done in [12] for the linear transport
equation. In this regards, the L2

tH
1
x regularity of the solution allows to obtain a better control

on the so called commutator, which measures the error one commits when considering smooth
approximations of the solution. In particular, in [20, 22] it is shown that the commutator for
parabolic solutions converges strongly to 0 in L1

t,x, but better bounds can be established for

parabolic solutions u ∈ L2
tH

1
x if b ∈ L2

tL
2
x (see Section 2 for a comprehensive list of old and new

commutator estimates).
Relying on these techniques, in Section 3 we provide a presentation of the available results on

the well-posedness of (FP) together with some technical extensions.
We make use of the new commutator estimates to prove the uniqueness of parabolic solutions

of (FP) in a setting that incorporates and generalises those of [15, 20], thus providing a unified
treatment of the existing literature. Our theorem is the following.

Theorem 1.1. Let u0 ∈ L2 ∩ Lq(Rd) be a given initial datum and assume that

(i) b ∈ L2([0, T ];Lp(Rd;Rd)) with 1/p+ 1/q = 1/2;
(ii) b satisfies the growth condition

b

1 + |x| ∈ L1([0, T ];L1(Rd;Rd)) + L1([0, T ];L∞(Rd;Rd));

(iii) a satisfies (A1), (A2) and (A4);

(iv) the vector field b̃ defined in (1.3) satisfies

(div b̃)− ∈ L1((0, T );L∞(Rd)).

Then, there exists a unique parabolic solution u to (FP).

Note that if p = ∞ and q = 2 we precisely recover the existence and uniqueness of parabolic
solutions to (FP) in [15, Theorem 4.3], while when p = 2 and q = ∞ we obtain essentially
the corresponding result in [20] – see however Subsection 3.1.1 below for a detailed comparison
between the two results.

1.2. Regularity and uniqueness of distributional solutions. According to our definitions,
parabolic solutions cannot always be defined, but if they can, then they are always distributional.
The converse implication is, in general, not true: in [24] it is shown that there exist infinitely
many distributional solutions u ∈ L∞

t L
2
x to (FP) with a divergence-free vector field b ∈ L∞

t L
2
x

and a = Id, while the parabolic one is unique. This motivates the search for a condition that
guarantees parabolic regularity of a distributional solution. In addition to the uniqueness of
parabolic solutions, in [15] it is proved that the condition

∂taij ∈ L∞([0, T ]× R
d)

for i, j = 1, ..., d, implies that every solution u ∈ L2([0, T ]× R
d) to (FP) belongs to the space

Y := {u ∈ L2([0, T ];H1(Rd)) : ∂tu ∈ L2([0, T ];H−1(Rd))}.
The idea of the proof is simple: once the solutions in Y are proved to be unique, uniqueness

in the functional space L2
t,x follows from a regularity argument which makes use of the condition
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∂ta ∈ L∞
t,x. Our purpose is to investigate the role of the assumption on the time derivative of

a. In this regard, we show that if we replace ∂taij ∈ L∞
t,x with some Sobolev regularity in space,

distributional solutions are actually more regular. Our theorem reads as follows:

Theorem 1.2. Let p, q ≥ 1 such that 1/p + 1/q ≤ 1/2. Assume that b ∈ L2((0, T );Lp(Rd;Rd))

and a ∈ L2((0, T );W 1,p(Rd;Rd×d)) satisfy (A2), (A4), and (div b̃)− ∈ L1((0, T );L∞(Rd)). Let
u ∈ L∞((0, T );Lq(Rd)) be a distributional solution to (FP), then u ∈ L2([0, T ];H1

loc(R
d)).

The proof relies again on a new commutator estimate: we show that, in the current regime,
the convergence to zero of the commutators takes place in L2

tH
−1
x,loc and this, together with the

energy estimate, implies the regularity of distributional solutions. Moreover, in the particular
case p = ∞, q = 2 we obtain the uniqueness of distributional solutions in L2

t,x – notice that here

we need the stronger assumption (A3) instead of the weaker L1
tL

∞
x control on (div b̃)−.

Theorem 1.3. Assume that b ∈ L∞([0, T ];L∞(Rd)) and that (A1), (A2), (A3) and (A4) are
fulfilled. Moreover, assume that ∇a ∈ L∞([0, T ] × R

d). Then, any distributional solution
u ∈ L2([0, T ]× R

d) of (FP) belongs to Y and thus it is unique.

The theorem above is somehow transverse to [15, Theorem 4.8], i.e. we replace the assumption
on the time derivative ∂ta ∈ L∞

t,x with an assumption on the spatial gradient ∇a ∈ L∞
t,x. Note

that we need the L∞
t assumption on ∇a to compensate the L2

t assumption on u.
Furthermore, the local regularity in spaceH1

loc provided by Theorem 1.2 suggests investigating
whether uniqueness of solutions to (FP) holds in this larger functional space. We will say that a
distributional solution u ∈ L∞

t L
q
x to (FP) is locally parabolic if it holds u ∈ L2

tH
1
x,loc. Assuming

suitable growth conditions on b,a (similarly to [12, 20]), we prove that distributional solutions
are locally parabolic and unique in the class L∞([0, T ];Lq(Rd)):

Theorem 1.4. Let u0 ∈ Lq ∩L∞(Rd) be a given initial datum for some q > 2 and assume that
b ∈ L2([0, T ];Lp(Rd)) and a ∈ L2([0, T ];W 1,p(Rd)) with 1/p+1/q = 1/2 satisfy (A2) and (A4).
Moreover, we assume the following growth conditions

b(t, x)

1 + |x| ,
∂jaij(t, x)

1 + |x| ,
a(t, x)

1 + |x|2 ∈ L1([0, T ];L1(Rd)) + L1([0, T ];L∞(Rd)). (1.5)

Then, there exists at most one distributional solution u ∈ L∞([0, T ];Lq(Rd))∩L2([0, T ];H1
loc(R

d)).

In the proof we use the assumptions on p, q and the Regularity Theorem 1.2 to show the
existence of a solution in L∞([0, T ];Lq(Rd)) ∩ L2([0, T ];H1

loc(R
d)). Then we exploit the growth

conditions on b and a to use a Gronwall type argument following the same strategy of Theorem
1.1. Finally, we show how we can play with the integrability exponents in the growth conditions
to guarantee that a distributional solution is in L2([0, T ];H1(Rd)), obtaining the following result:

Theorem 1.5. Let u ∈ L∞([0, T ];Lq(Rd)) be a distributional solution of (FP), and let b ∈
L2([0, T ];Lp(Rd)) and a ∈ L2([0, T ];W 1,p(Rd)) with 1/p + 1/q = 1/2 satisfy (A2) and (A4).
Moreover, assume that 2 < q ≤ 2d

d−2 together with the following growth conditions

b(t, x)

1 + |x| ,
∂jaij(t, x)

1 + |x| ,
a(t, x)

1 + |x|2 ∈ L1([0, T ];L
q

q−2 (Rd)) + L1([0, T ];L∞(Rd)).

Then u ∈ L2([0, T ];H1(Rd)).

We conclude this introduction by observing that the well-posedness landscape of (FP) in
the non-smooth regime is far from being completely understood. Recently, several authors
have devoted their attention to the construction of exotic non-unique distributional solutions to
Fokker-Planck type equations (and also for related PDEs in fluid-dynamics). These counterex-
amples are mainly provided in the case of constant diffusion matrix – we refer the reader to our
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recent survey [5] for a thorough analysis of the problem and for additional references. From the
mathematical point of view, handling the PDE in the presence of irregular diffusions is even
more delicate. At the same time, anisotropic diffusions naturally appear in the physical models
and therefore the study of (FP) in this setting is of paramount importance.

1.3. Structure of the paper. In Section 2 we collect the commutator estimates which will
then be the heart of all the proofs that follow. In Section 3 we recall the definitions of distribu-
tional and parabolic solutions of (FP) and we prove their existence together with the uniqueness
of parabolic solutions. These results are technical improvements of [15, 20], providing a uni-
fied treatment. Finally, in Section 4 we prove our Regularity Theorem 1.2 and Theorem 1.3.
Moreover, we discuss the role of the growth conditions, proving Theorem 1.4 and Theorem 1.5.

In what follows, we will often omit the summation symbol and we will adopt the convention
of summing over repeated indices.

2. Commutator estimates

In this section we collect commutator estimates that will play a predominant role in the
entire paper. First, we recall some known results on the L1 convergence of the commutator.
We provide the proofs for completeness but they can be found in [12, 20, 21]. We remark that
the convergence of the commutators is the key tool to prove the renormalization property (and
hence the uniqueness) of distributional solutions of the linear transport equation, see [12]. To
fix the notation, let ρ ∈ C∞

c (Rd) be a smooth convolution kernel such that
∫

Rd

ρ(x)dx = 1,

and for any δ > 0 define ρδ as

ρδ(x) :=
1

δd
ρ
(x

δ

)

. (2.1)

2.1. Commutator estimates in L1. We start by proving some classical commutator estimates.
The following lemma holds.

Lemma 2.1. Let b ∈ L2([0, T ];Lp
loc(R

d;Rd)) be a vector field and let w ∈ L∞([0, T ];Lq
loc(R

d)),

where p, q are positive real numbers with 1/p+1/q ≤ 1. Let (ρδ)δ be a family of smooth convolution
kernels. Define the commutator of w and b as follows:

rδ := div(bwδ)− div(bw) ∗ ρδ = rδ1 + rδ2, (2.2)

where
rδ1 := b · ∇(w ∗ ρδ)− (b · ∇w) ∗ ρδ, rδ2 := w ∗ ρδ div b− (w div b) ∗ ρδ. (2.3)

Then we have the following:

• if ∇w ∈ L2([0, T ];Lq
loc(R

d;Rd)), then rδ1 converges to 0 in L1([0, T ];L1
loc(R

d));

• if div b ∈ L1([0, T ];L∞(Rd)), then rδ2 converges to 0 in L1([0, T ];Lq
loc(R

d)).

