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S U M M A RY

Evolution is a fundamental force shaping all life on Earth. Viruses,
the most numerous and diverse biological entities on the planet, excel
in evolution and thrive in many hosts and environments. The study
of their evolutionary dynamics, which are essential to their success,
has significant implications for public health. Historical and recent
pandemics have shown the considerable impact that viruses can have
on society, and understanding their evolution is therefore essential
to mitigate their effects, help control disease spread, design better
vaccines and antiviral drugs, and create new innovative treatments.

Studies of HIV-1 biology and evolution enabled the creation of
life-saving treatments for infected patients. Despite this considerable
achievement, we lack a satisfactory explanation of how HIV-1’s within-
host evolution generates its global diversity. In the first part of this
thesis, we sought to explain this discrepancy by investigating the
evolutionary dynamics at play on both scales. We showed that between-
host evolution can mostly be explained from within-host dynamics if
one accounts for the changing immune pressure that the virus faces
from one host to the next. The evolution of the virus, constrained
by the immune response of the patient, leads to the emergence of
many escape mutations that are relevant only in that specific host.
When infecting a new host, the different immune pressure causes
the reversion of previously acquired mutations to their original state.
On longer time scales, we thus observe a slower evolution driven by
adaptation to changing environments.

In the second part of this thesis, we study the evolution of another
type of virus: the bacteriophages. These viruses infect bacteria and
are much more numerous and diverse than human viruses. Bacterio-
phages hold great promise for a wide range of research fields such
as ecology, healthcare and molecular biology. Their viral nature and
diversity makes them great candidates to investigate viral evolutionary
dynamics. However, phage research is currently limited to a handful
of well-characterized bacteriophage models, or to broad metagenomics
studies where the phages are rarely isolated and poorly characterized.
The former limits the scope of the findings, while the latter cannot
provide the detailed characterization that would require experimental
intervention. This depth vs. breadth dichotomy hinders our ability to
comprehensively study phage evolution, and we sought to bridge this
gap in two ways. First by creating a collection of phages, the BASEL
phage collection, that is representative of the natural diversity of E.coli
phages but where individual phages are also well-characterized. This
gives a detailed snapshot of the results of natural phage evolution,
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which is informative of the evolutionary trade-offs that these phages
face. Our second approach to address the dichotomy is to enable
phage evolution experiments at scale. To achieve this, we created
a high-throughput framework to perform bacteriophage evolution
rapidly, reliably and at scale. The central piece of this framework is the
continuous culture machine we crafted to perform the bacteriophage
evolution experiment: the Aionostat. We present the machine and the
results of two experiments to showcase its abilities. In these experi-
ments, we evolved phages to increase their infectivity on a challenging
bacterial strain, demonstrating that the Aionostat can drive the evolu-
tion of bacteriophages both vertically and through horizontal transfers.
Both approaches complement each other and open new avenues for
bacteriophage research.
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1
I N T R O D U C T I O N

In this chapter we present an overview of the general biology and
concepts necessary to understand the thesis. We will introduce the
topics treated in the following chapters in detail when it becomes
relevant. Section 1.1 provides a general motivation to the field of viral
evolution. Section 1.2 is an elementary introduction to the biology
traits shared by viruses, both in terms of structure and lifecycle. Section
1.3 introduces viral evolution, the fundamental process at play and the
interesting evolutionary dynamics that emerge from these processes.
Section 1.4 provides some background to viral evolution research and
how it is performed, which introduces some of the approaches used
in this thesis. Finally section 1.5 defines the aims of this thesis.

1.1 motivation

Evolution is a fundamental force that drives changes in all forms of
life, from the simplest organism to the most complex. This relentless
process of change and adaptation is particularly evident in the world of
viruses. The incredible diversity of viruses out there is both a testament
to and source of many evolutionary changes, making them an ideal
subject for studying the principles of evolution. Understanding how
viruses evolve not only sheds light on these tiny yet impactful entities,
but also provides broader insights into evolutionary mechanisms that
affect all life forms.

In public health, the significance of viral evolution is evident. His-
torical outbreaks like the 1918 Influenza pandemic (often referred to
as Spanish flu) and the 1980s HIV/AIDS crisis highlight the devas-
tating impact of evolving viruses on human populations [1, 2]. More
recent outbreaks, such as those caused by SARS-CoV-2 and Ebola,
reinforce this point. These events have not only led to widespread
health consequences and morbidity, but also profound socio-economic
disruptions. The COVID-19 pandemic, in particular, has demonstrated
the sheer impact a virus can have on society, necessitating widespread
confinement measures and reshaping daily life [3, 4].

The control of viral spread and impact is intertwined with the under-
standing of their evolution. Accurate predictions of viral evolution are
crucial for designing effective vaccines, as seen in the flu and COVID-
19 responses [5]. Similarly, the development of antiviral drugs relies
on anticipating and circumventing viral resistance mechanisms that
could appear through viral evolution. Interestingly, the study of viral
evolution is not only about combating harmful viruses; it can also help
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us tackle other menacing health issues. For instance, bacterial viruses
can be used to fight infections from harmful bacteria, a treatment
known as phage therapy [6, 7]. In this area, a deep understanding of
bacteriophage evolution is also key to the success of these therapeutic
strategies.

Beyond human health, viral evolution significantly influences eco-
logical dynamics. The interplay between viruses and their hosts pro-
foundly influences ecosystems across the globe, from the depths of
the oceans to the expanse of forests. The predation of viruses often
drives processes that help maintain the balance of ecosystems, a prime
example being the role of bacteriophages in the ocean carbon shunt
[8]. Their ability to transfer genetic material between different species
also contributes to biodiversity and the evolutionary trajectories of
countless organisms.

In summary, the study of viral evolution is not just a matter of
addressing immediate health concerns. It is also about deepening our
understanding of evolution as a fundamental biological process on
multiple scales.

1.2 fundamentals of virus biology

Viruses exhibit a remarkable diversity in structure and function, yet
they all share a defining feature: they need to infect host cells to repli-
cate and produce more copies of themselves. This common objective
gives rise to shared fundamental traits across different viral species.
In this section we present these shared features, starting with their
structure and then following with their life cycle. We purposefully
ignore traits that are not shared widely by viruses. Additional details
relevant for understanding HIV-1 and bacteriophages biology will be
introduced in chapter 2 and 3.

1.2.1 Viral structure

Genetic material

Capsid

Envelope

Surface protein

Figure 1.1: General structure of a virus. The left schematic typically resembles
a human virus, while the right schematic typically resembles a
bacteriophage. Viral morphologies are extremely diverse in reality.

genetic material : At the heart of every virus lies its genetic
material, which stores the information necessary for viral replication.

2



This genetic code is the blueprint for producing more viruses. The
material on which this code is stored can vary, it might be RNA or
DNA, single-stranded or double-stranded. The Baltimore classification,
one of the most commonly used systems to classify viruses, is based
on the genomic material of viruses and its characteristics, which are
used to separate them into 7 distinct groups.

capsid and envelope : Encasing the genetic material is usually a
protective protein shell called a capsid. Its main function is to protect
the virus genetic material from the outside. Some viruses, like SARS-
CoV-2 or HIV, go a step further by having an envelope [9, 10]. This
envelope, derived from the host’s own cell membrane, adds an extra
layer of protection and aids in the process of infecting new host
cells. Such viruses are often more fragile than their non-enveloped
counterparts [11, 12].

surface proteins : In proximity to the capsid (or in the envelope
when relevant) are surface proteins, which role is to mediate the inter-
action with the host cells. They are called receptor binding proteins
and are located on other structures such as tail fibers in the context of
bacteriophages [13]. These proteins are key to the virus’s entry into
the host cell. An exemplary case is the spike protein of SARS-CoV-2,
which binds to the ACE2 receptor on human cells [14]. This binding
is the first critical step in the virus’s infectious cycle, providing host
recognition and facilitating entry into the cell. Since these proteins
are exposed at the surface of the virus, they are often targeted by
antibodies and are therefore under strong evolutionary pressure.

1.2.2 Virus infection cycle

Free virions

Attachment and entry Integration

Replication and assemblyExiting host

host genome

Figure 1.2: Generalized life cycle of a virus.
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attachment and entry : The infection cycle begins with the
virus attaching itself to a host cell. This attachment is typically medi-
ated by surface proteins on the virus, which recognize and bind to
receptors on the host cell’s surface. After entry, the viral genome is
released into the host cell.

special case - integration : In some instances, such as with
retroviruses or lysogenic viruses, the viral genome integrates into the
host genomic material. This integration represents a unique strategy,
allowing the viral genome to stay within the host cell for extended
periods before resuming its replication cycle.

replication and assembly : Once inside the host cell (and
possibly after a period of integration), the virus starts replicating its
genome and producing the building blocks for new viral particles
using the host cell resources. The newly made genetic material and
structural components then assemble into complete, functional new
viruses.

exiting host to repeat cycle : The final stage in the virus’s
life cycle is to release the newly formed virion from the cell. Different
viruses have different exit strategies - some bud off from the host cell,
enveloping themselves in a piece of the cell membrane, while others
cause the host cell to burst (lysis), releasing the new viruses. Once
outside the host cell, these new viruses can in turn infect new cells
and reproduce the same cycle. The duration of a full infection cycle
varies among viruses and is influenced by other factors such as the
host’s state. This is typically around 10 to 20 hours for human viruses,
while it can be as short as 20-25 minutes for bacteriophages [15, 16].

1.3 viral evolution

Each replication cycle of a virus presents an opportunity for modifica-
tion. As viruses replicate, changes can occur in their genetic material.
These modifications, when combined with natural selection, drive
the evolution of viruses over time, leading to various evolutionary
dynamics that make viruses so successful.

1.3.1 Fundamental evolutionary processes

vertical evolution : During the replication of a virus’s genome,
random errors can occur. These mutations are often insignificant or
detrimental, but a subset of them may benefit the newly formed
virus. Recent methods such as mutational scans allow us to generate
many mutated viruses to study the mutational fitness effects [17–
20]. These fitness effects can also be measured in-vivo by studying

4



mutations trajectories over time [21]. Overall it seems that among these
random mutations, the majority are either lethal or detrimental, with a
small fraction being neutral or having a positive impact on the fitness
of the virus. This picture varies drastically between synonymous
and non-synonymous mutations though. These mutations can be
transmitted from parent to offspring virus, and as time progresses,
natural selection can amplify the prevalence of beneficial mutations
and remove the detrimental ones.

horizontal evolution : When two distinct viruses infect the
same host cell simultaneously, it creates an opportunity for their
genetic material to mix, which offers additional pathways for viral
evolution. This process can occur in two ways: reassortment and
recombination. The former is relevant for viruses with segmented
genomes, such as Influenza. In this scenario, offspring viruses can
inherit distinct genomic fragments from both parent viruses [22, 23].
Recombination, on the other hand, involves the exchange of genetic
material within a single genome segment and is particularly relevant
for viruses such as HIV-1 [24]. In both cases, the offspring viruses
inherit genetic material from both parental viruses, a process which
enables exchange of large sequences of DNA between viruses and
promotes genetic diversity. Without horizontal transfers viruses would
evolve like an asexual population. Horizontal evolution introduces
some gene shuffling, which helps to maintain diversity and explore
a broader range of genetic possibilities. This typically improves the
ability to adapt to changing conditions, a trait which is likely beneficial
to viruses. Overall, horizontal transfers are widely recognized for their
importance in viral evolution, but studying their dynamics and impact
remains challenging and is therefore and active field of research [25,
26].

selection : Selection acts on the viral variants created through the
processes mentioned above, selecting for variants that are better in
the context of this selective pressure. In viruses, selection often favors
traits that enhance survival, replication efficiency, or transmission
capabilities. Factors such as the environment, host immunity, and
therapeutic interventions all contribute to the selective pressure on
viruses. These selective pressures, coupled with the creation of new
variants, are the driving forces behind viral evolution. It enables
viruses to adapt to changing conditions, which can lead to interesting
evolutionary dynamics.

1.3.2 Evolutionary dynamics

Different viral lifestyles and the pressures they encounter lead to a
variety of evolutionary dynamics. These dynamics often overlap and
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interconnect, reflecting the complex nature of viral adaptation and
survival strategies. Here we introduce several evolutionary dynamics
that are relevant for the work presented in chapter 2 and 3. The extent
to which they influence viral behavior depends greatly on the virus’s
lifestyle. Factors like the type of genetic material, replication strategies,
and interactions with hosts play significant roles in determining the
evolutionary dynamics observed.

viral evolution rate and diversification : When selection
does not change too drastically, the rate at which viruses evolve is
relatively constant on the timescale of years [27]. It can be measured
by counting the number of mutations accumulated over time. This
rate is often called the molecular clock of a virus, and it can provide
insights into how quickly a virus can adapt to new conditions, which
varies between viruses. High mutation rates, common in RNA viruses
like HIV-1 or SARS-CoV-2, lead to rapid diversification and adaptation
to changing immune landscape. This rapid evolution plays a critical
role in the virus’s ability to evade immune responses and develop
resistance to antiviral therapies. Understanding this evolution rate
is essential for public health interventions, as it influences the devel-
opment of effective vaccines, the prediction of virus spread, and the
strategic deployment of antiviral drugs.

spillovers and host adaptation : Viral spillovers, where a
virus jumps from one species to another, are pivotal events in viral
evolution. Successful adaptation to a new host requires a virus to
overcome numerous new biological barriers, which is a strong selective
force [28]. These barriers can be at the attachment stage, where the
different cell receptors of a new host are not well recognized by the
viral surface proteins, at the replication stage, where the changes in
host cell machinery can impair the creation of new virions, or even
regarding the transmission from one host to the next. Overcoming
these barriers is often promoted by recombination events that can
provide new traits to the virus and is facilitated by the virus’s inherent
ability to mutate to subsequently adapt to this host. Such spillovers and
adaptations are very relevant for public health as they seem to be at the
source of many recent pandemics, such as the ones caused by Influenza
H1N1 (2009) and potentially SARS-CoV-2 (2019), highlighting the need
for research in this area [29, 30]. We study adaptation to a new host in
the experiments presented in chapter 3.

changing selection and arms race : Viruses and their hosts
are engaged in a continuous evolutionary arms race. Host organisms
develop mechanisms to detect and eliminate viruses, while viruses
evolve strategies to evade host defenses. For instance, hosts can mutate
their receptor proteins to prevent viral attachment, while viruses can
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evolve to adapt their surface proteins to this modified target. This
ever-changing selection due to host defenses can lead to significant
changes in the virus, sometimes leading to co-evolution of the host
and the virus. Additionally, the selective pressure from different hosts
is sometimes sufficiently divergent that viruses face trade-offs between
short-term benefits in the current host(s), and long-term survival strate-
gies, such as transmissibility to new hosts. This concept is particularly
evident in HIV, which we will cover in more detail in chapter 2. Due
to their fast evolution and generation time, viruses are a great system
to study host-pathogen arms race. Such dynamics are not restricted
to viruses and their host, they are also extensively studied in other
systems such as parasites and bacteria [31–34].

1.4 approaches in viral evolution research

We have seen in the previous section that viruses have the means to
evolve over time. This section presents an overview of the method-
ologies employed in studying this viral evolution, emphasizing the
importance of several fields such as bioinformatics, epidemiology and
molecular biology. Key examples from past research will be high-
lighted to illustrate how these methodologies have helped develop our
understanding of viral evolution. Additional details will be provided
on approaches that are particularly relevant to understanding the
work presented in chapter 2 and 3.

1.4.1 Sequencing data

Studying viral evolution is all about tracking and understanding
the genomic changes that happen over time in viral populations.
Sequencing technologies provide a window to access the genomic
sequences of viruses and are thus a central tool in studying viral
evolution. The recent improvements in our understanding of viral
evolution are closely linked to the increase in sequencing data available
for such viruses.

Technologies

The increase in sequencing data available over the years is largely
attributable to improvements in sequencing technologies coupled
with a substantial reduction in sequencing costs. Although some
technologies are capable of sequencing RNA directly, our focus will be
on DNA sequencing methods, as they are more commonly used. When
working with RNA viruses, the genomic material can be converted to
DNA using methods such as reverse transcription prior to sequencing.

The improvement in sequencing capabilities began with Sanger
sequencing, a method developed in 1977 that enabled the reading
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Figure 1.3: Schematic of the Nanopore sequencing technology. The DNA
sample is first prepared and then spotted on the nanopore flowcell,
where nanopores capture the DNA strands and motor proteins
push a single strand through the pore. A potential difference is
applied between both sides of the pore creating a current through
the pore. The changes in this current are measured over time,
and the basecaller translates this changes in current to nucleotide
sequence.

of DNA sequences up to a few hundred base pairs in length [35]. It
became the most widely used sequencing method for approximately
40 years, and is still used up to this day. It operates by using DNA
polymerase to synthesize new DNA strands, incorporating dideoxynu-
cleotides that cause chain termination at various points. This results
in fragments of different lengths with distinct terminal nucleotide.
Fragments are then separated by length through methods such as elec-
trophoresis and the last nucleotide is identified using its radioactive or
fluorescent labeling which enables reconstruction of the full sequence.
Although it is highly accurate, it is limited in scalability and length of
sequences it can read.

To overcome these limitations, next-generation sequencing (NGS)
technologies, particularly Illumina sequencing, were developed in
the mid-2000s. With this technology, many short DNA fragments
from the sample are sequenced in parallel by measuring the signal of
fluorescent labeled nucleotide as the DNA fragments are copied [36].
Illumina sequencing revolutionized the field by greatly increasing the
throughput, allowing for the parallel sequencing of many small DNA
fragments and consequently reducing costs. This technology is still
widely used, but it is limited by its ability to sequence short fragments
only.

New sequencing technologies such as Oxford Nanopore sequenc-
ing and PacBio sequencing appeared in the years 2010s, further im-
proving our sequencing capabilities. We focus on Oxford Nanopore
sequencing since this is the method we used for the work in chap-
ter 3. Nanopore sequencing involves moving single DNA molecules
through tiny protein pores, known as nanopores, embedded in a syn-
thetic membrane [37]. As each nucleotide of the DNA strand passes
through the nanopore, it causes a disruption of the electric current that
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flows through the pore. This disruption is measured and recorded over
time. A subsequent step called basecalling converts the electric signals
into the corresponding nucleotide sequence. The working principle of
Nanopore sequencing is illustrated in figure 1.3.

One of the remarkable features of Nanopore sequencing is its ability
to read very long native DNA fragments, up to hundreds of thousands
of bases. This contrasts with the shorter reads of Illumina sequencing
and offers unique insights about difficult to sequence regions such
as repeat regions. Additionally Nanopore sequencing is unique in
its portability, real-time data generation, ease of use and has recently
become relatively cheap to use. Nanopore’s main limitation is the
higher amount of miscalled nucleotides compared to methods such
as illumina, but recent advancements have drastically improved the
quality. For these reasons, we decided to do Nanopore only sequencing
for the results presented in chapter 3, a service that we have also made
available for the whole Biozentrum.

Sequencing approaches

partial / full genome sequencing : The choice between par-
tial and full genome sequencing depends on the research objectives.
Partial genome sequencing focuses on specific regions of the viral
genome and is generally more straight-forward and cost effective. It is
often used for studying regions known to be highly variable or sig-
nificant, such as receptor-binding domains in viruses. For example in
influenza, the sequencing is often focused on the hemagglutinin (HA)
and neuraminidase (NA) regions. In contrast, full-genome sequencing
provides the full picture of the viral genome, which is essential for un-
derstanding the virus as a whole. Full-genome sequencing is usually
more challenging and costly due to the increased amount of genetic
material that needs to be sequenced.

consensus sequencing : This involves sequencing several copies
of the viral genome to produce a single, high-quality representative
sequence. It can be done both with partial and full genome sequencing.
This method smooths out individual variations between virions, or
noise in the data, to present a consensus sequence of the most common
nucleotides at each position. This approach is particularly common
in the sequencing of human viruses isolated from patients, where
it makes sense to identify the primary strain present in an infection
even though it may not capture the full picture if there is some viral
diversity.

deep sequencing : Contrary to consensus sequencing, deep se-
quencing provides a more complete picture of viral populations by
sequencing at a depth that allows the detection of rare variants. This
approach enables the study of viral diversity within a host, tracking
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Figure 1.4: Illustration of sequencing approaches.

minor variants, and therefore studying the dynamics of viral evo-
lution under different selective pressures. Deep sequencing offers a
detailed picture of the viral population as a whole, an approach that
is central to the work presented in chapters 2 and 3. This type of
sequencing is more challenging than consensus sequencing, as one
needs more sequencing depth to be able to detect minority variants in
a population.

1.4.2 Bioinformatics

The advancements in sequencing technologies discussed previously
have led to an exponential increase in the volume of genetic data
available. This increase in sequencing data not only emphasized the
importance of bioinformatics but also promoted growth in this field
as more and more tools and analysis are required to extract actionable
knowledge from the sequencing data.

