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Abstract

Human beings are constantly being exposed to a diverse array of chemical compounds, both
intentionally and unintentionally. The rigorous assessment of chemical toxicity is therefore
paramount for human health. Traditionally, evaluating small molecule-induced toxicity in-
volves costly and time-consuming in vitro and in vivo tests. In many cases, toxic effects begin
with off-target binding, an undesired interaction between a small molecule and a protein. In
the pharmaceutical industry, off-binding assessment is often performed in late pre-clinical
stages of drug development. However, neglecting off-target toxicity can lead to drug failure,
resulting in significant financial loss and years of development time.

This thesis presents innovative computational tools designed for the early assessment of
off-target liabilities. These tools offer a cost-effective and rapid alternative to traditionalmeth-
ods, enabling their application in the early stages of pharmaceutical development to guide the
design of safe drugs. The thesis begins by examining the impact of dataset quality on deep
learning-based predictions of drug-target interactions. It shows that correct data handling
is critical and demonstrates how a detailed characterization of intermolecular interactions
improves predictions. Leveraging this understanding, we introduce PanScreen, an online
platform automating the prediction of off-target binding. PanScreen encompasses a portfo-
lio of pharmaceutically and toxicologically relevant off-targets and provides qualitative and
quantitative predictions, including binding poses and estimated affinities. To complement
this structure-based approach, we developed a deep learning model that preserves molecular
similarities in the form of Euclidean distances in latent space. This model enhances protein-
structure-free screening of ultra-large databases, accelerating similarity-based searches by or-
ders of magnitude. We show that it can be applied to different similarity metrics, including
alignment-based 3D shape similarities.

These in silico tools hold promise for predicting off-target interactions in diverse applica-
tions, offering an inexpensive and fast option to complement traditional methods. Specifi-
cally, PanScreen represents a significant step in this direction. As the development of these
tools is an ongoing process, we offer a roadmap that outlines avenues for further improve-
ment, aiming to enhance their robustness and accuracy. Ultimately, we envision a future
where chemical safety assessment is rapid, cost-effective, and does not involve animal testing.
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What is there that is not poison? All things are poison and

nothing is without poison. Solely the dose determines that a

thing is not a poison.

Theophrastus Bombast von Hohenheim

1
Introduction

Everything in nature is made up of atoms, which, in turn, combine to formmolecules.

These molecules are essential for life as we know it. As humans we are not just made up

of molecules, we are also constantly exposed to a plethora of chemical compounds, some

of which are known and well characterized, others are still unknown. Plants used as a food

source contain a large amount of different chemical compounds knownas secondarymetabo-

lites.1 Althoughmany of these compounds will not have observable effects on humans, some
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can have beneficial properties such as antioxidant,2 antimicrobial,3,4 or anti-inflammatory5–7

effects, or unwanted properties such as cytotoxicity8,9 or carcinogenicity.10,11 However, the

chemicals we ingest do not necessarily originate from the plant itself. With global industri-

alization, the use of pesticides and fertilizers has skyrocketed.12,13 Often, residues of these

chemicals can be found in the food we consume or the water we drink.14–17

However, food is not the only way through which humans are exposed to chemicals. Cos-

metic products, shampoos, and perfumes contain various fragrances that we are exposing

ourselves to. These chemical compounds can be inhaled or absorbed by the skin. Even cloth-

ing can be a source of chemical contamination.18 One major source of chemical exposure is

the intake of pharmaceutical drugs. Even though pharmaceutical products are usually very

well characterized, adverse drug reactions remain common.19 Given that safety concerns are

the secondmost common reason for failed drug development projects,20 rigorous assessment

of potential toxic effects of drugs is essential for the pharmaceutical industry.

Although human health is generally of primary concern, chemical contamination often

affects many different species. Volatile chemical compounds from combustion engines and

industrial waste water are only a few sources of how humans cause increasing environmental

pollution.21,22 A common side effect of such anthropogenic environmental pollution is en-

docrine disruption, the interference of xenobiotic chemicals with the hormone system.23–27

Since endocrine disruption can affect animal reproduction, it can have severe adverse effects

for humans and wildlife.28

In a study in 2020, Wang et al. found that in 19 analyzed countries, more than 350,000

chemicals and mixtures were registered for use and production.29 Many of them were not

known to the public for various reasons. Thus, it is of great importance to characterize these

chemicals to assess their effects on humans and wildlife. The field of toxicology assesses such

effects through various in vivo, in vitro, and in silico methods. As Theophrastus Bombast
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von Hohenheim (better known as Paracelsus) recognized already 500 years ago, everything

can be toxic depending on the dose. Therefore, a toxicologist usually describes the risk of

a chemical compound as the product of hazard and exposure.30 Hazard can be seen as the

inherent ability of a chemical to harm the environment, humans, or wildlife. Exposure, on

the other hand, is a measure of the probability and intensity of contact with a chemical. It

includes e.g. the dose of a chemical to which a living being is exposed and the duration of the

exposure. Examples of common hazardous chemicals are myristicin contained in nutmeg31

or cyanide contained in almonds.32 Although they are hazardous, humans are generally ex-

posed to those compounds sufficiently low to pose no significant risk to human health. A

chemical that has high exposure but is not hazardous is water. Humans consist mostly of wa-

ter and can safely consume large amounts of water everyday due to its low hazard. However,

even with a low hazard, too high exposure can be toxic or even lethal.33

1.1 Adverse Outcome Pathways

Adverse outcome pathways (AOPs) are a means of characterizing the complete mechanism

of toxicity for a given adverse outcome. AOPs describe how a toxicant (or more generally, a

stressor) can cause one or more key events by triggering a molecular initiating event, which

ultimately leads to an adverse outcome (see Figure 1.1). They therefore comprise causal links

between all steps involved in the formation of a chemical-induced adverse effect.34 Connec-

tions between key events are called key event relationships, and it is further possible to make

connections between different AOPs based on shared key events. AOPs include events at the

(macro)molecular, cellular, organ, and individual levels.

Figure 1.1: Elements of an AOP. There may be one or more key events that lead to an adverse outcome

3



Figure 1.2: Complete AOP for the formation of prostate cancer based on androgen receptor activation. Figure adopted
from AOP 495 in the AOP Wiki. The molecular initiating event, key events, and adverse outcome are shown with green,
orange, and red color, respectively.

TheOrganization for Economic Co-operation andDevelopment (OECD) developed the

AOP knowledge base35 which serves as a resource for AOP development and sharing. The

AOPWiki36 is part of the AOP knowledge base and can be used to search for known AOPs.

An example of a complete AOP is the formation of prostate cancer based on androgen recep-

tor activation (AOP 495 in the AOPWiki; Figure 1.2). This AOP begins with the activation

of the androgen receptor as the molecular initiating event. On a cellular level, this leads to

altered gene transcription, increased expression of androgen receptors, decreased apoptosis

in epithelial cells, and inflammatory events in light-exposed tissues. This, in turn, causes in-

creased invasion and alterations in cell proliferation leading to hyperplasia. Taken together,

these effects can cause prostatic intraepithelial neoplasia leading to the formation of prostate

cancer.
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Due to the complexity of some AOPs, their development and review process can take sev-

eral years. This contributes to the slow growth of the number of known and well-described

AOPs.37 Despite these challenges, AOPs are still widely used in current research.38–42

1.2 NewApproachMethodologies

Alreadymore than 60 years ago, Russell and Burch introduced the concept of the 3R, the re-

placement, reduction, and refinement of animal experimentation.43,44 Animal welfare may

be the most obvious motivation to replace animal models. However, there is also a long-

lasting discussion about the value of animal models in chemical risk assessment and whether

the findings of these experiments can be translated to humans.45–51 Finally, conducting an-

imal tests also comes with a much higher financial burden compared to non-animal experi-

ments.52

Since the need for alternatives to animal testing has been recognized in many industries

and regulatory bodies, the concept of new approachmethodologies (NAMs) has been intro-

duced.53 NAMs include any methods such as in vitro, in silico, in chemico, or ex vivo that

can be used for chemical hazard and risk assessmentwithout the use of animals.54–56This the-

sis introduces an in silico NAM which we hope can one day contribute to the replacement,

reduction, or refinement of animal testing.

1.3 Types of Toxicity

In order to assess the toxicity of a chemical compound, one first needs to understand exactly

how molecules can exhibit toxic effects. Although not an exhaustive overview, this section

will cover some of the most important types of toxicity.
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1.3.1 Mutagenicity and Genotoxicity

The European Food Safety Authority defines mutagenicity as “the capacity to cause perma-

nent, typically negative, changes to an organism and any offspring by altering the structure of

its DNA”.57 This alteration can usually occur at the level of single genes, blocks of genes, or

chromosomes.58,59 Amutagenic substance is called a mutagen and can affect DNA in germ

cells and somatic cells.60,61 Mutagens can lead to different outcomes, such as cell death or cell

growth, which eventually leads to tumors.62–64 Thismeans that not all mutagens are carcino-

genic. Sodium azide is an example of a substance that is mutagenic but not carcinogenic.65,66

Since mutagenicity can have extremely severe consequences, it is imperative to develop a

test system for it. A routinely usedmutagenicity test is the so-calledAmes test.67,68This test is

a bacterial reverse mutation test. It uses a mutated bacterial strain that lost the ability to syn-

thesize a certain amino acid (usually histidine or tryptophane). This bacterial strain is then

grownon an agar plate lacking the specific amino acid. Because bacteria cannot synthesize the

missing amino acid themselves, they will not be able to grow. However, upon the addition

of a mutagen to the plate, bacteria sometimes mutate and revert to the wild type that is ca-

pable of synthesizing the amino acid and, therefore, growing in the medium.69 The standard

test protocol uses several different bacterial strains with different mutations.70 Since a reverse

mutation is not guaranteed, a positive Ames test is usually predictive of the mutagenicity of

a compound, while a negative test is not conclusive.71,72

One mechanism of mutagenicity is the alkylation of DNA by electrophilic compounds.

An example of a DNA alkylating substance is mustard gas which has been used for chemical

warfare in the past.74However, DNAalkylating properties can also be used pharmaceutically

in form of alkylating antineoplastic agents. These compounds alkylate DNA in tumor cells,

leading to an alteration of the biological function of the cell.75 Examples of therapeutically
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Figure 1.3: Molecular scaffolds of known DNA intercalating mutagens.73

used DNA alkylating agents include carmustine,76,77 temozolomide,78 busulfan,79 and mel-

phalan.80Another very commonmechanism ofmutagenicity is DNA intercalation inwhich

a typically planar aromaticmolecule binds between a base pair, thus altering the structure and

function of the DNA.73,81 Although DNA intercalating compounds bind non-covalently

(and thus reversibly) to DNA, they can cause frameshift mutations.82 Many molecular scaf-

folds with DNA intercalating properties have been identified.83 Some examples include acri-

dine,84,85 phenanthrene,86 pyrene,87,88 and quinoxaline89 (Figure 1.3).

Although all mutagens are genotoxic because they can permanently alter DNA, not all

genotoxic substances are mutagenic. In fact, some DNA intercalating molecules such as

quinoline are genotoxic without having mutagenic effects.82,90

1.3.2 Carcinogenicity

Cancer formation is extremely complex and involvesmanydifferent cellular processes. Chemical-

induced carcinogenesis is thus only one of many ways that lead to cancer formation.91 Al-

though many carcinogenic substances such as benzo[a]pyrene and aflatoxins act through

genotoxicity, there are various othermechanisms of carcinogenicity that do not involveDNA

alteration.91,92 Peroxisome proliferator-activated receptors (PPARs) are a type of nuclear re-

ceptor involved in glucose and fatty acid metabolism and energy homeostasis.93 It has been
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shown that activation of PPARγ can inhibit glioma growth in vivo.94 Similarly, activation of

PPARβ/δ can regulate lung cancer growth.95 However, the role of these receptors is much

more complex. Contrary to the previous finding, Han et al. suggested that activation of

PPARβ/δ can alsopromote lung cancer growth.96 Furthermore, chronic activationofPPARαhas

been shown to induce the development of liver cancer.97 Thus, activation or inhibition of

these receptors is closely intertwined with the formation of cancers in humans.

Adjacent cells are able to communicate with each other through gap junctions, which are

formed by close membrane contacts permeated with numerous channels. These channels

allow the exchange of ions and small molecules, which is a means of cellular communica-

tion.98,99 This communication is essential for cell homeostasis and its disruption can activate

a cascade of processes, ultimately leading to the formation of cancer.100,101 The insecticides

chlordane and dichlorodiphenyltrichloroethane (DDT) have been shown to down-regulate

the gap junctional intercellular communication, leading to an increased probability of cancer

formation.102–105

1.3.3 Endocrine Disruption

The endocrine system (i.e. hormonal system) is a fundamental messenger system in the hu-

man body and regulates various processes such as metabolism, sleep, growth, stress, repro-

duction, and development. In this messenger system, hormones usually bind to specific re-

ceptors, which in turn leads to a change in cellular function. Different hormones thereby

bind to a wide array of receptors, either on the surface or inside of cells.106 Therefore, it is not

surprising that the disruption of this intricate system can lead to various adverse outcomes.

These include, but are not limited to, alterations in sperm quality, fertility, nervous system

and immune function, ormalformations of the sex organs, endometriosis, and cancers.107,108

Chemical compounds that interfere with the hormonal system are called endocrine disrup-
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tors and can be found in many foods and everyday products.

Perhaps one of the best known endocrine disruptors is bishenol A, a compound that is

often used in plastics and epoxy resins. Bishpenol A was shown to exhibit estrogenic ef-

fects (among others), causing kidney damage, obesity, and decreased female reproductive

health.109,110 Phytoestrogens are substances contained in plants and foods such as soy, oats,

and coffee and have estrogenic or antiestrogenic effects.111,112 A third type of estrogenic (and

androgenic) chemicals are phthalates, which are commonly used as plasticizers. Like other

endocrine disruptors, they can cause a reduction in reproductive health in both men and

women.113–115

Ametabolite of the insecticide DDT, which has already been introduced in Section 1.3.2

due to its carcinogenicity, also acts as an androgen antagonist.116 After a spill of a mixture

of pesticides including DDT on Lake Apopka in 1980, the fertility of alligators living in

this lake has decreased significantly.117,118 This effect has later been linked to DDT and its

metabolites.119,120

Polychlorinated biphenyls used, e.g., as coolants and flame retardants, as well as perfluo-

rooctanoic acid, widely used in the past, e.g. in the production of non-stick cookware, both

cause thyroiddisruption. These compounds are also classified as persistent organic pollutants

because they cannot be easily degraded by chemical or biological processes.121–123

1.3.4 Drug-Induced Liver Injury

Most people have taken paracetamol to treat occasional headaches at least once in their life.

However, this seemingly harmless drug is responsible for approximately 50% of acute liver

failure cases in some western countries.124,125 This type of toxicity falls under the umbrella

term drug-induced liver injury (DILI). DILI describes damage to the liver at any cellular level

induced by a drug or its metabolites.126 A South Korean study reported an extrapolated 12
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yearly cases ofDILIper 100,000people. According to their findings, herbalmedicationswere

one of the main causes of DILI.127

It is assumed that amain reason for the liver’s susceptibility to drug-induced damage is the

fact that most drugs are taken up into hepatocytes where they are metabolized.126 In some

cases, such as with paracetamol, reactive metabolites are formed which can covalently bind

to macromolecules and disrupt normal cell function.128 Diclofenac, a commonly used non-

steroidal anti-inflammatory drug, ismetabolized by cytochrome P450 (CYP) 2C8 andUDP-

Glucuronosyltransferase 2B7 into reactive quinone imine and acyl glucuronide specieswhich

can form covalent adducts with proteins, eventually leading to hepatotoxicity.129,130

In the late 1990s, troglitazone, a PPARγ agonist used for the treatment of type 2 diabetes,

was approved as a drug. Only three years later, it has already beenwithdrawn from themarket

due to numerous reports of hepatotoxicity. Although the initial mechanism of toxicity was

thought to be due to the formation of reactive metabolites, this has not been proven conclu-

sively.131,132 Another possible explanation could be the activation of downstream processes

invoked by PPAR binding that ultimately leads to apoptosis.133,134 Inhibition of bile salt ex-

port pumps and subsequent accumulation of toxic bile salts in hepatocytes could be another

explanation for troglitazone hepatotoxicity.135,136 In fact, this mechanism is well known in

the formation of DILI and is the driving factor of the toxic effects of e.g. bosentan, a drug

used to treat pulmonary hypertension.137,138

DILI is the cause of approximately 20% of drug development failures in clinical phases

and 30% of market withdrawals.139 Because it encompasses very diverse mechanisms of toxi-

city, its prediction is extremely challenging.126 Nevertheless, DILI plays a major role in drug

development.140
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1.3.5 Off-Target Activity

A pharmaceutical target that is intended to be modulated by a drug is called an on-target. In

certain cases, binding of a drug to its intended target can lead to toxicity, referred to as on-

target toxicity. For example, statins are designed to inhibit the 3-hydroxy-3-methylglutaryl

coenzyme A reductase in the liver, leading to lower cholesterol levels. However, binding of

statins to the same target in different tissues, such as muscles, can cause adverse effects.141,142

Conversely, any protein that is not the intended target of a drug is considered an off-target.

Thus, this definition of on- and off-targets usually applies only to pharmaceutical, cosmetic,

or sometimes agricultural settings because other industrial chemicals, used e.g. in the pro-

duction of plastics or fuels, do not have an intended biological target.

Binding of a chemical to off-targets is generally undesired, as this may lead to adverse ef-

fects. Unspecific kinase inhibitors binding to kinases other than their primary target (i.e.,

off-targets) can, for example, lead to cardiotoxicity.143 Since kinases are very flexible and of-

ten share similar binding site topologies, their inhibitors often bind to dozens of different

kinases.144 This can be problematic because in these cases, the true mechanism of action of a

drug may be promiscuous and unknown.

However, in certain cases, off-target activity can be desired. Spironolactone is a drug that

was originally developed as a potassium-sparing diuretic due to its ability to inhibit the min-

eralcorticoid receptor.145 It was later found out that the same compound also inhibits the

androgen receptor (that is, an off-target).146,147 This effect was therapeutically exploited to

treat acne and hair loss.148 After that, it was discovered that spironolactone can also induce

degradation of xeroderma pigmentosum group B protein which is involved in DNA repair.

Therefore, it has the potential to be used in cancer therapy.149 This shows that whether a

biological target is considered an on-target or an off-target depends only on its intended use,
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and the off-target of one scientist may be the on-target of another.

Lin et al. have shown that many cancer therapeutics are still effective even after CRISPR-

based knock-out of their intended target.150 They suggest that these drugs actually work

through off-target effects. In addition, they discuss that this lack of knowledge about the

true mode of action of cancer drugs may be one of the reasons why oncology projects have

the highest failure rate in the pharmaceutical industry.20

Off-target toxicity does not have a specific toxicity endpoint. Many of the previously

described toxic effects such as the induction of liver cancer due to PPARα activation (Sec-

tion 1.3.2) or the various forms of endocrine disruption (Section 1.3.3) can be effects of off-

target activity. In these cases, binding of amolecule to an off-target can be seen as amolecular

initiating event (cf. Section 1.1).

Toxicologically relevant effects, as seen in the case of kinases, and therapeutic success stories

(such as spironolactone) highlight the value of investigating off-target activities. The promis-

cuous mode of action exhibited by anti-cancer drugs further underscores the importance of

a detailed examination of these effects.

1.4 Computational ToxicologyMethods

This section covers some of the most widely used methods in computational toxicology. In

many cases, the same techniques can also be utilized in drug development projects that are

not related to toxicology.

1.4.1 Dose-ResponseModeling

FritzHaber was aGerman chemist who received theNobel prize in chemistry in 1918 for the

invention of the Haber-Bosch process. However, he has also become known as the “father
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of chemical warfare” because of his experiments with toxic gases during the first world war.

During this time, he stated that the concentration of a gas (C) multiplied with the time of

exposure (t) can be used to determine the toxicity of a gas (K; Equation 1.1).151

C · t = K (1.1)

Although this equation is only applicable in some special cases, it has been widely adopted in

dose-response modeling and is known as “Haber’s law”.152

In general, dose-response modeling aims to find a relationship between the administered

dose of a substance and the occurrence of a biological effect such as mortality. Miller et al.

addressed the limitations of Haber’s law and showed that it is a special case of Equation 1.2,

where C is the administered concentration of a substance, C0 is a threshold concentration

below which no biological effects can be observed, K is a constant biological response (e.g.

mortality), t is the time at which response K can be observed, and α and β are parameters to

control the relative importance of C and t.153

(C− C0)
α · tβ = K (1.2)

They showed that Haber’s law corresponds to a special situation with no threshold concen-

tration (C0 = 0) and α = β = 1. In modern dose-response modeling, determining C0 and

fitting α and β to existing data allows to assess the risk of a chemical substance.154 However,

sinceK does not necessarily need to be defined as a toxicological response, the same approach

can also be used in pharmaceutical development.
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1.4.2 Physiologically-Based Pharmacokinetics

The purpose of physiologically-based pharmacokinetics (PBPK) includes the prediction of

drug-time profiles, first-in-humandose, drug-drug interactions, and pharmacokinetics across

age and race.155 In PBPKmodeling, different organs are considered in the form of individual

compartments connected by the blood system. Each of these compartments is described by

tissue volume, arterial and venous blood flow rate, a tissue-partition coefficient, and perme-

ability. Organs commonly included are the brain, thymus, lung, heart, stomach, pancreas,

spleen, intestinal tract, liver, kidneys, adipose tissue, muscle, and bone.156

PBPK models combine physiological information on the included compartments with

drug properties such as molecular weight, solubility, basicity or acidity, plasma protein bind-

ing, kinetics (usually Michaelis-Menten kinetics), and metabolic information. A large set of

(differential) equations is used to calculate and model pharmacokinetic aspects such as clear-

ance, mean residence time, or blood-plasma concentration ratio.157 Due to the high com-

plexity of these models, commercial PBPK platforms have been developed that allow easy

generation and use of such models.158,159

For the pharmaceutical industry, PBPKmodeling is fundamental for understanding drug-

time profiles and selecting, e.g., first-in-human doses. Since PBPK models provide informa-

tion on exposure to chemical substances, they are also valuable for toxicologists and regula-

tory bodies (where the method is sometimes referred to as physiologically-based toxicokinet-

ics).160,161

1.4.3 Rule-BasedModels

Rule-based systems, also called (human) expert systems, are models that leverage existing

knowledge about the toxicity of specific structural fragments. These fragments, or “struc-
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tural alerts”, have been experimentally connected to certain toxic endpoints. Generally, such

rule-based systems follow a simple if-then premise in which the probability of toxicity is de-

termined based on the presence of structural alerts. These systems can be further divided into

human and statistical expert systems. Human expert systems rely on clearly defined knowl-

edge obtained by human experts, while statistical systems try to correlate structural infor-

mation with outcomes using (mostly) regression models.162,163 Human expert systems are

generally more accepted because of their interpretability, but are also prone to a higher rate

of false negatives due to the still limited human understanding of toxicity mechanisms.163

Furthermore, the absence of a structural alert does not necessarily mean that the compound

is non-toxic.

This technology is routinely used in the prediction of mutagenicity and carcinogenic-

ity where many structural alerts have been identified.73,164–166 Expert systems are included

in several software packages, some of the most prominent being ToxTree167, Lazar168, and

Derek.169,170

1.4.4 Read-Across

In the 1860s, Alexander Butlerov recognized that chemicals with similar structures have sim-

ilar properties.171,172 This assumption is still used today in a method called read-across. In

read-across, properties of a query molecule are predicted based on the properties of one or

more similar “analog” molecules.173 These properties are usually toxicological (or pharma-

ceutical) endpoints, but can, in theory, also be of physicochemical nature.

Chemical similarity can be described in several different ways. Usually, chemical features

are encoded in (binary) feature vectors, called fingerprints, which can then be compared to

each other.174 To compare fingerprints, metrics such as the Tanimoto or Dice coefficient or

the Tversky index can be used.175–177 Chemical features can be extracted from 2D and 3D
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structures based on connectivity properties and chemical substructures.174,178 Commonly

used fingerprints include the Morgan fingerprint,179 Daylight fingerprint,180 and extended

connectivity fingerprints.181 Such molecular fingerprints are still often applied in research

and new fingerprints are regularly developed.182–185

1.4.5 Quantitative Structure-Activity Relationship

More than 60 years ago, Corwin Hansch and his colleagues published an article in Nature,

in which they described what is often considered the first quantitative structure-activity re-

lationship (QSAR) model.186 They found a way of correlating the octanol-water partition

coefficient (logP) with the Hammett substituent constant to predict the concentration of

auxins (plant growth regulators) that induces a 10% growth in their test system. Their model

is described in Equation 1.3, where C is the auxin concentration, π is an approximation of

the octanol-water partition coefficient, σ is the Hammett substituent constant, and k, k′, k′′,

and ρ are programmable parameters.

log(
1
C
) = kπ + k′π2 + ρσ + k′′ (1.3)

In their study, they found k = 4.08, k′ = 2.14, ρ = 2.78, and k′′ = 3.36 to give quite

accurate predictions.

More generally, a QSAR model is any kind of model that predicts a biological or toxico-

logical outcome based on (physico)chemical properties. This is formalized in Equation 1.4,

where Pc is the predicted outcome of compound c, f(·) is the QSARmodel, and θ is a feature

vector containing chemical properties of compound c.

Pc = f(θc) (1.4)
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Amodel that is trainedon congeneric compounds is called a localQSARmodelwhile a global

QSARmodel is trained on diverse chemical substances.154 LocalQSARmodels thereby have

a more limited applicability domain but are often more accurate than global QSARmodels.

There are various options to choose as models. They can be either linear, such as linear187

or multiple linear regression188 or partial least squares189, or non-linear like support vector

machines190, random forest191, K-nearest neighbor192, or artificial neural networks190. Sim-

pler models usually have better interpretability, while more complex models are better able

to capture complex relationships in the provided data.

Much consideration should be put into the selection of the chemical features used to train

a QSARmodel. Ideally, the chosen features should be relevant for the prediction of the end-

point, reduce the chance of overfitting, and be physically or chemicallymeaningful, thus pro-

viding good interpretability.154 Several methods such as forward selection, backward elimi-

nation, or genetic algorithms can be used to filter the often hundreds or even thousands of

calculated molecular descriptors.193–195

1.5 Drug-Target Interaction Prediction

The main part of this thesis focuses on the prediction of off-target interactions. Therefore,

it is essential to have an overview of existingmethods used to predict drug-target interactions

(DTIs). In this section, we will cover classical, machine learning-based, and deep learning-

based techniques for predicting DTIs. These DTIs can be of qualitative (e.g., the generation

of protein-ligand binding modes) or quantitative (e.g., the prediction of binding affinities)

nature.

Often, the terms artificial intelligence (AI), machine learning, and deep learning are used

interchangeably. However, the terms refer to different computational areas and should there-
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Figure 1.4: Relationship between AI, machine learning, and deep learning.

fore be distinguished (cf. Figure 1.4). AI covers all computational algorithms that resemble

human intelligence. Thus, simple QSAR models such as described in Section 1.4.5 can al-

ready be seen as AI systems. Machine learning is a subcategory of AI that includes algorithms

that can learn from data without explicit human instructions and make predictions based

on the learned parameters. Deep learning is itself a subcategory of machine learning which

involves the use of deep artificial neural networks.196 Hence, although deep learning andma-

chine learning are both AI systems, it is important to distinguish between these techniques.

