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Summary

The discovery of the quantum Hall effect [1] and its explanation in terms of topol-
ogy opened up a new field in condensed matter theory [2–5]. Topology, in the orig-
inal context of mathematics, classifies geometric structures and studies whether an
object can be continuously deformed into another one. If such a continuous defor-
mation exists, then the two objects belong to the same topological class. Different
topological classes are distinguished by the value of a topological invariant. For
example, the tea cup and the torus both have one hole and therefore share the same
topology. The topological invariant is in this example the number of holes which is
called genus [6–9].

In 1982, Thouless, Kohmoto, Nightingale, and den Nijs related the quantized
Hall conductance to a topological invariant [2]. This work among others [4, 10–13]
paved the way towards the research of topological insulators (TIs) and supercon-
ductors (TSCs), which has become one of the most active research fields in con-
densed matter physics [6–8, 14–16]. TIs and TSCs are characterized by an energy
gap in the bulk and subgap states at the surface/edge. The analogue of the contin-
uous deformation of a geometrical object is here the continuous deformation of the
Hamiltonian, under which the energy gap of the bulk does not close.

The quantum Hall system is one example of a TI, and it requires an external mag-
netic field, which explicitly breaks time reversal symmetry (TRS). Another class,
namely time-reversal invariant TIs based on spin-orbit interaction (SOI), has been
intensively studied in theory [10–13, 17] and experiment [18, 19]. The next impor-
tant step in the research field of TIs was the description [20–23] and discovery [24–
26] of three-dimensional topological insulators.

Topological superconductors have more exotic edge states, so-called Majorana
modes, named after Ettore Majorana who proposed the existence of a particle that
is its own antiparticle in the context of particle physics [27]. In two dimensions,
chiral Majorana modes move around the one-dimensional boundary of the TSC,
similar to the conducting edge states in a quantum Hall sample. A pair of vor-
tices, in contrast, can host a pair of Majorana bound states (MBSs), with one MBS
in each vortex [28–31]. These states with exactly zero energy are their own antipar-
ticles and, even more interestingly, they obey non-Abelian braiding statistics [30,
32, 33]. This makes them highly attractive for quantum computation, since infor-
mation could be protected against local perturbations due to the topology of the
system. Usual Majorana qubit proposals rely on fermion parity conservation. One
pair of MBSs forms a nonlocal fermionic state, which can be empty or occupied by
one fermion. Therefore, two pairs of MBSs, so in total four MBSs, can define a qubit
with conserved fermion parity [30, 32]: If only one fermion is present, then it can
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either occupy the first or the second pair of MBSs and the fermion parity does not
change when the fermion is transferred from one pair of MBSs to the other one.

Another famous system hosting MBSs apart from vortices in two-dimensional
px + ipy superconductors is the Kitaev chain [34], which is a one-dimensional spin-
less p-wave superconductor. In this model, the MBSs appear at the ends of the chain
and are topologically protected against disorder, as long as the length of the chain
is much longer than the localization length of the MBSs. In the opposite limit, the
MBSs lose their topological protection, however, they can still exist for a fine-tuned
choice of parameters. Some works on so-called Poor Man’s MBSs, namely MBSs
which are not topologically protected, propose how to realize this short length limit
of the Kitaev chain in real systems, for example with the help of strong local mag-
netic fields that polarize electrons of two quantum dots along different axes [35, 36].
First experiments on Poor Man’s MBSs agree to some extent with the theory [37].

Most proposals for the realization of MBSs in experiments are based on the inter-
play of several ingredients which can mediate an effective superconducting p-wave
pairing. One prominent example of an engineered platform is the Rashba nanowire
[38, 39], in which the interplay of spin-orbit interaction, an external Zeeman field,
and conventional s-wave superconductivity gives rise to an effective p-wave pair-
ing. In 2012, Mourik et al. performed the first experiment looking for MBSs on
this platform and reported zero-energy states at one end of the nanowire, in agree-
ment with the theory predicting MBSs [40]. Many subsequent differential conduc-
tance experiments using different materials and slightly changed device designs
confirmed the existence of the zero bias peak (ZBP) [41–45]. However, soon it was
realized that also trivial states like Andreev bound states (ABSs) can accidentally
appear at zero energy [46–54]. Therefore, the measurement of a single ZBP is not a
sufficient indicator for the presence of an MBS. Subsequently, in order to clarify the
origin of the ZBPs, other signatures were under consideration, for example, oscil-
lations of the MBS energy as a function of the magnetic field [55], an almost quan-
tized differential conductance value of 2e2/h [56] and the simultaneous appearance
of ZBPs on both ends of the nanowire [57]. However, it turned out that trivial ABSs
can mimic all these features, and the problem remained unsolved [57–60]. More re-
cently, non-local conductance has been proposed as another indicator revealing the
bulk gap closing and reopening which accompanies a topological phase transition
[61, 62]. Potential braiding experiments that could confirm the non-Abelian braid-
ing statistic of MBSs, however, go beyond the current experimental capabilities.

Another platform for MBSs is based on chains of magnetic impurities deposited
on s-wave superconductors [63–76]. The exchange coupling between the magnetic
moments of the impurities and the itinerant electrons plays a similar role as the
external magnetic field in the Rashba nanowire. Scanning tunneling microscopy
(STM) measurements reported ZBPs at the ends of such impurity chains [77–80].
However, this platform has a limited tunability compared to the Rashba nanowire,
since the exchange coupling is fixed. Therefore, and because trivial subgap states
might cause similar signatures in experiments, the unambiguous identification of
MBS remains challenging also in this platform.
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Josephson junctions [81] are also a promising platform for the observation of
MBSs, the phase difference between two superconductors serves here as an addi-
tional control knob which can drive the system into the topological phase [82–87].
The original proposal for Josephson junctions hosting MBSs requires an external
magnetic field which is in-plane, in contrast to the usual out-of-plane configura-
tion for topological superconductivity in two dimensions [88]. In fact, in SNSNS
junctions, with three superconducting sections (S) and two normal sections (N), a
magnetic field is not required for the realization of MBSs, if the Fermi velocity at
the inner and outer Fermi surface differ [89, 90].

In general, the application of topology in condensed matter physics goes far be-
yond TIs and TSCs. For example, the fractional quantum Hall effect has an intrinsic
topological order due to strongly correlated electrons [91, 92]. Moreover, magnetic
textures like skyrmions [93–96] have a non-trivial topology in the sense that their
local magnetization wraps one time around a sphere such that one can assign a
topological invariant, also called topological charge, to this winding [97]. This real-
space topology in combination with manipulation schemes based on external fields,
currents, and temperature makes skyrmions good candidates for future information
carriers [98–101].

This thesis is organized as follows: in the introduction, chapter 1 of this thesis,
we recapitulate the concept of symmetry protected topological order and discuss it
using the examples of the Kitaev chain, the Rashba nanowire, and magnetic chains
deposited on superconductors. Moreover, we summarize the scattering matrix for-
malism in the context of differential conductance simulations. In chapter 2, we
study the local and non-local conductance in short Rashba nanowires. In particular,
we show that a single Andreev bound state can lead to ZBPs at both ends of the
nanowire, if the length of the nanowire is comparable to the localization length of
the Andreev bound state. Next, in chapter 3, we propose a mechanism based on
overlapping Andreev bound states, that can lead to a signature reminiscent of the
bulk gap closing and reopening of a topological phase transition in non-local con-
ductance. In chapter 4, we study trivial zero-energy states in helical spin chains.
In particular, we analyze spin configurations in which the angle between adjacent
spins smoothly changes close to the ends of the chain. Last, in chapter 5, we analyze
the superconducting diode effect for magnetic domain walls and skyrmions mov-
ing on a racetrack that is sandwiched by two superconductors forming a Josephson
junction. Additionally, we classify magnetic textures and predict which textures
support a superconducting diode effect without the need for an extra Rashba SOI
in the two-dimensional electron gas beneath the Josephson junction.
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CHAPTER 1
Introduction

1.1 Symmetry protected topological order
In this section, we briefly review the concepts of topology in condensed matter
physics with a focus on symmetry protected topological order (SPTO). SPTO, in contrast
to topological order (TO), describes systems that are only stable against perturbations
that respect the symmetry protecting the systems [102–105]. Topological insulators
[6–8, 14] and topological superconductors [15, 16] belong to this group of SPTO and
have been extensively studied in recent years. In general, topological insulators are
characterized by an insulating bulk, which means that the system is gapped at the
Fermi level, and the existence of conducting surface states [6, 8]. Perturbations that
respect the underlying symmetries of the system and which are not strong enough
to close the bulk-gap cannot remove the surface states. In fact, only a topological
phase transition, which is accompanied by the closing and reopening of the bulk-
gap, can change the number of surface states. This phase transition is described by
a topological order parameter, which changes its integer value when the system is
driven through the phase transition. In contrast to the local order parameters used
in the Landau theory [106, 107] to describe phase transitions in the framework of
spontaneous symmetry breaking, the topological order parameter is a global order
parameter. Usually, the topological order parameter is calculated in translationally
invariant systems and its integer value is linked to the number of topologically pro-
tected surface states via the bulk boundary correspondence. If a system is of dimension
d, then the surface states are of dimension d− 1. More general theories discuss also
higher-order topological insulators and superconductors, with edge states of lower
dimensions [108–112], these theories are, however, not main subject of this thesis.

