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Summary

It has been several decades since the idea of quantum error correction was first
proposed. In that time, many different approaches have been developed and
studied. Until the last decade, this work was almost exclusively restricted to
theory, with a great gulf between the worlds of theory and experiment. For
example, a theorist calculating a threshold during this era might regard a code
with 1000 qubits as relatively small. But at the same time, an experiment with
just 4 qubits could be seen as revolutionary.

This disconnect between theory and experiment was not useful for the de-
velopment of quantum computing. Quantum error correction is the point at
which quantum hardware and software meet, and so will inevitably need to be
a compromise between the two. Such a compromise can only be reached if theo-
retical efforts focus on the challenges and constraints of realistic hardware, and
experimental efforts strive to realize the features that fault-tolerance cannot do
without.

The need for such a compromise has become widely recognized over the
past decade. In part, this has been due to the availability of quantum hardware
through cloud services, which has allowed theorists to perform experiments as
easily as they would previously run simulations. This has brought about a new
era in which theory and experiment can be treated as software and hardware,
and therefore more naturally intermingle.

In this thesis we explore some of the possibilities of this new era. This is
done in three parts. The first two parts contain two collections of papers, each
of which serve as worked examples of how cloud-quantum computing systems
can help advance proof-of-principle experiments for quantum error correction.
Each of these is preceded by an overview of these papers, and the story they
tell as a combined whole. The third part contains a summary of other areas
in which cloud-quantum computing has made an impact on the work of the
author.
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Chapter 1

Introduction

The introduction of Kitaev’s honeycomb lattice model [1] was highly influential
in both the fields of condensed matter and quantum computation. Even the
‘Odds and Ends’ section of this work, a set of thoughts laid out as bullet points,
formed the basis of many follow up papers. This includes the introduction of
twists in surface codes [2].

Though these early twists took inspiration from the honeycomb lattice model,
their implementation in standard surface codes was not so elegant. It was for
this reason that ‘matching codes’ were developed [3], now known also as XY Z2

codes [4]. These codes formalize the Abelian phase of the honeycomb lattice
model in the language of stabilizer codes, and allow the idea behind them to
be expanded in that framework. This included showing how twists may be im-
plemented in such codes, retaining the elegance of the implementation in the
honeycomb lattice model as unpaired Majorana modes.

A result of this elegance was relative ease of implementation. Taking this
to the extreme, it was found that just five qubits would suffice to demonstrate
a logical gate through the exchange of twists, corresponding to the braiding
of Majoranas. Though the experiment was proposed in the original paper [3],
reproduced here as Chapter 2, access to five qubit systems was severely lim-
ited at the time. It was therefore doubtful that such an experiment would be
implemented.

This situation changed completely in 2016 when IBM launched its ‘Quantum
Experience’ (now the IBM Quantum Composer and Lab [5]). This offered 5
qubits with public access, allowing circuits to be designed and run via a web
interface. During lunch one day, it was realized that this service was sufficient
to implement the Majorana braiding experiment. By the end of the working
day, the experiment had been run! The paper [6], reproduced here as Chapter
3, was then soon on the arXiv. Putting 5 qubits on the cloud had started a
revolution in the transfer of ideas from theory to experiment.

Over the coming years, IBM Quantum’s hardware would progress beyond 5
qubits. At first, a square lattice architecture was pursued. However, this was
later replaced with a roadmap based on a so-called ‘heavy hexagonal’ coupling
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map: qubits residing on the vertices and edges of a hexagonal lattice, with
entangling gates possibly only between neighbouring vertex/edge pairs [7].

Such a coupling map is well-suited to approaches based on the honeycomb
lattice model, since it allows the easy measurement of the two-body observables
associated with each link. The only missing piece is measurement of the six-
body plaquette observables, which correspond to a product of the link operators
around each plaquette. For this reason, a means to infer measurement of the
plaquettes via measurements of the links was devised in [8], reproduced here as
Chapter 4.

Given this measurement scheme, as well as compatible hardware, a new set
of experiments became possible. By repeatedly measuring the plaquettes, the
values for subsequent measurements of the same plaquette could be compared.
Since these are stabilizers of the code, and commute with all the (directly mea-
sured) link operators, their values should not change. Any changes present are
then signatures of errors. An experiment measuring the plaquettes would then
serve two purposes: as a proof-of-principle that such high weight observables can
be measured in IBM Quantum hardware, and as a way of probing the amount
of error that they detect. This experiment was also performed and reported in
[6], and in Chapter 4.

At around the same time as the above work, Hastings and Haah proposed
their Floquet codes [9]. These were also based on the honeycomb lattice model,
and also allowed the plaquette measurements to be inferred from measurements
of the link operators. A similar idea was present in the Floquet Color code of
Kesselring, Brown and coauthors [10]. This is similarly based on notions of link
operators whose measurements can be combined into measurements of plaquette
operators. Though they don’t derive from the honeycomb lattice model, they
are nevertheless well-suited to the heavy hexagonal architecture. The same form
of experiments can then also be performed for the Floquet codes and Floquet
Color code. This was performed in [11], and is reproduced in Chapter 5, which
serves as a direct parallel to Chapter 4.

These experiments allow these codes to be directly compared and contrasted,
at least at the level of how much error is detected by their stabilizers in current
hardware. In all three cases, the results for the plaquette stabilizers are quite
consistent. They show results that would be consistent with a simple error
model with noise strength p = 1.5% for the best devices tested, with the worst
devices more consistent with p = 6%. As a benchmark of the hardware, this
shows that the devices are approaching the regime in which fault-tolerance could
be achieved, but still have some way to go.

The results for each device can also be compared to its quantum volume [12].
In each case, no obvious correlation between success in these experiments and
the achieved quantum volume can be seen. This motivates tailored benchmarks
for fault-tolerance, as will also be discussed in Part II.
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Chapter 2

A family of stabilizer codes
for D(Z2) anyons and
Majorana modes

Abstract

We study and generalize the class of qubit topological stabilizer codes that arise
in the Abelian phase of the honeycomb lattice model. The resulting family of
codes, which we call ‘matching codes’ realize the same anyon model as the
surface codes, and so may be similarly used in proposals for quantum compu-
tation. We show that these codes are particularly well suited to engineering
twist defects that behave as Majorana modes. A proof of principle system that
demonstrates the braiding properties of the Majoranas is discussed that requires
only three qubits.

Publication Information

Originally published in Journal of Physics A: Mathematical and Theoretical,
Volume 48, Number 21 (2015) [3].

Note that the references of this chapter are self-contained, and not included in
the overall references.
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INTRODUCTION

Quantum error correction is an important aspect of fault-tolerant quantum
computation, and many quantum error correcting codes have been proposed
to serve this purpose. Recently, a great deal of interest has been focussed on
so-called topological codes, such as the surface codes [1] and quantum double
models [2]. These support exotic quasiparticles known as anyons, which can be
used to implement fault-tolerant quantum gates on encoded information [3, 4].

The anyon model supported by a given code is classified as either Abelian or
non-Abelian. This distinction determines a great deal about how the anyons
behave, and how they may be used. However this is not always so clear cut,
since methods can be applied to Abelian codes that give them properties that
resemble non-Abelian ones [5, 6]. The most prominent method is engineering
so-called twists in the code [7]. These twists are related to symmetries of the
model, and so are symmetry defects [8].

A well-known model that is capable of supporting both Abelian and non-
Abelian phases is the honeycomb lattice model [9]. This is not strictly an error
correcting code, but is instead an interacting spin Hamiltonian for which anyons
emerge as excitations. However, it is known that Abelian codes can be derived
from the Abelian phase of this model. It is such codes that we study and
generalize here. We show that these codes are well-suited to engineering twists
that behave as Majorana modes. In fact they are so well-suited that we need
not explicitly use the concept of twists, and can reinterpret the codes in terms
of Majoranas.

MATCHING CODES

The Abelian phase of the honeycomb lattice model is typically studied by a
perturbative analysis, with the surface code emerging in the low energy subspace
[9]. However, a topological code also emerges when the full spectrum is taken
into account. It is this approach that we will take here.

Though the codes we consider are inspired by the interacting spin Hamilto-
nian of the honeycomb lattice model, we will not study them in this context.
No Hamiltonian will be considered to energetically suppress errors. Instead
will use the standard framework of quantum error correction, in which errors
are detected and suppressed by continuous syndrome measurements only. This
frees us from some of the restrictions required for realistic Hamiltonians, and
allows us to generalize to a large family of codes. We will refer to these, which
all take the form of qubit stabilizer codes, as ‘matching codes’.

For the purpose of presentation, it is advantageous to start with the general
form of these codes. The specific cases relevant to the honeycomb lattice model
will then be discussed later.

Matching codes are defined on trivalent lattices with a qubit on each vertex.
For simplicity we will restrict to lattices with periodic boundary conditions.
Each edge (or link) of the lattice is labelled x, y or z such that no links of
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the same type are adjacent. Examples are shown in Fig. 1. For each link, l,
of type α ∈ {x, y, z} one defines a link operator Kl = σα

j σ
α
k that acts on the

two adjacent qubits. These form a basic set of operators used to construct the
stabilizer generators of the codes.

Stabilizer Generators

Many different types of stabilizer code can be defined on spin lattices. To
restrict to a certain class, we consider only stabilizer generators that are prod-
ucts of link operators. Since this still leaves considerable freedom, we will also
restrict to products for which the links involved form a path.

A path is a subset of the links of the lattice such that no more than two
vertices are incident upon an odd number of path edges. If there are no such
vertices, we call the path a loop. If there are two then the path is a string with
these vertices as endpoints. We will denote a path with endpoints j and k as
P (j, k).

With the lattices we consider, the simplest form of loop are those that en-
circle each plaquette. For a plaquette p, we then define the following plaquette
operator using this loop

Wp ∼
∏

l∈p

Kl. (1)

This product will yield a tensor product of Pauli operators with a phase of ±1
or ±i. The ∼ signifies that only the former is taken to be Wp, with the phase
either ignored or chosen according to convenience. For the honeycomb lattice,
shown in Fig. 1(a), the plaquette operators are

Wp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 . (2)

Each plaquette operator commutes with all link operators and products thereof.
The plaquette operators therefore mutually commute. Also, note that any loop
operator can be expressed as product of the plaquette operators.

We will consider codes for which the plaquette operators are included within
the stabilizer. For a lattice of N vertices (and therefore qubits) there are N/2
plaquettes. At least a further N/2 are required in order to uniquely specify a
stabilizer state.

To define the additional stabilizers we consider a matching of the vertices,
M . This is simply a set of disjoint pairs of vertices. For each pair (j, k) a
path P (j, k) is chosen such that the vertices j and k form the endpoints. The
following stabilizers are then defined

Sj,k ∼
∏

l∈P (j,k)

Kl. (3)

Again the ∼ denotes that the phase is ignored and only the resulting tensor
product of Pauli operators is used for the Sj,k.



3

�Ε

�

� �

�

�

�

�Φ

FIG. 1. We consider the two lattices shown, each wrapped around a torus. (a) x
links are right leaning diagonal lines, y links are left leaning and z links are vertical.
These are shown in red, green and blue, respectively. Numbering of qubits around
a plaquette is shown. (b) Modified honeycomb lattice. Vertices on one sublattice
are replaced by triangles. The labeling of the new edges is uniquely defined by the
condition that no two links of the same type are adjacent.

The string stabilizers anticommute with all link operators incident upon one
(but not both) of their endpoints, and commute otherwise. The same is true for
products of link operators along a string: they anticommute only if they share
a single endpoint and commute otherwise. Since the pairs used to define the
stabilizers are non-overlapping, they will share no endpoints with each other.
They therefore mutually commute with each other and the plaquette operators.

Clearly any pairing of N vertices will yield N/2 pairs, and so there will be
N/2 such stabilizers. Using both the loop stabilizers Wp and string stabilizers
Sj,k we have a set of N stabilizer generators.

Properties of the Stabilizer

With a set of stabilizer generators defined, we can now determine the prop-
erties of the resulting stabilizer code. Given all the chosen strings P (j, k) we
can determine nl, the number of strings each link, l, is included in. We refer to
links as ‘even’ or ‘odd’ depending on whether their nl is even or odd. As such,
clearly

∏

(j,k)∈M

S(j,k) ∼
∏

l∈odd

Kl (4)

since any even power of the link operators yields the identity.
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For each vertex j we can also consider the quantity νj =
∑

l∈j nl, where the
sum is over the three links incident upon j. Since all vertices are the endpoint
of a single string, the quantity νj will be odd for all j. As such, an odd number
of odd links must be incident upon each vertex. Since all vertices are trivalent,
this implies that there will also be an even number of even links incident upon
each vertex.

Due to this property, the set of even links corresponds to a path (or set of
paths) that form a loop (or loops). The plaquettes may then be bicoloured
according whether or not they are enclosed by the set of loops. These colours
are referred to as ‘black’ and ‘white’, and the corresponding sets of plaquettes
are denoted b and w.

Two plaquettes are neighbouring if their boundaries share at least one link.
If any of these is an odd link, the two plaquettes will clearly be enclosed by the
same loop of even links. They will therefore be of the same colour. Similarly,
two neighbouring plaquettes that do not share any odd links will be separated
by a loop of even links, and so will be different colours.

Given this bicolouring, we can find similar relations to Eq. (4) for the pla-
quettes

∏

p∈b

Wp ∼
∏

p∈w

Wp ∼
∏

l∈even

Kl.

It is straightforward to see that
∏

lKl ∼ 11, and so the product over even links
above can be substituted with a product over odd ones. Combining with Eq.
(4) we then find the following relation between the three types of stabilizer

∏

p∈b

Wp ∼
∏

p∈w

Wp ∼
∏

(j,k)∈M

S(j,k). (5)

As such, only N − 2 of the N stabilizer generators are independent. The stabi-
lizers may therefore be used to define a stabilizer code that can store two logical
qubits. However, this is not the approach we will take.

Note that the choice of the paths P (j, k) used to define the stabilizer gener-
ators does not alter the stabilizer as a whole. The product of an Sj,k defined
using a path P (j, k) and an S′

j,k defined using a path P ′(j, k) will be the prod-
uct of the Wp enclosed by the resulting loop. These alternate S′

j,k can therefore
equally be regarded as stabilizers. The paths are only required in order to define
the bicolouration of the lattice.

Examples of Matching Codes

A simple subclass of matching codes are those for which only nearest neigh-
bour pairing are allowed, and the path used is always the single link between the
vertices. The case of z-links used as string stabilizers on the honeycomb lattice
is shown in in Fig. 2 (a). Such models are well known from the Abelian phase of
the honeycomb lattice model [9]. They are known to support the D(Z2) anyon
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FIG. 2. Thick red lines on the hexagonal lattice denote paths on which stabilizers are
defined. (a) String stabilizers are defined on z-links. (b) String stabilizers correspond
to the left half of each plaquette.

model [2], and map to the standard square lattice toric code when violations
of string stabilizers are prohibited [9]. All other such models behave similarly,
though they map to toric codes on different lattices in general.

Another example of a matching code is one for which the top and bottom
qubits of each plaquette are paired, with the path chosen to be the three links
on the left side of the plaquette. This is shown in Fig. 2 (b). In this case, each
string stabilizer is associated with a plaquette, and so can be interpreted as a
second plaquette operator

Sp = σy
6σ

x
1σ

y
2σ

x
3 . (6)

Rather than considering the usual Wp operators, we can use the following op-
erators as stabilizer generators

S′
p = SpWp = σy

3σ
x
4σ

y
5σ

x
6 . (7)

This effectively splits each hexagonal plaquette into two square plaquettes, each
with its own plaquette operator [5]. The resulting code corresponds to the Wen
plaquette model [10], which is equivalent by local unitaries to the standard
square lattice surface code [11].

Planar Boundary Conditions

Periodic boundary conditions are assumed in the above for the simplicity of
translational invariance. Practically, however, planar boundary conditions are
more appropriate [1]. These are also possible for matching codes.
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As an example, consider a Wen plaquette model with planar boundary con-
ditions. On the boundary it is difficult to apply the above interpretation of the
model as a matching code. However, in the bulk the interpretation can be eas-
ily applied. The matching, M , for the vertices of the bulk is well defined. The
specific matching of the Wen plaquette model is not required for consistency
of the bulk and boundary, and so any M may be used. We are therefore free
to choose any matching code for the bulk, with an assurance that this will be
consistent with the standard boundary.

ANYON MODEL

The stabilizer states of the matching codes can be interpreted in terms of
anyonic quasiparticles. An anyon is said to reside on a plaquette p for a state
|ψ⟩ if Wp |ψ⟩ = − |ψ⟩, and similarly on a string P (j, k) if Sj,k |ψ⟩ = − |ψ⟩. An
eigenvalue of +1 is interpreted as anyonic vacuum in both cases.

In the examples of matching codes above, the anyon model corresponds to
D(Z2). This is true of all matching codes, as we will now show. To do this
we consider stabilizer states, which correspond to states of definite anyon con-
figurations. The effect of applying Pauli rotations to the stabilizer states is to
map between them, corresponding to the creation, transport and annihilation
of anyons. Using these operators we can therefore determine the braiding and
fusion properties of the anyon model.

Anyons on strings

First let us consider the application of link operators. For a link l = (j, j′)
the link operator Kl will commute with all stabilizers if (j, j′) is a pairing of M .
Otherwise it will anticommute with the two string stabilizers Sj,k and Sj′,k′ .

Applying the link operator to a state with definite eigenvalues for these stabi-
lizers will have the effect of flipping the eigenvalue from +1 to −1, or vice-versa.
The corresponds to the creation (annihilation) of an anyon pair if the two strings
initially held vacuum (anyons). If only one string initially held an anyon, the
effect is to move it to the other.

Consider a graph for which all the pairs of vertices in M are combined to
form single vertices, with each new vertex inheriting the edges from both its
predecessors. The anyons created by link operators can be thought of as residing
on the vertices of this graph. The anyons can be moved between pairs of vertices
connected by an edge. Since the original lattice had no disjoint subgraphs, this
property is inherited by the new lattice. It is therefore possible for an anyon
to move from any string stabilizer to any other. As such, the same species of
anyon must live on all string stabilizers. Let us use ϵ to denote this anyon type.
Since it is created in pairs, it is clear that it obeys the fusion rule ϵ× ϵ = 1.

Consider three vertices, i, j and k, where both i and k are neighbours of j.
We choose this triplet such that each is the endpoint of a unique string operator,
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which is always possible in general. For j the other endpoint is at vertex j′,
which has a neighbour j′′. Let us start with a state in which both the strings of
i and k hold an ϵ, whereas that of j does not. Applying the link operator Ki,j

will move the ϵ on the string of i to that of j. Applying Kj′,j′′ then moves it
again to the string of j′′. Applying Kj,k moves the ϵ on the string of k to that
of j, and Ki,j moves this on to the string of i. Finally, Kj′,j′′ followed by Kj,k

moves the ϵ on the string of j′′ to that of k. The final effect is an exchange of
the two ϵ anyons. The total operator used to realize this is

Kj,kKj′j′′Ki,jKj,kKj′,j′′Ki,j = Kj,kKi,jKj,kKi,j = −11.

This demonstrates that exchange leads the wave function to acquire a phase of
−1. The ϵ anyons are therefore fermions.

Anyons on plaquettes

To determine the anyon types living on plaquettes, consider a link l shared by
two neighbouring plaquettes p and p′. We use α ∈ {x, y, z} to denote its type
and j to denote either of the vertices that it is incident upon. The application
of σα

j to the qubit on vertex j will anticommute with the plaquette operators
of p and p′ and no others. It therefore corresponds to the creation of a pair of
plaquette anyons. However, we must consider also the additional effects on the
string stabilizers.

If l is an odd link, it follows that the other two links incident upon j will either
be both odd or both even. The support of the product of all string stabilizers
on j will therefore be 11 or σα, respectively. In either case this product will
commute with the applied operation σα

j . It therefore results in the creation of
an even number of ϵ anyons.

If l is an even link, it follows that exactly one of the other two links incident
upon j will be odd. This results in a product of all string stabilizers that
anticommutes with σα

j . The application of this rotation therefore creates an
odd number of ϵ anyons.

From these properties we see that creating a pair of anyons on neighbouring
plaquettes of the same colour (i.e., separated by an odd link) will result also in
the creation of an even number of ϵ anyons. These may then be removed by
the application of link operators. An operation that creates a pair of plaquette
anyons same coloured neighbouring plaquettes with no additional ϵ anyons will
therefore always exist. This clearly holds also for non-neighbouring plaquettes
of the same colour. All anyons on same coloured plaquettes therefore belong to
the same anyon type.

For different coloured plaquettes (separated by an even link) there will always
be an odd number of ϵ anyons created. The application of link operators can
reduce these to a single ϵ, but this cannot be removed. Anyons that live on
different coloured plaquettes must therefore belong to different species, which
differ up to fusion with an ϵ. We use e to denote the anyons on white plaquettes
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and m for those on black. These properties can be summarized in the fusion
rules

e× e = m×m = ϵ× ϵ = 1, e×m = ϵ. (8)

These rules completely generate the fusion rules of the model. These are the
fusion rules of the D(Z2) anyon model. This has three non-trivial anyon types.
One is a fermion, which we have already shown to be ϵ. The two others have
bosonic exchange properties with respect to themselves, and semionic with re-
spect to each other.

MAJORANA MODE INTERPRETATION

Studies of the honeycomb lattice model often make use of a mapping of the
problem from qubits to Majorana modes [9]. Specifically, the qubit operators
are mapped to Majorana operators by associating four Majorana modes to
each vertex. Three of these modes for each vertex are absorbed into a lattice
gauge theory. With the remaining Majorana mode cj at each vertex j, the link
operators can be expressed,

Kl = (icjck)ujk (9)

Here the ujk term comes from the lattice gauge theory. The icjck term is the
parity operator for the Dirac mode that is composed of the two Majorana modes
cj and ck.

Due to the property c2j = 1 for Majorana modes, the string stabilizers may
be expressed

Sj,k ∼ (icjck)
∏

l∈P (j,k)

ujk. (10)

This is the parity operator for the Dirac mode that consists of the Majoranas at
the endpoints of the string P (j, k), again with a factor from the gauge theory.
The plaquette operators consist only of gauge theory terms with no Majoranas.

This form for the stabilizers agrees exactly with what we know about their
anyonic occupations. The string stabilizers are parity operators for a Dirac
mode, since their eigenvalue ±1 signals the presence or absence of a fermion.

The path dependent factor comes from the fact that these Dirac fermions can
decay into an e and an m. The occupation of their Dirac modes will therefore
depend on the bicolouring of the lattice, which depends on the paths taken by
the string stabilizers.

If we consider only states for which there is always vacuum on the plaquettes,
the path dependence of the string stabilizers is effectively removed. The system
can then simply be interpreted as one for which a single Majorana mode is
pinned to each vertex. The string stabilizers simply correspond to an arbitrarily
chosen pairing of the Majorana modes, and are defined as the parity operator
for the Dirac mode of the pair.
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The stabilizer states are those for which there is a definite pairing of all the
Majorana modes, and each of the corresponding Dirac modes have a definite
occupation. For these states, the Majorana interpretation is nothing more than
a mathematical curiosity. However, as we shall see in the next section, it is
possible to use these Majoranas to store quantum information, and to braid
them in order to process this information. Their full nature as non-Abelian
anyons can therefore be realized. As such the matching codes, which would
normally be interpreted as Abelian models, may also be interpreted and used
as non-Abelian anyon models.

Note that this interpretation is related to the concept of ‘twists’, which behave
as Majorana modes [7, 9]. These have been considered in many cases including
surface codes [7, 8, 12] and the honeycomb lattice model [13]. These can be used
for quantum computation, and have better resource usage than other surface
code based approaches [14].

The study of twists usually considers Majorana modes as being associated
with lattice dislocations. The Majoranas are created and annihilated by de-
forming the lattice on which the code is defined. The Majorana modes of the
matching codes, on the other hand, do not require such a complex interpreta-
tion. They are always present and do not require lattice deformations. This
makes the matching codes a useful framework in which to study these defects.

BRAIDING OF MAJORANA MODES

Let us consider only the anyonic vacuum state (i.e. the stabilizer space) for
all stabilizers. In order to add some degeneracy into the stabilizer space, we
remove some of the link stabilizer operators from the stabilizer. The corre-
sponding Majoranas are then unpaired. Parity operators can be defined using
pairings of these. Different pairings correspond to different bases in which the
corresponding stabilizer space states can be measured. We refer to these un-
paired Majoranas as computational Majoranas, and the rest as background
pairs.

In order to achieve some degree of quantum computation with the compu-
tational Majoranas, we must be able to braid them with each other. Since all
Majoranas are pinned to vertices, we cannot move them freely. However, we
can hope to perform exchange operations that result in their effective movement
around the lattice. This can be done using so-called ‘anyonic state teleportation’
[15].

The simplest possible operation is to exchange a computational Majorana,
cj , with a neighbouring background pair. Two examples of this are shown for
the honeycomb lattice in Fig. 3.

The process shown in Fig. 3 (a) exchanges the computational Majorana on
vertex i with the background pair in the link (j, k), resulting in the computa-
tional Majorana moving to vertex k. To do this we measure the link operator
Ki,j , which will result in a random outcome. The resulting state will be an
eigenstate of Ki,j , and will no longer be stabilized by Sj,k. The set of pairs,
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FIG. 3. Two processes by which a computational Majorana on vertex i is moved to
vertex k. The path between j and k (orange) corresponds to a stabilizer of the initial
state in both cases. The path between i and j (blue) corresponds to a stabilizer of the
final state. In (b) the additional vertical line (red) is a stabilizer for both the initial
and final states.

M , is therefore altered by replacing the pair (j, k) with (i, j). If the outcome of
the measurement is +1, the resulting state holds vacuum for the new stabilizer
Si,j = Ki,j as well as all previous stabilizers. This process corresponds to the
background pair on (j, k) moving to (i, j), and the computational Majorana on
i moving to the other side of this background pair. All other Majoranas remain
stationary. For the outcome −1 the process has the same effect, except that an
ϵ is fused with both the moved background pair and computational Majorana.
To undo the effect of this, the link operator Kj,k is applied. The state will then
be the same as if the outcome was +1.

For a bipartite lattice, the above process will only allow computational Majo-
ranas to move around the same sublattice. In order for them to move between
sublattices, exchanges such as in Fig. 3 (b) must be applied. The only difference
between this and the above is that the measured operator Si,j is a product of
two link operators.

The exchange of a Majorana with a background pair is a trivial operation,
since the net sector of a such a pair is vacuum. Nevertheless the operation
would be expected to yield a global phase that depends on the chirality of the
exchange. However it is evident that this phase, and the distinction between
clockwise and anti clockwise exchanges around a background pair, does not
arise in the process described above. As such the braid statistics realized by the
Majoranas are projective braid statistics, which are the same as the full braid
statistics up to global phases [16].

With the ability move the computational Majoranas around, we can consider
the effects of their braiding. Since this involves moving background pairs out of
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the way, different paths taken by Majoranas between two points will result in
different configurations of the background pairs. In order to avoid any ambiguity
this may cause when assessing the effects of the exchange, we will consider only
braid operations for which the initial and final states have the same background
configuration.