1.5.1 ClassicalMethods

Molecular Docking

Molecular docking is a technique to generate protein-ligand binding complexes and approx-

imate their free energy of binding.197 Although molecular docking is most often applied to

smallmolecule-protein complexes, it can also be employed on protein-protein systems.198–202

However, in this overview, only docking of smallmolecules to proteinswill be covered. Many

different docking programs have been developed over the past decades, but their principles

are the same. Every docking program consists of at least two steps, the pose generation using

a search algorithm and the pose scoring using a scoring function.
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Search algorithms allow placing ligands within the binding site of a protein to generate

their predominant bindingmodes. They are usually classified as either systematic, determin-

istic, or stochastic.203 Systematic search methods most commonly use well-defined steps to

adapt the translation, rotation, and torsions of the small molecule to find optimal poses.204

Due to this combinatorial approach, they are generally good at sampling the conformational

space, but are also computationally expensive (depending on the defined granularity). Deter-

ministic search algorithms generate conformations based on previously generated poses by

following certain rules, e.g. to find energy minima. Stochastic methods, on the other hand,

include certain randomness. This method comprises commonly applied techniques such

as genetic algorithms,205,206 monte carlo,207,208 and simulated annealing.209,210 It should be

noted that the computational cost of a search algorithmusually heavily depends on the num-

ber of rotatable bonds of the small molecule. This happens because the search space increases

exponentially with the number of torsional degrees of freedom.

Each of the generated poses needs to be scored using a scoring function. Scoring functions

are usually either physics-based, knowledge-based, empirical, machine learning-based, or a

combination thereof.211 Physics-based scoring functions include the use of a force field that

describes the different interactions between the protein and the ligand. Examples for docking

programswith physics-based scoring functions areDOCK212 and LigandFit.213 Knowledge-

based scoring functions are derived from statistical observations in large libraries of exper-

imentally determined protein-ligand complexes and are included e.g. in PoseScore214 and

MotifScore.215 Programs such as smina208 andGlide216 include empirical scoring functions,

which include scaling factors for the individual interaction terms which can be tuned to fit

experimentally observed data. More recently, machine learning-based scoring functions have

emerged. While they are usually not directly included in a docking program, they are used for

re-scoring generated poses. The implemented scoring function is used to assess the quality
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of the generated poses and rank them accordingly. Gnina is a recent example of a docking

program that includes deep learning-based scoring functions.217

The quality of a ligand pose is usually validated on the basis of the rootmean squared devi-

ation (RMSD) to the crystal structure. An arbitrarily chosenRMSDthreshold of 2Å is often

applied to determine if a pose is considered “native” or not. Thus, poses with an RMSD of

less than 2Å to the experimentally determined pose are usually considered high quality.218,219

The use of RMSD, however, has some pitfalls. For example, it does not consider interaction

patterns. Thus, a ligand can have the same interactions as in the crystal structure while hav-

ing a large RMSD (e.g. in near-symmetrical ligands). Conversely, ligands can have a small

RMSDdue to, e.g. a small rotation of a small ligand but lose important interactions with the

protein. In this case the pose would not be considered correct although the RMSD may be

small. Additionally, ligands can have flexible, solvent-exposed tails. In these cases, the dock-

ing pose can often deviate from the crystal structure in these flexible parts of the ligand, while

the rest has good overlap. This would lead to an increased RMSD although the pose would

be considered correct.220 For this reason, alternatives to the use of the RMSD such as the

relative displacement error221 or the interactions-based accuracy classification222 have been

developed. While they address some of the shortcomings of the RMSD, they also have their

limitations and so far, no perfect pose-validation method is available.

Molecular docking can thereforebeused forqualitative (using thedockingpose) andquan-

titative (using the score) DTI prediction. However, it has some well-known limitations.

Most of the time, ligands are docked to rigid protein structures, which does not allow sim-

ulation of induced fit effects. Multiple tools allow flexible docking, in which the side chains

(and sometimes also the backbone) of the protein are treated flexibly and can therefore adapt

to the ligand.223–227 While these methods can give more accurate results, they are also much

more computationally expensive due to the explosion of degrees of freedom. Especiallywhen
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using rigid-body docking, sampling of high-quality poses can become a limitation of the per-

formance.228 Even in the case where good poses can be sampled, the scoring functions are

often not very accurate, leading to a wrong ranking of poses and to wrong estimations of the

binding free energy.229,230Often, docking toolsworkwell in certain protein groups andworse

on others.230 Thus, the use of a consensus approach in which several different programs are

applied is often preferred.231,232

MolecularMechanics - Generalized Born Surface Area

While molecular docking is generally fast, its predicted binding affinities are also inaccurate.

Molecular mechanics/generalized born surface area (MM-GBSA) is a method that usually

provides better predictions but comes at a higher computational cost.233,234 It calculates the

binding free energy by comparing the energy of the protein-ligand bound state with the un-

bound state. This is shown in Equation 1.5 where GP−L, GP, and GL are the energy of the

protein-ligand complex, unbound receptor, and unbound ligand, respectively.

ΔGbind = GP−L − (GP + GL) (1.5)

Each energy term is thereby defined as a combination of a molecular mechanics force field

contribution, a solvation free energy contribution, and a term for the conformational en-

tropy. Equation 1.6 shows this relationship.

GX = EMM
X + Gsolv

X − TSX (1.6)

Where EMM
X is the molecular mechanics contribution, usually calculated based on a force

field, Gsolv
X is the solvation free energy contribution, and TSX is the conformational entropy
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term. The solvation free energy is defined asGsolv
X = GGB

X +GSA
X , whereGGB

X represents the gen-

eralized Born solvation term and GSA
X is a nonpolar solvation term, usually calculated using

the solvent-accessible surface area. The generalized Born solvation term is an approximation

of the generally more accurate but also more computationally expensive Poisson-Boltzmann

electrostatic contribution and is used to calculate the solvation free energy in implicit sol-

vent.235,236 Directly using the Poisson-Boltzmann equation to calculate the solvation free en-

ergy would turn this method into molecular mechanics / Poisson-Boltzmann surface area

(MM-PBSA).

MM-GBSAandMM-PBSAcanbeused for single-point free energy calculationsofprotein-

ligand complexes generated by molecular docking. However, it is often applied to a set of

snapshots from molecular dynamics simulations. This allows to account for flexible adap-

tation of the binding site residues as well as averaging over different conformations. In this

approach, when combining Equations 1.5 and 1.6, the binding free energy is defined accord-

ing to Equation 1.7.

ΔGbind = ⟨ΔEMM⟩+ ⟨ΔGsolv⟩ − ⟨ΔTS⟩ (1.7)

In this equation, ⟨·⟩ represents the average over all states generated by molecular dynamics

simulation.

Free Energy Perturbation

Free energy perturbation (FEP) is a method based on statistical mechanics to accurately cal-

culate absolute or relative binding free energies. Since FEP methods require running many

molecular dynamics simulations, they have a high computational cost. To understand FEP,

we first have to define how the energy in a closed system is described. Equation 1.8 shows the
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definition of theHelmholtz free energy F as the difference between the internal energyU and

the product of temperature T and entropy S.

F = U− TS (1.8)

The internal energy can also be described as the sum of the energies E of all microstates in a

systemmultiplied with the probability pi of a system being in microstate i (Equation 1.9).

U =
∑
i

Eipi (1.9)

Further, the entropyS can alsobedefined in termsof theprobabilities ofmicrostates as shown

in Equation 1.10.

S = −kB
∑
i

pi ln pi (1.10)

Where kB is the Boltzmann constant. Therefore, the Helmholtz free energy can also be de-

fined as shown in Equation 1.11.

F =
∑
i

Eipi + kBT
∑
i

pi ln pi (1.11)

Wecan further simplify this definitionusing thepartition functionZdefined inEquation1.12.

Z =
∑
i

exp

(
− Ei

kBT

)
(1.12)

By rearranging the partition function to isolateEi, we can simplifyEquation1.11 to get Equa-

tion 1.13.

F = −kBT ln

(∑
i

exp

(
− Ei

kBT

))
(1.13)

23



This function can be used to calculate the absolute or relative free energy of protein-ligand

systems.

There aremany different ways to calculate absolute binding free energies using FEP.237–239

Generally, a system is simulated in an unbound stateA and the sampled ligand configurations

are mapped into a protein binding site to obtain the bound state B. The binding free energy

can then be calculated based on the difference between the bound and unbound states. This

is shown inEquation 1.14where ⟨·⟩A represents the ensemble average over the configurations

sampled from state A.

ΔF = −kBT ln

〈
exp

(
− EB − EA

kBT

)〉
A

(1.14)

Calculating the absolute binding free energy thisway is often verydifficult because simulating

the ligand in the unbound state usually does not efficiently sample the conformations the

ligand would assume in a bound state. Therefore, absolute binding free energy calculation

with FEP often suffers from a sampling problem.

For this reason, the relative binding free energy is usually preferred, as it is easier to calcu-

late. This method calculates the relative difference in binding free energy of two structurally

similar molecules. This can be achieved by using the thermodynamic cycle such as in Fig-

ure 1.5. In this cycle, ΔF1 and ΔF2 represent the binding free energies of ligands A and B,

respectively, ΔF3 represents the alchemical transformation of unbound ligandA to unbound

ligand B and ΔF4 represents the alchemical transformation of bound ligand A to bound lig-

and B. In this case, ΔF1 + ΔF4 − ΔF2 − ΔF3 = 0 must be true by the definition of the

thermodynamic cycle. Therefore, we can state that ΔF2 − ΔF1 = ΔF4 − ΔF3. This means

that instead of directly calculating and comparing the binding free energies of ligands A and

B (ΔF1 andΔF2), one can also calculate the alchemical transformation of ligandA to ligandB
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Figure 1.5: Thermodynamic cycle used in relative binding free energy calculation using FEP. Although not shown in
the figure, the protein and ligand are assumed to be solvated in water. The ligands represented by green and orange
surfaces are structurally highly similar.

in the unbound and bound state (ΔF3 and ΔF4). Since in this approach, it is not necessary

to change from unbound to bound state or vice versa, the sampling of low-energy conforma-

tions is much easier. The transformation from one ligand to another is thereby simulated in

several intermediate steps (called Lambda windows). This necessity for many intermediate

simulations is the main reason why FEP calculations are so computationally expensive.

Due to their rigorous sampling and solid foundation in physical principles, FEP methods

are currently considered the gold standard for free energy calculation, apart from quantum

mechanical methods.240–242
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1.5.2 Machine Learning-basedMethods

Machine learning-based techniques forDTI prediction can be roughly divided into two cate-

gories. The first category contains similarity-basedmethods and the second category contains

feature vector-based methods. Although there are other types of methods, such as matrix

factorization or network-based approaches, these will not be covered here. For more detailed

information about all of these methods, several reviews can be consulted.243–247

Generally, feature vector-basedmethods require the extractionof sets of features fromdrug

molecules and target proteins. Intuitively, the selection of these features can greatly influence

the performance of amodel.248 Features that do not adequately capture the information con-

tained in the underlying datamake it difficult for amodel to learn complex relationships. On

the other hand, features that are too specific can increase the chance of overfitting. Different

types of molecular fingerprints (see Section 1.4.4) and physicochemical or structure-derived

descriptors are used to represent small molecules.249 For the presentation of proteins, sev-

eral methods have been developed over the past decades. These include the position-specific

scoring matrix,250 pseudo amino acid composition,251 dipeptide composition,252 Compo-

sition, Transition and Distribution,253 enhanced amino acid composition,254 and dipeptide

deviation from expectedmean.255 There are also tools that automatically create vector repre-

sentations of proteins.256

The extracted drug and protein feature vectors are used as inputs to variousmachine learn-

ing models that allow classification or regression, including support vector machines, K-

nearest neighbor, logistic regression, decision trees, and random forest models.257–259

Selecting the best features for feature vector-based methods can be difficult. Similarity-

based methods do not have this problem. For these methods, a similarity matrix is needed

for both the drugs and the targets. A very commonly used method in this field is the nearest
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neighbor method. In this method, the most similar drug or target (i.e., the nearest neighbor)

is used to predict interaction pairs of new drugs or targets. For example, Equation 1.15 shows

how the interaction profile of a new drug (pdnew) could be predicted based on the similarity

sd(·, ·) between the new drug dnew and its nearest neighbor dnearest, and the interaction profile

of the nearest neighbor (pdnearest).

pdnew = sd(dnew, dnearest)pdnearest (1.15)

Bipartite local models are another similarity-based method. In this technique, bipartite

graphs of drugs and targets are constructed in which the edges between drugs and targets

symbolize the existence of an interaction between them. This method is especially useful if

information about interactions between drugs and targets in the graph is missing. For exam-

ple, consider the case where the information on the interaction between drug di and target tj

is missing, but di has known interactions with other targets in T = {t1, t2, ..., tn} and target

tj has known interactions with other drugs inD = {d1, d2, ..., dn}. In this case, a vector vdi

can be constructed by checking for edges between di and all other targets in T. If there is a

known edge to t1, element 1 in vdi would be set to 1, if there is no edge, it would be set to−1.

This process is repeated for all targets in T (excluding tj). The same approach can be used to

create a vector vtj by checking the edges between the target tj and the drugs in D (excluding

di). These vectors can then be used to predict the presence or absence of an edge between di

and tj by using a support vector machine.247,260,261

Another similarity-based technique that uses support vector machines is the pairwise ker-

nel method. This approach uses the similarity between drugs (kernel function sd(·, ·)) and

targets (kernel function st(·, ·)) to compute the similarity between drug-target pairs (pairwise
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kernel sdt(·, ·)) as shown in Equation 1.16.

sdt((di, ti), (dj, tj)) = sd(di, dj) · st(ti, tj) (1.16)

A drug-target pair similaritymatrix can then be used to train a support vectormachinewhich

predicts new drug-target interactions. Compared to bipartite local models, this approach is

more efficient because it uses a single model that generalizes to all drug-target pairs.247,262

Unlike the classical methods introduced in Section 1.5.1, these machine learning-based

methods donot require 3D structures of proteins or ligands as input. Due to the general spar-

sity of such 3D data, this allows these methods to be used on much larger existing datasets.

However, for the same reason, they are often not as interpretable as 3D-based methods such

as molecular docking.

1.5.3 Deep Learning-basedMethods

In the field ofAI, deep learning hasmade huge progress in recent years. It revolutionizedmul-

tiple fields such as speech recognition,263 image generation,264 real-time object detection,265

robotics,266 and protein structure prediction.267 Most recently, ChatGPT, a large language

model developed by OpenAI has disrupted society beyond the scientific community.268–270

In this section, we will cover some deep learning-based approaches to tackle the problem of

DTI prediction.

Convolutional Neural Networks

Convolutional neural networks (CNNs) usually combine convolution operations and pool-

ing layers followed by a fully connected layer. In a convolution operation, a kernel is applied

to the input tensor. A kernel is a tensor that contains learnable parameters and is usually
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Figure 1.6: Convolution operation in a CNN. The pair‐wise product of the kernel and the current window in the input
tensor is calculated and the result is summed to form the feature map. The kernel is shifted across the input tensor
and this operation is repeated for every step. Figure reproduced from Yamashita et al.271, licensed under the Creative
Commons Attribution 4.0 International License, 272 with minor changes.

smaller than the input tensor. The input tensor can be 1-, 2-, or 3-dimensional and the ker-

nel must match its dimensions. During convolution operations, the kernel is shifted across

the input tensor and for every position, the element-wise product between the current win-

dow of the input tensor and the kernel is calculated and summed (see Figure 1.6 for a visu-

alized convolution operation).271 Normally, a pooling layer follows after a convolution layer

to reduce the size of the tensor. This combination of convolutional layers and pooling layers

allows CNNs to capture shift-invariant features of the input data and detect patterns. Most

often, the final layer is flattened and passed through a fully connected layer to make a predic-

tion for a given task. CNNs are mostly applied in computer vision, but they can also be used

for DTI prediction.

CNNs can be used to create fairly simplemodels such as the one proposed byHasanMah-

mud et al.273They applied a 1DCNNto feature vectors (similar to those used in themachine
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learningmethods introduced in Section 1.5.2) to predictDTIs. In their paper, they show that

this simple method outperforms classical machine learning models such as K-nearest neigh-

bors or extreme gradient boosting.

Monteiro et al. used a 1DCNN to learn DTIs from a combination of protein amino acid

sequences and ligandSMILES strings.274They also combined theCNNwith an autoencoder

trained on protein and ligand features. Autoencoders are a specific type of encoder-decoder

network that can be used for unsupervised learning. The encoder maps the input data into

so-called latent space. This latent space usually has a lower dimensionality than the input

and acts as an information bottleneck. The decoder then tries to recreate the input from the

latent space encoding. Thus, to successfully reconstruct the input, the model must learn to

encode as much relevant information in the latent space as possible. This method can also be

seen as a form of compression where the latent space encoding acts as the compressed data.

In the study by Monteiro et al., the combination of a CNN with an autoencoder did not

significantly improve performance over a CNN alone.274

Mahmoud et al. used a 3D CNN to predict protein-ligand binding affinities based on

3Dprotein-ligand complexes.275They showed that this approach significantly outperformed

the AutoDock Vina docking program in finding native ligand poses.276 Furthermore, they

demonstrated how the inclusion of explicit water molecules in their predictions further im-

proved performance and they were able to correctly identify a native pose under the first-

ranked pose in almost 90% of the cases.275

GraphNeural Networks

Amolecule can also be seen as a graphG = (V,E) consisting of vertices (atoms)V and edges

(bonds) E. This fact is leveraged in graph convolutional networks (GCNs). The following

introduction toGCNs is based on the original publication byKipf andWelling, the inventors
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of GCNs.277 In a GCN, each node xi is described in aN×D feature matrixXwhereN is the

number of nodes andD is the number of features describing each node. The graph structure

is usually provided in form of an adjacency matrix A. The goal of a GCN is to update the

node featuresX to use them to predict a downstream task. The updated node featuresZ can

bewritten asZ = f(X,A)where f(·, ·) is a non-linear function. Generally, aGCNconsists of

L layers and the node features are iteratively updated layer by layer. The update of the node

features can be described by Equation 1.17.

Hl+1 = f
(
H(l),A

)
(1.17)

Here,H represent the hidden (intermediate) representation of the node features withH(0) =

X andH(L) = Z. In its simplest form, the non-linear function f(·, ·) can be described accord-

ing toEquation1.18where σ(·) is a non-linear activation function andW(l) is aweightmatrix

of layer l.

f(H(l),A) = σ
(
AH(l)W(l)) (1.18)

In their publication,Kipf andWellingprovide an example for aGCNconsisting of two layers.

This is described in Equation 1.19.

Z = f(X,A) = softmax
(
ÂReLU

(
ÂXW(0))W(1)) (1.19)

It should be noted that here, A is defined as A + I where I is the identity matrix. This is

done to add self-connections to the nodes (i.e., to allow them to be updated by themselves).

They further defined Â = D̂− 1
2AD̂− 1

2 where D̂ is the diagonal node degree matrix, which

represents a symmetric normalization introduced to retain the scale of the node features after

the graph convolution operations.
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Lim et al. used a GCN on 3D protein-ligand binding modes to predict DTIs.278 They

showed that thismethod outperformedCNNs inmost tasks. They also created amodel with

an additional gated attention mechanism which further improved the performance. While

CNNs are translation-invariant, they are not invariant to rotations and scaling. GCNs on

the other hand, are invariant to translation and rotation (scaling is usually not an issue with

molecular graphs) as long as no explicit atom coordinates are provided. This may be one

reason for the better performance of GCNs over CNNs reported by Lim et al.

Deep learning is often seen as a black box and is considered to lack interpretability.279

This could be improved by integrating more physics into otherwise uninterpretable models.

Moon and colleagues created PIGNet, a “physics-informed deep learningmodel toward gen-

eralized drug–target interaction predictions”.280 They used a gated graph attention network

(a special form of GCN) to predict node features in 3D protein-ligand complexes. These

node featureswere thenused as parameters for a physics-based scoring function that is directly

integrated into the model. Their scoring function contained terms for hydrogen bonding,

van der Waals interactions, hydrophobic interactions, and interactions with metals. These

terms were used to calculate atom-atom pairwise binding energies. The partial binding en-

ergies of all atom pairs were then summed up to obtain a final score. They recently pub-

lished an improved version of PIGNet which includes an additional entropy regularization

based on the number of rotatable bonds in a molecule.281 They show that their model is on

par or better than many deep learning-based and classical DTI prediction methods. By cal-

culating interaction energies based on atom-atom pairs, Moon et al. effectively remove all

explicit information on the ligand and protein atomic environment. This may benefit the

generalizability of the model. In this regard, Volkov and colleagues reported that the use of

explicit non-covalent protein-ligand interactions does not improve a model’s performance if

explicit structural information about the protein and ligand is provided.282 They suggested
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that in these cases, themodel primarily learns tomemorize structures. Thismeans that such a

model will perform well on input that is similar to the training data, but may perform badly

for structurally different data. Therefore, such a model will not be much better than any

similarity-based method and will share its limitations. Thus, trying to remove what Volkov

et al. call “hidden biases” may be essential for the development of generalizable models.

TransformerModels

In 2017, Vaswani et al. published an article in which they introduced a novel model archi-

tecture for natural language processing called the Transformer model.283 Since then, this

model architecture (and adaptations thereof) has been used in some of the most powerful

deep learning models known so far. This includes AlphaFold2 for the prediction of protein

structures267 andChatGPT, the groundbreaking large languagemodel byOpenAI.270Trans-

formers are encoder-decoder networks that act on sequences. There are two parts that con-

tribute greatly to their success. These are the positional encoding and the scaled dot-product

attention mechanism. Positional encoding is required to provide a sense of the order of ele-

ments in a sequence. This step is required because the Transformermodel does notmake use

of convolutions or recurrence. In the original article, they used a combination of sine and

cosine functions with different frequencies to encode a sequence. The attention mechanism

uses queries, keys, and value matrices. This is described in Equation 1.20, whereQ,K, andV

are tensors containing the queries, keys, and values, and dk is the dimensionality of the keys.

attention(Q,K,V) = softmax
(
QKT
√
dk

)
V (1.20)

The scaling by 1√
dk
is added for increased stability by preventing vanishing gradients in cases

where dk is very large. In self-attention, the same tensor is passed through three different
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linear layers to obtain Q, K, and V. This is shown in Equations 1.21 where X is the input

tensor and WQ, WK, and WV are the learnable weigths to calculate the queries, keys, and

values, respectively.

Q = XWQ

K = XWK

V = XWV

(1.21)

In cross attention, the keys and values are generated by the encoder and the queries are pro-

vided by the first multi-head attention block in the decoder. Further details about the archi-

tecture of Transformers can be found in the original publication.283 Classical Transformers

that are used, e.g., for language translation, predict sequences element by element where each

prediction depends on the previously predicted elements. Suchmodels are called autoregres-

sive.284–286

Since their first introduction, Transformers have not only been used on sequence-based

data such as text and amino acid sequences. With minor adaptations, Transformers can also

work onmolecular graphs and have been often used to predict DTIs.287–292 In the works pre-

sented in Chapters 2-5, we also employed Transformer models for different tasks.

In recent years, diffusion models have gained increased attention. These models work by

gradually adding noise to data and training amodel to denoise the data again. This allows the

trained model to generate new data from noise with possible conditioning to guide the gen-

eration. An overview of diffusion models is provided by Croitoru et al.293 Diffusion models

have also been used to tackle the DTI problem. DiffDock used reverse diffusion of random

starting poses of small molecules to denoise translational, rotational, and torsional degrees of
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freedom to generate valid protein-ligand binding poses.294

RoseTTAFoldAll-Atomwasdeveloped in the labofDavidBaker and is another generative

diffusion model used in DTI prediction. Extending the functionality of AlphaFold2, this

model is able to generatenot only 3Dstructures of proteins, but also completeprotein-ligand,

protein-nucleic acid, protein-metal, and covalently modified protein structures.295

Finally, Bryant et al. from Frank Noé’s group have developed Umol, a universal molec-

ular network.296 This model does not have a diffusion-based architecture, but follows the

evoformer approach that was already used in AlphaFold.297,298 Similar to RoseTTAFold All-

Atom,Umol is also capable of predicting full-atomistic protein-ligand complexes. According

to their article, it performs better than DiffDock and RoseTTAFold All-Atom in predicting

correct binding poses.

1.5.4 Datasets

In a newspaper article published in 1957 in The Times, William D. Mellin, a US Army Spe-

cialist, was quoted to say “If the problem has been sloppily programmed, the answer will be

just as incorrect. If the programmer mademistakes, the machine will make mistakes. It can’t

correct them because it can’t do one thing. It cannot think for itself”.299 In this sense, the

term “garbage in, garbage out” was coined. It refers to the assumption that flawed or erro-

neous input data will lead to equally flawed output data. In deep learning, where data are at

the core, this concept is fundamental. Therefore, researchers need to train their models with

the right data of the right quality.

For the problemofDTI prediction, several databases are available. One of themost widely

used is the PDBbind dataset.300,301 In its latest 2020 release, this database contains the 3D

crystal structures ofmore than 19,000 protein-ligand complexes with accompanying binding

affinity data. The PDBbind set is divided into three distinct parts: the general, the refined,
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and the core set. The general set is the largest of the three and contains structures of some-

times questionable quality. This is because there are no quality criteria for the structures

in the general set and they can therefore suffer, for example, from poor resolution, artifacts

introduced by interactions with crystal mates, or multiple co-crystallized ligands in a single

binding site. The refined set is formally a subset of the general set, but with the growing size

of the PDBbind database, it has been distributed separately. It contains more than 5,000

protein-ligand complexes that meet certain quality criteria. These criteria concern the in-

cluded 3D structures (e.g., structures should not have a low resolution> 2.5 Å, covalently

bound ligands, or obvious steric clashes between the protein and the ligand) and the asso-

ciated binding data (e.g., the affinity data should be Ki/Kd rather than IC50, the reported

affinity should be an exact value between 10mM and 1 pM, and the protein used in the assay

should match the crystal structure). These are arguably critical quality checks, and omitting

them could be detrimental to a deep learning model trained on these data. Finally, the core

set is a small subset of the refined set with high diversity that is often used for benchmark-

ing. Except for the core set, the PDBbind database receives annual updates. Chapter 2 of

this thesis investigates the impact of different parts and splits of the PDBbind dataset on the

performance of a deep learning model for DTI prediction.

Recently, Siebenmorgen et al. addressed some of the issues of the PDBbind dataset.302

They used semi-empirical quantum mechanical methods to refine the almost 20,000 struc-

tures in this dataset. In addition, they ran 10 ns long molecular dynamics simulations of

almost 17,000 complexes in explicit solvent. They suggest that their dataset is more suitable

for AI-based methods due to its superior quality. The dataset is distributed under the name

MISATO.303

TheSchrödinger FEPbenchmark set contains 103protein structures from14 subsets.240,304

Each protein has an associated set of ligands with experimental binding free energies. This
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dataset has been used to benchmark Schrödinger’s FEP+ tool and to analyze the maximum

achievable accuracy of relative binding free energy calculation.