The topological insulators and topological superconductors are classified by
time reversal symmetry (TRS), particle hole symmetry (PHS), and chiral symme-
try (CS) [113, 114]. TRS inverts the direction of time t as t → −t. This operation
leaves, for example, the position of a particle or its energy unaffected. Many other
physical quantities are, however, not invariant under this transformation. For in-
stance, TRS flips the direction of momentum, spin, and magnetic field. The action
of the time reversal operator T on the position-momentum commutator,

T i~T −1 = T [x̂, p̂]T −1 = −[x̂, p̂] = −i~, (1.1)
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shows that the action of the operator involves a complex conjugation. In general,
the TRS operator is anti-unitary and takes in matrix representation the form T =
UTK, where UT is a unitary matrix and K denotes complex conjugation [114]. If T
commutes with the Hamiltonian H as T HT −1 = H , then the system described by
H is invariant under time reversal. Applying the operator twice to a state should
return this original state up to a phase factor ϕ as [115]

T T =UTKUTK = UT U
∗
T = UT [UT

T ]−1 = ϕ (1.2)

⇔ UT = ϕUT
T (1.3)

⇔ UT
T = UT ϕ, (1.4)

where we used U †U = (UT )∗U = 1 ⇔ U∗UT = 1 ⇔ U∗ = [UT ]−1 which holds for
any unitary matrix U . Here, the superscripts T , ∗, and † denote the transpose, the
complex conjugate and the hermitian conjugate, respectively. Inserting the expres-
sion for UT from Eq. (1.4) into Eq. (1.3) yields

UT = ϕUT ϕ, (1.5)

which is satisfied for the choice ϕ = ±I, where I is the identity matrix. Conse-
quently, the time reversal symmetry operator squares to ±1. In the case of integer
spin particles (bosons) the time reversal symmetry operator squares to +1, while
for half integer spin particles (fermions) the time reversal operator squares to −1.
If T 2 = −1, then the time-reversed state |T v〉 is orthogonal to the original single
particle state |v〉 since [115]

〈v|T v〉 =
〈
T 2v

∣∣T v〉 = −〈v|T v〉 . (1.6)

Here, we used the anti-unitary property 〈T u|T v〉 = 〈v|u〉 of the time reversal op-
erator and introduced the bra-ket notation for convenience. So far, the discussion
has focused on a single particle state which can be generated with the usual cre-
ation operator c†m,ν acting on the vacuum |0〉 as |m, ν〉 = c†m,ν |0〉, with m denoting an
arbitrary quantum number and with ν ∈ {↑, ↓} the spin quantum number of a spin-
1
2
-system with a quantization axis along the z-direction. In general, the operator

transforms under time-reversal as [115]

T cm,↑T −1 = cm,↓ (1.7)

and

T cm,↓T −1 = −cm,↑ (1.8)

so that acting twice with the time reversal operator on the annihilation operator
yields

T 2cm,ν [T 2]−1 = −cm,ν . (1.9)

Going beyond the single particle picture, one can create an n particle state like
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Table 1.1: Table of topological insulators and superconductors: The different classes
distinguish systems by the presence or absence of TRS, PHS, and CS. Moreover,
the classification differentiates whether the TRS or PHS operator squares to +1 or
−1. Systems without PHS belong to the A classes (A, AI, AII, AIII), while systems
with P2 = −1 and P2 = +1 belong to the C (C, CI, CII) or D (D, DIII, BDI) classes.
The topological invariant of each class varies as a function of the dimension d. If
this invariant is zero, then the corresponding system is trivial and cannot enter the
topological phase. In contrast, systems with a Z or Z2 topological invariant have
also non-trivial phases.

d
Class T 2 P2 S 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

c†n,νc
†
n−1,ν ...c

†
1,ν |0〉 = Ω |0〉. The operator Ω is here composed of n creation operators

and it transforms under T 2 as [115]

T 2Ω[T 2]−1 = (−1)nΩ. (1.10)

Consequently, the action of the square of the time reversal operator on a multi-
fermion state is a function of the total number of fermions: Only in the case of a
state with an odd number of fermions the transformation gives a minus sign. This,
in combination with Eq. (1.6), leads to the famous Kramers theorem [116], which
states that every eigenstate in a system with an odd number of half-integer spin
particles has a time-reversed partner with the same energy if TRS is a symmetry of
the system. A concrete example of an application of the Kramers theorem is the An-
derson theorem: potential disorder does not break TRS in s-wave superconductors.
Therefore, pairs of time-reversed states can still form Cooper pairs [117].

Particle hole symmetry, which exchanges single particle creation and annihila-
tion operators [118], is also described by an anti-unitary operator as P = UPK,
where UP is a unitary matrix. Due to its anti-unitary character, the PHS opera-
tor squares also as P2 = ±1 [114, 119]. We note that the Bogoliubov-de Gennes
(BdG) formalism in superconductors requires PHS by definition: the Hamiltonian
is designed to have PHS. Therefore, PHS is a constraint in the BdG description of
superconductors and cannot break down.
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Last, chiral symmetry, also sometimes called sublattice symmetry, is the product
of TRS and PHS. The corresponding operator S is unitary, and its matrix representa-
tion is given by S = US , where US denotes a unitary matrix. In fact, if a Hamiltonian
H has chiral symmetry, then its matrix representation can be transformed to a block
off-diagonal matrix like

H̃ =

(
0 hB
h†B 0

)
, (1.11)

where hB is a block matrix [114, 119].

The combination of these three symmetries provides a classification scheme
leading to the 10-fold table of topological insulators and superconductors, see Table
1.1 [113, 114, 120]. The first column contains the names of the different classes, the
second to third columns indicate the square of the TRS and PHS operators, while
the fourth column indicate the presence (1) or absence (0) of chiral symmetry. The
last eight columns describe the form of the topological order parameter for the di-
mensions d = 1 to d = 8. A topological order parameter of 0 indicates that the
system is trivial, while Z and Z2 indicate that the order parameter is an integer or
takes only two integer values, with one value corresponding to the trivial phase.
This table repeats for higher dimensions and is therefore also called a periodic ta-
ble. Last, we note that the table can be generalized for nodal systems or additional
spatial symmetries [121–125]. Spatial symmetries are, however, often considered to
be weak in the sense that they can easily be broken.

1.2 The Kitaev chain

So far, we have introduced the basic ideas of topology in condensed matter physics.
Here, we will focus on topological superconductors and in particular on their edge
states, so-called Majorana modes, which are named after the Italian physicist Ettore
Majorana, who proposed the existence of a particle with the peculiar property of
being its own antiparticle in the context of particle physics [27]. So far, this parti-
cle, the Majorana fermion, has not been experimentally identified in particle/high-
energy physics, despite intense efforts. However, many years after the proposal of
the Majorana fermion, it was realized that the basic concept of a particle being self-
adjoint also applies to special quasiparticles, the Majorana bound states (MBSs), in
condensed matter theory [29, 30, 34, 126–128]. Apart from the fact that MBSs are
their own antiparticles, the MBSs, however, differ greatly from the original Majo-
rana fermion. For instance, the MBSs obey non-Abelian braiding statistics, which
makes them highly attractive for quantum computation [29, 30, 32, 33, 126, 129].

One of the most studied toy models for topological superconductivity and MBSs
was proposed by Alexei Kitaev [34]: a one-dimensional spinless p-wave supercon-
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γ1 γ2 γ9 γ10γ9 γ10γ1 γ2

(a) (b)

Figure 1.1: Kitaev chain with five fermionic sites: (a) If the hopping amplitude and
the superconducting pairing potential are set to zero, then only Majorana modes
(blue dots) from the same fermionic site (black rectangle) are paired. (b) In contrast,
if the system is tuned to the limit of vanishing chemical potential and a pairing
potential that is equal to the hopping amplitude, then only Majorana operators from
different sites couple. This means for a chain with open boundary conditions that
the Majorana mode at the very left (γ1) and the very right (γ10) remain unpaired and
together form a nonlocal fermionic state.

ductor, which is described via the lattice Hamiltonian

HKC =
N−1∑
j=1

[
−t(c†jcj+1 + c†j+1cj) + ∆cjcj+1 + ∆∗c†j+1c

†
j

]
−

N∑
j=1

µc†jcj, (1.12)

where t and µ denote the nearest neighbor hopping amplitude and the chemical
potential, respectively, while ∆ = |∆|eiϕ denotes the superconducting pairing po-
tential with the phase ϕ. Moreover, N is the total number of sites, and the chain has
open boundary conditions. The fermionic creation and annihilation operator c†j and
cj can be expressed in terms of the MBS operators γ2j−1 and γ2j as [34]

cj =
1

2
e−i

ϕ
2 γ2j−1 +

i

2
e−i

ϕ
2 γ2j c†j =

1

2
ei
ϕ
2 γ2j−1 −

i

2
ei
ϕ
2 γ2j, (1.13)

while the inverse transformation reads

γ2j−1 = ei
ϕ
2 cj + e−i

ϕ
2 c†j γ2j = −ieiϕ2 cj + ie−i

ϕ
2 c†j. (1.14)

Here, we note that the Majorana operators anti-commute like usual fermion oper-
ators, however, they square to one instead of zero [32]. Colloquially speaking, this
transformation splits the fermionic operator corresponding to one lattice site into
two Majorana operators. Rewriting the Hamiltonian in terms of the new operators
results in [34]

H̃KC =
i

2

{
N∑
j=1

−µγ2j−1γ2j +
N−1∑
j=1

[(t+ |∆|)γ2jγ2j+1 + (−t+ |∆|)γ2j−1γ2j+2]

}
. (1.15)

In the limit t = |∆| = 0 the Hamiltonian in Majorana representation simplifies
to [34]

H̃KC(t = ∆ = 0) = − i
2
µ

N∑
j=1

γ2j−1γ2j, (1.16)
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which means that only Majorana modes from the same site are coupled, namely
γ2j−1 and γ2j , see Fig. 1.1a. In contrast, if the chemical potential is set to µ = 0, and
hopping and superconducting pairing satisfy the condition t = |∆| > 0, then the
Hamiltonian reads [34]

