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HIERARCHICAL TENSOR APPROXIMATION OF

HIGH-DIMENSIONAL FUNCTIONS OF ISOTROPIC AND

ANISOTROPIC SOBOLEV SMOOTHNESS

EMILY GAJENDRAN, HELMUT HARBRECHT, AND REMO VON RICKENBACH

Abstract. In this article, we study the hierarchical tensor decomposition of
functions from both smoothness classes, isotropic Sobolev spaces and aniso-

tropic Sobolev spaces. For this purpose, we consider the known rank estimates
in case of bivariate approximation, which can be found in [14] and [16], and
successively apply them to analyze the truncated hierarchical tensor decom-
position. In comparison to the isotropic case, we obtain improved results with
respect to anisotropic Sobolev spaces. Indeed, the associated ranks of the trun-
cated hierarchical tensor decomposition stay essentially bounded which beats
the curse of dimension that is observed in the isotropic case.

1. Introduction

In the realm of numerical analysis and scientific computing, the challenge of
effectively representing and approximating functions in high dimensions has re-
mained an important task. In this article, we therefore examine the approximation
of functions on the d-fold product Ωd of a bounded domain Ω ⊂ R

n with itself,
where n ∈ N and d is a power of 2. Specifically, we focus on the low-rank approx-

imation of functions from isotropic and anisotropic Sobolev spaces Hs(Ωd) and

Hs
mix(Ω

d) :=
⊗d

i=1H
s(Ω), respectively, achieved by means of tensor approxima-

tion.
Various tensor approximation schemes have been developed over the years such

as tensor trains, the canonical tensor format, or hierarchical tensor decomposition,
see e.g. [17, 18, 19] and the references therein. Note that a thorough introduction to
tensor methods can be found in the textbook [17], while a comprehensive overview
of current methods and their associated literature is available in [12].

A lot is known about the special situation when d = 2, which revolves around
the use of the truncated singular value decomposition as found in [13, 14]. The
case of higher dimensions, however, is still not well understood and has many open
questions. For this general case, one shall study different tensor decompositions
and corresponding truncations, searching for a balance between minimal error and
minimal cost in the calculations. A common issue one encounters in this setting
is the curse of dimension, which one observes in the computational cost of the
approximations one constructs.
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Limited progress has been made to combat this curse of dimension by low-rank
tensor approximation so far, though in different areas of sciences tensor approxi-
mations have successfully been applied to high-dimensional problems in fields such
as quantum mechanics and physics. However, it has been found in [16, 20] that the
curse of dimension does not impact the computational cost as much, if functions
from anisotropic Sobolev spaces are considered. The reason for this is that the
cost for the truncated singular value decomposition of functions in such spaces is
essentially only determined by the dimension n ∈ N of the domain Ω ⊂ R

n under
consideration. Here and in the following, essentially in the context of complexity
bounds and error estimates means up to (poly-)logarithmic factors.

The main way we study tensor approximation in this article is by comparing
tensor-ranks, see [9, 10, 17] for example. As the cost complexity is fully dependent
on the tensor-ranks, we are especially interested in the anistropic Sobolev space
due to the known estimate on the truncated singular value decomposition being
essentially independent of the dimension d and only dependent on n, see [16, 21]
for example. While the approximation of high-dimensional functions in the tensor
train format has been studied in [15, 16], we focus here on the hierarchical tensor

decomposition. Its construction by the higher order SVD is well understood, see,
e.g. [11] or [20]. However, up to this point the tensor-ranks have not been studied in
detail. Therefore, the content of this article is based on a combination of estimates
of the singular value decomposition and the construction of the hierarchical tensor
decomposition.

We like to emphasize that our results are in line with [20] for periodic functions
on the unit d-cube, but generalize the findings therein. Moreover, the convergence
of tensor approximation methods has also been studied by other authors. We refer
the reader to [2, 3, 4, 5, 22] and the references therein. In contrast to our setting,
the sparsity of the core tensors is considered in these articles, especially also for
general networks. To this end, functions from Besov spaces instead of Sobolev
spaces have been the objects of study.

The rest of the article is structured as follows. In Section 2, we consider notation
and basic results which we will use later on. Then, in Section 3, we introduce the
truncated hierarchical tensor decomposition for functions in the continuous setting.
Section 4 is then dedicated to the error analysis of the truncated hierarchical ten-
sor decomposition. The specific consequences for the ranks in case of isotropic or
anisotropic smoothness are then considered in Section 5. Finally, we state conclud-
ing remarks in Section 6, while we prove a technical estimate in Appendix A.

