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SUMMARY 

Human disease progression is a highly dynamic process characterized by cellular-

level decision-making. It is crucial to employ appropriate technologies, with spatial and 

temporal resolution, as well as reliable model systems, to study and understand disease 

progression dynamics. Over the past decade, the emergence of single-cell technologies has 

facilitated such studies, enabling high-resolution molecular phenotyping of multicellular 

systems. Moreover, while much of our current knowledge of disease phenotypes has been 

derived from research on model organisms, organoid cultures have emerged as a viable 

alternative to bridge the gap to human systems. By recapitulating the cytoarchitecture and 

cellular complexity of human tissues, organoids offer an opportunity to investigate human-

specific traits and obtain more representative outcomes for therapeutics. In this thesis, we 

leverage state-of-the-art human organoid models and single-cell transcriptome technologies 

to characterize the morphological and molecular changes associated with pancreatic cancer 

progression and acute intestinal inflammation. These two areas represent clinically relevant 

concerns with unmet therapeutic needs, and patient-specific models might bring new 

inroads into therapy development. We establish novel multi-lineage organoid models for 

both disease areas and investigate the onset and progression of abnormal cell states over 

time. Our focus lies particularly on intercellular communication, and we describe dynamic 

gene regulatory networks that underlie the observed transitions in cell states. 

In the first project, we developed a modular stroma-rich tumoroid culture system that 

models pancreatic ductal adenocarcinoma (PDAC). This system successfully recreates the 

interactions between cancer, endothelial, and fibroblast cells, mimicking various aspects of 

primary tumors. Communication between different cell lineages within the cancer 

microenvironment can enhance cancer cell behavior and influence therapeutic responses. 

However, generating a complex cancer microenvironment in vitro has been a significant 

challenge. Our tumoroids consist of interconnected vessels, desmoplastic fibroblasts, and 

glandular cancer cell phenotypes that develop over time. By employing time-course single-

cell transcriptome measurements, we demonstrate that tumoroid formation activates 

fibroblasts, leading to alterations in the extracellular matrix composition and the induction of 

specific signal-response signatures and metabolic changes in cancer cells. We identify 

Syndecan 1 (SDC1) and Peroxisome proliferator-activated receptor gamma (PPARG) as 

crucial receptor and metabolic nodes involved in cancer cell response to signals from 

cancer-associated fibroblasts (CAFs), and we show that blocking SDC1 disrupts cancer cell 

growth within the tumoroid. Analysis of tumoroids from multiple PDAC patients reveals the 

coexistence of subpopulations associated with classical and basal phenotypes, as well as 

the presence of migratory cancer cells characterized by a distinct transcriptional signature 

related to metastasis. This migration signature develops over time, reflecting a stress 

response mechanism that correlates with a worse clinical outcome. 

In the second project, we turn our attention to the intricate relationship between the 

immune system and the intestinal epithelium. The intestine, a complex mucosal epithelial 

tissue responsible for food digestion and nutrient absorption, is a highly regenerating yet 

vulnerable tissue exposed to microbic flora. Perturbations in the delicate balance between 

epithelial and tissue-resident immune cells can contribute to autoimmune diseases and 

cancer. However, the dynamics of this relationship have remained elusive due to the lack of 

suitable experimental protocols for harvesting and cultivating fragile gut-resident immune 
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cells. In this study, we developed a 3D organoid model that combines human intestinal 

epithelium with autologous intraepithelial lymphocytes (IELs). This model enables us to 

characterize IEL populations under homeostatic and activated conditions and uncover the 

underlying processes and interactions involved in inflammatory responses. Our results 

demonstrate that IELs naturally integrate into the epithelium and dynamically survey both 

the organoids and the surrounding extracellular matrix. By performing single-cell 

transcriptome profiling (scRNA-seq), we identify a differential enrichment of cytoskeletal 

genes in IELs compared to matched peripheral blood mononuclear cells (PBMCs) and 

provide an explanation for their increased motility and intrinsic ability to inspect the 

epithelium. Unlike PBMCs, in vitro IELs exhibit rapid responses to cancer-targeting 

biologics, which are known to raise safety concerns in the intestine. This led to unwanted 

inflammation against healthy epithelium, a consistent adverse outcome observed clinically. 

Through time-course experiments and scRNA-seq profiling, we characterize critical IEL 

populations, uncovering key state trajectories and interactions that drive activation dynamics 

and result in adverse effects. We propose the antagonization of rho-associated kinases 1 & 

2, key cytoskeletal modulators, as well as tumor necrosis factor alpha (TNFa), as a potential 

strategy to mitigate drug-induced inflammation. 

Taken together, our comprehensive analyses and modular developmental systems 

serve as powerful tools to explore dynamic cell states and interactions, as well as to pave 

the way for the discovery of personalized therapies. We illustrate how our innovative models, 

particularly the immune-competent intestinal organoids, serve as better predictors of 

immunomodulatory drug responses. 
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INTRODUCTION 

HUMAN DEVELOPMENT AND DISEASE 

Human development is a truly extraordinary process that demands a high-

magnification lens to comprehend fully. It all begins with a single cell, the zygote, which 

eventually gives rise to the entire human body. During this fascinating journey, cells undergo 

a series of remarkable changes: they grow, multiply, change shape, and differentiate into 

specialized cell types, each with its own unique function. What is truly astonishing is how 

this cellular diversification, or symmetry breaking, occurs from initially uniform conditions. 

These diversifications result from a complex interplay of stochastic fluctuations and cell 

interactions, which are further sustained and amplified through intricate feedback loops. A 

symphony of microenvironmental signals directed by evolved gene regulatory networks 

(GRNs) orchestrate a self-organizing sequence of events that controls the precise 

positioning of cells and fine-tunes cell function. As organized structures emerge, they mature 

and intricately interconnect, culminating in the formation of the various tissues, organs, and 

complex systems that constitute a fully developed multicellular organism. Despite the 

complexity and puzzling nature of these developmental processes, they exhibit an 

astonishing resilience to perturbations and remain highly reproducible across different 

individuals. 

However, the human body's robustness is not infallible. At times, failures occur, 

triggered by mutations, whether somatic or germline, or environmental pressures, causing 

disruptions in the harmonious system. This can lead to the emergence of aberrant states, 

representing harmful deviations from the normal structural integrity of tissues or an 

individual's physiological condition. These aberrant states manifest in a multitude of 

diseases, each with unique characteristics classified according to their origin, affected 

organs, and prognosis. Regardless of their specific manifestations, they all share a common 

trait: the potential to significantly impact an individual's quality of life and life expectancy. In 

the face of these challenges, fundamental research becomes an invaluable tool. It delves 

deep into the mechanisms underlying the onset and progression of disease phenotypes, 

providing crucial insights that serve as the foundation for developing therapies. These 

treatments aim to either mitigate the detrimental effects of aberrant states or restore 

essential homeostasis, ultimately striving to enhance both the length and quality of human 

life. 

ADVENT OF A NEW TECHNOLOGY 

Since the beginning of the last century, biological research has dedicated substantial 

attention to investigating the function and morphology of in vitro cultured tissues. Early 

groundbreaking reports demonstrated the use of ex vivo cultured neurites, providing a 

platform for microscopic observations (Harrison et al., 1907). Over the years, cell culture 

techniques have become increasingly sophisticated, allowing for the study of more complex 

systems. In the mid-1970s, cultures of squamous epithelial colonies, resembling human 

epidermis with keratinization in the upper layers and cell proliferation in the bottom layers, 

were developed from single cells (Rheinwald and Green, 1975). 
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To create more physiologically relevant models that overcome the limitations of two-

dimensional (2D) cultures, researchers introduced artificial extracellular matrix (ECM) (Orkin 

et al., 1977). This groundbreaking advancement enabled the development of the first three-

dimensional (3D) in vitro cultures derived from mammary glands (Barcellos-Hoff et al., 

1989). In the last decade, the emergence of 3D organotypic culture systems, commonly 

known as organoids, has revolutionized the study of various multicellular complex tissues. 

Organoids offer researchers an accessible and tractable method to study tissues, 

circumventing the lack of primary human tissue and providing excellent potential for 

mechanistic and manipulative studies. Notably, organoids are especially suitable for genetic 

and morphogenetic manipulation, single-cell studies, and drug screenings. 

SELF ORGANIZATION AND CELLULAR CROSSTALK 

Organoids are 3D in vitro models capable of recapitulating key aspects of spatio-

temporal patterning observed during organ development, while mimicking their physiology 

and cytoarchitecture (Clevers, 2016; Zhao et al., 2022). These versatile structures can be 

derived from pluripotent, embryonic, adult stem cells, or cancer cells and undergo 

spontaneous self-organization in the presence of specific niche and growth factors (Clevers, 

2016; Fatehullah et al., 2016; Lancaster and Knoblich, 2014; Rossi et al., 2018). A debate 

ensues regarding whether organoids truly exhibit self-organization, as some systems 

necessitate exogenous growth factors to trigger the process. The emergence of localized 

signaling sources which, when stabilized, can act as references for patterning, in a 

genetically encoded self-assembly model may also explain organoid formation (Turner et 

al., 2016). However, it has been observed that intestinal organoids undergo symmetry 

breaking even without external differentiation cues and subsequently initiate self-patterning 

and self-sorting to achieve equilibrium at homeostatic conditions (Serra et al., 2019). In the 

context of organoids, self-organization refers to the emergence of a system-autonomous, 

asymmetric higher-order structure from an initially homogeneous state under a uniform 

signaling environment. 

Central to the remarkable transformations during self-organization is the ability of a 

cell to exchange signals within the local neighborhood. Intricate signaling networks enable 

cell interactions, coordination of activities, fate decisions, tissue patterning, and migration. 

For example, during early human brain development, a cascade of morphogenetic events 

is triggered. The forebrain develops from the anterior-most section of the neural tube in 

response to a WNT morphogenetic gradient, while a spreading SHH signaling gradient from 

the neural tube floorplate instructs ventral fates and counters WNT and BMP signals from 

the cortical hem and neural tube roofplate responsible for dorsal forebrain specification. 

Additionally, the Pallial-Subpallial Boundary (PSB) secretes soluble Frizzle-like Receptor 

Proteins (sFRPs) that restrict WNT signaling to cortical structures, further refining the spatial 

context-dependent crosstalk of different cell types (Martinez et al., 2012; Martinez-Ferre & 

Martinez, 2012; Puelles & Martinez, 2013). Mediating these crucial physiological processes 

are ligand-receptor complexes. Binding of ligands to their cognate receptors activates cell-

specific signaling pathways that can induce profound changes in metabolism and 

transcriptional profiles. Consequently, mapping these ligand-receptor interactions becomes 

fundamental to understanding cellular behavior and decoding responses to 

microenvironmental cues. Organoid systems offer a fascinating tool that enables 
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observation of localized interactions and manipulation of morphogens and other signaling 

molecules under controlled conditions. 
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ADVANCEMENTS IN ORGANOID 

TECHNOLOGY 

UNLEASHING THE POTENTIAL OF 3D MULTICELLULAR 

STRUCTURES 

Organoids have emerged as valuable 3D in vitro models, capable of mimicking the 

physiology and cytoarchitecture of various organs, such as the pancreas, intestine, stomach, 

brain, and liver (Barker et al., 2010; Dahl-Jensen and Grapin-Botton, 2017; Eiraku et al., 

2011; Greggio et al., 2013; Huch et al., 2013; Huch et al., 2013; Lancaster and Knoblich, 

2014; Lancaster et al., 2013; Rookmaaker et al., 2015; Rossi et al., 2018; Sasai, 2013; Sato 

and Clevers, 2013; Sato et al., 2011; Sato et al., 2009; Simunovic and Brivanlou, 2017; 

Werner et al., 2017). Depending on the biological materials used, organoids can be 

categorized into three main types: pluripotent stem cell (PSC)-derived, adult stem cell 

(ASC)-derived, and cancer organoids. The PSC-derived organoids encompass diverse 

tissue types, such as thyroid, kidney, optic cup, retinal, and cerebral organoids (Kurmann et 

al., 2015; Takasato et al., 2014; Eiraku et al., 2011; Shirai et al., 2016; Lancaster et al., 

2013). Furthermore, embryoids and gastruloids, which originate from clusters of 

differentiating embryonic stem cells (ESC), have been created to mimic the initial 

developmental stages of embryos, the determination of cell type identities, and the 

establishment of body axes (Beccari et al., 2018; Harrison et al., 2017; Rossi et al., 2018; 

Simunovic & Brivanlou, 2017; van den Brink et al., 2014). ASC-derived organoids comprise 

various tissue models, including mammary gland, salivary gland, lung, pancreatic, colon, 

and small intestinal organoids (Olabi et al., 2018; Butler et al., 2016; Loomans et al., 2018; 

Yui et al., 2012; Sato et al., 2009). Moreover, patient-derived cancer specimens embedded 

in a 3D matrix can also grow into organoids known as tumor organoids (tumoroids). Several 

tumoroids have been established (Boj et al., 2015; Broutier et al., 2017; Gao et al., 2014; 

Hubert et al., 2016; Lee et al., 2018; Sachs et al., 2018; Sato et al., 2011; Van de Wetering 

et al., 2015; Vlachogiannis et al., 2018), providing a more accurate and robust predictive 

model for the efficacy of anticancer drugs and the identification of new compounds 

(Vlachogiannis et al., 2018). 

Despite their diversity, all organoid systems share a common defining feature: they 

originate from progenitor cells with intrinsic self-organizing capacity, driving the formation of 

complex multicellular 3D structures with emergent properties surpassing those of individual 

components. This spatial organization establishes a stem cell niche, facilitates the 

expansion of progenitor cells, and supports the development and maintenance of 

differentiated cells. However, variations exist in cell-type composition between individual 

organoids, batches, and stem cell lines. Researchers are trying to addressorganoid 

heterogeneity  by developing highly reproducible organoid protocols across different  lines 

(Velasco et al., 2019; Yoon et al., 2019). Additionally, organoid morphogenesis is influenced 

by the composition and physical properties of the extracellular matrix (ECM). Current 

methods for organoid generation involve the use of exogenous ECM components, like 

Matrigel (SelectScience https://www.selectscience.net/application-articles/tuning-the-

elastic-moduli-of-corning-matrigel-and-collagen-i-3d-matrices-by-varying-the-protein-

concentration/?artid=46305), or endogenous ECM progressively deposited by the organoid 
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itself. Moreover, the need for exogenous ECM may vary based on tissue model and 

developmental stage. Whereas exogenous ECM inclusion promotes the initial establishment 

of tissue polarity, it may become dispensable following fate specification (Martins-Costa et 

al., 2022). Efforts are currently underway to develop substitute techniques for ECM support 

that can overcome the ill-defined and variable Matrigel composition (Kozlowski et al., 2021; 

Ranga et al., 2016). Developing new materials with optimum stiffness for specific tissues is 

critical for symmetry-breaking events in organoids (Ranga et al., 2016; Y. Zheng et al., 

2019). 

STEM CELL DERIVED ORGANOIDS 

Stem cell-derived organoids 

encompass (induced)-pluripotent 

stem cells (iPSCs) and tissue-

resident fetal and adult stem cells 

(FSCs, ASCs), and they have been 

generated by mimicking the 

biochemical and physical cues of 

tissue development and homeostasis 

(Fig. 1) (Iakobachvili & Peters, 2017; 

Lancaster & Knoblich, 2014). 

General strategies for the 

development of iPSC-derived 

organoids involve a stereotypical 

sequence of specific morphogen 

regiments, designed to follow the 

step-wise developmental stages and 

allow the correct patterning of a 

desired tissue type in vitro (Fig. 2) 

(McCauley & Wells, 2017). Nodal and 

Wnt signals, depending on the time 

point of delivery, promote endoderm 

and mesoderm fates (Gadue et al., 

2006). These inputs are the major 

determinants of PSC germ layer 

identity which is established in vivo 

during gastrulation through the migration of epiblast cells across the primitive streak (Ciruna 

& Rossant, 2001). In the absence of other triggering cues during this stage, neural 

determination is induced in the tissue. Therefore, if induced iPSCs are grown without the 

presence of the instructive signals, they will naturally develop into neuroepithelial cells 

(Eiraku et al., 2008). To date, two approaches prevail in the production of 3D human brain 

tissue cultures. The first is based on culturing the neuroepithelium in permissive media, 

resulting in the generation of multiple brain structures within the same organoid (Kadoshima 

et al., 2013; Lancaster et al., 2013). Alternatively, signaling molecules or other directive cues 

can be used to control patterning of the neuroepithelium towards defined structures, such 

as cortex, ventral telencephalon, hypothalamus, or thalamus (Eiraku et al., 2008; Kadoshima 

et al., 2013; Pajca et al., 2015; Bagley et al., 2017; Birey et al., 2017; Xiang et al., 2017; 

Figure 1: Stem cell-derived organoids formation. 
Organoids derived from ASCs are generated by breaking down 
patient-derived tissues followed by cultivating them in a synthetic 
extracellular matrix. On the other hand, organoids derived from PSCs 
originate from individual stem cells, initially forming spheroids in a 
suspension culture, and subsequently being transferred to a three-
dimensional environment where they are exposed to morphogens. 
Adapted from Iakobachvili and Peters (2017). 
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Qian et al., 2016; Xiang et al., 2019). Fusion of two or more brain structures has been 

explored to study neuronal migration or enable the formation of inter-region neuronal 

connections (Bagley et al., 2017; Birey et al., 2017; Duan et al., 2019; Pasca, 2018). 

 

Figure 2: PSC-derived organoid generation mimics developmental stages. Cultivating pluripotent stem cells (PSCs) 

with precise mixtures and concentrations of morphogens, which replicate the sequence of events in embryonic development, enables 
the patterning of germ layer identity and subsequent generation of organoids that closely resemble a diverse range of tissues. Adapted 
from McCauley and Wells (2017). 

Likewise, tissue-specific cues can also be employed to create organoids originating 

from mesoderm and endoderm. The patterning of endoderm and mesoderm along the 

anterior-posterior axis is guided by spatio-temporal signaling gradients of Wnt, fibroblast 

growth factor (FGF), retinoic acid (RA), and transforming growth factor (TGF) / bone 

morphogenetic protein (BMP) (Kubo et al., 2004). Accurate activation of Wnt signaling, 

followed by the FGF, leads to the formation of anterior-posterior mesoderm. Thereafter, 

modulation of RA cues allows for the patterning of ureteric epithelium and metanephric 

mesenchyme (Taguchi et al., 2014; Takasato et al., 2014). Notably, extended exposure of 

mesodermal lineages to Wnt and FGF signals has the potential to produce kidney organoids 

(Taguchi et al., 2014). Expression of the transcription factor Cdx2, following Wnt and FGF 

activation, promotes posterior endoderm and commitment to mid/hindgut fate (Spence et 

al., 2011). In contrast, BMP signaling inhibition leading to Cdx2 repression results in the 

formation of foregut endoderm (Fausett et al., 2014; McCracken et al., 2014). At this stage, 

additional inhibition of RA signaling promotes anterior endoderm fate that leads towards lung 

organoid formation (Dye et al., 2015). Conversely, stimulation with RA factors guide the 

acquisition of posterior foregut identity enabling the generation of gastric organoids 
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(McCracken et al., 2014). BMP stimulation drives the acquisition of the most posterior 

endodermal fates giving rise to intestinal organoids (Spence et al., 2011). 

Fate restriction of iPSCs to a specific germ layer during culture may impact the 

functionality of an organoid system when the desired tissue is a complex mixture of cells 

with diverse developmental origins. Neural organoid protocols, as described above, initially 

restrict their potential to neuroectoderm-derived fates, precluding the presence of microglia 

and endothelial cells within the organoid. To address this limitation, several protocols have 

been developed leading to the successful incorporation of microglia-like cells in retinal 

organoids (Chichagova et al., 2023) along with structures resembling blood vessels and 

microglia within cortical organoids (Sun et al., 2022). Furthermore, the ectopic expression 

of transcription factors specific to myeloid and endothelial cells has been outlined as a 

potential strategy for the inherent generation of endothelial cells and microglia within cortical 

organoids (Cakir et al., 2019; Cakir et al., 2022). Altogether, this shows how key steps driving 

embryo development can be engineered to direct differentiation of iPSCs and allows the 

generation of diverse organoid systems. Despite holding great potential and enabling the 

generation of a wide array of tissues in a patient-specific context, iPSC-derived organoids 

result in models that more closely resemble embryonic rather than adult tissues (Eiraku et 

al., 2011; McCracken et al., 2014; Rossi et al., 2018). Additionally, since PSC-derived 

organoids usually require culture for extended periods of time, they tend to suffer from the 

lack of perfusing oxygen, which impacts the survival of the inner-most regions and overall 

maturation of the different cell types. Good results in mitigating these caveats have been 

observed by the transplantation of the organoids into living animal models. Indeed, neural 

organoid transplantation into the brain of living rodents (Daviaud et al., 2018; Dong et al., 

2021; Jgamadze et al., 2023; Mansour et al., 2018; Revah et al., 2022) results in the 

vascularization of organoid tissue (Daviaud et al., 2018; Mansour et al., 2018) and functional 

integration of circuits, which serve as a hybrid model with behavioral output (Revah et al., 

2022). 

In contrast to PSC-derived models, ASC-derived organoids do not recapitulate 

developmental steps. Rather, this system takes advantage of the regenerative capacity of 

parent tissues, resulting in structures that are more reminiscent of adult physiology (Clevers, 

2016). Consistently, growth conditions for ASC-derived organoids typically include factors 

controlling tissue repair or homeostasis. While the idea that organoids developed from ASCs 

essentially replicate tissue regeneration is not yet widely accepted, numerous discoveries 

support this theory. Several ASC-derived organoid models replicate the properties of tissues 

with either rapid cell replenishment or the ability to regenerate, like the small intestine, 

stomach, and lung. Furthermore, recent studies have shown that in liver, regenerative 

responses following acute damage involve induction of stem cells expressing Lgr5 (Huch et 

al., 2013b). These cells have the potential to regenerate liver tissues as well as generate 

hepatic organoids. Likewise, in the lung, an organ characterized by low rate of cell division, 

instances of sudden damage result in an elevated count of actively dividing cells (Pardo-

Saganta et al., 2015), which can be used for the formation of cultured organoids (Tadokoro 

et al., 2014). 

CANCER ORGANOIDS 

Cancer organotypic cultures, defined as 3D self-organizing aggregates of patient-

derived tumor cells that are capable of mimicking critical phenotypic, genetic, and 
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histopathological hallmarks of the parent neoplastic tissue, have recently been established 

as a comparatively cost-efficient and archetypal platform to investigate human cancer 

heterogeneity and tumor microenvironment (TME) interactions in vitro (Fig. 3) (LeSavage et 

al., 2022; Drost & Clevers, 2018).  

 

Figure 3: Cancer organoids mirror the distinctive traits of inter- and intratumoral heterogeneity. Every 

patient's cancer has a range of unique cellular and environmental traits that contribute to the considerable biological variability 

observed within and between tumors. Patient-derived cancer organoid models have demonstrated the ability to faithfully reproduce 

this inherent diversity within and between tumors. Specifically, patient-derived cancer organoids can mimic the extensive (epi)genetic 

and phenotypic heterogeneity among different subclones of cancerous cells, together with the collective morphological features 

unique to each tumor. Additionally, cancer organoids provide a way to simulate the diversity of the tumor microenvironment (TME), 

including the presence and functions of non-cancerous cells, the signaling through specific soluble molecules, and changes in the 

composition of the extracellular matrix (ECM). Consequently, cancer organoids stand as poweful predictive tools for anti -cancer 

treatment responses in clinical personalized medicine. Adapted from LeSavage et al. (2022). 

Building upon established protocols for healthy gastrointestinal organoid generation, 

colorectal cancer (CRC) was among the first successfully developed patient-derived 

organoid tumor models (Sato et al., 2009; Sato et al., 2011). This seminal work paved the 
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way for the development of cancer organoids from several tumor types, which have provided 

a high-throughput platform for testing clinical as well as emerging cancer targeting 

treatments such as chemotherapy (Kopper et al., 2019; Sachs et al., 2018; Tiriac et al., 

2018; Vlachogiannis et al., 2018), immunotherapy (Neal et al., 2018), as well as radiation 

therapy (Ganesh et al., 2019) in a patient-specific context. Moreover, numerous studies 

have taken advantage of cancer organoids for investigating disease progression and tumor 

niche factor requirements (Fujii et al., 2016; Nanki et al., 2018; Seino et al., 2018). The 

capacity to cultivate, passage, and cryopreserve neoplastic cells while maintaining the 

parent’s tumor genetic and histological traits, defines the attainment rate of organoid 

establishment from specific tumor subtypes. This has been described to be higher than 70% 

(Boj et al., 2015; Neal et al., 2018; Sachs et al., 2018; Tiriac et al., 2018), significantly better 

compared to the success rate of cancer cell lines establishbment which ranges between 20-

30% (Kodack et al., 2017). Additionally, through the co-culture of non-neoplastic cellular 

populations, such as cancer-associated fibroblasts (CAFs) (Ohlund et al., 2017; Seino et al., 

2018) and immune cells (Neal et al., 2018), in vitro cancer organoids offer unique 

advantages in modeling cell type diversity as well as heterotypic cell interactions within the 

tumor microenvironment. 

To date, several ‘living biobanks’ of patient-derived cancer organoids, including 

colorectal (Fujii et al., 2016; Sato et al., 2011; van de Wetering et al., 2015), pancreatic (Boj 

et al., 2015; Seino et al., 2018; Tiriac et al., 2018), prostate (Gao et al., 2014), ovarian (Hill 

et al., 2018; Kopper et al., 2019), bladder (Lee et al., 2018), liver (Brouttier et al., 2017), 

breast (Sachs et al., 2018), lung (Kim et al., 2019; Sachs et al., 2019), esophagus (Li et al., 

2018), gastric (Nanki et al., 2019), endometrium (Boretto et al., 2019), and brain (Jacob et 

al., 2020), have modeled interpatient heterogeneity. These studies highlight the 

maintenance of parent tumor (epi)genetic, proteomic, morphological, and pharmacotypic 

features in cancer organoids. Specifically, an all-encompassing cohort of 138 tumor samples 

from pancreatic cancer patients, covering both genetic and phenotypic variability, unveiled 

shared genetic and transcriptomic patterns linked to the effectiveness of cancer-fighting 

drugs (Tiriac et al., 2018). Remarkably, studied organoids revealed pharmacological 

signatures that were, a posteriori, predictive of clinical outcomes for multiple patients after 

treatment (Tiriac et al., 2018). Similarly, a living biobank of colo-rectal cancer (CRC) 

encompassing 55 patient-specific organoid lines, established from both primary and 

metastatic lesions, demonstrated the conservation of distinct histopathological features and 

genetic signatures of their in vivo counterparts (Fujii et al., 2016). By meticulously examining 

the genetic traits and adjusting culture condition, cancer organoids are shown to effectively 

replicate heterogeneity in the genetic makeup among patients which impacts the needs of 

specific environmental factors within the organoids and the process of metastasis (Fujii et 

al., 2016). 