Bioinformatics approaches have been central to the development of
our understanding of viral evolution. A basic but essential example
of its application is in reconstructing consensus genomes from viral
samples taken from patients. This process involves the aggregation
and comparison of many short DNA sequences coming from the
sequencing process to create a representative consensus sequence of
the virus infecting the patient. Such consensus sequences are at the
center of our analyses of human virus spread and evolution. Further
analyses based on these sequences enable the tracking of evolutionary
patterns of viruses over time and predicting potential future changes,
which is key for public health interventions or the design of effective
vaccines. Such tasks, which would be unfeasible manually due to the
sheer volume and complexity of the data, underscore the importance
of bioinformatics in modern biological research.
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In the following section we present some of the bioinformatics
approach that are used to study viral evolution, with a focus on the
methods relevant for the work presented in chapter 2 and 3.

1.4.3 Studying natural evolution

Studying viral evolution can be conducted through two primary meth-
ods: observing natural processes and conducting experimental re-
search. In this section, we focus on the former, using the COVID-19

pandemic as an example to illustrate key aspects of studying natural
viral evolution.

The COVID-19 pandemic provides an unparalleled case study for
observing natural viral evolution. Coinciding with a time when ad-
vancements in sequencing technology (discussed previously) had
made routine sequencing more feasible, the spread of SARS-CoV-2
was closely monitored on a global scale. Many countries and organi-
zations rapidly implemented routine sequencing to track the virus’s
spread and evolution, sharing their findings with the global research
community [38]. This resulted in an unprecedented collection of se-
quencing data in near-real time, which could be used to understand
how SARS-CoV-2 evolves and spread. While the pandemic’s impact is
arguably devastating, it also presented an unparalleled opportunity
to study viral evolution with a level of detail previously unattainable,
making it a suitable example to illustrate the methodologies involved
in viral evolution research presented below.

1.4.3.1 Surveillance and sequencing

Surveillance networks and organizations play a crucial role in the
study of natural viral evolution as they provide the sequencing data
which is at the core of the research. This data is often collected by
medical practitioners from population samples and is fundamental
for tracking the spread and evolution of viruses, including the identi-
fication of new variants. However, the effectiveness of bioinformatics
analysis, which is usually done by researchers separate from those
collecting the data, is dependent on the quality of this data. Incon-
sistencies in sampling or coverage of the pandemic can lead to blind
spots and biases in our understanding of viral spread and evolution.
The COVID-19 pandemic has shown that collaborations and public
sharing of sequencing data is essential to provide a good basis on
which viral evolution research can be developed.

1.4.3.2 Epidemiological models

The field of epidemiological modeling plays a central role in under-
standing and managing the spread of viruses. These models leverage
the data collected from surveillance to help predict viral spread, which

11



transmission modulated by interventions

symptoms

recovery

recovery

death

Figure 1.5: Diagram of the SIR model we used in [40]. S, Ei, I, R, H, C, O and
D represent the susceptible, exposed, infectious, recovered, hospi-
talized, critical, overflow, and fatal compartments of the model.
Each compartment was further stratified by age demographics.
Figure adapted from [40].

is particularly important for public health strategies. The first phase
of the COVID-19 pandemic highlighted this importance as epidemi-
ological models were heavily used to inform mitigation strategies.
We actively contributed to this work through two papers that were
published in 2020 [39, 40].

There exist many types of epidemiological models, each adapted to
different scenarios and with different complexities. One of the simplest
types of models is the SIR (Susceptible, Infected, Recovered) model
and its variants. These models use ordinary differential equations on
population compartments to predict a deterministic average scenario
based on fixed inputs for the epidemiological parameters. This is
the type of model we used in [39] and [40] to monitor and predict
the spread of COVID-19 in the initial phase of the pandemic. While
deterministic models are somewhat limited in their scope, they are
relatively simple to understand and implement. The accuracy of their
prediction is dependent on the population structure chosen a priori,
which can be complex when trying to be realistic, and the epidemio-
logical parameters that are input into the model. The main challenge
lies in the accurate inference of such parameters from real-world ob-
servations. For example, figure 1.5 shows a schematic of the model we
used in [40] to simulate the early stages of the COVID-19 pandemic. It
is an SIR model with additional compartments for improved realism.

Some of the other types of epidemiological models worth mention-
ing are:

• Stochastic models: these models incorporate randomness and
variability into their parameters [41]. This approach is more
realistic, as it acknowledges the inherent stochasticity in trans-
mission chains and real-world scenarios. Stochastic models pro-
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vide probability distributions of outcomes rather than a single
predicted path.

• Agent-based models: these models take a different approach by
simulating the actions and interactions of autonomous agents,
which can represent individuals, small populations, or other
entities [42]. These models can help capture complex social dy-
namics and individual behaviors. While they can offer a more de-
tailed understanding of disease spread, their complexity can be
a drawback as they require significant computational resources
and data on agent behaviors.

• Spatial models: many of the models previously mentioned can be
modified to introduce a spatial component to better understand
how geographical factors and movement patterns influence dis-
ease spread. Such models can incorporate data on population
density, transportation, and other spatial factors to predict how
diseases will spread in different regions. A variant of such mod-
els would be the network models, which focus on the patterns
of connections among individuals or groups and their impact
on viral spread.

1.4.3.3 Phylogenetics

Phylogenetics is the study of the evolutionary relationships among
biological entities, or subset of, like individual genes. It aims to con-
struct a family tree, or phylogeny, that maps out these relationships,
illustrating how different entities have evolved from common ances-
tors over time. In the context of viral evolution, phylogenetic trees
are typically built from the DNA sequences of these viruses. This
approach is heavily used as a tool to track, understand and potentially
predict the evolutionary changes in viruses. Recent outbreaks like the
COVID-19 pandemic highlight the importance of phylogenetics analy-
sis as they are central in our understanding of how viruses evolve and
help develop informed and effective public health interventions [43].

At their core, methods used for constructing phylogenetic trees
involve the analysis of multiple sequence alignments (MSA) and try
to find an evolutionary tree that can best explain the differences seen
between the sequences of the MSA. The likelihood of a given phyloge-
netic tree is estimated based on a model of sequence evolution. Such
models usually operate on DNA sequences as strings of characters
(one for each site), each character being in one of four possible states:
A, C, G and T. Such models can also be extended to protein evolution
by using 20 states for the 20 amino acids.These models describe the
probabilities of transitions between different states over time, denoted
as Pij(t), where i and j represent different nucleotide states, and t
represents the time. Pij(t) gives the probability that a site in state j
will change to state i over a period of time t. A specific category of
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substitution models are the time reversible models, which assume that
the probability of a change from state i to j is the same as j to i at
any given time. These models, operating under the assumption of an
equilibrium in states concentration, randomness and independence of
transitions are known as General(ised) Time Reversible (GTR) models
[44]. This is the type of model we used in the work presented in
chapter 2.

In such models, the transition matrix P(t) is described by the differ-
ential equation:

dP
dt

= P(t)Q

where Q is the rate matrix. This implies that:

P(t) = eQt

The matrix element Qα
ij describes the rate to go from nucleotide j to

nucleotide i at site α. It can be generally described in this way:

Qα
ij = µα pα

i Wij

In this equation, µα represents the overall rate of mutation for the
site α , pi accounts for the nucleotide preference at this site and Wij,
which is not dependent on the site (no α), accounts for the difference
between transversion and transition. These parameters enable a precise
description of the evolutionary dynamics in the model, but they can
be challenging to infer from real data.

Phylogenetic tree builders use such substitution models to estimate
the tree that fits the substitution model best. This assumes the trans-
mission of such mutations is vertical, but these methods are often
robust to some amount of horizontal gene transfer. There are two
main computational approaches to building phylogenetic trees: maxi-
mum likelihood and Bayesian inference. Both methods use complex
algorithms to analyze the MSA and estimate the most probable tree
structure that explains the MSA. The maximum likelihood approach
calculates the probability of observing the data given a particular
tree structure and tries to find the tree that maximizes this probability.
Bayesian methods are similar to maximum likelihood ones in the sense
that they also use a probabilistic criterion to find the best tree, but this
criterion is instead the probability of a tree conditional on the data
and prior beliefs about the evolutionary process. The main difference
is that maximum likelihood approaches give one optimal phylogenetic
tree, while Bayesian methods sample many likely trees from the poste-
rior distribution, providing a set of trees that represent the uncertainty
in tree estimation. Given the importance of building phylogenetic trees
in evolutionary research, several tools such as RAxML [45], IQTree
[46] and BEAST [47] have been developed to help with tree inference.

Phylogenetic analyses are vital in retracing the evolutionary journey
of viruses. They offer insights into key aspects like the origin and
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Multiple sequence alignment Phylogenetic tree

Tree builder

Figure 1.6: Simple example of phylogenetic reconstruction from a multiple
sequence alignment. The DNA sequences are represented as lines
and the mutations are shown as dots of different colors. The tree
builder infers the phylogenetic tree from the mutations shared
between sequences.

initial spread of a virus within human populations. The ability to re-
construct a virus history is not just about understanding its past, it can
also help predict future trends. Many methods have been proposed to
infer which viral strain is most likely to circulate in the future, with
various degrees of success [48–52]. Such approaches effectively com-
bine phylogenetics with epidemiology and help create viral spreading
models that incorporate evolutionary information about the viruses.
Such models are especially relevant in scenarios like influenza or
SARS-CoV-2 where viral evolution is fast and interacts with a chang-
ing host immune landscape. Although this is a complex task, such
models and prediction are crucial for guiding vaccine development as
vaccine necessitate time to produce and often need to be strain specific
to provide the best protection.

1.4.4 Experimental approaches

Experimental approaches are complementary to the observational
methods discussed above as they make use of the controlled con-
ditions of laboratory settings to test hypotheses and examine viral
behaviors. They allow for precise manipulation of variables and condi-
tions, enabling a more detailed exploration of viral behaviors, which
is key for informing or validating models from observational studies.
Some examples of how experimental approaches are utilized in viral
evolution research are presented below.

virus-host interaction : Experimental approaches are exten-
sively used to study virus-host interactions. An illustrative example
is the use of human sera to explore cross-immunity. In these experi-
ments, sera from hosts are exposed to different viral strains to observe
how well the host antibodies are able to neutralize the virus. These
experiments help in understanding how viruses like influenza evolve
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to escape immunity from human hosts, providing insights into which
strain is most likely to circulate in the future.

phage training : In bacteriophage research, directed evolution
experiments are used to ’train’ phages to become more effective against
bacterial targets [53]. This involves repeatedly exposing bacteriophages
to their target bacteria under controlled conditions, observing their
adaptation and selecting the most effective variants. This process is
vital for the advancement of phage therapy as a viable alternative
to traditional antibiotics, especially in the context of rising antibiotic
resistance. Such phage training experiments are at the center of the
work presented in chapter 3.

viral drug resistance : Similarly to what is done to study the
bacterial evolution of antibiotic resistance, experimental approaches
are also used to understand how viruses evolve resistance to antiviral
drugs. This can be done by either making experiments to directly
evolve resistant viruses, or more commonly by studying viral samples
from patients where treatments seem to be ineffective and studying
the molecular changes that cause viral resistance. This knowledge is
crucial for designing effective treatment strategies.

Such experimental approaches greatly benefit from the recent ad-
vancements in genetic engineering. The ability to create libraries of
viral variants or to engineer phages in vitro greatly helps in testing
and understanding viral evolution dynamics. Nonetheless, experimen-
tal approaches have limitations. Replicating the complex conditions
of natural environments in a laboratory setting is challenging, and
there are ethical concerns and risks associated with working with
and evolving human-pathogenic viruses. However, these methods
still contribute substantially to our understanding of viral evolution.
They offer unique insights that complement natural surveillance and
epidemiological studies of viral evolution.

1.5 aim of the thesis

Years of study of viral evolution have brought a lot to public health
and molecular biology. From the creation of effective HIV therapies
to the development and update of vaccines to manage outbreaks,
understanding how viruses evolve has been instrumental in shaping
modern healthcare and scientific knowledge. Building upon this, my
thesis aims to dive deeper into the dynamics of viral evolution with
the following aims:

1. Study and characterize how HIV-1 evolves both intra-host and
inter-host, and explain how the evolutionary dynamics at the
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pandemic level emerge from the peculiar evolution happening
within-host.

2. Create a complete framework for high-throughput studies of
bacteriophage evolution through directed evolution experiment.
If successful, it will enable a better study and optimization of
bacteriophage evolution but also provide general insights about
viral evolution dynamics such as recombination between viruses.
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2
U N D E R S TA N D I N G H I V- 1 E V O L U T I O N :
E V O L U T I O N A RY I M PA C T O F R E V E R S I O N T O
C O N S E N S U S

This chapter discusses our published work on HIV-1 evolution. This
work focuses on the tracking and characterization of reversion to
consensus mutations in patients infected with HIV-1, showing that
these mutations are positively selected and largely responsible for
the differences observed between within-host and between-host HIV-
1 evolution. We start with an HIV specific introduction to provide
motivation and context in section 2.1 followed by the publication in
section 2.2.

2.1 introduction to hiv-1

2.1.1 Historical background and relevance

The Human Immunodeficiency Virus (HIV) was discovered in the early
1980s, primarily in the United States, where it was first recognized to
be the cause of a rise of Acquired Immunodeficiency Syndrome (AIDS)
cases in otherwise healthy young men. This marked the beginning of
one of the most deadly pandemic in recent years. It is estimated that,
since the beginning of the pandemic, 85 million people have become
infected with HIV and 40 million have died [54]. Due to its significant
health burden, HIV is a well studied and characterized virus.

HIV is thought to have been transmitted to human as a result of
multiple spillover events from Simian Immunodeficiency Virus (SIV),
which led to the emergence of two distinct types: HIV-1 and HIV-2 [2].
Among these, HIV-1 has diversified into several groups since its jump
to humans, see figure 2.1. HIV-1 group M is thought to account for 90%
or more of HIV infections and is therefore split into subgroups [55].
The most recent common ancestor of HIV-1 group M is estimated to
be at the beginning of the 20th century, long before the recognition of
the AIDS pandemic, and therefore had time to diversify into subtypes
[56, 57]. Due to its prevalence, HIV-1 group M is the focus of our work.

2.1.2 Characteristics of HIV-1

HIV-1 is a lentivirus, a single-stranded RNA virus encapsulated by
a lipid envelope. It primarily replicates by recognizing and entering
human cells using the CD4 receptor and therefore targets key immune
system cells such as the helper T-lymphocytes and macrophages. HIV-

19



HIV-1 HIV-2

M N O P

A B C D F G H J K recombinants

Viruses

Groups

Subtypes

SIVs

L

Figure 2.1: Schematic of HIV phylogeny. HIV-1 and HIV-2 are related to SIVs.
HIV-1 is divided into 4 subgroups. HIV-1 group M causes the
majority of infections and is consequently further divided into
subtypes.

1 is a retrovirus, so upon entry into the host cell its RNA genome is
reverse transcribed into DNA and inserted in the host own genetic
material. The viral genes can then be transcribed to produce new
virions immediately, or lie dormant within-host cells for extended
periods of time before activation.

An HIV-1 virion has, like all retroviruses, two copies of its RNA
genome inside its capsid. The reasons for having two copies of its
genome are still unclear, but it is believed to be beneficial for the virus
as it increases the chances for recombinations and potentially also
increase genetic stability and fitness in case of deleterious mutations in
one of the copies [58]. The capsid also contains some helper proteins
as shown in figure 2.2. The viral genome is about 10 000 base pair
long and encodes 9 genes over 3 reading frames [59]:

• gag: Encodes structural proteins for the virus, crucial for virus
assembly and maturation.

• pol: Codes for viral enzymes like the reverse transcriptase, inte-
grase, and protease.

• env: Produces surfaces proteins, important for the virus’s ability
recognize and enter host cells.

• tat: A regulatory gene enhancing viral transcription efficiency.

• rev: Involved in RNA transport from the nucleus to the cyto-
plasm.

• nef : Plays a role in immune evasion.

• vif : Promotes virion maturation and infectivity.

• vpr: Host cell cycle control.

• vpu: Helps in new virus particle release and degrades CD4.
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Some of these genes code for large polyproteins that are later cleaved
into smaller functional proteins. The three main genes, env, pol and
gag, cover about 80% of the genome. Our publication focuses on the
analysis of mutations in these three genes.

pol
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Viral RNA genome
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transcriptase

Protease

Envelope
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Figure 2.2: Schematic of the HIV virion and its RNA genome. Figure re-
produced and adapted from [60] and [61] under the Creative
Commons Attribution - ShareAlike License 4.0 [62].

2.1.3 Unique challenges in HIV-1 evolution

HIV-1 has some peculiar characteristics that greatly impact the evo-
lutionary dynamics observed. Below are the main characteristics that
make it special.

rapid evolution : The mutation rate of HIV-1 is remarkably
high, estimated at approximately 1.5 · 10−5 to 3.5 · 10−5 mutations per
base per replication cycle from in vitro experiments [63, 64]. This is
primarily due to the error-prone nature of its reverse transcriptase
enzyme, a trait shared by many RNA viruses [65]. On a pandemic
scale, this raw mutation rate translates to an evolution rate of around
10−3 mutation per site per year. However, accurately estimating this
rate is complex, as it varies across different regions of the genome and
is sensitive to the time scale used to measure it. The impact of the time
scale used on the evolution rate measured is the central subject of our
publication.
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Figure 2.3: A generalized graph of the relationship between HIV copies (viral
load) and CD4 counts over the average course of untreated HIV
infection; any particular individual’s disease course may vary
considerably. Reproduced from [67] under the Creative Commons
Attribution CC0 1.0 Universal Public Domain Dedication [68].

recombinations : Within-host recombination rates in HIV-1 are
notably high, a phenomenon primarily attributed to the substantial
viral load during infection [66]. Viral load, which is the concentration
of virions in the bloodstream, typically varies from 103 to 107 virions
per milliliter, depending on the stage of the disease and differences
between hosts. The factors contributing to, and consequences of higher
or lower viral loads are an active research field. The high number
of virions circulating in a host gives plenty of opportunities for co-
infection of a host cell, which can then result in recombinations. This
is further increased by the high rate of template switching between
the two genome copies during replication [58]. Although we did not
study recombinations directly in this publication, it is important to
acknowledge their role as they allow for the decoupling of mutations
from one another and therefore have a big effect on HIV-1 evolution.

life-long infections : HIV-1’s ability to evade the immune
system is partially due to its high mutation and recombination rate,
constantly adapting to stay ahead of the adaptive immune responses.
As a retrovirus, HIV-1 also integrates its DNA into the host’s genome,
allowing it to become dormant and create latent reservoirs which
can be reactivated later on. This aspect, combined with the targeting
of long-lived memory immune cells, allows the virus to persist for
extended periods in their hosts, as shown in figure 2.3. The killing of
immune cells eventually leads to the development of AIDS without
treatment. When under anti-retroviral therapy (ART) the production
of new virions is stopped, which also halts the evolution of HIV-1 in
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the host. Nevertheless, latent reservoirs can restart the infection if the
therapy is stopped. We focused our work on non-treated patients.

viral diversity : HIV-1 accumulates a substantial genetic diver-
sity within an individual host over time. This can be attributed to
several contributing factors. These include the daily production of a
high volume of virions, estimated to be in the range of 108 to 1010 per
day, the aforementioned rapid mutation and recombination rate, the
persistence of infections that can last for years as shown in 2.3, and
the continuous pressure exerted by the host’s immune system. The
diversity seen within hosts is also responsible for the large diversity
observed at the between-host level and the many HIV-1 group M sub-
types that exist and have about 10% to 20% sequence difference. This
level of diversity is high when compared to other human viruses such
as SARS-COV-2, and it is one of the reasons why vaccine development
is challenging.

These characteristics of HIV-1, along with the significant public
health threat it poses, have made it one of the first viruses where
researchers could study evolutionary dynamics in depth, both within
and between-hosts. This was the case even when sequencing capa-
bilities were limited to only a few hundred base pairs at a time. The
insights gained from these studies have been instrumental in shaping
our current understanding of viral evolution and in guiding ongoing
efforts to combat HIV-1.