H̃KC(t = ∆ > 0, µ = 0) = it
N−1∑
j=1

γ2jγ2j+1. (1.17)

This Hamiltonian involves only products of γ2j with γ2j+1 and therefore it exclu-
sively couples Majorana operators from different fermionic sites. Due to the open
boundary conditions, two Majorana operators, namely γ1 and γ2N , remain unpaired
at the ends of the chain, see Fig. 1.1b. We note that, in this fine-tuned limit, the num-
ber of sites is not relevant for the emergence of unpaired MBSs, as long as N ≥ 2,
since the MBSs are fully localized at the first and last site of the chain. This partic-
ular choice of the system parameters, t = |∆| > 0, is unrealistic; however, MBSs
appear also in less fine-tuned systems, see Fig. 1.2a showing the energy spectrum
of HKC as a function of the chemical potential in the limit |∆| � t. In this case, the
wave functions are not localized on single sites, see Fig. 1.2b, causing an exponen-
tially suppressed overlap of the left and the right MBS. Consequently, the energy of
the MBSs is not exactly zero anymore. The longer the chain, the better the spatial
separation of the MBSs and, therefore, the smaller their energy. A local perturba-
tion cannot affect the energy of the MBSs, if they are sufficiently separated. This
stability of the MBSs is attributed to the topology of the system: Let us consider a
fixed phase ϕ of the superconducting order parameter. In this case, the TRS opera-
tor has to be defined for this particular choice of ϕ as T = U(ϕ)K [115]. Changing
the superconducting phase to ϕ′ will therefore require an adjustment to the TRS
operator. If, for simplicity, the superconducting order parameter is real and if the
system is only exposed to perturbations that are invariant under time reversal sym-
metry, then the Kitaev chain belongs to the class BDI with a Z topological invariant
W which takes the values −1, 0, 1 [119, 130]. The system is in the trivial phase for
W = 0 and topological otherwise. In particular, W = −1 [W = 1] corresponds to
the case ∆ < 0 [∆ > 0]. Please note that a gauge transformation would break the
TRS, which was defined for the system with the originally real superconducting or-
der parameter. Therefore, in order to stay in the class BDI, the superconducting gap
has to close and reopen to go from one topological phase with ∆ < 0 to the other
one with ∆ > 0.

In contrast, if TRS is broken, then the system belongs to class D [34] and the
corresponding Z2 topological invariant Q is defined as [82, 89, 130]

Q = sgn {Pf [HKC(k = 0)P ]} sgn {Pf [HKC(k = π)P ]} , (1.18)

where Pf[] and sgn{} denote the Pfaffian and the sign function. The momentum-
dependent Hamiltonian density HKC(k) entering Eq. 1.18 can be written as

HKC(k) = [−2t cos(k)− µ]τ z + 2∆ sin(k)τ y (1.19)
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in the basis Ψ†K(k) =
(
c†k c−k

)
. Here, τ z and τ y are Pauli matrices acting in particle-

hole space. Moreover, the operator c†k [ck] creates [annihilates] an electron with
momentum k. We note that only the high symmetry points k = 0 and k = π enter
the expression ofQ. This considerably simplifies the calculation ofQwhich is given
by

Q = sgn {[−2t− µ]} sgn {[2t− µ]} . (1.20)

Consequently, Q = +1 for |µ| > 2t, as shown in Fig. 1.2c. However, this limit cor-
responds to an insulator since the chemical potential drops out of the band: This
means that the system remains gapped at the Fermi energy when the supercon-
ducting pairing strength is set to zero. In the opposite regime, |µ| < 2t, the value
Q = −1 indicates the topological phase. Last, we numerically perform the Majo-
rana decomposition of the wave functions, see Fig. 1.2d. This calculation reveals
that one MBS is localized on the left side while the second MBS is localized on the
right side.

1.3 Rashba nanowire
In the previous section, we introduced the Kitaev chain and showed that MBSs can
emerge at the ends of this chain for certain parameter regimes. A major drawback
of this model, however, is that it relies on p-wave superconductivity, which has not
been identified in nature. Sr2RuO4 has been considered as a candidate for chiral p-
wave superconductivity. However, the experimental data does not fully agree with
theoretical predictions and remains inconclusive [131–139].

Most superconductors have been identified as s-wave type while a few are of
d-wave symmetry[140–143]. A solution to this lack of natural p-wave superconduc-
tors relies on the combination of multiple ingredients available in nature, like nor-
mal s-wave superconductivity, Rashba spin orbit interaction (SOI) [144], and mag-
netic fields [38, 39, 88, 145], which allows generating an effective p-wave pairing
in a single band. A prominent example with these ingredients is the semiconduct-
ing Rashba nanowire proximitized by a superconductor and exposed to a magnetic
field [38, 39], which can be described via the Hamiltonian

H =

∫
Ψ†
[(
− ~2

2m

∂2

∂x2
− µ

)
τ z + ∆Zσ · S + ∆τx − iα ∂

∂x
σyτ z

]
Ψdx, (1.21)

where the Nambu vector

Ψ† =
(
ψ†x,↑ ψ†x,↓ ψx,↓ −ψx,↑

)
(1.22)

is constructed out of field operators ψ†x,ν [ψx,ν] which create [annihilate] electrons
with spin ν ∈ {↑, ↓} at the coordinate x. Moreover, ∆Z and ∆ denote the Zeeman
coupling strength and the superconducting pairing potential, while α denotes the
SOI strength. The direction of the Zeeman field is set by the vector S which couples
to the Pauli matrix vector σ = (σx, σy, σz), where the Pauli matrices σj act in spin



8 CHAPTER 1. INTRODUCTION

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
µ/t

−0.2

−0.1

0.0

0.1

0.2
E
/t

0 N
n

0.00

0.02

0.04

0.06

|Ψ
|2

(a) (b)

(c) (d)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
µ/t

−1
0
1

Q

0 N
n

0.0

0.1

|Ψ
γ
|2 γ1 γ2N

Figure 1.2: Numerical analysis of the Kitaev chain: (a) Eigenvalues of the Kitaev chain
as a function of the chemical potential. Here, we show only the 40 lowest eigenval-
ues and measure the chemical potential from half filling. The spectrum reveals a
zero-energy state in the topological regime. (b) Probability density of the wave
functions associated with the energies marked with the black and orange squares
in panel (a). The probability density of the lowest energy eigenstate has weights on
both ends of the chain and decays into the bulk. In contrast, the second eigenstate
has most of its weight in the bulk of the chain and vanishes at the ends. (c) The
topological invariant Q, which is calculated in an infinite system, changes its sign
when the system undergoes a topological phase transition. If Q = −1, then MBSs
are present. We note that the choice |µ| > 2 corresponds to the transition to an
insulator and is only shown to illustrate the change of the sign of Q. (d) A decom-
position of the lowest eigenvector [corresponding to the black line in panel (b)] into
the Majorana contributions reveals that one MBS is fully localized at the left end,
while a second MBS is localized on the right side. The chosen parameters are: t = 1,
∆ = 0.05, N = 200.

space. In contrast, the Pauli matrices τ j act in particle-hole space. Last, − ~2

2m
∂2

∂x2

describes the kinetic term, with m the effective mass of the electrons in the semi-
conductor and µ is the chemical potential. If this one-dimensional system is trans-
lationally invariant in x-direction, then the momentum k along the nanowire serves
as a good quantum number, and the Fourier transformed Hamiltonian is given by
H ′ =

∑
k Ψ†kH(k)Ψk with [39]

H(k) =

(
~2k2

2m
− µ

)
τ z + ∆Zσ · S + ∆τx + αkσyτ z (1.23)

in the basis Ψ†k =
(
c†k,↑ c†k,↓ c−k,↓ −c−k,↑

)
. Here c†k,ν[ck,ν] with ν ∈ {↑, ↓} creates

[annihilates] an electron with momentum k and spin ν. If the direction of the mag-
netic field is perpendicular to the direction of the spin-orbit interaction, for example,
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if it is oriented in the x-direction, then the energies are given by [39, 146]

E(k) = ±
[
∆2
Z + (αk)2 + ∆2 + ε2k ± 2

√
∆2
Z (∆2 + ε2k) + (αkεk)2

]1/2

(1.24)

with the abbreviation

εk =
~2k2

2m
− µ. (1.25)

In order to understand the whole system, it is useful to examine the impact of
the individual ingredients. First, we will disregard superconductivity by choosing
∆ = 0. In this limit, it is sufficient to study the electron block with the spin de-
gree of freedom. If the external magnetic field is turned off and SOI is absent, then
the Hamiltonian is given by Hk,1 = εkσ

0 and the bands are parabolic, as shown in
Fig. 1.3a. Moreover, the bands are degenerate since no spin-splitting term appears.
The addition of Rashba SOI to the Hamiltonian yields Hk,2 = εkσ

0 + αkσz which is
still diagonal in spin space. Calculating the energies by completing the square for
spin up and down sectors yields EHk,2,±(k) = ~2

2m
(k ± kso)2 − µ − Eso, with the SOI

momentum kso = mα/~2 and the SOI energyEso = (~kso)2/(2m) = mα2/(2~2). Con-
sequently, the SOI shifts the apex of the parabolas differently for the spin up and
the spin down bands, see Fig 1.3b. A magnetic field perpendicular to the Rashba
SOI vector lifts the degeneracy at k = 0 and splits the two bands, see Fig. 1.3c. Next,
we take superconductivity into account: the superconducting pairing potential cou-
ples the electron and hole sectors and can open a gap in the energy spectrum at the
chemical potential. The magnitude of this gap is a function of ∆Z . In particular, it is
given by Eg = 2∆ at ∆Z = 0, see Fig. 1.3d, it decreases in the interval 0 < ∆Z < ∆c

Z

until it vanishes at ∆Z = ∆c
Z , see Fig. 1.3e, and finally reopens for field strengths

∆Z > ∆c
Z if SOI is present in the system, see Fig. 1.3f. This closing and reopening

is associated with a topological phase transition from the trivial to the topological
phase, like in the Kitaev chain. The critical Zeeman field strength ∆c

Z of the phase
transition is determined by the condition E(k = 0) = 0, see Eq. (1.24), which yields
[33]

∆c
Z = ±

√
∆2 + µ2. (1.26)

The Rashba SOI does not explicitly enter this expression, however, the SOI is still
required for the topological phase since it enforces the reopening of the gap at
∆Z > ∆c

Z . In fact, if SOI was absent, then superconductivity would break down
at ∆Z > ∆ according to the Pauli limit, in which the Zeeman field overcomes the
binding energy of the Cooper pairs and splits them [147–149].