For concreteness we will use the modified honeycomb lattice. The only string
stabilizers that will be considered are those for the pairing of nearest neighbours,
and so are defined on a single link. The set of pairs, M , then becomes the set of
links for which there are stabilizers. We use Sl to refer to the stabilizer for the
links l ∈M . This lattice is not bipartite, and so the Majoranas may be moved
between any pair of vertices by measuring single link operators only.

One possible choice of links for M is simply all those connected by z-links,
and so each z-link operator becomes a stabilizer. Using this as a background,
we will define a code for which computational Majoranas are placed on a 1D
line.

Consider a 1D row of vertical z-links for which every dth z-link is chosen
to be removed from the stabilizer. We call these ‘flagged’ links. For the jth
flagged link from the left, we use j to refer to the lower vertex. For every
odd j a path P (j, j + 1) is then found, such that the jth and j + 1th flagged
links the are first and last links of the path, and the path has endpoints on
the vertices j and j + 1. Furthermore, the links of the paths should alternate
between links that are part of the original pairing (i.e. z-links) and those which
are not. The set of pairings M is then modified by removing all z-links along
these paths, and adding all other links along them. This results in a code for
which computational Majoranas are located on all vertices j. An example of
this for d = 1, and so all links along the row removed, is shown in shown in Fig.
4(a).

For each neighbouring pair of computational Majoranas (j, j+1) we require a
path in order to define the corresponding parity operator. Rather than used the
same paths used to generate the code above, we use an alternative one which we
denote Pj . Such a path is shown in 4(a). These paths are chosen such that they
alternate between links that are within M and those that are not, except at a
mid-point at which two links not in M will be connected. The parity operator
is then defined,

πj,j+1 = i
∏

l∈Pj

Kj . (11)

Here the product is taken sequentially along the path. The j end corresponds
to the right-most factors and the j + 1 end to the left-most.

There will always be an even number of links along the path, both for the
specific example of 4(a) and those for which the distance between computational
Majoranas is increased. This means the parity operators have support on an
odd number of qubits, and so the factor of i is required to ensure that their
eigenvalues are ±1. It also means that

πj,j+1 = −πj+1,j , (12)
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FIG. 4. Stabilizers on the modified honeycomb lattice that lead to a line of unpaired
Majoranas. (a) Thick red links correspond to pairings within M . The paths P (j, j+1)
along which the Majoranas are created pass above the Majorana line. These are shown
with thin blue lines. The path Pj along which parity operators are defined goes below
the Majorana line. This is shown with a thin green line. (b) Numbering of links used
for the exchange operation. Those in bold are part of M . Different coloured links are
used at different points in the exchange process. Links 1, 2 and 3 are coloured light
blue, 4, 5 and 6 are dark blue, 7, 8 and 9 are orange.

where the latter is the same product of link operators but in reserved order.
This reflects the icjcj+1 = −icj+1cj behaviour expected for the parity opera-
tors when the order of the Majorana operators is reversed. The commutation
relations for parity operators with each other are also what we expect: those
for disjoint pairs of Majoranas will commute, whereas those that share a single
Majorana will anticommute.

We explicitly consider the exchange of the two Majoranas shown in green in
Fig. 4(b), using |ψ⟩ to denote the initial state. To perform a anticlockwise
exchange we first move the Majorana at j away from its initial position. Specif-
ically, we move it diagonally downwards and towards the right to the vertex k.
This is done by sequential applications of the anyonic teleportation procedure
on the light blue edges. The resulting state is

|ψ′⟩ ∼
∏

l∈b

(11 +Kl) |ψ⟩ . (13)

Here b denotes the set of light blue links. The factors (11 + Kl) are projectors
onto subspaces stabilized by the link operators for these edges. The product is
again taken sequentially as the Majorana is moved.

Next we move the Majorana at j+1 to j. This is done by moving it diagonally
downwards and to the left until it intersects with the previous path. It is then
moved up that path until it reaches j. The teleportation for this case is achieved



13

using the dark blue link operators. The resulting state is

|ψ′′⟩ ∼
∏

l∈B

(11 +Kl) |ψ′⟩ (14)

where B denotes the set of dark blue links. Finally the Majorana at k is moved
to j + 1 using the orange links. The final state is

U |ψ⟩ ∼
∏

l∈O

(11 +Kl)
∏

l∈B

(11 +Kl)
∏

l∈b

(11 +Kl) |ψ′⟩ (15)

Now we must determine the effective unitary U that is implemented by this
exchange.

Note that the initial and final states are stabilized by the same set of link
operators, M , which corresponds to the z-links. Also note that O ⊂ M . The
above may therefore be rewritten

U |ψ⟩ ∼
∏

l∈M

(11 +Kl)
∏

l∈B

(11 +Kl)
∏

l∈b

(11 +Kl)
∏

l∈M

(11 +Kl) |ψ′⟩ .

The factor
∏

l∈B(11 + Kl)
∏

l∈b(11 + Kl) will yield a sum of products of the
blue link operators. Some of the terms in this will anticommute with the link
operators of M , whereas others will commute. The effects of the former will be
removed by the

∏
l∈M (11 + Kl) factors. The latter consists of only two terms:

the identity, and the product of the blue links along the path Pj ,
∏

l∈b∪Pj

Kl

∏

l∈B∪Pj

Kl = −
∏

l∈B∪Pj

Kl

∏

l∈b∪Pj

Kl. (16)

The order of the product over b has the links at the j end of Pj to the left. The
B product has the j + 1 end to the left. However, since both factors act on an
even number of qubits, their order can be reversed without effect. The r.h.s. of
the above can therefore be written as a product sequentially along Pj .

This term includes all of the factors of πj,j+1 that are not in M . There will
always be an even number of such factors, due to the symmetry of the path.
As such, this term is related to the parity operator by

∏

l∈B∪Pj

Kl

∏

l∈b∪Pj

Kl = −iπj,k
∏

l∈M∪Pj

Kl. (17)

The resulting unitary evolution of the exchange can then be written

U |ψ⟩ = (11 + iπj,j+1) |ψ⟩ ∴ U =
11 + iπj,j+1√

2
. (18)

Apart from a global phase of eiπ/8, this is exactly the expected result for the
exchange of two Majoranas [3, 9].

For the clockwise exchange of j and j + 1, the mirror image of the above
process is applied. Since the ordering of factors in each product is reversed, this
will yield the effect

U† =
1√
2

(11 − iπj,j+1). (19)
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Again, this is exactly the expected result from Majorana braiding, up to a global
phase.

In order to fuse a pair of computational Majoranas, we simply need to de-
termine the occupation of their net Dirac mode. This is done by adding their
parity operator into the stabilizer and measuring it. For practical reasons, the
pair should be moved close together in order for this operator to be measurable.

Minimal Demonstration of Braiding

The simplest example of an exchange of two computational Majoranas is
shown in Fig. 5. The system is composed of six qubits, corresponding to three
adjacent z-links in the honeycomb lattice and the x and y links that connect
them. The only stabilizer is S = KC . The link operators πA = KA and
πB = KB are taken to be parity operators for their respective pairs. The fusion
space of the computational anyons is four-dimensional. A basis {| kA, kB⟩}
can be defined using the eigenstates of the parity operators, labelled by the
eigenvalues k = ±1

A clockwise exchange of the computational Majorana at 1 with that at 2 can
be achieved by first measuring KD, then KE , and then finally the stabilizer
S = KC . In a proof of principle experiment, we may simply post-select the
results for each of these gives the outcome +1. Single and double exchanges
have the following effect on the basis states for the computational Majoranas

R : | kA, kB⟩ → 1√
2

(| kA, kB⟩ + i | −kA,−kB⟩)

R2 : | kA, kB⟩ → |−kA,−kB⟩ (20)

By preparing and then measuring these basis states, the effects of the braiding
may then be shown.

This system may be made simpler still by noting that the unnumbered qubits
contribute trivially. The z-link operators may then be truncated onto the num-
bered qubits: S = σz

2 , πA = σz
1 and πB = σz

2 . The basis states for the compu-
tational Majoranas are then simply the z basis states, and measurement of the
stabilizer is a single qubit z measurement. The whole process then corresponds
to preparation of z basis states for three qubits, followed by two entangling
two qubit measurements, followed by z basis measurements. Using this pro-
cess, the basic principle behind the non-Abelian braiding of the computational
Majoranas may be demonstrated.

Adiabatic Realization of Braiding

In the above it is always assumed that the code is used as part of a circuit
model quantum computation. As such, it is done without implementing the
Hamiltonian associated with the stabilizer code [17]. However, one could also
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FIG. 5. Two pairs of computational Majoranas, with parity operators given by links
A and B. Link C denotes a stabilizer.

consider the case in which this Hamiltonian is indeed used to enhance the error
suppression of the code.

The Hamiltonian corresponding to a stabilizer code with stabilizer generators
Sj is typically

HS = −
∑

j

Sj . (21)

This results in a degenerate ground state space that corresponds to the stabilizer
space of the code, and energetically penalizes states with non-trivial syndrome.
For the matching codes, this Hamiltonian would need to consist of all plaquette
and string stabilizers, which are many-body interactions in general. However,
a more simple form arises in the case that all matchings correspond to nearest
neigbour pairs, and all so all string stabilizers are link operators. In this case
we can consider the Hamiltonian

H = −J
∑

l∈M

Kl − h
∑

l/∈M

Kl, h≪ J (22)

This Hamiltonian consists only of nearest neighbour two-body interactions be-
tween qubits. These correspond to link operators, with a higher coupling for
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the links within the matching than those not. When the effects of the latter as
a perturbation on the former are studied, the many-body plaquette interactions
emerge [9]. The Hamiltonian will then have the same ground state and as HS

above, with a finite gap [9]. There will be some differences in the excitation
spectrum, but these have only local effect. This Hamiltonian corresponds to the
Abelian phase of the honeycomb lattice model, from which the basic matching
codes are derived.

To create unpaired Majorana modes, implement the Hamiltonian for the rel-
evant set of links, M . This was also studied previously in [13]. To move the
unpaired modes, one makes the corresponding alterations to the set M as de-
scribed in previous sections. The only difference is that this change in M is no
longer implemented on the physical system by measuring link operators. In-
stead it is done by slowly changing the Hamiltonian. To remove a link l from
M , and add another link l′ in its place, the coupling from M can be slowly
tuned from J to h. That for l′ can then be raised from h to J . If this is done
slowly enough to obey the adiabatic theorem, no additional fermions will arise
during the process as they do in the circuit model case.

By this means, unpaired Majorana modes can be engineered, transported and
braided using the Abelian phase of the honeycomb lattice model. This is some-
thing usually associated with the non-Abelian phase, for which the Majorana
modes are pinned to vortex excitations. Using this method, holonomic quantum
computation can be implemented [6, 18, 19] using the Majorana modes.

Note that the Majorana modes that emerge from a Hamiltonian in this
way are similar to those that arise in nanowires [20]. However protection in
the nanowire case is based on fermionic-parity conservation, whereas matching
codes have fully topological protection. This has similarly been achieved by a
different (but also surface code based) approach in [21].

COLOR CODES FROM MATCHING CODES

Matching codes realize the D(Z2) anyon model. However, they can also
be used to construct further codes which realize more complex anyon models,
through a process of embedding one code inside another. Here we will consider
this for the specific example of the celebrated color code [22].

For any stabilizer code we can consider the basis formed by stabilizer states.
In this basis we can associate a two-level quantum system with each stabilizer
generator. The basis states for each of these correspond to its +1 and −1
eigenspaces.

Typically, when considering a stabilizer code, we require all these two-level
systems to be in a definite state: the +1 eigenspace of the corresponding stabi-
lizer. However, we could instead consider only imposing this restriction on some
stabilizers. The others could then be used as if they were qubits themselves to
define another stabilizer code. In this way we can embed codes within other
codes.

This method is in some ways similar to concatenation. However, the purpose
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FIG. 6. (a) Hexagonal lattice with plaquettes tricoloured x, y and z. Links are
tricoloured correspondingly, with x and y links alternating around a z plaquette, etc.
Again red, blue and green denote x, y and z, respectively. (b) The hexagonal lattice
with a triangular lattice superimposed on top. The z-links in the former correspond
to edges in the latter, x and y plaquettes in the former are plaquettes in the latter,
and z plaquettes in the former are vertices in the latter.

is very different. Concatenation combines many low distance codes to create
a code of higher distance. For the embedding considered here we start with
a single code, which could have arbitrarily high distance, such as surface or
matching codes. The purpose of the embedding is simply to generate a new
code, which may have more favourable properties than the original.

For a specific example, let us again consider a honeycomb lattice. Rather
than use the same tricolouration of links as before, we will instead use that of
Fig. 6 (a). For this we define the matching code in which all z-links are used
as string stabilizers.

With this tricolouration of links we can also consider a tricolouration of pla-
quettes, as shown in Fig. 6 (a). The plaquette operators then take the form

Wpα
= σα

1 σ
α
2 σ

α
3 σ

α
4 σ

α
5 σ

α
6 . (23)

where pα is an α-plaquette for α ∈ {x, y, z}.
We will use the plaquette stabilizer operators as generators in our embedded

code, but not those of the z-links. As such each z-link can be thought of as
a two-level quantum system in its own right, with basis states spanned by the
vacuum and ϵ occupancies of the link. We will refer to these as ‘link qubits’.

These links qubits can be interpreted as sitting on the edges of an triangular
lattice, as shown in Fig. 6 (b). The plaquettes of the original hexagonal lattice
of qubits correspond to either plaquettes or vertices of the triangular lattice of
link qubits. Specifically the x- and y-plaquettes of the honeycomb lattice are
plaquettes of the triangular lattice and the z-plaquettes are vertices.

Let us now define a surface code on the triangular lattice of link qubits, such
that we have a surface code embedded in a matching code. When defined on a
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lattice with qubits on edges, a surface code has stabilizers

Bp =
∏

j∈v

σx
j , Av =

∏

j∈p

σz
j . (24)

For the lattice of links we must determine what link qubit operators will be
used in place of these. This means finding substitutes of σz and σx.

Let us associate the σz basis with the ϵ occupancy basis, and so use the string
operators Kj as a substitute for σz on the link qubits. The Bp stabilizers of the
surface code defined on link qubits then correspond to operators

Bpα = σz
1σ

z
2σ

z
3σ

z
4σ

z
5σ

z
6 (25)

on the qubits on the honeycomb lattice for α ∈ {x, y}.
The substitute for the σx operators must clearly anticommute with Kj , our

substitute for σz. It will therefore have the effect of changing the ϵ occupancy
of the link qubit on which it acts. The Av operator will then do this for all links
around the (triangular lattice) vertex on which it acts. One way to achieve this
is to use the product of all x-links around the vertex. The Av stabilizers of the
surface code then correspond to operators

Apz = σx
1σ

x
2σ

x
3σ

x
4σ

x
5σ

x
6 (26)

on the qubits of the corresponding pz plaquette in the honeycomb lattice.
Given the above construction, each plaquette of the honeycomb lattice will

have two corresponding stabilizer generators. One is the Wpα
of the underlying

matching code and the other is the Apα
or Bpα

of the embedded surface code.
Each are isotropic tensor products of Pauli operators on the six qubits around
the hexagonal plaquette, and each correspond to a different Pauli operator.
These two Paulis are not the same for every plaquette.

To simplify the description of the code, let us first introduce a third stabilizer
operator for each plaquette. This simply corresponds to a product of the other
two. Each plaquette then has three stabilizer operators: (σx)⊗6, (σy)⊗6 and
(σz)⊗6. Clearly these can also be generated by an alternate pair of stabilizer
generators for each plaquette

Sα
p = σα

1 σ
α
2 σ

α
3 σ

α
4 σ

α
5 σ

α
6 , α ∈ {x, y}. (27)

With these the two generators are the same for every plaquette. These are
precisely the stabilizer generators of the well-known color code [22].

It is known that the anyon model of the color code is D(Z2 × Z2), which is
equivalent to two independent copies of D(Z2) [23]. However, note that these
do not simply correspond to the indepedent anyon models contributed by the
matching code and surface code. Instead these two anyon models are combined
and reorganized by the embedding procedure. For example, in the original
matching code the anyons that live on x and y plaquettes are of the same
type, and can be moved from one position to the other. After the embedding,
however, the plaquette anyons in these positions will correspond to different
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types. Any attempt to move an anyon from one position to the other will result
in the creation of anyons within the surface code.

It is also important to note that many properties of the color code are not be
the same as other codes that realize the D(Z2 × Z2) anyon model, such as two
independent surface codes. One important difference is the wealth of transversal
gates possible for color codes [22]. The technique of embedding codes within
others may therefore yield other new codes with advantageous properties.

CONCLUSIONS

Codes that realize the D(Z2) anyon model are well known, as is the notion
that non-Abelian Majorana modes (also known as Ising anyons) may be engi-
neered inside these Abelian codes. However, the means by which the Majoranas
are introduced can often be both theoretically and practically inelegant. Often
deformations of the lattice are required, making it seem that the Majoranas are
a foreign notion introduced to the codes by hand. Also, moving the Majoranas
around the code leaves a visible trail along the path they have taken. This
obscures their topological nature as non-Abelian Ising anyons, for which paths
should be unphysical.

Here we introduce a family of codes in which the Majorana modes occur in
a more natural way. The codes can be interpreted as having the Majoranas
present at all times, pinned to the vertices of the lattice, without the need
for deformations to introduce them. They can be moved around using anyonic
state teleportation, allowing their non-Abelian braiding to become evident. The
Majoranas will still leave visible trails behind when moved. However, this is
simply an artifact of the way braiding is performed by teleportation. The same
would occur for any realization of Ising anyons when braiding is performed using
this method.

The matching codes should hopefully make it easier to treat these Majorana
modes, both theoretically and perhaps even in the lab. For the latter, these
codes allow a proof of principle experiment for Majorana braiding to be done
with just three qubits and only one and two qubit operations.

Beyond the Majorana interpretation, these codes could also serve another
practical use. The potential that D(Z2) codes have for quantum computation
is well recognized, though most focus is on the square lattice planar variant
of the surface code. However, it is known that this does not provide the best
protection against every error model [24–26]. The matching codes therefore
provide a new family of codes to consider for the optimization of error correction
against physical error models.
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Chapter 3

Demonstrating non-Abelian
braiding of surface code
defects in a five qubit
experiment

Abstract

Currently, the mainstream approach to quantum computing is through surface
codes. One way to store and manipulate quantum information with these to
create defects in the codes which can be moved and used as if they were par-
ticles. Specifically, they simulate the behaviour of exotic particles known as
Majoranas, which are a kind of non-Abelian anyon. By exchanging these parti-
cles, important gates for quantum computation can be implemented. Here we
investigate the simplest possible exchange operation for two surface code Majo-
ranas. This is found to act non-trivially on only five qubits. The system is then
truncated to these five qubits, so that the exchange process can be run on the
IBM 5Q processor. The results demonstrate the expected effect of the exchange.
This paper has been written in a style that should hopefully be accessible to
both professional and amateur scientists.

Publication Information

Originally published in Quantum Science and Technology, Volume 2, Number
1(2017) [6].

Note that the references of this chapter are self-contained, and not included in
the overall references.
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INTRODUCTION

Surface codes are the most well known starting point for fault-tolerant quan-
tum computation [1]. One way to store and manipulate information in these
to engineer certain kinds of defects [2, 3]. These can be moved around and
manipulated in much the same way as particles. However, their restriction to
the 2D structure of the surface codes allows them to exhibit some of the exotic
behaviour possible for particles in 2D universes.

The important features of these particles are their their effects when fused and
braided. These refer to the processes of combining particles and of exchanging
the positions of particles, respectively. It has been predicted that the fusion rules
for these defects identical to so-called Majorana modes or Ising anyons. Their
braiding forms a projective representation of the braid group, but is otherwise
also identical to that of Majoranas. We will therefore refer to them simply as
Majoranas from henceforth.

In this paper we present an experiment performed on a small patch of surface
code. The patch is nevertheless large enough for these defects to be introduced
and even for pair of them to exchange positions. We implement this and show
that the effects of the process are consistent with the braiding of Majoranas, as
predicted.

ANYONS

There are many types of particle in the universe, but their properties when
exchanged place them into just two categories: bosons and fermions. Neither
of which are very complex. This is because a loop around a point in three
spatial dimensions can be continuously deformed to a loop that is not around
a point. One can simply pick the loop up and place it elsewhere. As such, all
topological properties of one particle moving in a loop around another must be
trivial. There are only two ways to achieve this: bosonic and fermionic exchange
behaviour.

In a two dimensional universe, this no longer holds. There is no longer an
‘up’ to move the loop through, and so it is stuck around the point. The braiding
of particles may therefore have non-trivial properties. This would allow almost
any type of exchange. Such particles are therefore known collectively as anyons
[4]. For a simple introduction, see [5].

Though we do not live in a two-dimensional universe, we can make two di-
mensional physical systems. This allows us to find phases of matter in which
anyons arise as quasi-particles or other localized features of the system than can
be moved and otherwise manipulated in the same manner as particles [4, 6].
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MAJORANAS

The most interesting families of anyons are the non-Abelian anyons. One
example is the Ising anyon model. This holds two types of particle: one known
as a Majorana, and the other a fermion denote by ψ [4].

The fermion type ψ is its own antiparticle. Combining two of these will always
result in annihilation.

The Majoranas are their own antiparticle, so a pair of them can be created
from vacuum. When combined, these would annihilate back to vacuum. How-
ever, it is also possible to obtain a pair of Majoranas from the decay of a ψ.
These would recreate the fermion if brought back together.

These two hypothetical pairs of Majoranas are completely indistinguishable.
Their memory of whether to annihilate or form a fermion is not stored in any
locally accessible feature. Instead it is stored non-locally through quantum
entanglement in the underlying physical system.

This non-locality makes these particles an attractive proposition for storing
quantum information in a quantum computer. By associating a pair that anni-
hilate with a bit value 0, and a pair that form a ψ with bit value 1, they can
be used to store a bit (or qubit). By keeping the Majoranas well separated, it
would take a large and concerted effort for errors to affect the bit (by moving
the particles together to read out the value, for instance). As such, the informa-
tion will have an inherent robustness against errors, as long as error correction
is performed to detect the errors before they build up [7–9].

Now consider two pairs of Majoranas created from vacuum. If one Majorana
from one pair is combined with one from the other, there is no shared history
to determine the result. The pair will therefore randomly choose to either
annihilate or become a ψ.

Since everything initially came from vacuum, to vacuum they must return.
Combining the remaining pair of Majoranas must then always yield the same
result as for the first pair, such than any ψ formed by one will be joined by
its antiparticle from the other. It is this process, and the resulting correlation,
that is the key to the experiment we will perform.

The exchange of Majoranas, which is simply swapping the positions of two
of the anyons, also allows for many interesting effects. For one thing, and as
we will show experimentally, it can be used to move particles to be combined
with strangers, and so exhibit the effect described above as well as many more
complicated versions.

Also, suppose we take again the two pairs of Majoranas created from vacuum.
One Majorana from one pair is moved around a Majorana from the other.
Combining the two pairs will now result in both forming a ψ, and hence flipping
the bits that they are storing. This is certainly a non-trivial effect that bosons
and fermions could only dream of. It demonstrates the power of non-Abelian
anyons to not only store information, but to process it too.

Note that the fault-tolerance described above applies only when the Majo-
ranas can be kept well separated, and when error correction is performed. The
small nature of our experimental set-up prevents the possibility of either. As
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will be seen later, this means that our results will not be free of noise of the
effects of noise.

For another approach towards exchanging Majoranas, as well as a summary
of all other experimental progress towards Majoranas in a variety of physical
systems, see [10, 11] and references therein.

QUBITS

Qubits are the quantum analogue of bits. Just as a bit can be either 0 or 1,
a qubit can be either | 0⟩ or | 1⟩. But it can also be any quantum superposition
of the two, such as,

|ψ⟩ = a | 0⟩ + b | 1⟩ ,

for any arbitrary complex numbers a and b [12]. For a simple introduction, see
[13].

The states | 0⟩ and | 1⟩ are referred to as the Z basis of the qubit. If we
measure to see whether the qubit is | 0⟩ or | 1⟩, this is called a Z measurement.

Two particular examples of possible superpositions are the states |+⟩ and
| −⟩, which are known as the X basis states,

| ±⟩ =
1√
2
| 0⟩ +

±1√
2
| 1⟩ .

These are orthogonal states: and as different from each other as | 0⟩ is from | 1⟩.
This means we can also measure whether a qubit is |+⟩ or | −⟩, known as an
X measurement. Similarly we may also define so-called Y basis states, and a
Y measurement.

The manipulation of qubits can be understood using the circuit model. In
this work we will be considering the same circuits as used in the IBM Quantum
Experience, and so refer to that for an introduction [14].

The most notable operation applied in these circuits is the CNOT. This acts
on two qubits, with one called the ’control’ and the other the ’target’. The
effect is to add the Z basis value of the control to that of the target. However,
since the target is restricted to the two states 0 and 1, only the parity of the
sum is retained. The target is therefore left in the state 0 if the sum was even,
and 1 if odd. If the target was initially in the | 0⟩ state, the effect is to copy
the Z basis state of the control to the target. The CNOT gate is a reversible
equivalent of the XOR gate used in electronic circuits.

In the IBM 5Q processor there are five qubits, labelled Q0 to Q5. The only
CNOTs that can be applied are those with Q2 as the target. In order to allow
more flexibility in circuit design, we can implement a CNOT with Q2 as control
by applying the Hadamard gate, H, on both control and target before and after
the standard CNOT is applied.
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FIG. 1. The code is defined on a hexagonal lattice, of which a section is shown. Vertex
qubits are shown in black and hexagon in grey. Edge qubits are red, green or blue
depending on whether the edge is associated with a XX, Y Y or ZZ measurement,
respectively.

MATCHING CODE

The grid shown in Fig. 1 is an example of a matching code [15], which is
a type of quantum error correcting code [16] that is based on the honeycomb
lattice model [4]. It is a variant of the surface code [1].

In this code there is a qubit located at each vertex, edge and hexagon. The
vertex qubits are those that are truly part of the code. The edge and hexagon
qubits are there to make measurements of the vertex qubits.

We associate a measurement with each edge. Each of these measures a col-
lective property of the two qubits on the vertices connected by the edge.

For the vertical edges we have a so-called ZZ measurement. There are two
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FIG. 2. In order to implement an ZZ measurement on two vertex qubits Vi and
Vj using edge qubit ek, the above circuit is applied using only the blue gates. The
first CNOT copies the Z basis state of vj to ek. The second adds the Z basis state
of vi. If their states in the Z basis are the same, the sum is even and so ek is left
in the state | 0⟩. If they are different, the sum is odd and so ek is left in the state
| 1⟩. The measurement of ek then outputs the corresponding bit value 0 or 1. An
XX measurement is the same, except that the red gates are added. These rotate the
control end of the CNOTs such that they look at the X basis states, rather than the
Z. For Y Y both the red and green gates are added to rotate to the Y basis.

possible outcomes, which correspond to whether or not the state of the qubits
different in the Z basis. If both qubits are | 0⟩, or both are | 1⟩, the measure-
ment outputs 0 to show there is no difference. The same will happen for a
superposition of both being | 0⟩ and both being | 1⟩, and the measurement will
not disturb this superposition. On the other hand, if one qubit is | 0⟩ and the
other is | 1⟩, the measurement will output 1 to show that there is a difference.