Proof. We start by showing the convergence of rδ1. Observe that, for a.e. t ∈ [0, T ] and a.e.
x ∈ R

d, we can explicitly write the commutator rδ1 in the following form:

rδ1(t, x) = [b · ∇(w ∗ ρδ)](t, x)− [(b · ∇w) ∗ ρδ](t, x)

= b(t, x) · ∇
∫

Rd

w(t, x− y)ρδ(y)dy −
∫

Rd

b(t, x− y) · ∇w(t, x− y)ρδ(y)dy

=

∫

Rd

ρδ(y) (b(t, x)− b(t, x− y)) · ∇w(t, x− y)dy

=

∫

Rd

ρ(z) (b(t, x)− b(t, x− δz)) · ∇w(t, x− δz)dz.
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Let Q be any bounded subset of Rd, we have that

∫∫

[0,T ]×Q

|rδ1(t, x)|dtdx =

∫∫

[0,T ]×Q

∣
∣
∣
∣

∫

Rd

ρ(z) (b(t, x)− b(t, x− δz)) · ∇w(t, x− δz)dz

∣
∣
∣
∣
dtdx

≤
∫

B1

ρ(z)

∫ T

0

∫

Q

|b(t, x)− b(t, x− δz)||∇w(t, x− δz)|dxdtdz. (2.4)

Since (t, x) 7→ b(t, x)− b(t, x− δz) converges to 0 in measure (for every fixed z), the conclusion
follows by the Dominated Convergence Theorem.
Now we consider the commutator rδ2: observe that w ∗ ρδ → w strongly in L∞Lq

loc and similarly

(w div b) ∗ ρδ → w div b strongly in L∞Lq
loc and this concludes the proof. □

Remark 2.2. It is worth observing that no assumption on the divergence of b is necessary for
the convergence of rδ1.

Lemma 2.3. Let w ∈ L2([0, T ];W 1,q
loc (R

d)) and let a ∈ L2([0, T ];W 1,p
loc (R

d;Rd×d)) be a matrix-

valued function, where p, q are positive real numbers with 1/p + 1/q ≤ 1. Let (ρδ)δ be a family of
smooth convolution kernels defined as in (2.1). Define the commutator of w and a as follows:

sδ :=
∑

i,j

[∂ij(aijw)] ∗ ρδ − ∂ij [aij(w ∗ ρδ)]. (2.5)

Then sδ converges to 0 in L1([0, T ];L1
loc(R

d)).

Proof. We can rewrite the commutator sδ as follows

sδ =
∑

i,j

[∂ij(aijw)] ∗ ρδ − ∂ij [aij(w ∗ ρδ)]

=
∑

i,j

[∂i(aij∂jw)] ∗ ρδ − ∂i[aij∂j(w ∗ ρδ)] +
∑

i,j

[∂i(∂jaijw)] ∗ ρδ − ∂i[∂jaij(w ∗ ρδ)]

:= sδ1 + sδ2.

We start by analyzing sδ1: for a.e. (t, x) ∈ [0, T ]× R
d we can write

sδ1(t, x) =
∑

i,j

[∂i(aij∂jw)] ∗ ρδ(t, x)− ∂i[aij∂j(w ∗ ρδ)](t, x)

=
∑

i,j

∫

Rd

∂i[aij(t, x− y)∂jw(t, x− y)]ρδ(y)dy − ∂i

(

aij(t, x)∂j

∫

Rd

w(t, x− y)ρδ(y)dy

)

=
∑

i,j

∫

Rd

∂i[(aij(t, x− y)− aij(t, x))∂jw(t, x− y)]ρδ(y)dy

= −
∑

i,j

∫

Rd

aij(t, x− δz)− aij(t, x)

δ
∂jw(t, x− δz)∂iρ(z)dz

=
∑

i,j

∫

Rd

∫ 1

0
∂jw(t, x− δz)∇aij(t, x− sδz) · z∂iρ(z)dsdz,
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where in the fourth line we changed variables and integrated by parts. Then, for a.e. (t, x) the
commutator sδ1 converges to

lim
δ→0

sδ1(t, x) =
∑

i,j

∂jw(t, x)∇aij(t, x) ·
∫

Rd

z∂iρ(z)dz

= −
∑

i,j

∂jw(t, x)∂iaij(t, x)

∫

Rd

ρ(z)dz. (2.6)

We now focus on sδ2: we have that

sδ2(t, x) =
∑

i,j

[∂i(∂jaijw)] ∗ ρδ(t, x)− ∂i[∂jaij(w ∗ ρδ)](t, x)

=
∑

i,j

∫

Rd

∂i[∂jaij(t, x− y)w(t, x− y)]ρδ(y)dy − ∂i

(

∂jaij(t, x)

∫

Rd

w(t, x− y)ρδ(y)dy

)

=
∑

i,j

∫

Rd

∂i[∂j(aij(t, x− y)− aij(t, x))w(t, x− y)]ρδ(y)dy

=−
∑

i,j

∫

Rd

∂jaij(t, x− δz)− ∂jaij(t, x)

δ
w(t, x− δz)∂iρ(z)dz

=
∑

i,j

∫

Rd

aij(t, x− δz)− aij(t, x)

δ
∂jw(t, x− δz)∂iρ(z)dz

+
∑

i,j

∫

Rd

aij(t, x− δz)− aij(t, x)

δ
w(t, x− δz)∂ijρ(z)dz

=−
∑

i,j

∫

Rd

∫ 1

0
∂jw(t, x− δz)∇aij(t, x− sδz) · z∂iρ(z)dsdz

︸ ︷︷ ︸

Iδ

−
∑

i,j

∫

Rd

∫ 1

0
w(t, x− δz)∇aij(t, x− sδz) · z∂ijρ(z)dsdz

︸ ︷︷ ︸

IIδ

.

Thus, one can check the following a.e. convergences

lim
δ→0

Iδ(t, x) =
∑

i,j

∂jw(t, x)∂iaij(t, x)

∫

Rd

ρ(z)dz, (2.7)

and

lim
δ→0

IIδ(t, x) = −w(t, x)
∑

i,j

∇aij(t, x) ·
∫

Rd

z∂ijρ(z)dsdz = 0. (2.8)

We have thus shown that sδ → 0 for a.e. (t, x) ∈ [0, T ]×R
d. The convergence in L1([0, T ];L1

loc(R
d))

follows from the dominated convergence theorem. □

2.2. Commutator estimates on negative Sobolev norms. We now show some new com-
mutator estimates which will allow us to prove the regularity of a distributional solution within
an appropriate integrability range.

Lemma 2.4. Let b ∈ L2([0, T ];Lp
loc(R

d;Rd)) be a vector field and let w ∈ L∞([0, T ];Lq
loc(R

d)),

where p, q are positive real numbers with 1/p + 1/q ≤ 1/2. Let (ρδ)δ be a family of smooth convo-
lutions kernels and define rδ as in (2.2). Then rδ converges to 0 in L2([0, T ];H−1

loc (R
d)).
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Proof. We recall that the commutator rδ is given by

rδ = div[b(w ∗ ρδ)]− [div(bw) ∗ ρδ] = div[b(w ∗ ρδ)− (bw) ∗ ρδ],

in the sense of distributions on [0, T ]× R
d. We can thus write

rδ(t, x) = divx

(∫

Rd

[b(t, x)− b(t, x− y)]w(t, x− y)ρδ(y)dy

)

and, for a given bounded subset Q of Rd we can estimate

∥rδ∥L2(H−1(Q)) = sup
∥ϕ∥

L2H1
0(Q)

≤1

∣
∣
∣
∣
∣

∫∫

[0,T ]×Q

rδ(t, x)φ(t, x)dtdx

∣
∣
∣
∣
∣

= sup
∥ϕ∥

L2H1
0(Q)

≤1

∣
∣
∣
∣
∣

∫∫

[0,T ]×Q

(∫

Rd

[b(t, x)− b(t, x− y)]w(t, x− y)ρδ(y)dy

)

· ∇φ(t, x)dtdx
∣
∣
∣
∣
∣

≤ sup
∥ϕ∥

L2H1
0(Q)

≤1

∫

B1

ρ(z)

∫ T

0

∫

Q

|b(t, x)− b(t, x− δz)||w(t, x− δz)||∇φ(t, x)|dxdtdz.

Notice now that, as in the proof of Lemma 2.1, the map (t, x) 7→ b(t, x)− b(t, x− δz) converges
to 0 in measure (for every fixed z). Hölder inequality on the product space [0, T ] × Q with
exponents (p, q, 2) (in space) and (2,∞, 2) (in time) allows us to apply Lebesgue Dominated
Convergence Theorem and we can therefore conclude that rδ → 0 in L2(H−1

loc ). □

Remark 2.5. Notice that with global assumptions on b and w, in the case 1/p+ 1/q = 1/2 the
commutator rδ converges to 0 in L2([0, T ];H−1(Rd)).

We now prove the analogous result on the diffusion matrix.

Lemma 2.6. Let a ∈ L2([0, T ];W 1,p
loc (R

d;Rd×d)) be a matrix valued function and let w ∈
L∞([0, T ];Lq

loc(R
d)) with p, q are positive real numbers with 1/p + 1/q ≤ 1/2. Let (ρδ)δ be a

family of smooth convolutions kernels and define sδ as in (2.5). Then sδ converge to 0 in
L2([0, T ];H−1

loc (R
d)).

Proof. Let Q be any bounded subset of Rd. Then, for any φ ∈ L2([0, T ];H1
0 (Q)) we compute

∫∫

[0,T ]×Q

sδ(t, x)φ(t, x)dtdx =

∫∫

[0,T ]×Q

(
∑

i,j

[∂ij(aijw)] ∗ ρδ − ∂ij [aij(w ∗ ρδ)]
)

φ(t, x)dtdx

=
∑

i,j

∫∫

[0,T ]×Q

∂ij

(∫

Rd

aij(t, y)w(t, y)ρδ(x− y)dy − aij(t, x)

∫

Rd

w(t, y)ρδ(x− y)dy

)

φ(t, x)dtdx

=−
∑

i,j

∫∫

[0,T ]×Q

∂j

(∫

Rd

aij(t, y)w(t, y)ρδ(x− y)dy − aij(t, x)

∫

Rd

w(t, y)ρδ(x− y)dy

)

∂iφ(t, x)dtdx

=−
∑

i,j

∫ T

0

∫

Rd

∫

Q

∂iφ(t, x)w(t, y)
1

δd+1
∂jρ

(
x− y

δ

)

(aij(t, y)− aij(t, x)) dxdydt

+
∑

i

∫ T

0

∫

Q

∫

Rd

w(t, y)ρδ(x− y)∂iφ(t, x)

(
∑

j

∂jaij(t, x)

)

dydtdx,
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and by using a change of variables and Fubini to exchange integrals we finally get that
∫∫

[0,T ]×Q

sδ(t, x)φ(t, x)dtdx

=−
∑

i

∫ T

0

∫

Rd

∫

Q

∂iφ(t, x)w(t, x− δz)
∑

j

(

∂jρ(z)

(
aij(t, x− δz)− aij(t, x)

δ

))

dxdzdt

+
∑

i

∫ T

0

∫

Q

∫

Rd

w(t, x− δz)ρ(z)∂iφ(t, x)

(
∑

j

∂jaij(t, x)

)

dzdtdx.

