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1 Introduction

In the last decades hardly any achievement has shaped humanity as much
as the invention of the first transistor more than 70 years ago by Bardeen,
Brattain, and Shockley. Since then technology has improved by leaps and
bounds: today’s average smartphone has more computational power than a
supercomputor of the late nineties, barely more than 20 years ago. This has
been best described in the famous "Moore’s law", [1, 2], that states that the
number of transistors in an integrated circuit doubles about all two years. This
exponential increase, achieved by shrinking the transistor size, has governed
every progress in computer based technologies for decades.

However in recent years Moore’s law has started to breakdown [3]. The
increased heat load of the increasingly small and dense circuitry is starting to
slow down progress in microprocessor design. Furthermore, even if this issues
can be solved, classical computation has an intrinsic lower bound in size. As
transistor size shrinks, quantum effects are becoming increasingly important.
Eventually, their random nature will destroy classical computation. In order
to truly advance technology and satisfy the ever increasing consumer demands,
quantum effects need not be seen as a problem but an advantage to make use
of. Doing so entails the evolution of a classical bit to a quantum bit (qubit),
where information is encoded in the superposition of a quantum states [4].

Quantum computation is in early stages and the most promising platform
has not been determined yet. So far, superconducting qubits [5–7] and trapped
ions [8, 9] have been at the forefront in numbers of qubits and computational
power. However, despite immense progress in error correction [10], quantum
computation is still on the noisy intermediate-scale quantum technology level
[11]. Hence, a major focus of the physics community lies with the exploration
of further platforms for quantum computing. This search focuses on two major
points: less error prone qubits and more scalable architectures.

To mitigate error [12] an interesting approach is given by exploiting topo-
logical protection [13] of topological particles, such as Majorana bound states
(MBS) [14–17] or parafermions [18–20]. They can be engineered [13, 16, 21]
by the combination of a strong spin-orbit material proximitized by a super-
conductor and an external magnetic field. At the same time recent advances
in the growth of semiconducting nanowires and metallic-interface engineering
has opened up a realm of new nanowire based semiconducting devices. Ex-

1



1. Introduction

amples include nanowire crosses [22–24] and networks [25–28], in-situ grown
epitaxial metal-nanowire interfaces [29–33], and nanowire heterostructures in
radial [34, 35] and axial [36–40] direction. Furthermore, advances in template-
assisted nanowire growth [27, 41, 42] and selective-area growth [23, 25, 26, 28]
have come closer to a scalable growth approach to nanowire structures.

The advances of epitaxial superconducting interfaces to nanowires have lead
to numerous experimental reports of signatures of MBS [43–47]. However their
unambiguous identification has been challenging, as they can be mimicked by
other non-topological phenomena [48, 49], most prominently Andreev bound
states (ABS) [50–54]. Quantum dots (QDs) are a useful spectroscopy tool to
probe MBS or ABS. They are predicted to allow the study of the MBS lifetime
[55], parity [56], and spin texture [57]. In spectroscopy experiments, QDs are
often defined by electrostatic gating [43–45, 58] or the source-drain contacts
[59], which can make control and understanding of these QDs difficult.

Combining the spectroscopy of possible MBS with the nanowire heterostruc-
tures could make the identification of MBS more reliable. Radial heterostruc-
tures grown by crystal-phase control in InAs nanowire have shown to host
well-defined tunnel barriers and QDs [39, 60–62]. The number, length and
distance between crystal-phase defined barriers can be tuned during growth
[40] and thus allows for an individually tailored system to study potential
MBS.

Furthermore, the same crystal-phase defined tunnel barriers can be used to
create double QDs (DQDs) in InAs nanowires. Nanowires with built-in DQDs
can be readily combined with the knowledge of circuit quantum electrodynam-
ics gained from superconducting qubits [63–65]. Coupling a superconducting
resonator to a qubit enables rapid, high-fidelity qubit-readout [66] and long-
range coupling between qubits [67]. The combination of these two systems has
lead to strong charge-photon [68, 69] and strong spin-photon coupling [70–72],
as well as coherent coupling of distant qubits [73–75]. Many of these structures
are reliant on complicated device architecture, such as micromagnets [74], to
couple the resonator to the spin-degree of freedom. However, the same ef-
fect can be achieved using the strong intrinsic spin-orbit interaction in InAs
nanowires [76] and the device architecture is further simplified by needing no
additional gates to define the DQD.

Aim of the thesis
This thesis aims to study InAs nanowires with built-in crystal-phase defined
QDs as a platform for quantum computing. We investigate them as a platform
for topological qubits, as well as charge and spin qubits. In a first step to-
wards MBS we investigate the induced superconductivity in nanowire hybrid
device where the superconductor is deposited by standard e-beam evaporation
without an epitaxial interface to the nanowire. Using the integrated tunnel

2
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barriers as spectrometer, we draw conclusions about the origin of quasiparticle
poisoning in our system.

In a second approach we couple a nanowire DQD to a high-impedance res-
onator. In the first step we will investigate the resonator-nanowire hybrid
device as a charge qubit. We observe a very large qubit linewidth. To improve
our system we turn to spin qubits. We take advantage of the strong spin-orbit
coupling in our nanowires to couple the resonator to a singlet-triplet qubit,
with which we demonstrate strong spin-photon coupling.

Outline of the thesis

In chapter 2 we will introduce the most important theoretical concepts rele-
vant for this work. We start with a brief introduction to single QDs, followed
by DQD and the charge and spin qubits in them. We will turn to a short
introduction to resonators and circuit quantum electrodynamics. To finish
we will give a concise introduction to the basic superconductivity phenomena
discussed here.

Chapter 3 will introduce the most important experimental methods, in-
cluding a summary of the standard fabrication process of our devices as well
as a brief summary of the measurement setups. In chapter 4 we will give a
brief explanation of the growth and electronic properties of the InAs nanowires
used in this work. We will follow up with some basic characterization mea-
surements of our integrated tunnel barriers and QDs.

In chapter 5 we study the superconducting properties of superconductor-
nanowire hybrid devices. We will use three-terminal measurements to show
that we perform tunneling spectroscopy on an induced proximity region and
not the superconducting contact. Furthermore, we will investigate our "soft"
gap and give some explanations to its origin.

Following this we study a Cooper pair island in chapter 6. We accidentally
create superconducting charge boxes (SCB) in aluminium side gates. We use
the integrated nanowire QD as a charge sensor for these SCB and observe
the 2e-parity of a Cooper pair island. Furthermore, we measure time-resolved
Cooper pair tunneling.

Chapter 7 turns to the resonator-nanowire hybrid device. We couple a
NbTiN high-impedance resonator to a nanowire DQD. We perform dispersive
sensing on the DQD and characterize the dispersive shift of the resonator in
response to the two-level system of the DQD. We extract the DQD tunnel
rates, qubit linewidth, and the charge-photon coupling strength for different
inter-dot resonances.

In chapter 8 we add a magnetic field to the resonator-nanowire hybrid
system and show the creation of a singlet-triplet qubit. We model the general
behavior of the qubit with a simplified two-electron Hamiltonian and extract

1
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1. Introduction

tunnel rates, spin-photon coupling strength and linewidth of the qubit. With
this we demonstrate strong spin-photon coupling.

Finally, we conclude with chapter 9 summarizing the most important find-
ing and giving an outlook on further steps and experiments in the future.

4
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2 Theoretical background

This chapter will serve to introduce the most important theoretical concepts
that are the foundation of this work. The first part will be an introduction to
electron transport in single and double quantum dots. Further, the usage of
double quantum dots to create charge and spin qubits will be discussed. We
will follow up with a brief introduction to the coupling of spin and charge qubits
to superconducting resonators. The second part will give a brief introduction
to superconductivity and electron transport at a normal-superconductor in-
terface, as well as superconducting islands. The theory of the quantum dots
and superconductivity parts will partially follow Refs. [77–80], while the qubit
part will follow Refs. [77, 81–83]

2.1. Quantum dots

Tunnel barriers and quantum dots (QDs) are the building blocks of which all
experiments in this thesis are build upon. Either as a spectroscopy tool (chap-
ters 4, 5, and 6) or as a platform for qubits (chapters 7 and 8). In a quantum
dot the motion of electrons is confined in all three spatial dimensions resulting
in a quantized energy spectrum. Due to this spectrum, they are sometimes
referred to as "artificial atoms" [84]. However unlike actual atoms, QDs can
be coupled to source-drain electrodes and their electrostatic potential tuned
by gate electrodes. This allows us to study both their electronic properties
at low temperatures. Quantum dots have been realized in various solid state
systems. Examples include semiconducting nanowires [35, 39, 44, 85], carbon
nanotubes [86–88], graphene nanoribbons [89], two-dimensional electron gases
(2DEGs) [90–92], and van-der-Waals materials [93].

A QD is typically a very small structure on the order of a few hundreds
nanometer, as the name "dot" implies. QDs have a characteristic energy scale,
the so called charging energy EC . This energy is analogues to the ionization
energy of an atom and describes the energy necessary to add or remove a single
electron to the QD. The charging energy has to exceed the thermal energy
kBT of the electrons to be a relevant energy scale [77, 94]. An electronic one-
dimensional channel, such as a semiconducting nanowire (NW), confines an
electron in two dimensions. To create a QD an additional confinement in the
lateral direction is necessary. This can be achieved by either Shottky-contacts
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2. Theoretical background

[95] or in a more controlled way by gate-defined barriers [68, 93, 96–99] or
in-built tunnel barriers [35, 60, 85]. This barrier has to be sufficiently opaque,
so that fluctuations of the occupation number N on the QD are much less than
one over the timescale of the measurement. This gives us a lower bound for
the tunnel resistance Rt, as the energy uncertainty should be much lower than
the charging energy. Therefore, Rt should be much larger than the resistance
quantum, Rt ≫ h/e2 = 25.813 kΩ [77, 94].

2.1.1. Coulomb blockade and single electron tunneling

QDS

 VSD I

 VG

 ΓS CS
μS μD

S D

QD E

μ(N+1)

(a)

D

G

(b)

,  ΓD CD,
μ(N)

μ(N-1)

 ΓS  ΓD

 VG

 CG

Figure 2.1. Quantum dot model. (a) Capacitance model and typical
circuit measurement diagram. A quantum dot (QD) is tunnel coupled to
a source-drain leads with capacitances CS/D and tunnel coupling ΓS/D. A
purely capacitive coupling CG to the gate G allows to tune the electrochemical
potential of the QD. (b) Schematic of the energy level diagram of a QD with N
electrons and electrochemical potential µN . Adapted from [60, 78, 100, 101].

Given the criteria mentioned above, that the temperature is sufficiently
large and the tunnel barriers sufficiently opaque, Coulomb interactions be-
tween electrons on the QD become a relevant or even dominating energy scale
[94]. Coulomb interactions can be well described within the framework of
the constant interaction model (CIM) [84, 94]. This models makes two as-
sumptions. First, the Coulomb interactions of the QD can be described by a
constant capacitance C. Second, the energy spectrum of the QD is unaffected
by both electron-electron interaction and the occupation number N of the QD.

Let us assume a QD as illustrated in Fig. 2.1. A QD is tunnel coupled to
a source (drain) lead with tunnel coupling ΓS (ΓD) and a capacitive coupling
CS (CD). A finite current can be induced from source to drain contact by

6

2



2.1. Quantum dots

applying a finite bias voltage VSD = VS − VD. Furthermore, the QD is purely
capacitively coupled to a gate electrode G, where a gate voltage VG can be
applied to tune the electrostatic potential on the QD. The sum of these gives
us the QD capacitance C = CS + CD + CG. For N electrons the total energy
Etot on the QD is given by [91, 102].

Etot(N) = Q2
tot

2C +
N∑
j=1

Ej = 1
2C [e(N −N0) −

∑
i

CiVi]2 +
N∑
j=1

Ej , (2.1)

where N0 is the QD occupancy for all Vi = 0 and Qtot describes the total
charge on the QD [94, 102]. The first term accounts for the electrostatic
energy on the QD. Hereby,

∑
i
CiVi describes the gate-induced charges. The

second term accounts for the sum of occupied quantum states of the QD. As
we usually measure energy difference in transport, it is convenient to use the
electrochemical potential µ of the QD.

µ(N) = Etot(N)−Etot(N −1) = EN + e2

C
(N −N0 − 1

2)− |e|
C

(
∑
i

CiVi) (2.2)

This expression describes the energy needed to add the Nth electron to the
QD assuming the QD is already populated by N-1 electrons. Figure 2.1(b)
illustrates this "ladder" of energy levels of the QD [91, 102]. The energy dif-
ference between this levels is called the addition energy

Eadd = µ(N + 1) − µ(N) = e2

C
+ δE (2.3)

where EC = e2

C
is the charging energy and δE = EN+1 −EN is the quantum

mechanical level spacing of the QD [91, 102]. The ladder of electrochemical
potentials can be shifted linearly by applying a gate voltage VG. The gate can
shift the ladder by αGe∆VG, where αG = CG/C is called the gate lever arm
or efficiency factor.

Let us now assume a linear response VSD ≈ 0 and small thermal broadening
kBT ≪ δE ≪ EC . In this case we can assume that the Fermi distribution in
the leads fS/D = 1

exp((E−µSD)/kBT )+1 can be approximated by a step function
with a small thermal broadening kBT . As is illustrated in Fig. 2.2(a) electron
transport through the QD is only possible if the potential of the source-drain
leads aligns with the electrochemical potential of the QD, µS/D = µ(N). If this
condition is fulfilled the QD is on resonance and a single electron can tunnel
from one lead into the QD and into the second lead. This process where sequen-
tially tunneling discrete charges is called single electron resonant tunneling. In
a transport measurement this will lead to a peak in the differential conductance

2

7



2. Theoretical background

EC EC + δE

N-2

eαVG

N N+2 d
I/d

V S
D

μS μD

S D

QDE

μ(N+2)

(b)

μ(N+1)

μ(N)

 ΓS  ΓD

μS μD

S D

QD(a)

 ΓS  ΓD

μ(N+1)

μ(N)

μ(N - 1)

(c)

Figure 2.2. Coulomb blockade and single electron tunneling. Align-
ment of the electrochemical potentian µ(N) with the potential of the source-
drain contacts µS/D for (a) single electron resonant tunneling and (b) Coulomb
blockade. (c) schematic of a typical transport measurement of the differential
conductance dI/dVSD in dependence of the gate voltage VG. Adapted from
[60, 78, 100, 101].
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2.1. Quantum dots

dI/dVSD at the resonance position of the QD. By varying the gate voltage dif-
ferent electrochemical potential can be tuned on resonance. However, if the
electrochemical potential of the QD is not aligned with the potential in the
leads, i.e µ(N) < µS = µD < µ(N + 1), electron transport is blocked, as the
neither the electrons in the leads have enough energy to tunnel into the QD nor
do the electrons in the lower energy QD levels have enough energy to tunnel
out of the QD. This state is referred to as Coulomb blockade (CB). Assum-
ing simple two-fold spin degeneracy (as is usual for InAs nanowires), we see a
spacing between the Coulomb peaks as illustrated in Fig. 2.2(c). Adding an
electron to a new orbital requires the addition energy Eadd = EC + δE, while
adding a second electron to an already single occupied orbital cost Eadd = EC
[91, 94].

2.1.2. Resonance line shapes

In the above description we did not account for finite temperature broadening
nor tunnel coupled broadening ΓS/D of the lineshape of the Coulomb reso-
nances. While the ΓS/D have to be sufficiently small to create a QD, even a
small coupling Γ = ΓS + ΓD will lead to a finite lifetime τ of the electrons
on the QD. According to Heisenberg’s uncertainty principle this small lifetime
creates an energy window ∼ h/τ . Due to this energy window electrons are able
to tunnel through the barriers even at slightly off resonance energies, which
broadens the Coulomb resonance. We will differentiate between two limiting
cases of broadening. For kBT ≪ Γ ≪ δE,EC we speak of the life-time broad-
ened or strong coupling regime, where the broadening is given by the tunnel
coupling to the leads and can be well described in conductance G = dI/dVSD
by a Lorentzian lineshape [77]

G(∆E) = e2

h

4ΓSΓD
Γ2

(Γ/2)2

∆E2 + (Γ/2)2 , (2.4)

where ∆E = −eαG(VG − V
(0)
G ) is the energy detuning with respect to the

resonance at V (0)
G . The tunnel coupling Γ is given by the full width at half max-

imum (FWHM) of the resonance and the conduction is maximal for symmet-
ric barriers. In the thermally broadened limit or weak coupling regime, where
Γ ≪ kBT ≪ EC , δE, the Coulomb peak lineshape is given by [103].

G(∆E) = e2

h

π

2kBT
ΓSΓD

Γ cosh−2
(

∆E
2kBT

)
. (2.5)

The maximum of the conductance is reached for symmetric barriers and
scales with ∼ 1/kBT

2
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VSD

VG

S
D Eadd EC

N+1 N+2N

I

II

III

IV

μ(N+1)

δEμ(N)

S
D

μ(N+1)

μ(N)

S
D

μ(N+1)

μ(N)

S
D

μ(N+1)

μ(N)
μ*(N)I III

II

IV

β+

β-

0

Figure 2.3. Schematic of Coulomb diamonds An illustration of a typical
differential conductance G measurement of a QD as a function of gate voltage
VG and source-drain bias VSD. The QD has a two-fold degeneracy. The lines
with slopes β+ and β− show the onset of transport, where the source-drain
potential align with the QD level µN , as shown in the schematics I-III. IV
marks the onset of the first excited state. Adapted from [60, 78, 100, 101].

2.1.3. Coulomb blockade diamonds

So far we have only considered QDs without any source-drain bias. Just as
Coulomb blockade can be overcome by applying a gate voltage VG, it can
also be overcome by applying a source-drain bias VSD. Coulomb blockade
can be lifted if an electrochemical potential level µQD enters the bias window
−|e|VSD = µS − µD. In a measurement this will be signified by a step in
current or a peak in conductance. Measuring conductance G in dependence
of VG and VSD results in the so-called Coulomb diamonds as illustrated in
Fig. 2.3. Within the diamonds there are no µQD within the bias window,
therefore no electron transport can happen. No conductance will be measured
and the number of charges on the QD is fixed. Outside the diamonds there is at
least one QD level within the bias window and transport can happen. Hence,
the electron number on the QD is constantly fluctuating. The boundary of
the diamonds are given by the condition µQD = µS/D. In Fig. 2.3 I (III)
the drain (source) potential aligns with the QD level resulting in the line with
negative (positve) slope β− = ∆VSD

∆VG
(β+). At the top of the diamond (IV)

the two lines cross, thus the source-drain bias at that point is directly equal to
the difference in adjacent electrochemical potentials on the QD. This allows to
directly measure the addition energy Eadd = EC + δE. The schematic shown
in Fig. 2.3 is two-fold degenerate, as such the addition energy Eadd is given by
the larger diamond and the charging energy EC is given by the subsequent,
smaller diamond. The orbital energy δE can be extracted from the difference
between the two [102].

Let us assume an asymmetric bias for our QD, where the drain contact

10
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2.1. Quantum dots

is grounded µD = 0 and all the potential is applied on the source contact
µS = −|e|VSD. As seen above we can extract the addition energy, charging
energy and orbital energy from height of the Coulomb diamonds. From the
slopes β+/− we can also extract the capacitances of the QD and the lever
arm of the gates. From the negative slope with 0 = µD = µQD and Eq.
2.2 we get 0 = −|e|CG

C
∆VG − |e|CS

C
∆VSD, i.e to keep the electrochemical

potential constant the gate has to compensate the capacitive shift of the source
contact. We can do the same calculation for the positive slope, giving us
|e|VSD = −|e|CG

C
∆VG − |e|CS

C
∆VSD. Using this equations and the definition

of the slopes β−/+ = ∆VSD
∆VG

, we get β− = −CG
CS

and β+ = − CG
C−CS

. We can
also combine these to a get the lever arm of the gate αG = CG

C
= β+|β−|

β++|β−| .
With the gate lever arm gate axes can be converted to energies. This is useful
to extract energy scales like the addition energy from CB peaks or extract
the photon-charge coupling strength from the dispersive shift of a resonator
[77, 78].

Excited states and cotunneling

So far we have only discussed ground state transition Etot(N) ↔ Etot(N),
however other excited processes are possible. If a bias voltage |eVSD| > δE is
applied, the Nth electron can be excited into the orbital level EN+1 and relax
back into the ground state. In Fig. 2.3 IV such an excited orbital state µ∗

QD is
shown. They appear as additional line parallel to the diamond boundary lines
when |eVSD| > δE [91].

Besides excited state transition there are also higher order tunneling pro-
cesses that can occur. With increased tunnel coupling ΓS/D co-tunneling be-
comes possible. Hereby, two tunneling processes happen in a very short time
interval via a virtual intermediate non-resonant state. We differentiate be-
tween elastic co-tunneling, where the QD is left in its ground state and in-
elastic co-tunneling, where the QD is left in an excited state (or relaxed from
an excited state into the ground state). In elastic co-tunneling at low bias an
electron can tunnel from one lead into an energetically forbidden forbidden
state δ = µ∗

QD − µQD above the potential in the leads and then tunnel into
the other lead. Given strong enough tunnel coupling to the leads ΓS/D, the
energy of the total system is uncertain enough to allow for this process. In an
in-elastic co-tunneling process the bias voltage is large enough to populate the
excited state, i.e |eVSD| ≥ δ.

In a two electron tunneling process one electron can tunnel from the source
into the excited state, while another electron can tunnel from the QD ground
state into the drain. This will leave the QD in the excited state. To relax the
QD back into its ground state another electron lacking energy δ can tunnel
through the QD or an electron tunneling from either source of drain can be

2
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2. Theoretical background

excited above the potential and relax the QD without charge transfer [77, 104–
106]. The onset of inelastic co-tunneling |eVSD| > δ is visible in a Coulomb
diamond measurement as step in conductance. It can be used for precise
measurement of the QDs excitation and level spectrum [106].

2.1.4. Quantum dot states in a magnetic field
The influence of a magnetic field B on a QD can be fairly complex. In general
it can be assumed that the charging energy EC and the lever arms αi are inde-
pendent of an external applied magnetic field. The magnetic field dependence
of the electrochemical potentials of the QD then solely stems from the orbital
levels EN (B) of the QD. A quantitative understand of the energy levels are
only possible for few electron QD (usually less than 10 electrons), as the con-
finement potential of QDs are usually not very symmetrical [77]. In chapter 8
we will discuss the behavior of a many electron double QD in magnetic field
with a very simplified model.

At zero magnetic field a QD exhibits a two-fold spin degeneracy. Applying
an external finite magnetic field will lift the spin degeneracy. The spins of the
electrons on the QD will be aligned either parallel or anti-parallel with the
external field. The change in energy of the orbital levels is then given by

EN,s(B) = γB2 ± sg∗
NµBB, (2.6)

where the first term is the diamagnetic shift [77] which affects all levels
equally. The parameter γ can be experimentally determined. The second
term is the Zeeman-shift [107] with the Bohr magneton µB , the normalized
g-factor of the Nth energy level g∗

N , and s = ± 1
2 is the spin quantum number

along the axis of the magnetic field.

2.1.5. Double quantum dots
In the above discussion we have only looked at single QDs. We will now
introduce the concept of double quantum dots (DQD). A serial DQD can be
formed by adding a third tunnel barrier. This allows for electron and spin
interaction between the two QD creating a system of major interest for both
charge and spin qubits. We will discuss our results with a serial DQD coupled
to a high-impedance resonator in chapters 7 and 8. A DQD can also be formed
by adding a purely capacitive coupling between two QDs, a so-called parallel
DQD. For this work we will focus on serial QDs, but some results with parallel
QDs will be briefly discussed in chapter 6.

In Fig. 2.4(a) a schematic of a typical DQD and the capacitance model
is shown. The QDs are capacitively and tunnel coupled to their respective
source-drain contacts with CS/D and ΓS/D. They are also coupled to each
other with the mutual capacitance CM and tunnel coupling ΓM . Each QD has
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Figure 2.4. Schematic of circuit diagram and electrostatic model of a
double quantum dot (DQD) (a) Capacitance model and a typical circuit
diagram of a DQD. QD1 (QD2) is coupled to the source S (drain D) with
capacitance CS (CD) and tunnel coupling ΓS (ΓD). The two QDs are coupled
to each other with the mutual capacitance CM and tunnel coupling ΓM . The
plunger gate G1 (G2) tunes QD1 (QD2) with capacitance CG11 (CG22) and has
a cross-capacitance to QD2 (QD1) of CG12 (CG21). (b) Schematic of the energy
diagram of the DQD. The electron population in QD1 (QD2) is given by N (M).
The electrochemical potential of the QDs µN and µM and the source µS and
drain µD are shown. With the plunger gate voltage VG1/2 the electrochemical
potential in the QDs can be tuned. Adapted from [81, 100, 101].

its own plunger gate G1 or G2 to tune the respective energy levels. The gates
are purely capacitively coupled with CG11 for QD1 and CG22 for QD2. Due to
limitation in the fabrication process and device design, some crosstalk between
the gates and the QDs cannot be avoided. Therefore the model also includes
cross-capacitances CG12 from G1 to QD2 and CG21 from G2 to QD1. We will
refer to the electron population of QD1 (QD2) with N (M). In Fig. 2.4 (b) an
example of an electrochemical potential configuration µ1,2(N,M) is shown.

Charge stability diagram

A thorough derivation of the capacitance model and the charge stability di-
agram can be found in refs. [77, 81]. We will focus on the main results and
leave it to the interested reader to consult the references for the full derivation.
We will assume linear response, such that VSD ∼ 0 and µS = µD ∼ 0. Then
neglecting cross capacitances and stray capacitances, the charging energies of
the individual dots EC1(2) are as follows
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Figure 2.5. Charge stability diagram of a DQD. The charge stability
diagram is shown for (a) weak interdot coupling CM → 0, (b) intermediate
coupling, and (c) strong coupling CM/C1/2 → 1. The intermediate regime (b)
shows the typical honeycomb pattern of a DQD. From its dimension the gate
capacitance and mutual capacitance can be extracted. (c) shows a detailed
schematic of a interdot transition between two triple points. At the triple
points three charge states are degenerate in energy. At the interdot transition
line two charge states (N, M+1) and (N+1, M) are degenerate. The energy
and detuning axes of the DQD are illustrated at the top right. Adapted from
refs. [81, 100, 101]
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EC1 = e2

C1

(
1

1 − C2
m

C1C2

)
(2.7)

EC2 = e2

C2

(
1

1 − C2
m

C1C2

)
. (2.8)

The electrostatic coupling energy ECm, which describes the energy needed
to add one electron to one QD, while the occupation on the other QD is kept
constant. We get

ECm = e2

Cm

(
1

C1C2
C2

m
− 1

)
, (2.9)

where C1(2) denotes the sum of all capacitances acting on QD1 (2). C1(2) =
CL(R) +CG1(2) +Cm [81]. The behavior of the DQD depends strongly on the
mutual capacitance Cm, as is illustrated in the charge stability diagram in Fig.
2.5 (a)-(c), each line represents the addition or removal of one electron from
one of the QDs. The two limiting cases Cm = 0 (a), Cm/C1(2) (c), and the
case of intermediate coupling (b) are shown. For Cm = 0 the two QDs are
independent of each other. They are completely decoupled and the gates only
affect their respective QD. This is results in perfectly horizontal and vertical
single charging lines. To measure charge transport an electron has to tunnel
from source do drain through both QDs. For small bias this is only possible
at the intersection points of the single charging lines, when all the chemical
potential align; µS = µQD1 = µQD2 = µD.

In reality there will always be some mutual capacitance Cm and cross-
coupling. As is shown in (b) the single charging lines will have a finite slope
and the intersection points split into two triple points. This creates a hexag-
onal pattern, often called honeycomb pattern. Compared to (a), where four
charge case co-exist at the corner points of the squares, these split into the
triple points, where three charge states (N,M), (N,M+1) and (N+1,M) are
energetically degenerate. Electron transport through the DQD is only possi-
ble at these points. There are two possible processes: (N,M) → (N+1,M) →
(N,M+1) → (N,M) or (N+1,M+1) → (N+1,M) → (N,M+1) → (N+1,M+1).
The first process describes the sequential tunneling of an electron through the
DQD, while the second can be seen as the sequential tunneling of a hole. The
separation between the two triple points gives the energy difference between
the two processes which is equal to ECm. A schematic of a pair of triple points
is shown in (d). The dimension of the honeycomb cell can be used to extract
the capacitances of the QDs and the mutual capacitance. From the height
∆VG1 and the width ∆VG2 we get

2
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Figure 2.6. Transport at finite bias voltage through DQD. Applying
a finite bias to a DQD evolves the triple points into bias triangles. Electron
transport is only allowed within these triangles. The dimensions of the bias
triangles δVG1/G2 allow the extraction of the gate lever arms α1/2. The illus-
trations (I-IV) show the electrochemical potential at the indicated points on
the bias triangles. For large enough VSD excited states will be visible as lines
at finite detuning in the bias triangles, as illustrated by the red dashed lines.
Adapted from refs. [81, 100, 101].

CG1/G2 = |e|
∆VG1/G2

. (2.10)

From the distance between the triple point the mutual capacitance can be
extracted.

Cm = C1/2
∆V mG1/G2

∆VG1/G2
(2.11)

In the presence of finite tunnel coupling ΓM between the QDs. The de-
generacy in the triple points is lifted and the states of the DQD hybridize to
a symmectric and antisymmetric state. This leads to the sharp degeneracy
points of the honeycomb becoming rounded into an avoided crossing, as il-
lustrated from (d). The distance between the avoided crossing and the triple
point is given by the strength of ΓM . In the extreme case of large tunnel cou-
pling and when Cm/C1(2) → 1 becomes the dominant capacitance the DQD
behaves as a single QD with charge N+M and capacitance C1 +C2 −Cm. As
shown in (a) the charge stability diagram changes to diagonal parallel lines
[77, 81].
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Bias triangles

Let us now consider the case of an asymmetric finite bias |VSD| ≥ 0 applied on
the source contact, such that µS = −|e|VSD and the drain contact is grounded
µD = 0. With a bias applied the triple points evolve into triangular shaped
region referred to as bias triangles as is shown in Fig. 2.6. Within this tri-
angles electron transport through the DQD is possible. Their boundaries are
determined by the conditions −|e|VSD = µS ≥ µ1, µ1 ≥ µ2, and µ2 ≥ µD = 0.
Outside of these bias triangles transport is blocked. The dimensions of the
bias triangles δVG1 and δVG2 are related to the applied bias voltage and the
lever arms α1/2 of gates VG1/G2 as follows

α1/2δVG1/G2 =
CG1/G2

C1/2
|e|δVG1/G2 = |eVSD|. (2.12)

Together with equations 2.10 and 2.11 the total capacitances C1/2 and the
mutual capacitance Cm can be extracted.

So far, we have only looked at the case where a single energy level lies in the
bias window. Of course it is also possible for excited states to enter the bias
window. These will be visible as lines parallel to the base line of the triangles
at finite detuning. This is illustrated in Fig. 2.6 by the red dashed lines [81].

2.1.6. Two-level systems
The charge qubit

We have already discussed above that finite inter-dot tunnel coupling smooths
out the sharp triple points and leads to an avoided crossing in the charge
stability diagram. We will now look at these avoided crossings in more detail
as a platform for qubits.

In general completely filled QD energy levels do not contribute to transport,
as such we neglect these completely filled levels to simplify our picture. We
are left with two cases. The odd case, when there is only one electron in the
DQD and the even case, when there are two. It should be noted, that while
this is a good approximation for few electron DQD, the orbital wavefunctions
for many-electron DQD can become very complex leading to a much more
complicated picture [81]. We will later discuss such a many-electron DQD in
chapter 8 and show that we can explain a lot of its behavior with this very
simplified picture.