Throughout this article, in order to avoid the repeated use of generic but un-
specified constants, by C ≲ D we indicate that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Moreover, C ≳ D

is defined as D ≲ C and C ∼ D as C ≲ D and D ≲ C.

2. Preliminaries

2.1. Notation. For some n ∈ N, let Ω ⊂ R
n be a sufficiently smooth domain. For

m ∈ N, we denote by Ωm the 2m-fold product domain of Ω, i.e.

Ωm = Ω× · · · × Ω
︸ ︷︷ ︸

2m

= Ω2m .
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Furthermore, for sake of convenience, we set d = 2m. The reason why we choose
these values is because we shall consider the hierarchical tensor decomposition which
is based on an arrangement of the product domain Ωm in form of a binary tree,
where a particular vertex (ℓ, k) corresponds to a subdomain Ωm−ℓ. Here, ℓ =
1, . . . ,m denotes the level and k = 1, . . . , 2ℓ denotes the vertex in the respective
level, counting from left to right, compare Figure 1 with nodes (ℓ, k).

We denote by

xℓ,k = (x2m−ℓ(k−1)+1, . . . , x2m−ℓk) ∈ Ωm−ℓ

the variables which are associated to the vertex (ℓ, k) of the binary tree while

xℓ,k = (x1, . . . , x2m−ℓ(k−1), x2m−ℓk+1, . . . , xd) ∈ Ωm−ℓ

denotes the remaining variables which are associated to the respective siblings.

Here, for sake of simplicity in notation, we set Ωm−ℓ := Ω2ℓ−1
m−ℓ such that there

holds Ωm−ℓ ×Ωm−ℓ = Ωm. Note that arbitrary d ̸= 2m will also be possible with
straightforward modifications by means of an unbalanced binary tree.

0

1, 1 1, 2

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8

Figure 1. A (balanced) binary tree depicting the nodes of the
hierarchical tensor format with three levels, i.e. for a function with
8 variables.

2.2. Sobolev spaces. Let L2(Ωm) denote the space of squared integrable func-
tions. Then, the canonical, standard (isotropic) Sobolev space Hp(Ωm) consists of
all functions f ∈ L2(Ωm) whose partial derivatives ∂α1

x1
· · · ∂αd

xd
f of order ∥α∥1 =

α1+ · · ·+αd ≤ p have finite L2-norms. In contrast, the (anisotropic) Sobolev space
H

p
mix(Ωm) of dominating mixed derivatives consists of all functions f ∈ L2(Ωm)

whose partial derivatives ∂α1
x1

· · · ∂αd
xd
f of order ∥α∥∞ = max{α1, . . . , αd} ≤ p have

finite L2-norms. Especially, one has

(2.1) H
p
mix(Ωm) = Hp(Ω)⊗ · · · ⊗Hp(Ω)

︸ ︷︷ ︸

2m

.
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2.3. Singular value decomposition. We intend to compute low-rank approxi-
mations of functions f ∈ L2(Ωm) by means of the singular value decomposition.
In order to separate the variables xℓ,k ∈ Ωm−ℓ, associated with the vertex (ℓ, k),

from xℓ,k ∈ Ωm−ℓ, belonging to the same generation (ℓ, 1), . . . , (ℓ, k − 1), (ℓ, k +
1), . . . , (ℓ, 2ℓ), we define the kernel

k(xℓ,k,x
′
ℓ,k) :=

∫

Ωm−ℓ

f(xℓ,k,xℓ,k)f(x
′
ℓ,k,xℓ,k) dxℓ,k

and compute the eigenpairs {(λℓ,k(αℓ,k), φℓ,k(αℓ,k)}∞αℓ,k=1 of the associated Hilbert-
Schmidt operator

λℓ,k(αℓ,k)φℓ,k(αℓ,k,xℓ,k) = Kφℓ,k(αℓ,k,xℓ,k)

=

∫

Ωm−ℓ

k(xℓ,k,x
′
ℓ,k)φℓ,k(αℓ,k,x

′
ℓ,k) dx

′
ℓ,k.