HUMAN ORGANOIDS AND THEIR ROLE IN ADVANCING 

BIOMEDICAL RESEARCH 

Despite the undeniable successes that animal models have historically achieved, 

there is a critical bottleneck hindering biological research from addressing human-specific 

questions in understanding human biology and disease. Extrapolating results from animal 

models to humans has proven challenging and requires pre-existing insights into causative 

conditions or genes involved. To study a particular phenotype, animal models are commonly 
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established through precisely manipulating the genes responsible for inducing the specific 

disorder or by subjecting animals to detrimental environmental conditions. The mouse is one 

of the most frequently used animal models due to its mammalian similarity to humans and 

the possibility to establish genetically engineered strains. However, even with recent 

precision genome editing advancements mediated by CRISPR-Cas9, creating conventional 

transgenic mouse models still takes over a year (Wang et al., 2013; Yang et al., 2013; Yang 

et al., 2014). Furthermore, certain human biological traits are not suitable to being 

recapitulated in animal model systems. Brain function, resulting from human-specific 

developmental events and mechanisms (Kanton et al., 2019; Lui et al., 2011), is significantly 

more complex in humans compared to murine counterparts. Given that human development 

unfolds over a much longer period of time than the models (Kuzawa et al., 2014), human 

physiology diverges significantly from that of the laboratory mouse, and it is not surprising 

that substantial metabolic disparities exist between these two species. Besides, the genetic 

diversity inherent to humans, which is absent in inbred animal models, exerts a pivotal 

influence on the initiation, advancement, and drug reactions in various diseases. This 

underscores the imperative need to create model systems that are uniquely tailored to 

human biology for the advancement of personalized medical interventions. 

To bridge the gap between animal models and humans, human stem cell-derived 

organoid culture has emerged as a promising solution (Fowler et al., 2019; Lancaster & 

Huch, 2019, Schweiger & Jensen, 2016). Organoids offer a powerful platform to recreate 

human organ architecture and physiology with remarkable detail, surpassing the limitations 

of animal models. They maintain cellular heterogeneity and structure of parent tissues while 

preserving most advantages of in vitro systems, facilitating the study of processes that are 

challenging to address in vivo. Indeed, complex diseases involving multiple genes, including 

inflammatory bowel disease (IBD) and cancer, greatly benefit from organoid systems that 

can be established directly from patient biopsies, without the necessity of prior knowledge 

about the precise genes accountable for the observed phenotype (Drost & Clevers, 2018; 

Nanki et al., 2020). Additionally, organotypic cultures enable quicker and more reliable 

results, are more easily attainable and can be readily expanded to reach an optimal sample 

size making large-scale studies of chemical and genetic perturbations feasible in conditions 

where physiological cell types and interactions are preserved (Rookmaaker et al., 2015; 

Rossi et al., 2018; Xavier da Silveira Dos Santos & Liberali, 2018).  

Human organoids derived from biopsy samples or genetic manipulations have proven 

instrumental in studying the molecular pathogenesis of various illnesses and conducting 

drug screenings for personalized medicine (Lancaster & Huch, 2019; Michels et al., 2020). 

Additionally, combining organoids with CRISPR-Cas9 genome editing has allowed 

researchers to model monogenic disorders like cystic fibrosis and test potential therapeutic 

strategies (Schwank et al., 2013). This showcased the potential of adopting a comparable 

approach to produce autologous organoids for transplantation. Indeed, integration into 

mouse models aimed at restoring damaged tissues and cell therapy efficacy have been 

assessed using organoids (Rookmaaker et al., 2015; Rossi et al., 2018; Schweiger & 

Jensen, 2016). Furthermore, genetic manipulation of organoids has led to the identification 

of oncogenic driver mutations and their subsequent introduction into normal epithelial 

organoids has provided invaluable descriptions of the minimum set of mutations that can 

closely model a metastatic human colon cancer (Drost et al., 2015; Matano et al., 2015). 

Besides, conducting analysis of pooled CRISPR gRNA library screenings has enabled the 
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optimization of the effectiveness of organoid models in human genetic research (Michels et 

al., 2020; Ringel et al., 2020). 

Beyond disease modeling, organoids are shedding light on human-specific traits (Fig. 

4) (Pollen et al., 2023). By directly comparing human and non-human primate brain 

organoids, researchers have unveiled features linked to enhanced cognition (Kanton et al., 

2019; Mora-Bermudez et al., 2016; Pollen et al., 2019). Specifically, comparing human, 

chimpanzee and macaque cerebral organoid development revealed human-selective gene 

regulatory features that persist into adulthood (Kanton et al., 2019) and increased mTOR 

signaling in human outer radial glia (Pollen et al., 2019). Furthermore, muscle and bone 

differentiation techniques using organoids provide insights into musculoskeletal changes, 

while intestine and colon organoids have been employed to study metabolic effects of diet 

and cooking innovations (Chal & Pourquié, 2017; Singh et al., 2020). Acquisition of 

metabolic, morphological, and cognitive modifications that enabled humans to colonize 

diverse habitats and develop extraordinary technologies to explore the depths of outer space 

has been possible on the basis of genetic, molecular and developmental changes that often 

involve complex intercellular interactions.  

 

When organoids patterned to selected germ layers or regions were insufficient, more 

complex assemblies of organoids have also been developed that could model human-

specific biology (Sousa et al., 2017; Aiello & Wheeler, 1995; Babbitt et al., 2011). 

Remarkably, intestinal organoids are capable of replicating the contractions observed in the 

gut when paired with co-cultures of neural crest cells (Workman et al., 2017), while the 

introduction of microglia and vascular cells could play a crucial role in emulating interactions 

Figure 4: Primate-

derived organoids to 

explore human-

specific characteristics 
Induced pluripotent stem 

cells (iPSCs) from large 

primates have the potential 

to delve into contemporary 

human features. Illustrated 

are instances of existing 

human in vitro model 

systems (arrows) and the 

possibility of investigating 

and comprehending traits 

unique to humans (stars). 

These stem cell and 

organoid models have the 

capacity to be extended to 

encompass great apes, 

along with other primates 

and mammals, facilitating 

the study of human 

molecular, cellular, and 

tissue functions under 

controlled conditions. 

Adapted from Pollen et al. 

(2023). 
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between the nervous and immune systems, as well as supporting the development of 

neurons (Cakir et al., 2019; Popova et al., 2021). Finally, organoids provide valuable insights 

from an evolutionary perspective, offering information about human health, disease 

susceptibility, and recent genetic changes (Fan et al., 2016; Benton et al., 2021). 

Understanding how our bodies are organized and how recent genetic changes affect 

disease risk can aid in personalized medical treatments.  

Advancements in single-cell RNA sequencing (scRNA-seq) and high-content imaging 

technologies enable researchers to quantitatively investigate organoids at the single-cell 

level, providing unprecedented morphological and molecular insights of developmental and 

evolutionary processes and allowing the reconstruction of differentiation trajectories (Camp 

et al., 2015; Kanton et al., 2019; Mayr et al., 2019; Quadrato et al., 2017; Velasco et al., 

2019). In conclusion, human stem cell-derived organoids offer a transformative approach in 

biological research, providing an essential bridge between animal models and human 

biology. Their use in disease modeling, studying human-specific traits, and exploring 

evolutionary insights is accelerating progress in understanding human biology and 

advancing personalized medicine. 

LIMITATIONS OF ORGANOID MODELS 

Despite the numerous advantages outlined earlier, organotypic cultivation of human 

tissue remains a work in progress, with ongoing efforts to advance and standardize the 

technology. One pressing challenge in organoid research is the variability of the system, as 

different studies employ contrasting procedures to establish stem-cell derived organoids, 

lacking a broadly accepted standardized protocol. This inconsistency is evident in gut 

organoids that can be derived from human ASCs or PSCs (Sato et al., 2009, Sato et al., 

2011, Spence et al., 2011) as well as cerebral organoids derived from different cell lines 

(Kanton et al., 2019). A recent breakthrough showcased the potential for further 

improvement by refining culture conditions, leading to better cellular diversity and culture 

efficiency (Velasco et al., 2019, Yoon et al., 2019). A collective effort is needed to establish 

clear guidelines and quality assessment methods which are of paramount importance in 

reducing variability among research groups. Leveraging single-cell transcriptomic and (epi)-

genomic profiling, along with advanced analysis technologies, could prove crucial in 

achieving precise assays for benchmarking different organoid systems against their in vivo 

counterparts. Furthermore, human organoid models may encounter added variability due to 

individual distinctions including age and genetic makeup. While challenging, this variation 

provides the chance to explore the impact of population heterogeneity in human biology. 

A clear drawback of organoid systems is their inability to simulate interorgan 

communication comprehensively. Human organoids can only mimic organ or tissue-specific 

microphysiology, a limitation that must be acknowledged when delving into this exciting 

research field. However, progress is underway to overcome this limitation by connecting 

multiple organoids to study communication between different organs (Bagley et al., 2017, 

Birey et al., 2017, Xiang et al., 2017). Exciting prospects arise from the convergence of 

organoid research and organ-on-a-chip technology, potentially leading to an 'organoid-on-

a-chip' technology (Zhang et al., 2017). This could facilitate inter-organoid communication 

while the distinct organoid types are segregated in spatially isolated cultures. 
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Another challenge lies in defining the effect of extracellular matrix composition on 

organoid culture. The uncertainty surrounding matrix composition can significantly impact 

the results of chemical and genetic perturbation screening of human organoid models. 

Despite ongoing efforts (Kozlowski et al., 2021, Ranga et al., 2016), more work is needed 

to surmount this challenge, establish more faithful human model systems, and facilitate the 

application of human organotypic cultures to regenerative medicine, where compliance with 

"good manufacturing practice" necessitates the use of precisely defined raw materials. 

Moreover, ongoing efforts are being directed towards generating human organoid culture 

platforms tailored for large-scale production (Cowan et al., 2020), advancing organoid-

based high-content screening, and developing micro-organoids-on-a-chip as finely tuned 

miniature systems. In all these endeavors, acquiring the knowledge of crafting a synthetic 

and adaptable extracellular matrix will prove of paramount significance. 
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PROBING NEW HORIZONS WITH SINGLE 

CELL TRANSCRIPTOMICS 

EMERGING TECHNOLOGIES 

Single-cell messenger RNA sequencing (scRNA-seq) has undergone a revolutionary 

transformation, becoming one of the fastest-evolving techniques in the last decade. This 

powerful method enables the measurement of all messenger RNA molecules in individual 

cells, providing insights into the future expressed proteins and functional identity of each 

cell. Unlike bulk RNA sequencing approaches, scRNA-seq has illuminated an astonishing 

degree of cell type diversity, shedding new light on the complexity of physiological and 

developmental processes in human biology. Additionally, scRNA-seq is particularly well-

suited for reconstructing comprehensive developmental differentiation trajectories due to its 

ability to capture a variety of differentiation states simultaneously (Nayak & Hasija, 2021). 

The fundamental strategy behind scRNA-seq methods involves "tagging" each cell's 

transcriptome with unique oligomeric barcodes. Following enzymatic tissue dissociation and 

permeabilization of cytoplasmic or nuclear membranes, messenger RNA (mRNA) 

molecules, together with barcodes uniquely identifying individual cells, undergo reverse 

transcription to cDNA. Since the number of collected transcripts for single-cell sequencing 

is scarce compared to bulk sequencing, an extensive amplification procedure is necessary. 

This procedure includes the introduction of a unique molecular identifier (UMI) to correctly 

assign all generated amplicons to their original transcripts. Moreover, in techniques such as 

massively parallel sequencing, the generation of cDNA libraries for individual cells involves 

the incorporation of additional adaptor and barcoding sequences to facilitate subsequent 

multiplexing of transcription reads. 

Key distinctions among scRNA-seq techniques lie in the single-cell isolation 

procedure as well as in the particular chemistry used during the experiment. Plate-based 

assays, for instance, involve distribution of cells into multiwell plates or microfuge tubes 

before applying barcodes and initiating library construction (Hashimshony et al., 2016; Islam 

et al., 2011; Picelli et al., 2013; Sasagawa et al., 2013). Among these, SMART-seq2 is 

renowned chemistry used in plate-based methods for its exceptional sensitivity and the 

capacity to produce complete cDNA molecules (Picelli et al., 2014). In contrast, droplet 

microfluidic-based assays rely on the encapsulation of single cells in microfluidic droplets, 

enabling the profiling of tens of thousands of cells per experiment (Jaitin et al., 2014; Klein 

et al., 2015; Macosko et al., 2015; Treutlein et al., 2014; Zheng et al., 2017). Droplet 

microfluidic-based methods have gained popularity due to their accessibility, 

commercialization, and ability to characterize sample heterogeneity at single-cell resolution 

with high cell numbers. Both microfluidic- and plate-based techniques, however, require 

complete dissociation of the tissue sample, leading to over sequencing more abundant cell 

types and rare or other specific cell populations. To overcome this limitation, researchers 

have employed various strategies. For example, Fluorescence-Activated Cell Sorting 

(FACS) and Laser Capture Microdissection (LCM) have been used to enrich cells 

expressing specific markers or select specific sections of the tissue (Nichterwitz et al., 2016). 

Recent advances in the field have led to the development of techniques that address 

the single-cell isolation needs. SPLiT-seq (Split-Pool Ligation-based Transcriptome 
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sequencing) sequentially links barcodes to divided cell groups creating distinct sequence 

combinations for each pool (Rosenberg et al., 2018). Similarly, Sci-RNA-seq utilizes 

combinatorial barcoding for increased efficiency (Cao et al., 2017). Most recently, PIP-seq 

has simplified the single-cell droplet encapsulation process through a vortex-aided 

emulsification process (Clark et al., 2023). These techniques have enabled a significant 

increase in the number of profiled cells, potentially reaching up to a million cells per 

experiment. In addition to increased cell profiling, recent developments have also allowed 

for the preservation of structural information in tissue samples while still capturing single-

cell transcriptomes. Spatially resolved methods are distinguished based on the required 

resolution at the cellular or gene level. Some methods offer single-cell resolution with high 

gene coverage, such as MERFISH (Chen et al., 2015). Others have lower spatial resolution 

(1-10 cells) but provide whole transcriptome coverage, such as Visium (Stahl et al., 2016). 

BASICS OF DATA ANALYTICS 

Over the past few years, swift advancements and enhanced capacity for processing 

single-cell transcriptomics have resulted in the production of extensive volumes of data. To 

effectively process this data and extract useful biological information, specialized analysis 

pipelines have been developed. Two widely used and comprehensive sets of tools for 

analyzing scRNA-seq data are Seurat (R) (Stuart et al., 2019) and Scanpy (Python) (Wolf 

et al., 2018). To ensure the accurate processing of scRNA-seq data and eliminate spurious 

technical effects, following commonly accepted guidelines is crucial (Luecken & Theis, 2019; 

Nayak & Hasija, 2021): 

1. Alignment and Counting: 

FASTQ files containing sequencing information need to be aligned to a reference 

genome and subsequently counted to generate a numeric matrix of transcript counts per 

detected cell barcode. However, gene dropout, caused by variable transcript capture 

efficiency rates and insufficient sequencing depth, results in a sparse matrix with many 

cells having a transcript count of zero. 

2. Normalization and Stabilization: 

The transcriptomic landscape of individual cells is highly variable and needs to be 

adjusted through normalization procedures to enable reliable comparison of gene 

expression across different cells. Commonly, library size factor normalization and 

logarithmic transformation of the raw transcript count matrix, with pseudocount addition 

to all genes to avoid the zero-count problem, are applied. SCTransform (Hafemeister & 

Satija, 2019), integrated into recent versions of the Seurat analysis pipeline, introduces 

modeling approaches to stabilize transcript count variance and enhance the recovery of 

biological variation. 

3. Quality Control (QC): 

Quality control checkpoints are necessary to discard dead or damaged cells, multiplets, 

or empty droplets that can occur during sample preparation. Strategies involve filtering 

cells based on their proportion of mitochondrial gene counts and total UMI or gene 

counts. Quantification and regression of ambient RNA can also be beneficial. 
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4. Scaling and Variation Regression: 

Scaling normalized transcript counts across the dataset guarantees that genes with high 

expression do not dominate downstream analysis. Scaling is typically performed only on 

the highly variable genes to reduce computation time and memory resources. 

Additionally, regression of undesired sources of variation, such as mitochondrial or cell 

cycle gene expression, can significantly improve data quality and the recovery of 

interesting biological insights. 

5. Data Integration: 

When comparing cells from multiple experiments, data integration is required. Unlike 

batch-effect correction used for repetitions of the same experiment through linear 

algorithms, data integration employs non-linear algorithms to ensure similar cell states 

are grouped together, even when they belong to different samples. Several methods for 

data integration have been deployed, each optimized for specific settings and presenting 

different stringencies. When performing data integration, it is recommended to test 

multiple methods and monitor their performance to avoid overcorrection and the creation 

of technical artifacts. Notable integration algorithms include Harmony (Korsunsky, 

Millard, et al., 2019), CCA/RPCA (Butler et al., 2018), CSS/RSS (He et al., 2020), MNN 

(Haghverdi et al., 2018), and LIGER (Welch et al., 2019). 

6. Dimensionality Reduction: 

Principal Component Analysis (PCA) is a key step in facilitating the analysis of high-

dimensional single-cell transcriptomic data. It summarizes gene expression variation in 

Principal Components (PCs) ordered according to their information content. PCA is 

typically followed by non-linear dimensionality reduction methods, such as t-distributed 

Stochastic Neighbor Embedding projections (t-SNE) (Maaten & Hinton, 2008) and 

Uniform Approximation and Projection embedding (UMAP) (McInnes et al., 2018). These 

methods highlight differences between cell populations and preserve the global structure 

of the data, making them efficient for large datasets. Other options include force-directed 

layouts like ForceAtlas2 (Jacomy et al., 2014) and cluster-based visualizations like 

Partition-Based Graph Abstraction (PAGA) (Wolf et al., 2019). 

7. Clustering: 

Grouping cells according to their transcriptional landscapes is a common practice 

achieved through clustering algorithms. Supervised methods rely on prior knowledge 

about the data, such as the number of expected clusters or specific marker genes. On 

the other hand, unsupervised methods do not make any a priori assumptions and are 

especially useful for exploratory analyses. These algorithms act on network 

representations of the data, such as the shared nearest neighbor (SNN)-based graph 

from Seurat, and identify communities in the dataset through an optimization process. 

The resulting clusters are linked to biologically meaningful information and may represent 

different cell types or states. Identification of biologically meaningful clusters may require 

several iterations and parameter tweaking, such as clustering resolution (Yu et al., 2022). 

After completing this pipeline, a plethora of downstream analyses can be performed for 

deeper insights. Common subsequent steps include differential expression (DE) analysis, 

cell type heterogeneity analysis, gene set enrichment analysis (GSEA), gene regulatory 
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network (GRN) inference, differentiation trajectory inference, and intercellular signaling 

analysis. 

INTERCELLULAR COMMUNICATION ANALYSIS 

The exponential growth of scRNA-seq has enabled the measurement of ligands and 

receptors' expression in multiple cell types, providing valuable insights into intercellular 

communication networks that are fundamental to tissue function in homeostasis and 

disease. To identify ligand-receptor interactions from scRNA-seq data, researchers need to 

annotate complex relationships and use statistical methods to integrate resources and select 

relevant interactions. Several methods have been published to investigate context-

dependent crosstalk of different cell types and their role in physiological processes. Most of 

these methods rely on lists of binary ligand-receptor pairs and filter interactions based on 

expression levels or the number of cells expressing specific interactors in cell populations 

(Camp et al., 2017; Pavličev et al., 2017; Puram et al., 2017; Skelly et al., 2018). Other 

approaches include hierarchical clustering to construct interaction graphs of ligand-receptor 

modules (Cohen et al., 2018), one-sided Wilcoxon rank-sum test on ligand-receptor pairs' 

mean expression product (Kumar et al., 2018), and enrichment of shared interactions 

between two cell populations against a background model (Boisset et al., 2018; Joost et al., 

2018). 

 

Figure 5: Overview of CellPhoneDB database. (1) Proteins that are secreted and those located in the cell membrane are 

held within the protein_input category; (2) complexes of proteins are kept in the complex_input category; and (3) interactions between 
different proteins are recorded in the interaction_input category. This data has been compiled from www.CellPhoneDB.org. The 
CellPhoneDB database contains a cumulative count of 978 proteins: 501 belong to the secreted category, while 585 are membrane-
bound proteins. These proteins partake in 1,396 interactions; among all the proteins housed in CellPhoneDB, 466 form heteromers. 
Within this dataset, there are 474 interactions involving secreted proteins and 490 interactions involving solely membrane proteins. 
Notably, there are a combined total of 250 interactions that encompass integrins. Adapted from Efremova et al. (2020). 

CellPhoneDB v2.0 stands out from other methods by accurately representing ligand-

receptor complexes and considering their multi-subunit architecture, which can influence 

binding affinity and downstream signal transduction (Fig. 5) (Efremova et al., 2020). It relies 

on public resources and manual curation to annotate proteins involved in cell-cell 

communication and employs a statistical framework to predict enriched cellular interactions 

from single-cell transcriptomics data. The CellPhoneDB pipeline involves subsampling of 

input data through geometric sketching and pooling of cells based on cluster annotations. 

Enriched ligand-receptor interactions between cell populations are identified based on 
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expression and detection rates of queried genes and cell-population specificity calculated 

through empirical shuffling. Specificity is crucial to highlight informative communication 

between selected cell populations and filter out ubiquitously expressed genes. Finally, 

predicted molecular interactions can be used to generate potential cell-cell communication 

networks.  

In contrast, NicheNet focuses on the functional understanding of cell-cell 

communication by considering the influence of sender-cell ligands on receiver-cell gene 

expression (Browaeys et al., 2020). NicheNet combines gene expression data of interacting 

cells with a prior model representing ligand-to-target signaling paths. NicheNet’s prior model 

aims at overcoming simple ligand-receptor interactions to predict ligands’ influence on the 

expression profiles in another cell while tracking which signaling mediators may be involved. 

This is the result of a model-based parameter optimization to integrate multiple 

complementary data sources covering ligand-receptor, signal transduction, and gene 

regulatory interactions. Network propagation is then employed to compute a ligand-target 

regulatory potential score, indicating the regulators' downstream location in the signaling 

network of the ligand. NicheNet's analysis pipeline provides a ranking of ligands that most 

likely affect gene expression in receiver cells, along with potential signaling paths, offering 

a comprehensive assessment of the signaling transduction cascade. 

Recently, CellChat (Jin et al., 2021) has been developed to infer, visualize, and 

analyze intercellular communications from scRNA-seq data. Similar to CellPhoneDB v2.0, 

CellChat provides a comprehensive and manually curated signaling molecule interaction 

database, accounting for known structural composition of ligand-receptor complexes. 

Additionally, it considers soluble agonists and antagonists, stimulatory and inhibitory 

membrane-bound co-receptors, as key components of the signaling process. CellChat 

employs mass action models, along with differential expression analysis and statistical tests 

on cell groups or continuous state trajectories, for inferring cell-state specific signaling 

communications. To characterize and compare the inferred intercellular communications 

within complex tissues, CellChat offers social network analysis, pattern recognition, and 

manifold learning approaches. 

Despite the potential benefits, intercellular communication analysis has some 

limitations to consider. Ligand-receptor interaction databases are not complete but 

continuously updated and refined. Additionally, while statistical methods may prioritize cell-

type-enriched interactions, non-significant p-values do not imply absence of interactions. 

Moreover, current methods predict cell-cell communication without considering spatial 

proximity or phosphorylation status of receptor complexes. Multimodal approaches 

integrating spatial information, phosphorylation dynamics, and ligand diffusion rates can 

significantly enhance the accuracy of intercellular signaling predictions. 

GENE REGULATORY NETWORK INFERENCE 

Cells coordinate their activities through complex gene regulatory networks (GRNs), 

where the interplay between chromatin states and transcription factors (TFs) modulates 

transcription rates of target genes. Understanding these regulatory dynamics is crucial for 

unraveling cellular identity and its disruptions in disease. GRNs, represented as graphs, can 

incorporate multiple components of gene regulation, including TFs, splicing factors, non-

coding RNAs, microRNAs, and metabolites. Historically, GRNs were inferred from bulk -
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omics data or literature. However, the advent of single-cell technologies, particularly 

multimodal profiling, has sparked an explosion of novel GRN inference methods (Klein et 

al., 2015; Macosko et al., 2015; Treutlein et al., 2014; Zheng et al., 2017; Chen et al., 2019; 

Liu et al., 2019). 

GRN inference involves summarizing complex gene regulation events into 

interpretable network structures using computational methods and observational data. 

Inferred interactions in GRNs can be directed or undirected, signed or weighted. Weighted 

gene co-expression network analysis (WGCNA) (Langfelder et al., 2008) is a simple 

unsupervised method that identifies modules of co-expressed genes. However, it lacks 

causal regulatory links and has a high number of false positive associations. To address 

these limitations, methods like GENIE3 distinguish TFs from target genes based on prior 

knowledge (Huynh-Thu et al., 2010). SCENIC, tailored to scRNA-seq data, is an extension 

of GENIE3 and generates cell type-specific GRNs by leveraging TF-gene co-expression 

patterns and TF binding motif enrichment on gene promoter regions and cis-regulatory 

elements (CREs) (Aibar et al., 2017). GRNBoost2, incorporated into SCENIC, provides a 

faster implementation of GRN reconstruction (Moerman et al., 2019). However, inference 

from transcriptomics data alone may still produce false positives since chromatin 

accessibility is ignored. Nevertheless, inference from transcriptomics data alone is still prone 

to false positives given that processes such as chromatin accessibility are ignored. 

The progress in profiling chromatin states using single-cell assay for transpose-

accessible chromatin sequencing (scATAC-seq) (Buenrostro et al., 2015) has enabled a 

significant refinement of GRN reconstruction. Multimodal data can be paired or unpaired, 

depending on whether different profiling modalities have been performed on the same cell 

or not, and GRN inference methods differ in their input requirements. Some methods 

summarize read-outs across cell groups or build GRNs independently for each modality and 

then merge the results which overcomes the need for paired data. Others model both 

modalities simultaneously requiring prior integration approaches (Argelaguet et al., 2021) or 

paired samples as input. To facilitate user experience, methods such as FigR, GLUE, and 

SOMatic implement and incorporate integration approaches into their analysis pipeline 

(Kartha et al., 2022; Cao & Gao, 2022; Jansen et al., 2019). 