Next, we discretize the model from Eq. (1.21) and generalize it for position-
dependent chemical potential µn, superconducting pairing ∆n, and Zeeman field
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∆Z,n:

HL =
N∑
n=1

(∑
ν,ν′

c†n,ν

[(
−tδν,ν′ + iαLσ

y
ν,ν′

)
cn+1,ν′ +

1

2

(
[2t− µn]δν,ν′ + ∆Z,nσ

x
ν,ν′

)
cn,ν′

]

+ ∆nc
†
n,↓c

†
n,↑ + H.c.

)
. (1.27)

Here, c†n,ν [cn,ν] creates [annihilates] an electron with spin ν ∈ {↑, ↓} at the lattice site
n. The hopping amplitude is given by t = ~2

2ma2 , where a denotes the lattice constant.
Similar, the lattice version αL of the SOI coefficient is related to the continuum ver-
sion α as αL = α

2a
. Moreover, N denotes the total number of sites in the chain. In

this section, we consider the simple case of position-independent parameters like
µn = µ, ∆n = ∆ and ∆Z,n = ∆Z and numerically diagonalize the Hamiltonian
HL for hard-wall boundary conditions. The eigenvalue spectrum reveals a clos-
ing and reopening of the superconducting gap in agreement with the predictions
from the bulk system, see Fig. 1.4a. Moreover, the reopening is accompanied by
the appearance of low-energy subgap states. These subgap states are identified as
MBSs. Their energy is shifted away from zero and oscillates as a function of the
Zeeman field strength due to an overlap of the wave functions, see the black line in
Fig. 1.4b. The wave functions are mainly localized at the ends of the nanowire and
decay exponentially into the bulk. Additionally the wave function is modulated by
an oscillation whose period is roughly set by the Fermi wave length [146, 150]. In
contrast, the first excited state, see the red line in Fig. 1.4b, is mainly localized in the
bulk of the system and decays at the boundaries of the system.

1.4 Transport

Many experiments have been searching MBSs in Rashba nanowires [40–45, 57],
however, despite these great efforts, the experimental data remains ambiguous.
One of the most common experiments relies on the measurement of differential
conductance curves, like for example the seminal work of Mourik et al. [40]: a semi-
conducting nanowire with strong SOI, for instance InAs or InSb, is proximitized by
a grounded superconductor, usually Al or NbTiN [41–45]. Moreover, a normal lead
is attached to one side of the semiconducting nanowire, for example, the left side,
and a tunnel gate, mounted to the semiconducting nanowire close to the normal
lead, allows a tuning of the barrier potential between the normal lead and the prox-
imitized nanowire. The experiment measures the current response to a voltage that
is applied between the normal lead and the grounded superconductor. This ex-
perimental setup, known as a two-terminal device, is suited for local differential
conductance measurements. Here, locality is meant in the sense that the differen-
tial conductance measurements detect only states which have a finite weight close
to the normal lead. In an ideal topological nanowire, MBSs appear at the ends of the
nanowire and would therefore lead to a zero-bias peak in the differential conduc-
tance curve. The two-terminal device can be extended to a three-terminal geometry
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Figure 1.3: Energy spectra in the Rashba nanowire. First row: Rashba nanowire. Sec-
ond row: proximitized Rashba nanowire. (a) The energy spectrum is parabolic and
doubly degenerate due to the spin degree of freedom in the absence of a Zeeman
field. (b) A Rashba term shifts the parabolas different for spin up and spin down
and an additional Zeeman term (c) removes the degeneracy and opens a ”gap” at
k = 0. (d) The proximity effect opens a gap at the chemical potential. (e) If the Zee-
man field strength ∆Z reaches the critical value ∆c

Z , then the energy gap closes, (f)
but it reopens at higher field strengths indicating the topological phase transition.
The parameters are ~2/(2m) = 1, µ = 0, ∆ = 0.01, α = 0.2, (c) ∆Z = 0.005, (e)
∆Z = 0.01, (f) ∆Z = 0.015.

by attaching a second normal lead at the other end of the nanowire. Depending on
the voltage-current configuration, it is now possible to measure not only local dif-
ferential conductance on both ends of the nanowire but also the so-called nonlocal
differential conductance. The latter can detect extended states, namely states that
connect the two normal leads.

Here, we calculate the local and nonlocal differential conductance via the python
package Kwant [151], which is based on the scattering matrix (S-matrix) formalism
[152, 153]. For the actual computation, we implement the tight-binding Hamilto-
nian of the nanowire, see Eq. (1.27), with a position-dependent chemical potential
as

µn = µ− (γL + µ)Θ(NB,L − n)− (γR + µ)Θ(n− [N −NB,R]), (1.28)

where γL [γR] and NB,L [NB,R] denote the barrier strength and barrier length in
terms of sites on the left [right] end of the nanowire. Moreover, Θ(n′) denotes the
Heaviside step function with the definition Θ(0) = 1. The profile of the supercon-
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Figure 1.4: Energies and wave functions in the finite Rashba nanowire: (a) Energies
(blue) as a function of the Zeeman field strength ∆Z . The spectral gap is maximal at
∆Z = 0, decreases in the region 0 < ∆Z < ∆c

Z until it vanishes at the critical value
∆c
Z , and reopens for ∆Z > ∆c

Z . This reopening is accompanied by the appearance
of MBSs close to zero energy, which are energetically separated from the bulk states
of the nanowire. (b) Probability density of the lowest and second-lowest state in the
topological phase. The lowest state (black) reveals an accumulation of the proba-
bility density at the ends of the nanowire and decays exponentially into the bulk of
the nanowire. This decay is modulated by oscillations, whose period is determined
by the Fermi wave length. The second lowest state (red) is mainly localized in the
bulk of the nanowire and vanishes at the ends. The value of the Zeeman field and
the energies associated with the wave functions are indicated in panel (a) with the
black and red squares. The chosen parameters are a = 5 nm, αL = 2 meV, ∆ = 0.25
meV, L = Na = 700a = 3500 nm, t ≈ 102 meV, and µ = 0.6 meV.

ducting gap is given by

∆n = ∆{1−Θ(NB,L − n)−Θ(n− [N −NB,R])}, (1.29)

while we choose the Zeeman field to be constant in space ∆Z,n = ∆Z . For the trans-
port calculation, we attach two leads to both ends of the nanowire. These leads are
also described by Eq. (1.27) with spatially uniform parameter profiles such that the
Hamiltonians of the leads are translationally invariant. In particular, the supercon-
ducting pairing vanishes in the leads ∆→ 0, and the chemical potential in the lead
can differ from the value in the nanowire, meaning that µLead 6= µ. In addition,
we choose the same SOI strength αL and Zeeman field strength ∆Z in the lead as
in the nanowire. This choice, however, is not crucial and modifications of the SOI
strength or the Zeeman field strength in the lead do not affect the qualitative results.
The most important step of the differential conductance computation, namely the
calculation of the S-matrix, is internally handled by Kwant.

In general, the S-matrix for a three-terminal device is defined as

S =

(
SLL SRL
SLR SRR

)
, (1.30)
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Figure 1.5: Scattering processes in a NSN junctions: In total, four scattering processes
take place in a NSN junction. First, an electron coming, for example, from the left
normal region can be reflected at the first NS interface with an amplitude of RL.
Second, the electron can undergo Andreev reflection with a probability amplitude
AL, meaning that the electron enters the superconductor (blue) and forms a Cooper
pair with another electron under the retro-reflection of a hole with opposite spin.
Moreover, there is a finite probability amplitude TLR that an electron tunnels from
the left normal region through the superconductor to the right normal region. Last,
an incident electron can undergo crossed Andreev reflection, described by the am-
plitude ALR, meaning that the electron entering the superconductor from the left
normal region can form a Cooper pair with another electron while at the same time
creating a hole in the right normal region. The red and yellow arrows describe the
propagation directions of electrons and holes with spin σ, respectively, while the
two dots encircled by the ellipse represent a Cooper pair. The dashed vertical lines
separate the normal regions, denoted by N , from the superconductor, denoted by
S.

where the sub-blocks Sαβ with α, β ∈ {L,R} are given by

Sαβ =

(
Seeαβ Sehαβ
Sheαβ Shhαβ

)
. (1.31)

Here, for example, SehLR describes the scattering process that involves an incident
electron from the left lead and an outgoing hole in the right lead. In order to un-
derstand the scattering and therefore the local and nonlocal differential conduc-
tance, which is set by combinations of the scattering matrix elements, we recapit-
ulate all scattering processes appearing in a normal-superconductor-normal (NSN)
junction, see Fig. 1.5. First, we note that the energy spectrum in the superconductor
is gapped; consequently, an incident electron coming from a normal metal cannot
just enter the superconductor at energies below the superconducting gap. Instead,
the electron can be normal-reflected or Andreev-reflected, with the probability am-
plitudes Rη = Seeηη and Aη = Sehηη , which determine the local differential conductance
at zero temperature as

