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Abstract

The influence of machine learning (ML) in chemistry is undeniable, and it is a powerful
tool to obtain chemical insights from large amounts of data. In particular, ML is a
perfect tool for exploring chemical space because it allows to obtain good results in
a relatively short time. The quality of the results obtained with an ML model highly
depends on the data used to train it. After introducing fundamental concepts in Chapters
1 and 2, Chapter 3 deals with the effect of training data on predicting a chemical property.
Results show that adequate predictions require a large chemical diversity in the training
set. This can be obtained by either using many chemical motives or employing an
adequate number of conformers. Once the effect of the data is clear, the next aspect
evaluated is the confidence in the predictions obtained with ML models. To this end,
two uncertainty quantification strategies based on Bayesian statistics were implemented.
The insights into the interplay between error, uncertainty and chemistry provide us with
an essential understanding of how a chemical database can be constructed. The previous
chapters deal with the use of data obtained from ab-initio calculations. Nevertheless,
it is expected that a model can reproduce experimental results. Chapter 5 deals with
improving a potential energy surface (PES) based on experimental results by employing
a procedure called morphing. Continuing with the study of PES, Chapter 6 uses one
of the models introduced in Chapter 3 to study a reactive process. In this case, the
performance of detecting outliers through uncertainty quantification was evaluated and
compared with the other two strategies. Finally, Chapter 7 plays with adding samples
from the conformational space represented by a PES to chemical databases biased
towards a chemical insight. The last chapter summarizes the different aspects of the
relationships between data and chemistry for exploring chemical space or working with
PES. Also, it provides insights into future extensions of the projects presented here.
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Chapter 1

Introduction

It is clear to me that AI will never replace physicians — but physicians who

use AI will replace those who don’t.

Jesse Ehrenfeld, President of the American Medical Association

It is undeniable the effect that machine learning (ML) has in our daily lives, from digital
assistants such as Siri or Alexa[1, 2] to algorithms that suggest a movie or a video to
watch on Netflix[3] or Youtube[4] to large language models such as ChatGPT[5] or
BARD[6]. Complementary to this, ML has had a profound impact on how science is
done, with numerous and growing applications in different fields like healthcare[7, 8],
medical imaging[9], biomedical engineering[10], cosmology and particle physics[11],
quantum physics[12], astronomy[13], genetics and molecular biology[14, 15], and
many others.

Consequently, it is unsurprising that ML had a profound impact on practically all
branches of chemistry. This comes from the fact that ML methods are extremely
powerful and promise to be an alternative to solve some of the major problems that
chemists face daily. Some authors consider the use of ML to constitute a shift in the
scientific paradigm[16, 17] or a revolution in how we understand and model matter[18].
A straightforward example of the power of ML in chemistry is the acceleration of
molecular simulations, which allows the study of complex systems with sizes that
were technically impossible before. An example of this is the team winner[19] of the
2020 ACM Gordon Bell prize for "Pushing the limit of molecular dynamics with ab

initio accuracy to 100 million atoms with machine learning" or a recent example in
biomolecular systems with millions of atoms[20].



The multiple capabilities of ML have also opened new opportunities for scientific
discovery by allowing scientists to generate new hypotheses, design new experiments,
and collect and analyse large amounts of data that previously would have been im-
possible[21]. Additionally, the use of large amounts of data allows the emergence of
hidden patterns in data. Illustrations of how the use of ML methods has led to new
findings such as the discovery of a new phase transition in liquid hydrogen[22] through
the use of ML-aided simulations or the repositioning of Halicin originally designed to
treat diabetes as an antibiotic[23]. In this work, we aim to use ML methods to better
understand chemistry by applying ML methods to model chemical space and potential
energy surfaces.

Using ML in chemistry involves the creation of models that can learn a functional
relationship between a compound and a specific property. To this end, the model re-
quires a set of examples, called the training dataset. The creation of the training dataset
is not a trivial task and requires a considerable amount of computational resources.
Nevertheless, ML methods require large amounts of data to obtain predictions with
chemical accuracy1. However, the enormous size of chemical space with more than
10180 possible chemical compounds[26] makes it impossible to follow the typical ap-
proach in computer science that assumes that large amounts of data will beat the best
algorithms[27].

Nonetheless, searching in chemical space is an essential step in view of the discovery
of new chemical compounds or materials[28]. Therefore, there is a compromise to be
made between the amount of data required to train a model and an adequate exploration
of the chemical space of interest. In this sense, it is remarkable that there is no complete
understanding of how the training data influences the prediction of a specific chemical
property. After introducing basic theoretical concepts in Chapter 2, the interplay be-
tween initial training data and prediction is studied in detail to predict tautomerization
energies in Chapter 3. This property is convenient to study because it involves small
structural changes and the existence of public databases. A few databases that explore
chemical space and chemical+conformational space were used to train an ML model,
particularly a neural network (NN) model, for predicting tautomerization energies of
pairs of molecules in a public database. The results indicate that common databases
present redundancies that reduce the quality of prediction of an ML model. Additionally,
it was found that, against the typical expectation, more data does not necessarily imply

1Chemical accuracy is defined by John Pople in his Nobel lecture as 1 kcal/mol for the prediction of
heats of formation or ionization potentials[24]. Complementary spectroscopy accuracy can be defined as
1 cm−1 for vibrational spectroscopy[25]
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better predictions. Finally, the interplay between chemical space and conformation
space was found to be of critical importance, given that a rational augmentation of data
from conformational space can compensate for a poor exploration of chemical space.

The understanding gained in Chapter 3 takes us to the next challenge: the rational con-
struction of the training databases. The strategy followed to tackle the challenge is the
uncertainty in prediction by the NN model. The aim was to use uncertainty as a guide
for exploring chemical and conformational space. Therefore, it is desirable that the NN
model can evaluate the uncertainty of its predictions to give us information on how to
improve the training dataset. The usual approach implies the use of several models with
a corresponding high computational price. Nevertheless, new developments [29–31]
have provided simple methodologies for quantifying the uncertainty of prediction in
neural networks.

Chapter 4 describes implementing a method called Deep Evidential Regression (DER)[30]
on top of the PhysNet NN[32] architecture to allow the prediction of uncertainties on
compounds across chemical space. The results shed light on noise and redundancy’s
effect on property prediction for molecules. Even in cases for which changes, such as
double-bond migration in two otherwise identical molecules, are small. It was possible
to extract insights on which information the model used to make a prediction and
how it can be related to the predicted uncertainty. It was found that the model can be
confused by adding several similar examples, and then it will assign a small uncertainty
to a molecule that has been poorly predicted. An alternative to DER is the method
called Regression Prior Networks[29]. This method was also implemented in PhysNet.
However, its capability predictions were very poor, and they are briefly described in
Chapter 4.

The results from chapters 3 and 4 are related to the prediction by an ML model of
quantities obtained from ab initio calculation. Nevertheless, generating models that can
accurately reproduce experimental quantities is important. Many experimental quanti-
ties can be obtained from the Potential Energy Surface (PES), a fundamental concept for
characterizing the dynamics in the gas and condensed phase[33, 34]. The application of
ML techniques to describe PES has been proven to be highly successful [35]. Nowa-
days, ML PES can be used to reproduce to certain accuracy the experimental results for
quantum phenomena such as Feshbach resonances (FR)[36]. Nevertheless, integrating
experimental information to refine PES obtained with ML is still unexplored. Chapter 5
discusses using information from FR for the "morphing" of a PES[37] obtained with

3



the ML method, Reproducing Kernel Hilbert Space (RKHS)[38]. The results indicate
that even the potential obtained at the highest level of electronic structure theory can be
improved compared with experimental quantities. Additionally, the results improve the
understanding of the origin of the experimental observables. In this case, it was found
that FRs are sensitive to the long-range part of the PES.

Following the study of PES is also of interest the use of uncertainty quantification (UQ)
methods such as the ones introduced in Chapter 4 to improve PES. This is a particularly
challenging task because in the formulation of DER, it is not possible to obtain the
uncertainty of forces (F given that those are the negative derivative of the potential
energy (E), F = −∇RE). Therefore, we aimed to understand the limitations of DER
and other UQ methods, such as ensembles and Gaussian Mixtures Models (GMM), for
detecting outliers. Finding such outliers or outlier regions helps to increase the trained
model’s robustness and further improves its accuracy and reliability. In Chapter 6, we
apply different models for predicting outliers in a reactive potential. The construction of
such potentials is particularly hard because it requires the sampling of rare events2. In
consequence, an adequate detection of outliers is crucial to obtain reliable reactive PES.

Finally, Chapter 7 presents the union between chapters 3 and 4 with chapters 5 and
6 by exploring how the exploration of conformation space (PES) can be used to im-
prove the exploration of chemical space. To that end, purposely biased databases were
constructed by following chemical patterns. Then, we study different ways to perform
data augmentation to improve the predictions of the constructed NN models. New data
was added to the biased databases by adding structures from conformational space
obtained with normal mode sampling. First, the best temperature for sampling was
determined, followed by the number of structures required to observe an improvement.
Additionally, the addition of structures generated within the Atoms-in-Molecules[40]
fragment approach was also tested. The next method of addition was capitalising the
uncertainty predictions to add samples from the conformational space of the molecules
with the largest predicted uncertainty.

In this work, ML was employed in different flavours to create a better understanding of
chemistry. From discerning the influence of data in predicting chemical properties to
including experimental information to modify potential energy surfaces, the different
ML methods explored in this work contribute to an enhanced understanding of how

2Rare events in mathematics are events that are expected to occur infrequently or, more technically,
those that have low probabilities (say, order of 10−3 or less) of occurring according to a probability
model.[39]
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chemistry can be deducted from data. The interplay between chemical compound space
and conformational space set the stage for better explorations of the first. On the other
hand, including experimental information in the adjustment procedure of a PES is a step
forward in the direction of the inverse problem of obtaining a PES from spectroscopical
observables. Many new avenues of research can be explored, such as the interpretability
of the ML models, the definition of chemical content by using information theory, the
formulation of chemical exploration as an optimization problem, etc.

5





Chapter 2

Theoretical Background

Eigentlich weiß man nur wenn man wenig weiß; mit dem Wißen wächst der

Zweifel.a

aWe know accurately only when we know little; with knowledge doubt increases.
Johann Wolfgang von Goethe

This chapter introduces the basic concepts behind the techniques used in the thesis,
which are necessary to understand the following chapters.

Parts of this chapter have been previously published in: Dig. Disc., 2023, 2, 28-58.

2.1 Chemical Space

In 1905, Swiss Nobel Prize winner and one of the fathers of modern chemistry Alfred
Werner described the mission of chemistry as[41]: "Die Chemie muss zur Astronomie

der Molekulare Welt werden"1. This quote is the first reference to what will be later
called chemical space(CS)[42]. The definition of chemical space is the set of all possible
molecules or materials[43]. This implies that the size of CS is extraordinarily large. The
total number of particles in the universe is estimated to be 1080, from which 7×1076 are
atoms [44, 45]. Therefore, the possible number of substances that can be theoretically
obtained is[26]:

C =
1076∑

k=1

(
k + 1076 − 1

1076

)

1Chemistry must become the astronomy of the molecular world



here, we consider that there are k numbers of choosing atoms from the total numbers
without considering the order and allowing for repetitions. Of course, not all combina-
tions of atoms are allowed. By applying physical constraints and restricting the possible
compounds to the elements C, N, O, P, S, F, Cl, Br, and I with a molecular weight of
less than 1000 daltons, David Weininger2 hypothesised that the number of possible
substances is about 10200[26, 46]. This number is known as Weininger number or one
Weinamol. Later, it was estimated that only 1 in 1020 compounds could be physically
and chemically stable, reducing the number to 10180[46]. This number is larger than
the total amount of information in the visible universe (10123)[45]. Nevertheless, if we
ignore this limitation and consider the trend of exploration of chemical space continues
as of now, it is estimated that it would take 10300 years to discover one Weinamol[26].

Despite the huge size of CS, its exploration is a task that chemists have been doing
actively for the last two centuries. This is proven by the fact that the number of chemi-
cal substances reported has been constantly doubling every 16 years since 1800[26].
A large part of the exploration of CS has been led by theoretical and computational
chemists who have applied mathematical and computational tools for the comprehen-
sive enumeration of chemical structures. For example, the Reymond group from the
University of Bern, Switzerland, enumerated 166.4 billion chemical structures with
up to 17 heavy atoms by using purely graph methods[47–50]. Although this effort
has considerably helped to enrich our chemical knowledge, some of the generated
molecules are unrealistic or tend to be biased by construction[51]. Other examples are
the PubChem database[52, 53] that in 2023 contained information on 116 million pure
and characterized compounds.

Despite these great efforts, CS is too large to be exhaustively explored. For this reason,
a more effective approach is reducing the number of compounds based on their structure
(i.e. peptides, proteins, etc.) or the properties (and possible functionalities) of those
molecules[43]. Therefore, subsets of CS can be defined, such as ’drug-like chemical
space’. Unfortunately, this is not an easy task because CS is very large and sparse, with
regions densely populated and others empty[54]. Thus, it is desirable to make a targeted
exploration of chemical space by considering together with the structures the properties
that each point in chemical space has (Figure 2.1). Complementary to this, we could
extend the definition of chemical space as suggested by von Lilienfeld et al.[55, 56]
to consider all feasible metastable atomic configurations, including conformational
isomers, reactive intermediates or minima in electronically excited states[56]. By

2David Weininger was a cheminformatician from the USA known for the invention of common linear
chemical representations such as SMILES, SMARTS, and SMIRKS.
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Figure 2.1: Chemical space. 3D representation of the relationship between property
space and the chemical compound space. The z-axis represents the value of a physical
property while the plane xy are features to describe the chemical space in 2D. The
mapping function illustrated can be a machine learning model, while the property space
is the search space. The red points in the figure correspond to known compounds, while
the blue ones are unknown species. Adapted with permission from Ref. [54]. Rights
reserved by the authors and Springer Nature.

extending the definition, we could use the non-equilibrium structure as a smooth link
between samples in chemical space[55]. The described link is the key behind the
connection between chemical space and potential energy surfaces that will be described
in the following chapters. Then, the exploration of chemical space by mapping functions
can be done by using ML models as those mapping functions (Figure 2.1).

2.2 Potential Energy Surfaces

The energetics of a molecular system can be described by solving the electronic
Schrödinger Equation (SE). Unfortunately, the SE can only be solved exactly for simple,
single-electron atomic systems. In order to obtain solutions for many-electron systems,
it is necessary to introduce approximations. The Born-Oppenheimer approximation
(BOA)[57], also called the most important approximation in quantum chemistry,[58]

9



assumes that the coupling between the nuclear and electronic motion can be neglected
because the mass of the nuclei is several orders of magnitude larger than the mass of
the electrons. Under this assumption, it is possible to rewrite the total wavefunction
Ψ, which is a solution of the SE, as the product of a nuclear wavefunction χ(R) with
nuclear positions R and the electronic wavefunction ψ(r;R) with electron coordinates
r for a fixed configuration of nuclear positions

Ψ(r,R) = ψ(r;R) · χ(R). (2.1)

As a consequence, the electronic wavefunction can be obtained by solving the electronic
time-independent SE:

Ĥeψλ(r;R) =
[
T̂e + V̂ne + V̂ee

]
ψλ(r;R) = ϵλ(R)ψλ(r;R) (2.2)

Here, Ĥe is the electronic (spin-free) Hamiltonian describing the kinetic energy of
the electrons T̂e, the Coulomb interaction between the nuclear and electron charges
V̂ne and the electron-electron interaction V̂ee. The solution to the eigenvalue problem
is the electronic wavefunction ψλ and electronic energy ϵλ for the electronic state λ.
The so-called adiabatic Potential Energy Surface (PES) of an atomic system Eλ(R)

in electronic state λ constitutes an effective potential for the nuclear dynamics. It is
obtained by the sum of the Coulomb repulsion Vnn between the nuclei with nuclear
charge Zi for the total number of atoms Natom, and the respective electronic energy at
the associated nuclear positions[59].

EBO
λ (R) = Vnn(R) + ϵλ(R) (2.3)

Equation 2.3 defines a PES as a (3N − 6)−dimensional function that can be approxi-
mated as an analytical function, which is, however, a challenging task. Often, one can
only report low-dimensional cuts of such high-dimensional hypersurfaces and one ex-
ample is shown in Figure 2.2. Alternatively, equation 2.3 suggests that there should be a
mapping between the total electronic energy of a molecular system and the combination
of position of the nuclei and the set of nuclear charges ({Zi}Ni=1), f : {Zi,Ri}Ni=1 → Eλ.
This is the starting point for describing a PES using an ML method.

PESs lie at the heart of computational chemistry[60] because it contains all the infor-
mation about the many-body interactions of a molecular system, including stable and
metastable structures[61]. The relationship between structure and potential energy Eλ

allows to derive many molecular properties by taking derivatives with respect to a per-
turbation such as atomic positions R, an external electric E⃗ or magnetic field B⃗, which
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Figure 2.2: Example of a potential energy surface. A two-dimensional PES for
the dialanine molecule calculated at the MP2 level with the 6-31G** basis set along
dihedral angles Φ and Ψ. A representation of the molecule (ball and stick) indicating
the dihedral angles (Φ,Ψ) calculated is given as well. The bottom gives the projection
of the 2D PES.

require additional coupling terms in the Hamiltonian and an analytical representation of
the PES.[59] Following this, a general response property takes the form

Property ∝ ∂(n+m+l)Eλ

∂Rn∂E⃗m∂B⃗l
(2.4)

where n,m, l indicate the order of the derivative with respect to the perturbation.
Derivatives of Equation 2.4 provide, e.g., the forces F = −∂Eλ/∂R that constitute
the foundation of MD simulations and structure optimization schemes. The second
derivatives ∂2Eλ/∂R

2 gives access to the Hessian matrix from which the harmonic
frequencies of molecular vibrations can be obtained. Other properties such as the
dipole moment (µ⃗ = −∂Eλ/∂E⃗) or the molecular polarizability (α⃗ = −∂2Eλ/∂E⃗2)
are directly related to experimental observables such as the infrared (IR) or Raman
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spectra.[62] Mixed derivatives also provide IR absorption intensities (∂2Eλ/∂E⃗∂R) or
the optical rotation in circular dichroism (∂2Eλ/∂E⃗∂B⃗)[59].

2.3 Machine Learning

In general, Machine Learning (ML) is a subfield of artificial intelligence focused on the
design and analysis of algorithms that allow computers to learn[63]. Although the use
of these methods has increased considerably in the last decade[35], the mathematical
and theoretical foundations of ML techniques can be traced back to the decades of
’40s and ’60s of the last century with the introduction of fundamental concepts such as
the Turing machine[64] and the perceptron by Rosenblatt[65]. In chemistry, the first
applications appeared at the end of the ’60s in synthesis prediction[66, 67]. Thirty years
later, many technical and theoretical limitations were overcome for new applications in
chemistry to appear in the ’90s in analytical and medicinal chemistry[68]. Around the
same years, the first applications in PES appeared[69, 70].

The main mission of ML methods is obtaining algorithms that can infer a function
that maps a collection of inputs to an observed outcome[71]. This implies that ML
methods improve the quality of their results as a function of the amount of information
the algorithm receives, a consequence of the fact that these are based on statistical
methods. ML methods can be broadly classified into three types[72]:

• Supervised methods: In these methods, a dataset composed of input-output pairs
is available and is used to train a model to obtain property predictions. The goal
of these methods is to generate predictions for unseen input values.

• Unsupervised methods: In this case, there is no specific output that the method
needs to predict. Those methods are used to extract information from the input
values. Then, their main applications are in pattern search, trend identification or
information reduction. A review of applications of these methods in molecular
simulations can be found in Ref. [72].

• Reinforcement learning methods: These methods assume a setup in which the
model obtains data, learns from its environment and executes actions with the
goal of maximising a reward[73]. Learning occurs by "trial and error" through
continuous interaction with the environment. Recently, applications of these
methods have been reviewed in Ref. [73].
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In addition to the methods mentioned above, there are the so-called generative methods.
In those methods, the model learns a data distribution and generates new samples that
are similar to the ones on the training distribution[74]. More formally, given a collection
of data points, X = {Xi}, in a space X , a model is trained to match the data distribution
PX by means of a generative process PG, such as Y ≈ PG resembles the real data,
X ≈ PX[75]. These models are particularly useful in chemistry because they can be
used to generate new compounds while following chemical rules. Several reviews of
the use of these models can be found; we refer the interested reader to Refs. [76] and
[77] for further details about generative models.

In chemistry, the most commonly used methods are of the supervised type. To use a
supervised model, you usually need to follow seven steps; see Figure 2.3. Those are:

1. Define the objective or problem to be solved. First of all, it is important to
delimit the task to be performed, as the next steps depend on a good definition of
it. It is important to keep in mind that not for every problem of chemical interest,
it is possible to apply ML methods. In some cases, using an ML method could
be an excess, especially if simpler and/or more robust methods are available.
Therefore, a proper review of the existing literature is necessary before starting
a new project. At this point, the chemist must answer the question, "What do I
want to achieve by using an ML method?" and then answer: "What technique can
I use to achieve my goal?".

2. Data collection, curation, and cleaning. This point is critical for obtaining a
functional model. In this step, we include the generation process of a database,
its posterior cleaning and validation. For an ML method, being able to be trained
with the necessary information is as important as having the appropriate reagents
in a chemical synthesis[78]. It is important to emphasise that if raw data are used
for training and ML without having been previously curated and cleaned, it is
impossible to obtain correct predictions[79]. In ML, the general rule of thumb for
training ML models is that the more information we use, the better our predictions
will be. However, this is not always correct, as will be discussed in Chapter 3.

3. Design and selection of descriptors. This step corresponds to a very active
area of research[80–82]. Here, we consider the process in which molecules are
transformed from the common notations used by chemists into values that can
be interpreted by the machine, a process known as encoding[83]. There is no
unique solution to the problem of how to encode a molecule. In turn, the possible
descriptors vary in complexity, so the level of description desired and the type and
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size of chemical structures (organic, inorganic, biomolecules, macromolecules,
etc.), among other factors, must be considered.

4. Algorithm selection. In this step, a method must be selected to process the data
obtained from the previous step to obtain a mapping between inputs and outputs.
It is important to note that algorithm selection must be done by considering the
amount and reliability of available data, computational resources, and the level of
accuracy desired, among other factors. Using the most sophisticated algorithm
(e.g. a neural network) is not advisable if you do not have an adequate amount
of data or if it is possible to obtain similar results with simpler models (Occam’s
Razor). The selection of an ML algorithm should be justified by the nature
of the problem to be solved and with concrete scientific reasons[79]. The use
of fashionable methods without having a deep understanding of the scope and
limitations of the algorithm should be avoided at all costs, as this could lead to
incorrect results.

5. Training the model. Once an algorithm has been selected and the data to be
used has been collected, it is necessary to ’train’ the model. The training step
corresponds to the real ’learning’ of the model. The algorithm will adjust the
model’s parameters based on a training dataset to do this. The goal is to minimize
a loss function L that measures the accuracy of the fit. It is important to mention
that the quality of the fit must be independently evaluated in a subset of data that
was not used for model fitting. This process is called validation. The training
process should be stopped when it is considered that a minimum value of the loss
function evaluated in the validation subset is reached.

6. Testing the model. Once a model has been trained and validated. A final step
of testing is necessary to assess the quality of the model. This is done on a third
subset of data called the test set. As in the validation case, the test set should
contain information completely external to the information used for training and
validation. This step allows us to evaluate the predictive capability of the model.
Also, in this step, other tests of the model could be considered, such as data
outside distribution or its use in molecular dynamics simulations. If the results
of this step are not satisfactory, the model needs to be improved by one of the
methods described in the next step.

7. Refinement and update of the model. ML models are not definitive, so as they
are used, limitations or shortcomings of the model are discovered. Then, after a
certain time, the ML model would need to be updated in light of new information
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or to extend its predictive capacity. There are different ways to update or refine a
model. One of the most common is the addition of new data points to the training
set based on a performance measure. This procedure is called active learning[84].
On the other hand, if the model wants to be reused in a specific target for which
information is available, it is possible to retrain the model with only the new data
from the previously trained model. This procedure is called transfer learning[85].

In the next sections, we will review the theory behind the two ML methods that were
employed in this thesis: kernel methods and neural networks.
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Figure 2.3: Machine learning pipeline The cycle consists of seven steps necessary for
constructing a machine learning (ML) model to be applied in chemistry. The (1) first
step is defining the problem to solve; examples of problems that can be solved with ML
are enumerated. In the next step, (2) data needs to be collected. This data can come
from experimental results or computer simulations. The third step is the transformation
of the recollected data into values that can be understood by the machine; in panel
(3), the molecule of methanol is shown with the corresponding Coulomb matrix as
background. The fourth step is the algorithm selection (4). In this step, the amount of
data collected from step 2 and the amount of available computational resources should
be considered for selecting an adequate algorithm (4). The most common ML methods
in chemistry are kernel-based algorithms (left) and neural networks (right). The next
step is the training procedure (5), which minimises a loss function by adjusting the
model’s parameters to reproduce the reference values. Steps 2-5 are represented as a
cycle, given that the model needs to be updated to increase its predictive capabilities (7).
Finally, the model can be used to evaluate (6) different molecules in chemical space
or different geometries in conformational space. The chemical space is represented
with the T-Map[86] of the TautoBase[87] (a) where the colours represent the error
in prediction of energy with a ML model[88]. For the conformational space (b), the
potential energy surface of dialanine is represented.
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2.4 Kernel Methods

Kernel methods are an ML algorithm used to find convex solutions to non-linear op-
timisation problems[89]. In these methods, the collected information is transformed
into a new space (Figure 2.4A ), called "feature space", through a function (kernel) that
is defined by the user. This new space, created by the kernel, encodes the similarity
between different points (Figure 2.4C), facilitates the learning, and guarantees an op-
timal generalisation[89]. Kernel methods can be used as unsupervised or supervised
ML methods. Here, we will focus on the second type. Details of using kernels as
unsupervised ML methods can be found in Ref. [90].

The construction of a kernel method consists of two steps. The first is to find a
representation of the data that encodes the distribution of information in a complete,
unique, and efficient way[92]. Multiple representations have been used for kernels;
a complete review can be found in Ref. [93]. The second step is selecting a kernel
that creates a map between the selected representation and the feature space; examples
of common functions are shown in Figure 2.4B. The kernel function (ϕ) , in general
ϕ : Rni → Rno , transforms representations with dimension ni to the corresponding
feature space with dimension no. The mapping is guaranteed by Mercer’s theorem[94]
for functions on a Hilbert space (L2) defined on a compact set[89]. Another condition
that the kernel function must follow is the reproducing property, which stays that the
map ϕ exists if and only if[95]:

∀ xi,xj ∈ L2 : k(xi,xj) =

∫
ϕ(xi) · ϕ(xj)dxj = ⟨ϕ(xi), ϕ(xj)⟩ (2.5)

In Equation 2.5, it is not necessary to explicitly know ϕ or L2. Their existence is a
sufficient condition.

Kernel methods are usually applied in chemistry to solve regression problems. In that
case, the problem can be set up as follows. Given a data set {y⃗,x} = {yi;xi}Mi=1 in
which yi ∈ R are the M reference values and xi ∈ Rno are the M values of the inputs
encoded in the chosen representation, the function that is wished to approximate is
defined according to the approximation theorem[95, 96] as:

y⃗ = f(x) + ϵ (2.6)

Where ϵ is measurement noise, the function f(x) is approximated as a linear combina-
tion of the kernel evaluated at each of the M input points.
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Figure 2.4: Kernel methods. Panel A illustrates the transformation of initial data to the
feature space. The initial data represented by green and orange points is not separable
on two dimensions. After the application of a polynomial kernel (K(x, y) = x2 + y2),
the data is separated in the feature space. The decision plane that separates the data in
feature space is illustrated in grey, while the transformed data is represented with blue
and red points. Panel B displays examples of typical kernel functions. Panel C shows
the normalized similarity between 10 random molecules from the QM7 database[91].
The molecules are encoded using the Coulomb matrix representation. Then, the encoded
molecules are passed to a Gaussian kernel with σ = 4000. The kernel function encodes
the distance in chemical space between the selected molecules.
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f(x) ≈ f̂(x) =
M∑

i=1

αiK(x, xi) (2.7)

In equation 2.7, αi are the coefficients of the expansions, and K(x, xi) are the kernel
functions (typically a nonlinear, symmetric and positive semidefinite function[96]).
Figure 2.4B shows examples of kernel functions. The coefficients α⃗ = {αi} can be
obtained through the minimum-squares method by minimizing a loss function defined
as:

L = min
α

N∑

i=1



(

M∑

j=1

αjK(xi, xj)− yi

)2

+ λ ·
∥∥∥∥∥

M∑

j=1

αjK(xi, xj)

∥∥∥∥∥

2

 (2.8)

where λ is a hyper-parameter that helps to obtain numerically stable solutions. This
parameter is known as a regularizator and usually corresponds to a tiny number[90].

Equation 2.8 can be solved to obtain the values of αj by using linear algebra techniques
such as Cholesky decomposition. Consequently, we should write Equation 2.8 in matrix
form. First, the kernel matrix is defined as:

K(xi, xj) =




k(x1, x1) · · · k(x1, xN)
... . . . ...

k(xM , x1) · · · k(xM , xN)




by replacing the kernel matrix in equation 2.8, we obtain the matrix version of it.

L = (Kα⃗− y⃗)⊤ · (Kα⃗− y) + λ(α⃗⊤Kα⃗) (2.9)

To obtain the values of α⃗, we take the gradient of equation 2.9 with respect to α⃗ and set
it equal to 0 (i.e. ∇α⃗L = 0). Then, the values of α are:

α⃗ = (K + λ · I)−1 · y⃗ (2.10)

here I is the identity matrix.

In this work, the kernel method studied is the reproducing kernel Hilbert space (RKHS)[38,
97]. In this method, the kernel matrix in D dimensions is constructed as a product of 1d
polynomial kernels as follows:

K(xi, xj) =
D∏

d=1

kd(x
(d)
i , x

(d)
j ) (2.11)
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When representing a PES, the uni-dimensional kernels should decay asymptotically to
zero at large distances. Then, a general formula for bonds can be obtained. Here, we
only provide the expression for the complete derivation the reader is referred to Ref.
[97].

k[n,m](xi, xj) = n2x
−(m+1)
> B(m+ 1, n)2F1(−n+ 1,m+ 1;n+m;

x<
x>

) (2.12)

in this expression x> and x< are the larger or smaller value between xi and xj , B(a, b)

is the beta function defined as:

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!

and 2F1(a, b; c;x) is the Gauss hyper-geometric function that has the series expan-
sion[98]:

2F1(a, b; c;x) =
∞∑

n=0

(a)n(b)n
(c)n

xn

n!

where (a)n is the Pochhammer symbol defined by:

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) ; (a)0 = 1

Values of m and n are integers related to the asymptotic behaviour and the smoothness
of the kernel function, respectively.

Complementary to the bond expression, a general form for angles will be given. Again,
we refer the interested reader to the literature for the detailed derivation[97].

k
[n]
2 (xi, xj) =

n−1∑

i=0

xi>x
i
< + nxn<x

n−1
> 2F1(−1,−n+ 1;n+ 1;

x<
x>

) (2.13)

It should be noticed that the last expression works in a closed interval [0, 1]. Then, the
angle θ that works in an interval [0, π] is converted to a new coordinate, z, through the
transformation:

z(θ) =
1− cos(θ)

2
(2.14)

A general problem that limits the application of kernel methods is the amount of
information that can be handled. This is because the amount of computational resources
to use them scales with the size of the kernel matrix. By considering a kernel matrix of
size Ntrain×Ntrain, where Ntrain is the size of the training data, the amount of equations
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to solve is on the order of O(N3
train)[90]. Additionally, larger kernel matrices experience

problems while loading to the RAM memory. In light of the previous problems, kernel
methods are constrained to the study of databases of small or medium size. Nevertheless,
solutions to circumvent these problems have been proposed, among them the use of
reduced databases or the incorporation of the gradient during the training procedure[99,
100].

2.5 Neural Networks

The second ML method reviewed in this work is neural network(NN). These algorithms
are inspired by the networks formed in the brain and how information is processed
by them[101]. This is why these models are often called artificial neural networks
(ANN). ANNs have gained popularity in the last decade[35] and consequently have
found diverse applications in different fields. The popularity of ANNs is due to their
ability to obtain multidimensional nonlinear relationships from large amounts of data
in a computationally efficient manner[102]. In turn, this capability is a consequence
of their construction in which many small computational units called neurons (Figure
2.5A) are interconnected to form complex predictions[103, 104]. There are different
types of NNs; here, we will describe four types: fully connected (Figure 2.5C), con-
volutional (Figure 2.6), graph (Figure 2.7) and the so-called transformers (Figure 2.8).
Transformers are the key behind the success of Large Language Models (LLM) such as
ChatGPT[5] or BARD[6].

Regardless of the type of NN to consider, in an abstract way, a NN can be thought
of as a function, f : Rd × Θ → R, which takes as input a point x and a vector of
parameters θ ∈ Θ. The parameters Θ will be learned from the information supplied to
the model[104]. The output of the NN, f(x, θ), is a real value prediction of x, which,
after being processed, is transformed into an image, text or chemical property. As men-
tioned above, the function f is structured as an interconnection of multiple non-linear
functions (neurons) organised in layers where the input of any layer can be the output
of the previous one. The layers can be divided into input, hidden, and output layers.
Depending on the number of hidden layers, the model can be classified as shallow (one
or two hidden layers) or deep (more than three hidden layers). The term deep learning
comes from the use of models that have more than three hidden layers[105].

The basic unit of any NN are the deep layers or hidden layers. These structures linearly
transform, through an affine transformation, an input vector x into an output vector y
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Figure 2.5: Basic components of a neural network. Panel A shows the diagram of the
information process by a single neuron. An input is passed through a layer of weights
that later are summed, and a bias value is added. Next, the sum is passed through a
nonlinear function called activation function to obtain an output. Panel B shows some
typical activation functions used in NN. Mathematical expressions for these functions
are detailed in Table 2.1. Panel C displays the architecture of a fully connected neural
network. The input is taken by an initial layer, called input layer, that passes to n-hidden
layers to obtain a prediction by the last layer, called the output layer.

22



using the following expression:

y = W · x+ b (2.15)

Here, W = {wij}N,M
i,j=1 and b = {bi}Ni=1 are the weights (a matrix) and biases (a

vector),[96] M is the dimension of the input, and N is the number of nodes. This step
has established a linear relationship between input and output; still, the ability to obtain
non-linear relationships in NNs is thanks to the use of an activation function (Figure
2.5B and Table 2.1). After applying the activation function to Equation 2.15, it can be
rewritten as:

hi = σ (Wix+ bi) (2.16)

The function hi in Equation 2.16 is called a perceptron and was originally proposed by
Rosenblatt to model the synaptic process in the human brain[65].

Table 2.1: Examples of typical activation functions3 used by neural network models. A
graphical representation can be seen in Figure 2.5.

.
Name Equation

Step function σ(x) =

{
−0.5 x < 0
0.5 x ≥ 0

ReLu (Rectifier Linear Unit) σ(x) = max(0, x)

Leaky ReLu σ(x) =

{
a · x x < 0; 0 < a < 1
x x ≥ 0

ELU (Exponential Linear Unit) σ(x) =

{
a · (ex − 1) x < 0; 0 < a < 1
x x ≥ 0

GELU (Gaussian Error Linear Unit)4 σ(x) = 0.5x ·
(
erf
(

x√
2

))

Sigmoid σ(x) = 1
1+e−x

Hyperbolic Tangent σ(x) = tanh(x)

SoftPlus σ(x) = ln (1 + ex)

RBF (Radial Basis Function) σ(x) = exp (−a(x− c)2
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Equation 2.16 is the building block of any NN. By putting together two hidden layers
with their respective activation functions, we obtain a shallow NN:

y = Wi+1σ (Wix+ bi) + bi+1 = Wi+1hi + bi+1 (2.17)

In principle, if enough neurons are used, this model can represent any continuous
unidimensional function on a compact subset of the real line to arbitrary precision[105]
as guaranteed by the universal approximation theorem[106–108]. However, deeper vari-
ants are usually preferred due to improved performance and parameter-efficiency.[109–
112]

The functional form of a deep NN is characterized by the number of layers L and
number of nodes N in a given layer. With increasing L and N , the functional form
becomes more flexible. However, there is a larger risk of overfitting5. Careful attention
should be given to this phenomenon since the obtained form of an NN has no underlying
physical meaning.[114]. Mathematically, a fully connected deep NN (Figure 2.5C) is
given by the following relation

y = WL
iL
σ(WL−1

iLiL−1
σ(· · ·σ(W1

i2i1
(σ(W0

i1i0
x+ b0

i0
) + b1

i1
) · · · ) + bL−1

iL−1
) + bL

iL

(2.18)

The output of Equation 2.18 is usually followed by a linear transformation (Equation
2.15 in the final output layer to yield the prediction yL+1. This type of NN is known by
different names; examples are Multilayer Perceptron (MLP), Fully Connected Neural
Networks (FCNN) or Feed-Forward Neural Networks (FFNN). An important aspect
of FCNN is that the processed information moves in a unique direction through the
different layers of the model. Alternatively, the output of a given layer can be feedback
to itself. In that case, the model is called Recurrent Neural Network (RNN)[113].

Convolutional Neural Networks

FCNN present practical complications regarding the amount of information required for
training and memory management because of the large number of parameters required

3Usually only the Sigmoid activation function is denoted as σ(x), while others are denoted as f(x).
However, to keep the notation general in the following, σ(x), denotes any activation function.

4The error function is define as[98]: erf(x) = 2√
π

∫ x

0
e−t2dt. Note that erf(∞) = 1.

5Overfitting is a phenomenon that appears when the model describes the statistical peculiarities of
the training data[105]. Another way to measure overfitting is when the difference between the training
error and the test error is too large[113]
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Input Convolutional Max Pool Convolutional Max Pool Convolutional
Flattening and
Dense Layer

Figure 2.6: Convolutional neural network. The more common operations (Convolu-
tion, Max Pool, Flattening and Dense layer) are illustrated.

for training[105]. A way around this complication comes from the field of image
processing with the invention of the Convolutional Neural Network (CNN). In this
type of NN, the number of parameters is reduced by extracting predictive information
from the input vector by applying a convolutional filter[74]. Nevertheless, the main
difference between FCNN and CNN is that in the latter, a convolution is used in at least
one layer instead of general matrix operations[113]. CNNs were designed to work with
grid-structured inputs, which have strong spatial dependencies in local regions of the
grid[115]; this is why these models have been mainly used in image processing.

A CNN usually contains multiple layers that perform three essential operations: con-
volution, pooling and activation (Figure 2.6). This last one uses the ReLU activation
function. First, we will describe the convolutional operation6. In this operation, an input
vector x is transformed to an output vector z so that each element zi of the output vector
is a weighted sum of the nearby points[105]. Mathematically, this is written as:

zi = (x ⋆ w)i =
N∑

j=1

wijxj (2.19)

In Equation 2.19, w is the weight vector, sometimes refer as kernel, that transforms the
input vector x. The output of Equation 2.19 is called feature map[113]. It must be notice
that here the convolution is denoted with ⋆ although this symbol is reserved for cross-
correlations. This notation is used to be congruent with software implementations[102].

As mentioned before, the convolutional operation reduces the number of parameters
used by the NN model, known as sparse interactions (or sparse connectivity). Param-
eters are reduced by using a kernel matrix smaller than the input vector[113]. The
application of a smaller kernel matrix results in a loss of information. Multiple convolu-
tions are used in parallel to avoid this, creating the so-called channels[74]. A second
consequence of the loss of information is the reduction of the grid size. The solution

6It must be mentioned that in signal processing, a continuous convolution is defined as s(t) =
(x⊛ w)(t) =

∫
x(a)w(t− a)da. However, in ML, the discrete convolution is used.
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to this complication is the operation of padding, which adds information around the
borders of the feature map to keep a constant grid size[115]. During the convolution
operation, each kernel element can be used in different positions. This implies that the
parameters of the NN are shared, which implies a considerable gain in terms of memory
management and statistical efficiency[113]. However, to guarantee that the parameters
can be shared, the convolutional layer needs to be equivariant7 (covariant) to translation.

The second operation in a CNN is pooling. The pooling operation works on small grid
regions of size Pq × Pq in each layer. The output of this operation is the maximum
value inside the sub-region of the grid in which the operation is applied. This is called
max-pooling[115]. The pooling operation can be understood as a statistical summary
of responses in a neighbourhood. Therefore, translations in the input vector do not
modify the final output, implying that the pooling operation makes the model invariant
to translations[113].

Graph Neural Networks

As mentioned before, CNNs were designed to work in regular grids. This is a problem
when applying CNN in chemistry because chemists usually work with datasets ordered
on irregular grids. This implies that the data is sparsely distributed over the grid. A
solution to this problem is considering the data is organized in a graph. A graph, for-
mally defined, is a tuple G = (V,E) of a set of nodes V and a set of edges E, where
each edge e ∈ E connects pairs of nodes in v ∈ V [83]. Nodes are usually related to
atoms, while edges are related to the bonds in the molecule. Graphs are very natural
in chemistry because this type of representation has been used since the 19th century.
By describing the data in a graph, CNN can be generalised to irregular domains, giving
place to Graph Neural Networks (GNN).