Thus, by letting δ → 0 we obtain

lim
δ→0

∫∫

[0,T ]×Q

sδ(t, x)φ(t, x)dtdx =
∑

i,j

∫ T

0

∫

Rd

∫

Q

∂iφ(t, x)w(t, x)∂jρ(z)∇aij(t, x) · zdxdzdt

+
∑

ij

∫ T

0

∫

Q

∫

Rd

w(t, x)ρ(z)∂iφ(t, x)∂jaij(t, x)dzdtdx

=−
∑

i,j

∫ T

0

∫

Rd

∫

Q

∂iφ(t, x)w(t, x)ρ(z)∇aij(t, x) · ejdxdzdt

+
∑

ij

∫ T

0

∫

Q

∫

Rd

w(t, x)ρ(z)∂iφ(t, x)∂jaij(t, x)dzdtdx = 0,

where in the last step we have integrated by parts in the z-variable. This concludes the proof. □

We conclude this section with the following commutator estimate: it will be crucial to recover
the uniqueness of parabolic solutions in the setting of [15].

Lemma 2.7. Let a ∈ L∞([0, T ];L∞
loc(R

d;Rd×d)) be a matrix valued function and let ∇w ∈
L2([0, T ];L2

loc(R
d)). Let (ρδ)δ be a family of smooth convolutions kernels and consider the com-

mutator sδ1 as follows

sδ1 :=
∑

i

∂i

(
∑

j

aij∂jw
δ − (aij∂jw) ∗ ρδ

)

. (2.9)

Then sδ1 converges to 0 in L2([0, T ];H−1
loc (R

d)).

Proof. The proof is very similar to the one of Lemma 2.4 and relies on the divergence form of
the commutator. Given a bounded subset Q of Rd, we can estimate

∥sδ1∥L2(H−1(Q)) = sup
∥ϕ∥

L2H1
0(Q)

≤1

∣
∣
∣
∣
∣

∫∫

[0,T ]×Q

sδ1(t, x)φ(t, x)dtdx

∣
∣
∣
∣
∣

= sup
∥ϕ∥

L2H1
0(Q)

≤1

∣
∣
∣
∣
∣
∣

∫∫

[0,T ]×Q

∑

i




∑

j

aij∂jw
δ − (aij∂jw) ∗ ρδ



 ∂iφ(t, x)dtdx

∣
∣
∣
∣
∣
∣

≤ sup
∥ϕ∥

L2H1
0(Q)

≤1

∫

B1

ρ(z)

∫ T

0

∫

Q

|a(t, x)− a(t, x− δz)||∇w(t, x− δz)||∇φ(t, x)|dxdtdz.

As in the proof of Lemma 2.1, the map (t, x) 7→ a(t, x)− a(t, x− δz) converges to 0 in measure
(for every fixed z) and then by Hölder inequality on the product space [0, T ]×Q with exponents
(∞, 2, 2) we can apply Lebesgue Dominated Convergence Theorem obtaining that sδ1 → 0 in

L2([0, T ];H−1
loc (R

d)). □
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Remark 2.8. It is worth to note that the commutator sδ1 does not converge pointwise a.e. to 0,
as shown in (2.6). However it converges in the sense of the distributions and, by density, in the
functional space L2

tH
−1
loc .

3. Well-posedness of the Cauchy problem

In this section we collect some results on the Cauchy problem for the Fokker-Planck equation
(FP). Our aim is to give a complete presentation of the available results and to provide technical
extensions. In this regard, we first analyse the Fokker-Planck equation in divergence form,
providing some technical improvements of the results in [20]. Then we move to the analysis of
the Fokker-Planck equation, proving existence and uniqueness in a slightly more general setting
than the one considered in [15]. Theorem 3.13 somehow interpolates the results from [20] and
[15] using the L2H−1

loc convergence of the commutators.

3.1. The equation in divergence form. In this section we study the initial value problem
{

∂tu+ div(b̃u)− 1
2

∑

i,j ∂i(aij∂ju) = 0 in (0, T )× R
d,

u|t=0 = u0 in R
d,

(FP-div)

which is the Cauchy problem for the Fokker-Planck equation in divergence form. Requiring
only integrability assumptions on b̃ and a we can give the following definition of solutions to
(FP-div).

Definition 3.1. Assume that

b̃ ∈ L1((0, T );L2(Rd;Rd)), a ∈ L2((0, T );L2(Rd;Rd×d)), u0 ∈ L2(Rd). (3.1)

A function u ∈ L∞((0, T );L2(Rd))∩L2((0, T );H1(Rd)) is a parabolic solution to (FP-div) if for
any φ ∈ C∞

c ([0, T )× R
d) the following identity holds:

∫ T

0

∫

Rd

u

(

∂tφ+ b̃ · ∇φ
)

− 1

2

∑

ij

aij∂ju∂iφdxdt+

∫

Rd

u0φ(0, ·)dx = 0.

The following theorem holds.

Theorem 3.2. Let p, q ∈ [2,∞] be such that 1/p+ 1/q = 1/2. Assume that:

(i) b̃ ∈ L2((0, T );Lp(Rd;Rd));

(ii) b̃ satisfies the growth condition b̃

1+|x| := b̃1 + b̃2 with

b̃1 ∈ L1((0, T );L1(Rd;Rd)), b̃2 ∈ L1((0, T );L∞(Rd;Rd)); (3.2)

(iii) (div b̃)− ∈ L1((0, T );L∞(Rd));
(iv) a satisfies (A1) and (A4);
(v) u0 ∈ L2 ∩ Lq(Rd).

Then, there exists a unique parabolic solution u to (FP-div).

Proof. Let (ρδ)δ be a standard family of mollifiers as in (2.1) and let us define b̃
δ := b̃ ∗ ρδ,

a
δ := a ∗ ρδ, and uδ0 = u0 ∗ ρδ. Then, we consider the approximating problem

{

∂tu
δ + div(b̃δuδ)− 1

2

∑

i,j ∂i(a
δ
ij∂ju

δ) = 0,

uδ(0, ·) = uδ0.
(3.3)

The equation (3.3) is classically well-posed, so we can consider for any fixed δ > 0 its unique
smooth solution uδ. We multiply the equation (3.3) by uδ and we integrate over Rd, obtaining
that

1

2

d

dt

∫

Rd

|uδ(t, x)|2dx+
1

2

∫

Rd

|uδ(t, x)|2 div b̃δ(t, x)dx+
1

2

∑

i,j

∫

Rd

aδij∂ju
δ∂iu

δ = 0. (3.4)
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Thus, we use the uniform ellipticity of aδ to obtain the inequality

d

dt

∫

Rd

|uδ(t, x)|2dx+ α

∫

Rd

|∇uδ(t, x)|2dx ≤ ∥(div b̃δ(t, ·))−∥∞
∫

Rd

|uδ(t, x)|2dx, (3.5)

and by using Gronwall’s lemma we obtain that

∥uδ∥L∞L2 + ∥uδ∥L2H1 ≤ C(α, ∥(div b̃)−∥L1L∞)∥u0∥L2 . (3.6)

A standard compactness argument and the linearity of the equation (FP-div) guarantee that

uδ
∗
⇀ u ∈ L∞L2 ∩ L2H1,

where u is a weak solution to (FP-div). We now move to the uniqueness: assume that u is a
weak solution to (FP-div) with u0 = 0 and define uδ := u ∗ ρδ. Then, uδ solves the equation

{

∂tu
δ + div(b̃uδ)− 1

2

∑

i,j ∂i(aij∂ju
δ) = rδ + sδ1,

uδ(0, ·) = 0,
(3.7)

where rδ and sδ1 are the commutators defined in (2.2) and (2.9). Consider a smooth function φ
such that

φ ≥ 0, supp φ ⊂ B2, φ = 1 in B1,

and define φR(x) = φ (x/R). Let βM : R → R be an even function with the following properties:

• βM ∈ C2 ∩ L∞(R) with ∥β′M∥∞ < CM and ∥β′′M∥∞ < C for some positive constant C
independent on M ;

• βM (z) = z2 for |z| ≤M for some positive M ;
• 0 ≤ βM (z) ≤ 2M2 for every z ∈ R;
• βM (z) ≤ z2 for every z ∈ R;
• βM (z) = 0 ⇐⇒ z = 0;
• |β′M (z)| ≤ C|z|.

We multiply the equation (3.7) by β′M (uδ)φR and integrating on [0, t] × R
d we obtain the

following: for the term involving the vector field we have that

∫ t

0

∫

Rd

div(b̃uδ)β′M (uδ)φRdxds

= −
∫ t

0

∫

Rd

uδb̃ · ∇β′M (uδ)φRdxds−
∫ t

0

∫

Rd

uδβ′M (uδ)b̃ · ∇φRdxds

= −
∫ t

0

∫

Rd

uδβ′′M (uδ)b̃ · ∇uδφRdxds−
∫ t

0

∫

Rd

uδβ′M (uδ)b̃ · ∇φRdxds

= −
∫∫

{|uδ |<M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR

)

dxds

−
∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR

)

dxds.
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Now we use that βM (uδ) = |uδ|2 for |uδ| ≤M , so

= −2

∫∫

{|uδ |<M}

(

uδb̃ · ∇uδφR + |uδ|2b̃ · ∇φR

)

dxds

−
∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR

)

dxds

= −
∫∫

{|uδ |<M}

(

b̃ · ∇βM (uδ)φR + 2βM (uδ)b̃ · ∇φR

)

dxds

−
∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR

)

dxds

= −
∫∫

(0,t)×Rd

b̃ · ∇βM (uδ)φRdxds−
∫∫

{|uδ|<M}
2βM (uδ)b̃ · ∇φRdxds

−
∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR − b̃ · ∇βM (uδ)φR

)

dxds.

Finally, by integrating by parts we get that

=

∫∫

(0,t)×Rd

(

div b̃βM (uδ)φR + βM (uδ)b̃ · ∇φR

)

dxds

−
∫∫

{|uδ |<M}
2βM (uδ)b̃ · ∇φRdxds

−
∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR − b̃ · ∇βM (uδ)φR

)

dxds

=

∫∫

(0,t)×Rd

div b̃βM (uδ)φRdxds+

∫∫

{|uδ>M}
βM (uδ)b̃ · ∇φRdxds

−
∫∫

{|uδ |<M}
βM (uδ)b̃ · ∇φRdxds

−
∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR − b̃ · ∇βM (uδ)φR

)

dxds.

