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Abstract

Single photons can encode and transmit information at the speed of light and, hence, are the
most promising candidates for flying qubits in quantum networks and measurement-based
quantum computation. Although photons do not naturally interact with each another,
spin-photon interfaces can mediate the necessary interaction or entanglement between them.
An ideal platform combines high-rate photon emission with a coherent spin in an efficient
interface.

Semiconductor quantum dots coupled to optical cavities are excellent single-photon sources.
Due to the ability to charge a single electron or hole onto a quantum dot, they can further be
used to engineer strong spin-photon interfaces. The key challenge is achieving high quantum
dot-cavity coupling and a coherent spin while being able to coherently manipulate the spin
state in the cavity.

In this thesis, we address these demands by employing a single InAs quantum dot in a
tunable open microcavity – a system that has already reported a record-high single-photon
source efficiency.

First, we implement a highly-efficient light-matter interface – a one-dimensional atom.
We observe an extinction in photon transmission of 99.2% resulting in a photon bunching
of close to 600. This showcases the nonlinearity of the system at level of single photons:
a near-perfect transmission of the two-photon component and reflection of single photons.
The open nature of the cavity allows for in-situ tuning of the quantum dots’s coupling
efficiency to the cavity, resulting in full control over the photon statistics from bunching
to anti-bunching. Furthermore, we implement a chiral interface and measure directional
transmission with an isolation of 10.7 dB, the highest non-reciprocal response recorded with a
single quantum emitter. Lastly, we operate in the back-reflection regime and directly observe
a photon-number dependent time-delay upon scattering of a laser pulse: single-, two-, and
three-photon components incur a different time delay of 144.02 ps, 66.45 ps and 45.51 ps,
respectively. This is a fingerprint of stimulated emission at the level of a few photons.

In the second part, we establish a spin-photon interface. We achieve fast single-shot
readout of an electron spin within 3 ns with a fidelity of 95.2%. For the first time, this allows
readout faster than the quantum dot relaxation and dephasing times. Further, we observe
time-resolved quantum jumps in the spin state using many readout repetitions and predict
that single-shot readout should be achievable with 89,9% fidelity in Voigt geometry. Finally,
we implement coherent control of a hole spin in the microcavity. We observe hole-spin Rabi
oscillations with frequencies up to 1 GHz. The spin mediates interaction with the host nuclear
spins, narrowing the nuclear spin distribution – an effect which has not yet been exploited
on the hole. The nuclear cooling results in an enhancement of the spin coherence time from
30 ns to 500 ns.

In summary, a quantum dot in a microcavity can combine the best of all worlds in the same
system: coherent single photons, a coherent spin, an interface for high efficiency spin-photon
interaction, and fast manipulation and readout of a spin state. The results pave the way for
the implementation of two-qubit gates between photons, high rate spin-photon entanglement
and ultimately the generation of photonic cluster states.
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Part I
An introduction to a quantum dot in
a tunable microcavity



1
Introduction

Just over a century ago, physicists believed nature to be almost fully understood. Then
however, with the development of quantum mechanics, the world they knew was turned
upside down.1 Nature is not classical, it is non-local and much more complex than long
assumed.2,3 This first quantum revolution opened up a full new range of research expanding
into various fields from electronics and atomic physics up to the detection of gravitational
waves. The understanding of quantum mechanics on a fundamental level has kept physicists
excited until today. In the present, the idea of applying the concepts of quantum mechanics
to technological applications has emerged. This led to the second quantum revolution which
already today enables first applications as true random number generators4 and sensors with
radically enhanced sensitivity, e.g. in magnetometry5,6 and interferometry.7,8 It further
promises a range of advancements in the near future. Secure communication can be assured
using the concepts of entanglement and teleportation distribution over long distances resulting
in a large scale quantum network.9–12 Ultimately, a powerful quantum computer built on
the concepts of quantum mechanics is predicted to massively speed up future computations
of specific problems.13

A quantum computer is built of operating units called quantum bits (qubits). Contrary
to a classical bit, a qubit can not only be in state 0 or 1, but in a superposition state
|Ψ⟩ = α |0⟩ + β |1⟩ (where |α|2, |β|2 are the probabilities to measure the corresponding state),
and can be entangled with other qubits. Generally, two types of qubits can be distinguished:
flying qubits and stationary qubits. For a quantum network or computer, both are crucial.
For example, in gate-based quantum computing the operating qubits are stationary qubits
which store information and are manipulated via applied electrical gates, while flying qubits
are used to transport information between different qubits. Contrary, in a photonic processor
the operating qubits are the flying qubits. In that case, in order to achieve universal quantum
computation, the qubits need to be manipulated or interfered. This can be done by the
implementation of high fidelity one- and two-qubit gates, typically via stationary qubits.

An alternative approach to quantum computing is measurement-based quantum computa-
tion.14,15 It requires a grid of qubits where each qubit is entangled with all direct neighbours
and computation is performed by measurements on specific qubits in a certain order. The
two approaches to quantum computing can be mapped onto each other and can in principle
perform the exact same computations. However, measurement-based computation only
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requires one-qubit operations. The complexity of the computation is therefore shifted to the
generation of entangled cluster-states.16,17

One of the key demands in the development of quantum computers in either of these
approaches is to find a suitable physical system to host the qubits. There are many platforms
explored to implement a quantum computer – superconducting circuits,18 semiconductor
quantum dots (QDs),19,20 atomic systems,21,22 photons23 and many more – without a clear
leading candidate. Every physical system comes with its strengths and weaknesses, and it is
most likely that there will be no clear victor to solve all tasks, but rather different qubits that
suit the specific demand at hand. Either way, optical single photons are a very promising
candidate for a flying qubit for both approaches to quantum computing.17,24–26 They can
encode and transmit information at the speed of light with low noise and high coherence,
even at room temperature. Optical fibres can be used for long distance transmission of
information similar to classical communication – an established network already exists and
builds the backbone of the internet. Furthermore, the technology for single qubit operations
on photons is easy: mirrors and wave-plates are available and well established. But, as
photons do not naturally interact with each other, stationary matter qubits can enable
light-matter interaction for gate operations or entanglement generation between successive
photons.27

In photonic quantum applications, a stationary qubit needs to fulfil two main requirements:
it should generate photons at high rates and be highly coherent to mediate interaction
between photons. Optical emitters are ideal for the first demand. Their structure typically
exhibits an excited and a ground state where the excited state relaxation results in the
generation of a single photon. While a fast radiative decay favours a single-photon source,
it makes optical emitters poor candidates for qubit operations requiring long lived qubit
states. Optical emitters containing a single spin offer the best of both worlds. They exhibit
both an optical transition for fast photon generation and a stable ground state spin qubit
for manipulations.28

Several platforms have been examined as spin-photon interfaces and the different possible
emitters bring various benefits and challenges. For example, due to their good spin properties,
NV centres in diamond have been the leading platform in the field of quantum networks.3,11,29

Yet, they have poor optical properties leading to low photon count rates. Other defects in
diamond are also emerging,30,31 promising to overcome some of the issues associated with NV
centres. Similarly, rare-earth ions have been established with promising spin properties but
exhibiting poor optical properties.32 On the other hand, atoms21,33–36 or ions22,37 exhibit
low noise due to an isolated environment, have long emitter lifetimes but can only be trapped
with a lot of effort.

Contrary to most emitters, self-assembled semiconductor QD have excellent optical prop-
erties and are the leading platform for the generation of single-photons.19,23 Furthermore, a
QD can be loaded with a single electron or hole, providing a spin degree of freedom.38,39

However, due to the hyperfine interaction of an electron or hole spin with the semiconductor
environment, QDs typically exhibit poor spin coherence. While for an electron spin, recent
schemes have demonstrated cooling of the nuclear spin environment resulting in enhanced
electron spin coherence times,40–44 nuclear cooling has not yet been exploited on a hole.

Besides the demand of enhanced spin coherence, it is important to engineer the photonic
environment of QDs in order to enhance the light-matter interaction and specifically route
photons. This can be achieved by embedding them into photonic crystal waveguides,45
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micropillars46,47 or microcavities.19,48,49 Ideally, light-matter coupling is strong enough
that every single photon interacts with the emitter. In other words, the quantum node
can be optimised to be a close-to-lossless one-dimensional (1D) atom.50,51 Furthermore, a
light-matter interface can be designed to be chiral.52 This means that emission is directional
into specific optical modes, which is necessary for large-scale quantum networks.

The challenge in realising a coherent spin-photon interface with QDs in cavities is two-fold:
achieving high QD-cavity couplings in combination with high fidelity rotations of the QD
spin and by that nuclear spin cooling in the cavity.

In this thesis we address these challenges by employing a single InAs QD in an open and
tunable microcavity.

This thesis is structured as follows:
Part I gives an introduction and the relevant background to the topics of this thesis. Ch. 2

introduces semiconductor QDs and optical cavities, and discusses two specific applications of
a QD coupled to a microcavity. In particular, a main prior result of the system – an efficient
single-photon source – is described.

Part II presents an implementation of a highly-coherent light-matter interface – a 1D atom.
Ch. 3 discusses how a QD coupled to a microcavity can be turned into a 1D atom. A large
coupling efficiency is observed resulting in a high extinction in photon transmission and
strong bunching in the photon statistics. The chapter establishes the platform as a coherent
interface for single photon - single emitter interaction with tunable photon statistics and
gives a brief outlook into the physics of a one-sided cavity. Ch. 4 presents an implementation
of a chiral 1D atom at a specific condition of the coupling efficiency β = 0.5. It demonstrates
strong nonreciprocal absorption – a diode for single photons. The results in Ch. 5 mimic a
chiral system in the limit of a large coupling efficiency (β ≃1). The dynamics of photonic
bound states are investigated and their existence is directly observed.

Part III focuses on the implementation of the QD coupled to the cavity as a spin-photon
interface. Ch. 6 discusses single-shot readout of an electron spin in the cavity. Single-shot
readout faster than the QD relaxation and dephasing times is achieved with high fidelity
allowing for the direct observation of quantum jumps in the spin state. Ch. 7 presents
coherent and fast manipulation of a hole spin in a cavity. The coherent interaction allows for
cooling of the host nuclear spins resulting in an enhanced coherence time of the hole spin.

Lastly, part IV concludes on the results presented in Ch. 3-7 (Ch. 8) and discusses future
prospects (Ch. 9) towards the realisation of universal quantum computing.



2
Background

This introductory chapter provides the relevant background to semiconductor quantum
dots (QDs) and cavity quantum electrodynamics (QED). It gives an overview of the most
important parameters and some of the main applications of a single QD coupled to an optical
cavity. The open microcavity system that is key to all the results presented in this thesis is
also introduced and described.

2.1 Self-assembled quantum dots
Coherent optical emitters are a crucial requirement for the realisation of optical networks
and single-photon sources.19,23 There exists an entire zoo of optical emitters, including
atoms,33,36 ions,32,37 defects in diamond,3,53 molecules54 and optically active QDs.55 The
implementation of these emitters as a qubit bring different advantages and challenges with
them. Semiconductor QDs provide excellent optical properties and are the most promising
candidate for applications involving high photon generation rates.56 The ability to load a
QD with a single electron or hole spin enables their operation as a spin qubit.39 As a QD is
naturally embedded in a solid-state environment, the spin will interact with its environment,
potentially leading to low spin coherence times. In order to overcome this decoherence
process and realise QDs as qubits, their structure and interactions with the environment
have to be understood.

2.1.1 Structure and optical properties
Self-assembled InAs/GaAs QDs are nano-sized semiconductor heterostructures grown by
molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE). In MBE,
layers of material can be grown with a precision down to monolayer thicknesses. Using a
specific method called Stranski-Krastanov growth,57 a few layers of InAs are grown on top
of a GaAs substrate. Due to a lattice mismatch of ∼7% between the two materials, strain
relaxation causes InAs islands consisting of ∼ 105 atoms to form on top of the initial InAs
layer (wetting layer). Additional layers of GaAs cap the QDs in order to protect them from
surface charges. This island formation is a stochastic process, so that the position, size,
and hence the emission wavelength, varies from QD to QD. Typically, a QD has a width of
∼20 nm and height of ∼8 nm as can be seen on a transmission electron microscopy (TEM)
image in Fig. 2.1a.
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Figure 2.1: Self-assembled InAs QDs (a) Dark-field TEM image of an InAs QD embedded in
a GaAs matrix. The QD has an approximate width of 20 nm and height of 8 nm. Image courtesy
of Jean-Michel Chauveau and Arne Ludwig. (b) Schematic of the QD energy structure. The lower
bandgap of InAs compared to GaAs acts as a confining potential for electrons and holes. An exciton is
formed via a strong optical dipole transition. (c) Example of a gated semiconductor heterostructure
with the capability to tune the QD energy level with respect to the Fermi sea of the back-gate. (d)
Conduction band edge for two different applied voltages (V a/b

g ). (c) and (d) are reproduced and
modified from Ref. 38

The three-dimensional confinement on a nano-scale has immense consequences for the QD
electronic and optical properties. In bulk, the band-structure of a semiconductor material can
be derived from a tight-binding model.58,59 The conduction band is constructed from s-wave
Bloch-states (S, Sz = 1/2, ± 1/2). On the other hand, the valence band is six fold degenerate
(J , Jz = 1/2, ± 1/2; Jz = 3/2, ± 3/2, ± 1/2) with a p-wave character arising from the
atoms of the host material. The spin-orbit interaction splits off the Jz = 1/2 Bloch-states
by an energy ∆SO. The different effective masses and therefore different confinement of the
heavy-hole (HH) (J , Jz = 3/2, ± 3/2) and light hole (LH) (J , Jz = 3/2, ± 1/2) states as
well as strain in the semiconductor further lift their degeneracy.60 The HH has the lowest
energy of the three components and hence builds the highest valence band. These energy
level splittings are maintained even with strong confinement of the semiconductor as in
the case of a QD. The nano-sized island of InAs between the GaAs substrate leads to a
potential energy barrier, a trapping potential for electrons in the conduction and holes in the
valence band, respectively, with discrete energy levels38 (Fig. 2.1b). Due to their atom-like
quantised energy levels, QDs are often referred to as artificial atoms, while in contrast to
atoms, QDs are naturally trapped in space61 by the semiconductor crystal. Moreover, the
band-structure of InAs has a direct bandgap, leading to a strong optical transitions. InAs
QDs have been shown to have very high oscillator strengths,39 and hence, fast radiative decay
rates in comparison to other emitters. That is one reason QDs are promising candidates for
applications like high-rate single-photon sources.

If a light pulse excites a single electron from the valence to the conduction band, it leaves
behind a hole creating a bound electron-hole pair called an exciton.62 Upon recombination of
an exciton, one single photon at a wavelength matching the recombination energy is emitted.
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There are different types of excitons (shown in Fig. 2.2). When the QD is empty before
excitation, a neutral exciton, consisting of one electron and one hole, is created. However,
QDs can be charged with one single electron (hole) ahead of excitation. In this case, a
negatively (positively) charged trion is created, containing two electrons (holes) and one hole
(electron).55

A gated structure (shown in Fig. 2.1c) allows tuning of the QD energy levels with respect to
the Fermi sea. This enables deterministic tunneling of individual charge carriers into the QD
via the Coulomb blockade effect.38,63 While tunneling is suppressed in this regime, a higher
order term, co-tunnelling, survives.64 Additionally, gating of the QDs allows for tuning of the
transition energies via the DC Stark effect. Furthermore, it has been shown that gates reduce
charge noise in QDs, resulting in optical linewidths close to the transform-limit (γR = 1/τR,
with τR being the radiative lifetime and γR/(2π) the optical linewidth).65

Coherence of the exciton
Due to the solid-state environment of a QD, the exciton coherence is limited. The three
main sources of noise in the semiconductor are nuclear spins, fluctuating charges66 or lattice
vibrations (phonons).67 While charge noise can be suppressed via a diode structure as dis-
cussed above, phonon effects are more difficult to circumvent. Phonon-exciton interactions do
however have an important impact on single-photon indistinguishability and the performance
of the QD as ideal two-level systems (TLSs). As an effect of the phonons coupling to the
optical transitions, the QD transition energy fluctuates resulting in a reduction of the exciton
coherence. It has been shown, that phonon effects can be mitigated (but not eliminated)
by coupling QDs to a intermediate to high Q cavity (optical cavities are introduced in
Sec. 2.2) by reducing the radiative lifetime on resonance with the TLS.67,68 Although these
phonon process can be mitigated to a large degree, they are still the major contributor to
the homogeneous linewidth broadening of QDs and by that to the indistinguishability of
single photons.

Optical selection rules
In order to address the different excitons in an optical experiment, it is important to
understand the individual selection rules.55 The neutral exciton, X0, consists of one electron
and one hole. Thus, there are four possible spin configurations: |↑,⇓⟩ , |↓,⇑⟩ , |↑,⇑⟩ , |↓,⇓⟩.
In an optical transition, the angular momentum must be conserved, which is reflected
in the photon polarisation (∆J = ±1 ≡ circular polarisation σ+, σ−; ∆J = 0 ≡ linear
polarisation x, y). The change in total angular momentum for these four spin combinations is
∆J = ±1 or ∆J = ±2. Consequently, the latter two combinations do not conserve angular
momentum, and are thus optically forbidden, turning them into dark excitons, while the first
two combinations (|↑,⇓⟩ , |↓,⇑⟩) are optically allowed and circularly polarised. However, in
reality uniaxial strain anisotropy in the semiconductor and the strong vertical confinement
lead to an exchange interaction. This results in effective pseudo-spin excitons that are
slightly fine-structure split in energy. These excitons are superpositions of the spins in the
quantisation axis (z-direction) with the bright states being

∣∣∣Xa/b
〉

= (1/
√

2)(|⇑, ↓⟩ ± |⇓, ↑⟩).
Consequently, these exciton transitions have linear polarisations with perpendicular axes as
seen in Fig. 2.2a.69,70 For charged excitons however, the exchange interaction vanishes due
to Kramer’s theorem, which claims that a system with an odd number of fermions in the
absence of magnetic fields is at least two-fold degenerate.71 Both the negative (Fig. 2.2b)
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Figure 2.2: Transition rules of different exciton types at B = 0 (left) and (B > 0) (middle:
Faraday; right: Voigt). (a) The neutral exciton (X0) is a V-level system with one ground state
(empty QD) and two excited states (excitons), with linearly polarised transitions x, y. In a Faraday
field, the transitions become circularly polarised while in a Voigt field they remain linearly polarised.
(b) The negatively charged trion (X−) is degenerate at 0 T with the ground state being a single
electron and the excited state being the charged trion. These transitions are circularly polarised. In
a magnetic field, the transitions split into a four-level system. In Faraday geometry, the diagonal
transitions are forbidden and the vertical transitions circularly polarised. In Voigt geometry, all four
transitions are equally allowed and linearly polarised. The diagonal transitions are perpedicularly
polarised and shifted by a π phase with respect to the vertical transitions. (c) The positively charged
trion (X+) is degenerate at 0 T with a single hole in the ground state and a charged trion as excited
state. The selection rules are identical to the negative trion.

and positive (Fig. 2.2c) trion have two-fold degenerate energy levels where the ground state
is a single electron or hole and the transitions are circularly polarised according to angular
momentum conservation.

Most of the experiments performed in this work require the ability to modify the selection
rules and address individual states. In particular, employing the electron or hole spin requires
the spin orientations (|↑⟩ , |↓⟩) to be split in frequency. A magnetic field (B) can split
transitions by interacting with the magnetic moment of an electron or hole. As a result,
the potential energy changes by µB, where µi = −1

2giσiµB, gi is the g-factor, µB the Bohr
magneton and σi the Pauli operator. This leads to a total splitting between the two spin
states of Z = giµBB according to the Zeeman-effect.72,73 Typical g-factors for electron spins
in InAs QDs are ge ∼ −0.5 to − 0.874 while the hole g-factor varies a lot depending on the
specific QD and the magnetic field orientation. Despite this variation in strength of the hole
g-factor, the sign is typically positive, as opposed to the electron. Furthermore, the magnetic
field orientation has a strong influence on the transition rules.39,75

For an out-of-plane magnet (B-field in z-direction, the so-called Faraday configuration),
the Zeeman effect splits the spin states in frequency with respect to the quantisation axis
(z-direction) and the transition rules can be determined purely by the conservation of spin
angular momentum for all three exciton types. As a result, all allowed transitions become
circularly polarised (Fig. 2.2b,c). In particular, for X0 for large magnetic fields, the Zeeman
effect dominates over the exchange interaction making the transitions circularly polarised.
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In case of the charged excitons, the vertical transitions are allowed while the diagonal ones
are forbidden. However, due to HH-LH-mixing, the forbidden diagonal transitions become
partially allowed.76

An in-plane magnet (B-field in x-direction, the so-called Voigt geometry) changes the transi-
tion rules. Now, the quantisation axis points in the in-plane direction and accordingly, the new
pseudo-spin states are a superposition of the z-basis spin states: |↑⟩x = (1/

√
2)(|↑⟩z + |↓⟩z);

|↓⟩x = (1/
√

2)(|↑⟩z − |↓⟩z) (and equivalently for the hole spin). The consequences are linear
transition rules for all three excitons as shown in Fig. 2.2 with equally strong vertical and
diagonal transitions, but with perpendicular polarisation between them.

The two magnet configurations have exactly opposite advantages and challenges for spin
experiments. The weakly allowed diagonal transitions in the Faraday configuration are
advantageous for spin readout, as they allow for several cycles of the readout before back-
action. Spin manipulation, however, requires the diagonal and vertical transitions to be
similarly strong. Hence, the Voigt geometry is ideal for spin rotations. Combining readout
and manipulation on the same experimental configuration is an ongoing challenge that is
addressed in Ch. 6.

2.1.2 Electron and hole spins
While QDs are known for their excellent optical properties, spin coherence is relatively poor
due to their interaction with the environment, in particular the hyperfine interaction with
the host nuclear spins. This main source of decoherence arises since the wave-function of
an electron or hole spin within the QD overlaps with many nuclear spins of the host. The
wave-function extent is illustrated in Fig. 2.3a. Each of the 105 nuclei of the host has non-zero
nuclear spins (IIn = 9/2, IGa = IAs = 3/2), which specifically for InAs QDs lead to a strong
hyperfine interaction. The Hamiltonian describing the hyperfine interaction between a spin
and multiple nuclei consists of two main components:77 the contact hyperfine term and
the dipole-dipole term. Understanding the hyperfine interaction allows overcoming it, for
example via decoupling schemes,78 dynamic nuclear polarisation79,80 or by narrowing of the
nuclear spin distribution43 as is further discussed in Ch. 7. Interestingly, even though electron
and hole spins follow the same selection rules, they differ significantly in their hyperfine
interaction.

The electron spin
The conduction band is constructed from s-like orbitals which are localised at the positions
of the nuclei (see in Fig. 2.3b). This results in a strong contact hyperfine interaction between
the electron spin and each nucleus of the host material. The contact hyperfine interaction
can be described by81

HC ≈ Ω
∑

i

Ae
i |Ψi|2Ii · S ≃ µB ĝeBN · S, (2.1)

with Ae
i being the coupling coefficient with nuclear spin i, Ii the nuclear spin vector, Ψi the

electron envelope function, Ω the unit cell volume, S the electron spin operator and ĝe the
electron g-factor. The individual nuclear spins interact with the electron via an effective
magnetic field which for N nuclear spins does not fully cancel, leaving a residual factor
proportional 1/

√
N . The remaining Overhauser field for InAs QDs is about BN ≈20 mT.39

Fluctuations of this field lead to decoherence. Furthermore, the part of BN fluctuating
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Figure 2.3: Hyperfine interaction of an electron and heavy-hole spin (a) The wave-function
of an electron or hole extends over a few nanometers in all directions. It overlaps with ∼ 105 atoms
in the host material, where each host atom has non-zero nuclear spin. (b) The conduction band is
constructed of atomic s-orbitals that are localised at the position of the nuclei. (c) The valence band
is predominantly constructed from atomic p-orbitals, where the amplitude of the wave-function is
small at the position of the nuclei. The magnetic dipole moment of the heavy-hole can be illustrated
as a circulating current pointing in the ±z direction. This figure has been modified and adapted from
Ref. 39

perpendicular to the applied magnetic field is responsible for a spin flip-flop process, a process
that can be suppressed by applying high enough magnetic fields. Attempts to overcome the
decoherence times of electrons have been made, including narrowing of the spin distribution
of the nuclear ensemble.43 As s-orbitals have spherical symmetry, the dipole hyperfine
interaction is zero. Note that the quadrupolar term of the interaction Hamiltonian can give
rise to non-collinear terms,82 which are relevant for more recent cooling schemes.44

Despite their low coherence times (T ∗2 ∼1-3 ns;83,84 T ∗2 ∼296 ns with cooling43,44), electron
spins have been fully implemented as qubits with fast initialisation85 and manipulation.86

Readout of the spin state faster than the coherence time is important for quantum applications
and is presented in Ch. 6.

The hole spin
Due to higher coherence times (T ∗2 ∼20-30 ns87), hole spins present an interesting alternative
to electrons for spin qubits. Valence band states are constructed of p-like orbitals that
show suppressed interaction at the contact point as can be seen in their wave-function in
Fig. 2.3c. Consequently, the contact hyperfine interaction is suppressed.88 As a result of the
p-wave symmetry of the Bloch function, the dipole part remains. For a pure HH state and a
magnetic dipole along the z-direction, the Hamiltonian takes a simple Ising form:88

HHH
dipole ≈ Ω

∑
i

Ah,z
i |Ψi|2Iz

i · Jz ≃ µB ĝhB
h
NJ

z (2.2)

with Ah
i the coupling of the HH to nuclear spin i, Iz

i the z-component of the nuclear spin,
Ψi the hole envelope function, Jz the z-component of the hole spin vector and ĝh the hole
g-factor. Ah

i is typically only 10% of Ae
i , which might be the reason for the difference in

coherence times between electrons and holes.89 According to Eq. 2.2, there is an anisotropy
in the Overhauser field as Btot = B + Bh

N,z and the HH only experiences a fluctuating
Overhauser field in z-direction. For a strong in-plane magnetic field, these fluctuations are
suppressed. However, these predictions only hold for a pure HH state. As mentioned above,
in reality the valence band is a mixture of HH and LH (approximately 5-10% of hole state
is LH90), which gives rise to non-vanishing components in the hyperfine interaction. The
extended interaction Hamiltonian for a real hole spin is no longer of Ising form and includes
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relevant non-collinear terms:91

H
HH/LH
dipole ≈ Ω

∑
i

|Ψi|2(Ah,z
i Iz

i ·Jz +Ah,⊥
i (I+

i ·J−+I−i ·J+)+Ah,nc
i (I+

i ·Jz +I−i ·Jz))+... (2.3)

with ladder operators J± = Jx ± iJy and I±i = Ix
i ± iIy

i for hole spins and for nuclear spins,
respectively, Ah,⊥

i the transverse part of the hyperfine coupling and Ah,nc
i the non-collinear

coupling. Note that non-collinear interaction is unusual but hides a lot of interesting QD
physics. For example for electrons, it enables coherent feedback cooling.44 This means that
they are crucial to understand how cooling protocols can be implemented using hole spins as
discussed in Ch. 7. It is, however, not fully understood how each of the non-HH components
influences the coherence of the hole spins in InAs QDs.

Until here, the physics of QDs have been discussed on a bulk sample only. However, in
all experiments presented in this thesis, the QDs are coupled to a microcavity. This can
radically change the transition rules and decay rates.

2.2 An emitter in a tunable open microcavity
Owing to the high refractive index of GaAs, the coupling of photons emitted by a QD out of
the bulk material is low. Furthermore, spontaneous emission of photons is directed into all
possible free space modes. This makes it difficult to collect a large percentage of emitted
photons (<1% of photons are collected), severely limiting the usefulness of QD photons
for quantum technologies. However, embedding QDs (or other emitters) into photonically
engineered micro-structures, for example photonic crystal cavities92,93 or microcavities,19,46,48

can overcome these issues. These structures act as a resonator for light-matter interaction
and, thus, can increase the photon emission rate while funnelling the emitted photons into
the direction of the resonant cavity mode. The full interaction of a single emitter with a
cavity is described by cavity-QED. Optimisation of the relevant parameters of the optical
cavity, the emitter as well as the coupling between them can increase the photon counting
rate immensely.

2.2.1 Cavity quantum electrodynamics
Typically, light-matter interaction can be boosted by placing an emitter in an optical resonator.
Although different types of optical resonators exist, the physics is most easily explained
by a simple optical Fabry-Pérot cavity consisting of two flat mirrors with reflectivities R1
and R2 placed at a distance L apart. The two mirrors act as a standing wave resonator.94

Due to interference effects, wavelengths resonant with the cavity frequency are enhanced,
while all other wavelengths are suppressed. The general working principle of a cavity is
based on a small mode volume V between the mirrors confining the electric vacuum field
Evac by modulating the density of photonic states.94 Three main parameters of cavity-QED
are introduced in order to describe a cavity and its interaction with a TLS at resonance
condition94 (Fig. 2.4a).

Firstly, the cavity-photon loss rate κ describes all losses due to transmission, scattering
and absorption and is typically dominated by losses through the cavity mirrors:

κ = 1
τcav

= 2π c

nL

1 −R1R2√
R1R2

= ω

Q
, (2.4)

where τcav is the lifetime of a photon in the cavity. Furthermore, κ is inversely proportional
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to the quality factor Q of a cavity, which depends on the resonance frequency ω. The
cavity-photon loss rate κ can be extracted from the linewidth of a cavity resonance (as is
demonstrated in Sec. 2.2.2).

Secondly, a TLS consists of a ground |g⟩ and an excited state |e⟩. Upon decay of the excited
state (|e⟩ → |g⟩), a photon at angular frequency ω is released as described in Sec. 2.1.1. For a
transform-limited TLS, the emission is dominated by the radiative decay rate γ = γR, which
is given by:

γ = 1
τR

= nω3

3πε0ℏc3 · µ2, (2.5)

with µ the transition dipole moment of the emitter.
Thirdly, the coherent coupling rate g describes the interaction if the polarisation of the

vacuum electric field amplitude Evac aligns with the transition dipole moment µ:

g = µEvac
ℏ

=
√

ω

2ℏε0n2 · µ√
V
. (2.6)

Different regimes and properties of cavity-QED can be described by means of these three
main parameters, κ, γ and g. In strong-coupling, where g ≫ κ, γ, the emitted photons are
reabsorbed faster than they can escape the mirrors. Although strong coupling is useful
for studying coherent light-matter interactions, it is not the optimal regime for maximum
photon collection efficiency. Hence, in order to collect all photons, the weak coupling regime
is preferable. Specifically for optimisation of photon collection efficiencies, κ > g > γ is ideal.
In this regime, the spontaneous emission rate, γ, is modified by the Purcell factor

FP = 4g2

κγ
, (2.7)

which means that we can define a cavity-enhanced emission rate Γ = FP · γ. Hence, for a
Fp>1, the emitter decay rate is increased, which is important for high-rate single-photon
sources. We can define another important parameter, the β-factor. It describes the coupling
efficiency of the optical cavity mode and the emitter and is given by94

β = FP

1 + FP
= g2

g2 + κγ/4 . (2.8)

A high β ≃ 1 means that the optical mode is close-to-perfectly coupled to the emitter, e.g.
no photons are lost, neither when coupling to the emitter nor being emitted into the cavity
mode. This efficient light-matter coupling results in a preferred direction of spontaneous
emission into the coupled cavity mode. This is important for efficient single-photon sources,
but also coherent photon-emitter interfaces. Ideally, β is as high as possible. However, for the
goal of achieving high photon collection efficiency, it is important to avoid the strong coupling
regime, and out-couple the photon through the cavity mirror before it is reabsorbed by the
emitter. Accordingly, the outcoupling efficiency, defining how many photons are coupled out
through the cavity mirrors once being in the cavity mode, is a relevant parameter:

ηout = κ

κ+ γ
. (2.9)
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Figure 2.4: Cavity-QED parameters and one-sided cavity (a) The three relevant parameters
of cavity-QED are depicted in a schematic of a TLS in a cavity: the cavity photon loss rate κ, the TLS
decay rate γ and the coupling rate g between the TLS and the cavity vacuum field. (b) Schematic of
the used cavity-QED system where the bottom mirror is a semiconductor heterostructure including
the QDs and the top mirror a much less reflective curved silica mirror. Due to the reflectivity
difference of the mirrors, the cavity operates in the one-sided regime, where κtop ≫ κbottom. (b) has
been modified and adapted from Ref. 19

In order to optimise photon collection, one can define the so-called quantum efficiency η:95

η = β · ηout = g2

g2 + κγ/4 · κ

κ+ γ
. (2.10)

It describes the probability with which a QD photon is emitted into the cavity mode and
subsequently leaves through the mirror. Tuning the cavity parameters to the optimum,
hence, can maximise the quantum efficiency. While it is not easy to engineer γ and g in a
Fabry-Pérot cavity, κ can easily be modified by varying the reflectivities of the mirrors, for
example by reducing the number of distributed Bragg reflector (DBR) layers in a mirror.
The quantum efficiency η can be maximised by tuning κ to the condition κ = 2g.48

A tunable one-sided cavity coupled to an InAs quantum dot
In the scope of this work, a very specific cavity system19 is coupled to InAs QDs (described
in Sec. 2.1). A schematic of the system is shown in Fig. 2.4b. The cavity is a tunable open
microcavity consisting of a flat semiconductor DBR mirror (46 λ/4 layer pairs of AlAs/GaAs
with central wavelength λ = 917 nm) that includes the gated QDs embedded in a n-i-p diode
structure and a curved silica DBR (8 λ/4 layer pairs of Ta2O5/SiO2; radius of curvature
R=12µm) that is much less reflective (all details on the experimental setup can be found
in App. A). Consequently, all light is sent in and collected via the top mirror such that
κ = κtop + κloss (κloss includes losses to side channels κside and the bottom mirror κbottom).
In that case, ηout = κtop/(κ+ γ). This changes the condition for optimal quantum efficiency
to:

κtop =
√

(1 + κloss/γ)(4g2 + κlossγ). (2.11)

Subsequently, the tuning knob for κtop is the number of DBR layer-pairs in the top mirror.
Moreover, the open microcavity has several in-situ tuning capabilities. As the two mirrors

are completely separated in space, the bottom mirror including the QDs can be moved with



2.2. An emitter in a tunable open microcavity 14

respect to the top mirror. This way, the cavity resonance can be adjusted via the length
of the cavity (z), but also the coupling, g, can be tuned by moving a QD out of the cavity
mode (x, y), and thus, β can be modified. Furthermore, the described properties of the gated
QD structures (see Sec. 2.1.1) provide tuneablity of the QD transitions.