Depending on how the information is shared through the nodes and their special dis-
tributions, there are several types of GNN. These are Graph Convolutional Networks,
Graph Attention Networks, and Message-Passing Neural Networks (MPNN)[116]. The
expressivity of the NN increases with the complexity of the information transmission.
However, this is at the cost of interpretability, scalability, or learning stability[116]. In

7Equivarance means that if the input changes, the output changes in the same way. Specifically, an
function (f(x)) is equivariant to the operation g if f(x) satisfy the condition that:

f(g · x) = g · f(x)
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Figure 2.7: Graph neural network. Schematic representation of the graph neural
message passing process. In the initial step, each atom in the alanine molecule is
initialized with an embedding vector. Then, the message is created by the sum of the
message from all atoms (cf. Equation 2.20). In the next step, the message is updated
between all atoms for the embedding vectors. Finally, in the readout phase, the message
obtained is passed through an MLP that is used to predict a property.

chemistry, MPNNs are the most commonly used so that we will explain more about
them in the following.

In MPNNs[117], each atom belongs to one of the nodes in the graph (Figure 2.7). Each
node is associated with an embedding vector (node characteristics). The embedding
vector, xv, may contain atom properties such as its type or charge[118] or it can be
randomly initialized[32, 119]. The initial embedding vector is also called the initial
hidden representation, usually represented as h0v = xv. Complementary molecular
bonds are represented by the edges of the graph, evw (edges characteristics). Vector
evw might be the bond order or a quantity that depends on the interatomic distances.
Quantities, xv and evw, build the graph G = (xv, evw) over which the MPNN algorithm
operates.

The algorithm of MPNN consists of two phases: a message-passing phase and a readout
phase (Figure 2.7) [120]. The first phase calculates the message, mt+1

v , where t is the
number of steps to obtain the message. Using the hidden representation and the edges
vectors, the message is defined as the of all neighbours of atom v in the graph G, N(v)

mt+1
v =

∑

w∈N(v)

Mt(h
t
v, h

t
w, evw) (2.20)

Here, Mt is the message function, which can be an MLP, a linear function, a concatena-
tion, or a max pooling[74]. The next step of the message-passing phase is the update
of the hidden representations. This step uses an update vertex function Ut. Then, the
hidden representation is updated according to:
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ht+1
v = Ut(h

t
v,m

t+1
v ) (2.21)

where mt+1
v is the message obtained from Equation 2.20. The function Ut is also an

MLP, which can be refined during training.

The last phase of the MPNN algorithm is the readout. In this phase, an embedding
vector for the complete graph is obtained by using a function R defined as[120]:

y = R(hTv |v ∈ G) (2.22)

The function R in equation 2.22 operates over the set of nodes. Then, it must be
invariant to node permutations in order to make the MPNN model invariant to graph
isomorphisms8. In summary, the MPNN algorithm is equivalent to applying a convolu-
tional operation over each of the nodes of the graph[122].

So far, we have treated graphs as an abstract object. Nevertheless, it should be noticed
that a graph is a purely topological object that specifies how nodes are connected but
does not have information about their spacial arrangement (geometry)[123]. This looks
like a downside for GNN. However, it becomes a large advantage because it is possible
to encode the physics of the system of interest by adding additional information about
the geometry of the system to the embeddings. Adding physical constraints helps
construct more data-efficient models; additionally, the prediction and generalisation
capacities increase[34, 123]. The conjunction at the nodes of a graph of an embedding
vector and coordinates is known as a geometric graph[116]. The use of this new object
by NN models leads to the surge of a new branch of deep learning called geometric deep
learning [124, 125]. This new branch has found a lot of applications in chemistry and
drug discovery[126] because the use of graphs is very natural for chemistry. However,
the use of only a graph is not sufficient for property prediction[122], so the use of
geometric graphs in conjunction with an MPNN is necessary.

The addition of geometric constraints helps to enforce symmetry conditions. In quantum
chemistry, the models must follow some symmetric conditions. In general, the model
is required to be equivariant (covariant) to the Euclidean transformations (translation,
rotation, and reflection) of the Euclidian group E(3)[116]. This is achieved by provid-
ing geometric information of the system to the model. The first MPNN models were

8An isomorphism is defined in group theory if a map between two groups G and H , f : G → H
conserves the multiplicative order of G, this is f(g1)f(g2) = f(g1g2), with one-to-one mapping[121].
In particular, two graphs can have the same connectivity but different orders.
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invariant to the transformations of the E(3) group because initially, only scalar proper-
ties (e.g. Energy) that are independent of the reference systems were predicted. Then,
the hidden representation is built from scalar quantities like intramolecular distances,
angles or dihedrals that will be later passed through the operations of the MPNN[123].
Examples of this type of NN model are SchNet[119] or PhysNet[32] which encode
intramolecular distances. This was later extended by DimeNet[127], which includes
angular information, and then GemeNet[128], which rounds the description by adding
dihedral angles.

New developments have focused on predicting vectorial properties (atomic forces) and
tensorial values (atomic polarizabilities, dipole and quadrupole moments). In that case,
the condition of equivariance must be enforced. The models that fulfil this condition
are called equivariant neural networks (ENN). There are two ways to construct ENN.
The first is by modifying the message to include directional information[129, 130]. The
second option is to use spherics harmonics for the construction of the hidden representa-
tion[131]. Finally, the latest developments that combine the two techniques mentioned
and add extra information to represent many-body interactions is the MACE model[132].

Transformers

The last NN model that will be discussed in this work is the so-called transformers.
Abstractly, a transformer can be considered a special case of a GNN in which the graph
is fully connected[116, 133]. This type of NN architecture was designed to work with se-
quential information and in automatic language processing[105]. A transformer consists
of two parts (Figure 2.8). The first is an encoder that embeds an input vector. The second
part is a decoder that transforms the embedding vector into an output.[134] The key con-
cept behind the huge success of the transformer model is the attention mechanisms[135].

To understand the attention mechanism, we must go back to the first applications of
transformers in natural language processing. A characteristic of language is that words
are distinctively connected, and this connection depends on the words themselves[105].
In a sentence, certain words have more importance than others, and words only gain
value if they are in a certain position. Considering this, the NN model must give
more attention to certain words than to others while considering their order. This
is impossible to achieve with an FCNN because the number of required parameters
scales very fast[105]. In addition, in FCNN, the correlation between words can not
be conserved after training[136]. The proposed solution to these complications is the
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attention mechanism, which preserves the correlation between different words in a text
by creating an embedding space in which a vector can be translated to a location that
depends on the other vectors in a sequence[136]. In a chemical example, we can think
of a protein as a one-dimensional sequence of amino acids. Once the protein is folded,
amino acids, which in a one-dimensional sequence are separated, may get close enough
to interact and induce characteristic stable structures. It is also known that a protein will
have a function that depends on the type and position of the amino acids. This is the
reason why transformers played a key role in AlphaFold[137].

The attention mechanism can be formulated as follows. Let us consider a set of input
vectors X = {x1, x2, . . . , xn} in an embedding space that are wished to be transformed
into a set of output vectors Y = {y1, y2, . . . , yn}. The transformation must follow the
condition that the element yn depends on all the elements of the set X . The simplest
way to achieve this is by making the output yn a linear combination of the vectors in the
set X .

yn =
N∑

m=0

αnmxm (2.23)

In equation 2.23, the αmn values are known as attention weights. These can be inter-
preted as the attention that the output vector yn puts on the input vector xm[105]. The
attention weights should follow the conditions that: i. αnm > 0 and ii.

∑N
m=1 αmn = 1.

Equation 2.23 describes a linear relationship. However, in practice, the transformation
must be nonlinear. The nonlinearity is induced by applying extra operations to the
input vector. Then, two transformations, such as the ones in Equation 2.15, are applied
separately to the input vector. After this, two new quantities called queries vector
(qn) and keys vector9 (kn) are obtained. In the next step, the dot product between
queries and keys is computed, followed by applying a special activation function called
softmax[113] that ensures the constraints of the attention weights. Then, the coefficients
αnm in Equation 2.23 are obtained as:

amn = SoftMax(k⊤m · qn) =
ek

⊤
m·qn

∑N
j=1 e

k⊤j ·qn
(2.24)

The interpretation of the dot product between the keys and queries vector is a similarity
measure of each element in the queries vector with each element on the keys vector.
In place, the softmax function makes the values of the query vector compete to have a

9The names of keys and queries are inherited from the information retrieval field.
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larger contribution to the final value[105].

The expression in Equation 2.24 can be generalized to all the values in the set X .
Therefore, writing 2.24 as a matrix is more convenient. Then, we redefine Equation
2.24 as:

Y = SoftMax

(
K⊤ ·Q√
Dq/k

)
(2.25)

Where K and Q are the keys and query matrices, respectively. The denominator
√
Dq/k

is the number of rows in K and Q. Equation 2.25 is known as self-attention because
the same values are used to determine the matrices of keys and queries[136]. The
denominator in Equation 2.25 avoids large values, which may dominate the output and
make the training step easier[105].

Equation 2.25 is also known as an attention head in which all outputs depend on the
input vectors. A problem that arises by using a single attention head is that the attention
coefficients are more focused on the entries than in the context, resulting in an averaging
of the correlation between inputs and a loss of individual effects[136]. The solution to
this problem is the use of multiple attention heads. In that case, the input vector is split
into n parts for which the attention coefficients are obtained. The final output is the
concatenation of the results for all attention heads.

The described multi-head attention layer is the heart of the transformer architecture; see
Figure 2.8. However, other operations are required to complete a transformer layer. The
first operation required is the input embedding. As in the case of GNN, each input vector
element must be transformed into an embedding vector. This is done in a process called
tokenization. In this process, the input vector is decomposed into small units (tokens)
of a large vocabulary of possible tokens. In chemistry, the vocabulary can be defined as
the organic functional groups in a molecule or the amino acids in a protein[134]. The
obtained tokens are passed through a positional encoding layer. This step is necessary
to conserve the positional correlations between tokens because the multi-head attention
layer is covariant to permutations. Then, the results from this layer would be the same
independently of the token’s positions [105]. In the positional encoding layer, a vector
of positions handcrafted or learned by the NN is added to the vector of tokens.

The next operation on a transformer is normalisation and addition. In the addition layer,
a special type of connection called residual connection is used. In a residual connection,
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Figure 2.8: Transformer architecture. This diagram represents the basic operations
of a transformer model from the initial encode, which consists of input embedding
and positional embedding. The embedded input is passed to the multi-head attention
together with a residual layer. The output of the multi-head attention is then passed
through a residual layer with an FCNN and two addition and normalization layers. This
basic unit can be repeated N times. For example, GPT3 uses 96 of these layers stacked
on top of each other.
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the output value of the previous operations is added to the initial value. Next, the
normalisation layer adjusts the vectors by taking the average and standard deviation of
the weights in the layer so that they have variance equal to unity and average equal to
zero. Both operations facilitate the training of the model and function as regularisers.
The output of the normalisation layer is passed to an MLP, which increases the model’s
flexibility since the output vectors are kept within the subspace created by the input vec-
tors. Finally, the residual and normalisation operation is repeated to obtain a transformer
layer. Generally, a transformer contains multiple transformation layers stacked on top
of each other. Let us examine the case of GPT3, which contains 96 transformation
layers, each with 96 multi-headed attention layers with 175 billion parameters in total
with 300 billion tokens[5, 105]. Due to their large size and diversity of information on
which they are trained, models like GPT3 are known as Foundational Models[138]. In
chemistry, the first example of a foundational model has recently been released with
more than 30 applications in materials science using the MACE model[132] and trained
on 150,000 crystal structures[139].

Usually, transformers are trained with a large amount of information to create models
that are as general as possible. However, if these models will be applied to specific tasks,
they need to be fine-tuned. For this purpose, some model parameters are optimised
specifically for the task to be solved[134]. Another type of tuning strategy is context
learning. In this case, the model learns to solve a task after a small set of examples is
presented to it as a demonstration[140]. In chemistry, this has been exploited by using
GPT3 to solve various tasks where information is scarce[141] or to predict functional
and electronic properties of organic molecules[142].

Training

The last aspect of neural networks that we will review is their training, which is the
process in which "learning" occurs. This step is independent of the type of architecture
used and consists of adjusting the different parameters of the NN to reproduce the
reference values provided. This is achieved by iteratively minimising a so-called Loss
Function(LF). The LF to be used depends on the task to be solved. In regression settings,
it takes the general form[104]:

L =
1

Ndata

Ndata∑

n=1

[y(xn; θ)− tn]
m + ω (2.26)

HereNdata are the number of samples used during the training procedure, y(xn; θ) is the
NN model that takes an input xn, and parametrically depends on θ, the NN parameters.
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Values tn are the reference values provided that the model should reproduce. The values
of the exponent m can be 1, which corresponds to the absolute value and is commonly
known as L1 loss function, or 2, which is the squared error and corresponds to the
L2 loss function. The value ω is a regularization term that helps improve the model’s
generalizability and prevent overfitting. Besides the form in Equation 2.26, many others
can be used; see, for example, Ref. [143]. The interested reader is referred to Ref.[144]
for a complete overview of different loss function types.

The selected loss function to train the model must be optimised to obtain the optimal
values of the model parameters. The optimization is a complicated process since the
LF is a multidimensional object because each parameter creates a new optimization
dimension. Additionally, the loss function is non-linear. As a consequence of these facts,
the landscape of the loss function is very complex, with many local minima. As such,
the optimization process must be done iteratively using numerical methods. Obtaining
a global minimum requires exponential time and, in general, is very complicated[62].
In the same way, it is not desirable to obtain a global minimum as it would, most likely,
correspond to an overfitted solution[145].

The preferred algorithm to optimise the chosen loss function is the so-called Gradient
descent. It consists of two steps. In the first step, the derivatives of the loss function
with respect to each of the parameters are calculated.

∂L
∂Θ

=




∂L
∂θ1
∂L
∂θ1
...
∂L
∂θn




In the second step, the parameters of the model Θ are updated according to the following
rule:

θt+1
i = θti − α

(
∂L
∂θi

)
(2.27)

Where α is a positive constant called learning rate. Equation 2.27 can not be used
directly because it is inefficient with large amounts of data. Therefore, a sequential
version called stochastic gradient descent is used in practice. In this version, a batch,
which is a subset of the dataset used for training, is used. Then, the gradient is calculated
only for the examples in the batch[105]. So, Equation 2.27 can be rewritten as:
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θt+1
i = θti − α

∑

j∈Bt

(
∂Lj

∂θi

)
(2.28)

Where Bt is the batch that contains the examples after all, batches in the training set
are used, the process is repeated, and it is called an epoch. In each step, white noise is
added to the gradient to help the algorithm escape local minima[105].

Further modifications to the gradient descent algorithm include the addition of momen-
tum. This is convenient because information on the gradient of the previous step is
added to the calculation. In that case, Equation 2.28 is modified as:

mt+1 = βmt + (1− β)
∑

j∈Bt

(
∂Lj

∂θ

)

θt+1 = θt − αmt+1

Here β ∈ [0, 1] controls the degree to which the gradient is softened. Another popular
modification to the stochastic gradient is the popular ADAM (Adaptative Moment
Estimation)[146], which has become the standard way to train NN models.

A key aspect of the training of the NN is the acquisition of the derivatives of the loss
function with respect to the parameters of the NN. This is done using the backpropaga-
tion algorithm, which is an iterative application of the chain rule of differential calculus
and is inspired by dynamic programming. This algorithm consists of two steps. The
first, called forward, is the evaluation of the NN on a given input. This is a problem
because the weights and bias of the model need to be initialized to a certain value. There
are several ways to do this. However, the rule of thumb indicates that the values should
be randomly initialized with values close to zero. It must avoid zero values (derivatives
become zero, and the parameters do not change) or very large values that end up in poor
solutions[145]. An incorrect initialisation leads to instabilities in the backpropagation
step, which can result in very large gradients, called the exploding gradients problem, or
very small gradients, called the vanishing gradients problem[105]. The values obtained
from the forward step are used to evaluate the loss function.

The next step of the algorithm is called backward because the error is fed back to the
multiple layers of the NN[104]. In this step, the chain rule is used. The objective is to
obtain the derivative of the loss function with respect to the neural network parameters.

∂L
∂θ

=
∂L

∂y (x; θ)
·
∑

i

(
∂y (x; θ)

∂hi

)
·
(
∂hi
∂θ

)
(2.29)
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here hi is the i- hidden layer. For simplicity, indices for the parameters of the NN were
omitted. By replacing equation 2.29 in 2.27, the parameters of the NN are updated. In
practice, this step is put in matrix terms to facilitate the calculation of the derivatives.
Packages such as PyTorch[147], Tensorflow[148] or Jax[149] contain an automatic
differentiation mechanism, where the backward calculations are automatically generated.
Consequently, the backward pass does not have to be implemented manually.
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Chapter 3

How Data Affects Predictions of
Chemical Properties by Atomistic

Neural Networks

It’s more interesting to work on challenges where you don’t know the

answer. In chemistry, you should enter into an adventure with molecules.

Ben Feringa

This chapter presents a comprehensive assessment of the effects of the database compo-
sition in chemical and configurational space for predicting a specific chemical property
(i.e. Tautomerization energy). Different characteristics of the databases used for training
are followed, and their impact on the prediction is evaluated. The results obtained in
this study show that contrary to usual expectations, increasing the amount of data does
not necessarily lead to better predictions. A second key conclusion from this work is
that the lack of exploration in chemical space can be compensated with an adequate
sampling of conformational space. The rest of the chapter is organized as follows: First,
an introduction to the topic will be presented, followed by a description of the methods
used. Next, results and discussion of those are presented. Finally, some of the more
salient conclusions of the work are discussed.

The results presented in this chapter have been previously published in J. Chem. Theor. Comp.,

2021, 17(8), 4769–4785



3.1 Introduction

In the last decade, the application of machine learning (ML) techniques in chemistry
has significantly increased[35, 61, 96, 150]. This has occasionally been related to a
paradigm shift, revolutionizing the available techniques to understand and simulate
chemistry[16, 18]. The excitement is seemingly justified, given the outcomes of ML
techniques’ central promise that, by using a sufficiently large number of examples and
a rule-discovery algorithm, it is possible to obtain a scientific understanding of the
underlying relationships covered by the data[35, 150]. Furthermore, ML techniques
are fast compared with quantum chemical methods, while also reaching comparable
accuracy[91, 119, 151–159].

On the other hand, application of quantum ML methods to concrete problems requires
large amounts of data which first need to be generated from electronic structure calcu-
lations[160–162]. Consequently, data generation is computationally demanding. An
essential challenge for the extension of ML methods’ applicability in chemistry is
understanding how suitable databases can be constructed to maximize accuracy and
transferability of the models. An important ingredient for this step is the degree and
confidence with which a human can understand the relationship between cause (starting
database and model) and result or observation (applying the model to a new task)[163,
164]. This process has also been called “interpretability” and it can be used to assess
the relationships learned by the model or contained in the data used for training it[165,
166]. The present work quantifies the relationship between the composition of general-
purpose quantum chemical databases trained with a ML model (Neural Network) with
the performance for predicting a property of interest (here: tautomerization energy) on
a set of unseen samples.

To test the effect of different databases on the reliability of the ML model, the prob-
lem of predicting tautomerization energies is considered. Tautomerism is a form of
reversible isomerization involving the rearrangement of a charged leaving group within
a molecule[167] (e.g. Figure 3.1A). One isomer transforms into the other by a het-
erolytic splitting followed by a recombination of the fragments formed[168]. This
process involves the migration of one or more double bonds and atoms or groups. The
isomers (i.e. tautomers) generated in this reaction are chemically independent species
with defined properties[169]. It is known that this type of reaction is of importance
for biological molecules such as amino acids[168], DNA[170, 171], RNA[172], and
atmospheric processes.[173] Additionally, it is estimated that tautomerism can occur in
up to two thirds of small molecules[174], and a majority of commercial drugs[175, 176].
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Figure 3.1: (A) Tautomerism is a form of reversible isomerization involving the rear-
rangement of a charged leaving group within a molecule. The keto-enol tautomerism of
acetone, an equilibrium which heavily favours the keto side, is shown as an example.
(B) Chemical space can be decomposed systematically through the use of atoms-in-
molecules-based fragments (amons).[40] The amons present in acetone (SMILES:
CC(=O)C), as well as their corresponding SMILES are given as an example.

Despite its widespread occurrence and importance, quantitative studies of tautomerism
are still challenging because small changes in molecular structure or solvent envi-
ronment can dramatically change the tautomeric equilibrium[169, 177]. Moreover,
small free energy differences between two tautomers in solution make the use of high
level theoretical methods and an adequate basis set mandatory which limits its use
for calculations of tautomerization energies and ratios. [177, 178] As an example,
tautomerization in malonaldehyde (MA) is considered. MA has served as a prime ex-
ample to develop and test computational methods for a realistic description of hydrogen
transfer in small molecules.[162] Experimentally, the ground state tunneling splitting
is 21.58314 cm−1 which has been determined by different experiments with very high
accuracy. [179, 180] Furthermore, proton transfer rates in a di-imine derivative have
been determined with nuclear magnetic resonance (NMR) spectroscopy. [181] Such ex-
periments provide direct information on the barrier height separating the two tautomeric
states “A” and “B”. Using a state-of-the art full-dimensional potential energy surface
at the near basis-set-limit frozen-core CCSD(T) level of theory,[182] the tunneling
splitting from quantum simulations was determined as 23.4 cm−1.[183] Alternatively,
using a reduced dimensionality Hamiltonian, the barrier height for proton transfer in a
parametrized molecular mechanics with proton transfer (MMPT) potential was found
to be 4.34 kcal/mol which yields a tunneling splitting of 21.2 cm−1, consistent with
experiment.[184, 185] This barrier height is close to the value from CCSD(T) calcula-
tions which yield 4.1 kcal/mol.[182] These examples illustrate that calculations at the
highest levels of theory are required for quantitative studies of the energetics underlying
tautomerization.
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In the last decade, development of ML models has allowed the design of robust models
that can routinely reach prediction errors lower than 1 kcal/mol with respect to the
reference data at low computational cost[32, 119]. However, there have been few
discussions on how databases can be improved/designed to obtain better predictions
from the ML model. Ideally, the combination of a robust ML model and an adequate
database will result in quantitative results for the prediction of a property of interest.
The availability of public databases of tautomers[87, 186] makes the prediction of tau-
tomerization energies using these ML models an ideal test case to study how different
training databases influence the accuracy of ML methods.

The present work is structured as follows. First, the methods, databases, and the analysis
performed are introduced. Next, the results for the tautomerization energy predictions
using models trained on the different tested databases are presented. Additionally,
prediction errors for tautomerization energies are analyzed. The effect of different
characteristics of the training data on predicting the tautomerization energy and the
individual molecules’ energy are evaluated. Finally, the results are discussed and
conclusions regarding the findings and interpretability of broadly conceived and learned
ML models applied to a specific chemical question are drawn.

3.2 Methods

3.2.1 Machine Learning

PhysNet was used for the representation and evaluation of the data sets, using the hy-
perparameters from the original publication[32]. For training, only the nuclear charges
(Z), the energies of the molecules (E) and their coordinates (R) were considered. The
energies used for training were those reported by the different databases minus the
atomization energy at the given level of theory to ensure that energies of molecules are
referred to the same zero of energy. In all cases, a training, testing and validation split
of 8 : 1 : 1 was used. The loss function was

L = wE|E − Eref |+ λnhLnh (3.1)

where Eref is the reference energy, wE = 1 is the weighting hyperparameter for the
energy, λnh = 10−2 is a regularization hyperparameter and the term Lnh is a non-
hierarchicality regularization penalty[187]

Lnh =
1

N

N∑

i=1

Nmodule∑

m=2

(E
(m)
i )2

(E
(m)
i )2 + (E

(m−1)
i )2

(3.2)
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that penalizes higher order (m) many-body interactions over lower order (m− 1) ones,
i.e. ensures that e.g. the magnitude of 2-body interactions is overall larger than 3-body
interactions. The loss function (Eq. 3.1) was minimized using AMSgrad with a learning
rate of 10−3. Overfitting was prevented by the use of early stopping, the convergence
criteria considered is the saturation of the validation-loss function[32].

The NN architecture used here (PhysNet) belongs to a more general class of deep neural
networks (DNNs) that have been successfully applied to ML of quantum chemical
properties, including (but not limited to) SchNet [119], ANI-1[188], or HDNN.[151,
159] All of them perform well on typically used databases such as QM9. As the present
work focuses on characterizing the performance of NN-based approaches for different
databases, PhysNet[32] was used as a representative DNN.

3.2.2 Database Selection

For training the NNs, four widely used databases for benchmarking predictive models
of DFT-based energies are employed, namely the QM9[189], PC9[51], ANI-1[190] and
ANI-1x databases (not to be confused with the neural network potential carrying the
same name).[191] An additional database, ANI-1E (where "E" stands for equilibrium)
containing only the equilibrium structures of the ANI-1 database, was generated at the
ωB97x[192]/6-31G(d) level of theory. These databases can be divided into categories
based on the type of geometries they contain. The datasets consisting solely of equilib-
rium structures are QM9, PC9 and ANI-1E, and sample only chemical space. Contrary
to that, the ANI-1 and ANI-1x databases contain equilibrium and non-equilibrium
structures which sample chemical and conformational space.

Training sets: The QM9 data set[189] was generated as a subset of the GDB-17 chem-
ical universe[49], consisting of 133885 molecules, containing less than or equal to 9
heavy atoms (either C, N, O or F). Reference energies were computed at the B3LYP[193,
194]/6-31G(2df,p) level of theory. For the present work, QM9 was filtered to include
only molecules which passed a geometry consistence check[189] and considering only
those containing carbon, nitrogen or oxygen atoms. The final size of the QM9 training
dataset used here consisted of 110426 molecules.

The PC9 dataset was created as an alternative to QM9 to improve coverage of chemical
space.[51] It is a subset of the PubChemQC[195] and is limited to molecules with 9
heavy atoms or less (natoms ≤ 9). This database consists of 99234 molecules, calculated

41



at the B3LYP[194]/6-31G(d) level of theory, and excludes enantiomers, tautomers,
isotopes as well as other specific artifacts in PubChemQC[51]. PC9 also contains 5325
molecules with an electronic state different from a singlet which were removed for the
present work. As in the case of QM9, molecules which contain fluorine were removed.
The final size of this dataset was 85875 molecules.

ANI-1[190] consists of 24 million geometries generated using normal mode sampling
from 57462 unique molecules. ANI-1 is a subset of the GDB-11 chemical universe[47,
48]. A related dataset, ANI-1x [191], was created using an active learning[196] pro-
cedure which reduced the original ANI-1 database to 5 million structures. Starting
from the ANI-1 database[188, 190] the ANI-1E dataset was generated and consists
only of the corresponding equilibrium structures. The new ANI-1E database contains
57462 molecules limited to eight heavy atoms (either C, O or N). The generation of this
database is further described below in the subsection of electronic structure calculations.

Tautomerization energy evaluation set: The performance of the NN models described
above was evaluated on a subset of molecules from Tautobase[87], a public database of
1680 tautomer pairs. The Tautobase was filtered to molecules only containing hydrogen,
carbon, nitrogen, or oxygen atoms. The size of the final test set was 1257 tautomer pairs
(2514 molecules). Of those 2514 molecules, 118 appear in two or more pairs. However
there is no influence on the results for the prediction of ∆ETauto because all the pairs
are unique. The geometry generation and structural optimization for these molecules is
described below.

3.2.3 Initial Geometry

To investigate the effect of the geometry of the molecules passed to the NN model on
its performance, a second set of geometries for the Tautobase was also evaluated. These
geometries were generated from the SMILES representation using OpenBabel[197] and
were optimised with the MMFF94 force field[198].

Additionally, a subset of the test set composed of 34 tautomeric pairs which were part of
the SAMPL2 challenge[199] were considered. Those 34 pairs (68 molecules) were op-
timized by six popular general atomistic force fields: CHARMM27[200], GAFF[201],
OPLS[202], UFF[203], Gromos[204], and Ghemical[205]. Details on the generation of
the geometries are reported in the SI.
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3.2.4 Electronic Structure Calculations

Generation of ANI-1E: Starting from the ANI-1 database[188], a new data set, ANI-
1E, was generated. From the SMILES strings provided by [188] initial geometries
using OpenBabel[197] were generated. Subsequently, geometries were optimised using
PM7[206] implemented in MOPAC2016[207], before a final geometry optimization and
frequency calculation at the ωB97x[192]/6-31G(d) level of theory was performed using
Gaussian09[208]. Finally, it was verified that the optimized structures did not exhibit
imaginary frequencies. The calculations were performed in an iterative way. First,
default thresholds of Gaussian09 were used. Molecules that did not converge in this
first round were run with a calculation of force constants (Opt=CalcFC), increasing the
number of maximum cycles (maxcycles=1000) and using quadratic convergence for the
self-consistent field procedure (SCF=QC). In a third step, molecules that did not con-
verge up to this point were computed with a tight convergence criterion (Opt(tight)) and
an increase of the number of maximum cycles (maxcycles=1000). Structures that still
could not converge were computed again with the option Opt=CalcAll that computes
the force constants at each step. Additionally, an ultrafine integration grid (int=ultrafine)
together with quadratic convergence (SCF=XQC). Finally, for problematic structures
that still did not converge verytight convergence criteria and a maximum number of
cycles of 5000 were used. With this procedure, minima for all 5000 structures without
imaginary frequencies were obtained.

Tautomerization evaluation set: The molecules used for the evaluation of the NN
models were generated from the SMILES provided in Ref. 87 using the OpenBabel
software[197]. These structures were then optimized at the all levels of theory used
to conceive the databases (QM9: B3LYP/6-31G(2df,p), PC9: B3LYP/6-31G(d), ANI:
ωB97x/6-31G(d)) using Gaussian09[208]. Thus, when working with PC9, geometries
optimized at the B3LYP/6-31G(d) level of theory were passed to the NN trained with
PC9 to obtain single isomer energies. Those values were used to compute the tautomer-
ization energy ∆ETauto defined as the energy difference between tautomers A and B in
their optimized structures, see Figure 3.1. This was repeated in the same fashion for all
other databases.
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Table 3.1: Overview of the training datasets used in this work. QM9, PC9 and ANI-1E
contain equilibrium structures and can be considered to only sample chemical space,
whereas ANI-1 and ANI-1x also contain non-equilibrium geometries which sample
conformational space. The number of molecules refers to the total number of data
in each dataset.aStructures generated through normal mode sampling. bTraining set
selected using active learning.

Database Number of Molecules Level of Theory Parent Universe

QM9 128908 B3LYP/6-31G(2df,p) GDB-17
PC9 85870 B3LYP/6-31G(d) PubChemQC

ANI-1E 57462 ωB97x/6-31G(d) GDB-11

ANI-1a 24 million ωB97x/6-31G(d) GDB-11
ANI-1xb 5 million ωB97x/6-31G(d) ANI-1

3.2.5 Comparison of Structural Properties of Different
Databases

As a way to compare the composition of the different datasets evaluated in terms of struc-
tural properties (e.g. bond lengths), a Gaussian kernel density estimation[209] of their
distributions was generated, see Figures S7 to S10. The similarities between the distribu-
tions used to train the NN models and those from the test set of tautomers was quantified
by computing the relative entropy (or Kullback-Leibler (KL) divergence)[210]

D(p ∥ q) =
∫ ∞

−∞
p(x)log

(
p(x)

q(x)

)
dx (3.3)

This metric quantifies the overlap between a reference distribution p(x) and a target
distribution q(x). Because the KL divergence is not symmetric (D(p ∥ q) ̸= D(q ∥ p)),
it is important to specify which distribution is used as the reference. In the present
work, the Tautobase is the target distribution and QM9, PC9, ANI-1E are the reference
distributions. The KL divergence allows quantification of how much information of the
reference databases (i.e. QM9, PC9, ANI-1E) is ’missing’ to best cover the information
contained in Tautobase. If the two distributions are identical, D(p||q) = 0. On the other
hand, if the reference database p(x) (here QM9, PC9, ANI-1E) contains more infor-
mation than the target set q(x) (Tautobase), D(p||q) > 0, and if specific information is
missing, D(p||q) < 0. Hence, cases for which D(p||q) < 0 are of particular relevance
if improvements of the reference databases are sought for better capturing ∆ETauto.
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3.2.6 Chemical Space “Coverage” from Fragment Analysis

The ‘coverage’ of chemical space contained in the Tautobase, QM9, PC9 and ANI fam-
ily of databases was analysed by considering their atom-in-molecule-based fragments,
referred to as “amons”.[40] The amons are generated from the SMILES representation
of the molecule, see Figure 3.1B. This representation is used to construct a molecular
graph from which sub-graphs to a maximum number of atoms (excluding hydrogen)
are generated. All sub-graphs are checked to be valid and unique. Here, amons up to
and including a maximum of five heavy atoms were generated by an in-house script
following the published algorithm[40] which is available on GitHub. The official imple-
mentation is given in Ref. 211.

3.2.7 Visualization of Chemical Space

Visualization of chemical space is a complex task given the high dimensionality of it.
On this work it would be used a recent development is the TreeMAP (TMAP) algorithm,
which allows for an interpretable, low dimensional representation of the test set’s
chemical space[86]. The TMAP algorithm constructs a weighted graph that is efficient
for compact representations of high dimensional data. The necessary weights are based
on the Jaccard distance, which measures the dissimilarity between the fingerprint of two
structures. This graph is then pruned to the minimum spanning tree, a fully connected,
acyclic sub-graph containing all nodes of the parent graph, and retaining only essential
edges which minimize the weights. This organizes the compounds contained in a
database into a tree, putting related structures on nearby branches. From this, groups of
related moieties can be identified which are potentially detrimental to predicting the
quantity in question, here ∆ETauto.

3.3 Performance of the NN on the Tautobase

3.3.1 Overall Performance

The mean absolute errors for the tautomerization energies ∆ETauto range from 1.68
kcal/mol (ANI-1x) to 4.59 kcal/mol (ANI-1). The results are summarized in Table 3.2
for all molecules in the test set and graphically reported in Figures 3.2 (datasets with
equilibrium structures) and 3.3 (datasets with both equilibrium and non-equilibrium
structures). The prediction errors for the energy of single isomers, ESI, with respect
to DFT energies are also reported (Table 3.2). Note that because the tautomerization
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energy is defined as the difference between the isomer energies, predictions of tautomer-
ization energies are often more accurate due to cancellation of systematic errors. On
the other hand, the energies for single isomers are considerably larger and span a much
wider range because they scale with the number of atoms that make up a molecule.
Therefore, the NN-based energies for larger molecules are expected to be associated
with considerably larger errors.
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Figure 3.2: Correlation between the calculated (DFT) and predicted (NN) tautomeriza-
tion energies (∆ETauto = EA−EB) for molecules with natoms ≤ 9 (left) and natoms > 9
(right) for the models trained on the datasets which only cover chemical space. Pearson
correlation coefficients (r2) and the Mean Absolute Error (MAE) values are reported in
brackets as [r2, MAE].

To assess whether the accuracy for predicting tautomerization energies correlates with
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the performance of the trained NNs on the chemical databases, the QM9, PC9, and ANI-
1E models are considered. The MAEs on held-out test sets for each of the respective
training runs are 0.10 kcal/mol (QM9), 0.69 kcal/mol (PC9), and 0.27 kcal/mol (ANI-
1E) which is comparable to values ranging from 0.19 kcal/mol to 0.30 kcal/mol for
the QM9 data set (depending on the sizes of the training and validation sets used).[32]
However, when applying these trained NNs to evaluate Tautobase, the MAEs are 3.67
kcal/mol (QM9), 2.60 kcal/mol (PC9), and 3.66 kcal/mol (ANI-1E), respectively. Hence,
there appears to be no correlation between the quality of the trained NNs, defined as the
MAE on the test set split from the training database, and their performance on Tautobase.

Table 3.2: Mean Absolute (MAE) and Root-Mean-Squared Error (RMSE) for the
prediction of tautomerization energy ∆ETauto, and the single isomer energies, ESI,
for the entire Tautobase (1257 tautomeric pairs) for each of the datasets. The 95 %
confidence interval (given in brackets) was computed from bootstrapping.

∆ETauto ESI
Database MAE RMSE MAE RMSE

QM9 3.67 (3.32,3.99) 7.12 (5.50,8.18) 5.00 (4.77,5.29) 8.40 (7.87,8.92)
PC9 2.60 (2.33,2.86) 5.41 (4.04,6.28) 6.90 (6.50,7.38) 13.20 (12.39,13.98)
ANI-1E 3.66 (3.51,3.98) 7.09 (5.50,8.14) 15.20 (14.95,15.59) 17.50 (16.83,17.99)
ANI-1 4.59 (4.26,4.92) 7.56 (6.56,8.29) 13.40 (12.99,13.80) 17.00 (15.16,18.26)
ANI-1x 1.68 (1.55,1.81) 2.85 (2.30,3.15) 1.80 (1.67,1.91) 3.60 (3.13,3,89)

Next, the performance of the trained models for predicting ∆ETauto and ESI depending
on the number of heavy atoms is assessed. For this, results for the subset of molecules
with natoms ≤ 9, referred to as “SetLE9” in the following, is considered separately
from those with natoms > 9, which is “SetG9”. This distinction is motivated by the fact
that the PC9 and QM9 databases contain structures with only up to 9 heavy atoms, i.e.
models need to extrapolate for larger structures. For SetLE9, the PC9 (Figure 3.2C) and
ANI-1x (Figure 3.3C) data sets perform best. Both achieve a MAE < 1 kcal/mol with
respect to the DFT values for ∆ETauto.

The extrapolation to SetG9 increases the prediction errors for most of the databases
studied. Again, the ANI-1x database performed best for ∆ETauto with a MAE of 2.20
kcal/mol, followed by PC9, QM9, ANI-1E and ANI-1 with a MAE of 6.29 kcal/mol.
The number of atoms in the database also influences the Pearson correlation coefficient
r2 for the same number of points for both sets studied here. A better correlation is
observed when the size of evaluated molecules is in the range covered by the training
database, i.e. for SetLE9. Here, the correlation coefficients range from 0.69 (QM9)
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Figure 3.3: Correlation between the calculated (DFT) and predicted (NN) tautomeriza-
tion energies (∆ETauto = EA−EB) for molecules with natoms ≤ 9 (left) and natoms > 9
(right) for the models trained with the datasets which cover chemical and conformational
space. Pearson correlation coefficients (r2) and Mean Absolute Error (MAE) values are
reported in brackets [r2, MAE].

to 0.99 (ANI-1x). For SetG9, the r2 values are significantly lower. A particularly
noteworthy case is the QM9 database, which shows almost the same MAE and r2 for
both subsets of the Tautobase (Figures 3.2A and B). The performance for SetLE9 and
SetG9 also differs in the number and magnitude of outliers, see Figures 3.2 and 3.3.

The RMSE in Table 3.2 show that the spread for ESI could be a reason for large outliers
(see Figure S1). It is likely that there is some error cancellation when predicting tau-
tomerization energies (i.e. energy differences). For example, if the trained NN predicts
too large energies for both isomers, this systematic error cancels when their energy
difference is computed.
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Figure 3.4: Error analysis on the prediction of the tautomerization energies. Panels A
and B: Kernel density estimate of the error on the prediction of the tautomerization
energies for the different databases evaluated in this work. Panels C and D: Normalized
error distribution up to the 95% quantile of the different datasets for the errors in the
tautomerization energy. The blackbox inside spans between the 25% and 75% quantiles
with a white dot indicating the mean of the distribution. The whiskers indicate the
5% and 95 % quantiles. The panels on the left and right are for SetLE9 and SetG9,
respectively.

3.3.2 Error Analysis

Next, prediction errors for ∆ETauto and ESI are analyzed and discussed for all trained
models. In Figures 3.4A and B, the kernel density estimate of the error distribution is
reported. The violin plots in Figures 3.4C and D show the spread of errors, which helps
to identify large outliers.

In all cases studied, the distribution of errors for ∆∆ETauto = ∆EDFT
Tauto −∆ENN

Tauto is
centered around zero. This indicates that the highest probability is to obtain a correct
prediction. The width of the distribution depends on the reference dataset and on the
number of atoms in the molecule. For SetLE9 (Figure 3.4A), the error distributions for
PC9 and ANI-1x suggest high probabilities (p(∆∆ETauto) = p(∆EDFT

Tauto −∆ENN
Tauto)),
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around 60 %, to obtain a small error. Conversely, QM9 performs worst with a maximum
height of only p(∆∆ETauto) ∼ 15 % and a faint maximum below ∆∆ETauto = −10

kcal/mol to predict such energy differences with a larger probability than a positive
value. The error distributions for ANI-1E and ANI-1 are similar in shape which indicates
that their performance is comparable although the number of structures in ANI-1E is
one order of magnitude smaller than that in ANI-1. Hence, adding additional structures
(ANI-1 vs. ANI-1E) does not necessarily improve performance.

On the other hand, for SetG9 (Figure 3.4B), the performance of QM9 and PC9 is com-
parable given the similar shape of their distribution of p(∆∆ETauto), ANI-1x gives the
best predictions with a maximum height of around 15 % to obtain an error for ∆ETauto

close to zero. All other reference data sets perform inferior with ANI-1 reaching only a
5 % p(∆∆ETauto) for a prediction close to zero. In addition, for most of the data sets
the error distribution is asymmetric with an increased probability to predict a negative
value for ∆∆ETauto compared to a positive value.

Results for the normalized error distributions p(∆∆ETauto) are shown in Figures 3.4C
and D. For SetLE9, PC9 and ANI-1x show the smallest outliers by magnitude with an
error below 2.5 kcal/mol. On the other hand, QM9 has the largest outliers with some
errors larger than 15 kcal/mol. The average error for all reference distributions is around
or below 1 kcal/mol for the 75 % quantile. For molecules in SetG9, ANI-1 has the
largest outliers, followed by ANI-1E, QM9, PC9, and ANI-1x performing best with a
maximum error of around 5 kcal/mol, see Figure 3.4D.