TheBindingMOAD(“MotherOfAllDatabases”) currently contains over 40,000protein-

ligand complexes obtained from thePDB.305–307 Formore than 15,000 complexes, additional

binding data are provided. This database only includes complexes where the ligand is either a

small molecule, a co-factor, a peptide of notmore than 10 amino acids, or an oligonucleotide

with less than 5 nucleotides. Only crystal structures with a resolution of at least 2.5 Å are

considered.

TheDavis andKiBA sets are two commonly used benchmark datasets containing binding

affinity information for kinase inhibitors.308,309TheDavis set contains 72 inhibitors thatwere

tested against 442 kinases, while theKiBAdataset includes 467 kinases andmore than 50,000

compounds, although not all of these were tested against all kinases.

While the PDB is by far the most popular database for experimentally determined protein

structures (e.g. from X-ray, cryo EM, or NMR),307 several different databases provide infor-

mationon thebinding affinities of ligands. Themostnotable arePubChem,310, ChEMBL,311,

and BindingDB.312 According to their statistics, PubChem alone contains more than 100

million unique compounds and almost 300 million reported bioactivities.
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If the problem has been sloppily programmed, the answer

will be just as incorrect. If the programmermademistakes,

the machine will make mistakes.

William D.Mellin

2
Critical Assessment of Dataset Quality for

Protein-Ligand Interaction Prediction

As described in the previous chapter, the quality of a dataset is fundamental to training

deep learning models. We investigated the effects of different treatments of the PDBbind

dataset on the performance of a deep learningmodel. Additionally, we developed a novel tool

for the physics-based identification of protein-ligand interactions and compared it to well-

established and commonly used tools. The following article was published as a preprint.1
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2.1 Abstract

The efficient and accurate prediction of protein-ligand binding affinities is an extremely ap-

pealing yet still unresolved goal in computational pharmacy. In recent years, many scientists

have taken advantage of the remarkable progress of deep learning and applied it to address

this issue. Despite all the advances in this field, there is increasing evidence that the typi-

cally applied validation of thesemethods is not suitable formedicinal chemistry applications.

This work assesses the importance of dataset quality and proper dataset splitting techniques

demonstrated on the example of the PDBbind dataset. We also introduce a new tool for the

analysis of protein-ligand complexes, called po-sco. Po-sco allows the extraction of interac-

tion information with much higher detail and comprehensibility than the tools available to

date. We trained a transformer-based deep learning model to generate protein-ligand inter-
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action fingerprints that can be utilized for downstream predictions, such as binding affinity.

When using po-sco, this model generated predictions that were superior to those based on

commonly used PLIP and ProLIF tools. We also demonstrate that the quality of the dataset

is more important than the number of data points and that suboptimal dataset splitting can

lead to a significant overestimation of model performance.

2.2 Introduction

Protein-ligand interactions, which drive molecular recognition processes play a crucial role

in many biological processes. The accurate prediction of binding affinities associated with

such interactions belongs to the most important tasks in drug design. In recent years, var-

ious computational methods have been conceived and developed to predict protein-ligand

binding affinities, which can help guide drug discovery efforts and reduce the time and cost

associated with experimental screening2–12.

2.2.1 Prediction of binding affinities

A well-established approach to create protein-ligand binding modes is molecular docking.

This method employs algorithms that search for the optimal orientation and conformation

of the ligand (referred to as pose) within the active site of the protein and then try to quantify

the binding energy based on the interaction between the protein and the ligand13–17. While

it is relatively simple and fast, it is not very accurate in predicting binding affinities18–21. An-

other method that has gained increasing importance during the last decade is free energy per-

turbation (FEP). It relies on molecular dynamics simulation to calculate the change in free

energy upon binding of the ligand to the protein. This method can deliver predictions of rel-

ative and absolute binding affinities of chemical accuracy, but is computationally extremely
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demanding7,22–25. Other computational methods for predicting binding affinities include

molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechan-

ics generalized Born surface area (MM-GBSA), which involve the calculation of binding free

energies using molecular mechanics force fields and implicit solvation models26–28. The de-

velopment of these computational methods has facilitated the prediction of protein-ligand

binding affinities and has the potential to accelerate drug discovery and design efforts. How-

ever, most of thesemethods still suffer from either poor accuracy or high computational cost.

In recent years, deep learning approaches have gained popularity for predicting protein-

ligand binding affinities. Deep learning models use artificial neural networks to learn the

complex relationships between the molecular features of the protein and ligand and their

binding affinity29. A commonly used approach is the use of convolutional neural networks

(CNNs) to predict binding affinities. These models usually take 1- or 3-dimensional rep-

resentations of the protein and ligand as input and use convolutional layers to extract local

features from the structures. The extracted features are then fed into fully connected layers to

predict the binding affinity30–32. Although CNNs excel at translational invariance, they are

not rotationally invariant, which may cause problems when working with 3-dimensional in-

put data. Another common deep learning approach for the prediction of binding affinities is

the use of graph neural networks (GNNs). GNNs operate onmolecular graphs, where atoms

are considered as nodes and chemical bonds as edges. These models can learn the molecu-

lar representation of protein binding sites and ligands from their graph structure. GNNs

are commonly used to predict binding affinity by considering binding site residues, ligand

atoms, and interactions between them on the molecular graph33–37. When implemented

correctly, GNNs can have translational, rotational, and reflection equivariance (i.e. E(3)

equivariance)38. Recently, transformer models39 have shown great promise in many differ-
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ent fields40–44. In protein-ligand interaction prediction, these models take advantage of the

power of self- and cross-attentionmodules to analyze complex interactions between proteins

and ligands and predict their binding affinity with seemingly high accuracy45,46. A key ad-

vantage of transformermodels is their ability tomodel long-range dependencies in sequence-

based data and capture complex interactions between amino acids and ligands. This is criti-

cal for accurately predicting binding affinities, as these interactions can be highly specific and

context-dependent.

So far, deep learning approaches have shownpromising results inpredictingprotein-ligand

binding affinity and have the potential to further advance the field of drug discovery and de-

sign. However, the development of accurate deep learning models for predicting binding

affinity requires large amounts of high-quality data and careful selection of molecular fea-

tures to incorporate into the models. In this work, we use a transformer-based model that

uses self- and cross-attention to learn from residue-ligand interaction fingerprints to predict

binding affinities and protein-ligand interaction fingerprints.

2.2.2 Biases in binding affinity prediction

While deep learning approacheshave great promise inpredictingprotein-ligandbinding affini-

ties, they are susceptible to various biases that can limit their accuracy and generalizability.

The data used to develop a deep learningmodel canbe amajor source of bias. Suchbias can

have various origins, for example if the training data used to develop themodels are not repre-

sentative of the true distributionof protein-ligandbinding affinity data. This canhappendue

to, e.g. the limited availability of high-quality binding affinity data, the uneven distribution

of binding affinity values, or the use of biased selection criteria for the data. To objectively

assess the performance of amodel, it is absolutely vital to avoid any overlap between training,
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validation, and test sets. As a result of such bias, trained models may not be able to accu-

rately generalize to new data outside the training set, leading to overfitting. Fan and Shi have

demonstrated that the overlap of proteins and ligands in the test and training set greatly in-

fluences the apparent performance of the model and leads to a severe overestimation of the

capabilities of themodel47. They also proposed that such a bias has a greater influence on the

performance of a model than its architecture.

Another potential bias in deep learning models is feature bias, where the features used to

train the models do not capture all the relevant information about protein-ligand interac-

tions. For example, if the features used only capture the geometric properties of the protein

and ligand, theymaynot account for the dynamic changes that occur during the binding pro-

cess. Feature bias can also occur if the features used contain too much information, causing

themodel to overfit. Volkov et al. showed that using 3D information of proteins and ligands

often introduces bias if molecular structure information is provided directly to the model48.

For example, if the fully atomistic structure of the ligand and/or binding site, or the protein

sequence is provided to a neural network, it often learns to memorize the specific data and

does not generalizewell. They proposed that instead of directly using structural information,

one should rely only on extracted interactions between the protein and the ligand.

To overcome bias, it is important to carefully curate high-quality datasets that accurately

represent the range of binding affinity values, meticulously split the data into training, vali-

dation, and test sets, and carefully select the input features of the model.

2.2.3 Types of protein-ligand interactions

The analysis of protein-ligand interactions in a structural complex is critical to understanding

the bindingmechanism and designing new therapeutics. Thus, it seems logical that a detailed
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analysis of protein-ligand interactions may aid deep learning models to properly learn bind-

ing affinities. One way to analyze these interactions is to identify, enumerate, and quantify

specific types of molecular interactions recognized in physics and chemistry, such as hydro-

gen bonds, salt bridges, hydrophobic interactions, pi-pi, sigma-pi, pi-cation interactions, and

halogen bonds.

Hydrogen bonds are arguably the most common and important specific molecular inter-

actions in protein-ligand complexes. These interactions occur between a hydrogen atom car-

rying a partial positive charge (typically due to an electron-withdrawing carrier atom or func-

tional group) and an electronegative atom featuring a lone electron pair, such as oxygen or

nitrogen. The strength of a hydrogen bond depends on the distance and angle between the

atoms involved, as well as polarization effects. Analyzing hydrogen bonds can not only pro-

vide informationon the strength of a ligandbinding to a protein, but also on the specificity49.

Charge-assisted interactions like salt bridges are the strongest type of intermolecular inter-

actions. Salt bridges are formed by the electrostatic attraction of oppositely charged atoms

or functional groups. This type of interaction can be crucial to stabilizing the protein-ligand

complex if the ligand contains charged functional groups, also due to its long range compared

to other interactions50. Therefore, recognition of salt bridges, but also potentially unsatis-

fied charged moieties missing counterparts or even repulsive interactions in a protein-ligand

complex is imperative for correctly estimating binding affinities.

Although generally weaker than polar interactions if quantified per interacting atom pair,

hydrophobic interactions - due to their numerous occurrence - are a key contributor to the

strength of a protein ligand complex49. These interactions arise from the close proximity of

non-polar atoms that shield each other from unfavorable interactions with water (hydropho-

bic). Ferreira de Freitas and Schapira found that high-efficiency ligands often show numer-

ous hydrophobic interactions when analyzing protein-ligand interactions in the protein data
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bank (PDB)51.

Pi-pi interactions are a specific type of dispersion forces and typically occur between large

planar functional groups with pronounced electron delocalization like aromatic rings51,52.

These interactions can be important in stabilizing the protein-ligand complex and can pro-

vide additional specificity (besides directionalH-bonds and salt bridges) for ligandbinding49.

Since pi-pi interactions have been found to be the third most common protein-ligand inter-

action in the PDB, identifying different forms of pi-pi interactions (such as face-to-face pi-pi

and T-shaped sigma-pi) is important for the analysis of binding complexes51. Pi-cation inter-

actions are another type of non-covalent interaction that occurs between a positively charged

group, such as ametal cation, protonated amine, or guanidinium group, and an electron-rich

π-system. Although pi-cation interactions are not as common as pi-pi stacking, these inter-

actionsmay be important for stabilizing protein-ligand complexes and can also contribute to

ligand binding specificity51.

Halogen bonds are a type of non-covalent interaction that occurs between a halogen atom

beyond fluorine (such as chlorine, bromine, or iodine) and either an electrophile or a nu-

cleophile atom depending on the geometry. Most halogen bonds consist of interactions be-

tween a regionof thehalogenwith lowelectrondensity (called the sigmahole) and electroneg-

ative atoms such as oxygenor nitrogen featuring a free electronpair. However, halogenbonds

can also form between a halogen atom’s electron-rich belt and electropositive atoms, such as

polarized hydrogens. While the former have a linear geometry (i.e. the angleC-X· · ·Ois close

to 180°), the latter halogen bonds prefer a perpendicular setup (i.e. the angle C-X· · ·Hpolar

is close to 90°)53,54. Thus, as with hydrogen bonds, the strength of halogen bonds depends

on the distance and angle between the atoms involved.

In general, analysis of specificmolecular interactions in protein-ligand complexes can pro-

vide valuable insight into the binding mechanism and can inform the design of novel ther-
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apeutics. By understanding the specific interactions involved in protein-ligand binding, re-

searchers can design more effective drugs with higher binding affinity and better selectivity.

The detailed analysis ofmolecular interactions can also help computational scientists develop

tools and models for various predictions in the field of drug design or toxicology.

There are a few tools that allow the generation of protein-ligand interaction fingerprints.

The two most widely used tools are PLIP55 and ProLIF56. PLIP allows the detection of

hydrophobic interactions, hydrogen bonds, aromatic stacking, pi-cation interactions, salt

bridges, water-bridged hydrogen bonds, halogen bonds, and metal interactions. The newer

ProLIF tool allows for detecting hydrophobic interactions, hydrogen bonds (distinguishing

between accepting and donating groups), pi-pi stacking (edge-to-face and face-to-face), pi-

cation and cation-pi interactions, salt bridges (with differentiation between cationic and an-

ionic groups in the ligand), donating and accepting halogen bonds, as well as donating and

accepting metal interactions. Although these tools are sufficient for the analysis of the most

common interactions, they lack more sophisticated functionalities: in particular, the differ-

entiation between backbone and side-chain hydrogen bonds, linear (to nucleophiles) and

perpendicular (to electrophiles) halogen bonds, the detection of polarized hydrogen bonds,

and repulsive interactions. To address these points, we developed a custom tool for protein-

ligand interaction analysis, which is the most sophisticated tool to our knowledge so far. We

call our tool po-sco (as an abbreviation of pose-scorer).

2.2.4 The PDBbind dataset

Atpresent, several datasets are commonlyused to train artificial intelligencemodels to predict

protein-ligand binding affinities. These datasets vary in size, diversity, and quality, and each
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has its own advantages and disadvantages.

One of the most widely used datasets is the PDBbind database, which harbors experi-

mentally determined binding affinities for a diverse set of protein-ligand complexes57. The

PDBbind database has been used to train and evaluate a wide range of machine learning and

deep learning models, and is frequently used as a benchmark to assess the performance of

new models3,58–61. One advantage of the PDBbind database is its size and diversity, which

allows for the development of models that can potentially generalize well to new protein-

ligand complexes. Another strong feature of the PDBbind dataset is that it links the three-

dimensional protein-ligand structural information (including their PDB ID) with the cor-

responding binding affinity data. This allows the use of three-dimensional features, such as

molecular interactions, in prediction models.

Themajor disadvantage of the PDBbind database is that it contains a relatively small num-

ber of high-quality complexes. Thismaybe limiting formodels that need a high level of detail.

Also, it is not trivial to achieve a good dataset split limiting the bias as much as possible. The

PDBbind dataset is divided into a general, refined, and core set. The general set represents the

largest part and contains complexes of lower quality. The refined set is a curated set that con-

tains only complexes that meet certain quality criteria. These criteria include quality checks

of the 3D structures (e.g., a resolution< 2.5 Å, no covalently bound ligands, and no steric

clashes) and the binding data (e.g., Kd and Ki instead of IC50, exact values instead of ranges,

and affinity data only within a pharmaceutically relevant range). The core set is the smallest

of the three and contains only high-quality complexes of high diversity. Some researchers use

the general, refined, and core set as training, validation, and test set, respectively3. Others

randomly split one of the sets to construct the datasets used for training60. Since there are

many overlaps of proteins (i.e. Uniprot IDs) and ligands (with the same 2D structure) among

the different sets of PDBbind, both approaches probably lead to the introduction of a large
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bias, as discussed in Section 2.2.2. Thus, a great deal of attention must be paid to using the

PDBbind dataset for developing tools for protein-ligand binding affinity prediction.

The PDBbind dataset contains a multitude of protein-ligand complexes. Each complex

is provided in the form of a protein structure file, a file containing only the binding pocket

of the protein, and the ligand in two different formats. While the ligand file contains all ex-

plicit hydrogen atoms, the protein structure contains only polar hydrogen atoms, and water

molecules contain no hydrogen atoms. This may be problematic, e.g., because the orienta-

tion of co-crystallized water molecules is unknown, althoughwater molecules are considered

imperative for protein-ligand binding32,62–64. In addition, the ligand structures in the PDB-

bind dataset are provided in neutral state. Thus, the generation of the correct protonation

states of the ligand (and the protein) at the desired pHmust be performed by the user.

2.2.5 Our contribution

In this work, we developed an in silico tool called po-sco to comprehensively analyze native

protein-ligand interactions as they appear in crystals and create residue-based interaction fin-

gerprints. These fingerprints are designed to be constructed in a way that excludes any ex-

plicit information about the ligand structure or binding site geometry in order to avoid any

structural bias. An attention-based deep neural network is then employed to learn the cor-

responding experimentally determined protein-ligand binding affinities. Furthermore, the

model converts residue-based interaction fingerprints into a single protein-ligand interaction

fingerprint that can be used for downstream tasks.

Asweuse the PDBbinddataset to train and validate ourmodel, we also showhowdifferent

splitting procedures affect the apparent model performance, while already having reduced

structural bias by focusing on molecular interactions rather than fully atomistic structures.
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With thiswork,wehope to shed light into themurkywaters of deep learning-basedprotein-

ligand binding affinity prediction and highlight the importance of high-quality datasets and

features.

2.3 Results andDiscussion

2.3.1 Po-sco interaction analysis

Po-sco provides a great level of detail when it comes to the analysis of protein-ligand com-

plexes. It is capable of detecting the large majority of currently recognized types of inter-

molecular interactions found in protein-ligand complexes. Additionally, its detection algo-

rithms implement a high degree of physics and medicinal chemistry rules to provide the user

with very fine-grained analyses. While traditional protein-ligand interaction analysis tools

are limited to binary fingerprints, po-sco extends binary fingerprints with continuous values,

allowing even more information to be stored in a single fingerprint. The combination of all

these features leads to 28 binary and 6 continuous features extracted by po-sco (see Table 2.1

for a full list of included features).

To demonstrate the binary interactions identified by po-sco, we analyzed the crystal struc-

ture of human tryoptophan hydroxylase type 1 co-crystallized with the ligand LP-533401

(PDB ID 3HF8). An overview of the identified interactions can be found in Figure 2.1. For

better visibility, we split the interactions in polar (Figure 2.1A), hydrophobic (Figure 2.1B),

and exotic (Figure 2.1D) interactions. Furthermore, we show the identified unsaturated po-

lar functional groups inFigure 2.1C.Thefigure shows that po-scowas able to reliably identify

the most important interactions in high detail. We believe that not only the detailed analy-

sis of the existing interactions, but also the information of missing interactions as shown in

Figure 2.1C are important for assessing the quality of a protein-ligand complex.
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Table 2.1: Protein‐ligand interactions calculated by PLIP, ProLIF, and po‐sco. Where not otherwise stated, the interac‐
tions are listed from the perspective of the protein residue. Except for the interaction types under “Po‐sco continuous”,
the presence or absence of an interaction is indicated by a binary value. For “Po‐sco continuous”, the values are continu‐
ous, ranging from 0 to 1.

PLIP ProLIF Po-sco binary Po-sco continuous

Hydrophobic Hydrophobic Hydrophobic Normalized lipophilic energy
Hydrogen bond Hydrogen bond

acceptor
H-bond donor in side chain Normalized H-bonding energy

Hydrogen bond
donor

H-bond donor in backbone Fraction of unsaturated H-bond donors

H-bond acceptor in backbone Fraction of unsaturated H-bond acceptors
H-bond acceptor in side chain
Unsaturated H-bond donor
Unsaturated H-bond acceptor
Polarized H-bond

Salt bridge Cationic salt
bridge

Cationic salt bridge

Anionic salt
bridge

Anionic salt bridge

Unsaturated cation
Unsaturated anion

Water bridge Residue is water
Pi-pi stacking Pi-pi interaction

T-shaped
Pi-pi interaction T-shaped

Pi-pi interaction
face-to-face

Pi-pi interaction face-to-face

Sigma-pi interaction
Pi-pi interaction w/o rings

Pi-cation
interaction

Pi-cation
interaction

Pi-cation perpendicular

Cation-pi
interaction

Cation-pi perpendicular

Pi-cation parallel
Cation-pi parallel

Halogen bond Halogen bond Halogen bond to sigma hole
Halogen bond to sigma hole from aromatic
ring
Halogen bond to electron belt

Metal interaction Metal interaction Metal interactiona
Residue is metal

VdW contact
Residue is co-factor Fraction of polar atoms contributing to

intermolecular interactions
Repulsive interaction Fraction of polar atoms contributing to

intramolecular interactions
aResidue is a metal and is interacting with the ligand

2.3.2 Attention-based prediction model

The first goal of this work was to find out if more detailed interaction analysis benefits the

prediction of binding affinities. As shown in Table 2.1, the level of detail provided by PLIP,
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Figure 2.1: Visualization of the binary interactions identified by po‐sco in PDB ID 3HF8. A) Polar interactions where yel‐
low, green, blue, and orange dashed lines represent interactions with H‐bond acceptors in side chains, H‐bond donors
in side chains, H‐bond acceptors in the backbone, and H‐bond donors in the backbone, respectively. Salt bridges are
shown as dashed magenta lines, and polarized H‐bond acceptors are marked with a semi‐transparent sphere. B) Hy‐
drophobic interactions where blue, green, and orange dashed lines represent face‐to‐face pi‐pi, T‐shaped pi‐pi, and pi‐pi
interactions to smaller elements, respectively. Green spheres mark residues with hydrophobic contacts with the ligand.
C) Unsaturated polar functional groups. The yellow, blue, and red spheres represent unsaturated uncharged acceptors,
unsaturated uncharged donors, and unsaturated cationic groups, respectively. D) A single exotic group (halogen bond to
electron‐rich belt) is shown.

ProLIF, and po-sco differs significantly. Therefore, we trained multiple versions of the same

model with interaction fingerprint data extracted from the three analytic tools. For po-sco,

we trained twomodels, one with explicit information on the ligand happiness and one with-

out it. In order to compare themodel performance, we calculated the Pearson correlation co-

efficient (PCC), the mean unsigned error (MUE), and the root mean squared error (RMSE)

betweenpredicted and true, experimentally determined affinities. It is important to note here

that the goal was not to get a perfect prediction of binding affinities, but to compare how dif-

ferentmodel input data affect the quality (predictivity) of results while using the samemodel
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Table 2.2: Comparison of predictions with different interaction analysis tools. The performance metrics used
to compare PLIP, ProLIF, and po‐sco are the PCC, the MUE, and the RMSE. The shown metrics apply to the
external test set only. The best values are highlighted in bold font. All models were trained on a diverse split
of the refined PDBbind set (see Section 2.4.1).

Tool PCC MUE RMSE

PLIP 0.37 2.20 2.71
ProLIF 0.53 2.03 2.48
Po-sco w/o L 0.63 1.92 2.36
Po-sco 0.66 1.84 2.34

architecture.

Table 2.2 serves as the performance comparison of the different models. All three per-

formance metrics are worst for PLIP and best for po-sco (with ligand information). They

also clearly correlate with the level of detail provided by the different tools. ProLIF distin-

guishes between hydrogen bonddonors and acceptors aswell as between anionic and cationic

salt bridges. These details are missing in PLIP. Although ProLIF lacks detection of water

bridges, it performed better than PLIP. This may be due to the lower occurrence of these

kinds of interaction and, therefore, to their lower relative importance for the prediction of

binding affinities. Hydrogen bonds and salt bridges, on the other hand, are among the most

common protein-ligand interactions and are therefore considered highly important. Thus,

it seems reasonable that a higher level of detail in these common interaction types leads to

better results.

Both po-sco models with and without ligand information outperform the PLIP and Pro-

LIF models, while the model with ligand information performed the best. This improved

performance is likely due to the very high level of detail provided by po-sco. Not only does

po-sco provide fine details about individual interaction types (e.g. hydrogen bond donor/ac-

ceptor in backbone/side chain), but it also extends binary fingerprints by continuous values,

allowing the storage of a higher amount of information. The results in Table 2.2 show that
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this attention to detail is beneficial for the prediction of binding affinities using a deep learn-

ing model.

Adding information on the ligand “happiness”, which describes the level of saturation of

various kinds of interactionpartners byprotein counterparts, seems to also benefit themodel.

However, it must be noted that in order to implement the ligand information, the prediction

model used a slightly adapted architecture (see Section 2.4.3).

2.3.3 Impact of dataset split

The second goal of this work was to investigate the influence of dataset splitting, specifi-

cally the PDBbind dataset, on model performance. Here, we prepared three different split-

tings, two based on the complete PDBbind dataset and one based on the refined set. See

Section 2.4.1 for details on the construction of the data set.

In a PDBbind splitting that is often seen in the literature, the general set is used for train-

ing, the refined set for validation, and the core set for testing. We analyzed the occurrence of

proteins (i.e. Uniprot IDs) across the different sets in this split to identify potential overlaps.

There were 2388, 1494, and 64 different proteins in the general, refined, and core set, respec-

tively. Of the 1494 different proteins in the refined set, 74% were also part of the general set,

and in the core set it was even 97%. Thus, even though there were different PDB entries in

the training, validation, and test set in this split, there was a substantial overlap of proteins.

Thismeans that, while the exact conformation of the binding site residues likely differs in the

different PDB entries of the same protein, the general similarity between different conforma-

tions of the same protein binding site introduces a large bias. This may allow a deep learning

model to memorize the binding sites without learning much from the analyzed interactions

and still perform well on similar binding sites.

To avoid such bias, we created a custom split that randomly assigns complexes to the train-
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Table 2.3: Comparison of the po‐sco‐based prediction model using different splittings of the PDBbind
dataset. The performance is shown only for the external test set. The best performances are highlighted in
bold.

Model Dataset Split PCC MUE RMSE

Model 1 Complete Classical 0.66 1.78 2.23
Model 2 Complete Diverse 0.48 1.92 2.42
Model 3 Refined Diverse 0.66 1.84 2.34

ing, validation, and test set, while avoiding spreading complexes containing the same protein

across different sets.

We trained three versions of the same model. Model 1 was trained on the complete PDB-

bind dataset with the “classical” splitting, i.e. the general set for training, the refined set for

validation, and the core set for testing. Model 2 was also trained on the complete PDBbind

dataset, but with our custom split that enforces diverse proteins between sets. Model 3 was

trained on the refined set only with the same diversity-optimized splitting as inmodel 2. Due

to the best performance of the po-sco based prediction model compared to the ones based

on PLIP and ProLIF, we focus here on models trained with po-sco inputs only. Data for the

same analyses performed with PLIP and ProLIF-based models can be found in the Support-

ing Information in Tables A2.1 and A2.2, respectively.

Table 2.3 shows the performance of the model trained on the different datasets. It can be

seen that, with respect to the prediction error,model 1 performs better on the test set than the

other twomodels. However, this seemingly high performance is misleading, since 97% of the

proteins in the test setwere already seenduring training. After removingoverlappingproteins

between training, validation, and test set, the performance drops significantly, indicating that

the model has much more difficulty actually learning from the data (model 2).

Finally, when using only the refined set with a diverse split (model 3), the performance is

higher compared to training on the complete dataset with the same splitting. Although the
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training set of model 2 was more than twice the size of that of model 3, the additional data

points were not beneficial in model training. This indicates that for such tasks, the higher

quality of the structure data in the refined set is clearly beneficial for meaningful (generally

applicable and transferable) learning of the models.

2.3.4 Real-world example

We decided to test the trainedmodels on a real-world example. For this, we chose the human

5HT receptor 1B (Uniprot ID P28222) because it is a pharmaceutically relevant target and

is not part of the PDBbind dataset.