This type of well coupled cavity-emitter system has various applications in quantum
technologies. This chapter focuses on two main aspects. Firstly, a QD is an excellent source
of single photons. Optimising the quantum efficiency by engineering of the microcavity is
promising for maximal increase of photon collection rates. Secondly, a close-to-ideal interface
for photons can be achieved by combining a high single-photon rate, a noise free emitter and
high β-factors.

2.2.2 An efficient single-photon source
Optimising a coupled emitter-cavity system for high quantum efficiencies is an important
step in achieving an efficient single-photon source. However, this is not the end of the story.
For any application it is essential to be able to collect the generated photons, ideally into
a single-mode optical fibre. Hence a measure of the usable photon rate is crucial. This
is captured in the end-to-end efficiency Σ.19 In addition to the quantum efficiency η, the
optical losses from directly outside the cavity mirror through all optical elements into an
optical fibre must be taken into account. Furthermore, it is essential that the probability
to excite the TLS is evaluated and included. In the open microcavity system described
above, the biggest losses are optical losses. However, the losses have been minimised as
described in App. A, enabling the system to be the most efficient source of single photons to
date.19,49 With this system, an end-to-end efficiency of (57 ± 3)% has been measured by
sending picosecond pulses at a rate of 76.3 MHz and collecting the single-photon counts on a
detector (Fig. 2.5a). For reference, the efficiency of QD single photon sources with no cavity
enhancement is <1% and the previous state-of-the-art for QD-cavity sources was 24%.47

Importantly, many quantum technological applications scale exponentially with the source
efficiency. The end-to-end efficiency is defined by:

Σ = βH · κtop
κ+ γ

· Π · ηoptics. (2.12)

where Π is the π-pulse efficiency for optical excitation of the TLS, βH the β-factor of the
H-polarised cavity mode and ηoptics the efficiency of the throughput of the optical elements.

The tunabiliy of the system allows for a direct extraction of the β-factor by measuring
the decay rate of the QD as a function of the cavity length as shown in Figure 2.5b. Two
frequency-split cavity modes (details described in App. A) can be observed. From the change
in decay rate on and out of resonance with the cavity modes a Purcell factor of Fp = 10 is
obtained and hence β = 91% (more specifically for the H mode, βH = 87%). The cavity-
photon loss rate – which is now dominated by the losses through the top mirror κtop – can
be extracted from the cavity linewidth, κ, and is found to be ηout = 96.2%. Furthermore,
Π is derived from the theory model derived in Ref.,19 Π = 96.3%, and ηoptics = 69.0% is
measured by duplicating the optical system with a mirror instead of the cavity and measuring
its throughput. In summary, all extracted efficiencies multiply together to the measured
end-to-end efficiency. Thus, the described system is well understood.

Moreover, the purity and coherence of the photons are very high is this system. Mea-
surements of the g(2)(τ) and the Hong-Ou-Mandel interference V are shown in Fig. 2.5c,d
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Figure 2.5: A bright source of coherent single photons (a) Measured signal versus square
root of the laser power. The pulsed laser repetition frequency is 76.3 MHz. The signal is deliberately
attenuated by a factor 9.9 to avoid saturation of the detector (left y-axis). The right axis shows
the expected signal without attenuation and with a perfect detector. The solid line is the theory
model discussed in Ref. 19 (b) Radiative decay rate versus cavity detuning. The total Purcell factor
is determined to be 10, implying β = 91%. (c) Autocorrelation g(2) versus delay τ : g(2)(0) = (2.1±
0.1)%. (d) HOM experiment showing two-photon interference from photons created at 1.5µs apart
in time: V = (97.5± 0.5)%. (e) HOM visibility V vs delay in the interferometer. This figure has
been modified and adapted from Ref. 19

demonstrating a g(2)(0) = (2.1±0.1)% and V = (97.5± 0.5)%. This is important for any
application of photonic qubits. Furthermore, V , and hence the photon coherence, is equally
high for photons generated by the same source at different time delays, from short (∼1 ns)
to long (∼1.5µs) delays (Fig. 2.5e). Using a technique called photon-correlation Fourier
spectroscopy (PCFS),96 the coherence length of the photons was probed up to even longer
timescales and no decay is observed up to a time of ∼200 ms. Consequently, strings of at
least 100,000 indistinguishable, usable photons can be generated before the source dephases.

These results are relevant for all the experiments presented in this thesis. Apart from
speeding up any experiment with high photon count rates, the optimisation of the system
has enabled fast spin state manipulation and readout of spin states and a coherent interface
of photons.

2.2.3 The perfect coupling case: a one-dimensional atom
A high coupling efficiency, β, is a prerequisite for a concept called a one-dimensional (1D)
atom,26 where one single optical mode is perfectly coupled to one single emitter. Since
quantum gates require emitters acting as strong photon-photon interfaces, 1D atoms become
crucial for the implementation of quantum computational nodes.9 A 1D atom can be realised
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Figure 2.6: A 1D atom (a) A TLS coupled to a single optical mode, a 1D atom, can be implemented
in a waveguide (left) or in a one-sided cavity using a set of optical elements (right; dark box consists
of beam-splitters and wave-plates). The physics is identical and two ports can be defined for
simplification. (b) Two different regimes in 1D atoms. In a linear regime (linear dipole transition
or light polarisation), a TLS emitts into both ports, while in the chiral regime (circularly polarised
dipole transition and photons) it emits only into one port. Light propagation is hence dependent on
the regime and the coupling efficiency β. While in the linear regime, all interactions are reciprocal, a
chiral emitter only interacts with incident photons from a specific direction.

using different types of resonators. For simplicity, all concepts are discussed on a waveguide.
Note however, that a one-sided cavity as in our case (App. A) in combination with some basic
optical elements can mimic precisely the same conditions (Fig. 2.6a) as is further discussed
in Chs. 3,4. Furthermore, owing to the cavity mode splitting in the one-sided cavity (details
on the exact setup can be found in App. A), the one-sided cavity can mimic a two-sided
cavity by making use of the orthogonal polarisations and the optical elements (compare with
Ch. 3).

One important requirement for a quantum network consisting of several nodes is a clear
photon propagation direction. This means that a photon travelling from port 1 in Fig. 2.6a
propagates only forwards to port 2 and is not back-scattered to its origin, even upon
interaction with the emitter. Example for elements requiring direction dependent behaviour
are isolators, circulators, diodes or cascaded systems.97–99 The answer to these challenges
is the concept of chiral emitters. It is important to distinguish between linear and chiral
emitters as they behave very differently.

In order to achieve chiral coupling, both the emitter as well as the photons must possess
circular polarisation. Consequently, if one of the two is linearly polarised, the interaction will
be in what is called the linear regime and the interaction will not be chiral. While circularly
polarised light in waveguides results from tight transverse confinement,52 optical wave-plates
and a polarising beam-splitters can be used in the open cavity case in order to obtain it.100

The emitters’ transition rules can be set by choosing an appropriate exciton in a specific
magnetic field orientation (compare to Fig. 2.2).

The difference between the two regimes (chiral or linear light propagation) can be under-
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stood by looking at the emission properties of an emitter in a waveguide.52 In the linear
regime, photons will be emitted to both port 1 and port 2 with equal probability. In the
chiral regime, however, the emitted photons only go to one side. Therefore, in a chiral emitter
γ+ ≠ γ− as is illustrated in Fig. 2.6b. Directional emission implies a directional coupling
efficiency β± of travelling photons as

β± = γ±
γ+ + γ− + γloss

, (2.13)

and hence, β+ ̸= β− (with β = β+ + β−). In the most extreme chiral case, β− = 0 while
β+ = 1. Furthermore, directional coupling changes the transmission and reflection properties
of the emitter in comparison to the linear regime as can be seen in Fig. 2.6b. The transmission
and reflection coefficients for both regimes are given by

t± = 1 − 2β± (2.14)

r± = −2
√
β+β−, (2.15)

resulting in an absorption A± = 1 − |t±|2 − |r±|2.
There are two particularly interesting conditions.52 Firstly, the perfect coupling condition

β = 1. In the linear case the emitter acts as a perfect mirror for single photons (r = 1,
t = 0; more details in Ch. 3). It does so independent of the direction the photons come
from. On the other hand, t = −1 in the chiral case: light travelling in one direction is
transmitted acquiring a phase π (more details in Ch. 5). However, if photons arrive from the
opposite direction, they won’t interact, but will be transmitted resulting in a non-reciprocal
phase shift. Further, for β < 1, reflection, transmission and absorption change according to
Eqs. 2.14,2.15. As long as β > 0.5, the emitter’s dynamics will dominate the coupling to the
waveguide mode.52 The second interesting case is at condition β = 0.5, where in the chiral
case, absorption goes to unity for one direction (t = 0), while light propagating in the other
direction is entirely transmitted (t = 1; more details in Ch. 4). This condition leads to a
non-reciprocal transmission which can be used to realise optical diodes.

Alongside these different regimes and interesting configurations, a 1D atom generally
enables strong optical nonlinearities at the single photon level to be observed.9,26 Due to
the two-level nature of an emitter, the response is different upon incidence of one or two
photons. This nonlinearity in photon number arises because only one photon can interact
with the TLS within the radiative lifetime of the emitter. At higher photon numbers within
the lifetime, the TLS saturates. Particularly coupled to chiral emitters, a giant nonlinearity
can have several applications in quantum and classical information technology.101,102

In order to experimentally implement a 1D atom, the cavity-QED parameters described
in Sec. 2.2.1 (g, κ and γ) need to be optimised. The radiative decay rate γ (which here is
included in γloss) is typically fixed and not equal to zero. In reality, this means β never
reaches unity. However, β can be maximised by optimising κ and g to the same conditions
as for a single-photon source and maximising the quantum efficiency. Importantly, all the
descriptions in this section require a negligible upper-level dephasing (compare Sec. 2.1.1),
which is a reasonable assumption for a modest Q-factor cavity as the one used in this
thesis.67



Part II
A quantum dot in a microcavity as
a one-dimensional atom



3
A tunable, coherent and efficient light-matter
interface based on a single quantum emitter
in a microcavityi

3.1 Summary
A coherent and efficient light-matter interface at the level of single emitters and single
photons, a one-dimensional (1D) atom, is the main requirement for photonic quantum
gates. In a 1D atom, the photon-emitter coupling efficiency, β, determines the transmission
amplitude and the phase of the scattered light. Observing high β in combination with a high
photon collection efficiency and low dephasing has remained a challenge to date. Here we
use a semiconductor quantum dot (QD) in an open microcavity to implement a 1D atom.
We achieve an extinction of 99.2% in the transmission, resulting in a bunching in the photon
statistics of g(2)(0) = 587, showcasing the selective transmission of the two-photon component
of the coherent input. The tunable nature of the microcavity allows β to be adjusted and
gives control over the photon statistics – from strong bunching to anti-bunching – as well as
over the phase of the transmitted photons. Our results are consistent with the observation
of photonic bound states and pave the way for implementations of two-photon phase gates.

3.2 Introduction
The ability to generate and manipulate correlated and entangled photonic states at the
few-photon level is imperative for the advancement of technologies promoting quantum
information processing in the optical domain. The realisation of well-controlled quantum
photonic gates requires a highly nonlinear medium, i.e. a medium that enables the strong
and controlled interaction of few photons.103–105 A 1D atom, an emitter strongly coupled to a
single optical mode, is the ideal candidate to provide these functionalities.50,106 Engineering
a 1D atom is challenging, as it requires the β-factor to be nearly unity, without impairing
decoherence or noise on the quantum emitter. One approach to enhance the coupling
efficiency includes employing an ensemble of atoms99,107 that collectively behave as a super-

iThe experiments in this chapter have been conducted in equal contribution with Natasha Tomm.
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atom. Cavity quantum electrodynamics provides an alternative route to boost light-matter
interaction by confining the vacuum electric field to small mode volumes, and placing a
quantum emitter in the centre of the optical mode defined by the cavity. This approach
has been successfully implemented with a number of emitters, such as atoms,108–110 ions,111

molecules,112 and solid-state systems for which very high atom-photon couplings have been
achieved, for instance with semiconductor QDs.45,48,113–115

Here, we embed a single low-noise QD in an open, one-sided microcavity, creating a system
that acts as a 1D atom. An important feature of this design is the fact that the environment
around the QD is a pristine crystal. With minimal disturbance and noise sources around
the QD (circumvented charge noise and weak exciton dephasing via phonons as explained
in Sec. 2.1), the highly coherent optical transitions that are present in the bulk sample are
preserved. We showcase the low-noise performance of our implementation of a 1D atom by
measuring its transmission and its nonlinearity. In the ideal case, the atom would act as
a perfect mirror for single photons,50,116,117 i.e. single photons cannot be transmitted past
the atom, but are 100 % back-scattered. Our system shows an extinction of 99.2 % of the
transmitted light, when probed with a low-power laser. More importantly, the remaining
transmitted state is highly bunched, g(2)(0) = 587, which is a strong result of the nonlinearity
at the single-photon level: a near-perfect transmission of the two-photon component. We also
exploit the tunability of the cavity to tailor the photon statistics, transitioning from highly
bunched to anti-bunched photonic states. The ability to modify the output photon statistics
in a controlled manner paves the way for the formation and manipulation of exotic quantum
states.99 The observations in this work are consistent with the formation of photonic bound
states118–120 and direction-dependent phase-shifts,52 important for the implementation of
controlled phase-gates.

3.3 Experimental and theoretical description
The setup is schematically shown in Fig. 3.1a. The cavity is a highly miniaturised Fabry-Pérot
type cavity: the bottom mirror is a highly reflective (reflectivity R = 99.97%) semiconductor
distributed Bragg reflector (DBR) which embeds a layer of InAs QDs within an n-i-p diode
structure. This diode structure allows for the gating of the QD and hence stabilising and
tuning of the transition frequency. The top mirror is a less reflective (R = 99%) dielectric
DBR (SiO2/Ta2O5) on a silica substrate, where a microcrater is created by laser ablation.
The much higher transmittance of the top mirror makes the cavity nearly one-sided: the
top mirror of the cavity is the main access port for incoming and outgoing light, see App. A
for more details on the system. The bottom mirror sits on a set of xyz-nanopositioners,
which allows for full control over the length of the cavity (z) and the lateral position of
the QD with respect to the centre of the cavity mode (xy). A combination of a polarising
beam-splitter (PBS) and a half-wave plate (HWP) gives full control over the polarisation of
the input (excitation) and output (collection) states. As seen on Fig. 3.1a, we name one of the
ports of the polarising beam-splitter port 1, and the orthogonal side port 2 for convenience.
Additionally, the cavity mode is frequency-split by δcav/(2π) = (∆ωH −∆ωV)/(2π) ≃ 50 GHz
into two linearly- and orthogonally-polarised modes due to a small birefringence in the
bottom mirror. We name these two polarisation orientations H and V , with detunings
∆ωH/V = ωlaser − ωH/V. The cavity modes have a loss rate κ/(2π) = 28 GHz.

In this work we use a neutral exciton, X0, in a QD. The level structure of the neutral
exciton is shown in the top part of Fig. 3.1b. It has a V -level energy structure: one ground
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Figure 3.1: A 1D atom. (a) Experimental setup. A weak laser is sent onto an open, one-sided
microcavity. The reflected light strikes a polarising beam-splitter. A HWP allows to set an angle
between the incoming beam and the axes of the cavity. The sketch shows the optical path for photons
in the transmission mode where the incoming beam is 45◦ polarised with respect to the cavity modes.
At ideal coupling efficiency β, single-photon components are reflected into port 1 and higher-order
components enter port 2. (b) Top: level structure of the neutral exciton (one ground state and two
excited states). The two transitions have orthogonal linear polarisations. Bottom: the polarisation
orientation of the horizontally (H) and vertically (V) polarised cavity modes and the QD transitions.
(c) Transmission as a function of cavity and QD detuning. Horizontal lines indicate the two cavity
resonances. (d) Transmission through the system as a function of the detuning of the QD. The
transmission features two dips for the two dipoles. The stronger dipole shows an extinction of 99.2%.
The black line is the theoretical prediction and matches the data very well. The dashed blue line
shows the simplified scenario (one cavity, one TLS) and does not feature the second dip. The inset
shows the power dependent transmission on resonance with the QD. The saturation power (indicated
by the dashed gray line) is 3.1 nW.

state |g⟩ with two excited states |a⟩ and |b⟩, with detunings ∆ωa/b = ωa/b − ωlaser. The two
transitions are linearly polarised and orthogonal to one another. They are split in frequency
by δQD/(2π) = (∆ωa − ∆ωb)/(2π) = 2.3 GHz. The polarisation axes of the QD lie at an
angle of θ = 25.1◦ with respect to the polarisation axes of the cavity, see the bottom panel
in Fig. 3.1b. As a consequence, the HQD transition |a⟩ ↔ |g⟩ is more efficiently coupled to
the H- than to the V -polarised cavity mode, and vice-versa for the VQD transition |b⟩ ↔ |g⟩.
When HQD is on resonance with the H-cavity mode, we achieve maximal coupling, presenting
a Purcell-enhanced decay rate Γ/(2π) = 3.0 GHz (Purcell factor FP = 10), resulting in a
maximum dipole-cavity coupling efficiency of β = FP/(FP + 1) = 92%.

We use two main experimental configurations termed transmission and back-reflection
modes. We first focus on data acquired in the transmission mode experiments. In this
setup, light with polarisation P = 1/

√
2(H + V ) is input from port 1 and interacts with

the QD-cavity system. The output is collected in port 2 and probes the polarisation
M = 1/

√
2(H−V ). We work with a drive strength, i.e. a unitless photon flux per time which

is proportional to the optical laser power, ε =
√
ṅin, where ṅin is the input photon flux. The

theoretical model used to compute transmission, back-reflection and intensity correlations in
both transmission and back-reflection mode is similar to the model derived in App. B, but for
a three-level system instead of a two-level system (TLS). The cavity-QD system dynamics
are described through a Lindblad master equation and connected with measured quantities
via the input-output-theory.121,122 Adiabatic elimination and perturbation theory in the
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drive strength are employed to solve for the steady-state and obtain correlation functions.

3.4 Results
3.4.1 Strong extinction
The measured transmission from impinging P-polarised light to M-polarised light as a
function of the QD detuning is shown in Fig. 3.1 d, illustrating an extinction of 99.2 %, and
showcasing the efficient coupling between the cavity and the QD.

We first consider the QD transition to be out of resonance with respect to the laser
frequency (see the far left or far right in Fig. 3.1 c). When the resonance frequency of one
cavity mode, say the V -mode, is swept across the resonant laser frequency, the phase of the
reflected V -polarised light winds around 2πii while the H polarisation does not pick up a
phase upon reflection. On resonance, V -polarised light obtains a phase shift of π, thereby
turning P = 1/

√
2(H+V ) light into M = 1/

√
2(H−V ) light and resulting in a transmission

close to unity. This explains the peaks when the laser is on resonance with one of the cavity
modes (while the QD is out of resonance). When the laser frequency is on resonance with
one of the cavity modes, sweeping the QD frequency across the resonance results in a phase
that winds twice across 2πiii. On resonance, no phase is picked up and we expect a perfect
extinction (T = 0) in the absence of dissipation (β ≃ 1) and upper-level dephasing.

Many of the qualitative features seen in the experiment can be understood by a simple model,
which is obtained by setting θ = 0 (ignoring the misalignment between the polarisations of
the QD transitions and the cavity modes) and |δcav|/κ → ∞ (separating the resonances of
the two cavity modes). In this case, when the laser is close to resonance with one mode, only
light of the same polarisation may transmit into the cavity and interact with the TLS while
the other polarisation is perfectly reflected. This simple model can thus be fully understood
by a TLS coupled to a single cavity mode.122,123 Due to dissipation, the transmission on
resonance in this model is reduced to T = (1 − β)2.

The simple model may be mapped onto a two-sided cavity, where the P and M modes
correspond to the two sides of a cavityiv. In this case, T refers to the transmission through
the cavity. Features of the transmission that are not captured by the simple model are
the double dip structure in as well as the slight shift of the maximal extinction away from
∆ωa = 0 in Fig. 3.1 d . Considering the full three-level system with an angle θ = 25.1◦
between QD and cavity polarisation axes, the theory shows excellent agreement with these
features. The transmission close to resonance with the QD is strongly dependent on the
input power. With increasing laser power, the transmission dip disappears, see inset in
Fig. 1c. This nonlinear response in the transmission is a consequence of the saturation of the
quantum emitter. We extract a saturation power of Psat = 3.1 nW, where power is measured
at the input before the window to the cryostat. This saturation power corresponds to an
average of 0.69 photons per lifetime of the QD on resonance with the cavity mode. From
theory, we would expect an average photon number of ⟨n⟩ = 0.29. The discrepancy likely
arises due to an offset in the scaling between the power measured at the optical table and
the actual power at the QD after optical losses.

iiSimply derived by treating the cavity as a harmonic oscillator. Note that the factor of two difference
in comparison to a classical oscillator arises from the fact that the light has to enter, and leave the cavity,
resulting in twice a factor of π.

iiiSame argument as for the cavity; the QD can be treated as a harmonic oscillator.
ivThe full theory model has been derived by Marcelo Janovitch and Patrick P. Potts
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3.4.2 Giant and tunable nonlinearity
We now demonstrate the ability of this cavity-QED setup to manipulate the transmitted
state of light. To this end, we consider the second-order correlation function g(2)(τ), with
τ being the delay between detection events. We observe very strong photon bunching of
g(2)(τ = 0) =587 (Fig. 3.2a) for very low input powers and an optimally-coupled QD. To
our knowledge, this is the strongest photon bunching due to a non-linear effect observed to
date. As discussed earlier, this bunching results from the atom reflecting the single-photon
component in the quantum state. To achieve such a high bunching, all parameters of the
system have to be close to ideal, i.e. very low dephasing, good coupling efficiency to the
cavity, β ≃ 1, and very good overall detection efficiencyv. Our photon collection efficiency is
high enough to further enable a high resolution measurement of a g(3)(τ1, τ2) as is shown
in Fig. 3.2b. High bunching, i.e. coincidence clicks of three- and larger photon states, is
observed for τ1 = τ2 = τ3. In addition to the high bunching obtained in g(2)(τ), changing β
allows us to tune from strong bunching to anti-bunching (Fig. 3.2c), demonstrating a large
amount of control over the statistics of the transmitted light. In the experiment, control over
β is achieved by controlling the lateral position of the QD with respect to the cavity centre.

The giant bunching and, more generally, the measurements of intensity correlations can be
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Figure 3.2: Strong modification of the transmitted photon statistics by the 1D atom. (a)
Auto-correlation function g(2)(τ) of the transmitted photonic state as a function of the delay between
detectors τ . A bunching of 587 highlights the strong nonlinear response of the system. Inset shows
the bunching at zero delay (g(2)(0)) as a function of laser power. The black lines are the theoretical
model. For these measurements the QD is positioned in the centre of the cavity (β = 0.92). (b)
Third order correlation function g(3)(τ1, τ2) of the transmitted photonic state as a function of the
delays between three detectors, τ1, τ2. (c) g(2)(τ) for different QD positions with respect to the
cavity’s anti-node, i.e. for decreasing β-factor. The bunching at the ideal coupling position turns
into an anti-bunching at β ≃ 0.5, and disappears for β → 0. The black line is the full model for a
V-level structure and the dashed blue line is the theory for a TLS. The side bumps originate from the
interaction with the second dipole.

vThe latter might sound contradicting as g(2)(τ) is independent of photon loss. However, the transmitted
light is so low, that it can easily be polluted by uncoupled laser reflection.



3.4. Results 24

explained by the evolution of the M-polarised cavity field after photo-detection, τ = 0, back
to the steady-state τ → ∞. In the bad-cavity (κ > g > γ) and weak drive (ε ≪ 1) limits,
the cavity field can be described by a pure quantum state at all times121,123,124

|ψ⟩τ = |α⟩ − i

√
Γ
2κ⟨σ̂M⟩τ â

†
M |α⟩ . (3.1)

Here, |α⟩ denotes the coherent state describing the M-mode in the absence of the atom. The
second term describes the effect of the atom, where â†M denotes the creation operator in
the M-mode and σ̂M the QD dipole which is more efficiently coupled to the M polarisation.
Note that the second term of Eq. 3.1 vanishes as ε → 0 since ⟨σ̂M⟩τ and α are proportional
to ε. The state in Eq. 3.1 provides the correct averages for any normal-ordered observable
(involving the M-mode) to leading order in the external drive ε. We refer to this state
as Rice-Carmichael (RC) state since such a description was first introduced by Rice and
Carmichael.123 Since the input is P-polarised, the RC state of the M-polarised cavity mode
fully characterises the M-polarised output. The g(2)-function measured at port 2 may then
be understood as follows: measuring a photon at τ = 0 alters the field in the cavity. As
time progresses, the field will evolve back to its steady state (the state before a photon was
detected). It can be shown that this time-dependent average field value directly determines
g(2)(τ) = |⟨âM⟩τ/⟨âM⟩∞|2, where the average is taken w.r.t. |ψ⟩τ .124 Thus, g(2)(τ) larger
(smaller) than one is observed whenever the average field is stronger (weaker) than in steady
state.

To explain the key qualitative aspects of the experimental results, we consider the RC
state for the simplified model discussed above (δcav → ∞, θ = 0). In this case, we findvi

⟨âM⟩τ

⟨âM⟩∞
= 1 − β2

(1 − β)2 e
− γτ

2(1−β) . (3.2)

This shows that the photon statistics can be modified by tuning β: At β ≃ 0 the cavity
field remains close to a coherent state while for β ≃ 1, the contribution to Eq. 3.2 stemming
from the QD can yield an amplified number of photons as compared to steady state.

The described RC states can now be used to investigate the β-factor dependence of the
g(2)(τ). The experimental results demonstrating a transition from bunching to anti-bunching
(Fig. 3.2c) may qualitatively be understood by considering the steady state in the Fock basis:

⟨n|ψ⟩∞ = αn(1 − βn)/
√
n!. (3.3)

At β = 1 the single-photon component in the cavity vanishes and is thus perfectly reflected
(sketch Fig. 3.1a). Importantly, higher-number components of the state are present in the
cavity, leading to bunching in the transmitted light. In contrast, for β = 1/2, the two-
photon component in the cavity vanishes due to destructive interference (half the two-photon
components get a π and the other half no phase shift), which results in perfect anti-bunching
g(2)(0) = 0. Similarly, tuning β = 1/n allows for suppressing the n-photon component. From
Eq. 3.2, we may furthermore infer that the average field strength in the cavity changes sign
upon the detection of the first photon if β > 1/2. As time progresses, the field then crosses
zero, which in the theoretical curves in Fig. 3.2c results in dips of the g(2)–function. As for

viThese relations have been derived by Marcelo Janovitch and Patrick P. Potts



3.4. Results 25

the transmission above, the simplified model cannot capture all features of the g(2) function.
In particular, the experimental data exhibits shoulders Fig. 3.2c, which are related to the
finite cavity and dipole splittings, δQD/cav ̸= 0. In addition, the anti-bunching is limited by
the finite cavity-mode splitting δcav ̸= 0 and slightly due to the dipoles’ misalignment, θ ̸= 0
such that g(2) ≃ 0.5 at β ≃ 0.5. Our full theoretical model shows excellent agreement with
these features.

3.4.3 Back-reflection mode
We now demonstrate the connection of a different scattering configuration with the recently
reported formation of photon bound states.120 To this end, we turn to the second experimental
configuration termed back-reflection mode where we operate close to the one-sided cavity
regime.52,100 In this configuration, the cavity is driven by H-polarized light and the reflected
light in the same polarisation is measured. A 99:1 beam-splitter is used to separate the
input light from the output. The measured light is a superposition of light that is directly
reflected at the cavity and the light that leaks out of the cavity.121 Figure 3.3a shows the
reflected signal as a function of the cavity and the QD detuning. The input field, off-resonant
to the cavity and the QD, maintains its polarisation and ends up at the detectors, hence,
back-reflection is near unity for all the frequency ranges. On resonance with the cavity,
the QD is efficiently coupled to the one cavity mode of interest (βH = 0.89). Contrary to
transmission mode measurements, the output signal does not go to zero on resonance with
the QD (R← = 62%), in unison with the idealised scenario, in which R← = (1 − 2β)2.
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Figure 3.3: Back-reflection mode (a) Top: back-reflection signal as a function of QD detuning at
resonance with the cavity H. The absence of a deep dip when the strongly coupled dipole |a⟩ ↔ |g⟩
is resonant is a signature of chiral coupling. The deep dip appears off-resonant due to reduced
coupling efficiency (β ∼ 0.5). The dashed blue line is the simplified model for comparison. Bottom:
back-reflection signal as a function of QD and cavity detuning. The dashed vertical line shows the
QD resonance and is used for the measurements in (b). The horizontal lines indicate the two cavity
modes. (b) Top: second-order correlation function g(2)(τ) as a function of τ at the resonance of
H. Anti-bunching is observed at ±133 ps delay and bunching at zero delay, a signature of photons
strongly correlated in time. The dashed blue line is the simplified model for comparison. Bottom:
g(2)(τ) measurement as a function of τ and the cavity detuning. The highest bunching is slightly
off-resonant to the cavity due to the influence of the second cavity mode. The dashed line marks the
cavity resonance, at which the cut-through is extracted.
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Away from the cavity and QD resonances, in Fig. 3.3a, the back-reflection can still vanish
as a consequence of reduced β-factor (β ≃ 0.5),100 losses and coupling to the V cavity mode
and QD transition.

We now turn to the correlation function g(2)
← (τ), in Fig. 3.3b which shows bunching at

zero delay g(2)
← (0) = 7.3 followed by anti-bunching at finite delay g(2)

← (τ0 = 133ps) = 0.25.
Here, the anti-bunched statistics have a different origin than the ones observed in the
transmission mode experiments. The observation of an exponential decay of g(2)

← in Fig. 3.3b
are consistent with the formation of bound states further discussed in Ch. 5: a few photons
are pulled together in time to form a highly correlated photonic state.120,125 Similar to the
transmission mode experiment, the intensity correlations can be described using a RC state
for the field in the cavity, displaced by the light that is directly reflected by the cavity. This
results in g(2)

← (τ) = |⟨b̂H⟩τ/⟨b̂H⟩∞|2, where the averages are computed from the RC state and
b̂H = âH − iε/

√
κ. A simplified scenario with θ = 0 again allows the qualitative features of

the data to be understood. The simplified model reduces to a TLS in a single mode, single
port cavity and we find

⟨b̂H⟩τ

⟨b̂H⟩∞
= 1 − (2β)2

(1 − 2β)2 e
− γτ

2(1−β) . (3.4)

Thus, the observed field changes sign upon detecting a photon if β > 1/4. When going back
to steady state, the output field vanishes at time γτ0 = 2(1 − β) ln

(
(2β)2

(1−2β)2

)
. Figure 3.3b

also contrasts the simplified scenario (dashed-blue), with the complete theoretical model
(solid-black) and indicates that the reduced anti-bunching and the oscillations are due to
the coupling to the V-mode, which makes the splittings δcav/QD relevant and introduces loss
channels. Away from ∆ωH = 0, the slight asymmetry between positive and negative cavity
detuning in the bottom of Fig. 3.3b has its origin in the second cavity mode and the total
Purcell factor being different depending on the direction of the detuning. The anti-bunched
regions are pushed to higher time delays for a detuned cavity.