GRN inference from multimodal data is a stepwise process. Generally, CREs are 

associated with target genes according to genomic distance constraints. Subsequently, TFs 

are assigned to accessible CREs using binding motif annotations. Finally, a prediction of 

gene expression is modelled based on TF expression (Fig. 6). Distinct GRNs can be 

reconstructed for the same data inputs, even when inference methods implement similar 

modelling strategies, due to the numerous and highly heterogeneous TF biding motif 

databases and algorithms for predicting TF-CRE associations. To ensure reproducibility 

within the analysis pipeline, most methods fix the motif matcher algorithm used. A notable 

exception is SCENIC+ which introduces a comprehensive curated collection of TF binding 

motifs and allows analysis with multiple motif matcher algorithms such as cisTarget, DEM 

as well as HOMER (González-Blas et al., 2022; Heinz et al., 2010). Variability in GRN 

prediction methods is expanded by employing diverse genomic distance thresholds for 

linking open chromatin regions to their respective target genes. Functionally validated 

interactions are significantly enriched at short distances, closer than 10kb which represent 

the most common choice, while substantially decreasing past 100 kb (Kim & Wysocka, 

2023). Nevertheless, medium range distances covering up to 100 kb or large distal sites up 
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to 1 Mb are known to be relevant to transcriptional regulation (Kim & Wysocka, 2023) and 

their effects should not be ignored. However, it is important to consider that different cutoffs 

will likely impact the GRN inference results. 

Following the above-described steps, GRN inference methods create a candidate 

scaffold network of TF-CRE-target triplets. To reconstruct the final GRN structure, TF-CRE-

target dependencies are then modelled either linearly, for example in FigR, or non-linearly, 

for example in SCENIC+ which builds random forests to describe relationships between 

variables. The latter modelling strategy can accommodate complex interactions such as 

synergistic effects which are widely acknowledged to underline transcriptional processes 

Figure 6: Overview of gene regulatory network (GRN) inference methods. The process of inferring gene regulatory 

networks (GRNs) involves various stages that depend on the type of data collected from the studied samples. In the case of 

transcriptomics data, the initial steps encompass preprocessing and normalization to create a matrix reflecting gene expression levels 

across different samples or cells. To identify genes capable of regulating others, a list of established transcription factor (TF) genes is 

sourced from external references. Predicting interactions between TFs and target genes comes next; this involves constructing models 

that aim to anticipate observed gene expression by considering TF transcript abundance, ultimately resulting in associations between 

TFs and genes that are then consolidated to depict a comprehensive GRN. For chromatin accessibility data, the first actions entail 

preprocessing and identifying peaks to generate a matrix indicating the accessibility status of cis-regulatory elements (CREs) across 

samples or cells. Associating CREs with genes is achieved based on specific genomic distance thresholds. To predict TF binding to CREs, 

databases containing TF binding motifs and algorithms that match these motifs are employed. The outcome is the prediction of TF-

CRE-gene complex interactions which are simplified to TF-gene pairs and aggregated into a cohesive GRN. In cases where samples are 

profiled using both transcriptomics and chromatin accessibility modalities (multi-omics data), the preprocessing steps are applied to 

each independently. If required, integration is performed on data from unmatched modalities. With both sets of data available, the 

methodology can simultaneously utilize the three aforementioned modeling stages to establish TF-CRE-gene triplets, which are then 

simplified and merged into a unified GRN. Adapted from Badia-i-Mompel et al. (2023). 
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(Zuin et al., 2022). Meanwhile, linear modelling benefits from its simplicity in formulation and 

increased interpretability. The significance of the inferred regulatory interactions can be 

assessed using frequentist or Bayesian statistical frameworks. Even though Bayesian 

methods excel in integrating pre-existing domain knowledge into the newly inferred GRN 

structure, frequentist methods tend to be faster, more scalable, and more accurate in the 

absence of high-quality prior knowledge. Some methods, including FigR and SCENIC+, 

implement frequentist statistical frameworks, while others like CellOracle and Pando offer 

multiple modeling strategies to the user (Kamimoto et al., 2023; Fleck et al., 2022). 

Additionally, scMEGA and IReNA leverage trajectories to infer linear and non-linear GRNs, 

respectively, when no distinct cell groups are defined (Li et al., 2023; Jiang et al., 2022). 

Despite the valuable biological insights provided by GRN inference methods, the 

input data may not directly capture various regulatory mechanisms, such as TF protein 

abundance, TF cooperation with cofactors, alternative transcript splicing, post-translational 

protein modifications, and genome structure. Indeed, just the expression of a TF or the 

presence of accessible promoter regions may not be informative enough and poorly 

correlate with active gene transcription (Kim & Wysocka, 2023). Including and measuring 

these aspects can lead to more representative GRNs that better capture gene regulation in 

vivo. 

DIFFERENTIATION TRAJECTORY INFERENCE 

The dynamic interplay between intercellular signaling exchanges and gene regulatory 

network fluctuations drives a continuous spectrum of cell state transitions. Single-cell RNA 

sequencing has the remarkable capability to capture multiple cell states in a single snapshot, 

enabling computational modeling of differentiation trajectories. Trajectory Inference (TI) 

methods aim to order individual cells along a pseudo-temporal axis, representing the 

continuity of their gene expression profiles' transition. For simple processes like 

differentiation from one cell type to another or spatial distribution of related cells in a tissue, 

a single monotonic continuum can be adequately described. Such trajectories can be 

modeled with a trajectory structure consisting of a single lineage, and cell loadings along 

the first principal component, which explains most of the variation of the dataset, can be 

interpreted as pseudo-times. However, when the topology of the phenomenon to be 

modeled is more complex, such as bifurcating, tree-like, or cycling trajectories, more 

appropriate methods are required. 

Monocle was among the first TI methods applied to scRNA-seq data. Derived as an 

extension of a previous algorithm, Monocle accommodates single-cell variation and allows 

for ordering multiple cell fates from a common progenitor cell type in pseudotime (Trapnell 

et al., 2014; Magwene et al., 2003). Monocle’s pseudotemporal order maximizes the 

transcriptional similarity between successive pairs of cells. Thus, it reflects progress through 

differentiation rather than sample profiling time. This algorithm reduces high-dimensional 

expression profiles using independent component analysis (ICA), computes a minimum 

spanning tree (MST) on cells, and finds the longest path through the tree, representing the 

longest sequence of transcriptionally similar cells. Finally, it uses this sequence to produce 

a trajectory of an individual cell's progress through differentiation. By examining cells away 

from the main path, Monocle identifies alternative trajectories through the MST, it ordered 

and connects them to the main structure while annotating each cell with trajectory and 
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pseudotime values. With this approach Monocle aims at reconstructing branched biological 

processes without prior knowledge of specific genes distinguishing cell fates. 

Another method, diffusion pseudotime (DPT), uses random-walk-based distance to 

order scRNA-seq data (Haghverdi et al., 2016). Diffusion maps, a non-linear dimensionality 

reduction method, organize data by defining coordinates based on dominant eigenvectors 

of a transition matrix which describes random walks between cells at distinct stages of 

differentiation. This approach to dimensionality reduction strongly reduces noise and allows 

to represent branching trajectories. DPT computes a transition matrix by convolving 

Gaussians centered at nearby cells, effectively constructing a weighted nearest-neighbor 

graph. Random walks, of any length, through the graph determine the probability of each 

cell transitioning to any other cell, essentially a proxy for cell fate commitment. Finally, the 

DPT between pairs of cells is calculated as the Euclidean distance between their respective 

transition probability vectors and the pseudotemporal ordering can be reconstructed by 

computing DPT between the selected root and all other cells. Branching points in DPT are 

identified by measuring the correlation of pseudotime sequences along trajectories that start 

from the root and from a cell x with maximal DPT with respect to the root. While these 

sequences are anticorrelated on their connecting trajectory, they become correlated in a 

separate branch leading to a cell y. Branching points are thus identified by cells for which 

the two sequences switch from anticorrelated to correlated behavior. Postulating that 

differentiation speed is inversely proportional to cell density in the trajectory allows for 

metastable states to be recognized by pseudotimes with high densities. DPT's 

computational efficiency and applicability to large-scale single-cell data make it greatly 

advantageous. 

RNA velocity, first implemented in Velocyto, describes the rate of gene expression 

change for an individual gene based on the proportion of its processed and nascent 

transcript mRNA molecules (La Manno et al., 2018). Following the inference of nascent 

versus processed mRNA abundance proportion, which is stable in a transcriptional 

equilibrium, deviation between observations and steady-state identify velocities. This 

concept allows the reconstruction of directed temporal dynamics, with positive velocity 

indicating upregulation, when unspliced mRNA abundance exceeds steady-state 

expectations, and negative velocity indicating downregulation. Integration of velocities over 

several genes can subsequently be leveraged for the prediction of each cell’s forthcoming 

state identity. Deriving the steady-state equilibrium proportion involves two key underlying 

concepts which are often violated, particularly when analyzing heterogeneous populations 

characterized by subunits with different kinetics. First, on the gene level, the complete 

splicing dynamics encompassing transcriptional activation, inhibition and equilibrium mRNA 

proportions are observed. Second, at the cell level, every gene exhibits identical splicing 

kinetics. scVelo was subsequently developed to address these limitations and refine RNA 

velocity analysis through a dynamical model based on likelihood maximization which allows 

for the complete solution of transcriptional activity of splicing processes (Bergen et al., 

2020). scVelo infers transcription, processing and catabolism kinetics of individual genes, 

as well as an inherently shared latent time with an effective expectation-maximization (EM) 

approach. The cell’s internal clock, represented by the latent time and  grounded only on 

transcriptional dynamics, precisely describes a cell’s position within the biological process 

under examination and accommodates both the magnitude and direction of temporal 
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progression. This enabled generalization of RNA velocity to systems with transient cell 

states, commonly observed during development and response to perturbations. 

In summary, organoids and single-cell technologies provide exciting new 

opportunities to model and understand human-specific and patient-specific biology, 

providing new inroads for therapy development. 
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SCOPE OF THE DISSERTATION 

The aim of this doctoral thesis is to investigate human disease progression using 

organoid models, focusing on the highly dynamic processes characterized by cellular-level 

decision-making. The study primarily centers on two clinically relevant disease areas with 

unmet therapeutic needs: pancreatic cancer progression and acute intestinal inflammation. 

The findings from this research are expected to contribute valuable insights to the fields of 

cell biology, disease pathology, and personalized medicine. 

To explore these conditions comprehensively, the research leverages cutting-edge 

technologies with spatial and temporal resolution, including single-cell transcriptomics and 

multiplexed imaging, and utilizes complex human organoid models. Over the past decade, 

single-cell technologies have emerged as a powerful tool, enabling high-resolution 

molecular phenotyping of multicellular systems. Moreover, organoids have proven to be a 

promising alternative to traditional model organisms, as they recapitulate the aspects of 

cytoarchitecture and cellular complexity of human tissues, offering opportunities to 

investigate human-specific traits and obtain more representative outcomes for therapeutic 

interventions. Specifically, this work involves the establishment and characterization of novel 

multi-lineage organoid models for each disease area. 

For pancreatic cancer, a modular stroma-rich tumoroid culture system is developed 

to model pancreatic ductal adenocarcinoma (PDAC). This system enables the recreation of 

interactions between cancer, endothelial, and fibroblast cells, mimicking various aspects of 

primary tumors. The focus here is on studying the intercellular communication and dynamic 

gene regulatory networks that underlie the observed transitions in cell states during tumoroid 

formation and cancer progression. 

The thesis also delves into the intricate relationship between the immune system and 

the intestinal epithelium. To address this, a 3D organoid model is developed, combining 

human intestinal epithelium with autologous intraepithelial lymphocytes (IELs). This model 

allows for the characterization of IEL populations and their interactions under homeostatic 

and activated conditions, particularly in the context of inflammatory responses. The research 

investigates the differential gene expression and state trajectories of IELs, as well as the 

impact of immunomodulatory drug responses on the intestinal epithelium. 

My personal contribution to this body of work was to drive the analysis of the 

genomics data generated for each of the projects, providing deep characterization of our 

organoid models and uncovering biological insights into mechanisms amenable for 

therapeutic interventions. 
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BACKGROUND 
Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most aggressive 

and challenging forms of cancer (Rahib et al., 2014; Rawla et al., 2019; Siegel et al., 2018). 

It ranks as the 7th leading cause of cancer-related mortality worldwide, with a meager 8% 

five-year survival rate. The primary reason for the high mortality rate is the prevalence of 
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systemic metastasis upon clinical diagnosis (Makohon-Moore & Iacobuzio-Donahue, 2016; 

Ryan et al., 2014), which is further exacerbated by the lack of early detection and effective 

treatment options (Castellanos et al., 2011). The pathogenic progression of PDAC is 

governed by critical genetic factors, such as KRAS hyperactivating mutations observed in 

over 90% of clinical cases, and the frequent loss of function in tumor suppressor genes 

TP53, SMAD4, CDKN2A (Dunne & Hezel, 2015). These mutations converge on specific 

signaling pathways, including KRAS, TGF-β, WNT, Notch signaling, as well as DNA repair 

and chromatin dynamics (Bailey et al., 2016; Waddell et al., 2015), which are indispensable 

to the dysregulated cellular processes in primary tumor cells driving tumor progression 

(Neureiter et al., 2014). PDAC wounds exhibit striking intra-tumoral heterogeneity (ITH), with 

a dense stroma component that can comprise over 70% of the tumor mass, often intertwined 

with normal pancreatic tissue (Biankin & Maitra, 2015). This ITH within the tumor 

microenvironment (TME) originates from distinct regional tissue states, influencing cancer 

phenotypes and impacting key clinical metrics of disease progression (Grunwald et al., 

2021; Kong et al., 2011; Krebs et al., 2017; Moncada et al., 2020; Ohlund et al., 2014). 

However, the complexity of ITH spatio-temporal dynamics cannot be solely explained by 

DNA somatic mutations (Jamal-Hanjani et al., 2017), and few studies have explored the 

contribution of the tumor microenvironment to ITH. Among the central components of PDAC 

stroma are cancer-associated fibroblasts (CAFs), which play a pivotal role in orchestrating 

various features of the TME, including the secretion of cytokines regulating cancer growth 

and shaping evolutionary pressures that support malignancy (Sahai et al., 2020). The 

microenvironmental pressures within the primary tumor induce cancer cells to acquire 

specific metabolic and cell state signatures, facilitating their adaptation to current conditions 

and paving the way for future colonization into other organ niches (Bertero et al., 2019; 

Lehuede et al., 2016; Li et al., 2019; Morris et al., 2016; Schild et al., 2018). Understanding 

the diverse and dynamic pressures within the tumor has been challenging, especially when 

attempting to comprehend how CAF-cancer cell interactions generate a multitude of cell 

states. Despite the confirmation of metastasis-specific mutations (Campbell et al., 2010; 

Makohon-Moore et al., 2017), the mechanisms underlying metastasis in PDAC remain 

poorly understood, impeding their translation into clinical practice. Fortunately, 

advancements in cancer research offer promising avenues for progress. Cancer cystic 

organoids (CCOs) derived from patients provide exceptional opportunities to study cancer 

cell biology (Sato et al., 2011; Tuveson & Clevers, 2019). In vitro co-culturing of cancer cells 

and CAFs has already started yielding valuable insights into their interactions (Ohlund et al., 

2017; Seino et al., 2018). Additionally, single-cell sequencing has enabled the reconstruction 

of cell state continuums within complex developing tissues, offering predictions of cell 

interactions based on receptor and ligand expression patterns between cell types (Treutlein 

et al., 2014; Camp et al., 2017). These technological advancements hold promise for 

identifying novel diagnostic markers and therapeutic targets, thereby bringing us closer to 

better approaches in combating PDAC. 

OBJECTIVES 
In this project, we set out to establish a stroma-rich tumoroid co-culture system to 

understand PDAC cancer-CAF interactions in controlled environments, and to explore 

developmental processes within tumoroids using single-cell transcriptome sequencing, with 

spatial and temporal resolution, as well as image-based phenotyping. By doing so, we learn 
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about principles associated with intratumoral heterogeneity that might be leveraged for 

therapy development in PDAC and other cancers. 

RESULTS 

Cancer research has traditionally relied on 2D cancer cell lines or cancer cyst 

organoids derived from biopsies to study diseases. We generated cancer cyst organoids 

(CCOs) from PDAC patient primary biopsies, which we stably cultured according to 

previously published protocols (Boj et al., 2015). However, scRNA-seq revealed limited 

heterogeneity in CCO cultures (Fig. 7A-H), despite them maintaining a tumor-like character 

compared to healthy pancreatic tissue (Fig. 7I-L). In an effort to overcome this limitation, we 

devised a groundbreaking in vitro model that incorporates patient-derived cancer and 

cancer-associated fibroblast (CAF) cells, along with endothelial cells (ECs), in a 3D tumoroid 

culture system (Fig. 8A). This novel, complex, and modular model offers improved control 

and reliability, enabling a deeper investigation of tumor processes. However, we note that 

the CAFs and ECs were not derived from the same patient, and the same CAF and EC lines 

were used throughout our study. Over 24 hours, the cells form a spherical culture (Fig. 8B) 

and, through extended cultivation of stroma-rich tumoroids, we observed the emergence of 

CAF produced ECM, EC organization into vessel networks and glandular cancer cell 

structures (Fig. 8C-E). To comprehensively understand the differences from previous 

approaches, we performed single-cell transcriptomics analysis and compared the new 

model to its individual components cultured separately (Fig. 8F).  
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Figure 7: Single-cell transcriptome analysis of pancreatic cancer cyst organoid cultures and comparison to 
primary cancer tissue. A) Cancer cyst organoid (CCO) lines were established from PDAC patient biopsies. CCOs were propagated 
over multiple passages, and after day 7 of culture post-passage, CCOs were subjected to scRNA-seq. Scale bar:400um. B) Brightfield 
image of CCOs in a 3D Matrigel culture 6 days after passage. C) UMAP cell embedding of CCO scRNA-seq data colored by cluster. D-
F) Feature plots of PDAC cancer cell markers Keratin (KRT19 and KRT17), correlation to cell cycle states (e) and cluster markers (f). G) 
Heatmap showing normalized cluster marker expression. H) Gene ontology analysis of genes enriched in each CCO cluster. Circles are 
colored based on significance (High p-value in blue, low in yellow/gray) and sized by fold enrichment. I) CCO pseudo-bulk samples, 
obtained through aggregation of single cells according to their respective cluster memberships, were compared to bulk transcriptome 
data from healthy and cancer tissue from TCGA cohort. Heatmap shows correlation (high, bright yellow; low, dark colors) of each 
cluster to the different patient specimens. J) Barplots show the number of genes that are differentially expressed between normal and 
PDAC tissue and are up-regulated (up), down-regulated (down), or not differentially expressed (neutral) in CCOs compared to primary 
pancreas cells. K) Dotplot shows similarity between CCO and pancreatic cancer signatures when compared to healthy pancreatic tissue 
(𝓧² test p-value = 1.6e-07). L) Boxplots show the expression distribution of pancreatic cancer markers as comparison between TCGA 
healthy and cancer samples and our CCO culture. 

This analysis revealed 12 cell populations and interestingly, distinct clustering of 

tumoroid-derived cell types compared to their single-culture counterparts, indicating 

significant transcriptional differences between the two modalities (Fig. 8G). Differential 

expression analysis between the 2D monoculture and 3D tumoroid counterparts at day 7 

and day 14 revealed diverse changes that emerged in the tumoroid over time (Fig. 8H, 9A-

B). Within tumoroids, a general hypoxia response characterized all cell types at day 7 and it 

was followed by angiogenic induction, extracellular component modulation, and metabolic 

adaptation signatures for the different cell types by day 14 (Fig. 9C-D). Strikingly, we found 

that tumoroid CAFs induced a consortium of extracellular matrix proteins (Collagens 

COL3A1, COL6A2, COL1A2, COL1A1; Fibronectin 1, FN1; Decorin, DCN) compared to the 
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2D CAFs, and tumoroid CAF-specific genes enriched in cancer hallmark processes for 

transforming growth factor beta (TGF-β) signaling, inflammatory response, and hypoxia. 

These data show that the multilineage tumoroid microenvironment induces strong 

morphological and molecular cell state changes across different cell types. 

 

Figure 8: Generation and single-cell transcriptome characterization of pancreatic cancer stromal 
tumoroids. A) Long-term cancer cyst organoid (CCO) cultures established from patients with pancreatic adenocarcinoma (PDAC) 

can be co-cultured in a 3D matrix with endothelial cells (EC) and cancer associated fibroblasts (CAF), which self-organized a complex 
tumoroid microenvironment. Over 14 days, fibrous connective tissue forms, vessels sprout and organize, and cancer cells form 3D 
glandular structures within multilineage tumoroids. B) Cancer cells (teal blue), cancer associated fibroblasts (CAFs, pink), and 
endothelial cells (ECs, yellow) expressing a reporter 0, 12, and 24 hours after co-culture. Scale bar: 10um. C) Day 14 tumoroid with 
cancer cells and ECs stably transformed with EGFP and TdT expression cassettes, respectively. Scale bar: 250um. D,E) Whole-mount 
immunohistochemistry on cleared tumoroids probing Vimentin (pink, D) and Fibronectin (pink, E). Cancer cells expressing EGFP; nuclei 
are marked with DAPI (white). Scale bar: 100ul. F) scRNA-seq was performed on the input cells in monoculture (Day 0) and on 
tumoroids after 7 and 14 days in co-culture. UMAP cell embedding of scRNA-seq data is colored by time point (left) and by cluster 
(right). G) Heatmap showing normalized expression of cluster marker genes. H) Feature plots showing expression of representative 
cell type marker genes from single-cell transcriptome data generated from tumoroids and input cells. 

To explore the cell state dynamics within the tumoroid, we first established a 

pseudotemporal trajectory for each cell type and identified genes that vary over the trajectory 

(Fig. 10, 9E-F). We observed that there were cells from both time points that covered the 

entire range of the trajectory, and for CAF we observed similar proportions of day 7 and day 

14 CAFs along the CAF trajectory. We observed that the CAF pseudotemporal ordering 

reflected activation status, such that induction of collagens and cytokines could be observed 

along pseudotime (Fig. 10B). CAF temporal trajectory strongly resembles a transition from 

“normal” to “activated” stroma signatures in response to tumorigenic cells’ presence in their 

proximity (Moffitt et al., 2015) (Fig. 10C-D). This activated stroma signature has previously 

been shown to be prognostic, associated with worse clinical outcomes, and is characterized 

by the expression of genes that point to the role of CAF activation in tumor promotion (Moffitt 

et al., 2015). The CAF activation signature includes Secreted protein acidic and cysteine 

rich (SPARC), Wnt pathway family members (WNT5A and WNT5B), Matrix 

metalloproteinases (MMP2, MMP11 and MMP14), and Fibroblast Activation Protein (FAP) 

(Moffitt et al., 2015) (Fig. 10E).  
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Figure 9: Comparison between 2D monoculture and 3D tumoroid cells and tumoroid time points. A) Heatmap 

showing genes that are differentially expressed between tumoroid cell types and their input counterparts. B) Barplots show log-
transformed fold change (log 2) for top DEGs between day 7 (dark grey) and day 14 (light grey) tumoroid cancer (top), CAF (middle), 
and EC (bottom) cells. C-D) Hallmark analysis of genes enriched in day 7 and day 14 tumoroid CAF (C) and endothelial cells (D). E) PCA 
embedding colored by expression of time specific signatures in tumoroid endothelial cells and insert colored by pseudotime. The right 
insert represents the  density plot of tumoroid endothelial cells along the inferred pseudotime. F) Pseudotemporal expression profile 
of top DEGs between tumoroid endothelial cells at day 7 and day 14. Inset shows cumulative expression profiles of the DEGs. G) 
Immunofluorescence staining of cancer cell markers Cytokeratin 7 (CK7, blue, left) and Anterior Gradient 2 (AGR2, blue, right) in day 
14 tumoroids. Cancer cells express GFP (green), Nuclei marked with DAPI (white). H) Immunofluorescence staining of extracellular 
matrix proteins Type I collagen (COL1, pink, left) and Collagen 3 (COL3, blue, right) in day 14 tumoroids. Cancer cells express GFP 
(green), Nuclei marked with DAPI (white). Scale bar:100um. I-J) Immunofluorescence staining of cancer markers AGR2, CK7, CK19 
(blue, I), and extracellular matrix proteins Fibronectin (FN1), COL1, Vimentin (VIM) (pink, J) in the primary pancreatic cancer tissue. 
Scale bar:200um. 

Aligning tumoroid CAF cells along an activation trajectory allowed us to describe the 

process through dynamic gene regulatory interactions. Regulome analysis using SCENIC 

(Aibar et al., 2017) suggested Early Growth Response 1 (EGR1) as a central transcriptional 

regulator that likely coordinates CAF activation (Fig. 11A-D), that is upstream of several 

growth factor signaling pathways (BMP2, NOTCH3, LIF, VEGFC) and ECM regulators 

(COL5A3, COL12A1, LAMA4, HAS2)  (Fig. 10E). Whole-mount immunohistochemistry on 

cleared tumoroids stained for Collagen and Fibronectin revealed substantial ECM deposition 

surrounding cancer cells (Fig. 8D, 9G-H), and we validated these protein expression profiles 

in primary PDAC tissue from diagnostic biopsies (Fig. 9I-J). Along the EC trajectory, 

increased expression of Matrix Gla Protein (MGP), Angiopoietin-2 (ANGPT2), Endothelial 

cell-specific molecule 1 (ESM1) correlated with angiogenesis and TNF-α signaling that 



37 
 

increase over pseudotime and have highest expression in day 14 tumoroids (Fig. 9D-F). In 

contrast to CAF, for cancer cells there was a strong relationship between time point and 

position on the trajectory (Fig. 10F-G). 

 

Figure 10: Cell state trajectory reconstruction reveals CAF activation and cancer cell persistence pathways 
induced during tumoroid development. A) Principal component analysis (PCA) embedding representing tumoroid cancer-

associated fibroblast (CAF) cells colored by pseudotime (left) and time point-specific signature (right). B) Expression of extracellular 
matrix protein encoding and other genes in CAFs ordered based on pseudotime reconstruction. Inset shows a CAF activation score 
previously established from primary PDAC cancer RNA-seq data (Moffitt et al., 2015). C) Distributions of CAF activation score in 
monoculture CAFs and tumoroid CAFs in 5 pseudotemporal bins. D) Tumoroid UMAP colored by CAF activation score. E) Protein-
protein interactome from the STRING database with pathway annotation for CAF pseudotemporally up-regulated genes. F)  PCA 
embedding representing tumoroid cancer cells colored by pseudotime (left) and time point-specific signature (right).  G) 
Pseudotemporal expression profile of DEGs between tumoroid cancer cells at day 7 and 14. Inset shows cumulative expression profiles 
of the DEGs. H) Hallmark pathway enrichment on genes upregulated in day 7 or 14 cancer cells. I) Whole-mount 
immunohistochemistry on cleared tumoroids probing Peroxisome Proliferator Activated Receptor Gamma (PPARG). Cancer cells stably 
expressing EGFP (green); nuclei are marked with DAPI (white). Scale bar: 100ul. J) Protein-protein interactome from STRING database 
with pathway annotation for cancer cell pseudotemporally up-regulated genes.  