2.2 publication
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Abstract 

Human immunodeficiency virus 1 (HIV-1) is a rapidly evolving virus able to evade host immunity through rapid adaptation during 
chronic infection. The HIV-1 group M has diversified since its zoonosis into several subtypes at a rate of the order of 10−3 changes 
per site per year. This rate varies between different parts of the genome, and its inference is sensitive to the timescale and diversity 
spanned by the sequence data used. Higher rates are estimated on short timescales and particularly for within-host evolution, while 
rate estimates spanning decades or the entire HIV-1 pandemic tend to be lower. The underlying causes of this difference are not well 
understood. We investigate here the role of rapid reversions toward a preferred evolutionary sequence state on multiple timescales. We 
show that within-host reversion mutations are under positive selection and contribute substantially to sequence turnover, especially at 
conserved sites. We then use the rates of reversions and non-reversions estimated from longitudinal within-host data to parameterize 
a phylogenetic sequence evolution model. Sequence simulation of this model on HIV-1 phylogenies reproduces diversity and apparent 
evolutionary rates of HIV-1 in gag and pol, suggesting that a tendency to rapidly revert to a consensus-like state can explain much of 
the time dependence of evolutionary rate estimates in HIV-1.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
RNA viruses have low-fidelity polymerases, resulting in rapidly 
diversifying virus populations, which, in turn, facilitate the adap-
tation to changing environments. The human immunodeficiency 
virus 1 (HIV-1) is a prime example of such a rapidly evolving 
virus. The life-long infections it causes are characterized by a 
large viral population that accumulates diversity at a high rate 
to constantly evade host immunity (Coffin and Swanstrom 2013). 
This continuous evolution has led to a diverse viral population 
on the pandemic scale that is categorized into several viral sub-
types (Brian Foley 2018; Li et al. 2015). Different lineages have 
accumulated diversity at a rate of about one substitution in 1,000 
sites per year since its jump to human hosts at the turn of 
the 20th century (McCutchan 2006; Sharp, Hahn 2011; Korber
et al. 2000).

Quantifying the rate of viral evolution, however, is surprisingly 
difficult and different approaches yield different answers. Most 
importantly, the timescale across which sequences are compared 
strongly affects the estimates, sometimes by orders of magnitude: 
the longer the timescale, the lower the estimate (Aiewsakun and 
Katzourakis 2016; Hanada et al. 2004; Worobey et al. 2010; Gilbert 
and Feschotte 2010; Ghafari et al. 2021). These discrepancies sug-
gest that we lack a good understanding of how microevolutionary 
within-host (WH) processes—on the scales of days, months, and 
years—give rise to the diversity observed on longer timescales 

across hosts. In the case of chronic infections such as HIV-1, these 
microevolutionary processes are driven by selection to evade the 
host immune selection and mutations that reduce recognition 
can spread even if they reduce replication fitness. The pattern of 
immune selection changes at each transmission events and pre-
viously adaptive changes can become deleterious in the new host 
and sometimes revert (Leslie et al. 2004).

HIV-1 is an ideal system to study these effects in detail as 
the rate discrepancies among the WH, pandemic, and broader 
scales are well documented (Alizon and Fraser 2013; Worobey 
et al. 2010), the pandemic is well sampled, and high-resolution 
WH data exist. The evolutionary rate estimated on the pandemic 
scale is around two to five times lower than the one observed on 
the WH scale (Alizon and Fraser 2013). Several hypotheses have 
been put forward to explain this phenomenon. Two of the main 
hypotheses are the preferential transmission of ancestral HIV-1 
variants, i.e. the ‘store and retrieve’ hypothesis (Lythgoe and Fraser 
2012), and rapid reversion toward an ancestral-like state, i.e. the 
‘adapt and revert’ hypothesis (Redd et al. 2012; Zanini et al. 2015; 
Leslie et al. 2004; Boutwell et al. 2010; Herbeck et al. 2006; Illing-
worth et al. 2020). The relative importance of these and possibly 
other processes for the discrepancy of rate estimates is not well 
understood (Raghwani et al. 2018).

We use WH longitudinal deep-sequencing data to explore how 
the rapid evolutionary processes within hosts can give rise to 
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2 Virus Evolution

apparently lower rates on longer timescales. These results sug-
gest that the ‘adapt and revert’ mechanism can explain most of 
the rate mismatch observed at different timescales of the HIV-1 
pandemic. We, firstly, show that HIV-1 sequence evolution shows 
strong signs of site saturation while distance relative to the root 
of the tree increases much more slowly than expected based on 
the rate of evolution. Similar signatures are observed in longi-
tudinal WH data, suggesting that this saturation is independent 
of whether evolution is quantified along transmission chains or 
within hosts. Secondly, we investigate the cause of this satura-
tion and find that WH reversion toward the HIV-1 consensus is 
more common than expected and that such reversions are posi-
tively selected. Lastly, we use simulations of evolution to quantify 
the impact of rapid reversions on rate estimates for timescales of 
decades or more. These simulations show that the degree of rever-
sion observed within hosts can explain the phylogenetic patterns 
observed in the pandemic. More generally, our results highlight 
the evolutionary bias of viruses toward a state of high intrinsic 
fitness in a changing environment.

2. Results
We use (1) a set of sequences representative of the HIV-1 pandemic 
spanning multiple decades and (2) a longitudinal data set follow-
ing the evolution of the virus within individual hosts to investigate 
patterns of evolution on multiple timescales. The former between-
host (BH) data set contains 1,000 HIV-1 group M sequences from 
the Los Alamos National Laboratory (LANL) HIV database (Foley 
et al. 2013). This subsampling was performed to have the same 
number of sequences for each year to avoid sampling biases 
(except for early years, where fewer sequences are available) but 
otherwise randomly picked from the full data set. The phylo-
genetic tree was inferred using an IQ-TREE GTR+F+R10 model 
(Tavaré and others 1986; Yang 1995; Minh et al. 2020), which was 
found to be the best model according to the IQ-TREE ModelFinder 
and allows for rate variation (Kalyaanamoorthy et al. 2017). For 
more details on the phylogenetic analysis and the estimates of 
rates, see Sections 4.2 and 4.3.

Our WH analysis is based on the HIVEVO data set (Zanini et al. 
2015), a whole-genome deep sequencing of HIV-1 populations in 
eleven patients during a 4–16-year follow-up without treatment. 
Between six and twelve samples are available per patient, which 
typically cover 5–7 years of infection. Sequencing depth and tem-
plate input of all samples in this data set have been assessed and 
most samples allow a confident calling of frequencies of minor 
variation down to a few per cent (Zanini et al. 2016). See Section 4.1 
for details.

We analyze the evolution of the env, pol, and gag genes of HIV-1 
Section 2.1 to 2.4. They code for surface proteins, viral enzymes, 
and capsid proteins, respectively (Freed 2001). When combined, 
they cover approximately 80 per cent of the genome. We focus on 
the pol region in the main text and present analogous results for 
the env and gag regions in the Supplementary Materials.

2.1 Saturation and reversion effects are 
comparable between and within hosts
The ‘adapt-and-revert’ mechanism to explain the rate mismatch 
within and between hosts assumes that reversions during WH 
evolution ‘shadow’ previous changes, resulting in very low rate 
estimates. The ‘store-and-retrieve’ mechanism postulates that 
many WH changes are not transmitted and thus irrelevant for the 
evolution on longer timescales (Lythgoe and Fraser 2012). To look 
for such discrepancies between WH and BH evolutionary patterns, 

we compared the rates at which sequences diverge away from the 
root of the HIV-1 tree or their subtypes at the BH and WH scales, 
see Fig. 1A. 

The rate at which divergence between sequences increases 
decreases with distance as more and more sites are hit mul-
tiple times by mutations (Felsenstein, 2004). For very similar 
sequences multiple hits are negligible and divergence increases 
linearly in time with a slope given by the evolutionary rate. If all 
sites evolve at the same speed, such saturation effects are only 
important once distances between sequences are large (the size 
of correction is proportional to the distance squared and thus 
substantial if distances are 0.25 or larger). However, if differ-
ent sites evolve at drastically different rates, or reversions to 
a preferred state are common, such saturation effects set in 
much earlier and can lead to significant deviations even when 
sequences are still very similar (Puller et al. 2020; Ghafari et al. 
2021). The ‘adapt-and-revert’ mechanism thus posits strong sat-
uration effects of similar magnitude both within and between 
hosts when compared to distant references such as the root of the
HIV-1 M tree.

Sequences in the HIV-1 pandemic differ from each other at 
about 10–20 per cent of sites and we would naively expect 
that saturation effects are small unless rate variation is very 
strong or reversion is a substantial contribution to evolution. 
Figure 1B explores the observable consequences of such satura-
tion on the scale of the HIV pandemic for a simple substitution 
model with gamma-distributed rate variation. The panel shows 
the evolutionary distance to the root of the tree corrected for 
saturation effects in blue. The latter is simply the evolutionary 
rate times time and increases thus linearly with time. In addi-
tion, it shows the Hamming distance to the root of the tree in 
orange. Saturation effects are visible as reduced Hamming dis-
tances that increase more slowly over time, but the effects are 
small. As expected, saturation effects are even less pronounced 
when comparing sequences to the root of the subtypes (here 
assumed to be in 1965, compare Fig. 1A) or a ‘founder’ sequence
in 1980.

Figure 1C shows the analogous patterns for HIV-1. The Ham-
ming distance of HIV-1 sequences from the inferred root of the 
HIV-1 group M tree (orange) is substantially lower than the RTT 
distance (blue) and increases only at about half the rate, suggest-
ing substantial saturation. Similarly, the Hamming distances to 
the subtype consensus (only done for Subtypes B and C) increase 
less rapidly than the RTT distance, despite the fact that at 2–5 
per cent sequence divergences from the subtype root saturation 
effects are unexpected. Such rapid saturation can arise through 
rate variation (Soubrier et al. 2012) or heavily skewed site-specific 
equilibrium frequencies resulting in rapid reversion (Halpern and 
Bruno, 1998; Hilton and Bloom 2018; Puller et al. 2020; Ho et al. 
2005; Wertheim and Kosakovsky Pond 2011).

We then performed a similar analysis on WH data on a 5-year 
timescale to determine whether similar rates and saturation 
effects exist within hosts. We compute WH evolutionary rates by 
measuring the divergence over time in Fig. 2D. Specifically, we cal-
culate the divergence d(t) relative to a reference sequence, such as 
the root of the tree, according to: 

where N is the length of the region and 𝑓𝑖(𝑡) is the frequency 
of the founder nucleotide at position i and time t in the viral 
population. This founder nucleotide at each position i is approx-
imated as the majority nucleotide at the first time point t0, and
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Figure 1. Divergence over time in the pol gene. (A) Sketch of the HIV-1 group M phylogenetic tree and its subtypes. Dots correspond to the position of 
the references used to compute distances in the other panels. WH evolution is indicated by red triangles. (B) Expected Hamming distances under a 
Jukes–Cantor (Jukes et al., 1969) evolution model with rate variation (gamma distributed, Parameter 2). Different curves show expected distance to the 
root of the tree (orange), subtype root (green), and WH founder (red). The blue and gray indicate linear growth of distance without saturations with a 
rate equal to the estimate from the root-to-tip (RTT) distance in Panel C. As expected, saturation effects are small since distances are around 10 
per cent and multiple hits are rare. (C) Average Hamming distance from the root of the HIV-1 group M tree (orange), from the respective subtype 
(green, see dots in Panel A), or RTT distance in a phylogeny as a function of time. Each data point is the average of sequences from one year, lines are 
linear fits, and the shaded area indicates the 10–90 per cent range. (D) The WH divergence over time relative to the putative founder genotype, the 
HIV-1 group M root, and the subtype consensuses, averaged over all patients in the HIVEVO data set. Divergence is computed according to 
Equations (1) and (2). Standard estimates for the evolution rates BH and WH are the slopes of the RTT distance (blue) and divergence from founder 
sequence (red). There is an approximately 50 per cent difference between the evolution rates estimated while sequence distance is only a couple per 
cent. Comparing to the expectation (B), we can see that significant saturation of comparable magnitude can be seen on both BH (C) and WH (D) scales. 
Results for regions env and gag are shown in Supplementary Figs. S1 and S2.

Figure 2. Divergence from founder sequence over time in the pol gene. (A) Divergence from founder overall and split for sites initially in consensus and 
non-consensus states. The reference used to define consensus and non-consensus sites is the HIV-1 group M consensus. Colored percentages are the 
fraction of sites corresponding to the related curve. Non-consensus sites represent only 6 per cent of the gene but diverge faster over time. Overall, 87 
per cent of this divergence are due to reversions, while only 13 per cent are mutations toward another non-consensus nucleotide. (B) The data set from 
Panel A further split among the first, second, and third codon positions. The difference in evolution speed is greatest for nucleotides in the second 
position. (C) Ratio of non-consensus to consensus evolution rates computed from the curves in Panel B (Supplementary Figs. S3 and S4 for env and 
gag). The ratio is highest for second positions (triangles), where mutations can not be synonymous, followed by first and third positions.

its frequency at each time point t is used to compute d(t). Details 
about the computation of the founder sequence can be found 
in Section 4.4. The Boolean 𝛿𝑟𝑒𝑓

𝑖  is such that 𝛿𝑟𝑒𝑓
𝑖 = 1 if the founder 

nucleotide at position i is the same as in the reference sequence 
and 𝛿𝑟𝑒𝑓

𝑖 = 0 otherwise. The first term 𝛿𝑟𝑒𝑓
𝑖 ⋅ (1 − 𝑓𝑖(𝑡)) in Equation (1) 

accounts for the change away from the founder at positions where 
the founder sequence equals the reference sequence. The term

(1 − 𝛿𝑟𝑒𝑓
𝑖 ) ⋅ 𝑓𝑖(𝑡) accounts for the change at positions where the 

founder sequence differs from the reference sequence. In most 
cases, the founder nucleotide is replaced by the reference 
nucleotide and the population is getting more similar to the ref-
erence, and mutations to other states are ignored in this calcula-
tion (see below). When measuring the divergence relative to the 
founder sequence, Equation (1) simplifies to:
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In all cases, the quantity d(t) measures the Hamming dis-
tance to the reference sequence expected for a randomly chosen 
sequence from the viral population of a sample. We then averaged 
the divergence trajectories of different patients and estimated 
uncertainty by bootstrapping groups of samples from the same 
patient with replacement. In analogy to the BH analysis, we use 
the root of the HIV-1 group M tree and subtype consensuses as 
reference sequences, supplemented by the founder sequence of 
each patient. Results are shown in Fig. 1D over a period of 5.5 
years as the follow-up of most patients stopped after this dura-
tion. The filled areas represent one standard deviation of the 
bootstrap replicates. For more details about the methodology, 
see Sections 4.2 and 4.3.

Figure 1D shows that the divergence increases the fastest rel-
ative to the founder sequence at approximately (16.1 ± 1.1) ⋅ 10−4

mutations per site per year. This rate is significantly and substan-
tially higher than the rate at which RTT distance increases on the 
pandemic scale in line with previous observations that WH rate 
estimates tend to be higher (Alizon and Fraser 2013). Hamming 
distances to the subtype consensus or the root of the HIV-1 (M) tree 
increase significantly more slowly. In fact, these rates are com-
patible with their corresponding estimates at the pandemic scale 
(compare Panels C and D).

A ‘store-and-retrieve’ mechanism to explain the discrepancy 
between rate estimates should not only result in differences 
between BH and WH rate estimates (the rates at which the RTT 
distance and the distance to the founder sequence increase), 
but also for the rates at which Hamming distances to HIV-1 
root or subtype consensuses increase. Since divergence to refer-
ence sequences decades in the past is increasing at compatible 
rates within and between hosts, these analyses suggest similar 
modes of divergence accumulation and do not support ‘store-
and-retrieve’ as a primary mechanism to explain the discrepancy 
in rate estimates. In contrast, rate variation or rapid reversion 
is not expected to affect Hamming distance dynamics to fixed 
reference sequences like the HIV-1 (M) root. RTT distance esti-
mates, however, are expected to be biased downward since rapid 
back-and-forth mutations are unaccounted for by the substitution 
models and do not contribute to the RTT distance. The obser-
vations in Fig. 1, and analogous results for env and gag regions 
shown in Supplementary Figs. S1 and S2, are thus compatible 
with saturation effects not captured by substitution models. We 
will now investigate WH dynamics of polymorphisms to show that 
rapid reversion to consensus states is a major contributor to this 
saturation.

2.2 Non-consensus sites diverge faster
Next, we explored the evolution toward and away from consensus 
within hosts in Fig. 2. Panel A shows the WH divergence separately 
at sites where the founder sequence agrees with the HIV-1 group M 
consensus and where it differs from it. Filled areas show the stan-
dard deviation of the bootstrap estimate. The divergence at sites 
where the founder sequence differs from the global consensus 
increases approximately seven times faster than in the rest of the 
sequence. A mutation at a site that initially differs from consensus 
could either be a reversion to consensus or a mutation to one of 
the two remaining nucleotides. We found that 87 and 85 per cent 
of mutations at these sites are reversion toward consensus for pol
and gag, while this figure is 76 per cent for env. Mutations to a third 

state are thus a minor contribution. The sevenfold increased rate 
at 6 per cent of the sites that are initially non-consensus (in pol) 
implies that about one in three mutations bring the sequence 
closer to the HIV-1 root sequence (the number of reversion muta-
tions divided by the total number of mutations: 7⋅0.06⋅𝜇

(0.94+7⋅0.06)𝜇 ≈ 1
3

where 𝜇 is the observed evolution rate.). This strong tendency to 
revert can explain the difference in evolutionary rates observed on 
WH and BH scales and is consistent with the threefold difference 
in slope between the divergence relative to the founder or HIV-1 
group M root shown in Fig. 1D.

This accelerated evolution could be due to (1) reversion to an 
ancestral state to increase fitness or (2) reduced purifying selec-
tion at sites with high levels of diversity in global HIV-1 population. 
In order to differentiate between these possibilities, Fig. 2B shows 
the divergence by codon position. The degree to which divergence 
is accelerated differs among the first, second, and third positions 
in a codon. In particular, sites in the second position diverge the 
fastest when in a non-consensus state, while they diverge the 
slowest in a consensus state. This is consistent with the fact that 
second positions tend to be most conserved as only 2 per cent of 
such sites differ from the consensus sequence in pol.

Figure 2C quantifies the ratio of divergence rates at sites ini-
tially in a consensus or non-consensus state for pol, env, and 
gag. Details on the computation of these rates can be found 
in Section 4.3. In all cases, evolution rates of non-consensus sites 
are higher than consensus ones. The difference is greatest for sec-
ond codon position sites, followed by first codon position sites 
(see Supplementary Figs. S3 and S4 for divergence plots for other 
genes). Mutations at second codon position sites are always non-
synonymous and often cause drastic amino acid changes, while 
mutations at third codon position sites are often synonymous 
and generally less impactful. Mutations at first position sites can 
be both synonymous and non-synonymous. The observation that 
divergence is fastest at non-consensus but otherwise strongly con-
served sites suggests that reversion mutations are selected to 
increase fitness and are not the result of reduced purifying selec-
tion at sites of high diversity. These results are consistent with 
previous observations showing that conserved sites tend to revert 
more quickly (Zanini et al. 2015) and the notion that selection for 
reversion is probably driven by the fitness costs of mutations that 
enabled immune escape in a previous host (Leslie et al. 2004). 
Such rapid reversion is an example of adaptation within hosts, 
but the combined escape-reversion dynamics on timescales span-
ning several transmission events looks like purifying selection at 
conserved sites.

2.3 Reversion mutations are positively selected
If a lot of reversions are driven by selection, as the codon-position-
specific analysis above suggests, effects of selection should be 
detectable in the dynamics of intra-host single nucleotide vari-
ants (iSNVs). Specifically, we expect to see a tendency of reversion 
mutations to increase in frequency and fix. We analyzed the fre-
quency trajectories of iSNVs to look for such features. Similar to 
the previous analysis, we separate all trajectories into reversion 
and non-reversion groups and compare their evolutionary dynam-
ics in Fig. 3. We select trajectories with at least one data point in a 
frequency interval [𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥] for each group. We offset these tra-
jectories in time so that t = 0 corresponds to their first data point 
seen in the frequency interval and compute the mean frequency of 
the trajectory group over time. The small minority of trajectories 
where both the initial nucleotide and the target nucleotide differ 
from the consensus sequences are classified as ‘non-reversions’ in
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Figure 3. Positive selection on reversion mutations. (A) Frequency of reversion mutations seen between 0.4 and 0.6 frequency at one time point (offset 
to be t = 0) and their average over time. (B) Mean frequency over time for reversion (full lines) and non-reversion mutations (dashed lines) for different 
frequency windows (colors). Reversion trajectories are strongly selected for as their mean frequency increases over time. Non-reversion trajectories 
evolve close to the neutral expectation. The reference sequence used to define reversion mutations is the HIV-1 group M consensus. The solid orange 
line is the same in both panels.

this analysis. More details about the definition of trajectories and 
the methodology are in Supplementary Fig. S5 and Sections 4.5 
and 4.6. We use the HIV-1 group M consensus sequence as a 
reference to define reversion mutations, but results are qualita-
tively similar when using subtype consensus or root sequence as 
a reference. 

