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A little learning is a dangerous thing;
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,
And drinking largely sobers us again.
Fired at first sight with what the Muse imparts,
In fearless youth we tempt the heights of Arts;
While from the bounded level of our mind
Short views we take, nor see the lengths behind,
But, more advanced, behold with strange surprise
New distant scenes of endless science rise!
So pleased at first the towering Alps we try,
Mount o’er the vales, and seem to tread the sky;
The eternal snows appear already past,
And the first clouds and mountains seem the last;
But those attained, we tremble to survey
The growing labours of the lengthened way;
The increasing prospect tires our wandering eyes,
Hills peep o’er hills, and Alps on Alps arise!

– Alexander Pope
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Abstract

The aim of this thesis is the study of two different models of spatially extended branch-
ing systems.

First, we consider a one-dimensional branching Brownian motion that evolves in a
spatially random environment. We argue that the quenched fluctuations of the maxi-
mally displaced particle re-centred at its median remain bounded in time. For the stan-
dard branching Brownian motion in a homogeneous environment, an analogous result
already follows by the fact that the distribution function of the re-centred maximally
displaced particle corresponds to the critical travelling wave solution of the related
Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation. This argument, however,
cannot be extended to the inhomogeneous setting. In order to achieve our result, we
employ certain tilted path-measures in order to get fine control on the Feynman-Kac
representations to solutions of the F-KPP equation, which we combine with an ana-
lytic result on the evolution of the number “zero-crossings” of solutions to parabolic
equations, known as a Sturmian principle.

The second model we consider is a discrete-time model of branching annihilating
random walk on Zd. In this model, at the end of each generation, all particles produce
a mean µ number of offspring that disperse uniformly within a fixed distance R from
their parent. Whenever two (or more) child particles try to occupy the same site they
get annihilated. This local interaction of particles in the branching system has the
interesting but also challenging consequence that high local density of particles leads
to more annihilation, making the system non-monotone. We investigate and determine
regimes of the model parameters for which the system either dies out almost surely or
survives with positive probability. Moreover, we exhibit regimes where there is a unique
non-trivial ergodic equilibrium distribution that has exponential decay of correlations.
Lastly, by keeping track of genealogical information (i.e. parent-child relations), we
examine the ancestral lineages of single particles drawn from an equilibrium population
by interpreting them as random walks evolving in the dynamic random environment
generated by the branching process. We exhibit a law of large numbers and a central
limit theorem for this case.
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Preface

This thesis is divided into two parts, each of which is dedicated to the study of a partic-
ular model of spatially extended branching process evolving in a random environment.
These are stochastic processes, describing the evolution of populations of “abstract”
objects that grow (and decay) by multiplying and replacing one another and for which
the evolution depends additionally on some interaction with an inhomogeneous envi-
ronment. Each part starts with an introduction aimed at giving a general overview
of results related to the respective process and setting the stage for the subsequent
chapters which are reproductions of research papers written during my doctoral pro-
gramme. Since the reproduced papers are largely self-contained, it is inevitable that
there is some overlap between the respective introductions and subsequent chapters.

In Part I we consider a one-dimensional branching Brownian motion evolving in a
spatially random (branching) environment, i.e. a branching Brownian motion for which
locally branching rates are given by an external environmental process. Chapter 2 is
a reprint of the following article:

[ČDO22] Jiří Černý, Alexander Drewitz, and Pascal Oswald, On the tightness of
the maximum of branching brownian motion in random environment, arXiv
preprint arXiv.2212.12390, 2022.

In Part II we introduce a branching annihilating random walk (BARW), which
evolves in discrete time-steps on Zd. This process does not interact with an external
environment, but rather locally interacts with itself (through annihilation) and in this
sense creates its own (random) environment with which it interacts. Chapters 4 and 5
are reproductions of the following two articles:

[BCČ+23] Matthias Birkner, Alice Callegaro, Jiří Černý, Nina Gantert, and Pascal
Oswald, Survival and complete convergence for a branching annihilating
random walk, arXiv preprint arXiv.2304.09127, 2023.

[Osw24] Pascal Oswald, Ancestral lineages for a branching annihilating random walk,
in preparation, 2024.
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Part I

Branching Brownian motion in
random environment
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1. Introduction

Branching processes form a class of stochastic processes with a long and rich his-
tory, dating back at least to the works of Bienyamé [Bie45] as well as Galton and
Watson [WG75], whose original interest in such processes came from trying to un-
derstand the extinction of aristocratic surnames over the course of time. An inter-
esting account of the early history of branching processes is found in [Ken75]. Since
then, (spatial) branching processes have been used in order to describe more varied
real-world phenomena, such as, e.g. the spread of diseases, genetic evolution, cos-
mic rays, particle cascades in nuclear and high-energy physics, to name a few, cf.
[McK14, BP19, EEY19, Saw76, Tch17, ALM23, MM18, HKV20].

Next to their far-reaching applications in the natural sciences, branching processes
are fascinating mathematical objects in their own right, which find widespread use
in many areas of probability theory, such as in the study of random maps [ADS22],
in various toy models of (mathematical) statistical physics, e.g. spin glasses [Bov17]
or random polymers [Com17], and many more. There is also a deep connection to
reaction-diffusion equations, [INW68a, McK75, Bra83, AHR22, ČD20]. In fact, we
build heavily upon this connection in this part of the thesis.

In this part of the thesis, we consider a particular variant of the by now classical one-
dimensional branching Brownian motion (BBM), cf. [Shi15, Bov17] for comprehensive
introductions, which we let evolve with spatially dependent inhomogeneous branching
rates. We focus on the particular case, where the environment is given by a stochastic
process and is in particular itself random. The resulting branching process is known
as the branching Brownian motion in random environment (BBMRE). Heuristically,
we can describe this process as follows. At time t = 0 a single particle is placed at the
origin, which, as time starts, evolves as a Brownian motion. To this particle there is
attached a random clock (which rings at a rate that depends on the environment the
particle has explored thus far). After the clock rings, the initial particle gets replaced
by k particles, according to some offspring distribution (pk)k∈N, each of which carries
its own random clock and evolves independently of one another according to the same
stochastic dynamics as its parent. We will mainly be interested in the behaviour of
the maximally displaced, i.e. right-most, particle in such a process.

After giving details on how to construct branching processes such as the BBMRE

2



Chapter 1

in Section 1.1, we give a brief overview of results relating to the right-most particle in
a homogeneous BBM in Section 1.2.1. This helps us put the differences that arise due
to the random environment into better perspective and sets the stage for Section 1.2.2,
where we consider the right-most particle in a BBMRE.

1.1 Construction of spatial branching processes

We start by giving a formal description of how to construct spatial branching processes
evolving in an external landscape. The setup we work with is somewhat abstract but
allows us to construct many different models of spatial branching processes both in
homogeneous and inhomogeneous environments.

Any minimal description of a spatial branching process should record the location
of all particles alive at all times. A natural way to record this information is by rep-
resenting each particle alive at a given time by a Dirac mass at the particle’s position.
This approach comes, however, with the drawback that the genealogical structure be-
tween particles is lost. Therefore, we choose a slightly different approach that lets us
retain genealogical information by encoding it directly into the construction.

The genealogical information is encoded into a locally finite rooted plane tree using
the Ulam–Harris–Neveu notation. I.e. we associate each node in a locally finite rooted
plane tree with a unique label from the set of finite sequences

V =
∞⋃
n=0

Nn,

with the convention that N0 = {∅}. The labelling is carried out as follows. The root
of the tree, which represents the initial ancestor, is labelled by ∅ (the sequence of
length 0). The k children of the initial particle are then labelled by length 1 sequences
(1), . . . , (k) according to their ordering from left to right. The rest of the tree is labelled
recursively, such that ν = (ν1, . . . , νn) ∈ V represents the νn-th child of the νn−1-th
child of the . . . of the ν2-nd child of the ν1-st child of the root, where all children are
ordered again from left to right. For ν = (ν1, . . . , νn), we write |ν| = n for the length
of the finite sequence, representing the generation of the node labelled by ν. Further,
we introduce the parent-map p : V \ {∅} → V which maps a node to it’s parent node
and is defined by p(ν1, . . . , νn) = (ν1, . . . , νn−1) for n ≥ 1.

A locally finite rooted plane tree can then be seen as a subset τ ⊆ V such that

• ∅ ∈ τ

• for all ν ∈ τ \ {∅} it holds that p(ν) ∈ τ

• if (ν1, . . . , νn) ∈ τ and (ν1, . . . , νn, k) ∈ τ for some k > 1, then (ν1, . . . , νn, j) ∈ τ
for all 1 ≤ j ≤ k.

3



Chapter 1

We write T for the collection of all locally finite rooted plane trees. The elements of T
represent the possible genealogies of a spatial branching process, where for any τ ∈ T,
the n-th generation of τ is given by all particles with labels in the set {ν ∈ τ : |ν| = n}.
Moreover, we say that ν ′ is an ancestor of ν and write ν ′ ≺ ν if there exists m ∈ N
such that ν ′ = p(m)(ν), i.e. iteratively applying the parental map m-times to ν gives
ν ′.

In the following, we are interested in the case where any individual can have a
random number of offspring, leading to random (genealogical) trees. To encode a ran-
dom offspring distribution (pk)k∈N into a tree, we introduce a collection of independent
N0-valued random variables (Oν)ν∈V on some probability space (Ω̂, F̂), such that Oν

represents the number of children of ν ∈ V and is distributed as (pk)k∈N0 . The tree
with offspring distribution (pk)k∈N0 is then the T-valued random variable

{ν = (ν1, . . . , νn) ∈ V : νj ≤ O(ν1,...,νj−1), 1 ≤ j ≤ n}. (1.1.1)

These trees are the well-known Bienyamé-Galton-Watson trees.
In order to add spatial structure, we enrich the trees τ ∈ T with additional in-

formation. To each ν ∈ τ , we associate two marks : a life-time σν ≥ 0 and a map
Zν : [0,∞) → R, which describes a particle’s trajectory throughout its life-time. For-
mally, such marked trees are triplets

(τ, σ, Z) = (τ, (σν)ν∈τ , (Zν)ν∈τ ). (1.1.2)

Note that the life-times σν also let us define corresponding birth-times bν and death-
times (resp. branching times) dν by summing up the life-times of ancestors, i.e. for
ν ∈ τ , we set bν :=

∑
ν′≺ν σν′ and dν := bν + σν . We set N(t) = {ν ∈ τ : bν ≤ t <

dν} ⊆ V to be the set of particles that are alive at time t ≥ 0. For each ν ∈ N(t) we
moreover inductively define the position of particle ν at time t to be

Xν(t) := Xν
t := Zν(t− bν) +Xp(ν)(dp(ν)). (1.1.3)

We extend this notation to include the ancestors of ν as well. For ν ′ ∈ N(s) for some
s < t and such that ν ′ ≺ ν we set Xν(s) := Xν′(s).

This construction lets us now define various spatial branching processes by consid-
ering different distributions on the space of all marked trees. For any specific choice
of (pk)k∈N, (σν)ν∈V and (Zν)ν∈V , we denote by X (t) := (Xν

t , ν ∈ N(t)) the resulting
spatial branching process and by Px its distribution when started in x ∈ R, i.e. such
that Px-a.s. it holds that X (0) = x.

We obtain the standard branching Brownian motion (BBM), with offspring dis-
tribution (pk)k∈N0 by choosing life-time marks σν to be i.i.d. exp(1) random variables
and trajectory marks Zν to be independent Brownian motions, where we assume with
out loss of generality that the probability space (Ω̂, F̂) is rich enough so that all these
random objects can be defined on it.
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Chapter 1

Let us extend this to BBM in an inhomogeneous branching environment ξ, where
ξ : R → R is given by a non-negative bounded continuous function. Again, we take
the trajectory marks Zν to be independent Brownian motions. The dependence on
the environment is encoded into the life-time marks. To this end, we consider yet
another collection of random variables (Sν)ν , defined on (Ω̂, F̂), which are i.i.d. expo-
nentially distributed with mean 1 and set the life-times for particles evolving in the
inhomogeneous environment ξ to be defined, using (1.1.3) recursively, by

σξν := inf

{
t > 0 :

∫ t

0

ξ
(
Zν(t− bν) +Xp(ν)(dp(ν))

)
ds ≥ Sν

}
= inf

{
t > 0 :

∫ t

0

ξ(Xν
s ) ds ≥ Sν

}
, ν ∈ V .

(1.1.4)

Note that for any t ≥ 0, the probability that the initial particle ∅ lives longer than t
is given by Px(σ

ξ
∅ > t) = Ex[e

−
∫ t
0 ξ(X

∅
s ) ds]. Similar formulas can be derived for all other

ν ∈ V . Choosing the life-time marks as in (1.1.4) and Brownian trajectory marks then
defines a BBM in the inhomogeneous environment ξ. We reflect the environmental
dependence of this process by writing Pξx and Eξx for its law and expectation when
started in x ∈ R.

The next step is to take ξ to be random, i.e. to be a stochastic process, which
is almost surely a non-negative bounded continuous function. To do this, we use the
canonical construction of ξ, i.e. we consider a second probability space (Ω,F ,P), where
Ω is the class of non-negative bounded continuous functions, and let ξ : Ω → R be
defined by ξ(x)(ω) := ω(x) for x ∈ R and ω ∈ Ω. Conditioned on such ξ, we would
like to proceed as for deterministic environments and define (X (t))t≥0 with “law Pξx”.
This calls, however, for some care, as a priori, it is not clear whether the resulting
(random) measures Pξx exist (i.e. are in fact probability measures). Fortunately, it was
shown in [Sav72], using the general framework of [INW68a, INW68b, INW69], that
a regular conditional probability of (X (t))t≥0 given ξ exists. We denote this regular
conditional expectation again by Pξx in order to keep in line with the (deterministic)
inhomogeneous setting. The corresponding conditional expectation is denoted by Eξx.

The random environment

Let us now comment on the random environments that we want to allow in more
detail and give two prototypical examples. Throughout Chapters 1 and 2 we make, in
particular, the following assumptions. Firstly, we assume that the environment ξ is a
stationary ergodic process. This is in effect so that there is “enough randomness” in the
environment for certain averaging effects to come into play. In fact, in Section 2.2, we
replace ergodicity with a mixing condition, which, however, together with stationary
implies ergodicity. Secondly, we also assume that the process is regular enough for

5



Chapter 1

certain PDEs related to the process to have classical solutions, cf. Section 1.2.2 below.
It suffices for our purposes to assume that ξ has P-a.s. locally Hölder continuous sample
paths, cf. (2.2.3) below for details.

Lastly, we assume that the environment is P-a.s. uniformly bounded away from 0
and infinity. We do this to avoid the non-existence of asymptotic speed. Indeed, it
follows from [LT98, Remark 5.4] that if the environment is not almost surely finite, then
the (asymptotic) speed with which the process spreads throughout space is unbounded.
For convenience, we introduce the two constants

0 < ei := ess inf ξ(0) < ess sup ξ(0) =: es <∞. (1.1.5)

Note that due to the stationarity of ξ, the constants ei and es uniformly bound ξ(x)
over all x ∈ R for P-a.e. realisation of ξ.

These conditions can also be found in the articles [ČDS23, DS22, HRS23] which
are related to this thesis.

Example ([DS22, Example 1.1]). It is informative to have examples of stochastic pro-
cesses ξ satisfying these conditions in mind.

(i) Let (Yx)x∈R be an Ornstein-Uhlenbeck process. It is well known that these are
the only stationary Markov processes that are also Gaussian processes (i.e. such
that all finite-dimensional distributions are multivariate Gaussians). For such Y
we consider the environment

ξ(x) = (ei ∨ Yx) ∧ es, x ∈ R. (1.1.6)

This environment inherits the stationarity from Y and also clearly satisfies (1.1.5).
Moreover, for any γ ∈ (0, 1/2), the local γ-Hölder continuity of (Yx)x∈R follows
from the fact that we can write Yx = e−xBe2x , for x ∈ R, where (Bt)t≥0 is a
Brownian motion. Establishing the ergodicity of (1.1.6) is a bit more involved,
and the details are omitted. The idea is to use that (Yx)x∈R can be characterised
as the solution of the SDE

dYx = −Yx dx+
√
2 dBx.

One can then use the fact that, when started from a single point, the Ornstein-
Uhlenbeck process converges to its stationary distribution sufficiently fast and
the Markov property to conclude.

(ii) Let χ : [0,∞) → [0, 1] be any Hölder-continuous non-increasing function with
χ(x) = 1 for x ≤ 1 and χ(x) = 0 for x ≥ 2. Further, let ω = (ωi)i∈Z be a
homogeneous Poisson point process on R with intensity one. We then set

ξ(x) = ei+ (es− ei) · sup{χ(|x− ωi|) : i ∈ Z}. (1.1.7)

6



Chapter 1

By construction, this environment is P-a.s. locally Hölder-continuous and ξ is
bounded from below by ei and from above by es. Moreover, for fixed x ∈ R,
it holds that ξ(x) = ei whenever |x − ωi| > 2 for all i ∈ Z and ξ(x) = es if
there exists i ∈ Z such that |x − ωi| ≤ 1. Stationary and ergodicity for this
environment follow by properties of the Poisson point process.

1.2 Extreme values in spatial branching processes

A main objective of this part of the thesis is to study the maximally displaced particle
in a one-dimensional BBMRE. We denote the maximal displacement at time t > 0 by

M(t) := sup
ν∈N(t)

Xν(t), (1.2.1)

where X (t) = (Xν(t))ν∈N(t) is a BBMRE, as constructed in Section 1.1. A direct
consequence of the construction is that for any t > 0 such that there are at least
two particles alive, the collection (Xν

t )ν∈N(t) comprises a collection of correlated ran-
dom variables for which the covariance structure is given by the genealogical distance
between the particles. More precisely, for any two particles ν1, ν2 ∈ N(t) one has

Eξx
[
Xν1(t)Xν2(t)

]
= inf{s ≥ 0 : Xν1(s) ̸= Xν2(s)}. (1.2.2)

The right-hand side of (1.2.2) corresponds to the span of time that the genealogy of
ν1 and ν2 spent together before the death of their most recent common ancestor.

Moreover, it follows immediately from (1.2.2) that both for homogeneous and non-
homogeneous environments, questions about the extrema of {Xν

t : ν ∈ N(t)} are not
covered by the classical theory of extreme value statistics and that these questions
need to be handled with care.

Let us now ask a few natural questions that arise about the maximal displacement.

(Q1) What is the first (and second) leading order of the maximally displaced particle
at time t≫ 1?

(Q2) How strong are the fluctuations of the maximally displaced particle?

(Q3) Is there a meaningful way to describe the limiting distribution of the maximal
particle after subtracting its leading orders?

In the rest of this chapter, we discuss these questions and see that they are connected
to questions on wave-front propagation for certain non-linear parabolic PDEs. We
start off by first considering the case of a homogeneous rate-one environment (i.e.
ξ ≡ 1). This does not only allow us to introduce many important objects but also
serves to highlight differences in the approaches needed in the presence of (random)
inhomogeneities.

7
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1.2.1 Maximal particle in homogeneous BBM

The study of homogeneous BBM has a long history that dates back at least to 1937,
when question (Q1) was addressed independently in [KPP37] and [Fis37] by analytic
means. The connection of these results to BBM was established in the 1960’s and
1970’s by [Sko64, INW68a, INW68b, INW69, McK75]. All of the questions (Q1)–(Q3)
have since been studied extensively in this case and can be answered in quite some
detail.

A useful duality for homogeneous BBM

The Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation is a semi-linear para-
bolic equation of the following form

∂tw =
1

2
∂2xw + F (w), t > 0, x ∈ R, (1.2.3)

where the non-linearity F : [0, 1] → [0, 1] is a continuously differentiable function that
satisfies the KPP-conditions

(KPP1) F (0) = F (1) = 0

(KPP2) F (w) > 0 for 0 < w < 1

(KPP3) F ′(w) < F ′(0) for 0 < w ≤ 1.

Equations with such non-linearities were considered by Kolmogorov, Petrovskii and
Piskunov [KPP37] in order to study the invasion of a stable state into an unstable state.
Independently, Fisher [Fis37], who was interested in the spread of genetic mutations
within biological populations living in a one-dimensional habitat, argued that in the
infinite density limit, the local proportion of the population carrying a mutation at
position x at time t solves a differential equation of type (1.2.3). With this initial
motivation in mind, the meaning of the KPP-conditions becomes clear. Condition
(KPP1) tells us that both w ≡ 1 and w ≡ 0 are solutions to the equation and (KPP2)–
(KPP3) tell us that the state w = 1 is stable and w = 0 is unstable.

Remark 1.2.1. Note that both in [Fis37] and [KPP37] the solutions to (1.2.3) represent
certain densities and in both contexts it is natural to assume that the stable state
is represented by w = 1. By replacing the non-linearity F in (1.2.3) with F̃ (w) :=
−F (1−w), one gets an analogous equation representing the case where w = 0 is stable
and invades the unstable state w = 1. Indeed, while F̃ satisfies (KPP1), conditions
(KPP2) and (KPP3) are clearly not met, instead, it holds that F̃ (w) < 0 for 0 < w < 1

and F̃ ′(w) < F̃ ′(1) for 0 < w ≤ 1. Moreover, it is also clear that 1 − w solves the
analogue of (1.2.3) with the non-linearity F̃ .

8



Chapter 1

Let us now describe how (1.2.3) is connected to BBM. To this end, let (Xν
t , ν ∈

N(t))t≥0 be a BBM with homogeneous environment ξ ≡ 1, as constructed in Sec-
tion 1.1, and whose initial particle is situated at the origin. Moreover, assume that
the offspring distribution (pk)k∈N0 of the BBM is super-critical, has finite variance
and p0 = 0 in order to exclude immediate extinction. For measurable functions
g : R → [0, 1], we then examine the following functionals,

v(t, x) := E0

[ ∏
ν∈N(t)

g(x+Xν
t )
]
, (t, x) ∈ [0,∞)× R. (1.2.4)

We can use the branching structure of (Xν
t )ν∈N(t) to obtain a renewal equation for v.

Conditioning on the lifetime σ∅ > 0 of the original ancestor, we arrive immediately at
the equation,

v(t, x) = E0
[
g
(
x+X∅

t

)]
P0(σ∅ > t)+

∞∑
k=1

pk

∫ t

0

E0
[
v
(
t−s, x+X∅

s

)k]
P0(σ∅ ∈ ds), (1.2.5)

where we recall that X∅
t is the position of the original particle at time t. By taking

derivatives and comparing terms in (1.2.5), one obtains that

w(t, x) := 1− v(t, x), (1.2.6)

solves (1.2.3) with initial condition w(0, x) = 1− g(x) and non-linearity

F (w) := (1− w)−
∞∑
k=1

pk(1− w)k, (1.2.7)

cf. for example [Bov17, Lemma 5.5]. One immediately checks that F in (1.2.7) satisfies
(KPP1)–(KPP3). By the same derivation or by Remark 1.2.1 it also follows v(t, x)
solves (1.2.3) with non-linearity −F (1−v) =∑∞

k=1 pkv
k−v. For convenience, we write

f(x) := 1−g(x), so that we consider the F-KPP equation (1.2.3) with initial condition
f(x).

A particularly useful choice of function f in order to study the extremal particles in
a BBM are Heaviside-type indicator functions (i.e. indicator functions on half-lines).
Taking f(x) = 1(−∞,0](x) (i.e. g(x) = 1[0,∞)(x)) yields immediately by (1.2.4),(1.2.6)
and the reflection symmetry of Brownian motion that

w(t, x) = P0
(
min
ν∈N(t)

Xν
t ≤ −x

)
= P0

(
M(t) ≥ x

)
. (1.2.8)

Similarly, taking instead, f(x) = 1[0,∞)(x) (i.e. g(x) = 1(−∞,0](x)) gives

w(t, x) = P0
(
M(t) ≥ −x

)
= P0

(
min
ν∈N(t)

Xν
t ≤ x

)
. (1.2.9)
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The upshot of (1.2.8) and (1.2.9) is that switching the “orientation” of the Heaviside-like
initial conditions f , in the F-KPP equation (1.2.3), corresponds to switching between
the maximally or minimally displaced particle in the probabilistic representation of its
solutions. Note also that by Remark 1.2.1 the counter-probabilities of the right-hand
sides of (1.2.8) and (1.2.9) solve the F-KPP equation with non-linearity −F (1 − v)
and initial condition v(0, x) = g(x).

Travelling wave solutions to the F-KPP equation

An important consequence of the duality (1.2.8) is that we can use analytical tools and
the F-KPP equation with Heaviside-type initial conditions in order to study statistical
properties of the maximal (or equivalently minimal) displacement of BBM.

The first major result on the analytic side is due to Kolmogorov, Petrovskii and
Piskunov. In [KPP37] it is shown that for any solution w of (1.2.3) with Heaviside
initial conditions (as in (1.2.8) and (1.2.9)) there exists a map m : [0,∞) → [0,∞)
satisfying limt→∞m(t)/t =

√
2F ′(0) such that the solution of (1.2.3) re-centred at

m(t) converges uniformly on compact sets to some limiting shape, as t → ∞. More
precisely, there exists some limiting function g : R → [0, 1] such that

w(t, x±m(t)) → g(x), uniformly in x ∈ R, as t→ ∞, (1.2.10)

where the “±” takes into account the “orientation” of the initial condition, i.e. whether
we are in the situation of (1.2.8) or (1.2.9). In either case, we interpret g as the limiting
shape of the invasion front of the stable state into the unstable state. It has the same
“orientation” as the initial condition, is unique up to translations and is characterised
as the solution of the equation

1

2
g′′ ±

√
2F ′(0)g′ + F (g) = 0,

{
+, if limx→−∞ g(x) = 1, limx→+∞ g(x) = 0,

−, if limx→−∞ g(x) = 0, limx→+∞ g(x) = 0.

(1.2.11)
Solutions of (1.2.11) are called travelling wave solutions of the F-KPP equation, with
speed

√
2F ′(0), since the function g(x ∓

√
2F ′(0)t) solves (1.2.3), as is verified by

direct calculation.
It is natural to ask whether

√
2F ′(0) is the only possible speed for travelling waves.

To this end, in analogy to (1.2.11), we let λ > 0 and consider solutions gλ of

1

2
g′′λ ± λg′λ + F (gλ) = 0. (1.2.12)

Direct computation yields that gλ(x∓ λt) solves (1.2.3) for any λ > 0, but a priori it
is not clear whether the shape of gλ is wave-like for all λ > 0. In fact, gλ only has a
wave-shape for λ ≥

√
2F ′(0). Indeed, consider the phase variables q := gλ and p := q′.

10
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With these, solutions of (1.2.12) can be represented in the phase plane by the system
of ODEs

q′ = p,

p′ = −2F (q)∓ 2λp.
(1.2.13)

The system (1.2.13) has two fixed points, one at (0, 0) and another at (1, 0). One
of these fixed points is a saddle point, while the other is a stable node. Which is
which depends on the sign in (1.2.13), i.e. on the “orientation” of the initial condition
of the F-KPP equation. To discover the behaviour of (q, p) near the stable node, we
compute the eigenvalues for the fixed points. These are given by ∓λ +

√
λ2 − 2F ′(0)

and ∓λ −
√
λ2 − 2F ′(0), which are imaginary for λ ∈ (0,

√
2F ′(0)) and real for λ ≥√

2F ′(0). In the first case, the solution spirals around the stable fixed point, but not
in the latter. Consequently, the functions gλ(x∓λt) are only travelling wave solutions
of (1.2.3) for λ ≥

√
2F ′(0).

Remark 1.2.2. (i) If instead of ξ ≡ 1 we set ξ ≡ b > 0, i.e. took a BBM with
an arbitrary finite constant branching rate, we would have to replace F ′(0) with
bF ′(0) everywhere in the above discussion. This is elaborated on in Remark 2.3.2
of Chapter 2 below.

(ii) From the analytic perspective, it is natural to consider more general initial con-
ditions (other than Heaviside) and ask whether one still has convergence, as
in (1.2.10). This remained unanswered for quite some time after [KPP37], be-
ing partially solved in [Kam76, Kan60, Uch78] and fully worked out by Bram-
son in [Bra83, Theorem A] (literally only for binary BBM, but the generalisa-
tions carry over directly) where exact growth conditions of w(0, x) are given that
characterise, for any λ ≥

√
2F ′(0) the existence of a function mλ(t) such that

w(t, x+mλ(t)) → gλ(x) uniformly in x as t→ ∞ (including conditions for con-
vergence towards the critical wave). The upshot of Bramson’s characterisation
is that the heavier the tail of the initial condition, the faster the asymptotic
propagation speed of the corresponding travelling wave is.

(iii) The original arguments used in the proof of (1.2.10) in [KPP37] are purely analyt-
ical, but the convergence result was famously reproved by McKean in [McK75]
using the duality (1.2.8) and probabilistic arguments. This interplay between
analytic and probabilistic arguments foreshadows a general trend that has since
established itself in the study of front propagation as well as BBM.

A better understanding of the leading orders of the re-centering term m(t), for
Heaviside-type initial conditions, is also due to Bramson, who showed in [Bra78, Bra83]
that

m(t) =
√

2F ′(0)t∓ 3

2
√

2F ′(0)
log t+O(1), as t→ ∞. (1.2.14)

11



Chapter 1

Interestingly, Bramson’s analysis of m(t) is based largely on the application of prob-
abilistic arguments, using representations of solutions to (1.2.3) and solutions of its
linearisation (i.e. the equation where F (w) is replaced by F ′(0)w), near the unsta-
ble state, as averages of weighted Brownian paths. These representations are known
as Feynman-Kac representations and are also heavily featured in Chapter 2. Bram-
son’s result has since been refined and there exist more precise descriptions of the
re-centering term m(t), see e.g. [Gra19] for corrections up to the sixth order.

Remark 1.2.3. While the 3/2 in the logarithmic Bramson correction, (1.2.14), might
seem insignificant, it is conjectured to be universal for many fields with log-correlated
structure, such as the two-dimensional discrete Gaussian free field, the logarithm of the
characteristic polynomial of random unitary matrices, or the Riemann zeta function
in a random interval of length one on the critical line, e.g. [BK22, Zei16, CMN18,
ABB+19]. Moreover, the BBM and the 3/2 logarithmic correction correspond to the
critical case in the continuous random energy model (CREM), which is concerned with
the maximum of a collection of random variables with a correlation structure given
by a continuous function of the genealogical distance cf. also (1.2.2). In the setting
of CREM, the BBM divides a weak correlation regime (with logarithmic second order
correction with prefactor 1/2) from a strongly correlated regime (with O(t1/3) second
order corrections), see e.g. [BK04, Bov17, Har16, MZ16].

Maximally displaced particle in BBM

Let us now come back to the extreme values of BBM and the questions (Q1)–(Q3) we
asked at the beginning of this section. A number of results for the extremal particles
can be directly read off of the convergence result (1.2.10). We concentrate here only
on the behaviour of the maximally displaced particle M(t), corresponding to (1.2.8)
and initial condition f(x) = 1(−∞,0](x). Analogous results (with the occasional change
of sign) hold for the minimally displaced particle. Firstly, we note that the duality
(1.2.8) together with the convergence (1.2.10) directly imply

• For any ε ∈ (0, 1) the quantiles mε(t) := inf{x : P0(M(t) ≥ x) ≤ ε} can be used
as the re-centering term m(t)

• The re-centred maximally displaced particle M(t)−m(t) is tight for t ≥ 0 under
P0.

Combining these two items with Bramson’s description of the re-centering term, cf.
(1.2.14), then directly yields that, in P0-probability, the maximally displaced particle
M(t) has the expansion

M(t) =
√
2F ′(0)t− 3

2
√

2F ′(0)
log t+O(1), as t→ ∞. (1.2.15)

12



Chapter 1

The expansion (1.2.15) was shown to hold P0-a.s. in [HS09]. This in turn implies
a strong law of large numbers for M(t), with asymptotic speed

√
2F ′(0), answering

questions (Q1)–(Q2).
Question (Q3) is related to the wave-shape g. While Bramson [Bra78, Bra83]

analyses the behaviour of the limiting distribution function g, he was not able to give
an explicit description of the function in probabilistic terms. Such a description was
provided by Lalley and Selke in [LS87], who, based on ideas from [McK75], show that
the limiting shape g from (1.2.10) has a representation as

g(x) = 1− E0
[
exp

{
− cDe−

√
2F ′(0)x

}]
, (1.2.16)

where c > 0 is some constant and D > 0 is a random variable whose distribution
depends on details of the branching mechanism (it is the a.s. positive limit of the so-
called derivative martingale). We can interpret the representation (1.2.16) as meaning
that, due to the fluctuations of the initial few particles, M(t)−m(t) builds up a delay
of
√
2F ′(0) log(cD), such that after enough time has passed, M(t) fluctuates around

m(t) +
√
2F ′(0) log(cD) with Gumbel fluctuations.

Let us mention briefly that there have been other powerful techniques that have
been developed from a purely probabilistic point of view and used in order to study
BBM and its extremal particles without the aid of the F-KPP equation. The most
prominent of these are spine-techniques and many-to-few lemmas which reduce ques-
tions on the k-th moments of BBM to questions on k dependent Brownian motions, by
choosing k special particles (spines) in the branching process and using this “additional
structure” to construct and understand changes of measures on the branching system,
cf. [HH06, HR17, RS20] and references therein. These techniques do not make direct
use of the F-KPP equation, however, by virtue of the duality (1.2.6), the many-to-one
lemma corresponds to the Feynman-Kac representation of the solution to the F-KPP
equation.

Building both on probabilistic and analytic literature, questions a lot more refined
than (Q1)–(Q3) have been considered and answered for BBM.

(Q4) Does there exist a description of the extremal process, i.e. of all particles close
to the extremal particle?

(Q5) Can one get quantitative estimates on level sets?

We do not go into detail about these questions but only provide some references. A full
understanding of the statistics of the largest particles in terms of the extremal process
was derived independently from each other in [ABBS13] and [ABK11, ABK13], where
it was shown, by studying the genealogies of extremal particles, that the extremal point
process of BBM converges in distribution to a randomly shifted decorated Poisson point
process (SDPPP). See also [SZ15] for an overview. For results relating to (Q5), see
e.g. [CHL19, CHL21].

13



Chapter 1

Remark 1.2.4. We only consider the one-dimensional case, however, many of the above
results have higher-dimensional analogues. The front location for the d-dimensional
F-KPP equation was first considered in [AW78, Gär82]. The influence of the dimension
on the Bramson correction, cf. (1.2.14), is investigated in [Mal15b], where it is shown
that there is an additional dimension-dependent geometric term to the logarithmic
correction. Recently, in [KLZ23], the “tidal wave” picture of Lalley and Selke was
carried over to higher dimensions. Moreover, the full description of the extremal
process as a SDPPP is derived in [BKL+22]. See also [KZ24] for a recent result on the
shape of the front of multidimensional BBM.

1.2.2 Maximal particle of BBM in random environment

Let us return to the case that we are mainly interested in in this part of the thesis
and consider how the presence of an external (branching) environment influences the
behaviour of extremal particles.

There is a large literature on spatial branching processes and their extrema in
non-homogeneous environments, which focuses mostly on the cases of evolution in
a deterministic environment, e.g. [LS88, LS89, BBH+15, BN22], or a random time-
inhomogeneous environment, e.g. [FZ12a, FZ12b, MZ16, Mal15a, BH14, BH15, BN22].

Recall that we are interested in the case of spatially random branching rates, where
the environment is given by a random stationary ergodic process that is locally Hölder
continuous and bounded away from zero and infinity, cf. (1.1.6) and (1.1.7) for two
prototypical examples. The case of spatially random branching environments has re-
ceived less attention until fairly recently, cf. [CP07, ČD20, Kri21, Kri22, DS22, HRS23,
ČDS23].

A useful duality revisited

A natural approach to addressing the questions (Q1)–(Q3) for inhomogeneous envi-
ronments is to try to adapt the strategy that was successful for the homogeneous case.
To this end, we re-examine the duality relationship of (1.2.4) and (1.2.6). Using a
similar renewal description as in (1.2.5) we find that for suitable measurable functions
f : R → R the functionals

w(t, x) = 1− Eξx

[ ∏
ν∈N(t)

(
1− f(Xν

t )
)]
, (1.2.17)

solve the (randomised) F-KPP equation

∂tw(t, x) =
1

2
∂2xw(t, x) + ξ(x)F (w(t, x)), t > 0, x ∈ R,

w(0, x) = f(x), x ∈ R,
(F-KPP)
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where the non-linearity F : [0, 1] → [0, 1] is as in (1.2.7). We refer to [DS22, Propo-
sition 2.1] for a detailed derivation. For convenience, we always refer to the random
equation (F-KPP) simply as the F-KPP equation. As in Remark 1.2.1, it holds again
that v = 1 − w solves (F-KPP) with F (w) replaced by F̃ (v) = −F (1 − v). The P-
almost sure existence of continuous solutions (for t > 0) to (F-KPP) is guaranteed by
[Fre85, Theorem 7.4.1] for measurable, non-negative bounded initial conditions.

Due to the inhomogeneity in the environment, the expectations in (1.2.17) are
for BBMRE started at x. Since the trajectories Xν

t are not translationally invariant,
we can therefore not relate these expectations directly to expectations for a BBMRE
starting at the origin (unlike in the homogeneous case, cf. (1.2.4)). Consequently,
while we can again relate solutions to (F-KPP), with Heaviside-like initial conditions
f , to the distribution of the extremal particles, the location of the discontinuity in
f now plays the role of the argument in the distribution function. That is, taking
f(x) = 1[y,∞)(x) for some y ∈ R and denoting the resulting solution to (F-KPP) by
wy, (1.2.17) yields that

wy(t, x) = Pξx(M(t) ≥ y). (1.2.18)

Analogously, taking f(x) = 1(−∞,y](x) gives us a representation of the corresponding
solution of (F-KPP) as in terms of the distribution function of the minimally displaced
particle

w(t, x) = Pξx( min
ν∈N(t)

Xν
t ≥ y). (1.2.19)

Consequently, compared to the homogeneous setting, cf. (1.2.8) and (1.2.9), the situa-
tion in the inhomogeneous setting is more subtle, as the solutions to (F-KPP) are not
directly the distribution functions, but the argument in the F-KPP solution plays the
role of the position of the initial particle in the BBMRE. Nonetheless, the behaviour
of solutions to (F-KPP) still gives valuable information about statistical properties of
the maximally displaced particle M(t).

F-KPP front propagation in random environment

From an analytic perspective, there has been a lot of interest in heterogeneous reaction-
diffusion equations, such as the F-KPP equation (F-KPP). The main results concern
the existence of travelling wave solutions and spreading properties, i.e. conditions under
which one observes invasion of a steady state (w = 1) into an unsteady state (w = 0).

It turns out that in general, travelling waves do not exist for space-heterogeneous
equations, cf. [NRRZ12, Zla12]. This is even true for generalised notions of travelling
waves, as introduced in [Mat03, BH07, BH12]. Accordingly, the question of travelling
waves is often the wrong one in the space-inhomogeneous setting. Instead, one often
concentrates on identifying appropriate spreading properties, such as the existence of
an asymptotic spreading speed or obtaining refined information on the transition front,
i.e. the location where the solution drops from 1 to 0.
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A common way to specify fronts for solutions to (F-KPP) with initial condition
f(x) = 1[y,∞) is the following

mε(t) := inf
{
x ∈ R : wy(t, x) ≥ ε

}
, for ε ∈ (0, 1). (1.2.20)

In the following subsections, we review spreading properties for (F-KPP) in the random
environments of our setting. We consider leading order terms for the fronts mε(t) as
t→ ∞ as well as the width of the transition front.

Spreading speed of the F-KPP front

The work on front propagation for the one-dimensional F-KPP equation in stationary
ergodic environments was pioneered by Gärtner and Freidlin, cf. [GF79, Fre85], who
proved for P-a.e. realisation of the environment, the existence of an exact asymptotic
spreading speed v0 > 0. In particular, it follows from Theorem 7.6.1 of [Fre85] that
the solutions to (F-KPP) with initial condition f(x) = 1[y,∞), for any y ∈ R, satisfy

lim
t→∞

sup
x≤y−vt

wy(t, x) = 0 P-a.s. for any v > v0

lim
t→∞

inf
x≥y−vt

wy(t, x) = 1 P-a.s. for any v ∈ (0, v0).
(1.2.21)

Note that an immediate consequence of (1.2.21) is that the leading order of the F-KPP
front is given by v0, i.e. for any ε ∈ (0, 1), it holds P-a.s. that limt→∞mε(t)/t = v0.
A key insight of their work was that the speed of the front of (F-KPP), in a bounded
stationary ergodic environment, is determined by properties of its linearised equation
near the unstable state w = 0, which is known as the parabolic Anderson model (PAM)
and is given by

∂tu(t, x) =
1

2
∆u(t, x) + ξ(x)F ′(0)u(t, x), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.
(PAM)

Due to the prominent role of the linearised equation near the unstable point, one often
speaks of pulled fronts in this context, cf. [vS03].

Moreover, Gärtner and Freidlin, cf. [GF79, Fre85] show that the asymptotic spread-
ing speed v0 can be characterised in terms of a family of Lyapunov exponents associated
with (PAM). We can write this family as a single real-valued function, which we call
the Lyapunov exponent and which is defined by

λ(v) = lim
t→∞

1

t
lnu(x, vt), v ∈ R, (1.2.22)

where u is the solution to (PAM), with Heaviside-initial condition. It is shown in
[DS22, Proposition A.3, Corollary 3.10] that λ exists for P-a.a. environments and is
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a non-random, non-increasing, symmetric, concave function for which there exists a
critical value vc ≥ 0 such that λ is linear on [0, vc] and strictly concave on [vc,∞).
Moreover, (1.2.22) does not depend on the choice of initial condition of the solution
u to (PAM). Further, the only influence the environment has on (1.2.22) is through
λ(0) = es. The spreading speed v0 is given as the unique positive root of the Lyapunov
exponent λ.
Remark 1.2.5. The critical value vc ≥ 0 plays an important role in the study of the
maximal particle of BBMRE as well as in questions of front propagation in random
environments. It is linked to large deviation effects of certain (random) path measures,
which have been employed in e.g. [Fre85, ČD20, ČDS23, DS22, ČDO22] to obtain
detailed information on solutions to the F-KPP equation and the PAM. These path
measures are introduced in detail in Section 2.4 below.