We dockedmore than 700 compoundswith knownbinding affinities to the 5HT receptor

using smina andGlide13,16. The generated poses were re-scored with the three trained po-sco

models and with gnina6. Again, we calculated the PCC, MUE, and RMSE of the different

methods. The exact details can be found in Section 2.4.4.

Table 2.4 shows the results of this study. No tested method yielded satisfactory results, as

the correlations between predicted and true affinities were quite weak. Judging by the MUE

and RMSE, gnina does the best job in predicting binding affinities. Based on the perfor-

mance reported in Table 2.3, it could be expected that model 1 performs the best out of all

po-sco models. However, it in fact performed much worse than model 3 which was only

Table 2.4: Comparison of different methods for the prediction of binding affinities towards the human 5HT
1B receptor (Uniprot ID P28222). The po‐sco models 1, 2, and 3 were trained on the complete PDBbind
dataset with a classical split, a diverse split, and on the refined subset with a diverse split, respectively.

Method PCC MUE RMSE

Smina 0.39 1.38 1.72
Glide 0.47 1.58 1.94
Gnina 0.41 1.25 1.50
Po-sco model 1 0.39 1.97 2.36
Po-sco model 2 0.37 1.37 1.64
Po-sco model 3 0.40 1.58 1.95
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trained on the refined subset of the PDBbind dataset. We think that model 1 mainly learned

to memorize the structures in the training set. Due to the high overlap between the training,

validation, and test set, the reported performance is accordingly high. When presented with

a new protein structure, the model has difficulty in recognizing it and is unable to make an

accurate prediction. Model 3, in contrast, was trained on data of superior quality with no

overlap between the training, validation, and test sets, thus requiring it to gain more knowl-

edge from the data itself. This clarifies why this model is more effective than model 1, even

though the results in Table 2.3 may suggest otherwise.

Interestingly, model 2 which was trained on the complete PDBbind dataset with a split

that removed all protein overlaps between training, validation, and test set, performed the

best of the three po-sco models in this study. At first glance, this is surprising since the per-

formance on the test set (Table 2.3) wasmuchworse. One explanation could be that there are

differences in the training or test set between models 2 and 3, leading to results that cannot

be compared. However, 85% of the complexes that are in the training set of model 3 are also

in the training set of model 2. For the test set, it is more than 75%. Also, as the protein at

hand is not part of the PDBbind dataset at all, these effects will likely not have a big impact.

Another possible explanation is that the performance on the test set as reported in Table 2.3

was a fluke and the true performance is better. This can be ruled out because the model per-

forms equally as bad (or even worse) on the validation set (PCC 0.51, MUE 2.04, RMSE

2.47). A third explanation could be that the high performance of model 2 in this example

was a “lucky shot” and is not representative for the general performance of the model which

is better represented by the results in Table 2.3. Further investigation showed that while the

human 5HT 1B is not part of the PDBbind dataset, the general set contains the turkey 5HT

1B receptor. In fact, this protein was part of the training set ofmodels 1 and 2. Visual inspec-

tion showed that the binding sites of the turkey and human 5HT 1B receptors are not the
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same, although they are very similar. Thus, model 2 appeared to have an easier job predicting

these compounds thanmodel 3 because it has been trained on a very similar structure, which

explains the higher performance. The fact that model 1 was also trained with this structure

but still performed the worst of the three models further highlights that it probably did not

have to learn actually meaningful information to still achieve a seemingly high performance

due to the overlap between the data sets.

Another point that needs to be kept in mind is that in this experiment, the model was

applied to poses from molecular docking whereas it was trained on crystal structures. This

could also have an influence on the outcome.

We strongly advocate that researchers be very mindful about the data set used to train a

model and how it was handled. This enables the early detection of reported performances

that have been exaggerated and prevents the scientific literature from being inundated with

models that look good on paper, but fail in real-world scenarios. It is essential to critically

evaluate the reported performance of a model.

2.4 Methods

2.4.1 Dataset construction

As described in Section 2.2.4, the protein and ligand structures provided in the PDBbind

dataset need to be prepared before using them for structure-based modeling approaches. We

used the protein preparationwizard in Schrödinger’sMaestro toprepare all structures65. The

preparationworkflow consisted of adding all explicit hydrogen atoms, assigning bond orders,

generating protonation states at the pH present at crystallization (for the protonation of the

ligand, Epik was used66–68), generating water orientations, and running a restrained mini-

mization with an RMSD cutoff of 0.3 Å.
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Figure 2.2: The splitting scenarios applied to the PDBbind dataset. The complete dataset was split in two ways, one in
which the general, refined, and core set are used for training, validation, and testing, respectively (complete classical
split), and one in which the complexes were split randomly while ensuring that there are no overlaps of proteins be‐
tween the training, validation, and test set (complete diverse splitting). The same diverse splitting was applied to the
refined set only (refined diverse splitting).

In this work, we used several different splits of the PDBbind dataset version 2020 (Fig-

ure 2.2). The complete dataset (consisting of the general, refined, and core set) contained

19,443 protein-ligand complexes. For the general set, there were affinities of Ki, Kd, and

IC50 types. Since Ki/Kd and IC50 cannot be directly compared, we removed samples with

affinities of type IC50. This left uswith 6558 complexes in the general set, 5041 in the refined

set, and 256 in the test set after removing all duplicate complexes.

The complete dataset was split in two ways: 1) The classical split, where the general set

was used for training, the refined set for validation, and the core set for testing; 2) the diverse

split, where the complexeswere randomly assigned to either the training, validation, or test set

while ensuring that there are no overlaps regarding the protein (i.e. Uniprot ID) between the

datasets. This means that, while there were several complexes containing the same protein in

one dataset, the proteins were unique between different datasets. The training set contained
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around 80% of the complexes, while the validation and test set contained around 10% of the

complexes each. For the refined set (containing complexes of higher quality compared to the

general set), the same technique for generating a diverse split was used.

Themodel architecture used here, combinedwith the provided input, does not allow con-

clusions to be drawn about the structure of the ligand. This was specifically chosen to avoid

the introduction of bias and thus prevent the model from simply memorizing structures of

ligands.

2.4.2 Po-sco interaction analysis

The po-sco interaction analyzer tool contains algorithms to detect the most significant in-

termolecular protein-ligand interactions currently recognized by the modeling community.

The list of all supported interaction types can be found in Table 2.1.

Detection algorithmshave been implemented in such away that they reliably identify spec-

ified interactions within reasonable structural deviations (see below). While we trained our

models on crystallographic data, where realistic interaction patterns (e.g. interatomic dis-

tances, angles, ring and π-system planes) are naturally expected, we aim at using po-sco for

scoring of docked poses, where moderate deviations from ideal parameters can be frequently

observed, even with “good” poses that we typically refer to as those within 2.0 Å from the

native pose. Therefore, e.g. for distance thresholds, a general factor allowing for a 20% devi-

ation from the optimum is applied. In terms of linearity, a deviation of up to 45 degrees is

accepted.

Compared to similar tools, in many cases, our routines are parameterized with more strin-

gent criteria. For example, for detecting pi-pi face-to-face stacking and T-shape interactions

between rings we use different cut-off values for centroid distances, which helps minimizing

false positive as well as false negative cases. We implemented our expertise frommodeling and
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docking small molecules to a multitude of different targets covering membrane bound and

soluble proteases, metalloenzymes, cytochromes, GPCRs, nuclear receptors, ion channels,

etc. During the development we relied heavily on benchmarking with real-world systems.

The H-bonding parameters, both in terms of geometry and energetics, are based on the Yeti

force field by Vedani et al.69. The same applies for ligand-metal interactions70.

The algorithm for the atom-type-dependent quantification of hydrophobic interaction

was parameterized based on the relative solvation free energies of matched molecular pairs

of unsubstituted benzene, toluene, fluro-, chloro-, bromo-, iodo- benzene and thiophenol in

the organic solvent hexadecane (cf. Figure S3). The underlying data were extracted from the

Minnesota Solvation database71. Toluene was selected as the reference substance, providing

a weighting coefficient of 1.0 for the sp3-hybridized carbon atom. Equation 2.1 shows the

calculation of the hydrophobic interaction energy between atoms ai and aj where wi and wj

are the weights according to Table A2.3 for the respective atoms, k is an additional factor

according to Li et al.72, rvdw(·) is the Van derWaals radius of a given atom, n is a slope param-

eter, and dij is the distance between atoms i and j. The slope parameter nwas set to−6.0 and

following the article by Li et al., we defined k = −0.3.

E(hydrophobic) =
k · wi · wj

1+ exp
(
n ·
(
dij − 1− rvdw(ai)− rvdw(aj)

)) (2.1)

Ring stacking interaction is detected up to the ring centroid distance of 5.0 Å. Depending

on the ring character (aromatic or aliphatic), a detailed analysis of ring interaction patterns is

performed. In case of aromatic rings, the pair-wise distances are calculated between all atoms

in the first ring and all atoms in the other ring counting the number of hydrogen and heavy

atoms at or below the sum of the Van der Waals radii. Based on the prevailing interactions

(hydrogen-to-heavy or heavy-to-heavy), the type of interaction is determined (T-shaped or
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parallel). In our experience, this procedure works more reliably than calculating the angle of

ring planes.

Detection of complex interaction patterns, e.g. polarized H atoms interacting with an

aromatic ring, is based on a thorough analysis of the local environment of interacting atoms,

i.e. for switching the relevant fingerprint bit on, such a polar hydrogen atommust be within

acceptable interaction distance (below the sum of VdW radii) with at least three heavy atoms

forming the target pi system of the ring, and simultaneously the hydrogen exit vector must

be co-linear (with the ring normal with a maximum allowed deviation, here 30 degrees).

Similarly, pi-pi stacking of smaller, non-ring systems is detected for at least three consec-

utive sp2 hybridized atoms (e.g. peptide bond π-system). After confirming the validity of

geometric criteria, interactions are classified according to the chemical character of atoms in

higher order interacting functional groups (neutral, positively or negatively charged π-system

and all combinations thereof).

Halogen bonding is also detected at interatomic distances below or at the sum of Van der

Waals radii of the analyzed atom pair. Depending on the angle with respect to the atom,

which carries the halogen atom, interactions are classified to the sigma hole (angle carrier

atom - halogen - heteroatom is greater than 135 degrees) or the belt (angle carrier atom -

halogen - hydrogen in the range of 45 to 135 degrees). Halogen sigma hole - aromatic ring

interactions are detected if at least two ring atoms engage with the halogen atom and the ring

normal is within 45 degrees of the halogen sigma hole bond vector.

Some geometric parameters (e.g. H-bond donor or acceptor saturation, and happiness of

hydrophobic atoms) can be correctly evaluated only by considering their buriedness, i.e. ac-

cessibility for interaction with the bulk water. Buriedness is calculated for each ligand and

protein atom. First, a grid of points (1.0 Å spacing) is generated around the ligand extend-

ing 12 Å ligand extremes in each Cartesian axis direction (-x, +x, -y, +y, -z/+z). Next, all
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grid points within the distance below 3.0 Å from either protein or ligand atoms are deleted.

Finally, the remaining points are analyzed for their vicinity to ligand and protein. Atoms

appearing within the threshold value of 6.0 Å from any grid point are marked as not buried.

2.4.3 Attention-based prediction model

Figure 2.3: The architecture of the prediction model. Blue: Output obtained from the po‐sco interaction analyzer. Yel‐
low: Neural network layers. Green: Usable model outputs. Purple: Only used for training to increase the conservation
of interaction information.

The po-sco prediction model uses three outputs from the po-sco interaction analyzer as
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input. The first output is the type of interacting residues, the second output is the interac-

tion fingerprint between protein residues (including waters and metals) and the ligand, and

the third output is the ligand “happiness” fingerprint describing the level of saturation of in-

teraction partners in the ligand molecule by the protein counterparts. Here, we describe the

architecture of the prediction model based on po-sco (Figure 2.3).

The type of interacting residues is first embedded in an 8-dimensional space and concate-

nated with the corresponding interaction fingerprint. This combined input is then passed

through a linear layer to embed the data in a 64-dimensional space. The embedded data are

then used to compute self-attention with a transformer encoder layer.

The ligand fingerprint is also embedded into a 64-dimensional space using a fully con-

nected layer. The embedded ligand is then used to calculate cross-attentionwith the encoded

residue information using a transformer encoder layer.

To conserve information on the interactions in the complex, we added the encoded residue

information to the output from protein-ligand cross-attention. Since the output from the

cross-attention layer is a vector, whereas the encoded residue information is a matrix, we ap-

plied a masked sum on the encoded residue information over the first dimension of the ma-

trix. The mask is used to mask out padding elements in samples of unequal length. The

output of this sum operation can be used as a non-binary single vector interaction finger-

print describing the protein-ligand complex. This vector could also be used for down-stream

predictions other than the binding affinity.

The generated interaction fingerprint is then passed through a feed forward network to

predict the affinity, the log variance of the affinity, and the mean po-sco interaction finger-

print. The predicted affinity and log variance are used to train the model using maximum

likelihood estimation. In addition to the maximum likelihood estimation, the mean po-sco

interaction fingerprint can be used to train the reconstruction of the interactions, which is in-
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tended to increase the amount of information (about the interactions in the complex) stored

in the predicted interaction fingerprint. This reconstruction is trained using a mean squared

error loss. The complete loss function is therefore a combination of a negative log likelihood

loss and a mean squared error loss:

L(ŷ, v, p̂, y, p) = NLL(ŷ,
√
ev, y) +MSE(p̂, p) (2.2)

Where ŷ is the predicted affinity, y is the true affinity, v is the predicted log variance of the

affinity, p̂ is the predicted mean po-sco interaction fingerprint, and p is the true mean po-sco

interaction fingerprint. The negative log likelihood loss is defined as:

NLL(ŷ, σ, y) = −
N∑
i=1

log (P(ŷi; yi, σ)) (2.3)

where P(ŷ; y, σ) is the probability density function, i.e. the probability of finding ŷ under a

normal distribution given by the mean y and standard deviation σ, defined as:

P(ŷ; y, σ) =
1

σ
√
2π

exp

(
−(y− ŷ)2

2σ2

)
(2.4)

The mean squared error loss is defined as:

MSE(p̂, p) =
1
N

N∑
i=1

(pi − p̂i)2 (2.5)

The model was trained in PyTorch using an Adam optimizer73. The model was trained

with 2 transformer encoder layers for the self- and cross-attention each, an embedding di-

mension of 64, 2 heads per attention layer, a batch size of 64, a learning rate of 1e−4, and a

dropout rate of 0.15. Allmodels were trained for 1000 epochs, and the epochwith the lowest
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validation loss was used to assess the model’s performance (on the test set). All models were

trained with the same hyperparameters where applicable.

Ablation study

In order to test the contribution of the ligand fingerprint calculated by posco, we performed

an ablation study in which the ligand fingerprint was not used in model training. In this

model, the predicted interaction fingerprint was calculated directly as the masked sum of the

encoded residue information. Thus, there was no cross-attention with the ligand. The rest

of the model remained the same.

Model based on PLIP

Since PLIP is commonly used to calculate protein-ligand interactions, we trained a model

using the information obtained from PLIP. In our tests, we used PLIP version 2.2.2. The

interactions calculated using PLIP can be found in Table 2.1.

The architecture of themodel usedwith PLIP followed that of the one used in the ablation

study, because no ligand fingerprint was used.

Model based on ProLIF

We trained an additionalmodel using ProLIF version 1.1.0, one of the other tools commonly

used for the analysis of protein-ligand interactions. The interaction types used from ProLIF

canbe found inTable 2.1. Like thePLIP-basedmodel, the architecture of thismodel followed

that in the ablation study without ligand information.
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2.4.4 Real-world example

Wedownloaded compoundswithknownactivity toward thehuman5HT1Breceptor (Uniprot

ID P28222) from PubChem74. The obtained substances were further filtered to exclude all

samples that do not have an activity type of Ki or Kd, that do not have an exact affinity value,

or that do not have unambiguous stereochemistry. This left us with a total of 726 com-

pounds. Before docking, all compoundswere preparedwithLigPrep to generate protonation

states at pH 7.475.

The compounds were docked with smina against the PDB IDs 4IAQ, 5V54, and 6G79

and with Glide against the PDB IDs 5V54, 6G79, and 7C61. For each compound, up to 9

poses were generated. For Glide, the Glide SP protocol was used, and the binding site was

defined based on the location of the co-crystallized ligand. For smina, the binding site was

defined based on the co-crystallized ligands with a default buffer of 4 Å on all six sides and

the compounds were docked with an exhaustiveness of 16 and a seed of 42.

All protein structures were prepared by adding explicit hydrogen atoms, assigning bond

orders, converting selenomethionines tomethionines, filling inmissing side chains and loops,

generating protonation states at pH 7.4, optimizing the water network, and performing re-

strained minimization with an RMSD cutoff at 0.3 Å. All preparation was carried out in

Schrödinger’s Maestro using the protein preparation wizard65.

The generated docking poses were re-scored with gnina and three trained po-sco models.

Gnina was used with the –score_only flag, 2 CNN rotations, a seed of 42, and an exhaus-

tiveness of 16. The best predicted score for all poses of a compoundwas used to calculate the

performance statistics.
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2.5 Conclusion

Recently, large language models trained on large amounts of data have gained increasing at-

tention40,76,77. In this work, we show that the quality of the data used to train amodel ismore

important than the quantity when it comes to the prediction of binding affinities based on

molecular interactions. We demonstrate how overlaps between the training, validation, and

test set, specifically in thePDBbinddataset, can lead to severe overestimationofmodel perfor-

mance. We also suspect that many recently published models for binding affinity prediction

may suffer from such a bias. In this regard, we urge researchers to critically assess the data

used to train deep learning models and to avoid bias introduced by poor dataset splits. We

also suggest working with smaller datasets of very high quality rather than large datasets of

poor quality.

Furthermore, we introduced po-sco, a sophisticated tool for the analysis of protein-ligand

complexes that provides a great level of detail. We showed how the high content of infor-

mation extracted by po-sco benefits deep learning models. A transformer-based model that

utilized analyses from po-sco was more successful in predicting binding affinities than mod-

els that were trained with data from PLIP and ProLIF. We propose that a very detailed and

physics-based analysis of protein-ligand interactions allows deep learning models to better

learn from structural data and improves downstream predictions.

Finally, we promote the use of structure-agnosticmodels, i.e. models that do not explicitly

know the structure of the ligand or binding site. In thisway, the risk of creating biasedmodels

can be reduced to a minimum.
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2.6 Appendix

Table A2.1: Comparison of the PLIP‐based prediction model using different splittings of the PDBbind
dataset. The performance is shown only for the external test set. The best performances are highlighted
in bold.

Model Dataset Split PCC MUE RMSE

Model 1 Complete Classical 0.48 2.05 2.56
Model 2 Complete Diverse 0.18 2.14 2.68
Model 3 Refined Diverse 0.37 2.20 2.71

Table A2.2: Comparison of the ProLIF‐based prediction model using different splittings of the PDBbind
dataset. The performance is shown only for the external test set. The best performances are highlighted in
bold.

Model Dataset Split PCC MUE RMSE

Model 1 Complete Classical 0.57 1.91 2.41
Model 2 Complete Diverse -0.03 2.16 2.71
Model 3 Refined Diverse 0.53 2.03 2.48

Table A2.3: Weight factors for the calculation of hydrophobic contributions. The weight w of a solute x is
calculated as w = ΔGs(x)

ΔGs(Me‐benzene) where ΔGs is the free energy of solvation of solute x in the organic
solvent hexadecane and Me‐benzene is toluene.

Solute ΔGs(hexadecane) weight

Benzene -3.80 0.837
Me-benzene -4.54 1.000
F-benzene -4.03 0.888
Cl-benzene -4.99 1.099
Br-benzene -5.51 1.214
I-benzene -6.25 1.377
SH-benzene -5.61 1.236
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The most dangerous phrase in the English language is ’we

have always done it this way.’

Grace Hopper

3
Automated Prediction of Off-Target

Binding of Small Molecules

The safety of chemicals, in a pharmaceutical or environmental setting, is of paramount im-

portance. Since adverse effects in humans often begin with a small molecule binding to a

protein structure (an off-target), we developed an automated platform for the prediction of

these molecular initiating events.

PanScreen, our prediction platform, is a modular online platform that is freely available to
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the public. It was specifically designed to make the implementation of new off-targets and

newmethods as easy as possible. The PanScreen online platform essentially consists of three

parts, the front-end, the back-end, and a bridging database.

The front-end was designed to be simple and user-friendly. It is built using of a combina-

tion of the Python-based Django web framework and an nginx webserver. For easy deploy-

ment, both parts are contained in a Docker container. This allows maximum flexibility with

minimum effort.

The back-end is the core of PanScreen. We developed it as a portable Python package that

can be installed with a single command. This allows for easy distribution and management.

This package can be used not only to predict binding to implemented off-targets, but also to

automatically train newmodels when providing the necessary data. To implement a new off-

target, it is therefore only necessary to prepare an ensemble of crystal structures and compile

a set of ligandswith knownbinding affinities to the desired off-target. The docking, hyperpa-

rameter search, and training and integration of themodels are then performed automatically

by the package. To allow for easy installation on different machines, we deploy the back-end

in a Docker container, together with a job listener connecting to the bridging database.

The bridging database receives jobs from the front-end. These jobs can then be accessed

by the back-end for processing. Once a job is completed, its results are being fed back to the

database, which serves them to the front-end again.

The following article describes the detailed methods and performance of PanScreen and

was published as a preprint.1 We hope that our tools can complement existing methods for

chemical safety assessment and, ultimately, help reduce the use of animals in toxicology.
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3.1 Abstract

Drug development projects are getting increasingly more expensive while their success rate

is stagnating. Safety issues attributed to off-target binding represent a major reason for the

failure of new drugs. Besides desired on-target binding, small molecules may interact with

off-targets, triggering adverse effects. Therefore, the development of novel methods for early

recognition of such issues that are resource-efficient and cost-effective becomes vital. Here,

we introduce PanScreen, an online platform for the automated assessment of off-target lia-

bilities. PanScreen combines structure-basedmodeling techniques with state-of-the-art deep

learningmethods to not only predict accurate binding affinities but also give insight into po-

tentialmodes of action. We show that the predictions are approaching experimental accuracy

found in public datasets and that the same technology can also be used for other research ar-

eas, such as drug repurposing. Such fast and inexpensive methods allow researchers to test
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not only drug candidates, but all smallmolecules thatmight come into contactwith a human

organism for potential safety concerns very early in the development process. PanScreen is

publicly available at www.panscreen.ch.

3.2 Introduction

Chemicals are omnipresent in the environment due to the use of drugs, pesticides, fertilizers,

combustion engines, waste water, and industrial by-products. Humans are in constant con-

tact with their environment, leading to unevitable exposure to a wide variety of chemicals.

The most common sources of human exposure to chemicals include food, air, personal care

and pharmaceutical products, clothing, and household products2. Environmental exposure

to chemicals has long been known to have adverse effects on humans, such as various can-

cers, infertility, other reproductive disorders, respiratory diseases, and allergic reactions3–5.

Pharmaceutical products are specifically made to be ingested, injected, inhaled, or topically

applied by humans. Thus, it is especially important to ensure their safety by recognizing and

avoiding toxic effects.

Most small molecule drugs are designed to interact with one or more proteins in the hu-

man body bymodulating their physiological behavior6–8. Sometimes, modulating the target

protein inevitably leads to adverse effects e.g. by the disruption of essential cellular pathways.

This effect is known as on-target toxicity9,10. Often, however, drugs not only interact with

their intended target protein, but also with other so-called off-targets, leading to possible side

effects8. Such toxicities are estimated to account for up to a third of the attrition of drugs11,12.

In some exceptional cases, off-target binding can even be beneficial13.

Investigation and identification of potential off-target toxicities is therefore highly impor-

tant. This is true not only for the pharmaceutical industry but also for environmental chem-
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icals that may end up in the human body. Experimental off-target profiling is usually ex-

pensive, slow, and labour- and resource-intensive14–18. On the other hand, computational

methods are cheap and fast. The immense increase of available computing power during

the past decade combined with the continuous improvement of computational methods has

enabled in-silico tools to become a viable alternative to experimental testing. It is therefore

not surprising that several tools aiming to predict off-target toxicities have been developed in

recent years19–24.

In-silico methods are used to predict not only off-target toxicities but also various end-

points. Some tools predict assay outcomes such as mutagenicity or skin sensitization25–28,

others predict clinical outcome29,30. In off-target liability prediction, the underlying mecha-

nism is usually based on undesired interactions between a small molecule and an off-target.

This falls within the scope of drug-target interaction prediction31–34. In a toxicology setting,

drug–off-target interactions usually represent molecular initiating events in an adverse out-

come pathway35. However, drug-target interaction prediction is not restricted to toxicology

and can also be used in drug development.

3.2.1 Ligand-based methods

One of the principles frequently applied in drug discovery, as well as predictive toxicology, is

that chemically similarmolecules exhibit similar properties. Similarity can thereby be defined

in various ways, such as 2D similarity or 3D shape overlap36,37.

The advantage of ligand-based methods is that they only need a seed (or template) ligand

structure as input. This allows them to be used in most drug development projects with at

least one known initial hit. Additionally, ligand-basedmethods such as similarity searches are

usually computationally inexpensive, leading to fast results. For these reasons, it is no surprise

that ligand-based methods are routinely used in off-target prediction and drug development
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in general38–41.

Although these methods work well in many cases, they have some inherent disadvantages.

Two-dimensional approaches may be limited to a particular molecular scaffold, which can

lead to a similarity search missing out on hits with a different structure. Furthermore, two

molecules can be highly similar in 2D structure and/or 3D shape but still exhibit completely

different activities to a given target. This phenomenon is known as an activity cliff42,43. In

such cases, more detailed analyses are necessary to accurately assess the potency of amolecule.

3.2.2 Structure-based methods

In contrast to ligand-basedmethods, structure-basedmethods require the 3D structure or the

primary sequence of the protein to be known. Structural data, especially well-resolved exper-

imentally determined complexes, allow the protein-ligand complementarity to be decoded

in very fine detail, enabling the methods to overcome the drawbacks of ligand-based meth-

ods44,45. However, because of the generally higher computational cost of structure-based

methods, they tend to be much slower than ligand-based methods.

One of the most commonly used methods in structure-based drug development is molec-

ular docking, in which a small molecule is placed into the binding site of a protein while

optimizing the molecular interactions between the two entities46–49. In docking, proteins

are often treated as rigid bodies, while the ligands are allowed to be flexible. This has the dis-

advantage that induced fit effects cannot be captured and the result of the docking depends

on the input conformation of the protein. While it is possible to allow the side chains (or

even the backbone) of the binding site residues of the protein to be flexible, this introduces

many more degrees of freedom, leading to an explosion of possible combinations and there-

fore computational cost.

One way of tackling this problem is the use of ensemble docking50–52. In ensemble dock-
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ing, a ligand is docked to an ensemble of protein structures, usually coming either from

molecular dynamics simulations or experimentally determined (X-ray, cryo-EM, or NMR)

structures. Usually, the ensemble is selected to represent different conformational states of

the protein binding site. This approach implicitly accounts for the protein flexibility while

minimizing computational cost.