Gηη(ω) = Nη −Rη(ω) + Aη(ω), (1.32)
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Figure 1.6: Local differential conductance in the finite-size Rashba nanowire: (a) Left lo-
cal differential conductance in the trivial regime (∆Z = 0) as a function of energy ω.
If the strength of the barrier is set to zero, γL = 0, then perfect Andreev reflection
takes place (blue x-shaped markers) at energies inside the gap. Therefore, the differ-
ential conductance is 4e2/h. However, a finite barrier strength gives rise to normal
reflection processes, and consequently, GLL is reduced. In the regime of realistic
barrier strengths (green triangle markers), the differential conductance is strongly
suppressed inside the gap and is peaked at the gap edge. (b) Left local differen-
tial conductance in the topological regime (∆Z = 0.2 > ∆c

Z ≈ 0.103) as a function
of energy. The maximal differential conductance is 2e2/h since only one band con-
tributes to the Andreev reflection. Increasing the barrier strength reduces the width
of the zero-energy peak. (c) Zero-energy left local differential conductance in the
topological regime as a function of the left barrier strength. At low barrier strength,
the differential conductance at zero energy remains close to 2e2/h, as shown also in
(b). For strong barrier strength, however, GLL(ω = 0) deviates from the quantized
value. The longer the barrier, here measured in terms of sites, the faster the decay of
GLL(ω = 0). The chosen parameters are a = 1, αL = 0.2, ∆ = 0.025, N = 201 +NB,L,
t = 1, and µ = 0.1, µLead = 0.1, γR = 0, NB,R = 1. Moreover, in (a) and (b) NB,L = 3.
These calculations are done for the temperature T = 0 K.

with η ∈ {L,R} and Nη the number of channels [154–156]. Moreover, ω denotes the
energy of the ingoing electron. The Andreev reflection describes a process in which
the electron combines with a second electron to form a Cooper pair under the retro-
reflection of a hole into the metallic lead from which the original electron came. If no
barrier is present between the normal lead and the superconductor, then Andreev
reflection is favored over normal reflection. In the absence of further processes, a
charge of 2e per spin degree of freedom is transferred, explaining the differential
conductance value of 4e2/h in the limit of perfect Andreev reflection. This value of
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differential conductance decreases with growing barrier potential since the normal
reflection comes into play, as shown in Fig. 1.6a. If the Andreev reflection vanishes,
then the local differential conductance is zero inside the gap.

Multiple Andreev reflections in systems with a spatially varying superconduct-
ing order parameter, like an SNS junction, lead to the formation of subgap states,
the so-called Andreev bound states (ABSs). These non-topological subgap states
are localized in the region in which the superconducting order parameter varies.
The energy of these trivial ABSs is a function of all system parameters and can be
tuned to zero [46–54]. A measurement of a zero-energy state is consequently not
a sufficient indicator to unambiguously identify MBSs. Subgap states close to the
normal leads change the scattering processes. The current and therefore the dif-
ferential conductance is suppressed for moderate barriers in fully gapped systems.
In contrast, if subgap states are present, then the differential conductance becomes
finite at the energies of these subgap states. This is because an electron can tunnel
through the barrier and the subgap state mediates the Andreev reflection.

An MBS has equal weights of electron and hole charge, which is the precon-
dition for the zero-bias differential conductance peak quantization in an idealized
system: The normal lead serves as an electron and a hole lead, as a result of the
absence of superconductivity in the lead, the electron and hole sectors do not mix.
Consequently, one can theoretically split the lead into two separate leads, namely
one electron and one hole lead. If an electron in the electron lead propagates to-
wards the NS interface, then it tunnels into the MBS with a tunneling amplitude
t. The MBS with its vanishing charge mediates the Andreev reflection process, and
the resulting hole can again tunnel through the barrier into the hole lead. This sec-
ond tunneling process is described by the same tunneling amplitude t since the hole
has to tunnel through the same barrier [56]. The whole process is therefore similar
to a resonant tunneling process, which describes an electron tunneling through two
subsequent barriers at an energy of a state which is localized between the double
barrier [157]. If the two barriers are of the same strength and if the shape of the
barriers is given by delta-potentials, then the tunneling probability of the electron
is almost independent of the barrier strength, and the transmission coefficient is
quantized to one. Back in the picture of the MBSs, we note that in the topological
phase, the superconductor gaps out only one band since the second band is shifted
to much higher energies and is essentially unaffected by the superconductor and,
therefore, the MBS zero-bias differential conductance peak is “quantized” to 2e2/h,
see Fig. 1.6b. However, this quantization is based on idealized assumptions and
breaks down in any realistic system: first, in a finite-size nanowire, the two MBSs
from opposite ends overlap and split from zero energy; consequently, they cannot
mediate perfect Andreev reflection anymore, and the differential conductance de-
creases as a function of the barrier strength, see Fig. 1.6c. The longer the barrier, the
faster the local differential conductance decays. Moreover, temperature broadens
the peak and lowers the differential conductance value. Last, the lead itself causes
a broadening of the peak, but the barrier lowers the coupling to the lead and there-
fore the peaks become sharper, see Fig. 1.6b. This width of the peak, however, also
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sets the timescale that it takes an electron to tunnel into this state. An increase of the
barrier height means, therefore, that the tunneling time increases, and in the limit
of very strong barriers, the process would exceed any realistic measurement time.

Apart from normal reflection and Andreev reflection also nonlocal processes
take place in the three-terminal device. First, an electron can tunnel from the left
normal lead through the entire proximitized nanowire and enter the right normal
lead, see Fig. 1.5. This process, also known as co-tunneling, is described by the
transmission coefficient TLR = SeeLR. Finally, an electron incident from the left onto
the NSN junction can undergo crossed Andreev reflection (CAR), meaning that the
electron combines with another electron to form a Cooper pair, similar to normal
Andreev reflection, but this time a hole is created in the right lead, see Fig. 1.5. This
process is described by the CAR coefficient ALR = SehLR. In general, such nonlocal
processes are exponentially suppressed at subgap energies via exp(−L/ξ), where L
is the length of the superconducting section and ξ the superconducting coherence
length [158]. Consequently, usual subgap states do not show up in nonlocal pro-
cesses in the limit L� ξ, therefore finite amplitudes of nonlocal processes are often
an indicator for bulk states. The nonlocal differential conductance from left to right
lead (η = L, η′ = R) and right to left lead (η = R, η′ = L) at zero temperature is
given by [154–156, 158]

Gηη′(ω) = Aηη′(ω)− Tηη′(ω) (1.33)

and therefore the local and nonlocal differential conductance can be fully described
in terms of the scattering processes in superconductors. In general, local and non-
local differential conductance are not completely independent of each other. More
precisely, the antisymmetric (with respect to ω) component of the local differential
conductance Go

η,η is related to the antisymmetric component of the nonlocal differ-
ential conductance Go

ηη with η 6= η as [156, 159]

Go
ηη(ω) = −Go

ηη(ω). (1.34)

We illustrate this relation in Fig. 1.7, where Go
ηη, shown as the red solid line, exactly

matches with −Go
ηη shown as blue dots.

Last, we extend our model and include potential disorder, which we describe
via a Gaussian distribution centered at the value of the chemical potential and with
a standard deviation κ [160–163]. We add this type of disorder to every site, except
the sites of the barriers. Here, we choose moderate disorder, such that the system
does not enter the Anderson localization regime [164]. We plotGLL andGLR in Figs.
1.8a and 1.8b as a function of the Zeeman field strength and the energy. The left local
differential conductance reveals all states on the left side of the nanowire, includ-
ing a signature stemming from the MBSs when ∆Z > ∆c

Z , see Fig. 1.8a. In con-
trast, the nonlocal differential conductance reveals only the extended states, such
that the bulk gap closing and reopening is well visible, see Fig. 1.8b. We test the
MBS stability with another stronger disorder configuration, see Fig 1.8c. The MBS
is still visible, but its differential conductance deviates from the perfect quantiza-
tion. Moreover, the nonlocal differential conductance is slightly suppressed, and
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Figure 1.7: Symmetry relations of local and nonlocal differential conductance: (a) [(b)]
The antisymmetric part of the local differential conductance Go

LL [Go
RR], shown as

the red solid line, is equal to the negative of the antisymmetric part of the nonlocal
differential conductanceGo

LR [Go
RL] shown by the blue dots. The chosen parameters

are a = 5 nm, αL = 2 meV, ∆ = 0.25 meV, N = 700 + NB,L + NB,R, t = 102 meV,
µ = 0.6 meV, µLead = 25 meV, γL = γR = 10 meV, NB,L = NB,R = 4, κ = ∆. These
calculations are done for the temperature T = 0 K.

the closing and reopening signature is less clear. In particular, the gap does not
close at a single value of the Zeeman field; instead, there is a range of Zeeman en-
ergies at which the system is gapless, roughly from ∆Z = 2∆ to ∆Z = 3∆. This
calculation illustrates to some extent the topological protection of the MBSs: the
chosen disorder does not break the symmetry of class D (PHS) and consequently,
the disorder does not remove the MBSs. This statement, however, is oversimplified
since sufficiently strong disorder can close the superconducting gap and drive the
system into the trivial phase. In this regime, the nonlocal differential conductance
is strongly suppressed since strong disorder causes a localization of the originally
extended states [161].