There is another useful way of characterising the spreading speed, which is not based
on Lyapunov exponents related to (PAM) but has its origins in homogenisation the-
ory. Links between homogenisation theory and spreading properties in heterogeneous
equations were first discovered for periodic heterogeneities, cf. [Xin00] for a heuristic
summary. In fact, in [GF79, Fre85] Freidlin and Gärtner also consider the case of
periodic environments and show that in this case the spreading speed can be charac-
terised in terms of principle eigenvalues of some “effective” linear operator, often called
corrector in the homogenisation literature, cf. [Fre85, Section 7.3 and Remark 7.6.3 on
p.524]. In terms of adapting such an approach to random ergodic environments, one
immediate difficulty is that, in general, eigenvalues for the corrector (effective linear
operator) do not exist. The link between the homogenisation approach for F-KPP
type equations in ergodic random environments and spreading properties was clarified
by Berestycki, Hamel and Nadin [BHN08] and Berestycki and Nadin [BN12], see also
the recent and comprehensive monograph [BN22]. In particular, Section 5.1 of [BN22]
is dedicated to exploring this link in detail. The key observation in these references is
that in order to characterise the spreading speed, it suffices to consider approximate
correctors, i.e. to consider the generalised eigenvalue problem of the “effective” linear
operator on a specific class of admissible functions. More precisely, they consider the
linear operator

Lξpϕ :=
1

2
∆ϕ− p∂xϕ+

(p2
2

+ F ′(0)ξ
)
ϕ, (1.2.23)

on the very specific class of admissible test functions

A−∞ :=
{
ϕ ∈ C2(R) : ∂xϕ/ϕ ∈ L∞(R), ϕ > 0 in R, lim

|x|→∞

1

x
log ϕ(x) = 0

}
.

and define the generalised principle eigenvalues

λ1(Lξp) := sup
{
λ : ∃ϕ ∈ A−∞ s.t. Lξpϕ ≥ λϕ in R

}
λ1(Lξp) := inf

{
λ : ∃ϕ ∈ A−∞ s.t. Lξpϕ ≤ λϕ in R

}
,

(1.2.24)
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By Proposition 2.4 of [BN12] it follows that P-a.s. the two principle eigenvalues agree,
for bounded stationary ergodic environments, and that P-a.s. the spreading speed v0,
cf. (1.2.21), has the alternative characterisation

v0 = min
p>0

λ1(Lξ−p)
p

= min
p>0

λ1(Lξ−p)
p

. (1.2.25)

Remark 1.2.6. This approach to characterising the spreading speed in terms of gener-
alised principle eigenvalues works for more general random reaction-diffusion equations
than (F-KPP). Moreover, the particular form of the set A−∞ of test functions is crucial
for this ansatz to work. Different choices of test-functions might yield corresponding
generalised eigenvalues that disagree. We refer to [BN12, BN22] for more details and an
in-depth discussion. Note, moreover, that the operator in (1.2.23) is obtained through
Lξpϕ = e−pxLξPAM(epxϕ), for ϕ ∈ C2(R), where LξPAM := 1/2∆+F ′(0)ξ is the Anderson
operator. In this sense, we can interpret Lξp as a generalised Doob h-transform of
the Markov process with generator LξPAM, cf. [CT15] for details on generalised Doob
h-transforms.

Note that both the characterisation of the spreading speed v0 with the Lyapunov ex-
ponent and the spectral characterisation are based on considerations for the linearised
equation, i.e. (PAM). It is therefore reasonable to also investigate front properties
of (PAM). Similar to (1.2.29), we introduce the fronts of (PAM) by setting for any
M > 0

mM(t) := inf
{
x ∈ R : u(t, x) ≥M

}
. (1.2.26)

Similarly to the case of the F-KPP fronts, the work of Freidlin and Gärtner, cf. [GF79,
Fre85], implies that P-a.s. it holds that limt→∞mε(t)/t = v0, i.e. the first order of the
F-KPP and PAM front coincide.

Fluctuations of the F-KPP front

Let us now come to the issue of higher-order fluctuations of the F-KPP front. Un-
fortunately, sharp asymptotics of mε(t) are not known for non-trivial heterogeneous
environments. However, since the environments we consider are random, it is reason-
able to consider the average effect the environment has on the front.

The first result in this direction is by Nolen, who in [Nol11], examines the F-KPP
equation in a bounded, stationary ergodic environment with non-linearity F (v) =
v(1−v), corresponding to (1.2.7) with binary branching. By analytic means, he shows
that the position of the front satisfies a central limit theorem. In order to achieve
this result, he requires very specific initial conditions w0(x, ξ), which depend on the
randomness of the environment. Moreover, he requires limx→−∞w0(x, ξ) = 1 (note the
orientation) as well as

c(ξ)Z(x, ξ, γ) ≤ w0(x, ξ) ≤ C(ξ)Z(x, ξ, γ), for x > 0,
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where Z = Z(x, ξ, γ) is a non-negative solution of the ordinary differential equation
1
2
∆Z + (γ − ξ)Z = 0 such that Z(0, ξ, γ) = 1, and which decays to 0 as x → ∞.

(This ordinary differential equation should be compared with (2.4.10) in Chapter 2
below.) Due to technical reasons, Nolen makes certain assumptions on the size of γ,
which translate to w0(x, ξ) decaying to 0 with a slow exponential rate as x→ ∞. This
decay is “slow enough” to make his fronts supercritical, i.e. their velocity v(γ) satisfies
v(γ) > v0.

Fluctuations in fronts with critical velocity v0 were addressed almost a decade later
by Černý and Drewitz in [ČD20] for a discrete-space version of (F-KPP) on Z (and its
linearisation), with positive bounded i.i.d. random environments ξ : Z → (0,∞) and
initial conditions u0 : Z → N0 satisfying

C1−N0 ≥ u0 ≥ 1{0}, for some C ∈ [1,∞).

By interpreting the discrete-space analogue of (1.2.22) (for which one has an analo-
gous unique positive root v0 and critical velocity vc) as a law of large numbers, they
inquire first about the fluctuations of the logarithm of solutions to the linear equa-
tion, i.e. log u(t, ⌊vt⌋), for which they attain a functional central limit theorem, cf.
[ČD20, Theorem 2.8]. This functional central limit theorem is then used to deduce
another functional central limit theorem, for the front m(t) of the linearised equation,
defined analogously to (1.2.26), under the additional technical condition that v0 > vc,
cf. [ČD20, Theorem 2.6]. Using a duality analogous to (1.2.18), between the discrete
F-KPP equation and the (continuous-time) branching random walk in random envi-
ronment (BRWRE) it is shown moreover in [ČD20, Theorem 2.9] that, again under
the technical assumption v0 > vc, the front of the discrete F-KPP equation satisfies a
non-functional central limit theorem.

Remark 1.2.7. The BRWRE can be constructed, as in Section 1.1, by taking the
trajectory marks (Zν)ν∈V to be continuous-time random walks and life-times (σν)ν∈V
as in (1.1.4).

These results from [ČD20] on the fluctuations of the fronts to the PAM and F-KPP
equation were later carried over to the continuous setting in [DS22], and extended to a
more general class of initial conditions, satisfying tail-conditions which guarantee crit-
icality of the front, cf. [DS22, (KPP-INI), p.881] for details. These results complement
the result of Nolen [Nol11].

In particular, Theorem 1.4 of [DS22] gives a functional central limit theorem for
the PAM front mε(t). Moreover, Drewitz and Schmitz are interested in how far the
F-KPP front mε(t) lags behind its linearised counterpart mε(t). In Theorem 1.5 of
[DS22] they show that, under v0 > vc, there exists a constant C ∈ (0,∞) and a P-a.s.
finite random variable T such that for all t ≥ T it holds that

mε(t)−mε(t) ≤ C log t. (1.2.27)
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In particular, this lets one deduce a functional central limit theorem for the front of
the F-KPP equation from the corresponding functional central limit theorem for the
front of the PAM, cf. Theorem 1.4 and Corollary 1.6 of [DS22]. In particular, this
means that there exists σ > 0 such that

[0,∞) ∋ t 7→ mε(nt)− v0nt

σ
√
n

, for n ∈ N, (1.2.28)

converges, as n→ ∞, in P-distribution to a standard Brownian motion.
Note that (1.2.28) implies that in the random setting, the front of the F-KPP

equation P-a.s. does not have logarithmic (Bramson-)corrections (1.2.14), unlike its
homogeneous counterpart.

Shape of the F-KPP front

The last aspect of non-homogeneous F-KPP fronts we want to discuss is their shape.
With the convergence of their homogeneous counterparts, cf. (1.2.10), in mind and
the existence of an exact spreading speed for the fronts mε(t), cf. (1.2.21), it seems
intuitive to expect the width of the front to fluctuate around some fixed value. It turns
out, however, that this intuition is wrong. In fact, it is shown in [ČDS23, Theorem 2.3]
that, for environments as in (1.1.7) that have the additional constraint that es/ei > 2,
it holds that

lim sup
t→∞

diam
(
{x ∈ R : wy(t, x) ∈ [ε, 1− ε]}

)
= ∞. (1.2.29)

Moreover, this is purely an effect of the non-linear equation. Despite the logarithmic
backlog, cf. (1.2.27), the corresponding transition fronts for (PAM), stay uniformly
bounded in time. By this, we mean that for any 0 < ε < M solutions u of (PAM) (say
with Heaviside initial condition) satisfy for P-a.e. environment ξ

lim sup
t→∞

diam
(
{x ∈ R : u(t, x) ∈ [ε,M ]}

)
<∞. (1.2.30)

This is shown in [ČDS23, Theorem 2.2], under the technical assumption v0 > vc. (Note
that (1.2.29) does not require v0 > vc.) This striking difference between the width of
the linear and non-linear front, is not present in the homogeneous setting, where the
widths of both fronts are always uniformly bounded for the F-KPP equation, due to
the convergence towards a travelling wave, cf. (1.2.10).

Note, moreover, that the question of the diameter of F-KPP transition fronts and
when to expect them to be (un-)bounded has also been raised and investigated in the
analytic literature, see e.g. [NR09, Zla12, HN22, BN22] and references therein.
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Maximally displaced particle in BBMRE

Coming back to questions (Q1)–(Q3), now for the BBMRE, we need to be more cau-
tious when trying to read off results for the extremal particles from the behaviour of
(F-KPP) as compared to in the homogeneous setting. On the one hand, this is because
the duality (1.2.18) is more subtle. On the other hand, we can not expect to obtain
sharp second order leading terms of M(t) for any fixed realisation of the environment,
i.e. under the measure Pξx. Rather, we focus again on the averaged effect the environ-
ment has on the asymptotic behaviour of M(t), i.e. leading to statements under P×Pξx.
Typically, the case of a fixed environment is referred to as the quenched case and the
case of averaging over the environment as the annealed case.

Note that many of the results we discussed on the F-KPP (and PAM) fronts require
the technical condition v0 > vc. Similarly, this condition plays an important role in
results about M(t). In fact, all the results we refer to in this section rely on this
technical condition and we therefore assume it to be fulfilled for the rest of this section.

A first result on the behaviour of the maximally displaced particle M(t) of BBMRE
can already be drawn from the existence of an exact spreading speed v0 for the solutions
of the F-KPP equation with initial condition f(x) = 1[0,∞)(x), cf. (1.2.21). Indeed, a
quenched weak law of large numbers can be deduced for M(t) by combining (1.2.21)
with the fact that, due to the stationarity of ξ,

P
ξ
0

(
M(t) ≥ x

) (d)
= P

ξ
−x
(
M(t) ≥ 0

)
, under P, for (t, x) ∈ [0,∞)× R. (1.2.31)

Thus, for P-a.a. environments ξ, it holds that

M(t)

t

P
ξ
0−→ v0. (1.2.32)

This result was strengthened in [HRS23] to a quenched strong law of large numbers
for P-a.a. realisations of the environment. It is interesting to note that their method
of proof is reminiscent of a classical (and purely probabilistic) proof of the strong law
of large numbers for the maximal particle in a homogeneous BBM via convergence
properties of an additive martingale, cf. e.g. [Ber14, Theorem 58]. More precisely,
Hou, Ren and Song introduce

W ξ
t (p) := e−λ1(L−p)t

∑
ν∈N(t)

e−pX
ν
t ϕp(X

ν(t)), t ≥ 0, (1.2.33)

where ϕp is the eigenfunction of the operator Lξ−p, cf. (1.2.23), associated to the gen-
eralised principle eigenvalue λ1(Lξ−p), cf. (1.2.24), and (Xν

t )ν∈N(t) is a BBMRE started
from x. By [HRS23, Lemma 1.3] this quantity is P-a.s. a positive martingale un-
der the quenched measure Pξx. By studying the quenched limit of W ξ

t (p) as t → ∞,
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it is shown in [HRS23, Corollary 1.5] that for any offspring law (pk)k∈N satisfying∑∞
k=1(k log k)pk <∞ it holds for P-a.e. realisation of the environment that

M(t)

t
→ v0, Pξx-a.s. as t→ ∞.

In terms of the questions (Q1)–(Q3), asked in Section 1.2, this gives a partial answer
to (Q1) by giving the first leading order of the maximal particle.

Let us now turn to higher-order corrections to the asymptotics of M(t). As men-
tioned above, we shift the focus here to annealed behaviour and consider the averaged
behaviour of M(t) over bounded stationary ergodic environments.

In order to answer what behaviour can be expected, we note that as a direct
consequence of (1.2.31), the median med(t) := sup{x ∈ R : Pξ0(M(t) ≥ x) ≥ 1/2} has
the same distribution, under P, as the front m1/2(t) of the F-KPP equation, with initial
condition f(x) = 1[0,∞)(x). It is moreover reasonable to expect that the maximal
displacement M(t) stays comparable to its median med(t). Thus, by (1.2.28), we
expect M(t) to satisfy an annealed invariance principle.

This strategy was pursued for the maximal displacement M̃(t) of a BRWRE in
[ČD20], where it is shown in Theorem 2.1 that M̃(t) satisfies an invariance principle
under P× P

ξ
0.

Remark 1.2.8. Since the (non-functional) central limit theorem for the F-KPP front
in [ČD20] is derived from an invariance principle for the median (and not the other
way round), the strategy of Černý and Drewitz is literally to first check that M̃(t) is
comparable to the median, cf. [ČD20, Proposition 2.3], and then to show that for P-a.a.
environments, the median lags at most logarithmically behind the front m(t) of the
(discrete) PAM, for which they prove an invariance principle, cf. [ČD20, Corollary 2.7
and Theorem 2.1].

It is reasonable to expect that one can adapt the argument from [ČD20], on the
comparability of M̃(t) to its median, to the setting of BBMRE, and then use the
invariance principle for the fronts mε(t) of the PAM, cf. [DS22, Theorem 1.4], in order
to obtain an invariance principle for M(t).

A different approach was chosen in [HRS23], where M(t) is directly compared to
the front of (PAM), but using an alternative description of the front, which is based on
the spectral approach around (1.2.23)–(1.2.24). More precisely, by combining that for
P-a.e. environment, M(t) stays within logarithmic distance of their characterisation
of the front, cf. [HRS23, Theorem 1.6], with an invariance principle for that front,
cf. [HRS23, Lemma 3.7], they then also derive an invariance principle for M(t), cf.
[HRS23, Theorem 1.7]. Consequently, there exists σ > 0 such that under P × Pξx, the
sequence of processes

[0,∞) ∋ t 7→ M(nt)− v0nt

σ
√
n

, for n ∈ N,
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converges weakly as n→ ∞ to a standard Brownian motion. In particular, this implies
that P-a.s.

M(t) ̸= v0t+O(log t), as t→ ∞ under Pξ0,

which, as the leading orders of the F-KPP front mε(t), stands in direct contrast to
(1.2.15) and the logarithmic second order (Bramson-)correction for the maximal dis-
placement in homogeneous BBM. Thus, the answer to (Q1) changes significantly in
the presence of a random environment.

With regards to (Q2) and quenched fluctuations of M(t) around its leading orders,
an interesting issue is raised by the unbounded transition fronts, cf. (1.2.29). We saw
that in the homogeneous setting, transition fronts are always bounded due to (1.2.10),
which, together with the duality (1.2.8), directly implies that the maximally displaced
particle re-centred at its median is tight.

In the random heterogeneous setting, however, it is not clear what the ramifications
of the unbounded F-KPP transition fronts, cf. (1.2.29), are for the quenched fluctu-
ations of M(t) around its median, if in fact there are any at all. In Chapter 2, we
investigate precisely this issue and show that, as in the homogeneous case, the fluctu-
ations around the median remain bounded. With regard to (Q3) this tightness result
in turn doesn’t imply (quenched) convergence in distribution, and in fact, it seems
unreasonable that the re-centred law of M(t) should converge in distribution. At the
moment, we lack, however, a rigorous argument that disproves convergence in law and
(Q3) remains open.

The following chapter is a reproduction of joint work with Jiří Černý and Alexander
Drewitz.
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2. On the tightness of the maximum of
branching Brownian motion in ran-
dom environment

Jiří Černý, Alexander Drewitz, Pascal Oswald

Abstract. We consider one-dimensional branching Brownian motion in
spatially random branching environment (BBMRE) and show that for al-
most every realisation of the environment, the distribution of the maximal
particle of the BBMRE re-centred around its median is tight. This result
is in stark contrast to the fact that the transition fronts in the solution to
the randomised F-KPP equation are, in general, not bounded uniformly in
time. In particular, this highlights that—when compared to the setting of
homogeneous branching—the introduction of a random environment leads
to a much more intricate behaviour.

2.1 Introduction

The behaviour of the position of the maximally—or, equivalently, minimally—displaced
particle in various variants of branching random walk (BRW) and branching Brown-
ian motion (BBM) has been the subject of intensive research over the last couple of
decades [Bra78, Bra83, BZ07, ABR09, HS09, Aïd13]. While initially most of the work
focused on branching systems with homogeneous branching rates, there has recently
been an increased activity in the investigation of branching random walks with non-
homogeneous branching rates that depend on either time or space mostly in special
deterministic ways, see [LS88, LS89, FZ12a, FZ12b, BBH+15, MZ16, Mal15a, BH14,
BH15, ČD20, Kri21, HRS23, Kri22].

In this article we continue the study of the maximally displaced particle in the
model of branching Brownian motion with spatially random branching environment
(BBMRE) which was initiated in [DS22], building on the previous work [ČD20] on
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a discrete-space analogue, the branching random walk in i.i.d. random environment
(BRWRE). The techniques developed in [ČD20, DS22] also lent themselves to obtain
refined information on the front of the solution of the randomised Fisher-Kolmogorov-
Petrovskii-Piskunov (F-KPP) equation [ČDS23]. Subsequently, the techniques and
results of [ČD20] have been extended to the continuum space setting of BBMRE in
[HRS23].

We complement the above body of research by addressing a seemingly simple, but
subtle problem that arises naturally, and which has also been formulated as an open
question in [ČD20]. More precisely, we show that the distributions of the position of
the maximally displaced particle of the BBMRE, when re-centred around its median,
form a tight family of distributions as time evolves. While establishing tightness might
a priori not look like an overly intricate problem, we take the opportunity to emphasise
that such a preconception is erroneous, see also [BZ07, BZ09]. Our result is particularly
interesting as it sharply contrasts the result established in [ČDS23], where it is shown
that the transition fronts of the solution to the randomised F-KPP equation are, in
general, unbounded in time. In the homogeneous setting, such a dichotomy cannot be
observed since, a fortiori, there is a duality between these two objects in that tightness
of the re-centred maximum of BBM is equivalent to the uniform boundedness in time
of the transition fronts of the solution to the F-KPP equation.

2.1.1 Homogeneous BBM and F-KPP equation

To explain this duality more in detail, we start with recalling the model in the homo-
geneous situation, which will also serve as a point of reference throughout the article.
For a (binary) branching Brownian motion with homogeneous branching rate equal
to one, started from a single particle located at the origin at time 0, we denote its
maximal displacement at time t ≥ 0 by M(t), and write

w(t, x) = P (M(t) ≥ x), (2.1.1)

for the probability that this displacement exceeds x ∈ R. Then, the function w(t, x)
solves a non-linear PDE, known as the Fisher-Kolmogorov-Petrovskii-Piskunov (F-
KPP) equation,

∂tw(t, x) =
1

2
∂2xw(t, x) + w(t, x)(1− w(t, x)), t > 0, x ∈ R, (2.1.2)

with the initial datum w(0, ·) = 1(−∞,0] of Heaviside type, see [INW68a, McK75].
Moreover, it is well known that as t→ ∞, the solution to (2.1.2) approaches a travelling
wave g in the following sense: for an appropriate function m : [0,∞) → [0,∞) one has
that

w(t,m(t) + ·) → g uniformly as t→ ∞ (2.1.3)
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for a decreasing function g satisfying limx→∞ g(x) = 0 and limx→−∞ g(x) = 1. A
critical ingredient in the proof of this convergence is that, again for m(t) being chosen
appropriately, one has

w(t, x+m(t)) is decreasing in t for x < 0, and
w(t, x+m(t)) is increasing in t for x > 0.

(2.1.4)

Property (2.1.3) immediately yields for every ε > 0 the existence of some rε ∈ (0,∞)
such that

w(t,m(t) + rε)− w(t,m(t)− rε) > 1− ε for all t ≥ 0. (2.1.5)

Put differently, the family (M(t)−m(t))t≥0 is tight. Another, essentially trivial, con-
sequence of (2.1.3) is the uniform boundedness of the width of the transition front of
the solution to (2.1.2); that is, that for every ε ∈ (0, 1/2),

lim sup
t→∞

diam
(
{x ∈ R : w(t, x) ∈ [ε, 1− ε]}

)
<∞. (2.1.6)

In this context, it is worth pointing out that the above line of reasoning implicitly
uses the reflection symmetry of Brownian motion and the homogeneity of the branching
environment. As a consequence, this proof technique breaks down in the presence of
an inhomogeneous environment, and the relationship between the solutions of the F-
KPP equation and the maximum of BBMRE becomes more intricate than that given
in (2.1.1) and (2.1.2), cf. Section 2.3.1.

2.1.2 Randomised F-KPP equation

In the inhomogeneous setting of a random potential, as considered in the current
paper, the respective randomised F-KPP equation has been investigated in [ČDS23].
In that source it has been established that for a canonical choice of random potentials
ξ, the transition front of the solution to the inhomogeneous F-KPP equation (which
is discussed in more detail in Section 2.3.1)

∂tw
ξ(t, x) =

1

2
∂2xw

ξ(t, x) + ξ(x)wξ(t, x)(1− wξ(t, x)), t > 0, x ∈ R, (2.1.7)

with the initial condition wξ(0, ·) = 1(−∞,0] does not need to be uniformly bounded
in time, in the sense that the width of their transition fronts can be unbounded.
More precisely, in contrast to (2.1.6), it follows from [ČDS23, Theorem 2.3] that there
are random potentials ξ within the class of inhomogeneities considered in the current
paper, such that P-a.s., for all ε ∈ (0, 1/2),

lim sup
t→∞

diam
(
{x ∈ R : wξ(t, x) ∈ [ε, 1− ε]}

)
= +∞. (2.1.8)
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It might hence be surprising and is non-trivial to prove that for BBMRE in the
random potential ξ we obtain tightness for the re-centred family of maxima, and a
novel approach is required in order to address this situation adequately.

It is worthwhile to note that the PDE results of [ČDS23] have been obtained by
taking advantage of almost exclusively probabilistic techniques. In the current article,
however, the probabilistic main result will be proven via a symbiosis of analytic and
probabilistic techniques.

2.2 Definition of the model and the main result

We work with a model of branching Brownian motion in random branching environ-
ment (BBMRE) introduced in [ČDS23, DS22] as a continuous space version of the
branching random walk in random environment model studied in [ČD20]. The random
environment is given by a stochastic process ξ = (ξ(x))x∈R defined on some probability
space (Ω,F ,P) which fulfils the following assumptions.

Assumption 1. • ξ is stationary, that is, for every h ∈ R one has

(ξ(x))x∈R
(d)
= (ξ(x+ h))x∈R. (2.2.1)

• ξ fulfils a ψ-mixing condition: There exists a continuous non-increasing function
ψ : [0,∞) → [0,∞) satisfying

∑∞
k=1 ψ(k) < ∞ such that (using the notation

FA = σ(ξ(x) : x ∈ A) for A ⊂ R) for all Y ∈ L1(Ω,F(−∞,j],P), and all Z ∈
L1(Ω,F[k,∞),P) we have∣∣E[Y − E[Y ] | F[k,∞)

]∣∣ ≤ E[|Y |]ψ(k − j),∣∣E[Z − E[Z] | F(−∞,j]

]∣∣ ≤ E[|Z|]ψ(k − j).
(2.2.2)

(Note that this conditions implies the ergodicity of ξ with respect to the usual
shift operator.)

• The sample paths of ξ are P-a.s. locally Hölder continuous, that is, for almost
every ξ there exists α = α(ξ) ∈ (0, 1) and for every compact K ⊆ R a constant
C = C(K, ξ) > 0 such that

|ξ(x)− ξ(y)| ≤ C|x− y|α, for all x, y ∈ K. (2.2.3)

• ξ is uniformly elliptic in the sense that the essenital infimum and supremum of
the random variable ξ(0) (and thus also of ξ(x), x ∈ R, by (2.2.1)) satisfy

0 < ei := ess inf ξ(0) < ess sup ξ(0) =: es <∞. (2.2.4)
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In the current article we do not explicitly make use of the mixing condition. How-
ever, in particular in Section 2.5, we will employ some of the results developed in
[ČDS23, DS22] which depend on this mixing assumption.

The dynamics of BBMRE started at a position x ∈ R is as follows. Given a
realisation of the environment ξ, we place one particle at x at time t = 0. As time
evolves, the particle follows the trajectory of a standard Brownian motion (Xt)t≥0.
Additionally and independently of everything else, while at position y, the particle
is killed with rate ξ(y). Immediately after its death, the particle is replaced by k
independent copies at the site of death, according to some fixed offspring distribution
(pk)k≥1. All k descendants evolve independently of each other according to the same
stochastic diffusion-branching dynamics.

We denote by Pξx the quenched law of a BBMRE, started at x and write Eξx for the
corresponding expectation. Moreover, we denote by N(t) the set of particles alive at
time t. For any particle ν ∈ N(t) we denote by (Xν

s )s∈[0,t] the spatial trajectory of the
genealogy of ancestral particles of ν (unique at any given time) up to time t. Our main
focus of interest lies in the maximally displaced particle of the BBMRE at time t,

M(t) := sup{Xν
t : ν ∈ N(t)}.

Throughout this article we deal with supercritical branching such that the offspring
distribution has second moments and particles always have at least one offspring.
Assumption 2. The offspring distribution (pk)k≥1 satisfies

∞∑
k=1

kpk =: µ > 1, and
∞∑
k=1

k2pk =: µ2 <∞. (2.2.5)

Under these assumptions the maximally displaced particle M(t) satisfies a law or
large numbers for some non-random asymptotic velocity v0 ∈ (0,∞); that is, for P-
a.e. ξ one has

lim
t→∞

M(t)

t
= v0, P

ξ
0-a.s. (2.2.6)

see [HRS23, Corollary 1.5]. (Note also that convergence in probability follows from
classical results of Freidlin, [Fre85, Theorem 7.6.1].) The asymptotic velocity can
be characterised as the unique positive root of the Lyapunov exponent λ, which is a
deterministic function λ : R → R that admits the representation

λ(v) = lim
t→∞

1

t
ln Eξ0

[∣∣{ν ∈ N(t) : Xν
t ≥ vt}

∣∣], P-a.s. (2.2.7)

Under Assumptions 1 and 2, the function λ is non-increasing on [0,∞), concave, and
there exists a critical value vc ≥ 0 such that λ is linear on [0, vc] and strictly concave
on [vc,∞), see e.g. [DS22, Corollary 3.10]. As in [ČD20, ČDS23, DS22] we make the
following technical assumption.
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Assumption 3. We only consider BBMREs whose asymptotic speed satisfies

v0 > vc. (2.2.8)

Essentially, this condition allows for the introduction of a tilted probability measure
in the ballistic phase, under which a Brownian particle (Xt)t≥0 moves on average with
speed v0 up to time t, cf. Section 2.4. By the same argument as in [ČD20, Lemma A.4]
one can show that (2.2.8) is satisfied by a rich class of environments. We refer also
to [DS22, Section 4.4] for a more in-depth discussion on the condition (2.2.8) and
in particular to [DS22, Proposition 4.10] where environments are constructed which
satisfy Assumption 1, but for which (2.2.8) fails. Due to the length of the construction
we do not replicate it here.

Finally, we also define for ε ∈ (0, 1) the quenched quantiles for the distribution of
M(t) where the process is started at the origin,

mξ
ε(t) := inf

{
y ∈ R : Pξ0(M(t) ≤ y) ≥ ε

}
. (2.2.9)

For notational convenience, we omit the subscript when ε = 1/2 and write mξ(t) for
the median of the distribution.

With the above notation at our disposal, we can state our main result.

Theorem 2.2.1. Under Assumptions 1–3, for almost every realisation of the environ-
ment ξ, the family

(
M(t)−mξ(t)

)
t≥0

is tight under P
ξ
0.

Remark 2.2.2. Note that Theorem 2.2.1 also remains valid if for any ε ∈ (0, 1), the
quantity mξ(t) is replaced by mξ

ε(t).
This result should be contrasted with the behaviour (2.1.8) of transition fronts

of solutions to the inhomogeneous F-KPP equation (2.1.7) discussed in the introduc-
tion. More precisely, in [ČDS23, Theorem 2.3, Theorem 2.4] environments ξ satisfying
Assumptions 1–3 of the present paper were constructed for which the width of the
transition front grows logarithmically in time, along a sub-sequence. That is, for small
enough ε > 0, there exist times and positions (tn)n, (xn)n ∈ Θ(n), and a function
φ ∈ Θ(lnn) such that

wξ(tn, xn) ≥ wξ(tn, xn + φ(n)) + ε. (2.2.10)

(Note, that this not only implies (2.1.8), but also the spatial non-monotonicity of
the functions wξ(t, ·).) The existence of environments for which Theorem 2.2.1, and
(2.1.8) or (2.2.10) hold simultaneously seems unintuitive, as it sharply contrasts with
the homogeneous case. Indeed, in the latter, as indicated by (2.1.4) and (2.1.5), the
standard reasoning for deducing the tightness of BBM is by the uniform boundedness in
time of transition fronts for the corresponding homogeneous F-KPP solutions. We will
explain the reason for this apparent discrepancy later in the paper (see Section 2.2.1).

29



Chapter 2

Questions of tightness also arise naturally and have been addressed in many other
classes of models. In [BZ09], analytic tools have been developed in order to establish
tightness for a class of discrete time models whose distribution functions satisfy certain
recursive equations, analogous to the F-KPP equation in the case of BBM. These tools
are powerful and were applied and adapted to establish tightness for several models,
e.g. [ABR09, BDZ11, DRZ21, FZ12a, HS09, NZ21] to name a few. For BBM in a
periodic environment, [LTZ22] used an analytic result on the F-KPP front in periodic
environment [HNRR16] which directly implies tightness.

In the context of the discrete space model of [ČD20], sub-sequential tightness along
a deterministic sequence is shown for the quenched and annealed law of the maximally
displaced particle in [Kri21] using a Dekking-Host type argument. Our method relies
crucially on analytic properties of solutions to the F-KPP equation, and differs from
the approaches in the above mentioned articles.

The tightness result of Theorem 2.2.1 naturally suggests the question whether the
random variables M(t)−mξ(t) converge in distribution as t → ∞. Supported by the
numerical simulations presented in Figure 2.1, we conjecture that the answer to this
question is negative.
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Figure 2.1: Numerical simulations suggesting that the distributions of M(t) − mξ(t)
do not converge as t→ ∞. The red line shows the dependence of the “spread” of this
distribution, that is of mξ

0.99(t)−mξ
0.01(t), on the median mξ(t). The black line shows

the corresponding potential ξ(x) as function of x. The simulations were performed for
a discrete-space model, for realisations of ξ from two different distributions (left and
right panel). In both cases, note the similarity of the red and black line, in the sense
that at times t when the median mξ(t) reaches an area where ξ is large, the spread of
M(t) tends to be large as well.

Remark 2.2.3. As observed above, in [HRS23] the authors prove an annealed functional
central limit theorem for the position of the maximally displaced particle M(t) of
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BBMRE in the setting described here. In our notation, this means that for some
σ2 ∈ (0,∞), the sequence of processes

[0,∞) ∋ t 7→ M(nt)− v0nt√
σ2n

, n ∈ N,

under P× Pξx converges weakly in C([0,∞)) to standard Brownian motion.
Using McKean’s representation (see Proposition 2.3.1 below), reflecting the po-

tential around the origin by defining ξ̃(−y) := ξ(y) for all y ∈ R, as well as using
its stationarity, we obtain that for x ∈ R, the solution wξ̃(t, x) to (2.1.7) with initial
condition 1(−∞,0] has the same P-distribution as P

ξ
0(M(t) ≥ x). As a consequence,

the (functional) central limit theorem [DS22, Corollary 1.6] for the front of this so-
lution wξ̃(t, x) at level ε ∈ (0, 1) (note that ξ̃ still satisfies the conditions imposed
on ξ for [DS22, Corollary 1.6] to hold) entails a (non-functional) central limit theo-
rem for mξ

ε(t) as defined in (2.2.9) as well; that is, the sequence of random variables
(mξ(nt) − v0nt)/

√
σ2n, n ∈ N, converges weakly to a N (0, σ2)-distributed random

variable. In combination with Theorem 2.2.1, we recover a non-functional form of
the above central limit theorem for M(t) as well. That is, the sequence of random
variables (M(nt) − v0nt)/

√
σ2n, n ∈ N, converges weakly to a N (0, σ2)-distributed

random variable under P× Pξx.

2.2.1 Strategy of the proof

We now explain the main ideas behind the proof of Theorem 2.2.1, and on the way
also comment on the seeming discrepancy between this theorem and properties (2.1.8),
(2.2.10).

The first ingredient of the proof is the well-known duality between the distribution
of M(t) and the solutions to the randomised F-KPP equation (2.1.7). In the spatially
non-homogeneous case this duality states (see Section 2.3.1 below)

wy(t, x) = Pξx(M(t) ≥ y), (2.2.11)

where wy is the solution to (2.1.7) with the initial condition wy(0, ·) = 1[y,∞). Hence, in
order to prove tightness, we need to check that for every ε > 0 there is ∆ = ∆(ε) <∞
so that for all t > 0 and xt = xt(ε) ∈ R characterized via

ε = P
ξ
0(M(t) ≥ xt) = wxt(t, 0) (2.2.12)

it holds that
1− ε < P

ξ
0

(
M(t) ≥ xt −∆

)
= wxt−∆(t, 0). (2.2.13)

We note here in passing that this already provides an indication that the above
mentioned discrepancy is only apparent: While properties (2.1.8) and (2.2.10) are
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linked to the dependency of wy(t, x) on the spatial variable x, the tightness of M(t) is
linked to its dependency on the initial condition 1[y,∞).

To show that (2.2.13) holds true, we first exploit the fact that solutions to (2.1.7)
increase quickly to 1, once they move away from 0. In connection with (2.2.12) this
fact implies (cf. Corollary 2.3.6 below) that for some T = T (ε) < ∞, uniformly in ξ
and t large, we have

1− ε < wxt(t+ T, 0) =: wft(t, 0), (2.2.14)

where wft is the solution of (2.1.7) with the initial condition ft := wxt(T, ·). In view
of this, (2.2.13) follows, if we can show that for some ∆ sufficiently large, we have
uniformly in t large that

wxt−∆(t, 0) > wft(t, 0). (2.2.15)

Proving inequality (2.2.15) directly at the spatial coordinate x = 0 seems to be
difficult, as it requires comparing two solutions to (2.1.7) in the regime where they are
away from 0 and 1, and where various approximations to them, e.g. by linearisation,
are not precise enough. To work around this difficulty, we take advantage of the
Sturmian principle for solutions of parabolic PDEs, which we recall in Section 2.3.2.
As we will see in the proof of Theorem 2.2.1, this principle implies that (2.2.15) follows
if, for some v > 0, we can show a modified inequality

wxt−∆(t,−vt) > wft(t,−vt). (2.2.16)

The advantage of inequality (2.2.16) is that if v is sufficiently large, then both its sides
are very close to 0, and thus can be controlled using linearisation techniques or the
first order Feynman-Kac formulas. The proof of (2.2.16) is still rather technical and
is provided in the key Lemma 2.6.1 below.

Finally, we return to the discrepancy between the divergence of the width of the
transition front (2.1.8) and the tightness proved in Theorem 2.2.1. The proof of (2.1.8)
in [ČDS23] explores the fact that it is easy to construct potentials where, for n large,
in any interval [0, n] there is a subinterval of length Θ(log n) where the potential is
close to ei, closely followed by a subinterval of the same length where the potential
almost equals es. If es/ei > 2, then the existence of such subintervals forces a
creation of “bumps” in the solutions to the randomised F-KPP equation, as illustrated
in Figure 2.2. The creation of such bumps directly leads to (2.1.8). It turns out that
the existence of those subintervals does not make inequality (2.2.16) invalid, even,
e.g., if xt is located in a subinterval where the potential is close to es and xt − ∆
in a subinterval where ξ is almost ei. Via the duality (2.2.11), this is related to the
established intuition that the behaviour of the maximum of branching processes is
more easily influenced by randomness “occurring” close to their starting point.
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wξ(t, ·)

n

1

I1 I2

Figure 2.2: A bump in the solution to (2.1.7) which develops shortly after the front of
the solution (moving to the right) reaches the interval I1 where ξ is close to ei, and
which is followed by the interval I2 with ξ close to es, if es/ei > 2. Both intervals are
of length Θ(log n).

Organisation of the article

The rest of the paper is organised as follows. In Section 2.3 we first recall some
well-established facts, such as the duality (2.2.11), the Feynman-Kac formulas for
the solution of the randomised F-KPP equation and of its linearisation, as well as the
parabolic Anderson model. We then discuss a first application of the Sturmian principle
to our setting. Section 2.4 reviews tilted measures, which, on a technical level, will
play the role of a suitable “gauging-measure” under which we can compare the terms in
(2.2.16). In Section 2.5 we explain how to extend the arguments in [ČDS23, DS22] in
order obtain a spatial and temporal perturbation result for solutions of the parabolic
Anderson model. This perturbation result is then applied in Section 2.6 where we prove
the key technical lemma which is related to inequality (2.2.16). Finally, Section 2.7
contains the proof of the main theorem.

Notational conventions

We often use positive finite constants c1, c2, etc. in the proofs. This numbering is
consistent within every proof and is reset at its end. We use c, C, c′ etc. to denote
positive finite constants whose value may change during computations.

2.3 Preliminaries

This section recalls two important and well known probabilistic tools which will feature
heavily in the proof of our main theorem. Furthermore, we make precise the Sturmian
principle alluded to above.
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2.3.1 The randomised F-KPP equation and its linearisation

As already mentioned in the introduction, there is a fundamental link between branch-
ing Brownian motion and solutions to the homogeneous F-KPP equation. It is often
attributed to McKean [McK75], but can already be found in Skorohod [Sko64] and
Ikeda, Nagasawa and Watanabe [INW68a]. Such a connection can also be extended
to the setting of random branching rates, as we now describe. For this purpose, as-
sume we are given an offspring distribution (pk)k≥1 as in (2.2.5). We then consider the
random semilinear heat equation

∂tw(t, x) =
1

2
∂2xw(t, x) + ξ(x)F (w(t, x)), t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

where the non-linearity F : [0, 1] → [0, 1] is given by

F (w) = (1− w)−
∞∑
k=1

pk(1− w)k, w ∈ [0, 1]. (2.3.1)

Then the adaptation of McKean’s representation of solutions to (F-KPP) takes the
following form.

Proposition 2.3.1. For any function w0 : R → [0, 1] which is the pointwise limit of
an increasing sequence of continuous functions, and for any bounded, locally Hölder
continuous function ξ : R → (0,∞), there exists a solution to (F-KPP) which is
continuous on (0,∞)× R and which, for t ∈ [0,∞) and x ∈ R, can be represented as

w(t, x) = 1− Eξx

[ ∏
ν∈N(t)

(
1− w0(X

ν
t )
)]
. (2.3.2)

A proof of this proposition can be found e.g. in [DS22, Proposition 2.1]; the for-
mulation in that source is under slightly more restrictive conditions, but it transfers
verbatim to the assumptions we impose above.

A crucial consequence of Proposition 2.3.1 is that the solution wy of (F-KPP) with
Heaviside-like initial condition wy0 = 1[y,∞), for y ∈ R, is linked to the distribution
function of M(t) via the identity

wy(t, x) = Pξx(M(t) ≥ y). (2.3.3)

Remark 2.3.2. It is common practice in the F-KPP literature to normalise the non-
linearity F in such a way that its derivative at the origin is one. Using (2.2.5) it is easy
to check that in our case, F ′(0) = µ−1. In other words, the standard normalisation of
equation (F-KPP) corresponds to a branching processes for which the offspring distri-
bution has mean µ = 2, as is also assumed in [DS22]. In (2.2.5), we assume only that
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µ > 1 and do not a priori work under the usual F-KPP normalisation. Nevertheless,
given any such offspring distribution (pk)k∈N with mean µ ̸= 2 and a corresponding
BBMRE in environment ξ, one can always transform it into another BBMRE in a
rescaled environment, so that the transformed process is in the usual normalisation
and has the same distribution as the original process. Indeed, the transformation
defined by

ξ → (µ− 1)ξ, p1 →
µ+ p1 − 2

µ− 1
, and pk →

pk
µ− 1

for k ≥ 2,

yields a new offspring distribution with mean two. Moreover, rescaling the environment
guarantees that (F-KPP), and the law Pξx are invariant under the transformation. After
rescaling, it holds that F ′(0) = 1 and µ2 > 2; hence, in light of this reasoning, we will
from now on always assume that

µ = 2, F ′(0) = 1, and µ2 > 2. (2.3.4)

Observe also, that by (2.3.1) this implies that

F ′(w) ≤ 1, and F ′′(w) ≥ −µ2 + 2 for all w ∈ [0, 1]. (2.3.5)

Another PDE related to BBMRE, which we make use of later on, is the linearisation
of (F-KPP), known as the parabolic Anderson model (PAM),

∂tu(t, x) =
1

2
∂2xu(t, x) + ξ(x)u(t, x), t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R.
(PAM)

The PAM has been the subject of intense investigation in its own right, see e.g. [Kön16]
and reference therein for a comprehensive overview; our main interest, however, lies
in space and time perturbation results that have been developed for its solution in
[ČDS23, DS22]. These will be considered in more detail in Section 2.5.