For completeness, error distributions p(∆ESI) = p(EDFT
SI − ENN

SI ) for individual
molecules and their normalized variants are also reported in Figures S1A to D. For Se-
tLE9, the distributions for PC9 and ANI-1x are centered around zero with peak heights
at 80 % which decreases to 25 % for ANI-1E. For ANI-1 it is shifted to negative and for
QM9 to positive values. For SetG9 (Figure S1B), all error distributions are asymmetric
and extend to large negative values of ∆ESI. The best and worst performing reference
distributions are ANI-1x and ANI-1, respectively. The normalized error distributions
(Figures S1C and D) for both sets are strongly peaked. For SetLE9 (Figure S1C) the
maxima for PC9 (2.5 kcal/mol) is the lowest whereas ANI-1 has the largest errors.
For SetG9 (Figure S1D), the outliers are even more pronounced with |∆ESI| > 100

kcal/mol for ANI-1E and ANI-1. In general, the performance of ANI-1E is better
than that of ANI-1 with a smaller MAE, outliers of smaller magnitude and a more
compact distribution. These results are surprising, given the large difference between
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the size of both datasets (ANI-1E (≈ 57k) and ANI-1 (≈ 20M)) and confirm the earlier
observation that addition of new structures to a database does not necessarily improve
performance.

In summary, for SetLE9 the database with broader chemical diversity (PC9) and the
database with the widest sampling of chemical and conformational space (ANI-1x) per-
form best. Hence, chemical diversity is essential for faithful prediction of ∆ETauto but it
can be substituted to some extent with adequate sampling of conformational space. For
larger molecules (SetG9), the best results are obtained by ANI-1x which suggests that
sampling of conformational space improves extrapolation to larger molecules. Datasets
containing only equilibrium structures perform similarly for predicting ∆ETauto.

3.4 Effect of Different Database Characteristics

on Predictions

This section analyzes the predictive power of the NNs trained on the five different train-
ing databases for tautomerization energies by considering various chemical properties
such as the number of heavy atoms, the number of atoms of a given element, or the type
of chemical bonds. Given the non-linear nature of the NN, the relationships between
these characteristics and whether/how they are related to the performance of the model
is a challenging task. The features studied here were selected because they might be
considered for the selection of a training database for the prediction of a chemical
property (in this case the tautomerization energy) or because they can be optimized for
the generation/enhancement of datasets used to train models for specific purposes.

3.4.1 Number of atoms

The first characteristic considered was the number of heavy atoms (C, N and O) con-
tained in the reference data sets and how this affects the prediction quality on Tautobase.
For SetLE9 the MAE for ∆ETauto typically decreases with increasing molecular size,
see Figure 3.5A, for all five reference data sets. This can be broadly related to the
increase in the number of samples with the number of heavy atoms contained in the
reference databases used for training (see Figure S2). For all data sets except for QM9,
the MAE decreases to levels below 0.5 kcal/mol as the number of heavy atoms increases.
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For larger molecules (SetG9) in the Tautobase, the MAEs increase significantly, see
Figure 3.5B. Broadly speaking, for up to 25 heavy atoms the MAE is still within 5
kcal/mol but increases considerably for larger molecules. ANI-1x performs best with
MAE < 1 kcal/mol up to natoms = 25 but errors increase above 10 kcal/mol beyond
that. This is followed by QM9 and PC9 which, on average, have MAEs of ∼ 2 kcal/mol
followed by ANI-1E and ANI-1. Typically, the MAE for ∆ETauto is around or below 5
kcal/mol irrespective of the number of samples, see Figure S3. However, for the largest
molecules for which there are only few samples, and for a small number of mid-sized
molecules (natoms ∼ 20) the MAE exceeds 10 kcal/mol.
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Figure 3.5: Mean Absolute Error (MAE) by number of heavy atoms (C,O,N) on the
molecule for the tautomerization energy. The number of molecules for increasing
number of heavy atoms is shown as a histogram. Panel A: Results for SetLE9, i.e.
molecules with natoms ≤ 9. Panel B: for SetG9. The inset in panel B shows the MAE
for ∆ETauto for 10 ≤ natoms ≤ 25.

The MAE for predicting ESI for SetLE9 (Figure S4A) is large for molecules with 3 and
4 heavy atoms which differs from the findings for ∆ETauto. With increasing size the
error decreases. This is most pronounced for PC9 which eventually achieves the same
quality as ANI-1x. For ESI the overall shape of MAE vs. natoms for databases which
only contain equilibrium structures is related but the magnitude of the MAE differs.
This is a consequence of the chemical diversity of the databases, see subsection 3.4.4.
For ANI-1 and SetLE9, the MAE is smallest for natoms = 5 and then starts to grow
again. For SetG9 (Figure S4B), the MAE displays a steady increase with the number of
heavy atoms.

In summary, ANI-1x dataset performs best across all values of natoms for the Tautobase,
followed by PC9 across most values for natoms. For SetG9, QM9 is quite reliable
whereas ANI-1 and ANI-1E perform worst which reiterates the earlier finding that
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adding perturbed structures to a data set does not necessarily improve the quality on
the task at hand (which is the estimation of ∆ETauto). Consequently, the results can be
worse than those obtained when training only on equilibrium structures.

The analysis can be refined by considering predictions for ∆ETauto depending on the
number of C-, N-, and O-atoms contained in the molecules of the reference database
(Tautobase), see Figure 3.6. For SetLE9 the MAE tends to decrease (except for QM9)
with increasing number of carbon atoms as shown in Figure 3.6A whereas for SetG9
it increases to different extents depending on the reference database considered, see
Figure 3.6B. For nitrogen and oxygen atoms and ANI-1x all MAEs for SetLE9 and
SetG9 are small (∼ 1 kcal/mol), except for the largest numbers of N-atoms, see Figure
3.6F. For the PC9, ANI-1E, and ANI-1 databases and SetLE9 all MAEs are below or
around 1 kcal/mol whereas for QM9 they can be larger. For SetG9, the MAEs are up
to 5 kcal/mol for molecules for which at least tens of representatives are contained in
Tautobase, but start to increase significantly below that, see Figure 3.6D and F.

Considering the MAE forESI confirms these general findings, see Figure S5. Molecules
with a small number of atoms of a given element have fewer different chemical environ-
ments (see Figure S6). This makes it more difficult to predict ∆ETauto if that chemical
environment is present in the target data set (Tautobase) but not sampled in the reference
sets. Consequently, larger errors are observed for molecules with few atoms of a given
element.

3.4.2 Structural Composition of the Chemical Databases

The structural diversity of the databases can also be quantified in terms of the bond types
that are covered. It can be assumed that the NN model learns that specific composition,
and consequently, if the database used for training a NN model covers a large range of
bond lengths, better results are expected. In the following, bond length distributions
in the reference databases of equilibrium structures (PC9, QM9, and ANI-1E) are
compared with the distributions contained in Tautobase. Figures S7 to S10 show that
the reference and target distributions have a different coverage of bond lengths. The
general finding is that for SetLE9 the overlap between reference and target distributions
is better than for SetG9.

Figure S7 shows that C-C single bonds between C(sp3) atoms are well covered for the
three reference databases compared with Tautobase. The C(sp2)-C(sp2) double bonds
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Figure 3.6: Mean Absolute Error (MAE) by number of atoms of a given element for
the tautomerization energy. A histogram of the number of molecules for different
numbers of heavy atoms is shown in the background. Panels A and B show the results
by number of carbon atoms. Panels C and D shows the results by number of nitrogen
atoms. Finally, panels E and F show the results by number of oxygen atoms. Left panel
shows results for molecules with natoms ≤ 9 the right for molecules with natoms > 9.

are covered differently for the reference datasets: QM9 has the fewest examples of this
type of bond, whereas ANI-1E shows the best coverage. Such bonds are important for
large molecules (natoms > 9) because of the presence of aromatic rings (Figure S8).
Double C(sp2)-C(sp2) bonds close to hetero atoms are poorly covered by all reference
datasets. Those bonds are crucial because they are the main origin of tautomerization
rearrangement.

C(sp2)-N double bonds (Figure S7) are abundantly present in the Tautobase. However,
the coverage of the reference datasets of that type of bond is heterogeneous; ANI-1E
shows the best coverage followed by PC9 and QM9. On the other hand, C(sp2)-N
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bonds close to a heteroatom, more prevalent in larger molecules, are better covered
by QM9 than PC9 whereas C(sp)-N bonds are well covered by all three databases.
Carbon-Oxygen bonds for carbonyl groups are more predominant in SetLE9 and are
well covered for the reference databases. Bonds for enols, esters and others are impor-
tant for the Tautobase; PC9 covers such C-O bonds sufficiently but it is poorly sampled
for QM9. Lastly, while C-O bonds of the type of alcohols and dialkyl ethers are most
sampled for the reference databases they are least important for the Tautobase.

A quantitative measure for the overlap of two distributions is the KL divergenceD(p||q),
see Equation 3.3. The KL divergence analysis indicates that the coverage of the ref-
erence sets is heterogeneous, see Tables S1, S2 and Figure 3.7. There are several
types of C-C bonds that are insufficiently covered, such as C(sp2)-C(sp2) single and
double bonds, or C(ar)-C(ar) bonds. Also, certain types of C-N bonds would require
more data as the bonds involving C(sp3) and C(sp2) with different types of nitrogens.
Coverage of C-O bonds by the reference databases displays a bias toward alcohols,
ethers and esters. Finally, N-N are the types of bond that show a more diverse coverage
between databases, with some cases for which QM9 has a good coverage (N(3)-N(2)
and N(2)-N(2)(aromatic)) but a poor coverage for N(3)-N(3). Interestingly, there are
cases for which QM9 has a good coverage, whereas ANI-1E and PC9 are deficient.
Figure 3.7 shows that none of the reference databases covers all of the predominant
types of bonds present in the Tautobase.

Next, the MAE for a specific number of a particular type of bond (e.g. C-C, C-O, or C-
N) was determined for single isomer energies, see Figure 3.8. The results in Figure 3.8A
show that for C-C bonds and SetLE9 the error for PC9 (orange) and ANI-1x (black)
is constant and well below 1 kcal/mol. On the other hand, for QM9 (red) the error
oscillates without following a clear trend. ANI-1E (light blue) and ANI-1 (dark blue)
behave similarly to one another with a smaller MAE for ANI-1E than the one for ANI-1.

For C-O bonds, the MAE of the prediction of ESI slowly increases for PC9 but remains
well below 1 kcal/mol, whereas for QM9 it starts at above 5 kcal/mol and decreases to
below 1 kcal/mol but always remaining above that for PC9, see Figure 3.8C. The error
for the database of the ANI family is largely constant over the number of bonds. For
ANI-1 the MAE oscillates between 1 kcal/mol and 2 kcal/mol, whereas for ANI-1E and
ANI-1x the MAE is well below 1 kcal/mol, except for zero C-O bonds and ANI-1E.
Considering C-N bonds (Figure 3.8E) it is found that their maximum number is larger
than that for C-O bonds. The magnitude for the MAE for this bond type is at least a
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Figure 3.7: Values of the Kullback-Leibler divergence for different types of bonds
present in the reference databases (QM9,PC9 and ANI-1E) compared with Tauto-
base.Panel A corresponds to SetLE9 and Panel B corresponds to SetG9.
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factor of three larger than that for the C-C and C-O bonds, respectively. Again, PC9
and ANI-1x perform best, followed by ANI-1E (except for molecules with only one
C-N bond). The MAE for QM9 slowly decreases whereas that for ANI-1 is constant at
below 2 kcal/mol up to five C-N bonds after which it sharply increases.

Regarding C-O and C-N bonds, it is clear that the good coverage of ANI-1E helps
to reach small MAE when the number of bonds increases (Figure S7). These results
show that PC9 has a good overall performance because there is an adequate coverage
of different chemical bond types whereas QM9 and ANI-1E have biases toward some
types of bonds (Table S1 and S2). It should be stressed though that such an analysis
excludes the fact that the same type of bond can behave differently given different
chemical environments.

For SetG9 the increase of the error with decreasing number of samples is more apparent.
As discussed before, the MAE observed for larger molecules (natoms > 9) grows propor-
tional with the number of bonds (See Figure 3.8 B, D and F). In this regard, ANI-1 and
ANI-1E are the databases with largest growth rate, followed by PC9 and finally QM9
and ANI-1x. The low MAE for ESI by number of bonds obtained with ANI-1x is a
consequence of the addition of an adequate number of non-equilibrium structures. This
suggests that a lack of chemical diversity can be partially compensated by including
non-equilibrium structures in a database.

3.4.3 Initial Geometry

In the previous sections, the energy of the molecules was computed using the equilib-
rium geometry of the tautomeric pairs computed at the level of theory of the various
reference databases used for training the NNs. However, in practice, it would be of
interest to sidestep the computationally rather expensive optimization of the structures
in the reference dataset (here Tautobase) at the density functional or even higher level
of quantum chemical theory. For this, using empirical force fields is a possibility. A
recent study for 3271 small organic molecules (natoms < 50), similar to those contained
in Tautobase, found typical RMSDs of 0.25 Å to 1 Å between optimized structures at
the B3LYP/6-31G* level of theory compared with those optimized by nine different
force fields, including GAFF, MMFF94, OPLS and others.[212] Considering this, it
is interesting to assess the performance of the NN-based models on FF-optimized
geometries.
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Figure 3.8: Mean Absolute Error (MAE) of the prediction of the energy of single
isomers by number of bonds involving carbon atoms. The number of molecules for
different numbers of bonds is shown as a histogram. Panels A and B correspond to the
results of C-C bonds, panels C and D show the results for C-O bonds and panels E and
F show the results for C-N bonds. Left panel for SetLE9 and right panel for SetG9.

For this analysis, the geometries for molecules from Tautobase were optimized as
described in section 3.2.3 with the MMFF94 force field and then used to evaluate the
tautomerization energies using the five trained NNs. Table S3 shows that the MAE for
the tautomerization and single isomer energy increases for all evaluated models when
the geometry used to evaluate the energies differs from geometries optimized with the
respective ab initio method. In all cases the MAE for ∆ETauto increases by a factor
between 1.5 and 3 compared with the error obtained using the optimized geometries at
the quantum chemical level of theory used to train the NN (see Table 3.2). A similar
effect is observed forESI. It is noticeable that this geometry effect is less pronounced for
databases which contain non-equilibrium structures: ANI-1 shows the smallest increase
of the MAE for ∆ETauto compared with results from using optimized geometries at the
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appropriate level of theory.

Normalized distributions for ∆ETauto using MMFF94 geometries for SetLE9 (Figure
S11C) indicate that the datasets which only cover chemical space (QM9, PC9 and
ANI-1E) perform similarly with the highest values of the outliers close to 15 kcal/mol.
Conversely, the ANI-1 and ANI-1x databases have a more compact distribution with the
maximum values for outliers around 10 kcal/mol. The most challenging case for pre-
dicting tautomerization energies is for SetG9 with geometries generated with MMFF94
(Figure S11D). This demonstrates that the geometry that is used to evaluate a trained ML
model strongly influences the performance. This is also found for all other datasets with
outliers larger than 20 kcal/mol, except for ANI-1x with a maximum of 10 kcal/mol. In
conclusion: scoring a model trained on minimum energy structures computed at a given
level of quantum chemical theory can not be done using optimized structures from
an empirical force field (or from structures at a sufficiently different level of quantum
chemical theory).

To confirm this finding, molecules from the SAMPL2 challenge[199] were evaluated
using geometries generated by six popular force fields (see Section 3.2). The results
(see Figure S12) do not show a correlation between the RMSD between the reference
structure from DFT calculations and the FF-optimized structure and the corresponding
energy differences. There are molecules with RMSD ≤ 0.1 Å which display a signifi-
cant error (> 5 kcal/mol) in the energy predicted by the NN and vice versa. This, again,
confirms the finding that using FF-based (minimum energy) structures for evaluating a
NN-based model trained on (minimum energy) quantum chemical reference data can
lead to considerable errors.

3.4.4 Visualization of Chemical Space

To understand the influence of the different databases studied on the performance of the
models, it is of interest to analyze the coverage of ‘chemical space’. Firstly, molecules
in the databases were deconstructed and their constituent amons (unique chemical
fragments) were enumerated (Figure 3.1B). PC9 contained the largest number of unique
amons (8424), followed by QM9 (3929) and, finally, the ANI family of databases
(1663). There is significant overlap of common amons between the datasets (Figure
3.9A, which suggests that they cover similar regions of chemical space. Regarding
the overlap of the test set (Tautobase) with the databases tested, PC9 is the one which
covers the most amons by number in the reference set, followed by ANI-1E and, QM9
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(Figure 3.9B).

Figure 3.9: A) Venn diagram showing the overlap of amons between the QM9[189],
PC9[51] and ANI[190] family data sets. B) Overlap of amons up to length five between
three popular quantum chemistry datasets (QM9 (69.5 %), PC9 (80.1 %) and ANI-1E
(74.4 %)) and the ‘Tautobase’[87], a collection of experimentally observed tautomers.
Molecules containing other atoms than hydrogen, carbon, nitrogen, and oxygen were
filtered from all datasets.

It is also of interest to consider coverage of chemical space (as quantified by the overlap
of amons between reference and target sets) and to compare this with the prediction
errors for ∆ETauto. The database that contains the largest number of amons of the Tauto-
base is PC9 (1034) which also has the smallest MAE for ∆ETauto (2.60 kcal/mol). This
compares with ANI-1E (961 amons, ∆ETauto = 3.66 kcal/mol) and QM9 (898 amons,
∆ETauto = 3.67 kcal/mol). Considering SetLE9 and SetG9 separately, PC9 performs
best for both, with MAEs of 0.69 kcal/mol and 3.64 kcal/mol, respectively. For SetG9,
containing larger molecules, it is noted that the MAE for QM9 (898 amons) is 3.81
kcal/mol, compared with 4.80 kcal/mol for ANI-1E (961 amons) which can probably be
explained by the fact that QM9 contains more large molecules (Figure S2). Results in
Figure 3.9 show that the databases of the ANI family cover the relevant chemical space
well but the addition of non-equilibrium structures can further improve performance.
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For ANI-1x the MAE on the full dataset is 1.68 kcal/mol, compared with 3.66 kcal/mol
for ANI, whereas for ANI-1 it is 4.59 kcal/mol which is larger than for any of the
other databases. The difference between ANI-1x and ANI-1 is the way by which such
non-equilibrium structures were added to the dataset which apparently can have an im-
portant influence on the final performance of the data set and ML models derived from it.

A more detailed analysis is possible by considering if the amons of the isomers in the
Tautobase are present (or not) in the training databases. For this, a set ‘seen amons’ (all
constituent amons included in the reference database) and ‘unseen amons’ (molecules
for which one or several amons were missing from the reference set) was defined.
The error distributions for both sets were determined and are reported in Figure 3.10.
Perhaps unsurprisingly, the ‘seen amons’ had a larger probability of obtaining a small
error compared to the ‘unseen amons’. Interestingly, PC9, which provides the broadest
sampling of chemical space as quantified by the number of amons in the database,
showed a similar probability error distribution for SetLE9 and SetG9. The errors for
‘unseen amons’ using the NN trained on QM9, a significantly smaller dataset, shows a
larger and more right-skewed distribution of errors. One possible explanation may be
that a better exploration of chemical space helps when predicting energies for molecules
containing chemistry outside that covered by the database.

Regarding the ANI family of databases, the ANI-1 and ANI-1E results have similar
error distributions. However, ANI-1x shows a smaller mean error for both the seen and
unseen sets. These results are another indication that a random sampling of conforma-
tional space does not help improve the NN model predictions. On the contrary, it makes
it worse than when only equilibrium structures are considered. Another notable finding
is that ANI-1x shows similar performance for molecules with seen and unseen amons.
This can be explained given the good sampling of chemical space, which is the same
as for ANI-1E, but combined with a broad exploration of conformational space by a
refinement from ANI-1 using active learning [196].

Rational detection of systematic deficiencies in quantum chemical databases is chal-
lenging because of the high dimensionality of chemical space. For this reason, methods
to visualise chemical space in a digestible way, such as the TMAP algorithm used here,
are highly desirable.

For instance, coloring the nodes of Tautobase TMAP by error of tautomerization energy
(Figure 3.10 F) reveals that structures with azoles containing N-N and N-O bonds corre-
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Figure 3.10: The relationship between chemical space and model reliability. Panels A
to E: The mean average absolute error for molecules from Tautobase with one or more
amons outside the training set is larger than if all amons are present, a trend observed for
all databases. Panel F: Projection of the Tautobase using the TMAP algorithm identifies
‘branches’ of chemical space that are poorly predicted by the neural network models.
The error displayed here is for the QM9 database. TMAPs for all databases used for
training are available as interactive plots which can be viewed in a web browser, which
can be obtained in the supporting information.

late with large errors. Interestingly, KL-divergences for these types of bond distances
suggested that they were underrepresented in the reference sets, see Figure 3.7. The
moieties corresponding to large errors change based on the different databases used to
train the NN model, see Figure S13. Interactive plots are available in the supporting
information.
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3.5 Discussion and Conclusions

The prominence of ML has raised concerns regarding the ’interpretability’ of the mod-
els conceived[166, 213]. This awareness also increases for complex models because
a rational relationship between initial data used for training and resulting prediction
becomes less transparent. Therefore, it is important to develop quantifiable and intuitive
tests for how ML models “work” and how trustworthy predictions by them are[214].
One recently proposed procedure is “post-hoc” interpretation for which the practitioner
analyzes a trained model with the aim to understand what the model has learned from
the data without changing the underlying model[163, 165]. Here, post-hoc interpretabil-
ity techniques were used to investigate the effect of different features of the database
on predicting a chemical property (tautomerization energy). The selected features are
considered important for the construction of robust quantum chemical databases for ML.
In the present case this implied the analysis of individual features of several databases
to quantify how these modify the prediction of a chemical property on an unseen set of
examples using statistics and visualization techniques. With sufficient information from
such an analysis it is expected that it will be possible to identify which features of the
training databases are essential for good performance on a given task, making a rational
design/enhancement of databases for training ML models for a given task possible.

The present work aimed at quantifying and analyzing the suitability of NNs trained on
five different reference data sets (QM9, PC9, ANI-1E, ANI-1, and ANI-1x) to predict
the tautomerization energies of molecules contained in Tautobase. It was found that
depending on which characteristics are considered, the predicted MAEs can behave very
differently and can, in part, be related to geometrical and/or chemical properties encoded
in the databases. Such analyses attempt to digress from “black box” applications of
ML methods and move towards “interpretable ML”. Hence, one of the questions is
“what features need to be present and covered in a training database for application to
a concrete chemical question”. In the present case the databases to choose from were
QM9, PC9, ANI-1E, ANI-1, and ANI-1x’ and the application was computation of the
gas phase tautomerization energy.

The results indicate that the exploration of chemical space is essential for meaningful
results. The coverage of chemical space can be quantified by the chemical diversity
expressed as the number of amons on the database (see Figure 3.9). The energy pre-
diction improves when the overlap of the number of amons in the training set and
the Tautobase increases. If the number of amons in the chemical database does not
cover all the amons on the target set, addition of non-equilibrium structures to the

63



training set can improve the results (see Section 3.4.4). Results obtained with ANI-1
and ANI-1E indicate that including non-equilibrium structures generated from normal
mode sampling does not yield clearly improved performance on the quantity of interest.
However, using a complementary technique such as active learning can substantially
improve the results, as was found for ANI-1x. It is interesting to note that normal
mode sampling was also found to be insufficient for generating sufficiently reliable,
full-dimensional NN-based near-equilibrium potential energy surfaces for harmonic
and anharmonic normal modes.[215]

Another determinant property is the number of heavy atoms in molecules covered
in the database (Section 3.4.1). Not surprisingly, better results are obtained for the
range covered by the database, and if a sufficient number of samples is available, e.g.
when considering the performance depending on the number of heavy atoms in SetLE9.
Outside that range, the energy prediction quality decreases with the number of atoms
for most databases. One of the training databases (ANI-1x) shows good results because
the non-equilibrium structures help in predicting the energies. The present work finds
that the different chemical environments need to be sufficiently covered by the reference
database because functional diversity is key to assure good results.

To summarize the essential findings: the structural composition of the data sets used for
training the NNs (QM9, PC9 and ANI-1E) and the data set to which the trained models
were applied to (Tautobase) can be compared through the Kullback-Leibler divergence
(Section 3.4.2). The overlap between these distributions already provides an indication
how suitable a particular reference data set will be for application to the target task. In
other words: the KL divergence can be used for the rational design of databases for NN
models. It will be of interest to extend this to angles and dihedrals for a comprehensive
exploration of the structural overlap. With respect to the molecular geometries it was
also shown that the minimum energy structure used to evaluate a trained NN is essential
for maintaining its performance.Using the TMAP algorithm it was possible to identify
regions of chemical space that are poorly covered by the trained models. Combination
of the KL-divergence and analysis of chemical coverage through TMAP is found to be
an excellent aid to assess suitability and to further improve databases for specific tasks
(here tautomerization energy) as those considered in the present work, which included
QM9, PC9, ANI-1E, ANI-1 and ANI-1x.

In conclusion, the present work demonstrates that ML-trained models on five different
reference databases and applied to one specific task (tautomerization energy) perform
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with a MAE ranging from 1.7 kcal/mol to 4.6 kcal/mol. The best performing reference
database (ANI-1x with 5 M structures) performs on average by 1 kcal/mol better than
PC9 which contains about two orders of magnitude fewer reference structures (≈ 85 K).
On the other hand, PC9 is chemically more diverse by a factor of 5 (as judged from the
number of amons) compared with the ANI family of databases. This indicates that lack
in chemical diversity can be compensated for by increased number of non-equilibrium
structures. However, the scaling of these two properties is very different. Together with
quantitative descriptors, such as the KL divergence, the present results and analyses
suggest that a rational approach to database generation for specific tasks may be possible.
The present work also lays the groundwork for exploring the prediction of tautomer
ratios in solution.[216]

3.6 Supporting Information

The supporting information for the results of this chapter can be found at https://
pubs.acs.org/doi/10.1021/acs.jctc.1c00363 or at: https://github.
com/LIVazquezS/SI_PhD_Thesis/blob/main/SI_Chapter3.pdf.
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Chapter 4

Uncertainty Quantification

Uncertainty is a personal matter; it is not the uncertainty but your

uncertainty.

Dennis Lindley

This chapter discusses using different uncertainty quantification (UQ) techniques to
explore chemical space. The first technique, Deep Evidential Regression (DER), is
based on the Bayesian probability theory. Therefore, it is assumed that the data follows
a Normal distribution while a Normal Inverse Gamma distribution represents the prior
distribution. This formulation is convenient because, after a small modification on
the output layer of a predefined NN model, it is possible to predict the uncertainty
on the prediction at the same time as the main property (i.e. Energy). The model is
tested through different metrics to quantify its calibration, the quality of its predictions,
and whether prediction error and the predicted uncertainty can be correlated. The
observed variance provides insight into the data quality used for training. Additionally,
the influence of the chemical space covered by the training data set was studied using
a biased database. The results clarify that noise and redundancy complicate property
prediction for molecules. In addition to DER, we tested the Regression Prior (RP)
Model technique, in which an ensemble of models creates a multivariate Gaussian
distribution that is used to parameterise (distillate) a Normal Wishart distribution. This
model is an alternative to creating a bridge between ensemble and single models for
UQ through the use of knowledge distribution. Although the promise of this model is
appealing, in practice, it does not provide adequate results. The main reason behind
this is that the training procedure leads to numerical instabilities that are a result of
theoretical limitations. Additionally, the proposed data distribution is not flexible
enough to characterize the complexity of the data used.



Part of the results presented in this chapter have been previously published in Chem. Sci., 2022,

13, 13068-13084.

4.1 Deep Evidential Regression

4.1.1 Introduction

Undoubtedly machine learning (ML) models are becoming part of the standard compu-
tational/theoretical chemistry toolbox. This is because it is possible to develop highly
accurate trained models in an efficient manner. In chemistry, such ML models are used
in various branches ranging from the study of reactive processes,[217, 218] sampling
equilibrium states,[219], the generation of accurate force fields,[96, 100, 220–222], to
the generation and exploration of chemical space.[56, 75, 223] Nowadays, an extensive
range of robust and complex models can be found.[119, 159, 188, 224, 225] The quality
of these models is only limited by the quality and quantity of the data used for train-
ing.[62, 96] For the most part, however, the focus was on obtaining more extensive and
complex databases as an extrapolation from applications in computer science. There-
fore, it is believed that more significant amounts of data will beat the best algorithms.[27]

On the other hand, it has been found that even the best model can be tricked by poor
data quality.[226–229] For example, in malware detection it was found that ML-based
models can fail if the training data does not contain the event the model had been
designed for.[226, 228] The notion of underperforming models trained on low-quality
data ("garbage in-garbage out") can be traced back to Charles Babbage.[230] The ML
community is starting to notice the importance of data quality used for training and
the relevance to balance amount of data (“big data”) versus quality of data. From
other fields in Science, it is known that using biased and low-quality data in ML can
result in catastrophic outcomes[231] such as discrimination towards minorities,[232]
reduction in patient survival, and the loss of billions of dollars.[233] As a result of these
findings, the concept of "smart data" emerged[234–236] which describes data sets that
contain validated, well-defined and meaningful information that can be processed.[235]
However, specifically for chemical applications, an important additional consideration
concerns the type of data that is required for predicting a particular target property.

Considering that data generation for training quantum ML models implies the use
of considerable amounts of computational power[160, 161, 237] which increases the

68



carbon footprint and makes the use of ML difficult for researchers without sufficient re-
sources, it is essential to optimize the full workflow from conception to a trained model.
With this in mind, the concept of smart data is of paramount importance for conceiving
future ML models in chemistry. This necessity has been considered in previous reviews
about ML in chemistry[62, 96]; however, it is still poorly understood how the choice
of training data influences the prediction quality of a trained machine-learned model.
One such effort quantitatively assessed the impact of different commonly used quantum
chemical databases on predicting specific chemical properties.[88] The results showed
that the predictions from the ML model are heavily affected by data redundancy and
noise implicit in the generation of the training dataset.

Identifying missing/redundant information in chemical databases is a challenging but
necessary step to ensure the best performance of ML models. In transfer learning
from a lower level of quantum chemical treatment (e.g. Møller-Plesset second order
theory - MP2) to the higher coupled cluster with singles, doubles and perturbative triples
(CCSD(T)) it has been found for the H-transfer barrier height in malonaldehyde (MA)
that it is the selection of geometries included in TL rather than the number of additional
points that leads to a quantitatively correct model.[162] This has been further confirmed
by computing tunneling splittings for MA from quantum instanton calculations.[238] It
is also likely that depending on the chemical target quantity of interest the best database
differs from the content of a more generic chemical database. Under such circumstances,
uncertainty quantification (UQ) on the prediction provides valuable information on how
prediction quality depends on the underlying database used for training the statistical
model.

For chemical applications, ensemble methods which involve the training and evaluation
of several independently trained statistical models to obtain the quantities of interest
(average and variance for an observation) have been used.[239, 240] Despite their
widespread use their disadvantage is the high computational cost they incur. An alter-
native to this are methods based on Gaussian process regression[241, 242]. However,
these are limited by the size of the database that can be used. As ML models become
more prevalent in different fields, new and efficient techniques for UQ have emerged
which are potentially useful in chemical applications as well. These include Bayesian
NNs[243] and single deterministic networks[244] with good prospects to be used in
chemistry. One challenge for Bayesian NNs is that they need to be able to predict
probability distributions over network parameters. This can become computationally
intractable for NNs with a large number of parameters and data.[243] On the other hand,
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single deterministic networks are of particular interest because they are computationally
cheaper given that these models need to train and evaluate only one model allowing to
predict the variance for forecasting using a single deterministic model.

Some methods for UQ based on single deterministic networks have been proposed,
among them regression prior networks[29], mean variance estimation[245], or Deep Ev-
idential Regression (DER).[30] This last method has been recently applied in molecular
discovery and inference for virtual screening.[31] In a recent benchmark study[245]
four different UQ approaches were tested on a range of datasets. However, none of the
methods tested performed best on all tasks. Part of this finding may be related to the
notion that 2D networks were applied to the 3D problem of molecular structure which
implies that such methods do not describe the system adequately and are not suitable
to for uncertainty prediction.[245] Finally, it was concluded that UQ is a challenging
task which can be highly specific for the problem at hand. However, high dimensional
NNs together with random forest or mean variance estimation (which is a type of single
deterministic networks) were among the best-performing approaches.

The aim of the present study is twofold. First a model for uncertainty prediction and
quantification rooted in deep evidential regression is implemented as a final layer in a
message passing NN based on the PhysNet architecture. This model is referred to as
PhysNet-DER. Starting from the QM9 dataset a variety of metrics for hyperparameter
optimization are tested quantitatively. Secondly, the trained model is used to address
two concrete chemical questions at a molecular level to highlight the value of UQ
in practical applications. They include characterization of a biased database and the
prediction of tautomerization energies. Both applications pose different challenges to
the trained model and associated uncertainty quantification in that details of chemical
bonding encoded in the data set used for training directly impacts the quality of the
predictions. Finally, the results are discussed in a broader context.

4.1.2 Methods

As a regression model, PhysNet[32] was selected for the present purpose. PhysNet was
implemented within the PyTorch framework [147] to make it compatible with modern
GPU architectures and in line with community developments. The original architecture
of PhysNet was modified to output the energy and three extra parameters required for
the representation of the uncertainty (Figure 4.1). Following earlier work,[30] it is
assumed that the targets to predict (here energies Ei for samples i) are drawn from an

70



independent and identically distributed (i.i.d) Gaussian distribution with unknown mean
(µ) and variance (σ2) for which probabilistic estimates are desired:

(E1, . . . , EN) ≈ N (µ, σ2)

For modeling the unknown energy distribution, a prior distribution is placed on the un-
known mean (µ) and variance (σ2). Following the assumption that the values are drawn
from a Gaussian distribution, the mean can be represented by a Gaussian distribution
and the variance as an Inverse-Gamma distribution

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

where Γ(·) is the gamma function, γ ∈ R, ν > 0, α > 1 and β > 0.

The desired posterior distribution has the form:

q(µ, σ2) = p(µ, σ2|E1, . . . , EN).

where p indicates a generic distribution. Following the chosen representations for
mean and variance, it is assumed that the posterior distribution can be factorized as
q(µ, σ2) = q(µ)q(σ2). Consequently, the joint higher-order, evidential distribution is
represented as a Normal-Inverse Gamma distribution (Figure 4.1) with four parameters
(m = {γ, ν, α, β}) that represent a distribution over the mean and the variance.

p(µ, σ2|γ, ν, α, β) = βα
√
ν

Γ(α)
√
2πσ2

(
1

σ2

)α+1

Exp

(
−2β + ν(γ − µ)2

2σ2

)
(4.1)

The four parameters that represent the Normal-Inverse Gamma distribution are the
output of the final layer of the trained PhysNet model (Figure 4.1) and the total predicted
energy for a molecule composed of N atoms is obtained by summation of the atomic
energy contributions Ei:

E =
N∑

i=i

Ei (4.2)

In a similar fashion, the values for the three parameters (ν, α, and β) that describe
the distribution of the variance for a molecule composed of N atoms are obtained by
summation of the atomic contributions and are then passed to a softplus activation
function to fulfill the conditions given for the distribution (γ ∈ R and ν, α, β > 0)

α = log

(
1 + exp

(
N∑

i=i

αi

))
+ 1

β = log

(
1 + exp

(
N∑

i=i

βi

))

ν = log

(
1 + exp

(
N∑

i=i

νi

))
(4.3)
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Figure 4.1: Modified PhysNet for uncertainty quantification. A Schematic 3D represen-
tation of the Negative Inverse Gamma distribution as a function of the mean (µ) and
the variance (σ2) (See Equation 4.1). B The modified architecture of PhysNet for the
addition of the ’evidential’ layer. The input layer receives atomic positions, atomic
numbers, charges, and energies. In the next step, those values are passed to the regular
architecture of PhysNet. The final layer is modified to output five values (Ea, Qa, α,
β, and ν) per each atom in a molecule. In the next step, the values of the outputs are
summed by each molecule. Then, the three extra parameters are passed to a SoftPlus
activation function (See Equation 4.3). The final output of the model are the values that
characterize the Normal Inverse Gamma distribution. The mean value for the prediction
(Equation 4.4) corresponds to the energy of the predicted molecule, and the parameters
to determine the variance of the predicted energy which can be obtained using Equations
4.5 and 4.6.

Finally, the expected mean (Equation 4.4), and the aleatory (Equation 4.5) and epistemic
(Equation 4.6) uncertainty of predictions can be calculated as:

E[µ] = γ (4.4)

E[σ2] =
β

α− 1
(4.5)

V ar[µ] =
β

ν(α− 1)
(4.6)

Including the new parameters in the output of the neural network changes the loss
function of the model. The new loss function consists of a dual-objective loss L(x) with
two terms: the first term maximizes model fitting and the second penalizes incorrect
predictions according to

L(x) = LNLL(x) + λ(LR(x)− ε) (4.7)

In equation 4.7, the first term corresponds to the negative log-likelihood (NLL) of the
model evidence that can be represented as a Student-t distribution (Equation 4.8)

LNLL(x) =
1

2
log
(π
ν

)
− α log(Ω) + (α +

1

2
) log((x− γ)2ν + Ω)

+ log

(
Γ(α)

Γ(α + 1
2
)

) (4.8)
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where Ω = 2β(1 + ν) and x is the value predicted by the neural network.[30]. The
second term in Equation 4.7, LR(x), corresponds to a regularizer that minimizes the
evidence for incorrect predictions (Equation 4.9).

LR(x) = |x− γ| · (2ν + α) (4.9)

The hyperparameter λ controls the influence of uncertainty inflation on the model fit
and can be calibrated to obtain more confident predictions. For λ = 0, the model is
overconfident. i.e. results are less likely to be correct. Alternatively, for λ > 0, the
variance is inflated, resulting in underconfident predictions.

The neural network architecture was that of standard PhysNet, with 5 modules con-
sisting of 2 residual atomic modules and 3 residual interaction modules. Finally, the
result is pooled into one residual output module. The number of radial basis functions
was kept at 64, and the dimensionality of the feature space was 128. Electrostatic and
dispersion corrections were not used for the training to keep the model as simple as
possible. All other parameters were identical to the standard version of PhysNet[32],
unless mentioned otherwise.

For training, a batch size of 32 and a learning rate of 0.001 were used. An exponential
learning rate scheduler with a decay factor of 0.1 every 1000 steps and the ADAM
optimizer[146] with a weight decay of 0.1 were employed. An exponential moving
average for all the parameters was used to prevent overfitting. A validation step was
performed every five epochs.

Hyperparameter Optimization

The hyperparameter λ in equation 4.7 was optimized by training a range of models with
different values of λ, using a portion of the QM9 dataset consisting of 31250 structures:
25000 structures for training, 3125 for validation and the remaining 3125 for testing.
The splitting of the selected molecules of QM9 was performed randomly. The top panel
of Figure S7 shows that the energy distributions from the training and test sets overlap
closely which demonstrates that the dataset used for training is representative of the
overall distribution of energies. Models were trained for 1000 epochs and the values
for λ were 0.01, 0.1, 0.2, 0.4, 0.5, 0.75, 1.0, 1.5, and 2.0. The calibration of the NN
models is required to assure that the computed uncertainties can be related with the
obtained errors on the prediction. It should be mentioned that although this procedure
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is computationally expensive, it only needs to be done once.

Metrics for Model Assessment and Classification

In order to compare the performance/quality of the trained models, suitable metrics
are required. These metrics are used to select the best value for the hyperparameter λ.
Different metrics that have been reported in the literature[246–248] were evaluated.

The first metric considered is the Root Mean Variance (RMV) defined as:

RMV(j) =

√
1

|Bj|
∑

t∈Bj

σ2
t (4.10)

Here, σ2
t is the variance in the j−th bin Bj . For the construction of the bins Bj the data

is first ranked with respect to the variance and then split into bins {Bj}Nj=1 of size N
which is adjustable and the effect of changing it on RMV is assessed when discussing
the results.

The next metric was the empirical Root Mean Squared Error (RMSE):

RMSE(j) =

√
1

|Bj|
∑

t∈Bj

(yi − ŷt)2 (4.11)

where yi is the i-th prediction and ŷt is the average value of the prediction in a bin Bj .
Using equations 4.10 and 4.11, the Expected Normalized Calibration Error (ENCE):

ENCE =
1

M

M∑

j=1

|RMV(j)− RMSE(j)|
RMV(j)

(4.12)

can be obtained. Additionally, it is possible to quantify the dispersion of the predicted
uncertainties for which the Coefficient of Variation (Cv) is

Cv =
1

µσ

√√√√ 1

M − 1

M∑

i=1

(σi − µσ)2 (4.13)

In equation 4.13, µσ is the mean predicted standard deviation and σt is the predicted
standard deviation for M samples.

The last metric used for the characterization of the predicted variance of the tested
models is the ’sharpness’

sha =
1

N

N∑

i=1

var(Fn) (4.14)
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In equation 4.14, the value var(Fn) corresponds to the variance of the random variable
with cumulative distribution function F at point n.[247] The purpose of this metric
is to measure how close the predicted values of the uncertainty are to a single value.[249]

In addition to the above metrics, calibration diagrams were constructed with the help
of the uncertainty toolbox suite.[250] Calibration diagrams report the frequency of
correctly predicted values in each interval relative to the predicted fraction of points in
that interval.[247, 251] Another interpretation of the calibration diagram is to quantify
the ’honesty’ of a model by displaying the true probability in which a random variable
is observed below a given quantile; if a model is calibrated this probability should be
equal to the expected probability in that quantile.[250]

The results obtained for the test dataset were then classified into four different categories
following the procedure described in Kahle and Zipoli.[252] For the present purpose,
ε∗ = MSE (mean squared error) and σ∗ = MV (mean variance), and the following
classes were distinguished:

• True Positive (TP): εi > ε∗ and σi > σ∗. The NN identifies a molecule with a
large error through a large variance. In this case, it is possible to add training
samples with relevant chemical information to improve the prediction of the
identified TP. Alternatively, additional samples from perturbed structures for a
particular molecule could be added to the increase chemical diversity.