3.5 Discussion
We have established efficient coupling between a QD and a microcavity by virtue of which
this system acts as an atom with giant optical cross-section. The consequence of such a
large cross-section is that the QD behaves radically differently depending on the number of
photons that interact with it within its lifetime. This is reflected in the very strong bunching
of photons in the transmission mode measurements, where mainly multi-photon states are
allowed to pass through the QD, while single-photon states are routed to other optical modes.
Such a photon-number discriminating interaction enables photon-photon interactions at the
fundamental limit of single photons to be studied and may find application in studying
many-body phenomena126 in a controllable setting. The overall transmission of the setup,
from the input fibre to the output fibre is high, about 57%, and can allow these systems to
be cascaded to study the interaction between photons mediated by multiple artificial atoms
in series. One practical implementation could be to use time-delayed feedback of photons to
mimic the interaction between photons and multiple quantum emitters, which can enable
generating exotic bound states involving many photons.125 Another potential application of
this system is building blocks such as photon sorters102,127–129 and quantum gates between
photons.130,131
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4.1 Summary
In a chiral one-dimensional (1D) atom, a photon propagating in one direction interacts with
the atom; a photon propagating in the other direction does not. Chiral quantum optics
has applications in creating nanoscopic single-photon routers, circulators, phase-shifters and
two-photon gates. Here, we implement chiral quantum optics using a low-noise quantum
dot (QD) in an open microcavity. We demonstrate the non-reciprocal absorption of single
photons, a single-photon diode. The non-reciprocity, the ratio of the transmission in the
forward-direction to the transmission in the reverse direction, is as high as 10.7 dB. This is
achieved by tuning the photon-emitter coupling in situ to the optimal operating condition
(β = 0.5). Proof that the non-reciprocity arises from a single quantum emitter lies in the
photon statistics – ultralow-power laser light propagating in the diode’s reverse direction
results in a highly bunched output (g(2)(0) = 101), showing that the single-photon component
is largely removed.

iN.O.A. carried out the experiments with help from N.T. and A.J. R.S., A.D.W., and A.L. designed
and drew the semiconductor heterostructure. N.T. fabricated the top mirror, passivated the sample, and
assembled the cavity setup. N.T. and T.J. characterised the top mirror. NOA developed the theoretical
model and analysed the data. A.J. and R.J.W. conceived the idea and supervised the project. N.O.A., A.J.,
and R.J.W. wrote the manuscript with input from all the authors
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4.2 Introduction
In a non-chiral 1D atom, an atom is coupled equally to a right-propagating and to a left-
propagating mode in a single-mode waveguide. There are two input/output ports, one on
the left (port 1) and one on the right (port 2). In the ideal limit (perfect atom with β = 1,
where β is the probability that the excited atom emits a photon into the waveguide mode,
a single photon at the input in resonance with the atom and upper-level dephasing of the
two-level atom is negligible), the atom acts as a perfect mirror: the reflectivity is R = 1; the
transmission T = 0.51,122 This changes completely in a chiral 1D atom: R and T depend
on the propagation direction, left-to-right (1 → 2) or right-to-left (2 → 1), i.e. the system
exhibits non-reciprocity (T1→2 ̸= T2→1). There are two simple cases.52 First, for β ≃ 1, the
atom now becomes perfectly transparent (T1→2 = 1, T2→1 = 1, R1→1 = 0, R2→2 = 0). In one
direction, the 2 → 1-direction, say, the photon is phase-shifted by π via the interaction with
the atom; in the other direction, 1 → 2, the photon phase-shift is zero. Second, for β = 1

2 , in
the 2 → 1-direction, the photon is scattered by the atom into non-waveguide modes – the
photon is absorbed – such that T2→1 = 0 and R2→2 = 0, whereas in the 1 → 2-direction, the
photon does not interact with the atom, T1→2 = 1 and R1→1 = 0.

Chiral quantum optics has been implemented by using a single emitter in a nano-engineered
waveguide, for instance a Rb atom in the evanescent field of a dielectric nanofibre,97,132 or a
semiconductor QD in a waveguide.133–135 In the semiconductor case, β-factors can be high
in nano-beam structures and particularly high in photonic-crystal waveguides. The system
becomes chiral provided the QD is located off-centre in a nano-beam;135 and at the centre of
an inversion-asymmetric photonic-crystal waveguide.133

We report here a different approach to engineering a chiral 1D atom. A single-mode
optical fibre constitutes the waveguide on the left of the QD; another single-mode optical
fibre constitutes the waveguide on the right of the QD; the atom itself is a QD in a low-
volume one-sided microcavity, where the microcavity is coupled with high efficiency to
the single-mode fibres. Chirality is induced by applying a magnetic field to a neutral QD:
the QD’s σ+- transition couples to the microcavity and is addressed with σ+-polarised
photons. The advantage of this approach is that the resonant microcavity boosts the light-
matter interaction in a controllable way: the β-factor can be tuned from small to extremely
high values (99.7% has been achieved48). Also, the good mode-matching19 implies that a
high-efficiency, fibre-coupled platform for chiral quantum optics can be constructed.

Here, we implement the chiral scheme with β = 1
2 . In one direction, a single photon is

transmitted; in the other direction, the photon is absorbed, Fig. 4.1a. We call this device
a single-photon diode in analogy to its electronic counterpart. The challenge is twofold: to
achieve exactly the right β; and to achieve a close-to-perfect (transform-limited) QD. These
challenges were met: we achieve an isolation of 10.7 dB, the highest non-reciprocal response
recorded with a single quantum emitter. In addition, the high overall efficiency19 enables us
to observe optical nonlinearities already at an input power of just 100 pW. The quantum
nature of this nonlinearity is validated by observation of photon bunching by a factor of 101
compared to that of a laser field.

4.3 The working principle of the single-photon diode
Figure 4.1b shows a schematic of the setup and the operation principle of the diode. The
optical setup consists of a polarising beam-splitter (PBS) and a quarter-wave plate (QWP,
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λ/4) set at 45◦ with respect to the polarising beam-splitter axes. Consequently, light
propagating in the forward direction is mapped to a left-handed field at the input of the
microcavity, while light propagating in the backward direction is mapped to a right-handed
field at the microcavity input, thereby creating the spin-momentum locking. The microcavity
(Fig. 4.1b) comprises a highly reflective bottom mirror and a much less reflective top mirror.19

The top mirror is a dielectric distributed-Bragg-reflector deposited on a crater in a silica
substrate with a radius-of-curvature of 11 µm. The bottom mirror is a semiconductor
distributed-Bragg-reflector on top of which InAs QDs are embedded in an n-i-p diode in
the heterostructure. The open nature of the microcavity allows the lateral position of the
QDs to be controlled precisely with respect to the anti-node of the microcavity. The cavity
mode has a Gaussian intensity profile centred around the crater. The coupling between the
cavity and the QD is maximum when the QD is placed at the centre of the cavity mode.
Figure. 4.1c shows the resonance fluorescence of a QD as a function of its lateral position.
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Figure 4.1: Schematic and operating principle of the chiral 1D atom (a) The optical system
showing the two input/output ports. (b) Illustration of the open microcavity. The heterostructure
consists of a GaAs/AlAs distributed Bragg reflector (the bottom mirror) and self-assembled InAs QDs
embedded in an n-i-p diode. Nano-positioners allow precise tuning of both microcavity frequency (via
z) and also the β-factor by positioning the QDs with respect to the anti-node of the microcavity (via
xy). An external magnetic field of 2.0 T splits the neutral QD into two circularly-polarised transitions.
The polarisation of the light is controlled by a PBS and a QWP in the microscope. The σ+-polarised
exciton creates a photon in the microcavity with probability β. (c) Intensity of resonance fluorescence
as a function of the displacement of the QD from the cavity mode centre. The position is defined as
the distance from the anti-node with respect to the top mirror of the cavity, i.e. r =

√
X2 + Y 2. We

apply a bias to the x and y nanopositioners to move the semiconductor sample. The applied voltages
are translated to distance using the specifications from the manufacturer (attocube systems AG). The
position used in most of the measurements of this chapter (β ≈ 0.5) is indicated with a blue circle.
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The origin of the coordinate system corresponds to the centre of the cavity mode. The
fluorescence from the QD drops as it is displaced from the origin, which shows that the
coupling efficiency between the cavity and the QD is reduced. Therefore, the tunability of
the lateral position of the QD with respect to the cavity anti-node allows in situ tuning of
the β-factor. This position dependence can be used to achieve β = 0.5 with high precision. A
position with β = 0.5, used in most measurements, is indicated by the blue circle in Fig. 4.1c.
Furthermore, adjusting the distance between the bottom mirror and the top mirror provides
precise control over the microcavity’s frequency, enabling the QD’s σ+-polarised exciton and
the microcavity to be brought into spectral resonance.

We define the transmission as the propagation through the entire diode, i.e. from port 1
to 2 (2 to 1) in the forward (backward) direction. Ideally, the transmission in the forward
direction T1→2 is unity as the left-handed optical field is orthogonal to the dipole-moment of
the QD, i.e. there is no interaction. In the backward direction, the transmission amplitude is
given by t2→1 = 1 − 2β where β is the β-factor describing the interaction of the σ+-polarised
exciton with an empty microcavity. The full transmission in the backward direction is
T2→1 = |t2→1|2 = |1 − 2β|2. In the over-coupled regime, β ≈ 1, the backwards-propagating
photons receive a π-phase shift as they transit through the coupled system. At the critical
coupling, β = 0.5, the light reflected by the QD interferes destructively with the light directly
reflected from the microcavity and the transmission through the system vanishes; instead,
the photons are scattered into non-microcavity modes.

4.4 Experimental details and characterisation of the diode
4.4.1 Cavity characterisation
For the described scheme to operate, the microcavity itself should not rotate the polarisation.
However, the fundamental microcavity mode is typically split into two modes with orthogonal
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Figure 4.2: Characterisation of the cavity parameters without a QD. (a) Measured cavity
decay rate (κ/(2π), red circles) and mode-splitting (Λ/(2π), blue triangles) versus wavelength. The
transmission through the one-sided cavity on resonance with the cavity mode (black stars) is calculated
with these two parameters and Eq. 4.1. The transmission increases, i.e. the loss decreases, with
increasing wavelength. (b) The measured transmission through the cavity mode in the cross- (top)
and co-polarised (bottom) configuration at a wavelength of 945 nm versus the detuning of the cavity
frequency. The peak in cross-polarisation is fitted with the response of the two linear cavity modes (H
and V) that are plotted in purple and turquoise. The cavity dip was modelled using the parameters
from (a).
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linear polarisations, a consequence of a birefringence in the semiconductor heterostructure.136

This means, we should work in a regime, where in order to maximise the overlap of the
two cavity modes, this mode-splitting is minimised while the cavity linewidth is enhanced.
By measuring the cross-polarised137 transmission through the bare cavity setup (from port
2 to port 1 in Fig. 4.1b) and fitting a square of a double-Lorentzian to the data, we can
characterise the decay rate, κ/(2π), and the mode-splitting, Λ/(2π), of the cavity; see the top
panel in Fig. 4.2b for an example of the transmission spectrum. The top panel in Fig. 4.2a
shows κ and Λ as a function of wavelength; Λ decreases for higher wavelength while κ
increases.136

We operate at a wavelength of 945 nm where the mode-splitting is on the order of 29 GHz
and κ/(2π) = 102 GHz such that the mode-splitting is much smaller than the linewidth of
the microcavity, and the microcavity mode is nearly degenerate. The microcavity losses are
dominated by the transmission through the top mirror, i.e. κtop ≫ κbottom, an effect that we
evaluate by comparing κ to the cavity losses reported in Ref. ,138 which were measured with
the same bottom mirror but with a highly reflective top mirror. We conclude that κ ≈ κtop,
i.e. close to all losses arise via transmission through top mirror for all wavelengths, assuring
that the cavity is indeed one-sided in the full range of wavelengths presented.

4.4.2 Insertion losses
It is important to note, that in the described regime, the residual mode-splitting acts as an
overall loss channel and does not limit the non-reciprocity of the system; it mostly affects
the insertion loss of the system (here 1.5 dB). In order to optimise the operation of the
diode, we evaluate the insertion losses induced by the cavity mode-splitting as a function of
wavelength.

Neglecting interaction terms in Eq. B.10 in App. B.2, we can calculate the transmission
through both cavity modes in the co-polarised configuration as:

T =
∣∣∣∣1 − 1

1 + 2i(∆ω + Λ/2)/κ − 1
1 + 2i(∆ω − Λ/2)/κ

∣∣∣∣2 . (4.1)

Using Eq. 4.1 and κ and Λ extracted above (shown in the top panel of Fig. 4.2a), we
calculate the transmission from port 2 to port 1 for circularly polarised light at different laser
frequencies for ∆ω = 0, i.e. the laser frequency lies exactly between the two cavity modes
(bottom panel of Fig. 4.2a). We observe that the mode-splitting induces an overall loss in
the transmission, which increases for decreasing frequency, i.e. decreases with increasing
wavelength. Eventually, the transmission reaches unity at low frequencies (high wavelengths).

In order to reduce the insertion loss, working at high wavelengths, i.e. above 950 nm, seems
obvious. However, as is explained in more detail in Fig 4.5, we are limited by the maximum
achievable β-factor in a specific QD, which as well is depending on the emission wavelength
of the QD. Given these constraints, we determined 945 nm to be an ideal wavelength to
carry out the experiments. Figure 4.2b shows the cross-(top) and co-polarised (bottom)
cavity transmission for this optimised operation-wavelength. The co-polarised data could be
reconstructed using the extracted cavity parameters of Fig. 4.2a and Eq. 4.1.
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4.4.3 Quantum dot characterisation
The Purcell factor, Fp, is a critical parameter characterising the operation of our diode.
It is defined through Γtot = (1 + Fp)γ, where Γ is the overall linewidth of the QD, and
γ is the linewidth of the QD outside the cavity. The linewidth of a bare QD is typically
γ/(2π) ≈ 300 MHz, as measured in Ref. 19 We estimate the Purcell-enhanced linewidth of
the QD by measuring the resonance fluorescence spectrum from the QD. Figure 4.3a shows a
sample spectrum from a QD placed in the centre of the cavity. We extract Γtot/(2π) = 1.2 GHz
by fitting two Lorentzians to the data. The observed Purcell factor is Fp = 3, matching
predictions from COMSOL simulations shown in Fig. 4.5.

The two peaks in Fig 4.3a show the fine-structure splitting of the optical transition. Under
a magnetic field along the growth direction (Faraday geometry), the transitions become
circular (see inset in Fig. 4.1a for the level structure). An out-of-plane magnetic field of
2.0 T splits the right-handed and left-handed transitions by 63 GHz, enough that only one
transition interacts with the laser; here, the right-handed dipole σ+, as seen in Fig. 4.3b. The
two curves in Fig. 4.3b show the photoluminescence signal of the QD for different positions of
the QWP, hence, for different detection polarisations. The purple (turquoise) line represents
the QWP setting where the incoming light matches the lower (higher)-wavelength transition.
Therefore, only signal from the corresponding transition is collected. The data in Fig. 4.3b
were taken on a different QD to that used in the rest of this chapter, but they show the
principle of operation.

While operating in a magnetic field, we observed a nuclear-spin related effect in the
transmission data, see Fig. 4.4. We found that the transmission depends on the scanning
direction of the gate voltage and is asymmetric around the resonance of the QD. In order to
overcome these so-called dragging and anti-dragging effects, the gate voltage was switched
rapidly (100 Hz) between the resonance voltage and the co-tunnelling voltage using a square
function from an arbitrary waveform generator. In the co-tunnelling regime, an QD electron
is exchanged with an electron in the Fermi sea, randomising the electron’s spin state and
eliminating the spin polarisation of the nuclei.80 Transmission data were acquired only when
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Figure 4.3: Characterisation of the QD (a) Resonance fluorescence from an over-coupled QD
in the microcavity in the cross-polarised configuration at 0.0 T. The Purcell-enhanced linewidth is
1.2 GHz, corresponding to β = 0.72. (b) Photoluminescence spectrum of the QD in a magnetic
field of 2.0 T. A Zeeman splitting of 0.189 nm (63 GHz) is observed. The lower wavelength (purple),
i.e. higher frequency, transition was used for all measurements. The two curves were measured by
changing the angle of the QWP between the two circular configurations.
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Figure 4.4: Overcoming nuclear spin induced effects (a)/(b) Transmission through the
diode as a function of QD detuning for the high/low energy transition. The so-called dragging and
anti-dragging effects (purple/turquoise lines) are overcome (black lines) by jumping back and forth
between the measurement voltage and a voltage in the co-tunnelling regime.

the gate voltage was at the resonance voltage. The procedure to overcome nuclear spin
effects was applied for all transmission data shown in this chapter.

4.4.4 Wavelength dependence of β-factor and highest observable contrast
The coupling efficiency between the QD and the cavity mode is given by the β-factor that
has a wavelength dependence arising from the dispersion of the top and the bottom mirrors.
We simulate this dependence by calculating the mode volume and the quality factor of the
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Figure 4.5: Wavelength dependence of the β-factor. COMSOL simulations (red circles) show
the maximum achievable β for a QD positioned in the centre of the cavity. At wavelengths above
955 nm, the critical β of 0.5 is not reachable. Calculations using the model in App. B.1 enable us
to predict the maximal contrast achievable for different wavelengths (black stars) and the optimal
β-factor to observe the strongest contrast (blue triangles). The range between 945 and 955 has the
highest contrast at β = 0.5 and is therefore ideal. The experiments in the main text were carried out
at 945 nm (vertical line).
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cavity in COMSOL. The results are shown in Fig. 4.5. The β-factor for a central QD drops
with increasing wavelength and falls below 0.5 at a wavelength of 955 nm. This effect arises
from the fact that the centre of the stop-band for the top and the bottom mirrors are 920 nm.
Away from 920 nm the reflection of the top mirror drops and results in a reduced quality
factor and, hence, a reduction in the β-factor.

Using the model derived in App. B.1, Λ and κ extracted above, and leaving β a free
parameter, we estimate the highest observable contrast (1 − T 0/T∞) for each wavelength
(bottom part of Fig. 4.5) and extract the β at which it is maximised (top panel in Fig. 4.5).
The achievable contrast is nearly constant between 945 and 955 nm, giving a broad range of
QDs to work with. This also shows that the insertion losses do not influence the isolation
(as mentioned above), i.e. non-reciprocity, of the system, but only describe overall losses.
We chose an emitter at 945 nm, as the maximum β is above the critical value of 0.5, and
the position dependence of β can be exploited to tune the system into the critical coupling
conditions.

4.5 Results
4.5.1 Tuning the β-factor to the ideal limit
The transmission of the diode is probed with coherent laser light at very low powers, a
regime dominated by single-photon components. We exploit the β-factor’s dependence on
the lateral position of the QD with respect to the centre of the microcavity to tune the
system to the critical-coupling condition. Figure 4.6 shows the transmission in the backward
direction, T2→1, as a function of the QD frequency for three different positions, i.e. three
different β-factors. The orange data points show the transmission for the QD centred in the
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Figure 4.6: Schematic and operating principle of the chiral 1D atom (a) Transmission
from port 1 to port 2 versus QD detuning for three different lateral positions of the QD: orange
triangles (β ≈ 0.72), purple circles (β ≈ 0.50) and blue rectangles (β ≈ 0.12). The solid lines are
theory curves. The off-resonant transmission is limited to 0.7 by the residual non-degeneracy of the
microcavity. The transmission is defined without taking into account the losses in the optical setup.
The overall end-to-end throughput of the setup, taking into account all the optical elements and the
fibre-coupling, is 56%: this corresponds to T = 1. (b) Contrast in the transmission as a function of
the lateral position. Coloured data-points indicate the positions used in (b). The black solid line is
the theory.
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microcavity. For this position we extract β = 0.72, matching well the theoretical expectations
for the maximum achievable β at this wavelength.

The β-factor is evaluated via the linewidth and the contrast of the dip. When the QD is
laterally displaced such that β = 0.50 (purple data points), the T2→1 is lowest: T2→1 = 0.07.
Also, the linewidth of the QD transition decreases with decreasing β due to a reduced
Purcell-enhancement. We define the transmission contrast as one minus the ratio between
transmission on resonance and the transmission far off-resonance with the QD (1 − T 0

2→1
T ∞

2→1
).

The transmission contrast is measured while scanning the lateral position of the QD relative
to the microcavity’s optical axis (Fig. 4.6b). For a well-centred position, the contrast in the
transmission is around 0.67, increasing to a value of 0.9 as β approaches 0.5, and decreasing
as β is further reduced. The solid black lines in Fig. 4.6a,b are the theoretically expected
behaviour. (A comprehensive model for transmission through a two-level system coupled to
a non-degenerate one-sided microcavity is derived and discussed in detail in App. B.1.) An
average spectral fluctuation of the QD of 40 MHz was found by comparing the theoretical
model and the measurements.66

4.5.2 Non-reciprocal transmission of the single-photon diode
The non-reciprocal nature of the diode is demonstrated by measuring the transmission in
both directions at the over-coupled and critical-coupling conditions. The top panels of
Fig. 4.7 shows the transmission through the diode in the backward direction as a function of
the microcavity detuning and the QD detuning.

In the over-coupled situation (Fig. 4.7a), the strongest contrast appears when the QD is
spectrally detuned from the cavity resonance (contrast 0.89, red circles); the Purcell factor,
Fp, hence also β, decrease as a function of cavity detuning. In this case, the isolation resulting
from the detuned QD-cavity system is 11.2 (10.5 dB).

Figure 4.7b shows the diode configuration, i.e. the critical coupling condition. The
transmission contrast shown in these maps decreases with microcavity detuning on account
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Figure 4.7: Non-reciprocal response of the diode. Transmission through the system versus QD
and microcavity detuning for the backward (top panels, port 1 to 2) and forward (bottom panels,
port 2 to 1) directions for β = 0.72 (a) and β = 0.5 (b). Experimental data (left) and theory (right)
show an excellent match. The black lines show the Lamb shift of the QD resonance induced by the
vacuum field of the microcavity.
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Figure 4.8: Non-reciprocal response of the diode. (c),(d) Transmission through the diode on
resonance with the microcavity/QD in the forward and the backward direction versus QD/cavity
detuning. The purple and turquoise data are cut-throughs of (a) (2→1) and (b) (1→2). The black
solid lines are the theory

of a reduced β-factor. On the contrary, the transmission in the forward direction (Fig. 4.7,
bottom panels) presents an almost flat behaviour independent of the detuning from the
QD’s resonance. The panels on the right side of Fig. 4.7a,b show the theoretically predicted
behaviour from our model (App. B.2) A comparison of the transmission in the forward and
backward directions at critical coupling as a function of the QD (microcavity) detuning is
shown in Fig. 4.8a,b. At resonance, the transmission in the forward direction is around 0.82.
The slight increase in the transmission signal in the forward direction is attributed to the
mode-splitting based on the theoretical model (see App. Fig B.1). A figure of merit for a
diode is the isolation. It is defined as T1→2/T2→1 and found to be a factor 11.9 (corresponding
to 10.7 dB).

4.5.3 Nonlinearity of the single-photon diode
To prove that the non-reciprocity arises from a single emitter, we probe both the power
dependence and the photon statistics of the output. In the power dependence, we find a
striking nonlinearity of the transmission in the backward direction. Figure. 4.9a shows the
transmission in the backward direction as a function of the optical power and detuning
from the QD’s resonance. On resonance with the QD (Fig. 4.9b), the backward transmission
increases with a power-law dependence with a slope of one and is described by T 0

2→1 = P/PC
1+P/PC

,
where P is the input optical power and PC the critical power. The experimental data in
Fig. 3b match this behaviour very well for PC = 213 pW. This behaviour is characteristic
of the saturation of a two-level system – while the interaction between the input field and
the QD is linear in power at very low powers, the QD saturates at higher input powers,
which leads to a strong power-dependent transmission. The critical power is very close to the
theoretically expected value of 198 pW (Eq. B.9 in App.B.2) This power level corresponds to
an average photon flux of ⟨n⟩ = 0.27 at the input of the microcavity per lifetime of the QD
(τQD = 0.26 ns).

The very low onset of the nonlinearity implies that the quantum statistics of the output
field are affected by interaction with the QD.123 We verify this by measuring the second-
order auto-correlation function, g(2)(τ), of the backward transmitted light.109,112,139,140 The
g(2)(τ) was measured for three different powers (Fig. 4.10a). At the lowest power (5 pW),
a very strong bunching of 101 is observed, proving that the single-photon components
of the laser have been largely removed by the QD. With increasing power, the bunching
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Figure 4.9: Nonlinear response of the diode. (a) Transmission on resonance with the microcavity
versus QD detuning and optical input power. The transmission saturates at 0.7 on increasing the
power. (b) Power dependence of the transmission on resonance with the QD. The black solid
line corresponds to the theory. The insets illustrate absorption by the QD at small powers, and
transmission at higher powers due to the increasing transparency of the emitter. The critical power
is indicated with a vertical line.

decreases exponentially (inset Fig. 4.10a), corresponding exactly to the expected behaviour on
saturating the QD: at high powers, most of the laser light is transmitted without interaction,
resulting in g(2)(τ) = 1, the auto-correlation function of the laser light. Additionally, the
auto-correlation function of the transmission in the forward direction is constant and unitary
– this confirms the non-reciprocal transmission in the system (Fig. 4.10b). The measurements
were modelled (see App. B.2) and the results are depicted as a solid black line in Fig. 4.10.
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Figure 4.10: Nonlinear response of the diode. (a) Autocorrelation function of the backwards
propagating light for three different input optical powers. At the lowest optical power (5 pW) a
bunching of 101 is observed. As the power increases the bunching decreases exponentially (inset). (b)
Auto-correlation function g(2)(τ) for a critically-coupled QD-cavity system for the two propagation
directions. Top: Backward direction showing a high bunching of 101. Bottom: Forward direction
showing a flat curve indicating that in the forward direction there is no interaction between the
photons and the QD such that the light remains coherent after passing through the cavity. The input
power is around 5 pW. The black, solid lines are based on the model in Eq. B.18.
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We emphasise that all the data in Figs. 4.7, 4.8, 4.9, 4.10 are modelled with the same set of
parameters, in particular β = 0.72 or β = 0.50, a free-space decay rate γ0/(2π) = 300 MHz,
κ/(2π) = 102 GHz, Λ/(2π) = 29 GHz, and a spectral fluctuation of δsf/(2π) = 35 MHz.

4.6 Discussion
The reported experiments reveal a strong non-reciprocal and highly nonlinear transport of
optical photons through a QD-microcavity system. Model calculations based on the canonical
chiral 1D atom describe the system extremely well. The single-photon diode is realised with
a modest emitter-microcavity coupling, β = 0.5. We can foresee a range of applications.
For example, the non-reciprocal behaviour can be dynamically controlled by driving the σ−
transition, by using the spin-state of a charge carrier in the QD, or by fast Stark tuning of
the QD, opening possibilities for optical switches and transistors.102,117,129,141,142 Theory
predicts that the strong bunching of the photons in the transmission of the system presages
the formation of a two-photon bound state – it is a first step in creating exotic photonic
states and simulating many-body dynamics using photons126,143–145 as is demonstrated and
further discussed in Ch. 5. The performance of the system can be further improved by
eliminating the mode-splitting of the microcavity. The mode-splitting can be minimised,
perhaps eliminated, by exploiting the electro-optic effect146 or by applying uni-axial stress
to the semiconductor heterostructure.136 This would not only reduce the insertion losses
but also bring the regime β = 1 within range. Such a device would be ideal for achieving a
single-photon phase-shifter and has a strong potential for deterministic two-photon quantum
gates, either by using spin-state of the QD or by exploiting photonic bound states.125,127
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5.1 Summary
The interaction between photons and a single two-level atom constitutes a fundamental
paradigm in quantum physics. The nonlinearity provided by the atom leads to a strong
dependence of the light-matter interface on the number of photons interacting with the
two-level system within its emission lifetime. This nonlinearity unveils strongly correlated
quasi-particles known as photon bound states, giving rise to key physical processes such as
stimulated emission and soliton propagation. While signatures consistent with the existence
of photon bound states have been measured in strongly interacting Rydberg gases, their
hallmark excitation-number-dependent dispersion and propagation velocity have not yet
been observed. Here, we report the direct observation of a photon-number-dependent time
delay in the scattering off a single artificial atom — a semiconductor quantum dot (QD)
coupled to an optical cavity. By scattering a weak coherent pulse off the cavity-QED system
and measuring the time-dependent output power and correlation functions, we show that
single photons, and two- and three-photon bound states incur different time delays, becoming
shorter for higher photon numbers. This reduced time delay is a fingerprint of stimulated
emission, where the arrival of two photons within the lifetime of an emitter causes one photon
to stimulate the emission of another.

iN.T., S.M., A.J. and R.J.W. designed the research and experiments. N.T. and N.O.A carried out the
experiments. S.M. developed the theoretical model and simulations. N.T. and S.M. analysed the data. R.S.,
S.R.V., A.D.W. and A.L. fabricated the semiconductor device. N.T., S.M. and R.J.W. wrote the paper with
input from all authors.
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5.2 Introduction
Photons do not easily interact with one another. This property is commonly exploited to
communicate over long distances using optical fibres. Interaction between photons is desired
however for classical and quantum information processing, but requires a highly nonlinear
medium. Optical nonlinear processes are employed in a range of photonic applications such as
frequency conversion, optical modulation, light amplification, and sensing .104,147,148 In the
limit where the optical nonlinearity is significant on the scale of a few photons, one can observe
quantum nonlinear phenomena, for instance via the optical correlation functions.104–106 One
manifestation of the nonlinearity is the presence of two and higher-order photon bound
states. Photons in these bound states are strongly correlated such that the likelihood of
observing a photon at any one time is fixed, but once one photon is detected, the arrival
of another is much more likely than at a random time. We emphasise that photon bound
states are distinct from bunched photon states as photon bound states are quasiparticles
that have their own dispersion relation and are eigenstates of the underlying Hamiltonian
that describes the nonlinear medium. It has recently been predicted theoretically that
the photon-number-dependent propagation velocity of photon bound states can lead to
the formation of highly-entangled, ordered states of light.125 Photon bound states have
been predicted to exist in a number of systems such as unidirectional waveguide quantum
electrodynamics (QED)50,149,150 and strongly correlated Rydberg gases.145 In the latter case,
experimental observations consistent with their presence have been reported.118,119,151 A
direct observation of their dynamics is however lacking. To observe directly the dynamics of
photon bound states we examine the unidirectional propagation of few-photon wavepackets
strongly interacting with a single atom, in practice a semiconductor QD coupled to a one-sided
cavity.

5.3 Concept: Scattering dynamics via correlation functions
The experimental setup is schematically depicted in Fig. 5.1a: Gaussian pulses of light are
guided via a circulator to the one-sided QD-cavity system. The light is back-scattered and
redirected by the circulator towards a Hanbury Brown-Twiss (HBT) setup equipped with
single-photon detectors that record the time of arrival τ of individual photons. By launching
a weak coherent pulse with average photon number n̄ ≪ 1, one can probe directly the
scattering dynamics of single-photon pulses via power measurements P (τ) = G(1)(τ), which
is proportional to the single-photon wavefunction |ψ1(τ)|2. Conversely, the second-order
correlation function G(2)(τch1, τch2) is insensitive to the single-photon Fock component and
is used to study two-photon scattering dynamics.152 G(2)(τch1, τch2) is proportional to the
squared amplitude of the two-photon wavefunction, |ψ2(τch1, τch2)|2. We also measure the
third-order correlation function G(3)(τch1, τch2, τch3) to probe the dynamics of the three-
photon component. For higher-order correlation functions, we can determine the equal-time
correlators, i.e. when τch1 = τch2 = ... = τchn. For the coherent state the equal-time
correlator is G(n)(τ, τ, . . . , τ) = P (τ)n. Deviations from this indicate that the photons
undergo a nonlinear scattering process.
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5.4 Results
5.4.1 One- and two-photon scattering eigenstates
Single-photon states and two-photon states undergo distinct dynamics when scattering off
the cavity-QED system. We can understand these dynamics by examining the one- and
two-photon scattering eigenstates. In our cavity-QED setup the QD couples almost perfectly
to the cavity (β = 93%, compare discussion Ch. 3), which in turn has small undesired losses
(≤ 5%; arising from losses via the bottom mirror, absorption and scattering losses138) and we
thus model our system as being lossless. The single-photon scattering eigenstates are plane
waves that are transmitted through the system with a transmission coefficient122,153,154

t1(∆L,∆C) = ∆L − ∆C − g2/∆L − iκ/2
∆L − ∆C − g2/∆L + iκ/2 , (5.1)

where ∆L = ωL − ωQD is the angular frequency detuning of the photon and the QD,
∆C = ωC − ωQD the detuning between the cavity resonance and the QD, g the atom-cavity
coupling, and κ the cavity loss rate. Under the lossless assumption (κ = 0) the scattering
amplitude is unitary, |t1| = 1, but scattering imparts a frequency-dependent phase on the
photon. The importance of the frequency-dependent phase is highlighted when scattering
Gaussian pulses off the cavity-QED system. Defining eiϕ1 = t1 we then have ϕ1 = −i ln (t1).
As in standard Gaussian pulse propagation,155 the first to third derivatives of ϕ1 then give
the delay ∆τ1(∆L,∆C), broadening and chirp, and distortion d1(∆L,∆C) of the Gaussian
pulse upon scattering off the quantum system, respectively. On resonance (∆L = 0,∆C = 0),
the delay is ∆τ1(0, 0) = 4/Γ, where Γ = 4g2/κ is the Purcell-enhanced decay rate. The
distortion is given by d1(0, 0) = −32(1 − 3Γ/κ)/Γ3.120

The physics of two-photon scattering is richer as the energy of the individual photons is
not necessarily conserved, which leads to photon correlations. The two-photon scattering
matrix has previously been computed,153,156 but here, we diagonalise the scattering matrix
and show that the two-photon eigenstates contain a subspace of two-photon bound states
(photonic dimers), see Ref. 120 for the full calculation. We find general semi-analytic forms
for these states, but in the limit where κ is larger than all other rates and detunings in the
system, the bound eigenstates have the simple form

ψE(xc, x) = NeiExc

[
e
− Γ

2vg
(1+ Γ

κ
)|x| − Γ

κ
e
− κ

2vg
|x|
]

+O

( 1
κ2

)
, (5.2)

where N is a normalisation constant, vg the group velocity of the bound state and O(1/κ2)
indicates terms of order 1/κ2 and higher. The state is not separable and the two photons
composing the bound state are entangled with each other. In the relative two-photon
coordinate x = x1 −x2 (the distance between the two photons), the photons are exponentially
localised; however, since the two-photon energy is conserved, they take the form of a plane
wave eiExc in the two-photon centre-of-mass coordinate xc = (x1 + x2)/2 with a common
two-photon frequency E. The exponential localisation in the relative coordinates evidences
the strong correlation of the two photons in the bound state. In contrast to the waveguide
QED bound states,125 the presence of the cavity results in the second term that removes the
cusp at x = 0 such that the function is smooth.