Odd parity

We will look at the odd parity first, where one electron resides in the DQD.
We can describe this system with a basis of {|L ↓⟩ , |L ↑⟩ , |R ↓⟩ , |R ↑⟩}, where
L,R denotes if the electron is in the left or right QD and ↑, ↓ denotes the
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Figure 2.7. Charge qubit with odd parity. The energy levels in depen-
dence of the detuning ϵ for the odd parity without spin-orbit interaction. (a)
Energy levels without magnetic field. The uncoupled states L ↕ and R ↕ hy-
bridize to the bonding and anti-bonding states EB and EA, which are split by
the two times the tunnel coupling 2t. States with different spin do not couple.
(b) Energy levels with finite magnetic fields. The states are split into R↓, R↑,
L↓, and L↑ with the energy difference given by the Zeeman-energy. As before
states with different spin do not couple.

alignment of the electron spin with the external magnetic field. The system
can be described by the Hamiltonian

Hodd = H0
odd + HZ

odd + HSOI
odd , (2.13)

where the first term describes the detuning and spin independent tunneling
between the QDs, the second term the Zeeman Hamiltonian, and the third
term the spin-dependent tunneling due to spin-orbit interaction.

Assuming no magnetic field and no spin-orbit interaction for the moment,
we obtain

H0
odd = ϵ

2 τ̂z + tτ̂x, (2.14)

with detuning ϵ = EL − ER, inter-dot tunnel couplig t, and the charge Pauli
matrices τ̂x,y,z [83, 108].

In a system without tunnel coupling t = 0 the electron is either localized
on the left or right QD with energy EL and ER respectively. Note, that we
have referred to t as ΓM previously. We will refer to it as t for the parts of
this thesis concerning qubits and resonators to stay consistent with literature.
Adding finite tunnel coupling to this system delocalizes the electron over the
entire DQD. This creates delocalized bonding (EB) and anti-bonding (EA)
states with energies
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EB = EM −
√

1
4 ϵ

2 + |t|2 (2.15)

EA = EM +
√

1
4 ϵ

2 + |t|2, (2.16)

with mean energy EM = 1
2 (EL + ER) and detuning ϵ = EL − ER. The

energy difference between the two states is then

∆E = EA − EB =
√
ϵ2 + (2|t|)2. (2.17)

As we see from Fig. 2.7a) the effect of the tunnel coupling is strongest at zero
detuning, where the splitting between the bonding and anti-bonding state is
given by 2|t|. At large detuning they approach the uncoupled energies E1 and
E2 [81]. Note that the spin-down and spin-up states are degenerate at zero
magnetic field. They will Zeeman-split at a finite magnetic field, described by
the Hamiltonian term

HZ
odd = 1

2µBgL,RBσ̂z, (2.18)

where gL,R are the g-factors of the left and right QD, respectively, µB the
Bohr magneton, and σ̂x,y,z the Pauli spin matrices [83, 108]. The Zeeman-
split energy levels are illustrated in Fig. 2.7(b).

Even parity
We will now move on to the even parity, where there are two electrons in the
DQD. This case allows for three charge states (2,0), (0,2), and (1,1). We can
describe this system with the basis {S1,1, T

−
1,1, T

0
1,1, T

+
1,1, S2,0, T

−
2,0, T

0
2,0, T

+
2,0}.

Here, the charge state is given by the subscript tuple and the spin states by
the singlet

S = 1√
2

(|↑↓⟩ − |↓↑⟩), (2.19)

and triplets

T− = |↓↓⟩ , T 0 = 1√
2

(|↑↓⟩ + |↓↑⟩), T+ = |↑↑⟩ . (2.20)

As for the even parity, we can describe the Hamiltonian in three parts [82]

Heven = H0
even + HZ

even + HSOI
even, (2.21)

again the first part describes the electrostatic potential and spin independent
tunneling, the second the Zeeman Hamiltonian, and the third part the spin
dependent tunneling due to spin-orbit interaction.
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Figure 2.8. Charge qubit with even parity. The energy levels in depen-
dence of the detuning ϵ for the odd parity without spin-orbit interaction. (a)
Energy levels without magnetic field. The singlets (red, purple) and triplet
(blue, green) state hybridize and anti-cross with a splitting given by twice their
respective tunnel coupling. States of different spin texture do not hybridize.
(b) Same as (a) but with finite magnetic field. The triplet states are Zeeman-
split, while the singlets remain unaffected.

As for the odd parity, we will ignore the Zeeman and spin-orbit terms for
the moment. This yields the Hamiltonians for the singlet and triplet tunneling
states

H0,S
even = −ϵ |S2,0⟩ ⟨S2,0| + tS |S1,1⟩ ⟨S2,0| + h.c.,

H0,T
even = (∆ST − ϵ)

∑
±,0

|T±,0
2,0 ⟩ ⟨T±,0

2,0 | + tT
∑
±,0

|T±,0
1,1 ⟩ ⟨T±,0

2,0 | + h.c.

Here, tS,T are the spin-conserving tunnel rates for singlet and triplet states,
respectively, ∆ST is the single QD singlet-triplet level splitting, and the detun-
ing ϵ = EL −ER is given as before. The energy levels of this Hamiltonian are
plotted as a function of ϵ in Fig. 2.8(a). At zero detuning the singlet states are
the ground state and the triplets T±,0

1,1 are degenerate at zero energy, while the
triplets T±,0

2,0 are at higher energy, given by ∆ST . For increasing detuning the
T±,0

1,1 states stay at constant energy, while the T±,0
2,0 states decrease in energy.

The characteristics are similar to the odd case, where states with the same
spin-texture hybridize with an anti-crossing given by twice their tunnel rate
2tS,T .

If a finite magnetic field is added to the system, the Zeeman Hamiltonian is
described by

HZ
even/µB = B

∑
±

(
±gl + gr

2 |T±
1,1⟩ ⟨T±

1,1| ± gl |T±
2,0⟩ ⟨T±

2,0|
)
, (2.22)
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where gL,R are the g-factors of the left and right QD, respectively. The energy
levels for this system are plotted in Fig. 2.8(b) with gL = gR. The spin-
polarized triplet states are Zeeman-split by gµBB, while the spinless states
remain unaffected. We observe, that for large enough B and negative g-factors
the triplet state T+

1,1 becomes the ground state at zero detuning. Since there
is no coupling between states of different spin-texture the singlets and triplets
cross without interaction.

The spin qubit
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Figure 2.9. Spin qubit for odd and even parity. Energy levels as a
function of detuning ϵ including finite magnetic field B and finite spin-flip
tunnel amplitude tSO for the odd (a) and even (b) parity.

In the previous we have investigated the charge qubit, where states of dif-
ferent spin-texture do not hybridize. In order to form a spin qubit another
interaction is needed to couple different spin states. In our experiments this
is done by intrinsic spin-orbit interaction of the material. We model this in
the Hamiltonian with a spin-flipping tunneling amplitude tSO. The spin-orbit
term of the odd parity Hamiltonian introduced in eq. 2.13 is given by [83, 108]

HSOI
odd = tSO τ̂yσ̂y. (2.23)

The resulting energy levels are plotted in Fig. 2.9(a). The |L ↓⟩ (red) (|L ↑⟩,
yellow) and the |R ↑⟩ (purple) (|R ↓⟩, blue) hybridize and form a two-level
system with the energy splitting given by 2tSO.

Assuming the same tSO for all states in the even parity adds the following
spin-orbit term of the even Hamiltonian in eq. 2.21 [82]

HSOI
even = tSO

(
|T 0

1,1⟩ ⟨S2,0| +
∑

±

± |T±
1,1⟩ ⟨S2,0|

)
+ h.c.
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The energy levels are plotted as a function of ϵ in Fig. 2.9(b) with finite B
and tSO. We observe avoided crossing between S2,0 and T1,1 with a splitting
of 2tSO.

2.2. Cavity quantum electrodynamics with quantum dots

We have previously introduced QDs and specifically DQDs as a two level sys-
tem ("qubit"). However, to properly build up an architecture for quantum
processing, qubits have to coupled in a coherent fashion. Photons can act as
a mobile carrier for quantum information between quantum systems. This
photon-qubit interaction can be further enhanced by confining the photons to
a cavity. In the following we will give a very brief introduction to supercon-
ducting resonators and their coupling to a QD two-level system. For a more
in depth review, please refer to Refs. [64, 65, 109–111]

2.2.1. Coupling a resonator to a charge qubit

On the most basic level, a cavity QED system has two components: a cavity
with well-defined photon modes at a resonance frequency ωr and a two-level
quantum system (qubit) with a transition energy ℏωq, between the two levels,
close to ℏωr. In optics, a cavity is constructed by two reflecting mirrors.
In between the mirrors the light forms standing waves with discrete modes.
Analogously, in circuit quantum electro dynamics (cQED) a superconducting
resonator shows a similar discrete spectrum of modes in the microwave range
[109, 110].

In our experiments the resonator is capacitively coupled to the DQD two-
level system via a gate or a contact. We have already described the DQD
two-level system above, now we will add the coupling of the cavity. Electric
dipole interactions couple the resonator cavity photons to the electrons in
the DQD with strength gc, the so-called charge-photon coupling rate. The
strength of gc is given by the product of the dipole moment d⃗ of the DQD and
the vacuum electric field E0 of the cavity. For a charge qubit the charge states
are most strongly hybridized at zero detuning ϵ = 0 of the energy levels in
the left and right QD. This results in a maximized gc = d⃗ · E⃗0/ℏ. If the DQD
system is detuned from zero (|ϵ| > 0) the charge states are weakly admixed
and the effective dipole moment is reduced by gc(ϵ) = 2t√

ϵ2+4t2
gc(ϵ = 0) [110],

where t is the inter-dot tunnel rate.
By coupling a DQD to a superconducting resonator, the energy landscape of

the DQD is affected by the electric field of the resonator. Since the dimension
of the DQD are much smaller than the wavelength of the electromagnetic field
inside the resonator, we can assume that the electric field is constant for the
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2.2. Cavity quantum electrodynamics with quantum dots

DQD [110]. The single-two level system coupled to a single cavity mode can
be described by the Hamiltonian [64, 110, 112]

H = ℏωr
(
â†â+ 1

2

)
+ 1

2ℏωqσ̂z − d⃗ · E⃗0σ̂x(â+ â†), (2.24)

with the quantized bosonic creation and annihilation operators â and â†, ωr
the cavity resonance frequency, ωq the qubit transition frequency, and the
Pauli operators σ̂x,y,z. The first term describes the bosonic cavity modes, the
second term the qubit mode, and the last term the dipolar interaction between
the qubit and the resonator.

We can express the interaction dipolar Hamiltonian Hint with the fermionic
ladder operators σ̂x = (σ̂+ + σ̂−)/2 and our definition above of the charge
coupling strength gc = d⃗ · E⃗0/ℏ, yielding

Hint = ℏgc
(
σ̂−â

† + σ̂+â+ σ̂+â
† + σ̂−â

)
(2.25)

The first two terms σ̂−â
† + σ̂+â describe the resonant interaction between

the resonator and qubit, i.e. the transition from the ground (excited) to the
excited (ground) state together with the annihilation (creation) of a photon.
The last two terms σ̂+â

† + σ̂−â describe the anti-resonant interaction, i.e the
transition from the ground (excited) to the excited (ground) state combined
with the creation (annihilation) of a photon. If the resonator frequency ωr/2π
and the qubit frequency ωq/2π are close and the coupling strength is much
smaller than the transition frequencies gc ≪ ωr, ωq, these transitions are highly
unlikely. We therefore perform the rotating wave approximation and neglect
these two terms. This gives the Jaynes-Cummings (JC) Hamiltonian [113]

HJC = ℏωr
(
â†â+ 1

2

)
+ ℏωq2 σ̂z + ℏgc(σ̂−â

† + σ̂+â) (2.26)

The diagonalization of this Hamiltonian gives the ground state |↓, 0⟩ and
dressed states [64, 111]

|+, n⟩ = cos(θn) |↑, n⟩ + sin(θn) |↓, n+ 1⟩ (2.27)
|−, n⟩ = − sin(θn) |↑, n⟩ + cos(θn) |↓, n+ 1⟩ (2.28)

with the eigenergies

E↓,0 = ℏωq − ωr
2 (2.29)

E±,n = (n+ 1)ℏωr ± ℏ
2
√

4g2
c (n+ 1) + (ωq − ωr)2, (2.30)

with the mixing angle θn defined as

θn = 1
2 tan−1

(
2gc

√
n+ 1

ωq − ωr

)
. (2.31)
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In our experiments in chapters 7 and 8 we will study transitions from the
ground to the dressed state with one photonic excitation in the cavity. There-
fore n = 0 for us and the transition frequency is ω± = (E±,0 − E↓,0)/ℏ.
Explicitly, this is

ω± = ω0 + ωq
2 ± 1

2
√

4g2 + (ω0 − ωq)2. (2.32)

2.2.2. Input-Output theory
Input-output theory offers a more direct approach to model the resonator-
qubit system. The following paragraphs pertaining to input-output theory
were derived and written by Patrick P. Potts for our submitted paper [114]
and are used in chapter 8, which discusses the paper.

To derive the response of the resonator, we use the equations of motion [115]

∂t⟨â⟩(t) = −iω0â(t) − ig⟨σ̂⟩(t) − κ

2 ⟨â⟩(t)

−
√
κ1⟨b̂in,1⟩(t) −

√
κ2⟨b̂in,2⟩(t),

∂t⟨σ̂⟩(t) = −iωq⟨σ̂⟩(t) + ig⟨âσ̂z⟩(t) − γ⟨σ̂⟩(t).

(2.33)

The input couplings are denoted by κj and the operators b̂in,j(t) capture a
coherent drive in port j. In our experiments κ1 ≈ κ2 ≈ κ/2 as the resonator is
symmetrically coupled and operates in the strongly over-coupled regime. The
output of the cavity can be computed from the input-output relation [115]

⟨b̂out,j⟩(t) = ⟨b̂in,j⟩(t) + √
κj⟨â⟩(t). (2.34)

To solve these equations, we approximate [116, 117]

⟨âσ̂z⟩(t) → ⟨â⟩(t)⟨σ̂z⟩, (2.35)

where ⟨σ̂z⟩ is evaluated at steady state and captures the difference between
the population of the excited qubit state and the ground state, accounting for
operation at larger temperatures or drive strengths. In our experiments, we
operate in the linear regime, ⟨σ̂z⟩ = −1.

To compute the transmission amplitude, we solve Eqs. (2.33) and (2.34)
upon Fourier transformation and set ⟨b̂in,2⟩(t) = 0. This results in the trans-
mission amplitude

τ(ω) = −⟨b̂out,2⟩(ω)
⟨b̂in,1⟩(ω)

=
√
κ1κ2A(ω), (2.36)

where the minus sign accounts for the phase difference of π between the input
and the output port (λ/2 resonator) and

A(ω) = γ + i(ωq − ω)
[κ/2 + i(ω0 − ω)][γ + i(ωq − ω)] − g2⟨σ̂z⟩

. (2.37)
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In the main text, the absolute value squared of this quantity normalized by
its maximal value is shown.

The phase of the transmitted signal is given by

φ(ω) = − arctan(Λ),

Λ = −2(ωq − ω)g2⟨σ̂z⟩ − 2(ω0 − ω)[γ2 + (ωq − ω)2]
κ[γ2 + (ωq − ω)2] − 2γg2⟨σ̂z⟩

.
(2.38)

As examples, the phase and amplitude of the bare resonance in Coulomb
blockade is simultaneously fit in Fig. D.1(a) and in Fig. D.2 the same is done
for a linecut of Fig. 8.4(a) at 0.25 T.

Estimation of the photon number

Similarly, we may obtain ⟨â⟩(t) by solving Eqs. (2.33). Using ⟨b̂in,1⟩(t) =
exp(−iωpt)

√
Pin/ωp, where Pin denotes the power in the input field, we find

⟨â⟩(t) = −
√
κ1Pin

ℏωp
e−iωptA(ωp). (2.39)

In the low-drive regime we consider here, we estimate the photon number as

n = |⟨â⟩|2 = κ1Pin

ℏωp
|A(ωp)|2, (2.40)

where we approximate κ1 ≃ κ/2.

2.2.3. Coupling a resonator to a spin qubit
The quantum coherence lifetime of spins in QDs or defects extends from mi-
croseconds [98, 118, 119] to nearly a second [120]. In contrast, the coherence of
charge qubits in DQD is typically limited to a few nanoseconds [97, 121, 122].
Moving from charge qubits to spin qubits is therefore of major interest for
quantum information processing. Coupling the spin states to a common res-
onator mode allows to couple two qubits over large distance [74, 75]. However,
the spin, unlike the charge, of an electron (or hole) does not directly couple
to the electric field of a resonator. To induce such a coupling the spin and
charge degrees of freedom need to be hybridized, such that the spin is en-
dowed with an effective electric dipole. This hybridization has been achieved
by spin exchange interaction in triple QDs [123], intrinsic spin-orbit coupling
of the material [108, 124], or manipulation of magnetic fields for example by
integration of micromagnets in the device architecture [71, 74, 75, 118, 125].
In our experiment in chapter 8 we will make use of the intrinsic spin-orbit
interaction of an InAs NW. Note, that the above formulas for the interaction
of a microwave cavity and a charge qubit also holds for spin qubits, where the
charge-photon coupling gc is replaced with the spin-photon coupling gs.
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2. Theoretical background

2.3. Superconductivity

In this section we will give a brief introduction to superconductivity following
references [126] and [127]. We will focus on an intuitive picture for under-
standing and refer the interested reader to the above references. After we
introduced the general concept of superconductivity we will focus on the phe-
nomena that arise when a QD is coupled to a superconductor. As we have
discussed in the above section, QDs only allow the tunneling of successive
discrete charges. Electrons are strongly confined and repel each other. In con-
trast in a superconductor, electrons feel an attractive force, that binds them
into Cooper-pairs. Therefore, coupling a superconductor to a QD creates a
system, where the repulsion of a QD and the attraction of a superconductor
compete. These interplay gives rise to a multitude of phenomena, such as
Andreev-bound states [51, 128–131], Josephson effect [132, 133], and possibly
Majorana bound states [44]. We will look at two such phenomena in partic-
ular the induced superconducting gap into a semiconductor and Cooper pair
islands.

The most striking feature of a superconductor is its vanishing electrical re-
sistance when cooled down below a critical temperature TC . This was first
observed by Kamerlingh Onnes in 1911 [134]. Some commonly used supercon-
ductors are among others Al, Nb or Pb. Another feature of superconductors is
the Meissner-Ochsenfeld effect, which can also be described as a perfect dia-
magnetism. Externally applied magnetic fields are expelled from the inside of a
superconductor by induced dissipationless surface supercurrents. At a critical
field BC = µ0HC it is energetically favorable for the superconductor to switch
to the normal state and superconductivity breaks down [126]. Macroscopic
description of superconductivity explaining these features have been made by
the thermodynamic Ginzburg-Landau theory [135] and the London equations
[127]. A microscopic description was given in 1957 by Bardeen, Cooper, and
Schrieffer in the BCS theory of superconductivity [136].

2.3.1. Cooper pairs and superconducting gap

The BCS theory is based on the realization by Cooper that the fermionic
ground state of the electrons is unstable against any net attraction between
two individual electrons. These electrons bind together to form a Cooper
pair, which obey bosonic statistics [137]. This attractive force stems from the
interaction of the electron with the ion lattice of the superconductor mediated
by phonons. In short an electron passing through the ion lattice deforms
the positively charged ion lattice due to its negative charge. This creates a
retarded positively charged polarization cloud in its path. This in turn will
act as an attractive force on a second negatively charged electron. As the
polarization cloud is retarded to the movement of the electron, the electron
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moves ∼ vF 2π/ωD ∼ 108m/s ·10−13s ∼ 100 nm by the time the maximum ion
displacement is reached. Here, we used the Fermi velocity vF and the Debye
frequency ωD. Over this length scale Coulomb repulsion is screened, allowing
the net interaction to be attractive [126].

In a quantum mechanical picture, this can be understood as an exchange of
virtual photons by the lattice and the electrons [126, 127]. Under momentum
conservation, the exchange of a virtual phonon with lattice vector q creates
two new electron wavevectors k′

1 = k1 + q and k′
2 = k2 − q. The window of

phonon frequency that result in an attractive force between the electrons is
only possible in a narrow energy window cut of by the Debye energy ℏωD [127].
As such the phonon-electron exchange is limited to a narrow energy window
EF +ℏωD, given that all states up to the Fermi energy EF are filled. Therefore,
phonon mediated processes have a maximal probability for k1 = −k2, i.e. for
electrons with opposite momentum. By Pauli’s exclusion principle the elec-
tron wavefunction must be anti-symmetric under exchange of electrons. The
wavevectors k1 = −k2 describe a symmetric orbital wavefunction, as such
the spin-wavefuntion of the electron has to be an anti-symmetric spin singlet
state |S⟩ = 1√

(2)
(|↑↓⟩ − |↓↑⟩). This is the description of conventional s-wave

superconductivity. We note that there are also more exoctic superconductors
predicted with an anti-symmetric orbital wavefuntion and therefore a symmet-
ric spin wavefuntion. This is referred to as p-wave superconductivity, and has
been observed in 3He [126, 138]. For our work only s-wave superconductivity
is relevant and the Cooper pairs can be described by the notation (k ↑,−k ↓).
The Cooper pairs are maximally spin-entangled with a total spin S = 0.

The BCS theory now extends on Cooper’s work on a single Cooper pair and
allows all electrons in the Fermi sea to form Cooper pairs with (k ↑,−k ↓)
in a correlated way. This reduces the energy of the system compared to the
standard Fermi sea and continues until forming further Cooper pairs does no
longer lower the energy. This new ground state is referred to as BCS ground
state. A theoretical description of this ground state can be found in Ref. [136],
while we will focus on the most important results. Unlike the fermionic fermi
sea, Cooper pairs obey bosonic statistics. As a result they can be described by
a coherent macroscopic wave functions. Furthermore, the excitation spectrum
of a superconductor exhibits a gap of 2∆ around the Fermi energy EF , with ∆
the the superconducting energy gap. Therefore, an energy of 2∆ is required to
break a Cooper pair into two electrons. As these coherent excitation strongly
differ from the free electrons excitations of the Fermi gas, they are referred
to as quasiparticles or Bogoliubons. They exhibit a partial electron and hole
character. Their dispersion relation is

E(k) =
√
ϵ(k)2 + ∆2, (2.41)

where ϵ(k) = ℏ2k2/2m − EF is the kinetic energy of a single free electron
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with respect to the Fermi energy [126]. The dispersion relation exhibits
both electron-like (ϵ > 0) and hole-like (ϵ < 0) character, as illustrated in
Fig. 2.10(a). For kinetic energies much larger (smaller) than the supercon-
ducting gap ϵ ≫ ∆ (ϵ ≪ ∆), the quasiparticles behave like free electrons (free
holes) (black dashed lines). At smaller kinetic energies the dispersion relation
deviates strongly from free electrons, due to the superconducting gap ∆. No
states are lost in the phase transition from the normal to the superconducting
state, i.e. DN (ϵ)dϵ = DS(E)dE. Therefore the quasiparticle density of states
(DOS) DS(E) can be derived as

DS(E) = DN (ϵ) dϵ
dE

=

{
|E|√
E2−∆2

, (|E| > ∆)

0, (|E| < ∆)
(2.42)

Here, we assume the normal state DOS, DN (ϵ), to be constant for energies
close to the Fermi energy EF , and therefore DN (ϵ) ≈ DN (0) [126]. We plot
the normalized DOS in Fig. 2.10(b). We recover the normal DOS for |E| ≫ ∆.
For |E| → ∆ the quasiparticle DOS diverges. For energies below |E| < ∆ no
quaisparticle states exist and the only states are in the Cooper pair condensate
at the Fermi energy EF .

As has been discussed at the very beginning fo this chapter, superconductors
are strongly temperature dependent. Above a critical temperature TC , they
behave exactly like a normal conductor. Therefore, also the superconducting
gap ∆ is affected by temperature. The gap reduces with incresing tempera-
ture until it vanishes at the critical temperatrue TC . Similarly, quasiparticle
excitations increase and the number of Cooper pairs diminish until none are
left once TC is reached. The temperature dependence of ∆ is [80, 139]

∆(T ) ≈ ∆0

(
1 − T

TC

)1/2
, (2.43)

where ∆0 ≈ 1.764 kTC [126] is the gap at T = 0. Hence, temperature can be
used to tune a device between the superconducting and normal state. However,
due to temperatures strong influence on other device parameters, such as the
tunnel rates of QD, it is often not desired to increase the temperature.

Another way to tune of superconductivity is given by their strong magnetic
field behavior. The above mentioned Meissner-Ochsenfeld effect or perfect
diamagnetism can be explained by the BSC condensate. In a supercondcu-
tor, electrical current is carried by the common motion of Copper-pairs with
total center of mass momentum K and the ground state and its energy excita-
tion spectrum are not affected by the current flow [126]. Therefore, scattering
effects, which would increase electrical resistance, are suppressed by the super-
conducting gap ∆, as excitations need to be excited above an energy of 2∆.
If the energy associated with supercurrent and the collective center of mass
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momentum K of the Cooper pairs reaches or exceeds 2∆, Cooper pairs will
break up and the superconductor transitions into the normal state. Therefore,
if the induced supercurrents expelling the external magnetic field from the
superconductor reach this critical supercurrent, the superconductor is driven
into the normal state. This field is referred to as the critical field BC . Given
the often low critical fields of many superconductors and a often weaker effect
on many devices of magnetic field compared to temperature, it is often advan-
tageous to make use of the critical field BC to drive a superconductor into the
normal state.

An additional important parameter of a superconductor is the BCS coher-
ence length [127]

ξ0 = ℏvF
π∆ . (2.44)

An intuitive explanation can be given by the spatial extent of a Cooper pair
δ ∼ ℏ/δp ∼ ℏpF /mδE ∼ ℏvF /∆, which uses Heisenberg’s Uncertainty relation
given an energy uncertainty ∼ ∆. Usually, the coherence length ξ0 ranges
from a few nanometers to a few hundred nanometers, which is similar to the
above estimation of the retarded ion lattice deformation. As such, the Cooper
pairs have a large spatial overlap in the condensate.

2.3.2. Transport in superconductor - normal metal structures
Coupling a superconductor (S) to a normal metal (N) leads to a plethora of
interesting effects, as the current in S is carried by Cooper-pairs, while free
electrons are responsible for transport in N. We will discuss the most relevant
phenomena occuring in N-S devices, which can be expanded to the N-QD-S
devices studied in this work.

Andreev reflection and proximity effect

Assuming a completely transparent N-S interface and an electron impinging
from N at a subgap energy |E| < ∆, then transport across the interface is
blocked, because there are no quasiparticle states below the gap. However,
the electron can also not be reflected back into N (Fig. 2.11(a), as normal
reflection inverts the momentum. Therefore, a momentum transfer of ∼ 2pF
would be necessary. However, for a completely transparent interface, S with its
barrier ∆ is only able to transfer a momentum of δp = ∆/vF , which is orders
of magnitudes smaller than the required energy 2pF [140]. The solution to this
problem is given by the so-called Andreev reflection (AR) [141], as shown in
Fig. 2.11(b). The electron with energy E and momentum |k, ↑⟩ upon impinging
on the interface to S, forms a Cooper pair with another electron with energy
−E and momentum |−k, ↓⟩ while retro-reflecting a positively charged hole.
The retro-reflected hole has the same momentum as the incoming electron but
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Figure 2.10. Dispersion relation density of states. (a) Dispersion re-
lation of the quaisparticles in a superconductor (blue lines) and normal con-
ductor (black dashed lines). The quaisparticle dispersion relation is gaped
by 2∆. (b) Normalized quasiparticle density of states (DOS) DS(E)/(DN (0).
Adapted from Refs. [78, 80, 101].

opposite velocity. Thus, a charge of 2e is transferred through the interface
while momentum is conserved. The charge transfer of 2e results in a doubling
of the conductance for energies |E| < ∆ compared to the normal state with
ideally transparent interfaces.

Transport across an N-S interface for arbitrary transparencies can be de-
scribed by the BTK model [142]. Hereby, a delta potential V (x) = ZℏvF δ(x)
with the dimensionless barrier strength Z account for elastic scattering due
to interface effects such as oxides or band gap misalignment. The transmis-
sion coefficient t in the normal state relates to Z with t = 1

1+Z2 . As already
mentioned for a perfect interface Z = 0 only AR are allowed and the subgap
conductance is twice the normal state conductance GS = 2GN .

Unfortunately, there are no perfect interfaces in real life due to Fermi veloc-
ity mismatch and therefore Z > 0. As Z increases, normal reflections become
increasingly probable. As seen in Fig. 2.11(c) with Z = 1 the subgap con-
ductance becomes reduced and the gap "softens". For large Z ≫ 1 AR are
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Figure 2.11. Andreev reflection at the N-S interface. Schematic of
normal reflection (a) and Andreev reflection (b) for an electron incident from
the normal conductor at the S interface. (c) Normalized differential conduc-
tance GS/GN0 at the N-S interface according to the BTK-model at T = 0 and
GN0 the differential conductance in the normal state for an ideally transparent
interface Z = 0. Adapted from [78, 100, 101].

strongly suppressed below the superconducting gap |E| < ∆ and the conduc-
tance is reflective of the quasiparticle DOS in S for |E| > ∆. This is generally
referred to as a "hard gap" and is corresponding to a tunneling spectroscopy
experiment in a N-insulator-S junction.

For a complete picture the time-reversed process also has to be considered.
Here, an incident hole is retro-reflected as an electron while removing a Cooper
pair from the condensate. As the incident hole and retro-reflected electron
keep phase coherence in N for a limited time and distance, there is a non-zero
probability to find a Cooper pair in N. Thus, rather than sharply dropping to
zero at the interface, the Cooper pair density decays continuously on the length
scale of the BCS coherence length ξ in N. This is the so-called proximity effect
[143]. Thanks to the phase coherence of AR into N, the Cooper pairs "leak"
into normal metals in electrical contact with a superconductor. Furthermore,
the inverse proximity effect can also happen. Hereby, electrons and holes can
enter the superconductor on the lengths scale of the coherence length. This
will decrease the density of Cooper pairs at the normal metal superconductor
interface.

2.3.3. Crossed Andreev reflection and Andreev bound states

In the following section we will give a very brief summary of crossed Andreev
reflections and Andreev bound states. They will not be discussed in detail in
the experimental part of this thesis and are added for completeness only. For
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Figure 2.12. Crossed Andreeev reflection and Andreev bound states.
Schematics of crossed Andreev reflection (a) and elastic co-tunneling via vir-
tual quasiparticles states (b). (c), (d) Energy diagrams corresponding to (a)
and (b), respectively. (d) Illustration of Andreev bound state formation in an
S-N-S junction due to virtual Andreev reflection of electrons and holes. (f) An-
dreev bound state formation in a N-S device. Adapted from Refs. [78, 80, 101].

a more in depth description, please refer to Refs. [78, 80, 130, 144, 145]
So far, we have neglected the spatial extend ∼ ξ of the Cooper pairs along the

interface. Hence, an incident electron (or hole) can also be retro-reflected as a
hole (or electron) at a distance d < ξ away. For multi-terminal devices, such
as two normal metal contacts N coupled to a superconductor S (illustrated in
Figs. 2.12(a) and (c)) this can create cross-conductances. This non-local An-
dreev reflection is referred to as crossed Andreev reflection (CAR) [142]. An
incident hole from N1 gets reflected as an electron in N2. This corresponds
to the splitting of a Cooper pair into the normal leads N1 and N2. While
this is an interesting process to seperate spin-entangled photons, its detection
is masked by elastic co-tunneling. Analogous to co-tunneling in QDs, an in-
coming electron can move between N1 and N2 through a virtual quasiparticle
state in S, as is illustrated in Figs. 2.12(b) and (d)

Let us now consider an S-N-S system, where N has a spatial dimension
smaller than the phase coherence length and only a few channels are con-
tributing to transport. In such a system an electron, which is moving from
the left to the right lead at an energy |E| < ∆, is Andreev reflected at the
N-S interface into a left-moving hole, while creating a Cooper pair in the right
lead (S2). The left moving hole will also be Andreev reflected on the left N-S
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interface into a right-moving electron while removing two electrons from the
left lead (S1). Hence, a charge of 2e is transferred from the left to the right
lead [145].