• False Positive (FP): εi < ε∗ and σi > σ∗ in which case the NN identifies a
molecule as a high-error point but the prediction is correct. In this case, the model
is underconfident about its prediction.

• True Negative (TN): εi < ε∗ and σi < σ∗. Here the model recognizes that a
correct prediction is made with a small value for variance. For such molecules
the model has sufficient information to predict them adequately by assigning a
small variance. Therefore, the model does not require extra chemical information
for an adequate prediction.

• False Negative (FN): εi > ε∗ and σi < σ∗. The model is confident about its
prediction for this molecule but it actually performs poorly on it. One possible
explanation for this behaviour is that molecules in this category are rare[253] in
the training set. The model recognizes them with a small variance but because
there is not sufficient information the target property (here energy) can not be
predicted correctly.
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In the above classifications, i refers to a particular molecule considered for the evaluation.
The classification relies on the important assumption that the MSE and the MV are
comparable in magnitude which implies that the variance predicted by the model is a
meaningful approximation to the error in the prediction. A second desired requirement
is to assure the validity of the classification procedure and that the obtained variance is
meaningful is that MSE > MV. This requirement is a consequence of the bias-variance
decomposition of the squared error[145]

E(MSE) = E[(y(x)− µ(x))2|x=x0 ]

= σ2
︸︷︷︸

Irreducible Error

+ [Eµ(x0)− y(x0)]
2

︸ ︷︷ ︸
Bias2

+E[µ(x0)− Eµ(x0)]2︸ ︷︷ ︸
Variance

(4.15)

Equation 4.15 states that the expected value (E) of the MSE consists of three terms:
the irreducible error, the bias, and the variance. Therefore, the MSE will always be
smaller than the variance except for the case that µ(x) = y for which those quantities
are equal.[254].

As a measure of the overall performance of the model, the accuracy is determined
as[63]:

ACC =
NTP +NTN

NTP +NFN +NTN +NFP

(4.16)

In equation 4.16, NTP, NTN, NFP, and NFN refers to the number of true positive, true
negative, false positive, and false negative samples, respectively. Additionally, it is
possible to compute the true positive rate (RTP) or sensitivity as:

RTP =
NTP

NTP +NFN

(4.17)

As a complement to equation 4.17, the true positive predictive value (PTP) or precision

is

PTP =
NTP

NTP +NFP

(4.18)

Model Performance for Tautomerization

As a final test, the performance of the evidential model was evaluated using a subset of
the Tautobase[87], a public database containing 1680 pairs. Previously, those molecules
were calculated at the level of theory of the QM9 database.[88, 255] For the purpose of
the present work, only molecules that contain less than nine heavy atoms were included.
Three neural networks with λ values of 0.2, 0.4, and 0.75 were trained with the QM9
database. The QM9 database was filtered to remove molecules containing fluorine and
those that did not pass the geometry consistency check. The size of final database size
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was 110 426 molecules. That number was split on 80 % for training, 10% for validation
and 10% for testing. The three models were trained for 500 epochs with the same
parameters as for the hyperparameter optimization.

4.1.3 Results

In this section the calibration of the network is analyzed and its performance for different
choices of the hyperparameter is assessed. Then, an artificial bias experiment is carried
out and finally, the model is applied to the tautomerization data set. Before detailing
these results, a typical learning curve for the model is shown in Figure S1. As expected,
the root mean squared error obtained for the test set decreases with increasing number
of samples. For the mean variance, see Figure S2, it is found that its magnitude reduces
up to a certain size of the training set after which it increases again. This observation is
further discussed in “Discussion and Conclusions”.

Calibration of the Neural Network

The selection of the best value for the hyperparameter λ can be related to the calibration
of the neural network model. Ideally, a calibrated regression model should fulfill the
condition[246] that

∀σ : Ex,y[(µ(x)− y)2|σ(x)2=σ2 ] = σ2

where E is the expected value for the squared difference of the predicted mean evaluated
at x minus the observed value y. In other words: the squared error for a prediction can
be directly related to the variance predicted by the model.[246]

Figure 4.2 compares the root mean squared error with the root mean variance for a
number of bins (N = 100) and shows that the correlation between RMSE and RMV
can change between different intervals. Analyses were also carried out for different
numbers N of bins and the effect on RMV was found to be negligible, see Figure S3.
Additionally, the slope of the data can be used as an indicator as to whether the model
over- or underestimates the error in the prediction. A slope closer to 1 indicates that
the model is well-calibrated. Consequently, the predicted variance can be used as an
indicator of the error with respect to the value to be predicted. The results in Figure 4.2
also show that smaller values of λ = (0.01, 0.2, 0.4) result in increased slopes of the
RMSE versus RMV curve, i.e. leads to less well-calibrated models, resulting in a model
that is overconfident in its predictions. Results that are more consistent with a slope
of 1 are obtained for λ = 1. However, for all trained models it is apparent that RMSE
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Figure 4.2: Empirical root mean squared error compared with the root mean variance of
the evidential model trained on 25000 structures from the QM9 database. The values
were divided in 100 bins ranked with respect to the predicted variance, 25 bins with
32 samples and 75 with 31 samples were considered. The value of λ together with the
slope (m) from a linear regression analysis and the Pearson correlation coefficient (r2)
are given in the legend.

and RMV are not related by a “simple” linear relationship as is sometimes assumed in
statistical modeling.

In previous studies,[247] the dispersion of the predicted standard deviation was consid-
ered as a measure of the quality of a regression model. Hence a wider distribution of
the predicted standard deviation by the model is desired. To remove the influence of
pronounced outliers, Figure 4.3A shows the distributions up to 99% of the predicted
variance. It is clear that the center of the distribution, and its width, depend on λ. Larger
values of the hyperparameter lead to wider distributions. However, the displacement
of the center of mass of the distribution indicates that the standard deviation will be
consistently overestimated. Also, p(σ) is not Gaussian but rather resembles the inverse
gamma distribution that was used as prior for the variance.

Predicted standard deviations from machine learned models must follow some char-
acteristics that help to assess the quality of model predictions.[247] Among those
characteristics, it is expected that the distribution of the predicted variance is narrow, i.e.
will be ’sharp’. This has two objectives, the first is that the model returns uncertainties
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that are as tight as possible to a specific value.[249] With this property the model gains
confidence on its prediction. The second goal of a ’sharp’ model is that it is able to
capture the ’trueness’[256], i.e. the distance between the true value and the mean of
the predictions, on the forecast. Another desired characteristic is that p(σ) is disperse
and does not return a constant value for the uncertainty which would make the model
likely to fail for predictions on molecules outside the training data and compromise its
generalizability.

The previously described characteristics of the distribution of uncertainties are related
to the value of the hyperparameter λ in the loss function (Equation 4.7) because, as
can be seen in Figure S6, the MSE by percentile is independent on the choice of λ.
Therefore, the model should be calibrated by selecting a value of the hyperparameter
that fulfills the desired characteristics for the distribution of uncertainties.

Figure 4.3A shows that the spread of the distribution of standard deviations increases
with increasing λ. However, the second desired feature for those distribution - sharpness
- decreases with increasing λ to become almost constant for λ ≥ 0.75. In consequence
of this contradictory behaviour, it is necessary to find a value of λ that yields an accurate
estimation of the uncertainty but it does not return a distribution of uncertainties but
rather a constant value for each case. It is important to notice that both characteris-
tics, sharpness and width of the distribution, are equally important and one of them
should not be sacrificed in favour of the other.[247] In other words: a calibrated model
is characterized by uncertainty distributions with a certain sharpness and a certain width.

A deeper understanding of the difference between the error of a predicted value and
the predicted variance can be obtained through the ENCE (Equation 4.12) as described
in the methods section. This metric is similar to the expected calibration error used
in classification[247]. The ENCE quantifies the probability that the model incorrectly
predicts the uncertainty of the prediction made. Figure 4.3B reports the values of
ENCE (blue line) and shows that, typically, smaller values for ENCE are expected for
increasing hyperparameter λ. For λ = 0.4, the value of ENCE increases as opposite of
the expected trend because the predicted value of the RMSE is larger than the value for
RMV for most of the considered bins. However, it is clear that for λ ≥ 0.5, the ENCE
is almost constant - which indicates that, on average, the model has a low probability to
make incorrect predictions.

As a complement to the ENCE metric, the coefficient of variation (Cv) was also com-
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Figure 4.3: Metrics for the distribution of predicted variance. A Kernel density estimate
of standard deviation(σ =

√
Var) for different values of hyperparameter λ. Values up

to the 99% percentile of the variance were considered. The internal arrows show the
’width’ of the distributions. Dotted lines inside the distribution report their sharpness.
Not all distributions are shown for clarity. B Evolution of the Expected Normalized
Calibration Error (ENCE), sharpness, and the Coefficient of Variation (Cv) depending
on λ.

puted (red trace in Figure 4.3B). This metric is considered to be less informative because
the dispersion of the prediction depends on the validation/test data distribution[247,
257]. However, it is useful to characterize the spread of standard deviations because
it is desired that the predicted uncertainties are spread and therefore cover systems
outside the training data which help to generalize the model and make it transferable
to molecules outside the training set. Comparing the results from Figure 4.3A and
the values for Cv in Figure 4.3B, it is found that the largest dispersion is obtained
for small values of λ. This indicates that the standard deviations for all predictions
are concentrated in a small range of values for values in the 95th percentile of the
distribution. For λ ≥ 0.75 both ENCE and Cv values do not show pronounced variation.
It should be noted that the distributions in Figure 4.3A are restricted to the 99% quantile
of the data; on the other hand, the values for Cv covered the whole range of data. If the
complete range of data is analyzed, it is possible to arrive at wrong conclusions. Figure
4.3B shows that for λ = 0.5, the Cv value is large which suggests a flat distribution
(Figure S4), however it should be noticed that this behaviour arises primarily due to
pronounced outliers that impact the averages used for the calculation. However, 95% of
the distribution is concentrated around a small range of variances as shown in Figure
4.3A. Nevertheless, if only 95% of the data is studied, it is found that λ ≥ 0.5 yields
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increased CV (see Figure S5).

As shown in Figure 4.3A, the center of mass of P (σ) displaces to larger σ with increas-
ing λ. A more detailed analysis of the difference between MSE and MV for different
percentiles of the variance was performed (Figure S6). Following the bias-variance
decomposition of the squared error (Equation 4.15), the bias of the model can be quanti-
fied as a function of the different values of λ. Figure S6 shows that the MSE is constant
regardless of the value of the hyperparameter λ or the percentile of the variance. On
the other hand, the variance increases as a function of λ but it is constant regarding
the value of the percentile with the exception of λ = 1. Thus, the MV is larger than
the MSE which is counter-intuitive in view of the bias-variance decomposition of the
squared error. Finally, it is clear that the difference between MSE and MV decreases
as the value of λ increases. This indicates that the assumed posterior distribution does
not correctly describe the data and, as a consequence, it can not adequately capture the
variance of a prediction. In other words, a better "guess" of the posterior will improve
the predicted variance.

A common method to judge whether a model is well-calibrated is by considering the
calibration curves described in the methods section. The results in Figure 4.4 show
that, as λ increases, the model is closer to the diagonal which indicates perfect cali-
bration. The best calibrated models are obtained for small values of λ (λ = 0.1 and
λ = 0.2). Calibration curves help to evaluate the ’honesty’ of the model predictions.
Previously,[31] calibration curves were employed to select a suitable value for λ using
the SchNet architecture[258] for QM9. These results largely agree with what is found
here with λ = 0.1 and λ = 0.2 as the best values. Although calibration curves are
extensively used in the literature to assess the quality of uncertainty predictions by
ML models, they also have weaknesses that complicate their use. For example, it was
reported[246] that perfect calibration is possible for a model even if the output values
are independent of the observed error. Furthermore, it was noticed[246] that calibration
curves work adequately when the uncertainty prediction is degenerate (i.e. all the output
distributions have the same variance) which is not the desired behavior. In addition
to this, it was found that the shape of these curves can be misleading because there
are percentiles for which the model under- or overestimates the uncertainty. Then the
calibration curves need to be complemented with additional metrics for putting their
interpretation in perspective. Here, the analysis of calibration curves was complemented
by using the miscalibration area (the area between the calibration curve and the diagonal
representing perfect calibration). Using this metric, it is clear that λ values of 0.75 have
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Figure 4.4: Calibration curves with respect to the hyperparameter λ. The x-axis shows
the predicted probability to obtain the correct value for the error in a given percentile,
the y-axis shows the true probability. The trend line shows the behavior of a perfectly
calibrated model. Inside the plot, the area between the curve and the trend line, also
called Miscalibration Area, is shown as a function of the hyperparameter λ. A smaller
miscalibration area indicates a better model.

a performance as good as λ = 0.1 and λ = 0.2.

Classification of Predictions

The effect of bias in the training set for PhysNet-type models was previously found to
negatively impact prediction capabilities across chemical space.[88] In the context of
uncertainty quantification, it is also of interest to understand how the predicted variance
can be related to the error in the prediction for an individual prediction. For this, the
relationship between the predicted variance and the error of prediction was studied
following a classification scheme, see methods section. To this end, the subset of QM9
used for hyperparameter optimization was considered. Then the molecules in the test
set were evaluated with the models trained with different values of the hyperparameter λ.

For all the tested models, the largest percentage of molecules (≈ 80%) was found to
be True Negatives (TN), see Figure 4.5A. This indicates that the model recognizes for
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Figure 4.5: Results of the classification procedure. A Confusion matrix with respect
to the value of the hyperparameter λ, inside each panel is the number of molecules
that belong to the defined categories. The abbreviations refer to TP: True Positive, FP:
False Positive, TN: True Negative, and FN: False Negative for information in how those
categories are defined consult the methods section. B Accuracy (green, Equation 4.16),
sensitivity (blue, Equation 4.17), and precision (red, Equation 4.18) depending on λ. C
The MSE and MV for the full set of molecules as a function of λ. The Mean Variance
for λ = 0.01 is not shown for clarity. The inset of the plot shows the behavior for
λ ≥ 0.75. D Chemical structures of the top 5 most common molecules in each of the
four classes.
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most of the samples that there is sufficient information for a correct prediction. On the
other hand, molecules classified as True Positives (TP) correspond to samples for which
predictions are difficult. Hence, these molecules lie outside the training distribution
because they are associated with large prediction errors and the model is ’aware’ of
this. As expected, the number of TP and FP increases with increasing λ. This is a
consequence of the inflation of uncertainty by making the model less confident about its
prediction which results in misclassification of molecules because - as described before
- the error in the prediction is independent on the value of λ, see Figure S6. Finally, the
number of False Negative (FN) samples in the data is approximately independent on λ.
As described before, the molecules in this category contain information on the boundary
of the training distribution which compromises the model’s prediction capability. The
constant number of FN is indicative of a systematic problem that can only be corrected
by providing additional samples of similar molecules. The distribution of FP and FN
was further analyzed in Figure S7. The results indicate that the categories distribute
uniformly over the energies sampled. It is also observed that false negatives (i.e. "un-
derconfident") tend to be more present at smaller total energy (∼ −65 eV) whereas
false positives ("overconfident") are more common for larger total energy (∼ −80 eV).
Furthermore, the number of FPs decreases rapidly with decreasing value of the hyper-
parameter λ, whereas for FNs this number is rather insensitive to λ, see also Figure 4.5A.

A summary of the relationship between the four classifications in term of model accu-
racy, sensitivity, and precision is given in Figure 4.5B. In all cases the accuracy of the
model is appropriate, since the largest part (≈ 90%) of the studied samples are correctly
predicted (i.e. TN) and the variance reflects the prediction error. On the other hand,
the precision of the model is also high (≈ 80%) but starts to decrease as λ increases.
In the present context, precision is a measure for the model’s capability to recognize
‘problematic’ cases which also correspond to a real deficiency in the model which can
be assessed by comparing the prediction with the true value and the predicted variance.
It is expected that as the model becomes more underconfident, the precision decreases
as there are more molecules misclassified due to inflation of the uncertainty. Conversely,
sensitivity describes how many of the molecules that present a problem in the prediction
are identified by the model. Here, the sensitivity increases for λ > 0.5: as the model
becomes less confident, the probability to detect samples that are truly problematic
increases. It should, however, also be pointed out that the numerical values for (ϵ∗, σ∗)

to define the different categories will impact on how the classifications impact model
characteristics such as “precision” or “sensitivity”.
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The MV and MSE for the complete set of samples as a function of λ are provided in
Figure 4.5C. It is found that with the exception of λ = 0.01 and λ = 0.5, MV and
MSE are comparable, which is a desired characteristic of the model. However, since it
is additionally desirable that MV<MSE the variance obtained by the model accounts
for the variance term in equation 4.15. Therefore, the difference between MSE and
MV is a constant value that corresponds to the combination of the bias of the model
and the irreducible error. The advantage of this definition is that the variance can be
mainly attributed to the data used for training. This provides a rational basis for further
improvement of the training data. It is noted that the condition MV<MSE is only
fulfilled for λ = 0.75 and λ > 1.5. A summary with the values of all the metrics tested
for calibration is given in Table S1.

Figure 4.5D and Figures S8 to S11 present concrete molecules from each of the four
categories. Although the molecules used in the training, validation and test sets were
kept constant for the different models, the molecules identified as outliers differed
for each value of λ. However, it is instructive to identify molecules that appear more
frequently in the various tests. These chemical structures are studied in more detail on
the following sections with the aim to identify systematic errors and sampling problems
and how they can be corrected.

Artificial Bias Experiment

To provide a more chemically motivated analysis of predicted energies and associated
variances, a model was trained using the first 25k molecules of QM9. The question
addressed is whether predicted energies and variances for molecules not used in the
training of the model are more likely to be true positives than for molecules with little
coverage in the training set. Since the structures in QM9 were derived from graph
enumeration, the order of the molecules in the database already biases certain chemical
motifs, such as rings, chains, branched molecules and other features.

Figure 4.6A reports the Tree MAP (TMAP) projection[86] of the entire QM9 database
(pink) and the first 25k molecules (blue). TMAP is a dimensionality reduction technique
with good locality-preserving properties for high dimensional data such as molecular
fingerprints. Analysis of the projection suggests that, as a general structural bias, the
first 25k molecules over-represent aromatic heterocyclic, 5- and 6- membered rings, and
structures with multiple substituted heteroatoms with regards to the relative probability
of other structures also present in QM9.
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For training the NN, as described in the methods section, 31500 structures were ran-
domly split (train/validation/test of 0.8/0.1/0.1) and a model with λ = 0.4 was trained
to make predictions on the test set. A TMAP projection of the test and train compounds
is shown in Figure 4.6C. The connectivity of the different tree branches on the TMAP
provides information about the local similarity of the molecules where dense regions
of the map correspond to clusters of high similarity. The average degree i.e. number
of edges between one molecule and its neighbors, for the TNs in the test set - which
was the majority class (≈ 90% of the test samples) - was 2.0 compared with classes FN
(169 molecules), TP (25 molecules), and FP (1 molecule) which had average degrees of
1.7, 1.3, 1.0. The lower connectivity for FP compared with TN indicates that “good pre-
dictions for the right reason” are more likely if coverage of particular structural and/or
chemical motifs is better. Furthermore, it is observed that FPs have a low connectivity
which indicates that these molecules are ’rare’ in the training set. On the other hand,
the different sample sizes of the four classes need to be kept in mind when generalizing
such conclusions.

The TMAP projection of the test set in Figure 4.6B shows the chemical similarity be-
tween specific molecules seen during training or testing. In general, molecules identified
as TPs contained common scaffolds seen during training in combination with unusual
substituents. For example, the moiety of imidazole (a five-membered 1,3-C3N2 ring)
was a common fragment in the training set and lies in the biased region of chemical
space depicted in Figure 4.6A. Common true positives contained this imidazole scaffold
inside uncommon fused three ring systems. When the model makes predictions for
compounds close in chemical space to molecules of which it has seen diverse examples
in the training set, the estimates of variance appear to be more reliable.

Figure 4.6D reports three examples of false positives (i.e. molecules with high error and
low predicted variance) in the test set. The molecules in the training set are labelled as i,
iii and v, whereas those used for prediction from the test set were ii, iv and vi. The pair
(i/ii) consists of a diazepane core that goes through a double bond migration. Although
the rest of the structure is conserved for i and ii, the error in the prediction for molecule
ii (test) is ≈ 0.1 eV, but the predicted variance is the same for molecules i and ii. A
possible explanation is that the model recognizes that i and ii are similar which leads
to assigning a small variance to ii. However, this contrasts with the energy difference
between molecules i and ii which is ≈ 0.5 eV.
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Figure 4.6: Artificial bias experiment. A TMAP of the QM9 database. In blue the
structures used for training, the inset shows that the selected part of the database bias the
data towards specific chemistry, in this case, aromatic 6- and 5-membered heterocyclic
rings scaffolds. In pink, the rest of the structures on QM9. B TMAP of the reduced
dataset. In pink the structures used for training and validation and in blue the selected
random compounds used for test. C TMAP of the test set. On top TMAP, for the
MSE and down the corresponding for variance. The colormaps which span from the
minimum value (green) to 1σ (red). D Pairs of similar molecules (i/ii), (iii/iv), and
(v/vi) for which one molecule was in the training set (top) and the related molecule
was in the test set (bottom) with reference, prediction and difference energies displayed
together with associated variance.

Pair (iii/iv) involves an oxepane ring with a carbonyl (iii) which is in the training set
and the prediction is for an oxabicycloheptane (iv). In this case the model predicts the
energy with an error of 0.015 eV. Hence, for pair (iii/iv) the information that the model
has from molecule iii, in addition to the significant presence of bicycles in the training
set, makes it easier to predict the energy for molecule iv. Finally, pair (v/vi) is opposite
to (iii/iv): training on an Oxa-azabicycloheptane for predicting an Oxazepane. The error
for this prediction is considerably higher (∼ 0.06 eV). This shows that it is easier for
the NN to predict bicycles than seven-membered rings and reflects the fact that there
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are more bicycles in the training set than seven-membered rings. An intriguing aspect
of the totality of molecules shown in Figure 4.6D is that they all have the same number
of heavy atoms, and that they share multiple structural and bonding motifs. This may
be the reason why the model assigns a small variance to all of them because the NN
is primed to make best use of structural information at the training stage. However,
additional tests are required to further generalize this.

Similarly, cases where a ring was expanded or contracted by a single atom between
molecules in the training and test set commonly resulted in similar failure modes due to
over-confidence. This observation is particularly interesting because it suggests that the
model might be overconfident when predicting compounds it has seen sparse but highly
similar examples of during training. Uncertainty quantification, in this conception, is
effective at predicting in-distribution errors, however, out-of-distribution errors are not
as easily quantified by this model.

Tautomerization Set

As a concrete chemical application of how uncertainty quantification can be used, the
prediction of energy of tautomer pairs was considered. Tautomerization is a form
of reversible isomerization involving the rearrangement of a charged leaving group
within a molecule.[167] The structures of the molecules involved in a tautomeric pair
(A/B) only differ little which makes this an ideal application for the present develop-
ments. For the study of tautomeric pairs, three NN models with different values of
λ = 0.2, 0.4, 0.75 were trained with QM9 database as described on the methods section.
The test molecules considered come from the Tautobase database.[255] For the purpose
of this work, only molecules with less than nine heavy atoms (C, N and O) were tested.
A total of 442 pairs (884 molecules) was evaluated.

The training of PhysNet involves learning of the Atomic Embeddings (AtE) and the cen-
ters and widths of the Radial Basis Functions (RBF). These features encode the chemical
environment around each atom and therefore contain the “chemical information” about
a molecule. This opens the possibility to further analyze the potential relationship con-
tained in the learned parameters to the information about the chemical space contained
in the training dataset and how it compares with the chemical space of the test molecules
that are the target for prediction. Hence, for the following the mean distances between
each of the tested molecules and the molecules in the training set of the database for
⟨AtE⟩ and ⟨RBF⟩ were determined according to the procedure described in Section
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I. Figure 4.7 shows the results for the relationship between the mean distance of the
AtE and RBF, the error, variance and number of atoms for the molecules in the tautobase.

The bottom row of Figure 4.7A (panels i to v) report ⟨AtE⟩ and ⟨RBF⟩, the prediction
errors and associated variances sorted by the number of heavy atoms N = 3 to 9
together with the distribution P (N). The dependence of ⟨AtE⟩ and ⟨RBF⟩ on N shows
that with decreasing number of heavy atoms the mean distance with respect to the
molecules with the same number of atoms increases (Figure 4.7A i and ii). Additionally,
the violin plots in Figure 4.7A i and ii show that the mean distance values are more
spread as the number of atoms increases. One explanation for these results is that
the available chemical space to explore increases with N which is also reflected in
the number of samples with a given number of heavy atoms in the training dataset;
consequently, the distance between the molecules with a low number of atoms increases.
In other words, a larger molecule explores chemical space more extensively in terms
of chemical environments, atom types, bonding patterns and other characteristics of
chemical space. The relationship between error and the number of atoms illustrates
how the smaller mean distance in RBF and AtE leads to a smaller error. Furthermore,
the number of outliers also scales with the size of the molecules. Comparing error
and variance by the number of heavy atoms, it is clear that for up to 5 atoms they
behave similarly (Figure 4.7A iii and iv). From Figure 4.7A iii, it is clear that the error
distribution shifts with increasing number of atoms in the molecule. For the center
of mass of the predicted variance distribution (Figure 4.7A iv) is at a high value and
progressively decreases until 5 heavy atoms to increase again. It should be noted that
the number of outliers for error and variance increases with the number of heavy atoms
which affects the displacement on the center of mass. Finally, the spread of error and
variance by the number of atoms (Figure 4.7A iii and iv) presents similar shapes up
to 8 heavy atoms. For molecules with 8 and 9 atoms, the variance is more spread out
whereas the error distribution is more compact.

Panels vi, vii, x, and xi in Figure 4.7A show that variance and error are similarly
distributed depending on ⟨AtE⟩ and ⟨RBF⟩, respectively. For the entire range of ⟨AtE⟩
and ⟨RBF⟩ low variance (< 0.0002 eV) and low prediction errors (< 0.25 eV) are
found. Increased variance (∼ 0.0005 eV) is associated with both, larger ⟨AtE⟩ and
⟨RBF⟩ whereas larger prediction errors (> 1.0 eV) are found for intermediate to large
1.0 ≤ ⟨RBF⟩ ≤ 1.5. This similarity is also reflected in a near-linear relationship
between ⟨AtE⟩ and ⟨RBF⟩ reported in panel xiii of Figure 4.7A.
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Prediction error and variance are less well correlated for the evaluated molecules from
tautobase, see panel viii of Figure 4.7A. This can already be anticipated when com-
paring panels i and ii. With increasing N , the position of the maximum error shifts
monotonously to larger values whereas the variance is higher for N = 3, decreases until
N = 6, after which it increases again. Hence, for tautobase and QM9 as the reference
data, base error and variance are not necessarily correlated.

To gain a better understanding of the prediction performance of QM9 for molecules in
the Tautobase from the point of view of feature space, polar plots considering extreme
cases were constructed, see supporting information for technical details. Figure 4.7B
shows the case for the molecule (center) with the largest average distance in RBF and
AtE for molecules with the same number of atoms used for training for this represen-
tation; only the ten closest neighbours are shown. Although the molecule is relatively
simple, no structure in the training set contains sufficient and appropriate information for
a correct prediction. Despite abundant information about similar chemical environments
but with different spatial arrangements, combination with different functional groups or
different bonding arrangements, potentially conflicting information in the training set
leads to uncertainties in the prediction. A second example, that of the molecule with
largest variance and largest distance in RBF, is shown in Figure 4.7C. As for molecule
ii in Figure 4.6D this case also highlights how seemingly small changes in bonding
pattern, functional groups and atom arrangements can lead to large errors. However,
in this case the abundant and similar structural information in the training set leads to
a large predicted variance. In other words, “redundancy” in the training set can lead
to vulnerabilities in the trained model as was previously found for predictions based
on training with the ANI-1 database compared with the much smaller ANI-1E set:
despite its larger size, predictions based on ANI-1 were less accurate than those based
on ANI-1E.[88]

As a final example of the relationship between error and variance, the chemical struc-
tures for a set of molecules with low error but high variance is highlighted in Figure
4.7D and shows that heterocyclic rings and bicycles are well covered in the training
set. An interesting aspect is that molecules with a nitro-group (–NO2) appear with high
variance and low error. This effect can be rationalized by considering the design of the
GDB-17 Database[49] which is the source of the QM9 set: for GDB-17 aliphatic nitro
groups were excluded, but aromatic nitro groups were retained. Therefore, the trained
model will have similar information based on structural considerations but the quality
of the data in view of a molecules’ energetics is low which leads to significant variance.
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Figure 4.7: A Overview of the comparison between different results for the evaluation of
molecules on the tautobase for λ = 0.75 up to the 95th percentile. The diagonal of the
figure shows the kernel density estimate of the considered properties (Mean Distance
Embeddings, Mean Distance RBF, Error (in eV), Variance (in eV) and Number of
Atoms). For each of the panels a correlation plot between the variable and a 2D kernel
density estimate is shown. On the last row, violin plots for the different considered
properties with respect to the number of atoms is shown. Similar plots for λ = 0.2 and
λ = 0.4 can be found in the Supporting Information. B Radial plot of the ten closest
molecules of the training set on feature space for the molecule in tautobase with the
largest distance in embedding and RBF space. C Radial plot of the ten closest molecules
for the molecule in tautobase with the largest predicted variance and the largest distance
in RBF space. D Examples of molecules with large predicted variance and small error.
Enlarged views of panels B and C are provided in Figures S14 and S16.
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Figure 4.8: A The log distribution of differences in predicted variance between tautomer
pairs, A (low variance) and B (high variance). B Tautomer pairs (A/B) containing
chemical groups, nitro and vinyl alcohols, outside the training set (B1-3) are easily
identified. The imine group in B2 was present in only one molecule in the training set.
Numerical values for energies and variances are summarized in Table 4.1.

Finally, it is of interest to analyze tautomer pairs (A/B) for which the difference in the
predicted variance is particularly large. Figure 4.8A reports the distribution p(σ2

A − σ2
B)

for trained models with different values of the hyperparameter λ. First, it is found
that the distribution of variance differences depends on the value of λ. Therefore,
particularly prominent outliers can be avoided by careful evaluation of the predictions.
Secondly, large differences (star in Figure 4.8A) in the variances can occur and indicate
that the trained models are particularly uncertain in their prediction. To illustrate this,
three tautomer pairs were identified and are analyzed in more detail in the following.
For molecules B1 to B3 it is found that their functional groups are not present or are
poorly represented in QM9. These include the N=O nitro group in an aliphatic chain
(B3), vinyl alcohol (B1), and hydroxyl imine (B2, only one representative in QM9).
Furthermore, the pair (A3/B3) is zwitterionic.

As is shown in Figure 4.8B the chemical motifs and functional groups in A1 to A3
are covered by QM9 whereas those in their tautomeric twins (B1 to B3) are not. For
molecule B1 (vinyl alcohol) examples are entirely absent in QM9 and the presence of
hydroxyl groups bound to sp2(aromatic) carbons is not sufficient for a reliable prediction
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Table 4.1: Reference energy (EDFT), predicted energy (ENN) and variance (σ2) for
selected molecules in Figure 4.8. All values are in eV.

Molecule EDFT ENN σ2

λ 0.2000 0.4000 0.7500 0.2000 0.4000 0.7500

A1 -79.8900 -79.6800 -79.6900 -79.6800 0.0018 0.0002 0.0002

∆ 0.2100 0.2000 0.2100
B1 -79.5900 -79.2800 -79.4400 -79.3600 0.0249 0.0002 0.0002

∆ 0.3100 0.1500 0.2300

A2 -23.5900 -23.5200 -23.5200 -23.5200 0.0016 0.0012 0.0002

∆ 0.0700 0.0700 0.0700
B2 -23.0200 -22.7500 -22.8800 -22.9100 0.0019 0.0011 0.0007

∆ 0.2700 0.1400 0.1100

A3 -30.8600 -32.6700 -32.5800 -32.2000 0.0046 0.0004 0.2243
∆ 1.8100 1.7200 1.3400

B3 -31.6300 -32.0200 -32.0800 -32.6900 229.6200 0.0035 0.0033

∆ 0.3900 0.4500 1.0600

for B1. It is also noted that the difference ∆ between the target energy (EDFT) and the
predictions (ENN) are largely independent on λ for A1 but differ by a factor of two for
B1. This is also observed for the pair (A2/B2) for which the uncertainties are more
comparable than for (A1/B1).

Finally, the pair (A3/B3) poses additional challenges. First, the variance for one value of
λ for B3 is very large and for A3 one of the variances is also unusually large, given that
similar examples to A3 are part of the training set. Secondly, although A3 is better rep-
resented in the training set, the difference between target value and prediction is larger
than 1 eV for all models. These observations are explained by the fact that (A3/B3)
are both zwitterionic and the uncertainty associated with B3 may in part be related
to the fact that QM9 only contains few examples of sp2 NO bonds except for a small
number of heterocyclic rings which are chemically dissimilar compounds compared
with B3. Furthermore, for B3 some of the atom-atom separations (“bond lengths”)
are poorly covered by QM9. For the N–N distance, the QM9 database contains the
range from 1.2 Å to 1.4 Å (see Figure S17) whereas N–N in B3 is 1.383 Å which is
a low probability region for p(rNN). This is also the case for compound A3 although
p(rNN) has a local maximum at the corresponding N–N separation. In conclusion,
the majority of prediction problems in Figure 4.8B can be related to origins in the
underlying chemistry. Interestingly, even a careful analysis of the performance of a
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trained model on the training set (see compound A3) may provide insight into coverage
and potential limitations when making predictions from the trained model.

4.1.4 Discussion and Conclusions

The present work introduces uncertainty quantification for the prediction of total en-
ergies and variances for molecules based on a trained atomistic neural network. The
approach is generic and it is expected that it can be generalized to other NN-architectures
and observables.

With respect to computational effort it is noted that the current approach requires
training of several independent models for a range of values for the hyperparameter
λ. However, the uncertainty on a prediction can be obtained from evaluating a single
model. This is an advantage compared to ensemble models which require the evaluation
of all trained models to obtain an estimate of the uncertainty. For ensemble-based
approaches the statistical error of a prediction ∼ 1/

√
N whereas for DER considered

here this is not the case. Rather, a number of models needs to be trained for calibration
but as demonstrated here, N 10 is a meaningful estimate for this. On the other hand,
Bayesian methods rapidly become impractical for larger data sets as already mentioned
in the Introduction. One possible way to avoid training for a range of λ−values is to
use recalibration methods.[250, 259] However, such methods are quite new and still
need to be validated by different metrics. Finally, the results obtained here can be used
as a starting point for model training on other databases but it remains to be seen if the
calibration results are transferable to other databases.

Data completeness and quality directly impact the forecasting capabilities of statistical
models. Although quantum chemical models are trained, for example, on total energies
of a set of molecules, it is not evident how to select the best suitable training set for
most accurately predicting energy differences between related compounds, such as
structural isomers as demonstrated in this work. PhysNet-DER is a step towards the
design of validated, well-defined databases containing meaningful information ("smart
data").[234–236] In this process one also anticipates that targeted databases will be-
come available for specific applications in chemistry, such as tautomerization energies,
hydration energies, or HOMO-LUMO gaps, to name a few. Also, the findings from
the present work will be useful to be employed together with established methods like
Gaussian Process Approximation.[242]
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A large part of the present work was concerned with the impact of redundant/missing
information in the databases used to train a model on the prediction of specific proper-
ties in chemical space. The results confirm that redundancies can impact heavily the
prediction of a property and its variance. However, it is still necessary to systematically
identify and remove conflicting information while retaining training quality. In this
regard, the combination of unsupervised machine learning methods[72, 260–262] with
the approach introduced here will hopefully allow to design workflows to broadly ex-
plore chemical space at low computational cost. Another point that requires attention is
the underlying assumption in many similar applications that the predicted property can
be represented as a normal (Gaussian) distribution. The present and earlier studies[155]
indicate that this assumption is only valid approximately.

It was noted in Figure S2 that the average predicted variance for a hold-out set of
molecules decreased with increasing training set size until a certain point. Beyond that,
models trained on the most extensive training corpus predicted higher variance. This is
consistent with the expectation that as new molecules are introduced to the training set,
the probability of adding previously unseen information is initially large, but decreases
as the training set grows. This is indicative of the law of diminishing returns.[263]
The artificial bias experiment carried out here suggests that the model may become
sensitive to redundant information which leads to overconfident estimates of variance
for over-represented chemical motifs at the expense of being under-confident for motifs
with fewer training examples. The observation that larger training sets can introduce
higher uncertainties is compelling and highlights the need for a deeper understanding of
the role of bias when evaluating atomistic neural networks for predictions made across
chemical space.

Distances in the embedding space (AtE/RBF) of the neural network were studied to
visualize and analyze the proximity between molecules in the training and test set, see
Figures S14 and S16. This allowed to assess how similar molecules can influence the
prediction by making the model less confident. On the other hand, it was also possible
to recognize molecules for which insufficient information was available in the database
for a prediction. In other words, analysis of the embedding space also hinted towards the
role of similar information on model degradation. It is of interest to note that analysis of
the embedding space was previously done for uncertainty determination.[239, 245] As
used in the present work, distances in embedding space provide a qualitative picture for
what information influences a prediction. This can be used in a more targeted fashion for
model improvement but more systematic studies for this natural next step are required.

95



Some of the essential findings of the present work concern the notion that single metrics
are not particularly meaningful to judge the calibration of a trained model. Exploration
and development of meaningful metrics will benefit evidence-based inference.[264]
Also, it is not always true that error and variance are directly related which is counter
typical expectations in statistical learning. It is also demonstrated that mean variance
and mean squared error can behave in counter-intuitive ways which points towards
deficiencies in the assumed posterior distribution.

As found here, uncertainty quantification is essential and reveals that the nature and
coverage of the training set used for model construction plays an important role when
applied to specific chemical tasks. For example, it is demonstrated for tautomerization
energies that classification of predictions can be used to identify problematic cases at
the prediction stage. Furthermore, it was found that similar information in low quantity
returns low uncertainties but high errors, whereas similar information in large quantities
results in small errors but high predicted uncertainties. A notable example of this is
the nitro group in the training database, which is not present for aliphatic chains but
for aromatic rings. Thus, for a balanced ML-based model for chemical exploration an
equilibrium between the quantity and the quality of data in the database is required. The
information from UQ can be used in the future to build targeted and evidence-based
datasets for a broad range of chemical observables based on active learning strategies
and for constructing robust high-dimensional potential energy surfaces of molecules.

4.1.5 Supporting Information

Supporting information associated with this chapter can be found at: https://doi.
org/10.1039/D2SC04056E or at: https://github.com/LIVazquezS/

SI_PhD_Thesis/blob/main/SI_Chapter4.pdf
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4.2 Regression Prior Networks

4.2.1 Introduction

It is known that ensembles of NN models are a powerful method for the prediction
of uncertainty quantification. This method is based on the separate training of several
models with different initial conditions that later are averaged to obtain a prediction
mean value and its standard deviation. In chemistry, these are usually applied through
the popular method ’query-by-committee’[265]. Unfortunately, the use of ensembles
is limited by the high computational cost associated. Additionally, it has been found
that ensemble methods could lead to overconfident models that underestimate the uncer-
tainty of prediction[252]. On the other hand, single-pass uncertainty prediction reduces
the computational cost by only needing to train one model and making assumptions
about the underlying training distribution. Nevertheless, single-pass uncertainty models
have problems too. In particular, problems related to DER will be discussed in Chapter 6.

A convenient method to mix ensemble and single-pass NN is the Regression Prior
(RP) Network [29]. RP combines ensemble methods with a single-pass uncertainty
prediction by distilling several neural network knowledge into a model representing a
multidimensional Gaussian distribution (Figure 4.9). In this case, the computational
effort is only done once during training by training several models, while at the inference
moment, the time is considerably reduced because only one model is required to be
evaluated.

An additional advantage that RP provides is the capability to separate the contributions
to the uncertainty. In general, the uncertainty in a prediction can be decomposed into
two main contributions[266]. The first one is called aleatoric, also known as statistical
or data, and refers to the notion of randomness. Then, the variability in the prediction is
a consequence of the inherently random effects. It is important to notice that this can
not be reduced because it is caused by noise in the training data or limitations of the
model. The second source of uncertainty is called epistemic, also known as systematic
or knowledge, and refers to the lack of knowledge by the model. Therefore, epistemic
uncertainty can be reduced by adding more information during the training procedure.
This last one is usually the target for active learning procedures.
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Figure 4.9: Regression Prior Network. The scheme represents the process of training.
Initially, a set of n NN models where each of them returns a 1D Gaussian distribution
as output. The outputs of the n NN models are mixed to create a teaching model by
a mixture of Gaussians. A distribution distillation from the Gaussian mixture model
parameterizes a new model based on the high dimensional Normal Wisard distribution.
The model obtained is then used to predict the quantity of interest, the data uncertainty
(a.k.a. aleatoric), and the knowledge uncertainty (a.k.a. epistemic).

4.2.2 Methods

Basic Theory Let us assume that each individual model trained will return a prob-

abilistic regression model. This means that the model instead of returning a point
estimate of the prediction, the model parameterises a distribution of the property of
interest (i.e. Energy), p(E|x, θ), which in place is dependent on the parameters of the
NN model and the input vectors. Usually, the chosen return is the normal distribution
(N ) as follows:

p(E|x, θ) = N (E|µ,Λ), {µ,Λ} = f(x; θ) (4.19)

Here, the normal distribution of the energy is parameterized with a mean µ vector and a
precision matrix, Λ. The precision matrix is related to the covariance matrix, Σ = Λ−1,
which is typically used to parameterise multidimensional normal distributions.