1.5 Yu-Shiba-Rusinov states

In the previous section, we introduced ABSs, however, other mechanisms than An-
dreev reflection can also lead to subgap states in superconductors. A magnetic im-
purity, for example, does not obey the Anderson theorem [117], locally suppresses
the superconducting order parameter, and gives rise to a subgap state, the so-called
Yu-Shiba-Rusinov [165–168] (YSR) state. The physics of this system is described via
the Hamiltonian [166]

HY SR =

∫
Ψ†(r)

[(
− ~2

2m
∇2

r − µ
)
τ z + Jδ(r− r0)σ · S + ∆τx

]
Ψ(r)dr, (1.35)

which is written in the basis presented in Eq. (1.22). Here we replaced the origi-
nal one-dimensional coordinate x, used in Eq. (1.21), with the spatial coordinate r,
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Figure 1.8: Local and nonlocal differential conductance in the presence of disorder as
a function of the Zeeman field strength ∆Z and the energy ω: (a,c) local differential
conductance GLL (b,d) nonlocal differential conductance GLR. The local differen-
tial conductance elements reveal the closing and reopening of the superconducting
gap as a function of the Zeeman energy. Moreover, in the topological phase, the
MBSs are visible as ZBPs with a differential conductance maximum close to 2e2/h
at ω = 0. In contrast, the nonlocal differential conductance does not show the MBSs
since they are well separated and do not form an extended state that connects the
two normal leads. The first row corresponds to moderate disorder κ = 1∆, while
the second row corresponds to strong disorder κ = 5∆. The stronger the disorder,
the less clear is the closing and reopening of the bulk gap in nonlocal differential
conductance. The chosen parameters are a = 5 nm, αL = 2 meV, ∆ = 0.25 meV,
N = 700 + NB,L + NB,R, t = 102 meV, µ = 0.6 meV, µLead = 25 meV, γL = γR = 10
meV, and NB,L = NB,R = 4. These calculations are done for the temperature T = 0
K.

which can account for different dimensions of the system. Additionally r0 denotes
the position of the impurity and J denotes the exchange coupling strength between
the classical magnetic moment of the magnetic impurity and the spin of the itiner-
ant electrons.

In the classical limit S� 1, the energy of this YSR state can be calculated via the
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Figure 1.9: YSR state energies in a one-dimensional system as a function of the exchange
coupling: (a) energy of a YSR state associated with a single magnetic impurity. The
analytic solution (red solid line) for the impurity-induced subgap state [Eq. (1.36)]
agrees well with the numerical result (blue circular markers). (b) If two magnetic
impurities are ferromagnetically aligned, then the two associated YSR states hy-
bridize and split in energy. (c) In contrast, if the two magnetic impurities have an
antiferromagnetic ordering, then the energies of the two subgap states are degen-
erate. For the numerical calculation, we use the tight-binding model presented in
Eq. (1.27) with a = 1, ∆ = 0.08, N = 200, αL = 0, t = 1, and µ = 0.2. Moreover,
in panel (a), we set ∆Z,n = Jδn,nImp

with the Kronecker delta δn1,n2 and the impurity
position nImp = 100. Similar, we chose ∆Z,n = Jδn,nImp

+ [−]Jδn,nImp+dI in (b) [(c)],
where dI denotes the distance between the two impurities, which is set to dI = 12.
Additionally, we chose nImp = 94 in panels (b) and (c).

T-matrix formalism and is approximately given by

EY SR = ±∆
1− γ2

1 + γ2
, (1.36)

where γ = πv0J |S| [166]. Here, v0 denotes the density of states of the normal (not
superconducting) system at the Fermi energy [169]. In the absence of an exchange
coupling, there is no subgap state, however, a small but finite exchange coupling
introduces a subgap state close to the gap edge. The energy of this state decreases
with increasing exchange coupling and crosses zero energy at γ = ±1, as shown in
Fig. 1.9a for a one-dimensional system. This zero-energy crossing is accompanied
by a quantum phase transition [170], during which the spin quantum number of the
ground state changes from 0 to 1/2 since the magnetic impurity binds a quasipar-
ticle [170–174]. Moreover, self-consistent calculations of the superconducting gap
show a sign change of the superconducting order parameter at the position of the
impurity [169, 175, 176].

The electron and hole component Ψ± of the wave function of a YSR state are
given by

Ψ± =
1√

NπkF r
sin
(
kF r −

π

4
+ δ±

)
e−∆ sin(δ+−δ−)r/(~vF ) (1.37)
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in two dimensions and by

Ψ± =
1√
NkF r

sin
(
kF r + δ±

)
e−∆ sin(δ+−δ−)r/(~vF ) (1.38)

in three dimensions [167, 177]. Here, kF and vF denote the Fermi momentum and
Fermi velocity, respectively. Moreover, r denotes the distance from the impurity, N
is a normalization factor, and

tan
(
δ±
)

= µ0v0 ± v0JS/2, (1.39)

where µ0 is an additional non-magnetic potential of the impurity. The main differ-
ence is given by the 1/r vs. the 1/

√
r decay.

If two impurities with the same direction of magnetic moments are placed close
to each other, then the two YSR states might overlap and form a bonding and anti-
bonding state such that their energy splits similar to the energies of overlapping
states in a double quantum dot [178], see Fig. 1.9b. In general, the energy splitting
is a function of the relative orientation of the two magnetic moments and the dis-
tance between the impurities [179, 180]. For example, if the magnetic moments are
aligned antiferromagnetically along the z-axis, then the magnetic impurities trap a
spin up and a spin down quasiparticle and the energies of the two subgap states
remain degenerate since the quasiparticles differ in the spin quantum number, see
Fig. 1.9c. In contrast, every deviation from the antiferromagnetic ordering causes a
finite energy splitting, as long as the inter-impurity distance is not much larger than
the decay length of the YSR wave functions [179].

Based on these considerations, an alternative platform for MBSs has been pro-
posed: the one-dimensional impurity chain. More specifically, a one-dimensional
array of magnetic impurities deposited on a superconductor gives rise to overlap-
ping YSR states, which form an energy band inside the gap, the so-called Shiba
band. This band can support MBSs if the magnetic moments of the impurity adatoms
are ferromagnetically aligned and if, in addition, Rashba SOI is present in the su-
perconductor. Alternatively, the magnetic moments can form a spiral, meaning that
the spins along the chain rotate in a plane. In the latter case Rashba SOI is not
required for the appearance of MBSs [63–76, 181]. In fact, it was shown that a uni-
tary transformation [182] maps the spiral of magnetic moments in one dimension to
a constant ferromagnetic impurity chain with Rashba spin orbit interaction. A spi-
ral ordering could be mediated via Rudermann-Kittel-Kasuya-Yosida (RKKY) [183–
185] interaction or Dzyaloshinskii–Moriya interaction (DMI) [186, 187]. The for-
mer mechanism orders the spins such that the rotation period of the spins is set by
π/kF , where kF denotes the Fermi momentum. Spin-polarized scanning tunneling
microscopy (STM) measurements have already shown ferromagnetic ordering, an-
tiferromagnetic ordering, and helical ordering [188–191]. In general, the alignment
of the magnetic moments depends on the element used as the magnetic adatom,
the growth direction of the chain, and the distance between adjacent impurities. In
the direct comparison of the two platforms, the exchange coupling in the impurity
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Figure 1.10: Magnetic texture of a Neel and a Bloch skyrmion: schematic illustration
of (a) [(b)] a Neel [Bloch] skyrmion embedded in a ferromagnetic background. The
arrows indicate the in-plane component of the normalized vector m(r), while the
color code indicates the out-of-plane component. Here, we used a lattice of Nx ×
Ny = 30 × 30 sites in x and y-direction, respectively. The skyrmion radius is set to
14 sites.

chain plays a similar role as the external Zeeman field in the Rashba nanowire. The
fixed exchange coupling strength of the magnetic moments, however, reduces the
tunability of the system compared to the Rashba nanowire. On the other hand, STM
measurements enable the study of the local density of states at arbitrary positions,
while the differential conductance measurements in the Rashba nanowire only pro-
vide local information at the fixed positions of the leads. Moreover, the single atom
manipulation technique [192–196] enables building magnetic chains atom by atom
such that the level of disorder is strongly reduced. To date, various experiments
have reported zero-energy modes at the ends of atomic chains [77, 197, 198]. How-
ever, there is still no clear evidence that these features originate from MBSs, since
trivial mechanisms might cause similar signatures.

1.6 Skyrmions
In the previous section, we discussed the formation of helical spin chains based on
RKKY interaction or DMI. DMI, which is also called anisotropic exchange interac-
tion, is described by the term D · Sn × Sm, where D is the DMI vector. In general,
DMI can locally tilt the magnetization such that the ground state of a magnetic tex-
ture is neither ferromagnetic nor antiferromagnetic. In fact, DMI can mediate the
formation of magnetic quasiparticles like skyrmions [93–96]. In Fig. 1.10, we show
the magnetic textures of a Néel skyrmion [199] and a Bloch skyrmion [200] with a
ferromagnetic background in a two-dimensional magnet. If the magnetic texture
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of such a simple skyrmion is mapped on the unit sphere, then it wraps one time
around this sphere, in contrast to a ferromagnetic texture. Based on these consider-
ations, one can define a real space topological invariant QS , also called topological
charge

QS =
1

4π

∫
A

m(r) ·
[
∂m(r)

∂r
× ∂m(r)

∂ϕ

]
dA. (1.40)

Here m(r) = S(r)/|S(r)| is the normalized magnetization at the coordinate r =[
r cos(ϕ) r sin(ϕ)

]
with r and ϕ the usual polar coordinates [97]. Moreover, A de-

notes the surface over which the integration runs. We note that the topological
charge is related to the Chern number, which serves as a topological invariant for
some classes of topological insulators and superconductors [201, 202]. As an exam-
ple, we can calculate the topological charge for axially symmetric magnetic textures,
as modeled by

m(r) =
(
sin[Θ(r)] cos[Φ(r)] sin[Θ(r)] sin[Φ(r)] cos[Θ(r)]

)
, (1.41)

where the angle Θ(r) [Φ(r)] is independent of the polar coordinate ϕ [r = |r|].
Inserting this expression of the local magnetization into the definition of the topo-
logical charge yields [97]

QS = − 1

4π
[Φ(ϕ)]ϕ=2π

ϕ=0 [cos{Θ(r)}]r=∞r=0 . (1.42)

The choices Θ(r) = π tanh(r) and Φ(ϕ) = ϕ + ϕ0, where ϕ0 is a constant, can
parametrize both the Néel and the Bloch skyrmion and yield QS = −1. We can
easily flip the sign of the topological charge by changing Φ(ϕ) → −ϕ + ϕ0. In con-
trast, a ferromagnet with magnetization in z-direction, as described via Θ(r) = 0,
has a vanishing topological charge QS = 0.