An important strategy for probabilistically investigating the solutions to the equa-
tions (F-KPP) and (PAM) is via analysing their Feynman-Kac representations. In
what comes below we denote, for arbitrary x ∈ R, by Px the probability measure un-
der which the process denoted by (Xt)t≥0 is a standard Brownian motion started at
x. The corresponding expectation operator is denoted by Ex. We also make repeated
use of the abbreviation Ex[f ;A] for Ex[f1A].

Proposition 2.3.3. Under Assumptions 1 and 2, the unique non-negative solution u
of (PAM) is given by

u(t, x) = Ex

[
exp

{∫ t

0

ξ(Xr) dr
}
u0(Xt)

]
, t ≥ 0, x ∈ R, (2.3.6)
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and the unique non-negative solution w of (F-KPP) fulfils

w(t, x) = Ex

[
exp

{∫ t

0

ξ(Xr)F̃ (w(t− r,Xr)) dr
}
w0(Xt)

]
, t ≥ 0, x ∈ R, (2.3.7)

where F̃ (w) = F (w)/w for w ∈ (0, 1], which can be continuously extended to F̃ (0) =
limw→0+ F̃ (w) = supw∈(0,1] F̃ (w) = 1.

See e.g. [Bra83, (1.32), (1.33)] for references to the former. Note that the Feynman-
Kac representation (2.3.6) is explicit, while (2.3.7) is not (in the sense that the expres-
sions on both sides of the latter equation involve w).

Taking advantage of the above, a (direct) link between the PAM and BBMRE can
be derived by combining the Feynman-Kac representation (2.3.6) of the solution to
(PAM) with a many-to-one formula, see e.g. [DS22, Proposition 2.3], in order to arrive
at the representation

u(t, x) = Eξx

[ ∑
ν∈N(t)

u0(X
ν
t )
]

of solutions to (PAM).

2.3.2 Sturmian principle

In this section we present the analytic ingredient of our proof of Theorem 2.2.1. As
explained in the introduction (see around (2.2.15)), we are interested in differences of
the type W (·, ·) = wy1(·, ·)−wy2(·+T, ·) for some T > 0, and y2 > y1, where we recall
that for any y ∈ R, we denote by wy the solution of (F-KPP) with initial condition
w0 = 1[y,∞). It is immediate that the function W satisfies the linear parabolic equation

∂tW (t, x) =
1

2
∂2xW (t, x) +G(t, x)W (x, t), t > 0, x ∈ R,

W (0, x) = 1[y1,∞)(x)− wy2(T, x), x ∈ R,
(2.3.8)

where G is the bounded measurable function defined by (using the convention F ′(0) =
1, cf. Remark 2.3.2)

G(t, x) =

{
ξ(x) F (wy1 (t,x))−F (wy2 (t+T,x))

wy1 (t,x)−wy2 (t+T,x)
, if wy1(t, x) ̸= wy2(t+ T, x),

ξ(x), if wy1(t, x) = wy2(t+ T, x).
(2.3.9)

Let us state the following simple observation, which will be used at various stages
in the following: By Proposition 2.3.1 it follows that

0 < wy2(T, x) < 1 for all x ∈ R. (2.3.10)
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As a consequence, the initial condition of (2.3.8) has exactly one zero-crossing, and it
is located at y1.

In the analysis literature, it has been known for a long time that the cardinality
of the set of zero-crossings of solutions to linear parabolic equations is monotonically
non-increasing in time, with the earliest reference dating back to at least an article by
Charles Sturm in 1836, cf. [Stu36]. Nevertheless, despite this result having been known
for almost two centuries by now, it was not until the eighties of the last century that
Sturm’s ideas really revived in the theory of linear and non-linear parabolic equations,
see, e.g., [Ang88, Ang91, DGM14, EW99, Nad15] for a non-exhaustive list. In this
list, the ideas in [EW99] stand out, as they involve a simple and purely probabilistic
proof, by interpreting the linear parabolic partial differential equations as generators
of Markov processes and reducing the study of the zero-crossings to the study of
Markovian transition operators acting on signed measure spaces. A more complete
history and a detailed discussion of the Sturmian principle and its applications can be
found in [Gal04]. In this context, it is interesting to note that already in their seminal
article on the F-KPP equation, Kolmogorov, Petrovskii and Piskunov also make use
of a Sturmian principle for equations of the form (2.3.8), see [KPP37, Theorem 11],
which is proved using a parabolic maximum principle.

We include a version of such results which is formulated to fit our purpose; a more
general version of this result can be found in [Nad15]. Note that the assumptions in
particular fit the setting of a single zero-crossing in the initial datum.

Lemma 2.3.4 ([Nad15, Proposition 7.1]). For any t0 ∈ R, let G ∈ L∞((t0,∞) × R)
and assume W ∈ C((t0,∞)× R) ∩ L∞((t0,∞)× R) to be a weak solution of

∂tW (t, x) =
1

2
∂2xW (t, x) +G(t, x)W (x, t), t > t0, x ∈ R,

W (t0, x) = Wt0(x), x ∈ R,

where Wt0 ̸≡ 0 is piecewise continuous and bounded in R, such that for some zt0 ∈ R
one has

Wt0(x) ≤ 0, if x < zt0, and Wt0(x) ≥ 0, if x > zt0.

Then, for all t > t0 there exists a unique point z(t) ∈ [−∞,∞] such that

W (t, x) < 0, if x < z(t), and W (t, x) > 0, if x > z(t).

As a first application of Lemma 2.3.4, let us consider the effect on the solution of
(F-KPP) when the discontinuity of the Heaviside-type initial condition tends to infinity.
For this purpose, in order to obtain a non-trivial limit, we perform an appropriate
temporal shift. More precisely, we introduce for a given realisation of the environment
ξ, any y ∈ R and any ε > 0 the “temporal quantile at the origin” as

τ εy := inf{t ≥ 0 : wy(t, 0) ≥ ε}. (2.3.11)
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Since P-a.s. we have limt→∞wy(t, 0) = 1 (due to, e.g., [Fre85, Theorem 7.6.1]), τ εy is
finite. By the continuity of wy on (0,∞) × R, cf. Proposition 2.3.1, the quantity τ εy
satisfies wy(τ εy , 0) = ε. From (2.3.3) it follows that y 7→ wy(t, 0) is decreasing, and thus
y 7→ τ εy is increasing. By the law of large numbers for the maximal displacement (cf.
(2.2.6)), it follows readily that lim

y→∞
τ εy = ∞.

The shift by τ εy allows to establish the following result, which follows already from
[Nad15, Lemma 7.3]. Nevertheless, we provide its short proof here for the sake of
completeness and as an illustration of how Lemma 2.3.4 can be used in our context.

Proposition 2.3.5. For every ε ∈ (0, 1) and for P-a.a. ξ, the limit

w∞
ε (t, x) := lim

y→∞
wy(τ εy + t, x) (2.3.12)

exists locally uniformly in (t, x) ∈ R2, and is a global-in-time (that is, for all t ∈ R)
solution to (F-KPP).

The limiting function w∞
ε plays a role comparable to that of a travelling wave

solution of the homogeneous F-KPP equation, cf. (2.1.3). However, unlike in the
homogeneous situation outlined in the introduction, w∞

ε does not directly provide an
argument for tightness because we lack a suitable quantitative control of the random
variables τ εy as y varies. Nonetheless, the result of Proposition 2.3.5 plays a vital role
in our proof of tightness. We restrict ourselves to providing a proof of the convergence
for t > 0 only, as this is sufficient for our purposes in what follows.

Proof of Proposition 2.3.5. Fix y1 < y2 and for t ≥ −τ εy1 = −τ εy1 ∨ −τ εy2 (recall that
the latter identity follows from the monotonicity of y 7→ τ εy observed below (2.3.11))
define the function W (t, x) := wy1(t + τ εy1 , x) − wy2(t+ τ εy2 , x). Then, similarly as for
(2.3.8) and (2.3.9), it follows that

∂tW (t, x) =
1

2
∂2xW (t, x) +G(t, x)W (t, x), t > −τ εy1 , x ∈ R, (2.3.13)

where G is given by

G(t, x) =

{
ξ(x)

F (wy1 (t+τεy1 ,x))−F (wy2 (t+τεy2 ,x))

wy1 (t+τεy1 ,x)−w
y2 (t+τεy2 ,x)

, if wy1(t+ τ εy1 , x) ̸= wy2(t+ τ εy2 , x),

ξ(x), if wy1(t+ τ εy1 , x) = wy2(t+ τ εy2 , x).

From the assumptions, it follows directly that G is a bounded measurable function.
Due to [Fre85, Theorem 7.4.1], there exists for P-a.a. ξ a unique classical solution to
(2.3.13). Moreover, since wy1(0, x) = 1[y1,∞)(x), it holds that

W (−τ εy1 , x) = wy1(0, x)− wy2(τ εy2 − τ εy1 , x) = 1[y1,∞)(x)− wy2(τ εy2 − τ εy1 , x). (2.3.14)
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Together with the fact that 0 < wyi(t, x) < 1 for i = 1, 2 and for all t > 0 and x ∈ R (cf.
(2.3.10)), display (2.3.14) implies that W (−τ εy1 , x) < 0 if x < y1 and W (−τ εy1 , x) > 0
if x > y1. By Lemma 2.3.4, for all t > −τ εy1 , the sets {x ∈ R : W (t, x) > 0} and
{x ∈ R : W (t, x) < 0} are intervals. But due to the continuity of wy1 and wy2 , we
also know that W (0, 0) = wy1(τ εy1 , 0) − wy2(τ εy2 , 0) = ε − ε = 0. Therefore, the above
reasoning supplies us with

wy1(τ εy1 , x) ≤ wy2(τ εy2 , x), if x < 0,
wy1(τ εy1 , x) ≥ wy2(τ εy2 , x), if x > 0.

(2.3.15)

That is, the function y 7→ wy(τ εy , x) is non-decreasing if x < 0 and non-increasing on
x > 0. As a consequence, the limit w∞

ε (0, x) := limy→∞wy(τ εy , x) exists pointwise,
and thus locally uniformly, for all x ∈ R, and also implies 0 ≤ w∞

ε (0, ·) ≤ 1. As
a consequence, the right-hand side of (2.3.12) converges locally uniformly for t = 0.
(This should be compared to (2.1.4) in the introduction, which describes the “spatial
stretching” of re-centred solutions to the homogeneous F-KPP equation.)

To prove that the local uniform convergence postulated in (2.3.12) holds true for t >
0 also, one uses standard estimates on solutions of quasilinear parabolic equations (see,
e.g., [LSU68], Chapter V). As a consequence of these estimates, the solutions wy(t, x)
together with their derivatives are bounded locally uniformly in (t, x), uniformly for
all y sufficiently large. Hence the set {wy : y ≥ 0} is pre-compact in C1,2

loc (R+ × R).
It therefore contains converging sub-sequences, and every limit point of such a sub-
sequence is a solution to (F-KPP) with initial condition w∞(0, ·). As the solution to
(F-KPP) with that given initial condition is unique, this implies that all subsequential
limits must agree and thus (2.3.12) holds for all t > 0, as well as that w∞ solves
(F-KPP) for t ≥ 0. We omit here the proof for t < 0, as it will not be needed later
on.

The next corollary is a direct consequence of Proposition 2.3.5. It formalises the
idea that when a solution to (F-KPP) moves away from 0, it increases quickly to 1.
This is going to be relevant later on (cf. (2.2.14) in the introduction).

Corollary 2.3.6. For every ε ∈ (0, 1/2) there exists a P-a.s. finite random variable
T = T (ξ) such that for all y ∈ R large enough, and any t for which wy(t, 0) = ε, it
holds that

wy(t+ t′, 0) ≥ 1− ε for all t′ ∈ [T, T + 1].

Proof. Let y ∈ R and t ≥ 0 be such that wy(t, 0) = ε. By (2.3.11) and the finiteness of
τ εy deduced below that display, there exists some s0 = s0(y) ≥ 0 such that t = τ εy + s0.

Consider w∞
ε from Proposition 2.3.5 and let

s1 = inf{s > s0 : w
∞
ε (s′, 0) ≥ 1− ε/2 for all s′ > s};
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note that as w∞
ε solves (F-KPP), it follows by [Fre85, Theorem 7.6.1] that for P-a.a.

realisations of the environment, lims→∞w∞
ε (s, x) = 1, and hence s1 is P-a.s. finite.

Next, taking advantage of the fact that the convergence in Proposition 2.3.5 is locally
uniform in t, due to the continuity of the functions involved and using the compactness
of [s1, s1 + 1], it holds for large enough y ∈ R that

sup
s′∈[s1,s1+1]

|wy(τ εy + s′, 0)− w∞
ε (s′, 0)| < ε/2.

Setting T = s1 − s0, we thus obtain for all y large enough and for all t′ ∈ [T, T + 1]
(with s′ = s0 + t′ ∈ [s1, s1 + 1]) that

wy(t+ t′, 0) = wy(τ εy + s′, 0) ≥ w∞
ε (s′, 0)− ε/2 ≥ 1− ε.

This completes the proof.

This result concludes our analytic preparations on how the set of zero-crossings of
solutions to linear parabolic equations evolves, and of how it can be applied to the
difference of temporally shifted solutions of (F-KPP).

2.4 Tilting and exponential change of measure

The next tool that we introduce is a change of measure for Brownian paths in the
Feynman-Kac representation, which makes certain large deviation events typical. These
measures have been featured heavily in [ČD20, ČDS23, DS22] already, including in the
proof of their respective versions of Proposition 2.5.1. In the aforementioned articles
this change of measure has been employed so as to make solutions to (PAM) amenable
to the investigation by more standard probabilistic tools. Here we go a step further
and consider the stochastic processes driving the tilted path measures. This in turn
gives us even more precise control on the tilted measures and allows for comparisons
with Brownian motion with constant drift, see Proposition 2.4.3 below.

To define the tilted measures we set

ζ := ξ − es. (2.4.1)

Due to the uniform ellipticity (2.2.4) it follows that P-a.s. for all x ∈ R,

ζ(x) ∈ [ei− es, 0], (2.4.2)

and ζ is P-a.s. locally Hölder continuous with the same exponent as ξ. Moreover, ζ
also inherits the stationarity as well as the mixing property from ξ.
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For the Brownian motion (Xt)t≥0 under the measure Px, as used in the Feynman-
Kac representations of Proposition 2.3.3, we introduce first hitting times as

Hy := inf{t ≥ 0 : Xt = y} for y ∈ R.

Analogously to [ČD20, ČDS23, DS22], we define for x, y ∈ R with y ≥ x, as well as
η < 0, the tilted path measures characterised through events A ∈ σ(Xt∧Hy , t ≥ 0) via

P ζ,η
x,y (A) :=

1

Zζ,η
x,y

Ex

[
e
∫Hy
0 (ζ(Xs)+η) ds;A

]
, (2.4.3)

with normalising constant

Zζ,η
x,y := Ex

[
e
∫Hy
0 (ζ(Xs)+η) ds

]
∈ (0, 1]. (2.4.4)

By the strong Markov property, it follows easily that the measures are consistent in
the sense that P ζ,η

x,y′(A) = P ζ,η
x,y (A) for x ≤ y ≤ y′ and A ∈ σ(Xt∧Hy , t ≥ 0). Hence,

for any x ∈ R, we can extend P ζ,η
x,y to a probability measure P ζ,η

x on σ(Xt, t ≥ 0) with
the help of Kolmogorov’s extension theorem. We write Eζ,η

x for the expectation with
respect to the probability measure P ζ,η

x .
Finally, as in [DS22, (2.8)], we introduce the annealed logarithmic moment gener-

ating function
L(η) := E[lnZζ,η

0,1 ], (2.4.5)

and denote by η(v) < 0 the unique solution of the equation L′(η(v)) = 1
v

for any
v > vc; observe that the former is well-defined as by [DS22, Lemma 2.4],

η(v) exists for every v > vc; v 7→ η(v) is a continuous decreasing
function and limv→∞ η(v) = −∞. (2.4.6)

The strong Markov property furthermore entails that, for a fixed realization ζ and
any η < 0, the normalising constants (2.4.4) are multiplicative in the sense that for
any x < y < z in R,

Zζ,η
x,z = Zζ,η

x,yZ
ζ,η
y,z . (2.4.7)

Defining, for some arbitrary but fixed x0 ∈ R, the function

Zζ,η(x) :=

{
(Zζ,η

x0,x
)−1, if x ≥ x0,

Zζ,η
x,x0

, if x < x0,
(2.4.8)

the identity (2.4.7) thus implies that for all x < y we have

Zζ,η
x,y =

Zζ,η(x)

Zζ,η(y)
. (2.4.9)

The following lemma states some useful properties of the function Zζ,η.
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Lemma 2.4.1. For every bounded Hölder continuous function ζ : R → (−∞, 0] and
η < 0, the function Zζ,η is non-decreasing, strictly positive, twice continuously differ-
entiable and satisfies

1

2
∆Zζ,η(x) + (ζ(x) + η)Zζ,η(x) = 0, x ∈ R. (2.4.10)

Furthermore, we have

bζ,η(x) :=
d

dx
lnZζ,η(x) ∈

[
v(η), v(η)

]
, (2.4.11)

where v(η) :=
√

2|η| and v(η) :=
√
2(es− ei+ |η|).

Remark 2.4.2. Let us note here that the notation v(η) and v(η) introduced in the above
lemma is suggestive of velocities. This will be made precise in Lemma 2.4.4 below.

Proof of Lemma 2.4.1. The monotonicity and the strict positivity of Zζ,η follow di-
rectly from its definition (2.4.8), using also (2.4.4).

To show (2.4.10), we observe that, for any interval [x1, x2], the equation 1
2
∆u(x) +

(ζ(x) + η)u(x) = 0, x ∈ [x1, x2], with boundary conditions u(xi) = Zζ,η(xi), i = 1, 2,
has a unique classical solution (see, e.g., [GT01, Corollary 6.9]). Denoting by T the exit
time ofX from [x1, x2], this solution can be represented as (see [Bas98, Theorem II(4.1),
p.48])

u(x) = Ex
[
Zζ,η(XT )e

∫ T
0 (ζ(Xs)+η) ds

]
. (2.4.12)

On the other hand, for x ∈ [x1, x2], taking y = x2 in (2.4.9), using (2.4.4), and the
strong Markov property at time T ,

Zζ,η(x) = Zζ,η(y)Zζ,η
x,y

= Zζ,η(y)Ex
[
e
∫ T
0 (ζ(Xs)+η) dsZζ,η

XT ,y

]
= Ex

[
Zζ,η(XT )e

∫ T
0 (ζ(Xs)+η) ds

]
.

(2.4.13)

Therefore, Zζ,η satisfies (2.4.10) on [x1, x2]. Since the interval [x1, x2] is arbitrary,
(2.4.10) holds for every x ∈ R.

To show (2.4.11), note first that bζ,η is well-defined since Zζ,η is strictly positive and
differentiable, by (2.4.10). Therefore, with y ≥ x, by (2.4.9) and the strong Markov
property again,

bζ,η(x) =
d

dx
lnZζ,η(x) =

d

dx
lnZζ,η

x,y

= lim
ε→0+

ε−1
(
lnEx

[
e
∫Hy
0 (ζ(Xs)+η) ds

]
− lnEx−ε

[
e
∫Hy
0 (ζ(Xs)+η) ds

])
= − lim

ε→0+
ε−1 lnEx−ε

[
e
∫Hx
0 (ζ(Xs)+η) ds

]
.

(2.4.14)
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It is a known fact that for α > 0 and z1, z2 ∈ R, it holds that

lnEz1 [e
−αHz2 ] = −

√
2α|z1 − z2| (2.4.15)

(cf. [BS02, (2.0.1), p. 204]). In combination with the bounds (2.4.2), the expectation
on the right-hand side of (2.4.14) thus satisfies

−ε
√

2|η| = lnEx−ε
[
eHxη

]
≥ lnEx−ε

[
e
∫Hx
0 (ζ(Xs)+η) ds

]
≥ lnEx−ε

[
eHx(ei−es+η)

]
= −ε

√
2(es− ei+ |η|),

(2.4.16)

which together with (2.4.14) implies (2.4.11).

The function bζ,η(x) introduced in (2.4.11) is useful in describing the law of X under
the tilted measure, as it allows an interpretation of the tilted process as a Brownian
motion with an inhomogeneous drift, by constructing an appropriate SDE as follows.

Proposition 2.4.3. Let x0 ∈ R, η < 0 and let ζ : R → (−∞, 0] be a locally Hölder
continuous function that is uniformly bounded from below. Furthermore, denote by B
a standard Brownian motion. Then the distribution of the solution to the SDE

dXt = dBt + bζ,η(Xt) dt, t > 0,

X0 = x0,
(2.4.17)

agrees with P ζ,η
x0

.

Proof. The proof is based on an exponential change of measure for diffusion processes.
For the sake of simplicity we write b for bζ,η and Z for Zζ,η whenever there is no risk
of confusion. By (2.4.11) we obtain that

b′ = (lnZ)′′ =
(Z ′

Z

)′
=

∆Z

Z
−
(Z ′

Z

)2
= −2(ζ + η)− b2. (2.4.18)

Therefore, the bounds (2.4.11) and (2.4.2) imply that b is a bounded Lipschitz function
and thus there is a strong solution to (2.4.17), whose distribution we denote by Qx0 =
Qζ,η
x0

. Let further, as previously, Px0 be the distribution of Brownian motion started
from x0, and let Qt

x0
and P t

x0
be the restrictions of those distributions to the time

interval [0, t], t > 0. As a consequence of the Cameron-Martin-Girsanov theorem (see,
e.g., [RW00, Theorem V.27.1] for a suitable formulation), it is well known that

dQt
x0

dP t
x0

= exp
{∫ t

0

b(Xs) dXs −
1

2

∫ t

0

b2(Xs) ds
}
=:Mt, (2.4.19)

for a Px0-martingale M . (The fact that Mt is a martingale follows, e.g., from [RW00,
Theorem IV.37.8], since b is a bounded function.)
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With the aim of arriving at a comparison with (2.4.3), we claim that

Mt =
Z(Xt)

Z(X0)
e
∫ t
0 (ζ(Xs)+η) ds. (2.4.20)

To see this, note first that applying Itô’s formula to lnZ(x) =
∫ x
x0
b(t) dt yields

Z(Xt)

Z(X0)
= exp

{
lnZ(Xt)− lnZ(X0)

}
= exp

{∫ t

0

b(Xs) dXs +
1

2

∫ t

0

b′(Xs) ds
}
.

(2.4.21)
Comparing this with (2.4.19) shows that

Mt =
Z(Xt)

Z(X0)
exp

{
− 1

2

∫ t

0

(
b′(Xs) + b2(Xs)

)
ds
}
, (2.4.22)

which together with (2.4.18) implies (2.4.20).
We can now complete the proof of the proposition. For the sake of clarity we

sometimes write expectations with respect to a probability measure Q as EQ. For
y ≥ x0, let Qx0,y be the measure Qx0 restricted to the σ-algebra Hy = σ(Xs∧Hy : s ≥ 0).
To show that Qx0 = P ζ,η

x0
, it is sufficient to show that Qx0,y = P ζ,η

x0,y
for all y > x0 (see

(2.4.3)). For this purpose, we observe that by Lemma 2.4.1, Z is a bounded function
on (−∞, y] and thus the stopped martingale MHy

t =Mt∧Hy is uniformly bounded from
above. Therefore, by the optional stopping theorem, for any A ∈ Hy, using (2.4.19)
for the second equality,

Qx0,y(A) = lim
t→∞

EQx0,y [1A∩{Hy≤t}] = lim
t→∞

EPx0 [Mt1A∩{Hy≤t}]

= lim
t→∞

EPx0

[
EPx0 [Mt1A∩{Hy≤t} | Hy]

]
= lim

t→∞
EPx0

[
1A∩{Hy≤t}E

Px0 [Mt | Hy]
]

= lim
t→∞

EPx0

[
1A∩{Hy≤t}MHy

]
= EPx0 [MHy1A].

By (2.4.20), MHy = Z(y)
Z(x0)

e
∫Hy
0 (ζ(Xs)+η) ds, and thus, also by (2.4.9),

Qx0,y(A) = (Zζ,η
x0,y

)−1Ex0 [e
∫Hy
0 (ζ(Xs)+η) ds1A] = P ζ,η

x0,y
(A)

as required. This completes the proof.

We are now ready to reap the fruits of the above considerations. Proposition 2.4.3
together with the uniform bounds (2.4.11) on bζ,η allows for a comparison between the
tilted measures (2.4.3) and Brownian motion with constant drift. The next lemma
provides this desired control and makes it precise. For a given drift α ∈ R, we write
Pα
x for the law of Brownian motion with constant drift α started at x and Eα

x for the
corresponding expectation.
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Lemma 2.4.4. Let ζ : R → [−(es − ei), 0] be locally Hölder continuous and let
η < 0. Then, for any starting point x ∈ R and any bounded non-decreasing function
g : R → R,

Ev(η)
x [g(Xt)] ≤ Eζ,η

x [g(Xt)] ≤ Ev(η)
x [g(Xt)],

where v(η) and v(η) have been introduced in Lemma 2.4.1.

Proof. By Proposition 2.4.3, the process Xt driven by the tilted measure P ζ,η
x0

has
generator Lζ,η = 1

2
∆ + b(x) d

dx
. Let further Lv = 1

2
∆ + v d

dx
be the generator of the

Brownian motion with drift v. Then, for any non-decreasing g ∈ C2
b (R), if follows from

(2.4.11) that
Lv(η)g ≤ Lζ,ηg ≤ Lv(η)g.

Since, by Kolmogorov’s forward equation, d
dt
Eζ,η
x [g(Xt)] = Eζ,η

x [(Lζ,ηg)(Xt)] and anal-
ogously for the measures Ev

x and Ev
x, the statement of the lemma follows for any

non-decreasing g ∈ C2
b (R). The extension to arbitrary non-decreasing functions g fol-

lows by approximating g by a sequence of non-decreasing functions in C2
b (R) and using

the dominated convergence theorem.

2.5 Perturbations of the Feynman-Kac representa-
tion

We provide a result on perturbations of the Feynman-Kac representation (2.3.6) of
solutions to the parabolic Anderson model (PAM) with Heaviside-like initial condition,
with respect to disruption in time and with respect to disruptions in the discontinuity
of the initial condition. A variant of such results was developed in [ČDS23, DS22] (cf.
Lemmas 3.11 and 3.13 from [DS22], or Lemma 4.1 of [ČDS23]) for the study of the
fronts of (F-KPP) and (PAM). In the current setting the perturbation results will be
used together with (2.3.3) and the Feynman-Kac representation, Proposition 2.3.3, in
order to get bounds on the solutions to (F-KPP) in the proof of the key Lemma 2.6.1
in Section 2.6.

To avoid the dependence of various constants appearing in these perturbation re-
sults on the speed, we assume for the rest of the article that the speeds we allow are
contained in some arbitrary but fixed compact interval V ⊂ (vc,∞) which has v0 in
its interior (in particular, we require (2.2.8) to hold). As we can otherwise choose V
arbitrarily large, this does not pose any further restrictions for what follows in the
subsequent sections.

Proposition 2.5.1. (a) For every δ > 0 and A > 0, there exist a finite constant
c1 ∈ (1,∞) and a P-a.s. finite random variable T1 such that for all t ≥ T1
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uniformly in 0 ≤ h ≤ t1−δ, and x, y ∈ [−At,At] with x < y, y−x
t

∈ V and
y−x
t+h

∈ V ,

Ex

[
e
∫ t+h
0 ξ(Xs) ds;Xt+h ≥ y

]
≤ c1e

c1hEx

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y

]
.

(b) Let δ : (0,∞) → (0,∞) be a function tending to 0 as t → ∞, and let A > 0.
Then there exists a constant c2 ∈ (1,∞) and a P-a.s. finite random variable T2

such that for all t ≥ T2, uniformly in 0 ≤ h ≤ tδ(t) and x, y ∈ [−At,At] with
x < y, y−x

t
∈ V and y+h−x

t
∈ V ,

Ex

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y + h

]
≤ c2e

−h/c2Ex

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y

]
.

The proof of this proposition involves comparing the Feynman-Kac representation
(2.3.6) to functionals with respect to the family of tilted probability measures that
were presented in Section 2.4. It is a rather straightforward, but lengthy adaptation of
the proofs of [DS22, Lemma 3.11(b)] and [ČDS23, Lemma 4.1(b)], as shall be discussed
next. There are two key differences in the statement of Proposition 2.5.1 and the two
respective statements in [ČDS23, DS22], that need to be addressed:

(A) Proposition 2.5.1 requires that its estimates hold uniformly over the “starting
point” x and the “target point” y in an interval growing linearly with time t. In
the original statements, the target point is always the origin and the starting
point satisfies x = vt.

(B) Proposition 2.5.1(b) involves a perturbation by the end point (that is, y changes
to y + h), while the starting point is perturbed in the original statement.

In addition [ČDS23, DS22] consider always the travelling waves going from left to
right, while for our purposes it is more suitable to work with waves going from right
to left. This difference is easy to be dealt with by mirroring the environment and we
do not discuss it further.

Proving Proposition 2.5.1 thus requires checking that these two differences can be
dealt with by the original arguments. We do not reproduce the lengthy argument in
completeness here, but describe key locations where the arguments of [ČDS23, DS22]
have to be adapted. In particular arguments that use only estimates that are uniform
in the environment ξ (resp. ζ, cf. (2.4.1)) carry over to the current setting simply by a
change of notation. We do not elaborate on such arguments more than necessary, but
give frequent references to the corresponding passages in [ČDS23, DS22].

Recall first the definition of the tilted measure P ζ,η
x from below (2.4.4). Similarly

to [DS22, (2.13)], we are interested in the (random) tilting parameter ηζx,y(v) for which
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the mean speed of a particle on its way from x to y, under the tilted measure, is
precisely v, that is

Eζ,ηζx,y(v)
x [Hy] =

y − x

v
, v > 0, x < y. (2.5.1)

(If no such parameter exists, we set ηζx,y(v) = 0.) Recall also the definitions of η(v) < 0
from below (2.4.5), which can be seen as the “typical value” of parameters satisfy-
ing (2.5.1) (see also [DS22, (2.10)]), as well as the definition of the compact interval
V ⊂ (vc,∞) containing v0 in its interior from above Proposition 2.5.1. By [DS22,
Lemma 2.4], there is a compact interval ∆ ⊂ (−∞, 0) which contains {η(v) : v ∈ V }
in its interior. In particular, this implies that

∞ < inf
v∈V

η(v) ≤ sup
v∈V

η(v) < 0. (2.5.2)

The next lemma shows that ηζx,y(v) exists with high probability and that it is close
to η. It is an extension of Lemma 2.5 of [DS22] and the first step on the way to dealing
with the difference (A) in the above list.

Lemma 2.5.2. (a) For every A > 1 there exists an a.s. finite random variable N =
N (A) such that for all v ∈ V and x < y ∈ R such that y − x ≥ N and
|x|, |y| ≤ A(y−x), the solution ηζx,y(v) to (2.5.1) exists and satisfies ηζx,y(v) ∈ ∆.

(b) For each q ∈ N, and each compact interval V ⊂ (vc,∞), there exists C =
C(V, q) ∈ (0,∞) such that, for all n ∈ N,

P
(
sup
v∈V

sup
x∈[−n,−n+1]

sup
y∈[0,1]

|ηζx,y(v)− η(v)| ≥ C

√
lnn

n

)
≤ Cn−q. (2.5.3)

Proof. As in [DS22], (a) follows directly from (b), using the Borel-Cantelli lemma and
(2.5.2), with the help of the stationarity and an additional union bound to take care
over the uniformity in y.

The proof of (b) looks almost the same as the proof of Lemmas 2.5, 2.6 in [DS22],
where it was shown, in our notation, that

P
(
sup
v∈V

sup
x∈[−n,−n+1]

|ηζx,0(v)− η(v)| ≥ C

√
lnn

n

)
≤ Cn−q. (2.5.4)

Including the additional supremum over y ∈ [0, 1] essentially only requires notational
changes.

Given this concentration result for the tilting parameters, we next adapt Lemma 2.7
of [DS22], which is used in the proof of the spatial perturbation result, Lemma 4.1 in
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[ČDS23] and provides a perturbation result for the tilting parameters, satisfying (2.5.1).
Besides [DS22, Lemma 2.5] which we already adapted to our setting in Lemma 2.5.2,
its proof only uses steps that are uniform in the potential ξ, and thus requires only
notational changes. For this reason we omit the proof and refer to [DS22] for the
complete argument.

Lemma 2.5.3. There exists a constant c > 0 and for every A > 1 there exists an
a.s. finite random variable N ′ = N ′(A) such that for all x, y ∈ R with y− x ≥ N ′ and
|x|, |y| ≤ A(y − x), v ∈ V , and h ∈ [0, y − x], we have

∣∣ηζx,y(v)− ηζx,y+h(v)
∣∣ ≤ ch

y − x
. (2.5.5)

Next, we introduce two auxiliary processes which we later relate to the expressions
appearing in Proposition 2.5.1. We consider, for x ≤ y ∈ R and v > 0, the quantities
(cf. [DS22, (3.7)])

Y ≈
v (x, y) := Ex

[
e
∫Hy
0 ζ(Xs) ds;Hy ∈

[y − x

v
−K,

y − x

v

]]
,

Y >
v (x, y) := Ex

[
e
∫Hy
0 ζ(Xs) ds;Hy <

y − x

v
−K

]
,

(2.5.6)

where K > 0 is a large constant fixed as in (2.5.15) below. It turns out that Y ≈
v (x, y)

and Y <
v (x, y) are comparable uniformly in the admissible choices of x and y.

Lemma 2.5.4. For A > 1, let N = N (A) be as in Lemma 2.5.2. Then there exists a
constant C ∈ (1,∞) such that for all v ∈ V and all x < y ∈ R such that y − x ≥ N
as well as |x|, |y| ≤ A(y − x), we have

Y ≈
v (x, y)

Y <
v (x, y)

∈ [C−1, C]. (2.5.7)

Proof. The proof of this lemma contains a computation that is essential for a step in the
proof of the key Lemma 2.6.1, and is also featured in Section 2.6 below. We assume
that x, y satisfy the assumptions of the lemma, and, in order to keep the notation
simple, we in addition assume that x, y ∈ Z (see [DS22, Section 1.9] for notational
conventions that allow to deal with non-integer x and y). We write η := ηζx,y(v) and
define

σ = σζx,y(v) := |η|
√

VarP ζ,η
x

(Hy), (2.5.8)

where the variance is with respect of P ζ,η
x . As in [DS22, (3.8)], uniformly in ζ and

v ∈ V ,
c−1

√
y − x ≤ σζx,y(v) ≤ c

√
y − x (2.5.9)
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for some c ∈ (1,∞). Indeed, if we define

L
ζ

x,y(η) := (y − x)−1

y∑
z=x+1

lnEz−1

[
e
∫Hz
0 (ζ(Xs)+η) ds

]
= (y − x)−1 lnEx

[
e
∫Hy
0 (ζ(Xs)+η) ds

]
,

(2.5.10)

a brief calculation yields that VarP ζ,η
x

(Hy) = (y − x)(L
ζ

x,y)
′′(η). Moreover it follows

by the same argument as in [DS22, Lemma A.1] that for each compact interval ∆ ⊂
(−∞, 0) it holds P-a.s. that

−∞ < inf
|y−x|≥1

inf
η∈∆

(L
ζ

x,y)
′′(η) ≤ sup

|y−x|≥1

sup
η∈∆

(L
ζ

x,y)
′′(η) <∞,

from which we deduce (2.5.9).
Let further τz = Hz − Hz−1, z ∈ [x + 1, y] ∩ Z, and let τ̂z := τz − Eζ,η

x [τz]. Then,
by the definition of η, for x, y satisfying the assumptions of Lemma 2.5.2, we have
Eζ,η
x [Hy] = y−x

v
. With this notation, a straightforward computation as in [DS22,

(3.12)] yields

Y ≈
v (x, y) = Ex

[
e
∫Hy
0 (ζ(Bs)+η) ds e−η

∑y
z=x+1 τ̂z ;

y∑
i=x+1

τ̂z ∈ [−K, 0]
]
e−(y−x)η/v

= Eζ,η
x

[
e−σ

η
σ

∑y
z=x+1 τ̂z ;

η

σ

y∑
z=x+1

τ̂z ∈
[
0,−Kη

σ

]]
e−(y−x)( η

v
−Lζ

x,y(η)).

(2.5.11)

Defining µζ,ηx,y to be the distribution of η
σ

∑y
z=x+1 τ̂z under P ζ,η

x , this implies

Y ≈
v (x, y) = e−(y−x)( η

v
−Lζ

x,y(η))

∫ −Kη
σ

0

e−σuµζ,ηx,y(du). (2.5.12)

Completely analogous computation then shows that

Y <
v (x, y) = e−(y−x)( η

v
−Lζ

x,y(η))

∫ ∞

−Kη
σ

e−σuµζ,ηx,y(du). (2.5.13)

The upshot of these computations is that under P ζ,η
x , the random variables τ̂z,

z = x+1, . . . , y are centred, independent, have uniform exponential moments, and µζ,ηx,y
has unit variance. This allows, as in the proof of [DS22, Lemma 3.6], to (uniformly)
approximate µζ,ηx,y by the standard Gaussian measure Φ, and to show that the integrals
appearing on the right-hand side of (2.5.12) and (2.5.13) are both of order (y−x)−1/2,
a.s. uniformly in the ζ and v ∈ V under consideration and for all x, y satisfying the
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assumptions of Lemma 2.5.2. More in detail, due to the well known estimates on the
errors of normal approximations, see e.g. [BR10, Theorem 13.3], it follows that

sup
C

∣∣µζ,ηx,y(C)− Φ(C)
∣∣ ≤ c(y − x)−1/2 (2.5.14)

where the supremum is over all intervals in R and c > 0 only depends on the uniform
bound of the exponential moments of the τ̂z. Now, due to (2.5.9), we can choose K > 0
large enough so that for some constants c2 > c1 > c (for c as in (2.5.14)), for all x, y
with y − x ≥ N and v ∈ V

c1(y − x)−1/2 ≤ Φ
(
[0,−Kη/σ]

)
≤ c2(y − x)−1/2, (2.5.15)

and thus infer

(c1 − c)(y − x)−1/2 ≤ µζ,ηx,y([0,−Kη/σ]) ≤ (c2 + c)(y − x)−1/2,

cf. [DS22, (3.17) and (3.18)].
With these estimates we can then show that the integrals in (2.5.12) and (2.5.13)

are both of the same order (y − x)−1/2, from which the claim of the lemma follows.
The proof, which uses only simple analytical arguments, is the same as in [DS22,
Lemma 3.6].

Lemma 2.5.4 has an important corollary allowing to approximate the Feynman-Kac
formula for the PAM (cf. (2.3.6)) by expressions involving Y ≈

v (x, y). It extends Lemma
3.7 of [DS22], and will also be used in Section 2.6 below.

Lemma 2.5.5. For each A > 1, with N = N (A) as in Lemma 2.5.2, there exists a
constant C ∈ (1,∞) such that for all t ∈ (0,∞) and all x < y ∈ R such that y−x ≥ N ,
|x|, |y| ≤ A(y − x) and y−x

t
∈ V ,

C−1Y ≈
v (x, y) ≤ Ex

[
e
∫ t
0 ζ(Xs) ds;Xt ≥ y

]
≤ CY ≈

v (x, y). (2.5.16)

Proof. The proof of the corresponding Lemma 3.7 of [DS22] only uses estimates that
are uniform in ζ and the starting/target position, as well as the respective version of
Lemma 2.5.4, which states the comparability of Y ≈

v (x, y) and Y <
v (x, y), for admissible

choices of x, y, v . It can thus be adapted directly to the current setting.

With this we have made all the necessary extensions of the results in [ČDS23, DS22]
which are needed in order accommodate for the differences outlined in (A) and (B)
and are equipped to show Proposition 2.5.1.

Proof of Proposition 2.5.1. The proof of part (a) involving the perturbation in time
follows the exact same lines as the proof of the temporal perturbation results, given in
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Lemma 3.11(b) in [DS22]: We denote v := (y− x)/t, v′ := (y− x)/(t+ h) and observe
that by Lemma 2.5.5, for x, y, t and h as in the statement, by choosing T1 sufficiently
large so that y − x ≥ N ,

Ex

[
e
∫ t+h
0 ξ(Xs) ds;Xt+h ≥ y

]
Ex

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y

] ≤ C
Y ≈
v′ (x, y)

Y ≈
v (x, y)

. (2.5.17)

The fraction on the right-hand side can be rewritten with the help of (2.5.12). Using
also the fact that the integral appearing in (2.5.12) is of order (y−x)−1/2 uniformly in
v ∈ V and x, y ≥ N , as explained at the end of the proof of Lemma 2.5.4, we obtain
(cf. [DS22, (3.36)])

Y ≈
v′ (x, y)

Y ≈
v (x, y)

≤ C
exp

{
− (y − x)

(ηζx,y(v′)
v′

− L
ζ

x,y(η
ζ
x,y(v

′))
)}

exp
{
− (y − x)

(ηζx,y(v)
v

− L
ζ

x,y(η
ζ
x,y(v))

)} . (2.5.18)

Now—cf. [DS22, (3.4)]—denoting for any η < 0

Sζ,vx,y(η) := (y − x)
(η
v
− L

ζ

x,y(η)
)
, (2.5.19)

the logarithm of the fraction on the right-hand side of (2.5.18) can be written as(
Sζ,vx,y(η

ζ
x,y(v))− Sζ,vx,y(η

ζ
x,y(v

′))
)
+
(
Sζ,vx,y(η

ζ
x,y(v

′))− Sζ,v
′

x,y (η
ζ
x,y(v

′))
)

(2.5.20)

Recalling the definitions of v and v′, the second summand in (2.5.20) satisfies(
Sζ,vx,y(η

ζ
x,y(v

′))− Sζ,v
′

x,y (η
ζ
x,y(v

′))
)
= −hηζx,y(v′) ≤ ch, (2.5.21)

since 1
c′

≤ ηζx,y(v
′) ≤ c′ < 0 for the considered x, y, v′, due to Lemma 2.5.2(a).