Next, we train n probabilistic regression models, each of them returning Gaussian
distribution parameters. Mixing the results of those models creates an ensemble of NN
models that would parameterise a multivariate normal distribution (MVN).

MVN = {p(E|x, θ(i)}ni=1 (4.20)

This ensemble can be interpreted as a set of draws from a higher-order implicit distri-
bution over normal distributions[29]. By using the Bayes theorem, the aim is to find a
distribution that can emulate the ensemble of Equation 4.20 by explicitly parameterizing
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a higher-order distribution over the parameters µ and Λ[29]. The selected prior is the
Normal Wishard (NW) distribution, which is a prior to the MVN[267]. The NW
distribution is a compound distribution of a normal distribution over the mean and a
Wishard distribution over the precision.

NW(µ,Λ|m,L, κ, ν) = N (µ|m, κΛ)W(Λ|L, ν) (4.21)

Here m is the prior mean, L is the inverse of the positive-definite prior scatter matrix, κ
and ν are the strengths of the belief in each prior. Complementary, the multidimensional
Gaussian distribution is defined as:

N (µ|m, κΛ) =
( κ
2π

)D/2

|Λ|1/2 exp
(
−κ
2
(µ−m)⊤Λ(µ−m)

)
(4.22)

While the Wishard distribution1 is defined as:

W(Λ|L, ν) = |Λ| ν−K−1
2

2
νK
2 ΓK

(
ν
2

)
|L| ν2

exp

(
−1

2
Tr
(
ΛL−1

))
(4.23)

Where ΓK(x) is the multivariate gamma function:

ΓK(x) = π
K(K−1)

4

K∏

i=1

Γ

(
x+ (1− i)

2

)

and K are the degrees of freedom[267].

By using the distribution of equation 4.21, an RP model parametrizes the NW distribu-
tion over the mean and precision of normal output distributions as follows[29]:

p(µ,Λ|x,θ) = NW(µ,Λ|m,L, κ, ν), {m,L, κ, ν} = Ω = f(x;Θ) (4.24)

The parameters in the set Ω are predicted by the neural network model. Hence, we
calculate the posterior predictive as:

p(E|x,Θ) =

∫∫
p(E|x,θ)p(x|Θ)dx (4.25)

=

∫
N (E|µ,Λ)NW(µ,Λ|Ω)dΩ (4.26)

= T
(
E

∣∣∣∣m,
κ+ 1

κ(ν −K + 1)
, ν −K + 1

)
(4.27)

1The Wishard distribution is the generalization of the Gamma distribution to positive definite
matrices[267]
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The results of the integral of Equation 4.26 is the multivariate T -Student distribution
defined as:

T (E|µ,Σ, ν) = Γ
(
ν+K
2

)

Γ
(
ν
2

)
(νπ)

κ
2 |Σ| 12

(
1 +

1

ν
(E − µ)⊤Σ−1(E − µ)

)− (ν+K)
2

, ν ≥ 0;

(4.28)
Once the posterior distribution is known, passing to the training step is possible. Malinin
et al.[29] suggest using a double task loss function (L) in which an in-domain and
an out-of-distribution data are used. Although this looks convenient and has a sound
theoretical base, in the case of chemical problems, it is complicated to make that
distinction. Further discussion about this topic can be found in Chapter 6. To overcome
this problem, the solution is to parameterize the model from an ensemble of distributions
such as the one in Equation 4.20 by minimizing the Kullback-Leibler (KL) divergence
between the model and the ensemble as:

LEnD =
1

NM

N∑

i=1

M∑

m=1

(∫
p(y|x(i),θ(m)) log

(
p(y|x(i),θ(m))

p(y|x(i), ϕ)

)
dx(i)

)
(4.29)

This process is called ensemble distillation (EnD). Equation 4.29 has problems keeping
the diversity of the ensemble, more so in cases where the distributions in the ensemble
can be spread. As a consequence of this loss of diversity, the resulting model will have
poor performance in terms of prediction and uncertainty estimation. Therefore, an
alternative is to consider that the adjusted model does not represent a single distribution
but an ensemble of them [268]. This strategy helps to overcome the problem of diversity.
However, it is hard to reproduce the ensemble diversity exactly without incurring on
a high computational cost. The alternative proposed by Malinin et al. consists of
modelling the ensemble’s behaviour by averaging the ensemble’s outputs and using
those results to train the model distribution. This method is called ensemble distribution
distillation (EnD2)[269].

For the construction of the loss function of EnD2, we start by assuming an ensemble of
models such as the one described in equation 4.20 in which each model returns a value
of the mean and precision of a normal distribution refer as Dtrain. Then, an empirical
distribution over the mean and the precision can be defined as:

p̂(µ,Λ,x) =
{
{µ(mi),Λ(mi)}Mm=1,x

(i)
}N

i=1
= Dtrain (4.30)

The distillation of the model is accomplished by minimizing the negative log-likelihood
of the mean and precision of the ensemble under the NW prior. This is equivalent
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to minimising the Kullback-Leibler divergence between the model and the empirical
distribution constructed in Equation 4.30.

LEnD2 =

∫
p̂(µ,Λ|x) log

(
p̂(µ,Λ|x)
p(µ,Λ|x;ϕ)

)
dx (4.31)

The optimization of Equation 4.31 is numerically challenging, so it is required to use a
temperature-annealing trick to make this process easier. Then, the ensemble is reduced
to its mean as:

µ
(mi)
T =

2

T + 1
µ(mi) +

T − 1

T + 1
µ̄(i), µ̄(i) =

1

M

M∑

m=1

µ(mi) (4.32)

Λ
−1(mi)
T =

2

T + 1
Λ−1(mi) +

T − 1

T + 1
Λ̄

−1(i)
, Λ̄

−1(i)
=

1

M

M∑

m=1

Λ−1(mi) (4.33)

The new mean and precision matrix, scaled by the temperature (T ), are then substituted
on Equation 4.31. To avoid scaling the gradients by the temperature, the loss function is
divided by the temperature value. In practice, Malinin et al.[269] suggest using a linear
temperature scheduler in which the temperature is initially high for the model to match
the mean. The temperature is annealed down to 1 in the second step, following a linear
decay. Note that the temperature is unitless as it only represents a rescaling of the loss
function.

An advantage of RP with respect to other models for uncertainty quantification is the
possibility of quantifying the different components of the uncertainty. This could be
derived by obtaining the mutual information between the parameters of the output
distribution, {µ,Λ} for the NW distribution, and the target values for a complete
derivation the reader is referred to [29]. In this work, we use the law of total variance to
derive the data and knowledge uncertainty then,

Varp(µ,Λ|x,θ)(µ) = Varp(y|x,θ)(y)− Ep(µ,Λ|x,θ)(Λ
−1) (4.34)

In equation 4.34 the term on the left hand side (V arp(µ,Λ|x,θ)(µ)) is the epistemic
uncertainty. The right hand side are the total uncertainty (V arp(y|x,θ)(y)) and the
expected data uncertainty (Ep(µ,Λ|x,θ)(Λ

−1)). These terms are defined as follows:
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Varp(µ,Λ|x,θ)(µ) =
1

κ(ν −K − 1)
L−1 (4.35)

Ep(µ,Λ|x,θ)(Λ
−1) =

1

ν −K − 1
L−1 (4.36)

Varp(y|x,θ)(y) =
1 + κ

κ(ν −K − 1)
L−1 (4.37)

Notice that these results are in line with the corresponding values for DER (Equations
4.5 and 4.6). Additionally, similar results are obtained if the generalization of DER to
multiple dimensions [270] is considered.

Setting Up the Experiments The regression prior network method was implemented
on top of the PhysNet NN model[32]. The output was modified to return energy
and the parameters required by either a Normal distribution (Equation 4.19) or the
Normal Wishart distribution (Equation 4.21). To create the ensemble (Equation 4.30),
five models were trained such that each model returned the parameters of a Gaussian
distribution. Each single model was trained for 100 epochs using the parameters of
the standard version of PhysNet. The ensemble is then used to parameterise the NIW
distribution using a temperature value of 10 for 1000 epochs. The dataset used for
training was the QM9 database[189] that was filtered to remove molecules that did not
pass the geometry consistency check. As before, the total number of samples was split
into 80 % for training, 10% for validation, and 10% for testing. The RP model was
evaluated according to the metrics used for DER and described in section 4.1.

4.2.3 Results

The evaluated system indicates an inferior predictive power of the RP model with an
MAE of 0.47 kcal/mol and an RMSE of 1.36 kcal/mol (Figure 4.10). This error is
three times the error obtained with the vanilla version of PhysNet for the same dataset.
However, it is slightly larger than PhysNet DER with λ = 0.2, which has an MAE and
RMSE of 0.36 and 0.87 kcal/mol, respectively. DER with a different value of λ = 0.4

returns an MAE of 0.30 kcal/mol and an RMSE of 0.75 kcal/mol. From the plot in
Figure 4.10, it is noticed that the variance in the prediction increases at the centre of
the energy range (-80 to -40 eV) while regions with lower or higher energy show small
variance values.

An important aspect of applying the RP model is that the variance obtained with it can
be related to the error. As mentioned before, the variance returned by the model must
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Figure 4.10: Scattering plot of the results for the RP method with the QM9 dataset
on the test set. The error bars show the predicted variance. The insight shows the r2

Pearson coefficient, mean absolute error (kcal/mol) and the root-mean-squared error
(kcal/mol), respectively.

be directly related to the squared error[246]; if a model returns a value that can fulfil
that condition, it is said is calibrated. Several tests can be performed to judge if a model
is calibrated. As in the previous section, here, the calibration of the model was judged
by plotting the empirical RMSE with respect to the Root Mean-Variance (RMV) of the
model. Results in Figure 4.11A show a linear relationship between RMSE and RMV
with a Pearson correlation coefficient close to 1 with small dispersion. The results for
the correlation coefficient are better than the results obtained with DER models (See
Figure 4.2). Nevertheless, the slope of the linear relationship between RMSE and RMV
has a value close to zero. The reason behind that is that the scale of the RMV is one
order of magnitude larger than the values of RMSE. This indicates that the variance
values are overestimating the prediction error.

The distribution of the squared error and the variance highlights the difference between
the scales of the two quantities, as shown in Figure 4.11B. The distribution of the
squared error in the predictions obtained with the RP model is very sharp, with a peak
centred close to zero, and has small tails that do not extend for very large values. On
the contrary, the variance distribution is similar to an inverse Gamma distribution with
a large value α and a small value β displaced to be centred around 0.2 eV. The de-
composition of the variance in data and knowledge uncertainty shows the origin of the
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Figure 4.11: Calibration of the uncertainty predicted by the Regression Prior Method.
Panel A shows the empirical Root-Mean Square Error (RMSE) compared with the Root
Mean Variance (RMV) of the RP model training in QM9. The values were divided
into 100 bins ranked with respect to the predicted variance. The slope (m) and Pearson
correlation coefficient (r2) are described inside the graph. Panel B displays the kernel
density estimate of variance distribution, squared error, data and knowledge uncertainty
for the RP model with values up to 95 %. Panel C depicts a calibration curve for the RP
model. The x-axis shows the probability of obtaining the correct error value for the error
in a given percentile, while the y-axis shows the true probability. The trend line shows
a perfected correlated model. The value of the miscalibration area is given in the plot.
Panel D displays the confusion matrix for the points of the test set. Inside each panel is
the number of molecules that belong to the defined categories. The abbreviations refer
to TP: True Positive, FP: False Positive, TN: True Negative, and FN: False Negative.
For information on how those categories are defined, consult section 4.1.2.
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problems in the prediction. Then, the knowledge uncertainty term related to the model
is large and resembles again an inverse gamma distribution shifted to 0.07 eV. This
can be interpreted as quantifying the limitations of using normal distributions to model
the data. However, this value is also overestimated. The other uncertainty determined
corresponding to the data uncertainty shows larger values. The distribution has a centre
of mass around 0.15 eV but more spread with large tails. This indicates that the model
is not confident about the amount of data that was provided. Previously, it was found
that the database used for training does not have a large chemical diversity, and the large
value of data uncertainty can be related to this lack of information in the training dataset.

The last test performed to assess the calibration of the RP model is by using a calibration
curve (Figure 4.11 C), which helps evaluate the ’honesty’ of the model predictions.
Calibration curves have several limitations that were previously discussed in section
4.2.1. In this case, the calibration curve immediately shows that the model performs
poorly with a step increase of the observed values in a small percentile of the predicted
values. Complementary to the results, the miscalibration area was computed, and the
value 0.47 indicates that the model does not return a meaningful variance prediction.
Although the model showed that the variance prediction is insensitive to the value of
the error, it can be instructive to analyze the results of the classification process, which
separates the prediction of the molecules in the defined classes in section 4.1.2. The
results are shown in Figure 4.11 D. It is clear that most of the samples are classified as
true negatives (i.e. small error and small variance). These results need to be taken with
care because the values of the variance are spread over a large range. On the other hand,
the values of false positives (i.e. small error and large variance) are considerably large,
which is another evidence of the underconfidence of the model.

From the previous analysis, it is noticed that the capability to relate the error in pre-
diction with the obtained variance from the RP model is very poor, and the model
is underconfident by returning large variances for a considerable number of samples.
Nevertheless, the RP model can still be useful for detecting outliers, which will be the
goal of the next chapter. In that case, it is interesting to evaluate if, among the predicted
structures with large variance also, structures with large error can be found. To this end,
the outlier detection plot of Figure 4.12 is used. The diagram shows the probability of
finding the molecules with the largest errors among those labelled by the model with
large variance. Conversely, the inverse relationship also holds. The results indicate a
good performance in detecting large outliers with a probability of 92% to find the 25
largest structures among the 1000 structures with the largest variance. After that, a
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Figure 4.12: Outlier capability detection of the RP model. It is evaluated if a number
Nerror can be found in the Nvar with the highest variance. A value of one means that
all the structures with the largest errors can be found among those with the largest
variance. The inverse relationship, the structures with large variance among those with
large variance, also holds.

constant decay of the probability is observed. As expected in the direct case (i.e. the
same number of structures with large error and large variance), the probability is zero,
which indicates the lack of direct correlation between error and variance. However, this
slowly increases to a maximum of 21%, meaning that around 210 of the 1000 molecules
identified with large variance correspond to large errors.

4.2.4 Outlook

As a summary of this subchapter, it was found that despite the promising formulation of
the RP model and the solid theoretical formulation of it, the model performs averagely
for the prediction of the mean quantity (i.e. energy) and poorly for the variance. Some
possible explanations for this behaviour are i) the limitations of assuming a Gaussian
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distribution to model the underlying data distribution ii) problems with the optimization
procedure. The first limitation is associated with the data used for training. By using
a normal distribution, the optimization is forced to reduce the predictive variance to
improve the prediction of the mean value. This problem was previously observed for
DER[271]. In consequence, it could be argued that the MVN model (Equation 4.20)
used to fit the NW distribution (Equation 4.24) is not informative or that the data used
to train the model can not be adequately described by a NW distribution.

The second problem associated with the training of RP is that the minimization of
the loss function is numerically challenging, and the use of the temperature-annealing
trick might not be the best solution to deal with it2. We tested different temperature
schedulers to deal with this issue, resulting in the poorest results. Nevertheless, at
the core of these problems are theoretical limitations. It is known that the training of
multidimensional Gaussian models is complicated because the prediction of covariance
matrices is numerically unstable[272–274]. Another problem found particularly for
knowledge distillation techniques is that minimizing the KL divergence between stu-
dent and teacher distribution leads to asymmetric gradients as a consequence of the
asymmetry of the KL divergence (i.e. KL(p||q) ̸= KL(q||p))[275]. An alternative to
deal with the asymmetry is to decouple the KL divergence into an MSE loss function
and a cross-entropy term, which are weighted to avoid one having larger importance
than the other[275]. Complementary, the use of a symmetric divergence such as the
Jensen-Shannon divergence[276, 277] could be interesting to test. A simpler alternative
is modifying the loss function to use only the MSE part or doing a sequential distilla-
tion[278].

Despite the problems related to training and the statistical assumptions, the RP model
still has a good capability for outlier detection that corresponds with a linear rela-
tionship between RMSE and RMV. It would be of interest to take advantage of the
current capabilities of the model by using it in combination with a posthoc uncertainty
recalibration strategy[241, 249], which assures that the returned uncertainty matches
the error prediction.

2We try to contact the authors to discuss other possible optimization strategies. Unfortunately, we
have not engaged in discussion with them yet.
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Chapter 5

Morphing of Potential Energy
Surfaces

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart

you are. If it doesn’t agree with the experiment, it’s wrong.

Richard Feynman

This chapter presents the results of the application of a modified version of the mor-
phing technique to a potential energy surface (PES). Here, a given PES is stretched
or compressed by a linear transformation of the coordinates and the energy based on
physically motivated constraints. The process is aimed to match highly accurate spectro-
scopic experimental data of so-called Feshbach resonances with theoretical scattering
calculations. The technique is applied on the system of He-H+

2 for which a PES at the
highest level of theory (FCI), despite relativistic and quantum electrodynamic effects,
is available. Additionally, PES at other levels of theory (MRCI and MP2) were tested.
Our findings indicate an improvement in the position and intensities of the energy
distributions of the Feshbach resonances. Remarkably, it was found that even the PES
constructed with the FCI method showed small changes with respect to the experimental
results. Additionally, it was found that the changes in the PES were more significant for
the long-range region of the PES. The findings of this chapter set the stages for more
comprehensive methods involving diverse spectroscopic information to obtain a better
agreement with experimental results.

The results presented in this chapter have been previously published in Sci. Adv. in press

***Karl P. Horn collaborated in this work as joint first author



5.1 Introduction

The potential energy surface (PES) representing the total energy of a molecule is a
fundamental concept for characterizing the dynamics both in the gas and condensed
phase[33, 34]. With high-quality PESs, the computation of experimental observables
becomes possible with predictive power at a quantitative level. On the other hand,
while essential measurable observables such as reaction cross sections, thermal rates, or
relaxation times directly depend on it, the PES itself cannot be observed. This raises the
question of how to obtain the most accurate PES for a given system. From an electronic
structure perspective, it is known that within the Born-Oppenheimer approximation and
neglecting relativistic and quantum electrodynamic corrections[279] full configuration
interaction (FCI) calculations with large basis sets provide the highest quality for the
total energies of a molecule. However, the unfavourable scaling of FCI with the number
of electrons and basis functions prevents its routine use for constructing full-dimensional
PESs for any molecule consisting of more than a few light atoms. Alternatively, one may
approach the question from an experimentalist’s perspective and argue that the “most
accurate PES” is the one that best describes physical observations. Such an approach
has been developed for diatomic molecules: the rotational Rydberg-Klein-Rees (RKR)
method solves the “inversion problem” of obtaining the potential energy curve given
spectroscopic information.[280] Rotational RKR has also been applied to triatomic van
der Waals complexes[281, 282] but cannot be extended to molecules of arbitrary size.
Indeed, solving the “inverse problem”, i.e., determining the PES given experimental
observables and an evolution equation from which these observables are calculated has
in general turned out to be very difficult in chemical physics.[283] This concerns both
the choice of observables as well as the actual inversion procedure.

An alternative that is not particularly sensitive to the dimensionality of the problem
is to reshape the PES which was first done by trial-and-error[284, 285] and eventu-
ally lead to "morphing" PESs.[37] This method exploits the topological relationship
between a reference and a target PES. Provided that calculations with the reference
PES yield qualitatively correct observables Ocalc when compared with experimental
observations Oexp, the squared difference L = |Ocalc −Oexp|2 can be used to reshape
the PES through linear or non-linear coordinate transformations ("morphing").[37] It
capitalizes on the correct overall topology of the reference PES and transmutes it into
a new PES by stretching or compressing internal coordinates and the energy scale,
akin to stretching and bending a piece of rubber. Alternatives for reshaping PESs are
machine learning-based methods such as ∆−ML[286], transfer learning[287, 288], or
differential trajectory reweighting.[289] Morphing has been applied successfully to
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problems in spectroscopy,[290] state-to-state reaction cross sections,[291] and reaction
dynamics[292] for systems with up to 6 atoms[293]. Near-quantitative, full-dimensional
reference PESs from electronic structure calculations have, however, so far rarely been
available for direct comparison. For scattering experiments with He–H+

2 such a PES is
now available.[294] On the other hand, for weakly interacting triatomic van der Waals
complexes accurate PESs were determined from fitting well depths and positions of
radial minima to parametrized functions.[295] However, these studies relied heavily
on explicitly available long-range information of the intermolecular interactions. The
present work approaches the problem from a broader perspective, formulates and solves
it as a machine learning-based task, and applies it to recently measured scattering data
covering a wide range of intermolecular energies.

The He–H+
2 molecular complex is an ideal proxy for the present work owing to the fact

that the PES can be calculated rigorously at the highest level of quantum chemistry
(FCI). The complex is also interesting in itself, and the current status of experimental and
computational spectroscopy and reaction dynamics has recently been reviewed.[296]
He–H+

2 , which is isoelectronic to H3, is stable in its electronic ground state and fea-
tures a rich reaction dynamics and spectroscopy. Experimentally, near- dissociation
states[297, 298] and the low-resolution spectroscopy were reported for both, He–H+

2 and
He–D+

2 .[299] Assignments of the vibrational bands were possible by comparing with
bound state calculations utilizing a FCI PES.[294] Only recently, it was possible to esti-
mate the dissociation energy of ∼ 1800 cm−1 from spectroscopic measurements.[299]
This compares with earlier bound state calculations using the FCI PES predicting a
value of D0 = 1784 cm−1.[294] This value was confirmed from a subsequent focal
point analysis resulting in D0 = 1789(4) cm−1 for para-H+

2 .[300] Furthermore, a range
of reactive collision experiments was carried out which yielded total and differential
cross sections, depending on the vibrational state of the diatomic,[296] but with marked
differences between observed and computed results. In particular, computationally
predicted sharp reactive scattering resonances have not been found experimentally as of
now.[296] Finally, the role of nonadiabatic couplings is of considerable current interest
as a means to clarify the role of geometric phase in reaction outcomes and as a source
of friction in the formation of the He–H+

2 complex in the early universe. This provides
additional impetus for a comprehensive characterization of this seemingly “simple”
system.

The present work uses all very high quality experimentally measured Feshbach reso-
nances for He–H+

2 [36] to morph potential energy surfaces. Feshbach(-Fano) resonances
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arise if a bound molecular state on a potential energy surface of a closed channel couples
to scattering states in an open channel. [301, 302] The recoil translational energy is
determined from measurements which are expected to probe large spatial areas of a PES
and the underlying intermolecular interactions.[302] The redistribution of energy due to
the Feshbach resonances has recently been mapped out comprehensively for He–H+

2

and Ne–H+
2 with coincidence velocity map imaging of electrons and cations, yielding

very favourable agreement between theory and experiment.[36] In these experiments,
the ionic molecular complexes are generated at separations of up to 10 a0 between the
rare gas atom and the molecular ion, confirming that the experiment indeed probes a
large spatial extent of the PES, including its long-range part.

Here, morphing is applied to initial PESs ranging from essentially exact FCI (apart
from non-Born-Oppenheimer, relativistic, quantum electrodynamic and remaining basis
set effects) to medium- and lower-level methods, that is, Multi-Reference Configuration
Interaction including the Davidson correction (MRCI+Q) and second-order Møller-
Plesset perturbation theory (MP2). This allows us to determine the sensitivity of the
PES and information content in the experimental observables about local and global
features of the PES and to assess the performance of lower-level methods (e.g. MP2)
compared with FCI. We found that starting from a PES of sufficiently high quality, the
changes introduced by morphing can be related to parts of the PES that are probed
by the experiments. At the same time, additional experimental observables, probing
primarily the bound region for He interacting with H+

2 , will be required for morphing at
the lower levels of quantum chemical theory.

5.2 Results

The three PESs considered in the present work, in decreasing order of rigour, were
determined at the FCI, MRCI+Q, and MP2 levels of theory, using Jacobi coordinates
R (distance between the centre of mass of the H+

2 and He), r (distance between the
two hydrogen atoms), and θ (the angle between the two vectors R⃗ and r⃗), see Figure
5.1A. To set the stage, scattering calculations with the FCI PES are considered which
give quite satisfactory results when compared with the experimental data (Figure 5.2
A and Table 5.1). The measured kinetic energy distributions feature a series of peaks
which reflect the rovibrational quenching associated with the decay of the Feshbach
resonances.[36] On average, the positions of the peak maxima are reproduced to within
10.8 cm−1 whereas the maximum intensities, Imax, of P (E) differ by 20.9 arb. u. (blue
squares in Figure 5.2A).
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Next, morphing is applied to all three PESs, including the FCI PES. The FCI PES has
been validated with respect to experiment[36, 297–299] and therefore can serve as a
suitable proxy for changes required for PESs at the MRCI+Q and MP2 levels of theory.
Two morphing strategies were considered (Figure 5.1B): For Morphing M1, the total
energy was decomposed into one-body (V(1)

i ), two-body (V(2)
i ) and three-body (V(3))

contributions,

V (R, r, θ) = V(1)
He+V(1)

H +V(1)

H++V(2)
HeH(rHeH)+V(2)

HeH+(rHeH+)+V(2)

H+
2

(rH+
2
)+V(3)(R, r, θ) ,

(5.1)
and the morphing transformation was applied only to V(3)(R, r, θ). It should be noted
that V(3)(R, r, θ) is defined as the difference between the total energy and the one- and
two-body terms without implying a physical origin of the three-body contribution, such
as an Axilrod-Teller interaction. Approach M1 is motivated by the assumption that all
diatomic potentials V(2)

i are of high quality so that changes are only required in the
higher-order correction three-body term. In the second approach, called “M2”, the PES
is globally modified, including the two-body contributions. In other words, for M1 and
M2 the morphing transformation (Eq. 5.4) is applied to V(3)(R, r, θ) and to V (R, r, θ),
respectively. The reduction of the total loss and the associated parameter values are
reported in Figures S1 and S2.

Morphing M1 applied to the FCI PES leaves most of the peak positions unchanged, see
filled vs. open blue symbols in Figure 5.2D, but improves the peak heights considerably
(by 30 %) as demonstrated in Figure 5.2E and Table 5.1 (rightmost column). These
improvements are accommodated by reshaping the underlying PES as shown in Figure
5.3A: In the long-range (R > 3.0 a0), the anisotropy of the morphed FCI-PES is some-
what decreased due to reshaping the PES around θ = 90◦ (T-shaped geometry) and De

is decreased by ∼ 50 cm−1. One-dimensional cuts along the rHH and R coordinates
for a given angle θ show that changes in the PES become more substantial for larger
rHH with small changes in the depth of the potential wells but maintaining the overall
shape (Figures S3 and S4). The changes with respect to R are noticeable for R < 3.0 a0
with distortions of the energy contours at different angles θ, but maintaining the overall
shape of the curves. For increasing R the changes are negligible compared with the
original PES, reflecting the accurate treatment of the long-range interaction (Figure S3).
2D projections of the combined changes of rHH and R at different angles show that the
most pronounced modifications in the shape of the PES concern regions for rHH larger
than the equilibrium geometry of H+

2 (Figures S5A ,S6A and S7A).
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Done
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Initial Potential Energy
Surface (PES) from (1)
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body (V(3)) term

M2

Generate grid for spatial
coordinates (R, r, θ)

Multiplication of dis-
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Evaluation of new grid
in kernel model from (2)

Energy scaling E → εE

New Potential
Vmorph(R, r, θ)

RKHS fitting

New Potential
Vmorph(R, r, θ)

BA

Figure 5.1: Morphing of ab initio potentials based on experimental data. General
flowchart of the morphing procedure (A): Module (1) implements the calculation of
ab-initio points for the system under study, the triatomic HeH+

2 with the definition of
the respective coordinates indicated. Module (2) represents the fitting of the points
obtained from the previous step using the Reproducing Kernel Hilbert Space Method,
with the functional form used to approximate the given PES. Module (3) corresponds
to the scattering calculations performed with the potential obtained in module (2),
calculating the eigenstates of the Hamiltonian. Module (4) post-processes the results of
the scattering calculations to yield P (E) with examples for three values of j′ displayed.
Module (5) evaluates the loss function Eq. 5.5for morphing, comparing the experimental
values of the energy distributions with the results of the scattering calculations. Module
(6) carries out the actual morphing procedure, as explained in panel B. Morphing results
in a new potential, and the procedure continues until the value of the loss function in
module (5) does not improve further. The termination conditions are L/L0 ≤ λM1 = 0.3
or L/L0 ≤ λM2 = 0.4 for M1 and M2, respectively where L0 is the loss function of
the unmorphed energy distribution, see Figure S1. Panel B: Morphing module (6) for
procedures M1 (3-body) and M2 (global).
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Figure 5.2: Comparison of calculated energy distributions P (E) from unmorphed
and morphing M1 PESs with experimental results. P (E) obtained from experiment
(black, data taken from Ref. 36) and full coupled channels calculations using the
unmorphed and M1-morphed PESs for FCI (A), MRCI+Q (B), and MP2 (C). Computed
results for the initial (blue, green, red dashed) and best (blue, green, red solid) morphed
PESs are reported, with the residuals for the peak positions (Eexp − Ecalc) and fraction
of error in the peak heights (P (E)exp−P (E)calc

P (E)calc
) for each PES shown in Panels D and E.

The statistical measures for all models are summarized in Table 5.1. The experimental
uncertainties are 3.5 cm−1 for the peak positions and ∼ 10 % for peak heights.

FCI calculations of entire PESs with sufficiently large basis sets are only feasible
for few-electron systems. For larger systems, quantum chemical methods such as
Møller-Plesset perturbation theory, multi-reference configuration interaction or coupled-
cluster-based techniques need to be used instead. As reported in the two rightmost
columns of Table 5.1, the initial MRCI+Q and MP2 PESs reproduce experimental peak
positions within 10.3 and 13.1 cm−1 compared with 10.8 cm−1 from the FCI PES and
for the peak intensities the RMSEs are 23.9 and 22.4 compared with 20.9 a.u. from
using the highest level of electronic structure theory. On the other hand, the dissociation
energy is smaller by more than 10% compared with the FCI PES due to partial neglect
of correlation energy in the MRCI+Q and MP2 methods. This confirms that Feshbach
resonances are not particularly informative with regards to features of the PES around
the minimum energy structure (R ∼ 3.0 a0), although the wavefunctions sample this
region extensively, see Figure 5.6. In other words, although an important characteristic
of a PES such as the stabilization energy of the complex differs by 10 % or more, the
energies and intensities measured in collision experiments are matched within similar
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Surface De (cm−1) Re/a0 re/a0 RMSE(E) RMSE(I)
(cm−1) (arb. u.)

FCI Initial 2818.9 2.97 2.07 10.8 20.9
FCI Morphed (M1) 2772.0 2.95 2.07 11.9 13.7
FCI Morphed (M2) 2819.1 2.99 2.07 10.8 13.8
MRCI+Q Initial 2557.3 2.98 2.07 10.3 23.9
MRCI+Q Morphed (M1) 3414.7 2.98 2.08 12.2 21.9
MRCI+Q Morphed (M2) 2557.0 3.00 2.03 8.9 17.6
MP2 Initial 2494.0 2.99 2.07 13.1 22.4
MP2 Morphed (M1) 1685.6 2.93 2.12 12.8 10.9
MP2 Morphed (M2) 2492.8 2.97 1.74 10.0 11.8
MP2 Morphed (PES-to-PES) 2502.3 2.98 2.06 13.0(7) 22.9

Table 5.1: Dissociation energies (De in cm−1) for He+H+
2 , coordinates for the minimum

energy structures, Re and re, and root mean squared errors (RMSE) for the peak
positions and heights of the kinetic energy spectra for all initial and morphed PESs
using both M1 and M2 methods. In all cases, the equilibrium geometry is linear He–H+

2 ,
i.e. θ = 0 or θ = 180◦.
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Figure 5.3: Comparison between unmorphed and morphed M1 PESs. Projections
of the PESs for rHH = 2.0 a0 for the three methods studied here. Isocontours for
unmorphed PESs (FCI (blue), MRCI+Q (green) and MP2 (red) from left to right) are
shown as dashed lines, whereas the M1-morphed PESs are solid lines. The zero of
energy is set by the value at r = 2.0 a0 and R = ∞. Energies are in cm−1.

bounds.

Morphing M1 applied to the MRCI+Q and MP2 PESs supports this observation. The
loss function evaluated in module (5) of the optimization, see Figure 5.1, decreased by
74% and 88% for the two cases, with improvements in the intensities by up to 50% for
the MP2 PES, see Table 5.1 (rightmost column). However, the resulting PESs are clearly
unphysical, with pronounced distortions in particular for the MP2 PES, see Figure 5.3C
and dissociation energies either increased by 40 % for MRCI+Q or decreased by 30 %
for MP2, respectively. Low-resolution experiments[299] provide an estimate for the
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dissociation energy D0 ∼ 1800 cm−1, compared with D0 = 1794 cm−1 from bound
state calculations on the initial FCI PES[294] which features a well depth of De ∼ 2820

cm−1. This value of De serves as a reference for the remainder of the present work.

The percentage changes of the parameters [α, β, ε] scaling (R, r, V ) provide further
information about the transformation induced by morphing the initial PESs. For the FCI
PES they are (−0.6,−3.6, 0.0)% compared with (−0.6, 11.6, 1.0)% for the MRCI+Q
and (0.3,−9.7, 0.1)% for the MP2 PES. The most notable changes concern the H+

2 vibra-
tional coordinate rHH for MRCI+Q (+12.0%) and MP2 (−10.0%). Such large changes
are problematic since the many-body expansion used for morphing M1, cf. Eq. (5.1),
relies on the quality of the two-body contributions, i.e., the H+

2 and HeH+ potential
energy curves. However, MP2 underestimates the experimentally determined dissocia-
tion energy of the HeH+ two-body interaction by 285 cm−1 (Figure S9) and accounts
for an overall error of ∼ 500 cm−1 in De for He–H+

2 . On the other hand, the two-body
term for H+

2 agrees to within 3 cm−1 between the three methods with remaining differ-
ences compared with experiment primarily due to neglect of non-Born-Oppenheimer
contributions (Figure S10), relativistic corrections, quantum electrodynamic effects and
remaining basis set incompleteness. To summarize: while M1-morphing improves the
match between experimentally measured and calculated observables, it modifies the
PES for the lower-level methods in an unphysical way. This is attributed to the fact
that M1-morphing operates on the three-body term only and can thus not compensate
for inaccuracies in the two-body contributions to the overall PES. In contrast, for FCI
the changes for all characteristics of the morphed PES are moderate, underscoring the
accuracy of both, the initial and morphed PESs from FCI calculations.

To reduce the dependence of the morphed PESs on the quality of the two-body contri-
butions, morphing M2 was carried out. M2-morphing acts globally and independently
on each of the internal degrees of freedom, see Figure 5.1. This makes M2 less prone
to overcompensatory effects as observed for M1-morphing. For the MRCI+Q PES
the improvement in the observables amounts to ≈ 14 % for the peak positions and
≈ 26 % for the peak heights. At the same time the changes in the PES are moderate,
see Figure 5.4B, and the dissociation energy does not change (Table 5.1) although the
energy scaling parameter, ε was allowed to vary. Similarly, for MP2, the RMSE for
the positions and heights of the peaks improve by about 22 % and 47 %, respectively.
Contrary to M1, morphing M2 does not substantially modify the well depth as reflected
by the value of De, see Table 5.1. For FCI, morphing changes De by 0.2 cm−1 which
is plausible as increasing the basis set from aug-cc-pv4z to aug-cc-pv5z changes De
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Figure 5.4: Results of Morphing method M2. Distributions P (E) (panels A,C)
obtained from experiment (black, data taken from Ref. 36) and full coupled channels
calculations using the unmorphed (dashed lines) and M2-morphed (solid lines) PESs
(B,D) for MRCI+Q (A,B), and MP2 (C,D). The RMSE for the peak positions and
heights are reported in Table 5.1. The projections of the PES (B,D) are shown for r = re
(see Table 5.1) with the zero of energy set for the r−value considered and R = ∞.
Energies are in cm−1. The changes in the PES suggest that the observables are primarily
sensitive to the long-range part and the repulsive wall of the PES.

118



by 5 cm−1 (Figure S11) and expected smaller changes when further increasing to the
aug-cc-pv6z basis. This is confirmed for MRCI+Q calculations for which De changes
by 2.5 cm−1 between aug-cc-pv5z and aug-cc-pv6z bases, see Figure S12.

For the optimal morphing parameters, M2 applied to the MRCI+Q PES yields an en-
largement of R by ∼ 1 % whereas rHH is reduced by 1.9% and ε remains unaffected.
The reduction in rHH leads to a small increase in the height of the barrier between the
two wells of the potential (Figure 5.4B) and a corresponding increase in the energy of
the transition state, as observed in the minimum energy path (MEP), see Figure S13,
for the angular coordinate. This effect is compensated by a positive displacement of
the values of R (Figure S14) for the MEP. On the other hand, for the MP2 surface,
the morphing parameters are (+0.6, +19.0, −0.04) %. The large positive value for β
results in a displacement of the H+

2 bond length to a shorter equilibrium value (Figure
S15 and S16). For the R coordinate, the values are also reduced while the barrier height
remains unchanged (Figure S14). As for M1, in the MP2 and MRCI+Q PESs the largest
changes are observed in the rHH coordinate. However, in the M2 method, scaling of the
global PES results in a better performance for the calculation of the observable and a
better physical description.

Finally, morphing one PES into another one can probe the flexibility of the morphing
transformation as a whole. To this end, the MP2 PES was morphed to best compare with
the FCI PES in a least squares sense according to method M2, i.e., by finding parameters
(α, β, ε) that minimize (VFCI(R, r, θ)−εVMP2(αR, βr, θ))

2 without specifically weight-
ing low- or high-energy regions in the fit. In this case, no experimental data was used in
the refinement. Rather, the performance of the morphed PES was tested a posteriori.
This optimization procedure reduces the RMSE between the FCI and unmorphed vs.
morphed PES by about 30% (from 138 cm−1 to 87 cm−1, see Figure S17). The changes
in the topology of the surface in Figure 5.5C indicate that the morphed MP2 PES is
"pulled towards" the FCI PES: Consider, for example, the isocontours for −400 cm−1

for which the original MP2 isocontour (blue) is far away from the FCI target contour
(red), whereas the morphed PES (grey) is deformed towards the grey target isocontour.
Closer inspection reveals this to occur for all the other isocontours in Figure 5.5C as
well. The barrier separating the [He–HH]+ and [HH–He]+ minima is reduced, which is
also seen in the minimum energy path (see Figure S18).

The results of the scattering calculations performed with the surface from the PES-to-
PES morphing procedure (Figure 5.5A) are overall slightly inferior to those obtained
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Figure 5.5: PES-to-PES Morphing. Panel A: Cross-sections obtained from experi-
ments (black, data taken from Ref. 36) and scattering calculations on the unmorphed
MP2 (dashed light red) and the morphed (grey) PESs for M2 PES-to-PES morphing
procedure with the FCI PES as target. Panel B: Same as Panel A but comparing the
best morphed PES (grey) to the unmorphed FCI surface (solid blue). Panel C: 2D
projections of the PES for r = 2.0 a0 for unmorphed FCI (solid blue), unmorphed MP2
(dashed light red) and best-morphed PES (grey). The zero of energy is set to the value
of the PES at rHH = 2.0 a0 and R = ∞. Energies are in cm−1. All data points are
equally weighted; the performance of the morphing transformation may be changed by
differentially weighting attractive and repulsive regions of the PES.

from the initial FCI and MP2 PESs, when compared with the experimental data: a
negligible increase of the RMSE for the peak positions (< 1%) and intensities (2.2
%) is found. Moreover, the fact that the morphing transformation increases the well
depth by merely 10 cm−1 indicates that a morphing transformation operating only on
distances and the energy is not sufficiently flexible to accommodate global changes
between topologies as different as FCI vs. MP2. Some further improvement might be
obtained by more heavily weighting data points in the attractive region compared with
the repulsive well which was, however, not considered in the present work.

The results indicate that at all levels of theory improvements in describing the experi-
mental observables are possible. At the same time morphing applied in the fashion done
here provides a stringent test to probe the quality of an initial PES at a quantitative level
- with higher initial levels of theory, the changes that need to be accommodated decrease
and specific deficiencies of a particular quantum chemical approach can be unveiled.
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5.3 Discussion and Outlook

Given that essentially exact quantum calculations are possible for the He–H+
2 com-

plex,[36, 294, 299] the present results highlight what can and cannot be learned about
molecular PESs — the central concept in classical and quantum molecular dynamics
— from accurate and rather comprehensive experimental data based on Feshbach reso-
nances. One hallmark of such quantum scattering resonances is the large spatial extent
of the PES which the resonance wavefunction probes (Figure 5.6 and discussion in SI).
In this regard, the kinetic energy spectrum obtained from the decay of the Feshbach
resonances differs from spectroscopic observables, typically involving bound states
sensitive to smaller spatial regions of the PES.[37]

In addition to the actual changes of the PES, a comparison of the two morphing proce-
dures employed provides insight into the relationship between the PES, the information
provided by specific observables, and how this information can be used to improve
an initial PES. First, the much better performance of morphing the global interaction
energy instead of restricting to the three-body contributions reveals the importance
of corrections already at the level of two-body interactions. Moreover, the physically
meaningful changes to the PES identified by the global morphing concern essentially
the anisotropy in the long range. To this end, comparatively small changes of the PESs
result in notable improvements in the agreement between calculated and measured
observables. This is in line with the expectation that Feshbach resonance wavefunctions
mainly probe the anisotropy of the PES in the long-range. Both observations taken
together suggest extending the morphing transformation to include higher order terms
(e.g. αr → α1r + α2r

2 + · · · ) or non-linear terms (akin to a neural network activation
function) in the coordinate transformation. Including the angular degree of freedom θ

in the morphing transformation as well yields further improvements, see Figures 5.8 to
S21 and discussion in the SI.