The real-space topology, which guarantees the stability of the skyrmion, in com-
bination with manipulation techniques that provide great control, makes skyrmions
attractive for new types of computer hardware. For instance, skyrmions could be
used to build future racetrack memories [98, 203–209]. Moreover, magnetic quasi-
particles are considered as an alternative potential platform for MBSs. A simple
skyrmion with QS = ±1 proximitized by a superconductor can usually not host
an MBS [210], except if the skyrmion is coupled to a superconducting vortex [211].
Such a combined structure [212–216] has the advantage over simple vortices that it
can be moved via the usual skyrmion manipulation techniques [99–101] and, there-
fore, it enables in principle real space braiding of MBSs [217]. Alternatively, elon-
gated skyrmions [218] or skyrmions with multiple windings [210, 211] can support
the formation of MBSs without the need for vortices. Therefore, skyrmions are not
only interesting magnetic quasiparticles with a real-space topology, but they are
also potential building blocks of future technologies.
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[158] T. Ö. Rosdahl et al. “Andreev rectifier: A nonlocal conductance signature of
topological phase transitions”. In: Phys. Rev. B 97 (4 Jan. 2018), p. 045421.



BIBLIOGRAPHY 33

[159] Andrea Maiani, Max Geier, and Karsten Flensberg. “Conductance matrix
symmetries of multiterminal semiconductor-superconductor devices”. In:
Phys. Rev. B 106 (10 Sept. 2022), p. 104516.

[160] Diego Rainis et al. “Towards a realistic transport modeling in a supercon-
ducting nanowire with Majorana fermions”. In: Phys. Rev. B 87 (2 Jan. 2013),
p. 024515.

[161] Haining Pan, Jay D. Sau, and S. Das Sarma. “Three-terminal nonlocal
conductance in Majorana nanowires: Distinguishing topological and triv-
ial in realistic systems with disorder and inhomogeneous potential”. In:
Phys. Rev. B 103 (1 Jan. 2021), p. 014513.

[162] Haining Pan and S. Das Sarma. “Disorder effects on Majorana zero modes:
Kitaev chain versus semiconductor nanowire”. In: Phys. Rev. B 103 (22 June
2021), p. 224505.

[163] Sankar Das Sarma and Haining Pan. “Disorder-induced zero-bias peaks in
Majorana nanowires”. In: Phys. Rev. B 103 (19 May 2021), p. 195158.

[164] P. W. Anderson. “Absence of Diffusion in Certain Random Lattices”. In:
Phys. Rev. 109 (5 Mar. 1958), pp. 1492–1505.

[165] L.Yu. “Bound State in Superconductors with Paramagnetic Impurities”. In:
Acta. Phys. Sin 21 (1965), p. 75.

[166] Hiroyuki Shiba. “Classical Spins in Superconductors”. In: Prog. Theor. Phys.
40.3 (Sept. 1968), pp. 435–451.

[167] A I Rusinov. “Superconductivity near a Paramagnetic Impurity”. In:
JETP Letters 9 (2 Jan. 1969).

[168] A. I. Rusinov. “On the Theory of Gapless Superconductivity in Alloys Con-
taining Paramagnetic Impurities”. In: Sov. Phys. JETP 29 (1969), p. 1101.

[169] Tobias Meng et al. “Superconducting gap renormalization around two mag-
netic impurities: From Shiba to Andreev bound states”. In: Phys. Rev. B 92
(6 Aug. 2015), p. 064503.

[170] Akio Sakurai. “Comments on Superconductors with Magnetic Impurities”.
In: Progress of Theoretical Physics 44.6 (Dec. 1970), pp. 1472–1476.
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skyrmions”. In: Phys. Rev. B 99 (1 Jan. 2019), p. 014511.

[214] Samme M. Dahir, Anatoly F. Volkov, and Ilya M. Eremin. “Interaction of
Skyrmions and Pearl Vortices in Superconductor-Chiral Ferromagnet Het-
erostructures”. In: Phys. Rev. Lett. 122 (9 Mar. 2019), p. 097001.
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CHAPTER 2
Local and nonlocal quantum transport
due to Andreev bound states in finite

Rashba nanowires with
superconducting and normal sections

Adapted from:
Richard Hess, Henry F. Legg, Daniel Loss, and Jelena Klinovaja,

“Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires
with superconducting and normal sections”,

Phys. Rev. B 104, 075405 (2021).

We analyze Andreev bound states (ABSs) that form in normal sections of a
Rashba nanowire that is only partially covered by a superconducting layer. These
ABSs are localized close to the ends of the superconducting section and can be
pinned to zero energy over a wide range of magnetic field strengths even if the
nanowire is in the non-topological regime. For finite-size nanowires (typically . 1
µm in current experiments), the ABS localization length is comparable to the length
of the nanowire. The probability density of an ABS is therefore non-zero throughout
the nanowire and differential-conductance calculations reveal a correlated zero-bias
peak (ZBP) at both ends of the nanowire. When a second normal section hosts an
additional ABS at the opposite end of the superconducting section, the combination
of the two ABSs can mimic the closing and reopening of the bulk gap in local and
non-local conductances accompanied by the appearance of the ZBP. These signa-
tures are reminiscent of those expected for Majorana bound states (MBSs) but occur
here in the non-topological regime. Our results demonstrate that conductance mea-
surements of correlated ZBPs at the ends of a typical superconducting nanowire
or an apparent closing and reopening of the bulk gap in the local and non-local
conductance are not conclusive indicators for the presence of MBSs.
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2.1 Introduction

Majorana bound states (MBSs) have been of significant interest in condensed matter
physics for over two decades, largely due to their potential application as topologi-
cal qubits [1–7]. The prospective utilization of MBSs in quantum computation stems
from their non-Abelian braiding statistics [8–15]. Despite this intense interest there
has been no conclusive experimental observation of these exotic properties to date.

The most mature experimental platform expected to host MBSs are Rashba nano-
wire (see Fig. 2.1), where the key differential-conductance signature associated with
MBSs is a zero-bias peak (ZBP) that is stable for a wide range of magnetic field
strengths. A ZBP is, however, by itself not a unique fingerprint of MBSs. Previously
it was suggested that additional local conductance features can clarify the origin of
such a ZBP, namely the quantization of the peak height at 2e2/h [16–20] and os-
cillations around zero energy that originate from the overlap of the two MBS wave
functions at either end of the nanowire [21–25]. The ZBPs and their oscillations have
been observed in past experiments [26–32], while quantization of the ZBP has not
been observed. Recently it has been suggested [33, 34] that the next generation of
Rashba nanowire systems, three-terminal devices, could elucidate whether a given
ZBP stems from the presence of MBSs by observing additional auxiliary features in
the local and non-local differential conductances. For example, such devices could
observe correlations between ZBPs at both ends of the nanowire and the closing
and reopening of the bulk-gap that should accompany the transition to topological
superconductivity.

Additional signatures of MBSs beyond a simple ZBP are necessary because topo-
logically trivial states such as Andreev bound states (ABSs) [35–42] can generate
conductance features similar to those expected from MBSs and therefore strongly
challenge the interpretation of experimental observations [42–57]. For instance,
it has been shown that the energy of an ABS in a non-topological system can be
pinned close to zero over a wide range of magnetic field strengths when a reso-
nance condition for the strength of the spin-orbit interaction (SOI) is fulfilled [48].
In transport experiments, this resonance is broadened by finite temperature and
the coupling to external leads. Such ABSs can therefore produce ZBP features in
the conductance even in systems that are topologically trivial at all magnetic field
strengths. The pinning of trivial ABSs close to zero energy can also originate from
smooth parameter profiles of the chemical potential and the superconducting gap
[49–51], such that a short section of the nanowire is nominally in the topological
regime. Such zero-energy states, observed in the trivial phase of the bulk of the
nanowire, are known as quasi-Majorana bound states (quasi-MBSs) and their zero-
bias pinning is in fact also stable against changes of SOI strength or tunnel barrier
gate voltage.

Previous devices focused on local measurements on a single end of a nanowire.
Such measurements can already provide additional indicators that could clarify
the origin of a ZBP. One example is the oscillations around zero energy expected
due to the hybridization of MBSs at either end of a finite nanowire [21–24]. Such
oscillations should have an increasing amplitude when magnetic field strength is
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energy of strength !Z (x). The nanowire is partially covered
by an s-wave superconductor, resulting in a proximity-
induced superconducting gap !(x) in a section of length LS .
This grounded superconducting section is centered between a
left and a right normal section of length L1 and L2, respec-
tively. The Rashba SOI of strength α(x) is position dependent
and the corresponding SOI vector points in the z direction.
The effective 1D lattice Hamiltonian is given by

H =
N∑

n=1

[
∑

σ,σ ′

c†
n,σ

({
tn+ 1

2
+ tn− 1

2
− µn + γn

}
δσσ ′

+ !Z,nσ
x
σσ ′

)
cn,σ ′

−
(

∑

σ,σ ′

c†
n,σ

{
tn+ 1

2
δσσ ′ − iαn+ 1

2
σ z

σσ ′

}
cn+1,σ ′

+ !nc†
n,↓c†

n,↑ + H.c.