The strong localisation within a time 1/Γ in the difference coordinate means that the two
photons in the bound state excite and stimulate the emission of the atom. This distinctly
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correlated interaction between the photons leads to this eigenstate having its own distinct
transmission coefficient tB(E) and dispersion in comparison to the single-photon eigenstate
and therefore undergoes different delays, broadening and distortion. We compute the general
form of tB(E) numerically, but in the limit of a broadband cavity, the transmission coefficient
of the two-photon bound states is

tB(E) = E(κ+ 2Γ) − 2iΓ(κ− Γ − E2/Γ)
E(κ+ 2Γ) + 2iΓ(κ− Γ − E2/Γ) +O

( 1
κ2

)
. (5.3)

Similar to single-photon scattering, by taking respectively the first and third derivatives of
ϕB = −i ln (tB(E)), we find that the delay of the two-photon bound state in the centre-of-
mass coordinate is ∆τ2(0, 0) = 1/Γ + 3/κ and the distortion is d2(0, 0) = −(1 − 3Γ/κ)/(2Γ3).
In comparison to the single-photon state, the bound state therefore undergoes both a reduced
delay and a factor of 64 less distortion. The reduction in distortion was shown to be related
to soliton propagation in waveguide QED.125

5.4.2 Experimental implementation
In order to fulfil experimentally the two criteria to study the photon-number-dependent
scattering dynamics, namely unidirectional light propagation and a strong atom-photon
interaction, we employ not a real atom but an artificial atom, a single QD, which is
described in detail in App. A. The QD is embedded in a Fabry-Pérot microcavity. The cavity
suppresses the effects of phonons such that the QD mimics a two-level system precisely.67

The epitaxially grown InAs QDs are part of a semiconductor heterostructure comprising an
n-i-p diode and a GaAs/AlAs Bragg reflector, the bottom mirror. The top mirror consists
of a concave, dielectric Bragg mirror fabricated into a silica substrate. The reflectivity
of the bottom mirror is significantly higher than that of the top mirror. With the aid of
xyz-nanopositioners, one can position a QD in the sample relative to the cavity mode and
one can tune the resonance frequency of the cavity to that of the QD’s emission. Essential
for the unidirectionality condition, the cavity should have only one port. In this system,
undesired losses (losses via the bottom mirror, absorption and scattering losses138) account for
κloss/(2π) = (0.72±0.07) GHz,19 while the total cavity linewidth is κ/(2π) = (20.1±1.5) GHz,
indicating that ∼ 96% of the light is back-reflected via the one port of the microcavity,
namely the top mirror. The QDs in this sample present a close-to-transform-limited linewidth
γ/(2π) = 0.30 GHz. We use the transitions of a neutral exciton X0, which exhibits a so-
called fine-structure splitting (FSS): there are two non-degenerate, linearly-polarised dipole
moments. In order to work with one transition only, we search for a highly strained region
in the sample in which both the FSS of the QD and the mode-splitting of the cavity are
large. We select a QD with a starting linear frequency splitting FSS = (7.6 ± 0.1) GHz. We
apply an out-of-plane magnetic field B=0.5 T, large enough to push the transitions further
apart via the Zeeman effect, but not large enough to influence significantly the selection
rules. (In a large magnetic field, the Zeeman splitting becomes much larger than the FSS
such that the transitions become circularly polarised as discussed in Sec. 2.1.1.) With this
magnetic field strength, we finally have FSS = (11.0 ± 0.1) GHz. We focus the rest of
the discussion on the lower-frequency transition. When QD and cavity are coupled, the
Purcell-enhanced QD linewidth Γ = FP · γ becomes Γ/(2π) = 4.24 GHz, where FP = 14.1 is
the Purcell factor. The lifetime of the emitter becomes τQD = 37.5 ps and the QD-cavity
coupling rate g/(2π) = 4.62 GHz. The strong atom-photon interaction and near-lossless



5.4. Results 43

operation result in a near-unitary probability of emission from the QD into the cavity mode,
β = FP/(FP + 1) = 0.93. Further experimental details are provided in App. A.

5.4.3 Pulse delay induced by the cavity
The elastic scattering of a wavepacket by a resonator is not an instantaneous process. It was
shown by E.P. Wigner in 1955 that the scattered wave propagates with a time delay with
respect to an unscattered wave.157 The so-called Wigner delay is given by the derivative of
the phase shift acquired by the wave with respect to its frequency.158 The delay is frequency
dependent. In the case of a one-sided optical cavity with an inverse lifetime κ the Wigner
delay inherited by the interacting pulse is given by

∆τC(ωL, ωC) = 4
κ

1

1 + 4
(

ωL−ωC
κ

)2 . (5.4)

It is easy to see that at resonance (ωL = ωC) the Wigner delay reduces to ∆τC(0, 0) = 4/κ.
For our cavity, the expected Wigner delay at resonance is ∆τC(0, 0) = 4/κ = (31.7 ± 2.4) ps.

We study the dynamical response of a ∼135 ps Gaussian pulse scattered by the one-sided
cavity. We work in back-reflection mode, such that the input light only interacts with the
H cavity mode. Figure 5.1b shows the time of arrival of the pulse G(1)(τ) as a function
of detuning between the laser and the cavity resonance. Even for the shortest pulses used
here, the scattered pulse is shape-maintaining over the entire spectrum. We evaluate the
delay of the pulse peak ∆τ for one- (red dots) and two-photon components (blue dots) as
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Figure 5.1: Schematic and Wigner delay induced by a one-sided cavity. (a) A Gaussian
pulse of light is launched into a circulator, which guides the pulse towards a QD, coupled to a
one-sided microcavity. Upon interaction with the QD-cavity system, states of light with different
photon-number are transported through the system with different time delays. (b) Measured G(1)(τ)
histogram as a function of cavity detuning. (c) Measured pulse peak delay ∆τ of G(1) (red data
points) and G(2) (blue data points) as a function of cavity detuning. For an optical cavity, the Wigner
delay is photon-number independent, and at resonance equal to ∆τC = 4/κ for a one-sided cavity.
By fitting Eq. 5.4 (solid lines) we determine κfit/(2π) = (21.6 ± 0.2) GHZ. Error bars in data points
arise from fitting residual standard error, and error bars in fit arise from accounting for experimental
error bars in the fitting process. (d) The Wigner delay for single-photon states (red data points) and
two-photon states (blue data points) at resonance measured for different laser powers: the delay is
independent of the power. Error bars in data points arise from residual standard error.
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a function of detuning (Fig. 5.1c). The delay experienced in both cases is the same, and
described by Eq. 5.4, which we fit to the data (red and blue solid lines) allowing us to
retrieve the cavity linewidth κfit/(2π) = (21.6 ± 0.2) GHZ. This value is the same (within the
error bars) as the value of κ determined via the intensity measurement described in App. A,
κ/(2π) = (20.1 ± 1.5). The photon lifetime in the cavity is τC = 1/κfit = (7.3 ± 0.1) ps,
leading to a Wigner delay at resonance of ∆τC(0, 0) = 4/κfit = (29.2 ± 0.4) ps. Finally, we
show in Fig. 5.1d that the Wigner delay for a resonator is linear, i.e. independent of input
laser power. For the experiments in the following sections, we use the average of the delays
extracted in this measurement as the classical (i.e. cavity-only) baseline.

5.4.4 Direct obervation of photon-number dependent scattering dynamics
The direct observation of photon-number-dependent scattering dynamics is presented in
Fig. 5.2a. A weak, coherent Gaussian pulse of temporal full-width-at-half-maximum (FWHM)
135 ps – about twice the lifetime of the QD, σΓ = 2.2 – is launched into the input of the
optical system. Without any interaction with the cavity-QED system, it propagates through
the optical system and arrives at the single-photon detectors at time τ = 0 (the pulse peak
is represented by the grey dashed line).

Upon resonant interaction with the cavity, but in the absence of the quantum emitter, the
Gaussian pulse undergoes a linear transmission, and is delayed by ∆τC = (29.2 ± 0.4) ps (the
centre of the Gaussian pulse is represented by the black dashed line). This delay matches
the predicted delay for a one-sided cavity ∆τC = 4/κ = (31.7 ± 2.4) ps (see Sec. 5.4.3). The
delay imparted via the elastic scattering of a wavepacket by a resonator is often referred to
as a Wigner delay.157

In the presence of the QD, i.e. when the QD is tuned into resonance with the cavity, we
observe that the scattered n-photon pulse reveals an n-dependent quantum Wigner delay. We
inspect the dynamics under full resonant conditions, ∆L = ∆C = 0, via the nth equal-time
correlators. The single-photon scattering is given by a power measurement, G(1)(τ), presented
as red dots in Fig. 5.2a, and shows how the output pulse is delayed relative to the input
pulse, a result previously observed also for other quantum systems.158–160 The scattered
pulse is non-Gaussian in shape. This distortion causes the peak of the pulse to be delayed by
a value different from ∆τ1 = 4/Γ (see Fig.5.3). The distortion arises from the fact that the
spectral components of the pulse probe a sizeable fraction of the components making up the
resonance of the cavity-QED system. The observed dynamics in G(1)(τ) are well captured
by the theoretical model (red solid line). The scattering of two-photon states is examined
via G(2)(τ, τ), Fig. 5.2a blue dots (theory, solid blue line). We find experimentally that both
the delay and distortion in G(2)(τ, τ) are significantly reduced compared to those of G(1)(τ).
The theory accounts for the measured G(2)(τ, τ) very convincingly. This constitutes a clear
observation of two-photon bound states. We interrogate also the third-order equal-time
correlator, G(3)(τ, τ, τ), given by the green dots (the green solid line is a Gaussian fit). Both
the peak delay and temporal width of the G(3)(τ, τ, τ) curve are reduced further, consistent
with the observation of three-photon bound states.

The finite spectral width of the pulses probes the frequency- and photon-number-dependent
phase imparted on different photon-number states. For a coherent input pulse we examine the
delay experienced by an n-photon pulse by comparing the delay at the peak of the scattered
pulse ∆τn := max(G(n)(τ, τ, ..., τ)) (Fig. 5.4d). Since longer pulses undergo significantly
reduced distortion, for n = 1, 2 we extract the peak delay from measurements with ten
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Figure 5.2: Photon-number-dependent pulse scattering. (a) Normalised photon-counts versus
delay. For a Gaussian pulse (σΓ = 2.2) launched at time τ = 0 (dashed grey line), the propagated
pulse undergoes a Wigner delay in the presence of the optical cavity alone (dashed black line).
Scattering off the QD-cavity system, the single-photon components G(1)(τ) – red points experiment,
red solid line theoretical model – undergo pulse reshaping and arrive with a larger delay than the
two-photon bound states G(2)(τ, τ) – blue points experiment, blue solid line theoretical model – which
in turn undergo a larger delay than three-photon states G(3)(τ, τ, τ) – green points experiment, green
solid line Gaussian fit. (b) Auto-correlation map G(2)(τch1, τch2) of the pulse following propagation
through the entire system in resonance with the optical cavity but in absence of the QD, and (c) in
the presence of the QD. The white dashed line represents the equal-time correlation. (d) Simulation
of normalised |ψ2(τch1, τch2)|2. (e) Auto-correlation map G(3)(τch1, τch2, τch3). The volumes in the
3-dimensional space depict the isosurfaces at 0.05, 0.20, 0.50, 0.75 and 0.90 of the normalised counts,
and the projections on each axis are plotted on setting one of the detection times to zero. (f)
Cut-through of G(3) at times τch3 and τch1 = τch2.

different pulse widths (1.3 ≤ σΓ ≤ 26.0). The one- and two-photon delays correspond well
to the theoretical predictions (red and blue dashed lines respectively). The single-photon
wavepackets undergo a delay ∆τ1 = (144.02 ± 26.90) ps; two-photon wavepackets undergo a
reduced delay ∆τ2 = (66.45 ± 5.97) ps. The reduced delay is a consequence of stimulated
emission: the first photon excites the atom, the second photon stimulates the emission of
the atom, thereby reducing the total time in which the photons interact with the atom. The
three-photon delay is ∆τ3 = (45.51 ± 0.09) ps, a further reduction. This measurement of the
quantum Wigner delay therefore unveils the existence of few-photon bound states. Key to
success is the strong nonlinear and unidirectional scattering off the single quantum emitter.

We proceed to examine the auto-correlation functions of the scattered pulses. Figure 5.2b
shows the two-photon auto-correlation map G(2)(τch1, τch2) of the weak Gaussian pulses
scattered off the optical cavity, but in absence of the quantum emitter. The linear response
of the cavity displaces the two-dimensional Gaussian pulse shape by ∆τC along the equal-
time-of-arrival line (τch1 = τch2) with respect to the Gaussian structure of the non-interacting
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pulse centred at (τch1, τch2) = (0, 0). As shown experimentally (theoretically) in Fig. 5.2c(d),
when the pulse interacts with the QD-cavity system the correlated counts are drawn towards
the diagonal of the G(2)-map (white dashed line), and can no longer be described by a
linear transformation of the response to the bare cavity. We examine also the three-photon
auto-correlation map G(3)(τch1, τch2, τch3) in Fig. 5.2e, where the volumetric isosurfaces at
0.05, 0.2, 0.5, 0.75 and 0.90 of the normalised counts are shown. The projections on the
axes are the cut-through planes in each of the detection channels at time τ = 0. As in the
G(2) measurements, there is a strong peak along the diagonal revealing highly correlated
three-photon states, as well as faint lateral lobes away from the diagonal .161 Figure 5.2f
displays a cut-through along the plane defined by τch1 = τch2 and τch3 where the clustering
of the coincidence counts along the diagonal are prominently revealed. In all likelihood, this
manifests the propagation of three-photon bound states (photonic trimers).

Dependence of delay distortion on pulse width
The scattered light dynamics depend on the input pulse shape and temporal width. Shorter
pulses in time, a few times the lifetime of the emitter, undergo higher-order distortion as
more spectral components interact with the two-level system (TLS). Much longer pulses
are spectrally narrow and the continuous-wave (CW) limit is appropriate in which only a
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Figure 5.3: Input pulse width and input-power dependent dynamics. Time of arrival τ
of the propagated pulse power G(1)(τch1) as a function of QD detuning from the laser resonance
∆QD/(2π) for a short (pulse FWHM = 81.86 ps, (a)) and a long (pulse FWHM = 597.83 ps, (b)) input
Gaussian pulse. (c) Line cut-through of (a) at resonance, showing the pulse deformation for short
pulses. (d) Peak delay ∆τ as a function of input pulse width for one (red) and two photons (blue).
The red and blue horizontal dashed lines represent the theoretical values in the infinite-pulse-width
limit. Data point centres and error bars in (d) are the maximum of fitted Gaussian distribution and
residual standard errors from fitting, respectively.
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delay (phase shift) is impinged onto the pulse. In Fig. 5.3, the normalised power G(1)(τ) as a
function of QD–laser detuning (∆ωQD = ωQD − ωL) is shown. The laser is in resonance with
the cavity. We show the one-photon scattering response for two pulse widths, a shorter one
((a)), pulse intensity-FWHM of 81.86 ps, corresponding to σΓ = 1.3) and a longer one ((b),
pulse intensity-FWHM = 597.83 ps, corresponding to σΓ = 9.6). In both cases, far from
resonance, the pulse is delayed by the delay of the cavity alone and does not present any
reshaping. In the shorter-pulse limit, the transmitted pulse is distorted near the resonance
and no longer corresponds to a Gaussian pulse, as is seen in Fig. 5.3c. The distortion of
the pulse results in a deviation of the peak delay ∆τ in shorter pulses compared to the
infinite-pulse limit, in which the distortion is negligible. The two-photon auto-correlation
maps for these pulse widths are discussed in Sec. 5.4.5. We further probe the peak delay
at resonance for single photons ∆τ1 and for two-photon states ∆τ2 as a function of the
pulse FWHM, displayed in Fig. 5.3d, where the red and blue dashed lines correspond to the
theoretical prediction neglecting the effects of distortion. We point out that the single-photon
scattering dynamics are more sensitive to dispersion effects (see Fig. 5.5) than the dynamics
of the two-photon bound states; this explains the larger variance in ∆τ1 in this analysis.

Power dependence
The response of a single TLS is highly susceptible to the number of photons impinging
on it, as the TLS saturates upon absorption of a single photon .117,122 This results in a
strong nonlinear response even at very low input laser powers. We expect the few-photon
nonlinearity to fade with strong coherent fields, as in this regime a large fraction of the
pulse is scattered without interacting with the saturated TLS. Figure 5.4a presents the
normalised power-time response as a function of QD-detuning from the laser-cavity resonance
for a pulse with ∼135 ps FWHM in the case of a low-power (2.89 nW, left) and high-power
(73.64 nW, right) input. These laser powers translate to an average photon-number per
lifetime of n̄ = 0.0052 and n̄ = 0.1313 at the cavity, respectively. The QD saturates at the
critical photon number100 n̄c = 1/(8β2) = 0.143. In the latter measurement, the reduced
delay at resonance testifies to the saturation of the QD. The fingerprints of two-photon
correlated states (clustering and delay of coincidence counts along the diagonal) also diminish
(Fig. 5.4b). We present in Fig. 5.4c the peak delay observed for one (red) and two photons
(blue) as a function of average photon number per lifetime. At low photon-number, the
measurements correspond well to the simulated ∆τ for this pulse width (red and blue dashed
lines), converging gradually as the laser power increases to the limit where only the delay
induced by the cavity alone remains (black dashed line). The delay response for both one-
and two-photon states correspond well to a TLS-saturation power law like function,

∆τ(n̄) = 1 − (1 − ∆τ∞/∆τ0) · n̄/n̄c

1 + n̄/n̄c
, (5.5)

where ∆τ0 and ∆τ∞ are the peak delays measured in the limits of zero and infinite input
photons, respectively. The fits are depicted with red and blue solid lines in the plot.

Next, we evaluate G(1)(τ) and the diagonals of the auto-correlation functions G(2)(τ, τ)
and G(3)(τ, τ, τ) and determine the dynamical properties of the photon-number dependent
scattering. We present in Fig. 5.4d,e the values of peak delay ∆τ and relative pulse width
σn/σ|in⟩ as a function of photon-number n. For each n, these values are extracted from
G(1)(τ), G(2)(τ, τ) and G(3)(τ, τ, τ). Here, we extract the average and variance from all
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Figure 5.4: Photon-number-dependent scattering dynamics. (a) Time of arrival τ of the
propagated pulse power G(1)(τch1) for a 135 ps Gaussian pulse as a function of QD detuning from the
laser resonance for an average input photon number n̄ = 0.0052 (left) and n̄ = 0.1313 (right), and (b)
respective G(2)(τch1, τch2) maps at resonance. (c) Peak delay as a function of average input photon
number for one- (red) and two-photon (blue) states. Solid lines are fits to the TLS-saturation relation,
with critical photon number n̄c = 0.1338. The red and blue dashed lines show the modelled ∆τ for
one- and two-photon states for a 135 ps Gaussian pulse in the low power limit, and the black dashed
line is the delay of the cavity alone. Data point centres and error bars in (c) are the maximum of
fitted Gaussian distribution and residual standard errors from fitting, respectively. (d) Average peak
delay of the scattered pulse ∆τ , and (e) average ratio of the measured pulse width after scattering
(σn) to the input pulse width σ|in⟩, for different photon-numbers n. The values are extracted by
averaging over all the low-power resonant experiments carried out in the course of this work (including
differing pulse widths), probed via G(1), G(2)(τ, τ) and G(3)(τ, τ, τ).

experiments presented in the course of this work under low-power resonant conditions.
The single-photon components undergo a delay ∆τ1 = (144.02 ± 27.90) ps, in good

agreement with the predicted value of ∆τ theory
1 = 4/Γ = 150.00 ps. The large error stems

from the sensitivity of the peak delay to distortions, as discussed above; the distortions
depend sensitively on the exact detunings which can drift slightly. We determine the two-
and three-photon delays to be ∆τ2 = (66.48 ± 5.97) ps and ∆τ3 = (45.51 ± 0.09) ps. The
two-photon delay corresponds well to the prediction of ∆τ theory

2 = 1/Γ + 3/κ = 61.3 ps. We
note that as we approach the classical limit of n → ∞, the delay converges to the value
induced by the cavity alone (see Sec. 5.4.3). Finally, we compare the Gaussian width of the
interacting n-photon output pulse and the input pulse and determine σ1/σ|in⟩ = 1.06 ± 0.08,
σ2/σ|in⟩ = 0.75 ± 0.02 and σ3/σ|in⟩ = 0.52 ± 0.00. This is consistent with the nth correlation
function being proportional to the electric field to the power of n and hence σ being reduced
by a factor of

√
n.

Delay dispersion
Next, we investigate the behaviour of the single- and two-photon scattering dynamics as
a function of the central frequency of the photons. Figure 5.5a,b show, respectively, the
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Figure 5.5: Single-photon and two-photon bound state delay dispersion. (a) Experimental
G(1)(τ) as a function of laser detuning ∆L/(2π) for a cavity-QD detuning of ∆C/(2π) = 1.0 GHz
and for an input pulse with intensity FWHM of ∼135 ps, and (b) respective simulation, where the
red dotted line indicates the single-photon component delay in the continuous wave limit. (c) Peak
delay ∆τ as a function of laser detuning for single photons (red) and two-photon bound states (blue).
The solid lines are the numerically simulated peak delays for the single- and two-photon bound
states. The red dotted line shows the calculated pulse delay ∆τ1 neglecting distortion. In this system,
the two-photon bound state propagates without noticeable distortion. Error-bars arise from fitting
residual standard error.

experimental and simulated power signal of the scattered pulse (FWHM = 135 ps) as a
function of laser detuning from the QD’s resonance ∆L/(2π). The red dashed line in the
theoretical model shows where the pulse maximum would occur if distortion effects were
disregarded. Here, the cavity is slightly detuned from the QD, ∆C/(2π) = 1.0 GHz, which
induces a slight spectral asymmetry to the one- and two-photon peak delays presented in
Fig.5.5c (red and blue dots, respectively). The results are in good agreement with the
simulations and validate the theoretical model. We calculate numerically the dispersion of
the peak delays ∆τ1 and ∆τ2 (red and blue solid lines). The results describe the experimental
observations very well. Here too, the red dashed line corresponds to the single-photon case
neglecting pulse distortion. The results demonstrate that two-photon bound states experience
a much reduced distortion, imperceptible in this system.

5.4.5 Two-photon bound states as a function of pulse-width
The interaction of the two-photon wavefunction with the cavity-QED system strongly depends
on the Gaussian pulse width. In Fig.5.6a we explore this dependence, where we present on
the top row the experimental G(2)-map for three different pulse widths, FWHM=(81.86,
256.72, 597.83) ps – equivalently σΓ = (1.3, 4.1, 9.6). We compare the experimental results
to the simulated absolute-square of the full two-photon wavefunction (middle row), which
contains contributions from both two-photon bound states and extended states. The total
contribution of the bound states alone is shown in the bottom row: the appearance of just
the diagonals is evidence that the bound states contribute to the diagonal of the correlation
maps; the extended states contribute to the lobes away from the diagonals. Details of the
model are elucidated in Ref. 120 The nodal line (absence of coincidence events) that occurs
between the diagonal (contribution from the bound states) and lobes (contribution from
the extended states) occurs due to the different phase the two states obtain after scattering.
The phase approaches π for the bound state and is 0 for the extended states. For σΓ = 1.3,
the lobes are very weak in both the experiment and accompanying theory: in Fig. 5.6b,
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Figure 5.6: Observation of two-photon bound states as a function of input pulse width.
(a) Experimental (top row) and simulated (middle row) G(2)(τch1, τch2), as well as two-photon bound-
state contribution (bottom row) for increasing relative pulse widths σΓ = (1.3, 4.1, 9.6) (left to right).
(b) Integrated counts versus τch1 − τch2 for σΓ = 1.3 (blue circles) along with the theoretical result
(red curve) for the two-photon bound states. Inset shows the same, but on a log-scale. Apart from the
signal amplitude at τch1 − τch2 = 0, there are no fit parameters. (c) Theory: calculated overlap of the
two-photon bound state and an input state |in⟩, a two-photon Gaussian pulse of width σ. Experiment:
integrated counts over the diagonal divided by the total integrated counts in each G(2)-map. The
nodal line, clearly visible in the G(2)-map for σΓ = 9.6, is used to define the integration area for the
diagonal; the same area is used for each σΓ. Both theory and experiment are plotted as a function of
pulse width (intensity FWHM, top x-axis) and relative pulse width normalised to the decay rate Γ
(bottom x-axis), which has units of (s · s−1).

we sum the counts in the G(2)-map over successive stripes parallel to the diagonal, i.e. for
successive values of τch1 − τch2. This procedure is equivalent to performing a conventional
correlation measurement g(2)(τch1 − τch2) with CW excitation, except unnormalised. We
find an exponential dependence of G(2) on (τch1 − τch2) (inset Fig. 5.6b). This reveals
experimentally the exponential decay of the two-photon bound-state wavefunction. The
exponential dependence of the bound states as revealed in the experiments is well described
by the theoretical model: we evaluate the absolute value squared of Eq. 5.2, taking the
parameters established from the spectroscopy experiments, and find excellent agreement
with the experiment (Fig. 5.6b red solid line). Finally, the total fraction of the scattered
wavefunction in the bound-state subspace depends on the overlap of the two-photon bound
states with the two-photon input pulse. The theory shows that this overlap has a strong
dependence on the input Gaussian pulse duration relative to the lifetime of the quantum
emitter, and is largest and very close to unity when the input pulse has a duration ∼ 1/Γ,
as shown in Fig. 5.6c, solid blue line. Experimentally, we estimate the bound-state fraction
by evaluating the ratio of the counts in the diagonal to the total counts in each G(2)-map.
The results (blue stars) follow the theoretical prediction convincingly.
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5.5 Conclusions
We demonstrate here the ability to manipulate and identify highly correlated photonic
states in time. The results reveal stimulated emission in its most canonical description, a
single quantum emitter interacting with single photons .156 This achievement represents an
important landmark in the development of a variety of quantum technologies. Stimulated
emission plays a central role for instance in approximate-quantum cloning of photons ,162 a
key technology for quantum information processing and networking. The strong dependence
of the propagated pulse on photon number can be enhanced by cascading such cavity-QED
systems and enables a variety of important applications, such as photon sorting, photon-
number-resolving detectors and Bell measurements .102,127,128 The revealing of two-photon
bound states upon interaction with a single atom is an appealing resource for the realisation
of high-fidelity two-qubit photonic gates, such as controlled-phase gates .130 Furthermore, the
systematic generation of photonic dimers paves the way for significant advances in quantum
metrology ,163 and quantum-enhanced microscopy and lithography .164,165
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Cavity-enhanced single-shot readout of a
quantum dot spin within 3 nanoseconds

Adapted from:

N. O. Antoniadis*, M. R. Hogg*, W. F. Stehl, A. Javadi, N. Tomm, R. Schott,
S. R. Valentin, A. D. Wieck, A. Ludwig and R. J. Warburton
“Cavity-enhanced single-shot readout of a quantum dot spin within
3 nanoseconds”,
Nat. Commun. 14, 3977 (2023) i

6.1 Summary
Rapid, high-fidelity single-shot readout of quantum states is a ubiquitous requirement in
quantum information technologies. For emitters with a spin-preserving optical transition,
spin readout can be achieved by driving the transition with a laser and detecting the emitted
photons. The speed and fidelity of this approach is typically limited by low photon collection
rates and measurement back-action. Here we use an open microcavity to enhance the optical
readout signal from a semiconductor quantum dot (QD) spin state, largely overcoming these
limitations. We achieve single-shot readout of an electron spin in only 3 nanoseconds with a
fidelity of (95.2±0.7)%, and observe quantum jumps using repeated single-shot measurements.
Owing to the speed of our readout, errors resulting from measurement-induced back-action
have minimal impact. Our work reduces the spin readout-time well below both the achievable
spin relaxation and dephasing times in semiconductor QDs, opening up new possibilities for
their use in quantum technologies.

iN.O.A., M.R.H. and W.F.S. performed the experiments with input from A.J. and R.J.W. N.T. assembled
the cavity structure and fabricated the silica top mirror. R.S., S.R.V., A.D.W. and A.L. fabricated and
processed the semiconductor device. N.O.A. and M.R.H. performed the analysis with input from A.J. and
R.J.W. N.O.A., M.R.H. and R.J.W. wrote the paper with input from all authors.
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6.2 Introduction
The ability to perform a projective measurement of a quantum state in a single measurement
(single-shot readout) is an enabling technique in quantum technologies.166,167 Single-shot
readout is necessary in quantum computation in order to extract information at the end of
the protocol, as well as in error detection and correction as the quantum processor runs.168

Additionally, single-shot readout is necessary to close the fair-sampling loophole in tests of
quantum non-locality, and was a key ingredient in recent demonstrations of loophole-free
Bell inequality violations.3 The ideal single-shot readout protocol achieves high-fidelity qubit
readout in the shortest time possible; readout within the qubit dephasing time is essential
for quantum error correction, and enables measurement-based quantum feedback.169,170

The spin states of semiconductor QDs show exceptional promise in quantum technol-
ogy.171–173 Optically-active QDs, established bright and fast sources of coherent single
photons,19,46,92,174 can be occupied with a single electron and the electron spin can be ini-
tialised175,176 and rotated on the Bloch sphere86,177 on nanosecond timescales using all-optical
techniques. Theoretical proposals178,179 and recent experiments180–182 have established the
spin-photon interface provided by the InAs platform as a leading contender for creating pho-
tonic cluster states, an important resource for quantum repeaters183 and measurement-based
quantum computation.184 The dephasing time of the electron spin in optically-active QDs
is limited by magnetic noise arising from the nuclear spins. However, there are powerful
mitigating strategies. A double-QD can be used to create a clock-transition;185 a switch to a
hole spin suppresses the effect of the magnetic noise particularly in an in-plane magnetic
field;87,186 and the noise can be almost eliminated by laser-cooling the nuclei.43,44 In the
context of cluster states, spin readout is necessary in order to disentangle the spin from the
photons, thereby releasing an entirely photonic entangled state. To date, single-shot spin
readout on a timescale comparable to the rapid spin initialisation and manipulation times
has remained elusive.

Spin readout with an optical technique typically proceeds by applying a magnetic field to a
QD containing a single electron, resonantly driving one of the Zeeman-split trion transitions,
then collecting the spin-dependent resonance fluorescence.187 However, during readout, the
applied laser can induce an unwanted spin flip,188,189 a process known as back-action. The
key challenge for spin readout is to collect enough photons to determine reliably the spin
state before the back-action flips the spin. Of the small number of previous experiments to
achieve single-shot readout of InAs QD spin states,190–192 the most rapid to date achieved a
fidelity of 82% in a readout time of 800 ns.191 This 800 ns readout time was similar to the
back-action timescale, and is significantly longer than the dephasing time for an electron
spin bound to an InAs QD (T ∗2 = 296 ns following nuclear bath cooling43,44).