The present work provides information about the behaviour of molecular PESs from
lower (MP2) to very high (FCI) levels under morphing. It would also be interesting to
characterize the effect of using different basis sets in the quantum chemical calculations.
As an example, MRCI+Q calculations using the aug-cc-pV5z and aug-cc-pV6z basis
sets changes the interaction energy between He and H+

2 by 2.5 cm−1, see Figure S12,
compared with a well depth De = 2557 cm−1. Hence for the basis sets used in the
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present work the effect is expected to be small. However, if smaller basis sets need to
be used, as will be the case for larger systems, the effect will be considerably larger.

It is valuable to juxtapose the present effort to improve molecular PESs using exper-
imental data with earlier work on van der Waals complexes between rare gas atoms
and diatomic molecules. This approach was based on heavily parametrized functions
including detailed expressions for the long-range part of the intermolecular interactions
in which primarily the well depths and positions of the minima of the radial strength
functions and the steepness of the repulsive wall were allowed to vary.[295, 303] Such
a strategy was successful in fine-tuning PESs but also relied on an appreciable amount
of detailed information: for example, more than 20 parameters are required to define
the long range interaction between the rare gas and the diatomic molecule. In addition,
uncertainties in the parameter values provided information about their sensitivity to
experimental observables.

Contrary to this, the present work adopts a more holistic approach that also scales well
to larger systems by deforming the entire PES to embed experimental observables. No
particular physical meaning is then attributed to the morphing parameters and reporting
uncertainties on them is of less immediate interest also because it is evident that multiple
valid and meaningful solutions to the problem exist in general. The technique capitalizes
on the fact that high-dimensional, global PESs can now be computed at sufficiently
high levels of quantum chemistry[288] and obtaining a flexible machine learning-based
rendering either from (reproducing) kernel representations or from neural networks is
feasible.[100, 304] The approach followed here can be easily scaled to larger systems
whereas the earlier “fine-tuning” strategies are typically limited to small systems.

At a fundamental level, the present findings raise the question how much and what
experimental data is required to completely characterize a molecular PES. Indeed,
the present work proposes several PESs with comparable average performance on the
scattering observables, even though the shapes and local characteristics of the PESs
differ greatly, illustrating that the information contained in the Feshbach resonances is
not sufficient to uniquely define the PES. In particular, information on the bound-state
region is missing. One possible way to answer the question which combination of
observables is suited to completely characterize the dynamics of a molecular system has
been developed in quantum information science and is referred to as quantum process
tomography.[305] This has to be distinguished from the "Tomography of Feshbach reso-
nance states" [36] which referred to the simultaneous measurement of multiple reaction
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products. Quantum process tomography goes substantially further by providing a math-
ematical prescription to completely characterize a quantum dynamical process. It has
been adapted to molecular systems for example in the context of ultrafast spectroscopy.
It is, however, still an open question how to adapt it to two- or many-body processes
such as molecular scattering. In future work, quantum process tomography could be
applied to the quest of uniquely defining a PES by making use of the mapping between
the real-space representation of the molecular Hamiltonian and qubits.[306] This should
allow for a systematic approach to identify the most important measurements which
would then provide additional data for morphing PES.

5.4 Methods

5.4.1 Potential Energy Surfaces

For the present work, three PESs were employed. Full-dimensional PESs for He–H+
2

were previously determined at the FCI/aug-cc-pV5Z and MRCI+Q/aug-cc-pV6Z lev-
els of theory, respectively.[294] The reference data was represented as a reproducing
kernel Hilbert space (RKHS)[38, 97] which provides a highly accurate interpolation
and allows to encode the leading order long-range behaviour for large separations. In
addition, a third PES using the same underlying grid for determining reference energies
at the MP2/aug-cc-pV5Z level and also represented as a RKHS, was constructed for
the present work. These calculations were carried out using the MOLPRO suite of
codes.[307] All PESs are represented as a sum of diatomic potential energy curves
together with an explicit three-body interaction. The complete many-body expansion
for the He–H+

2 system is given in Eq. (5.1), where distances ri ∈ {rHeH, rHeH+ , rH+
2
} in

the two-body terms V(2)
i are the distances between the respective atoms, whereas for the

three-body term V(3)(R, r, θ) the coordinate r is the H+
2 separation rH+

2
, R the distance

between He and the centre of mass of the diatomic, and θ the angle between the two
distance vectors r⃗ and R⃗. Finally, V(1) corresponds to the respective atomic energies.
The energies V(1)

i and V(2)
i were also determined at the respective level of theory from

electronic structure calculations and the contributions V(2)
i were fitted to analytical

expressions described in Ref. 294. The fitting parameters for the FCI and MRCI levels
of theory were published before and those for the MP2 level of theory are provided in
the supporting information. Combining all this information, the three-body contribution
V(3)(R, r, θ) was obtained on the grid used in the electronic structure calculations for
V (R, r, θ) and represented as a RKHS.
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5.4.2 Scattering Calculations

Integral scattering cross sections and scattering wave functions for He-H+
2 , resulting

from a spatially distributed input wave packet, were evaluated using a home-written
coupled-channels collision simulation based on the renormalized Numerov method.[308,
309] Details on these calculations have been given in earlier work [36] and only the
salient features are presented here. The wavepacket simulations use Jacobi coordinates
with r⃗ the vector between the hydrogen atoms, R⃗ the vector from the dihydrogen centre
of mass to the helium atom and θ the angle between the two vectors. With R = |R⃗| and
r = |⃗r|, the total Hamiltonian is then

Htot = − ℏ2

2µcmplx

∇2
R⃗
− ℏ2

2µdiat

∇2
r⃗ + V (R, r, θ) , (5.2)

where µcmplx is the reduced mass of the three-body complex, µdiat the reduced mass of
the dihydrogen molecule, and V (R, r, θ) the three-dimensional PES. The total wavefunc-
tion of the system Ψ(R⃗, r⃗) is written as a product of R−, r−, and angularly dependent
terms,

ΨJMvjℓ(R⃗, r⃗) ∝
∑

v′j′ℓ′

GJvjℓ
v′j′ℓ′(R)χdiat,v′j′(r)

j∑

mj=−j

ℓ∑

mℓ=−ℓ

CJM
mjmℓ

Yℓ,mℓ
(θR, φR)Yj,mj

(θr, φr) ,

(5.3)
see Ref.36 for more detail. Channels consist of tuples of quantum numbers v, j, and ℓ,
corresponding to diatomic vibration, rotation and orbital angular momentum, respec-
tively. In Eq. (5.3), χdiat,v,j(r) designates the rovibrational eigenstates of the molecule.
Starting from a given entrance channel, the Schrödinger equation is solved numerically
to obtain the radial wave functions G(R) for the exit channel with quantum numbers
(v′, j′, ℓ′) connected with the entrance channel (v, j, ℓ). The total angular momentum,
J⃗tot = j⃗ + L⃗ obtained from coupling diatomic and orbital rotation, and parity are
conserved under the Hamiltonian (5.2).

In the experiments, the He–H+
2 complex (plus a leaving electron) is formed by Penning

ionization (He∗+H2), and the scattering calculations considered in the present work
describe the half-collision on the He–H+

2 PES. The initial wavepacket ϕ(R) along the
R−coordinate is approximated by Gaussian distributions centered aroundR ≈ 8 a0.[36]
The experiment prepares the input wavepacket with jwp = 0, 1 for para- and ortho-H+

2 ,
respectively. However, as the system is prepared in a superposition of J−states, indi-
vidual simulations need to be carried out for each possible value of J and partial wave
ℓ. Then, the integral cross section is calculated as a weighted sum over the individual
contributions for a given collision energy Ecol/kB ≈ 2.5 K. The J−weights, which
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were calculated separately,[310] are shown in Figure S22. Experimentally, the initial
state is prepared "in situ" whereby Penning ionization generates the He–H+

2 complex.
Thus, the initial state of the present quantum wavepacket simulations is in fact the
result of an incoherent decay of a population of He∗–H2 complexes which leaves one
with an unknown normalization. The experimentally observed quantity is a probability
distribution P (E) which is dimensionless. Here, the computed intensities are scaled
such as to best reproduce the experimentally measured ones.

Evaluation of the collision cross section due to the spatially distributed input wavepacket
can be accomplished by expanding ϕ(R) in a basis of eigenfunctions of Htot. To this
end, the time-independent Schrödinger equation was solved on a discretized interval
of 1002 energies ranging from 100 cm−1 below to 100 cm−1 above the dissociation
threshold of the given entrance channel. Because full coupled-channel calculations
are computationally demanding, the considered set of initial wavepacket quantum
numbers J and ℓ was limited to (ℓ/J) ∈ {(0/0), (1/1), (2/2), (3/3), (4/4)} for para-
and (ℓ/J) ∈ {(0/1), (1/1, 2), (2/1, 2, 3) , (3/2, 3, 4), (4/3, 4, 5)} for ortho-dihydrogen,
respectively. For each coupled channel calculation a converged basis set of diatomic
rotational states up to jmax = 19 and diatomic vibrational states up to vmax = 5 was
used.

Solving the Schrödinger equation in this fashion allows for calculating the channel-
resolved integral cross section for each energy in the discretized interval. For a given
output channel, the eigenenergy Ev′j′ℓ′ = Eint,v′j′ℓ′ + Ekin,v′,j′,ℓ′ can be decomposed
into its internal and kinetic parts, respectively. By generating a histogram for all output
channels (v′,j′,ℓ′), the cross-section can be expressed as a function of kinetic energy,
which can be compared with the experimental results. Next, the kinetic energy his-
togram is convoluted using a Gaussian envelope to account for the finite resolution in
the experiments.[36] Before convolution, and as shown in Figure S23, the computed
peaks are sharp in Ekin which is a signature of Feshbach resonances. It should be
noted that experimental peaks are clearly distinguishable and energetically match the
theoretical predictions. However, the peak shapes and heights can vary, dependent
on the histogram resolution and convolution width. In this work, only single initial
vibrational excitations (v = 1) were considered, in order to exploit the experimental
resolution of separate j′ peaks in the cross-section as a function of kinetic energy [311].
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5.4.3 Morphing

The morphing transformation considered here is

Vmorphed(R, r, θ) = εVab−initio(αR, βr, θ) . (5.4)

In Eq. (5.4), the three parameters (α, β, ε) are used for energy- (ε) and geometry-(α, β)
related scalings. For the purpose of this work, the angle θ was not modified. The
morphing procedure described further below optimizes the values of (α, β, ε) such that
the difference between observed and computed features of the resonances is minimized.
Application of such a procedure modifies local features (e.g. slope, curvature) of the
PES but maintains its global shape.

For morphing M1 and M2 the refinement with respect to experimental values is formu-
lated as an optimization problem with a loss function,

L = min
α,β,ε

[
wE

∑

j′

|E(j′)
exp − E

(j′)
calc(α, β, ε)|+ wh

∑

j′

δκh(j′)

]
, (5.5)

to be minimized. Here, E(j′) is the kinetic energy of each cross-section corresponding
to an exit-channel j′, and δκh(j′) accounts for the difference in the peak heights between
experimental and calculated values:

δκh(j′) =

{
(∆h(j′)− hnoise)

κ, (∆h(j′)− hnoise)
κ > 0 ,

0, (∆h(j′)− hnoise)
κ ≤ 0 ,

(5.6)

where, δh(j′) is regularized by subtracting hnoise = 10.0 to avoid fitting experi-
mental noise. By design, only values δh(j′) > 0 contribute to the error. Here
∆h(j′) = |h(j′)exp − γh

(j′)
calc(α, β, ε)|, where h(j′) is the peak height of the cross section cor-

responding to an exit-channel j′. The parameter γ is recalculated after each iteration to
best match the experiment by performing an additional 1d minimization over the squared
difference in peaks heights. The weights wE = 1 (cm−1)−1 and wh = 1 ensure that all
terms and the total loss L in Eq. (5.5) are dimensionless and can be used to bias the fit
to better reproducing certain observables than others which was, however, not done here.

The workflow to perform the optimization of Eq. (5.5) is shown schematically in Figure
5.1. In the first step, ab initio points of the PES are used to generate a RKHS kernel.
Depending on the morphing procedure chosen, a new RKHS needs to be generated (for
M1) or the existing kernel will be reused (for M2). All kernels are constructed and
evaluated using the “fast” method.[38] The obtained PES is passed to the scattering
code to perform the wavepacket propagation. Next, the resulting cross-sections are
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processed and then compared with the available experimental data. If the difference
between experimental and calculated values matches a given tolerance the cycle finishes;
otherwise, the PES is modified by three parameters as described in Eq. (5.4) following
the chosen morphing approach. The values of the parameters α, β and ε were obtained
by a non-linear optimization using the NLopt package[312]. For further details about
the optimization procedure, see the SI.

5.5 Additional results

Complementary to the presented results, here we discuss the quality of the results of
morphing M1 for the methods MRCI and MP2 and the wavefunction changes in the
resonances. Finally, a first attempt to perform morphing of the potential energy surface
while modifying the angular term is discussed.

5.5.1 Morphing M1 for the MRCI and MP2 PESs

Multi-Reference CI: Figure 5.2B compares the cross sections from experiments with the
results from computations with PESs before and after morphing M1 for the MRCI+Q
PES. Overall, the RMSE for the energies changes from 10.3 to 12.2 cm−1, whereas
the intensities improve from an RMSE of 23.9 to 21.9 arb. u. The results indicate
that M1 has the most pronounced impact on intermediate values of j′ (i.e. j′ = 4, 5);
see Figures 5.2D and E. Changes in the peak energies do not show a clear trend. The
largest improvements are observed for j′ = 5 and for j′ = [0, 1]. Errors for peaks with
j′ = 8 and j′ = 6 do not reduce using M1. The remaining peaks showed an increase in
the error after applying M1. For the peak intensity, again, the largest improvement is
observed for the j′ = [0, 1] peak. For most other peaks, with the exception of j′ = 5

and j′ = 8, there is clearly an improvement in the intensities.

The initial and morphed MRCI PESs are compared in Figure 5.3B. In this case, mor-
phing increases the anisotropy at long-range compared to the initial PES. However,
changes are more pronounced than for the FCI PES. One-dimensional cuts along the
rHH and R coordinates for given angle θ are provided in Figures S25 and S26. As for
the FCI PES, the difference between the initial surface and the morphed surface is more
pronounced as rHH increases. The 1D cuts of the surface at different values of rHH

(Figure S26) show further evidence of the change in the depth of the potential well. The
modifications of the energy curves with respect to the rHH coordinate follow the same
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trend as the FCI surface.

MP2: The results for the lowest-quality surface (MP2) are shown in Figures 5.2C and
5.3C. The RMSE for the energies improves from 13.1 to 12.8 cm−1 whereas for the
intensities, it changes from 22.4 to 10.9 arb. u. Particularly notable is the improvement
in the intensities by more than a factor of two. Overall, the changes in the position
of the energies and the intensities of the peaks for the calculated cross sections are
more pronounced than for the FCI and MRCI+Q PESs. The energy position for peaks
with large j′ (j′ = 7 and j′ = 8) improve by ≈ 5 cm−1. Another difference is that the
shoulder of the peak at j′ = 8 that appears for the two previously described surfaces is
not visible for the MP2 surface. For the peaks with j′ = 4 and j′ = 5, the error with
respect to the experimental spectra upon morphing increases slightly.

The original MP2 PES and its morphed variant for a H+
2 separation of rHH = 2.0 a0

are reported in Figure 5.3C. Because Møller-Plesset second-order theory is a single-
reference method and makes further approximations, the changes in the topology
of the PES are considerably larger than for the FCI and MRCI+Q PESs. Most of
the isocontours are compressed compared with the initial MP2 surface, and the well
depth is reduced from 2493 cm−1 to 1684 cm−1 (Table 5.1), see Figure S27. The
one-dimensional cuts along the rHH and R coordinates for given θ, see Figures S28
and S29, show that as rHH increases the single-reference assumption of the method,
leading to convergence problems for small R. As a consequence of the contraction of
the potential wells, the barrier of the transition state at θ ≈ 90◦ is increased, which is
further confirmed by the Minimum Energy Path (MEP) shown in Figure S30C. A more
detailed analysis of the MEP (Figure S31C) reveals a small increase in the energy of the
transition state along the angular coordinate θ. On the other hand, for the R−coordinate
a non-physical barrier emerges at around 3.5 a0.
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5.5.2 Resonances under Morphing

The cross sections depend on the binding energy between He and H+
2 as opposed to

the relative kinetic energy of the two reactants show distinct peaks that are no longer
separated by the final states (j′) of the H+

2 fragment but rather appear as one or several
Feshbach Resonances per input J and ℓ at certain values of the binding energy. Both
the energy at which a Feshbach Resonance appears, and the distribution of intensities
in all exit channels, depend sensitively on the topography of the PES. In consequence,
the effect of morphing on the PES can influence the number, energy and intensities of
the Feshbach resonances. To illustrate this, it is instructive to consider projections of
wave functions for particular resonances to characterize how changes in the PES, which
lead to changes in the collision cross-section, are reflected in the radial and angular
behaviour of the wave function.

Figure 5.6 shows the square of the (v′ = v) and (j′ = j) components of the resonance
wave functions (first and third rows of panels) and corresponding resonances in the
cross-section (second and fourth rows of panels) for the dominant ℓ and J contributions
for para- and ortho-H+

2 for all three unmorphed and morphed PESs, respectively. The
number, position(s) and intensities of the spectroscopic features respond to morphing
in a largely unpredictable way. As an example, the unmorphed and morphed PESs at
the FCI level are considered for para-H+

2 with (ℓ = 4, J = 4) (left column, rows 1 and
2 in Figure 5.6). Although M1 changes the topology of the morphed PES only in a
minor fashion, the effect on the wavefunctions and resulting spectroscopic features is
clearly visible. For the unmorphed FCI PES there is one resonance at –8.1 cm−1 which
splits into two resonances at –2.1 cm−1 and –16.3 cm−1 of approximately equal height
upon morphing the PES. Accordingly, the wavefunctions also differ, in particular in the
long-range part, i.e. for large R. Similar observations were made for the wavefunctions
on the MP2 PES, whereas for the MRCI PESs the changes in the wavefunctions are
comparatively smaller.

Conversely, for ortho-H+
2 the resonances of both FCI and MRCI PESs are affected in a

comparable fashion and more noticeable changes to the resonance wave function are
observed than for para-H+

2 . Whilst the resonance wave functions are shifted to larger
R in the cases of FCI and MP2, the MRCI resonance wave function only experiences
a small shift. Significantly, even though the anisotropy of the PESs only changes in
a minor fashion under morphing, all three resonance wave functions respond owing
to a change in the superposition of outgoing partial wave (quantum number ℓ′). For
the FCI and MP2 PESs, angular/radial coupling is enhanced by morphing, which leads
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to the elongation of certain lobes in the wavefunctions along the (R, θ)−direction for
ortho-H+

2 –He. This contrasts with para-H+
2 –He for which unique assignments of the

ro-vibrational quantum numbers are possible from conventional node-counting.
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Figure 5.6: Comparison of the unmorphed (red, dotted) and morphed (blue) absolute
value squared resonance wave functions in two dimensions (R, θ) in the case of para-
H+

2 ℓ = 4, J = 4 (upper two rows) and ortho-H+
2 ℓ = 4, J = 5 (lower two rows)

for resonance energies as marked and labelled in the corresponding cross sections are
shown as a function of binding energy (second and fourth rows for para and ortho,
respectively). The resonance wave functions have been scaled to have a maximal value
of one, and the contours occur at 0.01, 0.1, 0.25, 0.5, 0.75 and 0.99.
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5.6 Supporting information

Additional figures and supporting information for this work can be found at http://
doi.org/10.1126/sciadv.adi6462 or at: https://github.com/LIVazquezS/
SI_PhD_Thesis/blob/main/SI_Chapter5.pdf.
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5.7 (Global) Angular Power Morphing of MP2

In addition to morphing distances and the energy scale, angular morphing was explored.
Including the angular degree of freedom in morphing the PES is less straight forward,
since any morphing transformation should conserve the underlying symmetry of the
PES. Thus, straightforward linear scaling of the angle θ in the present case is not
possible. Instead, the transformation needs to leave θ = 0, π/2 (since the dihydrogen
ion is homonuclear) and π invariant. One possible transformation which fulfills this
requirement is

fη(θ) = π

(
1−H

(
θ

π
− 1

2

))
1

2

(
2θ

π

)η

+ π ·H
(
θ

π
− 1

2

)(
1− 1

2

(
2− 2θ

π

)η)
.

(5.7)

Here, H(x) is the Heaviside step function defined as:

H(x) =





0 If x < 0

0.5 If x = 0

1 If x > 0

(5.8)

The first term in equation 5.7 is responsible for morphing angles θ < π/2, whereas the
second term is the mirror image around the (π/2, π/2) point, responsible for morphing
angles θ > π/2 and fη(π/2) = π/2 (See Figure 5.7).

The effect of including the angular coordinate in the morphing was explored by morph-
ing the MP2 PES to the FCI PES as described in the main manuscript. The optimization
procedure reduces the RMSE between FCI and the morphed PES by around 40 % from
(138 cm−1 to 75 cm−1). This compares with an improvement by 30 % (138 cm−1 to 87
cm−1) without morphing the angle. Figure 5.8 shows the ensuing changes in the PES. It
is found that the total loss improves by a factor of two compared to morphing without
the angular degree of freedom, and for the PES-to-PES morphing, the RMSE improves
by 25 % (Figure S17).
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Figure 5.7: Angular power morphing function (see Eq. 5.7) used to transform the
angular term of the PES. The transformation must keep the terms at θ = [0, π
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invariant. The coloured lines corresponding to values of η ranging from 0.1 to 10 as
indicated in the legend show the behaviour of the remapped angle as a function of the
original in the domain [0, π].
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Figure 5.8: Morphing PES-to-PES + Angular correction. 2D projections of the
PES for r = 2.0 a0. Panel A shows the unmorphed FCI (solid blue) compared with
unmorphed MP2 (dashed light red). Panel B compares unmorphed FCI (solid blue) and
best-morphed PES (grey). The zero of energy is set to the value of the PES at rHH = 2.0
a0 and R = ∞. Energies are in cm−1. Note that all data points are equally weighted;
the performance of the morphing transformation may be changed by differentially
weighting attractive and repulsive regions of the PES.
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Chapter 6

Using uncertainty to detect outliers
in potential energy surfaces

There goes my hero. He’s ordinary...

My Hero - Foo Fighters

This chapter evaluates the use of different uncertainty quantification techniques for
detecting outliers (i.e. samples with large errors) in a reactive potential energy surface.
In contrast with common approaches, here, the goal is to evaluate if the uncertainty
predicted by the model is qualitatively related to the error in prediction. To fulfil
this objective, three techniques were evaluated: the ensemble method, deep evidential
regression (DER) and Gaussian mixtures model (GMM). Two new versions of DER are
presented. The first one is based on modifying the loss function by using a Lipschitz
regularizer (DER-L). The second version assumes that the data can be represented by a
Normal Inverse Wishard distribution (DER-M). The system of study was the reaction of
(syn)-Criegee to vinyl hydroxyperoxide. The generated PESs for the different models
are evaluated by characterizing their stationary points. Additionally, its performance
in simulation and the description of the reactive process. The capabilities of outlier
detection were evaluated with different techniques. Furthermore, the relationship
between structures with energy and variance is studied. The results show that ensemble
models have the best performed for outlier detection. Among the DER versions, the
introduced model DER-L has the best performance.

The results presented in this chapter will be submitted to npj Comput. Mater.

***Silvan Kässer collaborate in this work as joint first author



6.1 Introduction

Computer simulations are an indispensable part of today’s research and have become
increasingly important in chemistry, physics, biology and materials science[313–316].
Commonly, molecular dynamics (MD) simulations involve the numerical integration of
Newton’s equations of motion, which requires the determination of potential energies
and forces for a given atomic configuration.[96, 317] Ideally, those properties would be
determined at the highest level of accuracy by solving the time-independent Schrödinger
equation (SE). Unfortunately, this is only possible for small systems on a short time
scale because the methods to solve the SE scale poorly with the system size and the
method’s accuracy. This limitation can be circumvented by using atomistic potentials
that directly describe the relation between the atomic positions of a molecule and its
potential energy through the mapping, f : {Zi, ri}Ni=1 → E, of the atomic charges
(Zi) and the atomic positions (ri) to the potential energy E [96]. Complementary, the
atomic forces can be determined from the potential energy as its negative gradient
(Fi = −∇E). The described mapping is known as a potential energy surface (PES).

Over the last decade, machine learning (ML) techniques such as neural networks (NNs)
and kernel methods have been used to represent PESs. This originates from the meth-
ods’ ability to learn relationships from provided data.[34] Therefore, it is possible to
parametrize/learn the described mapping from a pool of reference ab initio calculations
and eventually use it to describe the dynamics of a system of interest. Particularly, ML
has been extensively used to represent PESs based on large, diverse, and high-quality
electronic structure data.[318–323] While Machined Learned Potential Energy Surfaces
(ML-PES), sometimes also called ML potentials1 (MLP), reach unforeseen accuracies
in the interpolation regime of the data set they are known to extrapolate poorly on
unseen data due to their purely mathematical nature lacking any underlying functional
form.[324, 325] Thus, ML-PESs crucially depend on the globality of the training data,
which usually requires an iterative collection/extension of a data set.[34, 96, 326]

Nevertheless, constructing a global dataset that describes the dynamics of a chemical
system is a complex task with challenges related to the quality and completeness of
the training data and the inter- and extrapolation behaviour of the ML models. A way
to tackle these critical aspects is through the use of uncertainty quantification with the
primary goal of detecting outlier regions. Finding such outliers or outlier regions helps
to increase the model’s robustness and further improves its accuracy and reliability.

1Although in the literature it is common to find both names, the present work uses ML-PES to avoid
confusion with multilayer perceptron also known as MLP.
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Particularly for reactive PESs - one of the advantageous applications of ML-based PESs
- quantitatively characterizing the confidence in predicted energies and/or forces for
chemically interesting regions around the transition state(s) is very valuable. Such
information can be used to distinguish well-covered regions from those that require
additional training data. To facilitate the discussion, some working definitions must
be given for error, uncertainty, and variance in this work. Here, the error is considered
as the difference between the reference value of a property and the predicted value of
that property with a given model. Complementary to this is the variance defined as
the expected value for the square difference between the predicted value and the mean
value of the model. Finally, uncertainty is considered as the degree of confidence in the
prediction made by a given model. Uncertainty is related to the lack of knowledge or
the model’s limitations to describe a system.[266]

Currently, there are different approaches to quantifying the uncertainty in the prediction
of an ML-PES. Those have been recently benchmarked on non-reactive systems[327].
Here the goal is to quantify uncertainty for a reactive system for which one of the
Criegee Intermediates (CIs), syn-Criegee (CH3CHOO), was used.

The manuscript is structured as follows. First, the methods, including data set generation,
uncertainty quantification and analysis techniques, are described. Next, the performance
of the PESs for computing geometrical and energetic properties is assessed. This is
followed by the results on uncertainty quantification, outlier detection and an analysis
of the relationship between molecular structure and errors/uncertainties. Finally, the
findings are discussed in a broader context and conclusions are drawn.

6.2 Methods

This section describes the the ab initio reference data, the approaches to quantify uncer-
tainty and further analyses. For the ensemble and deep evidential regression models, the
variance is used for uncertainty quantification whereas for the Gaussian mixture model
the negative log-likelihood (NLL) is used. In the text, "uncertainty" and "variance" are
used synonymous, whereby a small variance value corresponds to a smaller uncertainty
and a higher confidence in the prediction and vice versa. The models are characterized
in terms of the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and the
Mean Variance (MV).
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6.2.1 Data sets

The main ingredient for generating ML-PESs is reference electronic structure data to
train the models on. Here, the H-transfer reaction from (syn)-Criegee to vinyl hydrox-
yperoxide (VHP) serves as a benchmark system (see Fig. 6.1) and reference data at the
MP2/aug-cc-pVTZ level of theory is available from previous work.[328] From a total
of 37399 structures covering the (syn)-Criegee → VHP reaction ∼ 10 % are extracted
semi-randomly (every 10th) and structures with very large energies (> 400 kcal/mol
above the minimum) are excluded. A total of 3706 data points are used for obtaining a
first-generation ML-PES (see the energy distribution in Fig. S1). Multiple rounds of
diffusion Monte Carlo (DMC) simulations[329] and adaptive sampling[330] were run
to detect holes and under-sampled regions. The resulting final data set contains a total
of 4305 structures (see the energy distribution in Fig. S2) and is used to train different
ML-PESs that are finally used for uncertainty prediction. It is important to note that
the training data set is not considered to be comprehensive. If, e.g., a global PES for
dissociation dynamics (i.e. formation of vinoxy radical, etc) is sought after, additional
sampling would be required. Nevertheless, the small data set allows us to obtain differ-
ent ML-based models and covers the relevant part of the configurational space of the
reactive process of interest (H-transfer), and their ability to quantify uncertainty can be
tested on an extensive test set. The (unseen) test set contains a total of 33402 structures
covering the (syn)-Criegee → VHP reaction and the energy distribution is shown in
Fig. S3.

6.2.2 Uncertainty Quantification

Ensembles The ensemble method based on the Query-by-committee[265] strategy is
a frequently used and practical approach to uncertainty estimation. For this strategy,
a "committee" of models is trained on the same data set. The uncertainty measure is
obtained as the disagreement between the models (or within the committee/ensemble). If
the predictions of the ensemble members agree closely, it can be assumed that the region
on the PES is well described. For under-sampled regions, however, the predictions will
diverge.[331] A commonly used uncertainty measure for the ensemble is the standard
deviation given by[331]

σE =

√√√√ 1

N
N∑

n

(
Ẽn − Ē

)2
. (6.1)
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Figure 6.1: Characteristics of the stationary points of the PESs. The energy of the VHP
minimum serves as a reference. The energy scale is exaggerated to better represent the
differences between the methods.

Here, N corresponds to the number of committee models, Ẽn is the energy predicted
by committee model n and Ē is the ensemble average.

PhysNet[32] is chosen to learn a representation of the PES. A total of 6 models are
trained to generate an ensemble. All models share the same architecture and hyper-
parameters. However, the random initialization prior to training and the splits of the
training/validation data were altered (models 1/2, 3/4 and 5/6 were trained on exactly
the same data). The 4305 data points were split into training/validation sets according
to 80/20 %. The PhysNet models are trained on energies, forces and dipole moments
according to the scheme outlined in Reference 32. Query-by-committee is performed
with an ensemble of 6 models (PhysNet-6 or Ens-6) and 3 models (PhysNet-3 or Ens-3,
models 1, 3, 5).

Deep Evidential Regression The present work employs a modified architecture[143]
of PhysNet to predict energies and uncertainties based on Deep Evidential Regression
(DER). DER assumes that the energies are Gaussian-distributed P (E) = N (µ, σ2).
The prior distribution is a Normal-Inverse Gamma (NIG), described by four values (γ,
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ν, α, β).[30] The total loss function L includes the Negative Log-Likelihood (NLL),
LNLL(x), which is regularized by the λ−scaled Mean Squared Error (MSE), LR(x),
that minimizes the evidence of incorrect predictions together with energies, forces,
charges and dipole moments for all structures in the training set

L = LNLL(Eref , Epred) + λ(LR(Eref , Epred)− ε) +WF |Fref − Fpred|
+WQ |Qref −Qpred|+WD |Dref −Dpred| .

(6.2)

The NN is trained to minimize the difference between the NIG distribution and p(E).
The values of the hyperparameters were WF = 52.9177 Å/eV, WQ = 14.3996 e−1, and
WD = 27.2113 D−1, respectively,[32] and λ = 0.15 and ε = 10−4 throughout. Notice
that the forces and dipole moments were calculated as in the original version of PhysNet.
In consequence, the variance of the forces can not be obtained because the derivative of
the variance is the covariance matrix between energy and forces.[332] This model is
referred to as DER-Simple or DER-S.

Modified Deep Evidential Regression The effectiveness in predicting uncertainties
by DER-S has been recently questioned[271, 333]: Firstly, minimizing a loss function
similar to Equation 6.2 is insufficient to uniquely determine the parameters of the NIG
distribution because LNLL(Eref , Epred) is optimized independently of the data.[271]
This leads to large uncertainty in poorly sampled regions. Secondly, it was shown that
optimizing LNLL(Eref , Epred) is insufficient to obtain faithful predictions. Adding the
term λ(LR(Eref , Epred)− ε) as a regularizer addresses this problem but can lead to a
gradient conflict between the two terms[333].

Two modifications to DER-S were considered. First, the multivariate generalization,
DER-M, following the work of Meinert and Lavin[270] was implemented. In DER-M,
the NIG is replaced by a Normal Inverse Wishart (NIW) distribution, which is the
multidimensional generalization of the NIG distribution to predict a multidimensional
distribution of energies (E) and charges (Q). The loss function for DER-M is

L = log

(
ν + 1

ν − 1

)
− ν

∑

j

ℓj +
ν + 1

2
log

(
det

(
LL⊤ +

1

1 + ν
Y ·Y⊤

))
+ (6.3)

WF |Fpred − Fref |+WD |Dpred −Dref |

where Y = [Eref , Qref ]
⊤ − [µ0, µ1]

⊤. µ0 is the predicted energy (Epred) and µ1 the
respective predicted total charge (Qpred). Then, the model output will contain six values:
the objective values (Epred, Qpred), the corresponding parameters of the covariance ma-
trix L, l⃗ = diag(L), and a parameter ν. The outputs of the model will be transformed
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to become the parameters of the multidimensional evidential distribution. Details on the
construction of the L matrix, boundaries of ν and the uncertainty are given in the SI.

For the second modified architecture, a Lipschitz-modified loss function LLips was
used[333] as a complementary regularization to the NLL loss

L = LNLL(Eref , Epred) + λ(LR(Eref , Epred)− ε) + LLips.(Eref , Epred)

+WF |Fref − Fpred|+WQ |Qref −Qpred|+WD |Dref −Dpred|
(6.4)

Here, LLips.(Eref , Epred) is defined as

LLips.(Eref , Epred) =

{
(Eref − Epred)

2 If λ2 < Uν,α

2
√
Uν,α|Eref − Epred| − Uν,α If λ2 ≥ Uν,α

(6.5)

where λ2 = (Eref − Epred)
2 and Uα,ν are the derivatives of LNLL with respect to each

variable {
Uν = β(ν+1)

αν

Uα = 2β(1+ν)
ν

[exp(Ψ(α+ 1/2)−Ψ(α))− 1
(6.6)

and Ψ(·) is the digamma function. This model is referred to as DER-L. For training
DER-M and DER-L, the weights for forces, dipoles and charges were the same as in
DER-S.

Gaussian Mixtures Models A third alternative to quantify the uncertainty is the
so-called Gaussian Mixture Model, GMM. This method is convenient for representing -
typically - multimodal distributions in terms of a combination of simpler distributions,
such as multidimensional Gaussians[113]

N (x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

(
−1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
(6.7)

Here, µi is a N -dimensional mean vector and Σi is the N ×N -dimensional covariance
matrix. The distribution of data, here the distribution of molecular features, x, given
parameters θ can be represented as a weighted sum of N -Gaussians:

p(x|θ) =
N∑

i=1

ωiN (x|µi,Σi) (6.8)

with mixing coefficients ωi obeying[136]
∑N

i=1 ωi = 1 and 0 ≤ ωi ≤ 1. The ωi coeffi-
cients are the prior probability for the ith-component.
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Following the work of Zhu et al.[334], the parameters of Equation 6.8 (θ = {ωi, µi,Σi})
to construct the Gaussian mixture model (GMM) were obtained from the molecular
features of the last layer of a trained PhysNet model. The distribution of molecular
features from the training set is used to acquire the values of θ. The initial µi values
were determined from k-means clustering. To each Gaussian i in the GMM model
a covariance matrix Σi is assigned. The number of Gaussian functions required was
determined by using the Bayesian Information Criterion (BIC) and was N = 37.
Finally, the fitted model was evaluated by using the negative log-likelihood (NLL) of
the molecular feature vector as:

NLL(p(x|X)) = − ln

(
N∑

i=1

ωiN (x|µi,Σi)

)
(6.9)

Here, p(x|X) is the conditional probability of a molecular feature vector x with respect
to the distribution of feature vectors in the training dataset X . The value of NLL is used
as a measure of the uncertainty prediction, whereby smaller NLL-values indicate good
agreement. The "detour" involving the feature vectors is a disadvantage over the other
methods studied here because it is not possible to directly relate the predicted energy
with the corresponding uncertainty.

6.2.3 Analysis

Outlier detection. In this work, outliers are detected by considering whether a number
Nerror can be found in the Nvar with the highest variance (or NLL in the case of GMM).
Therefore, the accuracy for detecting outliers is defined as:

Acc =
n(Nerror ∩Nvar)

Nvar

(6.10)

Here, n(·) is the cardinality of the intersection between the set of samples with the
largest errors and the set with the largest variances. Complementary to this, a classifica-
tion analysis of prediction over error and predicted variance was performed; details can
be found on the SI.

Inside-Outside distribution The definition of inside-outside distribution is a con-
troversial topic in the ML literature. Here, the natural definition of statistical learning
theory is used:[335] Assume a training data distribution ptrain(x) and a testing distribu-
tion qtest(x); a point xi is defined as out-of-distribution if[336]

qtest(xi) ̸= ptrain(xi).
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To assess whether a given molecular structure is inside or outside a given distribution, a
rank is considered. First, all 28 intermolecular distances for syn-Criegee were computed.
These distances were classified into "bonded" and "non-bonded" separations as follows:
if the distance is smaller than the mean of the van der Waals radii of the two atoms
involved plus 20%, the value is considered "bonded"; otherwise it is non-bonded. The
van der Waals radii used here[337] were H: 1.10 Å, C: 1.70 Å, and O: 1.52 Å. Next,
the 28 distances were determined for all structures in the training data set to determine
pbond(r) and pno−bond(r). Using those distributions, it was possible to test a given
distance of the samples in the testing dataset to be inside (Q5%(r) < ri < Q95%(r)) or
outside (otherwise) the distribution p(r). Here Q5%(r) and Q95%(r) are the 5 % and
95 % quantile of p(r). Using this criterion the contribution χj(ri) of distance ri for
structure j is

χj(ri) =





1 ri ∈ pbond(r)

0.5 ri ∈ pno−bond(r)

0 ri /∈ [pbond(r) ∩ pno−bond(r)]

(6.11)

From this, rankj for sample j is determined according to

rankj =
R∑

i

χj(ri) (6.12)

where R = 28 is the total number of distances.

6.3 Results

6.3.1 Characterization of the Trained PESs

The performance of all trained models is assessed on a hold-out test set and the MAEs
and RMSEs on energies and forces are given in Table S1. While most models reach
similar MAE(E) ≤ 1.0 kcal/mol, the performance on the forces deserves more atten-
tion and is provided below. An essential requirement of an ML-PES is to adequately
describe geometries and relative energies of particular structures, including the minima
and transition states, Figure 6.1. It is found that all models considered perform ade-
quately to predict energies of stationary points with errors of < 0.1 kcal/mol. However,
it is noticeable that most models, except for DER-L, overestimate the energy for the
(syn)-Criegee conformation, while the transition state is underestimated for all except
the ensembles.
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The errors for the syn-Criegee structure are 0.01, 0.03, 0.16, -0.04, and 0.06 kcal/mol
for Ens-3, Ens-6, DER-S, DER-L, and DER-M compared with errors lower than 0.01
kcal/mol for the TS using ensembles, and -0.07,-0.01 and 0.06 kcal/mol with DER-S,
DER-L and DER-M, respectively. The smaller error of Ens-3 compared with Ens-6 is
counter-intuitive and may be a consequence of random noise in the prediction caused
by, e.g., parameter initialization, convergence of the loss function, or numerical inaccu-
racies[338, 339].

Complementary to the energy of the equilibrium structures, the Root Mean Squared
Displacement (RMSD) between optimized geometries from the trained NN models and
at the MP2 level were compared, see Figure S4. Generally, the deviations between
the obtained geometries and the reference structures are very small. However, some
differences between the tested models can be highlighted. First, it is noticed that models
that use DER have an RMSD two or three orders of magnitude larger than ensembles.
Additionally, it is observed that the geometry of the TS is predicted with more accuracy
than the (syn)-Criegee or VHP conformations. For the DER models, the geometries
obtained with DER-S are the most accurate by approximately two orders of magnitude
compared to the ones produced with their counterparts. On the other hand, structures
obtained with DER-M have the largest RMSD among the models tested here. The last
of the DER models tested, DER-L, produces constant RMSD for the different molecules.
Finally, the results obtained with GMM are of a slightly lower quality than the ones
obtained with the ensemble model. This is expected because the GMM model is based
on one of the ensemble members.

Another quantity that can be used to characterize a PES are the harmonic frequencies of
the stationary points obtained from the Hessian matrix (H = ∂2E/∂r2). The results
(Figure S5) indicate that the best performers are the ensemble models and GMM with a
MAE one order of magnitude lower than the DER models. Regarding the DER models,
the best performer is DER-L, followed by DER-S and DER-M. In the case of the (syn)-
Criegee molecule, DER-L has errors on the harmonic frequencies between -50 cm−1

and 50 cm−1, most of the frequencies below 1500 cm−1 were underestimated while
those above 2000 cm−1 (XH stretch) were overestimated. Conversely, for the same
molecule, DER-S underestimates most frequencies, showing the largest errors for the
vibrations at larger frequencies. The worst performing model for (syn)-Criegee, DER-M,
shows a large overestimated value at around 500 cm−1 and a large underestimated value
at high frequencies. The harmonic frequencies for the TS and for VHP follow similar
trends. It is interesting to note that the large errors in the harmonic frequencies are
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also observed for the forces (See Table S1); in general, DER models have an MAE(F)
one order of magnitude larger than the other three models evaluated here. This is a
direct consequence and a limitation of the assumed normal distribution for the energies.
The forces and Hessians are derivatives of the energy expression and the associated
errors are ∝ Error2Ener.