Figure 3A shows individual trajectories shifted to pass through 
the frequency interval [0.4, 0.6] at t = 0 along with their average. 
The mean frequencies for different initial conditions and groups of 
trajectories are shown in Fig. 3B. Since we condition the set of tra-
jectories to start as minor variants and pass through a frequency 
interval at t = 0, we expect that trajectories tend to rise for t < 0, as 
is indeed observed. The dynamics at t > 0, i.e. after the time of con-
ditioning, are informative about the selection of the iSNV. We do 
not expect any consistent trend to rise or fall in frequency for neu-
tral mutations, hence their average frequency should be constant 
for t > 0. Contrary to that, we show in Fig. 3B that the frequency 
of reversion mutations increases on average over time. This sug-
gests that these reversion mutations are beneficial on average and 
fix preferentially in the population, with probability given by the 
end point of the curves for each group of trajectories. This finding 
is consistent with the notion that the HIV-1 consensus sequence 
approximates a fitness optimum of HIV-1 (Zanini et al. 2017). On 
the other hand, non-reversion curves are flat or slightly decreas-
ing for t > 0, suggesting that such mutations tend to be slightly 
selected against or are neutral—at least those that reach high 
frequency in the first place.

We note that the selection for reversion mutations is strongest 
for the gag region, see Fig. S6 for details. When splitting 
trajectories into synonymous and non-synonymous changes 
(irrespective of reversion/non-reversion), we observe that synony-
mous mutations tend to decrease in frequency for t > 0, while 
on average non-synonymous mutations increase, see Fig. S7. 
This suggests that high-frequency non-synonymous mutations 
tend to be beneficial, while synonymous mutations are slightly 
deleterious, consistent with earlier results (Zanini and Neher 
2013). Common synonymous reversions, on the other hand, 
tend to further increase in frequency and fix preferentially, see
Fig. S8.

2.4 Reversions can explain the rate mismatch
Over longer timescales, the rapid reversions we observe within 
hosts will lead to undetected substitutions along branches of the 
phylogeny whenever a mutation and its corresponding reversion 
happen on the same branch. When such reversion dynamics are 
not captured by the substitution models, the evolutionary rate 
inferred by phylogenetic methods will be too low (Halpern and 
Bruno 1998; Hilton and Bloom 2018; Puller et al. 2020). Here 
we explore how much of the discrepancy between evolution-
ary rates estimates at the WH and BH scales can be attributed 
to rapid reversions not being properly captured by substitution
models.

We quantify the impact of reversions on the BH evolution rate 
using an evolutionary model that accounts for the reversion bias 
we observed within hosts. We use the TreeTime library (Sagulenko 
et al. 2018) to define a site-specific general time-reversible (GTR) 
model (Puller et al. 2020). We parameterize the mutation rate from 
nucleotide j to i at position 𝛼 as: 

where 𝜇 is the mean mutation rate per site per year, 𝑝𝛼
𝑖  describes 

the equilibrium probability of finding nucleotide i at site 𝛼, and 
Wij accounts for the overall variation in rate between different 
nucleotide pairs i and j independent of position (i.e. the differences 
between transitions and transversions). We use 𝜇 = 16.1 ⋅ 10−4, the 
overall WH evolution rate observed in Fig. 1D. In this model, 
the bias for reversion is introduced via the equilibrium frequen-
cies 𝑝𝛼

𝑖 . These depend on the genome position 𝛼, enabling us to 
skew the frequencies toward the consensus nucleotide at each 
position. Contrary to common evolutionary models that include 
rate variation between sites, we keep the evolutionary rate con-
stant across positions and vary 𝑝𝛼

𝑖  instead. However, our results 
show little change if a gamma-distributed rate variation is incor-
porated, especially when the shape parameter is greater than 
2. We choose 𝑝𝛼

𝑖  such that the model reproduces the WH rates 
of reversions and evolution away from consensus. Specifically,
we use
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where 𝜇𝛼
+ and 𝜇𝛼

− are the consensus and non-consensus divergence 
rates, respectively, computed from WH data shown in Fig. 2B. 
These rates reproduce the equilibrium frequencies in a model with 
two states (consensus and non-consensus). These rates are codon 
position-specific, meaning for every 𝛼 that is a first codon posi-
tion 𝜇𝛼

+ = 𝜇1𝑠𝑡
+  and 𝜇𝛼

− = 𝜇1𝑠𝑡
−  and analogously for the second and 

third codon positions. The parameter 𝑟𝛼
𝑖  is used to specify the 

relative proportions of the three non-consensus nucleotides. It is 
chosen so that 85 per cent of the non-consensus nucleotides are 
the transitions from the consensus, while the two transversions 
contribute 7.5 per cent each. These values were inferred from 
the BH alignment and are consistent with the WH observations, 
see Section 2.2. Otherwise, this GTR model is purely informed by
WH rates.

We then used this model to simulate evolution along an HIV-
1 phylogeny and generate a multiple sequence alignment (MSA) 
using TreeTime and the inferred HIV-1 root sequence (as used 
in Fig. 1). We then inferred a tree from the MSA generated using 
IQ-TREE, as we did for the real data.

Figure 4 compares the diversity of original and generated MSAs 
and the length of the inferred trees to quantify the impact of rever-
sions on phylogenetic inference. A model that does not account 
for reversions, i.e. where 𝑝𝑖 = 0.25 for 𝑖 ∈ A,C,G,T for all sites, was 
included for comparison and is referred to as the naive GTR model. 
Figs. 4A and 4B show a comparison of the real and generated MSA 
characteristics. The MSA generated using our WH-informed GTR 
model (green) has a similar nucleotide content and distance to 
the root as the real BH data (blue). On the contrary, the naive GTR 
model that does not take reversions into account (orange) results 
in a more diverse MSA and overall nucleotide content that is less 
similar to the BH data.

Figure 4C shows that the evolutionary rate estimated from the 
RTT regression of the tree reconstructed from the MSA simulated 
using the naive GTR model is, as expected, very close to the WH 
evolution rate of 𝜇 = 16.1 ⋅ 10−4 mutation per site per year we input 
into the model. Our custom GTR model, which uses the same 𝜇 but 

accounts for reversions, results in a RTT regression with a slope 
of 11.9 ⋅ 10−4, substantially lower than the true rate and within 
10 per cent of the rate estimate from the RTT regression for the 
original phylogenetic tree. This suggests that a substitution model 
parameterized by rates and reversion propensity of WH evolution 
can largely reconcile the discrepancy of rate estimates at different 
scales, even if it does not include rate variation between different 
sites.

We find qualitatively similar results for the gag (see
Supplementary Fig. S10). In the case of env, the tree reconstructed 
from the data generated and subsequent analysis is unreliable due 
to excessive saturation in the model (see Supplementary Fig. S9).

3. Discussion
Evolutionary rate estimates depend strongly on the timescale 
over which they are measured (Ho et al. 2005; Aiewsakun and 
Katzourakis 2016). Here, we explored this effect on the scale 
of the HIV-1 pandemic, individual subtypes, and within hosts. 
We showed how observations on short timescales give rise to 
patterns on longer scales. Differences between rate estimates 
WH scale and on the pandemic scale can, to a substantial 
degree, be explained by a strong tendency to revert deleteri-
ous mutations to their preferred state. These unpreferred states 
are probably the result of escape from immune selection in a 
previous host, which gradually revert as the host-specific selec-
tion pressure is relaxed in future hosts. Microscopically, we thus 
observe evolutionary dynamics driven by the adaptation to a 
changing environment: both changes, escape and reversion, are 
beneficial in their respective environments. These transiently 
beneficial escape mutations are generally deleterious on longer 
timescales, such that the aggregate effect of this dynamic looks 
like slowly acting purifying selection (Wertheim and Kosakovsky
Pond 2011).

Substitution models commonly used to reconstruct phylo-
genies and infer evolutionary rates do not account for rapid 
reversions, which would require site-specific preferences for dif-
ferent states (Halpern and Bruno 1998; Hilton and Bloom 2018;

Figure 4. Substitution models that account for reversions can largely explain the rate mismatch. This figure shows the sequence diversity and RTT 
distances for simulated data generated with a substitution model that accounts for reversion, parameterized by WH data (WH reversion) and a model 
that does not account for reversion (WH naive) for the pol region. (A) Violin plot of the nucleotide content for the BH data and the MSAs generated. The 
naive model tends to equilibrate the nucleotide composition. (B) Histogram of Hamming distances to the root sequence. The reversion-informed 
model agrees well with the BH observations, while the naive one generates sequences very far from the root. (C) While the RTT distance estimated 
from data generated by the naive model is consistent with the evolution rate we used in the model (true value 16.1 ⋅ 10−4 per site and year), the data 
generated using the model with reversion results in much lower estimates, similar to the rate estimated from BH data. The results for env and gag are 
shown in Supplementary Figs. S9 and S10.
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Puller et al. 2020). We explored the effect of reversions on phylo-
genetic inference and rate estimates of HIV-1 by defining a simple 
site-specific model parameterized by reversion and non-reversion 
rate estimates from longitudinal data within hosts. Phylogenetic 
inference from data simulated using this model revealed that 
reversions during chronic infection can explain approximately 90 
per cent of the apparent slowdown of evolution for the pol gene 
of HIV-1. A similar selection for reversion mutations has also 
been observed during acute infection (Boutwell et al. 2010; Leslie 
et al. 2004) or the transmission bottleneck (Carlson et al. 2014). 
Such preferential transmission of consensus-like variants could 
amplify the overall effect of incomplete reversions during chronic 
infection. Together, these results suggest that, among the hypothe-
ses proposed to explain the difference in rates (Lythgoe and Fraser 
2012; Redd et al. 2012; Zanini et al. 2015; Leslie et al. 2004), ‘adapt 
and revert’ is the main mechanism.

The strongest effects of unaccounted reversions in phyloge-
netic inference are expected on long branches in the phyloge-
netic tree, where mutations are masked by their corresponding 
reversions (Hilton and Bloom 2018; Puller et al. 2020). The well-
known phenomenon of long-branch attraction can, in these cases, 
already set in for branches that are nominally quite short. A strong 
tendency to revert can lead to sites that are completely saturated, 
yet almost always are in the same state—an effect not captured 
well by rate variation.

Rapid reversions are probably essential to conserve global fit-
ness by purging costly immune escape mutations acquired in 
individuals earlier in the transmission chain (Carlson et al. 2014; 
Zanini et al. 2017). In addition to reversion, fitness costs of escape 
mutations can, of course, also be mitigated by compensatory 
mutations (Crawford et al. 2007; Carlson and Brumme 2008). 
Although such compensatory mutations presumably slow down 
many reversions, we still observe a marked difference in iSNV fre-
quency dynamics toward vs. away from consensus. In addition, 
compensatory evolution can change the preferred sequence to a 
new local fitness maximum to which mutations revert, adding an 
additional slow timescale to the evolutionary process. We expect 
the preferred sequence to slowly drift on timescales much longer 
than the typical serial interval along transmission chains. This 
effect has been observed in deep mutational scanning experi-
ments in influenza viruses (Hilton and Bloom 2018; Doud et al. 
2015). Such effects are also consistent with the ‘Prisoner of War’ 
model by Ghafari et al. (2021), where a slowly changing fitness 
landscape (through host switches, host adaptation, or compen-
satory evolution) gives rise to apparent rates of evolution that 
decrease with the timescale of observation over many orders of 
magnitude.

The star-like diversification of HIV-1 into multiple subtypes 
gives a clear notion of a consensus sequence that can be used 
to approximate a putative fitness peak toward which reversions 
occur. In other viruses, for example, influenza A viruses, the 
ladder-like or otherwise structured phylogenies do not allow a 
straightforward definition of a consensus sequence. Nevertheless, 
it is possible that adaptation to a changing immunity landscape 
and reversions contribute with a similar magnitude to sequence 
turnover.

4. Materials and Methods
4.1 Data set and filtering steps
4.1.1 Between-host data sets
Our BH data sets come from the LANL HIV databases. All HIV-1 
group M sequences with exact sampling date were downloaded for 

the pol, env, and gag regions. Subtype O and N sequences were fil-
tered out. Sequences with ambiguous nucleotides and sequences 
labeled as ‘problematic’ on LANL website were removed. Only one 
sequence was kept per patient. The data sets were downloaded on 
14 July 2021. This gave us a total of 6,649 sequences for pol, 15,034 
for env, and 8,948 for gag.

Regarding each genomic region, we subsampled the data set 
to have 1,000 sequences in each case, with the same number of 
sequences for each year where sequences were available (except 
for early years where fewer sequences were available). For each 
region, Subtype B represents approximately 40 per cent of all 
sequences, Subtype C approximately 15 per cent, and the rest 
encompass the other subtypes or unlabeled subtypes. Subtype 
B sequences are more common in early years while Subtype C 
sequences represent a larger proportion in recent years. We then 
performed an MSA, including the reference HIV-1 HXB2 sequence, 
using Multiple Alignment using Fast Fourier Transform (Katoh 
and Standley 2013) and the Nextstrain framework (Huddleston 
et al. 2021). Insertions relative to the reference HXB2 sequence 
were removed. We removed all positions of the alignment where 
more than 10% of sequences have a gap as the alignment can be 
unreliable in such positions. The alignment for the pol, env, and 
gag regions are the data sets used for our BH analyses. See the 
section Code and data availability for access to the data sets.

4.1.2 Within-host data sets
Our WH analysis leverages the time resolution of the HIVEVO 
data set (Zanini et al. 2015). This data set is freely available 
with tools made available to facilitate the analysis. We use these 
tools to obtain a three-dimensional matrix of nucleotide fre-
quencies for each patient. The three axes of these tables are 
the HIV-1 genome position, the nucleotide, and the time since 
infection of the sample. Each entry in these matrices gives the 
frequency of a given nucleotide at a given position on the genome 
at this time point, relative to the total intra-patient HIV-1 pop-
ulation. These matrices form our WH data set. We excluded 
patients p7 and p10 from our analysis as their samples were very 
uneven in time or because there was evidence of multiple founder
sequences.

The estimates of nucleotide frequencies are unbiased in the 
[0.1,0.9] range, while coverage and depth are globally sufficient 
(Zanini et al., 2016). We applied several filtering steps prior to anal-
ysis to avoid biases in our results. We masked data points with 
sequencing coverage inferior to 100 and/or where the depth was 
low. We also removed genome positions that were not mapped to 
the consensus sequence and/or seen to be too often gapped in the 
MSA of BH sequences. The alignment and mapping of such sites 
can be unreliable; thus, we removed them from our analysis. This 
filtering procedure is mainly relevant for the env gene, which is the 
region with the most noise.

4.2 Distance and divergence over time
The first result section gives an overview of the method used 
to compute the distance and divergence over time in Fig. 1 
and Supplementary Fig. S1 and S2. Additional details are given
below.

Hamming distances were computed by counting the number of 
sites that do not match the reference sequence for each sequence 
in the data set. We then divide this number by the length of the 
sequence to obtain the relative distance to the reference. Ham-
ming distances were computed using three reference sequences. 
The first is the root sequence of the tree. The tree was inferred 
using the IQ-TREE GTR+F+R10 model (Minh et al. 2020), while the 
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root sequence was computed using TreeTime ancestral recon-
struction on this tree (Sagulenko et al. 2018). We chose to use 
the root sequence instead of the consensus sequence of the align-
ment in Figs. 1 and 4 to avoid biases due to over-representation 
of Subgroup B and C sequences. The second and third refer-
ence sequences are Subgroup B and C consensus sequences. 
See Section 4.4 for details on the computation of consensus and 
founder sequences. To compute the Hamming distances to the 
subtype consensus, we averaged the distances computed for Sub-
type B and C sequences relative to their consensus. The aver-
age was then weighted by the relative number of each subtype 
sequence in each year.

The RTT distances shown in Figs. 1 and 4 and Supplementary 
Figs. S1, S2, S9, and S10 are computed directly from the tree gen-
erated via IQ-TREE. Such distances were computed for every leaf 
of the tree (i.e. every sequence in our data set) and then averaged 
for sequences sampled in the same year for visualization. Taking 
into account the phylogenetic information allows the detection of 
some mutations that occur and then revert along the tree. Con-
sequently, the estimates of the RTT distance are higher than the 
Hamming distance ones.

4.3 Evolutionary rates
The evolutionary rates in Figs. 1 and 2C and Supplementary 
Figs. S1 and S2 are the slopes of linear fits of the data. For the BH 
plots (Fig. 1C and Supplementary Figs. S1A and S2A), the fit was 
done on the data from 1979 to 2022. For the WH plots (Figs. 1D 
and 2C and Supplementary Figs. S1B and S2B), we estimated a 
linear fit from 200 to 2,000 days in the infection. We removed 
the first 200 days from the fit as for most patients the first sam-
ple we have is in the 0–200 days window. This causes the small 
flat part of the founder curves near t = 0, which could bias our 
evolution rate estimates. Consequently, we decided to only use 
data starting from 200 days into the infection for the fit, which is 
more than enough to get an accurate estimate of the slope. For 
the WH rate estimates, we estimate the error by bootstrapping
patients.

Estimating confidence intervals for evolutionary rates at the 
level of the pandemic is challenging because of the phyloge-
netic relationship and shared ancestry of the sequences. Instead 
of using probabilistic phylogenetic models, which suffer from 
residual recombination and model inadequacies, we opted for 
phylogenetic boot-strapping procedure for the BH rate estimates. 
Specifically, we cut all branches of the time-scaled phyloge-
netic trees at the year 1980 and thereby obtain a collection of 
subtrees. Sequences in the same subtree are correlated, but 
they are not correlated with sequences on another subtree (as 
evolution happens on different branches of the original tree). 
We performed bootstrapping to estimate distances and rates 
by sampling with replacement from sequences in these sub-
clades. The errors provided for the rate estimates in Fig. 1 and 
Supplementary Figs. S1 and S2 are computed from these bootstrap 
estimates. The HIV-1 pandemic has undergone a large radia-
tion in 1960s and 1970s, which makes such bootstrap estimates
possible.

4.4 Consensus and founder sequence
Consensus sequences were computed from our BH data sets. We 
computed three consensus sequences for each region studied. The 
first is the HIV-1 group M global consensus, which is the major-
ity nucleotide of the alignment at each position. The second and 
third are the Subtype B and C consensus sequences. These were 

computed in the same way, using a subset of the alignment that 
contains only the sequences of the subtype in question.

The founder sequence is an approximation of the sequence of 
the virus at the time of infection in a patient. They are computed 
from our WH data set for each patient separately. The founder 
sequence is the majority nucleotide in each position from the first 
sample of each patient. In this sense, it is the consensus sequence 
obtained from the first sample of each patient. For most patients 
in our data set, the first sample is taken at approximately 90 days 
after infection and no data are available on the early phase of 
infection. Consequently, the founder sequence computed is an 
approximation of the original virus.

4.5 Trajectory extraction and metadata
A trajectory is a sequence of nucleotide frequencies and associ-
ated time. Each trajectory corresponds to one genome position 
and one nucleotide only. We extracted trajectories from our WH 
data set according to several criteria. Firstly, every trajectory must 
be extinct before the first point, i.e. we consider only new muta-
tions. This is to avoid biases that could be due to immune interac-
tion existing already. Secondly, frequencies must be between 0.01 
and 0.99 at all time points. The trajectory is considered extinct if 
it is below 0.01 and fixed if above 0.99. Lastly, we apply a mask to 
data points according to what is shown in Section 4.1. Trajectories 
that have their first and/or last points masked are removed from 
the analysis.

Every trajectory extracted according to the criteria above is 
coupled with its metadata. This contains all the relevant infor-
mation, such as whether the mutation is a reversion or not and 
whether it fixed or was lost. This information is used to create 
subgroups of trajectories. From these subgroups, one can study 
the impact of a trait associated with a mutation for WH evolution, 
as shown in Fig. 3 and Supplementary Fig. S5 for reversion and 
non-reversion trajectories.

4.6 Mean frequency in time
While looking at divergence values informs us about the global 
evolution of the WH population, it cannot tell us whether the 
mutations we see on non-consensus sites are actually rever-
sions to the consensus state or simply mutations to another 
nucleotide. This motivated us to look directly at the evolution of 
new mutations independently by observing their frequency trajec-
tories in time. Trajectories were extracted and filtered according 
to Sections 4.1 and 4.5. Despite these filtering steps, our data are 
inherently biased toward small and/or low-frequency trajectories 
which are more common. In order to alleviate this bias, we com-
pare reversion and non-reversion trajectories in the same manner. 
Accordingly, the resulting signal can be attributed to the effect of 
being a reversion (or not).

Due to the limited number of trajectories available and the 
often lack of information about trajectory fixation, for example, 
because it is still active at the last sample, the probability of fixa-
tion plots were not adequate for our analysis. We, thus, decided to 
pay attention to the evolution of the mean frequency in time for 
groups of trajectories. Trajectories were grouped in frequency bins, 
as described in the main text, to avoid bias toward positively or 
negatively selected trajectories. Supplementary Fig. S5 illustrates 
how this was done. Sometimes a trajectory’s first pass through the 
frequency window is missed and only caught on the second pass, 
which results in a few trajectories that enter the frequency win-
dow from above. This happens when the frequency of a mutation 
changes drastically from one sample to the next, i.e. the reported 
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frequency jumps directly from below to above the window. Never-
theless, these are ‘new’ mutations as they were not seen in the first 
sample of the patient. We kept these trajectories to avoid potential 
bias, but including or excluding them does not have a big impact 
on the final results.