On the other hand, for the term involving the diffusion we have

∫ t

0

∫

Rd

∂i(aij∂ju
δ)β′M (uδ)φRdxds

= −
∫ t

0

∫

Rd

aij∂ju
δ∂iu

δβ′′M (uδ)φRdxds−
∫ t

0

∫

Rd

aij∂ju
δβ′M (uδ)∂iφRdxds

= −
∫ t

0

∫

Rd

aij∂ju
δ∂iu

δβ′′M (uδ)φRdxds−
∫ t

0

∫

Rd

aij∂jβM (uδ)∂iφRdxds. (3.8)

Then, we use the uniform ellipticity of a, i.e.

2α

∫∫

{|uδ |<M}
|∇uδ|2φRdxds ≤

∫∫

{|uδ |<M}
aij∂iu

δ∂ju
δβ′′M (uδ)φRdxds (3.9)
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to obtain the following inequality
∫

Rd

βM (uδ)φRdx+ α

∫∫

{|uδ |<M}
|∇uδ|2φRdxds

≤ −
∫∫

(0,t)×Rd

div b̃βM (uδ)φRdxds−
∫∫

{|uδ>M}
βM (uδ)b̃ · ∇φRdxds

+

∫∫

{|uδ |<M}
βM (uδ)b̃ · ∇φRdxds

+

∫∫

{|uδ |>M}

(

uδβ′′M (uδ)b̃ · ∇uδφR + uδβ′M (uδ)b̃ · ∇φR − b̃ · ∇βM (uδ)φR

)

dxds

− 1

2

∫∫

{|uδ |>M}
aij∂ju

δ∂iu
δβ′′M (uδ)φRdxds−

1

2

∫ t

0

∫

Rd

aij∂jβM (uδ)∂iφRdxds

+

∫ t

0

∫

Rd

(rδ + sδ)β′M (uδ)φRdxds.

Then, we exploit the fact that we need to account only for the negative part of the divergence
in the term on the right, and using trivial estimates we obtain that
∫

Rd

βM (uδ)φRdx ≤
∫∫

(0,t)×Rd

(div b̃)−βM (uδ)φRdxds+

∫∫

(0,t)×Rd

βM (uδ)|b̃||∇φR|dxds

+

∫∫

{|uδ |>M}

(

|uδb̃||∇uδ||β′′M (uδ)|+ |b̃||∇uδ||β′M (uδ)|+ 1

2
|a||∇uδ|2|β′′M (uδ)|

)

φRdxds

+

∫∫

{|uδ |>M}
|uδb̃||β′M (uδ)||∇φR|dxds+

1

2

∫ t

0

∫

Rd

|a||β′M (uδ)||∇uδ||∇φR|dxds

+

∫ t

0

∫

Rd

(rδ + sδ)β′M (uδ)φRdxds. (3.10)

Let us estimate by Young
∫∫

{|uδ |>M}

(

|uδb̃||∇uδ||β′′M (uδ)|+ |b̃||∇uδ||β′M (uδ)|+ 1

2
|a||∇uδ|2|β′′M (uδ)|

)

φRdxds

≤ ∥β′′M∥∞
∫∫

{|uδ |>M}
|uδb̃||∇uδ|dxds+ C

∫∫

{|uδ |>M}
|b̃||uδ||∇uδ|dxds

+
1

2
∥a∥∞∥β′′M∥∞

∫∫

{|uδ |>M}
|∇uδ|2dxds

≤ C(∥β′′M∥∞, ∥a∥∞)

∫∫

{|uδ |>M}
(|uδb̃|2 + |∇uδ|2)dxds.

By Chebishev’s inequality we can estimate the super-level as follows

L
d+1
(
{(t, x) ∈ [0, T ]× R

d : |uδ(t, x)| > M}
)
≤

∥uδ∥2
L2
t,x

M2
≤ C(T, ∥u0∥L2)

M2
, (3.11)

which is small in M uniformly in δ. Then, since the quantity (|uδb̃|2 + |∇uδ|2) ∈ L1
t,x uniformly

in δ by the assumptions, we use the equi-integrability of the integrand to obtain the following
estimate
∫∫

{|uδ |>M}

(

|uδb̃||∇uδ||β′′M (uδ)|+ |b̃||∇uδ||β′M (uδ)|+ 1

2
|a||∇uδ|2|β′′M (uδ)|

)

φRdxds ≤ F (M),

(3.12)
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for some function F , depending on ∥β′′M∥∞, ∥a∥∞, ∥u0∥L2 , T , such that F (M) → 0 as M → ∞.
On the other hand, for the third line in (3.10) we proceed as follows: for the term involving the
vector field we use Hölder inequality and (3.11) to obtain the estimate

∫∫

{|uδ |>M}
|uδb̃||β′M (uδ)||∇φR|dxds ≤

∥β′M∥∞
R

∥uδb̃∥L2

C(T, ∥u0∥L2)

M
:=

C

R
.

For the term involving the diffusion we use the definition of βM to obtain
∫ t

0

∫

Rd

|a||β′M (uδ)||∇uδ||∇φR|dxds ≤
C∥a∥∞
R

∫ t

0

∫

Rd

|∇uδ||uδ|dxds

≤ C∥a∥∞
R

∥∇u∥L2L2∥u∥L∞L2

≤ C

R
,

where in the penultimate inequality we used Hölder’s inequality, and the constant C depends
on ∥a∥L∞ , ∥u0∥L2 , T . Summarizing, we rewrite (3.10) as follows

∫

Rd

βM (uδ)φRdx+ α

∫∫

{|uδ |<M}
|∇uδ|2φRdxds

≤
∫∫

(0,t)×Rd

(div b̃)−βM (uδ)φRdxds+

∫∫

(0,t)×Rd

βM (uδ)|b̃||∇φR|dxds

+ F (M) +
C

R
+

∫ t

0

∫

Rd

(rδ + sδ)β′M (uδ)φRdxds.

Since β′M (uδ)φR → β′M (u)φR strongly in L2([0, T ];H1
0 (B2R)), we can use Lemma 2.4 and Lemma

2.7 and, by letting δ → 0, we get that
∫

Rd

βM (u)φRdx ≤
∫∫

(0,t)×Rd

(div b̃)−βM (u)φRdxds+

∫∫

(0,t)×Rd

βM (u)|b̃||∇φR|dxds+
C

R

≤
∫ t

0
∥(div b̃(s, ·))−∥∞

∫

Rd

βM (u)φRdxds+ 2M2

∫ T

0

∫

|x|>R

|b̃1(s, x)|dxds

+

∫ T

0
∥b̃2(s, ·)∥∞

∫

|x|>R

|u(s, x)|2dxds+ F (M) +
C

R

:=

∫ t

0
∥(div b̃(s, ·))−∥∞

∫

Rd

βM (u)φRdxds+H(R,M) + F (M),

where b̃1 and b̃2 are as in (3.2), and the function H(R,M) goes to 0 as R → ∞ for any fixed
M > 0. Notice that in the last inequality we used the definition of φR, the growth assumption
on b̃, and the properties of βM . Finally, we apply Gronwall’s inequality

∫

Rd

βM (|u(t, x)|)φRdx ≤ [H(R,M) + F (M)] exp
(

∥(div b̃)−∥L1L∞

)

,

and by letting R→ ∞, we obtain that
∫

Rd

βM (|u(t, x)|)dx ≤ F (M) exp
(

∥(div b̃)−∥L1L∞

)

, (3.13)

for any M > 0. By Lebesgue’s dominated convergence Theorem
∫

Rd

βM (|u(t, x)|)dx→
∫

Rd

|u(t, x)|2dx,

asM → ∞, and together with (3.13), this implies that u(t, x) = 0 for a.e. (t, x) ∈ [0, T ]×R
d. □



16 PAOLO BONICATTO, GENNARO CIAMPA, AND GIANLUCA CRIPPA

Remark 3.3. An example of a function βM satisfying the assumptions of Theorem 3.2 is given
by a regularized version of the following function:

βM (z) :=







z2 if |z| ≤M,

− z2

2 + 2Mz − M2

2 if M < |z| < 2M,
7
2M

2 if |z| > 2M.

(3.14)

3.1.1. Comparison with [20]. We now compare the uniqueness result of Theorem 3.2 with Propo-
sition 4 of [20], which we report here for completeness.

Proposition 3.4. Assume that the matrix a := σσ
T is uniformly positive definite and that







b̃ ∈ L2((0, T );L2
loc(R

d;Rd), b̃

1+|x| ∈ L1((0, T );L1 + L∞(Rd;Rd)),

div b̃ ∈ L1((0, T );L∞(Rd)),

σ ∈ L∞((0, T );L∞
loc(R

d;Rd×d)), σ

1+|x| ∈ L2((0, T );L2 + L∞(Rd;Rd×d)).

(3.15)

Then, for each initial condition in L1 ∩L∞(Rd), equation (FP-div) has a unique solution in the
space

{u ∈ L∞([0, T ];L1 ∩ L∞(Rd)), u ∈ L2((0, T );H1(Rd)), σT∇u ∈ L2((0, T );L2(Rd))}. (3.16)

Note that if we consider the assumptions of Theorem 3.2 with p = 2, q = ∞ LeBris-Lions’
result is not immediately recovered because of local integrability assumptions. However, by
making the following changes to the proof of Theorem 3.2, we can prove a slightly different
result.

Corollary 3.5. Assume that the matrix a := σσ
T is uniformly positive definite and that







b̃ ∈ L2((0, T );L2(Rd;Rd)), b̃

1+|x| ∈ L1((0, T );L1 + L∞(Rd;Rd)),

(div b̃)− ∈ L1((0, T );L∞(Rd)),

σ ∈ L∞((0, T );L∞
loc(R

d;Rd×d)), σ

1+|x| ∈ L2((0, T );L2 + L∞(Rd;Rd×d)).