In this chapter, we report nanosecond-timescale, all-optical, single-shot spin readout. We
use an open microcavity to boost the photon collection efficiency in order to reduce the
spin readout time. We achieve single-shot readout in only 3 nanoseconds with a fidelity
of (95.5±0.7)%, an improvement in readout speed of more than two orders of magnitude
with respect to previous experiments. To the best of our knowledge, this is the fastest
single-shot readout of a quantum state ever achieved across any material platform. Our
approach brings the readout time well below the dephasing time for an electron spin in this
system. Cavity enhancement is a powerful tool for improving optical single-shot spin readout
in other systems; photonic crystal cavities have been successfully used with defect centres in
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diamond193 and rare-earth ions.194,195 Importantly our open microcavity approach is not
specific to QD samples, and can be used to enhance optical spin readout in other material
platforms.196

6.3 Fast single-shot readout
6.3.1 High efficiency photon collection
A schematic of the setup used in our experiments is shown in Fig. 6.1 a. Our sample is a gated,
charge-tunable InAs/GaAs device, with a highly reflective Bragg mirror integrated into the
semiconductor heterostructure as described in detail in App. A. The gate structure allows
the charge occupancy of the QD to be set, as well as fine tuning of the emission frequency
via the quantum-confined Stark effect. We operate with a single electron occupying the QD,
which is our spin readout target. A miniaturised Fabry-Pérot cavity is created between the
semiconductor bottom mirror and a free-standing concave top mirror. The QD sample is
attached to an xyz nano-positioning stage. This flexibility of the open microcavity design
allows the cavity to be re-positioned to address a chosen QD. Once a QD is positioned at
the anti-node of the cavity field (xy positioning), its frequency can be matched to one of the
QD transitions (z positioning).

Figure 6.1 c demonstrates the high photon collection efficiency of our microcavity system
and its potential for rapid spin readout. A photon emitted by the QD exits the output facet
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Figure 6.1: Experimental setup and system efficiency. (a) Resonant laser pulses with variable
intensity and duration are sent to the QD using an electro-optic modulator (EOM) driven by a fast
arbitrary waveform generator (AWG). The photons emitted by the QD are collected in the output
arm of the cross-polarised microscope and measured on a superconducting nanowire single photon
detector (SNSPD). (b) Frequency configuration of the QD and mode-split cavity with respect to the
laser at zero magnetic field. (c) Readout characterisation at zero magnetic field: here, the readout
pulses are set to a duration of 2.0 ns (top panel) with a repetition time of 100 ns. Photons emitted by
the QD are detected and the arrival times registered for 100,000 repetitions of the pulse sequence;
100 example traces are depicted in the middle panel where the blue dots represent a photon detection
event. In 98% of the repetitions a photon is detected within 1.8 ns. (d) Frequency configuration of
the two QD transitions and mode-split cavity with respect to the laser. With a 2.0 T magnetic field,
only one trion transition is resonant with the H-polarised cavity mode, resulting in spin-selective
Purcell enhancement.
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of the collection single-mode fibre with 57% probability.19 The overall system efficiency,
η, the probability that an exciton in the QD results in a click on the detector, includes
losses on fibre-couplers and the detectors efficiency and results in 37%. Initially, we set
the magnetic field to zero, such that the optical transitions for both electron spin states
are degenerate. In this scenario, a resonant laser pulse excites the QD optical transition
regardless of the electron spin state. The readout pulse drives the optical transition, and
the QD emits photons at a rate set by the (Purcell-enhanced) optical decay rate. The time
required for a photon emitted from the QD to be registered by the detector depends on
the overall system efficiency; for high efficiencies a photon is rapidly detected. We apply
a train of 2 ns readout pulses (approximately square temporal shape limited by the 350 ps
AWG rise time, separated by 100 ns, with a peak optical power equal to six times the QD
saturation power) to the QD, and monitor the collected photons on a single photon detector
(a SNSPD). The SNSPD has a dead time of ∼ 12 ns, meaning that after one photon has been
detected another detection event stemming from the same pulse is extremely unlikely. Thus,
although the QD emits at a constant rate during the 2 ns readout pulse, a maximum of one
photon detection event occurs. We repeat the pulse sequence 100,000 times, and analyse the
fraction of pulses in which a photon was detected as a function of the readout duration. Our
detector registers the precise arrival time of each photon detected during the 2 ns readout
pulse, which we use to plot the probability of detecting a photon as a function of elapsed
readout pulse duration (see bottom panel Fig. 6.1c). We find that for 98% of the traces, a
photon is detected within 1.8 ns. When the same pulse sequence is repeated with the QD
detuned out of resonance with the readout laser, we detect a photon (due to laser leakage
within the cross-polarised setup) for < 0.1% of the pulses, demonstrating that the photons
we detect are almost exclusively created by the QD.

6.3.2 Single-shot spin readout
To perform single-shot spin readout, we apply a magnetic field of 2.0 T along the growth
direction of the sample (Faraday configuration), which creates a four-level system in which
the two strongly allowed trion transitions with linewidth Γ/(2π) = 2.8 GHz (that corresponds
to the transform limit) are split by 55 GHz (the sum of the electron and hole Zeeman
splittings, 6.8 GHz/T and 20.7 GHz/T respectively). Spin readout is achieved by tuning the
cavity into resonance with one of the strongly allowed transitions, as shown in Fig. 6.1d.
The readout pulse sequence is then similar to that shown in Fig. 6.1b, but photon emission
is now only enhanced for the trion transition resonant with the cavity. Figure 6.2 a shows
example single-shot readout traces: here, we apply a train of readout pulses (5 ns duration
with a repetition time of 100 ns) resonant with the cavity-enhanced |↑⟩ ↔ |⇑, ↑↓⟩ trion
transition. We note that for this experiment, the frequency alignment of cavity modes and
trion transitions is identical to that shown in Fig. 6.1 d. If the electron is projected into
the |↑⟩ spin state, Purcell-enhanced fluorescence from the |↑⟩ ↔ |⇑, ↑↓⟩ trion will be rapidly
registered by the detector. The spin is thus projected into the bright state, and detecting
a single photon emitted by the QD during the readout pulse constitutes a measurement
of the spin state. Conversely, if the electron is projected into the |↓⟩ (dark) spin state no
fluorescence is detected, as the |↓⟩ ↔ |⇓, ↑↓⟩ trion is out of resonance with the readout laser.
In this case, the absence of a detector event during the readout pulse indicates that the spin
was projected into the dark state. We stress again that the readout time is less than the dead
time of the detector: a maximum of one photon can be measured during the readout process.
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Figure 6.2: Single-shot readout of the QD spin at 2.0 T. (a) Example single-shot readout
traces. If a photon is detected during the readout pulse, the state of the QD is assigned to the
bright state (here, spin up |↑⟩). Repetitions with no detected photon are assigned to the dark state
(here, spin down |↓⟩). Schematic of the QD energy levels in a magnetic field, indicating the readout
transition (here, bright state |↑⟩, blue arrow) and the cavity frequency. (b),(c) Experimental count
fraction (top) and corresponding readout fidelity/errors (bottom) as a function of readout time for
the bright state being up/down. Here, readout pulses with a duration of 5 ns are used. The pulse
sequence is repeated 100,000 times. We achieve a readout fidelity of 95.2% for a readout time of 3 ns.

Furthermore, the overall system efficiency is high enough that the absence of a detected
photon contains significant information: it denotes that the spin was projected into the dark
state. The detection is thus binary: detection of one photon corresponds to the |↑⟩ state, and
zero photons to the |↓⟩ state. Equivalently, our photon number threshold for discriminating
the spin states is one single photon. We repeated the spin-readout measurements with
the cavity and readout laser tuned such that either |↑⟩ or |↓⟩ is the bright transition. In
Fig. 6.2 b we show the results of 100,000 repetitions of the spin readout pulse sequence with
|↑⟩ set as the bright state (the configuration shown in Fig. 6.1 d). We plot the fraction of
readout traces containing one photon, i.e. the fraction of traces we assign the electron spin
state to be |↑⟩. We observe a rapid increase in the count fraction (on a timescale of a few
nanoseconds) as a function of the readout time. Compared to the 0 T results in Fig. 6.1 c, the
maxima of the count fractions now saturate close to 50%: each spin state is almost equally
likely. The reason is that the spin is not initialised in these experiments. Instead, before
readout, the spin is in a mixed state as co-tunnelling between the QD and the Fermi sea of
the back contact regularly randomises the spin state (on a timescale of ∼ 150 ns) during the
100,000 readout pulse repetitions, such that both |↑⟩ and |↓⟩ spin states have approximately
equal probabilities. We note that spin initialisation via optical pumping was possible in our
experiment, albeit with a modest fidelity of approximately 67% due to the relatively rapid
co-tunneling rate (Sec. 6.4.2). Figure 6.2 c shows data for 100,000 repetitions of the readout
pulse sequence, now with the readout laser resonant with the low frequency trion transition,
|↓⟩ ↔ |⇓ ↑↓⟩ (thus making the |↓⟩ state the bright state and |↑⟩ the dark state). Compared
to the 0 T readout in Fig. 6.1c, the readout speed is slightly slower (high-fidelity readout is
achieved in 3 ns rather than 1.8 ns). The reason for this slower readout is that at 2.0 T we
operate with the laser on resonance with the QD but detuned by 7.5 GHz from the actual
cavity resonance, where we observe optimal laser suppression at the cost of a reduced Purcell
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factor (as explained in Sec. 6.3.3).

6.3.3 Cavity suppression in a 2T out-of-plane magnetic field
In order to readout the spin-state correctly, the excitation laser has to be suppressed well
enough to minimise spurious counts on the detector due to laser leakage. Otherwise, there is
a significant probability that the readout pulse projects the spin into the dark spin-state
yet the outcome is recorded falsely as the bright spin-state. A cross-polarisation setup is
used to prevent laser light from entering the detection fibre.137 This works extremely well
at zero magnetic field. However, in an applied magnetic field, the background suppression
works slightly less well. This effect likely arises from a Faraday effect in the top mirror of
the cavity and/or objective lens. A normalised background signal showing the counts due
to laser leakage as a function of cavity detuning is shown in Fig. 6.3a. Unfortunately, the
point of maximum laser suppression is not aligned with the cavity resonance, but detuned by
7.5 GHz. At the cavity resonance, the background is high enough to give a spurious count on
the detector in 80 % of the readout pulse repetitions, making this regime impractical for the
readout. The 2 T measurements are therefore performed at the cavity detuning where the
background is a minimum. At this cavity detuning, the probability of detecting a photon via
laser leakage reduces to 1.4% for a 3 ns readout pulse.

An important parameter for the spin-readout is the β-factor which itself depends on the
Purcell factor, FP : β = FP /(FP + 1). Cavity-enhanced spin readout depends on achieving
β-factors as close as possible to one, equivalently large Purcell factors. We extract the
Purcell-factor as a function of cavity detuning by measuring the lifetime of the QD at each
cavity detuning and deriving it via Γ = FP · γ, where Γ is the Purcell-enhanced decay rate
and γ is the bare decay rate (γ ≈ 0.3 GHz). (The decay rate is the inverse of the lifetime,
γ = 1/τ .) On resonance with the cavity, FP = 8.5. At the detuning for which the laser
suppression works best, the Purcell factor is slightly lower, FP = 6.1. The corresponding
decay curves following excitation with a few-ps laser pulse are shown in Fig. 6.3b. The spin
read-out experiments were carried out at FP = 6.1. Consequently, the readout speed is
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Figure 6.3: (a) Laser leakage into the collection channel (blue) and decay rate of the QD (black)
as a function of cavity detuning ∆ωC/(2π). The laser leakage shows two minima and neither aligns
perfectly with the cavity resonance. At the cavity resonance, the Purcell factor is FP = 8.5; at
the lowest laser leakage, FP = 6.1. (b) Time-resolved lifetime measurement on resonance with the
cavity (red) and at the detuning for minimum laser leakage (yellow). The response of the QD to a
short excitation pulse (few ps) is measured and reveals an exponential decay (black). The lifetime is
extracted from an exponential fit and is 79 ps at resonance and 110 ps at minimum laser leakage.



6.3. Fast single-shot readout 59

slightly reduced compared to 0 T. However, we still achieve high-fidelity single-shot spin
readout within 3 ns.

6.3.4 Readout fidelity estimation
Our single-shot readout results are modelled using a Monte-Carlo approach in order to
determine the readout fidelity.

Simulation of readout count fractions
The simulations of the count fractions are based on a Monte-Carlo method in which the
(simulated) readout outcome is recorded many times (100,000 repetitions) in order to mimic
the experiment. The readout pulse is considerably longer than the Purcell-enhanced radiative
lifetime. The power is also well above the saturation power. These two factors mean that
should the spin be projected into the bright state, the exciton population is close to 0.5.
The photon emission rate is the occupation of the bright state divided by the lifetime. Each
photon is detected with a certain probability, the overall system efficiency. In other words,
the detection rate is the emission rate multiplied by the overall system efficiency, η. A readout
cycle is repeated until a photon is detected and the detection time is recorded. Summing up
over all repetitions leads to count fractions as in the measurements in Fig. 6.2b. The model
has four input parameters: the overall system efficiency η (the probability that an exciton in
the QD results in a click on the detector), the Purcell factor FP , the spin-flip time τSF, and
the probability of detecting a laser photon (to simulate the laser background, see analysis in
Sec. 6.3.3). The spin T1 = 158 ns was measured via the quantum jump experiments discussed
in the Sec. 6.3.6.

The dependence of the readout on the overall system efficiency is shown in Fig. 6.4a. The
higher the efficiency, the sooner the spin-state can be read out, and the lower the probability
of incorrectly assigning the spin state. In practice, the overall system efficiency η is known
based on the analysis in Ref. ,19 the properties of the fibre couplers, and the quantum
efficiency of the detector:

η = β · κtop
κ+ γ

· ηoptics · ηcoupler · ηdetector (6.1)

where β is the probability that an exciton creates a photon in the H-polarised cavity mode;
κtop/(κ+ γ) = 96% is the probability that a photon in the cavity exits the top mirror; and
ηoptics = 69% represents the throughput of the optical system from microcavity to the output
of the final output fibre (as defined and measured in Ref. 19 and discussed in Sec. 2.2.2).
The output of this fibre is coupled to the detector with an optical coupler (in practice, two
fibre-couplers) with efficiency ηcoupler = 80%. Finally, the detector has a quantum efficiency
of ηdetector = 82%.

At B = 0, β = 86% such that η = 37%. We stress that this is the predicted overall system
efficiency based on the analysis of all the individual contributions, including the detector
efficiency. In practice, this predicted value of η describes the experimental results extremely
well.

At B = 2 T, β = 80%, resulting in a predicted overall efficiency of η = 35%. In practice,
a slightly lower η is required to describe quantitatively the experimental results, η = 25%.
The origin of this slight reduction in η with respect to B = 0 is unknown. For the cavity
alignment with Fp = 6.1 used in our experiments (shown in Fig. 6.3 a) the Purcell factor
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Figure 6.4: Simulation of the fidelity as a function of readout time for different (a) overall efficiencies,
(b) Purcell factors and (c) spin-flip times. While one of the parameters is varied, the other two
are set to the experimental conditions: η = 25%, FP = 6.1, and τSF = 158 ns. All simulations are
performed at six times the saturation power including 1.4% laser leakage at 3 ns readout duration.

is very sensitive to the exact cavity detuning; a small shift could result in a slightly lower
Purcell factor. The effect of a lower Purcell factor in our simulations is similar to that of
a lower efficiency. Other explanations could be a deterioration in either the in-coupling
efficiency (such that the power exceeds the saturation power by a smaller margin that at
B = 0) or the optical alignment thereby reducing the product ηoptics · ηcoupler. We stress that
this slight discrepancy between the predicted overall efficiency and the overall efficiency that
matches best our experimental data has no impact on our readout fidelity analysis.

Calculation of the readout fidelity
The fidelity of the spin-readout is defined as190

F(t) = 1 − pbright · ebright(t) − pdark · edark(t), (6.2)

where pbright (pdark) is the occupation probability of the bright (dark) state. The spin
occupation probability distribution depends on the spin-flip rates, as well as the readout
pulse duration and repetition rate; for our experiments it is approximately 50:50 (ρ↑↑ : ρ↓↓,
with ρ the density matrix of the spin).

The readout projects the spin into either the bright state or the dark state; the readout
process records an outcome, either bright or dark. If the spin is projected into the bright
(dark) state but readout as dark (bright) then the error is ebright (edark). These error
probabilities are time-dependent in that they depend on the duration of the readout pulse.

The errors in the readout have several origins. The bright spin state is correctly assigned
if a photon is measured. Therefore, photon loss is an important source of readout error.
The overall system efficiency η therefore contributes to ebright. This source of error can
be quantified by isolating this loss process in a simulation which takes the experimental
value of η but without back-action and without a spin-flip process. This results in C(t), the
cumulative distribution function for collecting a count as a function of time induced by a
readout pulse starting at t = 0. Another source of error for the bright state readout is a
spin flip during the readout process: the QD can be projected into the bright state by the
readout pulse but if it flips to the dark state before a photon is detected the spin is assigned
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incorrectly. These combined contributions to ebright result in:

ebright(t) = 1 − C(t) + C(t) · [1 − exp(−t/τSF )] = 1 − C(t) · exp(−t/τSF ), (6.3)

where τSF is the spin-flip time. In our experiments the error probability ebright = 6.9% at
3 ns, as shown in Fig. 6.2c.

The dark state readout error also has two origins. First, the readout can project the spin
into the dark state yet be recorded as the bright state should a laser photon leak into the
collection channel and be detected. This error can be estimated and taken into account by
measuring the count fraction Cd(t) on turning off the QD, i.e. detuning the QD with respect
to the readout laser (in practice via the gate voltage). Second, as for the bright state, a
spin-flip can lead to an error: the readout can project the spin into the dark state yet be
recorded as bright if a spin-flip from dark-to-bright state occurs followed by photon detection.
The analysis of the second error is more complicated than that of the first. If the spin flips
from the dark to the bright state, a photon can be emitted and counted. This takes place
with the same time-dependence as C(t), but shifted in time by the location in time of the
spin-flip. This effect can be taken into account by a convolution of the shifted count fraction
with the spin-flip probability. The combined readout error is therefore:

edark(t) = Cd(t) + 1
t

∫ t

0
C(t− τ) · [1 − exp(−t/τSF )] · dτ. (6.4)

For a 3 ns readout pulse, the error probability edark = 2.6%. For short readout times, the
error in reading out the state ebright is high, as not enough time has elapsed to ensure that
one of the QD photon is detected by the detector. For longer readout times, the probability
of a spin-flip increases, and hence the probability of detecting a photon from the dark state
via a spin flip to the bright state (edark) increases. Hence, there is an optimal readout time
for which the fidelity can be maximised. By plugging Eq. 6.3 and 6.4 into Eq. 6.2, we can
calculate the fidelity of the readout as a function of the readout time; this is shown in
Fig. 6.2b. We carry out this calculation on tuning the cavity to the higher-frequency trion
and, separately, on tuning the cavity to the lower-frequency trion. The simulated count
fractions show very good agreement with our experimental results and allow us to extract
a maximum readout fidelity of (95.2 ± 0.7)% in 3 ns. The calculated readout fidelity as a
function of readout-time for the configurations with |↑⟩ and with |↓⟩ as the bright state is
plotted in Figs. 6.2b and c, respectively.

Figure 6.4 shows the dependence of the fidelity on the end-to-end efficiency (Fig. 6.4 a),
Purcell factor (Fig.6.4 b) and spin-flip time ((Fig. 6.4 c). In Fig. 6.4 when one of the parame-
ters is varied, the others are set to match our present experimental conditions. However,
for realistic improvements to all of these parameters simultaneously the readout can be
significantly improved, as we now discuss.

6.3.5 Predictions for optimised system and Voigt geometry
Based on the success of the Monte-Carlo method in describing the experimental results,
we can estimate the achievable fidelity for an optimised system as well as for single-shot
readout in the Voigt geometry. We assume that the issue of imperfect laser suppression at
the exact cavity resonance (Sec. 6.3.3) can be overcome. We assume also that another QD
can be selected – we note that other QDs in the same sample show higher Purcell factors19
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than the QD used in these experiments – so that the Purcell factor can be increased from
6.1 to 12 without any modifications to the cavity. By reducing optical losses we estimate
that ηoptics · ηcoupler can be increased from 55.2% to 90%. Finally, single-photon detectors
with quantum efficiency ηdetector = 95% (instead of 82%) are commercially available, and
could also be used. These improvements would lead to η = 76% and would allow single-shot
readout in less than 1 ns with a readout fidelity of 99.5%.

Although our readout speed is extremely fast, a key question is whether we can read the
spin state fast enough to overcome the back-action in the Voigt geometry (in-plane magnetic
field) as this is the configuration required for spin control. With FP = 12, the branching ratio
is 92.3%. In the optimised case (η = 76%), we expect we can achieve single-shot readout
with a fidelity of 89.9% below 1 ns, while for our present experimental conditions, single-shot
readout should already be possible with a fidelity as high as 77.4% in 3 ns. These readout
fidelities are extremely promising. Our approach can thus overcome a key outstanding
challenge, namely combining spin control and spin readout in one and the same QD spin.

6.3.6 Repeated readout and quantum jumps
The fast spin readout enables us to probe the electron spin dynamics. By repeated single-shot
measurements of the spin state, we can determine the spin-flip time from the correlation
between sequential measurements. Additionally, we can track the electron spin state in real
time, observing quantum jumps as the spin flips. In Fig. 6.5 a we perform a pulse sequence
consisting of two readout pulses separated by a time τ . Here we fix the length of both
readout pulses to be 3 ns, and the pulse repetition time to be 400 ns. The first readout
pulse is a projective measurement of the spin state: in effect, the spin is initialised at τ = 0
with a fidelity given by either ebright or edark. This approach of initialisation-by-readout
provides an alternative to spin initialisation via optical pumping, and in our experiments
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Figure 6.5: Repeated single-shot measurements and quantum jumps. (a) Conditional
probability of measuring |↑⟩ given that the first measurement returned |↑⟩ for two sequential (3 ns
duration) readout pulses as a function of τ , the delay between the pulses (the errorbars are one
standard deviation). For short values of τ , the second measurement outcome is correlated with the
first; for longer values of τ , the probability to acquire the same outcome decreases exponentially,
revealing a spin-flip rate of about 151±30 ns. (b) By repeatedly measuring the spin state with
excitation pulses spaced by 15 ns (above the detector’s dead time), we observe quantum jumps of the
spin state. (c) The time between the spin flip events in (b) are extracted for a total measurement
time of 2.4 ms and are summarised in a histogram. The distribution of the events reveals a spin-flip
time of 165 ns, matching well the result of the two-pulse measurements in (a).
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results in a higher spin initialisation fidelity (F |↑⟩init = 93.1% and F
|↓⟩
init = 97.4% with |↑⟩ as

the bright state, compared to F
|↑⟩,|↓⟩
init ∼ 67% for optical pumping). The second readout

pulse can then be used to determine the spin state at τ > 0 allowing us to measure the
correlation between the two measurement outcomes as a function of τ . Figure 6.5 a shows
the conditional probability of measuring spin |↑⟩ in the second pulse (as a function of τ),
given that the first read result returned |↑⟩. We note that the minimum spacing between the
two pulses is limited to τ ≳ 15 ns by the dead time of the detector. Increasing τ decreases
the probability of reading out the same spin state for both pulses due to spin flips, and for
large τ the second read is completely uncorrelated with the first. By fitting an exponential
decay to the data in Fig. 6.5 a, we extract a spin-flip time of 150 ± 30 ns. Furthermore, the
limit as τ → 0 of this conditional probability is approximately 1 − ebright, confirming the
value of ebright determined from the Monte Carlo simulations. Similarly, a measurement of
the dark-dark conditional probability confirms the value of edark.

Given that our readout sequence is much shorter than the spin lifetime, we can use repeated
single-shot measurements to detect real-time quantum jumps of the electron spin state. For
that purpose, we send in a train of 3 ns readout pulses spaced by 15 ns, slightly above the
minimum allowed by the detector’s dead time. We observe quantum jumps in the spin
state, as shown in Fig. 6.5b. (In the original quantum jump experiment, the quantum jumps
between the bright and dark states were driven with weak coherent excitation.197 Here,
the jumps are driven by a dissipative process, energy exchange with the Fermi sea via
co-tunneling.) The time between spin-flip events during a 2.4 ms total acquisition period is
extracted and summarised in the histogram in Fig. 6.5c. From the exponential decay in the
number of events per flip time, we can extract the spin-flip time to be approximately 165 ns,
consistent with the results from the double-pulse experiment in Fig. 6.5a.

6.3.7 Continuous wave quantum jumps measurements
Complementary to the experiments demonstrating quantum jumps using rapidly repeated
readout pulses shown in Fig. 6.5b, we also observed quantum jumps using continuous wave
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The quantum jumps between the two spin states can be observed and the time over which the
spin remains the same can be extracted. (b) Histogram of the extracted times between spin-flip
events reveals an exponential decay. The spin-flip time is extracted from an exponential fit to be
(109.9±4.1) ns.
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(CW) excitation. A CW laser set to four times the saturation power of the bright state
transition was used, and the emitted photons were routed (via cascaded 50:50 beam splitters)
to four SNSPD detectors. In contrast to the pulsed single-shot readout experiments in
Sec. 6.3.6 (where only one SNSPD detector was used), we used four detectors to mitigate
partially the impact of the detectors’ dead time. We note that the addition of the cascaded
beam splitters reduces the overall system efficiency. We measured the signal on all four
detectors simultaneously, and the resulting counts registered by the four detectors were then
added together. If at least one photon is measured in a time-bin, the state is assigned spin
up (|↑⟩). If no photon is detected, the state is assigned spin down (|↓⟩). A fraction of these
quantum jumps is shown in Fig. 6.6a.

The CW quantum jumps we observe provide an additional method to characterise the spin-
flip rates in our system, as τSF can be directly extracted from the waiting-time distributions
for |↑⟩ and |↓⟩. The time over which the spin state remains the same is extracted over an
experiment of 50 ms duration, and its distribution is shown as a histogram in Fig. 6.6b. By
fitting the decay in the histogram we determine a spin-flip time of τSF = 109.9.9±4.1 ns.
The result is slightly lower (although broadly consistent) with the spin-flip time extracted
from the g(2)(τ) recorded using the same laser power (Sec. 6.4.1); the present experiment
was performed slightly offset from the exact charge plateau centre, which may explain the
difference. Due to partial spin-pumping with CW excitation (see Sec. 6.4.2), the observed
spin-flip time is slightly smaller than that measured with pulsed excitation (165 ns, Sec. 6.3.6).

6.4 System analysis via autocorrelation functions
6.4.1 Extraction of spin lifetime from g(2)(τ)
We can characterise the spin-flip rate in our experiment by measuring the second-order
correlation function of the resonance fluorescence g(2)(τ). By driving only one of the Zeeman-
split trion states, spin-flips are observed as blinking in the QD fluorescence as the spin state
switches between the on-resonance (bright) and off-resonance (dark) states. This blinking
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Figure 6.7: Second-order correlation function at 0 T and 2 T. (a) At B = 0 T the g(2)(τ)
features anti-bunching at τ = 0 but no bunching out to τ = 500 ns, demonstrating that the QD
emission is stable on this timescale. (b) g(2)(τ) at B = 2 T while resonantly driving the higher-
frequency trion state. The QD emission shows clear bunching. We fit the g(2)(τ) with an exponential
decay to determine the spin-flip rate. The data shown here is acquired with a laser power equal to
the QD saturation power; from the fit we extract τSF = 103 ns. The maximum bunching g(2)

max ∼ 2
means that the spin resides in each state for approximately half the time.
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Figure 6.8: Spin lifetime as a function of position within the charge plateau. To map out
the charge plateaus, the QD fluorescence was collected as a function of excitation laser frequency
(∆ωL/(2π)) and gate voltage applied across the diode structure. The applied magnetic field is 2.0 T,
resulting in a splitting of ∼ 55 GHz between the two vertical optical transitions. The red stars indicate
positions on the Zeeman-split plateaus for which the spin lifetime was measured (as described in
Fig. 6.7b). The spin lifetime decreases at the plateau edges to very small values, a clear sign of
co-tunnelling. However, even in the plateau centre the longest spin lifetime time we observe is 144 ns,
also determined by co-tunnelling. We note that to acquire this data we adjust the cavity length when
the laser frequency is stepped such that the laser remains on resonance with the cavity.

results in bunching of the g(2)(τ)-function.198 This blinking is not present at zero magnetic
field, where the trion states are degenerate such that both spin states are driven with a
resonant linearly-polarised laser. Figure 6.7a shows g(2)(τ) measured at zero magnetic field
for the X− transition of the QD used in our experiments. As expected for a single emitter,
anti-bunching is observed at τ = 0. Away from τ = 0, the g(2)(τ) is flat with no significant
bunching observed, indicating that the QD emission is stable.

Figure 6.7 b shows a similar g(2)(τ)-measurement, now for an out-of-plane magnetic field
B = 2.0 T. Here, the laser drives the higher-frequency trion state, and clear bunching is
observed. By fitting the measured g(2)(τ) to an exponential decay, we can extract the
characteristic timescale on which the QD emission switches on and off. Because the switching
between bright and dark states occurs purely due to spin flips, the timescale of the bunching
decay is a direct measurement of the spin lifetime, τSF.199

We measured the g(2)(τ) and extracted τSF for several different positions on the X− charge
plateau. The results are summarised in Fig. 6.8, where the red stars indicate the charge
plateau position at which each experiment was performed. The data in Fig. 6.8 were acquired
using low laser powers, significantly below the saturation power. The spin lifetime is very
short, a few nanoseconds, at the edges of the charging plateau, and reaches a modest value,



6.4. System analysis via autocorrelation functions 66

∼ 140 ns, at the centre of the plateau. These are the hallmarks of co-tunneling,64,200 a process
in which a combined tunnelling process swaps an electron confined to the QD with an electron
close to the Fermi energy in the Fermi sea. From the measured spin lifetimes, it is clear that
co-tunneling determines the spin lifetime even at the centre of the plateau. The observed
maximum spin lifetime of 144 ns is orders-of-magnitude less than the expected intrinsic
spin lifetime via a phonon-mediated process at this magnetic field: previous experiments
using InAs QDs have demonstrated ∼ 20 ms at similar magnetic field strengths.187,200 The
relatively fast co-tunneling is a consequence of the 25 nm-thick tunnel barrier, the distance
separating the back contact and QD-layer in the heterostructure.

We note that due to the high speed at which we can perform single-shot spin readout, the
relatively short co-tunneling induced spin-flip time that we observe is not the limiting factor
for the readout fidelity. For a readout time of 3 ns, we would expect a spin flip during the
readout pulse in only 1 − exp(−3/144) ∼ 2% of readout attempts.

For the low powers used in Fig. 6.8, we do not observe spin pumping, for which the typical
signature is a region of decreased signal at the centre of the charge plateau: in spin pumping,
the excitation results in occupation of the dark spin state.141,175 The absence of a spin
pumping signature in Fig. 6.8 indicates that the spin pumping rate is significantly smaller
than the spin flip rate. Spin pumping arises via spin-nonconserving spontaneous emission, a
diagonal transition, Fig. 6.2a. (The spin-conserving recombination is the vertical transition,
Fig. 6.2a.) The branching ratio is the ratio of the diagonal to vertical recombination times. It
can be inferred from the g(2)(τ) recorded with optical driving powers above saturation power.
Specifically, the branching ratio can be extracted from g(2)(τ) by solving the incoherent
part of the optical Bloch equations, i.e. the rate equations describing the populations of
the three relevant QD levels.201 Following this process, we extract a branching ratio of
Γs/γd = 600 ± 200 (where Γs is the vertical spin-conserving decay rate, and γd the diagonal
spin-nonconserving rate). This branching ratio applies to the experimental conditions for
the readout process in which one of the vertical transitions is in resonance with the cavity.

Spin-nonconserving spontaneous emission is the origin of back-action in the spin readout
process and is weakly allowed due to heavy-hole light-hole mixing in the QD as is discussed in
Ch. 2.1.1. For single-shot readout, the branching ratio must be high enough for the spin state
to be assigned with high fidelity before a laser-induced spin-flip transition occurs. This is
the case here. In fact, the branching ratio is sufficiently high that back-action is a negligible
source of readout error in these experiments.