This system can be described by a scattering matrix formalism [132], which
predicts the existence of a discrete set of resonances E(ϕ2 − ϕ1) at energies
below the superconducting gap |E| < ∆ and depending on the phase dif-
ference δ = ϕ2 − ϕ1 of the two superconductors. These energy state are
referred to as Andreev bound states (ABS) [145] and schematically illustrated
in Fig. 2.12(e). ABS are the mechanism, which carries the supercurrent in
mesoscopic structures [132]. This process is often referred to as the Joseph-
son effect. In a simple single channel system with transmission T , the ABS
energies are E±(δ) = ±∆

√
1 − T sin2 δ

2 [145]. Furthermore, ABS can also be
formed in N-S junction with only a single superconductor by reflections at the
N-vacuum interface, as is illustrated in Fig. 2.12(f).

2.3.4. Superconducting Islands

SC
QD

 VG

I
 VSD

(a) (b)

SCB
 VS

CS

Ctot

Figure 2.13. Electronic schematic of a superconducting island. (a)
Schematic of a proximitized QD tunnel coupled to a source and drain contacts
with bias voltage VSD and a capactively coupled plunger gate VG. (b) Scheme
of a superconducting charge box (SCB) tunnel coupled only to one lead with
voltage VS and capacitance CS and total capacitance Ctot.

So far, we have only considered QDs and superconductivity independently.
Now, we will consider a system they interplay: a superconducting quantum
dots or island. Such a system can be engineered by either proximitzing a
semiconducting QD with a superconductor, as illustrated in Fig. 2.13(a) or
by tunnel coupling a piece of a superconductor to create a superconducting
charge box (SCB) (Fig. 2.13(b)) or a single Cooper pair transistor.

Let us consider a simple S-N tunnel junction, which is biased by voltage
VS , similar to the device illustrated in Fig. 2.13(b). If the tunnel resistance
Rt to the SCB is large enough, such that Rt ≫ h/e2, then the total charge
n on the island is a good quantum number [77, 146, 147]. If the voltage VS
is increased, more electron will accumulate on the SCB in order to minimize
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the total energy of the circuit. The ground energy of the SCB is then given
by [146]

En = Ec(n− CSVS/e)2 + En, (2.45)
where EC = e2/2Ctot is the energy needed to add one extra electron to the
SCB, and En is the non-electrostatic energy part of the SCB. Note, that EC
here differs by a factor of 1/2 from the charging energy we defined for single
QDs, as the charging energy gives the difference in electrochemical potential
needed to add an extra electron. For a normal charge box En = 0, and for
a superconducting charge box En = D0pn, where D0 describes the energy
difference between odd and even ground states and pn = n mod 2. According
to the BCS theory D0 = ∆, where ∆ is the superconducting gap of the SCB
[146].

The total energy of such a SCB is plotted in Figs. 2.14(a)-(c) as a function of
the polarization CSVS/e of the island for a number n of several excess electrons
residing on the SCB. The odd electron occupations are colored in red and the
even ones in blue. For ∆ = 0 there is no difference between even and odd
occupation. Electron transport on the island can happen whenever the ground
state energy of different occupation numbers are degenerate, E(n) = E(n+1).
As there there is no difference between the even and odd populated ground
state energies, the equilibrium number n̄ of electrons at zero temperature
exhibits a regular staircase function (Fig. 2.14(d)) and the Coulomb blockade
resonances are evenly spaced with a peak distance of 1e/α (Fig. 2.14(g)), where
α is the lever arm on the island .

At ∆ < EC the odd states have energy levels, which are higher in energy
than the even states (Fig. 2.14(b)). Therefore the even and odd ground state
energies are degenerate at different CSVS/e and the even steps in n̄ are longer
than the odd steps in n̄ (Fig. 2.14(e)). Consequently, there is also an even-odd
spacing of the Coulomb blockade peaks in transport (Fig. 2.14(h)).

Once ∆ > EC the odd states are so much higher in energy that the even
states are always the ground state of the system (Fig. 2.14(c)) and transport is
mediated by Andreev reflections at the junction. This results in the SCB only
being loaded by Cooper pairs. Consequently, the even steps in the equilibrium
number of electrons vanish completely (Fig. 2.14(f)) and transport happens in
regular spaced Coulomb blockade resonances with a spacing of 2e/α [147].
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Figure 2.14. Energy and conductance of a superconducting island.
Total energy on the island as a function of the polarization CSVs/e for several
excess electrons n on the island for ∆ = 0 (a), ∆ < EC (b), and ∆ > EC .
(d)-(f) Equilibrium number of electrons n̄ on the island corresponding to (a),
(b), and (c). (g)-(i) Resulting conductance peaks at zero bias corresponding
to (a), (b), and (c). An 1e spacing is observed for ∆ = 0 (g), an even-odd
spacing for ∆ < EC (h), and a 2e-spacing for ∆ > EC .
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3 Experimental Methods

This chapter will focus on the fabrication of the devices discussed in this thesis.
The most important fabrication steps are introduced. Exact recipes can be
found in Appendix A. Additionally, the low-temperature setups both for low
and high-frequency measurements are shown.

3.1. Fabrication

Before any measurements can be conducted a working sample has to be fab-
ricated. For this thesis we worked exclusively with zincblende (ZB) InAs
nanowires (NW) with built-in wurtzite (WZ) tunnel barriers. More infor-
mation about the growth, properties, and characterization of these NWs can
be found in chapter 4. To begin, we will introduce the base structure fabrica-
tion used for low-frequency measurements, then the resonator fabrication for
radio-frequency measurements. We will follow with a brief description of the
different ways of NW deposition on the base structures and resonator sam-
ples. Then, the cleaning of these samples and contacting procedure for the
deposited NWs will be discussed. We use standard fabrication techniques,
such as electron-beam lithography (EBL), metallization of the NWs with ther-
mal and e-beam evaporation, as well as standard wet and dry etch methods.
This standard techniques will not be discussed in here, more information about
them can be found in Refs. [148–150]. We will finish this by briefly discussing
the bonding to a chip-carrier or a printed circuit board (PCB). The detailed
fabrication recipes can be found in Appendix A.

Base structure for low-frequency measurements

Before depositing the NW a base structure has to be fabricated first. The base
structure, which consists of large bond pads connected to smaller device pads,
as well as a marker grid, allows to locate and align the NWs with high-precision
and to connect the NW electrically to the larger measurement setup. We use
a highly p-doped silicon (Si) wafer as a substrate. The silicon also acts as
a global backgate (BG) and is insulated from the devices by a 400 nm thick
thermally grown layer of silicon oxide (SiO2). In a first step the wafer is cut
into 2 cm x 2 cm large pieces. The size is given by the sample space in our
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Figure 3.1. Base structure. Optical microscope images of a base structure
(a) used for low-frequency measurement and the marker space (b) for NW
deposition and alignment. Scanning electron microscope (SEM) image of one
marker square with NWs deposited (c) and of a single NW (d). Adapted from
refs. [100, 101].

e-Beam writer. The substrate surface is then cleaned first by ultrasonication
in acetone and then in isopropanol (IPA) 20 minutes each. The substrate is
then blow dried by either compressed air or compressed nitrogen (N2) gas.

The base structure is then fabricated by conventional EBL, and e-Beam
evaporation of 5 nm/45 nm titanium/gold (Ti/Au), followed by a lift-off in
acetone at 50◦C. The resulting base structures consist of a 2 mm by 2 mm area,
which contains bonding pads connected to contact leads pads and alignment
markers, as is shown in Fig. 3.1(a). The inner part of the base structure, shown
in Fig. 3.1(b), contains a 500 µm by 500 µm grid of fine alignment markers,
each with an unique shape to allow exact identification of the position. The
distance between adjacent markers is 20 µm. A square of four of such markers
is shown in an SEM image in Fig. 3.1(c).

Resonators for radio-frequency measurements

The resonators in this thesis were fabricated by J. H. Ungerer and D. Sarmah.
For completeness sake we will give a short summary of their fabrication, more
detail can be found in the theses of J. H. Ungerer [151] or R. Haller [152].

An ultra-high quality niobium titanium nitrite (NbTiN) film is sputtered on
a undoped Si substrate. For best resonator quality the film is directly sputtered
on bare Si after an hydrofluoric acid etch step to remove the native SiO2. Such
a film is used for the sample discussed in chapter 7. For an optimization of
device-integration with the resonator the film is sputtered on 100 nm of SiO2.
The device discussed in chapter 8 uses such a film.

After sputtering the etch mask for the resonator structure is written with
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Resonator

DC tap

RF gate

DC gates

RF in RF out

Device area

Figure 3.2. Transmission resonator. Optical microscope image of a fin-
ished transmission type high-impedance resonator before NW deposition. Pic-
ture by D. Sarmah.

standard EBL. The devices used in this work employ high-impedance res-
onators to increase the coupling strength to the NWs. Our resonators are
designed for resonance frequencies of ∼ 3.5 GHz (chapter 7) and ∼ 5.3 GHz
(chapter 8). The films have a sheet kinetic inductance of Łsq ≈ 90 pH and
we make use of narrow center conductors of about 300 nm to 400 nm width
to achieve a high impedance of 2.1 kΩ. After EBL, the exposed film regions
are dry-etched using a Ar/Cl2 gas in a reactive ion etching plasma machine.
After etching the etch mask is lifted-off in acetone at 50◦C. For the resonator
fabricated on bare Si a 20 nm hafnium oxide (HfO2) layer is grown only on
the NW deposition region. Accurate 5 nm/45 nm Ti/Au markers for NW
alignment are fabricated using standard EBL and e-Beam evaporation either
after or before NW deposition. An example of a finished transmission type
resonator can be seen in Fig. 3.2.

Nanowire deposition
After completion of the base structures or resonators the NWs are deposited
from the growth substrate to the prepatterned device substrate. Two different
methods for NW deposition are used due to the different sizes of the deposition
areas. For the base structures, which have a 500 µm by 500 µm marker space,
the tip of a sharply cut cleanroom tissue is used. The tissue is cut into a small
triangle with a sharp tip. By carefully and lightly touching the growth chip
surface the NWs are transferred to the tissue. Now, the same tissue is gently
touched on the base structure center and some of the NWs will be transferred
from the tissue to the substrate. The deposition of the NWs is checked in the
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optical microscope. The last two step of the procedure are repeated until the
desired NW density is reached. After deposition the chip is cleaned in acetone
and IPA and blow dried by compressed air or N2. No ultrasonication should
be used after deposition of the NWs, as it can move or remove NWs from the
substrate.

For the resonator structures the NW area of is too small for the tissue
method. Instead the NWs are transferred using a micromanipulator. A glass
needle with a pointed end is controlled by a very accurate hydraulic system,
allowing accurate placement of the NWs. The needle is first brought into
contact with the growth substrate, where NWs stick to the tip of the needle
due to van der Waals forces between the needle and the NW. The needle can
then be moved to the resonator structure and be brought in contact with the
NW area. Some of the NW are removed from the needle and transferred to the
substrate by the contact. Again, this procedure is repeated until the desired
density of NWs is reached.

After NW deposition and alignment marker fabrication, the NWs are imaged
in a SEM. The NWs used in this work posses a GaSb-shell selectively grown
on the ZB segments of the NW. This allows us to easily identify the tunnel
barriers present in the NWs during imaging. More information about the
NWs in particular is found in chapter 4. The GaSb-shell is used to identify
the NWs best suited for the experiment and to find the barrier positions, which
are measured from the top of the NW. Using images such as the one shown in
Fig. 3.1(c) the NW positions are read-out using a Python program written by
O. Faist. Using the information of the position of the NW and its barriers the
electrical contacts and gates are designed separately for each NW using Elphy.

GaSb-shell removal

500 nm 500 nm

(a) (b)

Figure 3.3. GaSb-shell etching. SEM picture of the same NW before (a)
and after (b) the GaSb-shell etching. On the bottom right of (b) the metallic
clam is visible.

After identifying the position of the wurtzite tunnel barriers using the se-
lectively grown GaSb-shell, the shell serves no purpose anymore and has to be
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removed before contacting. To do so we first ‘clamp’ the NW by EBL writing
and evaporating 5 nm/85 nm Ti/Au on the bottom of the NW, where it wont
interfere with the contacts or gates. The clamp serves to hold the NW in place
during the wet-etching, its exact form is not important. After lift-off a 1 min
30 W oxygen (O2) plasma is performed to clean of e-beam resist residues. The
GaSb-shell is then etched for 3 minutes 30 seconds in MicropositTM MF-319
Developer (Tetramethylammoniumhydroxid (TMAH) concentration between
2.14% and 2.5%) under constant movement and afterwards thoroughly rinsed
in de-ionized water. Alternatively, an etch window can be opened with stan-
dard EBL, while the bottom of the NW is clamped with resist. Note, that we
did not observe any differences in etching while varying the time from 3 to 4
minutes, so it is not a very time sensitive process. However, the etchant needs
to be fairly fresh. For etchants open longer than six months (irrespective of
expiration date) incomplete etching of the GaSb-shell as well etching of the
InAs NW was observed. In Fig. 3.3 the same NW is shown, once before etching
(a) and one after the etching (b). Parts of the metallic clamp are also visible
on the bottom right of Fig. 3.3(b).

Nanowire metallization

After removal of the GaSb-shell the NWs are ready for contacting. The con-
tacts are patterned by standard EBL using a 300 nm thick PMMA resist layer.
To clean potential resist residues a 1 min O2 plasma cleaning at 30 W is per-
formed. The samples are then mounted in an e-Beam or thermal evaporator
with built-in ion gun, which mechanically removes material by bombarding it
with ions. In order to achieve electrical contact between the metal and the
NW, a 2-3 nm thick native oxide layer surrounding the NW has to be removed.
We use the in-situ Argon (Ar) milling using the ion gun, to remove the oxide.
Once the native oxide is removed, the desired metals can be evaporated, if
necessary the sample stage of the evaporator can be cooled with liquid ni-
trogen. Afterwards, the resist is lifted-off in 50◦C acetone. To fabricate top
gate (TG) electrodes the removal of the native oxide is skipped, so that it can
act as an insulating layer between the gate and the NW. For side gate (SG)
fabrication the native oxide does not need to be removed either, but it can
be advantageous to evaporate them together with the contacts to decrease the
number of fabrication steps.

Furthermore, we have developed a technique to evaporate thin homogeneous
Al films on top of NWs. As the film is much thinner than the NW, disconnected
Al pads are left in close proximity to the NW, which can be contacted to be
used as gate electrodes. Further information can be found in chapter 6.
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Bonding of low-frequency samples

1mmSilver
paste

Au bond
wires

200 nm

(a) (b)

S
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Figure 3.4. Chip carrier with bonded sample. (a) Schematic of a
typical sample after bonding. The sample is glued into the chip carrier with
conductive silver paste, which also connects the BG. The contacts pads are
bonded to the chip carrier with gold wire. b) False-colored SEM image of a
finished device with a Ti/Au contact (yellow), a normal SG (yellow), an Al
break-off SG (yellow and blue pad) and a thin Al contact (blue) on top of the
NW.

To finish the fabrication and measure the device the sample substrate is
glued with conductive silver paste to a commercially available non-magnetic
chip-carrier. This is schematically shown in Fig. 3.4(a). With the silver paste
electrical contact is created between the back of the highly p-doped Si substrate
and the chip carrier. This allows to use the Si as a global BG. To connect the
gates and contacts standard wire bonding techniques are used to bond the
bond pads to the chip carrier via gold wire. It is important that the bonder is
properly grounded, as improper grounding can lead to electrostatic discharge
(ESD) and explode the NWs. After successful bonding, the chip carrier can be
build into the cryogenic measurement setup. If the samples need to be stored
before measurements, they are stored in vacuum to avoid degradation of the
contacts. However, the samples are not very sensitive to air and can be kept
at ambient pressure for a while if needed.

Bonding of high-frequency samples

The bonding of the high-frequency samples is similar to the low-frequency
ones. We will note the important differences here. Unlike the commercial chip
carriers, we use a PCB designed by L. Y. Cheung. It is modular, allowing to
include a bias tee for adding high-frequency and DC signals to the same device
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Figure 3.5. Bonded resonator device. Microscope image of a bonded
resonator device. The ground plane has to be carefully grounded with plenty
of bond wires.

contact. The sample is glued into the PCB with PMMA and baked at 100 ◦C
for 1 minute.

During bonding careful attention has to be paid to properly bond the ground
plane of the sample to the ground of the PCB. Due to the high impedance
ground plane a single bond is insufficient and as many bond wires as possible
should be connected. Furthermore, bond wires should be used to connect
parts of the ground plane, which are separated by the resonator structure.
Not doing so can lead to spurious resonance modes and lower internal quality
factors. Figure 3.5 shows a microscope image of such a bonded resonator
device

3.2. Low-frequency measurement setup

It is crucial to have low sub-Kelvin electron temperatures to measure quantum
mechanical phenomena. For the QDs measured in this work, the charging
energy ranges from a few hundred µeV up to tens of meV. To resolve this QDs
the thermal energy must be significantly lower than the charging energy and
the single particle level spacing δE. Additionally, to couple superconductor
to these devices the electron temperature needs to be lower than the critical
temperature and the superconducting gap ∆. We mainly use aluminium as a
superconductor with a gap of ∆ ≈ 240 µeV and a critical temperature of 1.2
K [153, 154]. With commercially available dilution fridges in our laboratory
we reach base temperatures below 50 mK, corresponding to an energy of ∼ 4
µeV.

Inserting a sample into liquid 4He can rapidly cool it down to 4.2 K. Further
cooling can be achieved by pumping on the surface of liquid 4He, as latent heat
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Figure 3.6. Schematic of low-frequency measurement setup. Stan-
dard measurement setup of a voltage biased differential conductance mea-
surement of a NW at low temperature in a dilutrion refrigerator with a base
temperature of 50 mK. Adapted from Refs. [78, 79, 100, 101, 144, 150].
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is removed by evaporation from the bath. With this method a temperature of
1.2 K can be reached. In order to reach temperatures significantly below this
a dilution refrigerator is needed. A mixture of 3He and 4He spontaneously
separates into a light 3He-rich and a heavy 3He-poor phase below ∼ 870 mK
[138, 155]. An osmotic pressure difference is created by pumping the mixture.
This drives 3He from the 3He-rich phase into the 3He-poor. Through the
dilution of 3He into 4He across the phase boundary the mixing chamber gets
cooled [138]. Using this principle base temperatures below 10 mK can be
achieved. The cryostats can be equipped with a superconducting magnet,
which enables magnetic field studies up to several teslas.

We mount the chip carrier to the cryostat with a commercially available
chip socket. The sample and the chip socket are shielded by a Faraday cage.
After mounting the inner vacuum chamber (IVC) its volume with the sample is
pumped down to very low pressures. To connect our measurement instruments
at room temperature we use a home-made breakout box with BNC connectors
and grounding switches. The connection to the breakout box is made by
twisted-pair lines. The measurement lines are equipped with several filters to
filter out high-frequency noise and minimize the electron temperature. We
employ a home-built tapeworm filter is mounted on the cold-finger [78, 101,
144, 149, 156]. Its cut-off frequency is 10 MHz. Additional 1 MHz filters are
built into the break out box. In general, we observe an electron temperature
below 100 mK [100].

We use standard low-frequency lock-in techniques to measure differential
conductance. Figure 3.6 shows a basic schematic of the measurement setup for
a two-terminal measurement. An AC bias is applied to the source (S) contact
with a SR830 lock-in amplifier. A DC voltage supplied by a Yokogawa YK7651
or an in-house low noise high resolution 8 channel digital-to-analog converter
(DAC) by Basel Precision Instruments (BPI). We use a 4:1 transformer to
superimpose the AC voltage on the DC voltage. Directly on the breakout box
a 1:1000 voltage divider is used to reduce the voltage further. Additional DC
voltages for gates are supplied by the DAC from BPI. For voltages higher than
10 V a voltage amplifier also by BPI was used. The resulting current from
the device is amplified by a low-noise I-V converter from BPI and the output
voltage is measured by the lock-in, giving us the differential conductance G =
dI/dV . The measurement instruments were controlled by QCodes [157], which
is a python based data acquisition program framework. Further lab and setup
specific code was programmed by Joost Ridderbos and other users in the group.

3.3. Radio-frequency measurement setup

After mounting and bonding the sample onto the PCB, the PCB is closed
by a Faraday cage. After connecting the RF and DC connectors the PCB is
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mounted into an Oxford Triton dilution refrigerator using a bottom loader.
The general cooling procedure using a mixture of 3He and 4He is the same
as described above for low-frequency measurements, however here we use a
cryogen-free dilution refrigerator. It replaces the necessary liquid He bath
with a cryocooler.

The measurement setup is schematically shown in Fig. 3.7. The low-frequency
instruments and setup are similar as described previously. DC voltages are
sourced by a DAC by BPI and filtered by a in-house built low-pass filter
at room temperature. Additionally, the DC lines are filtered at the mixing
chamber by QDevil low-pass filters. As described above for low-frequency
measurements standard lock-in technique is used for measuring differential
conductance. To measure currents a Keithley voltage meter is used instead of
a lock-in.

For the RF measurements a coherent microwave signal is generated by a
vector network analyzer (VNA) from Rohde & Schwarz. At every temperature
stage the microwave signal is attenuated, so that the average photon number
in the resonator is less than one [158]. We show an example of a transmission
resonator coupled to a DQD in Fig. 3.7, as we will use in chapter 8. Two
QuinStar isolators with a cut-off frequency of 8 GHz decouple the outcoming
microwave signal from the noise of a high electron mobility transistor (HEMT)
from Low Noise Factory at the 4 K stage. At room temperature the signal
is additionally amplified by two HEMT amplifiers and then measured by the
VNA. To perform magnetic field measurements, the system is fitted with a
3-axis superconducting vector magnet at the 4 K stage.
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Figure 3.7. Radio-frequency measurement setupAt room temperature
vector network analyzer (VNA) generates a coherent microwave signal. It is
attenuated in the dilution refrigerator. After the resonator it is amplified at
cryogenic temperatures by a high electron mobility transistor (HEMT) am-
plifier and at room temperature by two additional HEMT amplifiers. The
microwave signal is then measured in the VNA. Adapted from J. Ungerer
[151]
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4 Material Platform

This work is based on semiconducting indium arsenide (InAs) nanowire (NWs).
We will study InAs NWs in particular, but semiconducting NWs can also be
grown from group IV materials (Ge, Si), other III-V compounds (InAs, GaAs,
GaP, InP) and II-VI compounds (ZnSe, CdSe) as high purity single crystals
[159]. They are pseudo one-dimentionsal nanotstructures with a diameter of
a few to tens of nanometers and lengths up to tens of micrometers.

Semiconducting InAs NWs provide an ideal platform for a variety of physical
experiments. They offer a low effective mass[160], a small electronic band gap
[161], a high mobility [162] (add more zincblende specific), a tunable large
Landé g-factor [96, 163–165], and a large spin-orbit interaction [76, 166, 167].
The combination of these properties allows for all electrical control of the
electron spin [96, 168, 169], making them a promising candidate for spin qubits
[167, 170] and spintronics [171, 172] in general. The large spin-orbit interaction
also makes them interesting candidates for the study of topological phenomena,
such as Majorana fermions [16, 44, 45, 173, 174], which could enable topological
quantum computing [15, 175]. They have further found use in studies of
magnetotransport [176, 176–178] and thermoelectrics [179].

In addition to all the general properties of InAs NWs listed above, the
NWs used in this work contain in-built, atomically sharp crystal-phase defined
tunnel barriers [40]. This allows us to investigate robust single tunnel barriers
and QDs without the need of defining the barriers by gating. This approach
delivers advantages both in possible scaling of devices, as well as a general
understanding of a particular device and the physical location of our measured
properties.

In the following we will give a brief introduction into the growth of these
NWs. For a more detailed explanation refer to ref. [180]. Afterwards we
will give a short introduction to the general electronic properties of InAs.
Subsequently, we will show some characterization measurements done on the
NWs used in this work.

4.1. Nanowire Growth

For decades free-standing NWs have been grown using vapor-liquid-solid meth-
ods [181]. The name originates from the growth of a solid one-dimensional
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Figure 4.1. Schematic of InAs NW growth. (a) Indium (In, green)
and arsenic (As, blue) precursors are accumulating in the liquid gold (Au,
yellow) catalysts on an InAs (111)B substrate). (b) The catalysts are saturated
and the vertical growth of the NW starts. The catalyst stays on top. (c)
Scanning electron image (SEM) image of a free-standing NW "forest", grown
with MOVPE. Image provided by S. Lehmann, Lund. Adapted from Refs.
[100, 101, 150]

crystal using a vapour-phase precursor, mediated by a liquid alloying material
[180, 182, 183]. Examples of growth techniques making use of this method
are molecular beam epitaxy (MBE) [28, 183, 184], chemical vapor deposition
(CVD) [185], chemical beam epitaxy (CBE) [37, 38, 186], and metal-organic
vapor phase epitaxy (MOVPE) [40, 41, 183, 187].

The basic principles of VLS based processes is the accumulation of metal-
organic or atomic precursors inside a liquid metallic catalyst (or seed) particle
(Fig. 4.1(a)) from a precursor gas. Typically, the catalyst is made of gold, as it
has great alloying capabilities and is inert to oxygen. Once the liquid droplet
is saturated with the precursor, a crystalline nanowire starts to grow vertically
with the metallic catalyst staying on the top of the NW due to surface tension
[182]. The radial growth is limited by the catalyst dimensions, as illustrated
in Fig 4.1(b). Once the NWs reach the desired length, the growth process
is halted by removing the precursors. There are various methods to deposit
the catalyst particles, such as direct deposition [188], metal evaporation and
subsequent annealing [189], aerosol techniques [190], or metallic arrays defined
by electron beam lithography and subsequent metallic evaporation [191]. This
latter growth process allows for precise control of the growth parameters. The
growth rate can be controlled by the flux of the precursor gas and the length of
the NW by the growth time. The diameter of the NW can be controlled by the
size of the gold catalyst. It is also possible to lower the growth temperature,
so that the vertical growth is suppressed and radial growth is enabled [180].

In the case of InAs the bulk crystal is in zincblende (ZB) crystal-phase,
but it is possible to grow both crystalline defect free wurzite (WZ) [192] and
zincblende NWs [36, 40, 180] using the right growth parameters and advanced
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Figure 4.2. SEM images of NWs. SEM image of a ZB InAs NW with a
crystal-phase defined small single QD (a) and a long DQD (b). Both have a
selectively epitaxially grown GaSb-shell only on the ZB. (c) Scanning trasmis-
sion microscope image of such a DQD NW as shown in (b), before growing the
GaSb-shell. On the bottom is a schematic of the each NW. The WZ segments
are colored in red, ZB segments in green, the GaSb-shell in blue, and the gold
particle in gold. Image (c) provided by S. Lehmann, Lund.

growth techniques. It is even possible to switch with atomic precision be-
tween ZB and WZ crystal-phase to define a heterostructure within the NW
[36, 39, 40]. The NWs used in this work are grown by the group of Kim-
berly A. Dick-Thelander at Lund University [35, 40]. These NWs are grown in
ZB crystal-phase interrupted by short WZ segments of a few tens of nanome-
ters. The used NWs were grown by MOVPE with gold particles as catalyst.
The gold particles were distributed onto a [1̄1̄1̄]-oriened III-IV substrate by an
aerosol technique. The NWs were grown at a temperature of 415 ◦C with
trimethylgallium, trimethylindium, phospone and arsine as precursor gses.
The switching between ZB and WZ segments is controlled by tuning only
the group V precursor flow [40]. Due to the conduction band offset between
ZB and WZ [39, 60, 161], the WZ segments form tunnel barriers for electrons
of about ∼ 100 meV height. By switching between WZ and ZB single tunnel
barriers and QDs can be formed. The precise control of the growth parame-
ters allows for great flexibility in both QD and barrier length. We will later
characteristic both single tunnel barriers, single QDs and DQDs. In contrast
to earlier experiments [60, 61, 144], the ZB segments have a selectively grown
GaSb-shell [35]. This allows us to easily identify the tunnel barrier position by
SEM imaging, as the crystal-phase change between ZB and WZ is not easily
resolved in a standard SEM. In order not to complicate the transport proper-
ties of the NW and QDs the GaSb-shell is etched before contacting, for further
information on the etching procedure consult chapter 3 and Appendix A.

For completeness we would like to note, that there are also techniques to
grow template-directed NWs and free-standing NWs without seed particle,
such as selective area growth [26, 28, 193, 194] and template-assisted growth
[27, 41, 42, 187]. These template-direted growths have the advantage of a
more scalable approach and can be readily incorporated in existing device
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structures. However, they are limited in resolution by the method used to
define the template and are confined to their growth substrate, giving less
flexibility of use [180]. But as lithography method keep increasing in precision
and resolution and a less flexible but scalable approach would be preferable
for qunatum computing, they might be a very interesting platform for the
future. However, this work will focus on the above described ZB InAs NW
with crystal-phase defined tunnel barriers.

4.2. Electronic Properties

Zincblende (ZB) 

(a) (b) (c)

Wurtzite (WZ) 
In
As

E

Eg

CB

VBГ

EF

ZB ZB
QD

ECB,ZB

ECB,WZ~100 meV

(d)

Figure 4.3. Crystal structure and band structure of InAs. Crystal
structure of face-centered cubic (fcc) zincblende (ZB) (a) and hexagonal close-
packed (hcp) wurtzite (WZ) (b) InAs. (c) Schematic of the electronic band
structure of InAs with band gap Eg = 420 meV (ZB) [195]. The Fermi energy
EF is pinned to the conduction band in InAs NWs. (d) Schematic of the QD
confinement due to the ∼ 100 meV difference in conduction band offset of ZB
and WZ. Adapted from Refs. [100, 176, 196]

This work makes use of ZB InAs NWs with built-in crystal-phase defined
WZ tunnel barriers. ZB InAs has a face-centered cubic lattice structure, as
illustrated in Fig. 4.3(a). In contrast, WZ InAs has a hexagonal close-packed
crystal structure, seen in Fig. 4.3(b). To define the tunnel barriers we make use
of the difference in band gap Eg and the misalignment of the conduction band
between ZB and WZ, as is illustrated in Fig. 4.3(d). The band gap of ZB is
EZB = 0.42 eV [195], while the bandgap of WZ has been theoretically predicted
to be larger [197] up to 126 meV [198] and a lower bound of the bandgap
difference of ∼ 95 meV has been measured in similar NWs [39]. Additional
advantages of InAs NWs are the Fermi level pinning to the surface, allowing
for easy to fabricate, low-ohmic contacts [199], as well as the large Landé g-
factor g = −14.9 [195] and the large spin-orbit interaction [76]. A mean free
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path of ∼ 100 nm has been shown in InAs NWs [200]
Around the Γ point the conduction band has a parabolic dispersion En(kx) =

En + h2k2
x

2m∗ (Fig. 4.3(c)) with an effective electron mass m∗ = 0.023me in ZB
crystal phase [201], where me describes the free electron mass and En the
mimimum energy of a quantized subband. As new subbands get occupied the
current I = 2e2

h
N shows step-wise increases in the ballistic quantized conduc-

tance with N the number of occupied subbands [202].
In conclusion, InAs NWs serve as an interesting platform for a variety of

experiments and applications. They exhibit a large variety of growth possi-
bilities (heterostructures, epitaxial interfaces to metals and other semiconduc-
tors), and interesting electronic properities such as large spin-orbit coupling
and g-factors. In addition they are easy to contact thanks to the Fermi level
pinning in the conduction band. Thus they present an ideal platform for us
to study different physical phenomena. We will explore their coupling to su-
perconducting contacts, as would be of interest for topological states such as
Majorana fermions [16, 44], and as a platform for charge and spin qubit defined
in DQDs.