The cancer cell trajectory revealed initial induction of hypoxia-, apoptosis-, and 

epithelial-to-mesenchymal transition-related genes followed by adaption expression 

signatures associated with xenobiotic metabolism, cholesterol homeostasis, and interferon 

responses (Fig. 10G-H). Many of the genes that increase over pseudotime and peak at day 

14 in tumoroid cancer cells, such as Peroxisome proliferator-activated receptor gamma 

(PPARG), Syndecan 1 (SDC1), Mucin 1 (MUC1), Kruppel-like factor 3 (KFL3), have been 

previously associated with poor disease outcome (Hinoda et al., 2003; Yao et al., 2019; 

Zhang et al., 2015). We explored gene regulatory interactions to understand the underlying 

cell state progression in tumoroid cancer cells. Regulome analysis revealed transcription 

factors and their predicted targets that are differential along the cancer pseudotime and 

highlighted a predominant role of PPARG and KLF2/3 in coordinating the cancer cell 

responses within the tumoroid (Fig. 11E-G). Interestingly, the PPARG regulome linked fatty 

acid and cholesterol metabolism with the IL2-STAT5, P53, and the Interferon signaling 

pathways (Fig. 10I-J). Additionally, PPARG and its predicted target genes strongly 

associated with an immune cell devoid tumor tissue, as well as lower survival in the PDAC 

tumor cohort from the cancer genome atlas (TCGA) (Fig. 11H-K) (The Cancer Genome Atlas 

Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu and Cancer The 

Genome Atlas Research Network, 2017). This potentially implicates PPARG not only in 

important metabolic pathways that regulate nutrient and energy resource management, but 
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also in limiting immune cell infiltration into the tumor tissue which maybe be beneficial to 

cancer cell survival yet very detrimental to patients’ health conditions.  

 

Figure 11: Regulon analysis of Tumoroid CAF and cancer cells. A) SCENIC was used to infer regulatory network scores 
for tumoroid CAF and cancer cells. B) The expression slope over tumoroid CAF pseudotime is plotted for the top regulons based on 
area under the curve (AUC) metrics from SCENIC. C) Line plots show the ranged regulon score for each of the top regulators over 
tumoroid CAF pseudotime. D) Heatmap shows expression of predicted targets of each major regulator over tumoroid CAF pseudotime. 
E) The expression slope over tumoroid cancer pseudotime is plotted for the top regulons based on area under the curve (AUC) metrics 
from SCENIC. F) Line plots show normalized pseudotemporal expression of central cancer regulators. G) Heatmap shows expression 
of predicted targets of each major regulator over tumoroid cancer cell pseudotime. H) Spearman correlation score between expression 
of dynamic tumoroid cancer cell transcription factors (TFs) and percentage of tumor infiltrating immune cells in TCGA pancreatic 
cancer sample cohort. TFs show a wide range of values and note that PPARG registers the highest negative correlation score. I) 
Differential association of positively versus negatively PPARG correlated genes with percentage of intratumoral immune cell 
infiltration is statistically significant. One-sided t-test, *** indicates a p-value = 0.3e-12. J) Line plot showing gene correlation to PPARG 
expression versus percentage of infiltrating intratumoral immune cells. K) Kaplan-Meier curve showing significant association of high 
PPARG expression with poor prognosis in TCGA PDAC cohort. 

Altogether, these data showed that CAFs activated by day 7 within the tumoroid and 

suggested that CAF activation may induce endothelial and cancer cell hypoxic as well as 

metabolic transition responses which are relevant for primary pancreatic cancer 

progression. Our innovative CAF-tumoroid model shows great capacity to mimic in vivo 

PDAC features, facilitating a more nuanced understanding of tumor processes. The 

integration of patient-derived cancer and CAF cells, along with endothelial cells, in this 
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modular system offers a sophisticated platform for future cancer research, paving the way 

for improved therapeutic strategies and precision medicine approaches in the fight against 

pancreatic cancer. 

 

Figure 12: CAFs provide distinct signals from normal fibroblasts that associate with cancer cell state change 
in tumoroids. A) Tumoroids containing normal, or cancer associated fibroblasts were generated and analyzed by scRNA-seq. B) 

UMAP embedding is colored and numbered by cluster, with cancer and fibroblast cells encircled and noted. C) UMAP with cells colored 
by tumoroid type (top). Stacked barplot shows proportion of cancer or fibroblast cells per cluster and colored by tumoroid type. 
Clusters are significantly enriched for tumoroid type (𝓧² p-value < 2.2e-16). D) Heatmap shows expression of DE genes by NF and CAF 
in the tumoroids. E) Hallmark enrichment for NF and CAF DE genes. F) Density plots showing proportion of cancer cells along an 
inferred pseudotime in the NF and CAF tumoroids. Day 14 cancer cells have altered profiles only in CAF tumoroids. G,H) Expression 
profiles of genes over cancer cell pseudotime that are DE between day 7 and day 14. Day 14 DE genes are also DE between cancer 
cells in NF and CAF tumoroids. I-K) Immunofluorescence of AKAP12 (I), TFF3 (J), and LCN2 (K) protein expression in NF and CAF 
tumoroids. Cancer cells stably express GFP, DAPI marks nuclei (white). Scale bar: 100um. L) Immunofluorescence of LCN2 and CK19 in 
Primary PDAC tissue. Insets show 1 location within non-cancerous pancreas tissue (N1) as well as 5 locations within the tumor (T2-6). 
Nuclei stained with DAPI (white). Scale bar: 1mm. 

To understand the specificity and impact of CAFs in shaping cancer cell state 

transitions, we developed a model in which cancer-associated fibroblasts were replaced by 

naïve fibroblasts (NFs derived from healthy pancreas tissue) in the tumoroid system (Fig. 

12A). We analyzed and compared CAF- and NF-integrated tumoroid models using imaging 

and single-cell transcriptomics at day 7 and day 14. Our data showed significant clustering 

differences (Fig. 12B), with distinct transcriptional profiles translating into substantial 

structural disparities under the microscope (Fig. 13A-B). Specifically, we observed CAF 

tumoroids had larger glandular structures and more developed endothelial networks 

compared to NF tumoroids suggesting a difference in signaling cues between the two 

microenvironments (Fig. 13A-B). Single-cell transcriptome analysis enabled the 

identification of 9 distinct cell states, highlighted how NF (c0) and CAF (c1, c2) cells largely 

cluster apart and evidenced a cancer cell population (c8) which uniquely emerged within the 

CAF-integrated tumoroid model (𝓧² test p-value < 2.2e-16) (Fig. 12B-C).  
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Differentially expressed genes between NFs and CAFs show enrichments in both 

cases for epithelial-to-mesenchymal transition however, CAF-specific genes showed 

increased engagement in processes associated with angiogenesis, estrogen response, and 

the TP53 pathway (Fig. 12D-E, 13C-E). Inference of differentiation trajectories for cancer 

cells exposed to the two fibroblast types revealed a time-dependent segregation of cells 

along the pseudotemporal axis, such that day 14 cancer cells grown with CAFs were 

predominantly enriched at later stages of the trajectory compared to tumor cells grown with 

NFs (Fig. 12F). This result indicated the pivotal role of CAFs in supporting fast cancer cell 

state progression. We observed that genes specific to day 14 cancer cells co-cultured with 

CAF were involved in metabolic homeostasis and included many classical PDAC-associated 

genes such as TFF3, TSPAN8, AGR2, and S100 (Fig. 12G, 13F-H). Interestingly, we identify 

Lipocalin 2 (LCN2) as an early induced gene which could potentially serve as an early 

prognostic biomarker of subsequent cancer metabolic state response to activated CAF 

signaling (Fig. 12H). We validated low expression of AKAP12 and CAF-specific induction of 

PDAC signature genes TFF3 and LCN2 using immunohistochemistry in tumoroids (Fig. 12I-

K). Additionally, we show that LCN2 exhibits heterogeneous expression within primary 

PDAC tissue (Fig. 12L). 
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Figure 13: Comparison of NF and CAF tumoroids. A,B) Images show tumoroids generated with normal fibroblasts (NFs, A 

- upper row) or cancer associated fibroblasts (CAFs, B - lower row) with endothelial cells labeled with TdTomato and cancer cells 
labeled with EGFP. Scale bar:250um. C-E) UMAP cell embedding from Fig. 2 showing normal and cancer associated fibroblasts colored 
by respective transcriptional signatures (C), tumoroid culture timepoint (D), or expression feature (E). F) Heatmap shows expression 
profiles of DEGs, at each timepoint, between cancer cells in tumoroids with NFs or CAFs. G) Pseudotemporal expression pattern of 
representative genes in cancer cells from NF and CAF tumoroids. H) Hallmark enrichment analysis in cancer cells within the different 
tumoroid types at 7 (top) and 14 (bottom) days of co-culture. Data shows how cancer cells within the CAF tumoroid change state and 
acquire new metabolic footprints, while cancer cells in contact with normal fibroblasts remain largely stable over the entire co-culture 
period. I) Dotplot showing the average expression (grey color scale) and percent of cells expressing (size of dot) of marker genes of 
previously described fibroblast states (Hwang et al. 2022) across the different tumoroid fibroblast clusters. 

To validate the tumoroid model's accuracy, we analyzed a cohort of 24 recently 

published primary PDAC scRNA-seq samples (Peng et al., 2019). In our re-analysis of this 

dataset, we observed that the diverse cell types contributing to the tumor microenvironment 

could be grouped into at least 20 molecularly distinct populations at a coarse resolution (Fig. 

14A, 15A-B). Tumoroid cancer and CAF cell populations showed strong relative similarity to 

the counterparts in the primary biopsies (Fig. 15C). Sub-clustering of the primary cancer cell 

populations revealed 8 distinct cancer cell clusters (Fig. 14B-C, 15D-E) that were 

ubiquitously yet heterogeneously represented in each patient sample (Fig. 15F). 

Interestingly, we found that tumoroid cancer cell states had strong transcriptional similarity 
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with multiple distinct cancer populations observed in the primary tissue demonstrating that 

our model can capture substantial intra-tumoral heterogeneity (Fig. 14D).  

 

Figure 14: Tumoroids recapitulate cancer cell and CAF states observed in primary PDAC tissues. A) Integrated 

UMAP embedding of a published single cell RNA-seq dataset from 24 primary PDAC resected samples (Peng et al., 2019), colored by 
cluster. B) UMAP embedding showing reclustering of cancer cells from primary resections colored by cluster. C) Dotplot shows 
expression profiles of top markers for identified cancer cell clusters. D) Spearman correlation scores between tumoroid cancer clusters 
and primary cancer clusters. Similar cancer states can be observed between tumoroids and primary tissues. E) Expression score of 
signatures for cancer cell states identified by Peng et al. on CAF co-cultured tumoroid cancer cells ordered by pseudotime. Note that, 
while the abnormal Cancer 1 phenotype seems to be undetectable in tumoroids, the alignment points towards an ever-increasing 
expression of the malignant Cancer 2 phenotypic profile. F) UMAP embedding of primary fibroblasts colored by cluster (left) and by 
expression of CAF activation score (right). G) Spearman correlation between tumoroid fibroblast clusters and primary PDAC fibroblast 
clusters; stacked barplot annotates tumoroid fibroblast clusters by proportion of normal fibroblasts (NF) and cancer-associated 
fibroblasts (CAF). CAF dominated tumoroid clusters achieve the highest similarity to the primary counterpart. H) Barplot showing the 
average overall survival time (OS) by vital status in TCGA PDAC cohort (one-sided t-test, *** indicates a p-value = 4.54e-04). I) Scissor 
selected tumoroid fibroblast cells significantly differ in their expression of activation signature; “Worse”, denotes strong positive 
association to poor prognosis. “Better”, denotes stronger association to a more favorable outcome (longer overall survival). One-sided 
t-test, *** indicates a p-value = 8.9e-07. J) Distribution of Scissor selected tumoroid cancer cells. CAF co-cultured cancer cells highly 
enriched for worse outcome association while NF co-cultured cancer cells enriched for better outcome association. 𝓧² test, p-value < 
2.2e-16. K-L) Stacked barplot showing proportions of Scissor classification in 5 pseudotime bins of CAF-tumoroid cancer (K) and CAF 
(L) cells. M) CAF activation score in primary CAFs (left) and an independent CAF line (right, patient 7, see supplemental figures) ordered 
by pseudotime. N) Density plot of pseudotime alignment comparison between primary CAFs (y-axis) and tumoroid CAFs (x-axis) from 
two patients (patient 6, left; patient 7, right) demonstrates independently computed tumoroid CAF trajectories can be aligned to a 
reconstructed primary CAF trajectory. 
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Figure 15: Comparison to primary PDAC and scissor analysis. A,B) UMAP embedding of primary PDAC samples (A) and 

expression of specific cell type signatures (B) used for cluster annotation. C) Spearman correlation scores between primary PDAC 
clusters and tumoroid clusters. D,E) UMAP embedding of subsetted primary cancer cells (D) identifies impurities and refines cancer 
cell heterogeneity as shown by expression scores for cell type specific signatures (E). Note that true cancer cell clusters can be aligned 
on a Cancer 1 to Cancer 2 progression axis as reported by Peng et al. F) Heatmap representing proportions of cancer cell states in each 
primary sample: multiple states can coexist within the same patient. G,H) UMAP embedding of subsetted primary fibroblast and 
stellate cells (G) identifies impurities and refines fibroblast cell heterogeneity as shown by expression scores for cell type specific 
signatures (H). I,J) Average expression of fibroblast signatures .(Hwang et al. 2022) (I) and expression profiles of top markers for 
primary CAF and stellate cells. K) UMAP embedding of tumoroid cells colored by scissor selection group: “worse”, denotes cells 
associated with worse outcome; ”better”, marks cells associated with protective phenotype. L) Barplot showing proportions of scissor 
selected tumoroid cells by cell type and timepoint. Right, day 14 system correlates with worse outcome with a significant enrichment 
in cancer cells; left, protective phenotype correlates with day 7 system with NF cells being the most representative. M) Scissor reliability 
significance test: analysis was performed 100 times on randomly permuted bulk labels with 3-fold CV. P-value is computed by the 
fraction of scores exceeding the score obtained with original labels, p-value = 0.04. 

Moreover, our comparative analysis revealed a close alignment of cancer cell states 

between tumoroid and primary tissues, strikingly recapitulating the progressive cancer 1 to 

cancer 2 transcriptional transition described in vivo by the original analysis (Peng et al., 

2019) (Fig. 14E). This result reinforces the relevance of our tumoroid model as an invaluable 

tool in PDAC research. Similarly, we observed that fibroblast cells from the primary samples 

showed an activation pattern that reflects the one emergent in our tumoroid model and, 
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tumoroid CAF states correlated with primary CAF states while NF states do not (Fig. 14F-

G, 15G-J). Notably, activation status proved to be the major source of variability in primary 

CAF cells and aligning these along increasing activation score showed strong similarity to 

CAF state transitions observed in tumoroid samples from multiple fibroblast lines (Fig. 14M-

N). Altogether, these data confirm that interactions between cancer and CAF in the tumoroid 

induce cancer cell phenotypes that are observed in primary tissues. 

To assess the relevance of states observed in the tumoroid tissue to PDAC 

outcomes, we utilized the annotated data from TCGA. The TCGA PDAC cohort contains 

177 bulk transcriptomes that could be stratified by outcome, revealing a significant difference 

in post-diagnosis survival time (Fig. 14H). Comparison of tumoroid cells to the bulk dataset 

using Cox hazard regression and the SCISSOR algorithm (Sun et al., 2022) enabled critical 

observations regarding fibroblast activation scores and cancer cell state correlation to 

survival time. Notably, tumoroid fibroblasts negatively correlating with survival exhibited 

higher activation scores compared to those correlating with more favorable outcomes (Fig. 

14I, 15K-L). Additionally, the CAF-tumoroid model showed significant enrichment in cancer 

cells negatively correlating with survival, surpassing the NF-tumoroid model (Fig. 14J). 

Remarkably, both cancer cell and fibroblast trajectories aligned with an increase in cells 

predictive of poor outcomes (Fig. 14K-L). These findings emphasize the reliability of the 

CAF-tumoroid model for PDAC research and suggest that the inferred trajectories faithfully 

recapitulate disease progression dynamics (Fig. 15M). 

Acknowledging that our study primarily utilized a single CAF cell line, a notable 

concern could raise criticism on the reproducibility of results, we procured additional fresh 

samples and showcased tumoroid cultures in one such instance. We generated CAF and 

cancer cell lines from the same patient and grew them as 3D organoids either separately or 

as an autologous CAF/cancer stromal tumoroid (Fig. 16A). We collected transcriptional 

profiles from each modality at different timepoints and were able to identify 10 major 

populations representing mono-cultured CAF (c5, c6), tumoroid CAF (c1, c4), CCO condition 

(c3, c8, c9), tumoroid cancer (c2, c7) and growth factor supplemented cancer cell (c0) states 

(Fig. 16B-E). Evidently, these tumoroid cultures display marked differences when compared 

to the culture models of individual components (Fig. 16F), effectively recapitulating the same 

cell states delineated in our study for both cancer and CAF cells (Fig. 8G-H).  

Particularly with regards to CAF cells, our tumoroid culture system demonstrates a 

significant enhancement in matching primary CAF states when compared to mono-culture 

models (Fig. 16G). Reference-based annotation analysis showed that tumoroid CAF states 

converge, independently of the patient line, to the same primary CAF states and revealed 

the absence of some primary CAF state signatures in our tumoroid models (Fig. 16H). 

Focusing on the activation signature genes, we observed some minor discrepancies in the 

set of genes expressed by our tumoroid models and the primary CAF cells (Fig. 16I). 

However overall, we could observe a striking overlap in the expression patterns of CAF 

activation (Fig. 16I-J). 
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Figure 16: Single-cell transcriptome analysis of CAF state reproducibility. A) Schematic representation of sample 

collection for autologous PDAC in-vitro models. B-E) Number of sequenced single-cells (B) and integrated UMAP embedding with 
emphasis on identified cell states (C), timepoint (D) or tested culture condition (E). Note that, in contrast to other conditions where 
cells rely on internal interactions to sustain the system, day 0 cancer cyst cells were cultured in growth factor supplemented media. F) 
Panel top cluster markers expression profiles. G) Dotplot showing the average expression (grey color scale) and percent of cells 
expressing (size of dot) of marker genes of previously described fibroblast states {REF} across the different clusters of CAFs. H) Heatmap 
highlighting results from label-transfer analysis from primary CAF states on tumoroid and 2D CAF states independently for each 
patient line. Tumoroid CAF states converge on the same set of primary CAF states. I) Venn diagram showing the overlap of expressed 
genes from the activation signature in CAFs from primary tissue (red), patient 6 tumoroid (green), and patient 7 tumoroid (blue). The 
number and percentage of overlapping genes are indicated. J) PCA analysis of primary biopsies as well as tumoroid cultures 
consistently shows how the major axis of variation for CAF cells correlates with the activation signature. 
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Figure 17: Interaction analysis identifies SDC1 as a dynamically expressed receptor in tumoroid cancer cells 
and SDC1-antibody block disrupts cancer cell glandular structure. A) Network showing ligand-receptor (LR) pairing 
between major cell types in primary tissues, colored by cell type (top) and molecular function (bottom). B,C) Ribbon plots (Gu et al., 
2014) showing CAF to cancer LR pairing in primary  PDAC (B) and CAF-tumoroids (C). Inset heatmap in (B) shows magnitude of pairwise 
directed interactions between cell types. Syndecan 1 (SDC1)-ligand pairings are highlighted in dark gray. D) SDC1 (left) and predicted 
ligand (right) expression in cancer and CAF cells over pseudotime, respectively. E,F) Immunofluorescence showing SDC1 induction from 
day 7 (E) to day 14 (F) tumoroids. Scale bar:50um. G) Immunofluorescence staining of SDC1 in the primary pancreatic cancer tissue. 
Scale bar:100um. H) Kaplan–Meier plot showing that high expression of SDC1 in PDAC cancers from TCGA cohort is associated with 
poor prognosis. I) Schematic shows SDC1 antibody blocking experiment. GFP reporter expression in cancer cells on day 14 tumoroids 
incubated with isotype control (left, inset i) or SDC1 (right, inset ii) antibodies. Scale bar: 100um. 

To uncover the mechanisms driving cell state transitions, we explored 

microenvironmental interactions within the primary PDAC samples (Fig. 17A). Remarkably, 

we observed that cancer cells and CAFs exchanged the most signals, emphasizing the 

intimate relationship of these cell types within the tumor tissue (Fig. 17B). We identified 

Syndecan 1 (SDC1) and Epidermal Growth Factor Receptor (EGFR) as major cancer cell 

surface receptors predicted to interact with several CAF-secreted signals related to disease 

progression (Fig. 17B). Analyzing CAF-cancer interactions within tumoroid models, we 

observed that a significant proportion of directed interactions identified in primary samples 

could be observed in tumoroids (Fig. 18A-B).  
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Figure 18: Expression of receptors and ligands in tumoroid CAF and cancer cells. A,B) Venn diagram representing 

number of LR interactions between CAF and cancer cells: tumoroid model is able to recover over 25% of CAF to cancer interactions (A) 

and 30% of cancer to CAF interactions as compared to ground truth identified in independent primary PDAC sample cohort. C,D) 

Ribbon plot representing communication between tumoroid CAF (source) and cancer cells (target) highlighting SDC1 interactions (C) 

as well as tumoroid cancer cells (source) and CAF (target) highlighting EGFR interactions (D). E,F) Expression of CAF-specific ligands 

and cancer-specific receptors along respective pseudotemporal trajectories (E) as well as specular signaling dynamic (F). G) Network 
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depicting all identified tumoroid CAF and cancer cell interactions. H) Expression of SDC1 and EGFR in CAF and cancer cells in tumoroids 

and primary PDAC biopsies. I) Survival analysis on TCGA pancreatic cancer cohort links EGFR overexpression to worse outcome. J) 

Hallmark enrichment of directed signaling through LR pairs between CAF and cancer cells in tumoroid model. K) Signaling molecules 

from curated annotations (Han et al., 2020) of major developmental pathways are dynamically expressed along CAF and cancer 

trajectories within tumoroids.  L,M) GFP reporter expression in cancer cells on day 14 tumoroids treated with isotype control (L) or 

SDC1 (M) antibodies. Scale bar:100um. N) Immunofluorescence of SDC1 and E-Cadherin in primary PDAC tissue. Insets show 2 

locations within non-cancerous pancreas tissue (N1-2) as well as 2 locations within the tumor (T1-2). Nuclei stained with DAPI (white). 

Scale bar: 2mm.   

Consistent with the primary PDAC samples, we identified SDC1 acting as a cancer 

cell hub for the collection of CAF secreted ligands (Fig. 17C, 18C-G). Interestingly, we 

observed SDC1 and its predicted CAF-secreted ligands increasing in expression along the 

respective cell type trajectories in tumoroids (Fig. 17D). Previous studies have revealed that 

SDC1 is recycled to the cell membrane by Kirsten Rat Sarcoma Virus Oncogene Homolog 

(KRAS) activity and is a critical mediator of macropinocytosis in pancreatic cancer (Yao et 

al., 2019). SDC1 is known to be a key cell surface adhesion molecule engaged in 

interactions with numerous ligands (e.g. THBS1, FGF2, TNC, FN1) (Bray et al., 2019; Chen 

et al., 2020; Jacquemin et al., 2020; Ni et al., 2017; Topalovski and Brekken, 2016), thereby 

regulating major pathways responsible for cell interactions within the microenvironment, and 

contributing to cancer progression, proliferation, metastasis and overall poor prognosis (Akl 

et al., 2015). We also observed that EGFR expression is associated with CAF activation in 

the tumoroid (Fig. 18F), and primary PDAC tumors with high EGFR expression are 

associated with poor survival (Fig. 18I). EGFR inhibition shows promise as a co-target in 

mouse models and is FDA approved for PDAC treatment in humans (Blasco et al., 2019; 

Garvey et al., 2020). In contrast to EGFR, SDC1 showed higher expression and specificity 

in cancer cells of tumoroid and primary resections (Fig. 18H). More broadly, we observed 

that regulators of diverse signaling pathways are dynamically modulated in the tumoroid 

(Fig. 18K), providing a rich resource for future in vitro perturbation experiments to 

understand these complex interactions. 

SDC1 specificity revealed by our analysis prompted us to investigate how the 

blockage of this receptor impacts cancer growth within the tumoroid. Through imaging of the 

tumoroid cultures, we confirmed a time-dependent increase in SDC1 expression, 

predominantly localized to the cell membrane of cancer cells (Fig. 17E-F). Expression of 

SDC1 protein in cancer cells was also validated on primary PDAC resections (Figure 17G, 

18N). Furthermore, SDC1 overexpression significantly decreased survival in the TCGA 

PDAC cohort (Fig. 17H), and preliminary data indicate that blocking this receptor is 

detrimental to the tumoroid system (Fig. 17I, 18L-N). These findings suggest a crucial role 

for signaling through SDC1 in the development and dynamics of our model system, offering 

promising avenues for further research and therapeutic intervention. Overall, by accurately 

recapitulating PDAC cancer states and validating clinically relevant features, such as 

survival correlations, our multilineage tumoroid model emphasizes the significance of CAF-

cancer interactions in PDAC disease progression and provides a powerful platform for 

manipulating and understanding CAF-cancer interactions with therapeutic relevance. 



49 
 

 

Figure 19: Patient-variable tumoroid migratory state signatures correlate with cancer prognosis. A) CCO were 

established from 4 additional PDAC patients and co-cultured with CAFs and ECs to generate tumoroids. Images show cancer cells and 
ECs stably transformed with EGFP and TdT expression cassettes, respectively. Arrows highlight the presence of migratory-like cells in 
certain patient tumoroids. Scale bar: 250um. B) Cancer cell heterogeneity analysis of scRNA-seq data from tumoroids from 5 patients. 
UMAP embedding is colored by cluster (top). Approximate overall survival time (in years) and recurrence status are noted for each 
patient (bottom). C) Feature plot showing expression of selected marker genes. D) Feature plots showing expression scores of PDAC 
subtype signatures. Data suggests co-existence of cancer sub-populations within the same tumoroid. E) Integrated UMAP embedding 
of cancer cell transcriptome states from previously published scRNA-seq primary PDAC tissue (grey) and PDAC liver metastases (black). 
These data were used to identify a metastatic signature that differed between the two sets of samples and classify tumoroid cancer 
cells. F) Tumoroid UMAP colored by label transfer from primary PDAC (non-metastatic) or liver metastatic cancer cells. G) Barplot of 
Pearson residuals (Chi-square test) showing depletion and enrichment of non-metastatic (grey) and metastatic (black) label-
transferred cells in tumoroids of each patient shown in panel A. H) Barplot showing the average expression difference between 
tumoroid cancer metastatic and non-metastatic DEGs. I) Kaplan–Meier (KM) plot showing that high expression of metastatic signature 
genes in PDAC cancers from TCGA dataset is associated with lower survival. J) Gene ontology enrichment of the metastatic signature 
genes. K) Distribution of metastatic signature gene expression in primary cancer tissue (PDAC, liver metastasis) and organoids from 
tumoroids with metastatic (patient 4, 5) and non-metastatic (patient 2,3) phenotypes. 