6.4.2 Spin initialisation by optical pumping
One strategy for demonstrating single-shot spin readout is to first initialise the spin in a
known state, then perform the readout sequence. By comparing the spin state attributed
during readout with the initially prepared state, the readout fidelity can be quantified. This
method relies on the ability to initialise the spin state with high fidelity. In our experiments,
the combination of a modest spin lifetime together with a large branching ratio make the
initialisation of a known spin state via optical pumping challenging. The maximum spin
pumping rate that we were able to achieve was comparable to the co-tunnelling rate in the
centre of the plateau. Figure 6.9a shows a plateau map similar to Fig. 6.8 using a significantly
higher excitation laser power (approximately twice the saturation power). We now observe
decreased fluorescence intensity in the plateau centre, consistent with spin pumping. However,
rather than near-complete extinction of the fluorescence, the signal at the plateau centre is
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Figure 6.9: Partial optical spin initialisation. (a) Plateau map acquired with a laser power
twice the saturation power. We observe a reduction in signal at the plateau centre, consistent with
optical spin pumping. However, comparing the signal in the centre of plateau with that at the
edges in the fast co-tunnelling regime suggests a poor spin initialisation fidelity. (b) Comparison of
fluorescence signal for the low-frequency trion in the fast co-tunnelling regime (left, lower gate voltage)
and in the plateau centre (right, higher gate voltage). (c) Similar to (b) but for the high-frequency
trion. (d) Spin-flip times as a function of excitation laser power measured at the centre of the charge
plateau, resonantly driving the low-frequency trion (blue data points) or the high-frequency trion (red
data points). (e) Estimated spin initialisation fidelity from solving the rate equations using spin-flip
rates extracted from (d). Based on this analysis, a maximum spin initialisation fidelity of ∼ 67% is
expected.

reduced by only a factor of about two (Figs. 6.9b,c) compared to at the edges where rapid
co-tunnelling prohibits spin pumping. The incomplete suppression of fluorescence in the
centre of the charge plateau indicates that our spin initialisation fidelity using optical spin
pumping is likely to be modest. To quantify the achievable spin initialisation fidelity, we
measured the spin-flip rate near the centre of the charge plateau as a function of laser power.
The result is shown in Fig. 6.9 d; the two curves show τSF for the laser resonant with the
high-frequency trion transition or the lower-frequency trion transition.

We solve the incoherent part of the optical Bloch equations to estimate the population of
the spin initialisation target state (equivalent to the initialisation fidelity) as a function of
the initialisation laser power, shown in Fig. 6.9 e. We find that the achievable initialisation
fidelity saturates to a rather low value; for a laser power of four times the QD saturation
power, the initialisation fidelity (defined as |⟨ψactual|ψtarget⟩|2) is approximately 67%.
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With such a low initialisation fidelity, a measurement sequence of first initialising the spin
before readout is impractical, as the initialisation fidelity would dominate the total sequence
fidelity and obscure the actual readout error. Instead, to characterise our single-shot readout
fidelity we repeat our readout sequence with a delay comparable to the plateau-centre spin
lifetime, which results in an approximately 50:50 spin state occupation probability over the
course of a large number of sequential readout sequences. As discussed in Sec. 6.3.4, by
characterising each readout error process individually we can determine the overall readout
fidelity.

We stress that the inability to initialise the spin with high fidelity in these experiments
is a consequence of the tunnel barrier thickness and does not represent a limitation of the
scheme itself. High initialisation fidelities can be achieved by suppressing the co-tunneling at
the plateau centre using a larger tunnel barrier.175

6.5 Discussion
We have demonstrated that the frequency-selective Purcell enhancement provided by our
optical microcavity enables us to perform single-shot readout of a QD spin state within a
few nanoseconds, with a fidelity as high as 95%. Our results bring the spin readout time
for semiconductor QDs close to the short optical spin manipulation times,86,177 and well
below previously demonstrated relaxation (T1)200 and dephasing (T ∗2 ) times.43,44,177 For
recent loophole-free Bell tests, entangled nitrogen vacancy (NV) centres were positioned
1.28 km apart to allow 4.27µs for the Bell sequence to be performed such that the NVs are
space-like separated.3 Of this 4.27µs, 3.7µs (corresponding to 1.1 km in free space) was
used for the single-shot spin readout. Our rapid spin readout indicates that similar Bell
tests could be performed using semiconductor QDs located significantly closer together,
mitigating the challenge of synchronising experiments between different buildings; the
separation distance enforced by our readout time is less than one metre. By combining
the highly indistinguishable photons created by remote semiconductor QDs,202 the high
system efficiency of our microcavity,19 along with T ∗2 -enhancement via cooling of the nuclear
spins,43,44 high-fidelity spin-spin entanglement generation rates of a few tens of MHz are
feasible.

We can foresee several ways to improve the readout time in our experiment even further.
Most simply, the overall system efficiency can be increased by improving the detector system
(fibre couplers and detector itself). Furthermore, it should be possible to operate at the
true cavity resonance in an applied magnetic field, thereby at maximum Purcell factor. Our
Monte-Carlo simulations show that these changes would allow single-shot readout with a
fidelity of 99.5% in less than one nanosecond to be achieved.

We also note that although spin initialisation via optical pumping was not required for our
present experiments, the ability to initialise the spin in a specific target state is important
for future quantum technological applications. Spin initialisation via optical pumping has
been achieved with fidelities ≳99.8% in similar QD samples,175 and should be achievable
in our system by increasing the tunnel barrier thickness between the QD layer and the
n-doped Fermi sea to reduce the co-tunneling rate, which limited our initialisation fidelity to
approximately 67% in the present experiments. Future experiments using devices with a
larger tunnel barrier are strictly necessary to verify that high-fidelity spin initialisation can
be combined with cavity-enhanced single-shot readout. Based on the detailed understanding
of co-tunneling,200 chances of success are very high.
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Given the efficient generation of single photons, fast spin initialisation and rotation, and now
fast single-shot spin readout, the next step is the implementation of coherent manipulation
of the spin-state together with spin readout. Fast spin manipulation relies on a Raman
transition that is naturally established in an in-plane magnetic field (Voigt configuration).
In this case, the four transitions (Fig. 6.2a) have equal optical dipole moments such that
readout back-action is maximal: spin readout becomes challenging. With our approach, this
longstanding problem, spin readout in the Voigt geometry, can be solved: the resonant cavity
restores a spin-conserving process, i.e. a cycling transition; the high overall system efficiency
enables a readout outcome before back-action occurs. Our simulations show that in the
Voigt configuration, readout on the same timescale with a fidelity of up to 89.9% is feasible.

Coherent spin control of InAs QDs typically uses a Raman laser detuned by ≳ 200 GHz
from the QD resonance; in our cavity system this laser can access the QDs via a waveguide-
like mode propagating perpendicular to the cavity axis along the sample surface. This
side-excitation strategy has previously been used to demonstrate resonance fluorescence in
similar QD samples,203 and is conceptually similar to the side-access control used in trapped
atom cavity systems.204 Alternatively the Raman transition can be driven directly through
the cavity; field enhancement inside the cavity is proportional to

√
F (where F = 506 is

the cavity finesse), and for our one-sided cavity the intra-cavity field is enhanced out to
detunings of 2κ

√
F/π = 468 GHz (where κ = 25 GHz is the cavity linewidth), suitable for

coherent spin control as is demonstrated in Ch. 7, where coherent manipulation of a hole
spin via a Raman transition is achieved. Our cavity platform is thus capable of integrating
rapid QD spin control, readout and photon emission simultaneously, and is an exceptional
platform for spin-photon technologies such as the generation of photonic cluster states.



7
Fast optical manipulation of a coherent hole
spin in a microcavityi

7.1 Summary
The implementation of an optimal spin-photon interface is one of the key challenges for
the development of quantum networks. Physical platforms under investigation span the
range of modern experimental physics, from ultra-cold atoms to solid-state physics. However,
it is not easy to implement an ideal spin-photon interface that successfully combines fast,
high-quality and high-efficiency photon emission with a highly coherent spin. Here we show
an interface that combines state-of-the art photonic emission with a highly coherent spin.
Our system is based on an InAs quantum dot (QD) coupled to an optical microcavity; the
same system has previously demonstrated a single-photon source with GHz repetition rates
and 57% end-to-end efficiency. By imprinting a microwave (MW) signal onto two Raman
fields we achieve coherent rotations of a QD hole spin around an arbitrary Bloch sphere
axis, achieving a maximum π-pulse fidelity of 98.26%. Furthermore, we observe ultra-fast
Rabi frequencies of up to 1 GHz. We demonstrate all-optical cooling of the QD nuclear spin
ensemble via the QD hole spin, extending the T ∗2 time from 30 ns to 500 ns. The hole spin T ∗2
times are measured via Ramsey interferometry; we observe a transition in the Ramsey decay
envelope from Gaussian to exponential as we cool the nuclear ensemble. Finally, we show
that we can access collective magnon states of the QD nuclear ensemble via the hole spin.
Our system shows exceptional promise for a wide range of key tasks in quantum information
science, from the generation of entangled multi-photon graph states to the development of
an efficient nuclear memory.

7.2 Introduction
The ability to generate entanglement between flying photonic qubits and stationary matter
qubits (such as a coherent spin) is a key challenge in quantum information science.9,205

Spin-photon entanglement provides the basis for a distributed quantum network; entangled
multi-photon graph states can also be generated using the stationary qubit as an entangling
mediator for sequentially emitted photons.17,178,204 Such graph states are the central resource

iThe content in this chapter has been measured and analysed in equal contribution with Mark R. Hogg.



7.2. Introduction 71

for optical measurement-based quantum computing,14,206,207 as well as all-optical quantum
repeaters.208,209

Typical schemes for creating spin-photon entanglement rely on spin-dependent optical
selection rules, which allows quantum correlations between the spin and a photonic degree of
freedom to be generated. Promising platforms for generating spin-photon entanglement in-
clude trapped atoms,34,35 defects in diamond31,210,211 and semiconductor QDs.180–182,212,213

In all cases extracting coherent photons from the emitter with high efficiency is crucial to
generate large entangled resource states. Additionally fast photon emission is desired to
increase the transmission rate in quantum networks.

Semiconductor QDs stand out as having exceptional photonic properties. Highly indis-
tinguishable photons have been demonstrated from individual19,46 and remote202 QDs; by
using optical microcavities to Purcell enhance the QD emission single photon sources with
GHz repetition rates and end-to-end efficiencies exceeding 50% have been demonstrated.19

However, the poor electron spin coherence (T ∗2 ∼1-3 ns) represents a long-standing challenge
for spin-photon entangled technologies, leading to poor fidelities and limiting the size of
photonic graph states that can be produced.182

QD spin coherence can be improved by using a hole spin,87,186 for which the lack of a
contact hyperfine interaction reduces the sensitivity to magnetic noise from the host nuclei,88

the main source of spin dephasing. The hyperfine interaction for a hole spin in an InAs
QD depends on the composition of the valence states: for a pure heavy-hole (HH) spin, the
hyperfine interaction can be suppressed with an in-plane magnetic field.88,186 A wide range
of hole spin T ∗2 times have been reported in the literature, ranging from 2.3 ns214 to 460 ns.186

The most direct method for measuring the hole spin T ∗2 time is via Ramsey interferometry;
experiments using this technique have typically found T ∗2 times of 30-50 ns,215 an order of
magnitude longer than for the electron spin. The reason for the large variation of reported
literature values could be related to spin decoherence via electrical noise varying between
differently grown devices, but it generally remains an open question.

More recently, strategies to improve QD spin coherence by cooling the host nuclear spins
to a reduced-entropy state have been developed,43,44,216 resulting in electron spin T ∗2 times
of up to 600 ns.217 The narrowing of the Overhauser field has enabled the observation
and coherent manipulation of collective nuclear magnon modes via the electron spin.43,218

However, such nuclear cooling strategies rely on flexible coherent control of the central
electron spin with precisely tunable Rabi frequencies, which has been achieved with two
optical fields red-detuned from the QD resonance to drive a two-photon Raman process.177

Combining coherent control of a QD spin with the resonant optical microcavities required
for high-efficiency photon extraction is an important outstanding challenge. Additionally, all
previous single-QD nuclear cooling experiments used an electron spin;43,44 cooling via a hole
spin (possessing a more complex hyperfine interaction) has yet to be demonstrated.

Here we achieve the best of all possible worlds: we implement high-fidelity coherent
control of a QD hole spin integrated into an optical microcavity with an extremely high
photon collection efficiency. We demonstrate coherent optical control of the hole spin using
a two-photon Raman process; we show that coherent control is compatible with our efficient
microcavity architecture without major modifications to the cavity setup. We show that
the cavity can be used to enhance the Raman fields, and demonstrate coherent control of
a QD hole spin with Rabi frequencies of up to 1 GHz (∼ 17% of the Larmor frequency,
towards the breakdown of the rotating wave approximation). The flexible coherent spin
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control is an enabling technique to access interactions between the central hole spin and the
host nuclear spins; we use this capability to perform all-optical cooling of the host nuclear
ensemble, extending our hole spin T ∗2 time from 30 ns to 500 ns. Interestingly we observe
a transition from a Gaussian to an exponential Ramsey decay as the nuclear ensemble is
cooled, suggesting our T ∗2 time might no longer be limited by slow non-Markovian Overhauser
field fluctuations.219 We then show that a hole spin can also be used to generate collective
magnon states of the host nuclear ensemble.

Our results demonstrate that a QD coupled to an optical microcavity is an ideal platform
for spin-photon entangled technologies, combining exceptional optical properties with high-
fidelity spin control.

7.3 Experimental Setup
Our system consists of an InAs QD device coupled to a tunable optical Fabry–Pérot micro-
cavity (see App. A for further details of the device and cavity construction). The bottom
cavity mirror is integrated into the QD device heterostructure, separated by an air-gap from
the free-standing top mirror. Importantly the cavity mode position can be moved using xy
nanopositioners to select an arbitrary QD on the sample, and the resonance frequency of the
cavity can be tuned by changing the cavity length with a z-positioner. Furthermore, the
cavity is split in frequency (by ∼50 GHz) into two linearly polarised cavity mode that are
orthogonal to one another (H- and V -polarised modes). The same cavity-coupled QD device
has previously been used to demonstrate a single-photon source with an end-to-end efficiency
of 57% and GHz repetition rates.19 A magnetic field of 2.9 T is applied perpendicular to
the growth direction of the QDs (Voigt geometry). Figure 7.1a shows a schematic of the
cavity setup and Fig. 7.1b the level structure of the QD in the given configuration. The
magnetic field splits the ground state into two hole spin states |⇑⟩,|⇓⟩ with Zeeman splitting
Zh= 5.8 GHz at 2.9 T. This corresponds to a hole g-factor of gh = 0.143 (defined as a hole
pseudospin with spin ±1

2). The vertical and diagonal transitions are H and V polarised,
respectively (compare selection rules Ch. 2.1). Using the quarter-wave plate (QWP) in the
microscope head (compare App A), the QD and cavity polarisations can be aligned such that
the collection cavity polarisation, i.e. the cavity mode with the polarisation matching the
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Figure 7.1: Coherent control of a hole spin in a microcavity. (a), (b) Illustration of spin
control in a one-sided cavity. A laser resonant with the collection cavity (H-polarised, red) is used for
spin initialisation and readout and a detuned laser (circularly-polarised, yellow) for coherent control
of a hole spin via a Raman transition. (a) Schematic of the cavity. (b) QD energy level structure.
(c) Calculated optical intensity enhancement factor inside the two cavity modes as a function of the
laser detuning ∆. At a detuning of 448 GHz (498 GHz), the H(V )-cavity field intensity equals the
input field intensity.
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Figure 7.2: Coherent control of a hole spin in a microcavity. (a) Experimental Rabi frequency
Ω as a function of the Raman laser detuning ∆. Theory curves for 1/∆n with n = 1,2,3 confirms the
1/∆3 dependence of Ω as expected from the quadratic dependence of the cavity enhancement. (b)
Top: pulse sequence for multi-axis phase control. Two π/2 pulses are sent right after each other. The
phase of the second pulse is swept from 0 to 2π. Bottom: readout signal as a function of the phase ϕ
of the second pulse for the initial pulse having phase 0 (red) and π (blue). The signal oscillates with
a period of π.

collection arm of the dark-field microscope,137 is perpendicular to the polarisation of the
vertical transition that is used for spin readout.

A laser resonant with both the H-cavity and the lowest frequency vertical exciton transition
(red arrow) is used to initialise the spin to |⇓⟩ via optical pumping and to probe the |⇑⟩
population for spin readout. The spin can be rotated by a two-frequency Raman pulse
that is red-detuned from the resonant laser. It is generated by amplitude-modulation of
circularly-polarised light with an electro-optic modulator (EOM) driven by an AWG and
provides multi-axis control of the spin state in the Bloch sphere177 as demonstrated in
Fig. 7.2b.

7.4 Spin control in a microcavity
7.4.1 Coherent control of a hole spin
The cavity has a linewidth of κ = 25 GHz and a finesse F = 506. For optimal photon collection
efficiency, the cavity must be resonant with one of the QD transitions. However, coherent
control of the QD spin requires Raman laser detunings satisfying the criteria ∆ ≫ ΩR/(2π)
to avoid populating the trion states, which randomises the spin when the trion decays (here
∆ is the Raman laser detuning and ΩR is the optical Rabi coupling of the two Raman fields,
assumed to be equal). In practice, Raman detunings of ∼ 100 − 1000 GHz are typically used.
A challenge for spin control in a cavity is thus how to couple the detuned Raman fields to
the resonantly coupled QD. Fortuitously we find that the optimal cavity parameters for
efficient photon collection are also well suited to driving spin rotations: the Raman fields
can be coupled in via the detuned tails of the Lorenzian cavity mode. On resonance a cavity
mode enhances the input optical intensity by a factor of ≈ 8F/π = 1285 for our F = 506.
As a function of detuning from the cavity resonance, the intensity enhancement follows
a Lorentzian profile that depends on the cavity linewidth. For our cavity parameters the
optical intensity of the Raman lasers is still enhanced out to detunings of ∆ ∼ 448 GHz
(Fig. 7.1c), perfectly suitable for coherent spin control. For Raman detunings ≥ 448 GHz the
cavity begins to suppress the input optical field as 1/∆2. However, for ∆ ≲ 448 GHz the
cavity actually enhances the Raman fields with the same quadratic dependence, allowing for
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Figure 7.3: Fast spin manipulation. (a) Readout signal as a function of rotation pulse length
T shows Rabi oscillations. (b) Rabi oscillations as a function of the MW detuning (∆ωMW/(2π)),
i.e. the detuning of the Raman drive from the Zeemann splitting Zh. (c) Ramsey interferometry
of the readout signal as a function of pulse spacing τ between two π/2 pulses with a zero- (red)
and a π-phase on the second pulse. A T ∗

2 of 28.3 ns is measured. (d) Ramsey interferometry as a
function of ∆ωMW/(2π). (e) Rabi oscillations as a function of the Rabi frequency Ω/(2π) for high
laser powers. (f) Rabi oscillations at ∆ = 170 GHz. Fast oscillations at 1.06 GHz oscillation frequency
are measured.

ultra-fast coherent spin control in comparison to QDs not coupled to a microcavity. The full
derivation of the field enhancement can be found in App. C.

All of this is true for both the H- and V polarised cavity modes. This is important as the
circularly polarised rotation pulse couples into the cavity via the tails of both cavity modes.
As the mode-splitting is smaller than the laser Raman laser detuning, both polarisations of
the Raman laser couple in via one of the two cavity modes with similar enhancement as can
be observed in Fig. 7.1c. The slight asymmetry in intensity enhancement can be compensated
by having a slightly elliptical drive (achieved by rotation of the QWP).

We drive coherent rotations between |⇑⟩ and |⇓⟩ by optically driving the hole spin resonance
(Fig. 7.3a) with Raman pulses of increasing pulse length T . We observe clear Rabi oscillations:
when driving the Rabi oscillations as a function of the MW detuning ∆ωMW/(2π) (Fig. 7.3b)
we observe a chevron pattern expected for a two-level system. However, the chevron features
a MW-detuning-independent modulation at a frequency of ∼26 MHz in the pulse length. This
oscillation frequency closely matches the expected indium Larmor frequency,220 suggesting
an interaction between the hole spin with the nuclei of the host material.

We measure the hole spin T ∗2 time with a Ramsey sequence, extracting the π/2-pulse
length from the Rabi oscillations. Figure 7.3c shows the pulse scheme and the measured
decay corresponding to a coherence time of T ∗2 = 28.3 ns. To avoid nuclear polarisation
effects, we repeat each Ramsey sequence twice, once with a phase of ϕ = 0 applied to the
second π/2 pulse and once with a phase of ϕ = π.177 Using this scheme, the polarisation
of the hole spin throughout the pulse sequence is averaged out, mitigating the buildup of
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nuclear polarisation. With increasing ∆ωMW/(2π) (Fig. 7.3d), we observe oscillations in the
Ramsey signal exactly at the difference between the hole Zeeman frequency and our drive
frequency, as expected for a qubit precessing relative to the rotating frame defined by the
MW control signal.

Our T ∗2 time is comparable to previous reports at similar magnetic fields (with exception
of Ref. 186), which attributed the coherence to be limited by the interaction with the host
nuclear spins.215 The Hamiltonian for the hole spin is given by91 (compare with discussion
on origin in Ch. 2.1.2)

H ≈ Ω
∑

i

|Ψi|2(Ah,z
i Iz

i · Jz +Ah,⊥
i (I+

i · J− + I−i · J+) +Ah,nc
i (I+

i · Jz + I−i · Jz)) + ..., (7.1)

with Ah
i the coupling of hole to nuclear spin i, Ii the nuclear spin, Ψi the hole envelope

function, J the the hole spin and Ω the unit cell volume. We define the ladder operators
J± = Jx ± iJy and I±i = Ix

i ± iIy
i for hole spins and for nuclear spins, respectively, and Ah,⊥

i

and Ah,nc
i are the transverse and non-collinear parts of the hyperfine coupling.

The magnitude of the hyperfine components is of key importance for hole spin coherence,
with significantly different values being reported for transverse and non-collinear terms in
both the experimental and theoretical literature.186,215,221,222 There is, however, agreement
on the leading term being Ising-like.89

The Rabi frequency of the oscillations, Ω, depends on the Raman laser field experienced
by the QD, which in our system depends on ∆ (the detuning from the QD transition which
is equal to the cavity detuning). Without the cavity, the Rabi frequency scales inversely with
∆ (Ω ∝ 1/∆). In the cavity however, the 1/∆2 scaling of the field enhancement needs to be
taken into account. This leads to a scaling of Ω ∝ 1/∆3. We confirm this experimentally.
Figure 7.2a shows the Rabi frequency Ω as a function of the Raman detuning ∆. Ω clearly
follows a 1/∆3 dependence. We can increase the Rabi frequency significantly by reducing
∆, thereby cavity-enhancing the Raman fields experienced by the QD. Figure 7.3e shows
Rabi oscillations as a function of the Raman laser power for ∆ = 170 GHz. The Rabi
frequency can be extracted; we observe coherent oscillations with Rabi frequencies of up to
Ω/2π = 1.06 GHz, i.e. a π-rotation in 0.5 ns is possible. In principle we can increase the Rabi
frequency even further by reducing ∆, allowing for coherent control beyond the rotating wave
approximation. We observe a quality factor of the Rabi oscillations (Q = 2 · TRabi

2 · fRabi)
of Q = 14.5±0.1; which is within errorbars of the quality factor of the Rabi oscillations at
lower Ω in Fig. 7.3a, where Q =15.7±1.1.

7.4.2 Hole lifetime and spin characteristics
The device used in this work is an electron device, featuring a Fermi sea for electrons. As
discussed in Ch. 6, the tunnel barrier is relatively thin (25 nm), leading to short T1 times for
the electron spin (∼150 ns). The hole on the other hand, is metastable in this device. This
is why the hole was not used for single-shot readout in Ch. 6. While the hole resides in the
QD most of the time, it spends a certain amount of time in some unknown trapped states,
leaving the QD empty. The tunneling behaviour of the hole between an occupied and empty
state can be analysed via the auto-correlation function, a g(2)-measurement at zero magnetic
field. Figure 7.4a shows the g(2) as a function of time delay τ between two detector events. It
shows a slight bunching of g(2)(0) = 1.26 around zero delay. The dynamics of this bunching
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Figure 7.4: Hole tunneling, T1 and Hahn-echo (a) g(2)(τ) at 0 T and a laser power far below
saturation shows slight bunching around zero time delay τ . The decay time is equivalent to the hole
tunneling time. In this QD, the hole is present for biggest part of the time but tunnels in and out the
QD at a timescale of THT = 2.3µs. (b) Measurement of the hole spin T1 via a two laser experiment.
One laser initialises the spin |⇑⟩ (orange) and the second pulse reads out the state (red) as a function
of the splitting between the two pulses T . T1 = 2.0µs is extracted from a fit to the exponential decay.
This shows, that the T1-measurement of the spin is limited by the hole lifetime. (c) A Hahn-echo
experiment is performed by using a pulse sequence of a π/2 a π and another π/2 pulse followed by a
readout pulse while sweeping the spacing between the three pulses. This decouples the spin from
nuclear spin noise and increases its coherence time to THE

2 = 2.2µs. The coherence time can hence
also not be measured beyond the lifetime of the hole.

effect reveals the timing of the process. We extract an exponential decay corresponding to
the time the hole spends in the QD of THT = 2.3µs. The small bunching indicates, that the
hole resides in the QD ∼80% of the time. This hole tunneling processii is a limiting factor
for experiments performed on the hole spin, as within this characteristic time, the hole will
disappear from the QD. Additionally, this process prevents single-shot readout of the hole
spin similar to Ch. 6, as for an absence of a photon in a readout pulse, one can not precisely
determine between a spin in the dark state or an empty QD.

One important parameter for spin characterisation is the lifetime of the spin state, the
relaxation time T1. It can be measured using a two-laser spin-pumping experiment as
depicted in a schematic in Fig. 7.4b. A first laser is pumping the spin state which is then
read out. The counts during the second pulse are integrated over the relevant area as a
function of the delay between the two pulses T . This reveals a characteristic exponential
decay from which T1 can be extracted. From the data in Fig. 7.4b we get T1= 2.0µs. The
close match with THT indicates that T1 is likely limited by the hole tunneling time, as a
disappearing hole destroys the count rates in our analysis leading to the same decay.

The second characteristic spin parameter is the coherence time T ∗2 . One method to increase
the coherence time relies on decoupling the spin from nuclear noise. Decoupling is typically
done via a Hahn-echo refocusing sequence as is shown in Fig. 7.4c. By reading the counts
at the end of a sequence as a function of the spacing between the three pulses, τ , we can
extract THE

2 = 2.2µs from the exponential decay in the signal. Again, we see that this
measurement is likely limited by the hole tunneling behaviour and we cannot determine a
coherence beyond the hole lifetime. Therefore for this specific device, implementing more
advanced schemes, e.g. CPMG, becomes redundant.

Note that even though the spin characteristics and single-shot experiments are limited by

iiWe call this process tunneling, but we do not have a full understanding and microscopic model of the
process to confirm it.
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the tunneling of the hole, the observed time-scale still allows all presented spin experiments as
THE

2 ≫ T ∗2 and we are T ∗2 limited as usual, and experiments can be performed by integrating
over many repetitions such that the short-time absence of the hole is negligible for experiments
in this chapter.

7.4.3 Spin initialisation fidelity
All pulse sequences used in this chapter start with a pulse that initialises the spin state,
typically to spin up |⇑⟩. The fidelity with which this initialisation step is performed is part
of the overall qubit operation fidelity. A lower bound to this initialisation fidelity can be
estimated by looking at the form of a histogram of counts collected over many repetitions of
an initialisation pulse (which at the same time acts as a readout pulse) as the one shown
in Fig. 7.5a. Prior to the pulse, a preparation pulse brings the spin state into the read out
state. During the initialisation pulse, a high intensity peak Ipeak of counts is observed at
first, exponentially decaying to a stead-state level ISS. The values of ISS and Ipeak can be
extracted from an exponential fit. The initialisation fidelity is then given by:223

F = 1 − ρ11(0) · ISS
Ipeak

+ ρ11(0) · Θ · γx

γ0

ISS
Ipeak

, (7.2)

where ρ11(0) = e−τspacing/T1 is the population of the read out state |1⟩ (≡ |⇑⟩) at time zero
(start of pulse), γx,y the emission rates from an excited state into |1⟩ , |2⟩(≡ |⇓⟩) , γ0 = γx +γy

and Θ = ρ22
ρ11+ρ22

. The fidelity therefore depends on the population of the read out state
which can be determined from the preparation fidelity, the time since the last initialisation
pulse, τspacing, and the T1 of the spin. Hence, in reality, the population of the read out spin
state |⇑⟩ will be ρ11(0) < 1 at the beginning of the readout pulse (t = 0). Assuming a perfect
π-rotation, i.e. ideal pulse preparation, and neglecting the second term of Eq. 7.2, a lower
bound of the initialisation fidelity can be calculated.

The initialisation fidelity strongly depends on the readout power. At low laser powers,
the spin is never fully pumped and does not reach a steady state ISS during the finite pulse
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Figure 7.5: Spin initialisation fidelity (a) Histogram of an initialisation pulse. A preparation
pulse 300 ns prior the initialisation pulse pumps the spin to the readout state. The initialisation pulse
pumps the spin back to the original state. The initially high counts Ipeak decay exponentially to a
steady-state level ISS. A lower bound to the initialisation fidelity can be calculated from Ipeak and
ISS. An initialisation time of about 3 ns is extracted from the exponential decay. (b) Initialisation
fidelity F for different laser powers (in units of the PID voltage to stabilise the laser). A lower bound
of F ≥ 96.7% is extracted. At even lower powers than in this figure, the fidelity would go towards
zero.
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duration. After reaching a maximum with increasing power, the fidelity stays more or less
constant for a range of powers. However, for even higher powers, the fidelity reduces again,
likely due to optical re-pumping, i.e. the power broadened pulse simultaneously pumps both
the diagonal and the vertiacal transition resulting in the spin state being pumped back and
forth between |⇑⟩ and |⇓⟩. The lower bound of the fidelity for different readout powers is
calculated via Eq. 7.2 and is shown in Fig. 7.5b. A maximum lower bound fidelity of the
initialisation of F ≥ 96.7% is found. At this specific power, the exponential decay reveals a
fast initialisation time of ∼3 ns.

7.4.4 Laser-induced spin-flips
The detuned rotation laser induces incoherent spin flips. This effect can be quantified by
comparing integrated counts on a Rabi drive as a function of the rotation laser duration for
the MW drive being on- and off-resonant to the hole Zeeman splitting. Figures 7.6a, b and c
show the on- and off-resonant (∆ωMW/(2π) = 300 MHz) counts for 18.5 MHz, 31.1 MHz and
51.7 MHz Rabi frequency, respectively, each at a rotation laser detuning of 320 GHz. For
large rotation pulse durations the counts increase even in the off-resonant curve, resulting in
incoherent spin-flips. This process limits the Q-factor of the Rabi oscillations for high rotation
laser powers. The spin-flip rate can be extracted from an exponential fit to the off-resonant
signal and yields κ = 0.0012 ns−1, κ = 0.0017 ns−1, and κ = 0.0025 ns−1, respectively, for the
three Rabi frequencies above. A linear dependence of the spin-flip rate on the Rabi frequency
can be extracted yielding a slope of 0.6·10−4ns−1/MHz. This slope, however, scales differently
depending on the detuning of the rotation laser and increases to 1.2·10−4ns−1/MHz for a
laser detuning of 170 GHz, possibly as a consequence of enhanced excited state population.
The mechanism leading to these incoherent spin-flips is not understood. It is possible, that
either the Raman laser ejects a hole from the QD while a new one enters with random spin,
or that phonon processes could be involved resulting in incoherent spin-flips. However, we
can neither confirm nor exclude these possible explanations experimentally.
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Figure 7.6: Incoherent rotation laser-induced spin flips Readout signal as a function of
Rabi pulse length T on-(red) and off-(blue) resonant to the hole Zeeman transition at a rotation
laser detuning of 320 GHz at Rabi frequencies of (a) Ω = 18.5 MHz, (b) Ω = 31.1 MHz, and (c)
Ω = 51.7 MHz. For higher power as well as lower rotation laser detuning, the off-resonant curve
approaches the envelope of the resonant Rabi oscillations, meaning that the incoherent spin-flip
process becomes a limiting factor to the spin rotation fidelity.
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7.5 Nuclear spin cooling via a hole spin
Our cavity-enhanced Raman control strategy allows for spin control with Rabi frequencies
that can be precisely tuned over two orders of magnitude (Figs. 7.3e and 7.7b). In addition
to ultra-fast spin control, we can drive the hole spin with Rabi frequencies comparable to the
host nuclear Larmor frequencies (ωn/2π ≈ 20 − 50 MHz). The Q-factor of Rabi oscillations
shows a non-trivial dependence on the Rabi frequency. When the hole spin is driven close
to the nuclear Larmor frequencies ωn/(2π) (Fig. 7.7c), the Q-factor drops. This effect has
been previously observed for electron spins in QD devices,177,217 where it was attributed
to a Hartmann-Hahn resonance between the electron and nuclear spins. For an electron
spin, driving spin rotations with a Rabi frequency matching a nuclear Larmor frequency
has been demonstrated to cool the nuclei, narrowing the Overhauser field distribution and
extending the coherence time. We observe similar behaviour for the hole spin, increasing the
T ∗2 from T ∗2,bare = 28.3 ns to T ∗2,Rabi−cooling = 120.8 ns when measuring a Ramsey sequence
after driving such a nuclear resonance (Figs.7.7e,g). Furthermore, Rabi oscillations measured
following a cooling sequence are shown in Figs.7.7d,f (using a cooling Rabi frequency of
ΩC ∼ 26 MHz and a chevron Rabi frequency of Ω ∼ 68 MHz). The MW-detuning-independent
periodic modulation in pulse length observed for hole spin rotation without nuclear cooling
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Figure 7.7: Rabi cooling of the nuclear spins (a) Pulse sequence for Rabi cooling. A Raman
drive at the cooling Rabi frequency ΩC narrows the nuclei distribution. A Rabi or Ramsey sequence
can follow after the cooling pulse. (b) Rabi oscillations as a function of the Rabi frequency Ω for
low laser powers. The visibility of the oscillations strongly depends on Ω. (c) The Rabi oscillation
Q-factor as a function of the Rabi frequency Ω. The data is extracted from the oscillations in (b).
The Q-factor drops at the Larmor frequencies of indium and arsenic. A Rabi frequency for the cooling
pulse ΩC is set to the indium resonance. (d) Rabi oscillations as a function of the ∆ωMW/(2π) after
cooling of the nuclei with a 80 ns long Rabi pulse at ΩC ∼26 MHz. (e) Ramsey interferometry as a
function of the ∆ωMW/(2π) after cooling of the nuclei. (f) Rabi oscillation linecut of (d) at MW
resonance. A Rabi oscillation Q-factor of 28.3 is extracted from the fit. (g) Ramsey interferometry
at MW resonance with a serrodyne frequency of 125 MHz yielding a T ∗

2 of 120.8 ns.
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Figure 7.8: Optimal nuclei cooling mediated by a hole spin (a) Schematic of the pulse
sequence. The nuclei are cooled via feedback cooling that consists on N repetitions of a sequence
with a π/2 Rabi rotation followed by a sensing time τsense, a Rabi drive at the indium Larmor
frequency ΩC and a reset/readout pulse. After cooling of the nuclei, Rabi oscillations and Ramsey
interferometry are performed. (b) Rabi oscillations as a function of MW frequency after an optimal
cooling sequence. The side-bands indicate coupling to collective nuclear excitations. The asymemtry
of the side-bands is likely arising from fluctuations in the laser power over the long measurement
time, resulting in a changed cooling Rabi frequency and, hence, a shift in the cooling performance.
(c) Ramsey interferometry after nuclei cooling. The coherence time is enhanced up to T ∗

2 = 535 ns.
(d) T ∗

2 as a function of the cooling Rabi frequency ΩC . The maximum coherence time is observed
close to the indium and arsenic Larmor frequency. (e) The exponent of the fit to the Ramsey decays,
α, as a function of the cooling Rabi frequency ΩC . Close to the optimal parameters for cooling, the
envelope follows an exponential decay curve (α = 1) rather than a Gaussian (α = 2).