Our group has previously developedVirtualToxLab, a platform accessible via a simple Java

application for the automated assessment of the toxic potential of small molecules23,24. Rely-

ing on the concepts of structure-basedmodeling, it features a portfolio of 16well-known and

comprehensively prepared off-targets, an induced-fit-enabled docking program, and opti-

mized scoring functions for each target. VirtualToxLabhasbeen extensivelyusedby academia,

regulatory agencies, and industry partners for its predictions, especially for CYP450 enzymes

and nuclear receptors.

3.2.3 Machine learning-based methods

In recent years, machine learning has emerged as a major challenger to classical ligand- and

structure-based methods53–55. Many machine learning models such as random forest, sup-

port vectormachine, ornaivebayeshavebeendeveloped topredict drug-target interactions56–58.

With increasing computational power, deep learning models have become more popular.

With the right architecture, deep learning models have the ability to outperform classical

machine learning models59. Thus, many deep learning-based models have recently emerged

that aim to predict drug-target interactions60–64. A popular method to improve the perfor-

mance of deep learning models is ensemble deep learning, in which an ensemble of models is

trained with the goal of improving the generalizability of the combined ensemble65,66.

Althoughdeep learningmodels have great potential to substantially improve thepredictive

power of in silico tools, they are not trivial to train. The construction of the data set and the
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processing of input features are imperative for a robust and unbiased model. The incorrect

handling of data sets and the use of too large molecular input feature vectors contaminated

with irrelevant information have been shown to lead to an overestimation of model perfor-

mance67–69. Therefore, it is essential to thoroughly evaluate all components of the model

training process to create a reliable and accurate model.

3.2.4 Our contribution

In this work, we introduce PanScreen, an online platform for the prediction of off-target lia-

bility that is publicly available. Similar to its predecessor, VirtualToxLab, PanScreen features

a portfolio of off-targets. All implemented off-targets are thoroughly prepared and validated.

PanScreen applies an ensemble docking approach usingmultiple docking programs and pro-

cesses the outputwith deep learningmodels. This not only allows accurate predictions of off-

target interactions, but also provides structural insight into the potential mechanism of ac-

tion. The platformpresents a user-friendlyweb interface that allows easy access to researchers

with various degrees of experience with in silico structure-based modeling. It is available free

of charge for academic and non-commercial use.

Although the number of implemented off-targets is still limited, highly standardized pro-

cesses of preparing protein structures and training deep learning models greatly facilitate the

addition of new off-targets. We anticipate a rapid growth of the off-target portfolio in the

very near future.

3.3 Results andDiscussion

PanScreen is available as an online service at www.panscreen.ch. The web application was

developed using theDjangoweb framework and is served using an nginx webserver70. At the
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Table 3.1: (Off‐)targets currently implemented in PanScreen.

Uniprot ID Name Family

O60674 Tyrosine-protein kinase JAK2 Kinase
P03372 Estrogen receptor alpha Nuclear receptor
P04150 Glucocorticoid receptor Nuclear receptor
P07550 Beta-2 adrenergic receptor GPCR
P10275 Androgen receptor Nuclear receptor
P14416 Dopamine receptor D2 GPCR
P23458 Tyrosine-protein kinase JAK1 Kinase
P25103 Substance-P receptor GPCR
P28222 5HT receptor 1B GPCR
P37231 PPARγ Nuclear receptor
P49286 Melatonin receptor 1B GPCR
Q08499 Phosphodiesterase 4D Hydrolase
Q92731 Estrogen receptor beta Nuclear receptor
Q9Y233 Phosphodiesterase 10A Hydrolase

time of publication of this article, the platform contained 14 implemented off-targets (see

Table 3.1 for a complete overview). Each implemented off-target consists of an ensemble of

thoroughly curated protein structures (see Section 3.4.1 for more information).

Users can upload query molecules in various, commonly used data formats (e.g., SDF,

MOL2, or SMILES) and select the off-targets against which the submittedmolecules should

be screened. The uploadedmolecule is converted to canonical SMILES using openbabel ver-

sion 3.0.071. The canonical SMILES format allows for the unique encoding of molecular

structures while conserving stereochemistry and protonation states. The canonical SMILES

are then stored in a PostgreSQL database that connects the front end and the back end. If

the samemolecule has already beenprocessed before, the results are fetched from the database

and provided to the user without need of re-running the simulations. In case the submitted

molecule has not been processed before, the back-end reads the canonical SMILES from the

database and starts processing it.

First, the canonical SMILES is used to generate a 3D conformation of the molecule us-

ing Schrödinger’s LigPrep72. It is thereby up to the user whether the protonation states

present in the input molecule should be preserved or whether protonation states at physi-
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Figure 3.1: Flow of data in PanScreen. Once a compound is uploaded to PanScreen, it is converted to canonical SMILES
and stored in a database. If the compound was processed before, its results are returned back to the user (dashed line).
If the compound has not been processed before, it will be completely processed by the back end before the results are
fed into the database and presented to the user.

ological pH should be automatically generated. The preparedmolecule is then docked to the

protein ensembles of the desired off-targets. Currently, PanScreen implements 3 different

docking programs to generate poses and 2 programs to re-score and analyze the generated

poses. Detailed information on this process can be found in Section 3.4.2. The information

frommolecular docking and the analysis of the generated poses are then fed into a consensus

model (described in Section 3.4.3). For each implemented off-target, we developed a special-

ized consensus model. This was done to increase the performance of individual off-targets

while avoiding the bias that could be introduced by providing the model with structural in-

formation of the protein68. Once all calculations are completed, the results are stored in the

PostgreSQL database. Since the front-end is also connected to this database, the user will

have immediate access to the results of the computations. An overview of the data flow in

PanScreen is shown in Figure 3.1. The protein-ligand complexes generated by PanScreen can
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be viewed online and downloaded.

3.3.1 Performance analysis

The validation performance of all implemented models can be found in Table 3.2 (the same

analysis for smina, Glide, LeDock, and gnina can be found in the Supporting Information in

Tables A3.2, A3.3, A3.4, and A3.5, respectively). The Pearson correlation coefficient (PCC)

was above 0.70 for all models (except PPARγ) with an average of 0.79. With exception of

Table 3.2: Validation metrics of the implemented models. Shown are the Pearson correlation coefficient
(PCC; higher is better), the mean unsigned error (MUE; lower is better), the root mean squared error (RMSE;
lower is better), and the area under the receiver operating characteristics curve (AUROC; higher is better).

Protein name PCC MUE
[kcal/mol]

RMSE
[kcal/mol] AUROC

Tyrosine-protein kinase JAK2 0.81 0.68 1.10 0.94
Estrogen receptor alpha 0.84 0.94 1.18 0.89
Glucocorticoid receptor 0.79 0.70 0.95 0.89
Beta-2 adrenergic receptor 0.79 0.92 1.17 0.91
Androgen receptor 0.81 0.79 1.03 0.88
Dopamine receptor D2 0.75 0.66 0.87 0.88
Tyrosine-protein kinase JAK1 0.81 0.55 0.85 0.94
Substance-P receptor 0.80 0.77 1.02 0.91
5HT receptor 1B 0.77 0.83 1.06 0.85
PPARγ 0.68 0.89 1.33 0.84
Melatonin receptor 1B 0.72 1.06 1.35 0.84
Phosphodiesterase 4D 0.80 0.95 1.36 0.84
Estrogen receptor beta 0.75 1.00 1.29 0.84
Phosphodiesterase 10A 0.80 0.88 1.18 0.93

Mean 0.79± 0.05 0.83± 0.15 1.12± 0.17 0.88± 0.04

the melatonin receptor 1B and the estrogen receptor beta, all mean unsigned errors (MUE)

were below 1.0 kcal/mol. The average MUE and root mean squared error (RMSE) were

0.83 kcal/mol and 1.12 kcal/mol, respectively. The area under the receiver operating char-

acteristics curve (AUROC), calculated at an active/inactive threshold of 1.0 µM, was above

0.80 for all implemented off-targets with a mean of 0.89. This indicates very good perfor-

mance for all models regardless of their protein family.
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Figure 3.2: Correlation between predicted and experimental pKd values. The solid black line represents a perfect corre‐
lation. The green dashed lines represent a +/‐ 1 log unit deviation from the experimentally determined pKd values, the
red and blue dashed lines represent a 2 log unit deviation from the experimental pKd values.

Plotting the predicted binding affinities against the experimentally determined affinities

over all implemented off-targets (a total of more than 2800 predictions) revealed a PCC of

0.83 (see Figure 3.2). Moreover, more than 83% of the predictions were within 1 log unit

of the true affinity. 15% of the predictions were between 1 and 2 log units from the experi-

mentally determined binding affinity and only around 2% had a deviation ofmore than 2 log

units.

To investigate themeaning of these numbers, we analyzed the experimental accuracy in the

datasets used to train the models. For this, we investigated all the data points with measured
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Figure 3.3: Example for activity cliff. a) Potent inhibitor of the Janus kinase 2, b) Weak inhibitor of the Janus kinase 2.

Ki andKd values for every off-target currently implemented inPanScreen. Wefiltered the data

for compounds that have been tested at least twice (around 2600 individual compounds) and

calculated the maximum spread between the individual measurements. We found that 2083

compounds (80%) had a spread of less than 1 log unit, 375 (14%) were spread between 1 and

2 log units and 135 (5%) had a spread ofmore than 2 log units. These findings align very well

with the accuracy of our predictions. In fact, when considering only compounds that have

been measured at least 4 times (a total of 305 different compounds), we found a median and

mean spread of 1.2 and 2.7 log units, respectively. This shows that our predictions reach the

accuracy found in publicly available experimental datasets.

Regarding the previously discussed shortcomings of the ligand-based methods, we per-

formed an in-depth investigation of how the structure-based approach implemented in Pan-

Screen copes with matched molecular pairs (MMPs)73–76. MMPs are pairs of highly similar

molecules that differ in only a few atoms. In some cases, MMPs have very different activi-

ties (binding affinities) despite their high degree of structural similarity. One such example is
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shown in Figure 3.3 where themolecule in subfigure a) is a very potent inhibitor of the Janus

kinase 2 whereas the molecule in subfigure b) inhibits the Janus kinase 2 only very weakly.

This is a prime example of an activity cliff caused by the removal of the hydroxyl group in Fig-

ure 3.3 b). Importantly, these compounds were not used in the training set of the respective

model. For this example, there is an experimentally determined ΔΔG of 4.26 kcal/mol. The

predicted binding free energies of Panscreen were within 1.0 kcal/mol of the experimentally

determined values for both molecules and the predicted ΔΔGwas 3.82 kcal/mol.

Figure 3.4 depicts a comprehensive analysis of allMMPs found in the validation sets of the

models for all implemented off-targets. Here, we defined MMPs as molecules with a Tani-

moto similarity of at least 0.7. A confusionmatrix containing the results can be found in Ta-

ble A3.1. Of the 3466 identifiedMMPs that were not part of the training sets, 2926 (84.4%)

had a predicted ΔΔGwithin±1.0 kcal of the experimental ΔΔG.Only very fewMMPs (38;

1.1%) were overestimated by the models. However, a total of 502 MMPs (14.5%) were un-

derestimated, whereof 110 (3.2%) had a predicted ΔΔG that wasmore than 2 kcal/mol lower

than the experimentally determined one.

In these cases, ourmodels were not able to correctly predict the activity cliffs. Our analyses

showed that inmost of theseMMPs, the docking programs were unable to correctly account

for the key structural difference and thus distinguish between the two molecules. The dock-

ing scores for these MMPs usually had a ΔΔG of less than 1 kcal/mol and our models were

not able to correct the predictions. Thus, these shortcomings are mainly due to limitations

of the implemented docking programs.

3.3.2 Screening performance

In order to further evaluate the quality of the predictions of our models, we screened the

compounds contained in the Drugbank (after excluding ions and fragments) against the es-
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Figure 3.4: Analysis of matched molecular pairs. The black dashed line represents a perfect correlation between pre‐
dicted and experimental ΔΔG values.

trogen receptor alpha using our workflow77. We paid extra attention to only include com-

pounds that were neither in the training nor in the validation set of the model. We filtered

out all hits with an applicability score below 0.2 or with raised warning flags according to

Section 3.4.3. The top 10 hits are shown in Table 3.3. The results showed that 5 of the top

10 hits have literature-confirmed activity on the estrogen receptor alpha. These compounds

include steroids as well as non-steroidal structures. For the remaining 5 compounds of the

top 10 hits, no reference for the activity at the estrogen receptor alpha could be found in

the literature. We therefore analyzed the bindingmodes of these compounds and found that
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most of them could form reasonable interactions with the receptor, but most importantly

had a good complementarity with the binding cavity (see Figures A3.1-A3.5 for the binding

modes). This complementarity has been found to be an important factor in determining the

quality of a binding pose78. Thus, there is a good chance that these compounds indeed bind

to the estrogen receptor alpha, but experimental testing would be necessary to confirm these

hits.

One of the compounds (DB16139) is under investigation for the treatment of schizophre-

nia by acting as a dopamine D1 agonist79. It has been shown that estrogen receptor modula-

tors such as raloxifene also have some activity on dopamine receptors80,81. This indicates that

there may be the possibility that compounds designed to bind to the dopamine receptor also

interact with the estrogen receptor.

DB15449 (citarinostat) is a histone deacetylase inhibitor. It consists of a triphenylamine

analog, a linker, and a zinc binding group (Figure A3.6). The triphenylamine analog has

a shape similar to that of cyclofenil analogues and therefore may also possess the ability to

bind to the estrogen receptor alpha. If this was the case, citarinostat could act as a histone

deacetylase inhibitor and estrogen receptor modulator hybrid82–84.

Table 3.3: Top 10 hits found by screening the Drugbank compounds against the estrogen receptor alpha.
Only compounds that were neither in the training nor in the validation set used to train the model are
shown.

Compound name ΔGpred [kcal/mol] Confirmed ERα activity

DB06249 -13.45 Yes
DB08309 -12.75 n.a.
DB16139 -12.52 n.a.
DB01524 -12.05 Yes
DB02187 -12.00 Yes
DB00345 -11.97 n.a.
DB13866 -11.96 Yes
DB03882 -11.96 Yes
DB13591 -11.74 n.a.
DB15449 -11.74 n.a.
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In total, the top 10 predicted hits were satisfactory with 5 confirmed estrogen receptor

alpha modulators, two interesting compounds that could be compelling for further investi-

gation, and several compounds with legitimate binding modes. This shows that the tested

model has a very good enrichment of the top N hits with confirmed or plausible molecules.

Therefore, webelieve that PanScreen couldbe advantageously applied for use cases other than

off-target assessment, e.g. drug repurposing.

3.4 Methods

3.4.1 Selection and preparation of protein structures

All protein structures implemented in PanScreen have been experimentally determined and

computationally prepared. We identified off-targets based on their Uniprot ID and used the

associated crystal structures listed onUniprot as the starting position85. The obtained crystal

structures were then manually assessed using their entry in the PDB86. Only structures with

co-crystallized ligandswere consideredwhile excluding fragments. We checked formutations

in the vicinity of the binding site and visually inspected the electron densities of the binding

site residues and the co-crystallized ligands. All crystal structures with non-covalently bound

co-crystallized ligands, an acceptable electron density at the binding site, and no mutations

in the binding site were selected as potential ensemble candidates.

The goal of the ensemble selection was to minimize the size of the ensemble while max-

imizing the diversity of the contained structures. This was achieved by aligning all binding

sites using the “align_binding_sites” routine that comes with Schrodinger Maestro version

2021-2 and selecting up to 4 structures with the highest binding site RMSD to each other87.

The selected structures were then thoroughly prepared.

For the preparation of the protein structures, we used SchrodingerMaestro version 2021-
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287. We regenerated the crystal mates to ensure that there were no crystallization artifacts

introduced by neighboring proteins in the crystal structure. In case there were binding site-

remotemutations detected in the protein that could not affect the ligand bindingmode, they

were reverted towild-type. We removed all crystallization adjuvants, but kept all physiological

co-factors within a 12 Å radius around the ligand. The Protein Preparation Wizard within

Maestro was used to assign bond orders, add explicit hydrogens, create zero-bond orders to

metals, create disulfide bonds, convert selenomethionines to methionines, fill in missing side

chains and loops, and generate protonation states at pH 7.4± 0.188. We then optimized the

H-bond network at physiological pH and ran aminimization restrained to 0.3 Å. Finally, the

structures were visually checked for any problems and fixed where necessary. A special focus

was placed on the protonation states of aspartic acids, glutamic acids, and histidines, as well

as flips of histidines, asparagines and glutamines.

It is well known that water can significantly influence the strength of a ligand binding to

a protein89–92. Therefore, we modeled the binding site of the ensemble candidates in several

different solvation states, depending on the availability of co-crystallized waters. When no

co-crystallized water molecules were resolved, no solvation states weremodeled. To select the

final ensemble, we cross-docked all co-crsytallized ligands for a protein to the ensemble candi-

dates in different solvation states. We calculated the lowest RMSD for each ligand-structure

pair and selected the ensemble with the lowest average RMSD over all cross-docked ligands.

Itwas therefore possible to get ensembleswithmore than one solvation state of a crystal struc-

ture, but we made sure that there were always at least 2 different crystal structures used in an

ensemble. Figure 3.5 shows an overview of the complete ensemble generation process.
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Figure 3.5: Process for the generation of ensembles. Crystal structures are selected based on a Uniprot ID and pre‐
filtered based on the electron density, co‐crystallized ligands, and mutations. An initial crystal structure ensemble is
generated by maximizing the binding site RMSD. The selected crystal structures are prepared in Schrodinger’s Maestro
and different solvation states are modeled. Cross‐docking to the solvation states is used to get the final ensemble.

3.4.2 Ensemble docking

PanScreen currently uses smina, Glide, and LeDock to generate docking poses and calculate

accompanying scores47,48,93. For smina, the co-crystallized ligand was used to identify the

binding site and the default buffer of 4 Å was added. We chose to generate up to 9 docking

poses with an exhaustiveness of 16. For glide, we used single-precision docking to generate

up to 10 docking poses. With LeDock, we generated up to 20 docking poses with a box

constructed with a buffer of 6 Å around the co-crystallized ligand. Each ligand was docked

to each structure in the ensemble using all 3 docking programs.

After generating protein-ligand complexes with the programs mentioned above, we used

gnina to rescore all poses94. Gnina was run with the default model, the score_only flag, with
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2 CNN rotations, and an exhaustiveness of 16. Additionally, we used a model trained to

predict binding affinities and generate protein-ligand interaction fingerprints based on po-

sco. The training of this model followed the original publication69. This model was used to

analyze all protein-ligand complexes generated by smina, Glide, and LeDock.

3.4.3 Consenus prediction

The calculated docking scores as well as the interaction fingerprints from the po-sco model

were used to compute the final consensus prediction. This was done by training an individ-

ual consensus model for each implemented off-target. The docking scores of smina, Glide,

LeDock, and gnina, as well as the affinity predicted by the po-scomodel, were first converted

to kcal/mol where necessary. Wemade sure that all affinities were less than or equal to zero by

capping positive scores. In addition to the docking scores, we also calculated the standard de-

viation of the calculated docking scores over all generated poses for each program to estimate

the uncertainty of the docking programs. The po-sco model also predicts an uncertainty es-

timation which was used for the same purpose. The docking scores and uncertainties were

then passed through a radial basis function (RBF) expansion r(x) as shown in Equation 3.1,

where x is the binding affinity predicted by a docking program or the po-sco model, the bin-

ning threshold set c is defined as xmin = c1 < c2 < · · · < cm = xmax with xmin = −15 and

xmax = 0, andm is the number of bins. This number is subject to hyperparameter optimiza-

tion and varies between models.

r(x) =
(
e−

(x−c1)
2

σ2 , e−
(x−c2)

2

σ2 , ..., e−
(x−cm)2

σ2

)
(3.1)
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The definition of σ follows Equation 3.2 where s is also subject to hyperparameter optimiza-

tion.

σ := s
√

|c1 − c2| > 0. (3.2)

This means that we used in total 10 RBF representations as inputs which were all concate-

nated: 5 docking scores and 5 corresponding uncertainties. The interaction fingerprints for

thebest complexes fromsmina, glide, andLeDockwere then concatenatedwith the expanded

docking scores and uncertainties. Since it is not easily possible to objectively determine the

“best” complex, we chose the one that had the best affinity predicted by the po-sco model.

An overview of the input processing can be found in Figure 3.6A.

The consensus model itself is a simple feed-forward neural network. A visual represen-

tation of its architecture can be found in Figure 3.6B. The processed inputs were passed

through N feed-forward blocks. One block consisted of a linear layer, a leaky ReLU acti-

vation function, layer normalization, and a dropout node. The number of blocks (N) is sub-

ject to hyperparameter optimization and was in the range of 1 to 3. After theN feed-forward

blocks, a single linear layer predicted the binding affinity and the log of the variance. The

width of the linear layers was determined by a hyperparameter optimization for each target

individually. During training, the predicted affinity and log variance were used to train the

model using maximum likelihood estimation (minimization of the negative log likelihood

loss). This is defined in Equation 3.3 where θ represents the model parameters, n is the num-

ber of samples in a batch, yi is the true label for sample i, xi is the input of sample i, and p(·)

is the probability density function that gives the conditional probability of yi given xi and θ.

L(θ) = −
n∑
i=1

log p(yi|xi; θ) (3.3)
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Figure 3.6: The full consensus model architecture. A) Processing of the inputs for the consensus model. Smina, Glide,
and LeDock (blue) are used to generate docking poses and calculate docking scores and uncertainties (red). Gnina and
the po‐sco model (purple) are used to re‐score the generated complexes, and their scores are combined with the ones of
the docking programs (red). The scores and uncertainties are passed through a radial basis function expansion (yellow)
to obtain the final docking information. The po‐sco model is also used to generate interaction fingerprints for the best
complexes generated by smina, Glide, and LeDock. The processed scores and the fingerprints are concatenated to
form the final input of the model (green). B) Architecture of the consensus model itself. The processed input is passed
N times through a linear layer followed by a leaky ReLU activation function, layer normalization, and a dropout node
(purple). For the last layer, no activation function, layer normalization, or dropout is applied. The model predicts the
affinity as well as the log variance.
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The neural network NN(·) predicts a distribution as NN(xi) = (ŷi, log σ2i ) where ŷ is the

predictedmeanand log σ2 is thepredicted log variance. The conditional probability p(yi|xi; θ)

is then calculated as defined in Equation 3.4.

p(yi|xi; θ) =
1

σ
√
2π

exp

(
−(y− ŷ)2

2σ2

)
(3.4)

To increase the robustness of the model, we trained a total of 100 models with different

seeds for the weight initialization for each off-target. The predictions of individual models

were aggregated into a final prediction using a weighted mean based on compound similar-

ities. This step was only done once all 100 models were trained. For each compound in the

training set, we calculated the optimal weights for the 100models using amulti-linear regres-

sion. For each unseen compound (from the test set or during inference), we calculated the

Tanimoto similarities to all compounds in the training set based on Morgan fingperprints

with a radius of 2 and size of 1024 bits. All training compounds with a similarity of> 0.75

to the unseen compound were selected as reference compounds. In case there were less than

5 training compounds with a similarity > 0.75 to the unseen compounds, the 5 training

compounds with the highest similarity were chosen. The reference compounds and their

similarities were then used to calculate a weighted average of the model weights according to

Equation 3.5 where wj is a vector containing the model weights for the unseen compound

j, wi are the optimal model weights for reference compound i,N is the number of reference

compounds, and sij is the similarity between reference compound i and unseen compound j.

wj =

∑N
i=1 wisij∑N
i=1 sij

(3.5)

The data available for training and validation of the consensusmodels was usually limited,

and the molecules did not cover the entire chemical space. Thus, estimating the applicability

domain of the models is an essential part of the prediction. We did this by developing an
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applicability score. To calculate the applicability score, we first mapped all molecules used

to train and validate a consensus model into 4-dimensional space using their smina, glide,

LeDock, and gnina scores. We then constructed a convex hull around all data points in 4D

space. When evaluating a query molecule, we mapped its docking scores into the same 4D

space and checked whether it was within the hull. If it was, the applicability score was set

to 1.0. If the query molecule fell outside the convex hull, we applied an exponential decay

to the shortest distance between the molecule and the surface of the hull. The applicability

score is therefore in the interval [0, 1] where higher scores indicate a better overlap with the

applicability domain of the model.

a = exp (−||q− SH(X)||) (3.6)

The calculation of the applicability score a is shown in Equation 3.6 where q is a query

molecule, X represents all molecules used to train and validate the model, SH(·) is the sur-

face of the convex hull around the set X, and || · || is the Euclidean norm.

In addition to the applicability score, we also introducedwarning flags for our predictions.

In total, there are 3 flags that could be raised: i) The compound is not binding (sum of

smina, glide, and LeDock scores is > −8), ii) The compound could not be docked by all

implemented docking programs, iii) The compound has unfavorable docking scores (sum of

smina, glide, and LeDock scores is> −14).

3.4.4 Dataset generation

To train a model for a specific (off-)target, a dataset containing compounds with experimen-

tally determined binding affinities are needed. For reproducibility, we developed a standard-

ized routine to obtain and process these data. In the first step, theUniprot ID of the target of
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interest is used to search for tested compounds on PubChem95. The obtained list is then fil-

tered to only include data points with an activity type of either Ki or Kd andwith an absolute

affinity value (no values with indication “less than” or “greater than”). For compounds with

multiplemeasurements, wefirst calculated themean affinity and excluded all data pointswith

measured affinities that deviate more than± 30% from the mean affinity. Finally, we down-

loaded the 3D SDF files from PubChem for all remaining compounds. In some cases, there

was no 3D structure available. This wasmostly the case for very large and flexible compounds

or for compounds with ambiguous stereochemistry. These compounds were excluded from

the final dataset.

The final dataset was then sorted by decreasing affinity and every 5th element was added to

the validation set while the remaining elements were used for the training set. This approach

was chosen to ensure a similar distribution of affinities between the training and validation

set. Since the consensusmodel thatwasused tomake thefinal predictions is agnostic of ligand

structures, we did not pay attention to any structural similarities between the training and

validation set. To deal with imbalances of high- and low-affinity compounds, we clustered

all training compounds into 3 clusters with affinity thresholds of < 100 nM, < 1 μM, and

> 1 μM. We then used a weighted random sampler to ensure the same numbers of high-,

medium-, and low-affinity compounds per mini-batch.

3.5 Conclusion

With the rise of increasingly accurate computational methods, in silico prediction of off-

target interactions has become a viable tool to complement classical in vitro testing. In light

of the FDAModernization Act 2.0, we believe that it is the right time to further promote in

silico methods due to their advantages in resource efficiency and cost effectiveness96.
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In this article, we present PanScreen, an online platform for the automated testing of off-

target liabilities. At the time of writing, PanScreen features 14 (off-)targets of various pro-

tein families. Using a combination of structure-based modeling and artificial intelligence, all

backed by profound knowledge in structural biology and medicinal chemistry, PanScreen is

able to accurately predict binding affinities for diversemolecules. In addition to the predicted

binding affinities, PanScreen offers possible binding modes as an explanation for the predic-

tions. We also showed that PanScreen has the potential to detect activity cliffs between highly

similar molecules. Due to the underlying technology, which is independent of a specific use

case, our platform can be used not only for toxicology studies, but also for drug repurpos-

ing, selectivity assessment, and a wide range of other applications in the pharmaceutical and

biomedical fields. To our knowledge, PanScreen is the first online platform that combines

structure-based methods with deep learning to assess off-target interactions in a portfolio of

highly curated proteins.