Moving forward, it is noteworthy that on day 14, our tumoroids exhibited intriguing 

characteristics. Upon microscopic examination, we observed the presence of detached 

cancer cells exhibiting a migratory phenotype in select cultures (Fig. 19A). This phenomenon 

appeared to be more pronounced in tumoroid cultures derived from patients with heightened 

susceptibility to metastasis and shorter overall survival rates. To understand the potential 

diversity of molecular profiles and cell behaviors between different patients, we generated 

single-cell transcriptome data from tumoroids from each patient, analyzed cancer 

heterogeneity separately, integrated cancer cell data from each individual, visualized cells 

in a UMAP embedding, and identified markers for each cluster (Fig. 19B-C, 20A-D). In the 

integrated analysis, we observed a diversity of cancer cell states and each individual 

contributed cells to all identified populations (Fig. 20E). Moreover, we report how each 

tumoroid cancer cluster could be classified based on signatures derived from different 

primary PDAC types (Classical A, B; Basal-like A, B) (Chan-Seng-Yue et al., 2020) (Fig. 

19D). Strikingly, we found that each tumoroid consisted of a heterogeneous mix of all the 

different PDAC cancer subtypes, and the proportions of these populations differed among 

patient tumoroids (Fig. 20F). These data suggest that PDAC types represent proportion 

differences among cancers, that the underlying cell states develop dynamically over time, 

and that tumoroids might be used to recapitulate PDAC type proportions. This facet, while 

not within the scope of this study, opens up future possibilities for assessing the emergence 

of diverse subtypes and characterizing the extent of plasticity and interplay among them in 

vitro. 
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Figure 20: Heterogeneity analysis of tumoroid cancer cells from 5 patients. A-D) Heterogeneity analysis in tumoroid 

cancer cells for each patient derived line showing selection of marker genes for cultures with no migratory cells (A,B) and cultures with 
migratory cells (C,D). Insets display individual UMAP embeddings color-coded by cluster. Note that the cluster colors are not 
comparable across samples. E) Proportion of cells in each cluster that are derived from each patient from the integrated heterogeneity 
analysis presented in Fig. 19. F) Pie chart shows the proportion of cells from each patient tumoroid classified into PDAC subtypes. The 
data shows how different subtypes co-exist within each patient-derived tumoroid. G) Feature plots on the integrated UMAP from Fig. 
19 showing expression of genes enriched in tumoroids without (top row) and with (bottom row) migratory cells. H) Kaplan–Meier 
(KM) plot showing the relationship of gene expression in the Tumor Migration Signature (TMS, bottom) or in the non-TMS (top) and 
the survival times. Data is from the cancer genome atlas (TGCA). I) Immunofluorescence staining for CEACAM6 (red, top) and MUC1 
(pink, bottom) on day 14 tumoroids from Patient 5. Cancer cells stably express GFP, DAPI marks nuclei (white). Scale bar:100um. J) 
Immunofluorescence of Pyruvate Dehydrogenase Kinase 4 (PDK4, pink, left) and Tumor Protein D52 (TPD52, pink, right) in primary 
aggressive PDAC tissue. Insets show 2 locations within 1 location within the well differentiated character (T1) as well as 1 location 
within the undifferentiated character (T2). Cancer cells stained with Cytokeratin 7 (CK7, white, left) and Cytokeratin 19 (CK19, white, 
right). Nuclei stained with DAPI (yellow). Scale bar: 2mm. 

Intrigued by the tumoroid cancer migratory phenotype, we endeavored to pinpoint a 

gene signature that could define this state. We integrated the primary PDAC cancer cells 

(Peng et al., 2019) with an independent cohort of 19 PDAC-derived liver metastatic 
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resections (Raghavan et al., 2021) (Fig. 19E) and used these data as basis for a reference-

based annotation of our integrated tumoroid cancer cells (Fig. 19F). Remarkably, we 

observed that the ‘metastatic’ annotation was depleted in cancer cells from tumoroid cultures 

of patients with longer overall survival while being strongly enriched in the cancer cells 

derived from the patient with shortest post-diagnosis survival time and with proven history 

of recurrence (Fig. 19G). Differential expression analysis between ‘metastatic’ and ‘non-

metastatic’ classes of tumoroid cancer cells revealed a Tumoroid Metastatic Signature 

(TMS) (Fig. 19H). Overexpression of the TMS showed a significant negative impact on 

patient survival from the TCGA cohort (Fig. 19I, 20G-J) and genes in this signature were 

over-represented in cellular processes involved with cytoskeleton dynamics, substrate 

interaction and cell migration (Fig. 19J). Finally, we validated that PDAC-derived liver 

metastasis biopsies show a significantly higher expression of TMS compared to the primary 

PDAC cells (Fig. 19K).  

To summarize, our CAF-tumoroid model adeptly reproduces the trajectories of cancer 

and stromal cell states. We reveal that CAFs, in contrast to NFs, transmit distinct signals 

that sustain cancer cell states associated with unfavorable prognoses. Moreover, we 

uncover pivotal ligand-receptor interactions that can influence cancer cell organization and 

viability. Lastly, we present a discernible signature associated with tumoroid migratory 

behavior, which correlates with unfavorable clinical outcomes. Future work is needed to 

explore the link between the larger patient cohorts and their corresponding tumoroid avatars. 

In addition, similarly thorough analysis on more developed models that incorporate 

macrophages, monocytes and other immune cell types will be required to fully recapitulate 

the dynamic interlineage signaling axes prevalent in PDAC tumor microenvironments. 

Overall, our findings significantly advance our understanding of PDAC and underscore the 

utility of our innovative tumoroid model in advancing cancer research and precision medicine 

strategies. 

CHALLENGES AND FUTURE PERSPECTIVES 
As the utilization of patient-specific tumor organoid models becomes increasingly 

widespread, the establishment of standardized protocols for organoid generation that 

accommodate the intrinsic heterogeneity within tumors is crucial for their clinical success. 

Several challenges arise from the sourcing of tumor tissue for organoid generation, which 

contribute to variability resulting from clinical necessity and is outside the experimentalists' 

sphere of influence. The current models, primarily established from individual biopsy 

specimens or minute tissue fragments, do not adequately capture the profound patient-

specific biological diversity and spatiotemporal evolution (Roerink et al., 2018). This 

limitation in capturing the diversity of populations in organoid biobanks can result in flawed 

efforst in drug exploration and biomarker advancement, especially when there are 

differential responses to anticancer treatments in populations missing from the model (Boj 

et al., 2015; Broutier et al., 2017; Fujii et al., 2016; Kopper et al., 2019). Additionally, the 

presence of fast-growing cells in the samples can contaminate the tumor tissue thus limiting 

research aimed at describing neoplastic cell biology (Dijkstra et al., 2020). 

Efforts to standardize tumor tissue processing are essential to achieve more uniform 

cancer organoid cultures. Traditional methods involve completely dissociating patient-

derived biopsies into cellular components using enzymatic and/or mechanical treatments, 

subsequently encased in a complex 3D matrix submerged in a nutrient-rich medium 
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(Driehuis et al., 2020). However, these techniques often lead to limited reproducibility in 

sizes of cell clusters, inconsistently ranging from individual cells to aggregates of 

approximately 100 µm in diameter. Enzymatic treatment can lead to unintended cleaving of 

proteins located on the surface of the calls, requiring tissue-specific dissociation protocols 

(Driehuis et al., 2020). Full tissue dissociation, while useful, disrupts complex cell-

extracellular matrix (ECM) interactions and may negatively impact non-cancerous and non-

epithelial cell populations. An alternative approach involving patient tissue mincing and 

encapsulation of millimeter-scale tumor fragments retains parent tissue structure and tumor 

microenvironment (TME) cell composition, but this method also results in limited 

reproducibility of fragment sizes, leading to uneven environments for encapsulated cells. 

Damage resulting directly from the mincing procedure or indirectly through gradients of 

oxygen and nutrients further reduces cell viability for organoid generation. Moreover, 

encapsulation of selected cell populations conserving reproducible interactions with the 

surrounding environment is extremely difficult under this processing procedure. 

Despite challenges in standardizing clinical tissue collection, there are promising 

avenues for advancing cancer organoid culture protocols. Samples of flash-frozen tissue, 

thawed after months of cryopreservation, have been shown to maintain similar 

pharmacotropic profiles compared to tissue-matched fresh organotypic cultures established 

at the time of biopsy, offering a potential solution (Walsh et al., 2016). Defining intra- and 

inter-tumoral heterogeneity is essential for standardization (Roerink et al., 2018). Multiregion 

tissue sampling, utilizing primary and metastatic tumor lesion biopsies from individual 

patients, can help model the inherent complexity of intratumor heterogeneity and 

pharmacotropic responses (Kopper et al., 2019; Vlachogiannis et al., 2018). Although living 

biobanks of tumor organoids derived from various neoplastic tissue types provide valuable 

insights, the temporal evolution of patient-derived cancer organoids has not been 

extensively investigated, primarily due to the scarcity of available samples. Innovative 

approaches, such as genetically engineered organoids derived from healthy tissue and 

liquid biopsies, could offer more accessible alternatives for modeling and investigating 

cancer progression. 

In tandem with endeavors to standardize neoplastic tissue collection, there has been 

a concurrent integration of technological innovations in microfabrication, microdissection, 

and microfluidic techniques aimed at streamlining the subsequent steps in tissue 

processing, organoid establishment, and pharmacotropic response assessments 

(Brandenberg et al., 2020; Horowitz et al., 2021; Li et al., 2014). These innovative 

methodologies serve to streamline the identification of distinct cancer subpopulations and 

enable precise investigations into the impact of the starting number of cells on organoid 

derivation efficiency. Moreover, the realm of microphysiological systems now encompasses 

organoid/tumor-on-a-chip systems featuring heightened tissue complexity, offering the 

prospect of incorporating fully developed vasculature. This integration provides a distinctive 

vantage point for evaluating cancer extravasation and drug delivery processes (Chen et al., 

2017; Haase et al., 2020). The ongoing enhancements of microfluidic devices are poised to 

play a pivotal role in faithfully replicating the unique cellular and anatomical variabilities 

found in patient-derived tumors. Enhanced techniques for quantitatively tracking organoid 

progression at the cellular level, including cellular barcoding (Umkehrer et al., 2021) and 

machine learning-based image analysis (Kassis et al., 2019), will complement these 

advancements in cancer modeling. 
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Constructing systems that mimic the natural structure and intricacy, encompassing 

the integration of pertinent cells from the tumor microenvironment, stands as another 

significant objective in cancer simulation. Recent efforts have been directed towards 

creating cultivation systems that faithfully replicate the diverse composition of TME cells and 

the interactions between different cell types, all aimed at assessing individualized 

immunotherapies (Neal et al., 2018; Schnalzger et al., 2019). The specific effects of cancer-

associated fibroblasts (CAFs) on cancer organoid populations have revealed unique 

interactions and stroma-derived factors influencing epithelial-to-mesenchymal transition 

(EMT) and therapeutic responses (Ebbing et al., 2019; Öhlund et al., 2017). Meanwhile, 

distinct phenotypes observed in murine CAFs from patient-derived xenografts highlight the 

limitations of murine models in reconstructing the human TME (Ebbing et al., 2019). These 

studies have resulted in the introduction of new biomarkers and therapeutic approaches for 

categorizing patients and tailoring treatments to their individual needs. Nevertheless, 

comprehensively examining the diverse functions TME cells fulfill in the advancement and 

maintenance of cancer organoids remains an unexplored area, mainly because reliable 

protocols enabling the simultaneous and extended culture of multiple cell types have not 

been established. 

Cancer heterogeneity, driven by complex and reciprocal soluble factor signaling 

within the tumor microenvironment (TME), poses a critical challenge in developing effective 

cancer organoid models. In models comprising pure populations of neoplastic cells, external 

supplementation of signaling factors promoting cancer cell growth is necessary. To achieve 

the reproducibility required for clinical translation, standardized procedures for recombinant 

protein expression and isolation are essential. Advancements in liposomes based on 

phospholipids or cholesterol, coupled with the identification of the stabilizing role of afamin 

(Mihara et al., 2016), a glycoprotein found in bovine serum, have led to enhanced stability 

and biological activity of in vitro protein expressed Wnt3a complexes (Tüysüz et al., 2017; 

Willert et al., 2003). Nevertheless, the use of some purified recombinant proteins may be 

limited by poor solubility and stability, resulting in diminished protein activity (Tüysüz et al., 

2017; Willert et al., 2003). Additionally, the cost and scalability of medium cocktails 

containing multiple growth factors and nutrients can become prohibitive for high-throughput 

applications. 

Conditioned medium from engineered mammalian cells producing R-spondin, Wnt3a, 

and/or Noggin soluble molecules, has significantly reduced costs and increased the access 

to cancer organotypic culture systems (Willert et al., 2003). However, diluting the 

conditioned medium directly into complete formulations of organoid medium for preparation 

faces concerns in achieving standardized and consistent culture protocols. Batch-to-batch 

variability in conditioned medium, along with the presence of diverse molecules besides the 

protein(s) of interest, affects encapsulated cancer organoid phenotype and reaction to 

pharmaceutical treatment. Furthermore, the use, in conditioned medium, of residual animal-

derived serum, such as fetal bovine serum (FBS), raises concerns about ill-defined 

components and the potential for undesired effects and infections (van der Valk et al., 2010). 

Altogether, the dependence on conditioned medium and serum derived from animals during 

the cultivation of cancer organoids obstructs endeavors to create uniform models and 

restricts the ability to compare data consistently across various experiments and studies. 

Alternative DNA-based protein synthesis methods, including insect or bacterial cell-

based systems, could offer more scalable and cost-efficient avenues for producing medium 
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components with more permissive purification needs. Yet, bacterial systems could be 

vulnerable to the presence of endotoxins, and they frequently lack sufficient mechanisms to 

guide protein folding and perform necessary post-translational modifications that are 

essential for preserving the correct biological functionality of the target proteins. Overcoming 

these challenges, a unique expression and purification workflow for Gremlin 1 (GREM1) and 

R-spondin 1 (RSPO1) in Escherichia coli has demonstrated activity similar to proteins 

sourced from commercial vendors, with reduced endotoxin contamination and cost 

(Urbischek et al., 2019). Moreover, tumor-associated signaling circuits can be modulated by 

custom-engineered agonists, offering an additional cost-efficient avenue with comparable 

biological functions (Janda et al., 2017; Luca et al., 2020; Miao et al., 2020). The inclusion 

of these tailored agonists within cancer organoid cultures has the potential to yield fresh 

insights into the responses of distinct clonal subpopulations of cancer cells when subjected 

to the activation of precise signaling pathways. 

The advancement of next-gen tumor organoid culture medium requires a patient-

tailored comprehension of the tumor microenvironment in vivo and the establishment of 

standardized in vitro modeling. Although recent studies have discerned essential or 

nonessential components within the culture medium, they often focus on a limited number 

of interlinked biochemical networks such as WNT/R-spondin, EGF, TGF-beta and BMP. 

Furthermore, even though research indicates that altered expression of certain signaling 

molecules can initiate tumor formation without genetic changes (Tsukamoto et al., 1988), 

the current categorization of patient-derived organoids into subgroups with distinct medium 

needs is frequently based solely on mutation status. Analysis through scRNA-seq along with 

multiplexed proteomic profiling of patient-specific TME soluble signaling molecules in vivo 

will offer crucial insights into medium formulation requirements (Kumar et al., 2018). Coupled 

with advancements in characterization of collected human serum from matched patients to 

explore soluble factors that influence cancer phenotypes (Broutier et al., 2017; Ebbing et al., 

2019), these analyses will provide an alternative to serum of animal origin for clinical 

oncology applications.  

To achieve the most representative models of neoplastic disease progression and 

treatment, it's vital to standardize cancer characterization protocols at each step of organoid 

derivation. Understanding distinctions between the environments where healthy and 

malignant stem cells thrive will be essential for effectively modeling cancer onset and 

preventing biases in clonal selection and expansion. In addition to soluble factor 

concentration, exploring physiochemical properties such as growth-factor signaling, pH, 

ECM composition, architecture, and oxygenation levels within the medium is essential. 

Current culture methods often fail to recapitulate the spatial heterogeneity of these factors 

in the in vivo TME. Future endeavors should be directed towards the development of 

technologies and platforms enabling the precise spatiotemporal control of medium in cancer 

organoid cultures (Broguiere et al., 2020). As cancer organoid models grow in complexity 

by incorporating diverse cell types from the tumor microenvironment, determining the 

essential components of the medium required to sustain non-cancerous cells and facilitate 

interactions between different cell types will be of paramount importance. 

Another crucial factor in organoid cultures is the intimate relationship between 

encapsulated cells and the ECM. In the recent past, the primary matrix for culture of 3D 

organoid systems has been EHS matrix, rich in cytokines, growth factors, and ECM 

molecules that support the cultivation and expansion of diverse cancerous as well as tumor 
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microenvironment cell types. However, the animal-derived nature of EHS matrix, which 

contains ill-defined xenogeneic impurities, leads to substantial heterogeneity between 

different batches impacting organoid phenotype unpredictably (Aisenbrey et al., 2020; 

Hughes et al., 2010). Additionally, its lack of tunability in biochemical and mechanical 

properties restricts its ability to recapitulate patient-specific tumor ECM characteristics 

(Acerbi et al., 2015; SelectScience https://www.selectscience.net/application-

articles/tuning-the-elastic-moduli-of-corning-matrigel-and-collagen-i-3d-matrices-by-

varying-the-protein-concentration/?artid=46305). Collectively these limitations conceal 

underlying mechanisms governing matrix-influenced tumor cell behavior and, coupled with 

its comparatively high cost and ethical concerns, undermine EHS matrix use in high-

throughput pharmaceutical screenings and clinical applications. 

An alternative biomimetic approach, employing collagen type I matrices, has gained 

popularity as a more cost-effective option for tumror organoid systems in vitro. Nevertheless, 

similar to EHS matrix, collagen matrices derived from animal sources suffer from batch-to-

batch inconsistencies, limited tunability, and contamination concerns. The microstructure of 

collagen gels, influenced by gelation conditions, can result in structural heterogeneity, 

affecting cell interactions with the matrix (Hapach et al., 2015; Velez et al., 2017). Attempts 

to control collagen matrix properties frequently necessitate the introduction of substances 

posing a health hazard or chemical alterations, disrupting native crosslinking and ligand 

availability (Hapach et al., 2015). Numerous biomaterial frameworks have been created for 

the three-dimensional cultivation of cancer cell lines, spheroids as well as primate cancer 

tissues in vitro. However, these materials have not yet fully translated to applications in 

cultures of human cancer organoids and currently represent a future opportunity to 

understand ECM's role in regulating patient-specific cancers (Gu & Mooney, 2016; Liu & 

Vunjak-Novakovic, 2016). In one example, GBM organoids grown in synthetic polyethylene 

glycol (PEG) crosslinked to recombinant hyaluronic acid (HA) hydrogels showed distinct 

phenotypic responses, demonstrating the potential of adjustable matrix structures providing 

numerous insights into how the matrix influences tumor organoid phenotypes and 

pharmacotropic responses (Xiao et al., 2018). 

In summary, the advancement of cancer organoid culture protocols, while facing 

challenges related to variability in tissue collection and processing, holds great promise for 

enhancing the clinical relevance of these models. The combination of innovative 

technologies and a deeper understanding of intra- and inter-tumoral heterogeneity will pave 

the way for more accurate and personalized cancer organoid-based approaches in drug 

discovery and biomarker development. Additionally, advancements in engineered matrices 

tailored for human cancer organoid cultures offer promising avenues for improved 3D 

models, addressing the limitations associated with animal-derived matrices and providing 

tunable and customizable platforms to explore matrix-mediated cancer organoid phenotypes 

and drug responses. These innovative materials, when further refined and scaled, have the 

potential to enhance our understanding of tumor-ECM interactions and contribute to the 

development of reproducible, disease-specific in vitro models. 
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BACKGROUND 
The human intestine, with its single layer of columnar epithelial cells, has evolved for 

efficient nutrient absorption, but this design also renders it vulnerable to pathogens (Hooper 

& Macpherson, 2010). Rapid turnover of the epithelium, driven by stem cells located in the 

intestinal crypts, maintains tissue health but also leaves it susceptible to tumorigenesis (van 

der Flier & Clevers, 2009). Mutations in the WNT signaling pathway, which regulates stem 

cell proliferation, are frequently implicated in colorectal tumors (Fodde et al., 2001; Rawla et 

al., 2019; Zhang & Shay, 2017), contributing to colorectal cancer's ranking as the third most 

common cancer globally. To preserve homeostasis and protect against pathogenesis, the 

intestinal mucosal immune compartment, housing the largest pool of immune cells in the 

human body (Holmgren & Czerkinsky, 2005), plays a critical role in closely monitoring the 

intestinal epithelium. Intra-epithelial lymphocytes (IELs), a subgroup of tissue-resident 

memory (TRM) T cells found in peripheral tissues (Masopust & Soerens, 2019), are 

specifically responsible for constant surveillance, safeguarding the intestinal epithelium 

against infection and malignant transformation (Cheroutre et al., 2011; Hayday, 2009). 

Uncontrolled responses to food antigens and invading bacteria are characteristic features 

of prevalent autoimmune conditions affecting the gut, such as Celiac disease and 

inflammatory bowel syndrome (Barker & Liu, 2008; Hugot et al., 2001; Parzanese et al., 

2017; Sartor, 2006). Despite our reliance on in vivo models to understand the immune-

epithelial interaction, in vitro culturing of gut-derived tissue-resident memory (TRM) T cells 
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remains a challenge (Beura et al., 2018; Swamy et al., 2015). Utilizing human material offers 

a platform for treatment with species-specific therapeutic compounds and subsequent 

experimental tracking, enabling drug efficacy and safety screening (Xu et al., 2018). 

However, achieving donor matching of immune cells and epithelial cells is challenging yet 

essential due to the highly alloreactive nature of gut-derived T cells, which significantly 

influences the study of intestinal homeostasis and disease progression (Fu et al., 2019). 

Organoids derived from adult stem cells (ASCs) have emerged as valuable models for 

understanding various aspects of human physiology, including genetic disorders, infectious 

diseases, cancer, regenerative medicine, and drug discovery (Bartfeld et al., 2015; Huch et 

al., 2015; Lukonin et al., 2020; Schutgens & Clevers, 2020; van de Wetering et al., 2015; 

Yui et al., 2012). While intestinal organoids accurately model differentiation and function of 

major epithelial cell types, they lack a functional and tissue-specific immune compartment, 

limiting their ability to capture essential aspects of intestinal homeostasis and disease (Sato 

et al., 2009; Sato et al., 2011; Sato et al., 2013; Schutgens & Clevers, 2020). Incorporating 

a mucosal lymphocyte compartment into these organoids has proven to be a challenging 

endeavor (Beura et al., 2018; Swamy et al., 2015), despite previous co-culturing of adult 

human intestinal epithelium with blood-derived innate immune cells (Jowett et al., 2022; Noel 

et al., 2017). 

OBJECTIVES 
In this project, we created a tractable immunocompetent intestinal organoid (IIO) 

model containing a tissue-resident and donor-matched immune repertoire starting from 

readily available human clinical samples (Fig. 1a). We benchmarked cell states in IIOs 

through comparison to reference atlases using single-cell transcriptomes, and used IIOs to 

explore the effects of drug treatment that has important implications for back-translation. 

RESULTS 

In our efforts to introduce a functional and relevant lymphocyte compartment into 

intestinal organoids, we focus on tissue-resident memory T cells (TRMs). TRMs are antigen-

experienced T-cell populations, which take permanent residence in the intestinal mucosa, 

providing front-line defense against invading pathogens (Cheroutre et al., 2011; Masopust 

& Soerens, 2019). Given the absence of recirculation, they are an appropriate lymphocyte 

type to stably incorporate into organoid models. Furthermore, their prior antigen exposure 

and memory character ensures functionality in the absence of antigen-presenting cells, 

lymphoid structures and the remaining immune cell recirculation machinery. TRMs are 

difficult to incorporate into in vitro systems, owing to their poor viability upon enzymatic 

removal from the tissue (Beura et al., 2018; Swamy et al., 2015). Therefore, we adapted an 

enzyme-free scaffold-based crawl-out protocol to isolate large numbers of healthy intestinal 

immune cells (Clark et al., 2006) (Fig. 21a). We found that, even in the complete absence 

of cytokine or T-cell receptor (TCR) stimulation, our approach liberated significantly more 

cells than enzymatic digestion-based protocols, while retaining similar proportions of 

immune cell types (Fig. 22a-b).  

We deemed this lack of cytokine exposure crucial for retaining the tissue-like 

physiological properties of the intestine-derived lymphocytes. Indeed, flow cytometry 

analysis showed that the isolated cells expressed TRM markers pertinent to the intestine, 

including CD161 (IL-17A production (Maggi et al., 2010)) and CD117 (notch signaling 
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(Massa et al., 2006)) (Fig. 22c), as well as surface molecules associated with tissue retention 

(CD69 (Kumar et al., 2017)), extracellular matrix association (CD49a (Bank et al., 1994)) 

and epithelial cell integration (CD103 (Cepk et al., 1994)), all of which were undetectable on 

blood-derived lymphocytes (Fig. 21b-c). We generated organoids and TRMs from human 

intestinal specimens, additionally collecting matched peripheral blood mononuclear cells 

(PBMCs) from the same donor. Once established, organoids were combined with TRMs or 

PBMCs within three-dimensional (3D) extracellular matrix (ECM) at physiologically-relevant 

cellular concentrations (Fu et al., 2019), and in the absence of external stimulation. Confocal 

microscopy and 3D reconstruction revealed that, after 24h coculture, TRMs were viable and 

closely associated with the organoids (Fig. 21d). To examine the organoid-TRM interactions 

in greater detail, we generated histological sections of the models and visualized the 

epithelial and immune cells (Fig. 21e-g).  