We then created time bins of 400 days from 600 days before up 
to 3,000 days after a trajectory is seen in a frequency window. We 
compute the average frequency of all trajectories belonging to the 
same group in each time bin. A trajectory contributes its current 
frequency if a data point is available at this time and does not 
contribute if no data are available in that time bin. Trajectories 
that fixed in the population contribute with a frequency of f = 1 to 
time bins subsequent to their fixation. Similarly, lost trajectories 
contribute f = 0 to time bins subsequent to their disappearance in 
the viral population. Trajectories that are still active after their last 
data point (because the study stopped before it could fix or be lost) 
contribute the frequency of their last data point to the following 
time bins.

Code and data availability
The code and data used for the analysis can be found at https://
github.com/neherlab/HIVEVO_reversion. Due to issues with the 
data sets’ size, only intermediate BH and WH data files in a com-
pressed format are found in the github folder. A link to the full data 
set is available there. Scripts are present to reproduce the results 
shown in this paper.

Supplementary data
Supplementary data are available at Virus Evolution online.
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Supp. Fig. S 1: Corresponds to Figure 1, for the env gene. The Y axes of panel A and B are not shared
in this case as the RTT distance is much higher than what we observe within host. The relative difference
between the rates is higher than what is seen for the pol and gag genes. This is consistent with the fact that
env mutates faster overall, which would also lead to more reversions.
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Supp. Fig. S2: Corresponds to Figure 1, for the gag gene. The overall mutation rate is slightly higher than
for the pol gene but the relative difference between the rates is similar.
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Supp. Fig. S3: Corresponds to Figure 2, for the env gene. In this gene, non-consensus sites at the 1st and
2nd codon position seem to diverge at a similar rate, suggesting a comparable selection for such mutations.
3rd codon position sites in a non-consensus state still diverge the slowest.
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Supp. Fig. S4: Corresponds to Figure 2, for the gag gene. Similar to the region, non-consensus sites at the
1st and 2nd codon position diverge at similar rates. Non-consensus sites in the 3rd codon position still diverge
the slowest, consistent with the fact that mutations at such sites are often synonymous and consequently
under less selection pressure.
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Supp. Fig. S5: Sketch of the methodology used to compute the curves shown in Figure 3 as described in the
main text and section M&M 1.2. Trajectories are divided into reversion and non-reversion mutations. From
each of these subgroups, trajectories that have one data point in the given frequency window are grouped
together and offset in time so that this data point corresponds to t=0. We compute the mean of these
trajectories and plot it in Figure 3.
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Supp. Fig. S 7: Corresponds to Figure 3, for synonymous and non-synonymous trajectories. Overall
synonymous mutations are selected against and non-synonymous mutations seem to be selected for, but the
effect is smaller than what we see for reversions and non-reversions in Figure 3.
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reversions seem to be selected more strongly than non-synonymous ones at higher frequencies, but the opposite
is true at lower frequencies.
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Supp. Fig. S9: Corresponds to Figure 4, simulated for the env gene. The WH mutation rate in this region
is so high that the reversion model attenuates most of the clock signal. This leads the tree reconstruction to
fail and underestimates the evolution rate for the WH reversion model in this case.
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Supp. Fig. S10: Corresponds to Figure 4, simulated for the gag gene. The WH reversion model matches
the between host observations better in this region as well, with relative differences in observed evolution
rates that are similar to the pol region.
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3
C R E AT I O N O F A H I G H - T H R O U G H P U T F R A M E W O R K
F O R B A C T E R I O P H A G E D I R E C T E D E V O L U T I O N

This chapter discusses our not yet published work on the creation
and use of a high-throughput framework for studying bacteriophage
evolution. This work focuses on the creation of an autonomous con-
tinuous culture machine, named the Aionostat, its usage and what it
can bring to phage evolution research. We start with an introduction
specific to bacteriophages and their evolution in section 3.1. We briefly
cover the main areas in bacteriophage research and the current limi-
tations as well. We follow by presenting the BASEL phage collection
in section 3.2. This is a diverse collection of well-characterized E.coli
phages which aims to help fix some of the current limitations of phage
research that I helped to create. Then we present the high-throughput
framework for bacteriophage evolution in section 3.3 and its central
piece the Aionostat in section 3.4. Finally we present the results of the
showcase experiments that we performed within this framework in
section 3.5. These experiments were performed using phages from the
BASEL collection and prove that the framework and the Aionostat are
an effective way to study bacteriophage evolution.

3.1 introduction to bacteriophages

3.1.1 Historical background and relevance

The discovery of bacteriophages dates back to the early 20th cen-
tury, when Frederick Twort and Félix d’Hérelle independently discov-
ered viruses parasitic on bacteria in 1915 and 1917 respectively. Félix
d’Hérelle gave them the name of bacteriophages after noticing they
were reliant on killing bacteria to amplify [69]. At the time, bacterial
infections were a major cause of mortality and there was no consis-
tently effective method to treat such infections. With his research,
Félix d’Hérelle was the first to introduce the concept of using bac-
teriophages as antimicrobial: phage therapy. The prospect of having
an antimicrobial agent that was mostly safe for humans in a time
when antibiotics had not been invented yet was a small revolution.
Therefore, bacteriophage research focused on therapeutic use.

However, the initial enthusiasm for phage therapy encountered sev-
eral limitations, including a lack of understanding of phage biology,
lack of reliability, inconsistent treatment results, and technical chal-
lenges. The advent of antibiotics in the 1940s led to a decline in phage
research in the Western world as shown in figure 3.1. Nevertheless,
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Figure 3.1: Timeline of major events in the history of research on phages, phage therapy,
and antibiotics. Background curves represent a qualitative measure of the overall
interest, research, and use of phage therapy (yellow) and antibiotics (blue), show-
ing how the introduction of antibiotics and the critical review of the early phage
therapy studies coincided to bring phage therapy research and development to
an almost complete standstill around the 1940s. Figure and caption reproduced
with permission from [6].

the rising threat of antibiotic-resistant bacteria has reignited interest
in phages as potential alternatives to traditional antibiotics in recent
years. This resurgence is bolstered by success stories in phage ther-
apy, promoting a new wave of phage research which goes beyond
phage therapy alone [6]. The main areas of bacteriophage research are
presented in section 3.1.4.

3.1.2 Bacteriophage biology

Diversity

Bacteriophages are extremely abundant biological entities on Earth,
and accordingly there is a huge diversity in phage biology, structure,
genetic makeup, size and lifestyle. Figure 3.2 presents an overview of
the main phage groups that we know of based on their genome type
and morphology. The taxonomy presented in this figure and which
we discuss in this section is the "traditional" phage taxonomy, which
is partially based on morphology. It has recently been abolished but
has not been replaced with something similarly comprehensive yet, so
we chose to use this taxonomy nonetheless [70].

Like other viruses, bacteriophage genomes are made of DNA or
RNA, which can be either single-stranded or double-stranded. There
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Figure 3.2: Overview of phage diversity and defining traits. T values correspond to trian-
gulation numbers, a measure of the complexity of the capsid shape, defined as
the number of proteins per asymmetric unit. Figure and caption reproduced and
adapted with permission from [71]. Refer to original publication for more details
and image source.
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are two known families of phages using ssDNA as genetic material:
Microviridae and Inoviridae. The former is a family of very small bacte-
riophages, hence the name, whose virions are around 25-30nm in size.
Accordingly the genome of these bacteriophages is also very small,
about 4 to 6 kbp. The latter have a drastically different morphology.
These bacteriophages house their ssDNA genome in a long flexible
cylindrical protein shell, earning them the name of filamentous bac-
teriophages. They are about 6 to 8nm in diameter and can be up to
2000nm long [72]. These phages also have a peculiar way of exiting
their host cell once assembled, they are extruded through bacterial
membranes without lysis [73].

The vast majority of bacteriophage described to date are dsDNA
bacteriophages. There are several families of bacteriophages that use
dsDNA as genomic material, which can be grouped into tailed and tail-
less bacteriophages. Tailed bacteriophages belong to the Caudovirales
order and are by far the most commonly studied phages. They rep-
resent more than 85% of the phage genomes in public databases [71].
These phages have their dsDNA packed into a protein capsid which is
attached to the tail. The size of their genome is variable, between 20kp
and 500kpb, as is the size of their capsid. Receptor binding proteins
located on prolate structures at the tip of the tail, such as tail fibers,
are responsible for host receptor recognition and initiate the genome
injection into the bacteria [13]. In particular, phages belonging to the
Myoviridae family have a contractile tail which pierces through the
bacterial membrane to deliver the phage genome into the cytoplasm
of the host. These phages are the focus of our research.

Tailless dsDNA bacteriophage are much less studied. One notable
feature of the Corticoviridae, Tectiviridae and Plasmaviridae family is the
presence of a lipid membrane in the virions, lacking a hard capsid in
the case of Plasmaviridae.

Finally there are two known families of RNA bacteriophages. These
families of phages are far less studied than DNA phages. First we
have the Cystoviridae family, whose genome is double stranded RNA
of about 14kbp in length. This genome is segmented in 3 smaller parts
[74, 75]. These viruses have an outer lipid membrane with two-layered
inner capsid. Most of the identified bacteriophages belonging to this
group infect Pseudomonas, but this could be due to a bias in screening
method [76]. Lastly there is the Fiersviridae family (previously named
Leviviridae), which are small single stranded RNA viruses with a
genome of about 4kbp.

Life cycle and lifestyle

Bacteriophages, or phages, exhibit a variety of lifestyles that are in-
tricately tied to their morphology and their interaction with their
bacterial hosts. The life cycle of tailed bacteriophages, which are the
focus of our research, can be broadly categorized into two main types:
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lytic and lysogenic. Obligatory lytic phages are called virulent phages,
while the those capable of either a lytic or lysogenic lifestyle are called
temperate phages [77].

In the lytic cycle, phages infect bacterial cells and immediately begin
the process of replication. Well-studied models such as the T phages
belong to this group. The infection usually involves destroying the
hosts defense systems and genome followed by hijacking the host’s
cellular machinery to synthesize new phage components. These are
then assembled into new phage particles, at which point the host cell
is lysed, releasing the progeny viruses. This cycle can be relatively
rapid, with the entire process taking around 25 minutes or less for
rapid phages like T7 under optimal conditions [16]. The lytic cycle
duration is very dependent on the phage and the host state. The
cycle is typically faster when bacteria are in a fast growing state. The
number of virions produced per infected cell, or burst size, also varies
significantly. Some phages like T7 can release more than a hundred
new virions upon lysis.

The lysogenic cycle, on the other hand, involves the integration of
the phage genome into the host’s genome under specific conditions.
A well-studied model for this lifestyle is phage λ, where the lysis-
lysogeny decision of the phage upon infection is at the center of many
studies [78–80]. This integration into the host genome is similar to
what is observed for retroviruses such as HIV-1. In this state, known
as a prophage, the viral genome can be replicated along with the
host’s DNA during cell division. This results in a coexistence of the
phage and bacterial genome that can be stable over many generations.
Since temperate phages can integrate into bacterial genomes, they
can form a transiently beneficial symbiotic relationship with their
host. Consequently it is not uncommon for temperate phages to have
genes that provide a fitness advantage to their host. These can be
genes encoding toxins such as Shiga or Cholera toxins [81, 82], or even
immunity systems against other bacteriophages [83]. However, under
specific triggers such as stress or UV radiation, the prophage can be
induced and will excise itself from the host chromosome to enter the
lytic cycle. This initiates the production of new phage particles and
the eventual lysis of the host cell. The lysogenic lifestyle brings some
interesting evolutionary dynamics. There exists many triggers that
govern prophage induction [77].

Although the lytic and lysogenic lifestyles describe broadly two
categories of bacteriophages, recent research seems to suggest that the
difference in phage lifestyle in the environment is not a dichotomy, but
rather a continuum which also includes inefficient lytic and chronic
infection lifestyles [84].
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3.1.3 Bacteriophage evolution

The omnipresence of bacteriophages in natural environment stems
from their ability to evolve and adapt to changing conditions. Like
many viruses, they are fast evolving biological entities. This ability
has given rise to the wide variety of phage and phage lifestyle we
observe today [85]. The evolutionary dynamics observed in bacterio-
phage populations are very diverse due to the many structures, hosts
and lifestyles. Understanding the evolution of bacteriophages has
practical relevance in various domains of research. For instance, their
ability to constantly adapt to evolving bacteria is extremely relevant in
healthcare, where the rise of resistant bacterial strains is a real concern.

Similar to the evolution of HIV-1, bacteriophages also evolve both
vertically and horizontally [86]. Vertical evolution occurs through
random errors in the replication process when creating new virions,
a process which is reasonably well understood. On the other hand,
horizontal evolution is a much more intricate as bacteriophages have
the ability to exchange genome fragments in different contexts. A lytic
phage, for example, can exchange genetic material during an infection
in the following ways:

• Exchange with a lytic phage: In the case of a co-infection of a
host cell by two different phages, there can be recombination
events between the two phage genomes. This can create chimeric
offspring phages, with a genome composed of a mix of the two
parents’ genomes [87].

• Exchange with the host: When infecting a bacteria, lytic phages
usually chop the host genome to reuse these resources for creat-
ing new virions. During this process there is a chance that pieces
of the host’s genome recombine with the bacteriophage genome.

• Exchange with a prophage: In the case of an infection of bacteria
that contains integrated prophage(s), there can be a recombina-
tion between the lytic phage genome and the prophage genetic
material which can again create a chimeric offspring. Recent
research suggests that this is the main driver of horizontal gene
transfer in bacteriophages. There are two main reasons for this.
First, it is more likely to have two phage genomes simultane-
ously in the same host cell if one of them is carried for extended
periods of time on the host genome. Second, recombination rate
of homologous sequences is likely higher than for non homol-
ogous sequences, so it is more likely to recombine with other
phage genes rather that the host’s genome. Considering that
prophages are found in many bacteria, one could expect that
this is the most likely way of horizontal evolution.

The mosaic nature of bacteriophage genomes and the presence of
recombinases in many of them suggests that horizontal transfer is
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the main driver of phage evolution [88, 89]. The ability to exchange
and acquire large chunks of genetic materials gives the opportunity
to acquire or lose whole biological functions, which seems essential
to adapt rapidly to changing environments. Bacteria also evolve over
time, and the evolutionary pressure imposed by phage predation
can drive the evolution of anti-phage defense systems [90]. Bacteria
develop anti-phage systems while bacteriophages evolve to counter or
bypass such systems. A prime example is the widespread presence of
CRISPR systems in bacteria while anti-CRISPR systems are found in
some bacteriophages [91, 92]. In reality the situation is more complex
than this, as the co-evolution of bacteriophages and their hosts can
also be mutually beneficial, as is the case with some temperate phages.

An integral aspect of bacteriophage evolution is their ability to per-
form ’host jumps’, a phenomenon where phages evolve to infect a
new bacterial strain. Host jumping is a complex evolutionary process
involving a series of genetic adaptations that enable a phage to rec-
ognize and bind to new host receptors, which are typically highly
specific, and then successfully hijack the host machinery for a produc-
tive infection. From an evolutionary perspective, this is a complex task,
but bacteriophages seem extremely capable at performing such jumps
[93]. This ability appears closely linked to their ability to exchange
genetic elements, which can for example provide new receptor binding
proteins from another bacteriophage that promote binding to a new
host.

Host jumps are essential for many aspects of bacteriophage success
in nature, but they are particularly interesting to us in the context of
phage therapy. It is common that phage therapy centers do not have
effective bacteriophages against the strain causing a patient’s infection.
Thankfully one can leverage the ability of bacteriophage to perform
host jumps to evolve a new phage tailored for that specific patient.
This is typically performed using variants of the Applemans protocol,
which involves exposing several phages to a series of bacterial strains,
encouraging them to recombine, adapt and potentially expand their
host range in the search of evolved bacteriophages that would be suit-
able to treat the patient’s infection [94]. Although this is empirically
shown to be effective, the precise experimental parameters and evolu-
tionary mechanisms to optimize phages are not yet fully understood
[95]. Broadly speaking, the amazing ability of bacteriophage to evolve
is one of their defining trait and is tied to most of the research areas
presented in the following section.
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3.1.4 Current research

Ecology

Viruses are the most abundant and diverse biological entity on Earth,
with an estimated 1031 virions existing at any given moment [96].
Most of these viral particles are bacteriophages, or phages in short,
the viruses targeting bacteria, and current research seems to show that
they play a key role in ecology. Bacteria are present in most environ-
ments found on the planet, and it is estimated that bacteriophages
outnumber their bacterial hosts in these environments by an order
of magnitude on average, initiating approximately 1023 infections per
second. The sheer number of bacteriophages that exist and the number
of infection they cause make them the top predators of the microbial
world [85]. The omnipresence of bacteria in diverse ecological en-
vironments makes bacteriophages key ecological players due to the
predatory pressure they exert on bacterial communities. The interac-
tion between phages and bacteria influences the microbial dynamics
in various habitats and often promotes stability in such environments.
For example in the case oceanic ecosystems, the predation of bacteria
by phages contribute significantly to the carbon cycle as illustrated
in 3.3. It is estimated that around 50% of bacterial deaths is caused
by bacteriophages, the other half being due to grazing protists [97].
By infecting and lysing bacteria they release dissolved organic matter
(DOM) in the water, which can be either reused by other microbes
or aggregate as particulate organic matter (POM) and sinks to the
deep ocean. This viral shunt maintains the marine environment by
encouraging nutrient cycling and promotes the carbon shunt of the
ocean. The role of bacteriophages in ecology is not restricted to marine
ecosystems, they are also key players in various other environments
such as plants [98] and even our own gut microbiota [99].

Viral models

The widespread presence of bacteriophages out there and the diversity
observed is a result of their amazing ability to evolve and adapt to
various hosts and environments [100]. Their high mutation rates, fast
generation time, diverse lifestyles and their ability to exchange ge-
nomic material provide a unique opportunity to study a wide range of
evolutionary dynamics. Thanks to recent advances in sequencing tech-
nologies and the renewed interest in phage research, the number of in-
dividually published bacteriophage genomes has doubled in the last 5

years (see https://millardlab.org/bacteriophage-genomics/), and
the numbers are even higher for viral genomes from metagenomic
studies [101]. This surge of data enables broad study of bacteriophages
using phylogenetics. Unlike many viruses infecting eukaryotes, phages
can also be easily manipulated and studied in various laboratory con-
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Figure 3.3: Schematic of the carbon cycling in the ocean. When bacteria are lysed by phages,
carbon and nutrients are released in the water, some of which is reused while
another part sinks to the deep ocean. The viral shunt caused by bacteriophages
function as both the ocean’s recycling system and carbon sink. Figure and caption
reproduced and adapted with permission from [97].

ditions using relatively straightforward and harmless bacterial cultures
and plates. Therefore it is comparatively simple to test evolutionary
hypothesis from analysis by direct experiments. This ease of use and
speed combined with the wide variety of evolutionary strategies ob-
served make bacteriophages an excellent model for studying viral
evolution as a whole, both experimentally and with a bioinformatics
approach.

Outside of bacteriophage evolution per se, these viruses can also
serve as a valuable tool for broader studies of protein and RNA
evolution [102, 103]. Techniques such as phage display exemplify
how attributes tied to phage fitness can be enhanced through the
evolutionary processes of the phages themselves [104].

Phages in healthcare

The historical focus of bacteriophage research has been largely driven
by their potential in phage therapy, leveraging their inherent ability
to target, kill and replicate on bacteria. This approach, initiated in the
early 20th century, was faced with many challenges due to limited
understanding of phage biology and technical limitation at the time,
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therefore research in this area was mostly stopped with the advent
of antibiotics. The rise of antibiotic resistant bacteria is already a real
threat in many parts of the world, and this is only getting worse
over time. Consequently, developing alternative ways of dealing with
bacterial infection is essential to uphold current health standard, and
possibly improve them. In this context, the use of bacteriophages for
phage therapy is regaining interest as it is seen as a promising solution
to fight resistant bacteria [7]. This new enthusiasm is amplified by the
possibilities offered by modern molecular biology tools as well as a
few successful phage therapies that made the headlines in the last
years.

In most cases, phage therapy involves finding bacteriophages that
are effective on the bacterial strain(s) causing the infection, potentially
training them, and then using such bacteriophages in a cocktail ad-
ministered to the patient. We rely on the ability of phages to find
their target bacteria, infect and kill it while self-replicating to clear the
infection. In most cases, phages are combined with antibiotics in a syn-
ergistic manner [6]. Such combined treatments seem to perform best
as the effectiveness of phage killing seems to be inversely correlated
to the resistance level of bacteria, imposing a challenging evolutionary
tradeoff to the bacteria [105]. Currently, the main challenge of phage
therapy is finding the right phages and training them to treat the infec-
tion. This is no easy task as bacteriophages have a narrower host range
compared to most antibiotics, but also because bacteria often carry
anti-viral systems [106]. A good overview of the current effectiveness
of bacteriophage therapy is given in the retrospective of the first 100

cases of phage therapy in the leading institute for phage therapy in
Europe [107].