ByprovidingPanScreen as a publicly available online platform,wehope to enable scientists

of various backgrounds to use in silico off-target analysis with minimal effort and integrate

the results in their own research.

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of two

RTXA5000 GPUs used for this research.

153



3.6 Appendix

Table A3.1: Confusion matrix for the MMP analysis.

ΔΔGpred < 1.0 ΔΔGpred < 2.0 ΔΔGpred > 2.0 total

ΔΔGexp < 1.0 2899 85 10 2994

ΔΔGexp < 2.0 329 43 5 377

ΔΔGexp > 2.0 71 22 2 95

total 3299 150 17
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Table A3.2: Performance metrics for smina. Shown are the Pearson correlation coefficient (PCC; higher
is better), the mean unsigned error (MUE; lower is better), the root mean squared error (RMSE; lower is
better), and the area under the receiver operating characteristics (AUROC; higher is better). Note that smina
sometimes produced positive scores. Hence, the MUE and RMSE can get very high for some targets.

Protein name PCC MUE
[kcal/mol]

RMSE
[kcal/mol] AUROC

Tyrosine-protein kinase JAK2 0.43 1.89 2.15 0.72

Estrogen receptor alpha 0.46 1.59 2.37 0.75

Glucocorticoid receptor 0.16 1.57 1.93 0.64

Beta-2 adrenergic receptor 0.25 1.69 2.05 0.60

Androgen receptor 0.17 3.87 6.01 0.66

Dopamine receptor D2 0.11 1.49 1.82 0.58

Tyrosine-protein kinase JAK1 0.46 2.12 2.31 0.75

Substance-P receptor 0.08 1.59 1.93 0.58

5HT receptor 1B 0.43 1.34 1.68 0.70

PPARγ 0.35 1.57 2.09 0.63

Melatonin receptor 1B 0.37 2.18 2.63 0.68

Phosphodiesterase 4D 0.59 1.47 1.96 0.74

Estrogen receptor beta 0.25 11.12 14.70 0.69

Phosphodiesterase 10A 0.22 2.14 2.61 0.65

Mean 0.31± 0.15 2.48± 2.59 3.09± 2.70 0.67± 0.06
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Table A3.3: Performance metrics for Glide. Shown are the Pearson correlation coefficient (PCC; higher is
better), the mean unsigned error (MUE; lower is better), the root mean squared error (RMSE; lower is better),
and the area under the receiver operating characteristics (AUROC; higher is better). Note that Glide failed to
dock certain compounds. In these cases, the docking score was set to 0.

Protein name PCC MUE
[kcal/mol]

RMSE
[kcal/mol] AUROC

Tyrosine-protein kinase JAK2 0.06 3.32 3.73 0.53

Estrogen receptor alpha 0.56 1.85 2.54 0.73

Glucocorticoid receptor 0.14 1.87 2.45 0.57

Beta-2 adrenergic receptor 0.37 1.57 1.97 0.65

Androgen receptor 0.27 3.68 5.18 0.69

Dopamine receptor D2 0.09 1.60 2.01 0.60

Tyrosine-protein kinase JAK1 -0.03 3.72 4.16 0.47

Substance-P receptor 0.19 2.10 2.63 0.67

5HT receptor 1B 0.51 1.59 1.93 0.71

PPARγ 0.13 2.89 3.64 0.58

Melatonin receptor 1B 0.34 2.25 2.86 0.69

Phosphodiesterase 4D 0.02 2.31 2.60 0.52

Estrogen receptor beta 0.31 7.31 8.26 0.69

Phosphodiesterase 10A 0.29 2.55 3.02 0.77

Mean 0.23± 0.18 2.76± 1.51 3.36± 1.69 0.63± 0.09
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Table A3.4: Performance metrics for LeDock. Shown are the Pearson correlation coefficient (PCC; higher is
better), the mean unsigned error (MUE; lower is better), the root mean squared error (RMSE; lower is better),
and the area under the receiver operating characteristics (AUROC; higher is better).

Protein name PCC MUE
[kcal/mol]

RMSE
[kcal/mol] AUROC

Tyrosine-protein kinase JAK2 0.49 2.87 3.10 0.79

Estrogen receptor alpha 0.53 2.54 2.96 0.74

Glucocorticoid receptor 0.31 3.24 3.56 0.69

Beta-2 adrenergic receptor 0.29 2.01 2.46 0.59

Androgen receptor 0.41 3.48 3.84 0.71

Dopamine receptor D2 0.20 2.25 2.61 0.63

Tyrosine-protein kinase JAK1 0.62 2.74 2.89 0.81

Substance-P receptor 0.01 3.41 3.88 0.63

5HT receptor 1B 0.47 2.66 3.03 0.70

PPARγ 0.40 1.65 2.04 0.69

Melatonin receptor 1B 0.17 4.76 5.11 0.57

Phosphodiesterase 4D 0.40 2.34 2.82 0.70

Estrogen receptor beta 0.20 5.36 5.77 0.62

Phosphodiesterase 10A 0.59 4.20 4.49 0.82

Mean 0.36± 0.18 3.11± 1.06 3.47± 1.06 0.69± 0.08
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Table A3.5: Performance metrics for gnina. Shown are the Pearson correlation coefficient (PCC; higher is
better), the mean unsigned error (MUE; lower is better), the root mean squared error (RMSE; lower is better),
and the area under the receiver operating characteristics (AUROC; higher is better).

Protein name PCC MUE
[kcal/mol]

RMSE
[kcal/mol] AUROC

Tyrosine-protein kinase JAK2 0.65 1.53 1.77 0.87

Estrogen receptor alpha 0.49 2.07 2.60 0.71

Glucocorticoid receptor 0.33 1.23 1.48 0.70

Beta-2 adrenergic receptor 0.32 1.54 1.86 0.63

Androgen receptor 0.49 1.57 1.92 0.57

Dopamine receptor D2 0.23 1.13 1.39 0.61

Tyrosine-protein kinase JAK1 0.39 1.55 1.72 0.73

Substance-P receptor 0.08 1.54 1.86 0.67

5HT receptor 1B 0.44 1.25 1.48 0.71

PPARγ 0.40 1.65 2.04 0.69

Melatonin receptor 1B 0.22 2.32 2.78 0.62

Phosphodiesterase 4D 0.50 2.09 2.52 0.68

Estrogen receptor beta 0.06 2.08 2.47 0.50

Phosphodiesterase 10A 0.53 1.56 1.94 0.75

Mean 0.37± 0.17 1.65± 0.36 1.99± 0.44 0.67± 0.09
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Figure A3.1: Binding mode of DB08309 at the estrogen receptor alpha generated by Glide. a) without and b) with the
binding site surface displayed as a mesh.

Figure A3.2: Binding mode of DB16139 at the estrogen receptor alpha generated by Glide. a) without and b) with the
binding site surface displayed as a mesh.
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Figure A3.3: Binding mode of DB00345 at the estrogen receptor alpha generated by Glide. a) without and b) with the
binding site surface displayed as a mesh.

Figure A3.4: Binding mode of DB13591 at the estrogen receptor alpha generated by Glide. a) without and b) with the
binding site surface displayed as a mesh.
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Figure A3.5: Binding mode of DB15449 at the estrogen receptor alpha generated by Glide. a) without and b) with the
binding site surface displayed as a mesh.

Figure A3.6: 2D structure of citarinostat.
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The chemical nature of a composedmolecule depends on the

nature and quantity of its elementary constituents and on

its chemical structure.

Alexander Mikhaylovich Butlerov

4
ATransformative Approach toMolecular

Similarity Search in Drug Discovery

Theadvantageof the structure-basedmodeling approachused inPanScreen is its interpretabil-

ity, as well as its potential to predict activity cliffs. However, ligand-based methods also have

their merit, especially because of their generally lower computational cost.

With a growing PanScreen portfolio of dozens to hundreds of off-targets, the computa-

tional cost of evaluating all implemented off-targets will get increasingly high. Thus, it would
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prove beneficial to have a way of prioritizing off-targets to assess those with the highest prob-

ability of interaction first. This could be achieved by comparing a query molecule to a set

of compounds known to bind to a given target using different similarity metrics. The target

with the most similar known binders to the query will then be screened first. This would

allow to focus on off-targets with the highest chance of interaction with the query molecule.

Therefore, our goalwas to develop amethod that canperforman efficient similarity screen-

ing in large databases of compounds using different similarity metrics. The following article

was published in the Journal of Cheminformatics in 2023.1 It contains a proof-of-concept

study showing that it is possible to conserve molecular similarities in the form of Euclidean

distances in latent space. Therefore, the computational cost of calculating the similarity be-

tween two molecules becomes the same as calculating the Euclidean distance between two

points in high-dimensional space. Although tested only with 2D similarities, the article hy-

pothesizes that this method can be used for any kind of molecular similarity, including com-

plex alignment-based three-dimensional metrics.
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4.1 Abstract

Molecular similarity search is an often-used method in drug discovery, especially in virtual

screening studies. While simple one- or two-dimensional similarity metrics can be applied

to search databases containing billions of molecules in a reasonable amount of time, this

is not the case for complex three-dimensional methods. In this work, we trained a trans-

former model to autoencode tokenized SMILES strings using a custom loss function devel-

oped to conserve similarities in latent space. This allows the direct sampling of molecules in

the generated latent space based on their Euclidian distance. Reducing the similarity between

molecules to their Euclidian distance in latent space allows the model to perform indepen-

dent of the similarity metric it was trained on. While we test the method here using 2D sim-

ilarity as proof-of-concept study, the algorithm will enable also high-content screening with

time-consuming 3D similarity metrics. We show that the presence of a specific loss func-
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tion for similarity conservation greatly improved the model’s ability to predict highly similar

molecules. When applying the model to a database containing 1.5 billion molecules, our

model managed to reduce the relevant search space by 5 orders of magnitude. We also show

that our model was able to generalize adequately when trained on a relatively small dataset

of representative structures. The herein presented method thereby provides new means of

substantially reducing the relevant search space in virtual screening approaches, thus highly

increasing their throughput. Additionally, the distance awareness of the model causes the

efficiency of this method to be independent of the underlying similarity metric.

4.2 Introduction

4.2.1 Molecular Similarity Search

The mean financial burden of researching and developing a new drug has been estimated to

exceed 1 billion US dollars2. Resource, cost, and time efficient methods of finding new drug

molecules are therefore imperative for reducing the cost and duration of drug development.

Using computer-based methods can help reach this goal.

Awell-known concept in drug development is that similar molecules exhibit similar prop-

erties and activity profiles3,4. This can enable researchers to find novel hits by comparing

them with known active substances, which is the main principle behind similarity search in

drug development. Similarities between compounds can be determined by different strate-

gies, from simple descriptor-based comparisons over 2Dfingerprints to detailed 3Dmeasures

such as shape-based or field-based similarities dependent on alignment of themolecules to be

compared. To calculate similarities between molecules for large-scale similarity search, typ-

ically molecular fingerprints are utilized and computed. These fingerprints encode chemi-

cal properties and usually consist of binary vectors. While traditional molecular fingerprints
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were mainly rule-based (e.g. based on the presence of substructures or atom-pairs5,6), data

driven fingerprints (e.g. learned bymachine learning models) becamemore prominent in re-

cent years7. Various metrics like the Tanimoto or Dice coefficient, or the Tversky index can

be used to compute similarities based on these binary fingerprints4.

There is a large variety of molecular fingerprints, ranging from simple fragment-based 2D

methods to complex 3D approaches3,8. 2D based fingerprints can easily be applied to virtual

screenings of multi-million compound databases (up to several billion)9,10. While this is pos-

sible in a relatively short period of time due to their low complexity, more complicated 3D

similarity measures such as shape screening and similarity based on field points are realisti-

cally only feasible to use on smaller datasets of several hundred thousands up to a fewmillion

compounds11,12.

Here, we present a different approach to the problem of high-content similarity screening

combining transformer-based autoencodermodels, similarity-based latent space shaping, and

direct sampling in the reduced latent space representation. In this current proof-of-concept

study presented here, we demonstrate the feasibility of the approach using 2D fingerprint

similarities. We show that our approach can capture molecular similarities very well in latent

space. The performance of the presentedmodel is, however, independent of the used similar-

ity metric. This allows researchers to train a model on highly complex 3D similarity metrics

and thus perform high-content screening using metrics that otherwise would not be feasible

to apply to a large set of compounds. Since the presented problem falls under the domain

of distance metric learning13,14, we show how to overcome this obstacle by implementing a

custom loss function specifically designed to map similarities to Euclidian distances.
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4.2.2 RelatedWork

Since the goal of this project is to group similar samples closer together in latent space while

pushing dissimilar samples further apart, it shares similarities with contrastive learning ap-

proaches15,16. Contrastive learning has been widely used in visual learning with great suc-

cess17–19. Recently, it has also been applied to molecular data, not only in a supervised but

also in a self- or unsupervised fashion20–22. Self-supervised methods have the advantage that

they do not rely on the explicit labeling of positive (similar) and negative (dissimilar) samples.

When it comes to molecular data, self-supervision is feasible in 2D space by slightly altering

substructures of molecules to obtain positive samples. However, when moving to 3D repre-

sentations, altering substructures may lead to large differences in the 3D conformation of a

molecule, where it is not guaranteed that the newly generated structure is still similar to the

original. Furthermore, our approach differs from contrastive learning by providing a contin-

uous measure of similarities to allow for a ranking of molecules according to their similarity

to a template.

The use of deep learningmodels to create latent space embedding ofmolecules is not novel

and has been used for several years now23,24. However, to our knowledge, this is the first time

that the generated latent space was explicitly shaped in a way that allows the direct conserva-

tion of molecular similarities without having to rely on the discrimination of the data into

different classes and without losing the direct scalability to higher dimensional representa-

tions.

A well established approach of learning chemical properties of molecules is by using so

called autoencoders25–28. An autoencoder is a model that attempts to encode its input into

latent space and decodes it again while minimizing the difference between the input and the

decoded output. The latent space can be considered a reduced representation of the under-
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lying structures of the chemicals in the dataset. Herein, we make use of an autoencoder in

order to learn similarities of molecules. Honda et al. previously used a transformer model

to generate molecular fingerprints from SMILES strings using a simple reconstruction loss

function25. Bjerrum et al. found that mapping enumerated to canonical SMILES improves

the conservation of similarities in latent space26.

As mentioned before, conserving similarities in latent space is not only of high relevance

in drug discovery but also in other fields such as image recognition. Schroff et al.29 proposed

a loss function called triplet loss (Equation 4.1) which can be used to map related images to

similar regions in latent space while increasing the distance between dissimilar images:

L(A,P,N) = max(||f(A)− f(P)|| − ||f(A)− f(N)||+m, 0) (4.1)

This loss function relies on the definition of an anchor (A), a positive (i.e. similar) sample (P),

and a negative (i.e. dissimilar) sample (N) and is therefore well suited for data with discrete

labels. f(·) describes the coordinates of a compound in latent space, || · || the L2-norm, and

m the hyperparameter specifying a margin to separate similar from non-similar molecules.

In this work, we follow the approach of Honda et al. and use a transformer model to au-

toencode SMILES strings to generate fingerprints suitable for similarity calculations25. We

then use the generated latent space encodings for similarity search based on Euclidian dis-

tances. In order to improve the similarity conservation in latent space, we compare a model

based only on a reconstruction loss with models trained on additional loss terms to specifi-

cally learn similarities. Since the triplet loss function in Equation 4.1 requires discrete labels,

working with similarities requires the definition of a similarity threshold separating similar

molecules from dissimilar ones. As such a separation is highly ambiguous for diverse sets of

molecules, we developed a novel loss function which we call the similarity loss function. The
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similarity loss function can be used to work with continuous data, rendering it well-suited

for working with similarities.

The herein presented models are therefore intended to estimate similarities based on Eu-

clidian distances in latent space, allowing the subsequent use of exhaustive similarity search

on a drastically reduced search space. We also show that a model trained on a small dataset is

able to generalize to huge compound libraries containing highly diverse structures.

4.3 Methods

4.3.1 Model Architecture

In recent years, transformer-basedmodels witnessed great success in various areas such as nat-

ural language processing, speech recognition, object detection, and more30–34. In this work,

we follow the initial transformermodel architecture proposed by Vaswani et al.35. Figure 4.1

shows a representation of the implemented model architecture. To encode simple SMILES

representations of molecules, we first tokenized the strings, embedded them and added a po-

sitional encoding. An example of a tokenized SMILES string can be found in Figure A4.3.

The positional encoding is done using a set of sine and cosine functions of varying frequen-

cies as indicated in Equation 4.2 where pos refers to the position of the token in the sequence,

d is the size of the embedding, and i is the dimension of the embedding. In this study, we set

d = 256.
PE(pos, 2i) = sin

(
pos

10000 2i
d

)
PE(pos, 2i+ 1) = cos

(
pos

10000 2i
d

) (4.2)

The pre-processed data are then passed to a transformer encoder consisting of four layers.

Each layer contains a multi-head attention layer. In this model, we used four heads per atten-

tion layer. To compute the attention, we follow the original article where attention is defined
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Figure 4.1: Architecture of the used transformer model. Encoder and decoder layers are constructed following the
original publication of the transformer model by Vaswani et al.35. To help conserve similarities in latent space, a special
loss function denoted as “similarity loss” is added to the reconstruction loss.

as shown in Equation 4.3 where Q, K, and V are matrices containing the queries, keys, and

values, respectively, and dk is the dimensionality of the keys35.

attention(Q,K,V) = softmax
(
QKT
√
dk

)
V (4.3)

This encoder computes a latent space representation of the input. To obtain a single vector

representation for each source molecule, we average over all tokens in the sequence. For the

decoder part, we feed the tokenized target SMILES to an embedding layer and add a posi-

tional encoding the same way it was done for the encoder part. Note that since we are work-

ing with an autoencoder, the source and target represent the same SMILES string while the

target is right shifted. This means that the matrices containing the queries, keys, and values
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Figure 4.2: Predicting similarities between two molecules. The L2 norm is used to calculate the distance in latent space
based on tokenized SMILES strings.

(Equation 4.3) all contain the same information consisting of the tokenized SMILES strings.

The queries and keys are used to calculate attention weights which represent the importance

of each element in the SMILES string. These attention weights can then be used to compute

a weighted sum of the values. The transformer decoder layers combine the predicted latent

space representation of the sourcewith the attentionweights andmasked target embeddings,

and subsequently predict the target sequence.

In a regular transformer model, this prediction is then used to calculate the reconstruc-

tion loss usually in form of a cross entropy loss which is used to train the model. Here, we

develop and test novel loss functions to conserve similarities in the produced latent space.

When applying the model to predict similarities, the decoder part of the model will not be

used. Similarities are calculated based solely on the latent space representation of the query

molecules; the L2 norm is used to calculate the distance between two molecules in latent

space (Figure 4.2). In praxis, a perfect correlation between latent space distance and ground

truth similarity metric cannot be expected. Therefore, the purpose of this model is to obtain
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high enrichment in predicted, similar compounds to reduce the relevant search space by a

significant degree. This will drastically increase the efficiency of virtual screening.

4.3.2 Similarity Conservation in Latent Space

When using a transformer model to auto-encode SMILES strings, the used loss function

commonly only consists of a reconstruction term, e.g. in form of a cross entropy loss. While

thismay be sufficient to conserve similarities in latent space for small datasets, themodel does

not specifically learn relationships between molecules. The triplet loss function introduced

in the previous section can be used to separate labelled samples in latent space. Since the

herein presented work uses continuous data, a similarity threshold has to be defined with the

intention of distinguishing between similar and dissimilar compounds. The determination

of such a threshold is ambiguous and may differ between systems and their active molecules.

To better deal with the continuous nature of our data, we developed a novel loss function

which we call the similarity loss (Equation 4.4).

L(A,X) =
∣∣a · ∥(1− sim(A,X))∥ − ∥f(A)− f(X)∥

∣∣ (4.4)

The similarity loss depends on an anchor (A) sample much like in the triplet loss function.

However, it does not have to rely on the determination of positive and negative (i.e. similar

and dissimilar) samples. Instead, it compares each anchor in a batch with all other samples

(X) in the same batch. Sincemost similarity metrics sim(·, ·) range from 0 to 1 (0 being com-

pletely different and 1 being identical), 1− sim(·, ·) can be used to convert the similarity to a

relative distance. The loss function is therefore trying to set the Euclidian distance in latent

space equal to the relative distance in data space. In this study we used the Tanimoto coeffi-

cient calculated based on Morgan fingerprints as similarity metric. However, the described
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loss function is agnostic of the used similaritymetric as long as its values are in the range [0, 1].

In order to spread the embedded samples in latent space, we included a scaling factor a to the

term describing the relative distance in data space. The complete loss function consists of the

sum of reconstruction loss (here we use a cross entropy loss) and our similarity loss:

L(A,X) =
∣∣a · ∥(1− sim(A,X))∥ − ∥f(A)− f(X)∥

∣∣− ∑
I∈{A,X}

nI∑
i=1

∑
c

ti,c · log(p̂i,c)

(4.5)

where ti,c is the label of a token i, p̂i,c is the predicted probability for class c for token i, and nI

is the number of tokens for compound I. More information about the training of the model

such as the selection of anchors during the batch generation can be found in the Appendix

section A2.1.

In the following subsections, we compare the performance of the presented loss functions

in order to determine their suitability to conserve similarities in latent space.

4.4 Results andDiscussion

4.4.1 Initial Tests Using a Small Dataset

For a comparisonof the three loss functions, themodelwas trainedon a small dataset contain-

ing 10,000 compounds (see Appendix for details). The three models were trained using the

reconstruction loss of SMILES strings (vanilla transformer), reconstruction plus triplet loss

function, and reconstruction plus our newly developed similarity loss function. To compare

the performance of the three models, we predicted the distances between a set of 100 ran-

domly chosen reference compounds from the validation set and all other compounds in the

dataset and compared them to the respective ground truth similarities. Based on these calcu-

lations, we computed the area under the receiver operating characteristics curve (AUROC)
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using different similarity thresholds to distinguish similar from dissimilar compounds. To

avoid bias from the high number of dissimilar compounds leading to increasedAUROCval-

ues, we only included compounds with a mimimum similarity of 0.40 to the individual ref-

erence compounds in this analysis. As shown in Table 4.1, although there were overlapping

Table 4.1: AUROC values for the different models trained on a small dataset of 10,000 compounds. While
the vanilla transformer model was trained using only a reconstruction loss function, the other two models
were trained with an additional loss term to specifically enforce the conservation of ground truth similarities
in the latent space.

Similarity threshold Vanilla transformer Triplet loss Similarity loss

0.45 0.68 ± 0.17 0.73 ± 0.17 0.82 ± 0.18
0.50 0.69 ± 0.18 0.75 ± 0.16 0.86 ± 0.17
0.55 0.75 ± 0.18 0.80 ± 0.15 0.92 ± 0.08
0.60 0.76 ± 0.18 0.81 ± 0.15 0.91 ± 0.11
0.65 0.80 ± 0.17 0.85 ± 0.13 0.94 ± 0.09
0.70 0.84 ± 0.18 0.89 ± 0.12 0.96 ± 0.07
0.75 0.87 ± 0.16 0.91 ± 0.12 0.97 ± 0.07
0.80 0.90 ± 0.14 0.94 ± 0.09 0.98 ± 0.07
0.85 0.92 ± 0.14 0.96 ± 0.08 0.98 ± 0.07
0.90 0.94 ± 0.14 0.98 ± 0.05 0.98 ± 0.08
0.95 0.97 ± 0.09 0.99 ± 0.04 1.00 ± 0.01

error bands, the model trained with our similarity loss function in addition to the recon-

struction loss clearly outperformed the other two models. The AUROC values were above

0.90 for all tested similarity thresholds except the lowest two. For all three methods, we ob-

served an increase in AUROC values with increasing similarity threshold. This is likely due

to a negative correlation between the true positive rate and the total number of positives in a

dataset.

The vanilla model often failed to distinguish between similar and dissimilar compounds

based on the Euclidian distances in latent space. The predicted distances are all very similar

which likely caused a blurring in latent space, rendering it difficult to accurately distinguish

between similar and dissimilar samples. While the model trained with an additional triplet

loss was often able to map similar compounds closer to the reference than dissimilar com-

pounds, it also generated a very dense latent space in which small errors can lead to incorrect
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Figure 4.3: Similarity conservation in latent space. A) 2D structure of a randomly chosen reference compound. B) 2D
structure of a molecule similar to the reference. Similarity was defined as having a Tanimoto coefficient above 0.8. The
distances to the reference in latent space are shown for the individual models. C) 2D structure of a dissimilar molecule.
Dissimilarity was defined as having a Tanimoto coefficient below 0.3. Latent space distances to the reference are shown
for the individual models.

predictions. By including our custom similarity loss, the model not only learned to correctly

distinguish between similar and dissimilar molecules most of the times, it also spread out the

generated latent space much more, making a separation between molecules much clearer.

Figure 4.3 highlights the differences between the three models on a randomly selected ex-

ample. Compound B is highly similar to compoundA, whereas compoundC does not share

a high similarity with A. Scaling the latent space distance dij between twomolecules i and j to

the range [0, 1] and translating them into similarities sLSij , allows for a comparison of ground

truth and predicted similarities in latent space:

sLSij ≈ 1−
dij
dmax

, (4.6)

where dmax is maximum distance between any two molecules in latent space.

By applying this formula to the compounds in Figure 4.3, we obtain approximated similar-
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ities betweenA and B of 0.724, 0.899, and 0.825, and betweenA andC of 0.139, 0.821, and

0.852 using the similarity loss model, the triplet loss model, and the vanilla model, respec-

tively. This shows that the similarity loss model is clearly better at discriminating between

similar and dissimilar molecules.

While the vanilla transformer model has no additional information about the similarity

betweenmolecules, the triplet loss function learns to group similar molecules together based

on a similarity threshold. In contrast, the similarity loss function directlymaps similarities to

Euclidian distances and thereby, a superiority in this specific task was expected.

Based on these results, we expected the model with the additional similarity loss function

to perform best, followed by the model with the triplet loss. Since the vanilla model did not

have the ability of explicitly learning to couple similarities with latent space distances, we

expected it to perform worst in the similarity-based virtual screening tasks.

4.4.2 Scale-up Using the ZINCDatabase

Training of the models was subsequently upscaled using a large dataset of around 500,000

molecules (see Appendix for details on the dataset generation). To test the optimized model,

we chose a diverse set of 10 reference compounds and screened the whole downloadable

ZINC database (around 1.5 billion SMILES) against each reference compound36. The 10

reference compounds were randomly selected from the complete ZINC database while en-

suring some degree of structural diversity andmaking sure that the compounds were neither

part of the training nor the validation set. An overview of all 10 reference compounds can be

found in Figure A4.4. The goal of these models was not to achieve a perfect correlation with

calculated 2D similarities but to reduce the search space to a manageable size for subsequent

exhaustive similarity search. We therefore checked for each reference compound how many

of the 10most similar database entries (determined using an exhaustive search) can be found

192



Figure 4.4: Comparison of reproduction abilities of the models with and without similarity loss function. The lines repre‐
sent the normalized amount of the 10 most similar compounds within the topN closest samples in latent space for 10
reference compounds.

within theN closest samples according to each model (Figure 4.4).