 

Figure 21: Intestine-derived tissue-resident lymphocytes (TRMs) integrate homeostatically into autologous 
organoids to form intestinal immuno-organoids (IIOs). a, Schematic overview for establishing autologous IIOs. b-c, Flow 

cytometry-based tSNE analysis of gut (TRM) and circulating (PBMC) T cell subgroups based on surface marker expression. tSNE plot 
colored by original source of the T cells (b, light grey for PBMC and dark grey for TRM) and expression of 10 individual markers of 
naivety, memory or tissue residency (c). d, Fluorescent still from live imaging 24 hours after IIO coculture with autologous TRMs (nuclei 
= teal, T cells = pink). e-g, Fluorescent IHC staining of IIO cultures 24 hours after coculture with autologous TRMs (e-f) or PBMCs (g). 
h, Detected immune cell count per organoid, each data point represents 1 individual organoid. **P < 0.01, unpaired T-test. i, Ratio of 
epithelial cells to immune cells within each organoid, following organoid supplementation with autologous TRM cells. j, Elongated 
flossing T cell inserting between basal-lateral epithelial cell junctions. 
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We found that, whereas PBMCs occupied the ECM space without apparent 

interactions with the epithelial cells (Fig. 21g), a sub-population of TRMs infiltrated the 

organoids and integrated within the epithelial barrier in the absence of stimulation, strikingly 

resembling the behavior of intestinal intraepithelial lymphocytes (IELs) (Hoytema van 

Konijnenburg et al., 2017) (Fig. 21e-f, h). We estimated a median integration ratio of 16 

epithelial cells per immune cell (Fig. 21i) – highly similar to observations in the intestinal tract 

of healthy humans (Sergi et al., 2017). Intraepithelial lymphocytes displayed an elongated 

morphology of ~ 60 µm in length (Fig. 21j, Fig. 22d), around 10 times the length of a naïve 

blood-derived T cell (Tasnim et al., 2018), and reminiscent of the “flossing” behavior 

described for transgenic murine IELs imaged in vivo (Hoytema van Konijnenburg et al., 

2017). With low-level cytokine support, immune-organoid cultures could be maintained 

across at least three passages, albeit with a diminishing ratio of immune cells to epithelial 

cells (Fig. 22e). This model provides the first example of self-organization between human 

immune cells and epithelial organoids to form an organoid system with a tissue-resident 

immune compartment. We termed these structures intestinal immuno-organoids (IIOs). 

 

Figure 22: Intestinal TRM isolation and comparison to circulating T cells. a, Comparison of viable CD45 count in 
matched donors subjected to either digestion- or crawl out- based isolation. *P < 0.05, paired T-test. b, Comparison of immune cell 
proportions subjected to either digestion- or crawl out- based isolation. Values represent percentages of parent population listed 
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above each bar.  LPL lamina propria lymphocyte, IEL intraepithelial lymphocyte, DP double positive, DN double negative. c, tSNE 
analysis of a typical intestinal lymphocyte isolation incorporating standard lineage defining immune cell markers. The leftmost plot 
represents annotated cell populations with smaller plots displaying heatmaps for each of the 10 key surface markers assessed.  d, 
Elongated flossing T cell inserting itself between basal-lateral epithelial cell junctions. The diameter of the T cell from head to tail is 
listed. e, Fluorescent IHC staining of the IIO culture over time. 

Elegant in vivo studies have dissected the dynamics of murine TCRγδ IELs and their 

interaction with the intestinal epithelium (Hoytema van Konijnenburg et al., 2017). Owing to 

their poor survival in vitro, similar studies of human IEL behavior have been challenging 

(Beura et al., 2018; Swamy et al., 2015) resulting in poorly elucidated mechanisms driving 

human-specific IEL integration. To understand how TRMs and IELs are capable of 

interaction and integration with intestinal epithelial cells in vitro, and how they differ from 

PBMCs in that regard, we used single-cell RNA sequencing (scRNA-seq) to analyze donor-

matched tissue-resident and blood-derived immune cells alone, or cocultured with organoids 

(Fig. 23a). After dissociating the cultures, we prepared scRNA-seq libraries of TRMs and 

PBMCs, with a focus on CD3+ T cells, given the TRM predominance within the tissue-

derived population. Heterogeneity analysis and visualization using UMAP embedding 

demonstrated the presence of 3 distinct populations, representing blood-derived naive, 

blood-derived memory and gut-derived tissue-resident memory T cells (Fig. 23b, Fig. 24).  

 

Figure 23: Tissue-resident transcriptomic signatures and migratory behavior underlie TRM epithelial 
insertion and IIO formation. a, Overview of single-cell transcriptome analysis of IIOs containing patient-matched TRMs and 



61 
 

PBMCs. b, Integrated UMAP embedding of transcriptome data shows 10 distinct cell clusters (colors, numbers) labeled based on 
analysis of marker genes. c, Dotplot summarizing marker gene expression across the different clusters. d, Heatmap representing 
proportional sample distribution in each cluster.  e, Heatmap representing TRM-specific genes grouped by functional category. TFs 
transcription factors, TCR T-cell receptor. f, Barplot showing significantly enriched gene ontology (GO) biological processes of genes 
marking TRM clusters 1 (CD8+) and 3 (CD4+). g, Images showing migration analysis from IIO time-lapse imaging. Tracks are shown in 
blue (left) and colored by speed (top left) and length (bottom right). Nuclei are labeled with Hoechst (white). h, Distribution of TRM 
speed (top) and length traveled (bottom) from IIO time-lapse imaging. 

 

Figure 24: Immune cell cluster annotation. a, Dotplots showing the z-scored average expression of curated T cell subset 

marker genes for each cluster introduced in Fig. 23b. The size of the dot encodes the percentage of positive cells within a cluster for 
the respective gene. Subsets were classified into CD4+ and CD8+ populations using the aggregated expression values for CD4 and 
CD8A. Activated populations were identified using the expression of RORA (Haim-Vilmovsky et al., 2021). Tissue-residency of memory 
cells was determined based on the expression of ITGA1 and ITGAE, which are expressed by most TRMs (Mackay et al., 2013). Final 
annotations were then designated based on the combinatorial expression of multiple markers. Source data detailing averaged 
expression values for T cell subset marker genes are provided in the source data file. b, Feature plot showing the scaled expression of 
representative marker genes. 

Further interrogation of the T cell populations based on previously published markers 

(Andreatta et al., 2021; Luoma et al., 2020; Szabo et al., 2019; Wang et al., 2022) revealed 

that TRMs, unlike their matched blood-derived counterparts, were transcriptomically defined 

by: (i) the absence of receptors necessary for lymph node homing (SEL, CCR7), indicative 

of their non-circulating tissue-residence status, (ii) intrinsically high expression of intestinal 

integration factors (ITGA1, CCR9, JAML), and (iii) a complete absence of cytotoxic granules 

(GZMA, GZMB, GNLY, NKG7) despite their function as highly differentiated effector T cells 

(Fig. 23c). We observed that populations c1, c3 and c8 were uniquely enriched in gut-

derived TRMs (Fig. 23d).  



62 
 

To identify the main functional differences between TRMs and PBMCs, we 

considered the top differentially regulated TRM genes, and observed a dominance of genes 

governing cell adhesion, motility and cytoskeletal rearrangements (Fig. 23e). Gene ontology 

analysis suggested enrichment in transcriptomic programs related to immune cell 

chemotaxis and migration within TRMs compared with PBMCs (Fig. 23f), which may explain 

the different propensities for movement toward and integration within the epithelium between 

these two populations. Indeed, live imaging experiments in which donor-matched TRMs and 

PBMCs were tracked over time (Fig. 23g) showed a striking difference in morphologies and 

migratory behaviors between the two populations. Whereas PBMCs were largely static and 

morphologically round, TRMs exhibited asymmetric, elongated shapes with front-rear 

polarity, and migrated dynamically within both the epithelial layers and ECM, with speeds of 

up to 80 μm/h (Fig. 23h). TRM migration was not directional, suggesting that TRMs in this 

system integrate within organoids through random movement and encounters of epithelial 

cells, rather than through chemotaxis. Indeed, TRMs appeared to be as likely to move 

towards and within organoids as they were to move out and away. We note that intestinal 

organoids are a sterile system and the introduction of luminal microbes may lead to altered 

modes of migration and interaction with the epithelium, as described in mice (Hoytema van 

Konijnenburg et al., 2017). 
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Figure 25: IIOs recapitulate clinically manifested intestinal inflammation associated with T cell bispecific 
antibodies (TCBs). a, Representative images examining induction of green caspase 3/7 signal within IIO cocultures 24h after 

supplementation with EpCAM TCB. b, Quantification of the caspase 3/7 signal from (a). ***P < 0.001, two-way ANOVA with Sidak’s 
multiple comparisons test correction. c, Quantification of the caspase 3/7 signal in IIO cocultures treated for 72h across a range of 
EpCAM TCB, n = 3. d, Single cell transcriptomic profiles of gut-derived immune cells from IIO model were integrated and grouped into 
14 distinct cell states as represented by the colors in the UMAP embedding. e, Dotplot summarizing the expression patterns of 
representative genes across the clusters identified in (d). f, Integrated UMAP embedding (left) and proportional distribution (right) of 
gut-derived immune cells from IIO model colored by treatment and profiling time. g, Barplot showing significantly enriched GO 
biological processes for activated cell states (top) and heatmap showing average expression profiles of corresponding associated 
genes (bottom). h, Dotplot summarizing the expression pattern of representative genes involved in proliferation, signaling and 
cytotoxicity in the activated T cell populations as captured by scRNA-seq snapshots at different timepoints and treatment conditions. 
i, Flow cytometry plots visualizing expression of TNFα, IFNγ, GzmB and Ki67 across the different timepoints within CD4+ and CD8+ 
TRM cells isolated from IIO cultures. 

Next, we tested whether differential transcriptomes and migration behaviors between 

TRMs and PBMCs translated into differences in effector function within IIOs. In particular, 

we investigated whether IIOs can recapitulate clinical toxicities associated with cancer 

immunotherapy that manifest as severe intestinal inflammation and were not predicted by 

conventional preclinical models (Amann et al., 2008; Kebenko et al., 2018). We focused on 

solitomab – a bispecific T-cell engager intended to crosslink activated T cells to solid tumors 
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via EpCAM – which induced rapid and aggressive unintentional intestinal inflammation in 

patients, preventing escalation to therapeutic doses and ultimately leading to program 

termination (Elmentaite et al., 2021). Given the rapid onset of the side effects, IELs localized 

within the basolateral epithelial junctions have been hypothesized to elicit the damage 

(Kebenko et al., 2018). To assess whether IEL-containing IIOs could have predicted 

targeting of the healthy epithelium, we treated IIOs with an EpCAM-targeting T-cell bispecific 

(TCB) molecule at concentrations relevant to those detected in the serum of patients of the 

solitomab trial (Kebenko et al., 2018). 

 

Figure 26: TRMs exhibit rapid and aggressive targeting of healthy epithelium following EpCAM-TCB 
treatment. a, Bihourly quantification of caspase 3/7 signal in IIO cocultures for 68h treated with either 5 ng/ml EpCAM TCB or a 

non-targeting control molecule, n = 3, mean ± SD. ****P < 0.0001, T-test of the two AUCs. b, tSNE analysis of all T cells at all timepoints, 
derived from IIO cocultures with TRMs or PBMCs treated with 5 ng/ml EpCAM TCB. Plots display heatmaps for each of the 12 surface 
and intracellular markers assessed by flow cytometry. c, gating strategy for identifying responder cells (those that expressed TNFα, 
IFNγ or GzmB), and the ungating of the concatenated flow cytometry files to reveal the original source of responder T cells. 

Unlike organoids cultured with PBMCs, IIOs were aggressively targeted in a TCB-

dose-dependent manner at concentrations as low as 40 pg/mL, as demonstrated by the 

detection of caspase 3/7 (Fig. 25a-c). A time-course of epithelial cell targeting showed 

induction of caspase by TRMs as early as 8h after treatment (Fig. 26a), mirroring clinical 

observations that were not predicted with classical in vivo models. We assessed T cell 

behavior at early (5h), mid (24h) and late (48h) timepoints by digesting and staining IIOs for 

surface and intracellular markers of T-cell activation and cytotoxicity (Fig. 26b). Identification 

of effector populations, based on the expression of TNFα, IFNγ and granzyme B, revealed 

that over 90% of responding cells were intestinal TRMs (Fig. 26c). This demonstrated that 

TRMs were approximately 10 times as likely to induce a detectable response to TCB 

treatment than their blood T-cell counterparts, emphasizing the necessity to include 

appropriate cell types within in vitro tissue-specific models. 

The mechanisms of severe rapid-onset toxicities caused by T-cell targeted therapies 

are unclear, as patients who experience them are not biopsied in the acute phase. IIOs, 

which we show can recapitulate clinical outcomes, provide the opportunity for in-depth 
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analysis of the underlying cellular and molecular events. We used scRNA-seq to interrogate 

the transcriptomic dynamics underlying TCB-dependent TRM activity at the onset (4h) and 

peak (48h) of epithelial cell targeting. Lymphocyte populations within the integrated dataset 

were annotated using differential gene expression together with previously published 

signatures and surface markers (Andreatta et al., 2021; Elmentaite et al., 2021; Luoma et 

al., 2020; Szabo et al., 2019; Wang et al., 2022), revealing diverse T cell, macrophage and 

B cell populations (Fig. 25d-e). TCB treatment induced a time-dependent shift in proportions 

of both the T cell and B cell states relative to the non-targeting control (Fig. 25f). This 

transition was driven by the emergence of several effector populations at both timepoints. 

Particularly prominent at 4h was a CD4+ T helper 1-like (Th1) population (c9) (Fig. 25f), 

characterized by rapid induction of TNF and IFNG signaling that became down-modulated 

over time (Fig. 25g-h). At 48h, we observed the emergence of an activated CD8+ IEL 

population (c5) (Fig. 25f), expressing genes related to cytotoxicity (such as GZMB), TCR 

signaling and T cell migration (Fig. 25g-h). Concurrently, a population of cycling (MKI67-

expressing) CD4+ T cells (c12) and an activated population of B cells (c11) appeared, 

whereas the Treg population (c1) diminished (Fig. 25d-g). Importantly, key gene expression 

changes detected by scRNA-seq were mirrored by changes at the protein level, obtained by 

flow cytometry (Fig. 25i). In particular, we observed early induction of TNFα in CD4+ cells 

at 4h (corresponding to c9), whereas the cytotoxic granzyme B was upregulated at the 48h 

time point, consistent with the appearance of c5. Likewise, Ki67 was strongly upregulated 

within a subset of CD4+ cells at 48h, co-occurring with the appearance of c12 within the 

scRNA-seq analysis. IIO cell heterogeneity dynamics bear striking similarities to those 

observed within primary samples from patients experiencing spontaneous and immune 

checkpoint inhibitor (ICI)-induced intestinal inflammation. For example, the emergence of a 

cytotoxic CD8+ T-cell population was one of the main features of patients experiencing ICI-

induced colitis (Luoma et al., 2020; Sasson et al., 2021). Likewise, Treg depletion and the 

appearance of an activated IFNγ-responsive B-cell population were reported in clinical 

samples from colitis patients (Mohammadnia-Afrouzi et al., 2015; Smillie et al., 2019). These 

similarities suggest that IIOs may be used to recapitulate and study intestinal inflammation 

in a tractable in vitro setting.  

Next, we set out to chart the dynamics of clinically relevant populations that appear 

in IIOs, focusing first on the progression of CD8+ T-cell activation. Using Diffusion Maps 

(Hagverdi et al., 2016) we computed a pseudo-temporal ordering of CD8+ populations (c3 

and c5) (Fig. 27a, Fig. 28a) and observed a striking correlation with experimental time (Fig. 

27b). This reconstructed activation trajectory allowed for characterization of the 

transcriptional dynamics underlying CD8+ TRM lymphocyte activation (Fig. 28c). In 

particular, we observed strong induction of glycolytic regulators ENO1 and HIF1A, with 

concurrent suppression of TCF7 and ZBTB32 (Chen et al., 2019; Finlay et al., 2012; Gemta 

et al., 2019; Shin et al., 2017) to likely facilitate the appropriate metabolic profile for full CD8+ 

TRM cell cytotoxic activity. Simultaneously, CCL5, important for immune cell recruitment 

and early inflammatory responses (Zeng et al., 2022), and IL7R, which captures 

proinflammatory signals to mediate cytotoxic activation (Micevic et al., 2023), correlated with 

induction of cytotoxicity effector molecules GZMA, GZMB and NKG7. Sequencing of 

inflamed colonic biopsies of patients suffering from drug-induced colitis demonstrated the 

presence of both cytotoxic (CTL) and IEL CD8+ T cell populations (Luoma et al., 2020). By 

cross referencing TCB-treated IIOs to this dataset, we found that IIO CD8+ T cells acquired 

gene signatures related to a cytotoxic and IEL state, mirroring those observed in clinical 
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samples (Fig. 28d-e). The concurrent increase in lymphocyte-epithelium association and 

cytotoxicity may underscore the severe clinical adverse events triggered by these 

molecules.  

 

Figure 27: Transcriptomic analyses elucidate the immune dynamics underlying TCB-mediated inflammation 
and help identify mitigation strategies. a, CD8+ T cell activation in IIO model was analyzed with diffusion maps. Plot 

represents CD8+ T cells on the first two diffusion components colored by cell state. b, Density plot showing distribution of CD8+ T cells 
along the reconstructed pseudotime (x-axis) grouped by treatment condition and time point. c-d, Barplot showing differentially 
expressed genes for CD4+ cytotoxic Th1 population (c9) (c) and T-bet+ effector B cells (c11) (d) at 4h (light grey) and 48h (dark grey) 
after EpCAM TCB treatment. e, Ligand-receptor pairing analysis of IIO immune cell populations. Ligands and receptors are colored 
based on co-expression module, with some representative genes labeled. Heatmap (right) shows the average expression of each gene 
within a module across each cell cluster. f, Circle plots describe signaling interactions received by the T-bet+ effector B cells (c11) (left) 
and the CD8+ Act. IELs (c5) (right). g, In silico perturbation analysis simulating the loss (KO) of TNF in IIO model treated with EpCAM 
TCB. Plots show predicted perturbation-induced state transition (top) or enrichment (bottom). Note that the activated immune cell 
states are predicted to fall back to homeostatic conditions. h, Schematic of experiments to inhibit TNFα signaling and cell m igration. 
i, Representative images examining induction of green caspase 3/7 signal within IIO cocultures 40h after supplementation with either 
a non-targeting control TCB or 5 ng/ml EpCAM TCB with or without 1 mM Y27362 (ROCKi) or a TNFα blocking antibody. j, Bihourly 
quantification of caspase 3/7 signal in IIO cultures in treatment conditions, n = 3. ****P < 0.0001, T-test of the AUC compared to the 
EpCAM TCB condition. 
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Figure 28: Extended analysis of cell states and interactions in IIOs after treatment. a, Plot represents IIO CD8+ T 

cells on the first two diffusion components colored by reconstructed diffusion pseudotime. b, Volcano plot showing variable genes 
along reconstructed CD8+ T cell trajectory. x-axis represents spearman correlation value between gene expression and pseudotime 
value, y-axis represents detection rates of genes in the CD8+ T cell populations. c, Expression patterns of most variable TFs (left) and 
effector genes (right) along the reconstructed CD8+ T cell trajectory. d, Boxplot summarizing the expression pattern of CD8+ CTL (left) 
and CD8+ Trm IEL (right) gene signatures described in Luoma et al., 2020 along the reconstructed activation trajectory of IIO CD8+ T 
cells. x-axis represents 5 equidistant bins of the reconstructed pseudotime. e-g, Barplot showing differentially expressed genes in the 
CD8+ T cell trajectory (e), in the CD4+ cytotoxic Th1 population (c9) (f) and in the T-bet+ effector B cells (c11) (g) at 4h and 48h after 
EpCAM TCB treatment. h, Heatmap summarizes directed ligand-receptor pairing interactions of T-bet+ effector B cells (c11) and T cell 
populations (clusters 5 and 9) in the IIO model. i-j, Predicted regulatory potential of CD4+ cytotoxic Th1 cells (c9) ligands towards 
signature genes of T-bet+ effector B cells (c11) (i) and CD8+ activated IELs (c5) (j). 

Together with CD8+ CTLs, other populations displayed clinically relevant dynamics 

of early- vs. late- transcriptional hallmarks. Consistent with clinical reports (Riaz et al., 2016), 

a Th1 population (c9) shifted from a cytokine- (TNF, IFNG and IL2)- producing state to a 

cytotoxic, GZM-producing state (Fig. 27c, Fig. 28f). Likewise, the early IFN-responsive B 
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cell population (c11) showed a transcriptional landscape distinct from that of the late, 

activated state (Fig 4d, Fig. 28g). We performed a receptor-ligand pairing analysis and 

inspected how activated phenotypes may emerge via intercellular signaling (Fig. 27e). Our 

model implicates Th1 cells (c9) as a major organizational hub, instructing B cells (c11) and 

CD8+ T cells (c5) through the secretion of numerous signaling factors (Fig. 27f, Fig. 28h). 

In particular, chemokines (CCL3, CCL4, CCL5 and CCL20) and pro-inflammatory molecules 

(IFNG, CD40LG and TNFSF14) expressed by T cell clusters 5 and 9 likely encouraged close 

association with, and then full activation of B cells via reciprocal receptors (Fig 4f, Fig. 28i). 

Meanwhile, CD4 T cell (c9) expression of TNF corresponded to increased CALM1 

expression in activated CD8+ IELs (c5), potentially augmenting TCR-induced calcium 

signaling and full T-cell maturation (Trebak & Kinet, 2019) (Fig. 27f, Fig. 28j). Ligand-to-

target signaling models and network propagation analysis (Browaeys et al., 2020) reaffirmed 

these observations, suggesting that Th1-produced IFNG may mediate the up-regulation of 

activation-related genes within B cells, while TNF and IL2 act in tandem to orchestrate 

cytotoxic CD8+ cell maturation (Fig. 28h-i). 

 

Figure 29: Inhibition of ROCK1/2 pathway quells TRM-driven intestinal inflammation. a, flow cytometry plots 
comparing expression of CD25, GzmB and perforin in CD8 T cells isolated from IIO cocultures 72h after treatment with 5 ng/ml EpCAM-
targeting T-cell bispecific antibodies with or without 1 mM Y27362 (ROCKi) b, Line graphs quantifying expression of CD25, GzmB and 
perforin in CD8 T cells isolated from IIO cocultures at baseline, at 48h and at 72h after treatment with 5 ng/ml EpCAM-targeting T-
cell bispecific antibodies with or without 1 mM Y27362 (ROCKi). 

A key advantage of human model systems is their amenability to direct experimental 

manipulation as a means to define the roles of putative regulators. Given the function of 

TNFα as an instigator of inflammation, the effectiveness of TNFα-blocking antibodies in the 

treatment of autoimmune disease (Jang et al., 2021), and its prominent early induction in 

our model (Fig. 25h-i), we investigated the role of this cytokine in promoting differentiation 

and activation profiles. In silico perturbation analysis simulating the complete removal of 

TNF from IIOs predicted that TNF depletion would prevent the emergence of activated 

immune cell populations and ultimately reduce the cytotoxic response (Fig. 27g). Antibody-

neutralization of TNFα in IIOs confirmed these predictions, significantly reducing epithelial 

cell apoptosis following TCB treatment (Fig. 27h-j). Having confirmed the impact of 
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neutralizing a clinically-validated pathway, we used the transcriptomic data defining TRM 

identity (Fig. 23) to suggest novel TRM-specific factors that could be manipulated to quell 

unwanted TCB-mediated inflammation. Given the TRM cytoskeletal transcriptomic signature 

and their rapid locomotion within the ECM, we hypothesized that T-cell motility and 

cytoskeletal rearrangements may be in part responsible for the outcome. To test this 

hypothesis, we used the ROCK1/2 inhibitor (ROCKi) Y27632 to abrogate cell motility (Mrass 

et al., 2017) within TCB-treated IIOs. Strikingly, we found that ROCK inhibition reduced 

epithelial cell apoptosis even more efficiently than TNFα blockade (Fig. 27h-j), 

simultaneously suppressing the induction of T-cell activation markers such as CD25, as well 

as cytolytic molecules such as perforin and granzyme B (Fig. 29).  

We thus describe human intestinal immuno-organoids (IIOs), comprising human 

sample-derived intestinal epithelium and autologous tissue-resident lymphocytes (TRMs), a 

sub-population of which are directly integrated within the IIO epithelial barrier, reflecting IEL 

inclusion within the native intestine. IIO formation was driven by extensive TRM migration 

and interaction with epithelial cells, as orchestrated by TRM-enriched transcriptomic 

programs governing cell motility and adhesion. Crucially, IIOs formed upon coculture with 

TRMs, but not blood-derived lymphocytes, which lacked the migratory properties of the 

former and failed to interact with organoids. 

The inclusion of a tissue-appropriate immune compartment extends the utility of 

organoids far beyond epithelium-centered questions and applications. We use IIOs to 

recapitulate intestinal inflammation caused by cancer-targeted bispecific antibodies (TCBs) 

in phase I clinical trials. IIOs treated with TCBs at clinically relevant concentrations undergo 

rapid apoptosis, consistent with early-onset diarrhea and epithelial lesions in patients 

(Kebenko et al., 2018). Importantly, whereas cocultures with PBMCs have been shown to 

capture similar outcomes, effects become apparent only at concentrations 1000-fold higher 

than clinical doses and, even then, with a delayed onset [MFH, TR, MB, NG, manuscript in 

preparation]. Dissecting the transcriptomic changes induced by TCB treatment, we uncover 

that the adverse outcomes are underpinned by elaborate and dynamic inter-lineage immune 

interactions. The events we documented within our model closely parallel mechanisms 

associated with checkpoint inhibitor-induced intestinal inflammation and inflammatory bowel 

disease, which were identified using primary patient samples (Luoma et al., 2020; Riaz et 

al., 2016; Sasson et al., 2021). 

Aside from affording the possibility for real-time, dynamic observation of TRM-related 

processes and immune-epithelial interaction, our model provides the advantage of direct 

perturbation and hypothesis testing. Whereas multi-omics analyses of primary patient 

samples provide rich catalogs of differences between baseline and diseased states, the 

exact roles of differentially regulated parameters are difficult to ascertain without 

manipulating them in a relevant context. After demonstrating that IIOs capture known 

mechanisms of drug-induced inflammation and recapitulate well-described mitigation 

strategies, we use them to identify novel approaches for the management of TCB-mediated 

toxicities. Specifically, we find that blocking TRM motility through the Rho pathway helps 

dampen inflammation. Intriguingly, small molecules that target this pathway are being 

developed as fibrosis inhibitors for inflammatory bowel disease (Holvoet et al., 2017). Our 

data suggest that an additional benefit of inhibiting Rho signaling could be the quenching of 

T-cell-driven inflammation, by reducing the motility, contractility and ability of patrolling IELs 

to respond to TCR stimulation and engage with epithelial cells. Bearing in mind that our 



70 
 

simple model recapitulates both the phenotypic outcomes and the multi-compartment 

cellular interactions that mediate them, IIOs can be instrumental in investigating tissue-

resident immune responses in contexts far beyond drug-induced inflammation, including 

tumorigenesis, infectious and autoimmune diseases. 

CHALLENGES AND FUTURE PERSPECTIVES 
Positioned within barrier sites such as the skin, lungs, and intestines, immune cells 

assume a crucial role by providing localized defense against invading pathogens at their 

primary entry points. This strategic placement establishes a formidable protective barricade 

between the body and the external environment. The innate immune system employs 

specialized cells like macrophages and dendritic cells that seamlessly integrate into barrier 

tissues during their developmental stages. Conversely, T cells, pivotal orchestrators of 

adaptive immunity, populate these barrier regions upon recognizing antigens. Some of these 

T cells persist as tissue-resident memory (TRM) cells, a distinct subset formed after 

encountering site-specific infections caused by a diverse array of pathogens, including 

viruses, bacteria, parasites, and fungi (Cheroutre et al., 2011; Masopust & Soerens, 2019). 