Moreover, the absolute value of the first summand in (2.5.20) can be upper bounded by
ch2/t≪ h uniformly for x, y, t and h under consideration, exactly as in the paragraph
containing [DS22, (3.39)] (this proof uses again only estimates that are uniform in ζ).
This completes the proof of part (a).

The proof of part (b) follows the lines of the proof of the spatial perturbation result,
Lemma 4.1 in [ČDS23]: Using the same reasoning as in (2.5.17)–(2.5.20), now choosing
v := (y − x)/t and v′ := (y + h− x)/t, where x, y, t and h are as in the statement and
T2 is assumed to be sufficiently large so that y − x ≥ N ∨N ′, we infer that

Ex

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y + h

]
Ex

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y

] ≤ C
Y ≈
v′ (x, y + h)

Y ≈
v (x, y)

(2.5.22)
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as well as

ln
Y ≈
v′ (x, y + h)

Y ≈
v (x, y)

≤
(
Sζ,vx,y(η

ζ
x,y(v))− Sζ,v

′

x,y+h(η
ζ
x,y(v))

)
+
(
Sζ,v

′

x,y+h(η
ζ
x,y(v))− Sζ,v

′

x,y+h(η
ζ
x,y+h(v

′))
)
.

(2.5.23)

By (2.5.10) and (2.5.19), the first summand on the right-hand side of (2.5.23) (which
differs slightly from the corresponding one in [ČDS23], due to the difference (B))
satisfies∣∣∣Sζ,vx,y(ηζx,y(v))− Sζ,v

′

x,y+h(η
ζ
x,y(v))

∣∣∣
=
∣∣∣ lnEx[e∫Hy+h

0 (ζ(Xs)+η
ζ
x,y(v)) ds

]
− lnEx

[
e
∫Hy
0 (ζ(Xs)+η

ζ
x,y(v)) ds

]∣∣∣
=
∣∣∣ lnEy[e∫Hy+h

0 (ζ(Xs)+η
ζ
x,y(v)) ds

]∣∣∣
≤ h

√
2(es− ei+ |ηζx,y(v)|) ≤ ch,

(2.5.24)

where in the second equality we applied the strong Markov property at time Hy, and
used (2.4.16) for the final inequality.

The second summand on the right-hand side of (2.5.23) is bounded by ch2/t ≪ h
and is thus negligible. This can be proved exactly as in [ČDS23, (4.13)–(4.16)]. Besides
[DS22, Lemma 2.7], which we already extended in Lemma 2.5.3, this proof again only
uses uniform estimates and thus does not require any modification. This completes
the proof of the proposition.

2.6 Dependence of solutions to the F-KPP equation
on the initial condition

In this section we prove the key technical lemma, Lemma 2.6.1 below, which formalises
inequalities (2.2.15) and (2.2.16) from the introduction, and which provides the right
ordering of two solutions to (F-KPP) with different initial conditions. Its proof is based
on a careful examination of the Feynman-Kac representations of these solutions, using
all tools that were introduced in previous sections.

To state the lemma, we introduce two auxiliary velocities,

v1 :=
√

2(es+ 1) and (2.6.1)
v2 := inf{v > v1 + 1 : |η(v)| ≥ 2v21 + 2}, (2.6.2)

where η(v) was defined above (2.4.6); note that display (2.4.6) also ensures that v2 is
finite. By comparing the BBMRE with the BBM with constant branching rate es, for
which the speed of the maximum is

√
2es, we obtain

v0 < v1 < v2.
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Lemma 2.6.1. For each u > 0 and each v > v2, there exists ∆0 = ∆0(u, v) > 0 as
well as a P-a.s. finite random variable T = T (u, v), such that P-a.s., for all ∆ > ∆0,
y ∈ [0, vt] and t ≥ T ,

wy(t, y − vt) ≥ wy+∆(t+ u, y − vt). (2.6.3)

Proof. We start with upper bounding the right-hand side of (2.6.3). By the Feynman-
Kac representation (2.3.7) and the fact that supw∈[0,1] F̃ (w) = 1, cf. Proposition 2.3.3,
it follows with any ∆ > 0 that

wy+∆(t+ u, y − vt) = Ey−vt

[
e
∫ t+u
0 ξ(Xs)F̃ (wy+∆(t+u−s,Xs)) ds;Xt+u ≥ y +∆

]
≤ Ey−vt

[
e
∫ t+u
0 ξ(Xs) ds;Xt+u ≥ y +∆

]
.

(2.6.4)

To the right-hand side of (2.6.4) we now successively apply both parts of the perturba-
tion Proposition 2.5.1 (with V sufficiently large, as explained before Proposition 2.5.1
and A = 2v). In order to apply them, we let t ≥ u∨T1 ∨T2 =: T , where T1, T2 are the
P-a.s. finite random variables occurring in the statement of the perturbation lemma.
For such t, we then obtain

wy+∆(t+ u, y − vt) ≤ c1e
c1uEy−vt

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y +∆

]
≤ c1c2e

c1u−∆/c2Ey−vt

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y

]
,

(2.6.5)

which is our first intermediate inequality.
Let us now turn our focus to bounding the left-hand side of (2.6.3) from below. By

the Feynman-Kac representation (2.3.7),

wy(t, y − vt) = Ey−vt

[
exp

{∫ t

0

ξ(Xr)F̃ (w
y(t− r,Xr)) dr

}
;Xt ≥ y

]
. (2.6.6)

We now claim that F̃ satisfies,

F̃ (w) = F (w)/w ≥ 1− 1
2
(µ2 − 2)w, w ∈ [0, 1]. (2.6.7)

Indeed, by (2.3.1) and the normalisation (2.3.4) of Remark 2.3.2, the non-linearity F
of (F-KPP) satisfies F (0) = 0 and F ′(0) = 1. In addition, by (2.3.5), F ′′ ≥ −µ2 + 2
on [0, 1]. Therefore, by a first order Taylor approximation with Lagrange remainder,

F (w) ≥ w +
1

2
inf

w∗∈[0,1]
F ′′(w∗)w2 = w − 1

2
(µ2 − 2)w2,

from which (2.6.7) directly follows.
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x
y − vt y

t

t−K

s

βy,t

Figure 2.3: Sketch of a trajectory of the Brownian motion (Xs)s≥0, started at y − vt,
up until the hitting time Hy of y, which realises the good event G. This trajectory
does not hit the moving barrier βy,t(s) (thick solid line) in the time interval [0, t−K]
and thus avoids the dashed region. The function wy(t − s, ·) is close to 1 in the grey
region, close to 0 in its complement, and changes its value from 0 to 1 in the vicinity
of the thick dashed line whose slope is v0.

Plugging (2.6.7) into (2.6.6) and using the uniform ellipticity (2.2.4) from Assump-
tion 1, we arrive at

wy(t, y − vt) ≥ Ey−vt

[
e
∫ t
0 ξ(Xs) ds e−

es
2
(µ2−2)

∫ t
0 w

y(t−s,Xs) ds;Xt ≥ y
]
. (2.6.8)

In order to obtain a suitable control of the second exponential factor in (2.6.8), we
construct an event restricted to which the second exponential is bounded from below in
a suitable way. For this purpose, recall the definition of v1 from (2.6.1), and introduce
for given t, y the moving boundary

βy,t(s) := y − v1(t− s), s ∈ [0, t]. (2.6.9)

By Ty,t := inf{s ≥ 0 : Xs = βy,t(s)} we denote the first hitting time of βy,t by a
Brownian motion started at y − vt.

We claim that for K > 1 ∨ v−2
1 to be fixed later, on the good event G := {Ty,t ∈

[t−K, t]}, it holds that ∫ t−K

0

wy(t− s,Xs) ds ≤ 1, (2.6.10)
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see Figure 2.3 for an illustration. Indeed, note that using again the Feynman-Kac
representation (2.3.7) as well as the uniform ellipticity (2.2.4) of Assumption 1, in
combination with the fact that supw∈[0,1] F̃ (w) = 1 once more, it holds that

wy(t− s,Xs) ≤ EXs

[
e
∫ t−s
0 ξ(X̃r) dr; X̃t−s ≥ y

]
≤ ees(t−s)PXs

(
X̃t−s ≥ y

)
,

where we write X̃ for an independent Brownian motion started at Xs in order to avoid
confusion of the two processes. On G one has that Xs ≤ y− v1(t− s) for s ∈ [0, t−K].
Hence, by a straightforward coupling argument, on G we have

PXs

(
X̃t−s ≥ y

)
≤ P0

(
X̃t−s ≥ v1(t− s)

)
= P (Z ≥ v1

√
t− s),

where Z is a standard Gaussian random variable. Using this in combination with a
standard Gaussian bound (see e.g. [AT07, (1.2.2)]) and taking advantage of the fact
that by assumption v1

√
(t− s) ≥ v1

√
K ≥ 1, it follows that on G we can upper bound∫ t−K

0

wy(t− s,Xs) ds ≤
∫ t−K

0

ees(t−s)P
(
Z ≥ v1

√
t− s

)
ds

≤ 1√
2π

∫ t−K

0

e−(v21/2−es)(t−s) ds =
1√
2π

∫ t

K

e−(v21/2−es)z dz

≤ 1√
2π(v21/2− es)

e−K(v21/2−es) ≤ 1,

(2.6.11)

where in the last inequality we used v21/2−es = 1, which holds by (2.6.1). This proves
(2.6.10).

Coming back to the task of finding a lower bound for the right-hand side of (2.6.8),
we infer by the above discussion that on G we can use (2.6.10) to bound the second
exponential factor on the right-hand side of (2.6.8) by

e−
es
2
(µ2−2)

∫ t
0 w

y(t−s,Xs) ds ≥ e−
es
2
(µ2−2)

(
1+

∫ t
t−K wy(t−s,Xs) ds

)
≥ e−

es
2
(µ2−2)(1+K),

(2.6.12)

where in the last inequality we used that 0 ≤ wy(s, y) ≤ 1 uniformly for all (s, y) ∈
[0,∞) × R. Consequently, by restricting the expectation on the right-hand side of
(2.6.8) to G, it follows by (2.6.12) that whenever v > v1, then

wy(t, y − vt) ≥ e−
es
2
(µ2−2)(1+K)Ey−vt

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y, G

]
. (2.6.13)

This is our second intermediate inequality.
In order to finish the proof of (2.6.3), we need to compare the expectations on the

right-hand side of (2.6.5) and on the right-hand side of (2.6.13). This is the purpose
of the following lemma.
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Lemma 2.6.2. Let v2 be as in (2.6.2). Then for every v > v2 there exists constants
K = K(v), C̃ = C̃(v) ∈ (0,∞) such that for P-a.a. ξ, for all t large enough and all
y ∈ [0, vt], one has

Ey−vt
[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y

]
≤ C̃Ey−vt

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y, G

]
. (2.6.14)

We postpone the proof of Lemma 2.6.2 and complete the proof of Lemma 2.6.1 first.
By combining the lower bound (2.6.13), the upper bound (2.6.5) and Lemma 2.6.2, we
obtain.

wy(t, y − vt)− wy+∆(t+ u, y − vt)

≥
(
e−

es
2
(µ2−2)(K+1) − C̃c1c2e

c1u−∆/c2
)
Ey−vt

[
e
∫ t
0 ξ(Xs) ds;Xt ≥ y,G

]
.

For every ∆ satisfying

∆ ≥ ∆0 := c2

(
c1u+

es

2
(µ2 − 2)(K + 1) + ln(C̃c1c2)

)
,

the right-hand side is positive, which proves (2.6.3) and thus the lemma.

Proof of Lemma 2.6.2. To prove the lemma, we use the machinery of tilted measures
as introduced in Section 2.4. We recall the notation ζ = ξ−es from (2.4.1) and observe
that, by multiplying both sides of (2.6.14) by e−es t, it is sufficient to show (2.6.14)
with ζ in place of ξ.

We start by proving an upper bound for the left-hand side of (2.6.14) in terms of
tilted measures. By Lemma 2.5.5 there exist constants C,L < ∞ such that for any
η < 0, for t large enough uniformly in y ∈ [0, vt] it holds that

Ey−vt
[
e
∫ t
0 ζ(Xs) ds;Xt ≥ y

]
≤ CEy−vt

[
e
∫Hy
0 ζ(Xs) ds ;Hy ∈ [t− L, t]

]
≤ Ce−ηtZζ,η

y−vt,yP
ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
.

(2.6.15)

In the next step, we bound the expression appearing on the right-hand side of
(2.6.14) from below. To this end, let pζ,ηy (t) := P ζ,η

y (Xt ≥ y). Using the strong Markov
property we obtain

Ey−vt
[
e
∫ t
0 ζ(Xs) ds;Xt ≥ y, Ty,t ≥ t−K

]
≥ e−(es−ei)KEy−vt

[
e
∫Hy
0 ζ(Xs) ds;Hy ∈ [t−K, t], Xt ≥ y, Ty,t ≥ t−K

]
≥ e−(es−ei−η)Ke−ηtEy−vt

[
e
∫Hy
0 (ζ(Xs)+η) ds;Hy ∈ [t−K, t], Xt ≥ y, Ty,t ≥ t−K

]
= e−(es−ei−η)Ke−ηtZζ,η

y−vt,yE
ζ,η
y−vt

[
pζ,ηy (t−Hy), Hy ∈ [t−K, t], Ty,t ≥ t−K

]
≥ 1

2
e−(es−ei−η)Ke−ηtZζ,η

y−vt,yP
ζ,η
y−vt

(
Hy ∈ [t−K, t], Ty,t ≥ t−K

)
,

(2.6.16)
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where in the last inequality we used Lemma 2.4.4 to infer that for any η < 0 and s ≥ 0

one has pζ,ηy (s) ≥ P

√
2|η|

0 (Xs ≥ 0) ≥ 1/2.
In view of (2.6.15) and (2.6.16), in order to complete the proof of Lemma 2.6.2, it

is sufficient to show that

P ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
≤ CP ζ,η

y−vt
(
Hy ∈ [t−K, t], Ty,t ≥ t−K

)
, (2.6.17)

for some suitably chosen parameter η and constants C,K,L, P-a.s. for all t large,
uniformly in y ∈ [0, vt].

To this end we will need two further auxiliary lemmas. The first one will be used
to upper bound the probability appearing on the right-hand side of (2.6.17), and also
specifies the range of suitable η’s.

Lemma 2.6.3. Let η < 0 be such that
√

2|η| > v1(1+
2L
K
), and let 0 < L < K be such

that L/K ≤ 1/3. Then, P-a.s. for every y ∈ R and v > v1,

P ζ,η
y−vt

(
Hy ≤ t, Ty,t ≤ t−K

)
≤ 2P ζ,η

y−vt(Hy < t− L). (2.6.18)

The second auxiliary lemma is a quantitative extension of a part of Proposition
3.5 of [DS22]. It states that under the tilted measure, if the tilting is not too strong,
the probability to cross a large interval in time t is comparable to the probability of
crossing the same interval in time t− L.

Lemma 2.6.4. For every v > vc there is c = c(v) < ∞ such that for all L large
enough and η ∈ (η(v) + c

L
, 0), P-a.s. for all t large enough and |y| ≤ 2vt,

P ζ,η
y−vt(Hy ≤ t− L) ≤ 1

4
P ζ,η
y−vt(Hy ≤ t),

and as a consequence,

P ζ,η
y−vt(Hy ≤ t− L) ≤ 1

3
P ζ,η
y−vt

(
Hy ∈ (t− L, t]

)
.

In order not to hinder the flow or reading, we postpone the proofs of these two lem-
mas to the end of the current section. We now come back to the proof of Lemma 2.6.2
and complete it by showing (2.6.17). To this end we choose the parameters η, K,
and L in such a way that the previous two lemmas can be used simultaneously. More
precisely, for a given v ≥ v2 we fix arbitrary η so that

|η(v)| − 1 > |η| > 2v21, (2.6.19)

which is possible by the definition of v2 in (2.6.2). Then we fix L as large as required
in Lemma 2.6.4. Consequently, due to (2.6.19), the required assumptions on η are
satisfied in our setting. Finally, we fix K ≥ 3L and observe that, in combination
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with (2.6.19),
√

2|η| > 2v1 ≥ v1(1 +
2L
K
), so that the assumptions of Lemma 2.6.3 are

satisfied as well.
With this choice of constants, noting that {Hy ∈ [t−K, t], Ty,t ≥ t−K} = {Hy ≤

t, Ty,t ≥ t−K} (cf. Figure 2.3 also), the right-hand side of (2.6.17) satisfies

P ζ,η
y−vt

(
Hy ∈ [t−K, t], Ty,t ≥ t−K

)
= P ζ,η

y−vt
(
Hy ≤ t

)
− P ζ,η

y−vt
(
Hy ≤ t, Ty,t < t−K

)
≥ P ζ,η

y−vt
(
Hy ≤ t

)
− 2P ζ,η

y−vt
(
Hy ≤ t− L

)
,

(2.6.20)

where the last inequality follows from Lemma 2.6.3. This can be written as

P ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
− P ζ,η

y−vt
(
Hy ≤ t− L

)
≥ 2

3
P ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
, (2.6.21)

where the last inequality is a direct consequence of Lemma 2.6.4. Now combining
(2.6.20) and (2.6.21) we obtain (2.6.17), which completes the proof.

It remains to provide the proofs of Lemmas 2.6.3 and 2.6.4.

Proof of Lemma 2.6.3. Using the tower property for conditional expectations we ob-
tain

P ζ,η
y−vt(Hy < t− L) ≥ P ζ,η

y−vt(Hy < t− L, Ty,t ≤ t−K)

= Eζ,η
y−vt

[
1{Ty,t≤t−K}P

ζ,η
y−vt(Hy < t− L | FTy,t)

]
,

(2.6.22)

where FTy,t is the canonical stopped σ-algebra associated to Ty,t. It follows from
Lemma 2.4.4 that the drift of X under the tilted measure P ζ,η

y−vt is always larger than√
2|η|. On the event {0 ≤ Ty,t ≤ t−K}, by the strong Markov property at time Ty,t

and using that XTy,t = βy,t(Ty,t), it holds that

P ζ,η
y−vt

(
Hy < t− L | FTy,t

)
= P ζ,η

XTy,t

(
Hy < t− L− Ty,t

)
≥ inf

0≤u≤t−K
P ζ,η
βy,t(u)

(Hy ≤ t− u− L)

≥ inf
0≤u≤t−K

P

√
2|η|

βy,t(u)
(Hy ≤ t− u− L).

(2.6.23)

Recalling the assumptions of the lemma, for u ∈ [0, t−K] we have that

E

√
2|η|

βy,t(u)
(Xt−u−L) = βy,t(u) +

√
2|η|(t− u− L)

≥ y − v1(t− u) + v1
(
1 + 2L

K

)
(t− u− L)

≥ y − v1L+ v1
2L
K
(K − L) ≥ y + 1

3
v1L ≥ y,

(2.6.24)
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where for the penultimate inequality we used K−L ≥ 2
3
K, which holds by assumption.

In combination with the fact that X is a Brownian motion with drift under P
√

2|η|
βy,t(u)

, it
follows that the probability on the right-hand side of (2.6.23) is at least 1/2. Plugging
this back into (2.6.22) we arrive at

P ζ,η
y−vt(Hy < t− L) ≥ 1

2
P ζ,η
y−vt

(
Ty,t ≤ t−K

)
≥ 1

2
P ζ,η
y−vt

(
Ty,t ≤ t−K,Hy ≤ t

)
,

as claimed.

Next we give the proof of Lemma 2.6.4.

Proof of Lemma 2.6.4. The first part of the proof of this lemma follows the same
steps as the proof of Proposition 3.5 of [DS22] (see also the proof of Lemma 2.5.4). By
Lemma 2.5.2(a), P-a.s. for all t large enough, and all |y| ≤ 2vt, there exist constants
ηζy−vt,y(v) so that

E
ζ,ηζy−vt,y(v)

y−vt [Hy] = t. (2.6.25)

To simplify the notation we write η̃ := ηζy−vt,y(v). Using Lemma 2.5.2(b), we can
assume that η̃ < η(v) + c

2L
, and thus, by the hypothesis of the lemma,

η − η̃ >
c

2L
. (2.6.26)

By definition of tilted measures (2.4.3),

P ζ,η
y−vt(Hy ≤ t− L) =

1

Zζ,η
y−vt,y

Ey−vt

[
e
∫Hy
0 (ζ(Xs)+η) ds;Hy ≤ t− L

]
=
Zζ,η̃
y−vt,y

Zζ,η
y−vt,y

1

Zζ,η̃
y−vt,y

Ey−vt

[
e
∫Hy
0 (ζ(Xs)+η̃) dse−Hy(η̃−η);Hy ≤ t− L

]
.

=
Zζ,η̃
y−vt,y

Zζ,η
y−vt,y

Eζ,η̃
y−vt

[
e−Hy(η̃−η);Hy ≤ t− L

]
.

(2.6.27)

Define random variables τi = Hy−vt+i − Hy−vt+i−1, i = 1, . . . , ⌊vt⌋, and τvt = Hy −
Hy−vt+⌊vt⌋, so that

∑⌊vt⌋
i=1 τi + τvt = Hy, and their re-centred versions τ̂i = τi−Eζ,η̃

y−vt[τi]

for i = 1, . . . , ⌊vt⌋, and τ̂vt = τvt − Eζ,η̃
y−vt[τvt]. Further, let

Y ζ
y−vt,y :=

(η̃−η)
σ̃

( ⌊vt⌋∑
i=1

τ̂i + τ̂vt
)
, (2.6.28)
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where
σ̃ = σ̃ζy−vt,y(v) = |η̃ − η|

√
Var

P ζ,η̃
y−vt

(Hy). (2.6.29)

is chosen so that the variance of Y ζ
y−vt,y is one. Denoting by µζy−vt,y the distribution of

Y ζ
y−vt,y under P ζ,η̃

y−vt,y, using also the fact that Eζ,η̃
y−vt,y[Hy] = t, by the definition of η̃,

(2.6.27) can be rewritten as

P ζ,η̃
y−vt(Hy ≤ t− L)

=
Zζ,η̃
y−vt,y

Zζ,η
y−vt,y

e(η−η̃)tEζ,η̃
y−vt

[
e−σ̃Y

ζ
y−vt,y ;Y ζ

y−vt,y ∈
[L(η − η̃)

σ̃
,∞
)]

=
Zζ,η̃
y−vt,y

Zζ,η
y−vt,y

e(η−η̃)t
∫ ∞

L(η−η̃)/σ̃
e−σ̃uµζy−vt,y(du).

(2.6.30)

Setting L = 0 in the above formula we further obtain

P ζ,η
y−vt(Hy ≤ t) =

Zζ,η̃
y−vt,y

Zζ,η
y−vt,y

e(η−η̃)t
∫ ∞

0

e−σ̃uµζy−vt,y(du), (2.6.31)

Hence, to finish the proof of the lemma, it suffices to show that the integral on the right-
hand side of (2.6.30) is at most 1/4 of the integral on the right-hand side of (2.6.31).

To see this we proceed as in the proof of Lemma 3.6 of [DS22]. By the strong
Markov property the random variables τ̂i, i = 1, . . . , ⌊vt⌋, and τ̂vt are independent
under P ζ,η̃

y−vt. Further, it is a straightforward consequence of the definitions of the log-
arithmic moment generating functions in [DS22, (2.7)] and their being well defined
for η < 0 that these random variables have uniform exponential moments. Moreover,
recall that σ̃ was chosen such that the variance of µζy−vt,y is one. This allows the ap-
plication of a local central limit theorem for independent normalised sequences [BR10,
Theorem 13.3], which implies that

sup
B

|µζy−vt,y(B)− Φ(B)| ≤ c1(⌈vt⌉)−1/2, (2.6.32)

where the supremum is taken over all intervals B in R and Φ denotes the standard
Gaussian measure. Note that the constant c1 in the last display depends only on the
uniform bound of the exponential moments of the τ̂i’s. Without loss of generality, we
can assume that c1 > 4. We also note that by [DS22, (3.8)] (see also (2.5.9)) the
variance σ̃2 defined in (2.6.29) satisfies for P-a.a. ζ and t large enough

c−1
2

√
⌈vt⌉ ≤ σ̃ ≤ c2

√
⌈vt⌉. (2.6.33)

We now have all ingredients to finish the proof. To this end, we assume that the
constant c from the statement of the lemma satisfies the inequality

ℓ :=
L(η − η̃)

σ̃
≥ c

2c2
√
vt

≥ 20c1√
vt
. (2.6.34)
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To bound the integral in (2.6.30) from above, we observe that for any interval (a, b) of
length ℓ we have Φ((a, b)) ≤ ℓ/

√
2π and thus µζy−vt,y((a, b)) ≤ (ℓ + c1/

√
vt) ≤ 2ℓ, by

(2.6.34). Therefore, using (2.6.33) in the last step,∫ ∞

L(η−η̃)/σ̃
e−σ̃uµζy−vt,y(du) ≤

∞∑
i=1

e−σ̃iℓµζy−vt,y((iℓ, (i+ 1)ℓ))

≤ 2ℓe−σ̃ℓ

1− e−σ̃ℓ
≤ 2σ̃ℓe−σ̃ℓ

1− e−σ̃ℓ
· c2√

vt
.

(2.6.35)

On the other hand, using the rough bound Φ((0, x)) ≥ x/5 which holds for small
enough x, and (2.6.34),∫ ∞

0

e−σ̃uµζy−vt,y(du) ≥
∫ L(η−η̃)/2σ̃

0

e−σ̃uµζy−vt,y(du)

≥ e−σ̃ℓ/2µζy−vt,y((0, ℓ/2)) ≥ e−σ̃ℓ/2
(
Φ((0, ℓ/2))− c1√

vt

)
≥ e−σ̃ℓ/2

c1√
vt
.

(2.6.36)

By increasing the value of the constant c and thus of σ̃ℓ ≥ c/2, the right-hand side
of (2.6.35) can be made at most 1/4 as large as the right-hand side of (2.6.36). This
completes the proof of the lemma.

2.7 Proof of the tightness of the maximum of the
BBMRE

We are now ready to prove the main theorem of this paper.

Proof of Theorem 2.2.1. For ε ∈ (0, 1/2) let xt = xt(ε) ∈ R the unique location where

wxt(t, 0) = P
ξ
0(M(t) ≥ xt) = ε. (2.7.1)

As already explained in Section 2.2.1, to show the tightness of the re-centered maximum
M(t) we need to show that there exists ∆ = ∆(ε) <∞ such that for all t > 0 it holds
that

wxt−∆(t, 0) = P
ξ
0(M(t) ≥ xt −∆) > 1− ε. (2.7.2)

Note that (2.7.1) and the law of large numbers for M(t) (that is limt→∞M(t)/t =
v0, cf. (2.2.6)) imply that

lim
t→∞

xt
t
= v0, P-a.s. (2.7.3)
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A direct consequence of (2.7.3) is that for t large enough, we can guarantee that xt is
large enough in order to apply Corollary 2.3.6 to wxt(t, 0). Therefore, for large enough
t, we can infer the existence of a P-a.s. finite time T <∞ such that

wxt(t+ t′, 0) ≥ 1− ε for all t′ ∈ [T, T + 1]. (2.7.4)

For any u ∈ N define the subset Ωu = {T ∈ [u− 1, u)} of the probability space on
which ξ is defined. We now consider ξ ∈ Ωu. Observe that (2.7.2) would follow from
(2.7.4) on Ωu, if for a suitably large ∆ <∞ we had

wxt−∆(t, 0) ≥ wxt(t+ u, 0). (2.7.5)

Instead of comparing these two function directly at x = 0 we use the Sturmian
principle, to relate the inequality (2.7.5) at the origin to an inequality at some point
on the negative half-line. More precisely, recall from Section 2.3.2 that for any t > 0,
u > 0 and ∆̃ <∞ the difference

W u,∆̃(t, x) := wxt−∆̃(t, x)− wxt(t+ u, x)

solves a linear parabolic equation of the form (2.3.8), with initial condition

W u,∆̃(0, x) = 1[xt−∆̃,∞)(x)− wxt(u, x).

Since 0 < wxt(u, x) < 1 for all u > 0 and x ∈ R, cf. (2.3.10), it follows moreover,
that W u,∆̃(0, x) > 0 for x > xt − ∆̃ and W u,∆̃(0, x) < 0 for x < xt − ∆̃. Therefore it
holds by Lemma 2.3.4 that for all t > 0 the sets

{x ∈ R : wxt−∆̃(t, x) > wxt(t+ u, x)} = {x ∈ R : W u,∆̃(t, x) > 0}
are open intervals unbounded to the right. Thus, in order to prove (2.7.5) it suffices
to find some x∗ = x∗(t) < 0 and ∆ < ∞ such that W u,∆(t, x∗) > 0, as this implies
0 ∈ {x ∈ R : W u,∆(t, x) > 0}, which in turn implies (2.7.5); for an illustration of this
argument see Figure 2.4.

To find such x∗(t) take any v > v2, where v2 is defined in (2.6.2). Since v2 > v0 and
(xt−∆)/t→ v0, by (2.7.3), it follows that xt−∆ ∈ [0, vt] for all t that are sufficiently
large. Consequently we can apply Lemma 2.6.1 and infer the existence of an a.s. finite
random variable T (u, v) and some ∆0(u, v) > 0 such that if we require, additional to
the previous conditions on the size of t, that t > T (u, v) and that ∆ > ∆0(u, v), then

wxt−∆(t, x∗) ≥ wxt(t+ u, x∗),

with x∗ = xt −∆− vt < 0. By the previous discussion this implies

wxt−∆(t, 0) ≥ wxt(t+ u, 0) ≥ 1− ε,

and hence tightness of the family (M(t)−mξ(t))t≥0 for P-a.e. ξ ∈ Ωu. As Ω = ∪u≥1Ωu,
this completes the proof.
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x⇤ 0 xt �� xt

t = 0

x⇤ 0 xt �� xt

t > 0

Figure 2.4: The top figure shows the graph of the function wxt−∆(0, ·) = 1[xt−∆,∞)(·) in
black and the function wxt(T, ·) in blue. The lower figure shows the graph of the same
functions at some positive time t > 0. By the Sturmian principle, for any t > 0, the
region where wxt−∆(t, ·) dominates wxt(t+ T, ·) is an interval that contains [x∗,∞).
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A branching annihilating random walk
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3. Introduction

The second part of this thesis is concerned with an entirely different model of spatial
branching system, a branching annihilating random walk (BARW), which evolves in
discrete time on the d-dimensional integer lattice Zd. Contrary to BBMRE from Part I,
the process we are concerned with in here does not evolve in an external random
environment, but rather it locally interacts with itself and in this sense, generates its
own environment with which it then interacts.

Let us start by giving an informal definition of the process. Consider an initial
distribution of particles on the grid Zd. All particles have a unit life span and die
simultaneously after creating the next generation. At the end of each generation,
before its death, each particle gives birth to a Poisson number of offspring with mean
µ > 0. All the particle’s children then jump independently to a uniformly chosen site
within a fixed distance R ∈ N from their parent. Whenever two or more particles
from the offspring generation try to occupy the same site, all particles on that site get
annihilated. This defines a two-parameter stochastic process depending on the mean
number of offspring µ and the maximal length of displacement R of any given particle
from its parent particle. All particles are of the same type and for each generation,
we are interested in whether a given site x ∈ Zd is occupied or not. To this end, we
attach to each site x ∈ Zd the local state space {0, 1}. The synchronous updating of all
local states lets us interpret the BARW η = (ηn)n≥0 as a discrete-time Markov process
where the full state space is given by its configuration space {0, 1}Zd .

Note that the synchronous updating of local states lets us define the BARW directly
on the (countably infinite) lattice Zd. Indeed, we can define the stochastic updating
rule of the BARW with the help of a Markov kernel κ from {0, 1}Zd to {0, 1}Zd , to-
gether with the discrete σ-algebras. We use the convention that κ is a probability
measure in its first argument and a measurable function in its second. Now for any
generation n ≥ 0, the particle distribution ηn+1(x) at a given site x ∈ Zd is a function
of the configuration ηn in a neighbourhood of x. More precisely, ηn+1(x) is a function
of (ηn(y))y∈BR(x), where BR(x) = {z ∈ Zd : ∥x − z∥ ≤ R}, and of additional random-
ness. This is true independently for all x ∈ Zd. Hence, the conditional probability
of finding ηn+1 in some specific configuration ζ ∈ {0, 1}Zd , given the configuration of
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ηn ∈ {0, 1}Zd , can be written as

κ(dζ, ηn) =
∏
x∈Zd

px(dζ(x), ηn|BR(x)), (3.0.1)

where (px)x∈Zd is a family of probability kernels from {0, 1}BR(x) to {0, 1} respectively,
giving the local updating-rule at site x. I.e. px({1}, ηn|BR(x)) is the probability that,
given the particle configuration ηn|BR(x) ∈ {0, 1}BR(x), the dynamics of the BARW
produces a particle at x at time n + 1. In Section 4.1 of Chapter 4 below, we derive
that for any configuration ζ ∈ {0, 1}Zd , the measures px(·, ζ|BR(x)) are Bernoulli random
measures, with µ-dependent parameter that is unimodal in the density of 1’s in ζ|BR(x).
The unimodality with respect to the density of the Bernoulli-parameters for the local
updating rules reflects the intuitive understanding that having many particles near
each other leads to more interaction, i.e. annihilation, between those particles.

By the description of the BARW via the kernel (3.0.1), we can interpret the BARW
as an interacting family of Markov processes, better known as probabilistic cellular
automata (PCA), cf. [FLN18]. This interpretation of BARW as a PCA is used heavily
in Chapters 4 and 5 below. We therefore give a brief overview of some general aspects
of PCA and how they can be related to the BARW.

PCA are the discrete-time Markov processes that have a stochastic updating rule
that can be described by a product similar to (3.0.1), with any finite (or infinite)
local neighbourhoods and any local kernels. Their name is derived from the more
classical cellular automata, which are the analogous discrete-time (locally interacting)
dynamical systems with deterministic updating-rule, cf. [Kar05, Kar12]. To better
place these PCA in the context of dynamical systems, we collect part of the typical
classification of spatially extended dynamical systems in Table 3.1.

Model Class Space Time State space

Probabilistic Cellular Automaton (PCA) discrete discrete discrete

Coupled Map Lattice (CML) discrete discrete continuous

Interacting Particle System (IPS) discrete continuous discrete

Table 3.1: Classification of spatially extended dynamical systems

In the classification of Table 3.1, interacting particle systems (IPS) stand out as
not having a deterministic counterpart. Indeed, typically, IPS are defined such that
interaction events (i.e. motion, branching, etc.) occur at specific random rates. We re-
fer to [Swa17] for a comprehensive overview and [Lig85, Lig99] for an in-depth analysis
of interacting particle systems.
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All three systems in Table 3.1 are related to one-another and we make use of
all three of these systems in Chapter 4 below. Importantly, IPS offer an alternative
continuous-time approach to studying (discrete space) phenomena on discrete state
spaces that are addressed by PCA. For this reason, PCA and IPS are sometimes
grouped together under the umbrella term of spin-systems, the term coming from the
theory of spin-glasses.
Remark 3.0.1. Despite their many similarities, one should distinguish between PCA
and IPS carefully. Both are Markovian processes defined by families of interacting
stochastic processes but have the essential difference that PCA update in parallel, i.e.
synchronously, while IPS update sequentially, i.e. asynchronously, where all interaction
events occur at specific rates independently for each particle. Consequently, interac-
tions in IPS are not only due to a shared past but also due to constraints imposed on
these arrival rates. This often leads to a more subtle construction for IPS on infinite
lattices, by e.g. taking finite-region limits, cf. [Lig85, Section VII.3].

The main questions of interest for these spin-systems have to do with their long-
time behaviour. The most basic of these questions being about the (non-)triviality of
the system.

(Q1) Can one identify parameter-regimes of a specific model for which there is almost
sure extinction? And parameter-regimes for which the process survives with
positive probability?

If a non-trivial limiting behaviour can be established, the next natural question is that
of describing the invariant measures of the model, as these are the possible limits of the
distribution of the system as t→ ∞. Moreover, one wants to understand the domains
of attraction of each of these measures, i.e. determining the class of initial distributions
such that, conditioned on survival, the distribution of the process converges to that
measure as t→ ∞.

(Q2) Do there exist invariant measures for the model? If so, how many?

(Q3) Conditioned on survival, what are the limiting distributions?

These three questions have been addressed for many different examples of spin-systems,
both in discrete and continuous time, see e.g. [FLN18, Swa17] and references therein
for PCA and IPS respectively. In Chapter 4 below, we add to this list by addressing
and partially answering (Q1)–(Q3) for the BARW.

Monotonicity

Many tools and techniques for addressing (Q1)–(Q3) are based on coupling differ-
ent spin-systems to each other. The most successful of these couplings make use of
monotonicity properties that a system might possess.
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To discuss (non-)monotonicity of spin-systems, we need to introduce a notion of
monotonicity on probability kernels, cf. PCA are defined via kernels of the form (3.0.1).
To this end, consider first the local state space {0, 1}, which is endowed with the natural
order 0 ≤ 1. This order can be extended to a partial order on the entire configuration
space by setting for any ζ, ζ̃ ∈ {0, 1}Zd

ζ ≤ ζ̃ iff ζ(x) ≤ ζ̃(x), for all x ∈ Zd. (3.0.2)

This can be further extended to all continuous functions f ∈ C({0, 1}Zd
) by saying

that f is increasing if
ζ ≤ ζ̃ implies f(ζ) ≤ f(ζ̃).

Moreover, we can use increasing functions to define the stochastic order on probability
measures. Let µ1, µ2 be probability measures on {0, 1}Zd , then we set

µ1 ≤ µ2 iff
∫
{0,1}Zd

f dµ1 ≤
∫
{0,1}Zd

f dµ2, for all increasing f ∈ C({0, 1}Zd

).

The stochastic order lets us talk about monotonicity properties of spin-systems. We
say that a spin-system is monotone (or attractive) if the Markov kernel κ describing
the dynamics, cf. (3.0.1), yields increasing probability measures, i.e. if either of the
two following equivalent conditions are satisfied

(i) κ(·, ζ) stochastically dominates κ(·, ζ̃) for all ζ, ζ̃ ∈ {0, 1}Zd such that ζ ≥ ζ̃

(ii)
∫
{0,1}Zd κ(dζ, ·)f(ζ) is a monotone function whenever f ∈ C({0, 1}Zd

) is mono-
tone.

It follows from e.g. [Lig85, Theorem II.2.4] that domination in the stochastic order is
characterised by the existence of a monotone coupling, i.e. µ1 ≤ µ2 if and only if there
is a coupling (ζ, ζ̃) such that ζ ∼ µ1, ζ̃ ∼ µ2 and ζ ≤ ζ̃.

This monotone coupling is a common (and very powerful) tool for working with
spin-systems. It is typically applied by either comparing two distinct spin-systems with
the same initial configuration or by comparing two copies of the same spin-system with
two distinct initial configurations that are increasing, cf. (3.0.2).

For the specific model of the BARW, it is intuitively clear that the system is non-
monotone due to the annihilation. More formally, we can see this by comparing two
copies of BARW with different and ordered initial configurations. Let η0, η̃0 ∈ {0, 1}Zd

be two initial configurations such that η0 ≤ η̃0 and write η = (ηn)n≥0 and η̃ = (η̃n)n≥0

for the processes corresponding to these initial configurations. As noted under (3.0.1),
given any configuration ζ ∈ {0, 1}Zd , the local updating measures px(·, ζ|BR(x)), for
x ∈ Zd, are Bernoulli measures with (µ-dependent) parameter that is unimodal in the
density of 1’s in BR(x). Therefore, an increase in the local density of 1’s invariably
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leads to Bernoulli measures with smaller parameters. This can be used, e.g. to build
a counterexample to (i) by showing that no monotone coupling exists uniformly in all
initial configurations (i.e. take η̃0 to be the full initial configuration η̃0 ≡ 1 and choose
η0 so that for some x ∈ Zd the Bernoulli measure px(·, η|BR(x)) has a larger parameter
than the corresponding parameter of the measure px(·, η̃|BR(x))).

It is important to note, however, that the non-monotonicity of the BARW (ηn)n≥0

does not imply that it cannot be coupled monotonically to any other system (ζn)n≥0

for any initial configuration η0 and any parameters of the model. In fact, in Chapter 4
we construct a coupling between the BARW (defined with model parameters in some
specified regime) and a discrete-time particle system (i.e. a PCA), which is monotone
in the sense introduced above. Note, however, that the coupling depends on the specific
regime of model parameters, outside of which the specific coupling we construct does
not exist. This comparison with a monotone PCA for suitable parameter-regimes is,
in fact, precisely how we address question (Q1) on survival of the BARW in Chapter 4.

Invariant measures and ergodicity

Let us now turn to questions (Q2)–(Q3) about the equilibria of spin-systems. These
equilibria are characterised by probability measures on the configuration space, which
are left invariant by the dynamics of the system.

Let ν be a probability measure on the configuration space {0, 1}Zd and let the initial
configuration η0 of the spin-system η = (ηn)n≥0 be distributed as ν. (We write time
as discrete, but the following results are also true for continuous-time spin-systems.)
Then ν is an invariant law if for all n > 0 the distribution of ηn is also given by ν, i.e.