Here, the sequence of eigenfunctions {φℓ,k(αℓ,k)}∞αℓ,k=1 constitutes an orthonormal

basis in L2(Ωm−ℓ) while the sequence of eigenvalues satisfies λℓ,k(1) ≥ λℓ,k(2) ≥
· · · ≥ λℓ,k(αℓ,k) → 0. Setting

(2.2) ψℓ,k(xℓ,k) :=
1

√

λℓ,k(αℓ,k)

∫

Ωm−ℓ

f(xℓ,k,xℓ,k)φℓ,k(αℓ,k,xℓ,k) dxℓ,k,

the singular value decomposition of f is given by

(2.3) f(xℓ,k,xℓ,k) :=
∞∑

αℓ,k=1

√

λ(αℓ,k)φℓ,k(αℓ,k,xℓ,k)ψℓ,k(αℓ,k,xℓ,k).

2.4. Truncation of the singular value decomposition. In order to compute a
low-rank approximation of f ∈ L2(Ωm), we shall truncate the singular value decom-
position (2.3) appropriately. To this end, we recall the bounds on the truncation
error proven [14, 16].

If f ∈ Hp(Ωm), then the truncated singular value decomposition

fR(xℓ,k,xℓ,k) :=

R∑

αℓ,k=1

√

λ(αℓ,k)φℓ,k(αℓ,k,xℓ,k)ψℓ,k(αℓ,k,xℓ,k)

satisfies the error estimate

(2.4) ∥f − fR∥L2(Ωm) =

√
√
√
√

∞∑

αℓ,k=R+1

λ(αℓ,k) ≲ R−2ℓ−mp/n∥f∥Hp(Ωm)

if f ∈ Hp(Ωm), see [14] for the details. In contrast, in accordance with [16], we
essentially obtain the truncation estimate

(2.5) ∥f − fR∥L2(Ωm) =

√
√
√
√

∞∑

αℓ,k=R+1

λ(αℓ,k) ≲ R−2p/n∥f∥Hp

mix
(Ωm)

if f ∈ H
p
mix(Ωm).

We emphasize that the decay in (2.4) suffers from the so-called curse of dimen-
sionality while the decay in (2.5) is essentially dimension independent. Note that
here and in the following “essentially” in the context of asymptotic estimates means
up to (poly-)logarithmic factors.
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2.5. Projections. Based on the truncated singular value decomposition (2.3) with
respect to a given vertex (ℓ, k) of the binary tree under consideration, we shall define
L2-orthogonal projections PR

ℓ,k : L2(Ωm) → L2(Ωm) which will play an important
role in the error analysis of the truncated hierarchical tensor decomposition. We
define the projection PR

ℓ,k by

(2.6) PR
ℓ,kf(x) :=

R∑

αℓ,k=1

∫

Ωm−ℓ

f(x′
ℓ,k,xℓ,k)φℓ,k(αℓ,k,x

′
ℓ,k) dx

′
ℓ,k φℓ,k(αℓ,k,xℓ,k).

In particular, in view of (2.2), there holds the identity

(2.7) PR
ℓ,kf(x) =

R∑

αℓ,k=1

√

λ(αℓ,k)φℓ,k(αℓ,k,xℓ,k)ψℓ,k(αℓ,k,xℓ,k).

Hence, due to (2.4) and due to (2.5), we arrive at the error estimates

(2.8) ∥(I − PR
ℓ,k)f∥L2(Ωm) ≲ R−2ℓ−mp/n∥f∥Hp(Ωm), if f ∈ Hp(Ωm),

and (essentially)

(2.9) ∥(I − PR
ℓ,k)f∥L2(Ωm) ≲ R−2p/n∥f∥Hp

mix
(Ωm), if f ∈ H

p
mix(Ωm),

respectively. It is important to note that the generic constants in these error es-
timates are dependent on m and p but independent of the rank R. In particular,
estimate (2.8) depends strongly on the specific vertex (ℓ, k) of the binary tree, while
estimate (2.9) depends only mildly on it as the rank decay depends only logarith-
mically on the dimension 2m−ℓ of the underlying domain Ωm−ℓ.

3. Hierarchical tensor decomposition

Consider a function f(x) = f(x1, . . . , xd) with d = 2m for some m ∈ N and Ω ⊂
R

n, where n ∈ N is arbitrary but fixed. In the hierarchical tensor decomposition,
we apply the singular value decomposition to the function f to successively separate
the desired variables from the rest. This leaves us with a tree-like pattern, where
every branch provides a set of orthonormal functions for the hierarchical tensor
decomposition.