The model trained with the similarity loss function proved to be effective in reproducing

the top 10 most similar compounds within the 15,000 closest samples in latent space for all

investigated reference compounds. This corresponds to a reduction of the search space by

5 orders of magnitude. In comparison, the vanilla model (i.e. without similarity loss func-

tion) only managed to identify 45% of all similar compounds within the top 100,000 pre-

dictions. With a identification rate of 75%, the model trained with the triplet loss was better

than the vanilla model while still being worse than the model with similarity loss. To give

further insights into the performance differences between the individual models, we selected

three structurally different compounds from the 10 reference molecules. The first reference

(reference1) is a large peptide with a molecular weight of more than 2000 g/mol (PubChem

CID 44335764). The second (reference2) is a highly cyclized compound (PubChem CID

44605611) and the third (reference3) is a potent 5HT1B receptor antagonist (PubChem

CID 44405730).

The first “ranking” analysis (Figure 4.5, middle column) shows the models’ potential to

correctly identify and rank the 100,000 most similar compounds from the ZINC database.

193



Figure 4.5: Similarity reproduction abilities. Left: 2D structure of the respective reference compound. Middle: His‐
togram of similarities (calculated using the exact method) of the 100,000 closest molecules to the reference in latent
space (“ranking” task). Right: Reproduction of fairly similar compounds to the reference where a threshold of 0.5 was
chosen to distinguish between similar and dissimilar compounds (“hit identification” task). A) analysis of the perfor‐
mance using a very large reference compound. B) performance with a smaller, cyclized reference compound. C) perfor‐
mance using a more linear compound with heterocycles.

The right column in Figure 4.5 analyses the models’ performance in identifying similar com-

pounds to the reference (at a similarity threshold of 0.5). This analysis we name “hit iden-

tification” in the subsequent paragraphs. In general, the vanilla transformer was capable to

identify similar compounds to large reference molecules such as reference1, but had signif-

icant difficulties for small substances, e.g. reference3. The same was true for the triplet loss

model although the reproduction performance for the small substances was better compared

to the vanilla model (Figure 4.5).

In detail, the analysis showed that all threemodels performed verywell for reference1 (Fig-

ure 4.5A), with the triplet loss model being slightly better at reproducing the similarity dis-
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tribution of the exactmetric than the other twomodels. In the “hit identification” task, with

approximately the first 100 predictions, all models performed similarly. For the compounds

ranked lower in predicted similarity to the reference, the similarity and triplet loss models

started to clearly outperform the vanilla model. Within 100,000 top-ranked compounds,

the similarity and triplet loss models were able to reproduce around 90% of the similar com-

pounds whereas the vanilla model only managed to find around 40%.

For reference2 (Figure 4.5B) and reference3 (Figure 4.5C), the similarity lossmodel clearly

outperformed the other two models in both “ranking” and “hit identification” tasks. For

reference2, the similarity loss model, triplet loss model, and vanilla model were able to iden-

tify 90%, 33%, and 18% of the similar compounds, respectively. The largest difference was

seen for reference3, where the similarity loss could identify all similar compoundswithin the

top 2000 predictions while the vanilla model could only find around 7% of the similar com-

pounds within the first 100,000 predictions. The triplet loss model was able to find 63% of

the most similar compounds, thus performing much better than the vanilla model but still

much worse than the model trained with the similarity loss. The comparatively good perfor-

mance of the vanilla and triplet loss model for reference1 is likely due to the relatively low

number of very large molecules in the data set, placing those molecules in a well-separated

location in latent space. The model trained on the similarity loss however performed well in

all three cases, proving the advantage of the additional loss term.

Exclusion of Scaling Factor in Loss Function

To study the importance of the scaling factor in the similarity loss function (Equation 4.4),

we trained an additional model with a scaling factor of 1, thus disabling its effect. Using the

same analyses as previously discussed revealed a drop in accuracy compared to using larger

scaling factors, although it still performs better than the vanilla model (Figure A4.5). These
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findings have likely todowith the fact that awell structured latent space that is not toodensely

packed may be important for a good reproduction performance.

Finding a good value for the scaling factor is not trivial and this hyperparameter has to be

tuned during training. In our tests, we found a value of 20 toworkwell for the initial analyses

with a smaller dataset. However, when moving to a larger set, we found that decreasing the

scaling factor to 10 further improves the performance of the model.

4.5 Conclusion

In this work, we developed models for similarity-based high-content screening with the aim

to translate pairwise similarities in data space to Euclidian distances in latent space. This will

facilitate efficient similarity searches independent of similarity metrics. We could show that

theuse of a loss function specifically designed to conservemolecular similarities in latent space

greatly improved the accuracy of the model. By training a transformer autoencoder using a

novel similarity loss function, itwas possible to obtain amodel that could be successfully used

for similarity search against a database of more than 1 billion compounds. We demonstrated

that ourmodelwas able to generalize froma comparatively small dataset,making it possible to

learn highly complex similarity metrics that could otherwise not be applied to large datasets.

While the presented model did not obtain a perfect correlation to the underlying ground

truth similarity metric, it can be used to substantially reduce the available search space by five

orders of magnitude. Such a drastic reduction of search space allows for subsequent use of

exhaustive classical screening methods.

Here, we provide a proof of concept showing the possibility of generating a model for

similarity search that is unaware of the underlying similarity metric, thereby uncoupling its

efficiency from the chosen method. For future adaptation of the method to 3D similarities,
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we will explore whether SMILES representations are sufficient as input or representations

such as 3D graphs are necessary to allow the model to effectively learn 3D information. The

proposed loss function for latent space shaping, however, will be not affected by this potential

architecture change, as it is agnostic of the specific similarity metric.

Availability of data and materials

The code used to train the model and screen the database can be found on GitHub (https:

//github.com/mmodbasel/HighContentScreening).
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4.6 Appendix

A1. Additional Results andDiscussion

To further investigate the reproduction abilities of the model with and without similarity

loss, we analyzed the distribution of molecular weights of the 100,000 molecules predicted

to be closest to the reference (Figure A4.1).
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Figure A4.1: Reproduction of molecular weights. The histograms show the distribution of molecular weights of the
100,000 most similar compounds to reference1 (A), reference2 (B), and reference3 (C) calculated using either the exact
similarity metric, the model with similarity loss, or the vanilla transformer model.

The data show that all three models are well able to reproduce the molecular weight dis-

tribution of the 100,000 most similar compounds to reference1while the triplet loss model

outperforms the other two models. This effect is the most pronounced at the lower end

of the scale where the vanilla and triplet loss models are able to reproduce more of the low

molecular weight compounds than the similarity loss model. More detailed analysis of this

phenomenon revealed that these lowmolecularweight compounds are all highly dissimilar to

the reference compound. When only including compounds with a similarity to reference1

of 0.3 or more, these compounds disappeared and the similarity loss model showed a better

overlap with the ground truth. Still, the triplet loss model showed a slightly better repro-

duction of the molecular weights than the other two models (Figure A4.2). The sampling

of very dissimilar molecules may be due to the fact that the vanilla and triplet loss models

generated a much denser latent space, leading to a generally lower distance between the very

high molecular weight compounds and the molecules with lower molecular weight. While

this benefits the twomodels for reference1, it decreases their performance for reference2 and

reference3 (Figure A4.1 B&C). In these examples, themodel with similarity loss is generally

better able to reproduce the distribution of molecular weights from the underlying (exact)

similarity metric. Here, the vanilla transformer model is likely suffering because there are a
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lot of molecules in the screened data set that have a similar molecular weight to the two ref-

erence compounds. This causes the model to over-sample these compounds in the densely

packed latent space. In these cases, the sparser latent space generated by the similarity loss

may prevent such an over-sampling.

Figure A4.2: Reproduction of molecular weights. The histograms show the distribution of molecular weights of the
100,000 most similar compounds to reference1 (A), reference2 (B), and reference3 (C) calculated using either the exact
similarity metric, the model with similarity loss, or the vanilla transformer model. Only compounds with a similarity of at
least 0.3 are considered.

For reference 2, the triplet lossmodel performed similarly to the vanillamodel (FigureA4.1B).

However, for reference 3 it appears that the triplet loss model has about the same perfor-

mance as the similarity loss model (Figure A4.1C). Here, it must be noted that while the

100,000 sampled compounds have a similar distribution of the molecular weight, only 96

had a similarity of at least 0.3 to the reference compound (compared to 8,236 for the simi-

larity loss model, Figure A4.2C). Thus, while in some cases the triplet loss model is able to

nicely reproduce compounds with a similar molecular weight compared to the ground truth,

it still lacks the ability to find compounds with high structural similarity to the reference.

A2. AdditionalMaterials andMethods

The following sectionwill describe the detailed neural network architecture, its hyperparam-

eters, and the datasets used to train and test the model.

199



A2.1 SMILES Transformer

Ourmodel uses a transformer architecture as described in the publication by35. It was imple-

mented in PyTorch using their integration of the Transformer module. The vocabulary was

generated using tokenized SMILES strings that were used as input and encoded into 256 di-

mensional latent space. Our model consisted of 4 encoder and decoder layers with attention

layers containing 4 heads. All models were trained using an Adam optimizer with a learning

rate of 10−4 and 128 samples per batch. Since it was not possible to further increase the batch

size due to memory limitations, we accumulated the gradients over 4 batches.

In order to determine the ground truth similarities, we calculated the Tanimoto coeffi-

cients based on 1024 bit Morgan fingerprints implemented in RDKit with a radius of 2. To

conserve similarities in latent space, it is imperative that during training, each batch contains

at least one similar compound to each sample (and for the triplet loss also at least one dis-

similar compound). For the model trained on the similarity loss, we first randomly assigned

compounds to a batch which act as anchor. To guarantee that similar compounds exist for

each of those reference compounds, the algorithm randomly selected 3 of the 100 most sim-

ilar compounds to the reference which were added to the batch. For the model with the

triplet loss, we randomly selected 64 anchors per batch and for each chose a random com-

pound with a Tanimoto similarity to the anchor of at least 0.6. It was assumed, that due to

the intrinsic diversity of the dataset, for each anchor in a batch, there will always be a negative

sample present. We defined negative samples as any compound with a similarity of less than

0.4 to the anchor.

The scaling factor a required by the similarity loss function was set to 20.0 in the initial

tests on a small dataset and was later decreased to 10.0 for the scaled up training. Themargin

m for the triplet loss function was set to 1.0 for the comparison of the loss functions as well
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as for the scaled up model. These values were determined based on the retrospective analysis

of the performance of each trained model.

Training amodelwith the similarity loss and thehyperparameters described above for 1000

epochs took roughly 9 days on a single GTX 1080 Ti.

A2.1.1 Datasets

During an initial test phase, we used a randomly selected subset of 10,000 SMILES extracted

from the natural compounds dataset obtained from the ZINC database. The dataset was

randomly split into a training (80%) and validation (20%) set. The validation set was used

to compare the performances of three different loss functions. In the upscaling experiments,

we randomly selected 0.03% of the compounds in each tranche downloaded from the ZINC

database, leading to a dataset consisting of approx. 500,000 compounds. Following the

method of the initial test, the dataset was randomly split into a training and validiation set

using a 80/20 split. For testing the optimized model, the whole ZINC database was used

which consisted of around 1,458,000,000 compounds at the time of testing.

For reproducibility, all used SMILES strings were converted to their canonical form using

openbabel prior to training and testing.

A2.2 Similarity Search

Once obtained, the distance aware SMILES embeddings were used to efficiently calculate

distances (i.e. similarities) in embedding space. Facebook’s faisswas utilized for this task using

a FlatL2 index to calculate Euclidian distances in latent space. Faiss allows the construction

and search of several types of indexes with various degrees of approximation.

The search was performed on pre-calculated latent space embeddings of the whole ZINC

database. Searching 94 reference compounds against the complete database took roughly
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2.75 hours on a machine with 64GB RAM that was equipped with an HDD. Around 65%

of the computation time was needed to read the pre-computed embeddings from disk. By

using either a server with solid state drives or more memory, the computational cost could

therefore be significantly decreased. Searching the same database using RDKit’s BulkTan-

imotoSimilarity function (with pre-computed fingerprints) on the same machine required

around 3.40 hours for a single reference compound.

A3. Additional Figures

Figure A4.3: Example of SMILES tokenization. The 2D structure of a molecule, its SMILES representation, and the
tokenized SMILES are shown. “<SOS>” and “<EOS>” represent labels specifying the start and the end of the sequence,
respectively.
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Figure A4.4: All reference compounds used for the assessment of the reproduction ability.

Figure A4.5: Performance of the model trained with the similarity loss scaling factor set to 1 for the “hit identification”
task. The data for reference1 (A), reference2 (B), and reference3 (C) are shown.
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The only way of discovering the limits of the possible is to

venture a little way past them to the impossible.

Arthur C. Clarke

5
Going Beyond 2D: Transformer-Based

Ligand Screening in 3D Space

In the previous chapter, we presented a proof-of-concept study showing thatmolecular simi-

larities can be conserved in a latent space generated by aTransformermodel. Wehypothesized

that this is possible independent of the underlying similarity metric, but we showed results

only for 2D similarities. The following article was published as a preprint on BioRxiv and

proves our previous claims by using an alignment-based 3D similarity measure.1
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5.1 Abstract

Following the assumption that chemically similarmolecules exhibit similar biologcial proper-

ties, ligand-based virtual screening can be a valuable starting point in drug discovery projects.

While 2D-based similarity metrics generally focus on similar scaffolds or substructures, 3D-

based methods can capture the shape of a molecule, allowing for the identification of com-

poundswithdifferent scaffolds. We recentlypublished aproof-of-concept studywhichdemon-

strated how a Transformer model can be adapted to preserve 2D similarities in latent space

in the form of Euclidean distances. In this work, we extend this research and prove that the

approach can be adapted to 3D similarities. We use pharmacophore-based shape similarity as

3D similarity measure. We show that the model is able to enrich the predicted most similar
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hits with compounds with different scaffolds that are indeed similar in 3D space. Whereas

classical pharmacophore- or shape-based 3D similarity methods rely on expensive alignment

processes, in our approach, we identify similar compounds directly by the Euclidean dis-

tances in latent space. This enables for the first time the 3D screening of ultra-large databases

with high efficiency.

5.2 Introduction

Virtual screenings of ultra-large compound libraries are receiving increasing attention in the

scientific community2–4. While some virtual screening strategies rely on structure-based ap-

proaches5, most use ligand-based methods due to their simplicity and computational effi-

ciency6–9. In this work, we explore a novel method to accelerate 3D ligand-based ultra-large

virtual screening using a Transformer-based deep neural network.

5.2.1 Similarity Search

Ligand-based similarity methods are widely used because of their computational efficiency,

which is orders of magnitude faster than classical structure-based virtual screening methods.

Ligand-based similarity concepts assume that chemically similar molecules exhibit similar bi-

ological activity10,11. Common 2D similarity search consists of the extraction and compari-

son of molecular features. Usually, these features are stored in binary vectors (fingerprints)

which can be easily compared using, e.g., the Tversky index, Tanimoto, or Dice coefficient.

Due to the simplicity of this approach, these methods are usually fast enough to allow the

screening of more than a billion compounds in a matter of hours.

On the other hand, 3D similarity methods are usually more computationally demand-

ing. While alignment-free methods may still be computationally feasible12, the usually more
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accurate alignment-based methods, such as pharmacophore or shape screening, come with

an increased computational cost13. Nevertheless, it has been shown that even these compu-

tationally demanding methods can be used to screen billions of compounds with the right

hardware. For example, Michino et al. screened approximately 1.12 billion compounds in

19.5 hours using 216 GPUs14. Given that not everyone has access to such significant com-

putational resources, we believe it is essential to accelerate these accurate yet comparatively

slow ligand-based screening methods.

5.2.2 Representation Learning

In the field of similarity search, a recurring issue is the maximization of the information con-

tent in a molecular fingerprint15,16. Since in this work we focus on the use of deep neural

networks, this problem falls into the domain of representation learning. Representation

learning aims to transform raw high-dimensional data into a reduced set of features that

can be used to optimally represent the data and enable their use in downstream tasks17,18.

Representation learning has been used in various fields such as language processing19, time

series20, optimization of industrial processes21, investigation of biological sensorimotor in-

tegration22, and molecular property prediction23.

A common approach is contrastive representation learning, in which similar samples are

trained to be close together in embedding space, while dissimilar samples should be farther

apart24. Thus, in contrastive learning, input samples are compared to each other. This allows

for the use of unsupervised learning as long as input samples can be compared with a defined

similarity metric. One of the earliest contrastive loss functions was developed by Chopra et

al. and is used to cluster samples of the same class in a similar location in embedding space25.

Other important loss functions used in contrastive representation learning include the triplet

loss26, lifted structured loss27, N-pair loss28, and noise contrastive estimation (NCE) loss29.
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Generative representation learning is another important category of representation learn-

ing24. In generative representation learning, a model is trained to generate new samples (or

reconstruct samples from the input). The concept is that, for a model to generate realistic

samples, it must learn the fundamental structure of the data.

5.2.3 PreviousWork

In a proof-of-concept study, we recently demonstrated that it is possible to train a deep neural

network model to create a similarity conserving latent space30. We demonstrated that the

latent space can be shaped in such a way that allows to use the Euclidean distance between

embedded molecules as a measure of their similarity. This was done using a combination of

generative and contrastive representation learning. The utilized Transformer-based model

reconstructed SMILES strings that were given as input. At the same time, it used a custom

similarity loss for contrastive learning of continuousmolecular similarities (see Equation5.2).

Using this model, it was possible to reduce the search space for virtual screening by several

orders of magnitude. For simplicity, we used a simple 2D similarity measure based on Mor-

gan fingerprints. However, due to the low computational cost of calculating 2D similarities,

training such a model does not give a significant benefit over directly using the underlying

similarity metric. Here, we extend this work and adapt the model to computationally ex-

pensive alignment-based 3D similarity metrics, which results in significant improvements in

efficiency compared to other 3D similarity methods.

5.2.4 Challenges Going From 2D to 3D

To utilize 3D similarity metrics, the architecture of the model needs to be modified to allow

for 3D structural data as input instead of 1D SMILES strings. Here, we represent molecules

in the formof graphs, where atoms are nodes, and bonds are edges. This approach also allows
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to include 3D distance information as part of the edge featurization. A detailed description

of this process can be found in Section 5.4.3.

Arguably, the biggest challenge is the computational cost of complex 3D similarity calcu-

lations. For the model trained on 2D similarities in our previous proof-of-concept study, it

was possible to either calculate all pairwise similarities in the training set before training or

using online learning by calculating the similarities on the fly during training. When using

alignment-based 3D similarity metrics, it is not feasible to calculate all pairwise similarities

for a large dataset. Also, online learning would be simply too slow. One way to overcome

this problem is to use active learning methods. Active learning is a technique to sample from

unlabeled data and choose new samples to annotate and add to the training set based on

a certain algorithm in order to maximize the model’s improvement31,32. There are several

algorithms (acquisition functions) that are often used in active learning. Regardless of the

specific algorithm, their goal is always to select the best data to learn from in order to boost

the model’s performance as efficiently as possible. The use of active learning therefore allows

to start training on a small training set which is iteratively grown based on the selection of the

implemented algorithm(s). In our case, this has the advantage that only a small portion of

the data has to be annotated (i.e. similarities have to be calculated) before the training. Each

active learning cycle only adds new samples that are beneficial for the model’s training, thus

making the whole training process more efficient.

One commonly used active learning acquisition function is called query by committee

(QBC). This algorithm employs a committee of models (so-called students). New samples

for annotation are selected based on the maximum disagreement in prediction between the

student models33–35. Therefore, a normal QBC algorithm requires multiple models to be

trained in parallel. Since this comes with an additional computational cost, a committee can

also be simulated by using the same model with activated dropout for the predictions. This
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method is also called query by dropout committee36.

Anotherpopular active learning algorithm is expectedmodel changemaximization (EMC).

In this algorithm, the gradient of the loss with respect to an input sample is used to estimate

the expected change of the model when learning from the sample37,38. In practice, a set of

unlabeled samples is passed through themodel. For each sample, the gradient of the loss with

respect to the input is calculated and the samples with the largest gradient are chosen for an-

notation. Since it is necessary to calculate the loss for unlabeled samples, this method cannot

be used for loss functions that require labels.

5.2.5 Our Contribution

In this work, we extend our previous proof-of-concept study using 2D similarities to the use

of 3D similarity metrics for efficient high-content virtual screening. We present the neces-

sary modifications to the model architecture and the training process to enable the training

on computationally expensive alignment-based similarity metrics; here shape screening im-

plemented within the Schrödinger software suite. We also show that our model is indeed

capable of conserving 3D similarities in latent space and that it can be used to efficiently iden-

tify compounds with similar 3D features. In our opinion, such a model can be very valuable

in the early stages of hit identification, where the main focus is the reduction of the search

space.

5.3 Results andDiscussion

There are several performance criteria that our model must meet. First, since the intended

use for this model is ligand-based virtual screening, it should be able to actually predict sim-

ilar compounds (according to the underlying similarity metric) within the top-ranked pre-
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dictions. Second, the model should actually capture 3D features and not rely solely on 2D

similarities. This means that the model should be able to identify similar compounds with

different chemical scaffolds. Finally, the model should prove its usefulness in a “real-world

example” such as successfully reproducing known binders to a given target protein based on

a reference molecule.

5.3.1 General Analysis

With this general analysis, we tested the model’s ability to find similar compounds and cap-

ture 3D information. We did this by screening several query molecules against a database

of structurally diverse compounds and comparing the identified hits with the hits from the

pharmacophore-based3Dshape screening. This test had twodesiredoutcomes: 1) themodel’s

predictions correlate with the baseline similarities and themodel is able to identify a high per-

centage of the top-ranked hits according to the baseline similarity method. 2) the top-ranked

predictions have a high shape overlap with the query molecules.

To construct the dataset for the screening, we randomly selected a subset of approximately

50,000 compounds from the ZINC database39. Only compounds that were not part of the

training set were selected. We then clustered the compounds using the Butina algorithm im-

plemented in RDKit based on Tanimoto similarities based on Morgan fingerprints40. For

clustering, we used a similarity cutoff of 0.7. In total, there were 31,856 clusters, of which

only 5,234 contained more than one compound. This shows that the compounds had high

structural diversity. We used the centroids of the 10 largest clusters as reference compounds

for our analysis. This ensured that the screening set contained compounds with 2D struc-

tures similar to those of the reference compounds. For these reference compounds, we gen-

erated a single 3D conformer using Schrödinger’s LigPrep41. To create a dataset to screen,

we took up to 10 compounds from the created clusters until we had a set of 10,000 com-
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pounds. For the selected 10,000 compounds, we then created up to 5 conformers each using

Schrödinger’s ConfGen42,43. This resulted in a total of 49,495 structures to screen. To cre-

ate our baseline, we used Schrödinger’s pharmacophore-based GPU shape screening tool to

screen the 10 selected references against the createddataset13,44. Ourmodelwas used to screen

the same 10querymolecules against the samedataset. Because thereweremultiple conforma-

tions per compound, the best score (highest similarity or shortest distance in latent space)was

used for bothmethods. Table 5.1 shows an overview of the model’s performance. The mean

Table 5.1: Performance analysis for 10 query molecules screened against approximately 10,000 compounds
from the ZINC database. “Mean similarity top 100” shows the mean shape similarity of the top 100 cal‐
culated hits according to the baseline method. “Mean similarity top 100 pred” shows the mean predicted
similarity of the top 100 predicted hits according to the model. Since the model predicts distances and
not similarities, the predicted similarity ŝ was calculated as ŝ = 1 − d

a where a is the scaling factor as in
Equation 5.2 and d is the predicted latent space distance.

Query PCC Precision
top 100

Precision
top 1000

Mean similarity
top 100

Mean similarity
top 100 pred

ZINC000570771518 -0.78 0.17 0.47 0.54 0.46
ZINC000950159323 -0.77 0.30 0.47 0.56 0.49
ZINC000954430177 -0.54 0.16 0.33 0.54 0.44
ZINC000970035445 -0.79 0.33 0.53 0.57 0.51
ZINC001183157671 -0.64 0.14 0.35 0.44 0.36
ZINC001281147597 -0.75 0.25 0.49 0.54 0.48
ZINC001368797027 -0.78 0.20 0.44 0.49 0.43
ZINC001711902206 -0.84 0.34 0.69 0.49 0.45
ZINC001740566933 -0.88 0.30 0.76 0.54 0.50
ZINC001763434742 -0.87 0.58 0.75 0.60 0.57

Pearson correlation coefficient (PCC)was−0.73±0.13. Note that the correlation should be

negative because the model predicts distances and not similarities. Thus, the smaller the pre-

dicted distance, the higher the estimated similarity. Figure 5.1 shows the correlation between

the predicted distances and the calculated shape similarities forA)ZINC001763434742 (one

of the best performing queries) and B) ZINC001183157671 (one of the worst performing

queries). For ZINC001763434742, the true similarities are mostly in the range from 0.15 to

0.65 while the similarities for ZINC001183157671 are mainly in a comparable small range

from0.15 to 0.5. Thus, there seem to be no compounds that are highly similar to the query in

218



Figure 5.1: Correlation between predicted distance and calculated shape similarity for two query compounds. A)
ZINC001763434742,R2 = 0.76. B) ZINC001183157671,R2 = 0.40

1B). This small range in similarity values contributes to the rather low correlation coefficient.

Using the latent space distance d and the scaling factor a used to train themodel (see Equa-

tion 5.2), it is possible to approximate the similarity ŝ to ŝ = 1 − d
a . We used this equation

to calculate the similarity for the top 100 predictions and compare their mean with themean

similarity of the top 100 hits from the baseline. Ideally, these two means are the same, as this

would indicate that the model was able to reproduce the true similarity values. According to

Table 5.1, the difference between these values ranged from 0.03 to 0.10, indicating that the

performance depends on the chosen query compound. It can also be seen that it correlates

nicely with the PCC. The precision shows the fraction of the top N predicted hits that are

actually among the topN according to the baseline method. ForN = 100, these values were

generally quite low, indicating that the model was not very good at reproducing the top 100

hits among the top 100 predictions. However, the values seem to correlate with the overall

performance for the specific queries, as indicated by the PCC. With some exceptions, these
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Table 5.2: Screening performance for 10 query molecules screened against approximately 10,000 com‐
pounds from the ZINC database. The area under the receiver operating characteristics curve (AUROC) and
the enrichment factors (EF) at 1, 2, 5, and 10 percent are shown.

Query AUROC EF 1% EF 2% EF 5% EF 10%

ZINC000570771518 0.92 17.0 14.0 10.0 6.4
ZINC000950159323 0.95 29.0 21.5 13.4 8.0
ZINC000954430177 0.88 15.0 11.0 9.0 6.1
ZINC000970035445 0.96 33.0 26.0 15.0 8.8
ZINC001183157671 0.86 14.0 13.0 8.0 5.2
ZINC001281147597 0.94 25.0 18.5 13.0 7.9
ZINC001368797027 0.92 20.0 15.0 10.6 7.0
ZINC001711902206 0.96 34.0 25.5 14.4 9.4
ZINC001740566933 0.98 30.0 27.0 17.0 9.9
ZINC001763434742 0.99 58.0 38.5 19.6 10.0

values are better for queries with a higher similarity to the top hits (represented by the mean

similarity of the top 100 hits). This indicates that the model may generally perform better

when there are compounds in a database that are highly similar to the query. Since repro-

ducing the top 100 hits is a very difficult task and we did not expect the model to actually

excel at it, we also calculated the precision for the top 1000 hits. There, the performance is

generally higher, but varies greatly between the different queries, and again seems to correlate

quite nicely with the PCC. On average, 53% ± 15% of the top 1000 predicted compounds

were actually among the top 1000 hits according to shape screening.