ν(η0 ∈ A) = ν(ηt ∈ A), for all t ∈ N, and A ⊆ {0, 1}Zd

. (3.0.3)

We denote by I the set of all invariant measures for the corresponding spin-system.
Moreover, we endow the set of probability measures on {0, 1}Zd with the topology of
weak convergence. By the compactness of {0, 1}Zd , the set of probability measures
on {0, 1}Zd is compact with respect to the weak topology. A standard result based
on this compactness is that I is a non-empty convex and compact set, which is the
closed convex hull of its extreme points, cf. [TVS+90] for PCA and [Lig85] for IPS.
Consequently, any (two-state) spin-system on Zd either has several invariant measures
(all or none of which might be attractive for certain classes of initial configurations),
a unique non-attractive invariant measure, or a unique attractive invariant measure.
Let us comment briefly on these three cases.

The property of a spin-system having a unique attractive invariant measure is
typically referred to as the system being ergodic. This is slightly different from the
usual notion of ergodicity for dynamical systems (triviality of the σ-algebra of events
that are invariant under translations in time). However, the notion of ergodicity used
for spin-systems implies the usual notion for the corresponding stationary process
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(i.e. the spin-system that is distributed according to the unique attractive invariant
measure). The converse implication cannot be made in general, which calls for some
care when discussing ergodic measures in the context of spin-systems.

Next, in order to see that unique non-attractive invariant measures can exist, we
note first that it is well-known, both for PCA and IPS, cf. [MM14b, Lig85], that if
I = {ν}, then ν is attractive for Cesàro means. By this, we mean that if we write µk
for the distribution of the spin-system at time k ≥ 0, then

lim
n→∞

1

n

n−1∑
k=0

µk = ν, (3.0.4)

for weak convergence. This does not, however, imply ergodicity. For some initial
distribution µ0, the system might converge to a periodic orbit (ν(1), . . . , ν(T )), for some
T > 0. In this case, the Cesàro means converge to 1

T

∑T
k=1 ν

(k), which by (3.0.4) is
the unique invariant measure, but the distribution of the spin-system itself does not
converge and hence is not ergodic. See also [CM11, JK14, Swa17] for other examples
of non-ergodic spin-systems with a unique invariant measure. Note, however, that
generally, not much is rigorously known about spin-systems with periodic orbits.

Lastly, in the case where there are several invariant measures, the main objectives
are to distinguish between which measures are attractive and which are non-attractive,
as well as to describe the various domains of attraction for the attractive invariant
measures.

Remark 3.0.2. Many spin-systems exhibit trivial invariant measures. These are Dirac-
measures on monochromatic configurations. E.g. two-state spin-systems that have
an individual based description for which particles cannot be spontaneously created
(such as the BARW), the Dirac-measure on the empty configuration 0 ∈ {0, 1}Zd is
always an invariant measure. In this situation, one is interested in I \ {δ0} instead of
I. Moreover, if I \ {δ0} contains one attractive measure ν, one typically calls it the
non-trivial ergodic measure.

Below Table 3.1 we noted that PCA and IPS can be used as alternative models for
the same type of phenomena, one in discrete-time, the other in continuous-time. It is,
however, important to note that when considering invariant measures, the seemingly
subtle differences in the definitions of PCA and IPS can have non-trivial consequences
that lead to different behaviour in the two cases. In particular, in the case of one-
dimensional finite-range spin-systems, Mountford constructed in [Mou93, Mou95] a
refined coupling for IPS, which he uses in order to show that, in this case, any con-
verging subsequence (of distributions) converges towards an invariant measure. This
implies, in particular, that all one-dimensional finite-range IPS are ergodic. (This
inadvertently also precludes the possibility of periodic laws for one-dimensional finite-
range IPS, as the argument below (3.0.4) shows.) The same is, however, not true for
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one-dimensional finite-range PCA. A long open problem for PCA was the so-called
positive rates conjecture, which states that any one-dimensional PCA that has positive
rates (i.e. for which the updated content of any cell has a positive probability of being
any of the local states, regardless of the current local configuration of the system) is
ergodic. In [Gác01] (see also [Gra01]), a very complicated counter-example to this
conjecture is presented.

This difference in the possible behaviour of one-dimensional finite-range IPS and
PCA is an indication that the question of ergodicity for PCA can be quite subtle and,
in general, quite a hard one. Further evidence of this comes from a computational point
of view. It can be shown that the question of ergodicity for PCA is algorithmically
undecidable in the sense that there exists no algorithm (i.e. finite set of instructions)
that takes any PCA as input and can decide in finitely many steps whether it is ergodic
or not, cf. [TVS+90, MM14a, Kar92] for details.

Another aspect showing the complexity of the question of ergodicity for PCA, is
that often a lack of ergodicity can be translated into the existence of phase-transitions
in particular models of statistical mechanics on the space-time histories of the PCA.
This connection goes back at least to [Ver70, Ver76] and was worked out more carefully
in [KV80, GJH85, GKLM89, Der89]. See also [Lou02, MM14a, FLN18] for an overview
and some applications of this connection.

The upshot of this discussion is that invariant measures for spin-systems offer a
very rich range of behaviour and that answers to questions (Q2)–(Q3) can depend on
fine details of the particular model one is considering.

In the case of the BARW, we address (Q2)–(Q3) in Chapter 4 below, where we
identify a specific regime of model parameters, for which we can guarantee both the
existence of a non-trivial invariant measure and the convergence towards it for all (non-
trivial) initial configurations, conditioned on non-extinction. Outside of the parameter
regime for which there is this non-trivial ergodic measure, not much is known, and
simulations suggest the existence of periodic orbits (at least locally), cf. Figure 3.1.

BARW as a model of mathematical ecology

In the field of mathematical ecology, non-monotone models have generated special in-
terest as models of population dynamics subject to some type of local (self-) regulation,
cf. [Eth04, BD07, BEM07]. One goal of mathematical ecology is to study plausible
(individual based) stochastic models that might describe how spatially heterogeneous
populations of animals or plants evolve over time, see e.g. [Eth11]. Throughout their
lifetime, individuals in the population live, move (seed-dispersal for plants), repro-
duce and die. Reproduction of individuals in the population naturally leads to models
of spatial branching processes. It is however also clear that models such as branch-
ing random walk (BRW), branching Brownian motion (BBM) and their relatives are
only of limited use in this context, since by the independence of particles alive at
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Figure 3.1: Simulation of the “long-term” density in BR(0) for a one-dimensional
BARW on Z/10000Z with initial condition η0 = δ0 and with R = 500 and varying
µ, showing 20 simulations of the local density after n = 25 and n = 26 generations.
For values of µ between 1 and e2, the density concentrates a single value and for µ > e2

the local densities concentrate around multiple values, periodically flipping the value
around which they concentrate in each generation.

any given time, a population evolving as a BRW or BBM will either explode or die
out completely (there is an interesting discussion on the relevance of branching mod-
els in the physical world by Peter Jagers at the end of Anton Wakolbinger’s article
[Wak95]). In order to describe a stable population, one therefore needs to introduce
some type of interaction between individuals. This has been done in many differ-
ent ways and has led to various different models that have been studied rigorously,
e.g. [WK65, DL94, Dur99, NP99, BEM07, Eth04, FM04, BD07, MP22] for an in-
complete list. We can interpret the BARW as such a model of population dynamics
that allows for arbitrary population sizes and densities, with the very drastic mode of
self-regulating interaction given by local annihilation of individuals that try to share
a common site. From an ecological standpoint the BARW can be seen as a model of
intraspecific competition commonly referred to as scramble competition, in which avail-
able resources are shared equally among all competitors (at least locally), cf. [Nic54].
Annihilation in the BARW can be seen as modelling scarcity of resources at a given
site where the allocated resources per individual are insufficient for survival. In this
sense, in sparsely populated regions, there are enough resources for the population to
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grow over the course of the next generation, whereas in densely populated regions, the
resources are too scarce to support the current population and it decreases over the
course of the next generation.

In this context, questions (Q1)–(Q3) give us information on the long-time behaviour
and stability of the population. Furthermore, the context of an evolving population
also leads to new questions, which are not as natural from the perspective of spin-
systems. If we assume for now that the population evolves in a stable way, i.e. is
distributed according to some invariant measure ν ∈ I, then it is natural to ask the
following.

(Q4) What does the space-time history of a sample of individuals look like?

If we were to allow for individuals of multiple types, then information on the spatial
embedding of genealogies could be used to gain information on the spatial distribution
of the types. These kinds of questions are mathematically quite challenging. A common
approach to making the analysis of space-time histories of a sample of individuals (in a
stationary population) more tractable is to locally fix an effective size of the population.
That is, one divides space into a discrete grid of demes and assumes that the local
population sizes per deme are constant over time. This results in so-called stepping-
stone models, [Saw76, WK65]. In stepping-stone models, the ancestral lineages of a
sample of individuals perform a coalescing random walk. This allows the application
of powerful mathematical tools in order to gain insight into the quantities of ecological
interest.

The situation for locally self-regulating populations, such as the BARW, is more
complicated than a stepping-stone model. In fact, we can interpret the spatial embed-
ding of the ancestral lineage of a single individual (i.e. of a sample of size one) as a
random walk in a dynamic random environment, which is generated by the backwards
in time history of the entire population. Similarly, the ancestral lineages of samples of
size k ≥ 2 correspond to a collection of random walks in the same dynamic environ-
ment, which coalesce upon meeting. Questions about the behaviour of such ancestral
lineages were considered in [BČDG13, BGS19, BG21, BBDS23] for the discrete-time
contact process and for the logistic branching random walk, first introduced in [BD07].
Moreover, in [BČD16] the question of the behaviour of single ancestral lineages was
considered for an entire class of locally regulated models satisfying some abstract con-
ditions.

In Chapter 5 we address the question of the motion of ancestral lineages of a single
particle for the BARW (drawn from a population distributed according to the non-
trivial ergodic distribution), by showing that it falls into the class of models studied
in [BČD16]. We will see that when viewed over large enough space-time scales, the
ancestral lineages of individuals in the BARW behave similar to ordinary random walks
and thus, on the right scales, the behaviour is in fact close to that predicted by the
stepping stone model. Moreover, the fluctuations in the local population sizes (“on the

83



Chapter 3

demes”), due to different realisations of the BARW, only play into the variance of this
“random walk”.

Remark 3.0.3. From an ecological point of view, the rigorous results we derive for
the BARW (as well as results in much of the above mentioned literature) should be
taken with a grain of salt and be interpreted as being only conceptual in nature.
By this, we mean that for these models, results on survival, coexistence of several
types, or similarity of ancestral lineages to random walks (etc.) should be read as
indicating possible real-world behaviour if interaction terms within the population are
weak enough. But these results don’t give any realistic information about true critical
values for which such phenomena might hold. This is due to the available mathematical
toolbox to address these issues from a rigorous point of view. One common tool,
which we shall also use in the subsequent chapters, is e.g. comparison with finite-range
oriented percolation. To apply such a comparison, one needs to fine-tune the model
parameters away from the critical values. Hence, the information that we can infer
from these results on how true populations are distributed in space when resources are
scarce is quite limited.

The following two chapters address questions (Q1)–(Q3) and (Q4) respectively.
Chapter 4 is joint work with Matthias Birkner, Alice Callegaro, Jiří Černý and Nina
Gantert.
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4. Survival and complete convergence
for a branching annihilating random
walk

Matthias Birkner, Alice Callegaro, Jiří Černý, Nina
Gantert, Pascal Oswald

Abstract. We study a discrete-time branching annihilating random walk
(BARW) on the d-dimensional lattice. Each particle produces a Poissonian
number of offspring with mean µ which independently move to a uniformly
chosen site within a fixed distance R from their parent’s position. When-
ever a site is occupied by at least two particles, all the particles at that site
are annihilated. We prove that for any µ > 1 the process survives when
R is sufficiently large. For fixed R we show that the process dies out if µ
is too small or too large. Furthermore, we exhibit an interval of µ-values
for which the process survives and possesses a unique non-trivial ergodic
equilibrium for R sufficiently large. We also prove complete convergence
for that case.

4.1 Introduction

As a model for a population evolving in space, one may consider branching random
walks. These are systems of particles where the particles reproduce and move randomly
in space, independently for different families. For instance, the children may take
i.i.d. displacements from their mother particle or, in a more general model, the parent
particle may generate a configuration of children according to some point process.
Branching random walks are a very active research topic, we refer to [Shi15] for an
introduction.

Our goal is to model a population which competes for resources, hence a particle
system in which particles reproduce, move randomly in space, and compete with each

85



Chapter 4

other locally. We chose here a rather radical form of interaction: whenever two or more
particles are on the same site, they annihilate. The annihilation makes the system non-
attractive in the sense of interacting particle systems, i.e. adding more particles initially
can stochastically decrease the law of the configuration at later times.

A first question about branching random walks is if the system has a strictly positive
survival probability. In the classical case, that is without annihilation, the answer is
well-known since the number of particles at time n forms a Galton–Watson process.
However, taking into account annihilation, the question is much more difficult and
there are relatively few mathematical papers addressing it, see the discussion of related
literature in Section 4.1.3 below.

Assuming that the parameters of the model are such that the survival probabil-
ity is indeed strictly positive, the next question is about invariant measures and the
convergence towards the invariant measure in the case of survival. As for the classical
branching random walk or the contact process, it is clear that the Dirac measure on the
empty configuration is invariant. We can show for our model that in a certain range of
parameters there is complete convergence, i.e. there is exactly one non-trivial ergodic
invariant measure and the law of the process, conditioned on survival, approaches this
invariant measure.

Our model allows for a representation as a probabilistic cellular automaton. Ques-
tions about ergodicity and complete convergence are notoriously difficult for such sys-
tems, we refer to [MM14a] for an introduction. If we consider the iteration of the
expected number of particles at the sites of the lattice, we have a deterministic sys-
tem, a coupled map lattice, see Section 4.1.4 below. This system is of independent
interest and we expect that it admits, in a certain range of parameters, travelling wave
solutions. Hence our model can be interpreted as a stochastic perturbation of the
coupled map lattice, and this interpretation raises several interesting questions.

Let us now give a more precise definition of the model and describe our results.
We study a process η = (ηn(x) : x ∈ Zd, n ≥ 0) evolving in discrete time on Zd, where
ηn(z) denotes the state of site z at time n. We write ηn(z) = 1 if site z is occupied
by exactly one particle at time n and ηn(z) = 0 otherwise. We denote by ∥ · ∥ the
sup-norm on Zd and define BR(z) = {x ∈ Zd : ∥z − x∥ ≤ R} to be the d-dimensional
ball (box) of radius R ∈ N centred at z ∈ Zd. We set VR = 2R+1 to be its side length,
so that its volume is V d

R .
For fixed R ∈ N, µ > 0, and an initial particle configuration η0 ∈ {0, 1}Zd , the

configurations at later times are obtained recursively as follows. Given ηn, n ≥ 0, for
every z ∈ Zd with ηn(z) = 1 the particle at z dies and gives birth to a Poisson number
of children with mean µ. Each child moves independently to a uniformly chosen site in
BR(z). Whenever there is more than one particle at a given site, then all the particles
at that site are killed. This means that if two (or more) children of the same parent
jump to the same site they will disappear, but also children coming from different
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parents who jump to the same site will annihilate. The particles remaining after the
annihilation make up the configuration ηn+1.

The thinning and superposition properties of the Poisson distribution give the
following equivalent description of the model, which is particularly convenient to carry
out calculations. For a configuration η ∈ {0, 1}Zd and z ∈ Zd, define first the (local)
density of particles at z by

δR(z; η) = V −d
R

∑
x∈BR(z)

η(x). (4.1.1)

Fix ηn and denote by Nn+1(z) the number of newborn particles at z in the next
generation before the annihilation occurs. This is given by the superposition of the
offspring of all particles that can move to z, that is of all x ∈ BR(z) with ηn(x) =
1. Thus Nn+1(z) is a Poisson random variable with mean µδR(z; ηn). Taking the
annihilation into account, it then holds that

ηn+1(z) =

{
1 if Nn+1(z) = 1,

0 otherwise.
(4.1.2)

Let
φµ(w) = µw e−µw, w ∈ [0,∞) (4.1.3)

denote the probability that a Poisson random variable with mean µw equals 1. By
construction, the random variables in the family (ηn+1(z) : z ∈ Zd) are conditionally
independent given ηn and by (4.1.2), (4.1.3) we can represent our system as

ηn+1(z) =

{
1 with probability φµ(δR(z; ηn)),
0 otherwise.

(4.1.4)

This gives a representation of η as a particular example of a probabilistic cellular
automata. We point out that this representation is only possible because we choose a
Poisson offspring distribution. For more detailed discussion of the assumptions of the
model, see the discussion in Section 4.1.2 below.

4.1.1 Main results

We can now state the main results of this paper. For the intuition behind them, we
find it useful to first point out a few properties of the function φµ introduced in (4.1.3)
which governs the behaviour of the process:

(a) For µ ≤ 1, φµ has a unique fixpoint at 0, which is attractive.

(b) For µ > 1, φµ has two fixpoints, 0 and θµ = µ−1 lnµ. In this case 0 is always
repulsive.
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(c) For µ ∈ (1, e2), θµ is an attractive fixpoint.

(d) For µ > e2, there are no attractive fixpoints

In the case (d), the one point iteration x 7→ φµ(x) has rich behaviour. Depending
on the value of µ, there can be attractive periodic orbits or chaotic behaviour.

w

φµ
1/e

1

Figure 4.1: Graphs of φµ for µ = 0.7 (thick), 2 and 8 (dashed), together with the
identity function.

Extinction Our first result identifies a range of parameters (µ,R) where the process
dies out a.s. Here, we say that η goes extinct locally if limn→∞ ηn(x) = 0 for every
x ∈ Zd, and that η goes extinct globally, if ηn ≡ 0 for all n large enough.

Theorem 4.1.1. For R ∈ N, let µ1(R), µ2(R) be the two real solutions of

V d
R φµ

(
V −d
R

)
= 1

with 1 < µ1(R) < µ2(R) < ∞. If µ < µ1(R) or µ > µ2(R), then, for all initial
conditions η goes locally extinct a.s., and for all initial conditions containing only a
finite number of particles η goes extinct globally a.s. Furthermore, µ1(R) → 1 and
µ2(R) → +∞ as R → ∞.

The result of the proposition is not optimal, we expect (based on simulations, see
Figure 4.7 in Section 4.7 below) that the process goes extinct for many values (µ,R)
outside of the specified range. On the other hand, its proof is relatively simple. It
is given in Section 4.5 below, and is based on the observation that for (µ,R) in the
specified range the killing by annihilation among siblings is already strong enough to
make the expected number of “surviving” offspring of a single particle strictly smaller
than one, and thus the branching effectively subcritical, even though µ > 1.
Remark 4.1.2. The two values µ1(R) and µ2(R) can be given explicitly as

µ1(R) = −V d
RW0(−V −d

R ), µ2(R) = −V d
RW−1(−V −d

R ),

where W0 and W−1 are the two real branches of the Lambert W function. This also
describes their asymptotic behaviour as R → ∞, see (4.5.2) and (4.5.3) in the proof
of Theorem 4.1.1 below.
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Survival The second result identifies a range of parameters where it is possible that
the process survives locally, by which we mean that for every x ∈ Zd the set of times
n when ηn(x) = 1 is unbounded. Similarly as in Theorem 4.1.1, the identified range is
not optimal.

Theorem 4.1.3. For every µ > 1 there exists Rµ ∈ N such that η survives with
positive probability from any non-trivial initial condition when R ≥ Rµ.

Remark 4.1.4. Inspection of the proof of Theorem 4.1.3 shows that there is R0 ∈ N
such that for every R ≥ R0 there exist two values 1 < µ

R
< µR such that η survives

with positive probability from any non-trivial initial condition when µ ∈ (µ
R
, µR).

Furthermore, on the event of survival, it holds that

lim inf
N→∞

1

N

N∑
j=1

ηj(x) > 0 a.s. for any x ∈ Zd. (4.1.5)

Ergodicity and complete convergence The final set of results discusses the in-
variant measures of the process, in the case when the system survives. For this we
equip the state space {0, 1}Zd with the product topology and the corresponding Borel
σ-algebra. In these results we restrict ourselves to µ ∈ (1, e2), where the non-trivial
fixpoint of φµ is attractive, as pointed out above.

Theorem 4.1.5. For every µ ∈ (1, e2) there is R′
µ < ∞ such that for every R ≥ R′

µ

the process η has two extremal invariant distributions: the first one is trivial and is
concentrated on the empty configuration η ≡ 0, and the second one, νµ,R, is non-trivial,
translation invariant, ergodic, and has exponential decay of correlations.

Furthermore, starting from any non-trivial initial condition the process η, condi-
tioned on non-extinction, converges in distribution in the weak topology to the non-
trivial extremal invariant distribution νµ,R.

The driving result behind Theorem 4.1.5 is the following strong coupling property
of the system η, which is of independent interest.

Theorem 4.1.6. Assume that µ ∈ (1, e2) and R ≥ R′
µ satisfy the assumptions of

Theorem 4.1.5. Then there exists a speed a = a(R, µ, d) > 0 such that for every pair
of (possibly random) initial conditions η(1)0 , η

(2)
0 ∈ {0, 1}Zd there exists a coupling of the

processes (η
(i)
n )n∈N0, i = 1, 2, with the following property. For each x ∈ Zd there is an

N0∪{∞}-valued random variable T coupl
x (whose exact law will in general depend on the

initial conditions and on x) such that {η(i)n ̸≡ 0 for all n ∈ N, i = 1, 2} ⊆ {T coupl
x <∞}

a.s. and

η(1)n (y) = η(2)n (y) for all n > T coupl
x and ∥y − x∥ ≤ a(n− T coupl

x ).

89



Chapter 4

Remark 4.1.7. It follows from the proof of Theorem 4.1.6 that when starting from
a finite (or a half-space) initial condition, the system η, given that it survives, will
expand into the “empty territory” at least at some (small) linear speed. Furthermore,
simple comparison arguments with supercritical branching random walks show that
this expansion cannot occur faster than linearly. However, identifying an actual linear
speed or even an asymptotic profile of the expanding population near its tip remains
a topic for future research.
Remark 4.1.8. Denote by θµ,R = Eνµ,R

[η0(0)] ∈ (0, 1) the particle density of the non-
trivial invariant measure νµ,R from Theorem 4.1.5, where µ ∈ (1, e2) and R ≥ R′

µ. By
ergodicity, we have almost surely when η0 ∼ νµ,R

lim
N→∞

1

N

N∑
n=1

ηn(x) = lim
N→∞

1

N

N∑
n=1

δR(x; ηn) = θµ,R for every x ∈ Zd. (4.1.6)

By the coupling property from Theorem 4.1.6, (4.1.6) holds in fact a.s. for any initial
condition given that the system survives.

Furthermore, for 1 < µ < e2, inspection of the proof of Theorem 4.1.6 shows that
for every ε ∈ (0, 1) there exists R′

µ,ε <∞ such that if R ≥ R′
µ,ε then, conditionally on

non-extinction,

lim inf
N→∞

1

N

N∑
n=1

1{|δR(x;ηn)−θµ|<ε} ≥ 1− ε almost surely for every x ∈ Zd, (4.1.7)

where we recall that θµ is the fixpoint of φµ (on “good” blocks, the particle density is
close to θµ, see Definition 4.4.4 below, and good blocks are shown to occur with high
space-time density).

Note that (4.1.6) and (4.1.7) together imply that |θµ,R−θµ| ≤ 2ε for R ≥ R′
µ,ε. This

corroborates the idea that for large R, the particle system’s behaviour is close to that of
the corresponding deterministic coupled map lattice, which we discuss in Section 4.1.4
below, and which, as shown in Proposition 4.1.9, converges to the configuration which
is constant and equal to θµ.

4.1.2 Possible generalisations

The construction of our model might seem very rigid. Therefore, we discuss here the
role of the different assumptions in the model and their possible generalisations.

The assumption that the particles jump distribution is uniform over a box of length
VR is non-essential and is made only for convenience of the notation. It can in principle
be replaced by an arbitrary (centred) finite range transition kernel, and the proofs can
be adapted by suitably replacing the particle density (4.1.1) by the convolution of this
kernel with η.
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The assumption that the number of offspring of a single particle has Poisson dis-
tribution is more important, as it allows for the essential representation (4.1.4), and
also yields the conditional independence of (ηn+1(x) : x ∈ Zd) given ηn. Replacing the
Poisson distribution would thus require non-trivial modifications to our proofs. On
the other hand, if we take (4.1.4) as the definition of the model, the particular form of
the function φµ used there does not play a strong role. Our techniques will continue
to work, if we replace φµ by another function of a “similar shape”. In fact, for survival
we only need that φµ : [0, 1] → [0, 1] is continuously differentiable and strictly positive
on (0, 1] with 0 as an unstable fixpoint. For the proof of the convergence result, we
also need that there is a unique attracting fixpoint θµ ̸= 0.

In a different direction, the “hard” annihilation constraint of at most one parti-
cle per site could be relaxed by replacing the definition (4.1.2) of η by ηn+1(z) =
Nn+1(z)1{Nn+1(z)≤k} for some k ∈ N. Since this modification retains the conditional
Poisson and independence properties of the Nn(z)’s and the sums of truncated Poisson
random variables have good concentration properties, we are hopeful that our proofs
could be adapted to this scenario with some additional work.

4.1.3 Discussion of related results

One of the first models of branching annihilating random walks was introduced and
studied by Bramson and Gray [BG85]. They considered a particle system on Z, in
which sites can be occupied as the result of the following mechanisms: particles can
either jump to one of the two neighbouring sites at a certain rate or branch into two by
giving birth to a new particle on one of the neighbouring sites. On top of this, particles
behave independently except when they land on a site which is already occupied, in
which case both particles disappear, annihilate. The authors show that, starting from
any finite number of particles, the system survives with positive probability if the
jumping rate is small compared to the branching rate and that the population dies out
almost surely if the jumping rate is sufficiently high. This process is an interacting
particle system in the sense of [Lig85, Lig99] but it is not attractive. The authors use
contour arguments which rely on the one-dimensional model they chose.

Very general interacting particle systems on Z are considered in [Sud00b], where
pairwise interactions among neighbours can produce annihilation, birth, coalescence,
and exclusion and single individuals can die. Conditions on the rates which ensure
positive probability of survival are given by making use of self-duality (which has been
proved by the same author in [Sud00a]) and supermartingale arguments. In [BDD91]
instead, processes on Zd with nearest-neighbour birth at rate 1, annihilation and spon-
taneous death at rate δ have been considered. An extinction result for the branching
annihilating process started from one particle at the origin is obtained by compari-
son with the contact process. On the other hand, survival when δ is small is proved
through comparison with oriented percolation.
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In cases where survival can be established, natural questions concern the existence
of stationary distributions and weak convergence. Sudbury [Sud90] considers a version
of Bramson and Gray’s model in Zd in the case of no random walk and shows that the
product measure with rate 1/2 is the only non-empty limiting distribution. In the case
of a double branching and annihilating process on Z (where each particle can place
offspring on both of its neighbouring sites), a richer variety of limiting measures is
exhibited. In [BDD91], the authors prove that when δ = 0 the product measure with
density 1/2 is stationary and is the limiting measure, thus obtaining independently the
same result proved in [Sud90]. Furthermore the authors show that for any δ there are
at most two extremal translation invariant stationary distributions, and if δ is small
there exists a non-trivial stationary distribution.

Another question of interest is whether branching processes with annihilation sat-
isfy duality relations. Athreya and Swart [AS12] consider processes in continuous time
where particles can annihilate, branch, coalesce or die. They show that annihilation
does not play a key role in a duality relation: the process with annihilation is dual to a
system of interacting Wright-Fisher diffusions, and this result holds also if annihilation
is suppressed (but in the case of annihilation the duality function is different and more
complicated). It would be highly interesting to find a useful duality relation for our
model as well.

Versions of branching annihilating processes in discrete time are generally more
difficult to deal with, since continuous time implies that changes in the configuration
can only occur one site at a time, sequentially as opposed to in parallel. A discrete-
time analogous of [BG85] has been considered in [AIR01] for a model on Z, where
particles at each time move with probability 1− ε or branch with probability ε, with
the rule that two particles occupying the same site will annihilate. The authors show
that, if the branching probability is small enough, for any finite initial configuration
of particles the probability p(t) that at least one site is occupied at time t decays
exponentially fast in t.

Perl, Sen and Yadin [PSY15] consider a branching annihilating random walk on
the complete graph which evolves in discrete time, where the number of offspring
is Poisson distributed with mean µ and each one of them independently moves to
one of the neighbouring sites of their parent. This corresponds to our model on the
complete graph. Since on a finite graph there is always a positive probability of total
annihilation in one step, the system eventually dies out at some finite time. They
show that if µ > 1, then the process on the complete graph with N vertices has an
exponentially long lifetime in N and that, conditional on extinction, its last excursion
from the “equilibrium value” θµN before it reaches the zero state is logarithmic in N .

Besides systems where particles can annihilate, recent research directions have also
been focusing on spatial branching systems in which the interaction among particles is
regulated by a competition kernel which can reduce the average reproductive success
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of an individual at a given site. In this case, rather than annihilating particles in
areas with high particle density, the existing particles will produce fewer offspring.
Spatial models with local competition are for example investigated in [Eth04, BEM07,
BD07, FKK09, Mü15, MP22]. The two papers most related to our present work are
[BD07, MP22].

Birkner and Depperschmidt [BD07] consider a discrete time branching system with
a finite range (and thus local) competition kernel. They show that the system survives
with positive probability if the competition term is small enough and obtain complete
convergence of the system to a non-trivial equilibrium for some choices of the model
parameters. The strategy used in [BD07] to prove survival is building a comparison
with an oriented percolation model. We will use similar ideas to show survival for our
branching annihilating random walk, as well as complete convergence.

In a more recent paper, Maillard and Penington [MP22] work in continuous time
and consider non-local competition kernels, where the range of interaction can be arbi-
trary, even infinite. Using a contour argument, they prove that in the low competition
regime the system survives globally. In the same regime, they also provide a shape
theorem, showing that the asymptotic spreading speed of the population is the same
as in the branching random walk without competition.

Since we work in discrete time, our model is not an interactive particle system in
the sense of [Lig85, Lig99] but rather a probabilistic cellular automaton. We refer
to [MM14a] for a survey on probabilistic cellular automata. Ergodicity and complete
convergence for probabilistic cellular automata is a notoriously difficult topic where
a lot of the proof techniques are model-dependent. For attractive systems there are
still some general tools as monotonicity and subadditivity, see [Ham74]. We refer to
[FLN18] for a collection of recent results.

4.1.4 Auxiliary coupled map lattice

Our work also raises questions about coupled map lattices which are deterministic
versions of the probabilistic cellular automata, see (4.1.4), and which, in our exami-
nations of the BARW, serve as an intuitional guide for the proofs of the survival and
the complete convergence. This coupled map lattice is a deterministic [0, e−1]Z

d-valued
process Ξn (note that maxw≥0 φµ(w) = e−1) defined, given any initial condition Ξ0, by
the iteration of

Ξn+1(x) = φµ(δR(x; Ξn)). (4.1.8)

At least for R large, locally, the dynamics of this process is a good approximation for
the dynamics of the “density profile” δR(·; ηn) of η, as can be heuristically seen from
(4.1.4) and the law of large numbers.

We will prove and exploit the fact that in the regime when φµ has the unique
attractive fixpoint θµ, that is for µ ∈ (1, e2), when starting from a non-zero initial
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condition, the coupled map lattice converges locally to θµ, and the region where it is
close to this value expands.

Proposition 4.1.9. Let µ ∈ (1, e2) and assume that Ξ0(0) > 0. Then

lim
n→∞

Ξn(z) = θµ for all z ∈ Zd,

and for every ε > 0 there is a speed a = a(µ, ε,Ξ0(0)) > 0 such that Ξn(x) ∈ (θµ −
ε, θµ + ε) for all |x| ≤ an.

We believe that for localised or half-space initial conditions, the process Ξ will
approach a “travelling wave”. While there is a rich literature addressing travelling
waves, we were not able to find results which literally apply in our context, in particular
since our model has discrete time and space. We thus prove the above (weaker and non-
optimal) proposition by rather bare hand arguments, which involve a construction of a
“travelling wave sub-solution”, see Section 4.2.3 below. Travelling waves in the context
of PDEs have been widely studied, also with a view of biological applications. In the
context of discrete time, continuous space models, the existence of travelling waves
has also been considered quite extensively, see e.g. [Wei78, LLW09, Kot92, KS86]. In
particular, in situations where φµ in (4.1.8) is replaced by an increasing (and hence
monotone) function, existence of such travelling waves has been shown [Ham74, Wei78].

The regime µ > e2 is also very interesting. In this regime the iteration of φµ does
not converge to a single point but to a stable orbit, which as µ increases beyond e2

will increase its number of elements. In this case, we are not aware of results in the
literature covering the coupled map lattice model. But even given such results, the
behaviour of the stochastic system might be different and more difficult to control than
in the stable-fixpoint case treated here. We leave these questions for future work.

4.2 Preliminary results and tools

In this section we collect some preliminary results that will be used throughout the
paper.

4.2.1 A general coupling construction

We will frequently make use of the following construction allowing to define the process
η for all initial conditions simultaneously and also allowing to compare η with other
particle systems, in particular with monotone ones.

Let U(x, n), x ∈ Zd, n ∈ N0, be a collection of i.i.d. uniform random variables on
[0, 1]. Recall the definition of the function φµ from (4.1.3), and let ψ : [0, 1] → R+ be
any non-decreasing function satisfying

ψ(w) ≤ φµ(w) for all w ∈ [0, 1] ∩ V −d
R Z, (4.2.1)
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that is, for all possible values of the density δR(·; ηn). Then, for any initial conditions
η0, η̃0, define, recursively for n ≥ 0,

ηn+1(x) = 1{U(x,n+1)≤φµ(δR(x;ηn))}, (4.2.2)
η̃n+1(x) = 1{U(x,n+1)≤ψ(δR(x;η̃n))}. (4.2.3)

The construction (4.2.2) of η is morally the analogue of the common graphical con-
struction of an interacting particle system in our context, and can be viewed as a
stochastic flow on the configuration space {0, 1}Zd . The next lemma gives its main
properties.

Lemma 4.2.1 (General coupling construction). (a) The process η defined by (4.2.2)
has the law of the branching-annihilating random walk with parameters µ and R
and initial condition η0.

(b) If η̃0(x) ≤ η0(x) for all x ∈ Zd, then η̃n(x) ≤ ηn(x) for all n ∈ N and x ∈ Zd.

Proof. Part (a) follows immediately from (4.1.4). To see part (b) assume η̃1(x) = 1
for some x ∈ Zd. Then, by construction U(x, 1) ≤ ψ(δR(x; η̃0)). Since η̃0 ≤ η0 and
ψ is non-decreasing, and φµ dominates ψ, this yields U(x, 1) ≤ φµ(δR(x; η0)), and so
η1(x) = 1. It follows that η̃1 ≤ η1, and by iteration, η̃n ≤ ηn.

In what follows we always assume that η is constructed as in (4.2.2) and define the
filtration

Fn := σ
(
η0(x) : x ∈ Zd

)
∨ σ
(
U(x, i) : x ∈ Zd, i ≤ n

)
⊇ σ

(
ηi(x) : x ∈ Zd, i ≤ n

)
.

(4.2.4)

4.2.2 Concentration and comparison with deterministic pro-
files

As remarked under (4.1.3), the random variables (ηn+1(x))x∈Zd are conditionally inde-
pendent given ηn. Therefore, the density δR(x; ηn+1) should concentrate, at least for R
large. We need estimates providing quantitative control of this concentration. These
estimates involve certain sequences of functions ξ±k on Zd, which we call comparison
density profiles, that have the property that if at some time t the local density of ηt
is controlled by ξ±k , then, at least locally, the density of ηt+1 is controlled by ξ±k+1. In
fact, the sequences ξ−k and ξ+k that we use later can be regarded as a travelling wave
sub- and super-solution, respectively, of the coupled map lattice iteration (4.1.8).

Definition 4.2.2. For a given ε, δ > 0, comparison density profiles are deterministic
functions ξ−k , ξ

+
k : Zd → [0,∞), k = 0, 1, . . . , k0, satisfying:
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(i) For every k = 0, . . . , k0, ξ−k (·) ≤ ξ+k (·).

(ii) For every k = 0, . . . , k0, Supp(ξ−k ) := {x ∈ Zd : ξ−k (x) > 0} is finite, and
ξ−k (x) ≥ ε for every x ∈ Supp(ξ−k ).

(iii) For every k = 0, . . . , k0 − 1, and x ∈ Supp(ξ−k ) it holds that if ζ : BR(x) → R
satisfies ζ(y) ∈ [ξ−k (y), ξ

+
k (y)] for all y ∈ BR(x), then

(1 + δ)ξ−k+1(x) ≤ V −d
R

∑
y∈BR(x)

φµ(ζ(y)) ≤ (1− δ)ξ+k+1(x). (4.2.5)

Note that ξ−k , ξ
+
k will in general depend on R, µ, ε and δ, but we do not make this

explicit in the notation (in fact, δ, ε could also depend on R and µ).

Lemma 4.2.3. (a) For comparison density profiles ξ±k , if for some x ∈ Zd and for
k ∈ {0, . . . , k0 − 1}

δR(y; ηk) ∈
[
ξ−k (y), ξ

+
k (y)

]
for all y ∈ BR(x), (4.2.6)

then

P
(
ξ−k+1(x) ≤ δR(x; ηk+1) ≤ ξ+k+1(x)

∣∣∣Fk

)
≥ 1− 2 exp(−cV d

R), (4.2.7)

where c = (δε)/
(
1/(2δε) + 2/3

)
.

(b) If, in (4.2.5), φµ is replaced by any ψ satisfying (4.2.1), then statement (a) holds
for the monotone dynamics η̃ defined in (4.2.3) in place of η.

Remark 4.2.4. If only a lower bound is required, as e.g. in the proof of survival, one can
use the “trivial” upper bound for ξ+n , namely ξ+n (·) ≡ max(φµ)/(1− δ) = e−1/(1− δ),
and then apply (4.2.7) only for the lower bound.

Proof of Lemma 4.2.3. We only show (a), the proof of (b) is completely analogous. We
consider first the lower bound, that is we want to show that the conditional probability
of the event {δR(x; ηk+1) < ξ−k+1(x)} is small. Note that, by (4.2.6) and (4.2.5),∑

y∈BR(x)

E[ηk+1(y) | Fk] =
∑

y∈BR(x)

φµ
(
δR(y; ηk)

)
≥ (1 + δ)V d

Rξ
−
k+1(x).

Therefore,

P
(
δR(x; ηk+1) < ξ−k+1(x)

∣∣∣Fk

)
≤ P

(∑
y∈BR(x)

(
ηk+1(y)− E[ηk+1(y) | Fk]

)
< −δV d

Rξ
−
k+1(x)

∣∣∣Fk

) (4.2.8)
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and

Var
(
δR(x; ηk+1)

∣∣Fk

)
= V −2d

R

∑
y∈BR(x)

φµ
(
δR(y; ηk)

)(
1− φµ

(
δR(y; ηk)

))
≤ 1

4
V −d
R .

We now apply the Bernstein inequality (which we recall in Lemma A.1 in the
Appendix) to the right-hand side of (4.2.8) with n = V d

R , σn ≤ V
−d/2
R /2, mn ≤ 1

and w = δV d
Rξ

−
k+1(x) ≥ δεV d

R (since, by assumption ((ii)) ξ−k+1(x) ≥ ε if ξ−k+1(x) > 0,
and there is nothing to prove if ξ−k+1(x) = 0). The expression in the exponent of the
right-hand side of (A.1) then satisfies

w2

2σ2
n + (2/3)mnw

=
w

2σ2
n/w + (2/3)mn

≥ w

V d
R/(2w) + 2/3

≥ δε

1/(2δε) + 2/3
V d
R ,

which completes the proof of the lower bound in (4.2.7).
The proof of the upper bound, that is showing that the probability (conditional on

ηk) of the event {δR(x; ηk+1) > ξ+k+1(x)} is small, is completely analogous.

4.2.3 Lower bounds on travelling waves

The goal of this section is to construct explicit comparison density profiles ξ−k which
can later be used as the lower bounds on δR(·; η) in the proofs of survival and complete
convergence. As pointed out before, these can be viewed as travelling wave sub-
solutions to the iteration (4.1.8).

We start by providing the basic building block for this construction. To this end
we concentrate first on the one-dimensional setting. For parameters a > 1, ε0 ∈ (0, 1),
w > 0, s > 0 and R ∈ N we say that a non-decreasing function f : Z → [0,∞) is a
linear travelling wave shape with width ⌈wR⌉, shift ⌈sR⌉, growth factor a and minimal
step size ε0 if it fulfils

f(x) = 0 for x < 0, f(0) = ε0, f(x) = 1 for x ≥ ⌈wR⌉ (4.2.9)

and
aδR(x; f) ≥ f

(
x+ ⌈sR⌉

)
for all x ∈ Z. (4.2.10)

In this parametrisation, we think of a “wave profile” which, when subjected to one
iteration of the operation f(·) 7→ aδ(·; f), moves to the left by at least ⌈sR⌉ in each
time step. Note that by construction, one necessarily has that s ≤ 1.

We now show that such a function f exists for any a > 1 and R large.

Lemma 4.2.5. For every a > 1, there is w ≥ 2, ε0 ∈ (0, 1), s ∈ (0, 1), and R0 ∈ N
such that the function

f(x) = min
{
(ε0 + x/⌈wR⌉)1x≥0, 1

}
satisfies (4.2.9), (4.2.10) for all R ≥ R0.
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Z
0

⌈wR⌉ ⌈sR⌉Rinit

ξ−0 ξ−1 ξ−n

Figure 4.2: The one-dimensional deterministic comparison density profile ξ−n built from
the linear travelling wave shape f , with fronts of width ⌈wR⌉ that get shifted outward
by ⌈sR⌉ in every time step.

The proof of Lemma 4.2.5 is a straightforward, albeit somewhat lengthy computa-
tion, and is given in Section 4.6.1. In fact, with even lengthier computations it could
be shown that the lemma holds for any R ≥ 1.