Let f ∈ L2(Ωm). We first consider the root vertex. Applying the singular value
decomposition (2.3) to separate the variables x1,1 ∈ Ωm−1 and x1,2 ∈ Ωm−1 gives
us the representation

f(x) =

∞∑

α1=1

√

λ1(α1)φ1,1(α1,x1,1)φ1,2(α1,x1,2),

where we set φ1,2(α1) := ψ1,2(α1) for all α1 ∈ N.
We next consider both children of the root vertex and apply the singular value

decomposition directly to f again to separate the variable x2,k ∈ Ωm−2 for each
k = 1, 2, 3, 4 from the rest. We get the identity

f(x) =
∞∑

α2,k=1

√

λ2,k(α2,k)φ2,k(α2,k,x2,k)ψ2,k(α2,k,x2,k), k = 1, 2, 3, 4.
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The functions {φ2,k(α2,k)}∞α2,k=1 constitute orthonormal bases in L2(Ωm−2) for

each k. Thus, defining the core tensor in vertex (1, 1) by

β1,1(α1, α2,1, α2,2) :=

∫

Ωm−1

φ1,1(α1,x1,1)φ2,1(α2,1,x2,1)φ2,2(α2,2,x2,2) dx1,1

and the core tensor in vertex (1, 2) by

β1,2(α1, α2,3, α2,4) :=

∫

Ωm−1

φ1,2(α1,x1,2)φ2,3(α2,3,x2,3)φ2,4(α2,4,x2,4) dx1,2

gives us the representation

f(x) =

∞∑

α1=1

√

λ1(α1)

·
[

∞∑

α2,1=1

∞∑

α2,2=1

β1,1(α1, α2,1, α2,2)φ2,1(α2,1,x2,1)φ2,2(α2,2,x2,2)

]

·
[ ∞∑

α2,3=1

∞∑

α2,4=1

β1,2(α1, α2,3, α2,4)φ2,3(α2,3,x2,3)φ2,4(α2,4,x2,4)

]

.

In general, we employ the singular value decomposition of f in the vertex (ℓ, k)
to separate the variable xℓ+1,2k−1 ∈ Ωm−ℓ−1 from xℓ+1,2k−1 and xℓ+1,2k ∈ Ωm−ℓ−1

from xℓ+1,2k, respectively. This yields two sets of orthonormal bases

{φℓ+1,2k−1(αℓ+1,2k−1)}∞αℓ+1,2k−1=1, {φℓ+1,2k(αℓ+1,2k)}∞αℓ+1,2k=1

of L2(Ωm−ℓ−1). With the help of these bases, we expand the basis functions in the
vertex (ℓ, k)

φℓ,k(αℓ,k,xℓ,k) =
∞∑

αℓ+1,2k−1=1

∞∑

αℓ+1,2k=1

βℓ,k(αℓ,k, αℓ+1,2k−1, αℓ+1,2k)

· φℓ+1,2k−1(αℓ+1,2k−1,xℓ+1,2k−1)φℓ+1,2k(αℓ+1,2k,xℓ+1,2k),

where the core tensor is given by

βℓ,k(αℓ,k, αℓ+1,2k−1, αℓ+1,2k) =

∫

Ωm−ℓ

φℓ,k(αℓ,k,xℓ,k)

· φℓ+1,2k−1(αℓ+1,2k−1,xℓ+1,2k−1)φℓ+1,2k(αℓ+1,2k,xℓ+1,2k) dxℓ,k.

Proceeding successively in this way in all vertices, which are different from the
leaves of the binary tree, gives us the final hierarchical tensor decomposition in
accordance with

f(x) =
∞∑

α1=1

√

λ1(α1)

∞∑

α2,1=1

. . .

∞∑

α2,4=1

β1,1(α1, α2,1, α2,2)β1,2(α1, α2,3, α2,4) · · ·

∞∑

αm,1=1

. . .

∞∑

αm,2m=1

βm−1,1(αm−1,1, αm,1, αm,2) · · ·

βm−1,2m−1(αm−1,2m−1 , αm,2m−1, αm,2m)φm,1(αm,1,x1) · · ·φm,2m(αm,2m ,x2m).
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Of course, on a computer, we have to truncate the singular value decomposition
in each vertex (ℓ, k), resulting in a finite rank Rℓ. Therefore, we arrive at the
low-rank approximation fHT

R1,...,Rm
≈ f given by

fHT
R1,...,Rm

(x) =

R1∑

α1=1

√

λ1(α1)

R2∑

α2,1=1

. . .

R2∑

α2,4=1

β1,1(α1, α2,1, α2,2)β1,2(α1, α2,3, α2,4) · · ·

Rm∑

αm,1=1

. . .