(Fig. 7.3b) have disappeared, resulting in a textbook chevron. The Rabi Q-factor increases
to a maximum of 28.3, leading to an upper-bound π-pulse fidelity of 98.3%.

The nuclei can be cooled even further using a recently developed technique, a quantum-
sensing based cooling scheme.44 Figure 7.8a shows the three-step protocol of this cooling
scheme: First, the hole spin is initialised and rotated by a π/2 Raman pulse. The hole then
senses the Overhauser field fluctuations during a sensing period of τsense. Second, a hole-nuclei
non-collinear flip-flop process is driven via a Hartmann-Hahn resonance, which flips a nuclear
spin with a direction dependent on the phase accumulated by the hole spin during the
sensing phase. In this way, Overhauser field fluctuations away from the target value are
corrected in a quantum sensing-based feedback loop.44 Third, an optical projective readout
measurement removes entropy from the nuclei. This cycle is repeated N times with linearly
increasing sensing time τsense. This way, the feedback function is narrowed with each cycle
and sensitivity is increased. The optimal parameters were determined exeperimentally and
in our case are N=35 with τsense increasing from τmin = 10 ns to τmax= 450 ns, a Hartmann-
Hahn drive with pulse length TC = 60 ns at Rabi frequency ∼26 MHz and a readout pulse of
90 ns length. This preparation sequence is repeated in front of every measurement of Rabi
oscillations or of a Ramsey cycle. The chevron observed after the cooling sequence (Fig. 7.8b),
similar to Rabi-cooling, no longer shows the MW-detuning-independent periodic modulation
in pulse length in comparison to the non-cooled chevron (Fig. 7.3c). Interestingly, in addition
to a textbook chevron, Fig. 7.8b features side-bands at around ∆ωMW/(2π)±24 MHz. This
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is an indication for collective nuclear excitations, similar to what has been observed for
electrons.43 In contrast to the results with electrons, however, we only observe the first
nuclear transitions.

The Ramsey sequence shows a dramatic increase in coherence time from T ∗2,bare = 28.3 ns
to T ∗2,feedback−cooling = 535 ns (Fig. 7.8c). The cooling protocol strongly depends on the Rabi
frequency used during the non-collinear flip-flop drive ΩC , as is seen in Fig. 7.8d, where
the T ∗2 is shown as a function of ΩC . The coherence time is clearly maximised for specific
cooling Rabi frequencies close to the indium and arsenic Larmor frequency, very similar
to the Rabi cooling. Figure 7.8e shows the exponent of the fitted decay α (fit function is
cos(ωserrτ) · exp(−τ/T ∗2 )α) with ωserr = 20 MHz) as a function of ΩC . The exponent of the
decay drops from close to 2 (with larger errorbars) to 1 (with smaller errorbars and better fit
quality) in the region of enhanced T ∗2 , indicating a transition from Gaussian to exponential
decay in the envelope of the decay function. This change from Gaussian to exponential decay
is predicted for optimal cooling of nuclei,219 but has not been observed to date.

We further measure the nuclear spin diffusion by checking the T ∗2 as a function of waiting
time after the optimal cooling sequence. Up to 1.2 ms – a technical limit for our experiments
– we see no decrease in the coherence time.

7.6 Discussion
Our results show that the cooling strategies used to manipulate QD nuclear spin states via
the electron spin43,44 are also effective for hole spins. The fact that the feedback protocol
successfully cools the nuclear spins is clear evidence that the hole spin possesses a non-collinear
term in its hyperfine interaction, and that our uncooled T ∗2 time of 28.3 ns is limited by
Overhauser field fluctuations. The QD hole spin hyperfine interaction has been the subject of
significant investigation and theory and experiments typically agree that that the Ising form
is crucial and that the magnitude of hole hyperfine coupling constant along the QD growth
direction (Ah

z ) is ∼10% of the electron coupling constant.89 However, significant discrepancies
emerge with regard to the transverse coupling constant, Ah

x. Coherent population trapping
experiments on low-noise QD devices have estimated Ah

x/A
h
z < 1%,88,186 whereas Ramsey

experiments indicate that Ah
x and Ah

z may be of comparable magnitudes.215,222

To conclude, we have demonstrated coherent spin control of a hole spin in an optical
microcavity with Rabi frequencies up to 1 GHz. For the first time, we implement nuclear
cooling schemes on a hole, extending the hole spin T ∗2 to 535 ns and observe a transition
to an exponential decay envelope of the Ramsey signal. These high spin coherence times
in combination with high photon collection efficiencies, fast spin manipulation and fast
initialisation highlights the potential of our platform as an efficient spin-photon interface
and a resource of entangled cluster states, especially in combination with the fast single-shot
spin readout that was implemented in Ch. 6 and that should be achievable in a p-type device.
Furthermore, the system has potential as a hole-mediated nuclear memory via the creation
of collective nuclear excitations.43
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Conclusions and outlook
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Conclusions

This work builds on years of previous successful development of both semiconductor quantum
dots (QDs) and open microcavities. QDs have already been established as bright single-
photon sources. The open microcavity that is used here has however increased photon
collection rates to a record-value efficiency with more than every second photon ending up at
the detector. As a consequence, at least 100,000 highly coherent photons can be generated
by a single QD before loss of coherence. In this thesis we reported on various experiments
profiting from this high collection efficiency. Furthermore, we presented optimisations towards
usage of the microcavity-QD system as a coherent spin-photon interface.

The first part of this thesis focused on the cavity as a coherent light-matter interface.
The overall goal was to achieve high coupling efficiencies β ≃ 1 in order to implement a
one-dimensional (1D) atom for quantum networks. Ideally, in order to route photons, the
light-matter interaction in a 1D atom should be direction-dependent. We have implemented
a strong photon-emitter interface by optimising the cavity-QD coupling. The interaction
is strong enough to result in radically different behaviour for different photon numbers –
a strong nonlinearity is observed. An extinction in light transmission due to interaction
with the QD of 99.2% is achieved resulting in a bunching of 587, both record values. The
tunability of the microcavity allows in-situ tuning of the photon statistics from bunching to
anti-bunching. Additionally, true directional light-matter interaction is achieved at one of the
interesting chiral conditions, β = 0.5. We measured a strong non-reciprocal absorption with
an isolation of 10.7 dB – an implementation of a single-photon diode. The second interesting
case of β ≃ 1 is however impossible to achieve with the given configuration of the system. In
order to nevertheless examine this regime, we investigated the back-reflection mode at high
β. This mimics a chiral system well (or a true one-sided cavity). We observed the dynamics
of photon bound states, which exhibit an interesting behaviour. Different photon number
states result in different emitter-induced delays of 144.02 ps, 66.45 ps and 45.51 ps for one-,
two-, and three-photon states, respectively. This can be understood in terms of stimulated
emission at the level of single photons. In summary we have demonstrated both a strong
photon-emitter interface as well as clear directional dynamics using an open microcavity
system.

The second part of this thesis established a cavity-enhanced QD as a spin-photon interface.
It addressed all relevant requirements for a spin-qubit. Firstly, we made use of the high
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photon collection efficiency of the system and radically increased the readout speed of the
spin state by demonstrating single-shot readout of an electron spin in 3 ns with a fidelity
of 95.2%. For the first time, the readout speed has been brought well below the T1 and T ∗2
times for semiconductor QDs. The achieved readout speed also predicts fast, high-fidelity
readout in Voigt geometry, allowing combination of single-shot readout with manipulation of
a spin state. Moreover, we observed time-resolved quantum jumps of the electron spin state
by repeatedly applying single-shot readout. By changing to Voigt geometry, we demonstrated
all-optical manipulation of a hole spin inside a cavity. The electric field enhancement of
the rotation laser through the cavity allows for Rabi oscillations at frequencies up to 1 GHz.
A maximum π-pulse fidelity of 98.26% was observed. Furthermore, the nuclear spins were
cooled by optically driving the hole spin, leading to an increased T ∗2 from ∼30 ns to above
500 ns. Lastly, fast spin initialisation within 3 ns is observed with a fidelity of 96.7%. As a
conclusion, we have established a fully operational spin-qubit with ultra-fast and high fidelity
initialisation, rotation and readout as well as a largely increased coherence of the hole spin.

Overall, the work results in a highly optimised platform. The presented QD-in-microcavity
system can generate coherent photons with high efficiency, represents a coherent and direc-
tional interface at the level of single photons and possesses a coherent spin that can be read
out and manipulated at ultra-fast speed. This combination of the relevant techniques with
high rates and fidelity paves the way for using QDs in microcavities for a large variety of
applications in quantum technologies.
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Outlook

Plenty of photons, fast readout and manipulation of coherent spins, and a strong (and
directional) light-matter interface – the overall results of this thesis demonstrate important
progress towards the requirements for an ideal spin-photon interface. They pave the way
for many exciting paths ranging from immediate experiments to applications in quantum
technologies.

A major part of the advancement in this work is owed to careful design of the microcavity
and its tunability. Of course, our microcavity approach is directly applicable to other emitters
as other types of quantum dots (QDs) – e.g GaAs QDs,224 where photons at wavelengths
about 795 nm can be matched with rubidium memories or QDs at telecom wavelengths225

for smaller losses in fibre networks – colour centres in diamond226,227 or molecules.47

Even though the end-to-end efficiency is record-high, there is still room to improve the
system. At the moment, the largest source of photon loss is at optical interfaces. These losses
could be overcome by implementing an atom-drive,203 i.e. by driving the QDs from the side
through a waveguide mode, and hence, making several elements of the optical microscope
head redundant. This could improve end-to-end efficiencies up to 80%. Undoubtedly, a higher
collection efficiency would directly reflect on the single-shot readout speed and potential
spin-photon entanglement rates.

Several optimisations could be achieved by slight modifications to the growth of the
semiconductor heterostructure material. In this thesis, a device designed to host electrons is
used. The short tunnel barrier leads to short electron spin-flip times T1. Growing a larger
tunnel barrier in a next generation device would increase the electron T1 allowing for spin
control experiments on the electron. On the other hand, a specific hole sample could be
designed in order to work with a stable hole spin. This way, single-shot experiments could
be performed on a hole.

While the cavity mode splitting is optimal for single-photon collection, a degenerate cavity
would allow for the combination of high β-factors and chirality. In that case, circularly
polarised light could enter and leave the cavity without optical losses. The splitting can be
tuned via application of electrical bias146 or strain136 to the semiconductor heterostructure
or by designing an elliptical top cavity mirror to counteract the present mode-splitting. The
implementation of a chiral one-dimensional (1D) atom at β ≃1 would furthermore allow for
the realisation of directional bound-states, quantum networks based on chiral emitters98 and
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two-qubit gates.127

The biggest milestone of this thesis, however, is the implementation of spin manipulation
of a hole spin with enhanced coherence inside a cavity. It allows for a full new chapter of
possible experiments and applications. First results in this thesis suggest an efficient coupling
to magnons43 – collective excitations of the nuclear spins – which have a strong potential as
memories and quantum nodes. Furthermore, the cavity-enhancement of the Raman laser
field allows for the achievement of high powers at the QD, giving insight into spin rotations
beyond the rotating-wave approximation.228 This could be interesting in order to implement
even faster spin control, but is also particularly interesting from the fundamental point of
view. Another interesting prospect is the generation of designer photons – photons where
the wave-package can be shaped by using spin control and the cavity.229 This is especially
interesting when combined with GaAs QDs and would enable bandwidth-matching of the
QD-photons to rubidium memories.

Ultimately, the most promising path of our platform leads towards the generation of
photonic cluster-states. The high photon collection rates combined with the strong interface,
the low noise performance and fast spin rotations and readout will enable a high rate of
spin-photon entanglement and eventually an efficient generation of 1D-cluster and GHZ
states.15,178,179 Based on the results in this thesis, we predict three-photon GHZ states
generation at rates of tens of MHz with high fidelity without any changes to the system. In
this sense, this work marks the stepping stone for this highest-efficiency single-photon source
to also become the highest-efficiency cluster-state source.



A
The quantum dot-cavity system:
characterisation and experimental setup

Adapted fromi:

N. Tomm*, A.Javadi*, N. O. Antoniadis, D. Najer, M. C. Löbel, A. R. Korsch, R. Schott,
S. R. Valentin, A. D. Wieck, A. Ludwig and R. J. Warburton
“A bright and fast source of coherent single photons”,
Nat. Nanotechnol. 16, 399-403 (2021)

A.1 Description and fabrication of the coupled system
A.1.1 Heterostructure and growth
The heterostructure is grown by molecular beam epitaxy (MBE) and consists of an n-i-p
diode with embedded self-assembled InAs quantum dots (QDs). This design allows for QD
frequency tuning via the dc Stark effect as well as QD charging via Coulomb blockade. The
n-i-p diode is grown on top of a semiconductor distributed Bragg reflector (DBR), a planar
bottom mirror, composed of 46 pairs of AlAs (80.6 nm thick)/GaAs (67.9 nm thick) quarter-
wave layers (QWLs) with a centre wavelength of nominally 940 nm (measured: 917 nm).
Below the DBR, an AlAs/GaAs short-period superlattice composed of 18 periods of 2.0 nm
AlAs and 2.0 nm GaAs is grown for stress-relief and surface-smoothing.

From bottom to top (see Fig. A.1a), the diode consists of an n-contact, 41.0 nm Si-doped
GaAs, n+, doping concentration 2 · 1018 cm−3. A 25.0 nm layer of undoped GaAs acts as a
tunnel barrier between the n-contact and the QDs. The self-assembled InAs QDs are grown
by the Stranski-Krastanov process and the QD emission is blue-shifted via a flushing-step.231

The QDs are capped by an 8.0 nm layer of GaAs. A blocking barrier, 190.4 nm of Al.33Ga.67As,
reduces current flowing across the diode in forward-bias. The p-contact consists of 5.0 nm of
C-doped GaAs, p+ (doping concentration 2 · 1018 cm−3) followed by 20.0 nm of p++-GaAs
(doping concentration 1 · 1019 cm−3). Finally, there is a 54.6 nm-thick GaAs capping layer.

iThis is the main source, but some sentences were added from the methods sections of Refs. 100, 120, 230
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Figure A.1: Heterostructure design and numerical simulation of the microcavity. (a)
The semiconductor heterostructure consists of a DBR and an n-i-p diode structure with embedded
self-assembled InAs QDs. (b) Numerical simulation of the vacuum electric field |Evac| confined by the
microcavity (image to scale). (c) Colour-scale plot: normalised electric field within the SiO2 substrate
supporting the top mirror. Contour lines: fit of a Gaussian beam to the calculated normalised
electric field. The fit yields a beam waist of w0 = 1.05µm corresponding to a numerical aperture of
NA = 0.279. |Emax| is the maximum electric field amplitude in this particular domain.

The layer thicknesses are chosen to position the QDs at an antinode of the vacuum electric
field. The p-contact is centred around a node of the vacuum electric field to minimise
free-carrier absorption in the p-doped GaAs. Coulomb blockade is established on times
comparable to the radiative decay time for GaAs tunnel barriers typically ≲ 40 nm thick.
This is less than the thickness of a QWL thereby preventing the n-contact being positioned
likewise at a node of the vacuum electric field. However, at a photon energy 200 meV
below the bandgap,232 the free-carrier absorption of n+-GaAs (α ≈ 10 cm−1) is almost an
order-of-magnitude smaller than that of p++-GaAs (α ≈ 70 cm−1). The weak free-carrier
absorption of n+-GaAs is exploited in the design presented here by using a standard 25 nm
thick tunnel barrier. The n-contact is positioned close to a vacuum field node, although not
centred around the node itself.

After growth, individual 3.0 × 2.5 mm2 pieces are cleaved from the wafer. The QD density
increases from zero to ∼ 1010 cm−2 in a roughly centimetre-wide stripe across the wafer.
The sample used in all experiments of this thesis was taken from this stripe. Its QD density,
measured by photoluminescence imaging, is approximately 7 × 106 cm−2.

Separate ohmic contacts are made to the p++ and n+ layers. For the n-contact, the capping
layer, the p-doped layers and part of the blocking barrier are removed by a local etch in citric
acid. On the new surface, NiAuGe is deposited by electron-beam physical vapour deposition
(EBPVD). Low-resistance contacts form on thermal annealing. To contact the p-doped layer,
the capping layer is removed by another local etch. On the new surface, a Ti/Au contact
pad (100 nm thick) is deposited by EBPVD. Although this contact is not thermally annealed,



A.1. Description and fabrication of the coupled system 89

it provides a reasonably low-resistance contact to the top-gate on account of the very high
p-doping (Fig. A.1a).

After fabricating the contacts to the n- and p-layers, the contacts are covered with
photoresist and a passivation layer is deposited onto the sample surface. A thin native oxide
layer on the surface is removed by etching a few nm of GaAs in HCl. Following a rinse
in deionised water, the sample is immersed in a bath of ammonium sulphide ((NH4)2S).
Subsequently, the sample is transferred rapidly into the chamber of an atomic-layer deposition
(ALD) setup. An 8 nm layer of Al2O3 is deposited using ALD at a temperature of 150◦C. With
the present heterostructure, this process is essential to reduce surface-related absorption: a
low-loss microcavity is only achieved following surface-passivation.48,138 An advantage of the
surface passivation lies in the fact that it prevents the native oxide of GaAs from re-forming
after its removal: it provides a stable termination to the GaAs heterostructure.233 Following
the surface-passivation procedure and photoresist stripping, the NiAuGe and Ti/Au films
are wire-bonded to large Au pads on a sample holder. Using silver paint, macroscopic wires
(twisted pairs) are connected to the Au pads.

When applying a voltage across the gates of this n-type device, the neutral exciton, X0,
is observed at intermediate biases. The negatively-charged trion, X−, is observed at more
positive bias, and the positively-charged trion, X+ at more negative voltages.

This particular device presents a small leakage current at the X− voltage and a short
tunnel barrier, leading to a spin T1 limited by co-tunneling for X−. On the other hand, the
hole is not stable in this n-type device. It is, however, present even without a dedicated laser
for photo-creation, which is unexpected. The origin of the hole in our sample is not fully
understood and subject of further investigation.
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Figure A.2: Geometrical characterisation of the curved mirror. Following CO2-laser
machining, the fabricated crater’s profile is measured with a confocal laser scanning microscope. (a)
Height map of the crater determined with sub-nm resolution. From the height map, the two principal
planes are extracted by fitting a two-dimensional Gaussian function to the data. (b) By evaluating
the height information along the two principal axes, it is possible to extract the crater’s parameters
such as the radius of curvature R = (11.98 ± 0.02)µm, sagittal height s = (0.41 ± 0.01)µm, and
asymmetry of 4.5%. This is an example crater that has been used for the experiments in Ref. 19 and
Part II of this thesis. Other craters have been used for the experiments in Part III, but the results
were very similar.
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A.1.2 Curved mirror fabrication
The top mirror is fabricated in a 0.5 mm thick fused-silica substrate. An atomically-smooth
crater is machined at the silica surface via CO2-laser ablation.234,235 We achieve craters
with a similar radius of curvature as described in Ref.,235 but with a shallower profile by
substituting the focusing lens in the ablation setup by a lens with NA = 0.67.

The profile of the fabricated crater is measured by a confocal laser scanning microscope
(Keyence Corporation), as shown in Fig. A.2a. From the two-dimensional height profile, two
principal axes can be identified, and the profile parameters can be extracted (Fig. A.2b).
The radius of curvature of this crater is R = (11.98 ± 0.02)µm and the sagittal height
s = (0.41 ± 0.02)µm. After laser ablation, the crater is coated with 8 QWL-pairs of Ta2O5
(refractive index n = 2.09 at λ0 = 920 nm) and SiO2 (n = 1.48 at λ0 = 920 nm) layers
(terminating with a layer of Ta2O5) by ion-beam sputtering at a commercial company
(Laseroptik GmbH), see Fig. A.1b.

A.1.3 Microcavity characterisation
The microcavity is a highly miniaturised Fabry-Perot type resonator. A fundamental mode is
resonant for a given laser frequency at a particular microcavity length. In order to determine
the Q-factor of the microcavity, a dark-field measurement is performed, as shown in Fig. A.3a.
Given the spectral tunability of the microcavity, its Q-factor can be determined for a wide
wavelength range within the stopband of the mirrors, centred around λ0 ≈ 917 nm, as shown
in Fig. A.3b.

Figure A.3a shows such a measurement performed on a fundamental mode at λ0 = 922 nm.
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Figure A.3: Q-factor of the microcavity. (a) Signal versus optical frequency expressed as a
detuning with respect to the upper-frequency resonance. The microscope operates in dark-field mode
with principal axes lying at 45 degrees to the principal axes of the microcavity. The wavelength is
λ0 = 922 nm. The fundamental mode splits into two modes both with linear polarisation, one H-
polarised, the other V-polarised. The H- and V-axes correspond to the crystal axes of the GaAs wafer.
The transmission data (red dots) are fitted to a squared double-Lorentzian function (blue and green
curves) yielding in this measurement Q-factors for the two polarised modes: QH = 11, 900 ± 1, 000
and QV = 12, 800 ± 1, 000. The mode-splitting is 34.6 GHz. (b) A measurement of QH (blue points)
and QV (green points) can be extracted across a wide spectral range, demonstrating good agreement
between calculated and experimental Q-factors. We note that there is no systematic difference
between QH and QV.
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κ/2π = (0.72 ± 0.07) GHz
Q = 450,000 ± 45,000 
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Figure A.4: Upper bound of κloss. A microcavity composed of the same semiconductor het-
erostructure and a high reflectivity top mirror (116 ppm transmission) yields a Q-factor 4.5 · 105

near the centre of the stopband (λ0 = 920 nm), corresponding to κ/(2π) = 0.72 ± 0.07 GHz. This
value sets the upper bound of κloss/(2π) ≤ 0.72 GHz in the experiment with the lower reflectivity top
mirror, making κloss/κ ≤ 3%, where κ = κtop + κloss.

The fundamental mode splits into two modes, each linearly polarised, with opposite polarisa-
tions, H and V. The mode-splitting is 34.6 GHz. The H and V axes align with the crystal
axes of the semiconductor wafer. This points to the physical origin of the mode-splitting: a
small birefringence in the semiconductor. The birefringence is probably induced by a very
small uniaxial strain. The splitting of the fundamental microcavity mode into two separate
modes together with the linear, orthogonal polarisations of these two modes are exploited
in the experiment to achieve high efficiencies in our experiment, as discussed in Sec. A.2.1.
The mode-splitting is, therefore, an important parameter. Performing this measurement at
different locations on the sample yields a spread in mode-splittings. For the QDs investigated,
the splitting lies between 34.6 and 58.8 GHz.

The Q-factors of both H- and V-polarised modes are extracted from the dark-field spec-
trum (exemplified in the green and blue curves in Fig. A.3a) yielding Q = 12, 600 ± 1, 000
(κ/(2π) = 25.9 GHz) at λ0 = 917 nm. The finesse is F = 506 ± 50. F , determined by
microcavity scanning at a fixed wavelength. Unlike the mode-splitting, the Q-factors have
no variations within the error bar from position to position in the sample.

The microcavity does not have a monolithic design and is potentially susceptible to
environmental noise, vibrations and acoustic noise. The microcavity is operated in a helium
bath-cryostat. The cryostat is shielded from vibrational noise by an active damping stage
and from air-borne acoustic noise by an acoustic enclosure. Using the microcavity itself as a
noise sensor shows that environmental noise is significant only when operating with a finesse
above 10, 000,235 corresponding to a Q-factor of approximately 105 with the present design.
Here, the Q-factor is approximately 104 and the experiment was not troubled by residual
environmental noise.

Finally, the Q-factor can be limited by losses, such as undesired absorption in gated regions
of the semiconductor heterostructure, surface-related absorption at the semiconductor-air
interface, and scattering. This means that the total loss rate of the cavity κ has contributions
from the preferred loss channel κtop and the undesired channel κloss which accounts for all
other losses: κ = κtop + κloss. In order to determine κloss we probe a microcavity composed
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of the same semiconductor heterostructure, but we use instead a top mirror with much
lower transmitivity (116 ppm). We measure (at λ0 = 920 nm) Q = 450, 000 ± 45, 000, shown
in Fig. A.4, corresponding to κ/(2π) = (0.72 ± 0.07) GHz. We argue that this measured
quantity sets an upper bound for κloss in the experiments in this work κloss/(2π) ≤ 0.72 GHz,
as all losses – except κtop – are maintained constant.

A.1.4 Numerical simulations of the microcavity
Calculation of the Q-factor
The microcavity Q-factor was calculated using a one-dimensional transfer matrix simulation
(The Essential Macleod, Thin Film Center Inc.). The top mirror is described using the
design parameters taking the manufacturer’s values for the refractive index (mirror design:
silica-(HL)7H with H (L) a quarter-wave layer in the high- (low-) index material at wavelength
920 nm, refractive indices 2.09 (1.48)). The transmission loss per round trip of the top mirror
is 10,300 ppm. The bottom mirror has a nominal design GaAs-(HL)46-active layer with
H (L) a quarter-wave layer in GaAs (AlAs) at wavelength 940 nm, as shown in Fig. A.1a.
In practice, the layers become gradually thinner during growth. The wavelength of the
stopband and the oscillations in reflectivity out with the stopband can be very well described
by postulating a linear change in thickness during growth.48 The losses in the entire
semiconductor heterostructure (including the free-carrier absorption in active layer) can
be assessed by measuring the Q-factors with an extremely reflective, extremely low-loss
top mirror: the transmission loss is just 1 ppm per round trip; the absorption/scattering
losses amount to 373 ppm per round-trip.48 These losses are negligible compared to the
transmission loss of the top mirror. The simulated Q-factor for the semiconductor DBR –
GaAs active layer (6 QWLs) – air-gap (4 QWLs) – top mirror structure is about 15,200 at
the centre of the stop-band, a value obtained for a cavity composed of two flat mirrors.

Another possible source of losses in a microcavity is diffraction losses at the DBR mirrors,
also termed side-losses in the micropillar community.236,237 For tightly confined modes, the
angular spread in k-space expands, increasing the losses in the DBR mirrors and reducing
the Q-factor. We carried out numerical simulations to probe the effect of the radius of the
curvature on the Q-factor. Figure A.5a shows the Q-factor as a function of the wavelength
and R. Fig. A.5b shows a cut-through of the data close to the centre of the stopband at
920 nm. As expected, for small radii the Q-factor is a strong function of R and drops to
4,600 at R = 2.3µm. At large radii (R > 6µm), the Q-factor is a weak function of R, and
saturates at a value of 15,200. We use a top mirror with R = 11.98µm in our experiments.
We calculate a Q-factor of 15,000 for this R at the centre of the stopband, very close to the
value at large radii. Hence, we conclude that side losses are negligible in our experiments.

When further taking into consideration contributions from κloss/(2π) = 0.72 GHz, bounded
from below by the measurement described in Sec. A.1.3, the Q-factor calculated at the
stop-band centre (λ0 ≈ 917 nm) with the exact top mirror used in the experiment reduces to
approximately 14,500. This is very close to the measured value, 12, 600 ± 1, 000. The small
difference between the calculated and experimental Q-factors may well arrive from imperfect
knowledge of the optical thicknesses in the two DBRs.

Calculation of the QD-microcavity coupling
In order to estimate the QD-microcavity coupling, a finite-elements method (Wave-Optics
Module of COMSOL Multiphysics) is used to compute the vacuum electric field amplitude
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Figure A.5: Effect of diffraction losses on the Q-factor. (a) Calculated Q-factor as a function
of the wavelength and the radius of the curvature of the top mirror. The Q-factor is maximum at the
centre of the stopband (close to 920 nm). (b) A cut-through of the data at the wavelength of 920 nm
corresponding to the blue line in part (a). The Q-factor drops significantly for radii smaller than
6µm signalling diffraction losses. For larger radii the Q-factor approaches 15,200.

|Evac(r, z)| confined by the microcavity (Fig. A.1b). The model assumes axial symmetry
about the optical axis ((x, y) = 0). We use a 1µm thick perfectly index-matched layer at all
outer boundaries of the simulation to prevent internal reflections. The model takes a top
mirror with radius of curvature R = 11.98µm and sagittal height s = 0.41µm, exactly the
mirror used in the characterisation (see Sec. A.1.2). At the location of the QDs (z = zQD) in
the exact anti-node of the microcavity mode (r = 0), the field is |Evac(0, zQD)| = 35, 000 V/m.
A QD at these wavelengths has an optical dipole of µ/e = 0.71 nm where e is the elementary
charge.63 The X+ consists of two degenerate circularly-polarised dipole transitions (at zero
magnetic field). We consider the interaction of one of these circularly-polarised dipoles
with a linearly-polarised microcavity mode. The predicted QD-cavity coupling is therefore
ℏg = µ · Evac(0, zQD)/

√
2 giving g/(2π) = 4.2 GHz. (The same is true for X−. For X0 the

dipoles are linearly polarised, in principle increasing the maximum achievable g by a factor
of

√
2. However, in the case of X0 the effective coupling will depend on the angle between

the polarisation axes of the QD and the cavity modes, which is not controllable in our
system and varies from QD to QD.) This dipole moment implies a natural radiative decay
rate of 1.72 ns−1, equivalently γ/(2π) = 0.27 GHz (assuming the dipole approximation in an
unstructured medium). The calculated Purcell factor is therefore FP = 4g2/(κγ) = 11.4.

The Purcell factor and coupling g can be determined from the experiment. The natural
radiative decay γ rate can be determined by gradually tuning the microcavity out of
resonance with the QD, extrapolating the decay rate to large detunings (Fig. 2.5b). This
gives γ/(2π) = 0.30 GHz. This agrees well with the estimate above. On resonance, the total
decay rate increases to 3.33 GHz. In the experiment however, the polarisation-degeneracy of
the microcavity is lifted (see Sec. A.1.3) and the QD exciton, an X+, interacts with both
microcavity modes. We focus on the resonance with the H-polarised mode. We determine
the contribution to the total decay rate from the presence of the V-polarised microcavity
mode by fitting the total decay rate as a function of microcavity detuning to two Lorentzians
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(Fig. 2.5b). We subtract the contribution from the V-polarised mode and the free-space modes
at the resonance with the H-polarised mode, giving a decay rate of γH/(2π) = 2.87 GHz.
This is the decay rate contribution we would expect if the V-polarised mode were highly
detuned, in other words if the microcavity mode-splitting were very large. In this limit,
a circularly-polarised dipole interacting with a single linearly-polarised microcavity mode,
allows a comparison to be made with the calculated properties of the microcavity. The Purcell
factor arising from the H-polarised mode alone is therefore FH

P = γH/γ = 9.6, close to the
calculated value (11.4). Using FH

P = 4g2/(γκ) and taking κ/(2π) = 25.9 GHz, we determine
g/(2π) = 4.3 GHz, close to the calculated value. An exact agreement is not expected as the
QD dipole fluctuates from QD to QD and therefore between the different experiments. We
can conclude that, first, the vacuum field in the real microcavity is compatible with the
value calculated from the microcavity’s geometry; and second, that the lateral tuning of the
microcavity enables the QD to be positioned at the anti-node of the vacuum field.