The other two edges correspond to XX and Y Y measurements. These are the
same as a ZZ measurement, except that they compares whether the states are
the same (output 0) or different (output 1) in the X and Y basis, respectively.
The circuits that implement these measurements are shown in Fig. 2.

Measurements that share a vertex qubit do not commute. This means that
making a measurement of one will affect the outcome of the other. For example,
suppose we prepare a state such that the ZZ measurement on the light blue
edge of Fig. 1 will give the outcome 0 with certainty. We then measure the XX
shown in light red. Subsequently measuring ZZ will then randomly output 0
or 1, due to the effect of the non-commuting XX. Further explanation of this
can be found in [17].

The measurements of the hexagons similarly have output either 0 or 1.
These measure a collective property of all six qubits on the vertices around
the hexagon. However, we need not consider these measurements explicitly for
what follows.

All edge measurements commute with all hexagon measurements. We wish
to find a set of measurements that all commute with each other, and for which
there are as many measurements in the set as there are vertices. The simplest
choice is to take all ZZ measurements and all hexagon measurements.

These will form the so-called stabilizer, which defines our quantum code. We
will prepare and work with states for which the outcome is 0 to all stabilizer
measurements. Measuring any 1 will then be clue that an error has occurred.
However, we will not be considering error correction in what follows.



6

ANYONS IN A QUANTUM CODE

We consider states for which all stabilizer measurements yield the outcome 0
with certainty. Through the effects of noise, or of our own effort, we can then
create states in for which some measurements yield 1. However, it is impossible
to create a single isolated 1 in some area by solely manipulating qubits in its
neighbourhood. Instead, such local manipulations will always cause at least two
stabilizers to yield 1. This is similar to the property of particles, which cannot
be created or annihilated in isolation. At least one other particle is required to
serve as its antiparticle.

It has been found that stabilizers yielding a 1 behave as particles in all other
ways also. They are therefore quasiparticles that arise from collective properties
of the underlying qubits. And these quasiparticles behave as anyons.

The quasiparticles associated with hexagons correspond to the e and m
anyons of the surface codes [1]. However, we will not be concerned with these
in what follows.

The quasiparticles residing on the edge stabilizers correspond to fermions. In
fact, they behave exactly the same as the ψ fermions of the Ising model. It is
therefore interesting to determine whether these can be caused to decay into a
pair of Majoranas, and whether these Majoranas can be moved, braided and
used as non-Abelian anyons.

This can indeed be done. By changing the definition of the stabilizer close to
the ψ we wish to split, we can push the two constituent Majoranas apart. This
is shown in Fig. 3, and proven rigorously in [4, 15]. This is equivalent to the
twist deformations of [2].

While performing this process, it is important to keep track of the results of
the new stabilizers. Each result of 1 implies that the Majorana being moved
has decayed into a Majorana and a ψ during the process, and so must be
recombined. To avoid the need to account for such stray fermions, we will
consider only results for which these measurements all yield the result 0.

MINIMAL EXCHANGE OF MAJORANAS

The process shown in Fig. 3 exchanges two Majoranas. The process of this
exchange was introduced in [15], but is also explained in the caption of the
figure.

The implementation of the exchange acts non-trivially only on three vertex
qubits and two edge qubits. We may therefore truncate the lattice to this small
area, and use a five qubit process to implement the exchange.

The truncated system is shown in Fig. 4. In common with other truncated
surface code experiments [19–21], not all stabilizers have full support on the
truncated area. They must therefore be reduced to the part with support on
this area. Most notably, the three vertical links incident on the area only have
one vertex within it. The ZZ measurements required for the full system then
become single Z measurements. The fermionic occupancy of these three links
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FIG. 3. In (a) we see the code with ZZ stabilizers shown in blue. The corresponding
pairs of Majoranas can be associated with the vertices. These two pairs are shown
explicitly for two ZZ stabilizers shown in purple and teal. (b) To move the green
Majorana on vertex v1 we add the adjacent Y Y measurement to the stabilizer. Since
this does not commute with the ZZ measurement above, it is also removed from the
stabilizer. The Y Y measurement binds the Majoranas on vertices v1 and v2 into a
well-defined fermionic mode, whereas that on v4 becomes unbound. The Majorana
initially at v1 is therefore effectively teleported to v4 [15, 18]. (c) An XX measurement
is similarly used to teleport the purple Majorana initially at v3 to v1. (d) Finally the
initial ZZ measured, and so returned to the stabilizer. This moves the teal Majorana
from v4 to v3, completing the exchange.

therefore corresponds exactly to the Z basis state of the three vertex qubits.
Accordingly, the initial state is simply that for which all vertex qubits are | 0⟩.
The initial state of the edge qubits, as always, should also be | 0⟩.

The most straightforward implementation of this process is shown in Fig. 5.
Here the two edge qubits are used to make the required XX and Y Y measure-
ments.

This circuit cannot be run on the IBM 5Q processor due to its restricted
topology. Because of this we must use a single qubit as the intermediary for
both the XX and ZZ measurements. In order for the results of the two mea-
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FIG. 4. The system used for the exchange is reduced to the five qubits on which
the process acts non-trivially. The ZZ measurements are reduced to single Z mea-
surements on the vertex qubits. The pairs of Majoranas that residing on these edges
therefore now reside fully on the vertices. The Z measurements determine whether
they would combine to annihilate or form a fermion, just as the ZZ measurements
did previously. Other edge operators remain unchanged.

FIG. 5. The ideal circuit first performs the Y Y measurement of v1 and v2 using e1,
and then the XX of v2 and v3 using e2. The Z measurement of v2 is then performed.
Afterwards, Z measurements are made on v1 and v3 to verify the expected correlations.

surements to be distinguished, the result of the Y Y measurement is copied onto
an otherwise unused qubit using a CNOT.

It is also important to apply the circuit as quickly as possible, and to assign
the qubits to their tasks based on the noise levels of their entangling gates and
also their lifetimes. Doing do results in the final circuit as shown in Fig. 6.

RESULTS

The circuit of Fig. 6 was implemented using the IBM 5Q processor, using the
interface provided by the IBM quantum experience. The success of the circuit
is categorized by the correlation function,

C = P (00) + P (11) − P (01) − P (10).
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FIG. 6. The Y Y measurement is made using e1/2. But rather than measuring this
qubit, the result is copied to e1 for measurement. The XX measurement is then
made using e1/2. The measurement result of this will be the summ of the XX and
Y Y measurements, but the Y Y outcome can be inferred using that of XX. Each
operation is applied as soon as the previous one on the same qubit is complete in
order to avoid unnecessary noise. The qubits Q0 to Q1 of the processor are listed
from top to bottom. The choice of which should play the role of each vj and ej was
determined by the T1, T2 and ejkg parameters from the 2016− 09− 21 calibration, in
order to minimize noise.

Here P (01) is the probability that the measurement of v1 yields 0 and v3 yields
1, both in the case of no stray fermions. The theoretical prediction for the ideal
case is of perfect correlations, corresponding to C = 1. In contrast C = 0 would
correspond to a lack of correlations and C = −1 to perfect anticorrelation.

A simulation of the circuit under noiseless conditions showed exactly the
result expected: C = 1. A simulation under realistic conditions yields C =
0.454.

Running the circuit for 24576 shots on the IBM 5Q processor yields C =
0.530. This is in good agreement with the theoretical prediction made under
realistic conditions. It is also well above zero, and so clearly demonstrates the
expected correlations.

One possible problem with this result is that decay to the | 0⟩ state on v1
and v3 could lead to a false positive. To test this, tomography on the state
is performed. Specifically, one can consider the Majoranas to encode a single
logical qubit. The exchange has the effect of rotating this qubit to a Y basis
state. The logical X operator corresponds to the product of the XX and Y Y
link operators, and so to an Y ZX operator on v1, v2 and v3. Respectively.
Since the logical Z is simply a single Z on v1 or v3, the Y will be XZX or
Y ZY respectively.

Since these three qubit measurements are performed at readout, superposi-
tions in the system need not be preserved. We may therefore do three sin-
gle qubit measurements and calculate the corresponding correlators afterwards.
This simply requires additional rotations on v1 and v3 of Fig 6 to access the
correct basis. The results for each are obtained from 8192 shots.

With these results, we can reconstruct the density matrix of the resulting
state and compute its fidelity to the required Y basis state. It is found that
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this fidelity is 70.6% when using Y ZY . The closest point on the surface of the
Bloch sphere has a fidelity of 94.0% to the required state. This is therefore a
very encouraging result.

When using XZX the state obtained has a fidelity of only 54.6%, and that
of the closest point on the Bloch sphere is 67.4%. The poor result in this case is
most likely due to the longer time needed to measure the qubit v1 = Q0, which
has the lowest lifetime of all the qubits.

All data can be found at [22].

CONCLUSION

The exchange of two Majoranas causes the state of two Majorana pairs with
definite fusion result to become one with indefinite but correlated results. In this
work we showed that this could be realized on a surface code based architecture
using only five qubits. The experiment was then performed using the IBM 5Q
processor. The results obtained demonstrate the expected correlations.

With higher fidelity qubits, this work could be extended by applying two
exchanges. The effect of a full braid of one Majorana around another could
then be demonstrated, as well as the effect of undoing the first exchange by one
in the opposite direction. The orthogonality of the results in these two cases will
provide an even starker demonstration of the braiding of non-Abelian anyons.

It would also be interesting to see this experiment reproduced with spin
qubits. This could use the process proposed in [23] or the system introduced in
[24].
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Chapter 4

Hexagonal matching codes
with 2-body measurements

Abstract

Matching codes are stabilizer codes based on Kitaev’s honeycomb lattice model.
The hexagonal form of these codes are particularly well-suited to the heavy-
hexagon device layouts currently pursued in the hardware of IBM Quantum.
Here we show how the stabilizers of the code can be measured solely through
the 2-body measurements that are native to the architecture. The process is
then run on 27 and 65 qubit devices, to compare results with simulations for a
standard error model. It is found that the results correspond well to simulations
where the noise strength is similar to that found in the benchmarking of the
devices. The best devices show results consistent with a noise model with an
error probability of around 1.5% − 2%.

Publication Information

Originally published in Journal of Physics A: Mathematical and Theoretical,
Volume 55, Number 29 (2022) [8].

Note that the references of this chapter are self-contained, and not included in
the overall references.
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INTRODUCTION

The future of quantum computation is built on quantum error correction [1].
It is therefore vital to design and test quantum hardware in a way that ensures
compatibility with this process. It is for this reason that recent years have seen
many examples of experiments testing the fundamental components of quantum
error correction (see [2–8] from the past two years, and references therein),
as well as codes designed specifically for hardware architectures currently in
development [9–11]. This work represents both of these approaches, with a
proof-of-principle implementation of a code designed for current IBM Quantum
hardware.

In particular we consider matching codes [12]. These are the Abelian phase
of Kitaev’s honeycomb lattice model [13], reimagined as a family of stabilizer
codes with similar properties to surface codes [14, 15]. They can be defined on
any trivalent lattice, but we will consider hexagonal lattices in this work.

Specifically, we consider a code defined on the lattice shown in Fig. 1(a).
This is a so-called heavy-hexagonal lattice of qubits [9] , in which a qubit is
placed on each vertex and each edge of a hexagonal lattice. The edges of the
lattice are labelled x, y and z depending on their orientation. For each edge
we define a link operator, σα ⊗ σα, that acts on the two vertex qubits. Here
α ∈ {x, y, z} is the link type.

We also associate an operator with each plaquette. This is the product of the
link operators that form the boundary of the plaquette. It therefore corresponds
to the following tensor product of Paulis on the six code qubits around the
plaquette.

W = σx
0σ

y
1σ

z
2σ

x
3σ

y
4σ

z
5 (1)

Here the qubit numbering is that shown in Fig. 1(c)

The stabilizer of the code is generated by the plaquette operators along with
a commuting subset of the link operators. For concreteness, in this work we
will specifically consider one such subset: that of the z-link operators.

Though the storage and processing of logical information is not within the
scope of the current work, it is worth commenting on how this can be imple-
mented in these codes. Logical information could be stored in the stabilizer
space of the code, whose nature will depend on the boundary conditions of the
lattice. However, it can also be done through careful choice of which link op-
erators to use as stabilizers. For each pair of vertices that are not touched by
a link stabilizer, a two-fold degeneracy in the stabilizer space will be opened.
The code distance corresponds to the distance between these ‘defects’. Further-
more these defects can be moved by changing the set of link operators used as
stabilizers [12, 16]. They act as Majorana modes under braiding, allowing the
implementation of some Clifford gates in a manner similar to code deformation
in the surface code [17].
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FIG. 1. The layout of qubits and definition of link operators in a hexagonal matching
code.

MEASURING STABILIZERS WITH 2-BODY MEASUREMENTS

As with any stabilizer code, the stabilizer generators of the code must be
constantly measured. Since the link operators are hermitian, they can be inter-
preted as observables and measured. Projections onto the eigenspaces of these
operators is entangling in general, and so the measurement process requires en-
tangling operations. The simplest means is to use an additional auxiliary qubit.
This is entangled with the qubits of the link and then directly measured to give
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the result. The circuits required for x-, z- and y-link measurements are shown
in Fig. 2. The connectivity required for this circuit means that the edge qubits
in the heavy-hexagonal code are perfectly placed to be the auxilliary qubit for
each link. The stabilizer generators that are link operators can therefore be
directly measured in this way.

FIG. 2. Circuits to perform parity measurements for (a) x-links, (b) y-links and (c)
z-links. The top and bottom qubits in the circuits are the pair for which the parity
is measured. The middle qubit is an auxilliary, which should be initialized in the |0⟩
state.

Unfortunately, the 6-body plaquette operators cannot be measured so easily.
However, since the plaquette operators can be expressed as products of link
operators, it is natural to expect that there could be a way to deduce their
measurement from a set of link operator measurements.

The simplest way to do this is to split the 6 edges around each plaquette into
two groups. In Fig. 1(c), group a is shown by thin lines, and group b by thick
lines. The products of all link operators for each group are
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Vb = (σz
3σ

z
4)(σy

5σ
y
0 )(σx

1σ
x
2 ),

Va = (σz
0σ

z
1)(σy

2σ
y
3 )(σx

4σ
x
5 ) (2)

It is important to note the following features of these operators:

1. They commute with the plaquette operator, which is equal to their prod-
uct;

2. They commute with all individual link operators around the plaquette;

3. They commute with each other.

From point 1 it follows that measurement of Va and Vb can be used to deduce
the measurement result for the plaquette operator by summing their results
modulo 2. From point 2 it follows that measuring the individual link operators
in a group can be used to deduce the result for a measurement of the V operator
of that group by summing their results modulo 2. From points 2 and 3 it
follows that both Va and Vb can be sequentially measured in this way, without
the measurement of the latter invalidating the result of the former. Combining
these, we find that the measurement of the plaquette operator can be achieved
measured by measuring the link operators of first one group, and then the other,
and computing the sum of all results modulo 2.

Note that this process will not commute with link stabilizers incident upon the
plaquette. They will therefore need to be subsequently measured and returned
to the stabilizer space. The act of measuring a plaquette operator is therefore
effectively a form of code deformation [18], which will have the effect of removing
the affected stabilizer generators are removed from the stabilizer and replacing
them by their product (with with the process does commute). This can lead to a
decrease in the distance of the code, since it possible for errors to take shortcuts
across the larger stabilizer generator without being detected. To ensure that
the distance is not reduced to zero, the plaquettes will need to be measured
in shifts such that sets of affected link operators do not overlap. Between the
shifts, in which subsets of the plaquettes are measured, measurements of all link
stabilizers are made.

A remaining question is such measurements of plaquettes are compatible with
fault-tolerance. The fact that these measurements disturb z-link stabilizers
means that there is effectively an additional source of noise. This is very strong
(effectively applying x- and y-link operators with probability 1/2 whenever one
is measured), but also extremely localized (affecting only the measured plaque-
ttes). Since the use of shifts means that each bout of this noise affects only
non-overlapping regions, and since it is fully detected by the z-link stabiliz-
ers, a suitably calibrated decoded should be able to account for this additional
noise source, with the effective loss of distance described above being the main
deleterious effect.
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EFFECTS OF NOISE

The process described above will now be implemented on multiple suitable
IBM Quantum devices with the heavy-hexagon layout. These are the 27 qubit
Falcon processors ibm cairo, ibm hanoi, ibmq montreal and ibmq toronto,
and the 65 qubit Hummingbird processors ibmq brooklyn and ibmq manhattan.
The device layouts are shown in Fig. 3.

Note in Fig. 3 (a) that a subset of the z-links are highlighted. These are
those that are incident upon plaquettes that will be measured, but for which
the entire z-link is not present on the device. In these cases, the usual σz ⊗ σz

operator can be truncated to just a σz operator on the corresponding qubit
shown in purple. The measurement of the link operator is therefore achieved by
a simple measurement of this qubit. Similar truncated z-links also exist for the
device in Fig. 3 (b), where the corresponding qubits are again shown in purple.

The process is repeated over T measurement rounds, with T = 3 used. Within
each round are the different shifts of plaquette measurements, with each shift
following by the measurement of all z-link stabilizers. Each shift consists of
the measurement of all link operators within subset a of the corresponding
plaquettes, followed by the measurement of those from subset b.

When applied to the standard initial state (of all qubits in state |0⟩), the
plaquette operators will not have a definite initial value. The result from the
first round will therefore be random for each plaquette. The results will the
remain the same for subsequent rounds, except when disturbed by noise. The
z-link stabilizers, however, will be affected by the measurements of x- and y-
link operators. However, consider the product of all z-link operators incident
upon a plaquette, as highlighted for one of the plaquettes in Fig. 3 (b). This
product commutes with all the x- and y-link operators of the plaquette. The
value of this product immediately before and after the measurement of the
corresponding plaquette should therefore be invariant, except when disturbed
by noise.

Given these considerations, we will calculate the two quantities for each pla-
quette, one based on the results of plaquette operator measurements and the
other based on the results of z-link measurements. For the former, we consider
the probability that the value of each plaquette operator remains the same as
for the previous round. This done for each plaquette and each round except the
first. The average over all these values, ⟨pW ⟩, is then calculated. Similarly we
calculate a quantity ⟨pZ⟩ based on the probability that the product of all z-link
operators incident upon a plaquette changes values.

The process will also be run for simulated noise. This will be done for the
27 qubit case only. The noise model is the standard one used for threshold
calculations of the surface code [19]: every that can go wrong does so with
some a probability p. Specifically, bit flip noise with probability p is applied
after each reset and prior to each measurement, and two qubit depolarizing
noise is applied to each two qubit. Note that additional noise is not applied to
the single qubit gates around CX gates. Instead, the combination of these gates
is regarded as a single two-qubit gate with a single error.



6

FIG. 3. Layout of (a) 27 qubit Falcon processors and (b) 65 qubit Hummingbird
processors. The plaquettes are split into four ‘shifts’, such that all plaquettes within
each group can be measured simultaneously. Each plaquette is labelled by which shift
its measurement is a part of.

Note that, since the process is restricted to stabilizer states, noiseless simula-
tions can be highly efficient. As such, the process was run for both the 27 and
65 qubit cases to verify that the calculated quantities are indeed invariant in
the noiseless case.

For the runs on real hardware, regular benchmarking of the devices offers mea-
sured noise probabilities that can be compared with those of the error model.
These probabilities are collected for both preparation and measurement noise
on each qubit, as well as the CX noise on all pairs. Specifically, probabilities
considered are as follows.

• Preparation noise: For each qubit, the probability prob meas1 prep0.

• Measurement noise: For each qubit, the measurement error probability.
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• CX noise: For each pair of qubits for which a CX is possible, the CX error
probability.

• Idle noise: For each qubit, the error probability for an identity gate over
the timescale of measurement and reset. This is estimated as

1 − (1 − 2 pid)(tmeas+treset)/tid ,

Here pid is the error over the standard timescale tid of an identity gate.
The above expression gives the probability for an odd number of such
errors over the tmeas + treset timescale of measurement and reset.

The mean and standard deviation of this combined list of probabilities is shown
for each device in the table below, along with the values of the quantum vol-
ume [20].

Device ⟨p⟩ σ QV

ibm cairo 1.47 % 1.23 % 64

ibm hanoi 1.55 % 1.61 % 64

ibmq brooklyn 4.73 % 5.00 % 32

ibmq montreal 4.41 % 6.00 % 128

ibmq toronto 5.17 % 6.45 % 32

ibmq manhattan 18.3 % 31.9 % 32

Here we see that there is a high degree of variation in the probabilities, with
the standard deviation on the order of ⟨p⟩ in all cases. We also see that there is
not a strong correlation between ⟨p⟩ and the quantum volume. This is because
the value of ⟨p⟩ is strongly affected by the probability of error an idle qubit
while another is being measured and reset, whereas such processes do not occur
in the calculation of the quantum volume. Also ⟨p⟩ is calculated using errors
from across the whole device, whereas the quantum volume calculation can be
done on an optimal subset of qubits.

The results of noisy runs, for both simulations and quantum hardware, are
shown in Fig. 4. The simulations show that the probabilities ⟨pW ⟩ and ⟨pZ⟩
increase with p and converge to ⟨pW ⟩ = ⟨pZ⟩ = 0.5, as would be expected. For
any run we see that ⟨pW is consistently higher than ⟨pZ⟩. This will be due
to the fact that there is more time between two subsequent measurements of
the stabilizer operators than of the z-links, and so more errors. The value of
⟨pW ⟩ approaches the convergence point already at around p = 1.5 %. For ⟨pZ⟩,
the results are easily distinguishable from the convergence point up to around
p = 3 %.

A further data point not shown here is for ibmq manhattan. This has ⟨p⟩ =
18.5%, which is well above those for the devices shown in the graph. The
values of ⟨pW ⟩ and ⟨pZ⟩ are at the convergence point, with ⟨pW ⟩ = 0.500 and
⟨pZ⟩ = 0.498.

For the noisiest devices tested (ibmq brooklyn, ibmq montreal, ibmq toronto

and ibmq manhattan) the results show ⟨pW ⟩ ≈ ⟨pZ⟩ ≈ 0.5, and so are consistent



8

FIG. 4. The values ⟨pW ⟩ (marked as ×) and ⟨pZ⟩ (marked as +) plotted against noise
strength. For simulated runs, the noise parameter p is used, For runs on quantum
hardware, the mean value ⟨p⟩ is used.

with the convergence point. This is consistent with the strength of the noise in
these devices, which all have ⟨p⟩ > 4 %.

For ibm cairo and ibm hanoi the results are clearly distinguishable from the
convergence point, with ⟨pZ⟩ < 0.4 in both cases. The result for ibm cairo

is in good agreement with simulations for p ≈ 1.5%, which is consistent with
the ⟨p⟩ = 1.47 % for this device. For ibm hanoi the result agrees best with
simulations for p ≈ 2%. Though this is higher than might be expected given
the ⟨p⟩ = 1.55 % of this device, the high variation in the error strengths on
mean that this is not a great surprise.

CONCLUSIONS AND OUTLOOK

The codes implemented in this work effectively consist of 2 independent sta-
bilizer measurements per plaquette, per round. This means four per round for
the Falcon devices, and 16 per round for the Hummingbird device. As such,
these experiments are among the largest scale quantum error correction exper-
iments yet implemented. Nevertheless, the scope of this study was not to use
the codes to store or protect logical qubits. Instead it was to assess the effects
of noise on the measurements of stabilizers, and to benchmark current quantum
hardware by comparing results with simulations.

The results show that the various devices tested exhibit results consistent
with a range of different error rates, from around 1.5% in the the best case
of ibm cairo to 5% or more for the worst case of ibmq toronto. The former
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extreme shows good progress towards the well-known threshold of 0.5% -1%
for the standard surface code [19, 21]. It is unfortunate that the only 65 qubit
devices tested show results from the convergence point. Nevertheless, it is to be
expected that initial versions of larger devices will exhibit higher error rates.

The figures of merit introduced here will continue to be applied as further
quantum hardware is developed, allowing a holistic assessment of their capabil-
ities in a concrete example of quantum error correction. Of particular interest
will be the continued development of larger devices, such as the 65 qubit Hum-
mingbird processors, to see evidence of low effective error rates. Also, the limit
to T = 3 measurement rounds in this work was due to current limitations in
the classical control software. In future we hope to greatly extend this, to also
assess any effect of increasing circuit depth on the error rate.

Of course, there is also the need to further develop the understanding of the
code itself. This includes developing a tailored decoder, and determining the
threshold of the code. This will be done in conjunction with the development
of the hardware, to work towards an eventual demonstration of a logical qubit
with the code.

The data for all results in this paper are available at [22]
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Chapter 5

Measurements of Floquet
code plaquette stabilizers

Abstract

The recently introduced Floquet codes have already inspired several follow up
works in terms of theory and simulation. Here we report the first preliminary
results on their experimental implementation, using IBM Quantum hardware.
Specifically, we implement the stabilizer measurements of the original Floquet
code based on the honeycomb lattice model, as well as the more recently intro-
duced Floquet Color code. The stabilizers of these are measured on a variety
of systems, with the rate of syndrome changes used as a proxy for the noise of
the device.

Publication Information

This chapter was made available on the arXiv [11] but is intended otherwise
intended to be published only in this thesis.

Note that the references of this chapter are self-contained, and not included in
the overall references.
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INTRODUCTION

Floquet codes are a concept that has recently emerged in quantum error
correction [1]. The first explicit example was the honeycomb Floquet code [1–5],
based on Kitaev’s honeycomb lattice model [6]. The concept was then extended
with two additional codes. First was the e↔ m automorphism code [7], based
on a generalization of honeycomb Floquet code. Next was the Floquet Color
code [8–10], which can be derived from Color codes [11].

Both the original honeycomb Floquet code and the Floquet Color code share
similarities in implementation. Specifically, both are based on the measurement
of two-body observables corresponding to edges in a hexagonal lattice. This
makes them both particularly well suited to the heavy-hexagon architecture of
IBM Quantum processors [12], in which qubits reside on both the vertices and
links of a hexagonal lattice. These can then be used as the required code qubits
and auxiliary qubits respectively, where the latter are used within the circuits
to measure two-body observables (see Fig. 1).

Most of the available hardware is not sufficient to perform a sensible analysis
of the logical subspace. The 27 qubit Falcon devices, for example allow only two
plaquettes to be realized. Nevertheless, the hardware is sufficient to measure
the stabilizers, and assess how they detect noise on the devices. Here we will
perform this for the honeycomb Floquet code and Floquet Color codes.