(3.17)

Then, for each initial condition in L1 ∩L∞(Rd), equation (FP-div) has a unique solution in the
space

{u ∈ L∞((0, T );L1 ∩ L∞(Rd)), u ∈ L2((0, T );H1(Rd)), σT∇u ∈ L2((0, T );L2(Rd))}. (3.18)

Proof. Since the argument is very similar to that of the Theorem 3.2 we only sketch the proof.
First, since we are dealing with bounded solutions, we can consider the function β(z) = |z|2 and
all the integrals on the set {|uδ| > M} are identically zero for M large enough. This implies
that we have to use a Gronwall type argument on the following estimate

∫

Rd

β(uδ)φRdx+ α

∫∫

{|uδ |<M}
|∇uδ|2φRdxds ≤ −

∫∫

(0,t)×Rd

div b̃β(uδ)φRdxds

+

∫ t

0

∫

Rd

(rδ + sδ)β′(uδ)φRdxds+

∫∫

(0,t)×Rd

β(uδ)|b̃||∇φR|dxds

+
1

2

∫ t

0

∫

Rd

aij∂jβ(u
δ)∂iφRdxds. (3.19)

The local integrability assumptions together with the bound on (div b̃)− are sufficient for the
convergence of the commutators. On the other hand, we use that the matrix a is representable
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as aij = σikσjk, to estimate the last term in (3.19) as follows
∫ t

0

∫

Rd

aij∂jβ(u
δ)∂iφRdxds =

∫ t

0

∫

Rd

σikσjk∂ju
δβ′(uδ)∂iφRdxds

≤ 1

2

∫ t

0

∫

Rd

|σjk∂juδ|2|∂iφR|dxds

+
1

2

∫ t

0

∫

Rd

|σik|2|β′(uδ)|2|∂iφR|dxds

≤ C

R

∫ t

0

∫

Rd

|σjk∂juδ|2dxds

+ C∥u0∥2∞
∫ t

0

∫

|x|>R

|σ1ik|2dxds+
∫ t

0
∥σ2ik(s, ·)∥∞

∫

|x|>R

|uδ|2dxds,

which goes to 0 as R → ∞. The conclusion follows along the same lines as in the proof of
Theorem 3.2. □

Notice that our corollary works under assumptions of global integrability on the vector field
b̃, but we only assume that the negative part of the divergence is bounded. Remarkably, we can
use this weaker assumption thanks to the convergence of the commutators in L2

tH
−1
x . Assuming

a bound on the full divergence we would then be able to consider the case of locally integrable
vector fields, as done by LeBris-Lions, relying on the convergence in L1 of the commutator rδ

(see Lemma 2.1) and finding the very same proof.

3.2. The Fokker-Planck equation. We start by giving the following definition.

Definition 3.6 (Distributional solution). Assume that

b ∈ L1((0, T );Lp(Rd)), a ∈ L1((0, T );Lp(Rd;Rd×d)), u0 ∈ Lq(Rd) (3.20)

are given, with p, q satisfying 1/p+ 1/q ≤ 1. A function u ∈ L∞((0, T );Lq(Rd)) is a distributional
solution to (FP) if for any φ ∈ C∞

c ([0, T )× R
d) the following identity holds:

∫ T

0

∫

Rd

u

(

∂tφ+ b · ∇φ+
1

2

∑

ij

aij∂ijφ

)

dxdt+

∫

Rd

u0φ(0, ·)dx = 0.

Notice that in the definition of distributional solutions the assumption that p, q satisfy 1/p +
1/q ≤ 1 is the minimum requirement we need in order to have ub, ua ∈ L1 so that the definition
makes sense.

We now recall the following definition.

Definition 3.7. Let Ω be an open subset of Rd. We say that a bounded family {φi}i∈I is
equi-integrable if the following two conditions hold:

(i) For any ε > 0 there exists a borel set A ⊂ Ω with finite measure such that
∫

Ω\A
|φi(x)|dx ≤ ε,

for any i ∈ I.
(ii) For any ε > 0 there exists δ > 0 such that, for any Borel set E ⊂ Ω with L d(E) ≤ δ,

there holds ∫

E

|φi(x)|dx ≤ ε,

for any i ∈ I.

Before to prove the existence of distributional solutions we recall the following characterization
of equi-integrability, see [3] (or alternatively [4] for a proof on the d-dimensional torus Td).
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Lemma 3.8. Consider a family {φi}i∈I ⊂ L1(Ω) which is bounded in L1(Ω). Then this family
satisfies condition (ii) of Definition 3.7 if and only if for every ε > 0, there exists a constant
Cε > 0 such that for every i ∈ I we can write

φi = φ1
i + φ2

i ,

with
∥φ1

i ∥L1(Ω) ≤ ε, ∥φ2
i ∥L2(Ω) ≤ Cε, for all i ∈ I. (3.21)

The proof of existence of distributional solutions immediately follows from a classical a priori
estimate.

Proposition 3.9 (Existence of distributional solutions). Let b,a and u0 be as in (3.20) with p, q

such that 1/p+1/q ≤ 1 and let (A2) and (A4) hold and assume that (div b̃)− ∈ L1((0, T );L∞(Rd)).
Then there exists a distributional solution u ∈ L∞((0, T );Lq(Rd)) to (FP).

Proof. Let (ρδ)δ be a standard family of mollifiers as in (2.1) and let us define b
δ := b ∗ ρδ,

a
δ := a ∗ ρδ, and uδ0 = u0 ∗ ρδ. Then, we consider the approximating problem

{

∂tu
δ + div(bδuδ)− 1

2

∑

i,j ∂ij(a
δ
iju

δ) = 0,

uδ(0, ·) = uδ0.
(3.22)

The existence of a unique solution of (3.22) follows from classical theory [14] It is readily checked
that the sequence uδ is equi-bounded in L∞([0, T ];Lq(Td)). Indeed, from the smoothness of the
objects in (3.22), we can rewrite it in divergence form

∂tu
δ + div(b̃δuδ)− 1

2

∑

i,j

∂i(a
δ
ij∂ju

δ) = 0, (3.23)

and then we can multiply the equation by β′(uδ), where β : R → R is a smooth, convex function:
by an easy application of the chain rule and by integrating in space we obtain (for fixed t)
∫

Rd

div(b̃δuδ)β′(uδ)dx =

∫

Rd

uδβ′(uδ) div b̃δdx+

∫

Rd

b̃
δ · ∇β(uδ)dx

=

∫

Rd

uδβ′(uδ) div b̃δdx+

∫

Rd

div(b̃δβ(uδ))dx−
∫

Rd

div b̃δβ(uδ)dx,

and ∫

Rd

∂i(a
δ
ij∂ju

δ)β′(uδ)dx = −
∫

Rd

aδijβ
′′(uδ)∂iu

δ∂ju
δdx.

By considering a sequence of smooth, convex functions, uniformly convergent to β(s) = |s|q, for
1 < q <∞, the following uniform bounds on the Lq-norm of the solutions uδ:

d

dt
∥uδ(t, ·)∥qLq ≤ −(q − 1)

∫

Rd

div b̃δ(t, x)|uδ(t, x)|qdx− α

∫

Rd

|∇uδ(t, x)|2β′′(uδ(t, x))dx (3.24)

≤ (q − 1)∥(div b̃δ)−(t, ·)∥∞∥uδ(t, ·)∥qLq , (3.25)

where in (3.24) we have used that, by standard properties of mollifiers, aδ is uniformly elliptic

with the same constant α as in (A4). Notice that ∥(div b̃δ)−∥L1L∞ is uniformly bounded (in δ)
by (A2). The conclusion now follows from an application of Gronwall’s lemma: we have that

sup
t∈[0,T ]

∥uδ(t, ·)∥Lq(Rd) ≤ ∥u0∥Lq(Rd)e
C(q)∥(div b̃)−∥

L1L∞ , (3.26)

with C(q) = q−1
q
. Thus, for q > 1 by standard compactness arguments, we can extract a

subsequence which converges weakly-* to a function u ∈ L∞([0, T ];Lq(Rd)) and it is immediate
to deduce that u is a distributional solution of (FP) because of the linearity of the equation.
For q = ∞, the estimate (3.26) still holds for every δ > 0: we send q → ∞ in (3.26) and then we
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can conclude as in the previous case. For the case q = 1, the estimate is not sufficient to obtain
weak compactness in L1, as we need to show the equi-integrability of the family (uδ)δ>0. We
first discuss the equi-integrability on small sets: let u0 ∈ L1(Rd) and define uδ0 as above. Since
uδ0 → u0 strongly in L1(Rd), it converges weakly and thus it is equi-integrable. Then, we apply
Lemma 3.8 to the family uδ0: let ε > 0 be fixed, there exists a constant Cε > 0 such that

uδ0 = uδ0,1 + uδ0,2,

with

∥uδ0,1∥L1 ≤ ε, ∥uδ0,2∥L2 ≤ Cε.

We define uδ1 and uδ2 to be the solutions of (3.22) with initial datum, respectively, uδ0,1 and uδ0,2.

Thus, the estimate in (3.26) with q = 1, 2 implies that

sup
t∈[0,T ]

∥uδ1(t, ·)∥L1(Rd) ≤ εeC∥(div b̃)−∥
L1L∞ , (3.27)

sup
t∈[0,T ]

∥uδ2(t, ·)∥L2(Rd) ≤ Cεe
C∥(div b̃)−∥

L1L∞ . (3.28)

The linearity of the equations implies that the function uδ = uδ1 + uδ2 is the unique solution of
(3.22) with initial datum uδ0 and it admits a decomposition as in (3.21). Then, we can infer that
the sequence uδ satisfies (ii) of Definition 3.7.

We now verify the condition on the tails, i.e. (i) in Definition 3.7: let r,R > 0 such that
2r < R and consider a positive test function ψR

r such that







0 if 0 < |x| < r,

1 if 2r < |x| < R,

0 if |x| > R,

(3.29)

such that 0 ≤ ψR
r ≤ 1 and

|∇ψR
r | ≤

C

r
, |∇2ψR

r | ≤
C

r2
. (3.30)

Then consider a smooth convex function βε converging uniformly to β(s) = |s| (for example

we can take βε(s) =
√
s2 + ε2 − ε) and multiply the equation (3.23) by β′ε(|uδ(t, x)|)ψR

r (x):
integrating by parts we get that

d

dt

∫

Rd

βε(|uδ(t, x)|)ψR
r (x) dx+

∫

Rd

div bδ(t, x)
(
uδ(t, x)β′ε(|uδ(t, x)|)− βε(|uδ(t, x)|)

)
ψR
r (x) dx

−
∫

Rd

βε(u
δ(t, x))b(t, x) · ∇ψR

r (x) dx

+
1

2

∑

ij

∫

Rd

aij(t, x)∂ju
δ(t, x)∂iu

δ(t, x)β′′ε (|uδ(t, x)|)ψR
r (x) dx

+
1

2

∑

ij

∫

Rd

aij(t, x)∂jβε(|uδ(t, x)|)∂iψR
r (x) dx = 0.
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Then we estimate the fourth term above using the convexity of βε together with (A4), while we
do a further integration by parts in the last term to obtain that

d

dt

∫

Rd

βε(|uδ(t, x)|)ψR
r (x) dx ≤

∫

Rd

div bδ(t, x)
(
uδ(t, x)β′ε(|uδ(t, x)|)− βε(|uδ(t, x)|)

)
ψR
r (x) dx

+

∫

Rd

|βε(uδ(t, x))||b(t, x)||∇ψR
r (x)| dx

+
1

2

∑

ij

∫

Rd

|∂jaij(t, x)|βε(|uδ(t, x)|)|∂iψR
r (x)| dx

+
1

2

∑

ij

∫

Rd

|aij(t, x)|βε(|uδ(t, x)|)|∂ijψR
r (x)| dx.