Delving into the mechanisms underlying the adaptation and persistence of TRM cells within 

human barrier sites becomes profoundly consequential for fostering robust protective 

immunity and preempting potential dysfunctions.  

The realm of organoids, complex 3D tissue constructs cultivated from stem cells, has 

surfaced as a profoundly promising avenue spanning a myriad of biomedical research 

applications (Bartfeld et al., 2015; Huch et al., 2015; Lukonin et al., 2020; Schutgens & 

Clevers, 2020; van de Wetering et al., 2015; Yui et al., 2012). As strides in organoid research 

forge ahead, the prospect of integrating an immune cell component into these structures 

emerges as a transformative opportunity for scrutinizing the safety of immunotherapies in 

the context of human biology (Neal et al., 2018; Schnalzger et al., 2019). Nonetheless, a 

constellation of challenges mandates thorough consideration to unlock the full potential of 

immune cell-infused organoids, thereby enabling comprehensive assessments of 

immunotherapeutic safety. 

Sourcing and orchestrating the integration of immune cells into organoids represents 

a multifaceted challenge (Beura et al., 2018; Swamy et al., 2015). The diverse phenotypic 

and functional spectrum of immune cells demands meticulous differentiation protocols to 

faithfully capture this intricate diversity within organoids. Navigating the complexities of 

generating substantial quantities of functional immune cells within a three-dimensional 

context adds an extra layer of intricacy to the process. Immune responses are innately 

context-dependent and intimately entwined with the surrounding microenvironment (Poon 

et al., 2023). Reproducing the precise physiological milieu necessary to elicit potent immune 

responses within organoids remains a formidable task. Complicating matters further, the 

vitality of organoids can be compromised over extended periods due to the absence of a 

functional vascular network, impairing sustained nutrient and oxygen exchange (Cakir et al., 

2019; Popova et al., 2021). Variations in the lifespan and metabolic requisites of immune 

cells may further impact both the organoid's overall viability and the functionality of its 

immune compartment.  

Innovations that integrate vascular networks into organoids hold immense potential, 

ushering in improved nutrient and oxygen exchange, thereby facilitating prolonged culture 
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and cultivating more physiologically relevant interactions between immune players and their 

target counterparts (Cakir et al., 2019; Popova et al., 2021). The advent of multi-organoid 

systems that harmoniously interlace various tissues, encompassing tumors, stroma, and 

immune constituents, holds the potential to yield a comprehensive panorama of the impacts 

of immunotherapies (Neal et al., 2018; Schnalzger et al., 2019). Pioneering avenues such 

as microfluidic methodologies (Brandenberg et al., 2020; Chen et al., 2017; Haase et al., 

2020; Horowitz et al., 2021; Li et al., 2014) and bioengineering strategies (Cakir et al., 2019; 

Cakir et al., 2022) appear as beacons of promise in this endeavor providing a unique 

assessment of immune cell extravasation and tissue adaptation in response to drug delivery 

or homing signal processes at specific clonal or subpopulation resolution. Innovative 

technologies that facilitate the deliberate spatial arrangement of distinct cell types, coupled 

with their orchestrated communication, are poised to amplify the precision of immune 

responses within organoids.  

Establishing a robust and quantitative analytical framework to assess immune 

reactions within these systems emerges as a linchpin (Luoma et al., 2020; Poon et al., 2023; 

Szabo et al., 2019). This encompasses vigilant tracking of cytokine profiles, markers of 

immune cell activation, and antigen-specific responses, all of which collectively furnish the 

bedrock for evaluating the safety of immunotherapeutic interventions. Propelling this 

endeavor forward, automation and high-throughput screening methodologies have the 

potential to expedite the evaluation of immunotherapeutic safety. By leveraging miniaturized 

organoid platforms in tandem with advanced single-cell genomics technologies and imaging 

modalities (Camp et al., 2015; Kanton et al., 2019; Mayr et al., 2019; Quadrato et al., 2017; 

Velasco et al., 2019), the swift assessment of numerous immunotherapeutic agents and 

their dynamic effects on immune responses becomes an achievable reality.  

In conclusion, while organoids harboring an immune cell compartment hold promise 

as models for assessing immunotherapy safety in humans, challenges related to immune 

system complexity, microenvironment mimicry, and functional integration must be 

addressed. Advances in co-culture techniques, vascularization, multi-organoid systems, and 

functional readouts offer exciting avenues for improving the fidelity and utility of immune cell-

containing organoids in immunotherapy research. These efforts could revolutionize our 

ability to predict human immune responses and enhance the safety profile of novel 

immunotherapeutic interventions. 
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CONCLUSIVE REMARKS 

The integration of organoids and single-cell genomics technologies heralds a 

transformative era in biomedical research, offering remarkable potential to address pressing 

therapeutic needs across diverse fields. These advancements promise to deepen our 

understanding of complex diseases, personalize treatments, and expedite drug discovery. 

However, this promising journey is not without its share of critical challenges. 

In the realm of cancer research, patient-derived organoids hold immense promise as 

dynamic models that capture the intricacies of individual tumors. Their ability to recapitulate 

the tumor microenvironment and heterogeneity offers a platform for targeted drug 

development and precision medicine. Yet, standardizing organoid cultures and overcoming 

sourcing variability remain paramount hurdles. Additionally, there is a crucial need to bridge 

the gap between organoid modeling and the in vivo temporal evolution of cancer. 

The incorporation of immune cells into organoids represents a frontier in 

immunotherapy research. These models can provide insights into immunotherapeutic safety 

and efficacy, paving the way for more precise treatments. Nevertheless, orchestrating 

immune cell integration, recreating physiological contexts, and addressing organoid viability 

challenges demand concerted efforts. The quest for accurate, high-throughput analytical 

frameworks to assess immune reactions within these systems further underscores the 

complexity of this endeavor. 

As we forge ahead, it is clear that these challenges are not insurmountable obstacles 

but rather steppingstones toward unlocking the full potential of organoids and single-cell 

genomics technologies. Collaboration between researchers, clinicians, and engineers will 

be pivotal in developing innovative solutions. Automation, advanced scaffolding strategies, 

and scaling up production processes will contribute to more robust and reproducible models. 

Moreover, the creation of comprehensive organoid atlases, incorporating diverse data 

modalities, will provide holistic insights into human biology and disease. 

In conclusion, the synergy between organoids and single-cell genomics technologies 

holds immense promise for revolutionizing biomedical research. These tools have the 

potential to reshape our understanding of diseases and accelerate therapeutic 

advancements. While challenges persist, they serve as beacons guiding us towards more 

precise, personalized, and impactful biomedical solutions. As we navigate this exciting 

frontier, it is with determination and collaboration that we will unlock the full potential of these 

groundbreaking technologies. 
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APPENDIX 

METHODS FOR PDAC TUMOROID PROJECT 

Establishment of cystic organoid and fibroblast cultures 

The clinical specimens used to establish organoids and stromal cells were obtained 

from patients at the Kanagawa Cancer Center with informed consent after approval by the 

ethical review. Tumor tissue and healthy tissue were collected by surgical resection. The 

cancer cyst organoid (CCO) culture method from PDAC tumor specimens is briefly 

described below (Boj et al., 2015). The surgical tissue is washed several times with 

Dulbecco's phosphate buffered saline (DPBS). The tissue was finely chopped using surgical 

scissors and a scalpel. The tissue was transferred to a 50 ml tube and washed again with 

DPBS. The washed tissue was digested with LiberaseTM (Roche) at 37 °C for 40-60 

minutes. Tissues were enzymatically treated and then washed with DMEM containing 10% 

fetal bovine serum (FBS, Sigma) to stop the enzymatic reaction. The obtained pancreatic 

cancer cells were embedded in growth factor reduced (GFR) Matrigel (Corning) and cultured 

in the following complete medium. DMEM/F12(Thermo), Primocine (1mg/ml, InvivoGen), 

GlutaMAX (1x, Invitrogen), 1x B27(1x, Invitrogen), Gastrin, N-acetyl-L-cysteine (1mM, 

Sigma), Nicotinamide (10mM, Sigma), A83-01(Tocris, 0.5uM), Noggin (Peprotech, 

0.1ug/ml), R-Spondin1 (Peprotech, 100ng/ml), Wnt3A(R&D, 50ng/ml ), EGF (Peprotech, 50 

ng/ml), FGF10 (Peprotech, 100ng/ml). Y-27632 (Sigma, 10uM) was added for only one day 

after starting the organoid culture, and on the following day, the cells were cultured in a 

complete medium without Y-27632. The medium was changed 2 to 3 times a week. For 

establishment of fibroblasts, healthy pancreatic tissue and cancer tissue were treated with 

Liberase and the collected cells were washed with DPBS several times. Subsequently, cells 

were suspended in Mesenchymal stem cell growth media (MSCGM, Lonza) and seeded on 

a culture plate. The media was changed 2-3 times a week. All cells were cultured under 5% 

CO2 in 20%O2 at 37°C. 

Tumoroid culture method 

To establish a stroma-rich pancreatic tumoroid, pancreatic CCO cells, fibroblasts and 

human umbilical vein endothelial cells (HUVECs) were separately expanded and cultured. 

Pancreatic CCO cells were incubated with Triple EX (Gibco) for 7 minutes, and fibroblasts 

and HUVECs were incubated for 3 minutes at 37°C to generate a cellular suspension. To 

stop the enzymatic reaction by Triple EX, the cells were washed with DMEM/F12 medium 

containing 10% FBS and 1% Penicillin-Streptomycin (P/S, Gibco). The obtained cells were 

counted separately, and then 3x10 ̂  4 cancer cells, 1.2x10 ̂  4 HUVECs, 8x10 ̂  4 fibroblasts 

were transferred to a tube coated with bovine serum albumin (1% BSA), mixed and 

centrifuged at 300 g. After removal of the supernatant, cell pellets were gently resuspended 

and 1.2 x10 ^ 5 cells were then seeded in 96 well plates coated with 50% Matrigel (Corning). 

The three types of cells made cell-cell interactions with each other and showed self 

organisation during the period of 24-48 hours. The reconstituted stromal-rich pancreatic 

tumoroid were cultured with 50% Endothelial Cell Growth Media (Lonza) and 50% 

DMEM/F12 medium. Culture mediums were exchanged every 24 hours. Tumoroid were 

cultured under 5% CO2 in 20% O2 at 37°C. 
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Generation of reporter lines 

For live imaging, HUVECs were infected with retroviruses expressing Kusabira-

Orange (KO) and cancer cells were infected with a lentivirus expressing enhanced green 

fluorescent protein (EGFP) (Koike et al., 2004). Briefly, Human Embryonic Kidney (HEK) 

283T cells were transfected with the retroviral vector pGCDNsam IRES-EGFP or KOFP (M. 

Onodera) for packaging at 293gag / pol (gp) and 293gpg (gp and VSV-G) to induce viral 

particle production. The culture supernatant of the retrovirus-producing cells was passed 

through a 0.45 mm filter (Whatman, GE Healthcare) and immediately used for infection. The 

firefly luciferase gene was subcloned into the CSII-EF-MCS-EGFP vector (RIKEN BRC) to 

generate the CSII-EF-Luc-IRES-EGFP construct. CSII-EF-Luc-IRES-EGFP plasmid and 

helper plasmid (293T cells were transfected with calcium phosphate using pCAG-HIVgp and 

pCMV-VSV-G-RSV-Rev, RIKEN BRC) to produce VSV-G pseudotyped lentivirus. The virus 

supernatant was recovered 46 hours after transfection, and filtered with a 0.45 μm filter. The 

virus supernatant was concentrated by ultracentrifugation. 

Whole-mount clearing and FFPE tissue slice imaging 

Tumoroids were washed several times with PBS and fixed with 200ul of 4% (wt/vol) 

paraformaldehyde (PFA). Tumoroids were incubated on a horizontal shaker at 4ºC for 24 

hours. PFA was then completely removed and fixed tumoroids were washed several times 

with PBT buffer (0.1% Tween (vol / vol)). Tumoroid washing buffer (TWB: 100ml of PBS with 

0.2 g of BSA and 0.1% Triton X-100) was added to the wells and incubated on a horizontal 

shaker at 4ºC for 1 day to block tumoroid. The next day, the blocking reagent was completely 

removed from the well, and then 100 ul of TWB with primary antibodies(1/100)  was added 

to the wells and incubated on a horizontal shaker at 4ºC for 2 days. After immuno-labeling 

the tumoroid with the primary antibody, these reagents were removed from the wells, and 

then fresh TWB was added to the wells and was incubated on a horizontal shaker at 4ºC for 

2 hours. This process was performed 3 times to completely remove the antibodies from 

organoids. After the tumoroid were sufficiently washed with TWB, 100ul of TWB with 

secondary antibodies(1/200) was added to the wells and incubated on a horizontal shaker 

at 4ºC for 1 day. After immuno-labeling the tumoroid with the secondary antibody, the 

secondary antibodies were removed from the wells and then fresh TWB was added to the 

wells and washed three times. Subsequently, 50ul of the fructose–glycerol clearing 

solution(Dekkers et al., 2019) was added to the well and incubated on a horizontal shaker 

at 4ºC, overnight.  Cleared organoids were placed on a glass slide or in a glass-bottom plate 

and imaged on a spinning disc confocal microscope (Olympus SpinSR10 spinning disk 

confocal super resolution microscope, objective x10,x20,x30,x40,x60). In 

immunofluorescence staining (IF) for FFPE tissue slide, PDAC tumor tissue was fixed with 

4% PFA, embedded in paraffin and cleaved. A cutted tissue section was deparaffinized with 

xylene and rehydrated with a gradual alcohol. After heating with a citric acid buffer, antigen 

recovery is complete. The tissues were incubated with primary antibodies at 4ºC, overnight. 

The next day, the tissue was washed with PBS, 3 times and then incubated with secondary 

antibodies(1/200) at room temperature 1h. After antibodies were washed with PBS, it was 

images with Slide scanner. We used the following antibodies: anti-GFP (1:400; Abcam, 

ab13970), anti-Cytokeratin 7 (1:00; Agilent Technologies, M701829-2), anti-Cytokeratin 19 

(1:100; Abcam, ab7754), anti-PPARG (1:100, Thermo Scientific, PA3-821A), anti-Collagen 

I (1:100; Abcam, ab34710), anti-Fibronectin (1:100, Abcam, ab2413), anti-AKAP12 (1:100, 

Thermo Scientific, PA5-52281), anti-Trefoil Factor 3 (1:100, Abcam, ab108599), anti-
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Lipocalin-2 (1:100, Abcam, ab23477), anti-E-cadherin (1:100, R&D Systems, AF748), anti-

Syndecan-1 (1:100, Abcam, ab128936), anti-MIF (1:100, Abcam, ab187064), anti-Collagen 

III (1:100, Abcam, ab6310), anti-AGR2 (1:100, Sigma-Aldrich, HPA007912), anti-CEACAM6 

(1:100, Thermo Scientific, MA5-29144), anti-MUC1 (1:100, Thermo Scientific, MA5-11202), 

Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 

405 (1:200, Thermo Scientific, A48259), Donkey anti-Mouse IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor Plus 555 (1:200, Thermo Scientific, A32773), 

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 

647 (1:200, Thermo Scientific, A32795), Goat Anti-Armenian hamster IgG H&L 

(1:200,Abcam, ab173004), Goat anti-Chicken IgY (H+L) Cross-Adsorbed Secondary 

Antibody, Alexa Fluor Plus 488 (1:800, Thermo Scientific, A32931), Molecular Probes DAPI 

(4',6 Diamidino 2 Phenylindole, Dihydrochloride) (1:500, Thermo Scientific, D1306). 

SDC1 inhibition assays 

For antibody treatment with anti-SDC1 (Abcam) on long-term cultured tumoroid, the 

co-cultured culture medium was completely removed from the wells and changed to 200ul 

of the co-cultured medium with 20ul anti-SDC1 added in the wells. The tumoroid were 

cultured under 5% CO2 in 20%O2 at 37°C. The antibody mixed medium was changed daily 

with a fresh one and the tumoroid had imaging after 5 days. A 200ul medium containing 20ul 

of isotype control antibody ( Mouse IgG1, kappa monoclonal, Abcam) was used as a control 

medium.  

Single-cell RNA-seq experiments 

All samples were dissociated to single cells by specific enzymatic treatment. The 

cultured medium for stroma-rich tumoroid was removed from the wells and tumoroids 

washed three times with 1xDPBS. The tumoroids were collected in 5 ml tubes, after the 

DPBS was completely removed from the tube, TrypLE™ Select (Thermo) was added and 

incubated at 37ºC for 8 minutes(Gehart et al., 2019). After the incubation step, tumoroids 

were further dissociated by trituration. This incubation and trituration process was repeated 

3 times to obtain a single cell suspension. The enzymatic dissociation was stopped by 

addition of cold BE-PBS (Cold PBS 1 ml with 0.04% BSA / (0.1 mM EDTA)) and remaining 

cellular clumps were removed by using 70um and 40um strainers. Fibroblasts and HUVECs 

were cultured on a 10 cm dish and dissociated to a single cell suspension using the same 

procedure as described above. Single cell suspensions were adjusted to an appropriate 

concentration to obtain approximately 2000-10000 cells per lane of a 10x Genomics 

microfluidic Chip G. Libraries were generated using 10x Genomics 3’ Gene Expression Kit 

(v3.1), following recommended protocol, and subsequently sequenced on NextSeq500, 

using 28-9-0-91 Read Configuration, as recommended by for Single Index libraries. 

Single-cell RNA-seq data preprocessing 

CellRanger (v3.1.0, 10x Genomics) was used to extract unique molecular identifiers, 

cell barcodes, and genomic reads from the sequencing results of 10x Chromium 

experiments. Then, count matrices, including both protein coding and non-coding 

transcripts, were constructed aligning against the annotated human reference genome 

(GRCh38, v3.0.0, 10x Genomics). In order to remove potentially damaged or unhealthy cells 

and improve data quality, the following filtering steps were performed in addition to the built-

in CellRanger filtering pipeline. Cells associated with over 20,000 transcripts, usually less 
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than 1% of the total number of samples, were removed. Cells associated with a low number 

of transcripts (<1% of the total number of samples) were removed. Cells with over 15% of 

mitochondrial transcripts were removed. Transcripts mapping to ribosomal protein coding 

genes were ignored. Cells with <800 unique transcripts (<1% of the total number of samples) 

were removed together with transcripts detected in less than 10 samples. 

Normalization with Seurat 

For normalization and variance stabilization of each scRNA-seq experiment’s 

molecular count data, we employed the modeling framework of SCTransform in Seurat v3 

(Hafemeister & Satija, 2019). In brief, a model of technical noise in scRNA-seq data is 

computed using ‘regularized negative binomial regression’. The residuals for this model are 

normalized values that indicate divergence from the expected number of observed UMIs for 

a gene in a cell given the gene’s average expression in the population and cellular 

sequencing depth. Additionally, a curated list of cell cycle associated genes, available within 

Seurat, was used to estimate the contribution of cell cycle and remove this source of 

biological variation from each dataset in order to increase the signal deriving from more 

interesting processes. The residuals for the top 2,000 variable genes were used directly as 

input to computing the top 100 Principal Components (PCs) by PCA dimensionality 

reduction through the RunPCA() function in Seurat. Corrected UMI, which are converted 

from Pearson residuals and represent expected counts if all cells were sequenced at the 

same depth, were log-transformed and used for visualization and differential expression 

(DE) analysis. Primary PDAC biopsy samples as well as metastatic PDAC biopsy samples 

were processed as described above. However, they did not undergo any cell filtering as 

quality control steps had already been performed in the respective published studies.  

Doublet removal with DoubletFinder 

For each scRNA-seq experiment DoubletFinder (McGinnis et al., 2019) was used to 

predict doublets in the sequencing data. In brief, this tool generates artificial doublets from 

existing scRNA-seq data by merging randomly selected cells which are then pre-processed 

together with real data and jointly embedded on a PCA space that serves as basis to find 

each cell's proportion of artificial k nearest neighbors (pANN). For this step we restricted the 

dimension space to the top 50 PCs. Finally, pANN values are rank ordered according to the 

expected number of doublets and optimal cutoff is selected through ROC analysis across 

pN-pK parameter sweeps for each scRNA-seq dataset; pN describes the proportion of 

generated artificial doublets while pK defines the PC neighborhood size. In order to achieve 

maximal doublet prediction accuracy, mean-variance normalized bimodality coefficient 

(BCmvn) was leveraged. This provides a ground-truth-agnostic metric that coincides with 

pK values that maximize AUC in the data. To overcome DoubletFinder’s limited sensitivity 

to homotypic doublets, we consider doublet number estimates based on Poisson statistics 

with homotypic doublet proportion adjustment assuming 1/50,000 doublet formation rate the 

10x Chromium droplet microfluidic cell loading. 

Data integration 

Individual datasets, after preprocessing and doublet removal, were aggregated 

according to specific criterias (e.g. patient id, timepoint, culture condition) and went through 

an additional step of mild processing in order to mitigate technical confounding factors, 

which also served as means for selection of a set of meaningful 2,000 most variable global 
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genes prior to data integration. Integration of different conditions (cell lines and timepoints) 

was performed using the log-normalized corrected UMI count data. We used the first 30 PCs 

and the Pearson residuals to integrate the different timepoints (or cell lines) in the datasets 

using the Cluster Similarity Spectrum method (CSS) (He et al., 2020). In brief, clustering is 

applied to cells within each sample label separately and similarities, by Spearman 

correlation, of one cell to those clusters are calculated and normalized. Integration of primary 

and metastatic datasets was performed Harmony (Korsunsky et al. 2019) algorithm. In 

particular, we used the RunHarmony() function on the first 30 PCs and other default 

parameters which initiates an iterative process of soft cluster assignments to group cells 

from different samples based on biological similarities. To obtain a two-dimensional (2D) 

representation of the data we performed Uniform Manifold Approximation and Projection 

(UMAP (McInnes et al., 2018) using RunUMAP() with default parameters on the CSS matrix 

or the first 30 Harmony vectors. Integrated datasets were then clustered according to the 

shared neighborhood graph on lower dimensional space using the Louvain algorithm 

(Blondel et al., 2018) through either the Seurat function FindClusters() with resolution 0.2. 

Pseudotime reconstruction 

PCA is an eigenvector-based multivariate analysis that defines a new orthogonal 

coordinate system that optimally describes variance in a dataset. It learns a linear 

transformation where the PCs form an orthogonal basis for the features that are uncorrelated 

(Bengio et al., 2013). By construction, this transformation can encode the original data in a 

latent (lower dimensional) space concentrating much of the signal into the first few principal 

components and achieve a higher signal-to-noise ratio while minimizing the total squared 

reconstruction error. Given its strength, we sought at using PCA to learn time-dependent 

variability in our tumoroid system and optimally describe heterogeneity in the scRNA-seq 

time course data by reconstructing a differentiation trajectory for each cell type in the 2D 

PCA space. Cells were subsequently aligned along that trajectory. 

Dynamic Time Warping (DTW) analysis 

DTW is an algorithm that enables measuring the similarity between two sequences 

independent of non-linear variations. The algorithm computes the optimal match path that 

minimizes the sum of absolute differences between pairs of mapped elements. We used this 

feature to align the tumoroid CAF state trajectories to the reference primary CAF state 

trajectory by invoking the dtw() function, as implemented by dtw (Giorgino, 2009) package 

in R. with default parameters. 

CAF-tumor communication 

To investigate ligand-receptor (LR) mediated cell-cell communications during cancer 

progression in our multi-lineage tumoroids, we focused on the signals exchanged between 

CAF and cancer  cells. For this analysis we extracted genes labeled as either ligands or 

receptors from curated databases (Browaeys et al., 2020) and required that genes were 

expressed in at least 10 percent of either CAF or cancer cells. We then computed a UMAP 

embedding on LR genes and clustered them into modules that were assigned to each cell 

type, based on average expression score, in order to retrieve directional information about 

the signal exchange. Among all significant LR pairs, we focused first on CAF to cancer 

signaling, thus considering CAF as the signal source, expressing ligands, and cancer as the 

signal target, expressing receptors. We then looked also at signals being delivered by 
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cancer to CAF receptors. In order to model dynamic communication during cancer 

progression we emphasized LR pairs characterized by significant incremental expression 

change along pseudotime alignment. This analysis identified ligand-receptor (LR) pairs 

which significantly co-expressed along CAF-cancer trajectories, and therefore potentially 

mediated the communications between cell populations. A similar approach was followed to 

uncover signal exchanges in the microenvironment of  primary PDAC resection data from 

Peng et al. Here, LR genes were required to be expressed in at least 10% of any of the 20 

cell clusters we identified and, after UMAP embedding and module detection, they were 

assigned to specific cell types of the primary tumor samples (cancer, CAF, endothelial cell 

or immune cell). 

Functional enrichment analysis 

To understand mechanisms underlying phenotypes in our data, differentially 

expressed genes were analyzed for cancer hallmark and gene onthology biological process 

(GOBP) enrichment using one-sided hypergeometric testing. P-values were adjusted for 

multiple testing hypotheses by the Bonferroni method and only enrichment results below a 

5% significance level threshold were considered. The hallmarks are a collection of curated 

gene sets, within MSigDB, refined to convey a specific biological state or process and 

display coherent expression (Liberzon et al., 2015). Cell populations were evaluated for over 

representation or change in biologically related functional gene sets. For this analysis we 

only considered hallmarks consisting of sets with more then 10 but less then 300 mapped 

genes. 

Gene regulatory network inference in tumoroids 

To gain biological insights into mechanisms driving time-dependent cellular 

heterogeneity in pancreatic cancer, we resorted to utilizing the Single-Cell rEgulatory 

Network Inference and Clustering (SCENIC) workflow (Aibar et al., 2017). This is a 

computational method to infer gene regulatory networks (GRNs) and cell types from single-

cell RNA-seq data. In brief, we initialized SCENIC options by selecting the latest versions 

(v9) of two motif annotation datasets, 500 base pairs (bp) upstream and 100 bp downstream 

of transcription start site  (TSS) as well as 10k bp centered TSS, on human genome (hg38) 

and 20 processing units; otherwise default parameters. To infer potential transcription factor 

targets, we imputed Pearson residuals of the most variable genes expressed in at least 10% 

of the cells and built a co-expression network via GENIE3 (Huynh-Thu et al., 2010) with 

default parameters. GENIE3 is a Random Forest based method capable of detecting non-

linear dependencies. In order to distinguish activation from repression we took advantage 

of the Spearman correlation between transcription factors and respective target genes. 

Finally, the activity of the inferred GRNs was computed by aggregating the expression of 

the target genes within each single cell. We then identified top variable GNRs by assessing 

their activity along the pseudotime. 