HONEYCOMB FLOQUET CODES

Kitaev’s honeycomb lattice is a well-studied model in both condensed matter
and quantum information [6]. It is defined on a hexagonal lattice with qubits
on the vertices, as shown in Fig. 2. The links are labelled x, y and z depending
on orientation. Each is assigned a two-body link operator σα ⊗ σα on the two
adjacent vertex qubits, where α ∈ {x, y, z} is the link type.

Important to any study of this model are the plaquette operators, since they
commute with all the link operators. Each is defined as the product of link
operators around a corresponding plaquette. They can be expressed as

W = σx
0σ

y
1σ

z
2σ

x
3σ

y
4σ

z
5 (1)

using the numbering of Fig. 2(c).

The most obvious means to convert this model to a quantum error correcting
code is arguably to perform the two-body parity measurements corresponding
to the link operators, treating them as the gauge operators of a subsystem code.
The plaquettes then form the corresponding stabilizer generator. Unfortunately,
such a code has a trivial logical subspace [13]. However, two separate means
to carve out a non-trivial subspace were introduced in the last year. One of
these was the honeycomb Floquet code, and the other was an approach based
on matching codes [14]. In both, a particular order is used for the measurement
of the gauge operators in order to effectively create a logical subspace.
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FIG. 1. Circuits to measure operators for (a) x-links, (b) y-links and (c) z-links. The
two vertex qubits for which the parity is measured are at the top and bottom of each
circuit. The auxiliary is in the middle. This should be initialized in the |0⟩ state. If
it remains in the output state of a previous measurement, the end result will be the
XOR of the two.

For the honeycomb Floquet codes, the measurement schedule is defined using
a tri-colouring of the plaquettes and links of the hexgaonal lattice. This is done
such that any link of a given colour connects two plaquettes of that colour, and
forms part of the boundary of two plaquettes of different colours. The colouring
used for the plaquettes of the devices used are shown in Fig. 3

Measuring stabilizer changes

Measurement of the gauge operators is done by measuring the link operators
of each colour in succession. We will consider the order red-green-blue by de-
fault. The results of any two successive rounds can be used to infer the results
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FIG. 2. (a) Portion of the lattice on which the honeycomb lattice model and derived
codes are defined. Vertex qubits are shown as black dots. Grey dots are auxiliary
qubits that can be used in the derived codes. (b) Definition of the link operators. (c)
Definition of the plaquette operators.

for a subset of stabilizers. This is done by simply adding their results modulo 2.
For the initial red and green rounds, it is the blue plaquettes for which results
can be inferred. This is because the boundary of blue plaquettes is formed by
red and green links. After the subsequent round of blue link measurements,
results from the green and blue rounds can similarly be used to infer results for
the red plaquettes, and so on.
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FIG. 3. Colouring of plaquettes and links for the ibm washington device, which is
a 127 qubit Eagle processor. Qubits shown in black are those of the code, those
in grey are auxiliary qubits used during gauge operator measurements, and those in
light grey are unused. The plaquettes of the 27 qubit Falcon devices and the 65 qubit
Hummingbird processor are subsets of those shown here. The Falcon devices support
two plaquettes, corresponding to a red and blue pair. The Hummingbird processor
supports 8 plaquettes, corresponding to four rows of pairs alternating between red and
blue, and green and red.

Assuming that the state begins in a product state, the initial measurement of
each plaquette will typically give a random result. In the noiseless case, the next
measurement would repeat the same result. A mismatch between subsequent
measurements of the same plaquette is therefore a detection of an error. To
perform such syndrome comparisons on all plaquettes, at least seven rounds of
link operator measurements must be performed. It is this minimal seven round
case that we will consider here.

We will also consider the case in which resets are not applied after measure-
ment of the auxiliary qubits. The results for each link qubit measurement is
then actually the parity of all measurements of that link qubit so far. The first
syndrome change for red and blue plaquettes can then be calculated directly
from the results of the second instance of the pertinent link operators. For the
green plaquettes, only results from the second instance of the blue link mea-
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surements are required, but results from the first and third instance of the red
link measurements must be combined.

Results

The seven round process is run for both IBM Quantum devices and simulated
noise. For the former, an example of a scheduled circuit is shown in Fig. 4
for ibmq cairo. The circuits typically settle into three distinct layers. The
first consists of the two qubit gates required for the first three rounds of link
operator measurement, followed by the measurements on auxilliary qubits for
all. This is then repeated for the next three rounds. The final layer is similar,
but consists only of the final round of link operator measurements. Note that
there is significant idle time for the qubits, caused by both measurement and
the scheduling of two qubit gates. The latter is exacerbated by the mismatch
in two qubit gate times. In the first layer, this can mitigated to a degree by
delaying the first gate for as long as possible for some qubits. This is because
idling minimally effects qubits in their initialized state.

For the simulations, only the 27 qubit case is considered. The noise model is a
variation of the standard one used for surface code threshold calculations [15],
in which everything that can go wrong does so with some a probability p.
Specifically, bit flips after reset and prior to measurement occur with probability
p, and depolarizing noise is applied to each two qubit gate and during idle
times with probability p. The idling error is applied during measurement to the
unmeasured qubits. It is also applied to each qubit at the beginning of each
layer, as a proxy for the idling during two qubit gates.

Whether for quantum devices or simulation, the results are processed to cal-
culate a syndrome change detection rate for each plaquette. This is the fraction
of shots for which a change in value was detected for the two measurements of
the corresponding plaquette. Since such a change in value occurs only in the
presence of errors, this rate will be zero for p = 0. It can then be expected to
converge to the maximally random value of 1/2 as p increases. The value found
for quantum devices will give some sense of how noisy the syndrome extraction
process is.

For comparison of IBM Quantum devices with simulations, we will calculate
an average of the noise probabilities from the devices obtained in benchmarking.
Specifically we consider the following probabilities.

• Preparation noise: The probabilities prob meas1 prep0 for each qubit.

• Measurement noise: The measurement error probability for each qubit.

• CX noise: The CX error probabilities.

• Idle noise: For each qubit, the error probability for an identity gate over
the timescale of measurement and the longest CX gate. This is extrapo-
lated from the probability pid of an error over the standard timescale tid
of an identity gate [14].
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FIG. 4. A scheduled circuit for ibmq cairo. The sample time for this device is
dt = 0.22ns. Though circuit does not include dynamical decoupling for clarity, the
circuits as run include a pair of x gates during each delay.
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The mean and standard deviation of this set of probabilities is shown for the
devices in table below, along with the the quantum volume [16]. These values
are derived from the most recent benchmarking data at the time when the
results were taken.

Device ⟨p⟩ σ QV

ibm hanoi 1.32 % 1.39 % 64

ibm auckland 1.50 % 1.71 % 64

ibmq kolkata 1.76 % 3.14 % 128

ibm peekskill 1.81 % 2.37 % -

ibmq montreal 2.26 % 2.09 % 128

ibmq mumbai 3.00 % 1.73 % 128

ibmq brooklyn 3.02 % 3.33 % 32

ibmq washington 3.13 % 5.39 % 64

ibmq toronto 4.72 % 6.37 % 32

The results are shown in Fig. 5. Results from both simulations and quan-
tum hardware show the expected behaviour as the error rate increases. For
ibmq toronto, the relatively high noise rate results in completely random syn-
drome change detection rates. For all other cases, however, results depart signif-
icantly from the maximally random value, with ever lower average error rates
achieving ever lower syndrome change detection rates. The best results are
comparable with a gate error of p = 2% for the simple noise model used in the
simulations.

FLOQUET COLOR CODES

Measuring stabilizer changes

The Floquet Color codes are also defined using the tri-colouring of the pla-
quettes and links of the hexagonal lattice shown in Fig. 3 For each link we
assign two parity operators: σα ⊗ σα for α ∈ {x, z}. For each plaquette we
define two plaquette operators,

Wα = σα
0 σ

α
1 σ

α
2 σ

α
3 σ

α
4 σ

α
5 , α ∈ {x, z}, (2)

using the numbering of Fig. 2(c).
Note that the set of parity operators here do not commute with the plaquette

operators. This code therefore does not correspond to a subsystem code in
which the link operators are gauge operators and the plaquette operators are
stabilizers. Nevertheless, the roles they play are equivalent.

Each round of measurements consists of measuring a single link type of a
single colour of links, alternating between the two link types and through the
three colours from round to round. A complete cycle therefore takes 6 rounds [8–
10].
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FIG. 5. The values of the syndrome change detection rate plotted against noise
strength (p for simulated runs and ⟨p⟩ for quantum hardware). For simulated re-
sults, the mean syndrome change detection rate over all plaquettes is shown. For
results from quantum hardware, the mean, maximum and minimum over all plaque-
ttes are shown. Specifically, the central point is the mean, and the bars extend down
to the minimum and up to the maximum.

The measurement outcome for a red Wα plaquette operator can be deduced
from the α-link measurements for both green and blue links, and therefore
twice per cycle. However, note that the red Wα plaquette operator does not
commute with the ¬α-link operators for red links. The outcome of the red Wα

plaquettes following the measurement of red ¬α-link operators will therefore
produce random results, uncorrelated with any previous results. However, the
subsequent red Wα plaquettes will not be so disturbed, and therefore should
repeat the same result. A mismatch between subsequent measurements of the
same Wα on the same plaquette is therefore a detection of an error. These
syndrome comparisons form the basis of error detection in the code, since any
measured syndrome change is a signature of an error. Equivalent arguments
can be made for the blue and green plaquettes.

As with the honeycomb Floquet code, the scheduled circuit will settle into dis-
tinct layers in which each consist of three rounds of link operator measurements.
This is because such sets of three rounds directly measure different auxiliary
qubits, allowing the measurement gates to be performed relatively simultane-
ously. Each set of three rounds performs both types of plaquette measurement
on both types of plaquette. A single six-round cycle is therefore sufficient to
determine syndrome changes for several types of Wα. However, due to the
scheduling of the non-commuting link measurements, ten rounds are required
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for syndrome changes of all [9, 10],. Note that we do not consider changes in
syndrome from the initialized value, which is possible for some of the W z stabi-
lizers. This is because we are interested in the typical syndrome changes within
a computation, rather than this edge case.

Results

The ten round process is run for both IBM Quantum devices and simulated
noise. The layers within the scheduled circuits are visually similar to those of
the honeycomb Floquet code shown in Fig. 4, and so have similar considerations
concerning idling times. The same noise model as before is therefore used for the
simulations. The quantities measured in these runs are the syndrome change
detection rate for each plaquette Wα.

The comparison noise probabilities are calculated in the same way as before.
However, since results were taken on different days, the benchmarking data from
which the values are derived are not the same. The relevant set of probabilities
for these results is therefore shown for the devices in table below.

Device ⟨p⟩ σ QV

ibm hanoi 1.40 % 1.63 % 64

ibmq kolkata 1.47 % 1.80 % 128

ibm auckland 1.82 % 3.36 % 64

ibm peekskill 2.16 % 3.06 % -

ibmq montreal 2.26 % 2.09 % 128

ibmq mumbai 2.38 % 2.04 % 128

ibmq brooklyn 2.78 % 2.96 % 32

ibm washington 3.10 % 4.78 % 64

ibmq montreal 4.36 % 7.82 % 128

The results are shown in Fig. 6. Results from both simulations and quantum
hardware show the expected behaviour as the error rate increases. For the
simulations, we see that the syndrome detection rate for a given p is lower than
that for the honeycomb Floquet codes. Nevertheless, results from quantum
hardware show similarities between the two codes For example, devices with
⟨p⟩ ≈ 2% have a syndrome detection rate of just over 0.4 for both.

CONCLUSIONS

Here we report results from preliminary implementations of two forms of
Floquet code. The results can be used to get a sense of both how well current
hardware can implement such codes, as well as how well the codes perform.

From the perspective of the hardware, we find that current IBM Quantum
devices are already up to the task of performing syndrome measurements for
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FIG. 6. The values of the syndrome change detection rate plotted against noise
strength (p for simulated runs and ⟨p⟩ for quantum hardware). For simulated re-
sults, the mean syndrome change detection rate over all plaquettes is shown. For
results from quantum hardware, the mean, maximum and minimum over all plaque-
ttes are shown. Specifically, the central point is the mean, and the bars extend down
to the minimum and up to the maximum.

these codes. Specifically, the syndrome change detection rate is significantly
below the maximally random value of 0.5 in almost all cases. Nevertheless,
it is clear that the noise level has only just reached the point where a clear
signal is possible. Indeed, the clarity of the signal was marginal for the similar
study performed in [14], which was for a different code but with much of the
same hardware. Much of the improved performance seen in the current work is
dependent on suitable use of dynamical decoupling. It will therefore not only
be interesting to see progress made in future devices, but also to see how much
further current devices can be pushed.

From the perspective of the codes, the results do not clearly distinguish be-
tween the two. For the simulations, the syndrome change detection rates for
the Floquet Color code are slightly lower than for the honeycomb Floquet code.
However, this advantage does not also appear for runs on quantum hardware,
at least to an appreciable degree.

This work is not intended to give a definitive assessment of either the codes
or the hardware. Instead, these results are a reference by which we can compare
future progress.

The source code and data for all results in this paper is available at [17].
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Chapter 6

Introduction

The repetition code is the simplest possible example of error correction. It is the
method that is naturally employed even by those with no concept of information
theory: if you think there is some chance that your message won’t be heard, then
repeat it! Nevertheless, it can also be expressed naturally within the framework
of quantum error correction [13], as a particular example of a stabilizer code [14].
It can therefore be implemented using the standard methodology of stabilizer
codes.

Strictly speaking, repetition codes have a distance d = 1. This suggests that
only a single error is enough to destroy any stored information. However, this is
only true for quantum information. For example, for the standard encoding of
the repetition code, just a single phase flip error is enough to cause a phase flip
of the stored logical qubit. However, that qubit is protected against bit flips up
to a distance of n, the number of qubits in the code. The code is therefore very
poor at storing a logical qubit, but gives unmatched performance for storing a
logical bit. As such, when we refer to the distance of a repetition code, it is
typically the distance for the stored classical information that we refer to.

Furthermore, repetition codes are very flexible regarding the arrangement of
the physical qubits. In fact, the standard arrangement is simply a line of qubits
for which entangling gates can be performed between each pair of neighbours.
Whatever the coupling map of a device, extensive examples of such lines can
typically be found.

The above mentioned properties make repetition codes a simple, powerful
and flexible example of quantum error correction in action. As such, they are
the a perfect way to test the capabilities of a small to medium sized device. With
50 qubits, for example, the largest surface code that could be implemented is
one with d = 5 [15]. Though the implementation of the former represents a very
important step towards fault-tolerance, the latter allows the prospect of much
larger distances to be probed with the same resources.

The minimal implementation of a repetition code that can detect and correct
errors is that with d = 3: a line of three code qubits alternating with two
auxiliary qubits. The five qubits required overall mean that such a code could
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be implemented on the 5 qubits available on the cloud in 2016. However, in
2017 the number of available qubits increased to 16. These were mostly laid
out with a ladder connectivity (though with sone missing links), meaning that
a line could be found that covered all 16 qubits. With this, repetition codes
of up to d = 8 could be implemented. This allowed codes of different sizes
to be compared, to determine whether quantum error correction could really
deliver on its promise that logical errors would be ever more suppressed for
larger codes. This experiment was performed and reported in [16], reproduced
here as Chapter 7. Additional analysis of the results was also performed in [17].

The results presented in the above works were obtained during summer 2017.
Towards the end of that year, the device was returned to room temperature and
then again cooled. After this process, the full intended ladder connectivity was
available. However, other changes to the qubits could also be seen. In particu-
lar, much higher physical error rates were found, and the expected suppression
of logical errors with increasing code distance was not. These results were pre-
sented to IBM Quantum, and found to be due to frequency collisions. It was
to address this issue that the heavy hexagonal architecture was developed [7],
which is still pursued by IBM Quantum today. Of course, these results were not
to only sign of frequency crowding observed, and were not the only reason for
the change of architecture. Nevertheless, this example shows that it is impor-
tant to test current devices with all the biggest and best examples of quantum
error correction possible, to ensure that the direction pursued in hardware is
compatible with the requirements of scalability.

The above experiment was tailored to the device on which it ran: 16 qubits
with a particular layout, and with no capacity to reuse qubits after measure-
ments. To allow bigger and better experiments, it became necessary to create
more professional, adaptable and reusable software. This was one of the motiva-
tions for the topological codes package, created as a part of Qiskit Ignis [18],
which in turn is part of IBM Quantum’s open-source quantum SDK [19]. This
was made to automate the creation of circuits for repetition code experiments,
allowing them to be adapted to different numbers and layouts of qubits, as well
as supporting multiple measurement rounds. It also allowed different choices of
encoding for the code: either the standard encoding that protects against bit
flip errors, or an alternative that protects against bit flip errors. The package
also included the software required to analyze the results from the circuits by
performing decoding. It has since been expanded and incorporated into the new
part of Qiskit for quantum error correction: Qiskit QEC [20].

A tutorial for this package, as well as to the basics of quantum error cor-
rection in general, was written as a chapter of the Qiskit textbook [21]. This
included examples of the creation and analysis of repetition code circuits, with
results from an implementation of IBM Quantum’s ibmq rochester device.
This allowed the implementation of a d = 22 code, with 43 qubits in all, which
was the largest repetition code that had been implemented at the time. The
textbook chapter was also published as a paper [22], and is reproduced here as
Chapter 8.

The experimental results in the above work centered around measurement
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of the logical error rate for codes of different distances. There the aim is to
determine whether the logical error rate decreases for increasing d. Specifically,
it is expected that the decrease is exponential, with an increasingly potent de-
cay as the error rates of the physical qubits also decrease. The measurement of
logical error rates is done by sampling many runs of the code, and determining
whether a logical error occurs for each. The exponential decay therefore im-
plies an exponential sampling complexity. The study of repetition codes purely
through the analysis of logical error rates is therefore not scalable.

This has now become a problem for experiments with IBM Quantum hard-
ware, which has continued to improve in all important directions: increasing the
number of qubits, decreasing the error rates and allowing the reuse of qubits
after measurement. These advances both allow and necessitate more detailed
analysis of experimental results. In particular, note that errors at different loca-
tions within a circuit lead to different signatures in the final syndrome. It is this
property that allows these errors to be detected and corrected. However, it also
allows them to be benchmarked. By analyzing the syndrome outcomes from
many shots, it is possible to determine the probabilities that errors occur dur-
ing each point in the circuit for each qubit. This gives a more detailed picture
of errors than those obtained by simply benchmarking each qubit or each gate
in isolation [23]. They also provide a direct account of how errors occur while
a device is involved in a large-scale quantum error correction process. Such a
study is performed on a range of devices in Chapter 9. In particular, d = 3
repetition codes are implemented in order to analyze the errors of the central
qubit, looking at whether these correspond to those expected from the T1 and
T2 times of the qubit in isolation.
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Chapter 7

A repetition code of 15
qubits

Abstract

The repetition code is an important primitive for the techniques of quantum
error correction. Here we implement repetition codes of at most 15 qubits on the
16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome
measurements, achieved using the standard quantum technique of using ancilla
qubits and controlled operations. The size of the final syndrome is small enough
to allow for lookup table decoding using experimentally obtained data. The
results show strong evidence that the logical error rate decays exponentially
with code distance, as is expected and required for the development of fault-
tolerant quantum computers. The results also give insight into the nature of
noise in the device.

Publication Information

Originally published in Physical Review A, Volume 97, Issue 5 (2018) [16], with
co-author Daniel Loss.

Note that the references of this chapter are self-contained, and not included in
the overall references.
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INTRODUCTION

The development of quantum computing is entering an exciting new era.
Prototype quantum processors based on various physical architectures are be-
ginning to appear, such as those superconducting qubits [1, 2], trapped ions
[3] and spin qubits [4]. Such devices are too small and noisy to fully realize
the promise of quantum computation. Many more qubits and the ability to
achieve fault-tolerance are required before the age of quantum computers truly
dawns. Nevertheless, current and near future devices can and have been used
to generate many significant proof-of-principle results.

An important challenge of this new era is to benchmark and compare quantum
processors. A quantitative starting point for this is the ’Quantum Volume’[5],
designed to capture not only the number of qubits in a device, but also some idea
of the circuit depth that can be achieved before the effects of noise dominate.

More detail on the capabilities of a device can be obtained by running simple
programs. An obvious choice would be to implement small instances of algo-
rithms intended for large fault-tolerant devices, such as Shor’s [6] or Grover’s [7]
algorithms. However, a better insight would arguably come from algorithms
that have been specifically designed to work on small and noisy devices [8].

Fortunately, there are already a class of protocols designed specifically for
noisy systems: those of quantum error correction [9]. Many experiments have
already been done based on tasks in this area, such as error detection [3, 10, 11],
correction [1, 12] and proof-of-principle tests of the required techniques [2, 13,
14].

Several of these experiments have involved large Hilbert spaces. However,
most of these have either not allowed both detection and correction [13], or not
used the standard paradigm of encoding in a many qubit system [12]. Apart
from these, the largest number of qubits used so far for the detection and
correction of errors was a repetition code of 9 qubits [1]. This code is capable
of both detecting and correcting errors on a logical bit value stored in an array
of qubits. Note that, unlike most quantum error correcting codes, this does
not allow a logical qubit to be stored. However, the connectivity required to
implement codes which store qubits is beyond most current devices [15, 16].

Specifically, if the qubits of a device are represented as the vertices of a
graph, and edges are placed between all pairs for which entangling gates can be
directly performed, full quantum error correcting codes require this graph to be
at least a two dimensional planar lattice. Repetition codes, however have much
more amenable needs: All they require is a line. This code therefore represents
the forefront of current implementations of quantum fault-tolerance, and is an
important means to benchmark current devices.

At the time producing this study, the largest quantum processor was the
ibmqx3 of IBM [17]. This is a 16 qubit device whose connectivity is described
by the 2 × 8 square lattice shown in Fig. 1. Since repetition code can only
be defined on an odd number of qubits, this device can be used to implement
a repetition code of up to 15 qubits. It is such an implementation that we
consider in this work. By doing so, we can look for evidence of one of the key
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FIG. 1. The layout of the ibmqx3 device, with the numbering of qubits used in this
study. Lines connect pairs of qubits for which a CNOT can be performed. Thick black
lines are show for the CNOTs used in our implementation of the repetition code.

assumptions and requirements of quantum error correction, namely that the
logical error rate decays exponential with code distance.

This exponential decay is typically dependent on another assumption: that
noise acts with finite probability on only a finite number of qubits. This could
be violated by sufficiently large correlations between code qubits [18, 19], or
by the operations used to implement the code inadvertently allowing noise to
spread [20]. In such cases, the noise threshold required for successful error
correction would become zero, significantly limiting the degree to which errors
can be suppressed. Such effects could be effectively ruled out by demonstrating
that the exponential decay of logical error rate persists to arbitrarily large code
distances. In this study we will consider this to a limited extent by considering
a range of possible code sizes, but it is beyond the scope of this work to fully
rule out such effects.

THE REPETITION CODE

The repetition code stores classical information through repetition. A code
with distance d stores the bit value b ∈ {0, 1} by simply repeating the value b
across d bits.

For example, this encoding step correponds to the following for d = 5,

0 → 00000, 1 → 11111.

To implement this code using a quantum device, we simply replace the bits
with qubits. The value 0 is then stored with the state | 0⟩⊗d

, and 1 is stored

with | 1⟩⊗d
.

For the example of d = 5, this is then,

0 → | 00000⟩ , 1 → | 11111⟩ .

If no errors occurred, the result at output would be to simply regain the
initial | 0⟩⊗d

or | 1⟩⊗d
. Decoding the stored bit value in this case would trivially

be an inversion of the encoding, such as,
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| 00000⟩ → 0, | 11111⟩ → 1.

When errors do occur, the result will most likely be a bit string with a mixture
of 0s and 1s. Decoding is then typically done by majority voting: If the error
rate is low, the majority of qubits can still be expected to be correct. Deducing
that the majority value is the one that was encoded will therefore allow the
encoded information to be retrieved in most cases. The probability that the
decoding is incorrect is known as the logical error probability.

For example, suppose errors are bit flips which occur with probability p < 0.5.
If the result | 01000⟩ is obtained for d = 5, it could have resulted from two
possible processes. One is that a logical 0 was encoded, followed by an error
on the second qubit. The other is than a 1 was encoded, and errors occurred
on all but the second qubit. The probability of the former is much higher than
that of the latter, due to the much smaller number of errors. So the decoding
would be | 01000⟩ → 0.

For the error rate to be low enough for good decoding to be possible, the
stored information must be retrieved quickly after being first encoded. How-
ever, error correction typically aims to store information over long time scales.
When the repetition code is implemented classically, this can be achieved by
periodically measuring the bits of the code to keep track of errors as they occur.

This tactic is not compatible with the needs of quantum error correction,
in which our techniques should not be allowed to collapse a superposition of
a stored 0 and a stored 1, which would be encoded in the code qubits as
α | 0⟩⊗d

+ β | 1⟩⊗d
. We therefore need a corresponding method that detects

errors, but does not need to readout the stored bit at the same time. This
process corresponds making to so-called ‘stabilizer measurements’[21], which lie
at the heart of most prominent quantum error correcting codes.

Stabilizer measurements for the repetition code are achieved using the circuit
of Fig. 2. In addition to the d code qubits, d−1 ancilla qubits are used. The code
and ancilla qubits are arranged alternately on a line. Each pair of neighbouring
code qubits therefore always has an ancilla located between them. CNOT gates
are then performed, with a code qubit as control and an ancilla qubit as target
in each case. For each ancilla, a CNOT is applied with both neighbours. The
end effect of this on the ancilla does not depend on the encoded bit value. It
depends only on whether the computational basis states of the neighbouring
code qubits agree (as they should due to the repetition) or not (a signature of
error). By measuring the ancillas we can then extract information about errors,
without collapsing any encoded superposition.

This portion of the circuit (CNOTs and ancilla measurements) can be re-
peated indefinitely to keep track of errors as they arise. When it is time to
read out the bit value, the code qubits should also be measured. The entire
output can then be used to deduce the original intended value. As long as the
probability of error between ancilla measurement rounds is sufficiently low, the
probability of a logical error will decay exponentially as d is increased.
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The decoding in this case can no longer be done simply using majority voting.
Instead a decoding method such as the Blossom algorithm for minimum weight
perfect matching can be used [22], as can other methods designed for the case
of the surface code with perfect syndrome measurements [23–25].

The use of such algorithms is not required if the output is sufficiently small
(due to small d and few ancilla measurement rounds). In such cases, a look-up
table decoder can be calculated from experimental data.

Specifically, the look-up tables are conditional probability distributions
π(R|E), where R is a bit string of respresenting the final output of a code,
and E ∈ {0, 1} is the encoded bit value. These distributions can be determined
experimentally for codes of limited size using the results of many runs. Once
known, they can be used to decode an arbitrary output R. This is done simply
by finding the value of E for which π(R|E) is highest. This then gives the most
likely value for the encoded bit, assuming that the priors for the two values are
equal, and so is taken to be the decoded bit value.