σ2 and ∝ Error3Ener.−σ2

σ4 , respectively. Hence, the DER models have an
inferior performance for forces and harmonic frequencies.

6.3.2 Calculations and Simulations with the PESs

Next, the performance of the different PESs for reactive MD simulations is assessed.
For this, the minimum energy and minimum dynamic paths (MEP, MDP) are assessed
and finite-temperature molecular dynamics simulations were carried out. The MEP
describes the lowest energy path connecting reactants and products passing through the
transition state. Complementary to the MEP, the MDP[340] provides information about
the least-action reaction path in phase space.

Figure 6.2 A shows the MEP for the different models considered here. All MEPs are
within less than 0.5 kcal/mol on each of the points sampled. Therefore, despite the
differences in how errors are handled and their magnitude for each model, the MEP
derived from the PESs are consistent with one another and nearly identical. The MDPs
(see Figure 6.2C), initiated from the TS were determined with an excess energy of 10−4

kcal/mol. The TS structure is stabilized because it is a 5-membered ring and because
little excess energy was used for the MDP. VHP is observed after 225 fs accompanied
by pronounced oscillations in the potential energy primarily due to the highly excited
OH-stretch. Overall, the time traces for potential energy (Figures 6.2C), one possible
reaction coordinate q = rCH − rOH (Figures 6.2D), and all atom-atom separations in
Figure S6 are rather similar for the 6 models considered. Notable exceptions concern
primarily DER-M (purple) for which the energy on the reactant side differs somewhat
from the other five models. Along similar lines, the C1-H2 and C2-H3 separations
deviate noticeably from the other 5 models; see Figure S6. On the product (VHP) side,
the high-frequency oscillations with a period of ∼ 10 fs (see Figure 6.2C) correspond
to a frequency of ∼ 3500 cm−1 characteristic of the OH-stretch vibration, whereas the
low-frequency oscillation in Figure 6.2D is due to the azimuthal rotation of the -OH
group.

Finally, NV E simulations with all six models were carried out; see the SI for details
on these simulations. The simulations were run for 500 ps with a time step of 0.1 fs,
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Figure 6.2: Behaviour during simulation of the different models. Panel A shows the
Minimum energy path (MEP) from syn-Criegee to VHP for the different methods
for UQ used in this work. The zero of energy is the corresponding value for the
optimized structure of VHP. Panel B energy distribution for the different models during
the simulation, note that the x-axis is on a logarithmic scale. Starting from the (syn)-
Criegee, the system was simulated for 500 ps with a time step of 0.1 fs. On the insight,
the time series of the energy. Panel C shows the variation of the energy for the Minimum
Dynamic Path (MDP) of the different formulations of the ML-PESs starting from the
optimized transition state Panel D shows the change in the defined reaction coordinate
(q = rCH − rOH) with respect to the time for the MDP.
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and energy is conserved to within ∼ 2 kcal/mol, see Figure 6.2B. Importantly, no drift
was found on this time scale for most of the models except DER-M.

6.3.3 Analysis of Error Distributions

Next, the errors, their magnitude and distributions for the trained models is analyzed in
more detail. It is desirable that a model accurately predicts the energies across a wide
range which points towards its extrapolation capabilities. The dataset considered con-
tains structures for (syn)-Criegee, VHP, and the corresponding transition state. Residual
plots were used to describe how the signed error ∆ = ERef − EPred, is distributed for
energies between −700 and −300 kcal/mol.

Ensembles Figure 6.3 shows the performance of the ensembles. Noticeably, the error
range is between −30 and 30 kcal/mol, with most errors near the centre (i.e. ∆ = 0).
The region with the lowest energy (E < −650 kcal/mol) has higher accuracy with no
noticeable outliers. The next region, between −650 and −500 kcal/mol, have the largest
number of outliers broadly spread between positive and negative errors. For energies
smaller than −500 kcal/mol range a small spread of the errors with few significant
outliers is found. It can be noticed that the region with more outliers is close in energy to
the transition state; therefore, the structures are expected to have larger deformation than
the other regions. This is related to the fact that the training dataset was created to re-
produce adequately the hydrogen transfer; nevertheless, side channels were not sampled.

The distributions of the squared error (P ((∆E)2)) and the variance (P (σ2)) in Fig-
ure 6.3 are both rather sharp and centred around 0. Using a logarithmic scale further
clarifies the structure of these distributions. The bimodal nature of P ((∆E)2) and P (σ2)

is the first distinctive feature. In addition, the predicted variance partially matches the
squared error distribution (Figure 6.3 centre). The distribution agree closest near their
centre. However, the height of the distribution is larger for P (σ2) than P ((∆E)2).
Furthermore, the tails of P (σ2) decay faster than for P ((∆E)2). This is reflected in
fewer samples labelled with large variance than the number of structures with large
squared error.

Deep Evidential Regression. The results for the predictions of the DER models
are displayed in Figure 6.4. For DER-S the errors are spread between −60 and 60
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Figure 6.3: Performance of the Ens-3 and Ens-6 on the test set. Panels A and B
on the left show residual plots of the error between reference and prediction. The
1000 energies with the largest variance are shaded with a different colour, and the
corresponding colour bar represents the scale of the values. Squared error distribution
(solid lines) and variance distributions (dotted lines) are shown in the centre next to
panels A and B for comparison. Complementary to this is the variance distribution
shown on the right of both panes. Notice that the x-axis on the centre and right are in
logarithmic scale.
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kcal/mol and the variances vary between 2× 10−3 to 9× 10−3 kcal/mol with a single
sharp peak around 10−2 kcal/mol, i.e. the same uncertainty for nearly all predictions.
This aligns with the previously discussed problems of DER[271] that reported models
which improve the quality of the predictions by increasing their uncertainty. The small
variances across the test set indicate that adding forces and dipole moments to the
loss functions renders the model overconfident. One possible explanation for this is
that terms depending on forces, charges and dipoles in Eq. 6.2 to DER-S act as extra
regularizers to the evidence of incorrect predictions, akin to the LR(x) term, during
training of the NN. Hence, the variance predicted by DER-S loses its capability to
detect outliers. Furthermore, DER-S tends to underestimate the energies with a larger
population on the positive side of the ∆E. Finally, the squared error, centered around
100 is spread over a wide range from 10−4 to a few tens of kcal/mol.

Next, DER-L is considered (see Figure 6.4B) for which the error increases with the en-
ergy. Complementary, the variance is high for structures with positive ∆E (red points).
The variance distribution is sharply peaked and centered around 10−3, showing some
overlap with the squared error distribution, whereas the distribution of squared error is
unimodal and centered at 10−1 kcal/mol. However the tails are wide and extend to 102

kcal/mol. As for DER-S, the centre of mass of the variance distribution is between 1
or 2 orders of magnitude smaller than the corresponding distribution for the squared
error, indicating that DER-L is overconfident about its predictions. It is also noted that
DER-L is biased to identify predictions that overestimate the energy as outliers.

Finally, DER-M (Figure 6.4C) features a large dispersion of the predicted error around
the energy range considered in this work. Predictions deteriorate quickly for low-energy
configurations with almost no points near the diagonal. The squared error distribu-
tion is centered around 1 kcal/mol and extends from 10−2 to 102 kcal/mol with some
overlap with the variance distribution. The variance distribution is bimodal, and its
centre of mass is at ∼ 10−4, around four orders of magnitude smaller than the squared
error distribution. Regarding the detection of outliers, it is noticed that samples that
underestimate the energy display a large variance. On the technical side, it has been
found that optimization of multidimensional Gaussian models, such as DER-M, can be
numerically challenging because the NN-prediction of the covariance matrices can be
numerically unstable.[272–274]

Differences between the three flavours of DER were noticeable. Firstly, DER-M per-
forms worst on energy predictions with a poor quality of the underlying PES. On the
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Figure 6.4: Performance of the different versions of PhysNet-DER through the range of
energies of the test set. Panels A to C on the left show residual plots of the error between
reference and inference for DER-S, DER-L, and DER-M, respectively. The 1000 points
with the largest variance are shaded with a different colour, and the corresponding
colour bar represents the scale of the values. Squared error distribution (solid lines) and
variance distributions (dotted lines) are shown in the centre next to panels A B, and C
for comparison. Complementary to this is the variance distribution shown on the right
of both panes. Notice that the x-axis on the centre and right are in logarithmic scale.
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Figure 6.5: Performance of the PhysNet-GMM through the range of energies of the test
set. A Residual plot of the error between reference and production is shown on the left.
The 1000 points with the largest negative log-likelihood (NLL) value are shaded with
a different colour, and the corresponding colour bar represents the scale of the values.
The panel in the centre shows the squared error distribution. Note that the x-axis of
the centre panel is in logarithmic scale for clarity. The panel on the right displays the
distribution of the NLL, which is used to quantify the uncertainty.

other hand, DER-S and DER-L show a similar distribution of errors, see Figure 6.4. The
variance distribution for DER-M is bimodal and considerably broader than for the other
two models, which show a single sharp peak. The width of the variance distribution for
DER-M increases the overlap with the (∆E)2 distribution and, therefore, is more likely
to identify outliers than the other two DER models. Unfortunately, the variance values
predicted by DER-M underestimate the error by 2 to 3 orders of magnitude. From these
results, DER-L is the best performer with the small MAE among the DER models and
a medium quality for the variance estimation.

Gaussian Mixtures Models Finally, for the GMM (Figure 6.5) the dispersion of the
error increases as the energy increases. Specifically, the largest errors occur for the high-
est energies. For the errors it is found that they are more evenly distributed in the over-
(∆E < 0) and under-predicted (∆E > 0) regions. On the other hand, the squared error
features a bimodal distribution centered at 10−3 with extended tails up to 103. As can
be seen, the NLL is peaked at low values of NLL and decays rapidly for increasing NLL.

153



6.3.4 Outlier Detection

The focus of the present work is the detection of outliers. The error analysis carried
out so far indicates that outlier detection is challenging. In this work, outlier detection
capabilities of the models are evaluated using the accuracy metric defined in Equation
6.10 and the classification procedure described in the method section.

First, the number of structures with large variance was determined, and the magnitude
of the error was assessed. Figure 6.6 shows the results for the 1000 structures with the
largest predicted variance. The results indicate that as the number of structures with
large errors sought increases, the probability of finding them among the top 1000 with
large variance decreases. Overall, the best-performing model is Ens-6, closely followed
by Ens-3 and GMM. The three DER models behave quite differently from one another.
First, DER-S has a very poor performance that goes to practically null ability to detect
outliers. Next, DER-L is very good at detecting extreme outliers, performing even
better than Ens-3 for the first case. However, it decays quickly and is the second worst
performer after DER-S. Finally, DER-M has an almost linear performance, meaning its
capability predictions are constant, independent of the number of samples.

One interesting aspect of Figure 6.6 is that for the extreme cases (i.e. detecting the 25
samples with the largest error), four models (Ens-3, Ens-6, DER-L, and GMM) have a
probability higher than 80% of detecting those extreme values. This trend continues for
the ensemble models and GMM up to 200 samples. After this number, the accuracy
decays for all of the models.This can be understood because the task at hand is harder
to solve as the number of required samples to identify increases.

Next, a 2-dimensional analysis involving different numbers of structures with large
errors and different numbers of high-variance structures was carried out. Figure 6.7
shows the probability of finding Nerr structures with large error among the Nvar struc-
tures with the large variance for each method. As an example, for Ens-3 the lower left
corner reports a probability of 0.92 for finding the Nerr = 25 structures with largest
error among the Nvar = 1000 structures with largest variance. Increasing Nerr to 1000
reduces this probability to 0.52. This row corresponds to the data reported in Figure
6.6. More generally, the Nvar can now be reduced from 1000 to 25, and the probability
of finding corresponding large-error predictions is reported in the full triangle. Light
and dark colours correspond to high and low probabilities, respectively. In practice
one wants to keep Nvar small and increase the probability to find a maximum of Nerr

structures. From this perspective the best-performing model is GMM.
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Figure 6.6: Reliability of outlier-detection for the different strategies: Given the 1000
structures that are predicted to have the highest errors/variance/uncertainty, it is evalu-
ated whether they correspond to the structures that also have the highest errors from
comparison to reference data for different Ndata = [25, 50, 100, 200, 400, 800, 1000].
I.e. it is evaluated if the Ndata structures with the actual highest errors are contained in
the 1000 that are predicted to have high errors.

With Ens-3 as the reference, Ens-6 and GMM perform slightly better overall, whereas
DER-L is comparable for small Nerr and large Nvar. As Nvar decreases to 400 samples
and below the reliability of DER-L drops drastically. DER-M performs inferior to
DER-L for small Nerr and large Nvar but maintains a success rate of 0.2 to 0.4 for most
values of Nerr and Nvar. Finally, DER-S has the smallest success rate throughout except
for Nerr = Nvar = 25 for which it performs better than DER-L.

Complementary to the reliability analysis in Figures 6.6 and 6.7, the true positive rate
(sensitivity or TPR, Eq. S3), that quantifies how many of the samples identified with a
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Figure 6.7: Reliability of outlier-detection for the different strategies: Given N struc-
tures with the highest error/variance, it is evaluated if they correspond to theN structures
with the largest errors/variance. See Equation 6.10. The plot is coloured according to
the accuracy. Exact values of the accuracy are given for each combination in white.

large variance also have a large error (c.f. true positives), and the positive predictive
values (precision or PPV, Eq. S4) that measures how many of the samples with a large
error are correctly labelled by the model were analyzed. This test was performed over
different ranges of squared error and variance (or NLL for GMM), which can be used
as confidence boundaries. Ideally, the model is expected to have large sensitivity and
precision. Results for this analysis are reported in Figures S7-S12, which report a
heatmap of TPR and PPV values using different thresholds for error or variance in the
plot larger (desired) values are coloured blue while small values are shown in red. The
results indicate that the model has a high sensitivity for Ens-6 and Ens-3 for all error
ranges at low variance values (Figure S7 and S8). Conversely, PPV values are high at all
variance ranges for a small error cutoff. It is also observed that the confidence range for
Ens-6 (Figure S8) is larger than for Ens-3 (Figure S7). Results for the DER models also
have large TPR values at small uncertainty values (Figures S9, S10 and S11). On the
contrary, the PPV coverage is almost null for DER-S (Figure S9) and DER-L (Figure
S10, while DER-M has high values for all variance ranges with a small error threshold
(Figure S11). Note, however, that the scales for squared error and variance differ by
2 to 3 orders of magnitude. Hence, the magnitude of the MSE and MV need to be
carefully inspected in addition to the color code. Lastly, the TPR for GMM shows a
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good performance over a large range of NLL values, which implies the model correctly
assigns uncertainty to errors in a larger range of uncertainty (Figure S12). On the other
hand, PPV values are obtained for large values of NLL but low squared error threshold
(Figure S12)
.

Finally, two more metrics to quantify the reliability over the range of squared errors
and variance were evaluated. The first is the “false positives rate” (FPR, Eq. S5), also
known as “false alarm rate”, which measures how many of the samples identified with
large variance do not correspond to a large error (i.e. false positives). Second is the
false negative rate (FNR, Eq. S6) or miss rate, which measures how many samples not
identified with a large variance correspond to a large error. For FPR and FNR small val-
ues (red) are desirable, whereas large values (blue) are undesirable. The results for both
metrics are shown in Figures S13 to S18. For the ensemble models, FPR ∼ 0 over the
range evaluated (Figures S13 and S14), indicating a low probability of misclassifying
samples, i.e. suitable for outlier detection. Complementary, the FNR values are small
for small variance values (Figures S13 and S14 left), while the probability of missing
a sample with a large error increases with the variance. The results for DER models
show low values of FPR except for very small values of variance (Figures S15,S16, and
S17 left). Regarding the results for the FNR, large values are obtained except for very
small values of variance (Figure S15, S16, and S17 right). As in the case of TPR and
PPV, the difference in magnitude between variance and error gives way to misleading
conclusions for DER-S. Finally, the GMM model has large values of FPR at low values
of NLL (Figure S18 left) while the values of FNR are low in a large region but decay
fast at large values of NLL (Figure S18 right). These results suggest that Ens-6 is the
best model for detecting outliers with high TPR, and PPV complemented with a low
FPR and FNR. On the contrary, the worst model is DER-S, which has a low probability
of identifying outliers.

6.3.5 In- and Out of Distribution

A deeper understanding of the origin of the variances and the prediction error can be
obtained by considering the distribution of structural features (atom distances) in the
training and testing datasets, which can then be related to the predicted properties.
Following the procedure described in Section 2.3, a score (the rank) for each molecule
in the test set was calculated. The results in Figure 6.8 are combined with a histogram
of the number of molecules with a given rank. The rank, see Equations 6.11 and
6.12, is interpreted as the degree to which a sample can be considered in or out of the
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distribution: a high rank implies that more degrees of freedom (DOF) can be found in
the training data. Thus, it is "in distribution" (ID), while a low rank indicates that the
sample has more DOFs farther away from the distribution and is "out of distribution"
(OOD). The black histogram in Figure 6.8 shows that most samples are ID to some
extent, with a most probable value rank = 17. Additionally, most of the samples have
rank > 14, which can be related to good coverage of the interatomic distributions by
the training dataset.

Figures 6.8A and B indicate that rank and MSE or MV (coloured lines) are related.
Similarly, the distribution of samples with given rank also impacts MSE and MV, see
black histograms. For the MSE (Figure 6.8A) all models except for DER-M behave
similarly overall. Up to rank ∼ 12 the MSE varies between ∼ 0 and ∼ 100 kcal/mol
and above the MSE decays monotonically well below 1 kcal/mol for all models ex-
cept for DER-M. For DER-M the behaviour is not fundamentally different, but the
magnitude of the MSE is considerably increased. The MV in Figure 6.8B reflects
the behaviour of the MSE for DER-M, and the same is observed for Ens-3, Ens-6,
and GMM. For DER-L, the decay of the MV with increasing rank is less pronounced,
whereas for DER-S MV ∼ 0.1 throughout. One reason for the decay of MSE and MV
with increasing rank is the increased number of samples for given rank, P (rank), see
black histograms Figure S19. What distinguishes DER-M from the other five meth-
ods is the fact that the achievable MSE remains considerably larger for most rank-values.

The relationship between rank and MSE/MV can also be considered individually for
bonded and non-bonded separations, see Figure S20. Overall, the results from Figure
6.8A are replicated, but the relationship between P (rank) and the MSE is yet more
pronounced for bonded terms. For small sample sizes, the MSE is large and vice

versa. Unexpectedly, for the non-bonded separations, the behaviour for all models
except for DER-M differs: For the lowest ranks, which are sparsely populated, the MSE
increases with increasing P (rank) up to rank = 6.5, after which the MSE decreases
monotonically. The MV, on the other hand, behaves as expected. It is noted that for
DER-S both bonded and non-bonded separations yield an almost constant value for the
MV irrespective of P (rank).

The relationship between rank and MEA/MV for bonded and non-bonded separations
can also be analyzed in a 2-dimensional map. First, the average energy depending
on bonded and non-bonded rank is considered; see Figure 6.8C. This map can also
be regarded as an abstract rendering of the PES. Low-energy structures correspond
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C 

Figure 6.8: Evolution of the mean squared error (A) and the mean variance (B) con-
cerning the rank of each structure in the test set. The bar plot (background) shows the
number of structures with a particular rank. A large rank−value indicates that more
degrees of freedom are covered by the training data and vice versa. The y−axis is
displayed in logarithm scale to highlight the difference in the values of MSE or MV
for the different rank values. Notice that for the Gaussian mixture model the negative
log-likelihood is used to estimate the uncertainty. The insight on the right panel shows
how the mean NLL changes concerning the defined rank. Panel C shows the 2d-map
representation of the rank for bonded and non-bonded separations. Representative
structures of different combinations are shown around the map.
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to the syn-Criegee and VHP basins, followed by structures representative of the TS
between the reactant and product and finally, higher-lying structures dominated by
larger distortions. The majority of points (93 %, white numbers in Figure 6.8C) is for
8 ≤ ranknb ≤ 11.5 and 4 ≤ rankb ≤ 9. These structures cover an energy range from
–700 to –300 kcal/mol with the lowest-energy structures featuring ranknb ≥ 11.0 and
rankb ≥ 5.0. Hence, these are comparatively "open" structures, characteristic of an
elongated molecule such as the one considered here. Examples for such structures are
provided in Figure 6.8C.

Next, the MSE and MV are mapped onto this representation, see Figures S21 and S22.
Hence, the map itself remains, but the coloration changes. For the MSE, darker colours
indicate a low error, whereas lighter colours indicate higher errors. The regions for
high MSE remain the same for all six models considered: 5.0 ≤ ranknb ≤ 7.5 and
2 ≤ rankb ≤ 5, i.e. What changes, however, is the maximum MSE which is 9 kcal/mol
for Ens-3 and Ens-6 and increases up to 40 kcal/mol for DER-M.

For the MV, Ens-3 and Ens-6 are on the same scale and differ little. The largest variances
for Ens-3 and Ens-6 are observed for similar ranks as for the MSE. On the other hand,
DER-S, DER-M and DER-L are on rather different scales ranging from 10−3 (DER-S)
to ∼ 0.1 kcal/mol (DER-M and DER-L). DER-S returns a uniform value for all values
of rankb and ranknb. For DER-L, the MV is larger for 5.0 ≤ ranknb ≤ 7.5 and
0 ≤ rankb ≤ 9, while DER-M displays large values for a wider region (ranknb ≤ 9.5,
rankb ≤ 8). Finally, the magnitude of NLL for GMM can not be directly compared
with the other five models, but NLL is large for ranknb ≤ 8, rankb ≤ 8.

The analysis of the effect of inside and outside distribution degrees of freedom showed
that a simple ranking such as the one presented here can highlight the effect of the
differences between training and test distribution on the prediction and the uncertainty
estimation. It must be mentioned that the rank−metric can be used as a proxy for how
structure and error are related. However, further analysis is required to complement
these results because averaging effects can play an important role. Yet, for improving
reactive ML-PESs it is notable that samples with larger rank feature lower average
error and vice versa. It is also found that coverage of the non-bonded distances for
predicting energies and uncertainties can be rather informative. This contrasts with the
usual focus on sufficiently covering the range of chemical bonds when conceiving data
sets for training ML-PESs.
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6.4 Discussion and Conclusions

The present work analyzed in a quantitative fashion to what extent three different UQ-
methods - ensembles, deep evidential regression, and Gaussian Mixture Models - are
capable to detect outliers in samples from which full-dimensional reactive potential
energy surfaces can be trained. The system investigated for this was one of the CIs
syn-Criegee, CH3CHOO.

From an electronic structure perspective, CIs are known to be challenging because
they feature multi-reference effects.[341, 342] This can also be demonstrated from
the present data and even be linked to the quality of the prediction and the MV. For
this, molecular structures with the largest absolute errors (Figure 6.9A) and with the
largest uncertainty (Figure 6.9B) for each of the models were determined. Generally,
the largest errors arise either for deformed (syn)-Criegee or VHP structures, whereas
structures with the largest variance are predominantly perturbed (syn)-Criegee structures
except for GMM, which identifies one structure closer to the TS. Interestingly, none
of the models assigns the largest uncertainty to the structure with the largest error. In
all cases, the magnitude of the error is larger than the predicted variance. On the other
hand, for structures with large variance, the errors are on the same scale for ensembles
and DER-M, whereas they are almost constant for DER-S. Contrary to this, DER-L
overestimates the uncertainty by one order of magnitude.

Structure #3429 (see Figures 6.9C and D) with the largest error is the same for four out
of the six models. The remaining two models also show a large error for this structure,
indicating that this structure is, in general, difficult to predict. Paradoxically, structure
#3429 is predicted to have a large uncertainty for the models that do not identify it
with the largest error (DER-M and DER-L), while the other four identify it with the
smaller uncertainty. Structure #3986 is most difficult to predict with DER-M, while for
the other models, it is better predicted with a difference between predictions of ≈ 50

kcal/mol. The GMM model assigns it a large uncertainty while the other models give
it values in the same range as the predicted structure #3986. Lastly, structure #28980
features the largest error for DER-L but in the same magnitude as the other models
except for DER-M. Regarding the uncertainty, Ens-6 identifies #28980 with a large
uncertainty, while the other models attribute a small value to it. It is also found that
Ens-3, Ens-6, DER-S, and GMM identify structures (e.g. #23366, #23550, #24576,
#28980) that resemble those with the largest error; however, the error for these four
structures is not large, see SI for a discussion.
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Figure 6.9: Extreme values in prediction. Panel A shows the values of the absolute error
(blue) and variance (red) or NLL (purple) for each of the samples identified to have the
largest error and its corresponding index. Molecular structures are shown in panel C
with their corresponding index and the model for which the structure is identified to
have the largest error. Panel B is similar to panel A but for the structures identified to
have the largest variance. The corresponding structures are shown in panel D.

One possible reason for the difficulties to predict energies for particular geometrical
arrangements concerns the multi-reference character of its electronic structure. To
probe this, the T1[343] and D1[344] diagnostic coefficients were determined, see Table
S5. All structures with large errors clearly display multi-reference character which are
not captured from the single-reference MP2 reference data used in the present work.
Interestingly, the uncertainty prediction of the models appears to be related to the MR
effects as well (Table S6) because the molecules identified with large variance also have
large values of T1 and D1 diagnostic. These findings are also consistent with earlier
work on acetaldehyde.[345]

From the present analysis, ensemble models emerge as a viable route for outlier de-
tection. The capability of the modified DER models are considerably improved over
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DER-S, which is largely unsuitable for this task. On the other hand, DER-L is able to
detect extreme cases with almost the same quality as the ensemble models thanks to the
modifications of the loss function (c.f. Equation 6.4). However, this capability decays
rapidly with the number of required samples Nerr. Finally, DER-M has a constant
probability of detecting outliers regardless of the number of samples considered. This
is an interesting behaviour because it implies a strong correlation between the error
in prediction and the variance. Unfortunately, the probability of detecting outliers for
DER-M is ∼ 40 % throughout. The remaining model, GMM, showed an intermediate
performance between ensembles and DER. However, the NLL as the uncertainty mea-
sure is only qualitative and can not be used directly to estimate the error. Nevertheless,
it performed well in detecting outliers with good reliability that decay at the same rate
as ensemble models.

The fundamental insights gained from the present work are as follows. It is possible
to carry out meaningful outlier detection for reactive PESs with the most successful
approaches reaching 50 % detection quality for a pool of 1000 structures with the
highest uncertainty. Two new formulations of the deep evidential regression method,
DER-M and DER-L, were presented and evaluated. The most promising among the
approaches tested here are ensemble methods and DER-L, and it is found that Ens-6
and GMM yield consistent results overall. All tested models generally can describe the
PES with chemical accuracy (< 1 kcal/mol) on its stationary points. Potential future
developments and improvements concern additional modifications to the loss function
(scaled-by-variance[273], post-hoc recalibration of the uncertainty using isotonic regres-
sion[249] and using methods independent on the underlying statistics (e.g. Gaussian
distribution of the data in DER) such as conformal prediction methods[346, 347]

6.5 Supporting Information

Supporting information associated with this chapter can be found at: https://

github.com/LIVazquezS/SI_PhD_Thesis/blob/main/SI_Chapter6.pdf
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Chapter 7

Enhancing chemical databases
with information from
conformational space

If you want to have good ideas, you must have many ideas. Most of them

will be wrong, and what you have to learn is which ones to throw away.

Linus Pauling

This chapter presents a combination of the results of the previous ones for the study of
how to improve the performance of a machine learning model trained on an unbalanced
database by adding samples from conformational space. To this end, four artificially
biased databases were constructed with the aim of exploring different chemical aspects,
such as hybridization, oxidation in organic chemistry, chirality, and aromaticity. Con-
formers of a representative molecule of the target functionality were added to those
biased databases. The effects of sampling temperature and the number of conformers
added to the initial databases were evaluated. Alternatively, additions based on amons
fragments or by structures with the largest error/uncertainty were also evaluated. The
results show little improvement in performance by adding small fractions of molecules
obtained at 300 K. Conversely, the addition of amons or based on uncertainty/error
enhanced the predictions for the dataset with the largest difference with the training
databases. All in all, the results indicate that adding conformations is beneficial if done
following chemical criteria.

The results presented in this chapter will be submitted to J. Chem. Inf. Mod.



7.1 Introduction

Chemical space (CS) is the set of all possible molecules or materials[43]. In conse-
quence, its size is extraordinarily large. It has been that the total number of possible
substances[26, 46] is about 10200. This large size makes the exploration of CS a big
challenge for interested people but, at the same time, a necessary step for human devel-
opment. In this regard, computational simulations have been consolidated as a powerful
tool for this task. Currently, with the rise of machine learning (ML) methods, the
obtention of high-quality predictions of chemical properties at a low computational cost
has become easier than ever. Consequently, the exploration of CS has progressed in the
direction of computational compound design[348, 349].

Nevertheless, for an ML method to perform adequately on different systems, it requires
a large corpus of data that can cover as many situations as possible to be trained on.
In chemistry, generating this reference data implies a high computational cost and the
consequent amount of resources incurring on appreciable environmental costs [34]
besides being limited by the size of the molecular systems of interest. In consequence,
there is a need to obtain information from other sources that can help to explore CS
with the use of ML models. In this regard, using information from conformational
space represented by a potential energy surface (PES) represents a viable alternative.
It has been proposed that the chemical information contained in a chemical bond and,
consequently, in the conformational space provides valuable information that can help
to study CS [350]. In particular, for ML methods, we previously found that that the
exploration of chemical space can be improved by adding adequate information from
the configurational space represented by the PES.

Although adding samples from conformational space is a convenient way to improve
the ability of a model to explore CS, there is no clear guidance on how it should be
done. Currently, this addition of samples is made by obtaining hundreds or thousands of
conformers for a few molecules (i.e. QM7-X [351]) or for a large number of molecules
(i.e. ANI-1[190]). However, this approach has the problem that creates redundancies
in the data, and the prediction deteriorates as a consequence[88]. besides that, it is
only possible if many computational resources are available. Data redundancy creates a
problem well-known by the ML communities called dataset imbalance[352]. In chem-
informatics, it has been efforts to deal with this problem[353–355] although limited
to classification problems. Unfortunately, for atomistic machine learning and to the
best of our knowledge, there is only one example of studies that tackle the question of
chemical and conformational diversity for ML [356].
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This work has a bifold aim. First, we would like to understand, from a chemical perspec-
tive, how a chemical database can be improved by adding samples from conformational
space; therefore, aspects such as temperature and amount of samples will be evaluated.
In addition, we aim to deal with dataset imbalance in a chemical dataset by explicitly
biasing the initial dataset and then adding conformers to balance those initially biased
datasets. The initial datasets are created to explore different chemical aspects and,
therefore, are constructed with specific biases. As a difference to the study of Shenoy, et

al., 2023[356], we focused on specific chemical aspects of the databases while diversity
is not extensively evaluated. The rest of the article is structured as follows. First, the
construction of the artificial databases, data augmentation strategies, and ML method
set-up are described in the methods section. Next, the results of the different aspects
of the data augmentation are discussed. Finally, some conclusions of the different
strategies evaluated are drawn.

7.2 Methods

7.2.1 Artificial Databases

The artificial databases were constructed using molecules extracted from the QM9
database[189], a subset of the GDB-17 chemical universe[49], comprised solely of
molecules composed of carbon, nitrogen, oxygen, and fluorine elements. Each molecule
in QM9 is limited to a maximum of nine heavy atoms. To ensure data quality, molecules
failing the geometry consistency check were excluded from the dataset[189], resulting
in a ’cleaned’ version with 130,219 molecules, down from the initial 130,831.

The initial artificial databases were created using the FragmentMatcher tool within
the RDKit software package[357]. This process involved considering the SMILES
representations of molecules in QM9 for selection, alongside the generation of SMARTS
patterns to identify functional groups of interest, with additional SMARTS patterns to
exclude certain groups. Four sets were created to investigate various chemical trends.
Table 7.1 and Figure 7.1 provide an overview of the artificial datasets created for this
study.
The first set aimed to analyze changes in carbon atom hybridization (Figure 7.1 A). It
consists of two subsets: one containing only molecules with single C C bonds (sp3),
excluding double (C C, C C, C N, C O, N N) and triple bonds (CC, CN),
and another including molecules with C C bonds (sp2), while excluding triple bonds.
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Table 7.1: Composition of the initial artificial datasets used in this work. The first
column identifies the property that is wished to be inferred by the Neural Network
model. The size of the subset column refers to the total number of molecules used for
training, validation and testing.

Set Composition of Subset Target Molecules Size of subset

1 Hybridation
Alkanes

Alkynes 31250
Alkanes + Alkenes

2 Oxidation
Alcohols

Carboxilic Acids 31250Alcohols + Aldehydes
Alcohols + Aldehydes + Ketones

3 Substituents
Primary Alcohols

Tertiary Alcohols
10816

Secondary Alcohols 25695
4 Aromaticity Alkenes + Cyclohexane Aromatic rings of six atoms 15673

The goal is to predict C C bonds (sp1).

The second set aimed to examine changes in the oxidation state of organic molecules
(Figure 7.1 B). This set was divided into subsets representing alcohols, aldehydes,
ketones, and carboxylic acids. The ML method aimed to infer molecules of different
oxidation states without explicitly including them in the training set. It must be men-
tioned that the QM9 dataset lacks carboxylic acids. Therefore, compounds for the target
database were obtained from the PC9 database[51] and recalculated to the QM9 level
of theory.

The third set aimed to explore the impact of substituents on molecule prediction (Figure
7.1C). Specifically, it assessed the model’s ability to infer chirality from molecules
lacking this property. Alcohols were chosen for this study as they can be differentiated
based on the number of alkyl groups attached to the carbon in the α-position. The set
was divided into two subsets: one comprising only primary alcohols (RH2C OH),
and the other containing a mix of primary and secondary (R2HC OH) alcohols. The
target compounds for this set were tertiary alcohols (R3C OH).

The final set aimed to ascertain whether an ML model could grasp the concept of
aromaticity in chemistry. For this purpose, the dataset exclusively consisted of molecules
containing cyclohexane and alkenes (Figure 7.1D). Alkenes from Set 1 were reused,
and all compounds containing a cyclohexane ring were selected. The target dataset, in
this case, comprised compounds with an aromatic ring containing six atoms.
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Figure 7.1: Artificial Databases. Summary of the constructed artificial databases
used in this work. In each panel, the chemical structures of the training databases,
together with the target structures and the molecules used for data enhancement. On
the right side of each panel is the TMAP representation of the QM9 databases. The
molecules with moieties of interest are highlighted if the sample does not present the
fragment of interest is not coloured (grey). Panel A shows the molecules in the first
set constituted by different hybridization of the C-C bond. Panel B shows different
oxidation states of organic molecules; it is important to mention that QM9 does not have
recognizable carboxylic acids. Panel C shows alcohol molecules with different numbers
of substituents. Finally, panel D shows molecules with cyclohexane and aromatic rings
with six atoms.
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7.2.2 Machine Learning

The artificial databases were input into the PhysNet DER architecture [143] based on
the Deep Evidential Regression[31] method for model training. Training occurred
over 1000 epochs with a batch size of 32, and validation occurred every five. The
hyperparameter λ, governing the neural network’s confidence, was set to 0.2. Unless
otherwise specified, all other parameters remained consistent with those detailed in
Vazquez-Salazar et al., 2021 [88]. A standard split of 8:1:1 for training, validation,
and test sets was employed across all models. Each model underwent three training
iterations with different starting seeds (28, 42, and 64). Initial model performance on
the test set segment was assessed, with results presented in Table S1. Subsequently, the
models were evaluated on the target databases outlined in Table 7.1.

7.2.3 Database Enrichment

Various strategies were employed to enhance the artificial databases. Initially, Normal
Mode Sampling (NMS) was utilized to introduce samples from the conformation space.
For this method, one or two representative molecules of the target functional group
were selected for each artificial database (Figure 7.1) representing either the minimum
or an extreme case of the functionality being studied. For instance, in Set 1, ethane and
acetylene were selected as extreme examples of C C bonding (Figure 7.1A). Similar
considerations were made for Set 4, where cyclohexane and benzene represented ex-
treme cases of double bonds in a six-atom carbon ring (Figure 7.1 D). Set 2 featured
formic acid, representing the minimum example of a carboxylic acid (Figure 7.1B).
Lastly, Set 3 included conformations derived from tert-butanol, the minimum example
of a tertiary alcohol (Figure 7.1C).

The selected molecules were then subjected to NMS to generate additional samples.
Initially, the impact of temperature on sample generation was assessed by producing
1000 samples at different temperatures (T = 300, 500, 1000, 2000K), which were sub-
sequently added to the biased databases. Subsequently, the temperature yielding the
most significant reduction in mean absolute error on the target dataset was identified
for sample generation, with the number of added samples determined by a percentage
of the initial dataset size, ranging from 1% to 25%. The specific number of samples
appended to each dataset is outlined in Table S2.

The second method involved enriching the database using Atoms-in-Molecule (amons)
fragments[40] derived from molecules in the target database. Molecules ranging in size
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from 3 to 7 heavy atoms were generated for this purpose.

Finally, uncertainty prediction from the PhysNet model was leveraged to further enrich
the databases. Following initial model evaluation on the target set of each database,
molecules exhibiting the largest variance and error were identified. These molecules
underwent NMS at 300K to obtain 100 samples per molecule, totalling 1000 samples
for each database.

7.2.4 Normal Mode Sampling

Normal mode sampling is a proposed alternative to MD sampling to allow targeted
sampling of relevant regions of a PES.[34, 188]. Starting from the vibrational normal
modes vectors Q = qi obtained from harmonic analysis of a molecule in an equilibrium
conformations xeq. Then, random conformations are generated by displacing the
coordinates at equilibrium by randomly scaled Nf normal mode coordinates by a factor
defined as:

Ri = ±
√

3ciNakbT

Ki

(7.1)

In equation 7.1, Na is the number of atoms, kb is the Boltzmann constant, Ki is the force
constant for each of theNf normal mode coordinates and ci are pseudo-random numbers
in the range of [0,1]. The sign in expression 7.1 is randomly defined by a Bernoulli dis-
tribution with P = 0.5. Finally, the value of T corresponds to the sampling temperature.

7.2.5 Amons Generation

Amons were generated from the SMILES representation of the different molecules
in the target dataset. The SMILES representation is used to construct a molecular
graph from which sub-graphs to a maximum number of atoms (excluding hydrogen)
are generated. In this work, amons fragments containing between 3 and 7 atoms were
generated with an in-house script. Once the structures were generated, they were
tested for validity. The validity of the structures was tested by passing the generated
structures to a geometry optimization step using MMFF94[198] as implemented in
RDKit; samples that did not pass this step were discarded. Samples that passed the
validity test were then checked for charge and multiplicity consistency. In this work,
only molecules without charge and in basal state were considered. Lastly, the structures
that passed the previous tests were passed to a geometry optimization procedure at the
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level of theory of QM9 using Gaussian16. Molecules that do not converge or present
imaginary frequencies were removed. The number of molecules for each database is
reported in the supporting information.

7.2.6 Electronic structure calculations

Single Point Energy Calculations For all the molecules generated with normal mode
sampling, a single energy calculation was performed at the level of theory of the QM9
database using the Gaussian16 code[358].

Carboxylic Acids Given that the QM9 database does not have a recognizable car-
boxylic acid by the filtering method, molecules containing the moiety of carboxylic
acid (ROHC O) in the PC9 database were considered. Following the same filtering
procedure as for QM9, all the molecules containing the smarts string for carboxylic
acid were obtained. The structures from PC9[51] were passed to Gaussian16 code[358]
for geometry optimization and frequency calculation at the level of theory of QM9
(B3LYP/6-311G(2df,p)). It was checked that all the molecules correspond to a stationary
point by assuring the absence of imaginary frequencies in the output.

7.3 Results and discussion

7.3.1 Effect of Sampling Temperature

Determining which region of conformational space provides valuable insights for en-
hancing predictions poses a primary challenge in data augmentation. Different tempera-
tures influence the sampled space, prompting an initial test utilizing samples obtained at
various temperatures. However, the energy distribution analysis revealed that samples
from conformational space minimally reduced the disparity between training and test set
energy distributions. Specifically, for Sets 1 and 2, added samples created peaks at high
energies (> −40 eV), resulting in bimodal distributions (Figures S1 and S2), thereby
complicating predictions with PhysNet DER because of the initial Normal assumption
of the data. Set 3 exhibited new samples within the interval of -60 to -40 eV, again
leading to a bimodal distribution (Figure S3). Set 4 showcased the most significant
shift between training and target distributions (Figure S4). The addition of benzene
samples in 4a resulted in a peak near the centre of the target distribution, aiding in
reducing the disparity between the two distributions. Conversely, adding samples did
not substantially disrupt the energy distribution in 4b.
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Moving forward, we analyzed the Mean Absolute Error (MAE) changes of the target
sets by models trained with the enhanced databases (Figure 7.2). The effect of tempera-
ture sampling varied across datasets, with different degrees of influence observed. Set
1 (Figure 7.2 A) showed a smaller MAE for 1b compared to 1a, indicating a positive
impact from adding alkenes in 1b. Moreover, 1a demonstrated more significant sen-
sitivity to additions, with broader error distributions than 1b (Figure S5). Regarding
the effect of the added molecule, it is observed that adding samples from the acetylene
molecule has a larger and more positive impact on the prediction than adding ethane
samples. The temperature effect was predominantly negative for Set 1, with MAE
generally increasing as the temperature rose.(Figure S5). The effect is considerably
larger for 1a, which, regardless of the added molecule, has a larger MAE except for the
subset improved with acetylene samples at the lowest temperature.