Using this travelling wave shape we can now define the desired comparison density
profile ξ−n . For this, fix Rinit ∈ N with Rinit > 2R and set, for x ∈ Z,

ξ̃n(x) = f
(
Rinit + n⌈sR⌉+ ⌈wR⌉ − |x|

)
(4.2.11)

with f from Lemma 4.2.5, see Figure 4.2 for an illustration. Note that by construction,
ξ̃n(·) ≡ 1 on BRinit+n⌈sR⌉(0) and Supp(ξ̃n) = BRinit+n⌈sR⌉+⌈wR⌉(0). Furthermore, using
(4.2.10), aδR(x; ξ̃n) ≥ ξ̃n+1(x) for all x ∈ Z, and ξ̃n(x) > 0 implies ξ̃n(x) ≥ ε0.

Finally, for any d ≥ 1, write x = (x1, . . . , xd) and set

ξ−n (x) := b
d∏
i=1

ξ̃n(xi), x ∈ Zd, n ∈ N0 (4.2.12)

with some 0 < b ≤ 1 that will be suitably tuned later. Note that ξ−n implicitly depends
on d, R, Rinit, a and b but our notation does not make this explicit. We summarise
the relevant properties of ξ−n in the following lemma.

Lemma 4.2.6. The functions ξ−n have the following properties:

(i) 0 ≤ ξ−n (x) ≤ b for every n ∈ N0 and x ∈ Zd,

(ii) for n ∈ N0, ξ−n (·) ≡ b on BRinit+n⌈sR⌉(0) and Supp(ξ−n ) = BRinit+n⌈sR⌉+⌈wR⌉(0),

(iii) adδR(x; ξ
−
n ) ≥ ξ−n+1(x) for all n ∈ N0, x ∈ Zd,

(iv) ξ−n (x) > 0 implies ξ−n (x) ≥ bεd0.
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Proof. The properties (i), (ii) and (iv) follow directly from (4.2.9), (4.2.11) and (4.2.12).
Using (4.2.10), (4.2.11), (4.2.12), it follows moreover that

adδR(x; ξ
−
n ) = adV −d

R

∑
y∈BR(0)

ξ−n (y + x)

= badV −d
R

R∑
y1=−R

· · ·
R∑

yd=−R

d∏
i=1

ξ̃n(xi + yi)

= b
d∏
i=1

(
aV −1

R

R∑
y=−R

ξ̃n(xi + y)

)
= b

d∏
i=1

(
aδR(xi; ξ̃n)

)
≥ b

d∏
i=1

ξ̃n+1(xi) = ξ−n+1(x),

which shows (iii) and completes the proof.

4.3 Survival for large R: Proof of Theorem 4.1.3

In this section we prove Theorem 4.1.3, stating that the system survives for any µ > 1,
given that R is chosen sufficiently large. The proof is based on the comparison with a
monotone system η̃, which in turn is shown to survive using a comparison with finite
range oriented percolation. The latter is a by now classical technique for interacting
particle systems, we refer to [Czu16], [Lan17] or [Swa17] for recent and reader-friendly
introductions.

The monotone system η̃ is constructed as in Section 4.2.1: we first fix parameters
ã ∈ (1, µ) and b ∈ (0, 1), so that the function ψ defined by

ψ(w) := ã(w ∧ b) (4.3.1)

satisfies (4.2.1). This is possible since µ > 1. With this ψ, we define η̃ as in (4.2.3) and
simultaneously η as in (4.2.2) on the probability space supporting the i.i.d. uniform
random variables (U(x, n))x∈Zd,n∈N0

.
We then fix a > 1 such that ad < ã, and for this choice of a, we fix R0, w, s and

ε0 according to Lemma 4.2.5. For R ≥ R0, we set Rinit := ⌈wR/2⌉ and define ξ−n as
in (4.2.12). We claim that ξ−n (x) (and the trivial ξ+n , as explained in Remark 4.2.4)
is a comparison density profile in the sense of Definition 4.2.2 with δ = (ã/ad) − 1
and ε = bεd0. Moreover the lower bound of (4.2.5) even holds with ψ in place of φµ.
Indeed, ((i)) is trivially true, ((ii)) follows from Lemma 4.2.6(iv). To show ((iii)), that
is (4.2.5) (with ψ in place of φµ), let ζ = (ζ(y)) ∈ [0, 1]Z

d be such that ζ(·) ≥ ξ−n (·) for
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some n ∈ N0. Then, using Lemma 4.2.6(iii) for the inequality,

V −d
R

∑
y∈BR(x)

ψ
(
ζ(y)

)
= V −d

R

∑
y∈BR(x)

ã
(
ζ(y) ∧ b

)
≥ ã

ad
· adV −d

R

∑
y∈BR(x)

ξ−n (y)

=
ã

ad
· adδR(x; ξ−n ) ≥

ã

ad
· ξ−n+1(x),

as required. As a consequence, we will later be able to apply the concentration result
of Lemma 4.2.3(b) to the process η̃.

Define R′
block = ⌈wR/2⌉. To set up the comparison with oriented percolation, we

coarse-grain the system by using blocks spaced by L′
block := 2R′

block, of side length
Lblock := 5L′

block and temporal size Tblock :=
⌈
⌈wR⌉/⌈sR⌉

⌉
. Since we often refer to

radii rather than block lengths, it is convenient to define Rblock = Lblock/2.
For (z, t) in the sub-lattice L := L′

blockZd × TblockN0, we define

Block(z, t) =
{
(x, n) ∈ Zd × N0 : ∥x− z∥ ≤ Rblock, t ≤ n ≤ t+ Tblock

}
.

Note that blocks in the same time-layer have non-trivial overlap with their neighbours
but the number of overlapping neighbours in L per block does not grow with R. In
the time direction, only the top time slice of a given block coincides with the bottom
layer of the next block(s).

Definition 4.3.1. We call Block(z, t) well-started if the density of the monotone
system η̃ dominates the (suitably shifted) density profile ξ−0 at the bottom of the
block, that is

δR
(
x; η̃t

)
≥ ξ−0 (x− z) for ∥x− z∥ ≤ Rblock. (4.3.2)

Note that for any (z, t) ∈ L the event {Block(z, t) is well-started} is measurable
with respect to the filtration Ft, which was defined in (4.2.4).

Definition 4.3.2. Block(z, t) is called good if it is well-started and the random vari-
ables U(x, n) are such that the domination property of (4.3.2) propagates over the
block. That is, Block(z, t) is good if it holds that

δR
(
x; η̃t+n

)
≥ ξ−n (x− z) for ∥x− z∥ ≤ Rblock, n = 0, . . . , Tblock.

The properties of the comparison density profiles ξ−n , see Lemma 4.2.6, enforce

{Block(z, t) is good} ⊆
⋂

z′∈L′
blockZ

d :

∥z−z′∥≤L′
block

{Block(z′, t+ Tblock) is well-started}. (4.3.3)
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z0 z0 + L′
blockz0 − L′

block

t0

t0 + Tblock

L′
block

Lblock

Figure 4.3: Sketch of a Block(z0, t0) (light blue), centred at the coarse-grained space-
time lattice point (z0, t0). The thick dashed lines depict the deterministic compari-
son density profiles ξ−t0(·) and ξ−t0+Tblock(·) which have to be dominated by the density
δR(·; η̃n), t0 ≤ n ≤ t0 + Tblock in order for the block to be good. Note the picture is not
drawn to scale: Lblock and L′

block are both growing linearly in R while Tblock does not
grow with R.

In particular, the process η̃ survives up to time t+Tblock in a good Block(z, t) and the
region of the desired density control by the profiles ξ−n expands, see Figure 4.3.

By the construction (4.2.3) of η̃, given Ft, if Block(z, t) is well-started, it can
be decided whether or not the event {Block(z, t) is good} occurs for (z, t) ∈ L by
inspecting (only) the values of(

U(x, n) ∈ Zd × N0 : ∥x− z∥ ≤ Rblock + TblockR, t < n ≤ t+ Tblock
)

(4.3.4)

(in fact, strictly speaking it suffices to observe the values of U ’s at the space-time
points {(x, n) : ∥x− z∥ ≤ Rblock +(t+Tblock −n)R, t < n ≤ t+Tblock}). Note that for
(z, t) ∈ L and (z′, t) ∈ L with

∥z′ − z∥ > Lblock + 2TblockR ≈ (5 + 2/s)L′
block (when R is large) (4.3.5)

the space-time regions corresponding to (4.3.4) will be disjoint.
Furthermore, by invoking Lemma 4.2.3(b) we can uniformly bound the probability

of the density of η̃ dominating the comparison density profile ξ− for all space-time sites
in Block(z, t), which in turn yields

P
(
Block(z, t) is good

∣∣Ft

)
≥ 1{Block(z,t) is well-started}

(
1− q(Tblock, R)

)
(4.3.6)

with
q(Tblock, R) = 2

∣∣Block(z, t)∣∣e−cV d
R , (4.3.7)
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which tends to 0 as R → ∞, since |Block(z, t)| grows only polynomially in R.
In order to make the comparison with oriented percolation, we define random vari-

ables
Y (z, t) := 1{Block(z,t) is good}, (z, t) ∈ L, (4.3.8)

and say that (z, t) ∈ L is connected to infinity in Y if there is a path ((zi, t+iTblock) : i ∈
N0) in L with z0 = z and ∥zi−zi−1∥ ≤ L′

block for all i ∈ N, such that Y (zi, t+iTblock) = 1
for all i ∈ N0 (such a path is called open in Y ). By the argument above, it follows that
if (z, t) is well-started and connected to infinity in Y , then the process η̃ survives.

In order to show that the latter event occurs with positive probability, we iteratively
construct a coupling between the Y (z, t) from (4.3.8) and a family (Ỹ (z, t))(z,t)∈L of
i.i.d. Bernoulli random variables with parameter p(R) which satisfies p(R) → 1 as
R → ∞ such that we have

Y (z, t) ≥ 1{Block(z,t) is well-started}Ỹ (z, t) for all (z, t) ∈ L. (4.3.9)

We construct Ỹ (·, t) inductively over t and begin with a slightly informal description
of this construction: Assume that for some t′ ∈ TblockN, a coupling satisfying (4.3.9)
has been achieved for all (z, t) ∈ L with TblockN ∋ t < t′. We then work conditionally
on Ft′ . The (random) set of nodes

W (t′) := {z′ ∈ L′
blockZd : Block(z′, t′) is well-started},

viewed as a graph where z′ and z′′ are connected by an edge if the space-time regions
from (4.3.4) centred at (z′, t′) and at (z′′, t′), respectively, overlap, is a locally finite
graph with uniformly bounded degrees. In fact, we see from (4.3.4) that we have
irrespective of the realisation of η̃t′ the deterministic bound (11 + 4/s)d on the degree
of any node (up to rounding, see (4.3.5)). Thus, by (4.3.4)–(4.3.7), using well known
stochastic domination arguments for percolation models with finite-range dependencies
[LSS97], it follows that the family (Y (z, t′))z∈W (t′) stochastically dominates a family
(Ỹ (z, t′))z∈W (t′) of i.i.d. Bernoulli random variables with parameter p(R), where p(R) →
1 as R → ∞ and the (Ỹ (z, t′))z∈W (t′) are independent of Ft′ given W (t′), i.e. (4.3.9)
holds for all z ∈ W (t′). In fact, p(R) is a function of the maximal degree (11 + 4/s)d

of the dependence graph and the minimal guaranteed density 1− q(Tblock, R) of good
blocks, see Theorem 1.3 in [LSS97]. For z ̸∈ W (t′), (4.3.9) imposes no condition at
all on Ỹ (z, t′). Thus, we can simply define Ỹ (z, t′) = Ŷ (z, t′) for z ̸∈ W (t′) where
(Ŷ (z, t))(z,t)∈L is an independent family of i.i.d. Bernoulli(p(R)) random variables.

In order to formalise this construction and, in particular, to show that the random
variables Ỹ (z, t) are independent over different time layers, note that by the construc-
tion (4.2.2) from Lemma 4.2.1, we can write

Y (·, t′) = g
(
ηt′ , (U(·, n) : t′ < n ≤ t′ + Tblock)

)
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for some deterministic function g : {0, 1}Zd × [0, 1]Z
d×{1,...,Tblock} → {0, 1}L′

blockZ
d , fur-

thermore W (t′) = W (ηt′) = {z ∈ L′
blockZd : Block(z, t′) is well started}. For every

ζ = (ζ(z))z∈Zd ∈ {0, 1}Zd , [LSS97, Thm. 1.3] and the discussion above provides a
coupling νζ of L(Y (·, t′) | ηt′ = ζ) and Ber(p(R))⊗Zd with the desired properties. We
can then disintegrate this joint law with respect to its first marginal and describe the
joint law νζ in a two-step procedure. It is convenient to describe this via an auxil-
iary function h(ζ; ·, ·) using additional independent randomness and obtain that given
ηt′ = ζ,

Y (·, t′) = g
(
ζ, (U(·, n) : t′ < n ≤ t′ + Tblock)

)
, Ỹ (·, t′) = h

(
ζ;Y (·, t′), Ũt′

)
where Ũt′ is independent of everything else and uniformly distributed on [0, 1] (see, for
example, Theorem 5.10 in [Kal97]). By construction, since U(·, n), n > t′ and Ũt′ are
independent of Ft′ , we have for A ∈ Ft′ and measurable B ⊆ {0, 1}L′

blockZ
d

P
(
A ∩ {Ỹ (·, t′) ∈ B}

)
= E

[
1AP

(
h(ηt′ ;Y (·, t′), Ũt′) ∈ B | Ft′

)]
= P(A)Ber(p(R))⊗L′

blockZ
d

(B).

This shows the required independence of Ỹ and completes the induction step.
We see from (4.3.8), (4.3.9) and (4.3.3) that every open path in Ỹ (·, ·) is automat-

ically also an open path in Y (·, ·). Furthermore, by well known properties of oriented
site percolation, we have

P
(
(z, t) is connected to infinity in Ỹ

)
= P

(
(0, 0) is connected to infinity in Ỹ

)
> 0

if p(R) is sufficiently close to 1, i.e. for all R large enough.
To conclude, let η0 be any initial configuration containing at least one particle, and

let η̃0 = η0. It is then easy to see (as this involves requiring only finitely many random
variables U(x, n) to be sufficiently small), that one can find (z, t) ∈ L, so that the
probability that Block(z, t) is well-started is positive.

Therefore, due to the above properties,

P(η survives) ≥ P(η̃ survives)
≥ E

[
1{Block(z,t) is well-started}1{(z,t) is connected to infinity in Y }

]
≥ P

(
Block(z, t) is well-started

)
P
(
(z, t) is connected to infinity in Ỹ

)
> 0 for all R large enough,

which completes the proof of Theorem 4.1.3.
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4.4 Complete convergence

In this section we show our main results in the regime where the particle system
survives with a positive probability and is well approximated by the deterministic
coupled map lattice introduced in Section 4.1.4. In particular, we assume that µ ∈
(1, e2) and R is large enough. In Section 4.4.1, we start with Theorem 4.1.6 providing
the coupling of processes started with different initial conditions. Theorem 4.1.5 is
then shown in Section 4.4.3.

4.4.1 Coupling construction: Proof of Theorem 4.1.6

As in Section 4.3, the central ingredient will be a block construction and then a suitable
comparison with oriented percolation. The definition of “good blocks” will be more
involved than in Section 4.3 and is inspired by the construction in [BD07, Section 5].

In brief, the construction of a good block around z is as follows. We consider a
(large) ball B around z and assume that η(1) and η(2) agree on B and the respective R-
densities of the two processes are close to θµ. On an even larger ball B′ we add milder
and milder requirements (as the distance from the centre increases) on the densities of
the processes. The contraction property of φµ, see Lemma 4.4.1 below, together with
the concentration property of the densities of η(i) guaranteed by Lemma 4.2.3 then
ensure that the area in which the η(1) and η(2) are coupled expands in time with high
probability. In order to guarantee survival of the processes we also require that the
respective densities of η(1), η(2) dominate the deterministic comparison density profile
as defined in (4.2.12) (the latter was also used in Section 4.3).

We now proceed with the formal definitions. Throughout this section, we again
use the coupling construction from Section 4.2.1: Given two initial conditions η(1)0 and
η
(2)
0 , we construct both (η

(1)
n )n and (η

(2)
n )n using (4.2.2) with the same U(x, n)’s, that

is, we set

η
(i)
n+1(x) = 1{U(x,n+1)≤φµ(δR(x;η

(i)
n ))}, i ∈ {1, 2}, (x, n) ∈ Zd × N0. (4.4.1)

Since we are from now on interested in two copies of the branching annihilating process,
we redefine the filtration (Fn) from (4.2.4) by including both initial conditions, i.e.

Fn := σ
(
η
(i)
0 (x) : x ∈ Zd, i = 1, 2

)
∨ σ
(
U(x, j) : x ∈ Zd, j ≤ n

)
.

It is clear that this updated filtration is finer than the natural filtration of the two
processes, in the sense that for all n ≥ 0, it holds that Fn ⊇ σ

(
η
(i)
j (x) : x ∈ Zd, j ≤

n, i = 1, 2
)
.

In order to define the comparison density profiles that are used to determine
whether a block is good, we need a simple lemma which gives some useful proper-
ties of the function φµ in the vicinity of its non-trivial fixpoint θµ. The result is fairly
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standard, we provide a proof for completeness’ sake in Section 4.6.2 (cf. also [BD07,
Proof of Lemma 12]).

Lemma 4.4.1. For every µ ∈ (1, e2) there is ε > 0 and κ(µ, ε) < 1 such that φµ is a
contraction on [θµ − ε, θµ + ε], that is,

|φµ(w1)− φµ(w2)| ≤ κ(µ, ε)|w1 − w2| for w1, w2 ∈ [θµ − ε, θµ + ε].

Moreover, there exist a strictly increasing sequence αm ↑ θµ and a strictly decreasing
sequence βm ↓ θµ such that φµ([αm, βm]) ⊆ (αm+1, βm+1) for all m ∈ N. Furthermore,
it is possible to choose α1 > 0 arbitrarily small and β1 > 1/e.

We now take b as in (4.3.1) and fix ε, κ(µ, ε) < 1, as well as sequences αm ↑ θµ,
βm ↓ θµ as in Lemma 4.4.1, with α1 = b and β1 > 1/e. Then we choose m0 such
that βm − αm < ε for every m ≥ m0. These choices will remain fixed throughout the
remainder of this section.

Next define the size of the blocks

L′
block = 2⌈R logR⌉, Lblock = cspaceL

′
block and Tblock = ctime⌈logR⌉, (4.4.2)

where ctime > −(d + 1)/ log κ(µ, ε) and cspace = 4(1 + ctime) are integer constants.
Remark 4.4.5 below explains these choices. As in Section 4.3, we introduce R′

block =
L′
block/2 and Rblock = Lblock/2 for the radii of the blocks, and, for (z, t) in the sub-lattice

L := L′
blockZd × TblockN0, we define

Block(z, t) =
{
(x, n) ∈ Zd × N0 : ∥x− z∥ ≤ Rblock, t ≤ n ≤ t+ Tblock

}
.

Further, let us specify the radius for which the strongest form of density control, alluded
to in the above informal description, holds. More precisely set cdens = 1 + 2ctime and
Rdens := 2cdensR

′
block. Again, the discussion on the choice of cdens is postponed to

Remark 4.4.5.
Recall the functions ξ−n (x) defined in (4.2.12). We use them here with Rinit =

Rdens +m0R in (4.2.11). For k ∈ {0, . . . , Tblock} set Rdens(k) = Rdens + k⌈sR⌉, then let

ζ−k (x) :=


αm0 if ∥x∥ ≤ Rdens(k)

αm0−j+1 if Rdens(k) + (j − 1)R < ∥x∥ ≤ Rdens(k) + jR, 1 ≤ j ≤ m0

ξ−k (x) if ∥x∥ > Rdens(k) +m0R,

and

ζ+k (x) :=


βm0 if ∥x∥ ≤ Rdens(k)

βm0−j+1 if Rdens(k) + (j − 1)R < ∥x∥ ≤ Rdens(k) + jR, 1 ≤ j ≤ m0

1 ∨ β1 if ∥x∥ > Rdens(k) +m0R.

See also Figure 4.4.
The functions ζ−k (·) < ζ+k (·) are comparison density profiles in the sense of Defini-

tion 4.2.2, in particular, they satisfy the following analogue of (4.2.5).
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Lemma 4.4.2. There exists δ > 0 with the following property: For k ∈ N0 and any
(ζ(x))x∈Zd ∈ [0, 1]Z

d satisfying ζ−k ≤ ζ ≤ ζ+k on Supp(ζ−k ), it follows that

(1 + δ)ζ−k+1(x) ≤ V −d
R

∑
y∈BR(x)

φµ
(
ζ(y)

)
≤ (1− δ)ζ+k+1(x) for all x ∈ Supp(ζ−k+1).

Proof. For x such that ζ−k (x) agrees with the previously defined profile ξ−k (x) the lower
bound in the statement follows easily from Lemma 4.2.6.

Let x ∈ Supp(ζ−k+1) with ζ−k+1(x) = αj, for some 2 ≤ j ≤ m0. Then

ζ−k (y) = αj if y ∈ BR(x) ∩ΥR and ζ−k (y) ≥ αj−1 if y ∈ BR(x) ∩Υc
R,

where ΥR := {z : Rdens(k)+(j−1)R ≤ ∥z∥ ≤ Rdens(k)+jR}. Note that |ΥR∩BR(x)| ≥
cV d

R for some c > 0, uniformly in the x we consider here. The properties of sequences
αm, βm from Lemma 4.4.1 then imply that there exists δ > 0 (depending on (αm)m≤m0 ,
(βm)m≤m0 and d) such that

V −d
R

∑
y∈BR(x)

φµ(ζ(y)) ≥ αj+1|BR(x) ∩ΥR|V −d
R + αj|BR(x) ∩Υc

R|V −d
R ≥ αj(1 + δ)

and similarly for the upper bound. This completes the claim for the remaining parts
of the profile (those in orange in Figure 4.4).

θµ

α1

...

αm0

β1

...
βm0

Rdens(k)0

m0R

R

⌈wR⌉

Figure 4.4: The part of the deterministic comparison density profiles ζ+k and ζ−k (in
orange and green) left from Rdens(k). In a good block the densities of both η(1) and η(2)
stay between the union of the orange lines and the green profile, which is glued to the
bottom orange profile. The green line is the (suitably recentred and shifted) profile of
ξ−, which we introduced to prove survival.
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We proceed in a similar fashion as in Section 4.3 and introduce a new notion of
well-started and of good blocks. These updated definitions involve two copies η(1),
η(2) of the system. A well-started block is now determined by the local density of the
true system being controlled by the ζ+k , ζ

−
k profiles, in addition to which we require

agreement of the true processes in the central part of the block.

Definition 4.4.3. A Block(z, t) based at (z, t) ∈ L is well-started if

δR(x; η
(i)
t ) ∈

[
ζ−0 (x− z), ζ+0 (x− z)

]
for all x ∈ z + Supp(ζ−0 ), i = 1, 2 (4.4.3)

and

η
(1)
t (x) = η

(2)
t (x) for all x ∈ BR′

block
(z). (4.4.4)

Again as in Section 4.3 we use this as the starting point off of which we base
our notion of goodness as the spreading of the control given by well-startedness to
neighbouring regions.

Definition 4.4.4. We call a Block(z, t) based at (z, t) ∈ L good if

(i) Block(z, t) is well-started,

(ii) η(1)t+Tblock
(x) = η

(2)
t+Tblock

(x) for ∥x− z∥ ≤ 3R′
block,

(iii)
(
η
(1)
t+Tblock

, η
(2)
t+Tblock

)
satisfy (4.4.3) around z + L′

blocke for all e ∈ B1(0).

Property (iii) implies that if Block(z, t) is good, then Block(z + L′
blocke, t+ Tblock)

will be well-started for all ∥e∥ ≤ 1.

Remark 4.4.5. Let us now comment on our choice of the constants cspace, cdens, ctime.
It is instructive to first give cspace as a function of cdens, then cdens as a function of ctime,
and ultimately fixing ctime large enough.

(i) Note first that ζ±0 are constant on a box of size Rdens (which is of order R logR)
and then increase (resp. decrease) on boxes with length of order R. It follows
readily that Supp(ζ−0 ) ⊆ B2Rdens

(0) for large enough R. Therefore 2cdens blocks
of size L′

block fully cover the spatial region determining whether a block is well-
started. Furthermore, we need to to provide additional space for the well-started
configurations to spread to in time Tblock. This warrants the choice cspace =
2cdens + 2. Note in this context that a much smaller Lblock would suffice, but
defining it to be a multiple of L′

block gives a more convenient notation.
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(ii) In order to have a well-started block at (z, t) for which property (4.4.4) spreads
to a region of radius 3R′

block around z in time Tblock, the region of space around z
for which the densities of η(1), η(2) are near θµ must be large enough. As will be
seen later on (see Section 4.4.2) this is due to the crucial role that the contraction
property of Lemma 4.4.1 plays in the expansion of the coupling and translates
loosely to Rdens being large enough, namely

Rdens > R′
block + Tblock⌈sR⌉+ TblockR.

This can also be seen as an incentive for taking Tblock to be of order logR and
Rdens to be of order R logR. Further it shows that cdens needs to be chosen
suitably large; it suffices to take cdens = 1 + 2ctime.

(iii) Assume that on the event that a block at (z, t) is well started, property (ii) of
Definition 4.4.4 does not hold, i.e. there is a site at the top of the block at which
η(1) and η(2) disagree. As will be seen in Section 4.4.2, the probability of the
two processes disagreeing at a site (in a well-started block) decays by a factor
of κ(µ, ε) at each time step, when tracing the unsuccessful coupling backwards
in time though the block. By a union bound, it follows that the probability
that a well-started block at (z, t) does not satisfy (ii), is bounded by κ(µ, ε)Tblock
multiplied by the number of sites that are within distance R′

block + Tblock⌈sR⌉
of z. For this probability to decay in R, the constant ctime must satisfy ctime >
−(d+ 1)/ log κ(µ, ε).

In order to set up comparison with oriented percolation, in the same fashion as in
Section 4.3, we need to show that the good blocks have high density and that the block
dependencies have finite range that does not depend on R. To this end, note first that
the event {Block(z, t) is good} depends (only) on {η(i)t (x), x ∈ BRblock

(z), i = 1, 2} and
{U(y, t+ k) : y ∈ B3Rblock

(z), k = 1, 2, . . . , Tblock}.

Lemma 4.4.6. For (z, t) ∈ L,

P
(
Block(z, t) is good

∣∣Ft

)
≥ 1{Block(z, t) is well-started}

(
1− q(R, µ)

)
with q(R, µ) → 0 as R → ∞.

See Section 4.4.2 for the proof.
Armed with Lemma 4.4.6 we can repeat the comparison construction from Sec-

tion 4.3 and obtain the analogues of (4.3.8) and (4.3.9) in our context. That is we
define Y (z, t) = 1{Block(z,t) is good}, and then couple (η(1), η(2)) with a (high density)
i.i.d. Bernoulli field (Ỹ (z, t))(z,t)∈L such that

Y (z, t) ≥ 1{Block(z,t) is well-started}Ỹ (z, t) for all (z, t) ∈ L
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and p(R) = P(Ỹ (z, t) = 1) → 1 as R → ∞.
This shows that the density of good blocks (and thus also the density of space-time

sites where η(1) and η(2) agree) will be high. In order to conclude that in fact η(1) and
η(2) will agree a.s. from some time on in a growing space-time region, we invoke the
fact that “dry” (=̂ “uncoupled”) clusters of blocks do not percolate when p(R) is close
to 1. More precisely we set

C0 :=

(z, t) ∈ L :

There exists a path (z0, 0), (z1, Tblock), . . . , (zt, t) in
L with z0 = 0, zt = z such that ∥zi − zi−1∥ ≤ L′

block

and Ỹ (zi, iTblock) = 1 for i ∈ {1, . . . , t/Tblock}


to be the cluster of sites which are connected to the origin by an open path in the
Bernoulli field (Ỹ (z, t))(z,t)∈L. Further we say that a space-time point (z, t) ∈ L is C0-
exposed if there is an arbitrary path from it to the zero-time slice, which entirely avoids
C0, i.e. if there is a path (z0, 0), . . . , (zt, t) in L with zt = z such that ∥zk−zk−1∥ ≤ L′

block

and (zk, kTblock) /∈ C0, k = 1, . . . , t/Tblock.
It follows from [Dur92, Section 3] that there is a truncated cone originating from the

origin in which there exist no C0-exposed sites. The exact statement we are interested
in is a direct reformulation of [BD07, Lemma 14].

Lemma 4.4.7 ([BD07, Lemma 14]). If p(R) is sufficiently close to 1, then there is a
positive constant c > 0 and an almost surely finite random time τ , such that conditioned
on {|C0| = ∞} there are no C0-exposed sites in {(z, t) ∈ L : ∥z∥ ≤ ct, t ≥ τ}.

For large enough R the Bernoulli field (Ỹ (z, t))(z,t)∈L contains an infinite cluster of
open sites with probability one. Similarly to Section 4.3, because a good block will be
created with positive probability from any non-trivial initial condition, we can assume
without loss of generality that this cluster contains the origin and that the block at
the origin is good.

Lemma 4.4.7 together with Lemma 4.4.6 imply that for sufficiently large R, on
{|C0| = ∞} there is a (random) time τ > 0 and a constant c > 0 such that no sites
in {(z, t) ∈ L : ∥z∥ ≤ ct, t ≥ τ} are C0-exposed. We show that this implies that η(1)
agrees with η(2) on the space-time cone A = {(z, t) ∈ Zd × N : ∥z∥ ≤ c(t− τ), t ≥ τ}
centered at (0, τ). Indeed, assume to the contrary that there exists (z, s) ∈ A such that
η
(1)
s (z) ̸= η

(2)
s (z). Then we can find a path (z, s), (xs−1, s− 1), . . . , (x0, 0) in Zd × N0

such that xu ∈ BR(xu+1) and η(1)u (xu) ̸= η
(2)
u (xu) for all 0 ≤ u ≤ s−1. By disregarding

all u’s which are not a multiple of T = Tblock, there exists some integer k and a
sub-path (z, s), (xkT , kT ), . . . , (x0, 0) in Zd×N0 “backwards in time”. Assume without
loss of generality that s is a multiple of T and associate to the sub-path the nearest
neighbour path

(
(Z, k + 1), (Xk, k), . . . , (X0, 0)

)
⊆ L where Z,Xk ∈ L′

BlockZd are the
respective closest grid-points to z and xkT in the coarse-grained lattice. In particular
∥Xk − xkT∥ ≤ R′

Block for k = 0, . . . , s. By definition Ỹ (Xk, kT ) = 0 for k = 0, . . . , s,
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whence (Z, s) is a C0-exposed site, contradicting Lemma 4.4.7 and yielding that in
fact η(1)s (z) = η

(2)
s (z). As (z, s) ∈ A was chosen arbitrarily, the claim of Theorem 4.1.6

follows with T coupl = τ and a(R, µ, d) = c.

4.4.2 Proof of Lemma 4.4.6

The key step in proving Theorem 4.1.6 is showing that the coupled region in the
well-started configuration of a good block expands to the neighbouring sites with high
probability. In order to keep the notation lighter we only show this property for a
block centred at the origin at time 0. That is, we show that for some q = q(R, µ) → 0
as R → ∞,

P
(
Block(0, 0) is good

∣∣F0

)
≥ 1{Block(0, 0) is well-started}

(
1− q(R, µ)

)
(4.4.5)

Shifting the block yields the desired property for blocks centred at arbitrary space-
time sites. Note that we still condition on F0, as we allow for possibly random initial
configurations η(i)0 , i = 1, 2. As was already anticipated in Remark 4.4.5, in order to
see the spreading of the coupling after Tblock steps, we need a large number of sites
within distance Rdens of the origin for which the densities of both η(1), η(2) are close to
θµ. This is made precise by the following auxiliary events, where the densities have
the prescribed behaviour on balls whose radii decrease by R at each time step.

Recall that Tblock = ctime⌈logR⌉ and write R′(k) := R′
block + k⌈sR⌉. For n ∈ N let

Ψn =
{
|δR(x; η(i)j )− θµ| < ε, ∥x∥ ≤ R′(n) + (n− j)R, ∀j ∈ {1, . . . , n}, i ∈ {1, 2}

}
.

(Recall also that ε was chosen at the beginning of Section 4.4.1, above (4.4.2).)
Note that in a well-started configuration around the origin we have |δR(x; η(i)0 ) −

θµ| < ε for every x such that ∥x∥ ≤ R′(Tblock) + TblockR (in fact, this holds for all
x within distance Rdens from the origin and Rdens ≥ R′(Tblock) + TblockR). The sites,
where the densities of η(1), η(2) are close to θµ due to the well-startedness, encompass
the entire n = 0 (bottom) level of the space-time pyramid ΨTblock , see also Figure 4.5.
Due to this the the event ΨTblock holds with high probability. Indeed, by defining the
events A0 = ∅ and

Aj =
{
∃z ∈ BR′(Tblock)+(Tblock−j)R(0) : |δR(z; η

(1)
j )− θµ| > ε

}
,

we see that on the event {Block(0, 0) is well-started}

P
(
Ψc
Tblock

∣∣F0

)
≤ 2P

(
Tblock⋃
j=1

Aj

∣∣∣∣∣F0

)

≤ 2

Tblock∑
j=1

P
(
Aj ∩ Acj−1

∣∣F0

)
≤ 2

Tblock∑
j=1

P(Aj | Acj−1,F0).
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0

R′(Tblock)

R′(Tblock) + (n− 1)R

Figure 4.5: The event Ψn occurs if the local density of η(i), i = 1, 2 is within ε distance
of the fixed point θµ for all space-time points in the above pyramid. For convenience
of presentation the spatial axis in the sketch is scaled by R, while the temporal axis is
not scaled.

Together with Lemma 4.2.3 it follows with some constants c1, c2 > 0 that

1{Block(0,0) is well-started}P
(
Ψc
Tblock

∣∣F0

)
≤ c1Tblock(Lblock)

d exp(−c2 V d
R). (4.4.6)

In order to utilise the control guaranteed by the pyramids Ψn we introduce events
that describe properties (ii) and (iii) in Definition 4.4.4:

C =
{
η
(1)
Tblock

(x) = η
(2)
Tblock

(x) for ∥x∥ ≤ 3R′
block

}
D =

{(
η
(1)
Tblock

, η
(2)
Tblock

)
satisfy (4.4.3) around L′

blocke for all ∥e∥ ≤ 1
}
.

We are interested in the conditional probability P(C∩D|F0) on the event that Block(0, 0)
is well-started. Clearly it holds that

P
(
Cc ∪ Dc

∣∣F0

)
≤ P

(
Cc ∩ΨTblock

∣∣F0

)
+ P

(
Ψc
Tblock

∣∣F0

)
+ P

(
Dc
∣∣F0

)
. (4.4.7)

By (4.4.6) the second term in (4.4.7) decays in R for well-started configurations. To
deal with the third term, note that it follows from Lemma 4.4.2 and Lemma 4.2.3 that
for some constants c3, c4 > 0

1{Block(0,0) is well-started}P(Dc|F0) ≤ c3Tblock(Lblock)
d exp(−c4 V d

R). (4.4.8)

It remains to find a bound for P
(
Cc ∩ ΨTblock

∣∣F0

)
. To this end fix k ∈ {1, . . . , Tblock}.

By a union bound and Markov’s inequality

P
(
{∃ |x| ≤ R′(k) such that η(1)k (x) ̸= η

(2)
k (x)} ∩Ψk

∣∣F0

)
≤

∑
x∈BR′(k)(0)

E
[
1Ψk

|η(1)k (x)− η
(2)
k (x)|

∣∣F0

]
= E

[ ∑
x∈BR′(k)(0)

1Ψk−1
E
[
|η(1)k (x)− η

(2)
k (x)|

∣∣Fk−1

]∣∣∣F0

]
.

(4.4.9)
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In light of the coupling (4.4.1), we have

E
[
|η(1)k (x)− η

(2)
k (x)|

∣∣Fk−1

]
= P

(
U(x, k) ≤

∣∣φµ(δR(x; η(1)k−1))− φµ(δR(x; η
(2)
k−1))

∣∣∣∣∣Fk−1

)
=
∣∣φµ(δR(x; η(1)k−1))− φµ(δR(x; η

(2)
k−1))

∣∣.
Now δR(x; η

(i)
k−1) ∈ [θµ−ε, θµ+ε] for i = 1, 2 on the event Ψk−1 and by Lemma 4.4.1,

φµ is a contraction with Lipschitz constant κ(µ, ε) < 1 on this interval. Therefore

1Ψk−1
E
[
|η(1)k (x)− η

(2)
k (x)|

∣∣Fk−1

]
≤1Ψk−1

κ(µ, ε)
∣∣δR(x; η(1)k−1)− δR(x; η

(2)
k−1)

∣∣
≤1Ψk−1

κ(µ, ε)V −d
R

∑
y∈BR(x)

∣∣η(1)k−1(y)− η
(2)
k−1(y)

∣∣.
Plugging this back into (4.4.9) yields

P
(
{∃ |x| ≤ R′(k) such that η(1)k (x) ̸= η

(2)
k (x)} ∩Ψk

∣∣F0

)
≤ κ(µ, ε)V −d

R

∑
x∈BR′(k)(0)

∑
y∈BR(x)

E
[
1Ψk−1

∣∣η(1)k−1(y)− η
(2)
k−1(y)

∣∣∣∣∣F0

]
.

By inductively repeating this step another k − 1 times, we can upper bound the right
hand side of the last display by

κ(µ, ε)kV −dk
R E

[ ∑
x∈BR′(k)(0)

∑
y1∈BR(x)

∑
y2 ∈BR(y1)

· · ·
∑

yk∈BR(yk−1)

∣∣η(1)0 (yk)− η
(2)
0 (yk)

∣∣∣∣∣F0

]
.

Since
∣∣η(1)0 (yk)− η

(2)
0 (yk)

∣∣ ≤ 1, with k = Tblock we obtain

1{Block(0,0) is well-started}P
(
Cc ∩ΨTblock

∣∣F0

)
≤ κ(µ, ε)TblockV d

R′(Tblock)
. (4.4.10)

The choice ctime > −(d+ 1)/ log κ guarantees that this probability tends to zero as R
goes to infinity. Combining (4.4.10) together with (4.4.8) and (4.4.6) gives that, on the
event that Block(0, 0) is well-started, all the terms on the right-hand side of (4.4.7)
tend to zero as R goes to infinity, thus proving (4.4.5).

4.4.3 Proof of Theorem 4.1.5

We now have all required tools to prove complete convergence of the BARW. Given
these tools, the proof is relatively standard and thus it is kept brief.

Proof. As the Dirac measure concentrated around η ≡ 0 is an invariant distribution
for η we only need to show existence of a unique non-trivial limiting invariant measure
which does not charge the empty configuration. To this end, let ν0 be the product
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measure on Zd such that, for all x ∈ Zd, η0(x) = 1 with probability p > 0 and
η0(x) = 0 otherwise. For any n ≥ 1, denote by νn the distribution of ηn given that η0
is distributed as ν0.

Since the set of all probability measures on {0, 1}Zd is compact, there exists a sub-
sequence along which 1

N

∑N
n=0 νn converges to some probability measure ν on {0, 1}Zd .

From a standard result for interacting particle systems, see e.g. [Lig85, Proposition 1.8],
any such subsequential limit ν must be invariant for the process η.

To show that ν is non-trivial (and actually gives zero mass to the empty configu-
ration η ≡ 0), it suffices to show that η survives almost surely. As we chose ν0 to be
a product measure and since for any fixed R the blocks defined in Section 4.3 depend
only on finitely many sites, it follows that at time 0 there are almost surely infinitely
many well-started blocks and hence by (4.3.6) infinitely many good blocks. By the
correspondence of the blocks with supercritical oriented site percolation and the fact
that supercritical oriented site percolation starting from infinitely many occupied sites
does not die out (see e.g. [Lig99, Theorem B24]), we have Pν0(∃n ≥ 1 : ηn ≡ 0) = 0.

Furthermore, the measure ν is extremal, because any limiting invariant distribu-
tion ν ′ which gives zero mass to η ≡ 0 must be unique. Indeed, if two stationary
distributions existed with this property, then by Theorem 4.1.6 they would coincide
on finite subsets of Zd, and would therefore be equal. Furthermore, under ν, η has
exponentially decaying correlations in space and in time, which in particular implies
ergodicity w.r.t. spatial shifts. Indeed, using the construction of good blocks from the
proof of Theorem 4.1.6 below, this can be deduced from the corresponding property
of supercritical oriented percolation in a fairly straightforward way, see for example
the analogous construction in [Dep08, Section 3.4] for the related model of a locally
regulated population from [BD07].

Finally, in order to verify the complete convergence, consider any (fixed) initial
condition η̃0 ∈ {0, 1}Zd , a finite box B ⊆ Zd centred at the origin and a configuration
ζ ∈ {0, 1}B. With S := {ηm ̸≡ 0 for all m ∈ N} we have to check that

lim
n→∞

Pη̃0({ηn|B = ζ} ∩ S) = Pη̃0(S)ν({η0|B = ζ}). (4.4.11)

Pick ε > 0. The coupling construction from the proof of Theorem 4.1.6 and standard
properties of supercritical oriented percolation show that one can pick L′ ∈ N and
T ′ ∈ N large so that

∣∣Pη′0({ηm|B = ζ}) − ν({η0|B = ζ})
∣∣ ≤ ε for all m ≥ T ′ and all

starting configurations

η′0 ∈ G′ :=

η̃ ∈ {0, 1}Zd

:
The density of well-started sub-boxes, where the lo-
cal density of η̃ satisfies (4.4.3) from Definition 4.4.3,
in a box of radius L′Rblock is at least 1/2.

 .