Rm∑

αm,2m=1

βm−1,1(αm−1,1, αm,1, αm,2) · · ·

βm−1,2m−1(αm−1,2m−1 , αm,2m−1, αm,2m)φm,1(αm,1,x1) · · ·φm,2m(αm,2m ,x2m).

Thus, in each vertex (ℓ, k) being different from a leaf, the truncated core tensor
{βℓ,k(αℓ,k, αℓ+1,2k−1, αℓ+1,2k)} needs to be stored. It is of size RℓR

2
ℓ+1 except for

the root vertex where we only have to store the R1 singular values {
√
λ1}. In

addition, we also need to store the d = 2m basis sets {φm,k(αm,k)}Rm

αm,k=1.

4. Error analysis

The error analysis of the truncated hierarchical tensor decomposition follows
essentially [11], but we translate the results therein to the continuous setting con-

sidered here. The analysis makes heavy use of the L2-orthogonal projections PRℓ

ℓ,k

from (2.6).

Lemma 4.1. The truncated hierarchical tensor decomposition can be expressed by

(4.1) fHT
R1,...,Rm

=





m∏

ℓ=1

2ℓ∏

k=1

PRℓ

ℓ,k



 f,

where the L2-orthogonal projections PRℓ

ℓ,k : L2(Ωm) → L2(Ωm) are given by (2.6).

Proof. We start by showing that the assertion holds true for the first vertices of the
binary tree. We especially find

P1,1f = P1,2f =

R1∑

α1=1

√

λ1(α1)φ1,1(α1)φ1,2(α1).

We proceed by continuing on level ℓ = 2 of the tree and obtain

P2,1P1,2P1,1f =

R1∑

α1=1

√

λ1(α1)

·
R2∑

α2,1=1

[
∫

Ωm−2

φ1,1(α1,2,x2,1, ·)φ2,1(α2,1,x2,1) dx2,1

]

φ2,1(α2,1)φ1,2(α1)
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and further

P2,2P2,1P1,2P1,1f =

R1∑

α1=1

√

λ1(α1)

·
R2∑

α2,1=1

R2∑

α2,2=1

[
∫

Ωm−2

φ1,1(α1,2,x2,1,x2,2)φ2,1(α2,1,x2,1)φ2,2(α2,2,x2,2) dx2,1 dx2,2

]

· φ2,1(α2,1)φ2,2(α2,2)φ1,2(α1)

=

R1∑

α1=1

√

λ1(α1)

R2∑

α2,1=1

R2∑

α2,2=1

β1,1(α1, α2,1, α2,2)φ2,1(α2,1)φ2,2(α2,2)φ1,2(α1).

Likewise, we obtain

P2,4P2,3P2,2P2,1P1,2P1,1f =

R1∑

α1=1

√

λ1(α1)

R2∑

α2,1=1

· · ·
R2∑

α2,4=1

β1,1(α1, α2,1, α2,2)β1,2(α1, α2,1, α2,2)φ2,1(α2,1) · · ·φ2,4(α2,4).

In the general step, the basis set {φℓ,k(αℓ,k)}Rℓ

αℓ,k=1 with respect to the vertex

(ℓ, k) is replaced by the application of the projections Pℓ+1,2k−1Pℓ+1,2k in accor-
dance with

φℓ,k(αℓ,k,xℓ,k) =

Rℓ+1∑

αℓ+1,2k−1=1

Rℓ+1∑

αℓ+1,2k=1

βℓ,k(αℓ,k, αℓ+1,2k−1, αℓ+1,2k)

· φℓ+1,2k−1(αℓ+1,2k−1,xℓ+1,2k−1)φℓ+1,2k(αℓ+1,2k,xℓ+1,2k).

By proceeding successively through the binary tree, one obtains the representation
formula (4.1). □

The next lemma is the key ingredient to estimate the truncation error of the
hierarchical tensor decomposition.

Lemma 4.2. Let f ∈ L2(Ωm) and let P : L2(Ωm) → L2(Ωm) and Q : L2(Ωm) →
L2(Ωm) be arbitrary L2-orthogonal projections. Then, there holds

(4.2) ∥(I − PQ)f∥2L2(Ωm) ≤ ∥(I − P )f∥2L2(Ωm) + ∥(I −Q)f∥2L2(Ωm).

Proof. We have

∥(I − PQ)f∥2L2(Ωm) = ∥(I − P )f + P (I −Q)f∥2L2(Ωm).