In Set 2 (Figure 7.2B), the consecutive addition of more oxidized compounds marginally
improved the MAE with variations of ≈ 0.3 eV. Notably, the addition of formic acid,
induced negligible changes in MAE, with consistent error distributions across tem-
peratures (Figure S6). However, variations in MAE were more pronounced for 2a,
increasing linearly with temperature, while 2b and 2c maintained relatively stable MAE.

Set 3 exhibited minimal changes in MAE (Figure 7.2C), with slight improvements
observed for 3b compared to 3a. Notably, 3a showcased sensitivity to temperature, with
an oscillatory MAE pattern. The error distributions (Figure S7) spread variedly without
a clear trend, with the best performance for 3a observed at 2000 K. On the other hand,
3b has an almost constant value of MAE regardless of the sampling temperature.

Lastly, Set 4 demonstrated minor MAE variations regardless of the temperature (Figure
7.2 D). The addition of benzene samples slightly enhanced model performance, com-
pacting the error distributions and shifting the centre of mass to ∼ 0.4 eV (Figure S8).
Conversely, adding cyclohexane did not significantly alter the distribution spread.

Complementary to the evaluation of the changes in the error of prediction, it is of
interest to evaluate how many samples reduce the magnitude of the error with respect to
the initial database. This change is quantified by the fraction of molecules that increase
its error (f↑) defined as :

f↑ =

∑
i ni[|ET

i | > |E0
i |]

ntotal

(7.2)

Here ni is the number of molecules for which the condition that the absolute error of
the sample i predicted by the dataset enhanced with samples obtained at temperature T ,
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Figure 7.2: Change in the Mean Absolute Error (MAE) in the target dataset of the differ-
ent databases with respect to the temperature used to obtain samples of a representative
structure(s) using normal mode sampling. In all the cases, 1000 samples were added
to the initial training dataset. The results show the mean over three models initialized
with different seeds. The error bars represent the standard deviation of the MAE over
the different values. In each of the panels, the performance of the model in the target
dataset before the addition of the sample is shown in horizontal dotted lines.
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ET
i , increases in comparison with the error in the database without additional samples

(E0
i ). Conversely, the fraction of molecules for which the absolute error decreases (i.e.

|ET
i | < |E0

i |) is defined as:

f↑ = 1− f↓. (7.3)

The results for the changes in the fraction of molecules that increase or decrease its
error are shown in Figure 7.3. This analysis clarifies the effect of adding samples of the
selected molecules obtained at different temperatures. As in the case of the MAE, the
results are mixed, but the general trend seems negative for most of the datasets, with a
large fraction of molecules increasing its error.

For Set 1, f↑ peaked at 2000 K for the datasets augmented with acetylene, while for
ethane, the maximum was observed at 500 K. 1a-Acet shows a linear increase on f↑
to temperature rise. On the other hand,1a-Etha. shows oscillations between 0.6 and
0.8 for f↑. Notably, Set 1b exhibited stable behaviour, with f↓ consistently above 0.8,
regardless of the temperature and the molecule used for augmentation. The distribution
of changes in predicted energy (∆Epred = EPred

0 − EPred
T ) for set 1 is illustrated in

Figure S9, complementing the analysis of f↑/ f↓. Notably, P (∆Epred) for 1b exhibits a
shift towards positive values, while for 1a, it is centred at 0 (1a-Acet) or slightly shifted
towards positive values (1a-Etha). Temperature influences the broadness of P (∆E),
and it is more evident in 1a-Acet’s bimodal profile at 2000 K. Here, the first peak is
near zero with a tail towards negative values, while the second peak is centred around
-1.7 eV, indicating an increase in predicted energy (EPred

T > EPred
0 ) for samples with

∆Epred < 0. Changes in energy prediction for 1a with ethane are less pronounced,
with unimodal distributions centred at 0 with the exception of 300 K shifted slightly
towards positive values of ∆Epred. Overall, the initial models tend to overestimate
predicted energy for samples in the target dataset. Adding samples from conformational
space leads to reduced predicted energy for the best models, particularly at lower tem-
peratures. However, at higher temperatures, the energy is overestimated again due to
the inclusion of more disturbed samples. From a chemical standpoint, molecules that
increase ∆Epred predicted with 1a typically feature multiple triple bonds, while the
same predicted in 1b tend to reduce ∆Epred. Therefore, the effect of adding samples
with C C functionalities for 1a is an increase on Epred, whereas, in 1b, it decreases.

In further examination, we observe an intriguing trend in 2a, where the fraction f↓
increases with temperature (Figure 7.3B), contrary to the marginal increase in MAE
shown in Figure 7.2. In further examination, we observe that the fraction f↓ increases
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Figure 7.3: Fraction of samples for which the absolute error increases (f↑) or decreases
(f↓) as a function of the sampling temperature for the different artificial datasets evalu-
ated in this work.

with temperature (Figure 7.3B), in line with the marginal increase in MAE shown in
Figure 7.2. Analysis of the P (∆Epred) distribution (Figure S10) reveals a reduction
in Epred for 2a at 300 and 500 K, with a slight increase at the other temperatures.
Conversely, both subsets 2b and 2c demonstrate a f↓ value approaching 90%, reflected
in a shift of the P (∆Epred) distribution towards positive values across all temperatures.
Molecules exhibiting significant decreases and increases in predicted energy typically
contain more heteroatoms (N, O) and carbonyl fragments.
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Regarding f↓, 3a and 3b exhibit contrasting trends. In the case of 3a, f↑ oscillates
around 60% for all temperatures except at 2000 K, where it drops to approximately
40%. Conversely, 3b maintains a stable value for f↓ at around 70% across different
sampling temperatures (Figure 7.3 C). The distributions of ∆Epred are sharply peaked
around zero for all temperatures (Figure S11). However, for 3a, the dataset with the best
performance, there is a slight displacement of the distribution towards positive values
with large tails. Molecules with large negative values of ∆Epred in 3 typically comprise
complex structures with multiple rings, whereas those with large positive values exhibit
simpler structures.

The findings for set 4a reveal an improvement in prediction for approximately 70% of
the molecules in the target set, irrespective of the sampling temperature (Figure 7.3 D).
Conversely, for 4b, the fraction f↑ oscillates between 40% to 60%, increasing with the
sample temperature. The distribution of ∆Epred highlights the opposing trends observed
for 4a and 4b (Figure S12). In the case of 4a, the distribution shifts towards positive
values with large tails extending up to 3 eV. Conversely, for 4b, the distributions shift
towards a negative value of ∆Epred. Additionally, the effect of temperature is evident
in the width of the distribution and its tails, which grow with increasing temperature.
Molecules with the largest negative value of ∆Epred in 4a typically contain multiple
heteroatoms organized in bicycles or feature the presence of the nitro group. Conversely,
those that reduce their energy often consist of single aromatic rings.

In summary, the most favourable outcomes are achieved at low temperatures for most
datasets, with the exception of set 3, which performs better at high temperatures. Set 2
proves to be the most challenging to predict, as there are no discernible changes in the
error distributions after adding samples from conformational space. In contrast, set 1
exhibits the most significant changes in the mean absolute error (MAE), with 1b-Acet
yielding the best results.

7.3.2 Effect of the Number of Added Samples

The subsequent aspect of our data augmentation exploration focuses on assessing the
impact of the number of added samples to the initial database. After selecting the tem-
perature (300 K) showing the most significant decrease in Mean Absolute Error (MAE),
we added varying sample numbers. Similar to temperature assessment, we evaluated
changes in energy distribution concerning the training and target sets (Figures S13 to
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S16). Changes in the energy distributions are produced at different values than those
covered by the target distributions. The analysis of the energy distributions revealed
notable shifts for Sets 1 and 2, characterized by the emergence of secondary peaks at
distinct intensities (Figure S13 and S14). Interestingly, the intensity of these peaks
did not directly correlate with the number of added samples. Then, for 1a-Acet and
1b-Etha, the highest intensity is observed for 1% while for 1a-Etha, it is at 5% and
for 1b-Acet, it is at 10%; a similar effect is noticed for set 2. Similarly, for set 3, the
energy distribution has a new peak around -60 eV with different intensities (Figure S15).
For 3a and 3b, the highest intensity of the new peak is for 1%. Energy distribution
for set 4 enhanced with benzene also has a peak at around -60 eV that changes its
intensity (Figure S16), reaching its maximum for the dataset enhanced with 1%. For set
4 enriched with cyclohexane, the peak on the energy distribution near -75eV modifies
its intensity with the temperature, reaching a maximum at 1% of added samples.

Figure 7.4 illustrates the impact on the mean absolute error (MAE) of models trained
with artificial databases and subsequently enhanced with varying sample sizes. Sim-
ilar to previous observations, the effect is not consistent across all datasets and does
not remain constant with the number of added samples to the training databases. For
set 1, a notable discrepancy is observed between subsets 1a and 1b, with the MAE
consistently smaller for 1a. Additionally, databases enriched with acetylene exhibit
lower MAE values compared to those enriched with ethane. Remarkably, the MAE
values for set 1 undergo minimal changes with an increase in the number of added
samples. Furthermore, the MAE values remain more constant for 1b than for 1a, with a
slight overall increase as the number of samples added increases. Analysis of the error
distributions (Figure S17) reveals that distributions are more compact for 1b than for 1a,
with a tendency to be closer to zero. Moreover, models trained with databases enhanced
with acetylene demonstrate error distributions that are less spread out than those using
ethane as the sampled molecule.

For set 2, the variations in MAE remain relatively minor, hovering around 0.4 eV,
with the most significant fluctuations seen in 2a, followed by 2b, while 2c maintains a
consistent value irrespective of the number of added samples. Consistently, the impact
of incorporating more oxidized compounds is evident, with the most substantial MAE
reduction observed in set 2c, followed by set 2b, and finally 2a. However, alterations in
the error distributions across different subsets are marginal (Figure S18).

In the case of set 3, adding samples yields negative effects for both subsets, resulting in
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larger MAE values for all enhanced databases compared to the initial dataset, except for
3a with 1% augmentation. The MAE shows a slight yet continuous increase with the
number of added samples, with a more pronounced effect observed for 3a than for 3b.
This increase in MAE is further illustrated by shifts in the error distributions for set 3
(Figure S19), characterized by substantial displacements in the distribution’s centre of
mass for 3a and an expansion of the distribution tails for 3b.

Lastly, regarding set 4, the outcomes vary depending on whether benzene or cyclohex-
ane is added, although the overall changes in MAE for both scenarios are approximately
0.1 eV. With the addition of benzene samples, a significant MAE reduction is observed
between 1 and 5%, beyond which the improvement plateaus, suggesting that the impact
of sample addition diminishes beyond the 5% threshold. Conversely, for cyclohexane,
the MAE increases from 1 to 10%, with a slight decrease thereafter. Notable changes
in the error distributions (Figure S20) are observed when benzene samples are added,
characterized by a shift in the distribution centre towards zero and a more uniform dis-
tribution compared to the initial one. Contrarily, set 4+Cyclohexane shows no changes
in shape but exhibits a slight increase in the distribution’s centre of mass.

An analysis of f↑ (Equation 7.2) and f↓ (Equation 7.3) was conducted (see Figure 7.5).
In set 1, notably, 1a exhibits larger values of f↑ compared to 1b, in line with results from
the MAE values. Furthermore, datasets enriched with acetylene display larger values of
f↓ compared to those augmented with ethane (Figure 7.5A). Regarding the impact of the
number of added samples, an oscillatory pattern is observed across all datasets, except
for 1b with acetylene, which maintains a consistent f↓ value regardless of the number of
added molecules. Specifically, for 1a-Etha with 1% augmentation, f↑ is approximately
0.8, reaching nearly 90% at 5% augmentation, then declining to less than 60% at 10%
augmentations, before rising again to 80% with the largest sample addition. Conversely,
1a-Acet displays larger values of f↓ oscillating between 70% and 30%. On the other
hand, 1b shows more stable behaviour, independent of the number of added samples,
with over 80% of samples reducing their error. While 1b-Acet maintains a constant f↓
value of around 90%, 1b-Etha fluctuates between 90% and 70% for all levels of addition.

Changes in the predicted energy (∆Epred) for set 1 (Figure S21) underscore variations
induced by different models. Across all variants except 1a-Etha, there is an overall
mean decrease in predicted energy (i.e., ∆Epred > 0). Notably, subset 1a-Acet initially
exhibits positive ∆Epred values after adding a few samples (i.e., 1% and 5%), shifting
towards zero thereafter. Similarly, 1a-Etha consistently displays ∆Epred < 0 across
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Figure 7.4: Change in the Mean Absolute Error (MAE) in the target dataset of the
different databases to the number of samples of a representative structure added to the
initial training dataset. In all the cases, samples were obtained using normal mode
sampling with a temperature of 300 K. The x-axis in the graphs shows the percentage of
added samples to the size of the training dataset. The results show the mean over three
models initialized with different seeds. The error bars represent the standard deviation
of the MAE over the different values. In each of the panels, the performance of the
model in the target dataset before the addition of the sample is shown in horizontal
dotted lines.
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different augmentation levels. For 1b-Acet, there is a constant positive ∆Epred centred
at approximately 0.5 eV for all percentages tested. The case of 1b-Etha is particularly
intriguing, with varying positions of ∆Epred centre. Notably, at 5% augmentation, the
distribution shows the largest shift with a centre at 0.7 eV, while at 25%, the centre shifts
to negative values at approximately -0.2 eV. The chemical structures with significant
decreases or increases in predicted energy lack a clear trend. In subsets 1a, decreased
predicted energy is associated with structures featuring an oxazole ring or multiple triple
bonds, while increased Epred is observed for compounds with a C N OH moiety
or multiple cyanide (C N) fragments. Conversely, in 1b subsets, ∆Epred > 0 is
observed for molecules with one carbon centre substituted by four CH2 C CH
or the C N OH fragment, while negative values are seen for molecules with a
C O fragment or a formyl-acetamide fragment O C NH C O.

Moving on to set 2, the findings align with the observations of the previous section
on temperature effect. Specifically, 2a demonstrates an increase in the value of f↑
with the number of added samples, while 2b and 2c maintain constant values of f↓
exceeding 90% regardless of the sample size (see Figure 7.5B). The distributions of
∆Epred generally shift towards positive values for most tested scenarios, except for 2a
at low percentages (1% and 5%). Regarding chemical structures, they closely resemble
those observed in the previous section, characterized by the presence of numerous
heteroatoms (O, N) and C O fragments.

Concerning set 3, a consistent opposite trend between 3a and 3b is evident (see Figure
7.5C). For 3a, there is a growth in f↑ with the number of added samples, whereas 3b
maintains a high value (> 70%) of f↓ regardless of database enrichment. The changes
in ∆Epred are illustrated in Figure S23. In 3a, the tails of P (∆Epred) shift towards
positive values, accompanied by an increase in the width of P (∆Epred). These changes
appear to align with the observed trend in energy distribution (see Figure S15) rather
than the number of added samples. Conversely, subset 3b exhibits a P (∆Epred) centred
at 0 eV, with alterations primarily observed in the distribution’s height. The structures
of molecules displaying large ∆Epred remain consistent with those observed in the
previous section.

The last sets, 4-Benz and 4-Chex, exhibit opposing trends, with 4-Benz showing a f↓
value of approximately 60% (see Figure 7.5D). Contrariwise, 4-Chex demonstrates
f↑ values close to 60%. The distributions of P (∆Epred) for set 4 (see Figure S24)
reveal contrasting outcomes for enhancement with benzene and cyclohexane. Benzene
enrichment results in reduced energy predictions with positive values of ∆Epred, cen-
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Figure 7.5: Fraction of samples for which the absolute error increases (f↑) or decreases
(f↓) as a function of the fraction of added molecules (naddninitial) for the different
artificial datasets evaluated in this work.
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tring the distribution’s mass at larger positive values for small addition percentages.
In contrast, set 4 enriched with cyclohexane shows distributions centered at negative
values, with the mass centering at more negative values for small addition percentages.
Molecules exhibiting significant changes in ∆Epred commonly feature fused rings with
heteroatoms and nitro (O N O) fragments.

In summary, this section highlights that the best results are achieved by adding a small
fraction of samples to the initial databases. This finding highlights the importance of
modifications in the energy distribution within the training dataset. Additionally, it
was observed that adding more samples either harms or has no significant effect on
prediction accuracy. Once again, set 2 emerges as the most challenging to predict, with
marginal improvements, while set 1 undergoes the most significant changes.

7.3.3 Amons

The results of augmenting artificial databases with samples from the conformational
space of a single molecule suggest that while there may be slight improvements in
prediction performance, they are generally marginal. This could be attributed to the
fact that adding only a simple functional group does not cover all the possible under-
sampled parts of chemical space present in the target database, e as evidenced by the
energy distributions in Figures S1 to S4 and S13 to S16. Therefore, employing amons
fragments[40], which systematically partition molecules to represent various regions of
chemical space, could offer a more comprehensive approach to address undersampling.
As in the previous sections, we will start by describing the changes in the distributions
of energies of the datasets improved with amon fragments to obtain an overview of the
changes in the initial training databases and their comparison with the target database.

Beginning with set 1, the energy distributions (see Figure S25) retain a similar shape
to the initial ones. However, for 1a with amon sizes 4 and 5, the distributions become
broader, exhibiting improved overlap with the target distribution. Similarly, 1b with
amon sizes 4 and 6 also widens its distribution. Despite the described changes, the
differences between target and enhanced distributions are maintained. Moving to set
2, the energy distribution (see Figure S26) shows increased overlap with the target
distribution. However, a few peaks appear at low energy values (-100 to -80 eV), while
the tails decay faster at higher energies (-60 to -40 eV), resulting in decreased overlap
in both regions. Set 3 displays mixed behaviours (see Figure S27): 3a with amon size 5
shifts the distribution, losing coverage at low energies but gaining at high energies. At
the same time, 3b shows minimal changes in the energy distribution. Finally, for set 4,
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changes in the height of the distribution are observed at low energy values. While the
formation of a shoulder that varies in height with increasing amon size is observed at
higher energy values (Figure S28).

In general, the effect of the addition of amons to the training set deteriorates the perfor-
mance of the model on the prediction of the target dataset (Figure 7.6). Specifically,
in set 1 (Figure 7.6A), minor differences between the outcomes of 1a and 1b are dis-
cernible, with 1a generally outperforming 1b. Concerning amon size, a substantial
increase in MAE is observed for smaller amons (sizes 3 and 4). However, the MAE then
steadily decreases, eventually reaching values lower than those of the initial database
for the largest amon sizes (size 7). The distributions of MAE for 1a (see Figure S29)
become broader with increasing amon size up to size six. Notably, for 1a enhanced with
amons of size 7, the MAE distribution exhibits a prominent peak near 0 but extends
into long tails, reaching up to 5 eV. On the other hand, for set 1b, the distribution also
widens up to size 5. Sizes 6 and 7 display more concentrated distributions with peaks
closer to 0, albeit accompanied by extensive tails. Still, the tails are more pronounced
for size 6 compared to size 7.

Moving on to set 2, it has an interesting behaviour because the MAE, irrespective
of amon size, is lower than the initial database. This is intriguing, considering that
this dataset exhibited only marginal improvements in the previous section. Similar
to previous cases, 2a displays the most significant variations in MAE, consistently
decreasing it to a minimum at size 6. Conversely, sets 2b and 2c show a slight increase
in MAE but still maintain a better MAE compared to the initial database. One plausible
explanation for the enhanced prediction in set 2 with amons is its substantial divergence
from the training datasets, originating from a different database (PC9). PC9 has a
greater chemical diversity than QM9, the source of the initial training databases for
this set. Hence, it’s reasonable to expect that PC9 introduces different moieties not
originally present in QM9, making the prediction tasks harder for the model. Notably,
the distribution of MAE (see Figure S30) undergoes significant changes for 2a, featuring
a broader profile. However, for size 6, the distribution exhibits a peak near 1 eV with
extensive tails. In contrast, 2b and 2c demonstrate relatively minor changes in the
distribution of MAE.

Moving forward to set 3, two distinct scenarios emerge yet again. For 3a, there is an
observable increase in MAE, which then fluctuates as the amon size varies, while for 3b,
there is negligible change compared to the initial value. The error distribution for set 3
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(see Figure S31) undergoes significant alterations in shape, width, tails, and centre of
mass for 3a, whereas 3b experiences minimal changes. Similarly, set 4 fails to exhibit
improvement, displaying a larger MAE than the initial dataset for all amon sizes, with
no notable changes in the error distribution shapes (see Figure S32).

The study of the fractions f↑ and f↓ is reported in Figure 7.7. For set 1, it was observed
that the value of f↑ is around 80% for sizes 4 and 5 (Figure 7.7 A). Then, the value
decays to 30 % following the same trend of the MAE in Figure 7.6. An analysis of the
difference in the energy prediction ∆Eref (Figure S33) shows that the distribution centre
of mass shifts to positive values for small amon size for dataset 1a; the largest change is
seen for size 5 with a distribution centred at ∼ 5 eV. On the contrary, the distributions
of large amons for 1a have a bimodal profile, with size 6 having the highest peak around
5 eV and size 7 at ∼ 1 eV. Likewise, 1b has an unimodal distribution for amon size
4; at the same time, for other sizes, the distributions are bimodal. Again, P (∆E) for
1b has the first peak near 1 eV, and it is the highest for 6 and 7. The second peak of
P (∆E) of 1b can be found around 5 eV, which is the highest for size 5. Molecules with
the largest variations of ∆Epred have some commonalities. In the case of samples with
large positive values of ∆Epred, the structures have multiple triple bond fragments and
C N groups. On the contrary, those with large negative values have 5-member rings
or the fragment CH2 C CH.

In Set 2, a substantial portion of molecules (> 70 %) experiences a reduction in error,
a trend unaffected by the amon size (Figure 7.7B). The value of f↓ exhibits minor
oscillations among subsets. Specifically, in 2a, f↓ rises initially and then declines with
larger amon sizes. Conversely, 2b displays no clear trend, with slightly small f↓ for even
sizes and slightly higher for odd sizes. Conversely, 2c demonstrates an opposite trend to
2a. Similar to prior cases, 2a showcases significant changes in predicted energy (Figure
S34), while 2b and 2c remain relatively constant, with minor shifts in the distribution’s
center of mass. Molecules exhibiting significant changes in Epred typically feature a
considerable number of heteroatoms in their structures. Notably, across all datasets, the
moiety O O OH exhibits the most negative ∆Epred values, while molecules with
large positive values often contain amine groups (NR3) or double carbon bonds (C C).

Moving to Set 3, two distinct behaviours regarding the values of f↑ are observed (Figure
7.7C). Specifically, 3a has a large value of f↑ that increases with amon size, reaching
values above 80%. Conversely, 3b maintains a constant f↓ around 50%, suggesting a
relatively stable ratio of improved and worsened molecules. Notably, the disparity in
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Figure 7.6: Change in the Mean Absolute Error (MAE) in the target dataset of the
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changes becomes more apparent when examining the distributions of ∆Epred (Figure
S35). For 3a, P (∆Epred) exhibits a bimodal shape, with one peak centred at 0 eV and
another at 4 eV that intensifies with larger amon sizes. In contrast, the distribution for
3b features a sharp peak centred at zero, with variations primarily in intensity. The
chemical structures with the most significant changes in ∆Epred typically involve 5- or
4-membered rings for negative values and simpler structures for positive values.

For Set 4, variations in the fractions f↑ and f↓ are minimal, with f↑ consistently smaller
than its counterpart (Figure 7.7D). The discrepancy between the fractions enlarges with
the size of the added amon fragment. Changes in predicted energy are also negligible
(Figure S36). For amon size 4, the centre of mass of P (∆Epred) shifts to negative
values, while for larger sizes, it shifts to positive values, with the shift becoming more
pronounced as the amon size increases. Regarding chemical structures, those with
significantly negative ∆Epred values typically feature multiple nitrogen and oxygen
atoms on aromatic rings, while those with notably positive values contain pyrimidine
and triazine rings.

Overall, the results of this section indicate that the amon approach does not enhance
energy prediction for the tested databases, except for Set 2. The amon size exhibits an
inconsistent effect across the databases, with all datasets experiencing significant MAE
changes in at least one subset. While Sets 1 and 2 show a positive impact, with Set 1
benefiting only from the largest amon size, Set 2 displays a positive effect across all
sizes. Conversely, Sets 3 and 4 exhibit poor performance, characterized by substantial
MAE increases.

7.3.4 Uncertainty/Error Guided Sampling

The final enhancement method examined in this study profits from the uncertainty
predicted by the neural network model. Samples added to the training dataset were
chosen from the target set based on their predicted variance. Complementary, structures
with significant errors were selected from the target set for comparison. NMS was then
applied to the selected structures to generate a total pool of 1000 samples.

Initially, the impact of adding samples was assessed by examining changes in energy
distributions (Figures S37 to S40). In Set 1, there were minimal alterations in the
energy distributions, except for a slight increase in peak height and the emergence of
a small peak for 1a at high energy values (-50 to -30 eV). Likewise, Set 2 displayed
only minor changes in peak height and the appearance of small peaks around -60 to -40
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eV. Set 3 exhibited similar alterations, primarily in peak height, particularly noticeable
between -60 and -40 eV. This trend persisted in Set 4, where the addition of samples
with significant errors led to the emergence of a new peak around -60 eV in the energy
distribution.

The MAE for databases augmented using two different metrics is depicted in Figure 7.8.
Overall, augmenting samples based on uncertainty or error tends to degrade the model’s
performance, except for Set 2 when using uncertainty. An individual analysis starting
with Set 1 exhibits an increase in MAE after sample addition in both subsets. Notably,
the error-based addition yields smaller errors compared to uncertainty-based addition.
For Set 1a, performance is slightly better than 1b when augmenting based on error, with
broader error distributions observed for 1a (Figure S41). Contrarily, 1b demonstrates
lower error but with a more spread-out distribution, albeit with a lower centre of mass.
In Set 2, augmenting samples based on uncertainty leads to a lower MAE compared to
error-based addition, with a difference of approximately 2 eV. Notably, subsets 2b and
2c exhibit MAE values close to the initial database, reflected in minimal changes in error
distributions (Figure S42). Continuing with Set 3, error-based augmentation increases
MAE by approximately 3 eV. In comparison, uncertainty-based augmentation increases
MAE for 3b by around 2 eV, albeit with 3a showing a slightly smaller MAE than the
initial value. Error-based augmentation notably shifts the distribution’s centre of mass
to approximately 4 eV, widening its spread. Similarly, uncertainty-based augmentation
shifts the centre to 3 eV for 3b and increases the distribution’s width (Figure S43). For
Set 4, error-based augmentation results in a slightly larger MAE than uncertainty-based
augmentation. The error distributions exhibit a shift in the centre of mass towards larger
values, with increased tail and width (Figure S44).

The analysis of individual error changes was conducted using the fractions f↓ and f↑,
as shown in Figure 7.9. Beginning with Set 1, it’s evident that both subsets and aug-
mentation methods yield higher values for f↑. Comparing the augmentation methods,
f↑ tends to be slightly larger for uncertainty-based additions. Regarding subsets, 1b
exhibits higher f↓ with error-based augmentation, while 1a shows the same trend with
uncertainty-based augmentation (Figure 7.9). The distributions of ∆Epred for both
subsets and metrics are centred at positive values (Figure S45). For 1a, P (∆Epred) is
centred at approximately 3.5 eV and 4.5 eV for error- and uncertainty-based additions,
respectively. Moreover, the distribution’s height is greater for uncertainty-based addi-
tions, with significantly larger tails compared to the other method. In the case of 1b,
both methods yield a distribution centred at around 5 eV. An examination of chemical
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Figure 7.8: Changes in the Mean Absolute Error in the target dataset of the different
databases with respect to the method of addition. In the case of uncertainty-based
addition, the ten molecules with the largest uncertainty value in the initial evaluation
were chosen to enhance the training database. For each of those molecules, 100
structures were generated using normal mode sampling at 300 K. The same procedure is
repeated for the molecules with the largest error. The results show the mean over three
models initialized with different seeds. The error bars represent the standard deviation
of the MAE over the different values. In each of the panels, the performance of the
model in the target dataset before the addition of the sample is shown in horizontal
dotted lines.

structures reveals that molecules with the highest ∆Epred values contain multiple C C

fragments. Conversely, those with negative ∆Epred values feature a ring system and a
C O group.

Moving to Set 2, the values of f↑ and f↓ exhibit distinct behaviours depending on
the augmentation methods. With uncertainty-based addition, f↓ values surpass 80%,
whereas for error-based addition, f↓ values fluctuate around 50% (Figure 7.9). As
seen previously, significant disparities emerge in the distribution of ∆Epred (Figure
S46). For error-based addition, P (∆Epred) forms sharp distributions centred at 0 for
subsets 2b and 2c, while for subset 2a, it centres at a negative value. Conversely, with
uncertainty-based addition, P (∆Epred) shifts towards positive values with considerable
width. The chemical structures undergoing the most significant changes commonly
feature heterocycles with N and O or N COOH fragments.

For set 3, the analysis of f↑ and f↓ show interesting trends. Error-based addition results
in a high f↑ for both subsets, while uncertainty-based enhancement yields a substan-
tial fraction of f↓ for 3a and a minor fraction for 3b (Figure 7.9). Notably, there are
considerable disparities in the predicted energy differences (Figure S47). For 3a, the
error-based approach produces a broad distribution centred at approximately 3.5 eV,
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whereas the uncertainty-based approach exhibits a sharp peak near 0 eV. In contrast, for
3b, both methods shift the distribution to positive ∆Epred values with extensive tails
decaying towards 0 eV. Chemical structures associated with positive ∆Epred values
feature multiple tertiary alcohols, while those associated with negative values entail
multiple fused cycles.

Set 4 consistently shows f↓ values exceeding 60%, regardless of the augmentation
method used (Figure 7.9). Furthermore, the examination of ∆Epred (Figure S48) reveals
similar shapes for both types of adddition, with a peak centred at 0 eV. However, the
error-based addition results in a bimodal distribution, with a secondary peak at 3 eV.
Structures with negative ∆Epred values typically incorporate a ring with two nitrogen
atoms and one oxygen atom, along with a C O moiety. Conversely, structures with
positive ∆Epred values feature multiple nitrogen atoms within the ring.

In conclusion, the inclusion of samples from the conformational space, whether based
on error or uncertainty, generally has a detrimental impact on most datasets. Specifically,
adding samples based on error worsens prediction errors across all databases. Con-
versely, while uncertainty-based addition proves beneficial for set 2, it yields adverse
outcomes for the remaining datasets.
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7.4 Conclusions

This study investigated three methods for enhancing initially biased chemical databases.
These databases were designed to cover various chemical aspects, including hybridiza-
tion, oxidation, chirality, and aromaticity. The performance assessment of these methods
focused on mean absolute error, the fraction of samples with increased/decreased abso-
lute error in the target dataset, changes in Epred, and the chemical structures of samples
exhibiting significant changes in Epred.

The first method assessed involved augmenting the datasets with samples generated
using normal mode sampling of a representative molecule corresponding to the targeted
chemical aspect. This analysis included examining the impact of sampling temperature
and sample size. Generally, adding samples from a single molecule had minimal effects
on sets 2, 3, and 4. However, the influence of temperature was found to slightly degrade
prediction accuracy across most databases, with optimal results achieved at 300 K. Con-
versely, smaller sample sizes yielded better performance, suggesting that redundancy
and highly disturbed structure addition adversely affect prediction quality.

The results of the first method indicate that adding a single moiety fails to fully address
the distribution shift issue across different databases. Therefore, alternative methods
were explored. The first involved utilizing the atoms-in-molecule fragments approach.
While sets 1, 3, and 4 did not yield positive outcomes, set 2 exhibited significant
improvement. This behaviour can be attributed to the fact that the target set of set
2 originates from a distinct dataset, thus encompassing various unexplored regions
of chemical space by the initial database. Notably, subsets 2b, 2c, and 3b show no
changes in the error regardless of the amon size. Conversely, set 1 displayed substantial
differences, improving performance with larger amon sizes.

Another method assessed involved enhancing the database by utilizing samples with
significant errors or variances, followed by normal mode sampling to generate samples
from conformational space for each molecule. Unfortunately, this approach yielded
negative results for sets 1, 3, and 4, resulting in increased MAE for these datasets.
Intriguingly, employing samples selected based on uncertainty values yielded better
performance compared to using molecules with large errors. Similarly to the amons
method, set 2 demonstrated considerable improvement in MAE, which can be attributed
to the unique construction of the target set for this dataset.

In general, it was shown that incorporating samples from conformational space could
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enhance property prediction, outperforming methods like amons fragments. Particularly,
the generation of new samples must be performed at low temperatures to capture
relevant regions of conformational space that help to improve prediction. Moreover, it
was observed that a small number of samples can yield a significant impact compared
to an excessive amount. Notably, when dealing with a target dataset from a different
distribution, utilizing amons fragments or uncertainty-based sampling appears to be
more effective. Future research should explore the influence of the sample size in
uncertainty-based enhancement and the number of samples from conformational space
per molecule. Additionally, analyzing changes in structural properties can further
elucidate database modifications. This can be done by using the Kullback-Leibler
divergence to evaluate changes in the structural properties of the databases (i.e. bond
distances) in addition to the analysis of energy distributions made here.

7.5 Supporting Information

Supporting information related to this chapter can be found at: https://github.
com/LIVazquezS/SI_PhD_Thesis/blob/main/SI_Chapter7.pdf

Notes

The author used Chat-GPT3.5 to improve the readability and conciseness of the text.
However, the text was reviewed for errors.
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Chapter 8

Conclusions

The world little knows how many of the thoughts and theories which have

passed through the mind of a scientific investigator have been crushed in

silence and secrecy by his own severe criticism and adverse examination;

that in the most successful instances not a tenth of the suggestions, the

hopes, the wishes, the preliminary conclusions have been realized.

Michael Faraday

Over the different chapters of this thesis, we explored different aspects of how chemistry
insights can be gained by using machine learning algorithms. Those algorithms are
a powerful option for exploring chemical and conformational space. However, ML
models must be used carefully, and different aspects must be considered. This last
chapter summarises the different pieces of work discussed here and provides some
perspectives on future extensions for the various aspects of this work.

In Chapter 3, the influence of the composition of chemical databases was reviewed. It
was found that the prediction of a chemical property (i.e. tautomerization energy) is
strongly dependent on the chemical diversity of the training databases. The different
aspects evaluated show that biases on chemical training sets can be identified. For
example, C C near heteroatoms (N, O) or azoles are harder to predict because they
are not included in the training set. Additionally, it was found that an adequate ad-
dition of samples from conformational space compensates for the lack of chemical
diversity. However, the number of conformers added to the chemical database must be
balanced with the chemical diversity to maintain a good performance. Moreover, we
introduce a quantitative measure of the deficiencies in chemical databases by means
of the Kullback-Leibler (KL) divergence between distributions of bond lengths. Some
aspects of this study that can be improved include extending the use of KL to other



geometric properties of molecules like angles or dihedrals. From the results of our
study, it was unclear if many-body terms have a larger importance than single 2-body
terms. In addition, KL divergence over the different structural quantities of molecules
can be used to construct chemical databases by minimising the difference between
distributions of bonds, angles or dihedrals on test and training databases by generating
synthetic data as recently done with Gaussian processes [359] or by the use of generative
models[75]. Finally, using other metrics, such as Jensen-Shannon divergence[277], can
be an alternative because it does not suffer from symmetry problems like KL.

As an alternative to the quantification and use of structural properties, uncertainty quan-
tification (UQ) can be employed to construct chemical databases. Chapter 4 explores
using models that can predict its own uncertainty with this end. Usual UQ approaches
involve training several models and then calculating the mean and standard deviation
of their predictions; this strategy is commonly known as ensembles. A disadvantage
of using the ensemble method is the high computational cost of training the different
models. Then, alternatives to quantify the uncertainty in the prediction were studied. In
particular, a method based on Bayesian probabilities called Deep Evidential Regression
was implemented on top of the PhysNet model. The new model was characterized
through different tests. The calibration of the predicted uncertainty and the relationship
between error and variance were evaluated. Although there is no linear correlation
between error and uncertainty, it was found that the uncertainty can give insights into
the data quality and biases of the databases. Additionally, it was quantified the ability
of the model to label samples with large errors with a corresponding large variance. To
obtain a better understanding of how the model predicts the values of variance or the
lack of information that leads to large errors, the distances in the embedding space of the
NN were used. This new analysis highlights that, as expected, the lack of information
complicates an adequate prediction. At the same time, redundancy creates "confusion"
in the model, leading to misclassifying samples with high errors with small variances.
A second method for UQ that tries to create a bridge between ensemble models and
single model prediction of uncertainty called Regression Prior Networks was also tested.
However, its performance was poor because of technical limitations. The implemented
methods provided several insights into the relationships of the chemical structures in
training and test sets. However, the statistical assumptions made on its construction limit
its prediction capability, as will be discussed next. Consequently, using distribution-free
methods like conformal prediction [346, 347] are interesting alternatives to improve the
quality of the uncertainties obtained.
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Until now, the constructed models were created to reproduce results from ab-initio

calculations. Nevertheless, it is interesting to create models that also reproduce experi-
mental results. Chapter 5 explored this possibility for the system of He-H+

2 . Starting
from high-quality potential energy surfaces (PES) generated with a Reproducing Ker-
nel Hilbert Space model from high-level quantum chemistry calculation, a procedure
to scale the coordinates and energy called morphing was used to match the results
of scattering calculations and experimentally determined Fesbach resonances. The
transformation of the coordinates was done by multiplying them by a scalar value, e.g.
Vmorphed(R, r, θ) = εVab−initio(αR, βr, θ). The determination of the different scalar
values was done by an iterative procedure on which a loss function of the position of
the energy peaks and its intensities are minimized with respect to experimental values.
The results obtained indicate that even the PES obtained at the highest level of theory
needs to be scaled with respect to the experimental quantities to improve the results. In
addition, it was found that the procedure is sensitive to the parts of the potential visited
for the experimental measurements. Further, it was seen that the description of the PES
needs to be done in a global form (i.e. avoiding a decomposition on n-body terms) to
obtain physically sound results. Although the model returns adequate results, it is clear
that the simple transformation used can not cover all the changes in a PES because
the surface might require different adjustments on different regions. Consequently, a
non-linear transformation is necessary to obtain better results. A possible model that
can be used is the transformer architecture revised in Chapter 2 and the key behind
the success of LLM. The selection of this model is because of the attention layer on
it. The attention layer is able to capture local changes based on the context; for the
case of PES, it is expected that some parts of the PES require changes while others do
not. Complementary, those changes are expected to have dependencies between them,
which here can be considered the ’context’. Then, the morphing of PES is formulated
as follows for a triatomic molecule:

Vmorphed(R, r, θ) = NN(Vsurrogate(NN(R, r, θ))) (8.1)

Here, NN is a transformer layer, and Vsurrogate is the RKHS model that represents the
surface. In principle, the model’s parameters will be obtained by minimizing a simple
MSE loss function between the values of energy obtained at a high level of theory in a
defined grid with the energy obtained with the morphing model. Other probabilities are
the use of polynomial transformations for each of the coordinates.

Continuing with the study of PES, the DER model introduced in Chapter 3 was tested on
a reactive PES. The aim was to benchmark different uncertainty quantification methods
for predicting outliers. To this end, two new formulations of DER were introduced.
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Additionally, other quantities, such as the characteristics of the PES judged by the
stationary points and harmonic frequencies, the adequate description of the reactive
process evaluated with the minimum energy path and the minimum dynamic path, and
the energy conservation in NV E simulations were evaluated. Finally, a connection
between structural properties such as interatomic distances with the concept of inside-
/outside-of-distribution and error and variance was made by introducing a heuristic
metric based on the van der Waals radius. The results indicate that ensembles are
the best performers for detecting outliers. Nevertheless, the results also show that
the reactive process was accurately described for all models despite the fact they did
not achieve the desired quality. In this chapter, the statistical limitations of DER were
clearly noticed and became a problem for adequately predicting the quantities of interest.
For example, forces which are the negative gradient of energy were found to have a
large error, which is a consequence of the assumed Gaussian description of the energy.
Then, the error in forces can be approximated as Error2energy

σ2 . Alternative development
avenues include using different loss functions, recalibration of the uncertainty, use of al-
ternative optimizers to gradient descent and the mentioned conformal prediction models.

The last question treated in this thesis was how to take advantage of the information in
conformation space to make better predictions in chemical space. This was done by
constructing artificially biased datasets, which were then tried to be improved by adding
conformers of minimum examples of a chemical functionality of interest. Methods
of enhancement based on normal mode sampling, amons fragments, and the uncer-
tainty/error of samples in the target set were tested. The results give us an idea of
the complex interplay between conformational and chemical space. The addition of
samples from a single molecule does not greatly impact some of the tested datasets,
while others highly benefit from it. However, for those datasets that improve perfor-
mance, adding samples from conformational space with normal mode sampling seems
to return good results when done at 300 K for a small fraction of samples with respect
to the total size of the training dataset. On the other hand, the other two methods
of addition (amons and error/uncertainty-based addition) give good results only for
cases where the target distribution is largely different from the training distribution.
Several aspects of this work can be improved, the first is a similar analysis to the one
performed in Chapter 3 of the KL divergence of bond distribution to quantify for which
bonds larger differences lead to positive or negative improvements in performance.
Next, testing adding more diverse examples to the database could be interesting. Lastly,
mixing the amon method with normal mode sampling can be a possibility for evaluation.
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Other aspects that can be explored in future works are the interpretability of the ML
models, the evaluation of the globality of the PES generated by the ML model using
either basin hopping[360] or minima hopping[361], the connection of information
theory with the construction of the chemical databases, and the automatization of the
complete cycle of construction of PES.
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