Furthermore, since starting from any non-trivial initial condition there is a positive
chance of producing a well-started box in a finite number of steps, a “restart” argument
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together with the construction from Theorem 4.1.6 shows that for all large enough n
it holds that Pη̃0(S∆{ηn ∈ G′}) ≤ ε for all large enough n. Thus

|Pη̃0({ηn|B = ζ} ∩ S)− Pη̃0(S)ν({η0|B = ζ})|
≤
∣∣Pη̃0({ηn|B = ζ} ∩ {ηn/2 ∈ G′})− Pη̃0({ηn/2 ∈ G′})ν({η0|B = ζ})

∣∣+ 2ε

≤ Eη̃0
[
1{ηn/2∈G′}

∣∣Pη̃0(ηn|B = ζ | Fn/2)− ν({η0|B = ζ})
∣∣]+ 2ε ≤ 3ε.

Taking n→ ∞ and then ε ↓ 0 proves (4.4.11).

4.5 Extinction results

We provide here a simple proof of Theorem 4.1.1 describing the extinction regime.

Proof of Theorem 4.1.1. Let R ∈ N and µ > 0 be such that

µ̃ := V d
R φµ

(
V −d
R

)
= µe−µV

−d
R < 1. (4.5.1)

Then ψ(w) := µ̃w fulfils φµ(w) ≤ ψ(w) on [0, 1] ∩ V −1
R Z (note that if w ≥ V −1

R , we
have φµ(w) = µw exp(−µw) ≤ µw exp(−µV −d

R ) = µ̃w and φµ(0) = ψ(0)).
Thus, we can define a process (η̃n)n∈N0 with η̃0 = η0 using this ψ as in (4.2.3).

By the coupling construction from Section 4.2.1 and specifically Lemma 4.2.1(b) we
conclude that ηn(x) ≤ η̃n(x) holds for all n ∈ N, x ∈ Zd. Since ψ is a linear function,
we have

E[η̃n(x)] = µ̃V −d
R

∑
y∈BR(x)

E[η̃n−1(y)]

Iterating this n times shows

E[η̃n(x)] = µ̃n
∑
z∈Zd

p(n)(x, z)E[η0(z)] ≤ µ̃n

where p(n) is the n-fold convolution of the uniform transition kernel on BR(0) with itself.
Since µ̃ < 1 this combined with the coupling shows that

∑∞
n=1 P(ηn(x) > 0) < ∞ so

that indeed for every x ∈ Zd

P(ηn(x) = 0 for all n large enough) = 1.

Next note that the equation µ exp(−µV −d
R ) = 1 , i.e. the equality in (4.5.1), has

two positive real solutions µ1, µ2 such that 1 < µ1 < µ2 < ∞ when R ≥ 1 (when
R = 0 there is always extinction). The function µ 7→ µ exp(−µV −d

R ) is unimodal and
vanishes at 0 as well as at +∞, so if µ < µ1 or µ > µ2 there is extinction.
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We can rewrite µ exp(−µV −d
R ) = 1 as yey = x where y = −µV −d

R and x = −V −d
R .

When x ∈ [−1/e, 0), this equation has two real solutions y1 = W0(x) and y2 = W−1(x),
where W0 and W−1 are two branches of the Lambert W function. Since µ = −V d

Ry,
the two solutions of µ exp(−µV −d

R ) = 1 are

µ1 = −V d
RW0(−V −d

R ), µ2 = −V d
RW−1(−V −d

R ).

Since x ∈ [−1/e, 0), we can express W0(x) with its Taylor series centred at 0, which
has radius of convergence 1/e, that is

W0(x) =
∞∑
n=1

(−n)n−1

n!
xn = x− x2 +

3

2
x3 − 8

3
x4 + · · ·

This gives

µ1 = −V d
RW0(−V −d

R ) = 1 + V −d
R +

3

2
V −2d
R + · · · (4.5.2)

For the second solution, we use that

−1−
√
2u− u < W−1(−e−u−1) < −1−

√
2u− 2u

3

for every u > 0. Take u = d log VR − 1. Then the formula above gives

−
√

2d log VR − 2− d log VR < W−1(−V −d
R )

< −1

3
−
√

2d log VR − 2− 2d

3
log VR, (4.5.3)

which gives the result.

4.6 Auxiliary results

We prove here the auxiliary technical results that were omitted in the previous sections.
Section 4.6.1 deals with Lemma 4.2.5 which was used in the construction of the com-
parison density profiles ξ−n in Section 4.3. In Section 4.6.2, we then show Lemma 4.4.1
used in the proof of the complete convergence in Section 4.4. Finally, in Section 4.6.3
we provide a proof of Proposition 4.1.9.

4.6.1 Proof of Lemma 4.2.5

Recall that f : Z → [0, 1] is defined by

f(x) = min
{
(ε0 + x/⌈wR⌉)1x≥0, 1

}
.
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It is immediate that this function satisfies the properties in (4.2.9). Therefore, it only
remains to show that (4.2.10) holds for a suitable choice of parameters.

It is clear that the larger the growth factor a is, the easier it is for (4.2.10) to be
satisfied. Setting ε0 = min{(a− 1)2, 1/100}, it follows that

aδR(x; f) ≥ (1 +
√
ε0)δR(x; f) for all x ∈ Z,

which lets us reduce to the case where 1 < a < 11/10 and a = 1 +
√
ε0.

We now set
w = 1/

√
ε0, (4.6.1)

and define
C0 = {y ∈ Z : y < 0}, C1 = {y ∈ Z : y ≥ ⌈wR⌉},

so that f(y) = 0 for every y ∈ C0 and f(y) = 1 for every y ∈ C1. Since w > 1, exactly
one of the two sets BR(x) ∩ C0 and BR(x) ∩ C1 can be non-empty. Clearly (4.2.10)
holds when BR(x) ⊆ C0, or BR(x) ⊆ C1.

When BR(x) ∩ (C0 ∪ C1) = ∅, then f(y) = ε0 + y/⌈wR⌉ for every y ∈ BR(x) and
thus δR(x; f) = f(x), so (4.2.10) holds as well.

The remaining two cases are more delicate. When BR(x)∩C0 ̸= ∅ and BR(x) ̸⊆ C0,
that is when −R ≤ x < R, then the density of f around x can be written as

δR(x; f) = V −1
R

x+R∑
y=0

f(y) = V −1
R

x+R∑
y=0

(
ε0 +

y

⌈wR⌉
)

= V −1
R

(
(x+R + 1)ε0 +

1

2⌈wR⌉(x+R)(x+R + 1)
)
.

Using this, (4.2.10) is equivalent to

a(x+R + 1)ε0 +
a

2⌈wR⌉(x+R)(x+R + 1) ≥ VRf(x+ ⌈sR⌉)

= VR

(
ε0 +

x

⌈wR⌉ +
⌈sR⌉
⌈wR⌉

)
.

Rearranging terms, we arrive at a quadratic inequality

αx2 + βx+ γ ≥ 0, (4.6.2)

where

α =
a

2⌈wR⌉ ,

β = aε0 +
R

⌈wR⌉
(a
2
− 1
)(

2 +
1

R

)
,

γ = aε0R
(
1 +

1

R

)
+

aR2

2⌈wR⌉
(
1 +

1

R

)
−R

(
2 +

1

R

)(
ε0 +

⌈sR⌉
⌈wR⌉

)
.
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As α > 0 for our choices of parameters, (4.6.2) and hence (4.2.10) follow immediately
if the polynomial αx2 + βx+ γ has no real roots. The discriminant of (4.6.2) is given
by

β2 − 4αγ =
(
aε0 +

2

w

(a
2
− 1
))2

− 2a

w

(
aε0 +

a

2w
− 2
(
ε0 +

s

w

))
+O(R−1)

= (aε0)
2 +

4

w2
(1− a+ as) +O(R−1).

(4.6.3)

We now choose
s =

√
ε0

1 +
√
ε0

− ε0,

which is clearly positive for ε0 ∈ (0, 1/100). Recalling also (4.6.1) and that a = 1+
√
ε0,

the right-hand side of (4.6.3) (without the error term) equals

ε20(
√
ε0 − 3)(1 +

√
ε0)

which is clearly negative. As consequence, the quadratic inequality (4.6.2) holds for
all R big enough, depending only on a, and thus (4.2.10) holds also in this case.

For the final case, when BR(x) ∩ C1 ̸= ∅ that is ⌈wR⌉ − R ≤ x ≤ ⌈wR⌉ − R, we
observe that the right-hand side of (4.2.10) is bounded by one and the left-hand side is
increasing in x. It is thus sufficient to show that aδR(⌈wR⌉ −R− 1) ≥ 1. Using again
the fact that f is linear in the R-neighbourhood of ⌈wR⌉−R− 1, this is equivalent to
showing af(⌈wR⌉ −R− 1) ≥ 1. Recalling the definitions of a, w and s in terms of ε0,
we have

af(⌈wR⌉ −R− 1) = a
(
ε0 +

⌈wR⌉ −R− 1

⌈wR⌉
)

= a
(
ε0 + 1− w−1 +O(R−1)

)
= (1 +

√
ε0)
(
ε0 + 1−√

ε0 +O(R−1)
)

= 1 + ε
3/2
0 +O(R−1),

and thus the required inequality is satisfied for R large enough.

4.6.2 Proof of Lemma 4.4.1

We now prove Lemma 4.4.1, exploiting properties of φµ in the vicinity of its fixpoint
θµ.

Proof of Lemma 4.4.1. To prove that φµ is a contraction in the vicinity of its critical
point θµ = µ−1 log µ, it suffices to observe that |φ′

µ(w)| < 1 in some neighbourhood of
θµ. Since φ′

µ(w) = µe−µw(1−µw), it holds that |φ′
µ(θµ)| = |1− log µ| < 1 if µ ∈ (1, e2).

The statement then follows by the continuity of the derivative.
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To find the sequences αm and βm, note first that φµ is increasing on [0, 1/µ] and
decreasing on [1/µ,∞]. It is convenient to consider three cases (cf. also Figure 4.6):

(1) If µ ∈ (1, e), then θµ < 1/e < 1/µ, and thus φµ is a strictly increasing on
[0, 1/e] ∋ θµ, and φµ(w) > w if w < θµ, and φµ(w) < w when w ∈ (θµ, 1/e]. Pick
α1 < θµ and β1 > 1/µ satisfying φµ(β1) ≥ φµ(α1). Put α2 = (α1 + φµ(α1))/2,
β2 = (e−1+µ−1)/2, then we have indeed φµ([α1, β1]) ⊆ (α2, β2). From here on, we can
simply iterate by setting

αm+1 =
αm + φµ(αm)

2
, βm+1 =

βm + φµ(βm)

2
, m ≥ 2. (4.6.4)

This defines two sequences converging to θµ. Furthermore αm < αm+1 < φµ(αm)
and φµ(βm) < βm+1 < βm, so (αm)m≥1 is strictly increasing and (βm)m≥1 is strictly
decreasing. Since φµ is strictly increasing on [0, 1/e] we also have φµ([αm, βm]) ⊆
(αm+1, βm+1) for every m ≥ 0, as required.

(2) Consider now the case µ = e, that is when θµ = 1/e and φ′
µ(θµ) = 0. Pick

any α1 < 1/e and β1 = 1/e such that φµ(β1) ≥ φµ(α1); then build the sequence
(αm)m≥1 in the same way as in the case µ ∈ (1, e), i.e. as in (4.6.4), using m ≥ 1
there. By construction, this sequence is strictly increasing and converges to θµ. For
every m ≥ 2, let βm be the largest solution of φµ(x) = φµ(αm). Since w 7→ φµ(w)
is (strictly) increasing if and only if w ∈ [0, 1/e], this defines a strictly decreasing
sequence (βm)m≥1 converging to θµ and such that

φµ([αm, βm]) ⊆ [φµ(αm), 1/e] ⊆ (αm+1, βm+1),

as required.
(3) Finally, let µ ∈ (e, e2), which implies 1/µ < θµ and φ′

µ(θµ) ∈ (−1, 0). For the
initial piece, pick α1 < 1/µ and λ > 0 so small that µ−1 +λe−1 < θµ. Define, similarly
to (4.6.4),

αm+1 = λφµ(αm) + (1− λ)αm, m ≤ m0 − 1,

µ = 1.8

w

φµ

e−1

µ−1θµ

µ = e

w

φµ

e−1

θµ = µ−1

µ = 7

w

φµ

e−1

µ−1θµ

Figure 4.6: The function φµ, its fixpoint θµ and its maximum in the case µ < e (left),
µ = e (middle) and e < µ < e2 (right)
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where m0 is the smallest integer satisfying αm0 > 1/µ. Note that by construction and
the choice of λ, since φµ is strictly increasing on [0, 1/µ] and bounded by 1/e, we have
α1 < α2 < · · · < αm0−1 ≤ 1/µ < αm0 < θµ. Choose β1 > β2 > · · · > βm0 > 1/e
(> θµ) so that φµ(βm) > φµ(αm) for m = 1, . . . ,m0, then we have φµ([αm, βm]) ⊆
(αm+1, βm+1) for m = 1, . . . ,m0 − 1.

Since αm0 > 1/µ, the iteration has reached the decreasing part of φµ after m0 steps
and we thus must swap the roles of the upper and the lower boundary in each step:
Set for m ≥ m0

αm+1 =
φµ(βm) + αm

2
, βm+1 =

φµ(αm) + βm
2

.

We note that if φµ(αm) < βm and φµ(βm) > αm then the same holds for αm+1 and
βm+1. Indeed φµ(βm) > αm implies that αm+1 > αm and since φµ is decreasing
then φµ(αm+1) < φµ(αm). Similarly φµ(αm) < βm implies that βm+1 < βm and so
φµ(αm) = 2βm+1−βm < βm+1. Combining the two gives φµ(αm+1) < φµ(αm) < βm+1.
In the same way we can prove that φµ(βm+1) > αm+1. Hence for m ≥ m0

φµ((αm, βm)) ⊆ [φµ(βm), φµ(αm)] ⊆ (αm+1, βm+1).

It is clear from the construction that in each one of the three cases α1 can be
chosen arbitrarily small and β1 > 1/e (if a large β1 is required, this can be achieved
by decreasing α1 appropriately).

4.6.3 Proof of Proposition 4.1.9

Note again that since maxw≥0 φµ(w) = 1/e, for every initial condition Ξ0 ∈ RZd

+ of the
coupled map lattice defined in (4.1.8) we have Ξ1 ∈ [0, 1/e]Z

d . Thus we can assume
without loss of generality that 0 ≤ Ξ0(z) ≤ 1/e for every z ∈ Zd. Assume moreover
that Ξ0(z0) > 0 for some z0 ∈ Zd, as it otherwise obviously holds that Ξn ≡ 0 for all
n. The proof follows ideas from Section 4 in [BD07].

Proof of Proposition 4.1.9. Fix ε > 0 and let a > 1 and b > 0 be such that ψ(w) =
aw ∧ b satisfies φµ(w) ≥ ψ(w) for every w ∈ [0, 1]. Since θµ is a stable fixpoint
when µ ∈ (1, e2), we can choose sequences (αm)m≥0, (βm)m≥0 as in Lemma 4.4.1
with α1 < b/2 and a suitable β1 > 1/e, such that φµ([αm, βm]) ⊆ (αm+1, βm+1) and
βm∗ − αm∗ < ε for some m∗ ∈ N.

For a fixed z ∈ Zd we show that there exists n0 > m∗ such that Ξn(z) ∈ [αm∗ , βm∗ ]
for all n ≥ n0. We start by showing that

Ξn(z) ≥
∑
y∈Zd

p(n)(z, y)
[(
anΞ0(y)

)
∧ b
]
, (4.6.5)
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where p(n)(·, ·) are the n-step transition probabilities of a random walk whose steps
are uniformly distributed in BR(0) ∩ Zd. We can check (4.6.5) by induction. Using
Jensen’s inequality, it holds that

Ξn+1(z) = φµ(δR(z; Ξn)) ≥ ψ

(
V −d
R

∑
x∈BR(0)

Ξn(z + x)

)
≥ V −d

R

∑
x∈BR(0)

ψ
(
Ξn(z + x)

)
.

Using the inductive assumption,

ψ
(
Ξn(z + x)

)
≥
[
a
∑
y∈Zd

p(n)(z + x, y)
((
anΞ0(y)

)
∧ b
)]

∧ b

=
∑
y∈Zd

p(n)(z + x, y)
((
an+1Ξ0(y)

)
∧ ab

)
∧ b

≥
∑
y∈Zd

p(n)(z + x, y)
((
an+1Ξ0(y)

)
∧ b
)
∧ b

=
∑
y∈Zd

p(n)(z + x, y)
((
an+1Ξ0(y)

)
∧ b
)
,

so
Ξn+1(z) ≥ V −d

R

∑
x∈BR(0)

∑
y∈Zd

p(n)(z + x, y)
((
an+1Ξ0(y)

)
∧ b
)

and the conclusion follows from the fact that

V −d
R

∑
x∈BR(0)

p(n)(z + x, y) =
∑

x∈BR(0)

p(z, z + x)p(n)(z + x, y) = p(n+1)(z, y).

For our fixed choice of z, we show that

Ξn(x) ∈ [α1, β1] for all n ≥ n0 and ∥x− z∥ ≤ 2Rm∗. (4.6.6)

Take n1 >
(
4Rm∗ +2∥z− z0∥

)2 ∨ (( ln(b)− ln(Ξ0(z0))
)
/ ln(a)

)
large enough. By a

local central limit theorem for symmetric finite range random walks, cf. [LL10, Theorem
2.1.1] there exists c > 0 such that p(n1)(y, z0) ≥ cn

−d/2
1 if ∥y − z0∥ ≤ √

n1. By letting
n1 >

(
ln(b) − ln(Ξ0(z0))

)
/ ln(a) it holds that an1Ξ0(z0) ∧ b = b and hence it follows

with (4.6.5) that

Ξn1(y) ≥
∑
w∈Zd

p(n1)(y, w)
[(
an1Ξ0(w)

)
∧ b
]
≥ p(n1)(y, z0)

[
(an1Ξ0(z0)) ∧ b

]
≥ cn

−d/2
1 b.
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Using (4.6.5) again, we deduce that for any n2 <
√
n1/2

Ξn1+n2(x) ≥
∑
y∈Zd

p(n2)(x, y)
[
(an2Ξn1(y)) ∧ b

]
≥

∑
y∈B√

n1
(z0)

p(n2)(x, y)
((
an2cn

−d/2
1

)
∧ 1
)
b.

Choosing n2 = d log n1 − 2 log c gives that
(
an2cn

−d/2
1

)
∧ 1 = 1 and, since Bn2(x) ⊆

B√
n1(z0) when n1 >

(
4Rm∗ + 2∥z − z0∥

)2, the above is larger than b.
Since b > 2α1 and trivially φµ(w) ≤ 1/e < β1 for every w ≥ 0, this shows (4.6.6).

It follows that

Ξn+1(x) = φµ(δR(x; Ξn)) ∈ [α2, β2] for all n ≥ n0 and ∥x− z∥ ≤ (2m∗ − 1)R

and iterating m∗ steps shows that

Ξn+m∗−1(x) ∈ [αm, βm] for all n ≥ n0 and ∥x− z∥ ≤ m∗R.

Take x = z to conclude that Ξn(z) ∈ [αm, βm] for n ≥ n0 +m∗.

4.7 Open Questions

We collect here some natural follow-up questions to our results, several of them were
already mentioned in the text.

• Is there a sharp transition? That is, for given R, is the survival region a (possible
empty) interval of values of µ? See also Figure 4.7.

• Is there always extinction for small values of R? Simulations suggest that in
d = 1 for R ≤ 2 the process dies out for all values of µ, see Figure 4.7 again.

• Can one give results for “soft” annihilation, allowing multiple occupancy of the
sites? Of course, instead of the strong competition we consider, one could look at
truncation, keeping for instance at most N particles per site at the same time and
removing the others. Theorem 1.1 in [Mü15] implies for this truncation in our
model that there is, for each µ > 1 and all R, a critical value Nc ∈ {2, 3, 4, . . .}
such that the survival probability is 0 for N ≤ Nc and strictly positive for
N > Nc.

• What is the speed for the stochastic “travelling waves” in our model? Is there a
shape theorem?
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• The representation (4.1.4) suggests an interesting connection to spread-out ori-
ented site percolation: let each site be open with probability p and closed with
probability 1−p, where p = min{φµ((2R+1)−d), φµ(1)}. Connect the open sites
at time n+1 to their “parent” (with distance ≤ R) at time n, provided it is open.
Then the “wet” sites at time n are a lower bound for ηn.
Let pc(d,R) be the percolation threshold for the event that there is an infinite
connected cluster. How does the percolation threshold in directed space-time
percolation behave for R → ∞?
We have the following conjecture, based on the analogy with “spread-out oriented
bond percolation”, see [vdHS05]:

lim
R→∞

(2R + 1)dpc(d,R) = 1 for every d > 4.

It is plausible since the lattice should be more and more tree-like in high di-
mensions but we could not find a proof in the literature. Since φ′

µ(0) > 1, this
conjecture would lead to an alternative proof of survival for large R in d > 4.
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Figure 4.7: Simulations of the “phase diagram” for a one-dimensional BARW on
Z/1000Z with initial condition η0 = δ0, showing a Monte Carlo estimate of the survival
probability as a function of R and µ. On the left, 200 iterations of this process were
run and the proportion of realisations that survived the first 250 generations is shown.
Dark blue colour corresponds to no surviving realisations and yellow to only surviving
realisations. The right image zooms in the region of small µ’s. In both cases the red
line is our theoretical bound for extinction from Theorem 4.1.1.
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A Appendix

For completeness and ease of reference, we state the following concentration estimate
for sums of independent Bernoulli random variables, which is a straightforward conse-
quence of Bernstein’s inequality.

Lemma A.1. Let (Xi)i=1,...,n be independent Bernoulli random variables with pi =
P(Xi = 1), and let Sn := X1 + · · · +Xn. Then, setting µn := E[Sn] =

∑n
i=1 pi, σ

2
n :=

VarSn =
∑n

i=1 pi(1−pi), and mn := max1≤i≤nmax{pi, 1−pi} = max1≤i≤n ess sup|Xi−
E[Xi]| (≤ 1), we have

P(Sn − µn ≥ w) ≤ exp
(
− w2

2σ2
n + (2/3)mnw

)
, w ≥ 0, (A.1)

and the same bound applies to P(Sn − µn ≤ w) for w ≤ 0.

Proof. By Bernstein’s inequality (see e.g. [Ben62, Ineq. (8)]), for every t ≥ 0,

P(Sn ≥ µn + tσn) ≤ exp
(
− t2

2 + 2mnt/(3σn)

)
= exp

(
− (σnt)

2

2σ2
n + (2/3)mntσn

)
.

Reparametrising tσn = w (and implicitly assuming σn > 0, otherwise the problem
becomes trivial) we can rewrite this as (A.1).

Applying the argument to the 1−Xi’s gives the same bound for P(Sn − µn ≤ w),
for w ≤ 0.
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5. Ancestral lineages for a branching
annihilating random walk

Pascal Oswald

Abstract. We study ancestral lineages of individuals of a stationary
discrete-time branching annihilating random walk (BARW) on the lattice
Zd. Each individual produces a Poissonian number of offspring with mean
µ which then jump independently to a uniformly chosen site with a fixed
distance R of their parent. By interpreting the ancestral lineage of such
an individual as a random walk in a dynamical random environment, we
obtain a law of large numbers and a functional central limit theorem for
the ancestral lineage.

1 Model and main result

In this article, we reconsider a model of discrete-time branching annihilating random
walk (BARW) on Zd, d ≥ 1, that was first examined in [BCČ+23]. There model
specific parameter regimes were identified for which the BARW survives with positive
probability and for which it exhibits a unique non-trivial ergodic equilibrium. Building
upon these results we are interested in the long-term statistical properties of the posi-
tion of a single individual’s ancestors in a population evolving as a stationary BARW.
Our main result is that such ancestral lineages satisfy a law of large numbers as well
as an annealed central limit theorem, cf. Theorem 1.3 below.

The main tool in proving these results is a renormalisation construction together
with a result from [BČD16]. In [BČD16] Birkner, Černý and Depperschmidt develop an
abstract program, which allows to study ancestral lineages of spatial population models
with local self-interactions lying in the universality class of oriented percolation, via a
renewal argument. More precisely the authors work out conditions that imply a law of
large numbers and an annealed central limit theorem for the spatial paths of ancestral
lineages for individuals drawn from a stationary population. We check that the BARW
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satisfies these conditions by exploiting and adapting the renormalisation construction
that was used to show the existence of a unique stationary law in [BCČ+23].

Let us now introduce the model. We study a discrete-time Markov process η
with state space {0, 1}Zd and denote by ηn(z) the state of site z ∈ Zd at time n ∈
N (later when dealing with the stationary process we take n ∈ Z). We interpret
ηn(z) = 1 as the site z being occupied by a single particle at time n and ηn(z) = 0
as the site being vacant. In order to describe the dynamics of η we introduce the
following notational conventions: we write ∥ · ∥ for the uniform norm on Zd and let
BR(z) = {x ∈ Zd : ∥z − x∥ ≤ R} be the d-dimensional ball (box) of radius R ∈ N
centred at z ∈ Zd. Moreover, we set VR := 2R + 1 to be its side length, so that the
volume of BR(z) is V d

R .
For fixed R ∈ N, µ > 0, and an initial particle configuration η0 ∈ {0, 1}Zd , the

configurations ηn at times n ≥ 1 are obtained recursively through a three-step pro-
cedure. Let z ∈ Zd be such that ηn(z) = 1. Then in a first step the particle at site
z dies and gives birth to a Poisson number of offspring with mean µ. Secondly, each
offspring moves independently to a uniformly chosen site in BR(z). Lastly, whenever
there are two or more particles at a given site, then all the particles at that site are
removed, i.e. annihilated. The particles remaining after the annihilation step make up
the configuration ηn+1.

The thinning and superposition properties of the Poisson distribution give the
following equivalent description of the model. For any configuration η ∈ {0, 1}Zd and
z ∈ Zd, define first the (local) density of particles at z by

δR(z; η) := V −d
R

∑
x∈BR(z)

η(x). (1.1)

Then, in order to get from a configuration ηn to ηn+1 we fix ηn ∈ {0, 1}Zd and denote
by Nn+1(z) the number of newborn particles at z in generation n+1 after the dispersal
step but before annihilation has occurred. This number is given by the superposition
of the offspring of all particles that can move to z (that is, of all x ∈ BR(z) with
ηn(x) = 1). Thus, using the notation of (1.1), Nn+1(z) is a Poisson random variable
with mean µδR(z; ηn). Taking the annihilation into account, it then holds that

ηn+1(z) =

{
1 if Nn+1(z) = 1,

0 otherwise.
(1.2)

Let
φµ(w) := µw e−µw, w ∈ [0,∞) (1.3)

denote the probability that a Poisson random variable with mean µw equals 1. By
construction, the random variables in the family (ηn+1(z) : z ∈ Zd) are conditionally
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independent given ηn and by (1.2), (1.3) we can represent our system as

ηn+1(z) =

{
1 with probability φµ(δR(z; ηn)),
0 otherwise.

(1.4)

This gives a representation of η as a particular example of a probabilistic cellular
automaton (PCA), see e.g. [MM14a] for an introduction to PCA. Such PCA can be
seen as discrete-time counterpart to interacting particle systems, in which the entire
system updates “in parallel”, as opposed to “sequentually” as is true for interacting
particle systems.

Remark 1.1. (a) The representation (1.4) relies on the offspring distribution being
Poissonian and is not possible for a non-Poissonian choice of offspring distribu-
tions. Moreover, the constructions used subsequently depend very delicately on
properties of φµ. We refer to [BCČ+23, Section 1.2] for a detailed discussion of
the models assumptions and possible generalisations.

(b) The BARW is non-monotone/non-attractive in the sense of particle systems.
That is, adding more particles to a given generation does not guarantee an in-
crease in the number of particles in the succeeding generation as a higher number
of particles leads to more annihilation. A consequence of this seemingly simple
fact is that many tools of monotone systems (e.g. comparisons using coupling,
subadditivity arguments) are not directly applicable.

In [BCČ+23] the existence of (non-trivial) invariant measures for the BARW is ex-
amined (note that by (1.4) the empty configuration 0 ∈ {0, 1}Zd is always an absorbing
state). We summarise the relevant statements for the current objective in the following
proposition.

Proposition 1.2 (Survival and complete convergence, [BCČ+23]). Let µ ∈ (1, e2).

(i) There exists Rµ such that for any R > Rµ the process η survives with positive
probability and has a unique non-trivial invariant extremal distribution νµ,R.

(ii) Conditioned on non-extinction, the law of ηn converges to νµ,R in the weak topol-
ogy.

We are only interested in the parameter regime for which there is a unique non-
trivial extremal invariant distribution. Therefore we only consider µ ∈ (1, e2) and
R > Rµ in the rest of the paper. By doing so the existence of νµ,R is always guaranteed
by Proposition 1.2.

Let us now introduce the main object of interest, namely the ancestral lineages of
single particles in a BARW. We consider the stationary process η = (ηn)n∈Z such that
for each n ∈ Z, ηn is distributed as νµ,R. It is clear from the informal description of the
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model, cf. the paragraph before (1.1), that the model can be enriched with genealogical
information, by relating child and parent particles.

For simplicity of notation we condition η on having a particle at the space-time
origin and always consider the ancestral lineage of the particle at the space-time origin.
Conditioned on {η0(0) = 1}, the dynamics of the ancestral lineage of the particle at
the origin are described by the time-inhomogeneous Markov chain X = (Xk)k∈N0 given
by

X0 = 0, and P(Xk+1 = y|Xk = x, η) = pη(k;x, y), k ≥ 1 (1.5)

where the transition probabilities pη(k;x, y) are given by

pη(k;x, y) :=
η−k−1(y)∑

z∈BR(x) η−k−1(z)
. (1.6)

Indeed, contingent on the random walk being at site x at time k, for any y ∈ BR(x)
the number of particles sent from y to x is Pois(µV −d

R ) distributed, conditional on the
total sum over all y ∈ BR(x) being equal to one. Now, since a vector of independent
Poisson random variables, conditioned on the total size of its sum has a multinomial
distribution, it follows readily that a particle “selects” it’s predecessor uniformly among
all particles alive one generation earlier which are within distance R. That is, the
transition kernel in (1.5) can be written as in (1.6).

The random walkX defined in (1.5) is a random walk in the (relatively complicated)
random environment η and describes the space-time embedding of ancestral lineages
of particles in η. Hence the randomness of X comes solely from the genealogy of the
particle. We stress moreover that the forwards in time direction of the random walk,
corresponds to the backwards in time direction of the environment η.

Our main result states that X satisfies a law of large numbers and a central limit
theorem when averaging over the genealogical randomness (i.e. randomness due to X
taking steps) and the randomness in the environment. To this end we write Pη for the
conditional law of P, given η, so that pη(k;x, y) = Pη(Xk+1 = y|Xk = x). Moreover we
P0(·) := P(·|η0(0) = 1) and write E0 and Eη for the corresponding expectations.

Theorem 1.3. For µ ∈ (1, e2) there exists R̃µ ≥ Rµ such that for R ≥ R̃µ the random
walk as defined in (1.5)–(1.6) satisfies

Pη
(
k−1Xk

k→∞−→ 0
)
= 1 for P0(·)− a.a. η. (1.7)

Moreover for any g ∈ Cb(Rd)

E0

[
g(k−1/2Xk)

] k→∞−→ E[g(Z)], (1.8)

where Z is a (non-degenerate) centered isotropic d-dimensional normal random vari-
able, i.e. Z ∼ N (0, σ2I) for some σ2 > 0, where I is the identity matrix. Moreover a
functional version of (1.8) holds as well.
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The proof of Theorem 1.3 amounts to verifying the applicability of [BČD16, Theo-
rem 3.1], which gives abstract conditions for a law of large numbers and a central limit
theorem for random walks in dynamic random environments to hold.

Related literature

The questions addressed in [BČD16] for a general class of population models with local
self-interactions were motivated by earlier work of the same authors. In [BČDG13]
random walks on the backbone of an oriented percolation cluster on Zd, d ≥ 1 (which
correspond to ancestral lineages of a discrete-time contact process) are considered.
A quenched law of large numbers and an annealed central limit theorem similar to
Theorem 1.3 above are shown. Moreover, the natural question of the behaviour of
two random walks with transition probabilities as in (1.5), which corresponds to the
jointly describing the ancestral lineages of two distinct individuals is considered. By
controlling two copies of the random walk, the annealed central limit theorem was
strengthened to a quenched one. It follows moreover from [BČDG13] that analogous
annealed and quenched central limit theorems hold if one allows the discrete-time
contact process to have random i.i.d. carrying capacities (i.e. every space-time site
can carry a random number of particles, instead of just one). This was generalised
in [Mil17a] to the case where the carrying capacity is not i.i.d. but mixing. It is
shown that a quenched law of large numbers and an annealed central limit theorem
hold under ϕ-mixing in time (for ϕn ∈ O(n−1−δ) resp. ϕn ∈ O(n−2−δ) for some δ >
0) and a quenched central limit theorem under an exponential mixing in space and
time, see [Mil17a, Mil17b] for details. For unit carrying capacity the quenched central
limit theorem was recently extended to a quenched local limit theorem for d ≥ 3 in
[BBDS23] (note that the dimensional constraint seems rectifiable as is commented
upon in [BBDS23, Outlook and open questions] ).

Moreover, the abstract program developed in [BČD16] was also applied to derive
an a quenched law of large numbers and an annealed central limit theorem for the
logistic branching random walk first studied in [BD07] as a population model with
logistic local self-regulation. A comprehensive overview of these and related models
can be found in [BG21].

Organisation of the article

The rest of the article is organised as follows. In Section 2 we formalise and make pre-
cise the conditions that need to be checked in order to apply the abstract machinery
of [BČD16], comment on why they are needed and prove Theorem 1.3. In Section 3
we introduce the main ideas behind the notion of goodness used for the renormalisa-
tion construction, which are based on suitable control of local densities of η. Lastly
Sections 4 and 5 contain the proofs that the necessary conditions are indeed met.
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2 Abstract conditions and proof of Theorem 1.3

Recall that our strategy to prove Theorem 1.3 is to check the abstract conditions that
let us apply Theorem 3.1 of [BČD16]. These conditions are rather involved and not
straightforward to present in isolation. We present them in the following as proposi-
tions which need to be proven. The proofs are given in Sections 4 and 5.

The conditions from [BČD16] can be divided into two parts. Firstly, into conditions
on the random environment η, in which the random walk X evolves and secondly into
conditions on the random walk itself.

2.1 Conditions on the environment

The first condition on the environment ([BČD16, Assumption 3.2]) is that it is Marko-
vian and admits a “local flow construction” that allows to couple the process with
different (and arbitrary) initial conditions.

To this end we make use of an appropriate analogue of the graphical construction of
interacting particle systems, with which we can view the evolution of η as a stochastic
flow on its configuration space {0, 1}Zd . This offers the advantage of letting us define
the process η = (ηn)n≥m for all initial conditions ηm ∈ {0, 1}Zd , at any starting time
m ∈ Z, simultaneously. More precisely, we let U(x, n), x ∈ Zd, n ∈ Z, be a collection of
i.i.d. uniform random variables on [0, 1]. Then, for any m ∈ Z and any initial condition
ηm ∈ {0, 1}Zd , we define, recursively for n ≥ 0,

ηm+n+1(x) := 1{U(x,m+n+1)≤φµ(δR(x;ηm+n))}, (2.1)

where δR(x; ηm+n) is as in (1.1). Comparing (2.1) to (1.4) with m = 0 it follows
immediately that the process defined by (2.1) has the law of the BARW. In this sense
the i.i.d. field (U(x, n))(x,n)∈Zd×Z of Unif[0, 1] random variables, acts as driving noise
for the evolution of η. Moreover, the construction is local, as the value of η at any
space-time site (x, n) ∈ Zd × Z is fully determined by the value U(x, n) and by the
values {ηn−1(y) : y ∈ BR(x)}, and hence Assumption 3.2 of [BCČ+23] is satisfied.

Expanding on the idea of η as a stochastic flow on the configuration space we
introduce for −∞ < m < n the σ-algebras

Gm,n := σ(U(x, k) : m < k ≤ n, x ∈ Zd). (2.2)

By iterating (2.1) we can define a (random) family of Gm,n-measurable mappings

Φm,n : {0, 1}Zd → {0, 1}Zd

, −∞ < m < n, (2.3)

such that ηn = Φm,n(ηm). More precisely we define for any ζ ∈ {0, 1}Zd and x ∈ Zd(
Φm,m+1(ζ)

)
(x) := 1{U(x,m+1)≤φµ(δR(x;ζ))}
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and then set
Φm,n := Φn−1,n ◦ · · · ◦ Φm,m+1.

By using these mappings, the dynamics of (ηn)n≥m defined simultaneously for all initial
conditions ηm ∈ {0, 1}Zd and any m ∈ Z.

The second condition on the environment ([BČD16, Assumption 3.3]) asks that a
comparison with supercritical oriented percolation can be made on an appropriately
scaled space-time grid, using a very specific notion of “good” blocks. This specific
notion of goodness, is introduced in Proposition 2.1 below, where it is also stated that
an appropriate coarse-graining exists for the BARW.

To this end, we introduce the following notation. For spatial and temporal scales
Ls, Lt ∈ N we consider space-time blocks whose “bottom parts” are centered at the
points in the coarse-grained grid L := LsZd × LtZ. Points in L are labeled by Zd × Z
such that (x, n) ∈ Zd × Z is the label for the point (Lsx, nLt) ∈ L. For m ∈ N and
(x, n) ∈ Zd × Z we consider blocks

blockm(x, n) :=
{
(y, k) ∈ Zd × Z : ∥y − Lsx∥ ≤ mLs, nLt < k ≤ (n+ 1)Lt

}
. (2.4)

Note that these blocks are overlapping in the spatial directions but never in the tempo-
ral direction. We further write for any A ⊆ Zd × Z, U |A for the restriction of the field
U of driving noise to the set A. In particular this means that for any blockm(x, n) the
restriction of U |blockm(x,n) is an element of [0, 1]BmLs (Lsx)×{1,...,Lt}.

With this notation we can present the second condition of [BČD16] on the envi-
ronment, in form of a proposition, the proof of which is given in Section 4 below.

Proposition 2.1. For any µ ∈ (1, e2) and ε > 0 there exists R̃µ,ε ≥ Rµ, such that for
every R ≥ R̃µ,ε there is a spatial scale Ls, a temporal scale Lt, a set of good (local)
configurations Gconf ⊆ {0, 1}B2Ls (0) and a set of good (local) driving noise realisations
GU ⊆ [0, 1]B4Ls (0)×{1,...,Lt} such that

P(U |block4(0,0) ∈ GU) ≥ 1− ε (2.5)

and such that the following contraction and coupling conditions are satisfied: For
any (x, n) ∈ Zd × Z and any configurations η

(1)
nLt
, η

(2)
nLt

∈ {0, 1}Zd at time nLt, if
η
(i)
nLt

|B2Ls (Lsx) ∈ Gconf for i = 1, 2 and U |block4(x,n) ∈ GU , then

(i) η
(1)
(n+1)Lt

(y) = η
(2)
(n+1)Lt

(y) for all ∥y − Lsx∥ ≤ 3Ls

(ii) η
(1)
(n+1)Lt

|B2Ls (Ls(x+e)) ∈ Gconf for all e ∈ B1(0).

Moreover, when the η(i)nLt
’s agree on B2Ls(Lsx) (i.e. at the bottom center of the block),

then they agree on all space-time points in BLs(Lsx)× {1, . . . , Lt}.
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For a realisation η of the BARW, we call a coarse-grained block block4(x, n) good, if
U |block4(x,n) ∈ GU and ηnLt |B2Ls (Lsx) ∈ Gconf . More formally, let for any (x, n) ∈ Zd×Z

Γ(x, n) := 1{U |block4(x,n)∈GU}1{ηnLt |B2Ls
(Lsx)∈Gconf}, (2.6)

then block4(x, n) is good, if Γ(x, n) = 1. This notion of goodness can be viewed as
a type of contractivity property of the local dynamics, in the sense that, on a good
block, the flow Φ, cf. (2.3), tends to merge local configurations.

Remark 2.2. The block-construction from [BCČ+23], which we recapitulate in Sec-
tion 3.2, does not satisfy Proposition 2.1 verbatim. The issue is that next to depend-
ing on the driving noise in a box, the notion of “good block” that was used there also
depends on the specific realisation of η at the bottom of the block. Nonetheless we
can reuse the ideas of [BCČ+23, Sectio 4], cf. Section 4 below, and this technicality
can be remedied by introducing (next to GU) the set Gconf and by choosing slightly
larger scales. The difference in the size of scales is elaborated upon in some more
detail in Remark 3.2 after having introduced some more details on the construction of
[BCČ+23].

2.2 Conditions on the random walk

Let X be the random walk as defined in (1.5), evolving in the dynamic random envi-
ronment given by the stationary process η, which is defined as in (2.1) with parameters
µ,R for which Proposition 2.1 holds for some ε > 0 and let Ls, Lt ∈ N be the scales
corresponding to these parameters.

There are again two conditions in [BČD16], on the random walk X, that need to
be verified. The first is that if the random walk starts anywhere from the middle half
of the top of a good block, i.e. a block block4(x, n) such that Γ(x, n) = 1, for some
(x, n) ∈ Zd × Z, then with high probability it doesn’t cover long distances within the
block, cf. [BČD16, Assumption 3.9]. The precise statement that needs to be checked is
summarised in the following proposition. Recall for this that Pη denotes the “quenched”
probability measure, i.e. the measure, conditioned on a realisation of η.

Proposition 2.3. For ε, δ > 0 there exists Rµ,δ,ε > R̃µ,ε such that for all R ≥ Rµ,δ,ε and
Ls, Lt, GU , Gconf as in Proposition 2.1, the random walk X satisfies for (x, n) ∈ Zd×Z

min
z:∥Lsx−z∥≤Ls/2

Pη

(
max

(n−1)Lt<k≤nLt

∥Xk − z∥ ≤ Ls/4
∣∣∣X(n−1)Lt = z,Γ(x, n) = 1

)
≥ 1− δ.