Properties of output mode
A simulation of the microcavity mode was used to determine the parameters of the output
beam of the microcavity, notably the beam waist. The calculated beam in the SiO2 substrate,
i.e. in the region above the top mirror (Fig. A.1c), is fitted to a Gaussian beam238 of the form

|E(r, z)| = |E0| w0
w(z)e

−r2/w2(z) (A.1)

with waist radius at z given by

w2(z) = w2
0

(
1 +

(
z

zR

)2
)
. (A.2)

zR = nπw2
0/λ0 is the Rayleigh range in the medium (refractive index n = 1.4761 is taken

for SiO2). The fit taking w0 (and |E0|) as fit parameters results in w0 = 1.05µm. This
corresponds to a numerical aperture of NA = λ0/(πw0) = 0.279.

A.2 Experimental setup
A.2.1 Optical setups
In the experiment, the microcavity and one lens (the objective lens) are mounted in a helium
bath-cryostat (T = 4.2 K) equipped with a superconducting solenoid magnet. There are two
different magnets that can be placed in the cryostat prior a cool-down, either out-of-plane
(0 – 9 T) or in-plane (0 – 3 T) with respect to the QD growth direction. A window enables
free-space optical-beams to propagate from an optical setup at room temperature to the
microcavity system at low temperature,48,235,239,240 as shown in Fig. A.6. The top-mirror of
the microcavity is fixed at the top of a titanium cage, inside which the sample, mounted on a
piezo-driven xyz nano-positioner, is placed.48,235,239,240 The nano-positioner allows for full in
situ spatial (xy) and spectral (z) tuning of the microcavity. The titanium cage sits on another
xyz nano-positioner, which allows for positioning of the microcavity relative to the objective
lens, an aspheric lens of focal length fobj = 4.51 mm (355230-B, NA = 0.55, Thorlabs Inc.),
leading to close-to-perfect mode matching of the microcavity and the microscope. The
microscope has a polarisation-based dark-field capability.137 As shown in Fig. A.6, laser light
is input into the microscope via a single-mode fibre, mostly via the excitation port. The
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beam is collimated by a ffibre = 11 mm aspheric lens (60FC-4-A11-02, Schäfter + Kirchhoff
GmbH). A linear polariser (LP; Thorlabs Inc.) guarantees the polarisation-matching of
the input beam to a polarising beam-splitter (PBS; Thorlabs Inc.) which reflects the light
towards the microcavity. A half-wave plate (HWP/λ/2,946 nm zero, B. Halle) allows the
axis of the polarisation to be rotated: the output state is chosen to match one of the
principal axes of the microcavity, the V-axis. The light is then coupled into the microcavity
by the objective lens. The same lens collects the microcavity output. H-polarised light is
transmitted by the PBS and focussed by a lens (60FC-4-A11-02, Schäfter + Kirchhoff GmbH)
into a single-mode optical fibre (780HP fibre, Thorlabs Inc). In the dark-field scheme, the
suppression of V-polarised laser light is optimised by adjusting an additional quarter-wave
plate (QWP/λ/4, 946 nm zero, B. Halle) in the main beam-path. Confocal detection is
crucial.241 For continuous wave excitation, an extinction ratio up to 108 is achieved (for
pulsed excitation, it is up to 106) and remains stable over many days of measurement.137

We use the cross-polarised microscope setup to separate the resonant excitation laser light
from the QD emission.137 The mode splitting between the orthogonally polarised modes of
our microcavity allows us to excite the QD using the Lorentzian tail of one mode and to
collect via the other mode.19,47 The QD photons emitted from the cavity are then elliptically
polarised, with the major polarisation axis orthogonal to the excitation laser polarisation.
Using this technique, we overcome what would otherwise be a 50% loss of QD photons in
the cross-polarisation optics.47

Depending on the requirements of the individual experiment, the HWP and QWP can
be modified. The microscope head in Fig. A.6 provides full tunability of the excitation and
collection polarisation. The arms of the head (excitation/collection arm) can be used in
different configurations. For most experiments, we define transmission from port 2 to port 1,
as described above. But we can also measure backwards (port 1 to port 2) as discussed in
Ch. 4 or in the so-called back-reflection mode (port 1 to port 1) as used in Ch. 3.5.

The estimation of the microcavity beam waist (Sec. A.1.4) was used to optimise the fibre-
coupling efficiency by selecting an appropriate aspheric lens in front of the optical fibre. The
objective lens (355230-B, NA = 0.55, Thorlabs Inc.) has a focal length fobj = 4.51 mm. Its
NA is considerably larger than the NA of the microcavity in order to minimise clipping
losses. The lens coupling the output into the final optical fibre should be chosen to ensure
mode-matching with the single-mode in the fibre. The fibre has a nominal mode-field radius
of w1 = (2.71 ± 0.27)µm at λ0 = 920 nm (780HP fibre, Thorlabs Inc.). The focal length for
optimum fibre-coupling is ffibre = fobj · w1/w0 = (11.6 ± 1.2) mm. Thus, an ffibre = 11 mm
aspheric lens was chosen for the experiments.

In order to estimate the throughput of the optical system, i.e. ηoptics, the following room-
temperature experiment is conducted: a single-mode optical fibre (780HP fibre, Thorlabs
Inc.) outputs laser light into free-space, which is collimated by an aspheric lens with effective
focal length 18.40 mm (C280TMD-B, Thorlabs Inc.). We measure the power out-coupled
from this fibre, P1. We then add all the optical components (Fig. A.6a) and couple the
light optimally into a second optical fibre and measure the out-coupled power from this
second fibre, P2. This gives us an estimation of losses in the microscope head: P2/P1. This
estimation gives the absorption losses in the full set-up: clipping losses, the reflection losses –
the fibres lack anti-reflection coatings – and also any wavefront distortions which limit the
in-coupling to the second fibre. We find ηoptics = (69.0 ± 3.6)%.

For experiments in Ch. 7, the microscope head is slightly modified. As shown in Fig. A.6b in
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Figure A.6: The optical setup. (a) The microcavity system resides in a cryostat at T = 4.2 K.
Light is coupled in and out of the microcavity with a polarisation-based dark-field microscope. The
objective lens is placed inside the cryostat along with the microcavity; the rest of the microscope
is located outside the cryostat. Laser light enters via a single-mode optical fibre and is collimated
with an f = 11 mm lens, passing through a LP. The input is reflected by a PBS; the polarisation
axis of the excitation, the V-axis, is set by the HWP. The PBS and a QWP suppress the coupling of
unwanted back-reflected laser light into the collection arm. H-polarised light scattered by the emitter
is transmitted through the PBS and focused into the final single-mode optical fibre. (b) The Raman
arm (red marked part), including a 30:70 beam-splitter (BS), an LP and a QWP, is added for the
spin-control experiments in Ch. 7 in order to additionally send circularly polarised light to the QD.

the red box, an additional arm (the Raman arm) is added, consisting of a 30:70 beam-splitter
(BS; T ∼ (62 ± 10)%, Thorlabs Inc.), a LP and a QWP. It is used to control the spin state
via a Raman transition and is set such that in addition to the cross-polarised configuration,
off-resonant, circularly-polarised light can be sent to the QD. As a consequence of the
circularly-polarised light, 50 % of the Raman laser background will end up in the collection
arm. In order to filter out the off-resonant light, we use a grating setup (∼ 50 % efficiency,
900 lines/mm at 930 nm, Watatch Photonics). This addition of optical components has a
major influence on the collection efficiency. Including the 30:70 BS and the grating setup
leads to ηoptics = (21.55 ± 4.55)%. Furthermore, any fibre-coupler used in the collection path
from port 1 to the detector, will bring an extra loss of ∼20% as becomes relevant in the
analysis of Ch. 6.

When we measure in the back-reflection regime (as discussed in Ch. 3 and 5), the generated
light pulses are sent into a 99:1 fibre beam-splitter, which we employ as an approximate
optical circulator. We send 1% of the light intensity into the QD-cavity system. The light is
back-scattered and 99% of it is sent to the detector.

In order to measure a G(2), a 50:50 fibre beam-splitter is put at the output of the collection
arm sending the outputs onto two detectors. Further, in the experimental determination of
a three-photon correlation function G(3), we divide the signal on one of the outputs of the
beam-splitter once more with a second 50:50 fibre-beam splitter and use four detectors.
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A.2.2 Lasers and pulse generation
For most experiments we use a tunable continuous-wave laser (CTL 950 or DL pro, TOPTICA
Photonics A.G., Germany).

We generate short (1-10 ns close-to-square or Gaussian-shaped signals with a full-width-at-
half-maximum (FWHM) between 75 ps and 2 ns) pulses using a high-bandwidth electro-optic
modulator (EOM; EOSpace AZ-6S5-10-PFA-SFAP-950-R5-UL) driven by a high sampling-
rate AWG (Tektronix 7122C or Tektronix 70002B). A trigger signal from the AWG is sent
to a time-correlator to synchronise the experiment, and the analog output from the AWG
is used to modulate the EOM. Similar to the EOM, an acousto-optic modulator (AOM;
Gooch & Housgo 3200-1117) can also be used for pulse generation of longer pulses (≥ 10 ns)
or for pulse-picking of short picosecond pulses. For the Raman drive (Ch. 7), an EOM is
driven by the AWG to generate side-bands of the laser frequency in order to address the spin
transitions. This is achieved by generating a sine signal with a oscillation period proportional
to the Zeeman splitting of the spin transitions. By rapidly turning this sine signal on and
off, spin control pulses at the transitions of the Raman frequency are generated.177

For single-photon generation and measurement of the QD lifetime, we use a mode-locked
laser (Mira 900-D picosecond mode, Coherent GmbH), which operates at a repetition rate of
76.3 MHz. The spectral width lies in the range between 60 and 100 GHz corresponding in the
transform-limited case to temporal widths between 5 and 3 ps, respectively. The temporal
width is the FWHM of the intensity.

For all lasers used we can select and stabilise the laser power sent to the system with an
AOM controlled digitally by a PID-loop.

A.2.3 Use and calibration of detectors
Two photon-counting detectors were used to perform experiments in this work, a supercon-
ducting NbTiN-nanowire single-photon detector (SNSPD) unit (EOS 210 CS Closed-cycle,
Single Quantum B.V.) optimised for operation at 950 nm; and a near-infrared optimised,
fibre-coupled silicon avalanche photodiode (APD, model SPCM-NIR, Excelitas Technologies
GmbH & Co. KG). In order to determine the overall collection efficiency, a careful calibration
of the detectors’ efficiencies was performed.

The measurement relies on a setup with a free-space laser beam (out-coupled from an
optical fibre with angled facet), a set of calibrated neutral density filters (NDs) that can be
placed in and out of the beam path, and a second optical fibre into which the beam is coupled
(in-coupling via an angled facet). The frequency ν of the laser light is determined precisely
prior to measurement with a interferometric device (HighFinesse Laser and Electronic
Systems GmbH). For optical power P , the photon flux is P

hν where h is Planck’s constant.
With the NDs removed from the beam’s path, the optical power emerging out of the

second fibre is measured with a calibrated silicon photodiode (Sensor Model S130C, Power
measuring console PM100D, Thorlabs Inc.). The attenuating NDs are subsequently placed
into the beam’s path in order to avoid saturating the photon-counting detectors. The photon
rate out of the fibre is then measured using both the SNSPD and the APD. The efficiency of
each detector is given by the ratio of the measured count-rate to the known photon flux.

The efficiency of the SNSPD is determined to be ηSNSPD = (82±5)%. The efficiency of
the APD is ηAPD =(42±3)% with an angled facet directly in front of the detector (FC-APC
type fibre). The efficiency is slightly higher, ηAPD = (44±3)%, with a flat facet directly in
front of the detector (FC-PC type fibre).
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All continous-wave transmission measurements were performed using an APD. The g(2)(τ)-
and g(3)(τ)-measurements as well as all time-resolved photon counting spin experiments and
lifetime measurements were performed using the SNSPDs. The binning size can be modified
(typically in a range of 1 − 100 ns) and depends on the specific experiment. Also, depending
on the data size and type of a measurement, the time tags were recorded either full recording
(e.g. in correlation, lifetime or resonance fluorescence measurements of all chapters) or scope
mode (e.g. in the single-shot readout measurements in Ch. 6), where only the rising and
falling edges on a channel are detected. The signals from the SNSPDs were analysed using
a time tagger (Time Tagger Ultra, Swabian Instruments GmbH) with a timing jitter of 9
picoseconds.



B
Theory: A chiral one-dimensional atom

Adapted from:

N. O. Antoniadis, N. Tomm, T. Jakubczyk, R. Schott, S. R. Valentin,
A. D. Wieck, A. Ludwig, R. J. Warburton and A. Javadi
“A chiral one-dimensional atom using a quantum dot in an open microcavity”,
npj Quantum Inf. 8, 27 (2022)

B.1 Transmission of a two-level emitter in a one-sided cavity
A model describing the transmission of a two-level system coupled to a one-sided cavity is
derived based on the theory in Ref. 122 We consider the situation in Fig. B.1a. The cavity has
two orthogonally polarised modes (H and V). Both modes are coupled to a one-dimensional
waveguide. The Hamiltonian for the system is:

H = ℏω0σz + ℏ(ω0 + δH)a†HaH + ℏ(ω0 + δV)a†VaV

+ iℏgH(σ+aH − σ−a
†
H) + iℏ(g∗Vσ+aV − gVσ−a

†
V)

+
∑

k

ℏωb†kHbkH +
∑

k

ℏωb†kVbkV

+
∑

k

ℏκ−(aHb
†
kH + a†HbkH) +

∑
k

ℏκ+(aVb
†
kV + a†VbkV).

(B.1)

The cavity contains a single two-level system (TLS) with angular resonance frequency ω0.
aH/V (bkH/kV) describes the annihilation operator for the cavity mode (waveguide fields).
ω0 + δH/V is the cavity angular frequency, ω is the laser angular frequency and ∆ω = ω0 − ω.
The atomic operators are given by σz = 1

2(|e⟩⟨e| − |g⟩⟨g|) and σ− = |g⟩⟨e|. The coupling
strengths between the cavity modes and the TLS are given by gH,V where gV can be complex.
Applying the same procedure as Ref. ,122 we end up with the following equations of motion
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for the cavity modes and the atomic operators in the laser frame:

ȧH/V = −i
(
∆ω + δH/V

)
· aH/V − κ

2aH/V − gH/V · σ− + i
√
κ · bin,H/V,

σ̇− = −i∆ωσ− − 2gH · σz · aH − 2g∗V · σz · aV − γ/2 · σ−,

σ̇z = gH ·
(
σ+aH + a†Hσ−

)
+
(
g∗Vσ+aV + gVa

†
V σ−

)
− γ ·

(
σz + 1

2

)
,

bout,H/V = bin,H/V + i
√
κ · aH,V,

(B.2)

where γ is the decay rate of the two-level system into non-cavity leaky modes and is introduced
using a Lindblad operator, and κ is the photon decay rate through the top mirror. bin,H/V
describe the horizontally/vertically polarised components of the input field, and bout,H/V
describe the corresponding output fields.

Equations B.2 are the quantum coupled mode equations for the evolution of a TLS and
a cavity driven by bin. In the bad cavity regime (κ ≫ g ≫ γ), where the cavity is fast, the
cavity mode can adiabatically be eliminated from the equations by setting ȧ = 0. This
implies:

aH,V = i
√
κ · bin,H,V − gH,V · σ−
κ
2 + i(∆ω + δH,V) . (B.3)

The linearly-polarised field at the input of the diode (the diode consists of the cavity, the
TLS and the optical components, as shown in Fig. B.1a) bin, is converted to a circularly
polarised field at the input of the cavity, and bin,H = 1/

√
2bin and bin,V = i/

√
2bin. Moreover,

the TLS has a circularly-polarised optical dipole moment, hence, gV = ilgH, where l = ±1
sets the handedness of the optical dipole moment. In the following, we drop the subscript H,
setting gH = g. Equation B.3 may be written in a more compact form by using the definition
tH,V = (1 + 2i (∆ω + δH,V)/κ)−1:

aH =
√

2
κ

ibin −

√
2g2

κ
σ−

 tH,
aV = i

√
2
κ

ibin − l

√
2g2

κ
σ−

 tV. (B.4)

The output of the cavity passes a quarter wave-plate and is converted to a vertical field
at the output of the diode, and hence, bout = 1√

2(bout,H − ibout,V). Combining this equation
with the last term in Eq. B.2, the field amplitude at the output of the diode can be related
to the input fields and the cavity operators as:

bout = bin +
√
κ

2 (iaH + aV),

= bin − bin(tH + tV) − i

√
Γ1
2 (tH + ltV) · σ−,

(B.5)
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Figure B.1: (a) Illustration of the concept and definition of the parameters of a one-sided cavity
with cavity modes aH and aV, and incoming (outgoing) field bin(bout). A two-level emitter with
ground state |g⟩ and excited state |e⟩ is coupled to the cavity modes. (b) Transmission through the
full system in (a) as a function of the laser frequency detuning, ∆f = ∆ω/(2π), for different β-factors
in the simplified, ideal case: δH/(2π) = δV/(2π) = 0, without spectral fluctuation, κ/(2π) = 102 GHz
and γ/(2π) = 0.30 GHz. (c) Transmission through the full system in (a) as a function of the
laser frequency detuning, ∆f = ∆ω/(2π), for different β-factors under experimental conditions:
δH/(2π) − δV/(2π) = 29 GHz, δsf/(2π) = 40 MHz, κ/(2π) = 102 GHz and γ/(2π) = 0.30 GHz. The
inset shows how the depth of the dip and the linewidth depend on the β-factor.

and the equations of motion become:

σ̇− = −i∆ωσ− − Γ1
2

(
tH + tV + 1

Fp1

)
σ− + ibin

√
Γ1
2 (−2σz)(tH + ltV ),

σ̇z = −Γ1

(
Re(tH + ltV ) + 1

Fp1

)(
σz + 1

2

)
+ bin

√
Γ1
2 (i(tH + tV )σ+ + h.c.) ,

(B.6)

where Γ1 = 4g2

κ , Fp1 = 4g2

κγ . Note that the decay rate of the TLS is Γ = 2Γ1 when the cavity
modes are degenerate. In this limit, the Purcell-factor is Fp = 2Fp1 as both cavity modes
contribute to the total Purcell-factor.

Next, we solve the steady-state equations σ̇− = σ̇z = 0 for σz and σ−. Following the
Ehrenfest theorem, we can replace the operators in the steady state by their expectation
values: ⟨σ−⟩ = S−, ⟨σz⟩ =Sz and ⟨bin⟩ = bin. We end up with:

S− =
ibin

√
Γ
4 (−2Sz)(tH + ltV)

−i∆ω + Γ/4
(
tH + tV + 2

Fp

) ,
Sz =

−1/2
(
Re(tH + ltV ) + 2

Fp

)
Re(tH + ltV ) + 2

Fp
+ 2b2

inRe[ (tH+tV)(t∗
H+lt∗

V)
i∆ω+Γ/4(t∗

H+t∗
V+2/Fp) ]

.

(B.7)

For the simplified case of resonant excitation (∆ω = 0) and degenerate cavity modes
(δH = δV ), Sz reduces to:

Sz = −1
2

1
1 + |bin|2/Pc

= −1
2Π, (B.8)
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with critical power:
Pc = Γ

8β2 · ℏω. (B.9)

β is the coupling efficiency of the emitter to the cavity and is described by: β = Γ
Γ+γ = Fp

Fp+1 .
Plugging Eq. B.7 into Eq. B.5, we determine the full transmission coefficient of the cavity-
emitter system via bout = t · bin to be:

t = 1 − tH − tV + Π
2∆ω

Γ
2 (tH+tV ) + 1 + 2

Fp(tH+tV )
· (tH + ltV )2

(tH + tV ) . (B.10)

When l = 1, the optical dipole and the incoming light have the same handedness, while
l = −1 for a non-interacting optical dipole. At low input powers, with the same simplified
condition as in Eq. B.8 (∆ω = 0, δH = δV ) and l = 1, the reflection coefficient can be reduced
to the simple form:

t(0) = −1 + 2β. (B.11)

In this case, t(0) = 0 at the critical coupling condition β = 1/2.
So far, t includes only the coherent part of the transmitted field. At higher excitation

powers, the transmitted field is a sum of coherent and incoherent components. The incoherent
component arises from the spontaneous emission of photons from the TLS. The incoherent
part of the scattering (Pincoh) can be extracted by subtracting the coherent scattering of the
TLS (both scattered into the cavity and into non-cavity modes) from the total power:93

Pincoh
|bin|2

= 1 − |t|2 − γ · | ⟨S−⟩ |2

|bin|2
. (B.12)

The intensity transmission from port 1 to port 2 (or vice versa) in Fig.4.1b is given by

T = |t|2 + β · Pincoh
2 · |bin|2

. (B.13)

In the simplest ideal case (resonance condition as in Eq. B.8 and β = 0.5), this leads to a
power-dependent transmission of the form:

T = |bin|2/Pc

(1 + |bin|2/Pc)
. (B.14)

The average photon flux per lifetime of the emitter is related to the input power via
ℏω ⟨n⟩ = |bin|2/(Γ + γ).

In order to match the conditions of the experiment, we include a spectral fluctuation. This
is done by convoluting a Lorentzian distribution with the quantum dot (QD) transmission:66

Tend =
∫
T (∆ωQD + σ) · L(σ, δsf) · dσ. (B.15)

L(σ, δsf) describes a Lorentzian distribution, σ is the standard deviation and δsf is the
full-width half-maximum (FWHM) of this distribution, i.e. the spectral fluctuation.

Figures B.1b and c show the transmission Tend through the system as a function of
the laser frequency for different values of the β-factor. We use κ/(2π) = 102 GHz and
γ/(2π) = 0.30 GHz for both figures. In Fig. B.1b we show the simplified, ideal case without
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mode-splitting and without spectral fluctuation (δH/(2π) = δV/(2π) =0, δsf/(2π) = 0). The
transmission is unity in the case of zero coupling between TLS and cavity (β = 0). With
increasing β, a dip appears on resonance with the TLS. This dip reaches zero at the critical
coupling condition β = 0.5. Increasing β further reduces the depth of the dip again. In
the strongly over-coupled regime (β ≈ 1), the photons that interact with the TLS acquire
a π-phase shift according to Eq. B.11. Figure B.1c shows the same plot after adapting the
theory to the experimental conditions, δsf/(2π) = 40 MHz and δH/(2π) − δV/(2π) = 29 GHz.
With no TLS-cavity coupling (β = 0), the transmission through the system is governed by
the two cavity modes and a dip of 30% arises due to the finite mode-splitting of the cavity. In
the under-coupled regime (β < 0.5), a small dip is visible on resonance with the QD, similar
to the ideal case. This dip reaches 90% for the critical-coupling condition (β = 0.5). At the
critical-coupling condition, most of the photons impinging on the system are dissipated by
the TLS to the non-cavity modes. Increasing β further results in a reduced dip size.

We model the transmission plots using Eq. B.15 with the same parameters as in Fig. B.1.
The saturation power extracted by fitting Fig. 4.9b in Ch. 4 with Eq. B.14 is Pc = 213 pW,
which is in agreement within the errorbar with the theoretical saturation power Pc = 198 pW
that is expected from Eq. B.9.

B.2 Second-order correlation function
In order to model g(2)(τ) of the backwards-propagating photons, we base ourselves on the
derivation of Ref.123 A comparison of the equations of motion in Ref.123 to the ones in
Eq. B.10 (resonance condition: ∆ω = 0, δH/V = 0 → tH/V = 1) reveals that the equations of
motion for a two-sided (2S) cavity are the same as the equations of motion for a one-sided
(1S) cavity under the transformation:

1
1/Fp,2S + 1 = 2

1/Fp,1S + 1 , (B.16)

where Fp,2S is the Purcell factor as defined in Ref.123 and Fp,1S is the Purcell factor in
Eq. B.10. This transformation is equivalent to transforming the β−factor as β2S = 2β1S.
Note that this substitution can also be seen from the difference in the simplified transmission
equations, which for a two-sided cavity is T = |1 − β|2 and T = |1 − 2β|2 for a one-sided
cavity.

We use the result for g(2)(τ) in Ref.123 to model g(2)(τ) in our experiments. The full
formula for g(2)(τ) is given by

g(2)(τ) = 1 +
(√

2Fp,2S
1 + Y 2

)2

· e(3/4)τ ′ ·
{(

Y 2 +
F 2

p,2S
2 − 1

)
· cosh

(
Ωτ ′

)
+ 1

4Ω ·
[
Y 2 · 5 − Fp,2S

1 + Fp,2S
− 1 −

F 2
p,2S
2

]
· sinh

(
Ωτ ′

)}
,

(B.17)

with Ω = 1/4 ·
√

1 − (8Y )2/((1 + Fp,2S)2; Y is the Rabi angular frequency in units of γ
(Y =

√
Γ/√γ · bin); and τ ′ is a dimensionless delay, τ ′ = γ(1 + Fp,2S) · τ . In the low power

limit (Y ≪ 1), this reduces to:

g(2)(τ) = (1 − F 2
p,2S · e−τ ′/2)2, (B.18)
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and
g(2)(0) = (1 − F 2

p,2S)2. (B.19)

The power dependence of the bunching is modelled by setting the time delay τ = 0, resulting
in:

g(2)(0) = 1 +
(√

2Fp,2S

1 + Y 2

)2

·
(
Y 2 +

F 2
p,2S

2 − 1
)
. (B.20)

These equations describe our measurements very well. Note that all the modelling for the
correlation function was carried out for the case of a degenerate cavity for simplicity. We
use Fp,1S = 0.8 to model our results in the backward direction. The discrepancy with the
expected value of Fp,1S = 1 likely results from the residual spectral fluctuation (see last part
of App. B.1 and Eq. B.15) as g(2)(τ) has a strong dependence on dephasing at low powers.55



C
Off-resonant drive through the top mirror of
the open microcavity

In our system, the only path for the excitation of the quantum dot (QD) with a light field is
via the top mirror. Transmission of a light field strongly depends on the detuning of the laser
to the cavity mode and the cavity parameters. In order to drive coherently a QD spin, a
detuned laser (≳ 200 GHz) has to drive a Raman transition (see Ch. 7). In this appendix we
derive the enhancement factor of the electric field through a one-sided cavity as a function
of the laser detuning ∆L and the linewidth ∆f and finesse F of the cavity. The goal is to
find out, if the QD spin transition can be driven coherently through the top mirror in the
given experimental conditions. We begin with a simple sketch of an incoming light field with
electric field amplitude E0 scattering of a planar cavity with two flat mirrors as shown in
Fig. C.1. The derivation follows Ch. 3 of Ref. 238

The ratio of the electric field at the centre of the cavity and the input field can be calculated

d

t1E0 t1t2

t1r2t1r2r1

t1r2t1

t1r2r1t1

t1r2r1r2t1r2r1r2r1 t1r2r1r2r1t1

r, t = r1, t1 r, t = r2, t2

t1r2r1r2t1

r1

Figure C.1: Illustration of the transmission ti and reflection ri coefficients of an incoming electric
field E0 scattering of a cavity consisting of two planar mirrors with distance d between them. The
sketch shows the first few components.
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by adding up all left and right propagating components inside the cavity

Ec

E0
= t1e

−iδ/4 + t1 · r2e
−3iδ/4 + t1 · r2 · r1e

−5iδ/4 + t1 · r2 · r1 · r2e
−7iδ/4 + ...

= t1e
−iδ/4

[
1 + r2e

−iδ/2

1 − r1r2e−iδ

]
, (C.1)

where δ is the phase change acquired on a round-trip and ri/ti are the reflection/transmission
coefficients of the two mirrors. For simplifications in the derivation of the detuning dependence
of the field enhancement in the cavity later on in this appendix, it is useful to define the
electric field ratio in the cavity right after the first mirror only propagating in the direction
of the incoming field:

Ec,→
E0

= t1 + t1 · r2 · r1e
−iδ + t1 · r2 · r1 · r2 · r1e

−2iδ + ...

= t1
1 − r1r2e−iδ

≈ t1
(1 − r1r2) + ir1r2δ

. (C.2)

Furthermore, from Eq. C.1 we can calculate the ratio of the full field intensity at the centre
of the cavity and the intensity of the input field:

Ic

I0
=
∣∣∣∣Ec

E0

∣∣∣∣2 = (1 − r2
1)(r2

2 + 1 + 2r2 cos(δ/2))
(1 − r1r2)2 + 4r1r2 sin2(δ/2) ≈ t21(r2 + 1)2

(1 − r1r2)2 + r1r2δ2 . (C.3)

Several parameters can be extracted from Eq. C.3. The resonances of the intensity in
the cavity are found at sin(δ/2) = 0, hence δ = j · 2π (j ∈ N) and the free spectral range
(FSR) of the cavity FSR = 2π. Using the small angle approximation we find the half
of the maximum intensity at (1 − r1r2)2 = r1r2δ

2. Therefore, δ = 1−r1r2√
r1r2

leading to a
full-width-at-half-maximum (FWHM) ≈ 2(1 − r1r2).

Using these equations for FWHM and FSR, we define the finesse of the cavity in terms of
the cavity mirrors reflection and transmission coefficients:

F = FSR
FWHM = π

1 − r1r2
. (C.4)

Further, some experimental parameters are connected with these expressions. According
to Ref. 94 and Eq. C.3, the FWHM = ∆δ = 2(1 − r1r2) = 4πd

c ∆f , with c the speed of light
and ∆f the cavity linewidth. Therefore, δ = 2d

λ 2π = 4πd
c f , where f is the laser frequency.

Further, FSRf = F · ∆f = c
4πd2π (FSRf is the FSR in frequency domain).

In order to estimate the detuning dependence of the field enhancement in the cavity we
plug these relations into Eq. C.2:

Ec,→
E0

= t1
(1 − r1r2) + ir1r2δ

= t1F(∆f/2π)
(∆f/2) + i(f − f0) . (C.5)
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This leads to a intensity ratio of:

Ic,→
I0

= t21F(∆f/2π)2

(∆f/2)2 + (f − f0)2 =
(
t1F
π

)2 (∆f/2)2

(∆f/2)2 + (f − f0)2

= X→
(∆f/2)2

(∆f/2)2 + (f − f0)2 . (C.6)

The resonance condition of Eq. C.6 is the enhancement factor of the field intensity in the
cavity, X→. Note that we can use the simplified scenario (Eq. C.2 instead of Eq. C.1)
because the detuning dependence of the enhancement factor should not be influenced by the
counter-propagating part of the electric field.

Finally, we can calculate the full enhancement of the electric field in our experimental
configuration, a one-sided cavity, where r2 = 1, and r1 = r. On resonance of Eq. C.3 (δ = 0):

Ic

I0
= 4(1 − r2

1)
(1 − r1)2 = 4(1 + r1)

(1 − r1) ≈ 8F/π = X. (C.7)

The enhancement at resonance with the cavity, X, is given by 8F/π. Note that in comparison
to the derivation in Ref. 238 there is an additional factor of 8. A factor of 2 comes from the
the one-sided nature of our cavity in comparison to a two-sided cavity. Another factor of
two arises from the derivation with the full electric field in the centre of the cavity rather
than only using the simplified scenario in Eq. C.2 (x = 2X→). This results in a factor of
four enhancement in the intensity of the field leading to an overall factor of 8.

In our experiments, F = 506, hence X = 1285. In order to look at the detuning dependence
of the enhancement in our experimental case, we take Eq. C.6 and calculate the detuning
at which the cavity enhancement cancels out the losses due to detuning of the laser with
respect to the cavity. We assume |f − f0| ≫ ∆f . In that case

Ic

I0
≈ X · (∆f/2)2

(f − f0)2 , (C.8)

i.e. Ic = I0 for

f − f0 =
√

8F
π

(∆f/2) =
√

2F
π

∆f = 12.6∆f = 448GHz. (C.9)

Hence, for our ∆f = 25 GHz, we observe this condition at a detuning of 448 GHz, as can be
observed in Fig. 7.1b.

As the spin can be driven by Raman transitions with a detuning of ≳ 200 GHzi, this
derivation shows how a Raman drive can be implemented in our cavity by driving through
the top mirror. In fact, at all Raman laser detunings used in Ch. 7, the field intensity is still
enhanced compared to the laser input, which allows for faster spin rotations (∼ 1 GHz) than
without the cavity.

iThis is an estimate based on previous experiments. In order to avoid populating the excited state in the
Raman process, the detuning should be much higher than the spin Rabi frequency.
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