The probabilities for logical errors can be determined from the same look-up
tables used for the decoding. For a given encoded bit value E, the probability
P (R|E) that the result R occurs and causes a logical error is clearly

P (R|E) =





π(R|E), if π(R|¬E) > π(R|E).

π(R|E)/2, if π(R|¬E) = π(R|E).

0, otherwise.

(1)

The second case here reflects the possibility that the decoding is ambiguous,
and so the decoded value is chosen randomly.

The total probability for a logical error for a given encoded bit value E can
then be obtained by summing over all possible outcomes

P (E) =
∑

R

P (R|E). (2)

In our experiment we consider codes with a maximum of d = 8 (and so 15
qubits in total). Also, due to restrictions of the API for the IBM Quantum
Experience [26], it is not possible to measure the ancilla qubits repeatedly.
We therefore do only a single round of CNOTs and ancilla measurements, the
latter of which are done simultaneously with the final readout of code qubits.
The circuit applied is therefore exactly that shown in Fig. 2 for d = 3, or
generalizations thereof for higher d. Due to this limited size, we perform the
lookup table decoding described above.

Note that the limited sample size will lead to these results being approximate.
Specifically, the method stated above will strictly function as a lower bound
due to the possibility of overfitting. An alternative method producing an upper
bound is investigated in an alternative version of the source code for this study,
which can be found at [27]. This is found to give the same qualitative features
as the results presented in this work, but is quantitatively different.
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FIG. 2. The basic circuit for a d = 3 repetition code. The case shown is that for which
the encoded logical bit value is 1. This value is encoded in the three code qubits (c0,
c1 and c2) by rotating the initial | 0⟩ value to | 1⟩ using an X gate. The case for an
encoded logical 0 is the same, but without the X gates. The qubit s is not part of the
code, but is used to compare the code against the case of encoding the same bit value
in a single qubit. The qubits 0 to 5, according to the numbering of Fig. 1, are used
to implement this code.

CONDITIONS FOR SUCCESS

In order to determine how well the device implements the repletion code,
concrete conditions for success must be defined.

The most straightforward is to compare a bit stored in a code with one stored
in only a single qubit. The promise of quantum error correction is that the non-
local storage of information across many qubits is more reliable than the single
qubits themselves. We must therefore confirm that this the case. To do this,
each run of the repetition code with a given encoded bit value is accompanied
by a single qubit in which the same value is encoded. This additional qubit,
which we will refer to as qubit s, is shown at the bottom of Fig. 2.

Another obvious test is to ensure that the probability of a logical error does
indeed decrease with d, as expected. This should certainly be the trend for
large increments d, though exceptions may be found between closely related
values. These could give an interesting insight in to the nature of noise on
the device. Also, note that the minimum number of errors required to cause
incorrect decoding is ⌈d/2⌉ (the number of flips on code qubits required to
change (for odd d) or create ambiguity regarding (for even d) the majority.
Since this number is the same for each odd d and the even d+ 1 that follows it,
there might not be a significant decrease in the logical error probability between
these pairs.

For an additional test, note that the output of the code qubits alone is enough
to perform decoding. This would not be true if many rounds of CNOTs and
ancilla measurements were applied. In this case, the amount of noise built
up on the code qubits would be too high for reliable decoding, and only with
the history of ancilla measurement results can the original encoded value be
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deduced. However, in the case of the single ancilla measurement round as we
consider, the noise level should be low enough to allow decoding using the code
qubit results alone.

The result of this is that the code could satisfy the previously mentioned
conditions (the code performing better than a single qubit, and ever better as d
increases) even if the CNOTs completely failed to occur. This would in no way
be any proof-of-principle of quantum error correction, and so these conditions
are clearly not sufficient to ensure success.

The use of the CNOTs and ancilla measurements in our experiment has both
benefits and drawbacks. The former is due to the extra information that can
be extracted about the errors that occur. The latter is due to the additional
noise suffered by the code qubits due to imperfections in the CNOTs. For a
proof-of-principle demonstration of quantum error correction, it must be shown
that the benefits significantly outweigh the drawbacks.

To do this, we compare results for two types of decoding. One is ‘full decod-
ing’ in which the look-up tables of Eq. 1 use the results from both the code
and ancilla qubits (and therefore each R is a string of 2d− 1 bits). The other is
‘partial decoding’, in which only results from the code qubits are used to con-
struct the look-up tables (and so each R is a d bit string). Since only the former
benefits from the syndrome measurement round, since this records additional
information about the errors on the ancilla qubits, it should lead to significantly
lower logical error probabilities. By showing this, we would demonstrate that
the effect of the CNOTs and ancilla measurements in extracting additional in-
formation truly has a powerful effect. Note that this form of test was originally
proposed in [28] for the surface code.

RESULTS

Repetition codes of size between d = 3 and d = 8 were studied. For each,
the lookup tables where populated using 8192 samples. Note that this is sig-
nificantly less than the total possible number of measurement outcomes, 22d−1,
for d = 8 and not significantly greater than that for d = 6 or d = 7. Statistical
inaccuracies in the lookup table can therefore be expected to affect the quality
of the decoding. In order to get an idea of the extent of this effect, logical error
probabilities for each case are calculated from 10 different runs and a mean is
taken. The standard deviation of these values is used as an estimate of error.

Simulated runs were also used to produce data that could be used for com-
parison. These runs were done in the same way as above, but only up to d = 6.

The simulations also include artificially introduced noise, since they would
be otherwise perfect. This was done using partial rotations about the X axis
(which rotates between | 0⟩ and | 1⟩). The rotation angle depends on whether the
qubit was initialized in state | 0⟩ or | 1⟩ at the encoding step. For the former, an
angle of π/20 was used. For the latter, π/10 was used. This mimics the greater
probability of | 1⟩ → | 0⟩ transitions in the real device. Noise was added to all
qubits at three points: immediately after encoding, between the two rounds of
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d=3

d=8

FIG. 3. The state of each qubit at the end of the process, characterized by the
probability of the outcome | 1⟩ when measured. The extreme examples of d = 3 and
d = 8 are shown. Results for the encoded bit value 0 are shown in blue (circle markers),
and those for 1 are in orange (triangle markers). Qubits alternate between code and
ancilla qubits, finally ending in a code qubit at 2d − 2. Qubit s is located at 2d − 1.
Any remaining qubits are unused.

CNOTs and immediately before measurement. This noise mechanism is chosen
for its simple implementation, and is not expected to accurately reproduce the
true noise processes in the real device. The values of π/20 and π/10 are chosen
because they reproduce some values and features of the results from the real
device.

Full details of the implementation for both the real device and the simulation,
including source code and raw data, can be found at [27].

The results in Fig. 3 show the state of each qubit at the end of the process.
In the case of no noise, all qubit states should be | 0⟩, except for code qubits and
qubit s when the bit value 1 encoded. The results show good agreement to these
expectations. Qubits expected to be | 0⟩ typically have a fidelity of more than
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90%, and those expected to be | 1⟩ have a fidelity of more than 80%. For the bit
stored in the single qubit s, the lowest probability of a logical error is around
0.5% for a stored 0 and 10% for a stored 1. The values for the simulator show
good agreement to those for the real device, though this is due only to the fact
that the simulated noise parameters were chosen to obtain such an agreement.

The results in Fig. 4 show the logical error probabilities as a function of code
distance. These probabilities are found to be much lower than the corresponding
values for the qubit s in the case of an encoded bit value of 0. The effect is not
so strong for the encoded 0, however this is due to the fact that the noise tends
cause qubits to decay towards | 0⟩ in all cases, which happens to be advantageous
when 0 is encoded.

The results show that the trend is indeed for the error probability to decrease
with code distance, as we would expect. A notable exception is found at d = 6
for an encoded bit value 0. However, note that this is the first code that uses the
qubit numbered 9 in Fig. 3, which can be seen to be particularly noisy. Also, the
error probability after full decoding is significantly less than that after partial
decoding in almost all cases, which is again in line with expectations.

Fit to an exponential decay

To further analyse these trends, the data is fit to an exponential decay. The
simplest possible model of the repetition code is used to avoid over fitting, or
unstable fits. This model has a single free parameter, p, which corresponds to
the probability of a bit flip error for each qubit. Decoding is done simply by
using the majority voting of the code qubits The logical error probability for
a given code distance d is therefore the probability of such errors on at least
half of the qubits within the code, and so decays exponentially with a factor of

[p/(1 − p)]
⌈d/2⌉

. Note that the supremum here results in this factor being equal
for each odd d and the corresponding d+ 1, due to the lack of a clear majority
in the even case.

This simple model corresponds most closely to the case considered for partial
decoding, and so is directly used to fit this data. The results are shown in Fig.
5. The fitting was done using a least squares method on the logarithms of the
logical error probabilities. The values for the fitting parameter were found to
be 0.088 ± 0.001 for encoded 0 and 0.102 ± 0.001 for encoded 1. These values
represent the combined effect of preparation, measurement and entangling gate
errors, which are each measured to be on the order of 1% using randomized
benchmarking [17]. The fitting parameters are therefore certainly of the right
order to represent their combined effect. However, the possibility that correlated
noise can also form a significant contribution cannot be ruled out.

For the fitting of data from full decoding, let us consider two extremes. Firstly,
consider the case for which all CNOTs and ancilla qubits are perfect. Full de-
coding would then effectively factor into two rounds of error correction, each of
which can be modelled in the same way as partial decoding. We will refer to the
values of the physical error probability for these rounds as p0 and p1, respec-



9

tively. Clearly p = p0(1−p1)+p1(1−p0), though we will use the approximation
p = p0 + p1 for simplicity.

The second extremal case is that for which the syndrome measurements result
in no useful information being placed on the ancillas. This could either be due
to the CNOTs being completely ineffective, or the ancillas being completely
decohered. In this case, the ancilla results can be ignored. Full decoding could
then be treated as a single round of partial decoding.

We will therefore fit the data for full decoding to two rounds of the simple
model. This will be done by first assuming that one round has the error proba-
bility p0 = p, found from the fit to the partial decoding data, and the other has
no errors (p1 = 0). The fit will then optimize over all other possible p0 and p1
given the p = p0 + p1 constraint.

The resulting p0 and p1 can then be used to determine the degree to which we
can factorize the error correction into two rounds. If one of these probabilities
is found to dominate, it would suggest that the effectiveness of the syndrome
measurement approaches the worst case scenario described above.

A more even split would support the notion that the syndrome measurement
round is indeed effective. However, it is not a complete proof. Similar results
could occur if the CNOTs were ineffective, but suffered correlated noise. Full
proof of effectiveness would therefore require a deeper understanding of the
effects of noise in the system.

Fitting the data for the full decoding in this way yields p0 = 0.054±0.001 and
p1 = 0.034± 0.001 for stored 0 and p0 = p1 = 0.051± 0.001 for stored 1. These
do show a clear sign of factoring into two distinct rounds, which strengthens
the argument that the syndrome measurement round significantly increases the
performance of the code.

The data can be seen to show a clear agreement with the exponential decay
of the fit lines. However, the data and fitted lines do differ by a typical factor
of around 2. This is due to disagreement in the form of the even/odd effects.
In some cases, such as partial decoding for an encoded 0, the data and fit show
opposite even/odd effects. This is likely due to biased noise changing the nature
of the decoding, as will be discussed below. The even/odd effects in the data
also appear to be less prominent, with partial decoding for an encoded 1 as the
clearest example. These differences could be accounted for by fitting to a more
complex model that accounts for biased and correlated noise. However, this
would increase the number of fitting parameters. A full study of these effects
must therefore be deferred to future experiments with larger devices, such that
more data points can be taken. Future experiments would also benefit from
greater access to the raw data from devices, rather than the post-processed
outputs of 0 and 1 as supplied currently.

Analysis of finite size effects

An exception to the decay of the logical error rate can be seen in Fig. 4
for d = 3 and an encoded bit value of 0. This occurs both for the real device
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and the simulator. It may seem counterintuitive that better results could come
from ignoring some information. However, this effect is due to the way the
probabilities are calculated and the biased nature of the noise.

For example, consider an extreme case for which noise on the code qubits
causes very strong relaxation, such that the code qubits always end in state
| 0⟩ when 0 was encoded, and almost always end in state | 0⟩ even when 1
is encoded. Partial decoding using only these results would then lead to the
decoding guessing that 0 was encoded in almost all cases. There would then
never be a logical error for an encoded 0, but a logical error would be almost
certain for an encoded 1.

More informed decoding could be achieved using the ancilla results. If these
show signs that extensive errors have occurred, it would be likely that the code
qubits start in in state | 1⟩. Many cases for which a logical error would have
occurred when using partial decoding could then be successfully decoded using
this full decoding. However, for some cases, such as many measurement errors
on ancilla qubits, it is possible for an encoded 0 to be misidentified as a 1. The
use of a less biased decoder therefore may be more effective in overall, but it
can be less effective for the specific case of an encoded 0.

The reason for the effect in this specific case can be seen from Fig. 6. Here
results are shown for d = 3 and d = 6. These graphs show how probable it is
to get each possible number of the outcome 1 in the output of the code qubits.
For an encoded 0 it is most probable to have a small number of 1s, since each
is an error deviating from the perfect output in which all are 0. For an encoded
1 the output is most likely to have a large number of 1s, since each 0 would be
an error in this case.

For unbiased noise, the crossover between the curves for encoded 0 and en-
coded 1 would occur at d/2. Any output with less 1s than this should therefore
be decoded as a 0, and any with more should be decoded as a 1. For codes
with even d, for which it is possible for the number of 1s in the output to be
the marginal value of d/2, the decoding can be chosen randomly in this case.

For the biased noise, as present in the real device and our simulations, the
decoding can deviate from this simple majority voting. This can be seen in the
results for d = 6. The crossover point has shifted, resulting in d/2 no longer
being the marginal case that would result for unbiased noise. Instead, having
this number of 1s in the output is recognized as being a strong indicator that
the encoded bit value was 1 and would be decoded accordingly. Similar effects
occur for all other code distances, with the exception of d = 3

For d = 3 there is a similar shift of the crossover point. This shift is by
approximately the same fraction of d as in the d = 6 case. However, the
smaller nature of the code means that there is less freedom to alter the decoding
accordingly. In fact, since finding two 1s in the output is still slightly more
likely to correspond to an encoded 0, the optimal decoding will still correspond
to majority voting.

Nevertheless, outputs with two ones are found to be very close to being a
marginal case, with encoded 0 only being slightly more likely. Decoding these
as 0 in all cases will therefore lead to a unfair advantage for this encoded value,
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causing the feature found in Fig. 4.

CONCLUSIONS

The logical error probabilities of the code sizes considered were found to agree
with expectations in most cases, showing that current technology is certainly
capable of achieving this simple example of quantum error correction on a rela-
tively large scale. The exceptions found shed light on the nature of noise in the
system, with the bias induced by relaxation being the dominant effect.

The quantum part of the code is the mapping of information about errors to
ancilla qubits via controlled operations. This is a central technique of quantum
error correction. Due to only a single round of ancilla measurements being
used, it was possible to compare the effectiveness of decoding both with and
without the ancilla results. This allowed direct insight into the effectiveness of
the quantum part. It was found that it did indeed allow for significantly better
results.

The next major goal of experimental quantum error correction is to build
a logical qubit that can be stored as successfully as the logical bit here. The
analysis used in this paper, such as the lookup table decoding and comparison
of full and partial decoding, would be just as valid in that case [28]. It would
therefore be highly interesting to see corresponding results in future.

The most recent version of the Jupyter notebook containing source code for
this project can be found at [27]. The raw data is also provided, allowing the
analysis of this paper to be repeated and expanded upon. The version of the
notebook on which this publication is based is included with the arXiv source
files.
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FIG. 4. Probabilities of logical errors for both full and partial decoding. As a com-
parison, the minimum value of the single qubit memory from all code sizes is plotted
across the graph.
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bit=0

bit=1

FIG. 5. Probabilities of logical errors for both full and partial decoding, as shown in
Fig. 4, with additional fit lines for an exponential decay. The results for d = 3 have
been omitted to reduce finite size effects.
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d=3

d=6

FIG. 6. Probabilities for different numbers of 1s in the output of the code qubits.



Chapter 8

Benchmarking near-term
devices with quantum error
correction

Abstract

Now that ever more sophisticated devices for quantum computing are being
developed, we require ever more sophisticated benchmarks. This includes a
need to determine how well these devices support the techniques required for
quantum error correction. In this paper we introduce the topological codes

module of Qiskit-Ignis, which is designed to provide the tools necessary to per-
form such tests. Specifically, we use the RepetitionCode and GraphDecoder

classes to run tests based on the repetition code and process the results. As
an example, data from a 43 qubit code running on IBM’s Rochester device is
presented.
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I. INTRODUCTION

Software comes in many forms. The most prominent forms of software for classical
computers are dedicated to applications, in which the device performs a useful task for
the end user. Though this is also the goal of quantum software, there will instead be a
heavy focus on benchmarking, testing and validation of quantum devices in the near-
term. The topological_codesmodule of Qiskit Ignis is one means by which this can
be done. In this paper we introduce this new module, and describe its implementation
and the methodology behind it.
Quantum software is based on the idea of encoding information in qubits. Most quan-
tum algorithms developed over the past few decades have assumed that these qubits are
perfect: they can be prepared in any state we desire, and be manipulated with complete
precision. Qubits that obey these assumptions are often known as logical qubits.
The last few decades have also seen great advances in finding physical systems that
behave as qubits with ever greater fidelity. However, the imperfections can never be
removed entirely. These qubits will always be much too imprecise to serve directly as
logical qubits. Instead, we refer to them as physical qubits.
In the current era of quantum computing, we seek to use physical qubits despite their
imperfections, by designing custom algorithms and using error mitigation[1–3]. For
the future era of fault-tolerance, however, we must find ways to build logical qubits
from physical qubits. This will be done through the process of quantum error correc-
tion [4], in which logical qubits are encoded in a large numbers of physical qubits. The
encoding is maintained by constantly putting the physical qubits through a highly en-
tangling circuit. Auxiliary degrees of freedom are then constantly measured, to detect
signs of errors and allow their effects to be removed.
Because of the vast amount effort required for this process, most operations performed
in fault-tolerant quantum computers will be done to serve the purpose of error de-
tection and correction. The logical operations required for quantum computation are
essentially just small perturbations to the error correction procedure. As such, as we
benchmark our progress towards fault-tolerant quantum computation, we must keep
track of how well our devices perform error correction.
Various experiments testing the ideas behind quantum error correction have already
been performed [5–16]. These include several experiments based on repetition codes
[5, 13, 14]. This is the simplest example of error detection and correction that can be
done using the standard techniques of quantum stabilizer codes [17]. Though not a true
example of quantum error correction - it uses physical qubits to encode a logical bit,
rather than a qubit - it serves as a simple guide to all the basic concepts in any quantum
error correcting code. Its requirements in terms of qubit number and connectivity are
very flexible, allowing it to be straightforwardly implemented on almost any device.
This makes it an excellent general-purpose benchmark.
In this paper we will provide a simple introduction to the code, and show how to run in-
stances of it on current prototype devices using the open-source Qiskit framework [18].
Specifically, we will use the topological_codes module of Qiskit-Ignis, which pro-
vides tools to create the quantum circuits required for simple quantum error correcting
codes, as well as process the results.

II. INTRODUCTION TO THE REPETITION CODE

A. The basics of error correction

The basic ideas behind error correction are the same for quantum information as for
classical information. This allows us to begin by considering a very straightforward
example: speaking on the phone. If someone asks you a question to which the answer
is ‘yes’ or ‘no’, the way you give your response will depend on two factors:
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• How important is it that you are understood correctly?
• How good is your connection?

Both of these can be paramaterized with probabilities. For the first, we can use Pa,
the maximum acceptable probability of being misunderstood. If you are being asked
to confirm a preference for ice cream flavours, and don’t mind too much if you get
vanilla rather than chocolate, Pa might be quite high. If you are being asked a question
on which someone’s life depends, however, Pa will be much lower.
For the second we can use ρ , the probability that your answer is garbled by a bad
connection. For simplicity, let’s imagine a case where a garbled ‘yes’ doesn’t simply
sound like nonsense, but sounds like a ‘no’. And similarly a ‘no’ is transformed into
‘yes’. Then ρ is the probability that you are completely misunderstood.
A good connection or a relatively unimportant question will result in ρ < Pa. In this
case it is fine to simply answer in the most direct way possible: you just say ‘yes’ or
‘no’.
If, however, your connection is poor and your answer is important, we will have ρ >Pa.
A single ‘yes’ or ‘no’ is not enough in this case. The probability of being misunder-
stood would be too high. Instead we must encode our answer in a more complex
structure, allowing the receiver to decode our meaning despite the possibility of the
message being disrupted. The simplest method is the one that many would do without
thinking: simply repeat the answer many times. For example say ‘yes, yes, yes’ instead
of ‘yes’ or ‘no, no no’ instead of ‘no’.
If the receiver hears ‘yes, yes, yes’ in this case, they will of course conclude that the
sender meant ‘yes’. If they hear ‘no, yes, yes’, ‘yes, no, yes’ or ‘yes, yes, no’, they
will probably conclude the same thing, since there is more positivity than negativity
in the answer. To be misunderstood in this case, at least two of the replies need to be
garbled. The probability for this, P, will be less than ρ . When encoded in this way, the
message therefore becomes more likely to be understood. The code cell below shows
an example of this.

p = 0.01
P = 3 * p**2 * (1-p) + p**3 # probability of 2 or 3 errors
print('Probability of a single reply being garbled:',p)
print('Probability of a the majority of three replies being␣

↪→garbled:',P)

The output obtained from running the above program snippet is as follows (from hence-
forth, any such output is displayed directly beneath the cell that it pertains to).

Probability of a single reply being garbled: 0.01
Probability of a the majority of three replies being garbled:
0.00029800000000000003

If P < Pa, this technique solves our problem. If not, we can simply add more repeti-
tions. The fact that P < ρ above comes from the fact that we need at least two replies
to be garbled to flip the majority, and so even the most likely possibilities have a prob-
ability of ∼ ρ2. For five repetitions we’d need at least three replies to be garbled to flip
the majority, which happens with probability ∼ ρ3. The value for P in this case would
then be even lower. Indeed, as we increase the number of repetitions, P will decrease
exponentially. No matter how bad the connection, or how certain we need to be of
our message getting through correctly, we can achieve it by just repeating our answer
enough times.
Though this is a simple example, it contains all the aspects of error correction.

• There is some information to be sent or stored: In this case, a ‘yes’ or ‘no’.
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• The information is encoded in a larger system to protect it against noise: In this
case, by repeating the message.

• The information is finally decoded, mitigating for the effects of noise: In this
case, by trusting the majority of the transmitted messages.

This same encoding scheme can also be used for binary, by simply substituting 0 and
1 for ‘yes’ and ’no. It can therefore also be easily generalised to qubits by using the
states |0⟩ and |1⟩. In each case it is known as the repetition code. Many other forms of
encoding are also possible in both the classical and quantum cases, which outperform
the repetition code in many ways. However, its status as the simplest encoding does
lend it to certain applications. One is exactly what it is used for in Qiskit: as the first
and simplest test of implementing the ideas behind quantum error correction.

B. Correcting errors in qubits

We will now implement these ideas explicitly using Qiskit. To see the effects of im-
perfect qubits, we can simply use the qubits of the prototype devices. We can also
reproduce the effects in simulations. The function below creates a simple noise mod-
els in order to do the latter. The noise models it creates go beyond the simple case
discussed earlier, of a single noise event which happens with a probability ρ . Instead
we consider two forms of error that can occur. One is a gate error: an imperfection
in any operation we perform. We model this here in a simple way, using so-called
depolarizing noise. The effect of this will be, with probability ρgate ,to replace the
state of any qubit with a completely random state. For two qubit gates, it is applied
independently to each qubit. The other form of noise is that for measurement. This
simply flips between a 0 to a 1 and vice-versa immediately before measurement with
probability ρmeas.

from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import pauli_error,␣

↪→depolarizing_error

def get_noise(rho_meas,rho_gate):

error_meas = pauli_error([('X',rho_meas), ('I', 1 -␣
↪→rho_meas)])

error_gate1 = depolarizing_error(rho_gate, 1)
error_gate2 = error_gate1.tensor(error_gate1)

noise_model = NoiseModel()
# measurement error is applied to measurements
noise_model.add_all_qubit_quantum_error(error_meas,␣

↪→"measure")
# single qubit gate error is applied to x gates
noise_model.add_all_qubit_quantum_error(error_gate1, ["x"])
# two qubit gate error is applied to cx gates
noise_model.add_all_qubit_quantum_error(error_gate2, ["cx"])

return noise_model

With this we’ll now create such a noise model with a probability of 1% for each type
of error.

noise_model = get_noise(0.01,0.01)

Let’s see what affect this has when try to store a 0 using three qubits in state |0⟩. We’ll
repeat the process shots=1024 times to see how likely different results are.
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from qiskit import QuantumCircuit, execute, Aer

# initialize circuit with three qubits in the 0 state
qc0 = QuantumCircuit(3,3,name='0')

qc0.measure(qc0.qregs[0],qc0.cregs[0]) # measure the qubits

# run the circuit with th noise model and extract the counts
counts = execute( qc0, Aer.get_backend('qasm_simulator'),

noise_model=noise_model,
shots=1024).result().get_counts()

print(counts)

{'110':2, '001': 9, '100': 11, '010': 14, '000': 988}

Note that the shots=1024 argument here is actually the default argument for the
execute function, and so it nexed not be included (unless a different number of shots
is required). As such, it will not be included in future code snippets.
Here a set of typical results are shown. Results will vary for different runs, but will
be qualitatively the same. Specifically, almost all results still come out '000', as they
would if there was no noise. Of the remaining possibilities, those with a majority of 0s
are most likely. Much less than 10 of the 1024 samples will come out with a majority
of 1s. When using this circuit to encode a 0, this means that P< 1%
Now let’s try the same for storing a 1 using three qubits in state |1⟩.
# initialize circuit with three qubits in the 0 state
qc1 = QuantumCircuit(3,3,name='0')
qc1.x(qc1.qregs[0]) # flip each 0 to 1

qc1.measure(qc1.qregs[0],qc1.cregs[0]) # measure the qubits

# run the circuit with th noise model and extract the counts
counts = execute( qc1, Aer.get_backend('qasm_simulator'),

noise_model=noise_model).result().get_counts()

print(counts)

{'110': 15, '011': 17, '111': 974, '101': 18}

The number of samples that come out with a majority in the wrong state (0 in this case)
is again much less than 100, so P < 1%. Whether we store a 0 or a 1, we can retrieve
the information with a smaller probability of error than either of our sources of noise.
This was possible because the noise we considered was relatively weak. As we increase
ρmeas and ρgate, the higher the probability P will be. The extreme case of this is for
either of them to have a 50/50 chance of applying the bit flip error, x. For example,
let’s run the same circuit as before but with ρmeas = 0.5 and ρgate = 0.

noise_model = get_noise(0.5,0.0)
counts = execute( qc1, Aer.get_backend('qasm_simulator'),

noise_model=noise_model).result().get_counts()
print(counts)
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{'000': 123, '001': 125, '011': 121, '100': 131, '010': 124,␣
↪→'110': 130, '111':

140, '101': 130}

With this noise, all outcomes occur with equal probability, with differences in results
being due only to statistical noise. No trace of the encoded state remains. This is an
important point to consider for error correction: sometimes the noise is too strong to be
corrected. The optimal approach is to combine a good way of encoding the information
you require, with hardware whose noise is not too strong.