(2.7)

The proof of Proposition 2.3 follows from the fact that in a block with good driving
noise the relative fluctuations of the local density of η over R balls and r-balls with
1 ≪ r < R are small. Thus in each step the increments of X do not deviate much

131



Chapter 5

from the increments of a simple random walk. As the precise notion of goodness of
a block depends on the construction in the proof of Proposition 2.1, and the specifics
of the fluctuations of the density of η are described in Section 3.3 below, we postpone
the details of the proof to Section 5.

The second condition on X is that it behaves symmetrically with respect to spatial
point reflections, when η is reflected accordingly, cf. [BČD16, Assumption 3.11]. As
for any time k ∈ N the random walk in (1.5) chooses uniformly among the possible
ancestors of the particle at Xk, this condition holds trivially. Note that this symmetry
corroborates that asymptotically the average speed of X is zero.

With the results of Sections 2.1 and 2.2 at hand, the proof of Theorem 1.3 follows
directly.

Proof of Theorem 1.3. The assertion of the theorem follows by a combination of Propo-
sition 2.1 and 2.3 as well as Theorem 3.1 of [BČD16] for all η defined with parameters
µ ∈ (1, e2) and for R large enough.

3 Renormalisation construction

In this section we fist collect some results on the function φµ that will be essential
in the proof of Proposition 2.1 in Section 4. These give insight into the behaviour of
local densities δr(·; η) for 1 ≪ r ≤ R which in turn lets us to outline the idea of the
block construction from [BCČ+23, Section 4], on which our construction in Section 4
is based. Moreover, we discuss how to get quantitative control on the local densities.

3.1 Properties of φµ

The following lemma summarises useful properties of the function φµ(w) = µwe−µw,
which appears in the definition of the dynamics of η, cf. (1.4) and (2.1).

Lemma 3.1. (a) For µ > 1, φµ has two fixpoints, 0 and θµ := µ−1 log µ. The
fixpoint 0 is always repulsive.

(b) For µ ∈ (1, e2), θµ is an attractive fixpoint and for µ > e2, there are no attractive
fixpoints.

(c) For every µ ∈ (1, e2) there is εFP = εFP(µ) > 0 and κ(µ, εFP) < 1 such that φµ
is a contraction on [θµ − εFP, θµ + εFP], that is,

|φµ(w1)− φµ(w2)| ≤ κ(µ, εFP)|w1 − w2| for w1, w2 ∈ [θµ − εFP, θµ + εFP].

(d) There exist a strictly increasing sequence αm ↑ θµ and a strictly decreasing se-
quence βm ↓ θµ such that φµ([αm, βm]) ⊆ (αm+1, βm+1) for all m ∈ N. Further-
more, it is possible to choose α1 > 0 arbitrarily small and β1 > 1/e.
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Proof. Properties (a)–(b) are a direct consequence of the definition of φµ and (c)–(d)
are the contents of [BCČ+23, Lemma 4.1].

Note that by Lemma 3.1(d) for any µ ∈ (1, e2) and any choice of α1 > 0 and
β1 > 1/e, there is a finite index m0 such that αm, βm ∈ [θµ − εFP, θµ + εFP] for all
m ≥ m0, i.e.

m0 = m0(µ, α1, β1) := inf
{
m ≥ 1 : αm, βm ∈ [θµ − εFP, θµ + εFP]

}
. (3.1)

This value will later play a role in establishing the properties Proposition 2.1(i)–(ii).

3.2 Local densities and goodness

In [BCČ+23, Section 4] complete convergence of the BARW is shown by a comparison
with supercritical oriented percolation with a coarse-graining and a notion of goodness
on blocks that is reminiscent, but not identical to that of Proposition 2.1 and (2.6),
cf. Remark 3.2. The exact notion of goodness in [BCČ+23] is tailored specifically
to showing complete convergence, i.e. convergence (conditioned on survival) of the
law of the BARW towards the unique non-trivial extremal invariant distribution νµ,R.
To achieve this, good blocks were defined to make two distinct configurations which
partially agree at the “bottom” of the block, evolve into configurations that agree on a
larger portion of the “top” of the block (this should be compared to Proposition 2.1(i)).

To motivate why it is reasonable to expect distinct local configurations of the
BARW, following the same dynamics, to merge, recall that the random variables
(ηn+1(x))x∈Zd are conditionally independent and conditionally Bernoulli distributed,
given ηn, with respective parameters φµ(δR(x; ηn)) cf. (1.4). Therefore local densities
δr(x; ηn+1) (as sums of these conditional Bernoulli random variables) should concen-
trate around some value, at least for r large. In [BCČ+23] only the case r = R was
considered and it was used there that the value, around which the local densities con-
centrate converges to θµ, and thus, by repeated application of Lemma 3.1(c)–(d) and
(2.1), the flow Φ tends to merge any two distinct realisations of the BARW over long
enough time-spans. Controlling how distinct configurations merge under the dynamics
of the BARW thus amounts to gaining control on local densities.

We follow the same idea as in [BCČ+23] to gain quantitative control of the (local)
densities by introducing certain families of reference density profiles ζr,−k : Zd → [0, 1]
and ζr,+k : Zd → [0, 1], for k ∈ {0, . . . , k0}. We are then interested in the situation where
the local r-densities of the true system ηk are wedged in between the two reference
density profiles, i.e. when

ζr,−k (x) ≤ δr(x; ηk) ≤ ζr,+k (x), for suitable x ∈ Zd, k ∈ N0 and r large enough.
(3.2)
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t = 0

t = k

θµ
ζR,+k

ζR,−k

θµ
ζR,+0

ζR,−0Z

Z

Figure 5.1: Sketch of the density profiles ζR,±k (in orange) from [BCČ+23] for dimension
d = 1. The bottom shows the profiles ζR,±0 , which then expand to ζR,±k in the top image.
The profiles are chosen such that the distance of the profiles to θµ is smaller than εFP
in the central constant part of the profiles.

In Section 4.1 of [BCČ+23] a family of reference density profiles is introduced, which
satisfies (3.2) with high probability for r = R. Moreover the profiles are chosen in such
a way that |ζR,+k − ζR,−k | ∈ [θµ − εFP, θµ + εFP] on part of the support of ζR,−k , and such
that they have a fixed deterministic “front” that expands by a fixed distance in every
time step, see Figure 5.1 for a sketch of the one-dimensional profiles ζR,±k of [BCČ+23].
The control (3.2) by the expanding families ζR,± thus lets one apply Lemma 3.1(c)–(d)
in a growing spatial region throughout a block.

Based on this, and a suitable coarse-graining of space-time, the notion of goodness
in [BCČ+23] is defined using a two-step procedure for any two realisations (η

(1)
n )n≥0,

(η
(2)
n )n≥0 of the BARW, with different initial conditions, coupled through the flow

construction (2.1).

(I) A block based at some (z, t) ∈ Zd × Z is called well-started if for i = 1, 2

δR(x; η
(i)
t ) ∈

[
ζR,−0 (x− z), ζR,+0 (x− z)

]
for all x ∈ {z + y : ζR,−0 (y) > 0},

(3.3)

and

η
(1)
t (x) = η

(2)
t (x) for all x in a suitably large ball around z. (3.4)

(II) A block based at some (z, t) ∈ Zd × Z is called good, if it is well-started and
the domination by the ζR,± profiles and the region where (3.4) holds spread
throughout suitably large portions of the block (we refer to [BCČ+23] for details
on what suitable means in this context).

The first step is concerned with guaranteeing that the configurations of (η(i)n )n≥0

at the “bottom” of a block are controlled by a suitable shifted version of the reference
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profiles ζR,±0 , whereas the second is concerned with the “spreading” of the region where
the two configurations agree, as well as the region where the density control by the
reference profiles holds.
Remark 3.2. (a) Morally (2.6) is a “uniformisation” of the properties given by (I)–(II)

above, by making the notion of goodness independent of any specific configura-
tion at the “bottom” of the block. To accomplish this, special care needs to be
taken of (3.4), which is a condition of two configurations partially agreeing in a
region at the bottom of the block. To overcome this, we introduce below, in (4.5)
the set of reference configurations Cref , given by all configurations η̃ ∈ {0, 1}Zd

such that the local densities are globally in the interval [θµ − εFP, θµ + εFP] to
which configurations which are locally in Gconf will need to couple successfully.

(b) The size of blocks and thus the scales of the coarse-graining in the construction
outlined by (I)–(II) are linked to concrete details of the reference density profiles
ζR,±k that are used, as the scales need to be chosen such that the desired properties
spread to suitable large portions of the blocks.

In contrast to [BCČ+23, Section 4.1], for the current purposes it does not suffice
to only have control on the local R-densities of the process η, but in order to prove
Proposition 2.3 we also need control on local r0-densities for some r0 < R which is
specified in Section 5 as a fixed proportion of R. With out loss of generality we assume
that r0 divides R. Importantly, taking R large has the effect that r0 is also large. To
this end we work with two sequences of reference density profiles in Sections 4–5 below,
one controlling the local R-densities and one controlling local r0-densities, cf. (3.2).

3.3 Concentration and comparison of local densities with de-
terministic profiles

Let us now elaborate upon and formalise the idea of wedging local r-densities of ηk
in between two reference functions as in (3.2). To this end we introduce sequences
of functions ζr,±k on Zd, which serve as these reference functions and which we call
comparison density profiles (c.d.p.’s). These are analogous to the functions introduced
in [BCČ+23, Definition 2.2], with the difference that we require an averaging property
over r-balls instead of R-balls.

Definition 3.3. For given ε, δ > 0 and r ∈ N, (ε, δ, r)-comparison density profiles
((ε, δ, r)-c.d.p.’s) are deterministic functions ζr,−k , ζr,+k : Zd → [0,∞), k = 0, 1, . . . , k0,
satisfying:

(i) For every k = 0, . . . , k0, ζr,−k (·) ≤ ζr,+k (·).

(ii) For every k = 0, . . . , k0, Supp(ζr,−k ) := {x ∈ Zd : ζr,−k (x) > 0} is finite, and
ζr,−k (x) ≥ ε for every x ∈ Supp(ζr,−k ).
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(iii) For every k = 0, . . . , k0 − 1, and x ∈ Supp(ζr,−k ) it holds that if ρ : Br(x) → R
satisfies ρ(y) ∈ [ζr,−k (y), ζr,+k (y)] for all y ∈ Br(x), then

(1 + δ)ζr,−k+1(x) ≤ V −d
r

∑
y∈Br(x)

φµ(ρ(y)) ≤ (1− δ)ζr,+k+1(x). (3.5)

In Lemma 3.6 we show that such c.d.p.’s in fact exist, by constructing specific exam-
ples (in (3.9)–(3.10)). A comment is in order to clarify the role of the model-parameter
R in these c.d.p.’s and in particular in (3.5). Recall that by (1.4) the distribution of
ηk+1(x) is conditionally Bernoulli, given ηk, with parameter φµ(δR(x; ηk)). There-
fore, in order to make any statement of r-densities at time k + 1 we must have some
knowledge of R-densities at time k. In terms of applying (ε, δ, r)-c.d.p.’s to control
local r-densities of η we interpret ρ in (iii) as representing values of local R-densities.
This means that in order to make use of the control guaranteed by (3.5) we need
R-densities(!) at time k to be controlled by the (ε, δ, r)-c.d.p.’s.

In the following we introduce for any (ε, δ, r)-c.d.p. ζr,± satisfying Definition 3.3
with r ∈ {1, . . . , R} and any x ∈ Zd the sets of driving noise that provide uniform (in
the configurations of η) r-density control at x by the (ε, δ, r)-c.d.p.’s centered at x at
time k+ 1 given that R-densities in Br(x) are controlled by (ε, δ, r)-c.d.p.’s at time k.

U r
k(ζ

r,±;x) :=

u ∈ [0, 1]Br(0) :

for all configurations η̃ ∈ {0, 1}Zd

s.t. δR(y; η̃) ∈ [ζr,−k (y), ζr,+k (y)] for
all sites y ∈ Br(x), it holds that
V −d
r

∑
y∈Br(x)

1{uy−x≤φµ(δR(y;η̃))} ∈
[ζr,−k+1(x), ζ

r,+
k+1(x)]

 .

Moreover, let U r,±
k (ζr,±;x) be the corresponding sets, where only the upper/lower

bound holds for the last sum, i.e. U r
k(ζ

r,±;x) = U r,−
k (ζr,±;x) ∩ U r,+

k (ζr,±;x). To ease
the presentation we drop the dependence on ζ± in the notation, whenever the choice
of the c.d.p.’s is clear and write simply U r

k(x) and U r,±
k (x) respectively.

Lemma 3.4. For ε, δ > 0, r ∈ N let ζr,±k be a family of (ε, δ, r)-c.d.p.’s. It then holds
for k = 0, 1, . . . , k0 − 1 that

P
(
U |Br(0)×{k} ∈ U r

k(0)
)
≥ 1− 2e−cV

d
r , (3.6)

where c = (δε)/(1/(2δε) + 2/3).

Proof. The proof is an adaptation of the proof of [BCČ+23, Lemma 2.3]. Note that
(3.6) follows if one shows that the two probabilities P

(
U |Br(0)×{k} ∈ U r,−

k (0)
)

and
P
(
U |Br(0)×{k} ∈ U r,+

k (0)
)

are both greater than 1 − e−cV
d
r . We start by showing the

first inequality.
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For k ∈ {0, . . . , k0 − 1} and y ∈ Br(x) for x ∈ Zd introduce the quantities

λk(y) := arg inf
λ∈[ζr,−k (y),ζr,+k (y)]

φµ(λ).

Note that by (3.5) it follows from λk(y) ∈ [ζr,−k (y), ζr,+k (y)] for all y ∈ Br(x), that

V −d
r

∑
y∈Br(x)

φµ(λk(y)) ≥ (1 + δ)ζr,−k+1(x). (3.7)

Moreover, for k ∈ {0, . . . , k0 − 1} and y ∈ Br(x) let Zk
y := 1{U(y,k)≤φµ(λk(y))} where U

is the i.i.d. field of driving noise. These are independent Bernoulli random variables
with parameters φµ(λk(y)).

Using the Zk
y and (3.7), we see that

P
(
U |Br(0)×{k} /∈ U r,−

k (0)
)
≤ P

(
V −d
r

∑
y∈Br(x)

1{U(y,k)≤φµ(λk(y))} < ζr,−k+1(x)
)

≤ P
( ∑
y∈Br(x)

(
Zk
y − φµ(λk(y))

)
< −δV d

r ζ
r,−
k+1(x)

)
.

Since the right hand side of the above is a sum of independent centered random vari-
ables, and since

Var
(
V −d
r

∑
y∈Br(x)

Zk
y

)
= V −2d

r

∑
y∈Br(x)

φµ(λk(y))
(
1− φµ(λk(y))

)
≤ 1

4
V −d
r ,

a concentration estimate for the sum of independent Bernoulli random variables, see
e.g. [BCČ+23, Lemma A.1] for an estimate based on Bernstein’s concentration inequal-
ity, can be used, exactly as in the proof of [BCČ+23, Lemma 2.3] in order to conclude
that

P
(
U |Br(0)×{k} /∈ U r,−

k (0)
)
≤ exp(−cV d

r ),

where c = (δε)/(1/(2δε) + 2/3) is due to details of the concentration estimate.
Proving that the probability of {U |Br(0)×{k} /∈ U r,+

k (0)} is small is completely anal-
ogous, using λk(y) := arg supλ∈[ζr,−k (y),ζr,+k (y)] φµ(λ) instead of λk(y) and

V −d
r

∑
y∈Br(x)

φµ(λk(y)) ≤ (1− δ)ζr,+k+1(x)

instead of (3.7).
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Remark 3.5. Lemma 3.4 is a (slightly) strengthened version of Lemma 2.3, from
[BCČ+23], where it was shown that for any given c.d.p.’s ζR,±k and any (possibly
random) configuration η̃ ∈ {0, 1}Zd , such that for some k ∈ {0, . . . , k0 − 1} and x ∈ Zd

δR(y; η̃) ∈
[
ζ−k (y), ζ

+
k (y)

]
, for all y ∈ BR(x),

it holds that

P
(
ζ−k+1(x) ≤ δR

(
x; Φ0,1(η̃)

)
≤ ζk+1(x)

∣∣∣F) ≥ 1− 2e−cV
d
R

for some c > 0 where F = σ(η̃(x) : x ∈ Zd) ∨ σ(U(x, 0) : x ∈ Zd).

The uniform (in the configurations of η) concentration result of local r-densities
of Lemma 3.4 plays an important role in the following section, where it is used as a
building block for the set GU of good driving noise.

Our proofs of Propositions 2.1 and 2.3 are based on two specific choices ζ±,r0 ,
ζR,± of c.d.p.’s which are slight modifications of the c.d.p.’s introduced in [BCČ+23].
They have the same general shape as sketched in Figure 5.1 (for d = 1), but with scale
dependent fronts (i.e. the steps in the “staircase” that make up the fronts have different
lengths for r = r0 and for r = R). We describe these in more detail now.

The construction of the c.d.p.’s we work with relies on a family of auxiliary func-
tions which are constructed explicitly in Lemma 2.5, Lemma 2.6 of [BCČ+23] and the
discussion following those results. To introduce these auxiliary functions let r ∈ N and
recall the definition of (αm)m≥1 from Lemma 3.1 and the definition of m0 from (3.1).
With these objects at hand, we consider for any integer Rmax ∈ N and ε0 ∈ (0, α1),
s ∈ (0, 1) and w ≥ 2 the family (χrk(x))k≥0 of functions defined as follows. On
{∥x∥ ≤ Rmax + m0r + k⌈sr⌉} we let χrk(x) ≡ α1, and for all x outside of this set
we let

χrk(x) = α1

d∏
i=1

min
{((

ε0/α1)
1/d +

R̃k − |xi|
⌈wr⌉

)
1{R̃k≥|xi|}, 1

}
, (3.8)

where R̃k = Rmax+m0r+k⌈sr⌉+⌈rR⌉, xi is the i-th coordinate of x. Note that for d =
1, the non-constant section of χrk has a width of ⌈wr⌉ and on this section the function
decreases linearly to the value ε0. Moreover, in this case, χrk+1(|x|) = χrk(|x| − ⌈sr⌉),
i.e. in the one-dimensional case, increasing k by one, shifts the non-constant parts of
χrk to the outside by ⌈sr⌉. Note that these properties also hold along the coordinate
axis when d > 1.

For convenience we set Rr
max(k) := Rmax + k⌈sr⌉ for k ∈ {0, . . . , k0} where k0 is

any finite value (once the scales are defined properly we will take k0 = Lt). Note that
with this notation χrk ≡ α1 on the ball of radius Rr

max(k) +m0r. With the help of the
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family (χrn)n≥0, we introduce the following functions

ζr,−k (x) =


αm0 if ∥x∥ ≤ Rr

max(k),

αm0−j+1 if Rr
max(k) + (j − 1)r ≤ ∥x∥ ≤ Rr

max(k) + jr, 1 ≤ j ≤ m0,

χrk(x) if ∥x∥ ≥ Rr
max(k) +m0r,

(3.9)
and

ζr,+k (x) =


βm0 if ∥x∥ ≤ Rr

max(k),

βm0−j+1 if Rr
max(k) + (j − 1)r ≤ ∥x∥ ≤ Rr

max(k) + jr, 1 ≤ j ≤ m0,

1 ∨ β1 if ∥x∥ ≥ Rr
max(k) +m0r.

(3.10)
For the sake of readability we do not make the dependence of these functions on Rmax,
(αm)m≥0, s, w, ε0 explicit in the notation. Moreover ζr,−k is supported on a ball of
radius Rr

max(k)+m0r+⌈wr⌉ and gives the strongest density control on a ball of radius
Rr

max(k). The next result shows that these families of functions are c.d.p.’s for large
enough choices of r.

Lemma 3.6. For any M ≥ 1 there exists Rµ,M such that for all R ≥ Rµ,M and
r ≥ ⌈R/M⌉ there exists s ∈ (0, 1), w ≥ 2 and ε0, δ0 > 0 such that for Rmax ≥ 2R the
family of functions ζr,± as defined in (3.8)–(3.10) are (ε0, δ0, r)-c.d.p.’s in the sense of
Definition 3.3.

Proof. It is a direct consequence of Lemma 2.5 in [BCČ+23] that for large enough r
there exists s ∈ (0, 1), w ≥ 2 and ε0 ∈ (0, α1) of Lemma 4.2 in [BCČ+23] (literally a
trivial modification of this result, as Rmax may differ from the corresponding quantity
there) that there exists δ0 > 0 such that the functions ζr,± are (ε0, δ0, r)-c.d.p.’s. For
fixed M ≥ 1 the lemma follows by taking Rµ,M to be the smallest value of R such that
Lemma 2.5 and 4.2 of [BCČ+23] are applicable with ⌈R/M⌉.

Without loss of generality we can take the same value of ε0, δ0 > 0 for the two
c.d.p.’s ζ±,r0 and ζR,± where r0 is the proportion of R that is fixed in Section 5. By
taking R large enough Lemma 3.6 guarantees that both ζ±,r0 and ζR,± are c.d.p.’s in
the sense of Definition 3.3. Note also that for r = R and up to the length 2Rmax of
the constant center section of (3.9)–(3.10) these functions correspond exactly to the
profiles used in [BCČ+23, Section 4].

4 Proof of Proposition 2.1

We now have all the tools in order to prove Proposition 2.1. We introduce scales
Ls, Lt and sets Gconf , GU , in dependence of R, and show that with increasing R, the
properties (i)–(ii) hold with arbitrarily high probability.
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We define the spatial and temporal scales Ls, Lt as follows. First we fix Rmax :=
cdens⌈R logR⌉, where cdens := 1 + 2ctime and ctime > −(d + 1)/κ(µ, εFP) and then
choosing

Ls := Rmax and Lt := T spread + T couple, (4.1)

where
T spread :=

⌈
3cdens⌈R logR⌉/⌈sR⌉

⌉
, and T couple := ctime⌈logR⌉. (4.2)

With this choice of scales it follows immediately that the support of ζR,−0 is contained
in B2Ls(0), since ((m0 + 1)R + ⌈wR⌉) < Ls.

We use the c.d.p.’s ζ±,r0 and ζR,±, cf. (3.9)–(3.10), to define the set Gconf of good
local configurations as follows

Gconf :=

η̃ ∈ {0, 1}B2Ls (0) :
ζR,−0 (y) ≤ δR(y; η̃) ≤ ζR,+0 (y) for y ∈ Supp(ζR,−0 ),
and
ζ−,r00 (y) ≤ δr0(y; η̃) ≤ ζ+,r00 (y) for y ∈ Supp

(
ζ−,r00

)
 .

(4.3)
The set Gconf should be seen as the property which replaces the well-startedness prop-
erty of [BCČ+23], cf. (3.3). We note again that the control on the local r0-densities
that we ask for here is a technicality that is needed in Section 5 and has no analogue
in the renormalisation construction of [BCČ+23].

For the sake of notational convenience we also introduce the “cylinder set” of Gconf

defined, by the configurations that are locally in Gconf ,

Ĝconf :=
{
η̃ ∈ {0, 1}Zd

: η̃|B2Ls(0)
∈ Gconf

}
. (4.4)

The introduction of the set GU of good driving noise, is a bit more subtle. In order
for properties (i)–(ii) to be satisfied we require that for any (x, n) ∈ Zd × Z such that
Γ(x, n) = 1, cf. (2.6), the driving noise on block4(x, n) is such that it ensures the
following two items:

(A) Whenever ηnLt |B2Ls (Lsx) ∈ Gconf the strongest control of local R-densities by the
c.d.p.’s ζR,±k from (3.9)–(3.10) spreads throughout the entire spatial extent of
block4(x, n) by time T spread, and the expanding control of the local r0-densities
holds throughout the block. I.e.

αm0 ≤ δR(z; ηnLT+T spread) ≤ βm0 , for all z ∈ B4Ls(Lsx)

ζ−,r0k (z) ≤ δr0(z; ηk) ≤ ζ+,r0k (z), for all z ∈ B4Ls(Lsx), k ∈ {0, . . . , Lt}
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(B) Given that the control of R-densities has spread as in the first item, the process
couples successfully to any reference configuration on B3Ls(Lsx) in an additional
T couple time steps, where the reference configurations are given by

Cref =
{
ηref ∈ {0, 1}Zd

: |δR(·; ηref)− θµ| < εFP

}
⊆ Ĝconf . (4.5)

See also Remark 3.2 above.

Let us denote the event of (A) occurring by Aspread(x, n), and the event of (B) occurring
by Acouple(x, n). The set GU can then be defined implicitly as the set of driving noise
configurations such that{

U |block4(0,0) ∈ GU

}
= Aspread(0, 0) ∩ Acouple(0, 0). (4.6)

Note that T spread was chosen to be the time that it takes for the c.d.p.’s ζR,±k to
spread so far that ζR,−

T spread |B4Ls (0)
≡ αm0 . The probability of Aspread(x, n) can easily be

bound with the help of Lemma 3.4.

Lemma 4.1. It holds that

P
(
Aspread(x, n)

)
≥ 1− q(1)(R, µ), (x, n) ∈ Zd × Z,

where q(1)(R, µ) ↓ 0 for R → ∞.

Proof. Without loss of generality, we consider only the case (x, n) = (0, 0). The proof
follows directly by applying a union bound and using Lemma 3.4. Indeed, if we denote
by CR the (spatial) R-fattening of the (truncated) cone

⋃T spread

m=1 Supp(ζR,−m )×{m} and
by Cr0 the (spatial) r0-fattening of the (truncated) cone

⋃Lt

m=1 Supp(ζ
−,r0
m )×{m} then

Lemma 3.4 (applied once with r = R and once with r = r0) gives

1− P
(
Aspread

(
0, 0)) ≤ P

(
∃(y, k) ∈ CR : U |BR(y)×{k} /∈ UR

k (y)
)

+ P
(
∃(y, k) ∈ Cr0 : U |Br0 (y)×{k} /∈ U r0

k (y)
)

≤ cT spreadVolume
(
CR
)
exp(−c′V d

R)

+ cLtVolume
(
Cr0
)
exp(−c′V d

r0
),

for some constants c, c′ > 0. As T spread and Lt are of order logR and Volume(CR),
Volume(Cr0) are polynomial in R (recall r0 is a fixed proportion of R), the right hand
side of the above display tends to zero as R tends to infinity.

The next lemma shows that we have a corresponding bound for the probability of
Acouple(x, n).
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Lemma 4.2. For large enough R it holds that

P
(
Acouple(x, n)

)
≥ 1− q(2)(R, µ),

where q(2)(R, µ) ↓ 0 for R → ∞.

Proof. With out loss of generality we set again (x, n) = (0, 0). The proof is an adap-
tation of arguments that can already be found in [BCČ+23, Lemma 4.6].

We start with the trivial observation that Acouple(0, 0) gives conditions on the be-
haviour of particle configurations η̃ ∈ {0, 1}Zd which satisfy the local density condition

ζR,−
T spread(y) < δR(y; η̃) < ζR,+

T spread(y), for all y ∈ Supp(ζR,−
T spread). (4.7)

For later convenience we denote the set of all such particle configuration by Ĝ
(2)
conf .

Moreover, we use the following convention throughout the proof: η̃n := Φ0,n(η̃) for any
η̃ ∈ {0, 1}Zd . With this notation we can write

Acouple(0, 0)c =
{
∃y ∈ B3Ls(0),∃η̃ ∈ Ĝ

(2)
conf ,∃ηref ∈ Cref : η̃T couple(y) ̸= ηrefT couple(y)

}
The proof of the lemma is based on the following calculation. Recall the the

definition of the σ-algebras from (2.2). For any y ∈ Zd and k > 1 (cf. (2.2)) it holds
by Markov’s inequality that

P
(
∃η(1), η(2) ∈ Ĝ

(2)
conf : η

(1)
k (y) ̸= η

(2)
k (y)

∣∣∣G0,k

)
≤ E

[
sup

η̃∈Ĝ(2)
conf

η̃k(y)− inf
η̃∈Ĝ(2)

conf

η̃k(y)
∣∣∣G0,k

]
= E

[
sup

η̃∈Ĝ(2)
conf

1{U(y,k)≤φµ(δR(y;η̃k−1))} − inf
η̃∈Ĝ(2)

conf

1{U(y,k)≤φµ(δR(y;η̃k−1))}

∣∣∣G0,k

]
= E

[
1{U(y,k)≤sup

η̃∈Ĝ
(2)
conf

φµ(δR(y;η̃k−1))} − 1{U(y,k)≤inf
η̃∈Ĝ

(2)
conf

φµ(δR(y;η̃k−1))}

∣∣∣G0,k

]
= P

(
U(y, k) ≤

∣∣ sup
η̃∈Ĝ(2)

conf

φµ
(
δR(y; η̃k−1)

)
− inf

η̃∈Ĝ(2)
conf

φµ
(
δR(y; η̃k−1)

)∣∣∣∣∣G0,k

)
=
∣∣∣ sup
η̃∈Ĝ(2)

conf

φµ
(
δR(y; η̃k−1)

)
− inf

η̃∈Ĝ(2)
conf

φµ
(
δR(y; η̃k−1)

)∣∣∣
(4.8)

The second equality holds, because the supremum and infinmum are really a maximum
and minimum over what happens in the R-neighbourhood of y, which only involves
finitely many local configurations.

Now, if we had uniformly in the configurations in Ĝ(2)
conf that |δR(y; Φ0,k−1(·))−θµ| <

εFP, i.e. the local density around x, at time k − 1 were uniformly in the region where
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φµ is a contraction, cf. Lemma 3.1(c), then we would get∣∣∣ sup
η̃∈Ĝ(2)

conf

φµ
(
δR(y; η̃k−1)

)
− inf

η̃∈Ĝ(2)
conf

φµ
(
δR(y; η̃k−1)

)∣∣∣
≤ κ(µ, εFP)

∣∣∣ sup
η̃∈Ĝ(2)

conf

δR(y; η̃k−1)− inf
η̃∈Ĝ(2)

conf

δR(y; η̃k−1)
∣∣∣

≤ κ(µ, εFP)V
−d
R

∑
y1∈BR(y)

∣∣∣ sup
η̃∈Ĝ(2)

conf

η̃k−1(y1)− inf
η̃∈Ĝ(2)

conf

η̃k−1(y1)
∣∣∣,

(4.9)

and we could (contingent on having corresponding density control in a slightly larger
region, i.e. an R-fattening of the region, in order to apply Lemma 3.1(c) again) iterate
this calculation.

In order to formalise the uniform density control, that lets us apply Lemma 3.1(c)
in the above, we introduce for any r ∈ N functions ψr : {0, 1}Zd → {0, 1} with

ψr(η̃) = 1{δR(z;η̃)∈[θµ−εFP,θµ+εFP] for all z∈Br(0)}, η̃ ∈ {0, 1}Zd

,

and the event

ΨT couple :=
{
ψ3Ls+T couple⌈sR⌉+(T couple−l)R(η̃T couple−l) = 1 : l = 1, . . . , T couple, η̃ ∈ Ĝ

(2)
conf

}
.

(4.10)
On this event, we have the necessary density control in order to iterate the calculation
in (4.8)–(4.9).

It is not hard to see that ΨT couple has high probability. Note that for any η̃ ∈ Ĝ
(2)
conf

it holds that ψ4Ls(η̃) = 1 and and by definition

T couple⌈sR⌉+ T coupleR = ctime⌈sR⌉⌈logR⌉+ ctime⌈logR⌉R ≤ 2cdens⌈R logR⌉ = Ls,

so that the case l = T couple in (4.10) is satisfied. Then using the same argument as in
the proof of Lemma 4.1, this density control by the ζR,−k profiles spreads by ⌈sR⌉ in
every time step, with high probability, such that

P(ΨT couple) ≥ 1− q̃(1)(R, µ),

for some q̃(1)(R, µ) > 0 such that limR→∞ q̃(1)(R, µ) = 0.
With this we can now prove the lemma. We consider the probability of the com-

plement of Acouple(0, 0) conditioned on ΨT couple ,

P
(
Acouple(0, 0)c

∣∣∣ΨT couple

)
=P
(
∃y ∈ B3Ls(0),∃η̃ ∈ Ĝ

(2)
conf ,∃ηref ∈ Cref : η̃T couple(y) ̸= ηrefT couple(y)

∣∣∣ΨT couple

)
.
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Moreover, since Cref ⊆ Ĝ
(2)
conf , cf. (4.5) and (4.7), and writing T = T couple in the

following, the right hand side of the last display is bounded from above by

P
(

max
y∈B3Ls (0)

(
sup

η̃∈Ĝ(2)
conf

ψLs(η̃T )η̃T (y)− inf
η̃∈Ĝ(2)

conf

ψLs(η̃T )η̃T (y)
)
≥ 1
∣∣∣ΨT

)
. (4.11)

This probability can now be dealt with as in the iteration of (4.8)–(4.9). Indeed
for any k ∈ {1, . . . , T} one gets with a union bound and Markov’s inequality that

E
[
P
(

max
y∈B3Ls (0)

(
sup

η̃∈Ĝ(2)
conf

ψLs(η̃k)η̃k(y)− inf
η̃∈Ĝ(2)

conf

ψLs(η̃k)η̃k(y)
)
≥ 1
∣∣∣G0,k

)∣∣∣ΨT

]
≤
[ ∑
y∈B3Ls (0)

E
[

sup
η̃∈Ĝ(2)

conf

ψLs(η̃k)η̃k(y)− inf
η̃∈Ĝ(2)

conf

ψLs(η̃k)η̃k(y)
)∣∣∣G0,k

]∣∣∣ΨT

]
≤ κ(µ, εFP)V

−d
R

[ ∑
y∈B3Ls (0)

∑
y1∈BR(y)

E
[

sup
η̃∈Ĝ(2)

conf

η̃k−1(y1)− inf
η̃∈Ĝ(2)

conf

η̃k−1(y1)
∣∣G0,k

]∣∣∣ΨT

]
≤ κ(µ, εFP)

kV −dk
R E

[ ∑
y∈B3Ls (0)

∑
y1∈BR(y)

∑
y2∈BR(y1)

· · ·

∑
yk∈BR(yk−1)

(
sup

η̃∈Ĝ(2)
conf

η̃(yk)− inf
η̃∈Ĝ(2)

conf

η̃(yk)
)∣∣∣ΨT

]
≤ κ(µ, εFP)

kV d
3Ls
.

By the choice of ctime, see above (4.1), the last line tends to zero as R tends to
infinity. The claim follows, as

P
(
Acouple(0, 0)

)
= P

(
Acouple(0, 0)

∣∣ΨT couple

)
× P

(
ΨT couple

)
≥
(
1− κ(µ,R)T

couple

V d
3Ls

)(
1− q̃(1)(R, µ)

)
,

the right hand of which can be made to be arbitrarily close to one, by choosing R
large.

By Lemmas 4.1 and 4.2 the proof of Proposition 2.1 follows directly with

R̃µ,ε := inf{R > 0 : max{q(1)(R, µ), q(2)(R, µ)} < ε}.

5 Proof of Proposition 2.3

Let (x, n) ∈ Zd × Z be such that Γ(x, n) = 1. In order to prove Proposition 2.3 we
require uniform in z ∈ BLs/2(Lsx) control of the conditional probabilities

Pη

(
max

(n−1)Lt<k≤nLt

∥Xk − z∥ ≥ Ls/4
∣∣∣X(n−1)Lt = z,Γ(x, n) = 1

)
. (5.1)
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Without loss of generality we assume that x = 0 and n = −1, such that z ∈ BLs/2(0)
and set for readability P z

η (·) := Pη(·|X0 = z,Γ(0,−1) = 1). In order to upper bound
(5.1) we split the random walk increments into a martingale and non-martingale part,
i.e.

Xk −Xk−1 = Ez
η

[
Xk −Xk−1

∣∣Xk−1

]
+ Yk, (5.2)

where Yk is the martingale part. We can thus write

Xk − z =
k∑
i=1

Xi −Xi−1 =
k∑
i=1

Ez
η

[
Xi −Xi−1

∣∣Xi

]
+

k∑
i=1

Yi. (5.3)

Let us introduce the event

Amart :=
{

max
0<k≤Lt

∥∥∥ k∑
i=1

Yi

∥∥∥ ≥ Ls/8
}
. (5.4)

Using (5.3) and (5.4) we can thus bound (5.1) as follows

P z
η

(
max

0<k≤Lt

∥Xk − z∥ ≥ Ls/4
)

≤ P z
η

(
max

0<k≤Lt

∥∥∥ k∑
i=1

Ez
η [Xi −Xi−1|Xi]

∥∥∥+ max
0<k≤Lt

∥∥∥ k∑
i=1

Yi

∥∥∥ ≥ Ls/4
)

≤ P z
η

(
max

0<k≤Lt

k∑
i=1

∥Ez
η [Xi −Xi−1|Xi]∥ ≥ Ls/8, A

c
mart

)
+ P z

η (Amart)

(5.5)

To deal with the first summand in the last line of (5.5) we first claim that on Acmart

it holds for all k ∈ {0, . . . , Lt} that ∥Xk − z∥ ≤ Ls/2. To see this, note first that on
Acmart we can write for any k ∈ {1, . . . , Lt}

∥Xk − z∥ ≤ Ls/8 +
k∑
i=1

∥Ez
η [Xi −Xi−1|Xi−1]∥. (5.6)

We can bound the sum of expected differences using the following lemma, the proof of
which we postpone to the end of this section.

Lemma 5.1. For k ∈ {1, . . . , Lt} it holds on {∥Xk−1 − z∥ ≤ Ls/2} that

∥Ez
η [Xk −Xk−1|Xk−1]∥ <

Ls
8Lt

. (5.7)

Now sinceX0 = z we can apply Lemma 5.1 and it follows with (5.6) that ∥X1−z∥ ≤
Ls/8 +

Ls

8Lt
< Ls/8 + Ls/8 = Ls/4. Thus applying Lemma 5.1 and (5.6) inductively

yields

∥Xk − z∥ ≤ Ls/8 +
kLs
8Lt

≤ Ls/4, k ∈ {1, . . . , Lt}.
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In particular this implies that on Acmart that

max
0<k≤Lt

k∑
i=1

∥Ez
η [Xi −Xi−1|Xi]∥ < Ls/8,

which in turn implies that the first sum in the last line of (5.5) vanishes.
The probability of Amart can be dealt with by applying the Azuma-Hoeffding in-

equality to the partial sum process of (Yk)k≥1. More precisely, if Sk :=
∑k

i=1 Yi and
S0 = 0, then it follows by definition, cf. (5.2), that ∥Sk − Sk−1∥ = ∥Yk∥ ≤ R and thus

P z
η

(
∥Sk − S0∥ ≥ Ls/8

)
≤ exp

(−(Ls/8)
2

2LtR2

)
, k ∈ {0, . . . , Lt}.

By a union bound, it follow that

P z
η (Amart) ≤ Lt exp

(−(Ls/8)
2

2LtR2

)
.

The right hand side of the last display is, by the choice of Lt and Ls in (4.1) of order
O(log(R)/R) which tends to zero for R large. We thus set Rµ,δ,ε to be the smallest
R such that Proposition 2.1 holds and that the above display is smaller than a given
δ > 0 as in the statement of Proposition 2.3, i.e. for given ε, δ > 0 we set

Rµ,δ,ε := inf
{
R ∈ N : R > R̃µ,ε, Lt exp

(
− (Ls/8)

2/(2LtR
2)
)
< δ
}
.

It still remains to prove Lemma 5.1 in order to complete the proof of Proposition 2.3.

Proof of Lemma 5.1. By the definition of a good block (i.e. Γ(0,−1) = 1) the driving
noise U |block4(0,−1) is such that the following local R- and r0-density conditions are
satisfied for k ∈ {0, . . . , Lt},

ζR,−k (x) ≤ δR(x; η−Lt+k) ≤ ζR,+k , for all x ∈ Supp(ζR,−k ),

ζ−,r0k (x) ≤ δr0(x; η−Lt+k) ≤ ζ+,r0k , for all x ∈ Supp(ζ−,r0k ),
(5.8)

and in particular, by the definition of the ζR,±k , ζ±,r0k profiles, cf. (3.9)–(3.10), it holds
that

δR(x; ηk), δr0(x; ηk) ∈ [θµ − εFP, θµ + εFP], (x, k) ∈ BLs(0)× {−Lt, . . . , 0} (5.9)

Recall that we assumed with out loss of generality that r0 divides R. Let M > 1 de-
note the resulting quotient, i.e. letM > 1 be such that R/r0 =M . Then the ball BR(0)
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can be divided into Md sub-balls of radius r0 centered at points y1, . . . , yMd ∈ BR(0).
Now by (5.9) it follows immediately that for any m ∈ {1, . . . ,Md}.

P z
η (Xk −Xk−1 ∈ Br0(ym)|Xk−1) =

δr0(ym +Xk−1; η−k−1)V
d
r0

δR(Xk−1; η−k−1)V d
R

∈
[
(1− ε̃)

1

Md
, (1 + ε̃)

1

Md

]
,

for some ε̃ = ε̃(εFP, R,M, d) > 0 which decreases to zero for R → ∞. Moreover, denote
on {Xk −Xk−1 ∈ Br0(ym)} the relative displacement of Xk −Xk−1 with respect to ym
by zm. In particular it holds that ∥zm∥ ≤ r0. Then we have that

∥∥Ez
η [Xk −Xk−1|Xk−1]

∥∥ =
∥∥∥ Md∑
m=1

Ez
η

[
(ym + zm)1{(Xk−Xk−1∈Br0 (ym)}|Xk−1

]∥∥∥
≤
∥∥∥ Md∑
m=1

Ez
η

[
ym1{(Xk−Xk−1∈Br0 (ym)}|Xk−1

]∥∥∥
+
∥∥∥ Md∑
m=1

zmP
z
η (Xk −Xk−1 ∈ Br0(ym)|Xk−1)

∥∥∥
≤ ε̃+ (1 + ε̃)r0 ≤ 2r0.

(5.10)

Recall that Ls = cdens⌈R logR⌉. If we write c1 for the constant such that Lt = c1 logR
it follows for any fixed M > 16c1/cdens that 2r0 = 2R/M < Ls/8Lt.
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