Due to the orthogonality of P and I−P , the claim follows by Pythagoras’ theorem
in accordance with

∥(I − PQ)f∥2L2(Ωm) = ∥(I − P )f∥2L2(Ωm) + ∥P (I −Q)f∥2L2(Ωm)

≤ ∥(I − P )f∥2L2(Ωm) + ∥(I −Q)f∥2L2(Ωm).

□

We shall use the above lemma and the representation formula (4.1) to find an
upper bound of the over-all truncation error of the truncated hierarchical tensor
decomposition.
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Theorem 4.3. There holds

∥
∥f − fHT

R1,...,Rm

∥
∥
2

L2(Ωm)
≤

m∑

ℓ=1

2ℓ∑

k=1

∥
∥
(
I − PRℓ

ℓ,k

)
f
∥
∥
2

L2(Ωm)
.

Proof. In view of (4.1), successive application of (4.2) yields
∥
∥
∥
∥
∥

(

I −
m∏

ℓ=1

2ℓ∏

k=1

PRℓ

ℓ,k

)

f

∥
∥
∥
∥
∥

2

L2(Ωm)

=

∥
∥
∥
∥
∥

(

I − PRm

m,2m · · ·PRm

m,1

m−1∏

ℓ=1

2ℓ∏

k=1

PRℓ

ℓ,k

)

f

∥
∥
∥
∥
∥

2

L2(Ωm)

≤
∥
∥
(
I − PRm

m,2m

)
f
∥
∥
2

L2(Ωm)
+

∥
∥
∥
∥
∥

(

I − PRm

m,2m−1 · · ·PRm

m,1

m−1∏

ℓ=1

2ℓ∏

k=1

PRℓ

ℓ,k

)

f

∥
∥
∥
∥
∥

2

L2(Ωm)

≤ · · · ≤
2m∑

k=1

∥
∥
(
I − PRm

m,k

)
f
∥
∥
2

L2(Ωm)
+

∥
∥
∥
∥
∥

(

I −
m−1∏

ℓ=1

2ℓ∏

k=1

PRℓ

ℓ,k

)

f

∥
∥
∥
∥
∥

2

L2(Ωm)

.

By continuing this procedure also on the other levels, we conclude the claim. □

Given that the truncation ranks Rℓ are chosen such that we always have
∥
∥
(
I − PRℓ

ℓ,k

)
f
∥
∥
L2(Ωm)

≤ ε

for all levels ℓ, we conclude from Theorem 4.3 that
∥
∥f − fHT

R1,...,Rm

∥
∥
L2(Ωm)

≤
√
2d− 3ε.

Here, we exploited that we apply only one projection in the root vertex while two
projections are applied in all the other vertices which are not a leaf. This implies
that 1 +

∑m−1
ℓ=1 2 · 2ℓ = 2d− 3 truncations are performed in total, each of which of

order ε.

5. Cost complexity

5.1. Ranks in the case of isotropic Sobolev smoothness. We are now in-
terested in determining the necessary ranks for the truncated hierarchical tensor
decomposition fHT

R1,...,Rm
for functions f ∈ Hp(Ωm). To this end, we exploit Theo-

rem 4.3 which shows that all ranks should be chosen such that the truncation error
in each singular value decomposition is of order ε. By (2.8), we have that the error
in each vertex is given by

∥
∥
(
I − PRℓ

ℓ,k

)
f
∥
∥
L2(Ωm)

≲ R
−2ℓ−mp/n
ℓ ∥f∥Hp(Ωm).

Therefore, we conclude that we shall choose

Rℓ ∼ ε−2m−ℓn/p

to ensure an error bound ≲ ε.
We note that the ranks Rm associated with the leaves of the underlying binary

tree are the smallest ones. By setting R := Rm = ε−n/p, we conclude the expo-
nentially increasing ranks illustrated in Figure 2. We like to emphasize that our
analysis shows that the truncated hierarchical tensor decomposition fHT

R,...,R with

fixed rank R cannot be expected to approximate a function f ∈ Hp(Ωm) well in
general.
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f

1, 1 1, 2

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8

R4 R4

R2 R2 R2 R2

R R R R R R R R

Figure 2. Rank requirements in case of a function f of isotropic
Sobolev smoothness with R ∼ ε−n/p. The ranks grow exponen-

tially with the level ℓ in accordance with R2m−ℓ

.