Let t ∈ (0, T ) be fixed, we integrate on (0, t) and by letting ε→ 0 we have that

uδ(t, x)β′ε(|uδ(t, x)|)− βε(|uδ(t, x)|) → 0,

leading to the inequality
∫

Rd

|uδ(t, x)|ψR
r (x) dx ≤

∫

Rd

|uδ0(x)|ψR
r (x) dx+

∫

Rd

|uδ(t, x)||b(t, x)||∇ψR
r (x)| dx

+
1

2

∑

ij

∫

Rd

|∂jaij(t, x)||uδ(t, x)||∂iψR
r (x)| dx

+
1

2

∑

ij

∫

Rd

|aij(t, x)||uδ(t, x)||∂ijψR
r (x)| dx.

Finally, we use the definition of ψR
r and by letting R→ ∞ we obtain

∫

|x|>r

|uδ(t, x)| dx ≤
∫

|x|>r

|uδ0(x)| dx+ C

(∥b∥∞ +
∑

ij ∥∂jaij∥∞
r

)∫

|x|>r

|uδ(t, x)| dx

+ C

∑

ij ∥aij∥∞
r2

∫

|x|>r

|uδ(t, x)| dx.

Note that the constant C above does not depend on δ and t. The conclusion follows by using
the equi-integrability of uδ0 and the uniform bound on ∥uδ∥L∞L1 . So far we have shown that
the sequence {uδ}δ>0 ⊂ L1((0, T )×R

d) is uniformly integrable. This implies that there exists a
function u ∈ L1((0, T )× R

d) such that, up to a subsequence, the following convergence holds

uδ ⇀ u in L1((0, T )× R
d).

In order to conclude we need to check that uδ
∗
⇀ u in L∞L1. Note that the sequence uδ satisfies

the inequality (3.26) with q = 1, which implies that

uδ
∗
⇀ u in L∞((0, T );M(Rd)).

Then, for any ψ ∈ C∞
c ([0, T )) and ϕ ∈ C0(R

d) we have that
∫ T

0
ψ(t)

∫

Rd

ϕ(x)dut(x)dt =

∫ T

0
ψ(t)

∫

Rd

ϕ(x)u(t, x)dxdt. (3.31)

We can conclude that for a.e. t ∈ [0, T ] we have that
∫

Rd

ϕ(x)dut(x) =

∫

Rd

ϕ(x)u(t, x)dx, (3.32)

which implies that ut is absolutely continuous with respect to the Lebesgue measure and

∥ut∥M = ∥u(t, ·)∥L1 , for a.e. t ∈ (0, T ).
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Note that is crucial that the space C0(R
d) is separable, because the set of zero measure where

(3.32) does not hold may depend on ϕ. Finally, we can infer that u ∈ L∞((0, T );L1(Rd)) and
therefore together with the weak convergence in L1((0, T )× R

d) we can conclude that

uδ
∗
⇀ u, in L∞((0, T );L1(Rd)),

and this concludes the proof. □

A special sub-class of distributional solutions is given by parabolic solutions, which are weakly
differentiable in the space variable. This notion of solution is natural for vector fields and
diffusion matrices possessing enough integrability in the space variable.

Definition 3.10. Assume that

b ∈ L1((0, T );L2(Rd;Rd)), a ∈ L2((0, T );L2(Rd;Rd×d)), u0 ∈ L2(Rd). (3.33)

A function u ∈ L∞((0, T );L2(Rd)) is a parabolic solution to (FP) if it is a distributional solution
to (FP) and furthermore u ∈ L2((0, T );H1(Rd)).

We refer to the space L2((0, T );H1(Rd)) as the parabolic class. We recall that the Fokker-
Planck equation (FP) can be formally rewritten in divergence-form as

{

∂tu+ div(b̃u)− 1
2

∑

i,j ∂i(aij∂ju) = 0 in (0, T )× R
d,

u|t=0 = u0 in R
d,

(FP-div)

by defining the vector field b̃ := b− 1
2

∑

j ∂jaij . The following result holds.

Proposition 3.11. Assume that a satisfies (A2). Then, u is a parabolic solution of (FP) if

and only if u is a parabolic solution of (FP-div) with vector field b̃.

Proof. The proof is rather straightforward and relies on a simple integration by parts which
makes use of the regularity assumption u ∈ L2((0, T );H1(Rd)). In fact one can show that
∫ T

0

∫

Rd

(

ub · ∇φ+
1

2

∑

ij

aiju∂ijφ

)

dxdt =

∫ T

0

∫

Rd

(

ub · ∇φ− 1

2

∑

ij

(∂jaiju+ aij∂ju)∂iφ

)

dxdt

=

∫ T

0

∫

Rd

(

ub̃ · ∇φ− 1

2

∑

ij

aij∂ju∂iφ

)

dxdt,

where in the last line we used the definition of b̃, i.e. b̃ = b− 1
2

∑

j ∂jaij . □

In some situations it is convenient to use the formulation (FP-div) since, roughly speaking,
we have to take into account one derivative less on aij . We will return on this point below.
Under our assumptions, there exists at least one solution in the parabolic class: the result is the
following.

Proposition 3.12 (Existence of parabolic solutions). Let a, b and u0 be as in (3.33), let (A2),

(A4) hold and assume that (div b̃)− ∈ L1((0, T );L∞(Rd)). Then there exists at least one parabolic
solution to (FP).

Proof. The proof follows from the same regularization procedure developed in Proposition 3.9:
we consider the unique solution uδ of the regularized problem (3.22). Then, we define the
function β(s) = s2/2 and integrating in time the inequality (3.24) we get

∥uδ(t, ·)∥2L2 + α

∫ t

0

∫

Rd

|∇uδ(s, x)|2dxds ≤ ∥uδ0∥2L2 −
∫ t

0

∫

Rd

div b̃δ(s, x)|uδ(s, x)|2dxds. (3.34)

From Proposition 3.9 we know that

∥uδ(t, ·)∥2L2 ≤ ∥uδ0∥2L2e
∫ T

0 ∥(div b̃)−(s,·)∥∞ds,
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and together with (3.34) we obtain that
∫ T

0

∫

Rd

|∇uδ(t, x)|2dxdt ≤ 1

α

(

∥u0∥2L2 + ∥(div b̃)−∥L1L∞∥uδ∥2L∞L2

)

≤ 1

α

(

∥u0∥2L2 + ∥(div b̃)−∥L1L∞ds∥u0∥2L2e
∫ T

0 ∥(div b̃)−(s,·)∥∞ds
)

. (3.35)

Thus, we have obtained that

∥uδ∥L∞L2 + ∥∇uδ∥L2L2 ≤ C(T, α, ∥u0∥L2 , ∥(div b̃)−∥L1L∞),

and, since the equation is linear, the conclusion follows from a standard compactness argument.
□

We can now state the uniqueness theorem for solutions in the parabolic class. The proof
easily follows from Theorem 3.2 and Proposition 3.11, thus we omit the details.

Theorem 3.13 (Uniqueness of parabolic solutions). Let u0 ∈ L2 ∩ Lq(Rd) be a given initial
datum and assume that

(i) b ∈ L2((0, T );Lp(Rd;Rd)) with 1
p
+ 1

q
= 1

2 ;

(ii) b̃ satisfies the growth condition

b̃

1 + |x| ∈ L1((0, T );L1(Rd;Rd)) + L1((0, T );L∞(Rd;Rd));

(iii) a satisfies (A1), (A2) and (A4);

(iv) (div b̃)− ∈ L1((0, T );L∞(Rd)).

Then, there exists a unique parabolic solution u to (FP).

Remark 3.14. Note that if p = ∞ and q = 2 we recover the existence and uniqueness of
parabolic solutions to (FP) in [15, Theorem 4.3].

3.3. Further comments and remarks. In this section we collect some observations concern-
ing the uniqueness theorem, taking into account the different forms of the equation that one can
consider. We point out that in [20] there is a nice comparison of the different form of the equa-
tions, showing how commutator estimates allow to transfer well-posed results from one equation
to another.

• If we consider the Fokker-Planck equation in transport form, i.e.

∂tu+ b · ∇u− 1

2

∑

ij

∂i(aij∂ju) = 0, (3.36)

we can drop the assumption on the Lp−Lq integrability of b and u in Theorem 3.2. This
means that we can consider b ∈ L2((0, T );L2(Rd;Rd)) and u0 ∈ L2(Rd), then we use the
convergence of the commutator rδ1 in Lemma 2.1 to prove the uniqueness of parabolic
solutions. The same observation holds true if instead we consider the Fokker-Planck
equation (FP) and we assume that div b ∈ L1L∞.

• We can relax the assumption on
∑d

j=1 ∂jaij ∈ L∞((0, T ) × R
d;Rd) in Proposition 3.9

and Proposition 3.12. Note that in [15] the author considers the case of (FP) with a
bounded vector field b, thus he needs (A2) to use the formulation in divergence form

with a bounded vector field b̃. Indeed, the results in Section 3 hold true if one consider

b̃ := b− 1

2

∑

j

∂jaij ∈ L2((0, T );L2 ∩ Lp(Rd;Rd)),

and the growth condition

b̃ ∈ L1((0, T );L1(Rd;Rd)) + L1((0, T );L∞(Rd;Rd)).
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• Another form of the equation that could be considered is the following

∂tu+ div(bu)− 1

2

∑

ij

aij∂iju = 0. (3.37)

Roughly speaking, if we test the equation with a test function φ ∈ C∞
c ([0, T )×R

d) and
we integrate by parts we get that

∫ T

0

∫

Rd

u
(
∂tφ+ b · ∇φ

)
− 1

2

∑

ij

∂j(aijφ)∂iu dxdt+

∫

Rd

u0φ(0, ·)dx = 0. (3.38)

Thus, we can define weak solutions as in Definition 3.1 requiring a,
∑

j ∂jaij ∈ L2
t,x.

Then, if one assumes (A1), (A2), (A4), and (div b̃)− ∈ L1((0, T );L∞(Rd)) the existence
and uniqueness of the weak solution to (3.37) can be proved similarly to Theorem 3.2.

4. The Regularity Theorems

In this section we present some regularity results on distributional solutions of the Fokker-
Planck equation. These then will be the key to achieving uniqueness in the class of distributional
solutions in several contexts.