C. Storing qubits

So far, we have considered cases where there is no delay between encoding and de-
coding. For qubits, this means that there is no significant amount of time that passes
between initializing the circuit, and making the final measurements.
However, there are many cases for which there will be a significant delay. As an
obvious example, one may wish to encode a quantum state and store it for a long
time, like a quantum hard drive. A less obvious but much more important example
is performing fault-tolerant quantum computation itself. For this, we need to store
quantum states and preserve their integrity during the computation. This must also be
done in a way that allows us to manipulate the stored information in any way we need,
and which corrects any errors we may introduce when performing the manipulations.
In all cases, we need account for the fact that errors do not only occur when something
happens (like a gate or measurement), they also occur when the qubits are idle. Such
noise is due to the fact that the qubits interact with each other and their environment.
The longer we leave our qubits idle for, the greater the effects of this noise becomes.
If we leave them for long enough, we’ll encounter a situation like the ρmeas = 0.5 case
above, where the noise is too strong for errors to be reliably corrected.
The solution is to keep measuring throughout. No qubit is left idle for too long. Instead,
information is constantly being extracted from the system to keep track of the errors
that have occurred.
For the case of classical information, where we simply wish to store a 0 or 1, this can
be done by just constantly measuring the value of each qubit. By keeping track of
when the values change due to noise, we can easily deduce a history of when errors
occurred.
For quantum information, however, it is not so easy. For example, consider the case
that we wish to encode the logical state |+⟩. Our encoding is such that

|0⟩ → |000⟩ , |1⟩ → |111⟩ .

To encode the logical |+⟩ state we therefore need

|+⟩ =
1√
2

(|0⟩+ |1⟩) → 1√
2

(|000⟩+ |111⟩) .

With the repetition encoding that we are using, a z measurement (which distinguishes
between the |0⟩ and |1⟩ states) of the logical qubit is done using a z measurement of
each physical qubit. The final result for the logical measurement is decoded from the
physical qubit measurement results by simply looking which output is in the majority.
As mentioned earlier, we can keep track of errors on logical qubits that are stored for a
long time by constantly performing z measurements of the physical qubits. However,
note that this effectively corresponds to constantly performing z measurements of the
logical qubit. This is fine if we are simply storing a 0 or 1, but it has undesired effects
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if we are storing a superposition. Specifically: the first time we do such a check for
errors, we will collapse the superposition.
This is not ideal. If we wanted to do some computation on our logical qubit, or if
we wish to perform a basis change before final measurement, we need to preserve the
superposition. Destroying it is an error. But this is not an error caused by imperfections
in our devices. It is an error that we have introduced as part of our attempts to correct
errors. And since we cannot hope to recreate any arbitrary superposition stored in our
quantum computer, it is an error that cannot be corrected.
For this reason, we must find another way of keeping track of the errors that occur
when our logical qubit is stored for long times. This should give us the information
we need to detect and correct errors, and to decode the final measurement result with
high probability. However, it should not cause uncorrectable errors to occur during the
process by collapsing superpositions that we need to preserve.
The way to do this is with the following circuit element.

from qiskit import QuantumRegister, ClassicalRegister

cq = QuantumRegister(2,'code\ qubit\ ')
lq = QuantumRegister(1,'ancilla\ qubit\ ')
sb = ClassicalRegister(1,'syndrome\ bit\ ')
qc = QuantumCircuit(cq,lq,sb)
qc.cx(cq[0],lq[0])
qc.cx(cq[1],lq[0])
qc.measure(lq,sb)
qc.draw(output='mpl')

Here we have three physical qubits. Two are called ‘code qubits’, and the other is called
an ‘ancilla qubit’. One bit of output is extracted, called the syndrome bit. The ancilla
qubit is always initialized in state |0⟩. The code qubits, however, can be initialized in
different states. To see what affect different inputs have on the output, we can create
a circuit qc_init that prepares the code qubits in some state, and then run the circuit
qc_init+qc.
First, the trivial case: qc_init does nothing, and so the code qubits are initially |00⟩.

qc_init = QuantumCircuit(cq)

(qc_init+qc).draw(output='mpl')
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counts = execute( qc_init+qc, Aer.get_backend('qasm_simulator')
).result().get_counts()

print('Results:',counts)

Results: {'0': 1024}

The outcome, in all cases, is 0.
Now let’s try an initial state of |11⟩.
qc_init = QuantumCircuit(cq)
qc_init.x(cq)

(qc_init+qc).draw(output='mpl')

counts = execute( qc_init+qc, Aer.get_backend('qasm_simulator')
).result().get_counts()

print('Results:',counts)

Results: {'0': 1024}

The outcome in this case is also always 0. Given the linearity of quantum mechanics,
we can expect the same to be true also for any superposition of |00⟩ and |11⟩, such as
the example below.
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qc_init = QuantumCircuit(cq)
qc_init.h(cq[0])
qc_init.cx(cq[0],cq[1])

(qc_init+qc).draw(output='mpl')

counts = execute( qc_init+qc, Aer.get_backend('qasm_simulator')
).result().get_counts()

print('Results:',counts)

Results: {'0': 1024}

The opposite outcome will be found for an initial state of |01⟩, |10⟩ or any superposi-
tion thereof.

qc_init = QuantumCircuit(cq)
qc_init.h(cq[0])
qc_init.cx(cq[0],cq[1])
qc_init.x(cq[0])

(qc_init+qc).draw(output='mpl')

counts = execute( qc_init+qc, Aer.get_backend('qasm_simulator')
).result().get_counts()

print('Results:',counts)

Results: {'1': 1024}
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In such cases the output is always '1'.
This measurement is therefore telling us about a collective property of multiple qubits.
Specifically, it looks at the two code qubits and determines whether their state is the
same or different in the z basis. For basis states that are the same in the z basis, like
|00⟩ and |11⟩, the measurement simply returns 0. It also does so for any superposition
of these. Since it does not distinguish between these states in any way, it also does not
collapse such a superposition.
Similarly, For basis states that are different in the z basis it returns a 1. This occurs for
|01⟩, |10⟩ or any superposition thereof.
Now suppose we apply such a ‘syndrome measurement’ on all pairs of physical qubits
in our repetition code. If their state is described by a repeated |0⟩, a repeated |1⟩, or
any superposition thereof, all the syndrome measurements will return 0. Given this
result, we will know that our states are indeed encoded in the repeated states that we
want them to be, and can deduce that no errors have occurred. If some syndrome
measurements return 1, however, it is a signature of an error. We can therefore use
these measurement results to determine how to decode the result.

D. Quantum repetition code

We now know enough to understand exactly how the quantum version of the repetition
code is implemented
We can use it in Qiskit by importing the required tools from Ignis.

from qiskit.ignis.verification.topological_codes import␣
↪→RepetitionCode

from qiskit.ignis.verification.topological_codes import␣
↪→lookuptable_decoding

from qiskit.ignis.verification.topological_codes import␣
↪→GraphDecoder

We are free to choose how many physical qubits we want the logical qubit to be en-
coded in. We can also choose how many times the syndrome measurements will be
applied while we store our logical qubit, before the final readout measurement. Let us
start with the smallest non-trivial case: three repetitions and one syndrome measure-
ment round. The circuits for the repetition code can then be created automatically from
the using the RepetitionCode object from Qiskit-Ignis.

n = 3
T = 1

code = RepetitionCode(n,T)

With this we can inspect various properties of the code, such as the names of the qubit
registers used for the code and ancilla qubits.
The RepetitionCode contains two quantum circuits that implement the code: One
for each of the two possible logical bit values. Here are those for logical 0 and 1,
respectively.

# this bit is just needed to make the labels look nice
for reg in code.circuit['0'].qregs+code.circuit['1'].cregs:

reg.name = reg.name.replace('_','\ ') + '\ '

code.circuit['0'].draw(output='mpl')
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code.circuit['1'].draw(output='mpl')

In these circuits, we have two types of physical qubits. There are the ‘code qubits’,
which are the three physical qubits across which the logical state is encoded. There are
also the ‘link qubits’, which serve as the ancilla qubits for the syndrome measurements.

Our single round of syndrome measurements in these circuits consist of just two syn-
drome measurements. One compares code qubits 0 and 1, and the other compares code
qubits 1 and 2. One might expect that a further measurement, comparing code qubits
0 and 2, should be required to create a full set. However, these two are sufficient. This
is because the information on whether 0 and 2 have the same z basis state can be in-
ferred from the same information about 0 and 1 with that for 1 and 2. Indeed, for n
qubits, we can get the required information from just n−1 syndrome measurements of
neighbouring pairs of qubits.

Running these circuits on a simulator without any noise leads to very simple results.
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def get_raw_results(code,noise_model=None):

circuits = code.get_circuit_list()
job = execute( circuits, Aer.get_backend('qasm_simulator'),

noise_model=noise_model )
raw_results = {}
for log in ['0','1']:

raw_results[log] = job.result().get_counts(log)
return raw_results

raw_results = get_raw_results(code)
for log in raw_results:

print('Logical',log,':',raw_results[log],'\n')

Logical 0 : {'000 00': 1024}

Logical 1 : {'111 00': 1024}

Here we see that the output comes in two parts. The part on the right holds the out-
comes of the two syndrome measurements. That on the left holds the outcomes of the
three final measurements of the code qubits.
For more measurement rounds, T = 4 for example, we would have the results of more
syndrome measurements on the right.

code = RepetitionCode(n,4)

raw_results = get_raw_results(code)
for log in raw_results:

print('Logical',log,':',raw_results[log],'\n')

Logical 0 : {'000 00 00 00 00': 1024}

Logical 1 : {'111 00 00 00 00': 1024}

For more repetitions, n = 5 for example, each set of measurements would be larger.
The final measurement on the left would be of n qubits. The T syndrome measurements
would each be of the n−1 possible neighbouring pairs.

code = RepetitionCode(5,4)

raw_results = get_raw_results(code)
for log in raw_results:

print('Logical',log,':',raw_results[log],'\n')

Logical 0 : {'00000 0000 0000 0000 0000': 1024}

Logical 1 : {'11111 0000 0000 0000 0000': 1024}
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E. Lookup table decoding

Now let’s return to the n = 3, T = 1 example and look at a case with some noise.

code = RepetitionCode(3,1)

noise_model = get_noise(0.05,0.05)

raw_results = get_raw_results(code,noise_model)
for log in raw_results:

print('Logical',log,':',raw_results[log],'\n')

Logical 0 : {'011 10': 1, '001 10': 5, '111 00': 2, '010 01':␣
↪→24, '000 11': 6,

'101 00': 2, '100 01': 2, '100 11': 1, '100 10': 7, '001 11': 2,␣
↪→'010 00': 52,

'001 01': 2, '110 01': 4, '000 00': 642, '000 01': 64, '001 00':␣
↪→49, '010 10':

5, '000 10': 73, '011 00': 5, '111 01': 1, '011 01': 1, '101 01':
↪→ 1, '100 00':

67, '110 00': 5, '010 11': 1}

Logical 1 : {'011 10': 13, '001 10': 3, '111 00': 594, '010 01':␣
↪→2, '011 11': 2,

'111 10': 65, '101 00': 55, '100 11': 3, '101 10': 11, '001 11':␣
↪→1, '101 11':

16, '001 01': 1, '010 00': 9, '110 01': 22, '111 11': 9, '000␣
↪→00': 1, '110 11':

4, '001 00': 7, '010 10': 6, '110 10': 2, '011 00': 44, '111 01':
↪→ 61, '011 01':

9, '101 01': 17, '100 00': 4, '110 00': 63}

Here we have created raw_results, a dictionary that holds both the results for a
circuit encoding a logical 0 and 1 encoded for a logical 1.
Our task when confronted with any of the possible outcomes we see here is to deter-
mine what the outcome should have been, if there was no noise. For an outcome of
'000 00' or '111 00', the answer is obvious. These are the results we just saw for
a logical 0 and logical 1, respectively, when no errors occur. The former is the most
common outcome for the logical 0 even with noise, and the latter is the most com-
mon for the logical 1. We will therefore conclude that the outcome was indeed that
for logical 0 whenever we encounter '000 00', and the same for logical 1 when we
encounter '111 00'.
Though this tactic is optimal, it can nevertheless fail. Note that '111 00' typically
occurs in a handful of cases for an encoded 0, and '000 00' similarly occurs for an
encoded 1. In this case, through no fault of our own, we will incorrectly decode the
output. In these cases, a large number of errors conspired to make it look like we had
a noiseless case of the opposite logical value, and so correction becomes impossible.
We can employ a similar tactic to decode all other outcomes. The outcome '001 00',
for example, occurs far more for a logical 0 than a logical 1. This is because it could be
caused by just a single measurement error in the former case (which incorrectly reports
a single 0 to be 1), but would require at least two errors in the latter. So whenever we
see '001 00', we can decode it as a logical 0.
Applying this tactic over all the strings is a form of so-called ‘lookup table decoding’.
Whenever an output string is obtained, it is compared to a large body of results for
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known logical values. Then most likely logical value can then be inferred. For many
qubits, this quickly becomes intractable, as the number of possible outcomes becomes
so large. In these cases, more algorithmic decoders are needed. However, lookup table
decoding works well for testing out small codes.
We can use tools in Qiskit to implement lookup table decoding for any code. For this
we need two sets of results. One is the set of results that we actually want to decode,
and for which we want to calculate the probability of incorrect decoding, P. We will
use the raw_results we already have for this.
The other set of results is one to be used as the lookup table. This will need to be run
for a large number of samples, to ensure that it gets good statistics for each possible
outcome. We’ll use shots=10000.

circuits = code.get_circuit_list()
job = execute( circuits, Aer.get_backend('qasm_simulator'),

noise_model=noise_model, shots=10000 )
table_results = {}
for log in ['0','1']:

table_results[log] = job.result().get_counts(log)

With this data, which we call table_results, we can now use the
lookuptable_decoding function from Qiskit. This takes each outcome from
raw_results and decodes it with the information in table_results. Then it checks
if the decoding was correct, and uses this information to calculate P.

P = lookuptable_decoding(raw_results,table_results)
print('P =',P)

P = {'0': 0.0238, '1': 0.0237}

Here we see that the values for P are lower than those for ρmeas and ρgate, so we get an
improvement in the reliability for storing the bit value. Note also that the value of P
for an encoded 1 is higher than that for 0. This is because the encoding of 1 requires
the application of x gates, which are an additional source of noise.

F. Graph theoretic decoding

The decoding considered above produces the best possible results, and does so without
needing to use any details of the code. However, it has a major drawback that counters
these advantages: the lookup table grows exponentially large as code size increases.
For this reason, decoding is typically done in a more algorithmic manner that takes
into account the structure of the code and its resulting syndromes.
The topological_codes module is designed to support multiple codes that share the
same structure, and therefore can be decoded using the same methods. These methods
are all based on similar graph theoretic minimization problems, where the graph in
question is one that can be derived from the syndrome. The repetition code is one
example that can be decoding in this way, and it is with this example that we will
explain the graph-theoretic decoding in this section. Other examples are the toric and
surface codes[19, 20], 2D color codes[21, 22] and matching codes[23]. All of these
are examples of so-called topological quantum error correcting codes, which led to
the name of the module. However, note that not all topological codes are compatible
with such a decoder. Also, some non-topological codes will be compatible (such as the
repetition code).
To find the the graph that will be used in the decoding, some post-processing of the syn-
dromes is required. Instead of using the form shown above, with the final measurement
of the code qubits on the left and the outputs of the syndrome measurement rounds on
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the right, we use the process_results method of the code object to rewrite them in
a different form.
For example, below is the processed form of a raw_results dictionary, in this case
for n = 3 and T = 2. Only results with 50 or more samples are shown for clarity.

code = RepetitionCode(3,2)

raw_results = get_raw_results(code,noise_model)

results = code.process_results( raw_results )

for log in ['0','1']:
print('\nLogical ' + log + ':')
print('raw results ', {string:

↪→raw_results[log][string] for string in raw_results[log] if␣
↪→raw_results[log][string]>=50 })

print('processed results ', {string:results[log][string]␣
↪→for string in results[log] if results[log][string]>=50 })

Logical 0:
raw results {'000 00 00': 485, '000 00 01': 55}
processed results {'0 0 00 00 00': 485, '0 0 01 01 00': 55}

Logical 1:
raw results {'111 10 00': 51, '111 01 00': 57, '111 00␣

↪→00': 455, '111 00
10': 51}
processed results {'1 1 00 10 10': 51, '1 1 00 01 01': 57, '1␣

↪→1 00 00 00':
455, '1 1 10 10 00': 51}

Here we can see that '000 00 00' has been transformed to '0 0 00 00 00', and
'111 00 00' to '1 1 00 00 00', and so on.
In these new strings, the 0 0 to the far left for the logical 0 results and the 1 1 to the
far left of the logical 1 results are the logical readout. Any code qubit could be used
for this readout, since they should (without errors) all be equal. It would therefore be
possible in principle to just have a single 0 or 1 at this position. We could also do as in
the original form of the result and have n, one for each qubit. Instead we use two, from
the two qubits at either end of the line. The reason for this will be shown later. In the
absence of errors, these two values will always be equal, since they represent the same
encoded bit value.
After the logical values follow the n−1 results of the syndrome measurements for the
first round. A 0 implies that the corresponding pair of qubits have the same value, and
1 implies they they are different from each other. There are n− 1 results because the
line of d code qubits has n− 1 possible neighbouring pairs. In the absence of errors,
they will all be 0. This is exactly the same as the first such set of syndrome results
from the original form of the result.
The next block is the next round of syndrome results. However, rather than presenting
these results directly, it instead gives us the syndrome change between the first and
second rounds. It is therefore the bitwise OR of the syndrome measurement results
from the second round with those from the first. In the absence of errors, they will all
be 0.
Any subsequent blocks follow the same formula, though the last of all requires some
comment. This is not measured using the standard method (with a link qubit). Instead
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it is calculated from the final readout measurement of all code qubits. Again it is
presented as a syndrome change, and will be all 0 in the absence of errors. This is the
T + 1-th block of syndrome measurements since, as it is not done in the same way as
the others, it is not counted among the T syndrome measurement rounds.
The following examples further illustrate this convention.
Example 1: 0 0 0110 0000 0000 represents a d = 5, T = 2 repetition code with
encoded 0. The syndrome shows that (most likely) the middle code qubit was flipped
by an error before the first measurement round. This causes it to disagree with both
neighboring code qubits for the rest of the circuit. This is shown by the syndrome in
the first round, but the blocks for subsequent rounds do not report it as it no longer
represents a change. Other sets of errors could also have caused this syndrome, but
they would need to be more complex and so presumably less likely.
Example 2: 0 0 0010 0010 0000 represents a d = 5, T = 2 repetition code with
encoded 0. Here one of the syndrome measurements reported a difference between
two code qubits in the first round, leading to a 1. The next round did not see the same
effect, and so resulted in a 0. However, since this disagreed with the previous result for
the same syndrome measurement, and since we track syndrome changes, this change
results in another 1. Subsequent rounds also do not detect anything, but this no longer
represents a change and hence results in a 0 in the same position. Most likely the
measurement result leading to the first 1 was an error.
Example 3: 0 1 0000 0001 0000 represents a d = 5, T = 2 repetition code with
encoded 1. A code qubit on the end of the line is flipped before the second round of
syndrome measurements. This is detected by only a single syndrome measurement,
because it is on the end of the line. For the same reason, it also disturbs one of the
logical readouts.
Note that in all these examples, a single error causes exactly two characters in the string
to change from the value they would have with no errors. This is the defining feature
of the convention used to represent the syndrome in topological_codes. It is used
to define the graph on which the decoding problem is defined.
Specifically, the graph is constructed by first taking the circuit encoding logical 0, for
which all bit values in the output string should be 0. Many copies of this are then
created and run on a simulator, with a different single Pauli operator inserted into each.
This is done for each of the three types of Pauli operator on each of the qubits and at
every circuit depth. The output from each of these circuits can be used to determine the
effects of each possible single error. Since the circuit contains only Clifford operations,
the simulation can be performed efficiently.
In each case, the error will change exactly two of the characters (unless it has no
effect). A graph is then constructed for which each bit of the output string corresponds
to a node, and the pairs of bits affected by the same error correspond to an edge.
The process of decoding a particular output string typically requires the algorithm to
deduce which set of errors occurred, given the syndrome found in the output string.
This can be done by constructing a second graph, containing only nodes that corre-
spond to non-trivial syndrome bits in the output. An edge is then placed between each
pair of nodes, with an corresponding weight equal to the length of the minimal path
between those nodes in the original graph. A set of errors consistent with the syn-
drome then corresponds then to finding a perfect matching of this graph. To deduce
the most likely set of errors to have occurred, a good tactic would be to find one with
the least possible number of errors that is consistent with the observed syndrome. This
corresponds to a minimum weight perfect matching of the graph [20].
Using minimal weight perfect matching is a standard decoding technique for the repe-
tition code and surface codes [20, 24], and is implemented in Qiskit Ignis. It can also
be used in other cases, such as Color codes, but it does not find the best approxima-
tion of the most likely set of errors for every code and noise model. For that reason,
other decoding techniques based on the same graph can be used. The GraphDecoder
of Qiskit Ignis calculates these graphs for a given code, and will provide a range of
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methods to analyze it. At time of writing, only minimum weight perfect matching is
implemented.
Note that, for codes such as the surface code, it is not strictly true than each single error
will change the value of only two bits in the output string. A σ y error, for example
would flip a pair of values corresponding to two different types of stabilizer, which are
typically decoded independently. Output for these codes will therefore be presented
in a way that acknowledges this, and analysis of such syndromes will correspondingly
create multiple independent graphs to represent the different syndrome types.

III. RUNNING A REPETITION CODE BENCHMARKING PROCEDURE

We will now run examples of repetition codes on real devices, and use the results
as a benchmark. First, we will briefly summarize the process. This applies to
this example of the repetition code, but also for other benchmarking procedures in
topological_codes, and indeed for Qiskit Ignis in general. In each case, the follow-
ing three-step process is used.

1. A task is defined. Qiskit Ignis determines the set of circuits that must be run and
creates them.

2. The circuits are run. This is typically done using Qiskit. However, in principle
any service or experimental equipment could be interfaced.

3. Qiskit Ignis is used to process the results from the circuits, to create the output
required for the given task.

For topological_codes, step 1 requires the type and size of quantum error correc-
tion code to be chosen. Each type of code has a dedicated Python class. A correspond-
ing object is initialized by providing the parameters required, such as n and T for a
RepetitionCode object. The resulting object then contains the circuits correspond-
ing to the given code encoding simple logical qubit states (such as |0⟩ and |1⟩), and then
running the procedure of error detection for a specified number of rounds, before final
readout in a straightforward logical basis (typically a standard |0⟩/|1⟩ measurement).
For topological_codes, the main processing of step 3 is the decoding, which aims
to mitigate for any errors in the final readout by using the information obtained from
error detection. The optimal algorithm for decoding typically varies between codes.
The decoding is done by the GraphDecoder class. A corresponding object is initial-
ized by providing the code object for which the decoding will be performed. This is
then used to determine the graph on which the decoding problem will be defined. The
results can then be processed using the various methods of the decoder object.
In the following we will see the above ideas put into practice for the repetition code. In
doing this we will employ two Boolean variables, step_2 and step_3. The variable
step_2 is used to show which parts of the program need to be run when taking data
from a device, and step_3 is used to show the parts which process the resulting data.
Both are set to false by default, to ensure that all the program snippets below can be
run using only previously collected and processed data. However, to obtain new data
one only needs to use step_2 = True, and perform decoding on any data one only
needs to use step_3 = True.

step_2 = False
step_3 = False

To benchmark a real device we need the tools required to access that device over the
cloud, and compile circuits suitable to run on it. These are imported as follows.

from qiskit import IBMQ
from qiskit.compiler import transpile
from qiskit.transpiler import PassManager
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We can now create the backend object, which is used to run the circuits. This is done by
supplying the string used to specify the device. Here the 53 qubit 'ibmq_rochester'
device is used. Of the publicly accessible devices, 'ibmq_16_melbourne' can also
be used. This has 15 active qubits at time of writing. To gather new from this device,
the device name below is the only thing that would need to be changed.

device_name = 'ibmq_rochester'

if step_2:

IBMQ.load_account()

for provider in IBMQ.providers():
for potential_backend in provider.backends():

if potential_backend.name()==device_name:
backend = potential_backend

coupling_map = backend.configuration().coupling_map

When running a circuit on a real device, a transpilation process is first implemented.
This changes the gates of the circuit into the native gate set implement by the device.
In some cases these changes are fairly trivial, such as expressing each Hadamard as a
single qubit rotation by the corresponding Euler angles. However, the changes can be
more major if the circuit does not respect the connectivity of the device. For example,
suppose the circuit requires a controlled-NOT that is not directly implemented by the
device. The effect must be then be reproduced with techniques such as using addi-
tional controlled-NOT gates to move the qubit states around. As well as introducing
additional noise, this also delocalizes any noise already present. A single qubit error in
the original circuit could become a multiqubit monstrosity under the action of the ad-
ditional transpilation. Such non-trivial transpilation must therefore be prevented when
running quantum error correction circuits.

Tests of the repetition code require qubits to be effectively ordered along a line. The
only controlled-NOT gates required are between neighbours along that line. Our first
job is therefore to study the coupling map of the device, shown in Fig. 1, and find a
line.