The total amount of coefficients in the core tensors required to represent fHT
R1,...,Rm

is determined by the ranks in the truncated hierarchical tensor decomposition. We
obtain

R1 +

m−1∑

ℓ=1

2ℓRℓR
2
ℓ+1 = R2m−1

+

m−1∑

ℓ=1

2ℓR2m−ℓ(
R2m−ℓ−1)2

= R2m−1

+

m−1∑

ℓ=1

2ℓR2m−ℓ+1

.

Hence, by using the estimate

(5.1)

m−1∑

ℓ=1

2ℓR2m−ℓ+1

≲ R2m ,

which is proven in the appendix, we conclude that the cost complexity for storing
the core tensors is bounded by O(Rd). Note that the Tucker decomposition is of
the same complexity, compare [15].

5.2. Ranks in the case of anisotropic Sobolev smoothness. We are next
interested in studying the truncation ranks if we have f ∈ H

p
mix(Ωm) for arbitrary

d = 2m ∈ N and Ω ⊂ R
n. Recall that the term essentially means up to powers of

the logarithm.
We exploit again Theorem 4.3 and choose the ranks such that the truncation

error in each singular value decomposition is of order ε. By (2.9), we have that the
error in each vertex is essentially given by

∥
∥
(
I − PRℓ

ℓ,k

)
f
∥
∥
L2(Ωm)

≲ R
−2p/n
ℓ ∥f∥Hp

mix
(Ωm).

Therefore, we conclude that we shall essentially choose

Rℓ ∼ ε−2n/p
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to ensure an error bound ≲ ε. We especially observe that the ranks are essentially
independent of the level ℓ of the vertex, i.e., R = ε−2n/p everywhere in the binary
tree. This behaviour is also illustrated in Figure 3.

f

1, 1 1, 2

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8

R R

R R R R

R R R R R R R R

Figure 3. Rank requirements in case of a function f of
anisotropic Sobolev smoothness with R ∼ ε−2n/p. The ranks stay
essentially constant with the level ℓ.

The total amount of coefficients required to represent the core tensors of fHT
R1,...,Rm

is computed analogously as in the previous subsection by

R+

m−1∑

ℓ=1

2ℓRR2 = R+R3
m−1∑

ℓ=1

2ℓ ≲ dR3.

Hence, the cost complexity for storing the core tensors is essentially of the order
O(dR3). In particular, it depends only mildly on the spatial dimension d.

5.3. Approximation of the eigenfunctions. We shall finally discuss the ap-
proximation of the basis sets {φm,k(αm,k)}Rm

αm,k=1. To this end, we decompose Ω

into an admissible decomposition

Th := {τi ⊂ R
n : i = 1, . . . , Nh}.

Here, we denote by hi, i = 1, . . . , Nh, the local mesh size and h = maxi hi is the
maximal mesh size.

To a shape-regular sequence {Th}h, we relate the spatial finite element spaces

Vh =
{
vh ∈ C(Ω) : vh|τ ∈ Πr(τ) for all τ ∈ Th

}

of functions, which are globally continuous, piecewise polynomial functions. Here,
Πr(A) denotes the space of polynomials of order r on a set A ⊂ R

n. For r = 2,
we obtain the usual piecewise linear hat functions. For r > 2, the present setting
includes finite elements of higher order and B-splines, compare [6, 7, 8] for details.

We know from [13] that the basis functions φm,k(αm,k) are in Hp(Ω) if f ∈
Hp(Ωm). Hence, we obtain the error estimate

inf
vh∈Vh

∥φm,k(αm,k)− vh∥L2(Ω) ≲ N
−min{p,r}/n
h ∥φm,k(αm,k)∥Hp(Ω).
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Although the Hp-norm of φm,k(αm,k) increases as αm,k increases, it suffices to

choose N
−min{p,r}/n
h ∼ ε. This choice ensures that the numerical realization of

the projection PRm

m,k produces an error of order ε, compare [14]. We therefore
conclude that, in addition to the storage for the core tensors, we need a storage of
2mRmNh = 2mRNh with Nh := ε−n/min{p,r} to represent the required basis sets.
We emphasize that these cost are independent of f being in the isotropic Sobolev
space Hp(Ωm) or in the anisotropic Sobolev space Hp

mix(Ωm).

6. Conclusion

In this article, we explored the hierarchical tensor decomposition applied to
functions from isotropic or anisotropic Sobolev spaces. By considering anisotropic
Sobolev spaces alongside the typical isotropic Sobolev spaces, we could exploit the
(essential) dimension independence of the ranks of the singular value decomposition
in the multivariate case. With this, we could show that the curse of dimension is not
present when applying the truncated hierarchical tensor decomposition to functions
from anisotropic Sobolev spaces.