4.1. Local regularity Theorem and uniqueness. Below we prove a regularity result which
guarantees that distributional solutions of (FP) in the class L∞((0, T );Lq(Rd)) are actually in
L2((0, T );H1

loc(R
d)), provided that we have enough regularity on a and integrability b.

Theorem 4.1. Let p, q ≥ 1 such that 1/p+1/q ≤ 1/2. Assume that a ∈ L2((0, T );W 1,p(Rd;Rd×d))

and b ∈ L2((0, T );Lp(Rd;Rd)) satisfy (A2) and (A4) and (div b̃)− ∈ L1((0, T );L∞(Rd)). Let
u ∈ L∞((0, T );Lq(Rd)) be a distributional solution to (FP), then u ∈ L2((0, T );H1

loc(R
d)).

Proof. To commence, we observe that 1/p + 1/q ≤ 1/2 clearly implies that both p, q ≥ 2 and
then any u ∈ L∞((0, T );Lq(Rd)) belongs to L∞((0, T );L2

loc(R
d)). The strategy is to prove that

∇u ∈ L2((0, T );L2
loc(R

d;Rd)) and this will be achieved exhibiting an approximating sequence

(uδ)δ enjoying uniform bounds on ∇uδ: in turn, this estimate will be obtained as a consequence
of Lemma 2.4 and Lemma 2.6.

Let (ρδ)δ be a standard family of mollifiers, then we know that the function uδ := u∗ρδ solves
the equation (3.7) with b̃ instead of b. Consider a smooth function φ such that

φ ≥ 0, supp φ ⊂ B2, φ = 1 in B1,

and define φR(x) = φ (x/R). We multiply the equation in (3.7) by uδφR and we integrate over
[0, t]× R

d. Then, integration by parts together with (A4) gives that
∫

Rd

|uδ(t, x)|2φRdx+ α

∫ t

0

∫

Rd

|∇uδ|2φRdxds ≤
∫

Rd

|uδ0|2φRdx+

∫ t

0

∫

Rd

|uδ|2b̃ · ∇φRdxds

−
∫ t

0

∫

Rd

|uδ|2 div b̃φRdxds+
∑

ij

∫ t

0

∫

Rd

∂jaij
|uδ|2
2

∂iφRdxds

+
∑

ij

∫ t

0

∫

Rd

aij
|uδ|2
2

∂j∂iφRdxds+ 2

∫ t

0

∫

Rd

(rδ + sδ)uδφRdxds.

We now estimate separately the terms on the right hand side (the constant may change from

line to line and is allowed to depend on T, ∥φ∥C2 , ∥(div b̃)−∥L1L∞ , ∥u∥L∞Lq , ∥u0∥Lq , ∥∂jaij∥∞):

•
∫

Rd

|uδ0|2φRdx ≤ ∥u0∥2Lq∥φR∥
L

q
q−2

≤ C∥u0∥2LqR
d q−2

q ;
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• if s is such that 2/q + 1/p+ 1/s = 1, then we have
∫ T

0

∫

Rd

|uδ|2b̃ · ∇φRdxdt ≤ ∥uδ∥2L∞Lq∥b̃∥L1Lp∥∇φR∥Ls

≤ C∥u∥2L∞Lq∥b̃∥L1Lp∥∇φR∥Ls

≤ CR
d
s
−1∥u∥2L∞Lq∥b̃∥L1Lp ;

• since φR is positive, we can use the bound on the negative part of div b̃ to obtain that

−
∫ T

0

∫

Rd

|uδ|2 div b̃φRdxds ≤
∫ T

0
∥(div b̃)−(s, ·)∥∞

∫

Rd

|uδ|2 φRdxds

≤ ∥(div b̃)−∥L1L∞∥uδ∥2L∞Lq∥φR∥
L

q
q−2

≤ ∥(div b̃)−∥L1L∞∥u∥2L∞LqR
d q−2

q ;

• we use (A2) to obtain that

∑

ij

∫ T

0

∫

Rd

∂jaij
|uδ|2
2

∂iφRdxds =
∑

i

∫ T

0

∫

Rd




∑

j

∂jaij




|uδ|2
2

∂iφRdxds

≤ C

∥
∥
∥
∥
∥
∥

∑

j

∂jaij

∥
∥
∥
∥
∥
∥
L∞

∥uδ∥2L∞Lq∥∇φR∥
L

q
q−2

≤ C

∥
∥
∥
∥
∥
∥

∑

j

∂jaij

∥
∥
∥
∥
∥
∥
L∞

∥u∥2L∞LqR
d q−2

q
−1

;

• if s is such that 2/q + 1/p+ 1/s = 1, then we have
∫ T

0

∫

Rd

aij
|uδ|2
2

∂i∂jφRdxdt ≤ CR
d
s
−2∥u∥2L∞Lq∥aij∥L1Lp .

For the commutator terms, first of all notice that uδφR ∈ H1
0 (B2R). Then, we have that

• the transport commutator
∫ T

0

∫

Rd

rδuδφRdxdt ≤ C∥rδ∥L2H−1(B2R)∥uδφR∥L2H1(B2R)

≤ C∥rδ∥L2H−1(B2R)

(

∥uδφR∥L∞L2(B2R) + ∥∇(uδφR)∥L2L2(B2R)

)

;

• the diffusion commutator
∫ T

0

∫

Rd

sδuδφRdxdt ≤ C∥sδ∥L2H−1(B2R)∥uδφR∥L2H1(B2R)

= C∥sδ∥L2H−1(B2R)

(

∥uδφR∥L∞L2(B2R) + ∥∇(uδφR)∥L2L2(B2R)

)

.

We now use Young inequality to obtain the bound
∫ T

0

∫

Rd

(rδ + sδ)uδφRdxdt ≤ Cα(∥rδ∥2L2H−1(B2R) + ∥sδ∥2L2H−1(B2R)) +
α

2
∥uδφR∥2L2H1(B2R).

Then, 0 ≤ φR ≤ 1 implies φ2
R ≤ φR, thus

∥uδφR∥2L2H1(B2R) ≤
∫ T

0

∫

B2R

|uδ|2φRdxds+

∫ T

0

∫

B2R

|∇uδ|2φRdxds+

∫ T

0

∫

B2R

|uδ|2|∇φR|2dxds.
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The first and the last summand can be estimated similarly as above and gives respectively
∫ T

0

∫

B2R

|uδ|2φRdxds ≤ C∥u∥2L∞LqR
d q−2

q ,

∫ T

0

∫

B2R

|uδ|2|∇φR|2dxds ≤ C∥u∥2L∞LqR
d q−2

q
−2
.

All in all,

α

∫ t

0

∫

Rd

|∇uδ|2φRdxds ≤ C
(

R
d q−2

q +R
d
s
−1 +R

d q−2
q

−1
)

+ Cα(∥rδ∥2L2H−1(B2R) + ∥sδ∥2L2H−1(B2R))

+
α

2

∫ T

0

∫

B2R

|∇uδ|2φRdxds.

Passing to the supremum in t in the left hand side we obtain that

α

2

∫ T

0

∫

BR

|∇uδ|2dxds ≤ α

2

∫ T

0

∫

Rd

|∇uδ|2φRdxds

≤ C
(

R
d q−2

q +R
d
s
−1 +R

d q−2
q

−1
)

+ Cα(∥rδ∥2L2H−1(B2R) + ∥sδ∥2L2H−1(B2R)).

Finally, the commutators rδ, sδ go to 0 in L2H−1
loc by Lemma 2.3 and Lemma 2.6, thus they are

uniformly bounded for δ small enough (possibly depending on R), i.e.

∥rδ∥2L2H−1(B2R) + ∥sδ∥2L2H−1(B2R) ≤ C̄(R),

for some constant C̄(R) which may diverge as R→ ∞. Therefore, we have

∥∇uδ∥2L2L2(BR) ≤ C
(

R
d q−2

q +R
d
s
−1 +R

d q−2
q

−1
)

+ C̄(R), (4.1)

which is finite uniformly in δ for any R > 0. This proves that ∇u exists and belongs to
L2((0, T );L2(BR)). □

Remark 4.2. Notice that in the proof of Theorem 4.1 we do not use the bound

sup
t∈(0,T )

∥u(t, ·)∥Lq ≤ ∥u0∥Lq , (4.2)

since u is any given distributional solution and a priori we do not know if the energy bound
(4.2) holds. However, a posteriori this is true under the assumptions of Theorem 4.1: in fact, it
can be easily proved using the regularity of the solution and the convergence of the commutators
rδ, sδ to 0 in L1

t,x,loc.

Remark 4.3. In addition to regularity, Theorem 4.1 proves the existence of solutions in the
class L2((0, T );H1

loc(R
d)). It would be interesting to prove the existence of solutions in this class

with a more direct argument, instead of relying on regularity.

Combining Theorem 4.1 and Theorem 3.13, we obtain the result which is transverse to that
of [15].

Theorem 4.4. Let b ∈ L∞((0, T );L∞(Rd;Rd)) and a ∈ L∞((0, T );W 1,∞(Rd;Rd×d)) satisfy
(A2), (A3), and (A4). Then there exists at most one distributional solution u ∈ L2((0, T )×R

d).

Proof. Note that if we consider a distributional solution u ∈ L2((0, T );Lq(Rd)), arguing as in

Theorem 4.1 it is easy to show that u ∈ L∞((0, T );Lq(Rd)) if one assume that b̃ ∈ L∞
t L

p
x, a ∈

L∞
t W

1,p
x , and (div b̃)− ∈ L∞

t,x (the estimates depend on ∥u∥L2Lq). Thus, under our assumptions,

if we set p = ∞, q = 2, the solution u belongs to L∞((0, T );L2(Rd)). Then, it is enough
to repeat the proof of Theorem 4.1 noticing that the estimate (4.1) is now uniform in R. In
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fact, by Remark 2.5 the commutators converge in L2((0, T );H−1(Rd)), thus the constant C̄ is
uniformly bounded in R. Moreover, if we substitute q = 2 in the powers of R in (4.1), we obtain
that

lim sup
R→∞

∥∇u∥L2L2(BR) <∞.

This implies the global information ∇u ∈ L2((0, T );L2(Rd;Rd)). Then, we can conclude that
u ∈ L∞((0, T );L2(Rd))∩L2((0, T );H1(Rd)) and the uniqueness follows from Theorem 3.13. □

4.2. Extensions with suitable growth conditions. We now discuss the role of the growth
assumptions on b,a to recover further uniqueness and regularity results for the Fokker-Planck
equation (FP). We show that under suitable growth assumption uniqueness holds in the local
parabolic class L2((0, T );H1

loc(R
d)). In particular, weak solutions of (FP-div) are also unique in

L2((0, T );H1
loc(R

d)) as a consequence of Proposition 3.11. The theorem is the following.