Bulk RNA-seq data processing 

Pancreas adenocarcinoma (PAAD) related samples from The Cancer Genome Atlas 

(TCGA) were downloaded via  the Genomic Data Common (GDC) website. The R package 

TGAbiolinks was used to connect to GDC data transfer tool client and GDC API in order to 

query and download the raw gene expression profiles, metadata and available clinical data 

for 177 tumor samples as well as 4 normal pancreatic tissue samples. The data was filtered 
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by removing subsequent occurrences of probes matching the same gene symbol as well as 

probes matching no known genes at all. Raw HTSEQ counts data was then normalized for 

sequencing depth using estimateSizeFactors() and variance-stabilized through regularized-

logarithm transformation to remove spurious effects from aberrant gene counts with rlog() 

function in DESeq2 (Love et al., 2014). For the regularized-logarithm transformation the 

blind parameter was set to false. This, to ensure that variables in the design formula will not 

contribute to the expected variance-mean trend of the experiment; otherwise default 

parameters were used. 

Survival analysis 

Individual samples were divided into higher and lower categories based on 

normalized expression of the gene of interest. A quartile cutoff based on expression was 

considered to group the samples into two categories. The long-term survival probability was 

analyzed by utilizing the Kaplan-Meier survival plot. Log-rank test (Harrington and Fleming, 

1982), as implemented within the survdiff() function, was applied to assess the difference 

between the cohorts. Analysis of survival time was performed using the survival (Therneau 

& Grambsch, 2000) package in R statistical software. 

Differential expression analysis 

Gene differential expression (DE) analysis between distinct cell populations in 

scRNA-seq data was assessed by performing Wilcoxon rank sum tests and auROC analysis 

as implemented by Presto (Ilya et al., 2019) package in R. Log-transformed corrected UMIs 

were used as input for the DE statistical tests, and genes were called differentially expressed 

if associated adjusted p-value (Bonferroni method) was lower than 0.05, AUC value was 

above 0.6 and log fold change was greater than 0.15. In addition, we also set thresholds on 

detection rates of DE genes. In particular, a given gene was assigned as over-expressed in 

the analyzed group if it was detected in at least 30% of the samples of that group, while the 

detection rate in the background samples was at most 70% of the detection rate of the 

analyzed group. Differential expression analysis on bulk RNA-seq data was performed in 

accordance with the DESeq2 pipeline on row counts with DESeq() function and default 

parameters. Genes were then considered up-regulated if they were assigned an adjusted 

p-value below 0.05 and a log fold change greater than 0.5. 

Association to worse survival phenotype 

In order to link tumoroid cell populations to a clinically relevant phenotype and identify 

critical cell subpopulations that can drive survival outcome in PDAC, we resorted in using 

Single-Cell Identification of Subpopulations with Bulk Sample Phenotype Correlation 

(Scissor). In brief, we employed the bulk RNA-seq PDAC samples from TCGA with 

associated clinical survival time annotations and our integrated normal fibroblast- and CAF-

cultured tumoroid scRNA-seq dataset introduced in Fig. 12. The reasoning behind using 

both tumoroid models was to understand and validate differential association to clinical 

outcomes arising from the culture systems. Scissor performs a quantification of the 

correlation between single-cells and bulk samples followed by the optimization of a 

regression model, constrained by a graph regularization and a sparse penalty. We used Cox 

proportional hazard regression to determine the association of our single-cells with survival 

time based on expression of a common gene set between the tumoroid and bulk samples, 

otherwise Scissor analysis was performed with default parameters. The coefficients in a Cox 
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regression relate to hazard. In particular, a positive coefficient indicates worse prognosis 

conversely a negative coefficient relates to a protective effect. Single-cells having a 

coefficient equal to zero are indicated as ‘unselected’ as they do not show a strong 

correlation to the phenotype. Finally, to control for false associations we performed a 

reliability significance test with 3-fold cross-validation (CV) and 100 random permutations of 

the bulk samples’ phenotype annotations as described in the Scissor study. 

Reference-based annotation 

Reference-based integration was applied to SCTransform-normalized datasets by 

specifying the integrated primary cancer cell (Peng et al., 2019) and PDAC metastatic cells 

(Raghavan et al., 2021) dataset as the ‘reference’ while the integrated tumoroid cancer cell 

dataset introduced in Fig. 19 was designated as ‘query’. This workflow identifies anchors 

between reference-query pairs and projects the PCA structure of the reference onto the 

query. Specifically, we applied FindTransferAnchors() function in Seurat by specifying 

reference and query arguments as well as leading 30 PCs (dims argument). After finding 

anchors, we used the TransferData() function to classify the query cells based on reference 

data tissue labels. TransferData() returns a matrix with predicted IDs and prediction scores, 

which we used to assess similarity between tumoroid cancer cells and PDAC metastasis 

cancer biopsy cells. 

METHODS FOR IIO PROJECT 

Isolation of tissue-resident memory cells and donor-matched crypts for organoid generation 

Human intestinal tissue samples and annotated data were obtained and experimental 

procedures performed within the framework of the non-profit foundation HTCR (Munich, 

Germany) including informed patient’s consent. Tissue was first processed by removing the 

underlying muscularis, serosa and fat from the basal side of the tissue by pinching with 

forceps and trimming away with scissors. The remaining mucosal tissue was washed with 

PBS (supplemented with penicillin [1500U/ml], streptomycin [1500 μg/ml], gentamicin [500 

μg/ml]) multiple times before using a scalpel to remove excess mucus from the luminal side 

and blood vessels from the basal side. Trimmed, cleaned tissue was then cut into square 

explants approximately 5 mm by 5 mm with a scalpel. Two methodologies were used to 

isolate intestinal tissue-resident memory cells. For the scaffold-based egression protocol 

(adapted from29) each explant was loaded onto a 9x9x1.5 mm tantalum-coated carbon 

based scaffold (Ultramet), and cultured in 24-well plates containing 1 mL of cytokine-free, 

cell culture media (RPMI 1640 10% FCS, penicillin [1500U/ml], streptomycin [1500 μg/ml], 

gentamicin [500 μg/ml] and amphotericin [12.5 μg/ml]). 24 hours later, scaffolds and tissue 

were removed, and egressed cells were harvested from the bottom of the culture well via 

pipetting. For the enzymatic digestion protocol, explants were digested using the Human 

Tumour Dissociation Kit with the gentleMACS Octo Dissociator program 37C_h_TDK_1 

(Miltenyi Biotec), as per the manufacturer’s instructions, reducing Enzyme R content by 80% 

to minimize surface antigen cleavage. Cells were then counted, phenotyped by flow 

cytometry and frozen prior to use in downstream applications. To isolate donor-matched 

crypts for organoid generation, a lamelle was scraped over a 3 cm2 piece of trimmed tissue 

to remove intestinal protrusions/villi. Tissue was then incubated in ice cold PBS + 10 mM 

EDTA with vigorous shaking for 30 minutes to break down epithelial cell junctions. The tissue 

was retrieved and a lamelle was used to scrape off crypts into DMEM-F12 1% BSA collection 
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buffer. Crypts were centrifuged, resuspended in Matrigel Matrix GFR (Corning) and cultured 

in IntestiCult™ Organoid Growth Medium with 10 uM Y-27362 (STEMCELL Technologies). 

Preparation and culture of intestinal immune-organoids 

In-passage organoids, approximately 2 weeks to 1 month after initial isolation, were 

cultured for 4 days post-split in IntestiCult™ Organoid Growth Medium and then switched 

IntestiCult™ Organoid Differentiation Medium (STEMCell Technologies) for 72 hours to 

promote epithelial stem cell differentiation. On the day of coculture setup, media was 

aspirated from the well, organoids were washed with PBS and treated with ice cold Cell 

Recovery Solution (Corning) for 40 minutes. The solution was collected and centrifuged to 

harvest the liberated organoids. Donor-matched TRM or PBMCs were thawed, and 

combined with the liberated organoids and resuspended in either Matrigel Matrix GFR 

(Corning), or if the cocultures were to be formalin-fixed, a 50:50 mixture of Matrigel Matrix 

GF and 4 mg/ml Cultrex Rat Collagen I (R&D Systems). For time-lapse live imaging 

experiments, immune cells were labelled with CellTrace Far Red or CFSE (ThermoFisher) 

prior to mixing with organoids. Organoids were used at a concentration double to their 

standard passaging density, whereby a 20 ul dome was harvested and resuspended in 10 

ul of matrix, while immune cells were used at a density of 15,000 cell per mm3 of 

resuspension volume. A 50:50 ratio of RPMI 1640 10% FCS and IntestiCult™ Organoid 

Differentiation Medium was used for culture. For assessment of TCB-based cytotoxicity, an 

EpCAM-CD3 bispecific antibody, or its associated non-targeting control (which contains a 

CD3 binder on one arm and a non-specific DP47 arm), was supplemented into the culture 

medium upon coculture setup, typically at a concentration of 5 ng/ml. When used, blocking 

antibodies to TNFa (MAb-1, Biolegend) were added at a concentration of 1 ug/mL. To 

investigate the role of ROCK signaling on TRM activation, 10 uM Y-27362 was added daily 

for the duration of the coculture. For the month-long cocultures, the media was 

supplemented with IL-2 [10 IU/mL] (Roche) and IL-15 [2 ng/ml] (BioLegend), media change 

3 times per week and culture splitting 1 time per week. Cultures were supplemented with 10 

uM Y-27362 (STEMCELL Technologies) after splitting.       

Flow cytometry analysis of immune-organoids 

Triplicate wells of immuno-organoid cocultures from each condition were harvested 

5h, 24h and 48h post-treatment. 4h prior to culture harvest at each timepoint, wells were 

treated with Protein Transport Inhibitor Cocktail (Thermo Fisher) to facilitate intracellular 

accumulation of cytokine protein. Cocultures were washed with PBS and then digested to 

single cells using Accutase solution (STEMCELL Technologies) at room temperature for 

approximately 30 minutes. Cell suspensions were passed through a 70 um strainer and 

stained for surface proteins (Extended Data Table 3). Cells were then fixed and 

permeabilized using the Foxp3 Transcription Factor Staining Buffer Set (Thermo Fisher), 

and subsequently stained for intracellular and intranuclear proteins. Stained cell 

suspensions were acquired on a BD Fortessa X-20 and analysed using FlowJo v10. To 

facilitate visual representation across one plot, samples from different time points and 

treatments were concatenated and separated along the y-axis.  

Caspase-3/7 based epithelial cell cytotoxicity assay 

IIO cultures were prepared in 4 ul Matrigel Matrix GF per well of a PhenoPlate™ 96-

well microplate (Phenoplate), with cell ratios and media as described above. Apoptosis was 



82 
 

assessed using the CellEvent Caspase-3/7 Detection Reagent (Invitrogen) over TCB-

treatment duration or at specific intervals. CellEvent Caspase-3/7 Detection Reagent was to 

the culture media at 1:1000. Samples were imaged in confocal mode at 5x magnification 

(Air objective) with the Operetta CLS (Perkin Elmer) covering approximately a 450 µm Ζ-

stack, starting at -150 µm. Distance between Ζ-stacks was set to the minimum of 27 µm for 

the 5x objective (Autofocus: Two Peak; Binning: 2). Channels selected were brightfield and 

the predefined AlexaFluor 488. Per well, 5 fields were acquired, covering nearly the entire 

surface of the 96-well PhenoPlate plate. CO2 was set to 5%, temperature to 37°C. Caspase 

3/7 fluorescence signal intensity was quantified using the Opera Harmony software 

(PerkinElmer). Briefly, segmentation of organoids was done by using “Find Texture Regions” 

based on the bright-field signal only, followed by “Select Region” and “Find Image Region” 

to segment single organoids as objects. Next, “Calculate Morphology Parameters” was 

performed to select objects >10000 µm 2 with “Select Population”. Next, the Caspase 3/7 

fluorescence signal per individual organoid was determined using “Calculate Intensity 

Properties” of the AF 488 channel within these objects. 

Time-lapse imaging of IIOs 

The time-lapse live imaging was performed with a Leica SP8 confocal microscope 

using a 20x dry objective (HC PL APO CS2 20x/0.75 DRY) and 0.75 zoom. A 119.93µm 

thick Ζ-stack (step size: 3.98µm) was imaged every 10 minutes. During imaging the samples 

were in an incubation chamber (The Box, Life Imaging Services) at 37°C and 5% CO2. After 

acquisition maximum intensity projections were generated with the Leica Las X software 

and later exported as AVI files using ImageJ. 

FFPE-embedding of cocultures  

To FFPE-embed the cocultures, the samples were seeded in a 50% (v/v) Matrigel-

Collagen I matrix. Wells were washed once with 1X DPBS before fixation with 4% 

paraformaldehyde (PFA) in the 24-well Clear TC-treated plate. After 30 min of fixation at RT, 

the wells were washed three more times before complete aspiration of the 1X DPBS. 400 

µL preliquefied HistoGel (Thermo Scientific) was dispensed into the 24-well Clear TC-

treated plates. After polymerization of the HistoGel (10min in 4°C fridge), the organoid-

HistoGel ‘platelet’ was carefully lifted out of the 24-well Clear TC-treated plate using a thin 

metallic spatula. The samples were then distributed into biopsy cassettes and dehydrated 

overnight using a Vacuum filter processor (Sakura, TissueTek VIP5). On the next day, the 

samples were embedded in liquid paraffin.  

Microtome sectioning 

FFPE blocks were – in general – sectioned at a thickness of 5 µm and transferred on 

Superfrost Plus Adhesion microscope slides (Epredia). Where indicated, thickness differs. 

Slides were incubated in a slide oven overnight at 37°C. 

Staining – FFPE-based multiplex immunofluorescence (mIF) 

mIF staining of FFPE slides was performed using Ventana Discovery Ultra automated 

tissue stainer (Roche Tissue Diagnostics, Tucson AZ USA). Slides were baked first at 60°C 

for 8 min and subsequently further heated up to 69°C for 8 min for subsequent 

deparaffinization. This cycle was repeated twice. Heat-induced antigen retrieval was 

performed with Tris-EDTA buffer pH 7.8 (Ventana) at 92°C for 32 min. After each blocking 
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step with Discovery Inhibitor (Ventana) for 16 min, the Discovery Inhibitor was neutralized. 

Primary antibodies were diluted in 1X Plus Automation Amplification Diluent (Akoya 

Biosciences). Primaries were detected using according anti-species secondary antibodies 

conjugated to HRP (OmniMap Ventana) (Extended Data Table 3). Subsequently, the 

relevant Opal dye (Akoya Biosciences) was applied. After every application of a primary, 

respective secondary antibody and opal dye, an antibody neutralization and HRP-

denaturation step was applied to remove residual antibodies and HRP, before starting the 

staining cycle again with the Discovery Inhibitor blocking step. Lastly, samples were 

counterstained with 4',6- Diamidino-2-phenylindol (DAPI, Roche).  

FFPE-based mIFe 

mIF stainings using the Opal dyes from Akoya were digitized with multispectral 

imaging by the Vectra® Polaris™ (PerkinElmer) using the MOTiF™ technology at 20x 

magnification for all 7 colors (Opal 480, Opal 520, Opal 570, Opal 620, Opal 690, Opal 780 

and DAPI). Slides were scanned in a batch manner to ensure same imaging settings and 

cross-comparability for later image analysis with HALO AI. Next, unmixing of the channels 

and tiling of the images was performed with PhenoChart (v1.0.12) and inForm (v2.4). Tiles 

were fused in HALO (Indica labs, v3.2.1851.328).  

High-resolution mIF were obtained using a STELLARIS 8 microscope (Leica) with a 

40X1.1 NA water-immersion objective (HC FLUOTAR L VISIR 25x/0.95 WATER) and 1.0 

zoom. The white light laser (WLL: 440 nm-790 nm) allowed to image all opal dyes mentioned 

above, channels were acquired sequentially to reduce crosstalk. Images were obtained in 

bidirectional mode with 2048 x 2048 pixels (pixel size: 273.8nm x 273.83 nm) at 600 Hz. 

Where indicated, images were acquired with z-stacks between 10-15 µm (z-steps: 1 µm) 

and 3D-reconstructed and displayed in ‘Maximum’-mode using the Leica Application Suite 

X software (Leica). 

Image Analysis – FFPE-based mIF 

Image analysis of the mIF images was performed with HALO AI (Indica Labs, 

v3.2.1851.328). Briefly, single organoids were automatically detected using a Deep 

Learning algorithm trained to distinguish matrix and organoids (iterations: 5000; cross 

entropy: 0.32; DenseNet AI V2 Plugin). After quick validation, organoids were annotated as 

individual ROIs, objects. Only objects >7500 µm2 were considered positive.  

The HighPlex FL v4.1.3 module was used to perform nuclear segmentation based on 

DAPI+ cells. For quantification, DAPI+ nuclei and markers for each distinct cell type of 

interest were merged. Thereby, secondary-only negative controls on the tissue of origin 

served as a negative signal threshold in order to prevent biased adjustments. The analysis 

module was deployed on ROIs per single object (organoid). 

Single-cell dissociation of IIO  

IIO were dissociated as described previously by (Yu et al., 2021). In short, organoids 

were dislodged and mechanically broken up and transferred to 1% BSA-coated tubes. The 

organoid fragments were centrifuged at 400g, 4min, RT. The supernatant was removed and 

the enzymes of the neural tissue dissociation kit (Miltenyi Biotec) were mixed in HBSS-

1%BSA buffer. The organoid fragments were dissociated to single cells for a total of 30 min 

with through pipetting every 7 minutes. Next, cells were filtered through a 40uM filter and 
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single cells were centrifuged at 450g, 4min, RT and subsequently resuspended in DPBS 1% 

BSA. The single cell libraries were prepared with the 10x Genomics platform using the 

Chromium Next GEM Single Cell 3ʹ Kit v3.1.   

Single-cell RNA-seq data preprocessing 

CellRanger (v6.0.2, 10x Genomics) was used to extract unique molecular identifiers, 

cell barcodes, and genomic reads from the sequencing results of 10x Chromium 

experiments. Then, count matrices, including both protein coding and non-coding 

transcripts, were constructed aligning against the annotated human reference genome 

(GRCh38, v3.0.0, 10x Genomics). In order to remove potentially damaged or unhealthy cells 

and improve data quality, the following filtering steps were performed in addition to the built-

in CellRanger filtering pipeline. Cells associated with over 50,000 transcripts, usually less 

than 1% of the total number of samples, were removed. Cells associated with a low number 

of unique transcripts, less than 500 unique transcripts detected (1% of the total number of 

samples), were removed. Cells with over 20% of mitochondrial transcripts were removed. 

Transcripts mapping to ribosomal protein coding genes as well as mitochondrial genes were 

removed together with transcripts detected in less than 10 samples. 

Normalization with SCTransform 

For normalization and variance stabilization of each scRNA-seq experiment’s 

molecular count data, we employed the modeling framework of SCTransform in Seurat v3 

(Hafemeister & Satija, 2019). In brief, a model of technical noise in scRNA-seq data is 

computed using ‘generalized gamma poisson regression’ (Ahlmann-Eltze & Huber, 2021). 

The residuals for this model are normalized values that indicate divergence from the 

expected number of observed UMIs for a gene in a cell given the gene’s average expression 

in the population and cellular sequencing depth. Additionally, a curated list of cell cycle 

associated genes, available within Seurat, was used to estimate the contribution of cell cycle 

and remove this source of biological variation from each dataset in order to increase the 

signal deriving from more interesting processes. The residuals for the top 2,000 variable 

genes were used directly as input to computing the top 100 Principal Components (PCs) by 

PCA dimensionality reduction through the RunPCA() function in Seurat. Corrected UMI, 

which are converted from Pearson residuals and represent expected counts if all cells were 

sequenced at the same depth, were log-transformed and used for visualization and 

differential expression (DE) analysis. Primary immune cells from intestinal biopsy samples 

were processed as described above. However, they did not undergo any cell filtering as 

quality control steps had already been performed in the respective published studies.  

Doublet removal with DoubletFinder 

For each scRNA-seq experiment DoubletFinder (McGinnis et al., 2019) was used to 

predict doublets in the sequencing data. In brief, this tool generates artificial doublets from 

existing scRNA-seq data by merging randomly selected cells which are then pre-processed 

together with real data and jointly embedded on a PCA space that serves as basis to find 

each cell's proportion of artificial k nearest neighbors (pANN). For this step we restricted the 

dimension space to the top 50 PCs. Finally, pANN values are rank ordered according to the 

expected number of doublets and optimal cutoff is selected through ROC analysis across 

pN-pK parameter sweeps for each scRNA-seq dataset; pN describes the proportion of 

generated artificial doublets while pK defines the PC neighborhood size. In order to achieve 
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maximal doublet prediction accuracy, mean-variance normalized bimodality coefficient 

(BCmvn) was leveraged. This provides a ground-truth-agnostic metric that coincides with 

pK values that maximize AUC in the data. To overcome DoubletFinder’s limited sensitivity 

to homotypic doublets, we consider doublet number estimates based on Poisson statistics 

with homotypic doublet proportion adjustment assuming 1/50,000 doublet formation rate the 

10x Chromium droplet microfluidic cell loading. 

Ambient mRNA signal removal 

After doublet prediction and removal, we analyzed each scRNA-seq dataset in order 

to estimate the extent of ambient mRNA contamination in every single cell and correct it. 

We used the R package Cellular Latent Dirichlet Allocation (CELDA) (Wang et al., 2022) 

which contains DecontX, a method based on Bayesian statistical framework to 

computationally estimate and remove RNA contamination in individual cells without empty 

droplet information. We applied the DecontX() function in CELDA to the raw count matrices 

with default parameters. Subsequently, we removed all cells with contamination values 

above 0.5 and we used the decontaminated count matrices resulting from DecontX() for 

downstream analysis. 

Data integration 

Individual datasets, after preprocessing, doublet removal and ambient mRNA 

regression, were aggregated according to specific criterias (e.g. tissue of origin, profiling 

time, culture condition) and went through a joint normalization step with SCTransform in 

order to mitigate technical confounding factors, which also served as means for selection of 

a set of meaningful 2,000 most variable global genes prior to data integration. Integration of 

different conditions (culture model, treatment and timepoints) was performed using the log-

normalized corrected UMI count data in two steps. First, the residuals for the top 2,000 

global variable genes were used as input to computing the top 100 Principal Components 

(PCs) through the RunPCA() function in Seurat. The leading 30 PCs and 50 nearest 

neighbors were then used to define the shared neighborhood graph with the 

FindNeighbors() function in Seurat. Subsequently, datasets were clustered according to the 

shared neighborhood graph using the Louvain algorithm (Blondel et al., 2008) through the 

Seurat function FindClusters() with resolution 0.8. Finally, we used these high-resolution 

clusters to define a restricted, noise reduced and cell state specific set of genes through 

differential expression analysis (see Methods section below). In the second step of the 

integration process, we compiled a list consisting of the ensemble of the top 30 DEGs for 

each cluster and used it to focus and repeat PCA dimensionality reduction. The first 30 PC 

vectors of the new PCA space served as basis to obtain a two-dimensional (2D) 

representation of the data through Uniform Manifold Approximation and Projection (UMAP) 

(McInnes et al., 2018) implemented in RunUMAP() with 50 nearest neighbors. We then 

computed a shared neighborhood graph on the UMAP lower-dimensional space and 

computed the final integrated clusters with resolution parameter 0.2. 

Differential expression analysis 

Gene differential expression (DE) analysis between distinct cell populations in 

scRNA-seq data was assessed by performing Wilcoxon rank sum tests and auROC analysis 

as implemented by Presto (Ilya et al., 2019) package in R. Log-transformed corrected UMIs 

were used as input for the DE statistical tests, and genes were called differentially expressed 
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if associated adjusted p-value (Bonferroni method) was lower than 0.05, AUC value was 

above 0.6 and log fold change was greater than 0.15. In addition, we also set thresholds on 

detection rates of DE genes. In particular, a given gene was assigned as over-expressed in 

the analyzed group if it was detected in at least 30% of the samples of that group, while the 

detection rate in the background samples was at most 70% of the detection rate of the 

analyzed group. 

CD8+ T cell activation trajectory reconstruction 

To reconstruct the continuum of the CD8+ T cell activation trajectory in IIO models 

challenged with bispecific antibodies we took advantage of diffusion pseudotime (DPT) as 

implemented by the destiny (Angerer et al., 2016) package In R. In brief, DPT uses random-

walk-based distance, computed on the leading eigenvectors of a transition matrix, to order 

scRNA-seq data according to differentiation stages (Hagverdi et al., 2016). Concretely, we 

used the DiffusionMap() function in destiny package on the space identified by the leading 

30 PC vectors of the integrated PCA embedding of the CD8+ clusters. Pseudotime values 

were then computed with the DTP() function in destiny on the diffusion map object using 

default parameters. Similarly, the global pseudotime, following TNF perturbation simulation, 

was based on a random walk approach on the cell state transition matrix. 

Intercellular communication analysis 

To investigate ligand-receptor (LR) mediated cell-cell communications during 

immune cell activation in our IIO models, we focused on the signals exchanged between 

Th1 cells, activated t-bet B cells and CD8+ CTLs. For this analysis we extracted genes 

labeled as either ligands or receptors from curated databases (Browaeys et al., 2020) and 

required that genes were differentially expressed between the three populations under 

investigation, which facilitated retrieval of directional information about the signal exchange. 

To gain insights into functional cell-cell communication, we used the NicheNet pipeline which 

considers the influence of sender-cell ligands on receiver-cell gene expression58. 

NicheNet's analysis pipeline provided us with a ranking of predicted ligands that most likely 

affect gene expression in activated t-bet B cells and CD8+ CTLs highlighting the role of 

critical Th1-secreted factors in driving immune cell phenotypes within IIOs. 

Functional enrichment analysis 

To understand mechanisms underlying phenotypes in our data, differentially 

expressed genes were analyzed for gene ontology biological process (GOBP) enrichment 

using one-sided hypergeometric testing. P-values were adjusted for multiple testing 

hypotheses by the Bonferroni method and only enrichment results below a 5% significance 

level threshold were considered. For this analysis, we only considered biological processes 

consisting of sets with more than 10 but less than 300 mapped genes. 

In silico perturbation analysis 

To simulate dynamic shifts in cell identity resulting from ligand signaling cascade 

activation, we employed Nichenet’s prior model58. The first step involved generating 

simulated values by applying the gene regulatory network (GRN) as a function and 

propagating the relative changes in gene expression after k-nearest neighbor imputation of 

the gene expression data. This iterative (3 times) signal propagation enabled us to calculate 

the broad, downstream effects of ligand perturbation, thereby estimating the global 
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transcriptional shift. The estimation of cell-identity transition probability was accomplished 

by comparing this gene expression shift to that of local neighbors, utilizing a likelihood-based 

dynamical model. By doing so, we could establish a measure of how cell identities transition 

in response to ligand perturbation. Finally, the transition probabilities were transformed into 

a weighted local average vector map, encoding the simulated directionality of cell-state 

transition for each cell. This workflow results from an adaptation and integration of 

CellOracle (Kamimoto et al., 2023) and scVelo (Bergen et al., 2020). 
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