To assess the screening performance of themodel inmore detail, we calculated the receiver

operating characteristics (ROC) curves and enrichment factors (EF) for the 10 queries in Ta-

ble 5.1. To calculate the ROC curves, we defined the first 100 hits from the shape screening

as active and the rest as inactive. The goal of the model should be to accurately replicate the

100 hits as early as possible. The results of this analysis are shown in Table 5.2 and detailed

ROC curves and reproduction plots can be found in the Supporting Information in Fig-

ures A5.1-A5.10. The average area under the ROC curve was 0.93± 0.04, indicating a very

good screening performance. Also, the mean 1% EF was 27.5 ± 13.0. This means that on
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average the model was able to reproduce 27.5 times more active compounds than random

selection when considering only the 1% top ranked predictions.

To get a full picture of the performance of the model, it is important to analyze examples

in which the model predicted very wrong values. Therefore, we picked examples that had

a short predicted distance while having a low calculated shape similarity. Figure 5.2 shows

one of the cases where there is a large discrepancy between the predicted and calculated rank

of the compound. Although the model ranked this compound 3680 ranks too high, the

shape overlap with the querymolecule seems to be high. In this case, the calculated similarity

may be reduced due to few matching pharmacophores. This would indicate that the model

has problems learning the pharmacophore information while being able to capture the 3D

shape information well. Indeed, while the pharmacophore-based shape similarity between

the twomoleculeswas 0.35, the shape-only similarity (without pharmacophore information)

was 0.63.

Another example in which themodel overestimated a compound by 1571 ranks is given in

Figure 5.3. It can again be seen that the overlapbetween the two compounds is rather high. In

this example, the 2D similarity between the two compounds is low (0.35) and it can be seen

Figure 5.2: Shape overlap between ZINC000954430177 (query, green, solid surface) and ZINC001497961236 (grey,
mesh surface) which was ranked top 8 by the model and rank 3688 by the baseline.
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Figure 5.3: Shape overlap between ZINC000570771518 (query, green, solid surface) and ZINC001386435162 (grey,
mesh surface) which was ranked top 14 by the model and rank 1585 by the baseline.

that the predicted similar compound has a scaffold different from the query. Instinctively,

one may say that this is actually a good hit, but nevertheless the model did not reproduce

the correct rank as calculated by the baseline. Comparing the pharmacophore-based shape

similarity (0.41) with the shape-only similarity (0.63) shows again that the discrepancy of the

ranks was caused by the model’s inability to capture the pharmacophore information while

nicely reproducing the 3D shape overlap.

There are, however, also instances where themodel very nicely reproduced hits, even if the

2D structure was very different from the query. One such example is shown in Figure 5.4. In

Figure 5.4: Shape overlap between ZINC001763434742 (query, green, solid surface) and ZINC001556038399 (grey,
mesh surface) which was ranked top 34 by the model and rank 76 by the baseline.
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this case, the shape overlap appears to be worse than in the previous examples, even though

this compound was highly rated by the baseline. The shape similarities with and without

pharmacophore information were very similar at 0.58 and 0.59, respectively. This indicates

that the score was mainly influenced by the 3D shape and that the pharmacophore informa-

tion did not contributemuch. Since ourmodel performed very well on this example, it again

suggests that the model is good at finding compounds with a similar shape, but not as good

at capturing pharmacophore information.

In these experiments, we could show that the model is able to produce hits with a high

overlap with the query molecules in 3D space. However, there may still be some shortcom-

ings in certain cases in reproducing the exact similarity metric, especially if the similarity goes

beyond “simple” 3D overlap. Nevertheless, the model proved to be able to capture 3D simi-

larities independent of the 2D structure of the molecules.

5.3.2 Real-World Examples

To simulate a real-world example of a possible screening study, we selected 2 co-crystallized

ligands as queries to screen the drugs contained in theDrugbank45. In a first trial, we selected

raloxifene (co-crystallized to the estrogen receptor (ER) in PDB ID 1ERR). This compound

has not been seen by the model before. The precision of the top 100 predictions was 53%,

which ismuch higher than formost of the examples in Subsection 5.3.1. However, the preci-

sion of the top 1000predictionswas slightly lower at 49%. ThePCCof all predicted distances

with calculated similarities was -0.77. Interestingly, the model was able to reproduce the top

10 most similar compounds according to the baseline within the top 47 ranked hits. Since

we wanted to know if the model can be used to find other compounds that modulate the

ER, we investigated the top 10 predictions. Table 5.3 shows the results of the analysis. All 10

predicted most similar compounds have literature confirmation of ER modulating activity.
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Table 5.3: Predited top 10 most similar compounds to raloxifene. The first hit is omitted from the table
because it is raloxifene itself.

Drugbank ID Predicted rank Name ER activity

DB05414 2 Pipendoxifene Yes 46
DB06401 3 Bazedoxifene Yes 47
DB06249 4 Arzoxifene Yes 48
DB16080 5 Acolbifene Yes 49
DB03742 6 Compound 4-D Yes 50
DB07352 7 Apigenin Yes 51
DB01645 8 Genistein Yes 52,53
DB15464 9 Urolithin A Yes 54
DB13182 10 Daidzein Yes 55

While this is a very promising result, one also needs to keep in mind that the Drugbank is a

biased database in that it contains not onlymostly drug-likemolecules, but alsomany known

ERmodulators.

Figure 5.5 shows the 2D structures of raloxifene and the 9 most similar compounds pre-

dicted by the model. It also contains the 3D structures of selected top-ranked compounds

aligned with raloxifene. We further calculated the 2D similarity between the reference and

the hits. While the 5 top ranked compounds were structurally quite similar (2D similarity

between 0.44 and 0.66), the next 4 hits had scaffolds very different from raloxifene. They

consisted of 3 isoflavonoids and 1 benzo-coumarin. The 3D alignment shows that even the

compounds with different scaffolds share similar features, which could reproduce the bind-

ing mode of raloxifene. This analysis clearly shows that the model is able to find structurally

dissimilar compounds by learning 3D features.

Next, we wanted to test a compound with a different chemical scaffold than raloxifene.

We decided to screen tetrahydrogestrinone against the drugs contained in the Drugbank.

Like before, this compound has not been seen by the model before. The 10 highest ranked

compounds predicted by our model are shown in Table 5.4. The precision of the top 100

predictions was 72%, which is exceptionally high. We believe that this is because steroidal
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Figure 5.5: 2D and 3D structures of the 9 predicted most similar compounds to raloxifene. Top: 2D structures with 2D
similarity s. Bottom: 3D alignment of raloxifene (green stick representation with green solid surface) with 3 of the top
ranked compounds with diverse scaffolds (gray stick representation with mesh surface).

Table 5.4: Predited top 10 most similar compounds to tetrahydrogestrinone. The first hit is omitted from the
table because it is tetrahydrogestrinone itself.

Drugbank ID Predicted rank Name AR activity

DB11619 2 Gestrinone Yes 56
DB11372 3 Altrenogest Yes 57
DB02998 4 Metribolone Yes 58
DB13563 5 Norgestrienone Yes 59
DB11551 6 Trenbolone Yes 60
DB06730 7 Gestodene Yes 61
DB09389 8 Norgestrel Yes 62
DB13602 9 Promegestone No 63

DB00367 10 Levonorgestrel Yes 64

compounds have a very unique shape and therefore it may be easier for the model to find

similar compounds. The precision of the first 1000 hits was equally high with 69% and the

correlation between all predicted distances and the calculated shape similarities was−0.82.
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The model was able to reproduce the top 10 hits from shape screening within the top 27

predictions. Eight of the 9 hits listed in Table 5.4 have been shown in the literature to have

androgenic or anti-androgenic activity. Nevertheless, we still acknowledge the fact that the

Drugbank may be a biased database in that molecules with androgenic or anti-androgenic

properties are overrepresented compared to other databases.

Since steroidal compounds have such a distinct chemical structure (and shape), wewanted

to see if the model can also find non-steroidal compounds as easily as shape screening. This

would show that the model indeed learns from the provided 3D information instead of re-

lying on 2D similarity. The first non-steroidal compound we identified in the baseline hits

was borneol at rank 123. Despite the fact that borneol has a very different 2D structure than

steroids, the model predicted this compound to be at rank 95. This underlines the model’s

ability to capture 3D similarities in latent space.

Based on these examples, we believe that our model is indeed suitable for use in real-world

virtual screening applications. Although it is not able to perfectly reproduce the similarities

found in the chosen baseline, its predictions are reasonable and useful in finding compounds

with similar 3D features.

5.3.3 Investigation of Computational Cost

To assess whether our method actually allows screening (ultra) large databases at reduced

computational cost, we screened 27 query compounds against databases of different sizes.

We chose to screen 27 query compounds to be able to directly compare the results with those

ofMichino et al.14 (as introduced in Section5.2.1). We employed faiss, a tool createdbyMeta,

to scan the databases65. Faiss allows to create searchable indexes from vectors. Several indexes

with varying levels of accuracy and speed are available. We chose IndexFlatL2, an index that

computes the exact squared L2 norm between the queries and all elements in the database.
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Figure 5.6: Times in seconds to screen 27 query molecules against databases of different sizes. Displayed are the time
to encode the database into latent space (blue), the time to generate the IndexFlatL2 index in faiss (orange), the total
preparation time (encoding plus index generation; green), the time to actually screen the database (red), and the total
time (purple).

This index is the most accurate, but also the slowest. Thus, it would be possible to further

increase the performance of the screening by choosing other more approximating indexes.

We testeddatabases containing 1k, 10k, 100k, and1Mcompounds for screening. A screen-

ing consists of 3 steps: encoding into latent space, generation of the index, and screening of

the index. Encoding into latent space is the most time-consuming task followed by the index

generation (cf. Figure 5.6). However, these two tasks only need to be completed once, and

the encoded data and index created can be reused for any future screenings. Figure 5.6 shows

that the screening times required increase linearly with the size of the database. This allows

for easy extrapolation to larger databases. Therefore, screening 27 queries against 1 billion

conformers would require roughly 7.8 hours on a single CPU core. Michino et al. screened

approximately 1.12 billion compounds with 10 conformers each (i.e. 11.2 billion conform-

ers) in 19.5 hours using 216 GPUs. Extrapolating our tests to 11.2 billion conformers would
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result in approximately 87 hours or 3.6 days on a single CPU core. When parallelized to 8

cores (which is very reasonable for standard consumer-grade computers), the screening could

be completed within 10.9 hours. If more powerful hardware is available, for example a CPU

with 64 cores, the screening could be performed in only 82 minutes. We deliberately ran all

experiments on a regular desktop computer with one RTX 2080 Super GPU. The GPUwas

used only to encode the conformers into latent space. Thus, we show that this technology

enables the screening of ultra-large databases without the need for expensive hardware.

Another advantage of this method is that it allows parallel search of multiple queries. It

took only an additional 2.35 seconds to screen 100 queries instead of 27 against a database

containing 1 million conformers. Thus, the gain in speed over the classical shape screening

increases with the number of query compounds.

5.4 Methods

5.4.1 Dataset Preparation

Like in our proof-of-concept study, we used a randomly selected subset from the ZINC

database containing around 500k compounds to train our model30. From this dataset, we

selected the 25k molecules that best cover the chemical space of the complete dataset us-

ing the Kennard-Stone algorithm66. From this narrowed-down subset, we again applied the

Kennard-Stone algorithm to isolate the most diverse 5k compounds for use as our valida-

tion set. The remaining 20k compounds were used as the initial training set. The initially

unused 475k compounds were split into an external test set, consisting of 10k compounds,

and a pool of molecules that were used as an unlabeled set to sample from during the active

learning cycles.
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5.4.2 DataHandling

In this work, the model was trained to encode 3D molecules into latent space and decode

them to SELFIES67,68. In order to enable the model to learn from 3D structures, the first

step was to calculate atom features to be used as nodes. This was done using RDKit. For

each atom in a molecule, we encoded the atom type, the atom degree (i.e. the number of

neighbors), the number of connected hydrogen atoms, the implicit valence, the hybridiza-

tion, and the aromaticity in a vector that could later be used in a learnable embedding.

The second step in encoding 3D information was to create edges between nodes in a way

that conserved the 3D topology. This was done by passing the Euclidean distancematrix of a

molecule through an exponential decay function andcombining the resultwith the adjacency

matrix. This is described in Equation 5.1.

E = max(A, exp (−D)) (5.1)

WhereA is the adjacency- andD the Euclidean distancematrix of a molecule. This approach

allows 3D information to be encoded in a translation and rotation invariant way while also

preserving information about atom connectivity.

Given the vast amount of data and the expense of training, we chose to train the model

in this initial 3D-enabled version with only one conformation per molecule. However, we

think that includingmultiple conformations could enhance themodel’s capacity to learn 3D

similarities.

The SELFIES used in this work were converted from canonical SMILES which were cre-

ated using Openbabel version 3.0.069. Each SELFIES that was passed through the model

was tokenized based on its individual components. We decided to use SELFIES instead of
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SMILES strings due to their robustness.

As our baseline similarity method, we used Schrödinger’s pharmacophore-based shape

similarity shipped with their 2023-2 release44. Unless otherwise stated, all molecules were

processed with LigPrep prior to shape screening. We chose to generate protonation states at

pH 7.4 and for eachmolecule, we created one 3D conformation using theOPLS4 force field.

5.4.3 Model Architecture

The architecture of the model had to be only minimally adapted from our proof-of-concept

study. Since the 3D- and connectivity information of the molecules are fully encoded by

their edges, no positional encoding is needed in the encoder. In fact, removing the positional

encoding is required for permutation equivariance because the order of the nodes does not

matter, and thus a positional encoding would give incorrect information. The rest of the

model is still based on the original implementation of the Transformer model by Vaswani

et al.70. In the previous study, a masked mean was used to combine the nodes to generate a

latent vector, whereas this work utilizes a weighted sum pooling technique. In this method,

the weights are calculated using two linear layers with a tanh activation between them.

To train themodel,weused the same combinationof the reconstruction (i.e. cross-entropy)

loss and our custom similarity loss as in the proof-of-concept study. Equation 5.2 shows this

loss function in detail whereA is an anchor sample,X is some other sample in themini batch,

sim(·, ·) is a similarity function (in this case Schrödinger’s pharmacophore-based shape simi-

larity), and f(·) is the encoder of themodel, encoding amolecule into latent space. Todecrease

the density of the latent space, the scaling factor a is used. This scaling factor was set to 10 in

this work.

L(A,X) =
∣∣a · ∥(1− sim(A,X))∥ − ∥f(A)− f(X)∥

∣∣ (5.2)
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Figure 5.7: Architecture of the model used in this study. This adaptation of the original Transformer implementation
enables the encoding of molecular three‐dimensional information that is invariant to translations and rotations. We used
Schrödinger’s pharmacophore‐based shape similarity as baseline.

Like in our proof-of-concept study, we used scaled dot-product attention as described in

Equation 5.3, whereQ,K, andV are tensors containing the queries, keys, and values, and dk

is the dimensionality of the keys70.

attention(Q,K,V) = softmax
(
QKT
√
dk

)
V (5.3)

The complete model architecture is depicted in Figure 5.7. The model was trained with a

batch size of 64, a latent space dimensionality of 252, a learning rate of 1e−4, and 4 encoder

and decoder layers each. Each attention module consisted of 4 heads and the model was

trained for a minimum of 200 and a maximum of 800 epochs per active learning cycle.

Because we used an active learning approach, the initial training set was much smaller
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compared to the training set used in the proof-of-concept study. However, from the two

implemented loss terms, only the similarity loss depends on labeled data, whereas the recon-

struction term is completely unsupervised. Therefore, for each mini batch, we created an

additional mini batch containing random samples from the unlabeled dataset. This mini

batch was used to train only the reconstruction. We chose this approach to improve the re-

construction abilities of the model while preventing overfitting on the small datasets.

Since calculating the 3D similarities is comparatively expensive, we precomputed pairwise

similarities for our initial training and validation set. During training, we used a similarity

sampler to ensure that each molecule in a mini batch contained at least one similar com-

pound. This was accomplished by randomly sampling 3 compounds from the 100most sim-

ilar to a given anchor molecule and adding them to the mini batch. This step is imperative

for the model to conserve similarities in latent space and has already been described in our

proof-of-concept study.

5.4.4 Active Learning

In this work, we used an active learning approach using a combination of QBC and EMC

acquisition functions. Calculating the EMC involves calculating the gradient of the loss with

respect to the input. Thus, one needs to be able to calculate the loss of a sample. Since the

point of active learning is to select samples from unlabeled data to be labeled, this approach

cannot be applied to the similarity loss. However, it is possible to use EMC for the recon-

struction loss. For each active learning cycle, we encoded and decoded all unlabeled samples

and calculated the gradient of the reconstruction losswith respect to the input. The gradients

were then normalized using the L2 norm and squared to ensure positivity. This is described

in Equation 5.4 where ∇xL is the gradient of the reconstruction loss L with respect to the
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input sample x.

EMC = ∥∇xL∥2 (5.4)

The EMC was mixed with QBC in order to also sample based on the similarity loss. To

achieve this, wepredicted the latent vector for eachunlabeled sample 100 timesusing adropout

rate of 10%. We then calculated the mean over the variance of the predictions. This is shown

in Equation 5.5 where P is a matrix containingN predictions and Var(·) is the variance.

QBC =
1
N

N∑
i=1

Var(Pi) (5.5)

The sampling of the unlabeled data was performed on the basis of the magnitude of the

EMC and QBC values. Starting from the samples with the highest values, an equal number

of samples were drawn based on the EMC andQBC values. This was done until a total of 5k

uniquemolecules were sampled from the unlabeled dataset. These samples were then labeled

by calculating pairwise similarities (including the existing labeled samples) and added to the

training set. Thus, for each active learning cycle, the training set grew by 5k compounds.

Because we calculated pairwise similarities, the time used to label the newly sampled com-

pounds increased exponentially. The model in this work was trained for 5 active learning

cycles, resulting in a final training set containing 45k compounds.

5.5 Conclusion

Wepreviously demonstrated that a distance-aware transformermodel can be used to preserve

2D similarities in latent space. We claimed that this method can be used independent of the

underlying similarity metric, allowing to efficiently estimate highly complex 3D similarities.

In this work, we show how a slightly adapted model is capable of capturing such 3D sim-
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ilarities. We demonstrated that our model, which uses a translation and rotation invariant

molecular representation, is able to recognize 3D features ofmolecules and identifymolecules

with similar shapes in a virtual screening context. Although the model cannot perfectly re-

produce the underlying pharmacophore-based shape similarity, it is still capable of enriching

the top hits with highly similar compounds. In fact, we believe that using a shape-only simi-

larity metric would lead to much better performance because the model does not seem to be

able to fully capture the pharmacophore information. Thus, for such special similarity met-

rics, the model might need to be further adapted to better reproduce the baseline similarity.

The approach described herein enables the use of the Euclidean distance in latent space

as an approximation of computationally expensive 3D similarity metrics. It therefore allows

researchers to run quick and efficient (pre)screenings on ultra-large databases using regular

low-cost computer hardware.
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5.6 Appendix

Figure A5.1: Screening performance for query ZINC000570771518. Left: ROC curve, right: reproduction performance.

Figure A5.2: Screening performance for query ZINC000950159323. Left: ROC curve, right: reproduction performance.
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Figure A5.3: Screening performance for query ZINC000954430177. Left: ROC curve, right: reproduction performance.

Figure A5.4: Screening performance for query ZINC000970035445. Left: ROC curve, right: reproduction performance.
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Figure A5.5: Screening performance for query ZINC001183157671. Left: ROC curve, right: reproduction performance.

Figure A5.6: Screening performance for query ZINC001281147597. Left: ROC curve, right: reproduction performance.
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Figure A5.7: Screening performance for query ZINC001368797027. Left: ROC curve, right: reproduction performance.

Figure A5.8: Screening performance for query ZINC001711902206. Left: ROC curve, right: reproduction performance.
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Figure A5.9: Screening performance for query ZINC001740566933. Left: ROC curve, right: reproduction performance.

Figure A5.10: Screening performance for query ZINC001763434742. Left: ROC curve, right: reproduction perfor‐
mance.
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It is not that machines are going to replace chemists. It’s

that the chemists who use machines will replace those that

don’t.

Derek Lowe

6
Outlook and Conclusion

In this thesis, we cover ligand-based and structure-based methods and tools for drug devel-

opment and the safety assessment of small molecules. However, in reflection of Albert Ein-

stein’s famous quote “The more I learn, the more I realize how much I don’t know”, we

understand that the development of these tools is an ongoing process, and there is much to

improve and refine.

First, we showed that PanScreen, our online platform for the automated screening of off-

target liabilities, had very promisingperformance in our tests. Thenext stepwill be to validate
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these results using in vitro tests and to find out in which cases the platform works and in

which cases it does not. This will help us to further improve the quality and robustness of

the predictions.

A low-hanging fruit in improving the platform is the revision of predicting interaction

fingerprints using po-sco. The currently implemented model was trained on the PDBbind

dataset to predict binding affinities using the interaction information extracted by po-sco.

However, since PanScreen applies this model to complexes containing docked ligand poses,

training it on crystal structures is not the best approach. Thus, themodel could be improved

in three steps: 1) A better suited dataset needs to be used for training. This can involve creat-

ing a newdataset that contains high-quality crystal structures that haveundergone a strict and

standardized quality assessment and structural preparation. Otherwise, an existing dataset

such asMISATO can be used.1 In any case, the ligands in the dataset should be re-docked or

cross-docked using various docking programs. These steps will help the model train on the

same kind of data to which it will be applied. 2) Before attempting to predict binding affini-

ties, the best pose, i.e. the pose with the most favorable interactions with the protein, should

be identified. A very similar model architecture to what was presented in Chapter 2 could be

used to re-rank ligand poses. 3) A model can be trained to predict the binding affinities for

the best identified poses according to step 2), in the dataset of step 1). We expect that this

approach will lead to much better results.

Another opportunity for improvement lies in the implementation of additional methods.

Specifically, physics-informed neural networks such as PIGNet could be a valuable addition

to themethods currently implemented in PanScreen.2 Implementing docking programs that

allow to account for induced fit effects such as DOLINA could help improve predictions

in cases that are limited by the low conformational diversity of the implemented structure

ensemble.3
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In general, the use of deep Taylor decomposition could help improve the interpretability

of the implemented deep neural networks.4 This method can provide insight into the in-

fluence of a model’s input components on its prediction. This could allow, for example, to

analyze which interactions in a protein-ligand complex are the driving force for a high (or

low) predicted binding affinity. Therefore, it could be possible to identify which moieties

in a molecule are responsible for binding to a specific off-target, providing assistance in the

development of safe drugs.

As some of the implemented off-targets are known to be subject to different modes of ac-

tion, mainly agonism or antagonism, it would be beneficial to provide further insight into

the consequences of a binding event. For some proteins with clearly distinct agonistic or

antagonistic binding site conformations, this could be as easy as identifying to which confor-

mation a small molecule binds the strongest. However, there are also much more complex

situations, which is often the case in G-protein coupled receptors. For these proteins, there

are also inverse agonists, partial agonists, and neutral antagonists.5 This makes prediction of

the exact mode of action much more difficult and will likely not be possible without much

additional effort.

An advantage of computational tools such as PanScreen is that it is relatively easy tomodel

mutated protein structures. Therefore, it could be interesting to model polymorphisms, es-

pecially for proteins such as CYPs. This would bring the platform one step closer to the

development of personalized medicine. However, training models for specific isoforms of

proteins could be difficult due to the lack of large isoform-specific datasets. Therefore, at

least for the time being, information on polymorphism could be implemented by checking

for intermolecular interactionswithpolymorphichotspots, frequentlymutated residues, and

raising warning flags.

A limitation of the PanScreen platform is that small molecules are only docked to the
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orthosteric binding site of the implemented off-targets. Theoretically, it is also possible to

dock to allosteric sites. However, allosteric binding sites are not always known and it is diffi-

cult to find binding affinity information for specific allosteric sites. The first problem could

be overcome by using binding site prediction tools to identify potential allosteric sites for

a given small molecule. Alternatively, novel methods such as RoseTTAFold All-Atom or

Umol could be employed to model the protein around a small molecule and, if necessary,

dock to the generated binding site conformation.6,7 However, this does not solve the second

problem. In the current approach, binding affinity information is needed to train themodels.

Therefore, if no such information is available for specific allosteric binding sites, no models

can be trained. It would, however, be possible tomake predictions based on generalizedmod-

els, probably at the cost of lower accuracy.

Similarly, includingmodels such asAlphaFold2,RoseTTAFoldAll-Atom, orUmol, could

allow togeneratepossible protein andbinding site conformations for anyproteinwithknown

primary sequence.6–8 It is thereforepossible to implement a low-accuracy/high-coveragemode

in which the protein structure for any protein in the Uniprot database can be generated on-

the-fly. Due to the lack of protein-specific models, this would again require the use of gener-

alized models, which likely have a lower accuracy.

PanScreen only predicts off-target binding and not adverse effects. Knowing whether a

small molecule binding to an off-target actually causes side effects in humans is essential

in chemical safety assessment. Once the portfolio of off-targets implemented in PanScreen

grows in size, it could be possible to create interaction profiles encoding the predicted inter-

action strength between a small molecule and many off-targets. These interaction profiles

could then be used to predict adverse effects, for example, using epidemiological databases

such as SIDER.9

The predicted off-target interactions can also be seen as molecular initiating events in an
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AOP. Therefore, another way of predicting actual side effects could be to identify AOPs be-

ginning with a ligand binding to one of the implemented off-targets. Using, for example,

information from the AOP wiki, it could then be possible to predict whether or not the key

events leading to an adverse outcomewill be triggered.10However, this approachwould likely

involve more than just the prediction of protein-ligand binding, and other methods would

be required.

Further, the ability of a small molecule to bind to a protein becomes relevant only if the

molecule can reach the protein in the human body. Hence, prediction of pharmacokinetics,

for example, with PBPK methods, would help in the comprehensive assessment of a chemi-

cal’s safety.

As already mentioned in Chapter 4, a model predicting 3D shape similarity could be used

toprioritize theoff-targets implemented inPanScreen. Furthermore, since ligand-basedmeth-

ods often work well in identifying potential binders (especially those with a similar chemical

structure or shape), it would also be possible to integrate the predicted shape similarity to

other molecules known to bind to a given off-target into the consensus models.

We showed that the prediction of similarities based on latent space distances could be ap-

plied to 2D similarities and 3D shape similarities. The next step toward increasing the use-

fulness of this technology could be to apply it to molecular field points.11 This could further

improve the ability of such a model to find molecules that bind to a given (off-)target.

In conclusion, this work contributes to the advancement of in silico tools in drug develop-

ment and chemical safety assessment. However, the journey toward excellence is still ongo-

ing, and the ideas presented in this chapter can provide a roadmap for future improvement

of the developed technologies in the hope of one day providing a viable alternative to in vivo

toxicity testing in animals.
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