4.3. Characterization of InAs nanowires

We now characterize the different types of NWs used in this work. We exclu-
sively use zincblende InAs NWs with wurtzite crystal-phase segments actings
as tunnel barriers as introduced above. The growth batches vary in length of
zincblende segments, number of tunnel barrier, while the width of the wurtzite
tunnel barriers is constant around ∼ 30 m. In chapters 5 and 6 we use NWs
with two tunnel barriers to define either long (∼ 300 nm to ∼ 1 µm) or short
(a few nm) QDs. With the long QDs we also take advantage of their length to
put a contact on the QD segment and fabricate three-terminal devices. With
those we to study a single tunnel barrier. All of these devices were fabricated
with one superconducting (SC) and one or two normal (N) metal contacts.
This chapter only discusses the general characterization of the NWs and bar-
riers. The studies of the superconducting properties are reported in chapters
5 and 6. Furthermore, we study DQDs with three tunnel barriers in chapter
7 and 8.

We note, that due the growth method with precursor distribution by aerosol
technique every growth chip shows a spread in the NWs with segments lengths
around the desired parameters. This is in general an advantage for us, as it
allows us to use the same growth chips for different experimental applications
by selecting the NWs with the optimal parameters. However, it would also be
possible to grow a chip composed of identical NWs using a method of precursor
distribution that is more uniform, such as e-beam lithography.

In the following, we first characterize single tunnel barriers, followed by
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N1 N2SC NSCClamp

barriers

QD

QD

Figure 4.4. Tunnel barrier and single quantum dot devices. SEM
images of two of the NWs used for the single tunnel barrier measurements (a),
and single QD measurements (c) in this chapter. False-colored SEM image
of one of the complete device measured for the single tunnel measurements
(b) and a similar complete device as is used for the QD measurements (d).
The NW is colored in green, the tunnel barriers in orange, the normal Ti/Au
contacts in yellow, and the superconductor in blue.

short and long single QDs. At the end of this chapter discuss the first basic
characteristics of a DQD.

4.3.1. Single tunnel barrier

The NWs are electrically contacted as described in chapter 3. To study the
properties of a single tunnel barrier, we use NWs with QDs of a length of ∼ 300
nm. Figure 4.4(a) shows an SEM image of such a NW on which we performed
the measurements discussed in this section on. We will refer to it as NWA. We
fabricate three-terminal devices, where one superconducting (SC) contact is
evaporated between the barriers and two normal metals (N1, N2) contacts at
the end of the NW. Figure 4.4(b) shows a false-colored SEM image of device
A fabricated with NWA. The two SEM images have been manually rescaled
and aligned, such that the estimated barrier position after fabrication and the
original NW SEM image are aligned.

The superconducting properties and three-terminal measurements of device
A will be discussed in detail in chapter 5. For this chapter we will restrict
our discussion to only the N1-barrier-SC junction. For device A the source-
drain bias voltage VSD was applied on SC and the differential current I on
both N1 and N2 was measured. We estimate a distance between the tunnel
barrier and the SC of about dSC ∼ 20 nm from SEM images before and after
etching of the GaSb-shell. In Fig. 4.5 we compare the differential conductance
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Figure 4.5. Quantum dot features vs clean barrier. Differential con-
ductance G = dI/dV for a tunnel barrier junction of length dSC ∼ 85 nm
((a), device B) and dSC ∼ 20 nm ((b), device A). The longer junction exhibits
features of a QD. The short junction a clean tunnel barrier. (c), (d) traces
from (a), (b) at VSD = 0.5 mV (white line).

G = dI/dV plotted as a function of VSD and BG voltage VBG of device A and
device B. The latter was fabricated from NWs of the same growth and with the
same contact configuration. However, the distance between the tunnel barrier
and the SC contact is larger, namely about dSC ∼ 85 nm. Data of device B
is shown in Fig. 4.5(a) and of device A in Fig. 4.5(a). We find fairly little
change in the normal state conductance, as is illustrated in the cross section
at VSD = 0.5 mV in Fig. 4.5(d). In contrast, device B shows a clear signature
of a QD strongly coupled to the leads. We explain this by the formation of a
spurious QD between the tunnel barrier and the SC contact. To illustrate this
further Fig. 4.5(c) shows a cross section from the conductance measurement
of device B taken at VSD = 0.5 mV as well. In comparison to device A
the conductance is less constant and shows oscillations typical for Coulomb
blockade resonances at high source-drain bias. In contrast we note, that device
A shows characteristics consistent with a clean tunnel barrier with from +7 V
to −38 V. Unfortunately, the device did not survive more negative voltages.
On the whole range for device A we see small fluctuation in conductance and
less conductance at more negative VBG as the charge carriers in the NWs get
more and more depleted. We never observe any clear discrete states as we see
for device B.

We have observed a general trend of more clean barriers for shorter distances
between SC and barrier. In devices where the SC overlaps the barrier no QDs
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have been observed and the devices always show a clean albeit very weak
barrier. The distance between the N contact and the barrier seems to have
less influence on the cleanliness of the tunnel barrier For examples we can see a
clean barrier in device A, despite a distance of dN1 ∼ 160 nm between N1 and
the barrier. From this we conclude that we likely form QDs between the tunnel
barrier and the SC, which we can suppress by bringing the SC contact closer
to the barrier than dSC ∼ 80 nm. Alternatively, if the barrier is close enough,
the SC might contact screen the gate voltage and confined states could not
be discriminated in spectroscopy. A possible explanation to the difference in
sensitivity to the length of the N-barrier junction to the SC-barrier junction,
could be that a normal contact has a lesser screening effect. This, however
does not readily explain why we still observe a clean gap at finite magnetic
fields, where the SC contact also turns normal conducting.

To confirm that we indeed perform tunnel spectroscopy on the supercon-
ducting gap we apply an out-of-plane magnetic field BZ . The conductance as
a function of BZ and VSD at VBG = −6 V is shown in Fig. 4.6(a). A closing
of the superconducting gap is observed around 25 mT. This agrees well with
previously observed critical fields of Al in our lab of 10 mT to 100 mT and
literature values [153, 154]. Furthermore, the inset in Fig. 4.6(b) shows two
line cross sections of Fig. 4.6(a) at a BZ = 0 mT (red) and BZ = 50 mT (blue).
Without superconductivity we observe a constant conductance independent of
source-drain bias, as is characteristic for a clean tunnel barrier.

To study the influence of the tunnel barriers, we compare the conductance
for two NW segments with and without built-in tunnel barriers. As is seen in
Fig. 4.4(b) in the device A a barrier is present between N1 and SC, while the
one between N2 and SC is shorted by SC. In Fig. 4.6(b) the back gate voltage
dependence of the conductance measured on SC in the gap at VSD = 0 is
shown, where VSD is applied on N1 of device A. A clear dependence on VBG
is shown with the conductance decreasing more than two orders of magnitude
from above 3 G to near depletion. The same data plotted in log scale can be
found in Appendix B.1. In comparison the gate dependence (see Appendix
B.1) of the SC-N2 junction is much weaker and the overall conductance is
much higher. Hence, we conclude that there is indeed the tunnel barrier over
which most of the voltage drops occurs, compared to the contacts or possible
impurities in the NW. Without tunnel barrier we observe conductances up to
nearly 25 e2/h, showing that our contacts are of good quality and that the
NWs have many-modes contributing to transport.

4.3.2. Single quantum dot
Here, the device is contacted on one side with a normal Ti/Au contact and on
the other side with a superconductor (SC) Ti/Al. Between the two contacts is
a crystal-phase defined double barrier QD as shown in Fig. 4.4(d). In Fig. 4.7
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Figure 4.6. Magnetic field and gate dependence. (a) Differential con-
ductance G = dI/dV in dependence of source-drain bias VSD and magnetic
field BZ at a constant backgate VBG = −6 V. The superconducting gap closes
at around ∼ 25 mT. (b) Backgate dependence of the conductance in the gap
at VSD = 0. Inset: Cross sections of (a) at 0 (red) and 50 mT (blue).

we show Coulomb blockade diamonds of a single QD as a function of the global
back gate voltage VBG. The small SC gap is hardly visible at low VBG, as has
been previously observed in similar NWs [60, 144].

Figure 4.7. Single quantum dot. Coulomb blockade diamond measure-
ment of a single QD as a function of the backgate voltage VBG and VSD.

We extract a lever arm of α ≈ 0.07 at low VBG, a charging energy EC ≈
11.2 meV, and a single level spacing δE ≈ 1.2 meV. In Appendix B.2 α and the
addition energy Eadd is plotted as a function of VBG for a range of VBG = −2 V
to VBG = +2 V. A general decrease of the Eadd and α is observed. This is
commonly observed in QDs at higher electron fillings, as Coulomb screening
increases the more electrons are accumulated on the QD [77, 100].

The tunnel coupling of the QD is tunable by the BG voltage, as is illustrated
in Fig. 4.8(a). The total tunnel coupling Γ = Γ1+Γ2, where Γ1,2 are the tunnel
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Figure 4.8. Gate dependence of Γ. (a) Extracted tunnel coupling Γ of
several of the Coulomb peaks in Fig. 4.7 in dependence of VBG. (b) Only
Coulomb peak with Γ < 10 µeV. The blue and green line are a lift-time
broadened (Lorentzian) and thermally broadened (Beenakker) fit to the data,
illustrating that the resonance is thermally broadened.

couplings to lead 1 or 2 respectively, is extracted by numerically fitting eqs. 2.4
and 2.5 to the Coulomb bockade resonances and taking Γ1,2 from the better
fit. To remove effects from the SC contacts the resonances were measured at
an out-of-plane field BZ = 50 mT. We observe a tunability of Γ over three
orders of magnitudes, although most tunnel couplings are above 40 µeV and
only one resonance is thermally broadened. It might be possible to observe
even a larger range of Γ by measuring at more positive VBG. In similar NWs
with crystal-phase defined QDs Γs from 50 µeV up to above 1 meV have been
observed and extracted by numerically fitting [60].

We show the data and the fit of the single temperature broadened Coulomb
resonance in Fig. 4.8(b), it yields a reasonable electron temperature of 92
mK. It is not exactly clear as to why this particular resonance is less tunnel
broadened, as there are several broadened resonances at even lower BG volt-
ages. Possibly, at these particular voltages the transport modes are decoupled.
However, the physical reasons of this are unclear.

4.3.3. Double quantum dot

Adding a third barrier to the NW results in a DQD. Figure 4.9(a) shows a
false-colored SEM image of such a device. The NW (green) has a DQD defined
by three tunnel barriers (red). It is contacted by Ti/Au on both ends and three
side gates (SGs) are used to tune the DQD. The central gate VM is mostly
fixed to a constant volt. The device is grounded on one end and connected
to a resonator with bias-tap on the other side. In Fig. 4.9(b) we show the
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Figure 4.9. Charge stability diagram of a DQD. (a) False-colored SEM
image of the device measured. NW (green) with three in-built tunnel barriers
(red) defining a DQD. (b) Charge stability diagram measured in dependence
of gates VR and VL with VM = 2 V. An effective source-drain bias of 100 µV
was applied.

measured charge stability diagram measured at a 100 µV bias. We observe
textbook bias triangles as described in chapter 2.

From the bias triangles we extract the lever arms and capacitances of our
device. Namely, αL,1 = 0.22 for the left gate on QD1 and αR,2 = 0.14 for the
right gate on QD2, as well as cross-lever arms αL,2 = 0.06 and αR,1 = 0.03.
The lever arms show that we have a small cross coupling and stronger lever
arms for the SGs.

We note, that basically no gate tuning was necessary to observe the charge
stability diagram. The DQDs merely has to be gated positively enough, such
that a measurable current can be observed. Due to the in-built tunnel barriers
the DQD is then observed as soon as a current can be detected and no tedious
adjusting of several gates is necessary. However, due to the size of the QDs
(∼ 300 nm each) the DQD cannot be depleted to the last electrons due to
the NW charge carriers depleting beforehand. Therefore, the exact electron
number on the DQD is unknown and the charge parity of the DQD cannot be
easily determined.

The inter-dot tunnel rate can be tuned by filling the DQD. In chapter 7 we
extract inter-dot tunnel rates in a range from 45 µeV to 0.36 meV. The device
could be further tuned into the single QD regime, where the inter-dot tunnel
barrier is so weak that the electron wavefuntion delocalizes over both QDs and
effectively one large QD is observed [77, 81]. Further information can be found
in chapter 7.

Furthermore, the device yield is very high. The device shown here was the
first DQD device fabricated. Three out of three correctly contacted samples
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were measured and showed the clear characteristic of a DQD. This high device
yield makes these NWs a promising platform for experiments were only a
low number of devices can be cooled down at the same time, such as RF-
measurements were only one device can be coupled to a resonator. They have
also shown themself to be fairly robust to electro static discharge for quasi
one-dimensional systems. Presumably, due to their fairly large (∼ 80 nm)
diameter.

A more detailed discussion of the device shown here including radio-frequency
(RF) measurements can be found in chapter 7 and a second DQD device cou-
pled to a resonator is shown in chapter 8.

4.4. Summary and Outlook

We have shown characterization measurements of single tunnel barriers, single
QDs and DQDs. For short distances dSC < 80 nm between the SC contact and
a tunnel barrier, an ideal barrier characteristic can be observed. For longer
distances spurious QDs are formed between the barrier and the SC contact.
The length of the NW segment between the N contact and the barrier does
not seem to have as much influence.

Magnetic field measurements confirm that the NWs are in good electrical
contact to the superconductor and the barriers allow us to perform tunnel-
spectroscopy, which shows the BCS coherence peaks at VSD ≈ 150 µV, and a
conductance suppression of a factor ∼ 6 − 15 at VSD = 0. Furthermore, we
show that we can tune the in-gap conductivity with the back gate voltage by
more than two orders of magnitude if a barrier is present.

We present the Coulomb diamonds of a single QD and extract the tunnel
couplings for several resonances. We find tunnel rates Γ from 4 µeV up to
0.5 meV in a back gate voltage range from -2 to 3 V. Most resonances are life
time broadened with Γ > 40 µeV, with the exception of a single temperature
broadened resonance with significantly lower Γ. We note, that a larger range
of tunnel rates may be observed by a more in-depth study and a greater gate
voltage range.

We present a very-regular charge-stability diagram of a DQD. The bias
triangles are aligned in the honeycomb pattern allowing us to extract some
of the basic characteristics of the DQD. We will later make use of these nice
DQDs to couple them to a resonator to form a charge and spin qubit.

In conclusion, we show NWs with built-in tunnel barriers and good contact
quality. By adding tunnel barriers in series QDs can be formed. Here, examples
of single and double QDs are shown, but it would be possible to extend the
growth to triple or more QDs and arrays or even one-dimensional superlattices
[203] if desired. Serial QDs, such as DQDs, are an ideal platform for spin and
charge qubits. The well-defined DQDs shown here, streamline the fabrication
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process and create a high device yield. We will further discuss DQDs coupled
to resonators to create charge and spin qubits in chapter 7 and chapter 8.
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5 Spectroscopy of the superconducting
proximity region
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too large?
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N1 N2SC
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through the leads?

Figure 5.1. Three-terminal device. (a) Schematic of the three-terminal
superconductor-NW hybrid device. The texts note some of the possible causes
of a soft superconducting gap. (b) False-colored SEM image of the device
discussed in this chapter. NW (green) with wurtzite tunnel barriers (orange)
contacted on the outside with normal contacts Ti/Au and between the barriers
with superconducting Ti/Al.

In this chapter we discuss our results of coupling evaporated superconduct-
ing (SC) Al contacts to InAs nanowires. We will make use of the well-defined
QDs or tunnel barriers described in chapter 4 to investigate the SC gap in-
duced in the NW. In practice, we study three-terminal devices, as illustrated
in Fig. 5.1. The measurements discussed in chapter 4 already demonstrated a
"soft" proximity gap. While the distinction between a hard and soft proximity
gap is not properly defined, a common used definition is the suppression of
the in-gap conductance to the normal out-of gap conductance by a factor of
50 [204, 205]. In contrast, we tend to observe a suppression of about ∼ 8 − 15
in our devices (see Fig. 4.6a) or Fig. 5.8), clearly demonstrating a much softer
SC gap.

In this chapter we will first show that there is a proxmity region and the
experiments do not probe indirectly the bulk Al gap. By using three-terminal
device structures we can exclude the possibility of tunneling proceses from the
normal conducting NW into the SC bulk Al.

In a next step we then discuss possible reasons for the soft superconducting
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gap, such as a too large distance between the tunnel barrier and the SC, too
weak tunnel barriers, quasiparticle poisoning by the lead segments, or a "bad"
induced proximity effect in the NW. These possible causes are schematically
illustrated in Fig. 5.1(a).

5.1. Three-terminal measurements

5.1.1. The conductance of adjacent contacts

(a)

N1 N2

SC
RSC

R1 R2

 VSD

(b)

N1 N2

SC
RSC

R1 R2

 VSD

ISC,1

I2,1

ISC,1

I2,1

Figure 5.2. Three-terminal device schematic with and without in-
duced SC gap. The NW is illustrated in green, normal contacts N1 and
N2 in yellow, and the SC contact in blue. An induced proximity region is
depicted by a light blue region in (a) and missing in (b). The tunnel barriers
and contact resistances have been replaced by resistances R1, R2, and RSC ,
where R1 ≫ R2, RSC due to the tunnel barrier included in R1. VSD is applied
on the normal contact N1 and the current ISC,1 and I2,1 are measured on SC
and N2 respectively.

To prove that we indeed perform spectroscopy on an induced SC region
below SC and not on the bulk SC reservoir, we perform three-terminal mea-
surements, as is illustrated in Fig. 5.2. The goal is to discriminate two different
explanations for our measurements, the case in Fig. 5.2(a) with an induced gap
(light blue area) and the case in Fig. 5.2(b) without. If we assume no proximity
region, we only expect a N-S interface at the interface to the SC contact. The
interfaces to N1 and N2 would be normal. If we assume a proximity region
below SC, there is an N-S interface from both N1 and N2 to the proximity
region.

We assume a simplified model, where tunnel barrier, contact and NW re-
sistance are combined into one resistance R1,2,SC for each junction of the
three-terminal device. Here, R1 ≫ R2, RSC as the NW segment between N1
and SC is the only junction with a built-in tunnel barrier. The following mea-
surements were performed in all possible three-terminal configurations, where
the bias voltage VSD is applied on one of the three contacts and the current
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on the other two is measured using standard lock-in measurements. We will

denote Gj,k = dIj

dVk
=

I
(ac)
j

V
(ac)

k

as the conductance measured on contact j with
VSD applied on contact k, an example for these schemes and notation can be
found in Fig. 5.2. For the case where the SC induces a proximity gap the
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Figure 5.3. Conductance on the left NW side. Comparison of differen-
tial conductance G1,SC = dI1/dVSC in configuration (a) where VSD is applied
on SC and I1,SC is measured on N1 and (b) conductance GSC,1 = dISC/dV1
where VSD is applied on N1 and ISC,1 is measured on SC. (c), (d) Differ-
ential conductance as a function of VSD and VBG in configurations (a) and
(b), respectively. e) Differential conductance in dependence of VSD taken at
VBG = −6.6 V (dashed white line in (c) and (d)) for the configuration in (a)
(blue) and (b) (red), only offsets in VSD were subtracted and VSD of G1,SC
was reversed. Two different proximity gaps are observed, ∆ and ∆∗. (f) Same
measurement as in (e), but the data was additionally corrected for the applied
VSD accounting the voltage division resulting form the resistances R1,2,SC .

resistances R1,2 have the character of an N-S interface and therefore a VSD
dependent characteristic as described by the BTK-model [136]. In the case, in
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which SC does not induce a proximity gap only the resistance RSC is described
by an N-S interface, while R1,2 are normal, VSD independent resistors. For
the adjacent contact measurement, which always involve SC, we will assume
that R1 and R2 are constant without any VSD dependence that a proximity
region would entail. In this section we model our data using intuitive elec-
tronic elements, such as voltage and current dividers based on the respective
lumped circuit elements defined above.

We study the difference between GSC,1 and G1,SC (see Fig. 5.3(a) and (b)).
For these measurements I2,1 was also measured, and hence the electrostatic
potential on N2 is zero. However, G2,1 will be discussed in the next section.
In these two configurations always the same section of the NW and the same
tunnel barrier are probed.

Naively, in a two-terminal measurement, we would expect no difference be-
sides a sign change in VSD, as +VSD applied on N1 is equivalent to applying
−VSD on SC, i.e. GSC,1(V ) = G1,SC(−V ) . In the experiment we observe a
different picture, due to the existence of the third terminal.

Figure 5.3(c) and (d) show the differential conductance Gkj = dIk/dVj as
a function of VSD and VBG corresponding to the measurement configurations
shown in Fig. 5.3(a) and (b), respectively. Both measurements show a clean
soft superconducting gap with little modulation in the conductance above the
gap, as has been introduced in chapter 3. As we just discussed, the asymmetry
of the normal state conductance GSC,1 and G1,SC in VSD for |VSD| > ∆, is
identical with respect of a change in sign of VSD, i.e. GSC,1(V ) = G1,SC(−V )
∀V ∈ |VSD| > ∆.

To better compare this we study the conductance in dependence of VSD at
fixed VBG = −6.6 V in Figs. 5.3(e) and (f). Both data sets were corrected for
a small offset in VSD created by the IV-converter and VSD was reversed for
G1,SC . While two very similar gaps are observed, the G1,SC exhibits a slightly
larger gap. We explain this effect by a simple loaded voltage divider with R2
as the load resistance. Depending on whether VSD is applied on SC or N1 the
input and output resistances switch and due to the very different resistances
with R1 >> R2, RSC the actual applied V ∗

SD on R1 and RSC differs from VSD.
Assuming VSD is applied on SC the parallel load on the voltage divider is

RP = R1 ∥ R2 = R1R2

R1 +R2
. (5.1)

From our measurements of G1,SC we estimate R1 ≈ 32 kΩ from the above
gap resistance at VBG = −6 V. Using conductance G2,SC for the above gap
resistance in the same gate range we estimate R2 + RSC ≈ 1 kΩ. Since
R1 ≫ R2, RSC we can assume, that the above-gap measured resistance on N1
when VSD is applied on SC is a good approximation of R1. However, R2 and
RSC have comparable values and we cannot attribute a fixed ratio. For the
calculations we assume that RSC ≈ 140 Ω and R2 ≈ 860 Ω. Taking R2 as
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the load resistance we can calculate RP . We now calculate the voltage V ∗
SD,R1

dropping over R1, when VSD is applied to SC

V ∗
SD,R1 = VSD

RP
RSC +RP

≈ 0.86VSD (5.2)

and the voltage dropping over RSC is

V ∗
SD,RSC

= VSD

(
1 − RP

RSC +RP

)
≈ 0.14VSD (5.3)

In contrast if VSD is applied on N1, R1 replaces RSC , so that RP only becomes
smaller, in the above equation. Since R1 is two orders of magnitude larger than
the other resistances, the above term of the voltage across RSC approaches zero
and nearly all the drops over R1. The equation for the voltage dropping across
R1 if VSD is applied on N1 becomes

V ∗
SD,R1 = VSD

(
1 − RP

R1 +RP

)
≈ 0.996VSD, (5.4)

with the parallel resistance now defined by RP = R2 ∥ RSC . This clearly shows
that GSC,1 is barely affected by the voltage divider. Plotting GSC,1 and G1,SC
with the correct V ∗

SD,R1 and V ∗
SD,RSC

gives Fig. 5.3f), which shows almost
perfect agreement between the two data sets, showing that we can explain the
difference in ∆ using a simple voltage divider model with reasonable values for
R1, R2, and RSC . In turn these results show that the exact values for R2 and
RSC can vary. As long as they have a ratio between 1:4 and 1:8 the extracted
∆s are identical within a ∼ 5% error margin. Furthermore, to obtain a SC
gap of 160 µeV ≥ |∆| ≥ 150 µeV, R1 has to be about twice larger than the
sum of R2 +RSC . The second condition is easily fulfilled given the above gap
resistances extracted from I1,SC and I2,SC .

We can perform the same analysis for the other NW side, i.e with VSD
applied on SC (or N2) and the current is measured on either N2 (or SC),
while N1 is grounded. Since R1 is now the parallel load resistor and much
higher in resistance than the other resistors it does not influence the voltage
divider. Using the same analysis as above, we obtain V ∗

SD,RS
≈ 0.86VSD

and V ∗
SD,RSC

≈ 0.14VSD independent of configuration. Figure 5.4 shows the
results in conductances analogous to Fig. 5.3 for the right NW side involving
contacts SC and N2. The overall conductance between SC and N2 is much
higher as expected, as the right tunnel barrier is shorted by the SC contact.
This justifies the assumption R2, RSC ≪ R1.

Comparing Fig. 5.4(c) and (d) shows little influence of the measurement
configurations in Fig. 5.4(a) and (b) on the differential conductance. This
is further confirmed by the Fig. 5.4(e), where the conductances G for both
configurations are plotted as a function of VSD at a constant VBG = −6.6 V,
with the data corrected for small offsets in VSD, and with VSD inverted for
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Figure 5.4. Conductance on right NW side. Comparison of differential
conductance G2,SC = dI2/dVSC in configuration (a) where VSD is applied on
SC and I2,SC is measured on N2 and (b) GSC,2 = dISC/dV2 where VSD is
applied on N2 and ISC,2 is measured on SC. (c), (d) Differential conductance
as a function of VSD and VBG in configurations a) and (b), respectively. (e)
Differential conductance in dependence of VSD taken at VBG = −6.6 V (dashed
white line in c) and d)) for the configuration in (a) (blue) and (b) (red), only
offsets in VSD were subtracted and VSD of GSC−N2 was reversed. (f) Same
measurement as in e), but the data was additionally corrected for the applied
VSD accounting the voltage division resulting form the resistances R1,2,SC .

G2,SC . The curves show very good agreement. In Fig. 5.4(f) the same data
is plotted but now corrected for the voltage division factor of 0.86 described
above. As the curves were already nearly identical and the same factor was
applied on them, they still are virtually identical. The only effect of the divider
was a reduction of the aparent induced superconducting gap from ∆∗ ≈ 200
µeV to ∆∗ ≈ 170 µeV. We note that, while both values are within the range
of observed of SC gaps for Al [206], the smaller value is much closer to what
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we commonly find in our devices.
These experiments show the importance of a careful consideration, what

voltages are effectively developing at which position in a device and which
voltage drops are actually measured. In two-terminal measurements such ef-
fects can often not be properly pinpointed as there are too many unknowns
about the device and only one way to measure. In contrast, three-terminal
measurements allow to measure in additional configuration, as we have shown
here. However, the extra contacts also complicate the system, requiring care-
ful consideration and analysis to not reach wrong conclusions due to a faulty
understanding of the voltages applied and measured. In our case here, it would
have been very easy to conclude that we measure an inhomogeneous induced
superconducting gap, of ∆∗ = 210 µeV on the rights side and ∆∗ = 190 µeV
on the left side, even though we can attribute variability to a simple voltage
divider picture. Our built-in tunnel barriers and our precise knowledge of their
position grant us an additional advantage here, as it makes our device easier
to understand.

We note that the above voltage divider analysis was not reliant on assuming
a proximity region below the SC. The resistances R1, R2, and RSC were as-
sumed to be constant and based on the measured above-gap resistances. The
observed SC gap could originate purely from the SC contact and the voltage
divider characteristic is mainly dominated by the larger resistance R1. How-
ever, we note that we observed good agreement between GSC,1 and G1,SC
assuming that the measured voltage drops over R1 overall. If we assume that
we observe the voltage drop over RSC , then with V ∗

SD,RSC
≈ 0.004VSD for

GSC,1 and V ∗
SD,RSC

≈ 0.14VSD for G1,SC we would obtain a very bad agree-
ment between the two data sets. For GSC,2 and G2,SC the effectively applied
voltage on RSC is V ∗

SD,RSC
≈ 0.14VSD independent of configuration. Hence,

the data sets would still be in good agreement. However the apparent induced
gap would reduce to ∆∗ ≈ 30 µeV, which is much smaller than what is usually
observed both in our lab and literature [60, 144, 206]. We consider this as a
first indication that we do indeed perform spectroscopy on a proximity region
and not on the bulk SC contact. To further strengthen this finding, we now
consider three-terminal measurements, with VSD applied to either N1 or N2,
while the current is measured on both SC and the other normal contact.

5.1.2. The conductance across the whole device
The three-terminal device allows more experiments, namely with VSD applied
to N1 and the current measured in both SC and N2. A schematic of this
configuration can be found in Fig. 5.5(a) and (b). In Fig. 5.5(c) and (d) the
conductances GSC,1 (c) and G2,1 (d) are plotted as a function of VBG and
VSD. Note, that Fig. 5.5c) is the same as Fig. 5.3d) but shown again for
completeness. We observe a very similar SC gap in both, GSC,1 and G2,1,
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Figure 5.5. Conductance with bias voltage on N1. Schematic of the
measurement where VSD is applied on N1 and I is measured on SC and N2.
The schematic illustrates the case without an induced proximity region (a) and
with proximity region (b). (c) (d) Conductance GSC,1 (G2,1 as a function of
VBG and VSD. e) Conductance G in dependence of VSD for fixed VBG = −6.6
V, no data processing has been done. f) Same as e) but G2,1 has been scaled
by a factor of 8.2, which results in very similar characteristics.

but the amplitude of G2,1 is much smaller. To illustrate this we plot G in
dependence of VSD at VBG = −6.6 V in Fig. 5.5e). The difference in amplitude
is obvious. However, when the G2,1 is multiplied by a factor of 8.2 the two
data sets are nearly identical as is seen if Fig. 5.5(f). We explain this factor
by R1 being so much larger than all other resistances in the device, that it
acts similar to a current source. Thus, only about 1

8 th of the current flows
into N2 and the apparent conductance dI/dV is smaller by the same factor.
We note, that our previously used resistances for RS and RSC have a ratio of
RS
RSC

≈ 6.4, which is smaller than the observed ratio between GSC,1 and G2,1.
Using values for RS and RSC resulting in a ratio of ∼ 1/8, leads to GSC,1 and
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G1,SC not agreeing as well anymore after correcting for the voltage divider.
From this we conclude that there are additional effects besides a simple current
divider affecting the measurement.
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Figure 5.6. The conductance with bias voltage on N2. Schematic of
the measurement setup where VSD is applied on N2 and I is measured on
SC and N1. The schematic illustrates the case without an induced proximity
region (a) and with proximity region (b). (c) (d) Conductance GSC,2 (G1,2)
as a function of VBG and VSD. e) Conductances GSC,2 (red) and G1,2 (blue)
in dependence of VSD for fixed VBG = −6.6 V, no data processing has been
done. (f) Same as (e) but for G2,1 only the symmetric component is shown.