Theorem 4.5. Let u0 ∈ Lq ∩ L∞(Rd) be a given initial datum with q > 2 and assume that
b ∈ L2((0, T );Lp(Rd;Rd)) and a ∈ L2((0, T );W 1,p(Rd;Rd×d)) with 1/p + 1/q = 1/2 satisfy

(A2) and (A4), and (div b̃)− ∈ L1((0, T );L∞(Rd)). Moreover, we assume the following growth
conditions

b(t, x)

1 + |x| ,
∂jaij(t, x)

1 + |x| ∈ L1((0, T );L1(Rd;Rd)) + L1((0, T );L∞(Rd;Rd)),

a(t, x)

1 + |x|2 ∈ L1((0, T );L1(Rd;Rd×d)) + L1((0, T );L∞(Rd;Rd×d)).

Then, there exists at most one distributional solution u ∈ L∞((0, T );Lq(Rd)).

Proof. The proof is similar to the one of Theorem 3.2 so we just sketch it. Let u ∈ L∞((0, T );Lq(Rd))
be a distributional solution of (FP) whose existence is proved in Proposition 3.9. Let ρδ be a
standard mollifier, we have that the function uδ := u ∗ ρδ satisfies the equation

{

∂tu
δ + div(b̃uδ)− 1

2

∑

ij ∂i(aij∂ju
δ) = rδ + sδ,

uδ(0, ·) = u0 ∗ ρδ.
(4.3)

Given our assumptions on p and q, Theorem 4.1 implies that the solution u belongs to the
space L2((0, T );H1

loc(R
d)). Thus, as a consequence of Lemma 2.4 and Lemma 2.6 we know that

rδ, sδ → 0 in L2((0, T );H−1
loc (R

d)). Consider a smooth function φ such that

φ ≥ 0, supp φ ⊂ B2, φ = 1 in B1,

and define φR(x) = φ (x/R). Let β : R → R be the function defined as

β(z) = |z|q.

The following argument can be made rigorous by considering a regularized version of the function
β as we did in the proof of Theorem 3.2. We skip this technical detail for simplicity of exposition.
We multiply the equation (4.3) by β′(uδ)φR and with computations similar to those of the proof
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of the Theorem 3.2 we get that

∫ t

0

∫

Rd

div(b̃uδ)β′(uδ)φRdxds =−
∫ t

0

∫

Rd

uδb̃ · ∇uδβ′′(uδ)φRdxds

−
∫ t

0

∫

Rd

uδβ′(uδ)b̃ · ∇φRdxds

=− (q − 1)

∫ t

0

∫

Rd

b̃ · ∇β(uδ)φRdxds

−
∫ t

0

∫

Rd

uδβ′(uδ)b̃ · ∇φRdxds

=(q − 1)

∫ t

0

∫

Rd

div b̃β(uδ)φRdxds

+ (q − 1)

∫ t

0

∫

Rd

β(uδ)b̃ · ∇φRdxds

−
∫ t

0

∫

Rd

uδβ′(uδ)b̃ · ∇φRdxds.

On the other hand, for the term involving the diffusion we use the assumption on the divergence
obtaining that

∫ t

0

∫

Rd

∂i(aij∂ju
δ)β′(uδ)φRdxds

=−
∫ t

0

∫

Rd

aij∂ju
δ∂iu

δβ′′(uδ)φRdxds−
∫ t

0

∫

Rd

aij∂ju
δβ′(uδ)∂iφRdxds

=−
∫ t

0

∫

Rd

aij∂ju
δ∂iu

δβ′′(uδ)φRdxds−
∫ t

0

∫

Rd

aij∂jβ(u
δ)∂iφRdxds

=−
∫ t

0

∫

Rd

aij∂ju
δ∂iu

δβ′′(uδ)φRdxds+

∫ t

0

∫

Rd

∂jaijβ(u
δ)∂iφRdxds

+

∫ t

0

∫

Rd

aijβ(u
δ)∂j∂iφRdxds.

Then, we use the uniform ellipticity of a to obtain

0 ≤ α

∫ T

0

∫

Rd

|∇uδ|2β′′(uδ)φRdxds ≤
∫ T

0

∫

Rd

aij∂iu
δ∂ju

δβ′′(uδ)φRdxds. (4.4)

We finally have the following inequality

∫

Rd

β(uδ)φRdx ≤ −(q − 1)

∫ t

0

∫

Rd

div b̃β(uδ)φRdxds

+ C

∫ t

0

∫

Rd

|b̃|β(uδ)|∇φR|dxds+
∫ t

0

∫

Rd

aijβ(u
δ)∂i∂jφRdxds

+

∫ t

0

∫

Rd

∂jaijβ(u
δ)∂iφRdxds+

∫ t

0

∫

Rd

(rδ + sδ)β′(uδ)φRdxds.
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Since β′(uδ)φR ∈ H1
0 (B2R) we can let δ → 0 to obtain that

∫

Rd

β(u)φRdx ≤ −(q − 1)

∫ t

0

∫

Rd

div(b̃)β(u)φRdxds+ C

∫ t

0

∫

Rd

β(u)|b̃||∇φR|dxds

+

∫ t

0

∫

Rd

β(u)aij∂i∂jφRdxds+

∫ t

0

∫

Rd

β(u)∂jaij∂iφRdxds

= I + ...+ IV.

Then, we can estimate I and II as in the proof of Theorem 3.2, while we use the growth
assumptions on a to estimate III and IV as follows

I ≲

∫ t

0
∥(div b̃(s, ·))−∥∞

∫

Rd

β(u)φRdxds,

II ≲ ∥u0∥q∞
∫ T

0

∫

|x|>R

|b̃1(s, x)|dxds+
∫ T

0
∥b̃2(s, ·)∥∞

∫

|x|>R

|u(s, x)|qdxds,

III ≲ ∥u0∥q∞
∫ T

0

∫

|x|>R

|a1(s, x)|dxds+
∫ T

0
∥a2(s, ·)∥∞

∫

|x|>R

|u(s, x)|qdxds,

IV ≲ ∥u0∥q∞
∫ T

0

∫

|x|>R

|∂ja1ij(s, x)|dxds+
∫ T

0
∥∂ja2ij(s, ·)∥∞

∫

|x|>R

|u(s, x)|qdxds,

where it is worth to point out that in the estimate for III we used that ∂i∂jφR ≤ C
R2 together

with the growth assumption on a. Moreover, all the implicit constants in the estimate depends
on the C2 norm of φ only. Thus, by defining F (R) := II+ III+ IV , which vanishes as R→ ∞,
we get the following

∫

Rd

β(u)φRdx ≤
∫ t

0
∥(div b̃(s, ·))−∥∞

∫

Rd

β(u)φRdxds+ F (R),

and finally, we apply Gronwall’s inequality to obtain that
∫

Rd

β(u)φRdx ≤ F (R) exp
(

∥(div b̃)−∥L1L∞

)

,

and by letting R→ ∞ we obtain that |u| = 0 for a.e. (t, x) ∈ [0, T ]× R
d. □

If we assume slightly stronger growth conditions, there is a regime where the solution is
parabolic instead of just locally parabolic. The result is the following.

Theorem 4.6. Let u ∈ L∞((0, T );Lq(Rd)) be a distributional solution of (FP), and let b ∈
L2((0, T );Lp(Rd;Rd)) and a ∈ L2((0, T );W 1,p(Rd;Rd×d)) with 1/p+1/q = 1/2 satisfy (A2) and

(A4), and (div b̃)− ∈ L1((0, T );L∞(Rd)). Moreover, assume that 2 < q ≤ 2d
d−2 together with the

following growth conditions

b(t, x)

1 + |x| ,
∂jaij(t, x)

1 + |x| ∈ L1((0, T );L
q

q−2 (Rd;Rd)) + L1((0, T );L∞(Rd;Rd)),

a(t, x)

1 + |x|2 ∈ L1((0, T );L
q

q−2 (Rd;Rd×d)) + L1((0, T );L∞(Rd;Rd×d)).

Then u ∈ L2((0, T );H1(Rd)).
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Proof. We can proceed as in Theorem 4.1: we consider the equation for uδ and we multiply it
by 2uδφR where φR is defined as in Theorem 4.5 and we obtain the estimate
∫

Rd

|uδ(t, x)|2φRdx+ α

∫ t

0

∫

Rd

|∇uδ|2φRdxds ≤
∫

Rd

|uδ0|2φRdx+

∫ t

0

∫

Rd

|uδ|2b̃ · ∇φRdxds

−
∫ t

0

∫

Rd

|uδ|2 div b̃φRdxds+
∑

ij

∫ t

0

∫

Rd

∂jaij
|uδ|2
2

∂iφRdxds

+
∑

ij

∫ t

0

∫

Rd

aij
|uδ|2
2

∂j∂iφRdxds+ 2

∫ t

0

∫

Rd

(rδ + sδ)uδφRdxds.

The difference with respect to the proof of Theorem 4.1 is in the estimates of the second, fourth
and fifth term on the right hand side above. For example, for the second term we use the growth
assumption on b to get that

∫ T

0

∫

Rd

|uδ|2b · ∇φRdxdt ≤ C

∫ T

0

∫

R<|x|<2R
|uδ|2 |b|

1 + |x|dxdt

≤ C∥u0∥2L2

∥
∥
∥
∥

|b2|
1 + |x|

∥
∥
∥
∥
L∞

+ C∥u0∥2Lq

∫ T

0

(
∫

|x|>R

( |b1|
1 + |x|

) q

q−2

dx

) q−2
q

dt

︸ ︷︷ ︸

(∗):=f(R)

where f(R) → 0 as R → ∞. Similarly, we can estimate the other two terms using the growth
assumptions on a. Then, by using that the commutators are uniformly bounded in δ, we proceed
as in Theorem 4.1 and we obtain that

∥∇uδ∥2L2L2(BR) ≤ C
(

1 + F (R) +R
d q−2

q
−2
)

,

for some function F (R) which vanishes as R→ ∞. Thus we have obtained that ∥∇uδ∥2
L2L2(BR)

is uniformly bounded (in δ and R) and this concludes the proof. □

Combining Theorem 4.6 with the uniqueness result for parabolic solutions Theorem 3.13 we
obtain the following:

Corollary 4.7. Assume that the hypothesis of Theorem 4.6 are fulfilled. In addition assume
that a satisfies (A1). Then, any distributional solution u ∈ L∞((0, T );L2 ∩ Lq(Rd)) of (FP) is
parabolic and therefore unique.
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