For Melbourne it is possible to find a line that covers all 15 qubits. The choice one
specified in the list line below is designed to avoid the most error prone cx gates. For
the 53 qubit Rochester device, there is no single line that covers all 53 qubits. Instead
we can use the following choice, which covers 43.

if device_name=='ibmq_16_melbourne':
line = [13,14,0,1,2,12,11,3,4,10,9,5,6,8,7]

elif device_name=='ibmq_rochester':
line = [10,11,17,23,22,21,20,19,16,7,8,9,5,0,1,

2,3,4,6,13,14,15,18,27,26,25,29,36,37,38,
41,50,49,48,47,46,45,44,43,42,39,30,31]

Now we know how many qubits we have access to, we can create the repetition code
objects for each code that we will run. Note that a code with n repetitions uses n code
qubits and n−1 link qubits, and so 2n−1 in all.
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FIG. 1: The layout of the Rochester device. Colours represent error probabilities for
controlled-NOTs and readout on qubits.

n_min = 3
n_max = int((len(line)+1)/2)

code = {}

for n in range(n_min,n_max+1):
code[n] = RepetitionCode(n,1)

Before running the circuits from these codes, we need to ensure that the transpiler
knows which physical qubits on the device it should use. This means using the qubit of
line[0] to serve as the first code qubit, that of line[1] to be the first link qubit, and
so on. This is done by the following function, which takes a repetition code object and
a line, and creates a Python dictionary to specify which qubit of the code corresponds
to which element of the line.
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def get_initial_layout(code,line):
initial_layout = {}
for j in range(n):

initial_layout[code.code_qubit[j]] = line[2*j]
for j in range(n-1):

initial_layout[code.link_qubit[j]] = line[2*j+1]
return initial_layout

Now we can transpile the circuits, to create the circuits that will actually be run by the
device. A check is also made to ensure that the transpilation indeed has not introduced
non-trivial effects by increasing the number of qubits. Furthermore, the compiled cir-
cuits are collected into a single list, to allow them all to be submitted at once in the
same batch job.

if step_2:

circuits = []
for n in range(n_min,n_max+1):

initial_layout = get_initial_layout(code[n],line)
for log in ['0','1']:

circuits.append( transpile(code[n].circuit[log],
backend=backend,

␣
↪→initial_layout=initial_layout) )

num_cx = dict(circuits[-1].count_ops())['cx']
assert num_cx==2*(n-1), str(num_cx) + ' instead of␣

↪→' + str(2*(n-1)) + ' cx gates for n = ' + str(n)

We are now ready to run the job. As with the simulated jobs considered already,
the results from this are extracted into a dictionary raw_results. However, in this
case it is extended to hold the results from different code sizes. This means that
raw_results[n] in the following is equivalent to one of the raw_results dictio-
naries used earlier, for a given n.

if step_2:

job = execute(circuits,backend,shots=8192)

raw_results = {}
j = 0
for n in range(n_min,n_max+1):

raw_results[n] = {}
for log in ['0','1']:

raw_results[n][log] = job.result().get_counts(j)
j += 1

It can be convenient to save the data to file, so that the processing of step 3 can be done
or repeated at a later time.

if step_2: # save results
with open('results/raw_results_'+device_name+'.txt', 'w')␣

↪→as file:
file.write(str(raw_results))

elif step_3: # read results
with open('results/raw_results_'+device_name+'.txt', 'r')␣

↪→as file:
raw_results = eval(file.read())
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As was described previously, some post-processing of the syndromes is required
to find the the graph that will be used in the decoding. This is done using the
process_results method of each repetition code object code[n]. Specifically, we
use it to create a results dictionary results[n] from each raw_results[n].

if step_3:
results = {}
for n in range(n_min,n_max+1):

results[n] = code[n].process_results( raw_results[n] )

The decoding also needs us to set up the GraphDecoder object for each code. The
initialization of these involves the construction of the graph corresponding to the syn-
drome, as described in the last section.

if step_3:
dec = {}
for n in range(n_min,n_max+1):

dec[n] = GraphDecoder(code[n])

Finally, the decoder object can be used to process the results. Here the default algo-
rithm, minimum weight perfect matching, is used. The end result is a calculation of
the logical error probability. This is simply the probability that the decoded output is 1
when the encoded value was 0, or vice-versa.

When running step 3, the following snippet also saves the logical error probabilities.
Otherwise, it reads in previously saved probabilities.

if step_3:

logical_prob_match = {}
for n in range(n_min,n_max+1):

logical_prob_match[n] = dec[n].
↪→get_logical_prob(results[n])

with open('results/logical_prob_match_'+device_name+'.txt',␣
↪→'w') as file:

file.write(str(logical_prob_match))

else:
with open('results/logical_prob_match_'+device_name+'.txt',␣

↪→'r') as file:
logical_prob_match = eval(file.read())

The resulting logical error probabilities are displayed in the following graph, which
uses a log scale on the y axis. We would expect that the logical error probability
decays exponentially with increasing n. If this is the case, it is a confirmation that the
device is compatible with this basis test of quantum error correction. If not, it implies
that the qubits and gates are not sufficiently reliable.

Fortunately, the results from this device does show the desired trend. Deviations can be
observed, however, which can serve as a starting point for investigations into exactly
why the device behaves as it does. However, in this paper we simply seek to show
an example of the topological_codes module in action, and will not perform more
in-depth analysis.
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import matplotlib.pyplot as plt
import numpy as np

x_axis = range(n_min,n_max+1)
P = { log: [logical_prob_match[n][log] for n in x_axis] for log␣

↪→in ['0', '1'] }

ax = plt.gca()
plt.xlabel('Code distance, n')
plt.ylabel('Logical error probability')
ax.scatter( x_axis, P['0'], label="logical 0", s=512)
ax.scatter( x_axis, P['1'], label="logical 1", s=512)
ax.set_yscale('log')
ax.set_ylim(ymax=1.5*max(P['0']+P['1']),

ymin=0.75*min([ p for p in P['0']+P['1'] if p>0 ]))
plt.legend()

plt.show()

Another insight we can gain is to use the results to determine how likely certain error
processes are to occur.
To see how this can be done, recall that each node in the syndrome graph corresponds
to a particular syndrome measurement being performed at a particular point within the
circuit. A pair of nodes are connected by an edge if and only if a single error, occurring
on a particular qubit at a particular point within the circuit, can cause the value of both
to change.
For any such pair of adjacent nodes, we will specifically consider the values C11 and
C00 , where the former is the number of counts in results[n]['0'] corresponding
to the syndrome value of both adjacent nodes being 1, and the latter is the same for
them both being 0.
The most likely cause for each event recorded in C11 is the occurrence of the error
corresponding to the edge between these two nodes. Also, it is most likely that this
error has not occurred for each event recorded in C00. As such, to first order, we can
state that

p
1− p

≈ C11

C00
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Where p is the probability of the error corresponding to the edge between these two
nodes.
For example, suppose that one of the nodes we are considering corresponds to the
syndrome measurement of code qubits 0 and 1 in the first round, and the other corre-
sponds to the same for code qubits 1 and 2. If both syndrome measurements output 0,
it is most likely that none of these three qubits suffered an error (during the initial state
preparation or during the controlled-NOTs required for the syndrome measurements).
If both syndrome measurements output 1, it is most likely that a single error occurred
on the shared qubit 2. The probability p in this case would therefore be that for such
an error on qubit 2, either in preparation or during the controlled-NOTs.
The decoder object has a method weight_syndrome_graph which determines these
ratios, and assigns each edge the weight − ln(p/(1− p)). By employing this method
and inspecting the weights, we can easily retrieve these probabilities.

import pandas as pd

if step_3:

dec[n_max].weight_syndrome_graph(results=results[n_max])

probs = []
for edge in dec[n_max].S.edges:

ratio = np.exp(-dec[n_max].S.
↪→get_edge_data(edge[0],edge[1])['distance'])

probs.append( ratio/(1+ratio) )

probs_summary = pd.Series(probs).describe().to_dict()

with open('results/probs_summary_'+device_name+'.txt', 'w')␣
↪→as file:

file.write(str(probs_summary))

else:

with open('results/probs_summary_'+device_name+'.txt', 'r')␣
↪→as file:

probs_summary = eval(file.read())

for stat in probs_summary:
print(stat+':',probs_summary[stat])

count: 85.0
mean: 0.15019428099809715
std: 0.11236995205935389
min: 0.026545002073828285
25%: 0.05599450360700791
50%: 0.11155859846959323
75%: 0.20286006128702758
max: 0.41629711751662973

These probabilities come from a novel way of benchmarking the device, that is distinct
from currently used methods. Since no other set of available error probabilities are
exactly equivalent, it is not possible to do a direct comparison. Nevertheless, since the
results from the standard benchmarking of the device can be easily obtained from the
backend object, we will generate a similar summary. Specifically, we will look at the
readout errors and controlled-NOT gate errors.
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if step_3:

gate_probs = []
for j,qubit in enumerate(line):

gate_probs.append( backend.properties().
↪→readout_error(qubit) )

cx1,cx2 = 0,0
if j>0:

gate_probs.append(backend.properties().
↪→gate_error('cx',[qubit,line[j-1]]) )

if j<len(line)-1:
gate_probs.append(backend.properties().

↪→gate_error('cx',[qubit,line[j+1]]) )

gate_probs_summary = pd.Series(gate_probs).describe().
↪→to_dict()

with open('results/gate_probs_summary_'+device_name+'.txt',␣
↪→'w') as file:

file.write(str(gate_probs_summary))

else:

with open('results/gate_probs_summary_'+device_name+'.txt',␣
↪→'r') as file:

gate_probs_summary = eval(file.read())

for stat in gate_probs_summary:
print(stat+':',gate_probs_summary[stat])

count: 127.0
mean: 0.06850161154431056
std: 0.05891171361248407
min: 0.01937499999999992
25%: 0.03708774898932393
50%: 0.046021125148897085
75%: 0.0857536432141715
max: 0.33624999999999994

Note that, despite the different methods used to obtain these values, there is excellent
agreement for the minimum and first quartile. However, the values from the repetition
code do show more of a skew to larger values in the upper quartiles. This could be
due to the fact that repetition code values are obtained from an approximation that is
less accurate for higher error probabilities. The possibility of using a better approx-
imation will therefore be investigated in future versions of topological_codes, as
will further study of how the results of this benchmark relates to the standard one.

IV. CONCLUSIONS

In this paper we have provided an introduction to the repetition code and its imple-
mentation in Qiskit. It forms part of the topological_codes module of Qiskit-Ignis.
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This module has been designed to have a modular form, allowing new codes and de-
coders to be added with relative ease. It will be expanded to include more codes, such
as the 17 qubit variant of the surface code [25, 26]. It will also be expanded to in-
troduce new decoders, such as Bravyi-Haah [27] and methods devised as part of the
’Decodoku’ citizen science project [28]. There are also many other possible ways to
expand the module. One aim of this paper is to serve as a starting point for anyone
interested in making any contributions to this open-source project.
Results were shown from an example run from a 43 qubit code running on IBM’s
Rochester device. This showed what can be done using just a few lines of code. How-
ever, much more could be done to fully probe the working of a device using the repe-
tition code. The most obvious would be to use different possible choices for line, to
fully map out where the errors come from and what effect they have. This paper also
serves to serve as a starting point for such endeavours, since anyone with an internet
connection can now use the tool to probe the 15 qubits of IBM’s publicly accessible
Melbourne device.
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Chapter 9

Syndrome-Derived Error
Rates as a Benchmark of
Quantum Hardware

Abstract

Quantum error correcting codes are designed to pinpoint exactly when and
where errors occur in quantum circuits. This feature is the foundation of their
primary task: to support fault-tolerant quantum computation. However, this
feature could used as the basis of benchmarking: By analyzing the outputs
of even small-scale quantum error correction circuits, a detailed picture can
be constructed of error processes across a quantum device. Here we perform
an example of such an analysis, using the results of small repetition codes to
determine the error rate of each qubit while idle during a syndrome measure-
ment. This provides an idea of the errors experienced by the qubits across a
device while they are part of the kind of circuit that we expect to be typical in
fault-tolerant quantum computers.

Publication Information

This chapter was made available on the arXiv [23], but is intended otherwise
intended to be published only in this thesis.

Note that the references of this chapter are self-contained, and not included in
the overall references.

111



1

INTRODUCTION AND MOTIVATION

The development of quantum computers requires the benchmarking and val-
idation of quantum hardware [1]. When aiming towards the long-term goal of
fault-tolerant and scalable quantum computation, it is crucial for this bench-
marking to account for quantum error correction: probing to what degree its
requirements are met, and whether it does indeed provide the functionality that
it is designed for.

It is with this motivation that many experiments have been performed as
proofs-of-principle for the components of quantum error correction circuits as
well as demonstrating error suppression in certain restricted cases (see [2–8] for
selected recent examples, and references therein). The most recent examples
have made the major breakthrough of demonstrating surface codes of distance
3 [9, 10].

In such demonstrations, the metric of success is often defined at a large-scale
level. For example, the repetition code implementations of [11, 12] look at
the probability of a logical error for increasing code distances. These codes
restricted by the fact that only a limited subset of errors can be corrected.
However, the code distance for this subset can be made very large even with
current quantum hardware. Specifically, for n total qubits used the distance will
be d ≈ n/2. Since the probability of a logical error decays exponentially with
d, the number of samples required to estimate this probability must therefore
increase exponentially. Analysis of progress using only the calculation of this
value is therefore not scalable.

It is for this reason that we will turn our attention to the microscopic scale.
Quantum error correction codes constantly output syndrome information, which
is explicitly designed to detect errors, and pinpoint exactly where and when sin-
gle error events occur. In the ideal case, we deduce exactly which kind of Pauli
error occurred on a specific qubit at a specific point within the circuit. This
information is available on a shot-by-shot basis, allowing for the computation
to correct or otherwise avoid the effects of the error. Nevertheless, we can also
make use of the information when comparing results from many shots. This
can be used to compile information about the likelihood of different kinds of
error, giving us probabilities for different error events at specific points within
a quantum error correction circuit.

These syndrome-derived error rates have already been well-studied as a means
to provide accurate weights within a decoding procedure (such as in [13]). How-
ever, relatively little attention has been given to their potential for benchmark-
ing. The exceptions being [12] and the functionality within Qiskit that it doc-
uments [14], on which this current work is also built, and the presentation of
such error rates in recent papers by Google [3, 15]

The fact that these error rates are tailored to specific points within a circuit,
and that they can only be measured within the context of a large multi-qubit
circuit, stands in contrast to many other benchmarking techniques. In random-
ized benchmarking [16], for example, results are tailored to specific qubits and
specific gate type. Also, the benchmarked gates are implemented in isolation by
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default. For performance in the context of more complex circuits, we must as-
sume that the same results still hold, or design more sophisticated benchmarks
(such as ones designed to be sensitive to cross-talk [17]).

The advantage of the syndrome-derived error rates is that such assumptions
or upgrades are not required. From the context of fault-tolerant quantum com-
putation, the most important error rates are those of qubits that are actively
part of an error correction circuit. By using the syndrome from such a circuit
to analyze the errors within that very circuit, we obtain the most accurate as-
sessment of error rates within that circuit at the microscopic level. Of course,
we can still only assume that the same qubits would experience equivalent error
rates if used for a different quantum error correcting code. However, this is a
much more reasonable assumption than for error rates calculated for a qubit
analyzed in isolation.

Different points within a circuit will be subject to different forms of noise.
Each error rate will therefore have contributions from multiple different error
processes. In this work we will therefore focus on one particular point within
a particular circuit: the idling of the central qubit of a d = 3 repetition code
during measurement. This will allow us to add delay gates to increase the idle
time, and therefore increase the effects of relaxation noise in particular, to see
the effects of T1 and T2 times within the error rates.

CHARACTERIZING CODE QUBIT IDLING ERRORS

A minimal set of experiments

In a quantum error correcting code, different physical qubits play different
roles. Some are the ‘code qubits’ (also known as ‘data qubits’), whose collec-
tive properties are used to store and manipulate quantum information. Others
are ‘auxiliary qubits’, used to mediate multi-qubit measurements. Circuits for
quantum error correction consist of a constantly repeating schedule of these
multi-qubit measurements, which typically involve a set of two-qubit gates be-
tween code and auxiliary qubits, followed by measurements of the auxiliaries.
This measurement is typically the longest duration gate within circuit. In de-
signing a circuit, it can be advantageous to find a way to keep the code qubits
active while some of the auxiliary qubits are being measured. This is to avoid
the errors that would occur due to the qubit being idle. Nevertheless, the idle
time for a code qubit during measurement of its auxiliaries is a common feature
of quantum error correcting circuits. As such, whether we are seeking to avoid
them or accepting their presence, it is important to determine the potency of
errors on code qubits during measurement of auxiliaries.

To do this we use repetition codes implemented along a line, in the same
manner as in [12]. A distance d repetition code of this form has d code qubits
and d−1 auxiliary qubits. There are therefore 2d−1 qubits in total, alternating
along a line between code and auxiliary qubits. Of the code qubits, the d− 2 in
the bulk are part of two distinct syndrome measurements. The auxiliary qubits
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for these are the two neighbours of each code qubit. The two code qubits on
the ends of the line are part of only one syndrome measurement and therefore
have less detailed information extracted about their errors.

Our approach is to select a single qubit on a device whose errors we wish to
examine. Since we wish to examine the errors for a code qubit while idle, the
selected qubit must obviously be a code qubit of the code we implement. To
get sufficiently detailed information, it will also need to be a code qubit within
the bulk of the code (not one involved in less syndrome measurements due to
being part of the edge). The minimal repetition code to have at least one bulk
code qubit is that with d = 3, where it is the central qubit in a line of five.

When implementing the code, we will run a predetermined number of syn-
drome measurement rounds. During the first round, errors detected on code
qubits could come from a variety of sources, most notably incorrect initializa-
tion of the qubit, and imperfections in the two-qubit gates used for the syn-
drome measurements. The code qubits will subsequently experience their first
errors due to delay while the auxiliary qubits are being measured. These will be
detected by the second and all subsequent rounds of syndrome measurement,
alongside the aforementioned imperfections in the two-qubit gates. During fi-
nal readout, the code qubits are also measured and the results are used to infer
a final effective syndrome measurement round. Results from this round will
additionally detect measurement errors for the code qubits. In order to con-
centrate on errors during the idle time, we therefore require T ≥ 2 syndrome
measurement rounds. Results from the first and (effective) final round will not
be used.

Repetition codes only detect a single type of error, whose nature depends on
the definition of the code. For bit flip codes, a logical 0 is encoded on the code
qubits as |0⟩⊗d and 1 is |1⟩⊗d. These will detect bit flips during the idle time,
i.e. errors composed of the Paulis X and Y . For phase flip codes the codewords
are |+⟩⊗d and |−⟩⊗d, and it is the phase flips Y and Z that are detected. A
fully general single qubit error could be composed of X, Y and Z, but no single
repetition code can detect a full set of errors in a single instance. However, by
performing experiments with both bit flip and phase flip codes we can find a
full set of error probabilities.

Given the above considerations, we now have a minimal set of experiments
to probe the idling errors of a single code qubit during measurement of its
auxiliaries. We will use d = 3 repetition codes for T = 2 syndrome measurement
rounds, with the selected qubit in the centre. We extract the probability for an
error on the central qubit during the first syndrome measurement round. This
is done for both the bit flip encoding and phase flip encoding to get probabilities
for both bit and phase flips.

Constructing the circuits

For any given device, we must first determine which qubits can be analyzed
in the manner described above. This will depend on the coupling graph, in



4

which the qubits are vertices and edges correspond to pairs of qubits for which
the two qubit cx gate can be applied. A qubit can only serve as the central
qubit of a d = 3 code if there exists a line of five qubits on this graph, centered
on the chosen qubit. Examples of such lines are shown in Fig. 1.

FIG. 1. Two lines of five qubits are shown on the coupling map of IBM Quantum
Falcon devices. For each, code qubits are shown in red and auxiliary qubits in green.
One of these lines is the unique one required to benchmark qubit 7 on this device.
The other is one of several options for qubit 22.

For some qubits, there is only one possible line of five qubits for which it
sits at the center. For others, there are multiple options. For example, Fig. 1
shows the line 20−19−22−25−24, which can be used to benchmark qubit 22.
However, this could equally begin at 16 rather than 20, and end at 26 rather
than 24.

In such cases where there is more than one option, more information is re-
quired. Our experiments are performed on IBM Quantum hardware via Qiskit.
As such, there is an array of benchmarking data available regarding each device,
which is updated during regular calibrations. In particular we will make use of
the measured T1 and T2 times for each qubit, and the error probability of each
cx gate.

The cx gate errors are what we use to determine the optimal line. Specifically,
two quantities are determined for the cx gates within each line:

• The maximum error rate for cx gates that involve the central qubit;

• The maximum error rate for cx gates within the line as a whole.

The chosen line is that which first minimizes the former, and then minimizes
the latter. All lines involving a cx with an error rate of over 0.5 are discarded,
since these typically signal a poorly calibrated gate.

The ‘leaf qubits’ around the edge, which couple only to a single neighbour,
cannot serve as the central qubit in any such code. We therefore cannot study
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these in the same manner. Also, if the quality of some cx gates are sufficiently
low, we may also be blocked from benchmarking further qubits.

An example of a circuit implemented along the line is shown in Fig. 2.
Such circuits contain multiple points at which qubits are idle, such as while
waiting for a neighbour to complete an entangling gate or measurement. To
increase performance, we can insert dynamical decoupling sequences during all
idle times. When doing so, we insert a specific CPMG sequence [18, 19]: a pair
of x gates.

FIG. 2. The circuit used for codes with the bit flip encoding and a logical 0. The
position of the delay gates show where delays can be added to increase the effects of
relaxation noise and dephasing. The errors measured by our experiments are those
corresponding to the highlighted part of the circuit.

COMPARING RESULTS WITH WITH T1 AND T2

Before blindly accepting the error probabilities calculated from syndrome
measurement results, it is important to determine if they produce results in line
with expectations. For this we can greatly increase the amount of idling error
by increasing the idling time. This is done by simply introducing a delay after
each set of measurements. For a sufficiently long delay time, the errors due to
idling will be greatly dominant over those from imperfections in the two qubit
gates. It should therefore be possible to estimate the error probabilities from
standard benchmarking data. Specifically: the T1 and T2 times.

A useful feature of the repetition code is that the code qubits are in a product
state. It is therefore simple to determine the expected errors from T1 and T2.
Specifically, for a total idle time of t for the code qubits, we can derive the
following properties of P0→1 (the probability that a |0⟩ will flip to |1⟩), P1→0

(vice-versa), and P+↔− (the probability of flipping between |+⟩ and |−⟩).
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P0→1(t) + P1→0(t) = 1 − e−t/T1 ,

P0→1(t)

P1→0(t)
=

1 − p0
p0

,

P+↔−(t) =
1 − e−t/T2

2
.

(1)

Here p0 is the probability that the qubit will be found in the |0⟩ state when
the it reaches equilibrium. A well made qubit typically decays to a good ap-
proximation of the |0⟩ state, and so p0 ≈ 1. This implies P0→1 ≈ 0 and
P1→0 ≈ 1 − e−t/T1 .

Before applying these probabilities to our states, we must account for the
possibility of dynamical decoupling. Though methods for this vary, typically
they will cause a qubit during a delay to spend half its time in a flipped state.
For the bit flip encoding, this means that t/2 will be spend as both |0⟩ and |1⟩
regardless of the logical value. The relevant probability of a bit flip for either
logical value during a delay is then,

P0↔1(t) ≈ P0→1(t/2) + P1→0(t/2) = 1 − e−(t/2)/T1 .

For phase flips, the use of some form of dynamical decoupling is already
assumed when using the T2 time. The probability P+↔−(t) as stated above
therefore applies in this case. For a circuit without dynamical decoupling, de-
phasing would instead be characterized by a shorter timescale T ∗

2 . This accounts
for additional effects that are echoed out by the dynamical decoupling.

When adding a long delay, we will use t = T/8 where T is the relevant
timescale for the code being run. Specifically, T = T1 For the bit flip encoding
and T = T2 for the phase flip encoding. With this delay time, we find,

P1→0 ≈ 11.8%, P0↔1 ≈ 6.1%, P+↔− ≈ 5.9%. (2)

Without dynamical decoupling, the value of P+↔− cannot be predicted from
T2 alone. However, we can expect that it will be comparatively high.

Note that these numbers are for the probabilities of a flip during the delay
alone. There is also the probability of a flip during the circuit before and after
the delay. Indeed this latter probability is what we otherwise wish to measure.
However, we can assume that it will be relatively small in comparison. We
therefore do not expect the measured flip probabilities to exactly align with the
values above. Instead these values provide a guide to what kind of results we
can regard as reasonable.

Codes were run on ibm hanoi to compare with these values. Both bit and
phase flip encodings were run, both with and without dynamical decoupling.
This was done for all the qubits on the device that could be placed at the center
of a five qubit line. The median values found for the above probabilities were,
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P̂1→0 = 16.0%, P̂0↔1 = 9.6%, P̂+↔− = 25.0%. (3)

The first of these was determined from a run without dynamical decoupling,
and the latter two with dynamical decoupling.

The values for P̂1→0 = 16.0% and P̂1↔0 = 9.6% are obviously larger than
the guide values, but are nevertheless well within a factor of two. We therefore
regard them as being within expectations. However, the value of P̂+↔− is
significantly worse than the guide value of 5.9%. The full set of probabilities
for each qubit in this case is shown in Fig. 3, which shows that several qubits
have even more extreme examples.

FIG. 3. The error probabilities P+↔− for an additional delay time tdelay = T/8 and
dynamical decoupling applied all qubits. The brightness of the qubits is proportional
to the values.

One possible mechanism that could cause additional dephasing is that de-
scribed in [20], where it was shown that decay events can cause phase noise on
neighbouring qubits. In our case the neighbours of all code qubits are auxiliary
qubits. The circuit only flips these to the |1⟩ state when an error is detected.
They should therefore mostly be in the |0⟩ state, which would make them im-
mune from relaxation errors. Since they should always be in either the |0⟩ state
or |1⟩ state during delays, they are also immune to dephasing. The application
of dynamical decoupling to these qubits will therefore have only negative effects.
The biggest being the increased probability of relaxation errors when holding
the qubit in the |1⟩ state for long times, and therefore increased phase noise on
the neighbouring code qubits. Our use of dynamical decoupling on all qubits
may therefore have in fact caused this much increased dephasing.

Motivated by this, the experiments were run with dynamical decoupling only
on code qubits. In this case we found P̂+↔− = 7.95%, which is in line with
expectations. The full set of probabilities for each qubit in this case is shown
in Fig. 4.
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FIG. 4. The error probabilities P+↔− for an additional delay time tdelay = T/8 and
dynamical decoupling applied only to code qubits.

Though implementing dynamical decoupling on the auxiliary qubits was a
mistake, it was one that proved instructive. The complex noise triggered by a
seemingly innocuous over-application of dynamical decoupling teaches an im-
portant lesson: we cannot assume that errors will always be described by a
naive combination of T1, T2 and probabilities from randomized benchmarking.
Measuring syndrome-derived error rates is therefore a means by which we can
find and highlight these mysteries.

RESULTS FROM BENCHMARKING DEVICES

In the case of dynamical decoupling applied to the code qubits alone, we have
now found that the syndrome-derived error rates are largely within expectations.
Given that we can expect to find sensible results, we can now proceed to our
main goal: determine the idling errors of a single code qubit during measurement
of its auxiliaries. For this we run the same circuits as above, but without
the additional delay time. The results are shown in Fig. 5. The expected
contributions from the T1, T2 and cx errors, obtained from each device via
Qiskit, are shown in Fig. 6.

With these results, we can summarize the status of the worst and best qubits
on each device (from the perspective of the syndrome-derived error rates). The
numbering used for the qubits here is that seen in Fig. 1.

• ibm hanoi: The worst qubit is 23, which has relatively long T1 and T2,
but one of the worst cx gates; One of the best qubits is 4, which has a
relatively long T1 and typical cx gates for the device.