If VSD is applied on N2 and the conductance is measured on SC and N1,
as illustrated in Fig. 5.6(a) and (b), a very different characteristic is observed.
Figure 5.6(c) shows GSC,2, which has already been shown in Fig. 5.4(c). As
before, we observe a SC gap with ∆∗ = 210 µeV, due to the voltage divider.
However, unlike in Fig. 5.5(d) conductance G1,2 does not show a clear SC
gap with suppressed conductance. The most prominent feature is a distinct
dip in conductance at VSD = 0. To further illustrate this, Fig. 5.4(e) depicts
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the conductances GSC,2 (red) and G2,1 (blue) as a function of VSD at fixed
VBG = −6.6 V. For G1,2 we observe a signal asymmetric in VSD, with no
clear BCS coherence peaks. We observe that if we only take the symmetric
component of G1,2 with

Gsym1,2 (V ) = 1
2 (G1,2(V ) +G1,2(−V )) , (5.5)

and
Gasym1,2 (V ) = 1

2 (G1,2(V ) −G1,2(−V )) , (5.6)

we recover a signal that resembles a SC gap with coherence peaks correspond-
ing to the ones found in GSC,2. From this we conclude that we still observe
the signatures of a SC gap in G1,2. The origin of this large asymmetry is
not exactly clear. A possible explanation could be finite bias effects [207],
which could be very pronounced due to the tunnel barriers being distributed
asymmetrically in the system as well as different junction lengths, and thus
different screening effects.

We further note, that assigning GLL = G1,SC and GLR = G1,2 we do not
recover the, theoretically predicted [207, 208] and experimentally observed at
low VSD [209], symmetry relation GasymLL (V ) = −GasymLR (V ) or the correspond-
ing GasymRR (V ) = −GasymRL (V ). We note that our measurement technique is not
identical and unlike ref. [209], we do observe significant voltage divider effects
as described above. Furthermore, the data presented in ref. [209] mainly fo-
cuses on bound states, which are not observed in this device. This symmetry
relation is due to electron-hole symmetry. Thus, a tentative possible reason
why we do not observe this, might be electron-hole asymmetry in our device.
Possible origins could be the above mentioned finite bias effects [207], which
might be amplified by the very open junction on the right NW side, or quasi-
particle poisoning [207]. However, given our very asymmetric device structure
and possible serial resistances of the built-in barriers and contact resistances
might play a bigger role.

We now further our understanding on whether or not there is a proximity
region below the SC in our device. We will first assume the case without
a proximity region, illustrated in Fig. 5.6(b). Here, there is only one N-S
interface to SC. Therefore, we assume that R1, R2 = const. with respect to
VSD. Combining this assumption with the measurements of G2,SC in Fig. 5.4,
we can conclude that RSC has a dependence on VSD similar to the curve in
Fig. 5.4f) scaled by R2. We now assume again R2 = 860 Ω and R1 = 32 kΩ,
and assume RSC = 140 Ω. Using again the model of a voltage divider, we find
the voltage across R1 to be similar to an inverted SC gap. Larger conductance
on the coherence peaks of RSC will result in a lower voltage drop over R1.
Assuming a constant resistance R1 the current flowing into N1 should have
the form of an inverted gap. However, this does not correspond to G1,2, as
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seen in Fig. 5.6(d). Note, that assuming the measured RSC,1 as resistance for
R1 also does not result in G1,2.

Similarly, we now consider the case where VSD is applied on N1 and we look
at conductance G2,1. Let us assume that only R2 is constant and R1 and RSC
both show the characteristic of a SC gap. Then the voltage dropping over R2,
using our voltage divider model, again shows the characteristic of an inverted
SC gap and cannot result in the gapped conductance G2,1.

From both these arguments, we conclude that both resistor R1 and R2 in
our model are required to have a N-S interface characteristic, which suggest
that a superconducting proximity region is induced in the NW segment below
SC.

5.2. Superconducting proximity gap
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Figure 5.7. VBG dependence of the below and above SC gap conduc-
tance. (a) Conductance GN (GS) above (below) the SC gap as a function
of VBG. (b) Suppression factor GN/GS as a function of VBG. For the blue
markers the minimum conductance was chosen for GS and for the red markers
the average of a few data points of the in-gap conductance was chosen. The
above gap conductance GN was always averaged over a few data points.

After characterizing the three-terminal measurements and arguing that we
do indeed perform spectroscopy on an induced SC proximity region, we will
now study the measured induced gap in more detail. Note, that all of the
conductances discussed here correspond GSC,1 of the previous section, which
includes a built-in tunnel barrier between N1 and SC. In chapter 4 we have al-
ready shown the gate-dependence of the zero-bias conductanceGS = G(V = 0)
in the SC gap. In Fig. 5.7(a) we now show both the zero-bias and above-gap
conductances, GS and GN respectively, as a function of VBG. Both conduc-
tances decrease with more negative VBG and GS is reduced compared to GN .

To study the subgap suppression, we show the suppression factor GN/GS
as a function of VBG in Fig. 5.7(b). Here, the absolute minimum in the gap
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is plotted in red, while the average over 10 µV in the gap is plotted in blue.
As a result, we find an increase in suppression at more negative VBG. The
distribution in the suppression value increases at more negative VBG due to
worse signal to noise ratio for lower signal at low VBG. A not noise dominated
suppression of above ∼ 50, a often cited criteria for a hard gap [204, 205], is
not observed.
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Figure 5.8. GS as function of GN and BTK-model. (a) In-gap Differen-
tial conductance GS in dependence of above-gap conductance GN . The blue
dashed line is a linear fit to the data, excluding the red points. The purple
dashed line is a linear fit with a y-axis offset. (b)-(e) Tunneling spectroscopy
of the induced-gap (red) at different VBG. The blue curve is calulated form
the BTK-model [136] using temperature T = 0.1 K, SC gap ∆ = 155 µeV,
and transmission through the barrier t = 0.44.

The general trend we find in these data can be understood based on the
conductance through an N-S interface [210] given by GS = 4e2

h

∑N

n=1
t2n

(2−tn)2 ,
with N the number of modes, and tn the transmission coefficient of mode n,
while normal state conductance for the same multi-channel system would fol-
low [210, 211], GN = 2e2

h

∑N

n=1 tn. To compare our data to these expressions,
we plot the minimal conductance GS as a function of the above-gap conduc-
tance GN in Fig. 5.8(a). We observe a linear dependence of GS on GN . We fit
a linear function to the data excluding the red data points. The blue dashed
line describes a homogeneous linear fit with slope m1 = 0.36 and the purple
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dashed line describes a linear fit with slope m2 = 0.43 and a finite offset in
the y-axis. While the purple line shows a better qualitative fit to the selected
data, we would expect the curve to pass the origin, as both GN and GS should
be zero when no modes with finite transmission are present in the system.

Comparing the conductance through an N-S interface formula to a the nor-
mal state conductance, assuming a constant number of modes and identical
tn = t ∀n we would expect a dependence of r = GS/GN = 2t

(2−t)2 . However,
we clearly observe a linear dependence of r in VBG. From this we conclude that
the transmission of the transport modes does not change much with gate volt-
age. We extract an average transmission t̄ = 0.44 ± 0.05 over all modes based
on the slope of Fig. 5.8(a). We understand this as the transmission coefficient
through the built-in tunnel barrier between N1 and SC. We use t̄ to model our
SC interface with the BTK-model [136]. In Figs. 5.8(b)-(e) the data of the
tunneling spectroscopy at different VBG is plotted in blue. The red data is the
BTK-model using t̄, which corresponds to a barrier strength of Z = 1.14±0.09,
an induced SC gap ∆∗ = 155 µeV, and the fixed temperature T = 0.1 K. We
see a general but not great agreement between the BTK-model and our data.
We note, that the softness at less negative VBG cannot be well-modeled even
by adding a phenomenological Dynes-parameter [212] to add poisoning to the
model. Each of Figs. 5.8(b)-(e) could be fitted better by adjusting some of the
parameters, however parameters such as the temperature are expected to stay
constant throughout the measurements. From this we conclude that there is
probably still some small variation in the transmission t on VBG.

In general, we can capture the general characteristic for reasonable param-
eters using the BTK-model. We observe that a possible reason for our soft
gap might be insufficiently strong barriers. The fact that t and therefore the
tunnel barrier seems weakly back gate dependent or even independent is puz-
zling. In chapter 4 we showed that tunnel rates Γ of a QD are tunable. Based
on our previous discussion in chapter 4 we speculate the barrier region might
be screened by the very close (about ∼ 20 nm) SC contact and a (nearly)
constant, badly tunable tunnel barrier results.

Now we discuss the impact of the distance between tunnel barrier and SC.
We estimate a distance between SC contact and tunnel barrier of about ∼
20 nm on the side of contact N1 and for the N2 contact side 0 from SEM
images. The tunnel barrier is shorted by the SC contact on the N2 contact
side, as shown by the much larger conductance we measure on that NW side.
We can also model the conductance GSC,2 with the BTK-model, we need
a much higher transmission of about t ≈ 0.7. This again agrees well with
our observation, that no built-in barrier is present on that side and that t
corresponds to the transmission through the barrier on the N1-SC side. Note,
that to get decent agreement with the BTK-model we need to add a Dynes-
parameter much larger than on the N1 side. Using a similarly large Dynes-
parameter to model GSC,1 results in a much too soft gap.
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We speculate about two possible explanations. The proximity gap gets
poisoned from the normal conducting contacts N1 and N2, since there is a
much weaker barrier between N2 and the proximity region more quasiparticles
can poison the gap. Another possible explanation is the number of modes in
the system. The conductance GSC,2 is nearly an order magnitude larger than
GSC,1, therefore we would expect a much larger number of modes to contribute
to transport. Possibly some of these modes couple weaker or not at all to the
SC, which leads to an increased poisoning.

Furthermore, we would like to point out that we have not seen any general
influence of the distance between the tunnel barrier and the SC contact on the
hardness of the gap. As long as the tunnel barrier is not shorted a suppression
of about a factor of 6−15 is observed. This has been seen in devices with close
SC contacts to the barrier, such as the one discussed here, as well as devices
were the distance between SC an barrier was above 100 nm.

5.3. Summary and Outlook

In conclusion, we have shown evidence for an induced SC proximity region
in an InAs NW using three-terminal measurements. We have shown how
very asymmetric tunnel barriers can lead to voltage division effects in the
measurements. While they might seem trivial at first glance, their presence
can distort experimentally extracted parameters such as the induced SC gap
∆∗. We have further shown an increase of the suppression factor GN/GS ("gap
hardness") for more negative back gate voltages.

Furthermore, we observe a linear dependence of GS on GN , implying that
our back gate mainly tunes the number of modes contributing to transport and
not their transmissions. We have extracted average transmissions of all modes
of t̄ ≈ 0.44 ± 0.05 with a built-in tunnel barrier and t̄ ≈ 0.7 for a bare NW
segment. With these transmission values we can model both gaps with the
BTK-model. We get a good general agreement for a large gate range with some
discrepancies. These cannot be explained by simply adding a Dynes-parameter
to include quasiparticle poisoning for the gap measured on the built-in tunnel
barrier.

For the bare NW segment, we need to include substantial quasiparticle poi-
soning into the model via a Dynes-parameter to get good agreement to the
data. We speculate that this is either due to a very high number of modes,
which do not all couple sufficiently to the SC or quasiparticle poisoning through
the leads, which is unhindered without any barrier. We note, that one possible
reason that we do not observe a hard gap, could be simply too weak tunnel
barriers. However, this does not explain the difference in poisoning with or
without tunnel barrier.

We observe that, for tunnel barriers very close to the SC we do not observe
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5.3. Summary and Outlook

any tunability of the barrier. We speculate that this is due to screening effects
of the SC contacts. This could further explain, why we do not observe spurious
QDs for such close barriers. However, in general we have not observed any
dependence of the gap hardness on the distance between tunnel barrier an SC
contact.

As the height of the tunnel barrier is given by the offset in conduction band
of wurtzite and zincblende, the barrier height cannot be tuned by growth in
this NWs. It would be possible to grow longer tunnel barriers, which should
exponentially suppress transport. The SC contact could also be placed further
away from the barrier to allow for more gate tunability. However, this would
possibly destroy the clean tunnel barrier and lead to spurious QD formation,
which is undesired. We note that similar soft gaps have been observed in
hard-wall InAs NW with InP barriers [100]. However, high gate voltages
were necessary to observe superconductivity in that work, which might have
decreased the barrier strength.

To study whether the origin of our soft gap lies in the weak tunnel barrier
or in quasiparticle poisoning, we will investigate a Cooper pair island in the
next chapter. By studying the parity of the Cooper pair island in dependence
of magnetic field, we hope to gain some further knowledge of this issues.
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6 Charge sensing of a superconducting
charge box

In this chapter we discuss our results of a superconducting island fabricated
in the proximity region of a crystal-phase defined InAs NW. By evaporating
a homogeneous aluminium (Al) film much thinner than the NW, the Al dis-
connects at the edge of the NW, creating a disconnected thin film on the NW
with strongly coupled self-aligned Al pads, which can be used as side gates
(SGs). However, in the fabrication process the two Al SGs were not suffi-
ciently etched to completely remove the native oxide before the contact lead
evaporation. The resulting bad contacts created a superconducting charge
box (SCB) ("Cooper pair island") in each SG, for which the QD in the NW
acts as a charge detector. We will show clear evidence of Cooper pair islands
in the SG, such as 2e-periodicity in the superconducting state and a halving
of the capactive shift in the detection in the normal state. Furthermore, we
will present time-resolved measurements of Cooper pair tunneling via charge
detection. However, for the proximitized QD in the NW none of the above
mentioned signatures of Cooper pair islands could be found. We see evidence
of superconductivity, but no sign of the 2e-periodicity of the discrete charge
we would expect of a unpoisoned Cooper pair island. From the clear differnce
of the bare Al-island to the NW-island, we conclude that our Al is of good
quality itself and the reason we do not measure a Cooper pair island in the NW
must lie either with the induced superconductivity or the NW itself. We will
conclude that the most likely reason, lies with the many conductance channels
in the NW. We hypothize that no all of these channels couple well to the SC
leading to unproximitzed channels poisoning induced superconductivity.

6.1. Cooper pair island device

A false colored SEM picture of a typical device is shown in Fig. 6 a). The sam-
ple was fabricated with standard e-beam lithography as explained in chapter 3.
We will only quickly note the important differences to the standard fabrication.
The Cooper pair island is defined by two wurtzite barriers (red), which are
more than 1 µm apart. A thin film of Al is evaporated between these barriers
to create the Cooper pair island. We evaporate 12 nm of pure Al at a sample
holder temperature of -75◦C. As the NWs have a width of around 80 to 100
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Figure 6.1. Nanowire QD and SG charge boxes. a) False color SEM
picture of a similar device as discussed in this chapter. The normal contacts
and gates made from Ti/Au are colored in yellow. The superconducting island
is blue. The NW is colored in green, the wurtzite barriers are colored red.
b) False colored SEM picture of the NW measured before any contacting or
etching was done. The colors are the same as for a). c) Schematic cross-section
of the device. The NW (green) has an hexagonal shape, which shadows the
area below. A thin (∼ 12 nm) layer of Al breaks off at the edges of the NW
and a thin isolated Al island is left on the NW. d) Electronic schematic of the
device. The NW QD is both capacitively and tunnel coupled to the source
drain leads. A bias voltage is applied and the current is measured. The SGs
couple capacitively to the NW QD. They are tunnel coupled to their respective
leads leading to the formation of superconducting charge boxes.

nm and a hexagonal shape, the Al is to thin to connect both the substrate and
the NW top. Therefore, it will be disconnected at the edge, leaving us with a
thin Al film on the top two or three facets of the NW (depending whether the
NW lies ridge up of face up), and with two large pads of superconducting Al
very close to the NW. In a next step we contact both the NW and these Al
pads with Ti/Au contacts. Before evaporation a in-situ Ar milling step of 30 s
is done to remove the native oxide on the NW and the Al. If desired additional
SGs can be fabricated. Contacting the thin Al pads creates two SGs very close
to the NW. As they are evaporated simultaneously with the island, they are
self aligned and mainly tune the NW below the superconductor. Due to their
close proximity we find lever arms of around 0.53 eV/V if both SGs are swept
together, much larger than the lever arm to the global Si back gate of 0.04
eV/V. In conclusion we fabricate very strongly coupled self aligned SGs to a
superconducting island on the NW.
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6.2. QD as charge sensor for the superconducting charge boxes

6.2. QD as charge sensor for the superconducting charge
boxes
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Figure 6.2. Large gate-gate map of the Cooper pair island.The dif-
ferential conductance dI/dV in dependence of SG voltages VSG8 and VSG6 at
zero external magnetic field. The bright diagonal lines are the QD resonances.
They are periodically shifted in gate voltage, as we would expect for a parallel
TQD. The white dashed lines are a guide to the eye to the shifts. The yellow
dashed lines were fitted to the yellow crosses and their slopes used for the
white dashed lines.

Figure 6.2 shows the conductance of the NW as a function of VSG8) and
VSG6. The single QD resonances are clearly visible as bright lines. From the
negative slope of −0.83 of the resonances, we conclude that we have very sim-
ilar lever arms of the Al SGs on the device, as one would expect from the
symmetric device geometry. The most striking feature is the periodic shift of
the resonances. The yellow points, where the shift was observed, were man-
ually extracted and a linear fit interpolates over the full gate voltage range
(yellow dashed line). We extract a slope of ah = 0.071 and av = 12.65 for the
horizontal and vertical line respectively. Using the same slopes and manually
optimizing the offset, the white dashed lines were added. The difference be-
tween the y-axis offsets at the origin of two neighboring lines is 37.1 ± 0.7 mV
for the vertical lines and 2.92 ± 0.04 mV for the horizontal lines. Note, that
the spacing for horizontal lines is smaller due to extracting the vertical offset
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6. Charge sensing of a superconducting charge box

at the origin. The lines are very evenly spaced, confirming a periodic shift of
the resonance lines.

We attribute these shifts of the resonance lines to the formation of capaci-
tively coupled charge boxes in both Al SGs. Our data resembles serial triple
quantum dots (TQD) [93]. However, as the SCB are in the SGs and not
the NW, they only couple capacitively and we do not observe any conduc-
tance change at the intersection of the single charging lines as is usual for
serial TQDs. In our case, whenever a charge tunnels into one of the SCBs
the electrostatic potential in the vicinity of the NW QD is changed. Due to
the proximity to the NW, the NW QD is sensitive to this potential change
and the Coulomb blockade resonances get shifted. Since the Coulomb block-
ade resonances are narrow they are very sensitive even to tiny changes in the
electrostatic potential and our NW QD can be used as a charge detector for
the charge on the SCBs. We see that ah ≪ 1 and av ≫ 1, which shows that
these shifts are mainly tuned by one gate with very little cross talk, further
confirming our assumption that these charge boxes reside in the SGs. After
the initial measurements, additional leads were fabricated on the Al pads of
similar devices of the same fabrication batch with the same etching recipe.
Between two leads connected by the Al pad we measured a resistance of a few
MΩ at room temperature. This shows that our SGs are not well-connected
to the bond pads, presumably due to insufficient etching of the native oxide.
These thin insulating layers create tunnel barriers, allowing the formation of
charge boxes on the Al pad [213]. In the first part of this chapter we will focus
on characterizing the SCB using the NW QD as a charge detector. We will
return to the properties of the NW QD in more detail later.

6.2.1. Magnetic field dependence

Gate dependence of SG QDs

In Fig. 6.3 we show a zoom-in on four "squares" of these capacitive shifts at
an out-of-plane magnetic field BZ of 0 (a), 10 mT (b), 24 mT (c), and 40 mT
(d). For Figs. 6.3a) and b) two white dashed lines mark the edges of the shifts,
from the distance between the two lines we later extract their error in gate
space. We see that at zero field and 10 mT there are only two shifts in the
VSG8 and VSG6 interval investigated here. At 24 mT this lines start to split
into two at the same time the capacitive shift starts to decrease. At 40 mT the
lines are completely split into four nearly equidistantly spaced lines for VSG6
and three for VSG8 as one of the lines moved out of the measurement window.
Again, we note that the capacitive shift of the lines is much less pronounced
at larger BZ . The full data set with all magnetic field maps can be found in
Appendix C.1.

In a next step we investigate the shift of the charge detection signal, i.e.
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Figure 6.3. SG maps at different magnetic fields. Current measured
through the DQD in dependence of both SG voltages VSG8 and VSG6 for out-
of-plane magnetic fields 0 mT (a), 10 mT (b), 24 mT (c), and 40 mT (d). The
white dashed lines mark the borders of the shifts of the resonance lines in (a)
and (b), corresponding to single charging of Cooper pairs in the SCBs. In (c)
and (d) the lines split into two additional shifts, because superconductivity is
destroyed and the island becomes charged by electrons.

we extract the offset between the white dashed lines and plot them against
the magnetic field. The result is shown in Fig. 6.4. We note that as all the
lines are parallel, it does not matter in what voltage we take the offset or their
exact value. For simplicity, we take the offset in VSG6. We can view this as a
projection of both sets of lines on the VSG6 axis. As our NW QD effectively acts
as a charge detector for the SCBs, observing a shift is equivalent to a Coulomb
blockade resonance occurring in one of the SCBs. This allows us to extract
the magnetic field dependence of the charge states of the SCBs in Fig. 6.4. We
see that the peaks do not significantly change in magnetic fields up to 20 mT.
For higher fields, they split into two lines, which move apart until they become
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Figure 6.4. Gate vs magnetic field dependence of the SCBs. The
extracted offset voltage in VSG6 for the white dashed lines in Fig. 6.3 is plotted
against the applied magnetic field BZ . As the NW QD acts as a charge
detector, this is effectively projecting the Coulomb resonances of the side-
coupled QDs on VSG6 as a function of the applied magnetic field.

constant at a field around 40 mT. This are the characteristics we expect from
a Cooper pair island [43, 214, 215]. At low field, due to the superconductivity,
only Cooper pairs are allowed to enter or exit the island, leading to Coulomb
blockade resonances with a spacing of 2e/α in gate voltage. As the magnetic
field is increased the superconducting gap shrinks until it is smaller than the
charging Energy ∆ < EC . This allows the transport of single electrons on
to the charge boxes, leading to Coulomb blockade resonances with a spacing
of 1e/α. Comparing the peak spacings at low field, from zero to 10 mT, and
around 40 mT for the horizontal resonances originating from SG6 and from
30 to 40 mT for the vertical resonances originating from SG8, yields a ratio
of 2.0 ± 0.1 for the SG6 resonances and 1.97 ± 0.09 for the SG8 resonances.
This is in good agreement with the expected ratio of 2 for a Cooper pair island
without quasiparticle poisoning.

Amplitude of capacitive charge sensing signal

To further prove that we are detecting a double electron charging on the
Cooper pair boxes with our NW QD, we extract the capacitive shift for every
magnetic field map in Appendix C.1. As a illustration we show two SG6-SG8
maps at 0 mT and 40 mT in Figs. 6.5(a) and (b), respectively. On the top
right the resonances of the SCBs do not cross on the resonance of the NW QD.
Hence, the capacitive shifts do not compensate each other due to the symme-
try of the system. Therefore, we use the top right line to extract the shifts.
We denote the line defined by the red points in Fig. 6.5 as the not shifted
resonance and the blue marks as the shifted one. We fit parallel lines through
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Figure 6.5. Capacitive shift extraction. Two example maps of the capac-
itive shift extraction at 0 mT (a) and 40 mT (b). The measurements points
marked in red describe the unshifted resonance line, the blue one the capac-
itively shifted resonance. The red and blue lines are fit through these points
with the same slope given by the blue line.

both datasets and extract the x and y-axis offsets of these lines. As the lines
are parallel the offset difference corresponds to the voltage shift necessary to
compensate the electrical potential shift due to the additional charge on the
Cooper pair boxes either on VSG8 or on VSG6, respectively.

In Fig. 6.6 we plot the extracted voltage shifts against magnetic field BZ .
Figure 6.6(a) shows the absolute extracted voltage shifts, while 6.6(b) shows
the same data normalized to the respective average of the extracted shifts up
to 18 mT. We see a similar characteristics as in Fig. 6.4, namely that the
shifts stays constant up to around 15 mT. At higher magnetic fields the shifts
decreases drastically until they saturate at half the zero field value. This be-
havior is again well described by the notion that the SGs form superconducting
charge boxes, with charges that we detect with our NW QD as charge sensor.
Below the critical field of Al the SCBs are charged up by integer numbers of
Cooper pairs with an electric charge of 2e. As superconductivity is destroyed
at higher magnetic fields, the islands become populated by single electrons
with an electric charge of e. For this reason, we would expect capacitive shifts
of half the magnitude in the normal state as compared to the superconducting
state, as observed here. We take an average at low field (0 to 18 mT) and high
field (24 to 40 mT) and calculate their ratio to be 2.1 ± 0.3 for both VSG6 and
VSG8.
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Figure 6.6. Magnetic field dependence of the capacitive shift. (a)
shows the absolute extracted shift in values of VSG8 (red) and VSG6 (blue). The
horizontal lines show the averaged shift for high and low fields respectively.
(b) shows the normalized capacitive shift by the average at low field.

6.2.2. Time-resolved tunnel events

To further study the Cooper-pair islands in the SGs, we performed time-
resolved charge detection measurements. Figure 6.7(a) shows a SG6-SG8 map
similar to what has been discussed above to study the magnetic field depen-
dence. However, here the current I(t) is measured as a function of time t for
each gate voltage of the map and and the color scale corresponds to the av-
erage current Iavg of each time-trace. This alone is not significantly different
from standard measurements, but the recorded data in addition allows us to
investigate the fluctuations around the average number. In contrast to stan-
dard experiments, we set the integration time as low as possible, such that we
still have a reasonable signal-to-noise ratio, and perform the averaging numer-
ically. The average time between two measurements points is about δt ∼ 36
ms, faster measurements were not possible with our standard setup.

Three of these time-dependent current measurements are shown in Fig. 6.7(b).
The colors of the lines corresponds to the marked gate voltages in Fig. 6.7(a).
We observe three qualitatively different characteristics. For the green curve
distinct steps in the current can be observed. In Fig. 6.7(c) the correspond-
ing histogram is shown. The measured current range is separated in 100
equally sized intervals ("bins") and the number of data points in each interval
is counted. Two distinct peaks are visible, corresponding to the two distinct
current values observed in Fig. 6.7(b). The solid black line is a bimodal (B)
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Figure 6.7. Time-resolved tunneling of a Cooper-pair. (a) Averaged
current of a series of time-resolved current measurements. Each point in VSG8
and VSG6 corresponds to the average current of a single time-dependent current
measurement. (b) The time dependence of the current for the three points with
marked borders (red, blue, green) with corresponding line color. (c), (d), (e)
Histograms of (b) with corresponding colors. The black line is a bimodal (c,d)
or gaussian (e) fit to the data.

fit of two Gaussian (N ) to the data with:

N (x, µ, σ) = exp
(

(x− µ)2

2σ2

)
(6.1)

B = pA · N (x, µ1, σ1) + (1 − p)A · N (x, µ2, σ2), (6.2)

where µ1,2 describes the position of the Gaussian and σ the standard devia-
tion, parameters A and p describe the absolute and relative height of the two
Gaussian composing the bimodal distribution.

The histogram further illustrates the observation from Fig. 6.7(b), that there
are two discrete signal levels between two distinct current values. We perform
the same analysis for the blue curve in Fig. 6.7(b), with the resulting histogram
and fit shown in Fig. 6.7(d). While there are still two peaks as in Fig. 6.7(c),
the peak at higher current is not as prominent. There are a significant amount
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6. Charge sensing of a superconducting charge box

of counts in between the peaks. We explain this by different rates in the current
switches, as can be seen in Fig. 6.7(b), for the blue curve no clear plateaus at
the higher current value are observed only switches between the two current
values within a few measurement points. The switching between current values
happens at different rates. We will come back to this observation later. In
Fig. 6.7(e) the histogram for the red curve in Fig. 6.7(b) is shown. Here, the
data is described by a single Gaussian A · N . Note, that we observe four
distinct current values in the three time dependent measurements shown, as
the current values measured depend on the NW sensor-QD resonance position.

To analyze the data more quantitatively we extract the number of steps in
current per time trace. For each time trace the derivative is taken and the
derivative is compared to a threshold values. If the derivative exceeds the
threshold a up (down) step is counted for a positive (negative) derivative. The
number of up steps and down steps are then added and divided by two to obtain
the total number of steps ns in a time trace. Note, that the threshold current
and derivative values depend on the maximum current measured in the device.
As this can differ between different measurement, i.e. because of a different
bias voltage, this value has to be adjusted between data sets with different
measurement parameters, but should stay consistent within one data set. Also,
this method might ignore some steps with a low current difference, due to the
bad signal-to-noise ratio. However, for most of the data set the algorithm
performs adequate as verified by manual inspection. Once we extract the
number of steps ns per trace, we calculate the rate Γ = ns

tmeas
by dividing the

step number by the total measurement time tmeas ≈ 29 s of one time trace.
Figure 6.8(a) shows the extracted switching rates as a function of the gate

voltages VSG8 and VSG6. We observe rates ranging from 0.05 Hz up to rates of
8.0 Hz. Given the average waiting time between two measurement points δt ∼
36 ms, the maximal detectable rate for our system assuming perfect detection
is 1

3δt ≈ 9.5 Hz as the maximum number of switches would correspond to one
step up and down within three measurement points. Conversely, the minimal
detectable rate is 1

tmeas
≈ 0.034 Hz, corresponding to one step in the total

measurement time. We conclude, that while we could increase the lower limit
of Γ by measuring longer, we are limited by our type of measurement for high
frequencies. In Fig. 6.7(b) the limitation is already clearly visible in the blue
curve. We mainly detect single peaks not plateaus. Additionally, in Fig. 6.7(d)
we observe a significant amount of counts between the two peaks, signifying
that the switching happens so fast, that the instrument cannot resolve the
signal anymore.

Figure 6.8(b) shows the average current Iavg per time trace vs. VSG8 and
VSG6. To illustrate the distributions of slow and fast tunnel rates better we
mark point with switching rates > 1 Hz with white borders and the ones
with switching rates > 0.05 Hz with blue borders. All points without marked
borders did not show any detectable switching. As a guide to the eye pink-
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Figure 6.8. Switching rates. (a) Extracted switching rate Γ as a function
of VSG6 and VSG8 between the high and low current values in the time-resolved
measurements. (b) Averaged Current Iavg of the time dependent current traces
in dependence of VSG8 and VSG6. The borders mark points with switching
rates Γ > 1 Hz (white) and with rates Γ > 0.05 Hz (blue). The pink dashed
lines are a guide to the eye for the position of the resonances of the SCBs.

dashed lines were added to where the SCBs are on resonance. We observe that
all the switching happens in vicinity to the resonance points of the SCBs. As
a general trend we find faster switching rates for the resonances corresponding
to the QD in SG6 ("horizontal" pink-dashed lines) and slower rates for the QD
in SG8 ("vertical" pink-dashed lines).

We will now discuss the physical origin of the observations made above. We
have shown already that the NW QD is strongly capacitively coupled to the
SCBs. We see this from the strongly visible shift in the NW-QD resonances.
In combination with the fact, that we only observe steps in current when the
SCBs are close to resonance, we conclude that our NW QD acts as a charge
detector to the SCBs and we detect the loading and unloading of the SCBs
in the time-resolved measurements. As previously shown, that the SCBs are
proper Cooper pair islands, we conclude that we observe single Cooper pairs
tunneling into and out of the SCBs.