Outside of direct use of natural bacteriophages, there is also an
emerging field that looks at engineering bacteriophages to enhance
their effect, or simply to use them as payloads to deliver drugs to
specific targets, opening new avenues for medical interventions. Since
then we have realized that bacteriophages also have a natural role
in our health. Bacteriophages contribute to maintaining the delicate
balance of our microbiota, particularly in the gut, where they play a
crucial role in modulating and driving microbial diversity [108, 109].
This diversity is essential for various aspects of health, ranging from
nutrient absorption to immune system modulation [110].

Our current knowledge of bacteriophage biology and phage-bacteria
interactions, especially in the patient’s body, limits our ability to
successfully predict treatment outcome from the phage characteristics.
Currently phage therapy can be compared to personal medicine, where
treatment is designed on a per patient basis. This severely limits
the potential of phage therapy for broader use, like is the case for
antibiotics. Developing our understanding to improve these aspects is
one of the main drivers of current phage research.
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Reservoir of biological functions

Bacteriophages and their hosts are among the most diverse biolog-
ical entities on the planet. They represent an immense reservoir of
biological functions that is at the source of many molecular biology dis-
coveries. For instance, phages have been central to the understanding
of DNA as the genetic material with the Hershey-Chase experiments,
or the discovery of restriction modification systems [111, 112] and the
CRISPR-Cas adaptive immune system in bacteria [113, 114]. These are
just a few examples of the many novel enzymes, proteins and func-
tions discovered via the study of bacteriophages. Figure 3.4 illustrates
the main discoveries linked to the study of phages. These discoveries
not only advanced our fundamental knowledge but also provided es-
sential tools for modern molecular biology research. The CRISPR-Cas
system, for example, has been repurposed into a powerful genome
editing tool with widespread applications in medicine, agriculture,
and research. Recent estimates suggest that we have just begun to
uncover the tip of the iceberg of viral diversity. For instance, it is
estimated that around 60% of the annotated genes in bacteriophage
genomes are hypothetical proteins with no characterized homologs
[115]. It is therefore tempting to speculate that many more exiting
biology remains to be uncovered by studying bacteriophages [105,
116].

Limitation of current research

Improving our understanding of phage evolution is essential for the
research fields presented above, like phage therapy, where a better
knowledge of these evolutionary dynamics could help optimize bac-
teriophages to cure patients. Even when it is not the direct focus of
the research, bacteriophage evolution is central to all areas of research
presented above. Be it for ecological reasons, where it is essential to
understand how phages adapt and diversify to shape ecosystems, or
for studying their molecular biology, where evolutionary cues provide
meaningful information regarding the role of unknown genes.

However, studying phage evolution poses multiple challenges. The
current state of phage evolution research is limited to a handful of well-
characterized bacteriophages like the T-series of phages infecting E. coli
[117], or to broad environmental metagenomics phage studies where
the phages themselves are rarely isolated and poorly studied [118–120].
The former limits the scope of the findings, while the latter prevents
detailed analysis that would require experimental intervention. To
better understand and manipulate phage evolution to our benefit we
need to bridge this gap, which requires both a better understanding
and characterization of phage diversity as well as methods that are
high-throughput, rapid, reproducible, and cost-effective to perform
evolution experiments on bacteriophages and infer general principles.
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Figure 3.4: Timeline of major events in the first 100 years of phage re-
search. EM, electron microscopy; ssDNA, single-stranded DNA;
ssRNA, single-stranded RNA. Figure and caption reproduced
and adapted with permission from [116].

It is in this context and to help solve these issues that we performed
the work presented in section 3.2, 3.3, 3.4 and 3.5.

3.2 basel phage collection

One of the current shortcomings of bacteriophage research is that
studies are often restricted to a handful of well-characterized bacterio-
phages, or to newly isolated phages that are often poorly characterized
and difficult to obtain for further studies. To help alleviate this issue
we created a new bacteriophage collection: the BActeriophage SElec-
tion for your Laboratory, or BASEL collection for short. This work was
published in November 2021 [121].
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In this publication, we isolated de novo 68 bacteriophages and built a
collection by characterizing them along with 10 well-studied phage ref-
erences. In total, the collection is composed of 78 phages with in-depth
phenotypic characterization of their host receptors and sensitivity
to several defense systems of bacteria alongside high-quality hand
curated and annotated genomes. Figure 3.5 gives an overview of the
collection and how it was constructed. The BASEL phage collection is
largely representative of the natural diversity of bacteriophages that in-
fect E. coli, and their characterization and curated genomes provides a
solid foundation for bacteriophage research. The patterns observed in
phage phenotypes are clearly indicative of evolutionary trade-offs be-
tween traits like broad host range and resistance to bacterial immunity
which likely explain the wide diversity observed.

Although it has been published relatively recently, the BASEL col-
lection is already widely used as a reference. At the time of writing,
the manuscript has been cited 83 times (Google scholar metrics) and
the collection has been shared with more than 50 research groups
around the world. This work was spearheaded by Prof. Harms and the
collection and characterization of bacteriophages involved the work
of many students. I contributed to this work mainly by providing
bioinformatics analysis alongside the isolation and characterization of
a few bacteriophages.

The research group of Prof. Harms is currently working on an
"expansion-pack" of the BASEL phage collection. Currently this collec-
tion contains exclusively phages that were isolated on the laboratory
strain E. coli K-12. This strain has lost its O-antigen over the years
of evolution in laboratory environments [122]. Although this does
not affect the biology of the bacteria, the presence of O-antigen on
the bacterial surface, or lack thereof, impacts drastically the ability
of bacteriophages to infect the bacteria. Most of the bacteriophages
from the BASEL collection cannot infect the same bacterial strain with
restored O-antigen, so it is likely that the isolation of phages was
somewhat biased due to the bacterial strain used. To improve the
diversity of bacteriophages in the collection, this "expansion-pack"
focuses on phages that are reliant on the presence of O-antigen. The
publication is currently under preparation.

The role of O-antigen in bacteriophage infection is central to the ex-
periments that we present in section 3.5. To perform these experiments
we used bacteriophages from the BASEL collection which belong to
the Vequintavirinae group and relatives, and evolved them for increased
infectivity on an E. coli K-12 strain with restored O-antigen. Details
about the Vequintavirinae bacteriophages from the BASEL collection
are shown in figure 3.6. These bacteriophages have a genome of 131kb
to 140kb which characteristically encodes 3 different sets of lateral tail
fibers that are coexpressed [123]. Because of this unusual feature, such
bacteriophages can be compared to "nanosized Swiss army knife".
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Figure 3.5: Overview of the BASEL phage collection. A: Illustration of the workflow of
bacteriophage isolation, characterization, and selection that resulted in the
BASEL collection (the bar diagram includes phi92-like phages in Vequintaviri-
nae for simplicity). B: Taxonomic overview of the bacteriophages included in
the BASEL collection and their unique Bas identifiers. Newly isolated phages
are colored by current taxonomic classification, while reference phages are
shown in gray. Figure and legend reproduced from [121] under Creative
Commons Attribution License.
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This distinctive feature might help recognize and bind to several host
surface structures, which could be responsible for the exceptionally
broad range of these phages.

There are several reasons why the Vequintavirinae bacteriophages
and their relatives were used as models in our experiments:

• These bacteriophages come from the BASEL collection, therefore
they are well-characterized and readily available.

• There are many phages in this group with various amount of
genetic similarity. This gives us the chance to perform evolution-
ary experiments and probe the impact of genetic similarity or
lack thereof.

• These phages can infect E. coli K-12 with restored O-antigen
originally, but are not efficient at doing so. This leaves room for
improvement of this phenotype via evolution.

• These bacteriophages do not have large DNA modifications,
which simplifies the sequencing using Nanopore. We origi-
nally planned to work with bacteriophages from the Tevenvirinae
group, but such bacteriophages have large DNA modifications
that impair the sequencing via Nanopore [124].

3.3 framework for bacteriophage evolution

Current research about bacteriophages and their evolution has some
limitations, as discussed in 3.1.4. On one side of the spectrum there is
"low throughput" research that looks at a few bacteriophages and char-
acterizes them well, while on the other side you find "high-throughput"
studies that look at phage metagenomics broadly but fall short in the
characterization of these phages. There is a gap between these two
sides of bacteriophage research, and work such as the BASEL phage
collection help bridge the two sides by providing a large and repre-
sentative collection of bacteriophages alongside a high level of charac-
terization. Nonetheless, to understand phage evolutionary dynamics
in a meaningful way one must also be able to evolve and study large
amounts of phages. This requires methods that are high-throughput,
rapid, reproducible and cost-effective. It is in this context that we
developed a complete high-throughput framework to evolve bacterio-
phages and analyze their evolution. This framework is illustrated in
figure 3.7 and involves both experimental work and bioinformatics
analysis.

The goal of this framework is to perform and analyze the results of
bacteriophage evolution experiments at scale, rapidly and with min-
imal amount of manual labor. Bacteriophage evolution experiments
are typically performed by hand using daily serial passages, which
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Figure 3.6: Overview of the Myoviridae subfamily Vequintavirinae and relatives. A:
Schematic illustration of host recognition by Vequintavirinae and related
myoviruses. B: Representative TEM micrographof phage HeinrichReichert
(Bas58). C: Maximum-Likelihood phylogeny of the Vequintavirinae subfamily
of Myoviridae and relatives based on a curated whole-genome alignment
with bootstrap support of branches shown if >70/100. The phylogeny was
rooted between the Vequintavirinae sensu stricto and the 2 closely related,
formally unclassified groups at the bottom. Newly isolated phages of the
BASEL collection are highlighted by green phage icons, red arrows are
the phages used in section 3.5. D: The results of quantitative phenotyping
experiments with Vequintavirinae and their phi92-like relatives regarding
sensitivity to altered surface glycans and bacterial immunity systems are
presented as efficiency of plating. Data points and error bars represent
average and standard deviation of at least 3 independent experiments. Figure
and legend reproduced from [121] under Creative Commons Attribution
License.
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Figure 3.7: Overview of the experimental framework for high-throughput
bacteriophage evolution. The central piece of the framework is the
Aionostat, a continuous culture machine that is presented in 3.4
and enables to do a wide variety of evolution experiments with
minimal amount of manual labor. Streamlined processes have
also been developed for the sequencing, genomic and phenotypic
analysis of these experiments.

is a time consuming process prone to experimental error like cross
contamination. We created this framework to improve on these aspects.
The central part of this framework is the Aionostat. We designed and
built this machine to perform continuous culture experiments on bac-
teriophages autonomously. The Aionostat is presented in details in
section 3.4, we focus on the general framework here.

Performing an experiment in this framework starts with the design
of such experiment. This includes selecting the appropriate strain(s)
of bacteria and phage(s), defining the conditions of the experiment
such as media, temperature and duration, and planning the flow of
liquid between the different vials of the Aionostat which defines its
configuration for the experiment. Figure 3.7 shows examples of flows
that can be used in an experiment.

Once the design of the experiment is chosen it is time to the setup
of the Aionostat. It is assembled in the right configuration, sterilized,
programmed with the right experimental parameters and then loaded
with the bacteria and phages in the appropriate vials. Fresh media
is then connected to the input of the machine and the experiment is
started.

Over the duration of the experiment, the work of the operator is
limited to refilling the input media bottle when they are empty and
replacing the waste bottle when it gets full. Additionally, one can
take samples from the vials for storage and later analysis if interme-
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diate time points of evolution are of interest. More details about the
Aionostat and these manipulations is be given in section 3.4.

Once the experiment is over, the Aionostat is cleaned and disassem-
bled while the samples are processed to extract the DNA. This DNA
can be from both bacteria and bacteriophage, and from population
samples as well as clonal samples. The DNA is then directly sequenced
on site using the Oxford Nanopore technology. We are using the rapid
barcoding kit 24 which enables to sequence 24 samples at a time with a
total yield from 15 to 30Gbp, which is enough to have deep sequencing
depths for the samples. The data is then basecalled using the pipeline
here: https://github.com/vdruelle/nanopore_basecalling. The se-
quencing takes 3 days and costs approximately 28CHF per sample, so
it is both fast and relatively cheap, which is in line with the goal of
this framework.

The final steps of the framework involve both experimental and
computational work to characterize the evolutionary changes observed.
The genomic changes are analyzed from the sequencing data using a
Snakemake pipeline, which is publicly available at https://github.
com/mmolari/evo-genome-analysis. The phenotypic changes are mea-
sured by performing killing curve experiments of the ancestral and
evolved phages using a plate reader. The comparison of these killing
curves inform on the fitness advantage of the evolved bacteriophages,
which can then be linked to the genomic changes observed from the
sequencing and bioinformatics analysis.

All in all, within this framework a trained user can reliably perform
an evolution experiment and characterization of several bacteriophages
in less than a month with limited manual labor. This represents a
methodological advancement over traditional manual approaches
that are still standards in this field. This framework offers a scalable
approach to investigate bacteriophage evolution and contributes to
the advancement of bacteriophage research.

3.4 the aionostat

3.4.1 Overview

In the previous section we presented the general framework that we
developed for high-throughput study of bacteriophage evolution. The
central piece of this framework is the continuous culture device that
performs the evolution experiment. This device has been named the
Aionostat, in reference to the greek deity Aion associated to cyclic
time. A picture of this machine and its main components is shown
in figure 3.8. In this section, we dive into the details of the Aionostat
to present how it is able to perform such evolution experiments. We
present the showcase experiments performed with this machine in
section 3.5.
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Figure 3.8: Picture of the Aionostat showing the setup for the experiments presented in sec-
tion 3.5. For more details about the components refer to figure 3.10. 1. Electronic
components’ enclosure. Contains the central computer and custom circuits for
the electric components. 2. Incubator for temperature control. 3. Single chan-
nel piezoelectric pump array. 4. Array of experiment vials on stirrer plate. 5.
Peristaltic exhaust pump. 6. Input media bottle. 7. Waste bottle.
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Figure 3.9: Schematic of the working principle of the Aionostat. One vial is
used to grow bacteria in exponential phase. These bacteria are
then continuously transferred to the second vial and get infected
by phages, which can evolve over time.

The Aionostat operates similarly to a morbidostat [125], with some
modifications that improve performance, ease of use, reliability and
make it phage compatible. It can be seen as an improvement of similar
phage continuous culture devices thanks to its versatility [126, 127].
The most basic setup is a dual-vial system as shown in figure 3.9. The
first vial maintains bacteria in their exponential growth phase without
phages. These bacteria are then channeled to the second vial where
they encounter and get infected by phages. This enables evolution of
the phages over time. The constant dilution of the phage vial with
new bacteria imposes a selective pressure on the phages, as the fitter
bacteriophages will outcompete the other ones.

3.4.2 Build

The Aionostat is an autonomous continuous culture machine that has
two main parts. The first is composed of the components that handle
the liquids, the structure for such components as well as the pumps
that move the liquids around. This part sits inside an incubator for
temperature control. The second part act as the brain and power source
for the machine, which can be programmed to perform a wide variety
of experiments. Overall, the Aionostat was made from commercially
available components, as well as custom 3D printed parts, electric
circuits and wiring.

Vials

The experimental setup utilizes vials of two sizes, specifically 8 mL
and 40 mL total volume, as depicted in Figure 3.10.B and 3.10.C. These
vials are interchangeable depending on the experimental requirements.
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For the experiments showcased in section 3.5, the larger vials were
employed for both the bacterial and phage cultures. Alternatively, the
smaller vials offer an option to intensify selective pressure on the
phages. Utilizing a reduced volume for the phage culture effectively
increases the dilution rate, which enhances selective pressure. This
increased pressure can accelerate the sweeping of beneficial mutations,
potentially leading to more rapid phage evolution.

Each vial is equipped with a magnetic stir bar to ensure consis-
tent mixing. The vials are sealed with an open cap, fitted with a
PTFE-coated silicon septum. This design allows for the sterile transfer
of liquids in and out of the vials using needles and tubing. These
components are shown in Figure 3.10.A.

Vial holders and magnetic stirrer plate

The vials are placed within custom 3D-printed holders. These holders
not only secure the vials but also position the OD and liquid level
sensors in close proximity to the vials, as illustrated in Figure 3.10.E.
The vial holders, along with their respective vials, are positioned on a
15 position magnetic multistirrer. They are held in place using acrylic
panels crafted via laser cutting and are assembled with screws and
3D-printed spacers, as depicted in Figure 3.10.I. It is in this vials that
the experimental evolution happens over time. This is the central part
of the Aionostat, label 4 in figure 3.8.

Liquid handling

Liquid transfer into and out of the vials is facilitated by commercially
available needles, which go through the silicon septum. These needles
are connected on one end to silicon tubing using Luer connectors, and
to piezoelectric pumps on the other end. These pumps offer more
control over the flow of liquid in each tube and are more compact
than single channel peristaltic pumps. This gives great versatility
to the experiments that can be performed with the Aionostat. The
pumps are organized in custom 3D-printed arrays, available in various
configurations (5, 8, or 15 pumps), ensuring stable positioning of
the pumps and separation of electrical connections from the tubing
and potential leaks. The 5 pumps version is shown in Figure 3.10.G
and 3.10.H. The downside of the piezoelectric pumps is that, unlike
peristaltic ones, they are sensible to the pressure difference in the
tubes. This means that they cannot pump liquid with more than a
50-100cm difference between inlet and outlet tube, and that their flow
rate varies depending on this difference in height.

Liquid from the input solution is pumped from the sterile bottles
sitting outside of the incubator using pass through caps connected to
the tubing and the piezoelectric pumps (Figure 3.10.F). Additionally, a
15-channel peristaltic pump is used as exhaust and overflow protection
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Figure 3.10: Components of the Aionostat. A: Needles, silicon tubing, Luer connector, open
vial caps, silicon septum and magnetic stir bars used in the assembly of the
vials. B: Big vial assembly (40mL). C: Small vial assembly (8mL). D: LED and
phototransistor for the bacterial density measurement. E: Full assembly of one
vial in its vial holder. F: Pump connection to the input bottle. G-H: piezoelectric
pump array and housing (5 pumps version). I: Vial holders positioned on the
magnetic stirring plate.

for the vials. The depth of the needle attached to the peristaltic pump
is what sets the working volume in the vials. We used 60mm needles,
which set the working volume of the vials to half of their total volume.
This pump sits outside of the incubator.

The flow rate of the piezoelectric and peristaltic pumps is calibrated
before each experiment as explained in the protocols section.

Optical density measurement

Bacterial density within the vials is assessed using an optical setup
involving an LED and a phototransistor positioned on opposite sides
of the vial at a 135° angle. This configuration allows for the detection
of light diffracted by bacteria within the vial, rather than relying on
direct absorption, thus enhancing sensitivity at low bacterial densities.
The 135° angle between the light source and detector is the optimal
angle to measure maximum diffraction. To accurately translate the
phototransistor’s signal into optical density values, calibration against
standards with known optical densities is essential. The detailed cali-
bration procedure is outlined in the protocols section.

The LED and phototransistor are positioned using designated holes
on the sides of the vial holders as shown in Figure 3.10.E. The specific
models used are the MT5880-IR LED from Marktech Optoelectronics
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Figure 3.11: Custom capacitive liquid level sensor. A: Vial holder and capac-
itive sensor custom PCB. B: Sensing electrodes inside the vial
holder. C: PCB and electrodes outside of the vial holder.

and the SFH 300 FA-3/4 phototransistor from ams OSRAM (Figure
3.10.D). Several combination of LEDs and phototransistors were tested,
this particular pairing was found to offer the best dynamic range and
signal-to-noise ratio for our experiments.

Liquid level sensing

To enhance control and safety in liquid handling within the Aionostat,
custom capacitive sensors have been developed for monitoring the
liquid level in the vials. One vial holder and its sensor is shown in
figure 3.11. The electrodes of this sensor are positioned in the inner
section of the vial holders, ensuring direct contact with the vials as
shown in 3.11.B. Given the fixed diameter of the vials, the volume
of liquid present can be accurately determined from the readings
provided by these sensors. The addition of these sensors is one of the
main improvements relative to other continuous culture devices such
as the one presented in [125]. The ability to measure the volume in
vials enables experiments at variable volumes and greatly improves
the reliability of the machine. It also makes the calibration of the
pumps much easier. The experiments presented in section 3.5 were
performed at constant volume, so we used these sensors primarily as
a mean of overflow protection.

The controller

The Aionostat is controlled using electronic components that are
outside of the incubator and connected to the components inside
via wires. Its central processing unit is a Raspberry Pi 4B board,
equipped with HATs for analog-to-digital conversion of voltage read-
ings and additional GPIOs. Custom Python scripts were developed
to automate the experimental procedures and are accessible at https:
//github.com/vdruelle/Morbidostat_phage. The analog to digital
readings are used to measure the sensors’ signal, which provides
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feedback on the state of the experiment. The GPIOs control the acti-
vation of piezoelectric and peristaltic pumps, based on the feedback
from the sensors and the ongoing experimental requirements. The
pumps have a constant flow rate, so the volume pumped is controlled
by the time the pump is running.