• ibm auckland: The worst qubit is 15, which has a short T1, a typical T2
and two of the worst cx gates. The best qubit is 7, which has a relatively
typical T1, a long T2, and good cx gates.
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FIG. 5. This figure shows the probabilities P0↔1 and P+↔− measured on the qubits
of a range of devices. The values are represented both in text (P0↔1 listed first
and P+↔− listed second), and in the colour of the qubit. For the latter, P0↔1 and
P+↔− correspond to the brightness of the red and blue channels, respectively, with
the maximum probability on the device used for the maximum brightness.
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FIG. 6. The figure shows values for the probabilities P0↔1 and P+↔−, calculated
according to the T1 and T2 times of the qubits and the readout time on the device.
The values are represented as in Fig. 5. The error rate for cx gates is represented by
the colour of the corresponding link, with bright green corresponding to a 2% error
rate in all cases. Any cx with a higher error rate is shown in grey.
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• ibm cairo: The worst qubit is 1, which has short T1 and T2 and two of
the worst cx gates. One of the best qubits is 15, with relatively long T1
and T2, but also has one of the worst cx gates.

• ibmq montreal: The worst qubits are 1 and 19, despite having relatively
typical T1, T2 and cx gates. The best qubit is 14, which has good T1, T2
and cx gates.

• ibmq mumbai: The worst qubit is 13, which has among the worst T1 ad T2
times. The best is 16 which has relatively typical T1 and T2, and relatively
good cx gates.

Overall the results suggest that qubits with long T1 and T2 and low errors for
cx gates will do well, and those for which either or both are very bad will do
poorly. However, exceptions do occur, with the results from ibmq montreal

in particular showing very poor behaviour from qubits whose T1, T2 appear
typical for the device. The results therefore suggest an optimistic but cautionary
outlook: the T1, T2 will give a good guide to the performance of a qubit within a
quantum error correcting code, but direct measurement of the syndrome-derived
error rates is required to ensure all is as it should be.

CONCLUSIONS

The implementation of small quantum error correcting codes is already well
underway. Those experiments bring a wealth of syndrome information, which
could provide interesting insights into the qubits of the devices. If the reader
takes anything away from this paper, it should be that calculating and pre-
senting these syndrome derived error rates should become standard practice.
This would allow devices to be compared in a manner that lies between the
extremes of randomized benchmarking and quantum volume [21], and which
directly benchmarks performance towards large-scale quantum error correction.

In this work we investigated a minimal implementation of such a study, as-
sessing qubits across a device with tailored d = 3, T = 2 repetition codes.
Continuing to calculate these probabilities will provide users of quantum de-
vices with a novel set of benchmarks for each device, giving a sense of how
qubits will fare within complex circuits with mid-circuit measurement.

However, even these calculations are small and simple in comparison with
the large-scale error correction of fault-tolerance. This work is therefore just
the first step towards the continual assessment of quantum hardware through
syndrome-derived error rates.

The source code and data for all results in this paper is available at [22].
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Part III

Beyond Quantum Error
Correction
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The previous two parts of this thesis covered work that was based on quan-
tum error correction. However, the advent of cloud quantum computing has
the potential to change how researchers work in all aspects of quantum com-
putation. This section explores work done in other fields, namely education,
outreach and the novel field of quantum procedural generation.

Each of the following chapters begins with a list of relevant papers by the
author, along with a reproduction of their abstracts. The contributions of
these papers, as well as their relevance to the theme of this thesis, are then
summarized and discussed.
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Chapter 10

Education

10.1 Abstracts

[21] Teaching quantum computing with an interactive textbook
James R. Wootton, Francis Harkins, Nicholas T. Bronn, Almudena Carrera

Vazquez, Anna Phan, Abraham T. Asfaw

Quantum computing is a technology that promises to offer significant advan-
tages during the coming decades. Though the technology is still in a prototype
stage, the last few years have seen many of these prototype devices become
accessible to the public. This has been accompanied by the open-source devel-
opment of the software required to use and test quantum hardware in increas-
ingly sophisticated ways. Such tools provide new education opportunities, not
just for quantum computing specifically, but also more broadly for quantum
information science and even quantum physics as a whole. In this paper we
present a case study of one education resource which aims to take advantage of
the opportunities: the open-source online textbook ‘Learn Quantum Compu-
tation using Qiskit’. An overview of the topics covered is given, as well as an
explanation of the approach taken for each.

[24] Quantum Games and Interactive Tools for Quantum
Technologies Outreach and Education

Zeki C. Seskir, Piotr Migda l, Carrie Weidner, Aditya Anupam, Nicky Case,
Noah Davis, Chiara Decaroli, İlke Ercan, Caterina Foti, Pawe l Gora,

Klementyna Jankiewicz, Brian R. La Cour, Jorge Yago Malo, Sabrina
Maniscalco, Azad Naeemi, Laurentiu Nita, Nassim Parvin, Fabio Scafirimuto,
Jacob F. Sherson, Elif Surer, James Wootton, Lia Yeh, Olga Zabello, Marilú

Chiofalo

In this article, we provide an extensive overview of a wide range of quantum
games and interactive tools that have been employed by the community in re-
cent years. The paper presents selected tools, as described by their developers.
The list includes Hello Quantum, Hello Qiskit, Particle in a Box, Psi and Delta,
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QPlayLearn, Virtual Lab by Quantum Flytrap, Quantum Odyssey, ScienceAtH-
ome, and The Virtual Quantum Optics Laboratory. Additionally, we present
events for quantum game development: hackathons, game jams, and semester
projects. Furthermore, we discuss the Quantum Technologies Education for
Everyone (QUTE4E) pilot project, which illustrates an effective integration of
these interactive tools with quantum outreach and education activities. Finally,
we aim at providing guidelines for incorporating quantum games and interactive
tools in pedagogic materials to make quantum technologies more accessible for
a wider population.
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10.2 Qiskit Textbook

The author has given lectures at the University of Basel since 2012. At the
height of this activity, between 2013 and 2017, two courses were given per
year: one primarily on quantum information theory, and the other on quantum
computation.

The author was then tasked with writing an online textbook after moving
to IBM Research in 2018. This was to be designed such that it could be used
to supplement university courses on quantum computation. This would be a
‘Qiskit textbook’, which would allow the student to get hands-on with the topic
by using the Qiskit SDK [19] for quantum circuits.

The initial chapters of this textbook, written between late 2018 and early
2019, were based on the author’s course on quantum computation. The version
of the course delivered in 2019 was then based off of the textbook. This allowed
the contents of the textbook to be refined, and ensure with experience that it
can indeed be used as the basis of a course.

The textbook was written to provide a thorough grounding in the mathemat-
ics behind quantum gates and algorithms, but to also give hands-on experience
of creating and running quantum circuits using IBM Quantum’s Qiskit software
development kit. This was not possible in 2012, when the first course was de-
signed. At that time, it was very much a theory course rather than a practical
one. This evolved after cloud quantum computers became available in 2016.
Even as early as 2017, exercises were given based on using these devices, miti-
gating for their noise, and writing circuits to run on simulators. This approach
to the course is what made it a perfect basis for the Qiskit textbook, and al-
lowed it to naturally transition to be based on the Qiskit textbook in turn. A
full account of the Qiskit textbook and the thinking behind it is given in [21].
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10.3 Hello Quantum and Hello Qiskit

A collaboration with IBM Research beginning in 2017 similarly led to a synergy
with with the author’s teaching. The aim of the collaboration was to create a
game which would introduce people to some aspect of quantum computation.
The final product was a puzzle game, based on a visualization of two qubit
states and gates.

The main version of this, known as ‘Hello Quantum’ and distributed as
an iOS and Android app, was presented as an informal game with optional
reading material available after playing. However, throughout development
there was always a more pedagogical version, in which some aspect of quantum
gates was explained through each puzzle. This began as a simple command
line prototype, and evolved into the Jupyter notebook implementation that is
currently integrated into the Qiskit textbook. This version, known as ‘Hello
Qiskit’ has been used as part of the author’s courses since 2017, as an exercise
that can build up intuition before formally teaching the mathematics of qubits.
Some statistics on the usage of these can be found in [24].

These pedagogical tools were designed to fulfill a need created by cloud
quantum computers. A new audience were now able to interact with quantum
computers, who had no idea how one Hadamard gate could make things random
while who removed the randomness, or how surrounding a controlled-NOT with
Hadamards could turn it around. Many of such counter-intuitive effects can be
found in the simplest quantum circuits: those with Clifford gates and at most
two qubits. These are, however, the simplest circuits to simulate, and also
to visualize. This is the core of ‘Hello Quantum’ and ‘Hello Qiskit’. They
provide a simple introduction, mostly limited to Clifford gates, via an intuitive
visualization. By doing so, they allow newcomers to quantum computing to
understand what they are doing, at least during their first attempts at creating
and running the simplest of circuits.
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Chapter 11

Outreach

11.1 Abstracts

[25] Getting the public involved in Quantum Error Correction
James R. Wootton

The Decodoku project seeks to let users get hands-on with cutting-edge quan-
tum research through a set of simple puzzle games. The design of these games
is explicitly based on the problem of decoding qudit variants of surface codes.
This problem is presented such that it can be tackled by players with no prior
knowledge of quantum information theory, or any other high-level physics or
mathematics. Methods devised by the players to solve the puzzles can then
directly be incorporated into decoding algorithms for quantum computation.
In this paper we give a brief overview of the novel decoding methods devised
by players, and provide short postmortem for Decodoku v1.0-v4.1.

[26] Benchmarking of quantum processors with random circuits
James R. Wootton

Quantum processors with sizes in the 10-100 qubit range are now increasingly
common. However, with increased size comes increased complexity for bench-
marking. The effectiveness of a given device may vary greatly between different
tasks, and will not always be easy to predict from single and two qubit gate
fidelities. For this reason, it is important to assess processor quality for a range
of important tasks. In this work we propose and implement tests based on
random quantum circuits. These are used to evaluate multiple different super-
conducting qubit devices, with sizes from 5 to 19 qubits, from two hardware
manufacturers: IBM Research and Rigetti. The data is analyzed to give a quan-
titive description of how the devices perform. We also describe how it can be
used for a qualititive description accessible to the layperson, by being played as
a game.
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[27] The History of Games for (Quantum) Computers
James R. Wootton

Computer games are not just one application of computers, they are a multi-
tude. A wide variety of computational tasks are combined, all running as fast
as possible, to deliver the best possible experience to the player. It is reason-
able to expect that, somewhere in this maelstrom of computation, we can find
something that quantum computers will excel at. If the quest to combine games
and quantum computers was a game itself, it would be one of open-world explo-
ration. Though there may be no well-defined, concrete goals to achieve, there
is something that will guide us: this game is a sequel. By looking at how we
combined games with computers the first time, we can get some idea of what
we can expect in this quantum successor.

[28] Defining Quantum Games
Laura Piispanen, Marcel Pfaffhauser, Annakaisa Kultima, James R. Wootton

In this article, we explore the concept of quantum games and define quantum
games as any type of playable games that are related to or reference quantum
physics through any of three proposed aspects. The rise of the quantum com-
puters has made it possible to think about a new wave of computer games,
namely quantum computer games, games on quantum computers. But at the
same time, there are also various games that are exploring quantum mechanics
and related topics through digital, analogue and hybrid means. In this article
we go through the emerging body of quantum games, the history of quantum
games and the different ways a game may be considered a quantum game. For
this we propose three dimensions for analysing and defining the phenomenon of
quantum games: the perceivable dimension of quantum games, the dimension
of quantum technologies and the dimension of scientific purposes.
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11.2 Decodoku

Quantum error correction requires us to solve puzzles: for a given syndrome,
what errors caused them and how to we correct for their effects. These puzzles
are not themselves quantum in nature, but are instead based on simple prin-
ciples. The decoding of surface codes, for example, is primarily a matter of
pairing up nodes on a decoding graph. With a good visual representation, the
problem of decoding can therefore be easily and effectively conveyed to a broad
audience.

It was this insight on which the ‘Decodoku’ project was based [25]. This
was conducted primarily in 2016, funded by a director’s reserve grant from the
NCCR QSIT. The core of the project was a set of apps for both iOS and An-
droid. These presented decoding problems for topological codes as games, which
could then be played by the general public. By playing the game and developing
a successful strategy, the players essential devise their own decoding algorithm.
This then allows them to directly participate in quantum computation research
themselves.

Specifically, the games were based on the decoding of qudit quantum double
models. For these it is not possible to apply common and effective decoding
methods such as minimum weight perfect matching. Instead, more heuristic
methods are often employed. Furthermore, little research was actively underway
at the time to provide highly effective algorithms for these cases. These decoding
problems were therefore perfectly suited to a citizen science approach: players
could develop heuristic methods for decoding that could compare well to those
of experts, without the fear of experts overshadowing the efforts of the players
during the course of the project.

Of course, the design of an algorithm requires more than just playing a
game. The next step is then for the players to reflect upon the strategy that
they have created, and be able to explain it. No in-app software was provided
to automate this process, or to collect data from players. Instead, supplying
information about their algorithm was entirely up to the players, and they could
do so in whatever manner they chose. For the handful of players who chose to
participate at this level, most chose to do so via an exchange of emails. However,
the top scorer was a student at the University of Basel, allowing an in-person
meeting. The information from all these exchanges was then consolidated and
used to design a ‘bot’ for an updated version of the game, would would provide
hints to players. The principles behind this decoding strategy was also explained
in the paper that resulted from the project [25].

One participant also chose to go one step further, reproducing the puz-
zles programmatically in order to write his own decoder using a genetic algo-
rithm [29]. This also visualized the decoders process of deciding how to proceed
with the decoding. By studying this work, the author was able to reproduce
similar decoding behaviour using a more standard HDRG strategy. This novel
decoder was the most concrete advance that emerged from the project [25].

A further aim of the project was to demystify quantum computation by
presenting an aspect of research in an accessible way. In doing so it was hoped
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that players would realize that the realm of quantum physics is not entirely the
arcane and inaccessible world they may have been led to believe, and might
consider studying the subject in future.

The Decodoku project was conceived of and mostly implemented before
the advent of cloud quantum computers. The motivation for this project was
therefore not influenced by the availability of such devices. In fact, it was
inspired by a desire to close the distance between cutting-edge research and
the public that funded it. The project has therefore been revived as a way of
teaching about error correction for Qiskit QEC and presenting experimental
results for repetition code experiments [20].
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11.3 Quantum games

The first games for conventional computers were not made primarily for fun,
but for education and training. Early examples were done to demonstrate tech-
nology at trade shows, as part of research into human computer interaction,
and as a way of getting hands-on experience with using a new device. In a
similar way, games could also prove useful during the development of quantum
computers. These would not just be games about quantum computation, as
with Hello Qiskit and Decodoku, but games that actually require the creation
and execution of quantum circuits. The advent of cloud quantum computers
provided the perfect opportunity to explore this possibility.

This was the motivation behind what were arguably the first games made
for quantum computers: ‘Cat-Box-Scissors’ and ‘Battleships with Partial Not
Gates’. These are simple games that use quantum hardware, but were made
more to be explained than to be played. As straightforward examples of quan-
tum software, they formed the basis of blog posts which explained some of the
basic principles of quantum computation. In summary, they used properties
of single qubit gates to implement the central game mechanic. In ‘Battleships
with Partial Not Gates’, for example, a quantum circuit is built up round-by-
round through the actions taken by the players. The current circuit is run at
the beginning of each round, and the results inform the actions taken by the
players. The full game is a quantum-classical hybrid, but the quantum circuit
provides a crucial role by manipulating in-game data.

Games using only few qubits can, of course, easily be played on a simulator
rather than real hardware. Indeed, many later quantum games made by the au-
thor and others were designed with this specifically in mind, since simulation of
small circuits is much faster than waiting on results from real devices. However,
the peculiarities of real devices can also provide a unique challenge within the
game. For example, ‘Cat-Box-Scissors’, is a variant of ‘Rock-Paper-Scissors’,
for which the only strategy beyond pure randomness is to learn the biases in
the randomness of your opponent. Since the device serves as the opponent in
‘Cat-Box-Scissors’, it provides an opportunity for the player to realize that cur-
rent qubits suffer from noise that biases towards a particular outcome. This
idea was expanded upon in ‘Quantum Awesomeness’ [26], in which the noise
of a device explicitly affected how playable the game was. The intention was
to give non-experts an intuitive way to assess the quality of a device in action,
without needing to understand a set of benchmarking values.

Another possibility to learn via quantum games is by making them. By
implementing a simple game mechanic using single or two qubit gates, someone
learning about quantum computing can hope to achieve at least a little practi-
cal experience, which may help them as they dive into the technicalities later.
This was the idea behind the game jams and workshops hosted by many orga-
nizations across the world, such that the ‘Quantum Game Jam’ series started
by the University of Turku in 2014 and which has incorporated cloud quantum
computing in recent years. In such events, it is easy for non-experts to find and
follow the path of least resistance: simply using the quantum circuit to generate
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random numbers. To encourage and facilitate higher level usage, a method for
single qubit procedural generation was developed [27]. This was simple enough
to explain and understand within a short workshop, ran fast enough to be
simulable on a microprocessor, and could deterministically produce interesting
landscapes that could be used within a game.

Through work by the author and others, there are now many quantum
games using many different approaches and made for various purposes. In depth
explanations of those made by the author, and the historical context behind such
them, is presented in [27]. A categorization current quantum games was given
in [28]. A collection of some of the games, including some by the author, are
available online at [30].
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Chapter 12

Procedural generation

12.1 Abstracts

[31] A quantum procedure for map generation
James R. Wootton

Quantum computation is an emerging technology that promises a wide range of
possible use cases. This promise is primarily based on algorithms that are un-
likely to be viable over the coming decade. For near-term applications, quantum
software needs to be carefully tailored to the hardware available. In this pa-
per, we begin to explore whether near-term quantum computers could provide
tools that are useful in the creation and implementation of computer games.
The procedural generation of geopolitical maps and their associated history is
considered as a motivating example. This is performed by encoding a rudimen-
tary decision making process for the nations within a quantum procedure that
is well-suited to near-term devices. Given the novelty of quantum computing
within the field of procedural generation, we also provide an introduction to the
basic concepts involved.

[32] Procedural generation using quantum computation
James R. Wootton

Quantum computation is an emerging technology that promises to be a powerful
tool in many areas. Though some years likely still remain until significant quan-
tum advantage is demonstrated, the development of the technology has led to a
range of valuable resources. These include publicly available prototype quantum
hardware, advanced simulators for small quantum programs and programming
frameworks to test and develop quantum software. In this provocation paper
we seek to demonstrate that these resources are sufficient to provide the first
useful results in the field of procedural generation. This is done by introducing
a proof-of-principle method: a quantum generalization of a blurring process, in
which quantum interference is used to provide a unique effect. Through this
we hope to show that further developments in the technology are not required
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before it becomes useful for procedural generation. Rather, fruitful experimen-
tation with this new technology can begin now.

[33] Investigating the usefulness of Quantum Blur
James R. Wootton and Marcel Pfaffhauser

hough some years remain before quantum computation can outperform con-
ventional computation, it already provides resources that can be used for ex-
ploratory purposes in various fields. This includes certain tasks for procedural
generation in computer games, music and art. The so-called ‘Quantum Blur’
method represents the first step on this journey, providing a simple proof-of-
principle example of how quantum software can be useful in these areas today.
Here we analyse the ‘Quantum Blur’ method and compare it to conventional
blur effects. This investigation was guided by discussions with the most promi-
nent user of the method, to determine which features were found most useful. In
particular we determine how these features depend on the quantum phenomena
of superposition and entanglement.

[34] Quantum Natural Language Generation on Near-Term Devices
Amin Karamlou, James R. Wootton, Marcel Pfaffhauser

The emergence of noisy medium-scale quantum devices has led to proof-of-
concept applications for quantum computing in various domains. Examples
include Natural Language Processing (NLP) where sentence classification ex-
periments have been carried out, as well as procedural generation, where tasks
such as geopolitical map creation, and image manipulation have been performed.
We explore applications at the intersection of these two areas by designing a
hybrid quantum-classical algorithm for sentence generation. Our algorithm is
based on the well-known simulated annealing technique for combinatorial opti-
misation. An implementation is provided and used to demonstrate successful
sentence generation on both simulated and real quantum hardware. A variant
of our algorithm can also be used for music generation. This paper aims to be
self-contained, introducing all the necessary background on NLP and quantum
computing along the way.
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12.2 Procedural Generation

The field of procedural generation is concerned with the algorithmic generation
of content [35]. The nature of this content can vary widely, but can include
images, music, maps or text. Procedural generation is probably best known for
its use in computer games, where it can be used to generate novel worlds, levels
or puzzles for the player.

The wide scope of the field means that a wide variety of computational
methods are used for different tasks. These can vary from the relatively simple,
such as texture generation using noise functions [36], to problems that would
ideally require the solution of complex constraint satisfaction problems [35].
This makes the field well-suited to explore with quantum computation: even
current and near-term devices can perform relevant tasks at the simple end
of the field, and the ability to solve complex constraint satisfaction problems
will benefit the field when fault-tolerant quantum computers are realized. We
can therefore hope to find and explore ever more sophisticated examples of
quantum procedural generation as technology progresses. Of course, any uses
with current and near-term devices would not represent examples of quantum
advantage [37]. Nevertheless, they would already provide examples of quantum
computers in use for computational tasks.

The author’s interest in procedural generation was initially sparked a topic
covered in the last chapter: the idea of learning about quantum computation
through making simple games. An example of using quantum circuits to gener-
ate textures was created for this purpose. This was inspired by the use of blur
effects in early techniques for procedural generation [35]. It used an amplitude
encoding to encode images within a register of qubits, able to store 2n pixels
within n qubits. This encoding was chosen to pack as much as possible within a
small number of qubits, both to allow easy simulation as well as implementation
on publicly available cloud quantum computers. The exact mapping between
qubit states and pixel coordinates was chosen to maintain a relationship be-
tween Hamming distance for bit strings in the former with distance between
pixels in the latter. Specifically, neighbouring pixels in the image are encoded
by strings that differ on only one bit. This means that small angle rotations in-
duce a blur-like effect. Given this behaviour, the method was named ‘Quantum
Blur’ [31].

Quantum Blur was intended as a simple example of how a method for pro-
cedural generation could be natively developed as a quantum circuit. It served
as an initial proof-of-principle for the use of quantum computational techniques
in procedural generation, as well as a tool that beginners could use and learn
from in quantum game jams and similar events. However, it has since found use
in professional contexts by artists [33]. Specifically, by the artists Roman Lip-
ski [38] and Libby Heaney [39]. It has also been used in a commercial computer
game by indie studio MiTale [40].

Quantum Blur was primarily an example of using quantum software for
procedural generation, since results are more easily and accurately obtained by
simulating the circuits than by running them on cloud quantum computers.
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The next step was then to find a method for quantum procedural generation
that was primarily designed to run on current hardware. This would need to
be designed with the abilities and restrictions of near-term devices in mind.
Specifically:

• Qubits are arranged on two-dimensional surface with two qubit gates pos-
sible between certain pairs of neghbouring qubits;

• Circuits are composed of single and two-qubit gates only, each of which
contribute noise;

• Final output bit strings are highly unreliable due to noise, while expecta-
tion values can be regarded as more resilient.

These factors mean, for example, than any method requiring a device-wide
Fourier transform would be unsuitable. Instead, the method must be built
explicitly using the available components.

The approach taken was, essentially, to build an AI for a Civilization-like
game. In this there are n nations, one for each qubit. These nations have
starting positions on a map that reflect the positions of the qubits on their
device, such that neighbouring nations correspond to pair of qubits for which
two-qubit gates are possible. The start with a small amount of territory around
their initial position, and take turns to place cities within their territory. The
placement of these cities then redraws the borders between nations. This can
result in a nation gaining unclaimed territory, or territory being exchanged
between nations. The extreme case of the latter is where a city changes hands,
due to its territory becoming dominated by another nation.

The decisions made by nations are determined by a quantum circuit, which
is run at the beginning of each round of moves. More specifically, in order to
calculate the single qubit expectation values and two-qubit expectation values
between neighbours that are required, many copies of the circuit are run differ-
ent measurements appended to each [41]. These values are used to determine
whether the nation will act in an aggressive, defensive or explorative manner,
and against which other nation that action will be directed in the former cases.
Given this choice of strategy, a position for city placement is then determined
classically. At the end of each round, the effects of these moves on the borders is
calculated. Based on this information, new gates are added to the circuit. These
are chosen such that a nation will become more aggressive or defensive against
particular neighbours when gaining and losing territory and cities. These ad-
ditions to the circuits are implemented entirely via single and two qubit gates,
for each nation or pair of nations, respectively.

Though this process has been described in the above as a game, note that
it is a game played only by the AI. Running the game is a hybrid quantum-
classical process in which a circuit is continually updated and run, with the
results influencing the game map, and the changes to the map influencing the
changes made to the circuit. Thoughout this process, a map is generated which
represents a living history of the nations it depicts, and their interactions over
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time. This map, and the history of the locations within it, is then the content
that has been procedurally generated.

The method used for this AI-based approach is similar to that proposed for
imaginary time evolution in [42], demonstrating that even methods designed for
very different use cases could be put to use for quantum procedural generation.
This insight inspired a third example of quantum procedural generation. Specif-
ically, quantum tools designed to analyze natural language [43, 44] were used to
instead generate sentences [34]. The input for this method is a target condition
that the generated sentence should satisfy, such as the topic. An iterative pro-
cess is then applied, starting with a naively generated initial sentence that is
then analyzed by the existing quantum tools. This determines the closeness of
the current sentence to the target condition. If it does not satisfy the condition,
small changes are made and the sentence is analyzed again. The combination of
a classical simulated annealing algorithm and the quantum analysis then guide
the sentence towards the required condition.

All these methods were specifically inspired by the constraints of near-term
devices, and a desire to do as much as possible with them. They show that
the quantum computation resources we have now are not just limited to proofs-
of-principle, but can be used to create complex and interesting content. We
may not yet have quantum advantage, but current quantum hardware can still
inspire creativity.
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caroli, İ . Ercan, C. Foti, P. Gora, K. Jankiewicz, B. R. L. Cour, J. Y. Malo,
S. Maniscalco, A. Naeemi, L. Nita, N. Parvin, F. Scafirimuto, J. F. Sher-
son, E. Surer, J. Wootton, L. Yeh, O. Zabello, and M. Chiofalo, “Quantum
games and interactive tools for quantum technologies outreach and educa-
tion,” Optical Engineering, vol. 61, jul 2022.

[25] J. R. Wootton, “Getting the public involved in quantum error correction,”
in Proceedings of GSGS’17, July 2017.

[26] J. R. Wootton, “Benchmarking of quantum processors with random cir-
cuits.” https://arxiv.org/abs/1806.02736, 2018.

[27] J. R. Wootton, The History of Games for (Quantum) Computers, pp. 345–
367. Cham: Springer International Publishing, 2022.

143



[28] L. Piispanen, M. Pfaffhauser, A. Kultima, and J. R. Wootton, “Defining
quantum games.” https://arxiv.org/abs/2206.00089, 2022.

[29] P. Cochin, “Genetic quantum correction.”
https://github.com/sneakyweasel/genetic-quantum-correction , 2017.

[30] S. Maniscalco, C. Foti, G. GarćIa-Pérez, M. Rossi, D. Caval-
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