Furthermore, we find different tunnel rates between the two SCBs. We are
not sure about the physical origin of this difference in tunnel rates. Both
SGs were fabricated in the same fabrication steps and so were the Au leads
connecting them to the bond pads. The overlap between the Al pads and the
Au leads are nearly identical. From the design they are estimated to be about
0.016 µm2 for SG8 and 0.015 µm2 for SG6. We see that SG8 has the slightly
larger overlap area, which does not agree with the observation of a significantly
slower tunnel rate. We speculate the non-identical native oxide layers and the
partial etching could be responsible for the difference.
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6. Charge sensing of a superconducting charge box

We note, that the NW-QD is not an ideal charge detector as tuning the SCBs
also strongly tunes the NW QD due to the strong lever arm and the absence
of other gates apart from the global BG. Therefore, it is not possible for the
NW QD to stay on resonance and act as a detector while independently tuning
the SCBs. We also observe this in the different current levels in Fig. 6.7(b).
The sensitivity of the charge detection depends on the slope of the Coulomb
blockade resonance of the detector QD. The higher the slope, the stronger the
detection signal. Hence, we see the largest currents (and best signal-to-noise
ratio) at the side of the NW-QD resonance, the further we move away from
there the smaller step in current becomes. Consequently, if the NW-QD is in
blockade, no detection can happen. This could possibly be counteracted with
additional SGs although the high lever arm of the Al SGs might make this
challenging.

We compare the measurement in Fig. 6.8 in the superconducting state at
zero magnetic field to the measurements shown in Fig. 6.9 performed in an
out-of-plane magnetic field of 40 mT. In Fig. 6.8(a) we plot again the averaged
current Iavg for each time trace for the whole VSG8 vs VSG6 map. As before, we
observe a decrease in resonance shift and half the distance between two charge
box resonances. Figure 6.9(b) shows the corresponding extracted tunnel rates
Γ. We detect switching only at two points in the whole map. Both of these we
attribute to noise in the current being detected as step by the algorithm by
direct inspection. Note, that we could have filtered this points out by increas-
ing the threshold currents, but refrained as we wanted to compare the data
sets with the same analysis. Checking the actual time traces corresponding
to these points reveals no steps (see Appendix C.2)), just noise. This finding
of no switching events in N-state can have two origins: first, too fast and too
many tunneling events for the detector, second, too slow and too few tunneling
events to observe in tmeas. According to the BTK-model [136], interfaces with
low transparencies strongly suppress superconductivity in the gap, most states
are normal reflected and very little Andreev reflection is possible. From the
low tunnel rates we detect in the few Hertz range, we can safely assume that
our interfaces have low transparency. As we have detected 2e-periodicity for
the Cooper pair islands in the SGs, we can assume that quasiparticle poison-
ing is very low and the Al of the SGs indeed shows a hard superconducting
gap. As the magnetic field is increased and the induced superconducting gap
becomes smaller than the charging energy EC > ∆∗, single electron transport
on the charge box in enabled. Therefore, increasing the transparency and the
tunnel rates.
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6.3. Proximitized nanowire quantum dot
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Figure 6.9. Time-resolved measurements 40 mT. (a) Averaged current
Iavg per time-resolved trace in dependence of VSG8 and VSG6 at an out-of-
plane magnetic field of 40 mT. (b) Corresponding extracted rates Γ. The only
Γ > 0 extracted are attributed to noise and no measurable rates are extracted.

6.3. Proximitized nanowire quantum dot

In the previous part of this chapter we have shown that we can make a Cooper
pair island with the bare Al SGs on the substrate. However, our goal was to
make a Cooper pair island on the NW, so far we have not discussed signatures
of that. Therefore, we will now focus in this section on the actual NW QD.
Figure 6.10 shows four measurements of Coulomb diamonds. Figures 6.10(c)
and (d) were measured on the same NW used above as a charge sensor. Figures
6.10(a) and (b) were measured on a similar NW from the same fabrication
batch. They show very similar characteristics, but with different addition
energies.

In Fig. 6.10(a) the differential conductance G = dI/dV is shown as a func-
tion of both Al SGs with the same voltage VAl applied to both SGs. and the
bias voltage VSD at zero magnetic field and a VBG = 0 V. For |VSD| ≤ ±100
µV the conductance is suppressed, as expected from standard QDs coupled to
one superconducting reservoir [60, 78, 127, 144, 148, 216, 217]. The position
is marked in Fig. 6.10(a) with white dashed lines. In Fig. 6.10(b) the same
measurement at a constant magnetic field BZ = 0.5 T is shown. We observe
that the suppression of conductance at |VSD| ≤ ±100 µV has vanished. In
general, Fig. 6.10(b) shows a larger conductance overall. As 100 µV is a rea-
sonable value for a small induced superconducting gap ∆∗ of Al and its effects
vanish with a low magnetic field, we attribute the suppression of conductance
at |VSD| ≤ ±100 µV to the induced proximity superconductivity. Note, that
the charging energy EC ≈ 320 ± 10 µeV in Fig. 6.10(a) is clearly larger than
2∆∗ (note, the factor of 1/2 due to the definition of EC , also see chapter 2),
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Figure 6.10. Coulomb blockade diamonds of a superconducting is-
land. (a) Differential conductance G = dI/dV as a function of the bias voltage
VSD and voltage VAl applied to both SGs at zero magnetic field and back gate
VBG = 0. (b) Same measurement but at magnetic field BZ = 0.5 T. The
white dashed lines are guides to the eye at VSD = 100 µV in both graphs. (c)
Coulomb blockade diamonds as a function of VBG and VSD at zero magnetic
field and VAl = 0.5. (d) Same as (c) but at BZ = 0.1T . The black lines are
guides to the eye at VSD = 240 µV. The jumps in (c) and (d) are reproducible
and induced by the SCBs. Three of these jumps are marked by blue arrows.
There amplitude is reduced in (d) as superconductivity in the SCB is destroyed
and the capacitive shift is halved.

therefore a proper Cooper pair island with 2e-periodicity would not be ex-
pected. However, for EC not much larger than ∆∗ even-odd effects in EC
would be expected for an unpoisoned Cooper pair island [146, 147], as we have
discussed in chapter 2. The system most closely resembles a proximitized QD
with EC > ∆∗ [60, 78, 127, 144, 148, 216, 217].

Figure 6.10(c) and (d) show a similar Coulomb diamond measurement at a
higher gate voltages. Here, the conductance is measured as a function of VBG
and VSD, while VAl = −0.5 V. Similar to Fig. 6.10a) and b) at zero magnetic
field there are features visible which vanish at a finite magnetic field above the
critical field of Al. In Fig. 6.10(c) and (d) the black line serves as a guide to
the eye at VSD = 240 µeV, corresponding to the bulk superconducting gap of
Al [206, 218]. Here, we estimate a charging energy EC ≈ 100 ± 20 µeV. Note,
that the estimation of the charging energy and the lever arms becomes difficult

92

6



6.3. Proximitized nanowire quantum dot

for such low charging energies, as there are no sharp borders of the Coulomb
blockade diamonds. If we assume the same induced superconducting gap ∆∗ as
above, then EC/2 < ∆∗ for Fig. 6.10(c). However, the applied gate voltages are
much more positive, which would locate the electron wavefunction further away
from the superconductor and reduce the coupling. From this logic, we should
assume that the induced superconducting gap is smaller and it is unclear if
EC/2 < ∆∗. Clearly, there is no 2e-periodicity or even-odd effects in EC
visible when comparing to the data in the normal state at finite magnetic
field. We therefore have to assume that our superconducting island is too
poisoned to observe 2e-periodicity due to bad coupling to the superconductor
or the induced superconducting gap is too small.

The features looking similar to gate jumps (blue arrows) in Figs. 6.10(c)
and d) are reproducible. They occur due to charging of the SCBs, as dis-
cussed previously. Note, the reduction in visibility in Fig. 6.10(d) compared
to Fig. 6.10(c), due to the halving of the discrete charges loaded onto the
SCBs. From our previous analysis we would also expect a doubling of the
number of jumps as the Cooper pair island becomes normal conducting and
charged by electrons with a 1e-periodicity. However, due to the small jumps
this is difficult to resolve.

To improve the device quality, we fabricated a new device to remove the fea-
tures of the SCBs but keep the advantage of the close SGs. The general device
structure is similar to the device shown in Fig. 6.1(a), however to guarantee a
good contact to the Al SGs, a 9 nm thin layer of gold was evaporated before the
Al SG. The thin layer of gold acts as a bridge to the leads connecting them to
the bond pads. As gold does not oxidize under normal condition, the contact
resistance should be low. Furthermore, the Ar-milling time was increased in
order to establish better contact to the Al and the overlap area was increased.
At room temperature the resistance between two leads going to the same Al
pad were found to be below 300 Ω. Accounting for resistances of the probe
setup, we can assume that for this sample a good metallic contact to the Al
SG is present. Additionally, the leads were made from Ti/Al to act as a quasi-
particle trap for the Al-island. To further improve the interface between the
Al-island and the NW a 1 nm thin sticking layer of Ti was evaporated before
the Al deposition. As expected from the room-temperature characterization
the device showed no sign of SCBs in the gate-gate maps. And only a single
QD was observed. We can conclude that the bad contact problem to the SGs
has been solved.

Figure 6.11(a) and (b) show Coulomb diamonds measured on this device as
a function of VBG and with VAl = 0. As seen in the previous device, applying
a magnetic field and destroying superconductivity in Al does not change the
periodicity of the Coulomb resonances. Unlike the previous device, there are
no clear features to associate with a superconducting gap edge. However,
some signatures of superconductivity, such as a general decrease in current
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Figure 6.11. Coulomb blockade diamonds of a superconducting is-
land. (a) and (b) Conductance G = dI/dV as a function of the back gate
VBG and bias voltage VSD with VAl = 0, BZ = 0 (a) and BZ = 0.3 T (b).
The colored lines correspond to line traces in (c), (d) with the corresponding
colors. c) Conductance at VSD = 0 as a function of VBG for (a) (red) and
(b) (brown). (d) Conductance on resonance (blue) and in blockade (green) in
dependence of VSD for (a) (dark green, dark blue) and (b) (light green, light
blue).

is seen. Specifically, we observe a suppression in current in the device at
BZ = 0.3 T above the charging energy compared to zero magnetic field in the
superconducting state. However, at |eVSD| < EC the conductance is decreased
at BZ = 0, compared to BZ = 0.3 T. This is shown in Fig. 6.11(c) with a cross
section at VSD = 0 for both Figs. 6.11(a) (red) and (b) (brown). Both the
absolute conductance and relative height of the Coulomb blockade resonances
is increased at finite magnetic field.

Similarly, Fig. 6.11(d) shows the conductance as a function of VSD for con-
stant VBG taken at positions corresponding to Coulomb blockade (green lines)
and on resonance (blue lines). As already seen in Figs. 6.11(a) and (b) the
conductance at large VSD decreases at finite magnetic fields and for small VSD
the conductance is increased. However, no clear sign of superconductivity is
observed compared to the previous devices.

In conclusion this device shows no change from 2e to 1e periodicity, when
going from the superconducting to the normal state, but resolves the "jumps"
from the badly contacted SGs. Furthermore, unlike the previous device we
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observe no clear superconducting gap either. We observe some differences
in conductance at zero and finite magnetic field, however we cannot definitely
attribute those to superconductivity. We speculate that at positive VBG, trans-
port is dominated by the electrons accumulated at the bottom of the NW. As
these modes are further away from the superconductor on top of the NW,
they are less strongly proximitized. Alternatively, it is possible that adding
the 1 nm Ti sticking layer negatively influenced the induced superconductiv-
ity with such a thin Al layer. However, Ti is also a superconductor by itself
below 300 mK [219] and therefore unlikely to destroy it. However, its addition
might worsen the interface between Al and the InAs NW, which in turn could
weaken the induced superconductivity. Furthermore, the effects we observed
at the gap edge in previous devices were due to quasiparticle poisoning from
the leads. As the leads are supercondcuting themself now, such effects should
lessen. However, the superconducting leads could also hinder us. It has been
shown that single Cooper pair transistors are poisoned and 1e-periodic if ∆∗

of the outer leads is larger than ∆∗ of the island [220]. If the proximity gap is
indeed so small, this might also be the case for us, although it does not explain
why we didn’t observe 2e-periodicity for the island with normal leads.

6.4. Summary and outlook

We have fabricated and measured several different Cooper pair island devices,
where a ∼ 1 µm long QD was proximitized by a thin cold-evaporated layer
of Al. By taking advantage of the 60 to 80 nm thick NWs the Al on top of
the NW breaks-off from the Al evaporated on the substrate. This allows to
selectively coat only the NW top-surface with Al, while also creating large Al
pads to use as extremely close SGs. We have shown large lever arms on these
SGs of up to 0.53 eV/V if both SGs are used simultaneously.

A bad contact interface between the Al SG pads and the connecting contact
leads, due to insufficient removal of the native oxide, lead to the formation
of QDs in the SGs. We have taken advantage of the extremely close NW to
use it as a charge detector for the SCBs. We observe 2e-periodicity typical of
a Cooper pair island, as well as half the capacitive shift at finite field in the
charge boxes. From this we conclude that our SCBs form proper Cooper pair
island. We then use the NW QD to detect the tunneling of a single Cooper
pair in the SCBs and observe different tunnel rates between the two QDs.
Note, that with small adjustments to the fabrication and device design, the
SCBs should also be usable as charge detector. This could potentially be used
to have a very strongly coupled charge detector to the NW.

For the NW QD however, no sign of a Cooper pair island could be found in
several devices. We have observed charging energies EC below the usual values
of the induced superconducting gap ∆∗ without any signature of a Cooper

6

95



6. Charge sensing of a superconducting charge box

pair island. To reach such low charging energies however, the device needs
to be strongly positively gated. At around zero gate voltages, the charging
energies are above ∆∗. We speculate that these large positive gate voltages
might have a negative influence on our induced superconductivity as transport
would happen preferentially at the bottom of the NW, closer to the gate but
further from the superconductor.

Everything leads to the question, why can we not measure a Cooper pair
island in the NW? We have clearly demonstrated that the Al itself forms a
Cooper pair island when not in contact with the NW. The prerequisite, that
EC/2 < ∆∗ is fulfilled. In the previous chapter we have shown that we do
indeed induce superconductivity in the NW. Given all these arguments, we are
left to conclude that our superconducting island is either too strongly poisoned
by quasiparticles, or still hosts NW modes not coupled to the superconduc-
tor. As to their origin, the fact that we did not observe any improvement by
replacing the normal contacts with Al, suggests that the origin of the quasipar-
ticle poisoning lies in insuffiecient proximitization of all the transport modes
of the NW. If the quasiparticles were originating in the leads and tunneling
into the superconducting island due to weak tunnel barriers, then proximitiz-
ing the leads should prohibit or at least reduce this effect. But this is not our
observation, if anything adding superconducting leads to the device seems to
decrease the signatures of superconductivity. This leads us to conclude that
the most likely reason for our strong poisoning lies by not proximitized trans-
port the NW. So far, hard superconducting gaps and 2e-periodicity have only
been shown in thinner InAs NWs with Al epitaxially grown clean interface
due to in-situ MBE growth [29, 33, 43, 193, 204]. For InSb nanowires a simi-
larly epitaxial interface has been achieved by radical hydrogen-cleaning before
deposition [194, 215]. Furthermore, our NWs are thicker than conventional
wurtzite InAs NWs and we have already shown in chapter 5 that we observe
many modes in transport. Unfortunately, the method of radical hydrogen-
cleaning is not available to us and so far it has not been possible to grow these
types of NWs with built-in barriers with an epitaxial Al shell. A possibility
to further study whether a bad interface to the superconductor or too many-
modes are the problem, similar studies could be done with thinner NWs with
built-in barriers and a evaporated superconductor.

Given that the so-far successful methods of achieving a hard gap and an
unpoisoned Cooper pair island in InAs NWs [33, 43, 215] are not available
to us at the moment, using these NWs to study superconducting effects such
as Majorana fermions and topological superconductivity does not seem like a
fruitful approach. Instead we will now take advantage of another property of
our NWs, the very nice and well-defined QDs and tunnel barriers. We have
already shown that the tunnel barriers are robust to gating effects and allow
for a large range of tunnel rates. Furthermore, their built-in approach allows
to tailor the QDs to specific problems and reduces extra complications in the
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device design like pinch-off gates. In addition, the number of serial QDs can
be adjusted as needed during growth. Therefore, we will now switch topics to
study qubits in double QDs in the following two chapters 7 and 8.
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7 Dispersive sensing of a double qunatum dot

The previous chapters have shown, that with our current possibilities our NWs
are not ideal platforms for expirements based on induced superconductivity.
Therefore, we will now leave out superconductivity and focus on experiments
which potentially profit from well-defined QDs.

In the past, QDs and especially DQDS have proven themselves as a promis-
ing platform for both charge [73, 221, 222] and spin qubits [72, 98, 124, 167,
223]. At the same time cirquit quantum electrodynamics, originally pioneered
by superconducting qubits [63–65], offers the possibility to couple qubits over
large distances [67] and high-fidelity non-demolition read-out [66]. We will
combine both of these system using our NWs with crystal-phase defined DQDs
and coupling them to a high-impedance superconducting resonator. The in-
built QDs remove the needs for pinch-off gates, which negatively affect the
resonator quality due to cross-capacitances. Additionally, they offer us a high
yield of well-working devices, which is a big advantage if only one device
can be coupled to a resonator and cooled down in the dilution refrigerator
at once. Furthermore, as discussed in chapter 4 InAs NWs have an intrinsic
strong spin-orbit interaction. This enables spin manipulation and read-out
while streamlining the device architecture due to removing external sources of
charge-to-spin coupling, such as micromagnets [71, 74, 75, 224].

In this chapter, we will demonstrate coupling of a high impedance resonator
to the charge degree of freedom in a DQD in an InAs nanowire. We will
estimate the charge-photon coupling strength and linewidth of the charge state.
This chapter is part of a collaborative work with J.H. Ungerer and the same
analysis and similar figures can be found in his thesis [151].

7.1. The resonator-nanowire hybrid device

A schematic of the device under test is shown in Fig. 7.1. We couple a high-
impedance NbTiN coplanar transmission line resonator to a zincblende InAs
NW (green) with a crystal-phase defined DQD (red: barriers). Each of the
QDs has a size of about ∼ 300 nm. The occupation of the DQD is controlled
with the SGs VR and VL. Gate VM is connected but generally left at constant
voltage, often at VM = 0. The NW lies on a 20 nm thick hafnium dioxide
(HfO2) layer which insulates the device from the intrinsic Si substrate. The
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Figure 7.1. Device schematic and bare resonator curve. Design of the
resonator etch-mask on NbTiN film (blue) and (bottom inset) false-colored
SEM image of the device. The NW (green) with crystal-phase defined tunnel
barriers (red) is coupled to the resonator through a contact. Top inset: Bare
resonator transmission |S21| in dependence of the probe frequency ωp. The
orange line is a circular fit to the data [225]. Adapted from J. H. Ungerer
[151].

device is galvanically connected to the NbTiN ground plane with one of the
contacts. The other contact is coupled to the right voltage anti-node of the
resonator. So the NW can be voltage biased through the resonator with voltage
VSD applied to the bias tap at the node of λ/2 mode of the resonator.

The resonator, made from a high-impedance NbTiN film (blue), is grown
directly on Si after an HF cleaning step to remove the native oxide. The
resonator is capcitively coupled to a feedline and the transmission through the
feedline is measured. In the community, people refer this type of resonator to
a notch-type resonator. The bare resonator curve is shown in the top inset of
Fig. 7.1. Using a circular fit to the data, we extract a bare resonance frequency
of ω0/2π = 3.543 GHz and a bare linewidth of κ/2π ≈ 10 MHz. More details
on the resonator fabrication and resonators in general can be found in the
thesis of J. H. Ungerer [151].
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7.2. Dispersive read-out

To dispersively measure our device with the resonator, we fix the frequency
of the probe signal close to the bare resonance frequency, at the point of
maximum slope of the magnitude or phase. In Fig. 7.2 we measure both
the DC current through the device (a) and the resonator response S21 (b)
simultaneously while changing the SG voltages VR and VL at a constant source-
drain bias VSD = 100 µV.Both measurements outline a typical DQD charge
stability diagram.

However, it is also obvious that the resonator senses different physical quan-
tities than the current. The typical bias triangles are visible in both figures,
however they are more pronounced in the current measurement, where they
are the only visible feature. In the resonator response we also detect inter-dot
transitions and dot-to-lead transitions where QD levels are aligned to each
other or to the Fermi levels in the leads. This difference can be explained by
the fact, that for the DC measurement only net-currents from source to drain
can be measured. Hence, the DC measurement is not sensitive to tunneling
processes which do not create a net-current. Only when all the electrochemi-
cal potentials align such that transport through the whole device is possible,
a current can be measured [81]. In contrast the resonator has a dipole cou-
pling to the charges tunneling in the DQD [226]. Therefore, no net-current is
necessary to detect with a resonator and the single charging lines are visible.
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Figure 7.2. Charge stability diagram. (a) Measured current in depen-
dence of SG voltages VL and VR at a source-drain bias VSD = 100 µV and
VM = 2 V. The typical bias triangles are observed. (b) The same measure-
ment, but showing the magnitude of the resonator response |S21|.

Additionally, we also observe some features on top of the honey-comb pat-
tern. In Fig. 7.2b) they present as faint vertical lines, but they can also show
in different forms. As they do not interact with the DQD system, we attribute
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them to the substrate or the measurement setup. A possible explanation would
be some charged impurities on the substrate that interact with the resonator
and the gates. We usually try to do detailed measurements in absence of those
spurious features.

As mentioned already in chapter 4 we extract lever arm αL,1 = 0.22 for the
left gate on QD1 and αR,2 = 0.14 for the right gate on QD2, and cross-lever
arms αL,2 = 0.06 and αR,1 = 0.03. Thus we have little cross coupling.
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Figure 7.3. Dispserive read-out. Resonator reflection |S21| as a function
of the SG voltages VL and VR. The evolution from a clear DQD (c) to a single
QD (b) is seen. (b) and (c) are digital zoom-ins of (a).

One big advantage of using resonator read-out compared to current mea-
surement or charge detection is the speed at which measurments can be done.
Figure 7.3 shows the reflection |S21| in dependence of the two SGs VL and VR,
(b) and (c) show digital zoom-ins into the map. This measurement serves to
illustrate two points; first, the time advantage that can be gained by dispersive
resonator read-out, and, second, the tunability of our DQD system.

To the first point, this measurement took a bit less than 6 hours to complete
with 401 x 801 data points measured, illustrated the zoom-ins in (b) and (c)
which show high resolution. It was measured with a bandwith of 100 HZ,
corresponding to a measurement rate of one data point per 10 ms. In chapter 6
we have shown that our minimal measurement time with a standard voltmeter
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is about ∼ 35 ms. However, note that measuring at this rate significantly
reduces our singal-to-noise ratio and is not advised standard procedure.

For standard lock-in measurements, we normally integrate at least for 100 ms.
It is obivous that we are easily 3−10 times faster in dispersive RF-measurements
without pushing the limits of the setup. For the second point, the measure-
ment shows that we can tune our DQD from a clearly tunnel-coupled DQD
with a characteristic honeycomb charge stability diagram [62, 77, 81] to a single
QD [62, 77, 227], where the tunneling between the two QDs is so strong, that
the electron wavefunction becomes strongly delocalized over both QDs. We
note, that for our system the tunnel barriers are quite stable to gating, using a
negative gate voltage VM to decrease the tunnel coupling has not shown much
effect. It has shown to be more promising to fill or deplete the DQD with gate
voltages VR and VL in order to change the inter-dot tunnel rate. We assume
filling or depleting changes the orbital wavefunction of the DQD, which can
influence the inter-dot tunnel rate. Hence, it is easier for us to increase the
tunnel rates until the DQD becomes a single QD than decreasing the tunnel
rates. However, this limited tunability could be mitigated by growing the NWs
with a desired tunnel rate. Future investigation into NWs with longer tunnel
barriers are planned.

7.3. Charge qubit

We will now study the charge two-level system created at the inter-dot tran-
sition. As previously explained in chapter 2, finite tunnel coupling lifts the
degeneracy of dot states at the inter-dot transition, forming a two-level sys-
tem. We will refer to this as a charge qubit in this chapter. To investigate this,
we focus on an inter-dot transition and observe the change in the resonator
behavior, while we move along the detuning line through the transition, as is
illustrated by the blue arrow in Fig. 7.3(c).

We study the resonator interaction with the charge qubit by varying the
probe frequency ωp while moving along the detuning axis ϵ (see Fig. 7.3(c))
through the inter-dot transition. While doing so we keep the average num-
ber of photons in the resonator nph ≪ 1 and measure at a bandwidth of 10
Hz. The result is shown in Fig. 7.4(a). We observe two changes in the res-
onator response. The resonance frequency shifts lower and the linewidth of
the resonator increases. This is visible in Fig. 7.4(b), where two line-cuts of
Fig. 7.4(a) at a detuning ϵ = 46 GHz (blue) and ϵ = 3 GHz (red) are plotted.
To quantify the resonator response as a function of ϵ we perform a circular fit
of S21 [225] to the data, as illustrated in Fig. 7.4(b). From the fit we extract
the resonance frequency ωr and resonance linewidth δω, which are shown in
Fig. 7.4(c) and Fig. 7.4(d) respectively. As we observe a shift of the resonance
frequency and no anti-crossing between resonator and two-level system, we de-
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Figure 7.4. Dispersive sensing. (a) Reflection amplitude |S21| in depen-
dence of resonator probe frequency ωp and detuning ϵ of an inter-dot transition.
b) Two line cuts of (a) at detuning ϵ = 46 GHz (blue) and ϵ = 3 GHz (red). A
clear shift of both the resonance position and broadening of the linewidth is
visible. The solid lines are circular fits [225] of S21 to the data. c) Extracted
resonance frequencies ωp from the fits in (b) for all traces in (a), where fitting
was possible. (d) Extracted dressed resonator linewidth from the fits in (b).
Solid lines in (c) and (d) are fits to the data using equations 7.1 and 7.2, re-
spectively [64]. Figure adapted from J. H. Ungerer [151].

termine that we are operating in the dispersive regime, i.e the qubit frequency
is larger than the resonator frequency ωq =

√
(2t)2 + ϵ2 > ω0, where t is the

tunnel coupling between the two QDs [64, 65, 81].

The interaction between the charge qubit and the resonator can be described
by the Jaynes-Cummings model [228]. Hereby, the energy of the dressed states
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ωψ± is given by [64]

ωψ± = ω0 + ωq
2 ± 1

2
√

4g2 + (ω0 − ωq)2, (7.1)

where g = g0 ·2t/ωq(ϵ) describes the effective charge-photon coupling strength
accounting for the mixing angle at finite detuning. The resonator is sensitive
to the ground state transition to the first excited state |ψ−⟩. The dressed
resonator linewidth is then

δω = | ⟨ψ−|g, 1⟩ |2κ+ | ⟨ψ−|e, 0⟩ |22γ = cos2(θ)κ+ sin2(θ)2γ, (7.2)

where κ is the bare resonator linewidth and γ is the qubit linewidth and the
mixing angle θ = 1

2 tan−1( 2g
ωq−ω0

) [64].
We can now fit equations 7.1 and 7.2 to the extracted resonance frequen-

cies and linewidths of several inter-dot transitions including the one shown
in Fig. 7.4(c) and (d). We can extract the charge-photon coupling g0 and
inter-dot tunnel rate t. Using these values as parameters for equation 7.2, we
extract the qubit linewidth γ. The results are shown in Fig. 7.5, where we plot
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Figure 7.5. Extracted charge-photon coupling, qubit linewidth, and
tunnel rate. (a) Extracted charge-photon coupling as a function of the inter-
dot tunnel rate for five different inter-dot transitions. The red line denotes the
bare resonator frequency ω0/2π. (b) Extracted qubit linewidth as a function
of the tunnel rate for the same inter-dot transitions as in (a). The black line
is a linear fit with slope m = 0.17 ± 0.02. Adapted from J. Ungerer [151]

g0 and γ as a function of t for five inter-dot transitions. For the charge-photon
coupling Fig. 7.5(a) we observe no clear trend. In contrast for γ in Fig. 7.5(b)
we observe a linear dependence on the t. For the inter-dot transition with
largest t (blue point in Fig. 7.5(a), no broadening of the dressed resonator
is observed and therefore no corresponding γ could be determined. Conse-
quently, the data point is missing in Fig. 7.5(b). We observe qubit linewidths
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7. Dispersive sensing of a double qunatum dot

of about γ ∼ 1 GHz, which indicates a large charge qubit decoherence. Simi-
larly large γ’s have been observed in NW DQDs [229, 230]. We speculate that
oxides at the NW surface combined with large surface to volume ratio induce
large charge noise.

7.4. The strongly dispersive regime and the Bloch-Siegert
shift
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Figure 7.6. Jaynes-Cummings model vs Block-Siegert shift. Ex-
tracted charge-photon couplings g0 as a function of extracted tunnel rate 2t
using the Jaynes-Cummings model (black) and including the Block-Siegert
shifts (blue). Shared symbols on the data points denote the same inter-dot
transition. Figure adapted from J. H. Ungerer [151].

So far, we have analyzed our data using the Jaynes-Cummings Hamiltonian.
However, the Jaynes-Cummings Hamiltonian makes use of the rotating-wave
approximation, neglecting the counter-rotating term. In the very open regime,
where the tunnel rates t and resulting qubit frequency ωq are much larger
than the resonator frequency ω0, the counter-rotating terms start to matter.
By including them the dressed resonator frequency in equation 2.32 can be
rewritten as [65, 231]

ωΨ± = ω0 ±
(

g2

ωq − ω0
+ g2

ωq + ω0

)
, (7.3)

where the term g2/(ωq −ωr) is called Lamb-shift and g2/(ωq +ωr) the Block-
Siegert shift. We now repeat the analysis done for Fig. 7.5 with equation 7.3.
The comparison between the two analyses is shown in Fig. 7.6. We note, that
the extracted g0 are similar in both models, however the extracted tunnel rates
increasingly differ the more dispersive the system is.

106

7



7.5. Crossing of the charge qubit

7.5. Crossing of the charge qubit

-50 -25 0 25 50

3.535

3.540

3.545

3.550

0.0

0.2

0.4

0.6

0.8

1.0

ω
p/2
� 

(G
H

z)

ε/2� (GHz)

|S
21

| (
a.

u.
)

Figure 7.7. Crossing of resonator and qubit frequency. a) Resonator
reflection amplitude |S21| in dependence of resonator probe frequency ωp and
detuning ϵ of an inter-dot transition, where the qubit frequency ωq is below
the resonator frequncy ω0. The resonance is completely smeared out and not
resolvable anymore due to the large qubit linewidth γ. Figure adapted from
J. H. Ungerer [151].

While the most inter-dot transitions are largely detuned from the resonator
frequency, we can find a few inter-dot transitions where the tunnel rate is
similar to the resonator frequency. By varying ϵ the qubit frequeny ωq =√

(2t)2 + ϵ2) can become resonant with the resonator frequency. The res-
onator response of such a inter-dot transition is shown in Fig. 7.7. In the
following we show that at low detuning, the linewidth of the resonance is dom-
inated by the qubit linewidth and the resonator response cannot be resolved
anymore.