In contrast, we have proven that the curse of dimension is present when applying
the truncated hierarchical tensor decomposition to functions from isotopic Sobolev
spaces. This leads us to the conclusion that the required ranks to achieve a desired
target accuracy for the truncated hierarchical tensor decomposition are significantly
smaller when applied to functions from anisotropic Sobolev space, as opposed to
the ranks necessary to achieve the same accuracy when considering functions from
isotropic Sobolev spaces. In fact, we have seen that, in the isotropic case, the ranks
grow exponentially as we move up in the binary tree, leading to infeasibly large
ranks as we increase the dimension of the functions we wish to approximate.

Finally, we note that in this article we have restricted ourselves to the study of
the ranks of the hierarchical tensor decomposition in the continuous setting. In
addition, we have only looked at the case in which the hierarchical tree is in the
form of a binary tree. Of course, should the scheme be performed, for example,
for functions in an isotropic or anisotropic Sobolev space with a general product
domain Ω1×· · ·×Ωd, where each subdomain Ωi ∈ R

ni might be different including
different dimensions, the corresponding decomposition would have to be performed
with the aim of splitting the variables into two sets of similar dimension in every
step. This could lead to a tree with shorter and longer branches, with leaves, i.e.
vertices containing the final desired functions, being on different levels of the tree.
This would further complicate the construction of the approximation and, especially
in the isotropic case, the determination of the resulting ranks.

Appendix A. Asymptic extimate

In this appendix, we shall prove the estimate (5.1). To this end, let us set

a := R2m+1

. We start to remark that the function ℓ 7→ 2ℓa2
−ℓ

is monotonically

decreasing for ℓ = 1, . . . ,m−1. Indeed, if g(x) := xa
1
x , then we have 2ℓa2

−ℓ

= g(2ℓ).
Since

g′(x) = a
1
x − 1

x
a

1
x log a = a

1
x

(

1− log a

x

)

,
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we have g′(x) ≤ 0 whenever x ≤ log a = 2m+1 logR. Under the assumption that
R ≥ 2, this is the case whenever x ≤ 2m. Therefore, there holds

m−1∑

ℓ=1

2ℓa2
−ℓ

= 2
√
a+ 4 4

√
a+

m−1∑

ℓ=3

2ℓa2
−ℓ ≤ 2R2m + 4R2m−1

+

∫ m−1

2

2xa2
−x

dx.

Thus, as 2R2m + 4R2m−1

≲ Rd, we just need to asymptotically bound the integral
by Rd.

First, by the coordinate transform x 7→ ϕ(x) := log2 x, using that ϕ′(x) = 1
x log 2 ,

we obtain
∫ m−1

2

2xa2
−x

dx =

∫ 2m−1

4

xa
1
x

1

x log 2
dx ∼

∫ 2m−1

4

a
1
x dx

=

∫ 2m−1

4

exp

(
log a

x

)

dx =

∫ 2m−1/ log a

4/ log a

exp

(
1

x

)

log a dx

= 2d logR

∫ 1/(4 logR)

2/(d logR)

exp

(
1

x

)

dx,

as log a = 2m+1 logR = 2d logR. Hence, as
∫

exp

(
1

x

)

dx = x exp

(
1

x

)

− Ei

(
1

x

)

+ C

= x exp

(
1

x

)

+

∫ ∞

− 1
x

exp(−t)
t

dt+ C,

see [1] for example, we have
∫ m−1

2

2xa2
−x

dx = 2d logR

[

R4

4 logR
− 2R

d
2

d logR
−
∫ −4 logR

−d logR/2

exp(−t)
t

dt

]

=
d

2
R4 − 4R

d
2 + 2d logR

∫ d logR/2

4 logR

exp(t)

t
dt.

As the integrand is monotonically increasing for t ≥ 1, we can further estimate
∫ m−1

2

2xa2
−x

dx ≤ d

2
R4 − 4R

d
2 + 4d logR

exp(d2 logR)

d logR

(
d

2
logR− 4 logR

)

provided that 4 logR ≥ 1 which is satisfied for R ≥ 2. Thus, we indeed conclude
∫ m−1

2

2xa2
−x

dx ≤ d

2
R4 − 4R

d
2 + 2R

d
2 logR

(
d

2
− 4

)

≲ Rd.
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