3.4.3 Protocols

Initial tests and calibrations

Calibration of the Aionostat’s components is a critical pre-experimental
step. Firstly, the optical density sensors are calibrated. To perform the
calibration, vials are prepared with bacterial dilutions of different
optical density measured externally on a spectrophotometer. We also
include a vial with raw media to cover optical densities between 0

and 1. Each vial holder is tested sequentially with these OD standards,
recording the phototransistor’s voltage output. A linear fit between
these voltages and OD values is computed and saved for each vial
holder. During experiments, these fits are used to deduce the OD
from the sensor signals. Each vial holder’s calibration accounts for
component variability.

We continue with the calibration of the level sensors. This process
involves recording sensor voltages with vials at varying liquid levels:
empty, full, and intermediate volumes. The sensor readings and level
of the liquid have a linear relationship, enabling the interpolation of
liquid height through a linear fit.

Finally we perform the calibration of the piezoelectric and peristaltic
pumps. Given their constant flow rate, calibration involves running
the pumps for a set duration and measuring the output volume. This
can be done directly in the vials using the readings from the level
sensors, or simply by weighing the vials on a scale. The flow rate
is determined by dividing the volume by the time. These rates also
enable calculation of the dilution rates in the vials by factoring the
working volume in the vials. The flow rate of piezoelectric pumps
is impacted by the pressure in the tubes, so it is recommended to
perform this calibration with a configuration similar to the one that
will be used for the experiment.

Sterilisation of the Aionostat

Sterilization of the Aionostat is conducted post-calibration and pre-
experiment to prevent contamination. This is achieved in two stages.
First, all tubing, pass-through caps, and vials are washed and then
autoclaved at 120°C for 20 minutes. The vials are assembled and sealed
as depicted in Figures 3.10.B and 3.10.C, while the tubing and caps are
wrapped in aluminum foil prior to autoclaving. These components are
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then installed in the morbidostat, and the tubing, needles, and pumps
are connected as they will be during the experiment.

The second stage involves chemical sterilization using 3% sodium
hypochlorite (bleach) and 3% citric acid solutions, applied sequentially
throughout the entire setup. Beginning with the sodium hypochlorite
solution, all pumps are activated for one minute, five times sequen-
tially over a 30-minute period. The vials are then emptied using the
pumps, and this procedure is repeated with the citric acid solution.
After this, the vials are emptied again, and the system is rinsed with
MiliQ water, which is run through the vials and tubing. This process
is automated, requiring manual input only for changing the input
bottles.

At this point the inside of the Aionostat is sterile, and it is crucial to
not disconnect any tubing.

Setting up

The next step is programming the Aionostat for the experiment, which
involves using and modifying the pre-written control code. This can
also be performed before or during the previous steps.

After programming and ensuring the Aionostat is set up and sterile,
the MiliQ water in the vials is replaced with fresh sterile media. This
replacement is carried out by changing the input bottle (near a flame
for sterility) with fresh sterile media and using the pumps to exchange
the liquid in the vials. Lysogenic broth was used in the experiments
presented in section 3.5.

The final preparation step is the inoculation of the sterile media
with bacteria and bacteriophages. This is done manually using a
syringe and needle to pierce the septum and introduce the appropriate
bacterial strain or bacteriophage into each vial. We finish by closing
the incubator and setting it to the desired temperature. Typically, the
entire preparation of the Aionostat takes 4 to 8 hours.

Running the experiment

At this stage the experiment is fully prepared, and we start the run
by launching the code for the experiment from the Rasberry Pi. This
can be done directly from the board, or more conveniently via remote
connection to the Raspberry Pi by SSH. Once started, the program
provides real-time updates on the experiment’s progress, pump ac-
tions, and sensor readings, allowing for monitoring to ensure the
experiment’s smooth operation. The sensor data is also recorded and
saved over time.

During the following days, routine maintenance involves changing
the input media bottles before depletion and replacing the waste
bottle when it is full. A 5-liter bottle pre-filled with some disinfectant,
is used as the waste container. Manual sampling from the vials is
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conducted using a syringe and needle, piercing through the septum
for sample collection. It is recommended to remove bacteria from
phage samples before storage. Regular checks on the experiment’s
status are also recommended, for example when changing media or
collecting samples.

Upon completion of the experiment, the vials are emptied and
disassembled, and the setup can be prepared for the next experiment
following the previously outlined steps.

3.5 evolution experiments

3.5.1 Overview

In this section we present the two experiments performed with the
Aionostat. These experiments are meant to showcase the abilities of the
Aionostat and demonstrate that it can be used to efficiently evolve bac-
teriophages. The principle of these experiments is illustrated in figure
3.12. In these experiments, we used 3 bacteriophages from the BASEL
phage collection presented in 3.2. The 3 bacteriophages used are phage
WalterGehring (bas51, NCBI GenBank accession MZ501111.1), phage
MaxBurger (bas54, accessionMZ501093.1), and phage PaulScherrer
(bas60, accession MZ501100.1). These bacteriophages are well-adapted
to their isolation strain E.coli K12 BW25113, the parental strain from
the Keio collection [128].

To assess their directed evolution against a novel and more chal-
lenging strain, we used E.coli K12 BW25113 wbbl(+) as a model [121].
This particular strain is a derivative of BW25113 which has a restored
O16-type O-antigen glycan barrier [122], they are otherwise genetically
similar. The restored O-antigen adds long chains on the lipopolysac-
charide (LPS), which acts as a protective barrier on the bacterial surface
by shielding the cell surface as shown in Figure 3.12. This inhibits in-
fection from bacteriophages that do not bind the LPS or other glycans
[121]. The phages used in this study are impaired by the O-antigen,
but infection is not completely inhibited. This is likely due to their
ability to bind another surface glycan [129].

The goal of these two experiments was to evolve phages for better
infectivity on E.coli K12 BW25113 wbbl(+). In the first experiment, a
linear evolution approach was used. The phages were evolved in sepa-
rate vials for better infectivity on a challenging E.coli strain, resulting
in evolved phages which fitness was measured and compared to their
ancestors. Second, a phage ”cocktail” experiment where these phages
were first mixed and then evolved on the same challenging E.coli
strain, which resulted in the appearance of recombinant phages.

Both of these experiment necessitated half a day of work to prepare
and launch, and around 15 min of work a day in the subsequent days
to collect samples from the vials and refill the media bottles. Samples
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Figure 3.12: Schematic of evolution experiments. Originally the phage does not infect
the strain with restored O-antigen well, which does not causes significant
bacterial killing when the bacteria are grown in presence of the phage. After
evolution using the Aionostat, the evolved phages infect both the ancestor
and the O-antigen strain, causing significant bacterial killing.

taken from the bacterial cultures were streaked on bacterial lawn,
showing that the cultures stay phage free for the whole duration of
the experiment. The phage population size remained stable over time,
and no cross contamination was observed between the phage samples.
For both experiments we present results for phage bas51 and bas54

only as no significant evolution was observed for phage bas60.

3.5.2 Linear evolution experiment

The experiment was conducted using the Aionostat, as depicted in
schematic Figure 3.13, over a duration of five days. Each phage vial
was paired with a culture vial of E.coli BW25113 wbbl(+) kept in
exponential phase in lysogeny broth medium (LB) at 37°C as shown on
the schematic 3.9. Vials were seeded from bacterial and phage stocks
right before the start of the experiment. The bacterial culture’s dilution
rate with raw LB was adjusted to maintain a constant optical density
at 600nm (OD600) of 0.5. The excess liquid resulting from the bacterial
culture dilution was transferred to the phage vial, where infection and
replication of the phages occur. This transfer of bacterial culture to
the phage vial provides fresh bacteria for infection, while the volume
in the vial is maintained by discarding any surplus. Consequently,
the phage solution becomes more diluted over time, which selects for
bacteriophages with higher fitness.

Throughout the experiment, daily samples were extracted from each
vial. To prepare these phage samples for storage and later analysis, bac-
teriophage population samples were cleared of bacteria. The ancestor
phages, along with the phage populations from day 1, 3, 5 and phage
clones from the day 5 populations, were sequenced using in-house
Nanopore sequencing as detailed in section 3.5.4. Genomic changes
were tracked over the experiment’s duration using the sequencing data.
Lastly, to discern differences in phage fitness, turbidity based killing
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Figure 3.13: Schematic illustration of the linear evoltution experiment. Three phages
were evolved in parallel, in separate vials, on a challenging E.coli strain with
O-antigen restored. The experiment lasted for 5 days. Samples of the phage
population were taken once a day.

curves of both E.coli K12 BW25113 and E.coli K12 BW25113 wbbl(+)
were done with the ancestral phages, evolved phage populations and
isolated clones. Differences in phage fitness cause different killing
dynamics, enabling phenotypic comparison between the phages.

A copy of this experiment has been done by hand using daily serial
transfer to provide comparison to a more established approach. Details
about the methodology are described in section 3.5.4.

Results

Firstly, we focus on the phenotypic changes in the evolved phages.
Figure 3.14 shows the killing curves of the bacterial strains used in
the experiment by the ancestor and evolved phages. When observing
the interaction with the isolation bacteria, both the ancestor (dashed
blue line) and evolved phages (solid blue line) show a sharp decline in
OD600 values around the 3-hour mark, going down to the detection
limit. This suggests that both ancestor and evolved phages kill the
isolation bacteria at comparable rates.

In contrast, when these phages interact with the wbbl(+) strain, dif-
ferences between the ancestral and evolved phages become apparent.
The evolved phages (solid orange lines), cause a steeper decline in OD
values between 3 to 7 hours than their ancestral counterparts (dashed
orange lines). This indicates that the evolved versions of both bas51

and bas54 are more efficient at killing the wbbl(+) bacteria than their
predecessors.

In summary, while the evolved bas51 and bas54 populations main-
tain similar killing rates as their ancestors on E.coli BW25113, they
show enhanced efficiency against the wbbl(+) strain. The killing curves
were also performed with clones isolated from the evolved population
as shown in figure 3.15. The results are similar to the ones observed
with the phage population, suggesting that phage mutants have the
ability to infect both bacterial strains, and that this is not an effect of
the phage diversity present in the evolved phage population.
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Figure 3.14: Killing curve of ancestor and end population of evolved phages
on E.coli K12 BW25113 (denominated WT) and E.coli K12

BW25113 wbbl(+). Evolved phages kill wbbl(+) better while re-
taining their ability to kill WT.
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Figure 3.15: Killing curves of phage clones. The full blue lines are the same
as in 3.14. The killing of the wbbl(+) strain is better than the
ancestor phages for all clones, but clones from bas54 seem to be
better in this regard like what is seen for the population killing
curves. Killing on WT is still comparable to the ancestor phages.
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Figure 3.16: Frequency in time of genomic changes observed in the phage
populations.

Secondly, we analyze the genomic changes from this evolution
experiment. Figure 3.16 shows the frequency trajectories of single
nucleotide polymorphisms (SNPs) and gaps for the evolved phage
populations over the span of the experiment. Observing the bas51

panels, distinct trajectories of several SNPs are evident. Notably, the
SNPs at position 30397 (lateral tail fiber), 36588 (lateral tail fiber with
fibronectin type 3 domain), and 7328 (major capsid protein) exhibit
sweeping behaviour over time, while some other mutations seem to
appear earlier but then disappear. In terms of gaps it seems that a
gap in position 43327 (lateral tail fiber with intimin domain) and
38473-38478 (putative protein) show sweeping behaviour.

Transitioning to the bas54 panels, the SNP at position 36619 (lat-
eral tail fiber with glycosidase and deacetylase domains) stands out,
reaching near fixation by day 5. Mutations in position 7695 and 7696

(putative protein) increase over time as well, but seem to have ap-
peared later in the population. In terms of gaps there does not seem
to be a clear pattern for bas54. We see some variants with gaps in their
genome, but only at low frequency.

Additionally, for both phages, we see the appearance of a phage
subpopulation with low frequency of around 5% that have a big
deletion in their genome by day 5. This is from position 43300 to
51800 for bas51 and from position 46680 to 50600 for bas54. There
seem to be a bit of diversity on the exact position of this deletion. This
subpopulation of phages appears early in the experiment but does not
seem to take over the population. No other big rearrangements are
observed in the phage genomes.

Overall it is clear from Figure 3.16 that what is originally a clonal
population of phages at the start of the experiment diversifies in the
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Table 3.1: Mutations of the clones extracted from the phage populations shown in Figure
3.16. Positions in bold are the sites where a mutations was also observed from
the population sequencing. Killing curves of these clones are shown in Figure
3.15.

following days. We do see a fair number of mutations rising and then
decreasing in frequency, which suggests that the mutations providing
the most increase in fitness take a while to appear. Interestingly, we
also see that newly acquired mutations do not seem to fix completely,
keeping some diversity in the population. Phage clones were also
isolated from these populations. Unsurprisingly, most of the phages
picked are genetically identical, and have the mutations seen at high
frequency in Figure 3.16. Details about the phage clones’ mutations
can be found in table 3.1.

Linking these observations to the killing curves in Figure 3.14, it can
be assumed that the genomic changes observed play a pivotal role in
the phages’ enhanced capability to kill the wbbl(+) strain. Mutations
seen may offer insight into genetic changes that confer advantages to
these phages, allowing them to efficiently combat both the isolation
bacteria and the wbbl(+) strain. A good portion of the mutations
observed are focused on the tail fibers of the phages, which likely
impact the binding efficiency of the phages on the bacteria. This is
supported by the fact that the bacterial strain used in the experiment
is genetically identical to the isolation strain of the phages, with the
exception of the restored O-antigen. The phages are likely well adapted
to their isolation host, hence the only challenge that they would face
with the wbbl(+) strain would be linked to binding and absorption
since the bacteria are otherwise genetically identical.

Further in-depth genetic analysis could be pursued to pinpoint
the exact role these mutations in the phages’ improved predation
capacities and confirm that it is linked to absorption efficiency on the
bacteria. The goal of this experiment being to showcase the ability of
the Aionostat, we leave the molecular biology details for future work.
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Figure 3.17: Comparison of killing curves for the linear evolution experiment
made by hand VS made with the Aionostat. The full blue lines
and full orange lines are the same as in 3.14. Red dots highlight
the depth of the bacterial crash. Overall the killing of the wbbl(+)
strain is good in all cases after 5 days of evolution (orange
curves). The Aionostat phage population already kills well after
1 day of evolution, which is not the case for the hand made
experiment (green curves). Ultimately phages from the manual
experiment end up with some of the same mutations as observed
in the Aionostat experiment, suggesting that the Aionostat is
faster at exploring the mutational landscape to find the highest
fitness mutations.

Comparison with manual serial dilution evolution

The evolution experiment performed as described in section 3.5.4
shows similar results to the Aionostat one. The evolved phages kill
BW25113 wbbl(+) like is observed for the ones evolved with the Aiono-
stat, see Figure 3.17. One main difference observed is that the phages
evolved using the Aionostat evolve better killing on BW25113 wbbl(+)
faster, as can appreciated by the crash depths of the curves. One can see
that after one day of evolution, the phages evolved with the Aiononstat
already have improved killing on wbbl(+), while it is unclear for the
phages evolved manually. Eventually they all achieve strong killing at
day 5, showing that we get similar results in both cases, but that the
Aionostat seems to promote faster evolution. The mutations observed
in the hand evolution experiment are also mostly on the genes linked
to phage absorption as shown in Table 3.2. Interestingly, the jump in
killing efficiency seen between day 1 and day 5 seems to be linked to
the appearance of mutations at the same locus as seen in the Aionostat
experiment for phage bas51.

3.5.3 Recombination experiment

In this section we present the phage cocktail experiment that we
performed with the Aionostat. It provides a proof of concept for phage
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Table 3.2: Genomic changes observed in the linear evolution experiment done by hand.
Positions in bold are the sites where a mutations was also observed in the
experiment made with the Aionostat.

directed evolution through recombination using the Aionostat, a topic
that has been introduced in 3.1.3. This experiment and its outcomes
are illustrated in figure 3.18. The experimental parameters are the
same as for the linear evolution experiment, with the exception of the
initial content of the vials and the duration of the experiment. For the
experiment a mix of equal amount of the 3 phages is used to seed
two phage vials at the start of the experiment. The third vial served
as a negative control, aiming to validate that it remained phage-free
throughout the experiment.

LB Waste

Recombinant phages 
and mutations

One phage took over 
and mutated

Goes extinct7 days

vial 1

vial 2

Figure 3.18: Schematic of the recombination experiment. The three phages were mixed in
equal amount and then spread in two evolution phage vials. This cocktail is
evolved on E.coli BW25113 wbbl(+). Samples of the phage population were
taken once a day. After 7 days of evolution, one of the vials was overtaken
by recombinant phages, while the other one was overtaken by one of the
ancestral phages with additional mutations.
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Figure 3.19: Killing curve of ancestors, evolved populations and evolved
phage clones (day 7) on E.coli K12 BW25113 (denominated WT)
and E.coli K12 BW25113 wbbl(+). Evolved population kill wbbl(+)
better in both cases and so is the case for individual clones of
vial 2. This is not the case for all clones isolated from vial 1.

Results

Figure 3.18 summarizes the results of this experiment. We observed the
rapid extinction of phage bas60 in both vials. In vial 1, the final phage
population was composed of evolved recombinants of bas51 and bas54,
along with several point mutations. A different scenario happened
in vial 2, bas51 took over the phage population, out-competing the
two other phages. The final phages are evolved version of bas51 with
some mutations, similar to the ones observed in the linear evolution
experiment discussed above.

Figure 3.19 shows the phenotypic differences in bacterial killing
at MOI 1:1000 between the evolved phage populations and their an-
cestors. Once again we observe that, unlike the ancestor phages, the
evolved phage populations cause a decline in bacterial density around
the 4 hour mark on both BW25110 and the wbbl(+) mutant (green and
red lines). Vial 3 clones (red) showed killing efficiencies on wbbl(+)
comparable to the whole evolved population. However, the recombi-
nant phages from vial 1 (green) showed superior killing of wbbl(+)
compared to their ancestors, but not as effectively as the entire evolved
population. There are two main reasons why this might be the case. We
could have, by chance, missed the best phages in the population while
picking and isolating clones. Another possibility is that phages in the
evolved population have "specialized" in different ways, and that they
kill best when together due to synergistic effects. Notably, all clones
isolated from vial 1 were recombinant, suggesting a fitness gain from
recombination that allowed them to outcompete non-recombinant
phages.

Focusing on the genomic alterations, vial 2 exhibited evolution
patterns similar to the linear evolution experiment. This is expected
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Figure 3.20: Genome comparison of ancestral phages and evolved recombinant phages isolated
from vial 1. The genome structure of the evolved phages is mostly identical between
clones, except for the region of the homing endonuclease. They differ in a few point
mutations.

considering one phage took over the population and then evolved
linearly. Consequently focus our attention on vial 1. The evolved
phages present in this vial are recombinant phages between bas51

and bas54 as shown in figure 3.20. The main recombination event is
25kbp of bas54 that got inserted into bas51 genome. This starts at the
terminal repeat region and ends in the middle of a gene 25kbp later
and likely happened as shown in Figure 3.21. This region primarily
contains hypothetical proteins, making the fitness benefits of this
recombination unclear, but it must have been beneficial enough to
out-compete the other phages.

Additional genomic changes in vial 1 clones include a secondary,
smaller recombination event involving a homing endonuclease, which
likely jumped from bas54 to bas51 during co-infection. Last is a big
deletion of 8.5kpb in bas51’s genome, which was seen in all clones
of the first vial and 2 out of 4 clones in the second vial. This deletion
starts in a lateral tail fiber protein and covers 12 hypothetical proteins
after that. About 3/4th of the lateral tail fiber gene is deleted, which
likely completely stops its function. A large deletion in the same area
was also observed in the linear evolution experiment at a smaller
frequency, which means it has evolved in a convergent manner several
times. This suggests it hinders infection of the wbbl(+) strain and was
lost. The evolved recombinant phages from the first vial have genomes
approximately 10% smaller than their ancestors, which might also
contribute to their improved fitness. Point mutations similar to those in
the linear evolution experiment likely also contribute to the improved
bacterial killing efficiency.

Further analysis could be done to understand the role of the genomic
changes and their effect on killing efficiency, but we leave the molecular
biology details for future work as the goal of this experiment was to
showcase the ability of the Aionostat.
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Figure 3.21: Schematic of the recombination process that happened in vial
1. Since there is a transition from bas51 to bas54 genes over
the terminal repeat region it is likely that the recombination
happened while genomes where in a linear state, causing only
one cut.

3.5.4 Material and methods

Manual linear phage evolution experiment

This experiment is similar to the experiment done with the Aionostat
presented in the main text but done by hand, to provide a comparison
with a more standard approach to phage evolution experiments using
daily serial passages for 5 days. The experiment was performed with
the same phages: bas51, bas54 and bas60 in triplicates. Only the results
of bas51 and bas54 are presented as not much evolution was observed
for bas60 (like in the Aionostat experiment).