We can explain the much worse dressed resonator quality compared to the
dispersive regime by looking at equation 7.2. As ωq approaches ω0 the dressed
linewidth will approach δω → 1

2κ+ γ. Given our above extracted values for
κ ∼ 10 MHz and γ ∼ 1 GHz, it follow that κ ≪ γ. This means that, assuming
constant qubit linewidth γ, the closer our qubit frequency ωq is to our resonator
frequency ω0, the larger our dressed linewidth δω becomes. Above we extract
γ ∼ 0.5 to 1 GHz. This large qubit linewidth ultimately makes it impossible
to properly resolve the qubit in the resonant regime.

7.6. Summary and Outlook

We have successfully coupled an InAs NW DQD to a high-impedance res-
onator. Using the resonator we performed dispersive read-out on the DQD.
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7. Dispersive sensing of a double qunatum dot

We have shown some of the advantages of resonator read-out over conven-
tional low-frequency transport measurements, such as faster data acquisition
and sensitivity to the quantum capacitance of the system instead of electrical
current.

Furthermore, we used the resonator to probe the two-level system of our
DQD at the inter-dot transition. We observe a dispersive shift of the resonance
frequency. By using the Jaynes-Cummings model we could extract charge-
photon coupling g from 70 to 150 MHz and a qubit linewidth of about ∼ 1 GHz.
The large qubit linewidth γ makes it impossible for us to resolve an anti-
crossing in the resonant regime, when ωq = ω0.

We speculate that the large qubit linewidth is due to charge noise of the
InAs NW and the substrate. While improving the charge noise of the InAs
NW without changing the material and loosing our in-built DQDs is very diffi-
cult, we can improve on the substrate quality. For this device we sputtered the
resonator on bare undoped silicone to maximize the resonator quality. How-
ever, this required an ALD grown oxide layer to insulate the NW from the
substrate. Unfortunately, our ALD oxide quality is not great and creating
a large number of gate jumps. As a consequence, the device was not stable
enough to stay on a charge transition long enough to perform magnetic field
measurements reasonably. Therefore, we decided to get rid of the ALD oxide
on future devices and instead sputter the resonator on global thermally grown
SiO2 layer. While the oxide decreases the resonator quality, its effect is neg-
ligible as the quality factor of a high-impedance resonator is already limited
by the coupling to the NW and losses through the gates [232, 233]. For more
information about the resonators and the influences of the different oxides,
please refer to J.H. Ungerer’s thesis [151] and Ref. [234].

In conclusion, while the linewidth of our charge qubit is far from ideal,
we still think that the advantages the in-built DQDs and high device yield
offer justify further investigation of this type of devices. We hope to limit
our charge noise and increase the stability of devices by optimizing substrate
oxides. Furthermore, if our large linewidth is indeed due to charge noise,
moving from charge to spin qubits might significantly improve it, as charge
noise can be reduced in spin qubits. [235–237].
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8 Strong coupling between a microwave
photon and a singlet-triplet qubit

In chapter 7 we suffered from poor oxide quality used to insulate the device
from intrinsic Si. In this device we removed all atomic layer deposition (ALD)
oxides and replaced them with a 100 nm thermally grown SiO2. This has
shown a much better device quality. This increased device stability allows
us to apply a magnetic field to the device and measure a novel singlet-triplet
qubit mediated by the intrinsic spin-orbit interaction in zincblende InAs NWs
[76, 166, 167]. The following chapter has been published in similar form in
Nature Communications [238]. It is a work with equal collaboration with J.H.
Ungerer and therefore also found in similar form in his thesis [151].
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Abstract

Tremendous progress in few-qubit quantum processing has been achieved lately
using superconducting resonators coupled to gate voltage defined quantum
dots. While the strong coupling regime has been demonstrated recently for
odd charge parity flopping mode spin qubits, first attempts towards coupling
a resonator to even charge parity singlet-triplet spin qubits have resulted only
in weak spin-photon coupling strengths. Here, we integrate a zincblende InAs
nanowire double quantum dot with strong spin-orbit interaction in a magnetic-
field resilient, high-quality resonator. In contrast to conventional strategies,
the quantum confinement is achieved using deterministically grown wurtzite
tunnel barriers without resorting to electrical gating. Our experiments on
even charge parity states and at large magnetic fields, allow to identify the
relevant spin states and to measure the spin decoherence rates and spin-photon
coupling strengths. Most importantly, we find an anti-crossing between the
resonator mode in the single photon limit and a singlet-triplet qubit with an
electron spin-photon coupling strength of g/2π = 139 ± 4 MHz. Combined
with the resonator decay rate κ/2π = 19.8 ± 0.2 MHz and the qubit dephasing
rate γ/2π = 116 ± 7 MHz, our system achieves the strong coupling regime
in which the coherent coupling exceeds qubit and resonator linewidth. These
results pave the way towards large-scale quantum system based on singlet-
triplet qubits.

8.1. Introduction

Spin qubits in semiconductors are promising candidates for scalable quan-
tum information processing due to long coherence times and fast manipula-
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tion [102, 239–241]. For the qubit readout, circuit quantum electrodynamics
based on superconducting resonators [242], allows a direct and fast measure-
ment of qubit states and their dynamics [124]. Recently, resonators were used
to achieve charge-photon [68, 243], spin-photon [70, 71, 123] as well as coher-
ent coupling of distant charge [73] and spin qubits [74, 75], enabling coherent
information exchange between distant qubits. However, the small electric and
magnetic moments of individual electrons require complicated device architec-
tures such as micromagnets, and a large number of surface gates that render
scaling up to more complex architectures challenging. These approaches typ-
ically achieve a relatively weak electron spin-photon coupling on the order of
∼ 10 − 30 MHz. In addition to single electron spin qubits, also spin qubits
based on two electrons in a double quantum dot (DQD), e.g. in a singlet-
triplet qubit have been demonstrated [244]. Spin qubits based on two electrons
typically offer a large hybridization of the spin and charge degree of freedom
compared to single-electron spin qubits in principle allowing even stronger
coupling strengths. So far, however, the experimentally achieved coupling
strengths in such systems [245, 246] remained well below the strong coupling
limit in which the coherent coupling rate exceeds both, the cavity mode decay
rate and the qubit linewidth.

Here, we demonstrate that the strong coupling regime between a singlet-
triplet qubit and a single photon in a superconducting resonator can be reached.
We achieve this strong coupling by carefully designing the resonator and by
using a DQD defined by in-situ grown tunnel barriers in a semiconductor with
a large spin-orbit interaction. The tunnel barriers consist of InAs segments in
the wurtzite crystal-phase with an atomically sharp interface to the zincblende
bulk of the nanowire (NW) [40]. These crystal-phase barriers are highly repro-
ducible and render the need of barrier gates obsolete, simplifying integration
with superconducting resonators and making the nanowires a viable prototype
for scalable quantum computing architectures.

In this work, we make use of the large spin-orbit interaction in these nanowires
[76] to define a singlet-triplet qubit at a finite in-plane magnetic field in
which the T+

1,1 and S2,0 states hybridize, forming a quantum two-level sys-
tem. Incorporating a NW with a magnetic-field resilient resonator based on
NbTiN [234, 247] allows us to measure an avoided crossing between the singlet-
triplet qubit and a single-photon excitation of the resonator at a magnetic-field
strength of B = 300 mT. The measured coupling strength is very large com-
pared to previously reported electron spin-photon coupling [70, 71, 123], which
enables us to reach the strong coupling regime. In addition, by analyzing the
response of the hybridized resonator-qubit system for varying magnetic-field
strengths, we perform qubit spectroscopy [224, 243, 248]. This allows us to
identify the specific spin states and to quantitatively extract the relevant de-
vice properties.
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8. Strong coupling between a microwave photon and a singlet-triplet qubit

8.2. Device characterization

Details about the NW properties and their growth can be found in the sup-
plementary. The resonator-qubit system of device A is shown in Fig. 8.1(a),
including a false-colored SEM-image of the crystal-phase defined NW DQD.
We report similar experiments for two devices, A and B, with B discussed in
the SI material. They are measured in a dilution refrigerator with a base tem-
perature of 70 mK. The DQD forms in the 490 nm and 370 nm long zincblende
segments (green), separated by 30 nm long wurtzite (red) tunnel barriers with
a conduction band offset of ∼100 meV [35], as illustrated in Fig. 8.1(b). A
high-impedance, half-wave coplanar-waveguide resonator is capacitively cou-
pled to the DQD at its voltage anti-node via a sidegate. In addition, the same
sidegate can be used to tune the DQD charge states using a dc voltage (VR)
applied at the resonator voltage node. The DQD state is probed by reading
out the resonator rf-transmission. We extract the bare resonance frequency
of the resonator ω0/2π = 5.1705 ± 0.0003 GHz at zero magnetic field and the
bare decay rate κ|B=0/2π = 27.3 ± 0.6 MHz. The resonator design and fitting
are described in detail in methods section D.1 and 2.2.2.

In the following, we prepare the DQD in an even charge configuration in the
many-electron regime (see methods D.5), described by a two-electron Hamil-
tonian given in methods section 2.1.6. Figure 8.1(c) shows the eigenvalues of
this Hamiltonian as a function of external magnetic field B at a fixed DQD
detuning. At zero magnetic field, the detuning renders the singlet S2,0 the
ground state, for which both electrons reside in the same dot. Without spin-
rotating tunneling, this, and the S1,1 state, with the electrons distributed to
different dots, form a charge qubit [81]. The subscripts describe the dot elec-
tron occupation of the left and right dot, respectively. By applying an external
magnetic field, the Zeeman effect lowers the energy of the triplet T+

1,1 state,
that becomes the ground state for sufficiently high magnetic fields. In the pres-
ence of a spin-rotating tunneling t = ∆SO/2 induced by the intrinsic spin-orbit
interaction ∆SO, the energy levels of the hybridized S2,0 and T+

1,1 states are
split. The two new eigenstates of the avoided crossing form a singlet-triplet
qubit shown schematically in Figs. 8.1(a) and (b).

We now focus on one particular inter-dot transition (IDT) marked by a
green rectangle in Fig. 8.2(a). The same IDT is shown in Fig. 8.2(b) and (c)
at B = 0 T and B = 300 mT respectively, with α = 57°. In Fig. 8.2(d)
we show the normalized transmission (A/A0)2 at B = 0 T, while varying
the probe frequency ωp and relative detuning εrel, illustrated by the white
line in Fig. 8.2(b). An electron can now reside on either of the two tunnel-
coupled dots, constituting a charge qubit. At the IDT, close to charge de-
generacy, the electrical dipole moment of the charge qubit interacts with the
resonator, resulting in a dispersive shift of the resonance frequency. By fit-
ting input-output theory (see theory section 2.2.2) to this particular IDT, we

112

8



8.2. Device characterization

200 nm

(a)

b)

S

rf inrf out

V^

(c)

S1,1

S2,0

T1,1

T2,0
+

T1,1

-T1,1

+

T1,1
0

∆SO

0 B

0

E

QD2QD1

EZB

EWZ

~1
00

 m
eV

(b)

S2,0

VR

200 nm

SGL

SGR

S

D

B

TGL

TGR

α

Figure 8.1. Coupled resonator-qubit system (a) False colored SEM-
image of device A. The NW (green) is divided into two segments by an in-situ
grown tunnel barrier (red), thus forming the DQD system. The NW ends
are contacted by two Ti/Au contacts (S,D) and the NW segements can be
electrically tuned by two Ti/Au sidegates SGR (purple) and SGL (yellow). A
high-impedance, half-wave resonator is connected to SGR. Top gates (orange)
are kept at a constant voltage of −0.28 V. The magnetic field is applied in-
plane at an angle α with respect to the NW axis, as illustrated by the grey
arrow. The white arrows illustrate an even charge configuration with the
two degenerate DQD states T+

1,1 and S2,0. (b) Schematic of the crystal-phase
defined DQD. The conduction band of wurzite and zincblende are offset by
∼ 100 meV, resulting in a tunnel barrier between the zincblende segments. The
intrinsic spin-orbit interaction enables spin-rotating tunneling between these
segments. (c) Energy levels of an even charge configuration as a function of
magnetic field B at a fixed positive detuning ε between the dot levels. At finite
magnetic fields, T+

1,1 (blue) hybridizes with S2,0 (red) defining a singlet-triplet
qubit with an energy splitting given by the spin-orbit interaction strength
∆SO.

8

113



8. Strong coupling between a microwave photon and a singlet-triplet qubit

Figure 8.2(a) shows the charge stability diagram of device A at a magnetic
field of 600 mT with the angle α = 164° with respect to the NW axis (See
Fig. 8.1(a)) detected as a shift in the transmission phase φ of the resonator,
plotted as a function of the two gate voltages VL and VR at a fixed probe fre-
quency of ωp/2π = 5.174 GHz, close to resonance. We observe a characteristic
honeycomb pattern of the charge stability diagram of a DQD. Using a capaci-
tance model [81, 222], we extract the gate-to-dot capacitances CR2 = 44±2 aF,
CL2 = 2.0 ± 0.2 aF, CR1 = 5 ± 2 aF and CL1 = 4.6 ± 0.2 aF for device A.
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Figure 8.2. Dispersive sensing of the DQD at B = 0. (a) Charge
stability diagram of the device at B = 600 mT applied at α = 164° with
respect to the NW, in which the resonator phase φ is measured as a function
of the SG voltages VR and VL. A zoom on the interdot transition pointed out
by the green rectangle is shown in (b) and (c) at B = 0 T and B = 300 mT
with α = 57°, respectively. (d) Resonator transmission (A/A0)2 versus probe
frequency ωp and detuning ε (illustrated by the white line in (b)). At the
charge degeneracy point of the DQD, we find a dispersive shift of 21 ± 2 MHz
with respect to the bare resonance frequency. At small positive detuning a
triplet state crosses the IDT, leading to a suppressed resonator transmission.
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8.3. Strong spin-photon coupling

extract the inter-dot tunnel coupling t|B=0/2π = 5.1 ± 1.0 GHz, the charge-
photon coupling g0|B=0/2π = 353 ± 72 MHz, and the charge qubit linewidth
γ|B=0/2π = 1.7 ± 0.7 GHz.

8.3. Strong spin-photon coupling

When investigating the magnetic-field dependence of IDTs similar to the ones
shown in Fig. 8.2(b,c), we observe two qualitatively different behaviors which
we identify as even and odd charge parity configurations described in methods
section D.5. In the following, we investigate a single IDT, shown in Fig. 8.2(c),
with an even charge parity.

As illustrated in Fig. 8.1(c), the DQD can be operated as a singlet-triplet
qubit when applying a magnetic field. The qubit frequency ωq can be brought
into resonance with the cavity frequency ω0 at B ≳ 200 mT, as discussed in
more detail below. At the resonance condition (ωq ∼ ω0), an anti-symmetric
(bonding) and a symmetric (anti-bonding) qubit-photon superposition state
are formed. The corresponding resonances can spectroscopically be discrimi-
nated only if the splitting 2g between them is larger than the dressed states’
linewidth γ+κ/2 [65]. In particular, the hybrid system is considered strongly
coupled if the qubit-photon coupling strength g exceeds γ and κ [65].

In Fig. 8.3(a), we plot a spectroscopic measurement of the resonator where
the singlet-triplet qubit is tuned into resonance by applying an electrostatic
detuning εrel relative to the configuration at which S2,0 and T+

1,1 would be
fully degenerate in the absence of a a spin-rotating tunneling. Consistent with
strong coupling, we observe an avoided crossing between the resonator and
the qubit. At the points where the bare qubit frequency ωq and resonator
frequency ω0 (dashed, white curves) are degenerate, instead of crossing, they
anti-cross. And in Fig. 8.3(a), a faint double peak structure is visible at around
εrel ∼ 0 as 2g > κ/2 + γ, signature of the strong coupling regime [65].

For a quantitative analysis, we fit Lorentzians to the transmission of each
trace of constant εrel, we extract the transition frequencies ω± of the dressed
states. These are fitted to the Jaynes-Cummings model (solid, white curves
in Fig. 8.3(a)) described in theory section 2.2.1. From this fit, we extract
the tunnel rate t|B=300 mT/2π = ∆so|B=300 mT/4π = 2.54 ± 0.03 GHz and
bare spin-photon coupling strength gJC

0 |B=300 mT/2π = 123 ± 16 MHz. The
extracted tunnel rate allows to plot the qubit transition frequency ωq =√

(∆so/ℏ)2 + (εrel)2 in Fig. 8.3(a) and to identify the resonance condition
ωq = ω0 at a small electrostatic detuning εrel/2π = ±1.0 GHz. We eval-
uate the effective coupling strength g = g0 · 2t/ωq at the finite detuning
εrel/2π = −1.0 GHz and obtain gJC|ϵrel/2π=−1 GHz,/2π = 121 ± 16 MHz, as
the spin-photon coupling strength on resonance condition.

In Fig. 8.3(b), we plot a line trace at this detuning value as indicated in
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Figure 8.3. Strong spin-photon coupling. (a) Anti-crossing of the res-
onator and the qubit found when plotting the resonator transmission as a func-
tion of detuning εrel and probe frequency ωp at a magnetic field of B = 300 mT
and α = 57°. The solid white curves are the eigenstate energies from fits to
a Jaynes-Cummings model (Eq. (2.32) in theory section 2.2.1). The faint
double-peak structure at ε ≈ 0 is an unambiguous signature of the strong cou-
pling regime, g > κ, γ [65]. (b,c) Cross sections at the detunings indicated by
colored bars in (a). The solid lines stem from fit to input-output theory. (b)
Double-peak structure at ωq ∼ ω0 (see text). The larger noise floor for ωp ∼ ω0
(grey data) is attributed to the bare resonator which is visible in spectroscopy
because of a finite coupling between DQD and leads resulting in an odd DQD
occupation for a short fraction of time during data acquisition. (c) Transmis-
sion for ωq ≫ ω0, corresponding to the bare resonator. (d) Simulation using
input-output theory with the parameters extracted from the input-output fit
to (b). For these measurements, given the input-power Pin = −133 dBm, the
average number of photons is n < 0.25 (see theory section 2.2.2).
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Fig. 8.3(a). Despite the large noise, the double peak structure is also clearly
visible and stands in stark contrast to the bare resonator transmission at large
detuning (see corresponding linetrace in Fig. 8.3(c)). Using Eq. (2.36) derived
from input-output theory described in the supplementary, we fit these data
at 300 mT and extract the spin-photon coupling strength gεrel=−1 GHz/2π =
139 ± 4 MHz and qubit dephasing γ/2π = 116 ± 7 MHz where we used the
bare resonator decay κ|B=300mT/2π = 19.8 ± 0.6 MHz. This value agrees well
with the one obtained from the Jaynes-Cummings model. Using the values
from input-output theory we model the whole anti-crossing using input-output
theory in Fig. 8.3(d), observing a very good agreement with the measurement.

All together, this measurement therefore clearly demonstrates that the strong
coupling regime between a single microwave photon and a singlet-triplet qubit
is reached.

8.4. Magnetospectroscopy

To explicitly identify and characterize the spin-orbit eigenstates and to inde-
pendently verify the character of the singlet-triplet qubit, we now study the
magnetic field evolution of the IDT from 0 up to 900 mT applied at the angle
α = 130°. We measure the amplitude A and phase φ of the signal transmitted
through the resonator as function of detuning ε and magnetic field strength B.
A non-zero φ occurs at the IDT when tunneling between the dots is allowed
resulting in a non-zero DQD dipole moment. As described in methods sec-
tion 2.1.6, we model the DQD by an effective two electron Hamiltonian which
allows us to fit the gate voltage and field dependence of the IDT (white dashed
line in Fig. 8.4(a)). We find that the magneto-dispersion of the IDT is well
described using the following fit parameters: the spin-conserving singlet and
triplet tunnel rates tSc /2π ≈ 8.5 GHz, and tTc /2π ≈ 3.2 GHz, the singlet-triplet
coupling rate tSO/2π = ∆SO/4π ≈ 2.9 GHz, the electron g-factors of the right
and left dots, gR ≈ 1 and gL ≈ 8, as well as the single dot singlet-triplet
energy splitting ∆ST/2π ≈ 47 GHz. These fit parameters are consistent with
parameters obtained previously in this material system [61, 76, 166, 249, 250].
We note, however, that the fit is under-determined and therefore, it does not
provide accurate numbers. Nonetheless, the model gives a qualitative, physi-
cal understanding of the system and allows us to establish which DQD levels
interact with the resonator.

Independently, we gain quantitative information about the system by con-
sidering the functional dependence of the amplitude A and phase φ. This is
possible because the resonator provides an absolute energy scale allowing for
a quantitative analysis of the interaction between the DQD and the resonator
and hence to perform qubit spectroscopy [224, 243, 248]. This spectroscopy
complements the preceding DQD Hamiltonian fit. As described in methods
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Figure 8.4. Magnetospectroscopy of the singlet-triplet qubit. a) Dis-
persive shift χ as a function of the magnetic field B at an angle of α = 130°
and detuning ε. The white dashed line is a fit of the effective two-electron
Hamiltonian (Eq. (2.1.6)) to the data. b) Extracted tunnel rate 2t/2π (black),
qubit-photon coupling g0/2π (blue) and qubit linewidth γ/2π (purple). The
bare resonator frequency is indicated by the dashed black line. Shaded ar-
eas indicate the errorbars which originate from the uncertainty of the gate
lever arm, which was independently measured. (c) Two-electron energy level
diagrams at various magnetic fields with the corresponding field strength in-
dicated in (a) and (b) by the given symbols. For clarity a constant offset of
10 GHz, 20 GHz, and 30 GHz was added to the energy levels at 300 mT, 410
mT and 600 mT. Given the input power Pin = −128 dBm, the average photon
number is n < 0.8 in these experiments (see methods section 2.2.2).

118

8



8.4. Magnetospectroscopy

section 2.2.2, by fitting input-output theory to φ and A simultaneously, we
extract the qubit tunnel amplitude t, the qubit linewidth γ, and the qubit-
photon coupling strength g as a function of B, which we plot in Fig. 8.4(b).
Here, we assume γ as constant in detuning ε.

Using the fits to both, the 2-electron Hamiltonian model and input-output
theory in the 2-level approximation, allows us to directly identify several
regimes, in each of which the qubit has a different spin-character. Fig. 8.4(c)
shows the corresponding DQD level structure based on the fit parameters as
a function of ε for different magnetic field.

At a low magnetic fields around B = 20 mT, the triplet states (blue curves)
are Zeeman split and the ground-state curvature is dominated by the anti-
crossing between S1,1 and S2,0 (red curves). We find a singlet charge qubit in
the weak coupling limit, i.e. the linewidth exceeds the charge-photon coupling
by a factor of five. The formation of an asymmetric double-dip structure
in φ(ε) between B ∼ 0.01 T and B ∼ 0.18 T is explained by an interaction
between the three states S2,0, S1,1 and T+

1,1 as described in the supplementary
material. Traces of φ(ε) with anasymmetric double-dip structure cannot be
described by a two-level input-output model and are therefore not analysed
quantitatively here. At B ≈ 50 mT, φ becomes positive. Which we interpreted
as a drop of the tunnel rate below the resonator frequency, 2t < ω0

As B is increased, the triplet state T+
1,1 becomes the ground state for ε < 0,

as shown in the second panel of Fig. 8.4(c) for B = 300 mT. The spin-orbit
interaction couples the singlet and triplet states, leading to an anti-crossing
between S2,0 and T+

1,1, which constitutes a singlet-triplet qubit with ωq =
∆SO = 2tSO [82, 98]. In this regime, at larger B, the resonance condition
between S2,0 and T+

1,1 occurs at larger ε, because the energy of the bare T+
1,1

state decreases with larger B and the energy of S2,0 decreases with larger ε.
Therefore, the IDT is observed at larger ε for increasing B.

Consistent with the interpretation of the formation of a singlet-triplet qubit,
we measure an approximately constant tunneling rate t between B ∼ 0.18 T
and B ∼ 0.36 T. In this regime, we extract the average spin-orbit tunneling
rate to be t̄so = 1.94 ± 0.02 GHz.

At a magnetic field of B ≈ 370 mT, the resonator phase φ starts to vanish
due to the the triplet state T+

2,0 becoming relevant. The triplet state results
in a level repulsion between T+

2,0 and T+
1,1 and hence leads to a reduced energy

gap between the S2,0 level and the T+
1,1 level. In Fig. 8.4(c), this is illustrated

by the smaller energy gap (black arrow) at B = 410 mT compared to the one
at B = 300 mT. Due to the reduced energy gap, the resonator-qubit coupling
on resonance (ωq < ω0) is reduced and hence is the signal in φ.

The level structure at large magnetic fields is plotted exemplary for B =
600 mT in the right panel of Fig. 8.4(c). In this regime, the ground-state of
the DQD at the IDT is formed by a superposition of the T+

2,0 and T+
1,1 states.
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8. Strong coupling between a microwave photon and a singlet-triplet qubit

We find that the curve of Fig. 8.4(a) turns back towards lower ε for increasing
B, which can be understood by noting that the spin-polarized triplets T+

2,0 and
T+

1,1 form a charge qubit similar to the singlets at low field. While the tran-
sition is increasingly dominated by the triplet-charge qubit for increasing B,
φ becomes negative at the IDT, because the anti-crossing between the triplet
states T+

2,0 and T+
1,1 occurs at much larger frequencies, 2tTc > 2tSO, ω0. Hence,

the triplet charge qubit frequency does not cross the resonator frequency, lead-
ing to a negative phase shift.

At fields B > 700 mT the dispersion turns to higher ε again. Which is not
accounted for in our model. A possible explanations to this discrepancy is
that the magnetic field not only affects the detuning ε of the DQD but also
the total energy. This results in the lead to dot transitions starting to influece
the IDT at high magnetic fields. Nevertheless, the data is well described at
the magnetic field strengths we investigate in detail.

This large number of detailed findings justify the parameters of the two-
electron Hamiltonian introduced above, which, in turn, directly allows us to
identify the singlet-triplet spin qubit, for which we find the strong coupling
limit to the electromagnetic cavity.

Note, that the extracted qubit linewidth is larger in Fig. 8.4(b) compared
to the strong-coupling in Fig. 8.3. This is caused by applying the magnetic
field at different angles in the two measurements.

8.5. Conclusion and Outlook

In summary, we demonstrate a semiconductor nanowire DQD device with
crystal-phase defined tunnel barriers that can be operated as different types of
qubits, coupled to a high-impedance, high magnetic field resilient electromag-
netic resonator. As the main result, we find a singlet-triplet qubit for which we
extract the relevant qubit parameters, especially a large electron spin-photon
coupling of g/2π = 139 MHz in the single photon limit, reaching the strong
coupling regime g > γ, κ.

Our experiments demonstrate that deterministically grown tunnel barri-
ers allow for a reduced number of gate lines, and that, mediated by intrin-
sic spin-orbit interaction, singlet-triplet qubits can reach the strong coupling
limit for low photon numbers, similar to flopping mode spin qubits [108, 251].
This finding is potentially applicable to other promising platforms with strong
spin-orbit interactions, like holes in Ge [98]. Our nanowire platform without
depletion gates results in a significantly reduced gate-induced photon-leakage
in the absence of on-chip filtering [124, 233, 252]. And, since DQD parameters
(such as charging energy and individual tunnel rates) can be set deterministi-
cally in the NW growth, multiple NWs with optimal and essentially identical
characteristics properties can be obtained simultaneously [253] and possibly
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integrated on the same substrate [254]. This drastically simplifies the search
for an optimal gate regime and renders further gates, such as the top gates in
our device, unnecessary. An optimized gate design with resonators with larger
impedance [222] therefore presents an ideal platform to investigate new phe-
nomena in the ultrastrong coupling regime [222, 255]. Additionally, the large
electron spin-photon coupling found in our experiments will be crucial for the
implementation of two-qubit gates between distant spin qubits, a milestone on
the way towards scalable quantum computers.

We acknowledge fruitful discussions with Simon Zihlmann, Roy Haller, An-
drea Hofmann, Stefano Bosco, Romain Maurand and Antti Ranni, and sup-
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rial Fellowship PCEFP2_194268. We further acknowledge funding from the
European Union’s Horizon 2020 research and innovation programme, specifi-
cally the FET-open project AndQC, agreement No 828948 and the FET-open
project TOPSQUAD, agreement No 847471. Furthermore, we acknowledge
funding by NanoLund and the Knut & Alice Wallenberg Foundation (KAW).
PS acknowledges support from the SNSF through grant 200418 and the SERI
through grant 589025. All data in this chapter is available in numerical form
at: https://doi.org/10.5281/zenodo.7777840.
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9 Summary and Outlook

In this thesis we studied InAs nanowires (NWs) with integrated crystal-phase
defined quantum dots (QDs) as a platform for qubits. We looked at their po-
tential for topological qubits, charge qubits, and spin qubits. We have found
that with the available for us facilities they are not a good candidate for majo-
rana bound states (MBS) despite the advantage of well-defined tunnel barriers.
In contrast, we have found them a promising tool to study spin qubits cou-
pled to high-impedance superconducting (SC) resonators. Their ease of use
and high yield make them an ideal platform to study the physics of the com-
bined resonator double QD (DQD) hybrid system. We have reached the strong
spin-photon coupling regime and are confident that further improvements are
possible.

We started our journey of the study of InAs NWs with some general char-
acterization of the tunnel barriers and QDs in these NW in chapter 4. We
observed clean tunnel barriers without any indication of confined states over a
large gate range. We identified these NWs as promising candidates for studies
of MBS, as the clean barriers without any QD features would reduce the dan-
ger of misinterpreting ABS. Furthermore, we have shown well-defined single
QDs with tunable barriers, as well as textbook bias triangles of double QDs.

In chapter 5 we followed up with studies of the induced superconductiv-
ity in these NWs. Employing the built-in tunnel barrier as a spectrometer,
we observed a soft SC gap. Using a three-terminal device we argue that we
perform spectroscopy on a proximitized region in the NW. Furthermore, we
studied the gate dependence of the induced SC gap. Interestingly, we observed
a linear dependence of the SC in-gap conductance on the normal above-gap
conductance. From this we concluded that the gate mainly tunes the num-
ber of modes contributing to transport, but only weakly their transmission
coefficient. We extracted an average transmission of all modes contributing to
transport and used the BTK-theory to model our SC gap. We compare the
induced SC gap without and with built-in tunnel barriers. The much softer
gap without built-in tunnel barrier could not be explained solely by a weaker
tunnel barrier. Substantial quasiparticle poisoning had to be added to model
the SC gap. We speculate that this is either due to some of the many trans-
port modes not properly coupling to the SC proximity region or quasiparticle
poisoning from the normal leads.
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9. Summary and Outlook

In chapter 6 we further study quasiparticle poisoning by measuring a Cooper
pair island. We develop a technique to evaporate a thin homogeneous layer of
aluminium (Al) using a thermal ultra-high vacuum evaporator. We take ad-
vantage of the thin Al to fabricate strongly coupled, with the SC self-aligned
side gates (SGs). In the first device generation insufficient etching of the na-
tive oxide of the Al pads lead to very bad contact to the SGs, in turn creating
superconducting charge boxes (SCB) at low temperatures in the SGs. This
expressed itself as a purely capacitively coupled triple QD (TQD) in our trans-
port measurements. We used the QD in the NW as a charge detector of the
SCBs and observed 2e-periodicity in the charging of the SCBs, as characteristic
for an unpoisoned Cooper pair islands. We further used the charge detector
to measure the time-resolved tunneling events of single Cooper-pairs in the
SCBs. We note, that by changing the fabrication process slightly it should
also be possible to use the side-coupled QD as spectrometer of the in the NW
defined QD.

Unfortunately, no signs of an unpoisoned Cooper pair island in the prox-
imitized NW QD were observed. We made a second device generation with
adjusted fabrication parameters, removing the SCBs and adding a sticking
layer. However, still no unpoisoned Cooper pair island was observed. We have
to conclude that there is just too much quasiparticle poisoning in the device.
Combining this experiment with our results form chapter 5, we propose that
the quasiparticle poisoning stems from some of the many-modes not coupling
properly to the SC region. This is further supported by literature [33, 43, 204]
which achieves hard gaps and unpoisoned Cooper pair islands with epitaxial
SC-NW interfaces. As this technology is not currently available to us, we turn
to another application that makes us of the great QDs in our NWs without
the need of induced superconductivity.

We make use of integrated DQDs in our NWs to couple them to SC high-
impedance resonators. This approach pioneered by SC qubits allows high-
fidelity non-demolition read out and coupling of qubits over large distances.
In chapter 7 we study coupling between the resonator and the two-level
system defined by the DQD at the inter-dot transition between two charge
states. We observe, that the inter-dot tunnel rate is much higher than the res-
onator frequency. Hence, we measure in the dispersive regime. We extract the
tunnel rates, qubit linewidth and charge-photon coupling. While we extract
large charge-photon couplings above 100 MHz, our qubit shows a very large
linewidth in the GHz range, making it impossible to reach the strong-coupling
regime. We speculate that this is due to charge noise.

As a next step, we add an external magnetic field to our NW-resonator
hybrid system to address the spin degree of freedom. The intrinsic spin-orbit
coupling of the InAs NW allows us to couple charge to spin without the use
of micromagnets. In chapter 8 we show the magnetic field evolution of an
inter-dot transition with an even number of electrons. Using a simplified two-
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electron Hamiltonian we identify a singlet-triplet qubit. At specific magnetic
fields we observe an anti-crossing between the qubit and the resonator. As
for the charge qubit we extract tunnel rate, qubit linewidth, and spin-photon
coupling. We show that we fulfill the condition of the strong-coupling regime,
that the qubit-photon coupling is larger than the combined linewidth of qubit
and resonator. This is the first important step towards spin qubits in InAs
NWs coupled to a high-impedance resonator.

Outlook
With the technology currently available to us, we do not seem to be able to
contact our NWs without inducing significant poisoning into the proximity
region. Hydrogen cleaning has shown itself to preserve the InAs surface [256,
257] and an epitaxial SC-NW interface has shown a hard gap and unpoisoned
Cooper pair islands in InAs [33, 43, 47, 204]. Furthermore hydrogen radical
cleaning has shown hard SC gaps and 2e-periodic Cooper pair islands in InSb
[32, 194, 215, 258]. It stands to reason, that this technique should also work
for our NWs. However, as this is not an option right now, further studies in
this direction are not a priority.

While it is unfortunate, that our NWs are not suited to superconductivity
and topololgy studies, they have proven to be a reliable, high-yield platform
for QDs coupled to resonators. While we suffered from a bad qubit linewidth
for the charge qubit, we managed to achieve strong spin-photon coupling for
the spin qubit. Further experiments will build up on this important first step.
An immediate next step is to improve the coupling even more by optimizing
the device design and resolve the vacuum Rabi splitting. It might also be
advantageous to study magnetic field orientation dependence. In silicon hole
qubits, this has shown to drastically affect both spin-photon coupling and
qubit linewidth [108].

Devices with dedicated high frequency SGs for two-tone measurements and
pulsing have already been fabricated and are waiting for measurements. We
are optimistic that with these improvements, we will be able to measure Rabi-
oscillations and Ramsey-fringes and extract the T1 and T2 times. Once we can
measure and control a single qubit, it would naturally follow to add a second
qubit to the other anti-node at the other end of the resonator and couple them.

Furthermore, other applications with QDs and resonators, could be achieved.
Recently, parametric amplifiers based on QDs have been demonstrated [259].
With the combination of our high-quality QDs and resonator, we hope to
improve the quality of the QD parametric amplifiers already demonstrated.

Furthermore, we have recently observed that we can evaporate top gates
directly on the native oxide of the NW without gate leakage up to 0.5 V.
These top gates are as close as possible to the QDs and should increase the
charge-photon coupling even more. While charge noise at the interface might

9
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be an issue, we might be able to achieve ultrastrong coupling [222], opening a
new regime of interesting physics.

A further possibility would be the study of charge and spin qubits defined
in triple QDs [123, 260–262] or even more serial QDs, as a larger number of
tunnel barriers can easily be added during growth.

In conclusion, there are a lot of interesting possibilities for these built-in NW
QDs coupled to resonators, such as the coupling of spin qubits over distances,
exploring the strong coupling regime, and QD parametric amplifier. This
thesis lied the cornerstone upon which this future applications will be build.
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A Fabrication Recipes

The fabrication techniques used in this work can be found in 3. This appendix
shows the detailed fabrication recipes.

A.1. Fabrication of InAs NW Devices

A.1.1. Wafer Characteristics
• Substrate Material: Highly doped Silicon

• Dopant: Boron (p-doped)

• Resistivity: 0.003 − 0.005 Ωm

• Capping Layer: 400 nm thick thermally grown SiO2

A.1.2. Wafer Cleaning
1. Dice the wafer into 2 cm x 2 cm pieces.

2. Sonicate in acetone for ∼ 20 min.

3. Sonicate in IPA for ∼ 20 min.

4. Blow dry with pressurized air or N2

A.2. E-beam Lithography, Development and Lift-off

• Resist: PMMA 950K dissolved in Anisole.

• Spin Coating: 2400 RPM for 60s resulting in a thickness of ∼ 300 nm.

• Baking: 180◦C on a hotplate for 5 minutes.

• Area Dose: 270 µC/cm2 at 17 kV

• Development: 3:1 Isopropyl alcohol (IPA) / Methylisobutyl ketone
(MIBK) for 60 seconds followed by a dip in IPA and blow dry with
pressurized air or N2.
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A. Fabrication Recipes

• Liftoff: 30 minutes or longer in 50◦C warm acetone.

A.3. Reactive ion etching - O2 Plasma Etching

To remove residue with PMMA resist only.

• Parameters:
– O2 Flow: 16 %
– RF Power: 30 W
– Process Pressure: 250 mTorr
– Time: 60 s

• Etch Rates:
– SiO2: negligible
– PMMA: ∼20 nm/min

A.4. Etching of the GaSb-shell before metallization

To remove the GaSb-shell before contacting and further processing.

1. Clamp NW with metal at the bottom below the contact area using stan-
dard E-beam lithography and evaporation.

2. Perform 1 min O2 cleaning.

3. Etch for 3 minutes and 30 seconds in MF319 developer under strong
movement

4. Rinse thoroughly with deionized water

5. Rinse with IPA

6. Blow dry with pressurized air or N2

A.5. Contacts

A.5.1. Ti/Au contacts
Used for base structures and normal metal contacts and gates.

1. Type: E-beam evaporation in Balzers.

2. Pump to a base pressure of ∼ 2e−6 mbar.
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A.5. Contacts

3. For contacts: Align sample stage with ion gun and perform a 26s in-situ
Ar-mill.

4. Align sample stage with metal sources

5. Evaporate 5 nm of Ti (0.5 Å per second).

6. Evaporate 90 nm of Au (1.5 Å per second).

A.5.2. Ti/Al contacts
Used for thick Al superconducting contacts.

1. Type: E-beam evaporation in Balzers.

2. Pump to a base pressure of ∼ 2e−6 mbar.

3. Align sample stage with ion gun and perform a 26 second in-situ Ar-mill.

4. Evaporate 5 nm of Ti (0.5 Å per second).

5. Evaporate 95 nm of Al (1.5 Å per second).

A.5.3. Thin Al contacts
Used for thin Al superconducting contacts.

1. Type: Thermal evaporation in Bestec.

2. Mount sample on holder with a bit of Ga on the back of the sample for
good thermal contact

3. Load in loadlock and pump below ∼ 2e−6 mbar.

4. Perform 2 minutes 30 seconds in-situ Ar-mill.

5. Transfer sample to main chamber with pressure ∼ 3e−9 mbar.

6. Cool sample stage to −75 ◦C with liquid nitrogen.

7. Heat up source and evaporate 12 nm of Al (0.015 Å per second).

A
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B Additional data on the material platform

This appendix provides further information to chapter 4.

B.1. Gate dependence with and without built-in tunnel barrier

-30 -15 0
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 (
e2 /
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-30 -15 0
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10− 2
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 (

e2 /
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a) b)

Figure B.1. Gate dependence with and without built-in tunnel bar-
rier. Differntial conductance G as a function of back gate voltage VBG where
the bias voltage VSD = 0 is applied on the superconducting contact SC and the
current is measured on N1 (a) and N2 (b). The conductance in a) is plotted
on log-scale.

The back gate dependence disucssed in chapter 4 for the three-terminal
device with and without built-in tunnel barrier between the contacts is shown
in Fig. B.1. Here, the conductance Gi,SC is plotted as a function of VBG with
VSD = 0 applied on SC and the current measured on normal contact Ni. There
is a built-in tunnel barrier between N1 and SC, while the barrier between SC
and N2 is shorted by SC. The back gate dependence is clearly stronger in
G1,SC . Note, that G1,SC is plotted in log-scale.

B.2. Addition energy of a single quantum dot

Figure B.2 shows the extracted addition energy Eadd for the single QD dis-
cussed in chapter 4. We observe a even-odd pattern due to spin-degeneracy.
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B. Additional data on the material platform
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Figure B.2. Addition energy Eadd of a single QD. Extracted Eadd as a
function of VBG.

We extract EC ≈ 11.2 meV and δE ≈ 1.2 meV. We also observe a general
decrease of Eadd with increasing VBG due to increased screening effects as the
QD get filled with more electrons [77, 100]. Note, that the data point with
much higher Eadd corresponds to the thermally broadened Coulomb blockade
resonance.
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C Additional data on Cooper pair charge
sensing of a superconducting charge box

This appendix provides further information to chapter 6.

C.1. Full dataset on magnetic field maps

The complete set of magnetic field maps used to extract the data in Fig. 6.4
and Fig. 6.6 are shown in Figs. C.1-C.4.

C.2. Wrongly detected tunnel events

In Fig. C.5 the two current measurements at finite magnetic field, were tunnel
events were wrongly detected by the algorithm, are shown.
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C. Additional data on Cooper pair charge sensing of a superconducting
charge box
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Figure C.1. Current maps from zero to 10 mT. Measured current as a
function of VSG6 and VSG8 for magnetic fields from 0 to 10 mT.
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C.2. Wrongly detected tunnel events
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Figure C.2. Current maps from 12 mT to 22 mT. Measured current as
a function of VSG6 and VSG8 for magnetic fields from 12 mT to 22 mT.
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C. Additional data on Cooper pair charge sensing of a superconducting
charge box
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Figure C.3. Current maps from 24 mT to 34 mT. Measured current as
a function of VSG6 and VSG8 for magnetic fields from 24 mT to 34 mT.
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C.2. Wrongly detected tunnel events
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Figure C.4. Current maps from 36 mT to 40 mT. Measured current as
a function of VSG6 and VSG8 for magnetic fields from 36 mT to 40 mT.
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Figure C.5. Wrongly detected tunnel events. Current measurements
as a function of time. For this two measurements tunnel events were wrongly
detected by the algorithm.
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D Additional data strong coupling between a
microwave photon and a singlet-triplet
qubit

This appendix provides further information to chapter 8. It is also available
in the supplementary of the publication [238].

D.1. Resonator characterization and analysis
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Figure D.1. Resonator of a device A. (a) Resonance curve of the resonator
in Coulomb blockade in amplitude A/A0 (blue) and phase φ (red). The black
lines are simultaneous fits to the data using input-ouput theory. (b) Scanning
electron micrograph of the resonator center conductor.

The resonator is fabricated from a thin-film NbTiN (thickness ∼10 nm),
sputtered onto a Si/SiO2 (500 µm/100 nm) substrate [234]. These resonators
can be operated for in-plane fields exceeding 5 T [234, 247]. The large sheet
kinetic inductance of the used NbTiN film of Lsq ≈ 90 pH combined with the
narrow center conductor width of ∼ 380 nm, and the large distance to the
ground plane of ∼ 35 µm results in an impedance of 2.1 kΩ. The resonator
can be dc biased using a bias line which contains a meandered inductor en-

155

https://creativecommons.org/licenses/by/4.0/
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suring sufficient frequency detuning between the half-wave resonance used in
the experiment and a second, low quality resonance mode at a lower frequency
that forms due to the finite inductance of the bias line [233]. A scanning elec-
tron micrograph of the resonator center-conductor is shown in Fig.D.1(b) in
the extended data. One of the two resonator voltage anti-nodes is galvanically
connected to gate SGR shown in Fig. 8.1(c) of the main text.

D.2. InAs crystal-phase nanowires

InAs nanowires with controlled crystal structure were grown by metal-organic
vapor phase epitaxy (MOVPE) from Au aerosol nanoparticles with a nomi-
nal diameter of 30 nm deposited on InAs 111B substrates. After annealing,
nanowires were grown at 460 °C by introducing trimethylindium (TMIn) at a
molar fraction of χTMIn = 1.8 · 10−6 and Arsine (AsH3) at a molar fraction of
χAsH3 = 1.2 · 10−4. Crystal-phase switching is realized by modifying the AsH3
molar fractions from χAsH3 = 2.5 · 10−2 for zinc blende to χAsH3 = 2.2 · 10−5

for wurtzite, with 15 s waiting steps under AsH3. The wurtzite barrier growth
time is 54 s and the zinc blende segment growth time is 360 s. Deposited at
the same growth temperature, the GaSb shell was grown for 40 minutes with
respective molar fractions of trimethylgallium (TMGa) χTMGa = 2.7 · 10−6

and trimethylantimony (TMSb) χTMSb = 3.1 · 10−5. As the nanowires in this
work were grown from randomly deposited Au seed particles, a variability in
the local growth conditions was present that affect nanowire growth rate and
segment lengths. However, by adding the GaSb shell that selectively deposits
on zinc blende surfaces, it is possible to identify nanowires with desired seg-
ment lengths, and to accurately position contacts and local gates to these [62].
The GaSb-shell is then removed before contacting by a wet-etching process
using MF-319 developer [263].

By growing nanowires in arrays, such as from lithographically defined Au
particles, the variability in segment lengths can be greatly reduced [253]. The
electron mobility in these nanowires is primarily limited by the wurtzite tunnel
barriers and surface scattering. InAs nanowires with a pure zinc-blende crystal
phase grown by a corresponding method show a room-temperature field-effect
mobility of approximately 2000 cm2/Vs [264].

In total, we have fabricated 4 nanowire devices coupled to a high-impedance
resonator. All nanowires demonstrated well-defined double-quantum dots as
expected from their barrier design. Out of these 4 devices, two were investi-
gated at elevated magnetic-field strengths and both of them showed similar
behavior as discussed in the manuscript.
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D.3. Hamiltonian in the odd charge parity

In the main text, we elaborate on the Hamiltonian describing the double quan-
tum dot (DQD) for an even charge occupation. This section provides the
description for an odd number of electrons which is used in order to obtain
Fig. 6(d) in the extended data. In this case, the total electron spin is 1/2
which can be modelled by one electron with a half spin. This electron can
reside either on the left dot or on the right dot [81]. Therefore, a suitable basis
is {|L ↑⟩ , |L ↓⟩ , |R ↑⟩ , |R ↓⟩}, where L/R denotes whether the charge resides
in the left dot or on the right dot, and ↑/↓ denotes whether the spin is aligned
parallel or anti-parallel with the magnetic field B.

The Hamiltonian describing the electron can be decomposed into three parts
as

Hodd = H0
odd + HZ

odd + HSO
odd (D.1)

The first part of the Hamiltonian describes the spin-independent charge which
can be written using the the charge Pauli matrices τ̂x,y,z as

H0
odd = ℏϵ

2 τ̂z + ℏtcτ̂x. (D.2)

Here, the diagonal terms are proportional to the detuning ℏϵ = ER−EL which
is the difference between the electro-static potential of the electron residing in
the right and left dot. The off-diagonal terms are given by ℏtc, which is the
spin-conserving tunnel rate.

In the presence of a magnetic-field, HZ
odd comes into effect. This term de-

scribes the Zeeman energy of the electron and is given by

HZ
odd = 1

2gL,RµBBσ̂z, (D.3)

where gL and gR are the site-dependent Landé g-factors, µB is the Bohr mag-
neton and σ̂x,y,z are the spin Pauli matrices. The Zeeman energy lifts the
spin degeneracy and hence four spin-polarized levels are observed as shown in
Fig. 6(d) in the extended data. As explained in the methods section, unequal
g factors gL ̸= gR result in a shift of the avoided level crossings originating
from spin-conserving tunneling. This results in a slope of the observed inter-
dot transition as a function of gate voltage (detuning) and field from zero field
onward.

D.4. Extraction of parameters using input-output theory

Parameters are extracted as described in chapter 2.2.2. Figure D.2 illustrates
the fit of input-output theory to the data.
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Figure D.2. Fit of input-output theory to the data. Input-output
theory (solid lines) simoultaneously fitted to the resonator amplitude A (a) and
the resonator phase φ (b) as a function of detuning ε of the even configuration
at 0.25 T.

D.5. Charge parity determination

We measure the phase φ and amplitude A of the resonator as a function of de-
tuning ε and magnetic field B at a probe-frequency ωp/2π = 5.253 GHz, close
to the bare resonator frequency. A change in φ reflects the dispersive interac-
tion between the resonator and two anticrossing levels of the DQD [226, 265].
Therefore, the non-zero phase response of the resonator tracks the position
of the IDT along the detuning axis. The comparison of the magnetic field
dependence of the IDT position to a Hamiltonian model of the DQD allows
one to determine the charge parity [265, 266]. Figures D.3 (a) and (b) in the
extended data show two typical low field IDT characteristics of device B.

For an odd number of electrons (Fig. D.3(b)), the DQD resonance gate
voltage VR, at which the IDT is observed, disperses linearly with magnetic field
starting from zero. This can be understood considering the Zeeman-splitting
of the unpaired electron energy levels and two non-equal Landé g-factors of
the two dots. Fig. D.3(c) shows the energy level diagram of a one-electron
Hamiltonian including Zeeman-splitting with a g-factor difference of 1.0 and
spin-orbit interaction tSO/2π = 5 GHz at a magnetic field of B = 500 mT
(green, dashed line in Fig. D.3(b)). The arrow points out the center of the
IDT (largest curvature of the groundstate [267]) which corresponds to the
largest dipole moment of the DQD and thus to the largest change in φ. This
point shifts with B towards increasingly negative values.

For an even number of electrons in the DQD at zero magnetic field (Fig. D.3(a)),
a single dip in phase is observed, but at a low magnetic fields, B ≈ 60 mT, a
double dip structure emerges as a function of ε (see supplementary material
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Figure D.3. Dispersive read-out at low magnetic field. Resonator
phase in dependence of the right gate voltage VR and magnetic field B for even
(a) and odd (b) occupation of the DQD of device B. For the odd occupation
the IDT shifts to lower VR from B = 0. The IDT of the even occupation stays
nearly independent of magnetic field until around 0.2 T (white dashed line),
from where it starts moving to more positive VR. Energy level diagram for the
even (c) and odd (d) configuration at 0.15 T and 0.5 T (green dashed line).
The arrow marks the transition the resonator is sensitive to, where the ground
state energy level has maximum curvature.
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for details). This double-dip originates from an interaction between S2,0, S1,1
and T+

1,1 as explained in detail in the supplementary material. The depen-
dence of the IDT on magnetic field for an even number of electrons can be
understood using an effective two electron Hamiltonian including spin-orbit
interaction described in more detail in section 2.1.6. In Fig. D.3(c), we plot
the energy levels at a magnetic field B = 0.15 T. In contrast to the odd filling,
starting at zero magnetic field, the arrow marking the center of the IDT barely
changes, consistent with our measurement. The double dip vanishes when fur-
ther increasing the magnetic field, because of an increasing occupation of the
polarized triplet states. Once the Zeeman energy of the triplet state |T+

1,1⟩ be-
comes comparable to the singlet charge tunneling tSc , the position of the IDT
as a function of B disperses towards larger ε [266, 268, 269]. This transition
is marked by the white dashed line at 0.2 T in D.3(a).

Based on the good qualitative agreement between our data and the one
electron and two electron Hamiltonian, respectively, we can clearly identify
the even and odd charge parities.
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Figure D.4. Device B (a) False colored SEM-image of the device. The
NW (green) is divided into two segments by an in-situ grown tunnel barrier
(red), thus forming the DQD system. The NW ends are contacted by two
Ti/Au contacts (S,D) and the NW segements can be electrically tuned by two
Ti/Au sidegates SGR (purple) and SGL (yellow). A high-impedance, half-
wave resonator is connected to SGR. Top gates (orange) are kept at a constant
voltage of −0.05 V. The magnetic field is applied in-plane at an angle of ∼ 60◦

to the NW. The arrows illustrate an even charge configuration with the two
degenerate DQD states T+

1,1 and S2,0. (b) Resonance curve of the resonator in
Coulomb blockade in amplitude A/A0 (red) and phase φ (blue).

D.6. Analysis of device B

In this section we will discuss device B, which showed qualitatively similar
behavior as device A which is discussed in the main text. Device B is shown
in Fig. D.4(a), including a false-colored SEM-image of the crystal-phase de-
fined NW DQD. The DQD is hosted in the 280 nm and 380 nm long zincblende
segments (green), separated by 30 nm long wurtzite (red) tunnel barriers. A
high-impedance, half-wave coplanar-waveguide resonator is capacitively cou-
pled to the DQD at its voltage anti-node via sidegate SGR. One more side
gate SGL (yellow) allows to tune the electrostatic potential and there are
two top gates (orange) kept at constant voltage of −0.05. We show the
bare resonance curve in Fig. D.4(b) and extract the bare resonance frequency
ω0/2π = 5.25308 ± 0.00003 GHz and the bare decay rate κ/2π = 23.2 ± 0.8
MHz. The main difference to device A is the weaker coupling of the resonator
gate SGR to the DQD and the smaller voltages applied to the top gates, which
resulted in a stronger coupling of the DQD to the leads. Consequently, we ob-
serve a weaker spin-photon coupling and a larger qubit linewidth compared
to device A. However, the behaviour of the singlet-triplet qubit in magnetic
field is qualitatively the same, demonstrating that this kind of singlet-triplet
is reproducible.
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Figure D.5. Dispersive sensing of the DQD at B = 0. (a) Charge
stability diagram of the device, in which the resonator phase φ is measured as
a function of the SG voltages VR and VL. The negative slopes of the interdot
transitions are due to the strong cross-capacitance of the larger gate SGR.
A zoom on the interdot transition pointed out by the red rectangle is shown
in (b). (c) Resonator transmission (A/A0)2 versus probe frequency ωp and
detuning ϵ along the white line in (b). At the charge degeneracy point of
the DQD, we observe a dispersive shift with respect to the bare resonance
frequency.

D.6.1. Charge-stability diagram
Fig. D.5(a) shows the charge stability diagram of the DQD detected as a shift
in the transmission phase φ of the resonator, plotted as a function of the two
gate voltages VL and VR at a fixed probe frequency of 5.253 GHz, close to
resonance. We observe a slanted honeycomb pattern, in which the inter-dot
transition lines exhibit a negative slope due to the specific gate geometry (see
Fig. D.4(a)), which results in the right gate (VR) coupling stronger to both dots
than the left (VL). Using a capacitance model [81, 222], we extract the gate-to-
dot capacitances CR2 = 2.5±0.4 aF, CL2 = 1.65±0.08 aF, CR1 = 10.1±0.6 aF
and CL1 = 2.0 ± 0.2 aF.

In Fig. D.5(c) we show the resonator response while varying the probe fre-
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quency ωp and changing the detuning ϵ along the white line in Fig. D.5(b).
By fitting input-output theory to this particular IDT, we extract the inter-dot
tunnel coupling t = 4.40 ± 0.06 GHz, charge-photon coupling g0 = 150 ± 3
MHz, and charge qubit linewidth γ = 1.5 ± 0.5 GHz.

D.6.2. Avoided crossing
As illustrated in Fig. D.6(c), the DQD can be operated as a singlet-triplet
qubit when placed into a magnetic field. The qubit frequency ωq = ∆SO/ℏ
can be brought into resonance with the cavity frequency ω0 at B ≈ 1.7 T,
as discussed in more detail below. At the resonance condition (ωq ∼ ω0), an
anti-symmetric (bonding) and a symmetric (anti-bonding) qubit-photon su-
perposition are formed. Consistently, at a field of B ≈ 1.7 T, we observe an
anti-crossing between the resonator and the singlet-triplet qubit. Figure D.6(a)
shows the anti-crossing as a function of the detuning voltage Vϵ at constant
magnetic field B = 1.67 T. By fitting a lorentzian to each trace of fixed detun-
ing, we extract the resonance frequencies ωΨ± and linewidths δω (transmission
and phase). Simultaneously, we fit the transition frequencies (dashed, white
curves in Fig. D.6(a)) and linewidths (solid, black curve in Fig. D.6(b)) to the
Jaynes-Cummings model. The transition frequencies are fitted as described in
the methods section in the main text and linewidth of the transitions from the
ground state to the predominantly photon-like dressed state |ψ−⟩ is given by

δω = |⟨ψ−|g, 1⟩|2 κ+ |⟨ψ−|e, 0⟩|2 2γ (D.4)
= cos2 (θ)κ+ sin2 (θ) 2γ,

where θ = 1
2 tan−1

(
2g

ωq−ω0

)
[64]. The fit parameters are given in the caption

of Fig. D.6.
In Fig. D.6(c), we show the same anti-crossing as a function of B at a fixed

detuning ϵ/2π ∼ 1.65 GHz. To extract the spin-photon coupling strength
and qubit linewidth from this second measurement, we characterize the effec-
tive qubit transition frequency around the minimum t0 = t(B0) by ωq(B) =√

(2t0)2 + (αB(B −B0))2, where we introduce the heuristic scaling factor αB
. With this additional free parameter, we fit the Jaynes-Cummings model
(dashed, white curves in Fig. D.6(c) and solid, black curve in Fig. D.6(d)) and
extract the parameters described in the caption of Fig. D.6.
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Figure D.6. Avoided crossing as function of gate voltage and field.
(a) Resonator transmission at a fixed magnetic field B = 1.67 T as function of
detuning gate voltage Vϵ. (b) Linewidths δω extracted from (a). (c) Resonator
transmission at a fixed detuning voltage corresponding to ϵ′ = 1.65 GHz as
function of magnetic field. (d) Linewidths δω extracted from (c). Using a
Jaynes-Cummings model fit, we extract the following parameters for (a) and
(b): g0/2π = 164 ± 6 MHz, t/2π = 1.34 ± 0.05 GHz, γ = 317 ± 28 MHz, κ =
18.2 ± 0.2 MHz. This results in a resonant coupling strength of g(ωq = ω0) =
83±4 MHz when correcting for the mixing angle. From (c) and (d), we extract
g(ωq = ω0)/2π = 158 ± 3 MHz, t(B = B0)/2π ∼ 0, γ/2π = 269 ± 16 MHz,
κ/2π = 18.6 ± 0.2 MHz. The larger value of the coupling strength in the
magnetic-field (c,d) sweep compared to the detuning sweep (a,b) is attributed
to the smaller mixing angle and reflected by the larger splitting at the anti-
crossing in (c) compared to (a). Given the input power Pin = −133 dBm, the
average number of photons in these measurements is n < 0.25 (see methods
of main part).
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D.7. Magnetospectroscopy

In this section we analyse the magnetospectroscopy of device B analogously
to device A. We measure the resonator phase φ as a function of the detuning
ϵ and the magnetic field, as plotted in Fig. D.7(a). Resonator transmission
and phase are simultaneously fitted to input-output theory and the qubit-
photon coupling, qubit tunnel coupling and qubit linewidth are extracted.
Descriptions to the method and formulas can be found in the main text and
methods section.

We observe a qualitatively similar curve shape to device A in the main
text. Again, we model the DQD by an effective two electron Hamiltonian
which allows us to fit the gate voltage and field dependence of the IDT (white
dashed line in Fig. D.7(a)). We find that the magneto-dispersion of the IDT is
well fitted using the following fit parameters namely the spin-conserving singlet
and triplet tunnel rates tSc /2π ≈ 29 GHz, and tTc /2π ≈ 37 GHz, the singlet-
triplet coupling rate tSO/2π ≈ 5 GHz, the electron g-factors of the right and
left dots, gR ≈ 1.8 and gL ≈ 2.8, as well as the singlet-triplet energy splitting
∆ST/2π ≈ 79 GHz. As for device A, these fit parameters are consistent with
parameters obtained previously in this material system [61, 76, 166, 249, 250].

As described in the main text, we extract the the qubit tunnel amplitude t,
the qubit linewidth γ, and the qubit-photon coupling strength g as a function
of B, which we plot in Figure D.7(b). A notable difference to device A, is the
higher tunnel rate of device B. Unlike device A, device B has a qubit frequency
predominantly above the resonator frequency and therefore anti-crosses only
in small regions of the dispersion.

We will now shortly discuss the different regimes of the qubit, analogue to
device A. Fig. D.7(c) shows the corresponding DQD level structure based on
the fit parameters as a function of ϵ for different magnetic field.

At a low magnetic fields around B = 0.1 T, we observe again a singlet charge
qubit with Zeeman-split triplets in the weak coupling limit. Again, we observe
the characteristic double-dip structure between B ∼ 0.03 T and B ∼ 0.3 T of
an even IDT.

As shown in the second panel of Fig. D.7(c) at high enough field T+
1,1 becomes

the ground state for ϵ < 0. The spin-orbit interaction couples the singlet and
triplet states, leading to an anti-crossing between S2,0 and T+

1,1.
Consistent with the interpretation of the formation of a singlet-triplet qubit,

we measure an approximately constant tunneling rate t between B ∼ 0.5 T
and B ∼ 1.1 T. We extract the average spin-orbit tunneling to be t̄so = 4.0 ±
0.3 GHz. At B ≈ 1.3 T, χ becomes positive. This is interpreted as a drop of
the tunnel rate below the resonator frequency, 2t < ω0. This decline in t is not
captured by our simplified Hamiltonian model and we speculate that changes
in the orbital structure of a many-electron DQD could be the reason.

At a magnetic field of B ≈ 1.7 T, we observe a resonant interaction be-
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Figure D.7. Magnetospectroscopy of the singlet-triplet qubit. a)
Resonator phase φ as a function of the magnetic field B and detuning ϵ.
The white dashed line is a fit of the effective two-electron Hamiltonian to
the data. b) Extracted tunnel rate 2t/2π (black), twice the qubit-photon
coupling 2g0/2π (cyan) and qubit linewidth γ/2π (purple). Half the bare
resonator frequency is indicated by the black dashed line. (c) Two-electron
energy level diagrams at various magnetic fields with the corresponding field
strength indicated in (a) and (b) by the given symbols. A constant offset
of 20 GHz and 30 GHz was added to the energy levels at 1.65 T and 2.0 T,
respectively.

166

D



D.7. Magnetospectroscopy

tween the resonator and the singlet-triplet qubit leading to the anti-crossing
as discussed in section D.6.2. As seen in the level structure in Fig. D.7(c) at
B = 1.65 T, the triplet state T+

2,0 becomes relevant. This results in a level re-
pulsion between T+

2,0 and T+
1,1 and hence leads to a reduced splitting between

the S2,0 level and the T+
1,1 states. In Fig. D.7(c), this is illustrated by the

smaller level gap (black arrow) compared to the one at B = 0.7 T.
The level structure at very large magnetic fields is plotted at B ≈ 2 T in the

right panel of Fig. D.7(c). Here, we observe the triplet charge qubit.
As discussed in the main text, the triplet charge qubit has a larger frequency

detuning from the resonator frequency than the singlet-triplet qubit, leading
to a smaller resonator shift.
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