On the first morning, 5mL of LB in glass tubes were seeded with
1µL E.coli BW25113 wbbl(+) from an overnight culture and infected
with the respective phages at an MOI of 1:100, allowing for several
replication cycles before saturation in the vials. The cultures were then
grown on a shaking incubator at 37°C for 8 hours, which was shown
to be enough time for the culture to either lyse or saturate. It was
decided to limit the growth to 8 hours to avoid evolutionary dynamics
that would involve the rise of resistant bacteria and could cause bias
in the results.

After 8 hours, 1mL samples were taken from each tube and cleared
of bacteria using 1% chloroform plus strong vortexing, followed by a
2 minutes spin at 20 000g. The supernatant was extracted and stored
at 4°C to seed the cultures on the next morning and later the analysis
of the phages at that time point.

The next morning, 10µL of a 105 dilution of the supernatant was
used to infect the daily cultures prepared as was done on the first
day. The amount of supernatant used ensured between 100 and 10

000 phages are transferred to the vial, preventing the extinction of
the phages by over diluting while keeping the MOI low. These serial
passages were repeated every day until the end of the experiment.

76



Measuring phage concentration

Bacteriophage concentration in solution were measured using the se-
rial dilution spotting method. This process starts with the preparation
of top agar bacterial lawn. To do so, round LB agar plates (9.4cm
diameter) were overlayed with top agar (LB agar containing only 0.5%
agar) supplemented with 100µL of bacteria. While the top agar is
solidifying, 10-fold serial dilutions of the bacteriophage solutions were
prepared in a 96-well plate using phosphate-buffered saline (PBS),
resulting in dilutions 10 to 108 of the original phage solution.

Then, 2.5µL of each dilutions are spotted on the top agar lawn and
left to dry by the flame for 10 minutes. The plate is then moved to
a 37°C incubator for 4 hours. The titer of the solution is inferred by
counting the plaques in the bacterial lawn and factoring the dilution
factor. This whole process was done with both E.coli BW25113 and
E.coli BW25113 wbbl(+) to ensure there are no discrepancies between
the two.

Phage amplification

The samples taken from the evolution experiment usually contained
between 106 and 109 PFU/mL. When more phages were needed, like
in the case of DNA extraction for sequencing, the phage samples were
amplified in liquid culture. The amplification step was designed to
minimize bias from the original sample by using an initially high
amount of phages and a short incubation time to limit the number of
replication rounds.

For each amplified phage stock, tubes were inoculated with 1mL
LB and 300µL of E.coli BW25113 wbbl(+) from overnight culture and
then put for 20min at 37°C 600RPM to restart the growth of bacteria.
Subsequently, 100µL of the phage sample to amplify was added to
the tubes and then incubated for 3 hours at 37°C 600RPM. The tubes
were then cleared of bacteria by adding 1% chloroform, vortexing and
spinning the tubes for 10min at 8000g. The surpernatant was extracted
and titered, usually achieving between 1010 to 1012 PFU/mL. These
amplified samples were stored at 4°C until they were used.

Phage geneomic DNA extraction

Genomic DNA of bacteriophages was prepared from high-titer stocks
produced as explained above. The DNA was extracted using the Nor-
gen Biotek Phage DNA Isolation Kit according to the manufacturer
guidelines. When the DNA amount was to low for subsequent se-
quencing, the samples were concentrated using a SpeedVac vacuum
concentrator. Quality of the DNA was controlled using a Nanodrop
device and was sequenced as explained in below.

77



Plate reader killing curves

Killing curves presented in Figures 3.14, 3.15 and 3.17 were generated
using an Epoch2 plate reader in absorbance (OD600) mode. The phages
were tested on both E.coli BW25113 and E.coli BW25113 wbbl(+) at a
target multiplicity of infection of 1 to 1000.

Each well was prepared with 180µL of a bacterial dilution in LB
of 5 · 108CFU/mL. 20µL of diluted phages with a concentration of
5 · 106PFU/mL was then added to their respective wells, achieving a
final phage concentration of 5 · 105PFU/mL and a volume of 200µL
in the wells. The phage stocks were titered on the same day as the
experiment to ensure as much accuracy as possible, and then diluted
in PBS to hit the target MOI of 1 to 1000. The phage dilutions used to
prepare the plate were also titered right after the plate was loaded to
the plate reader to ensure the MOI was correct.

Once prepared, the plate was then moved to the Epoch2 plate reader
and run for 15 hours at 37°C degrees, which was long enough to ob-
serve bacteria killing and eventual regrowth of resistant bacteria. The
experiment was performed with 450RMP double orbital rotation and
OD600 readings every 10 minutes. The lid of the plate was removed,
and replaced with an "easy breathe" membrane porous to dioxygen
but not to water.

DNA sequencing

The DNA samples extracted as explained previously were sequenced
in-house using the Oxford Nanopore sequencing technology. We uti-
lized the MinION Mk1B device for sequencing, employing V14 chem-
istry coupled with R10.4.1 pores. The flow cells used in this procedure
were of the type FLO-MIN114. To facilitate the sequencing, we uti-
lized the rapid barcoding sequencing kit 24, specifically the kit SQK-
RBK114.24. For the basecalling process, Dorado version 0.4.1+6c4c636

was employed, using the basecalling model dna_r10.4.1_e8.2 _400bps_sup
version 4.2.0. The basecalling pipeline used is available here: https:
//github.com/vdruelle/nanopore_basecalling.

Sequencing analysis

The analysis of the sequencing data was performed using a Snakemake
pipeline, which is publicly available athttps://github.com/mmolari/
evo-genome-analysis. This pipeline takes as input the raw reads
from the samples and the reference genomes. It maps the reads from
each sample to the references using Minimap2 [130] from which we
extract trajectories of genomic changes over time, encompassing single
nucleotide polymorphisms, gaps, insertions, clips, and rearrangements.
These trajectories were then filtered and plotted as shown in Figure
3.16. These mutations were then manually inspected when additional
information was needed.
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Recombination were detected by mapping the recombinant phage
genome’s to the parental strain genomes and plotting the mutation
density along the genome. Jumps in the mutation density clearly
identified recombination regions. The breakpoint can only be inferred
to about a 50-100bp region since the parental bacteriophages have
high homology.
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4
C O N C L U S I O N A N D O U T L O O K

Evolution is a fundamental force that shapes and guides the devel-
opment of all living organisms, from the simplest organism to the
most complex. Although this process of change and adaptation was
first described in relation to the flora and fauna that populates our
world by the work of Charles Darwin [131] and subsequent work, it
has since been appreciated for the huge driving force it exerts of the
microscopic world. Landmark studies such as those by Woese and Fox
in 1977, which identified Archaea as a distinct form of life by studying
16S ribosomal RNA evolutionary relations [132], or work from Luria,
Delbrück, Lederberg, Tatum, Beadle, Hayes and Zinder in the 1940s
and 1950s, with the discovery of spontaneous genetic mutations and
horizontal gene transfer in bacteria [133–136], have all contributed to
showing the key role of evolutionary dynamics for life on our planet.

Since their discovery at the end of the 19th century through the
work of Dmitri Ivanovsky [137], viruses have also been heavily studied
for their ability to evolve. Although these biological entities straddle
the line between life and non-life, their ability to replicate and mutate
inside their hosts, passing down these genetic changes to their progeny,
gives them the ability to evolve like prokaryotes and eukaryotes. The
sheer abundance and diversity of viruses on Earth proves that viruses
are master evolvers [71]. Their rapid replication rates and high muta-
tion frequencies enable them to adapt rapidly to new environments
and hosts. The evolutionary prowess of viruses, particularly evident
in entities like HIV-1 and bacteriophages, is a defining trait of the
viral lifestyle and has many implications in healthcare, ecology and
biology. From the creation of effective vaccines to manage viral out-
breaks, to the conception and improvement of bacteriophage therapy,
understanding viral evolution is central to pushing the boundaries of
modern biology and healthcare.

With this background in mind, the objectives of this thesis were the
following (reported from section 1.5):

1. Study and characterize how HIV-1 evolves both intra-host and
inter-host, and explain how the evolutionary dynamics at the
pandemic level emerge from the peculiar evolution happening
within-host.

2. Create a complete framework for high-throughput studies of
bacteriophage evolution through directed evolution experiment.
If successful, it will enable a better study and optimization of
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bacteriophage evolution but also provide general insights about
viral evolution dynamics such as recombination between viruses.

In this section we discuss the outcomes of the work performed in re-
lation to to these two goals, their broader implications and limitations
that could be addressed in the future.

4.1 hiv-1 bias for reversions and impact on its evolu-
tion

HIV-1 is a widespread virus which causes serious health burden
around the world. The ability of HIV-1 to evolve has led to the diverse
viral population that we see nowadays. Although it is widely recog-
nized as a fast evolving virus, understanding the speed at which HIV-1
evolves and diversifies remains a challenging task. Different methods
used to measure this rate often produce varying results [138–142]. This
inconsistency indicates that our understanding of how within-host
HIV-1 evolution translates to the evolution seen on the scale of the
pandemic is incomplete.

In the case of HIV-1, evolution rate on a pandemic scale is about
two to five times slower than within a host [143]. One can expect a
saturation of evolution speed in the case of very diverged sequences,
but HIV-1 sequences are too similar for that to contribute significantly.
Recent HIV-1 research has proposed several other ideas to explain
this mismatch. The two major theories are the "store and retrieve"
hypothesis, which suggests that older variants of HIV-1 are more likely
to be transmitted [144], and the "adapt and revert" hypothesis, which
proposes that the virus quickly returns to a state similar to its original
form after transmission [66, 145–149]. Both of these theories would
"favor" older versions of the virus on the between-host scale, explaining
why the evolution rate observed would be smaller. However, the
exact impact of these and possibly other factors on the differences in
estimated rates of evolution is still not well understood [150].

It is in an effort to shed light on this topic that we have performed
and published the research presented in chapter 2. For this work,
we used both between-host sequencing data covering many years of
the pandemic as well as deep sequencing data from a longitudinal
within-host evolution study to explain this evolution rate saturation.
The between-host data was used to obtain a snapshot of HIV-1 evo-
lution on a large scale, while the within-host data enabled the study
of evolutionary dynamics inside hosts with a much smaller focus. We
showed that HIV-1 evolution has a strong tendency to revert muta-
tions to their globally preferred state during, approximated as the
HIV-1 group M consensus sequence for this study. These unpreferred
states are probably the result of escape from immune selection in
a previous host. They are then reverted to the optimal state in the
subsequent hosts as immune selection pressure changes. Both types
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of mutations, escape and reversion, are beneficial in their respective
environments. Therefore, we observe along chains of transmission
evolutionary dynamics driven by the adaptation to changing environ-
ments, and the global dynamic observed on the between-host scale
looks like slowly acting purifying selection [151]. This finding suggests
that evolution rates observed along chains of transmission would be
intermediate between the within-host and between-host rates, which
is indeed what was observed in previous studies [152]. We therefore
showed that the "adapt and revert" hypothesis is the main cause of the
evolution slowdown observed on the pandemic scale, an effect that
could nonetheless be amplified by evolution during the acute phase
or by the transmission bottleneck [146, 147, 153].

Substitution models commonly used to study viral phylogenetics
do not account for the rapid reversions highlighted in this work as it
would require site-specific rates for the consensus and non-consensus
states, an effect that is not captured by standard rate variation models
[154–156]. These rapid mutations away and back to the consensus are
not perceived on the phylogenetic tree due to the sparse sampling.
This effectively shortens the branch lengths in the tree, an effect which
is stronger for longer branches which are already susceptible to long
branch attraction. Consequently, omitting this bias for reversions likely
hurts our ability to extract information from phylogenetic analyses
such as the evolution rate or the time to the most recent common
ancestor, which will appear too slow or too close to the present respec-
tively.

HIV-1 is an excellent model to study the bias for reversions muta-
tions due to the life long infection it causes. This leaves ample time for
the virus to adapt to a specific host, and then revert after transmission.
Although this effect is probably stronger in HIV-1 than it is for other
viruses, it likely plays a significant role for the evolution of viruses
that are endemic, like influenza A, and have to adapt to changing
immune landscapes of the population over longer time scale. When
looking at viral evolution over time scales of thousands of years, this
reversion bias makes viral evolution as slow as the viral consensus
evolution, which seems to be directly linked to their long-term host
relationships [157, 158].

Although the work presented in chapter 2 highlights and quantifies
the impact of reversions to consensus on HIV-1 evolution, and con-
sequently explain most of the discrepancies between with host and
between-host evolution, HIV-1 evolution remains intricate and several
aspects are still poorly understood. These include the role of recombi-
nation in HIV-1 evolution, the specific dynamics of HIV-1 subtypes,
and the multifaceted impact of host factors such as HLA type, CD4

count, and viral load, particularly in the context of transmission chains
[66, 159–161]. Current and future research in these areas is crucial
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for a comprehensive understanding of HIV-1’s adaptability and for
developing effective strategies to combat its spread.

4.2 high-throughput framework for bacteriophage evo-
lution with the aionstat

Since their discovery at the beginning of the 20th century, bacterio-
phages have been shown to be one of the most abundant and diverse
biological entity on Earth [96]. Their prevalence places them at the
heart of many research domains such as ecology, healthcare and molec-
ular biology [85]. The remarkable diversity of bacteriophage is tightly
linked to their ability to evolve, which makes them an excellent model
to study evolutionary dynamics in various contexts [100]. Even when
it is not the direct focus of the research, bacteriophage evolution is in-
herently linked to all these research areas. Be it for ecological reasons,
where it is essential to understand how phages adapt and diversify to
shape ecosystems, or for healthcare, where the evolution of phages can
be leveraged to cure patients. Unfortunately, the current limitations
in phage evolution research does not allow a comprehensive under-
standing of this field. The focus of studies is often narrow, centering
on a handful of well-characterized bacteriophages [117], or very broad,
like for environmental metagenomics studies where phages are poorly
studied [118–120]. This results in two main limitations for studying
phage evolution: either the findings are too specific and would not
hold for the broader diversity of phages, or they lack detailed char-
acterization due to the absence of experimental investigation which
limits our understanding of the relevant processes. There is a need to
bridge this gap to push bacteriophage research further.

It is with this goal in mind that we designed and performed the
work presented in chapter 3. The first approach to solve this dichotomy
was to create a bacteriophage collection that would be both represen-
tative of the large diversity of phages infecting E.coli K-12, but also
provide in depth characterization of each phage, including their bacte-
rial receptors, sensitivity to different bacterial immune systems and
well curated genomes. This collection - the BASEL phage collection
[121] - highlights differences between phage groups that are infor-
mative of evolutionary trade-offs for these phages. Although it was
recently published, it has already been shared widely with many
groups around the world, providing a solid foundation and reference
for future bacteriophage research.

The BASEL phage collection focused on bacteriophages that infect
E.coli K12. This laboratory strain does not possess an O-antigen like
many E.coli strains found in nature or in patient’s infections. Conse-
quently this collection likely miss a whole pan of E.coli bacteriophages
that are dependent on the presence of this O-antigen.To improve the

84



diversity of bacteriophages in the collection, an "expansion-pack" is
currently being created that focuses on such bacteriophages.

The BASEL collection and similar work such as [162] contribute
greatly to expand our knowledge of bacteriophage diversity and char-
acterization. Nonetheless such projects are very labor intensive due to
the time needed to isolate and characterize bacteriophages individually.
Although we can strive to better understand bacteriophage diversity
and evolution this way, it is unlikely that this type of approach alone
will be enough to do so. Fortunately, recent advancements in sequenc-
ing technologies, along with progress in bioinformatics analysis, are
well positioned to enhance our understanding of bacteriophage evolu-
tion. The yearly increase in the number of sequenced bacteriophage
genomes is a testament to the potential of these methods. However,
there is still a significant amount of work to be done. Bacteriophage
research, particularly from a bioinformatics perspective, does not re-
ceive as much attention as research on other viruses like HIV-1. This
disparity is partly due to the limited insights gained from relying on
metagenomics analysis only, as bacteriophages are not as extensively
characterized as many human viruses. Therefore, integrating both
traditional and bioinformatics approaches seem crucial for a more
comprehensive understanding of bacteriophage evolution.

Although studying existing diversity of bacteriophages in nature
gives great insights about the long term evolution and diversification of
phages, it is but a snapshot of the results of many years of evolution. To
understand the microscopic processes from which these evolutionary
dynamics emerge one must look at bacteriophage evolution in finer
details. This is done via experimental work and is complementary
to the approach taken with the BASEL collection to provide the full
evolutionary picture. Evolution experiments on bacteriophages are
typically performed via manual serial passages over several weeks,
a process which is both labor intensive and prone to experimental
errors such as cross contamination [163, 164]. Therefore, evolution
experiments are usually limited in scale, resulting in narrow insights
into the mechanisms of evolution. To improve this aspect we need a
way to perform evolution experiments on a large number of phages,
rapidly and reliably.

It is precisely to fulfill that role that we created the high through-
put framework for bacteriophage evolution. Within this framework,
one can design, perform and analyze the results of an evolution ex-
periment on multiple phages in a matter of weeks, with a limited
amount of repetitive labor. At the heart of this framework is the
continuous culture device we crafted to perform the bacteriophage
evolution: the Aionostat. This machine is inspired by turbidostats
and morbidostats such as [125–127], but has been heavily modified to
increase performance, versatility, ease of use, reliability while keeping
costs reasonable.
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Two evolution experiments performed with the Aionostat were
showcased in section 3.5. These experiments showed that this machine
can effectively train bacteriophages to increase infectivity on a chal-
lenging bacterial strain in a matter of days, via both vertical evolution
and recombination of the phages. Although limited in scope in terms
of biology, these experiments show that the framework and the Aiono-
stat perform well. We hope this work will pave the way for future large
scale evolution experiments that aim to answer challenging biological
and evolutionary questions.

A particularly interesting topic that could be characterized in depth
using the Aionostat is the evolutionary dynamics linked to the recom-
bination of phages [86–89]. These dynamics have been empirically
shown to be central to the evolution of bacteriophage via methods
such as the Applemans protocol, a technique which is often used to
train bacteriophages in phage therapy contexts [94]. Nonetheless, we
know comparatively little about the underlying processes and prin-
ciples that govern the evolution of bacteriophages in such contexts.
The Aionostat is well suited to reproduce such protocols at scale, and
the repeatability achievable by this machine would allow in depth
characterization of the underlying processes. We could deduce and
fine-tune relevant parameters to improve future phage therapy, poten-
tially advancing our understanding of phage biology in the process.
It is worth reminding us that the perfect therapeutical phage, i.e. a
phage with broad host range that would be exceptionally good at
infecting and killing bacteria, does not exist in nature because it would
quickly drive its hosts to extinction. Therefore, the ability to train and
potentially modify phages for our purposes is of utmost importance,
and the insights that the Aionostat can provide in this context are
essential.

The Aionostat is a versatile machine, and it could be used in other
contexts than directed phage evolution. Although it has been designed
for phages, it can still perform bacterial-only experiments and provides
many improvements over similar devices [125, 165]. In its current state
it is already a valuable addition to many laboratories, but it is not
as user friendly as standard laboratory equipments despite being in
the same price range. We think the machine itself could be further
improved to provide better user experience while reducing costs, but
this would likely require product design expertise.

Finally, the laboratory environment associated with the Aionostat
provides some benefits but does have drawbacks as well. Bacterio-
phages strive in a variety of natural environments which are poorly
represented by laboratory conditions, and our limited comprehension
of bacteriophage biology may stem from these artificial conditions to
some extent [166, 167]. For instance, bacteria are more often than not
in a non-growing state in natural habitats, which is known to have a
significant impact on the ability of phages to productively infect and
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replicate [168]. Research on bacteriophages in more natural conditions
is becoming more common but there remains a lot to be done.
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A
A P P E N D I X

a.1 details of the aionostat

In this section we give some details about the Aionostat and its compo-
nents. The Aionostat is an intricate machine and the resources shown
here will likely not be enough to duplicate it. These are meant for long
term safe keeping. For more information, get in contact with Valentin
Druelle or Richard Neher.

a.1.1 Models

The 3d printed models used to make the Aionostat are accessible at
https://github.com/vdruelle/Aionostat_ressources. The 3d printed
components were printed in black tough PLA, and the laser cut com-
ponents are made from 4mm acrylic panes.

a.1.2 Electronic

The electronic components used in the Aionostat are detailed below.

Figure A.1: Block diagram of the electric components of the Aionostat.
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Figure A.2: Picture of the electronic components of the Aionostat. These are found in the
electronic enclosure shown in figure 3.8. 1. Power supply. 2. Raspberry Pi 4B
with HATs. 3. ADHV4702-1CPZ (HV amplifier) and adruino for clock. 4. Micro
pump driver HV switch. 5. Main board. 6. Signal processing.
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