)]

, (1)

where c†
n,σ and cn,σ creates and annihilates an electron of spin

σ =↑,↓ at the lattice site n, respectively. The total number of
sites is given by N = N1 + NS + N2, where N1 = L1/a, N2 =
L2/a, and NS = LS/a, where a is an effective lattice constant.
In addition, tn and µn denote the nearest-neighbor tunneling
matrix element and the chemical potential, respectively. Fur-
thermore, δσσ ′ denotes the Kronecker delta. Normal leads are
attached on the left and right ends of the nanowire. The leads
are modeled by the same Hamiltonian as the normal sections.
The chemical potentials µL and µR of the left and right normal
leads are adjusted to account for a possible difference between
lead and nanowire. Additionally, we introduce tunnel barriers
between the leads and the nanowire: these barriers of length
LB,1 and LB,2 are constituent parts of the normal sections of
length L1 and L2 [see Fig. 1(b)]. The height γn of the tunnel
barrier at site n is used to control the coupling between the
system and the leads; it therefore controls the conductance
value. We will focus on two setups, which we refer to as
the “nontopological” and “topological” nanowires. Both of
these systems can host ABSs that are pinned to zero energy,
however, the mechanism fixing the ABS energy to zero is
different for the two nanowire types. These specific parameter
configurations for the nontopological and topological cases
are described in Secs. II A and II B.

A. Nontopological nanowire

In this section we specify the profiles of the parameters
that enter the Hamiltonian H given in Eq. (1) for the non-
topological nanowire. We define the boundary between the
left normal section (N1) and the superconducting section (S)
as Nb = N1 + 1

2 and similarly the boundary between S and the
right normal section (N2) as N ′

b = N1 + NS + 1
2 . The nonuni-

form system parameters entering the Hamiltonian H have the
following structures: The tunneling matrix element is defined
as

tn =t1&(Nb − n) + tS[&(n − Nb) − &(n − N ′
b)]

+ t2&(n − N ′
b) (2)

FIG. 1. Different configurations of a nanowire setup considered
in this work: the semiconducting nanowire is aligned along the x
axis. The Rashba vector points in the z direction and the applied
magnetic field in the x direction. A grounded s-wave superconductor
(dark red) covers a section of length LS (orange), locally inducing
superconductivity via the proximity effect. (a) Only a left section
(yellow) or (b) both left and right sections on both ends of length
L1 and L2 are uncovered by the superconductor and remain normal.
Leads (gray) are attached on the left and right ends to measure the
differential conductance of the system. Tunnel barriers (beige) at
the ends of the normal sections can be used to control differential
conductance, the height of these tunnel barriers is tuned by local
contacts (dark blue).

and is constructed out of the tunneling matrix elements t1 = t2
in N1 and N2 and the tunneling matrix element tS in S. We
define the Heaviside function &(n) with &(0) = 1

2 through-
out. The difference between the tunneling matrix elements
of the superconducting and the normal sections arises due to
the mass renormalization inside the superconducting section
caused by metallization effects induced by the thin supercon-
ducting shell [72–77]. The chemical potential has a similar
structure

µn =µ1&(Nb − n) + µs[&(n − Nb) − &(n − N ′
b)]

+ µ2&(n − N ′
b), (3)

where µ1 and µ2 denote the chemical potential in the normal
sections and µS the chemical potential in the superconducting
section. Since the magnetic field suppresses the bulk gap of
the parent superconductor, the superconducting gap decreases
with increasing Zeeman energy and vanishes at the critical
field strength !c

Z :

! = !0

√
1 −

(
!Z/!c

Z

)2
, (4)

where the maximal value is given by !0. Therefore, the su-
perconducting gap has the following profile:

!n = ![&(n − Nb) − &(n − N ′
b)]. (5)

The superconducting gap is zero in N1 and N2. In contrast,
the Zeeman energy and Rashba SOI are nonzero only in the
normal sections and are defined as

!Z,n = !Z&(Nb − n) + !Z&(n − N ′
b), (6)

αn = α1&(Nb − n) + α2&(n − N ′
b). (7)

075405-3

Figure 2.1: Different configurations of a nanowire setup considered in this work:
The semiconducting nanowire is aligned along the x-axis. The Rashba vector points
in z-direction and the applied magnetic field in x-direction. A grounded s-wave
superconductor (dark red) covers a section of length LS (orange), locally inducing
superconductivity via the proximity effect. (a) Only a left section (yellow) or (b)
both left and right sections on both ends of length L1 and L2 are uncovered by the
superconductor and remain normal. Leads (gray) are attached on the left and right
end to measure the differential conductance of the system. Tunnel barriers (beige)
at the ends of the normal sections can be used to control differential conductance,
the height of these tunnel barriers is tuned by local contacts (dark blue).

increased or nanowire length decreased. In contrast to this expectation, several ex-
periments observed oscillations with an amplitude which decays as the magnetic
field is increased [31, 58, 59]. Although there are proposed explanations for this
behavior such as orbital effects [24] or a step-like profile of the Rashba SOI strength
[60], even in such scenarios the parameter window for a decay in the amplitude of
oscillations is rather small and therefore the experimentally observed behavior is
likely the result of trivial states. In addition, recent theoretical works have shown
that even the quantization of a ZBP at one end of the nanowire is not an exclusive
property of MBSs [51, 61]. As such, while conductance oscillations and even quan-
tization can provide limited additional evidence for the potential presence of MBSs,
they are not sufficient for an unambiguous identification of topologically protected
states.

Given the ambiguous origins of previous experimental observations from the
single end of a nanowire, in the absence of braiding experiments, further signa-
tures in conductance are necessary to improve the classification of ZBPs in the
next generation of Rashba nanowire systems. For instance, this can be achieved
by considering non-local correlation properties of MBSs in three-terminal devices
[33, 34, 62–68]. MBSs should be localized at the opposite ends of a superconducting
Rashba nanowire and therefore conductance measurements on both ends should
reveal ZBPs. Furthermore, three-terminal experiments enable the measurement of
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non-local conductances which can indicate the bulk-gap closing and reopening and
therefore go beyond local properties. Recently, it was highlighted in Ref. [33] that
the exponential decay of sub-gap states into the bulk of the nanowire makes the
non-local conductance an ideal tool for distinguishing between trivial and topolog-
ical phases in nanowires which are much longer than the localization length of such
sub-gap states. Recent experiments have been performed on three-terminal devices
[69–71] but so far did not find clear signatures of MBSs.

In this paper we focus mainly on non-topological three-terminal junctions consist-
ing of a partially proximitized Rashba nanowire where the normal sections can host
an ABS. We consider normal-superconducting (NS) and normal-superconducting-
normal (NSN) junction setups. In contrast to previous works, we examine the case
where the ratio between the length of the superconducting section and the localiza-
tion length of ABSs is small. This regime is of present experimental relevance and
the nanowire lengths as well as the superconducting gaps we consider will be com-
parable to current setups where typical lengths are between 0.4 µm [71] and 1 µm
[70]. The nanowire length is limited by the requirement of working in the ballistic
regime to avoid disorder effects, which were shown to be harmful for the obser-
vation of topological phases. In the short-nanowire regime the wave function of a
trivial ABS leaks from one end of the nanowire to the opposite end. When the pa-
rameters of the ABS are close to the resonance condition from Ref. [48], the energy
of the ABS is pinned close to zero over a wide range of magnetic field strengths.
Our calculation of the differential conductance confirms that in such a scenario cor-
related ZBPs of a trivial origin appear at both ends of the nanowire. We find that
the same effect can occur for quasi-MBSs in topological nanowires.

We also examine the consequences of the presence of a second normal section
hosting an additional ABS on the other side of the superconducting section. Such
NSN junctions with two normal sections are expected to naturally occur in three-
terminal devices available experimentally. We find that the appearance of the sec-
ond ABS can further complicate the interpretation of experimental signatures. Not
only is the second ABS also visible in the non-local conductance but the combi-
nation of the two ABSs at either end of the nanowire can generate a conductance
feature that is reminiscent of the bulk-gap edge undergoing a closing and reopening
process that should accompany a topological phase transition.

Our findings show that, while three-terminal devices can potentially provide ad-
ditional insights into the origins of ZBPs, correlated zero-bias peaks at both ends of
superconducting sections of Rashba nanowires and the apparent observation of the
closing and reopening of the bulk band gap with increasing magnetic field strength
do not suffice as unambiguous additional indicators for the presence of MBSs in
nanowires of the lengths used in current experimental devices.

The paper is organized as follows. In Sec. 4.2 we define the model to describe
a non-topological and a topological nanowire containing trivial zero-energy ABSs
or quasi-MBSs, respectively. In Sec. 2.3, we discuss features in the differential con-
ductance arising due to the presence of a single ABS hosted in the, say, left normal
section of a non-topological nanowire. Here we show that as the ratio between
the length of the superconducting section and the localization length of the ABS is
decreased, the probability density of the ABS on the right side of the nanowire in-



2.2. MODEL OF THE NANOWIRE 41

creases and, as a result, the ABS also becomes visible in the local conductance mea-
sured at the right end of the nanowire. Moreover, we examine the case of an NSN
junction with two normal sections, one at each end of the non-topological proxim-
itized nanowire, and show that this setup can mimic the signatures of a topolog-
ical phase transition in transport measurements, despite the trivial nature of the
ABSs. Section 2.4 focuses on the topological nanowire and addresses features aris-
ing due to the presence of quasi-MBSs in the left and right local conductance. It is
shown again that if the ratio between the superconducting section and the localiza-
tion length of the quasi-MBS is small, then correlated zero-bias peaks appear at both
ends. Furthermore, we examine the non-local differential conductance via the bulk
states undergoing the bulk-gap closing and reopening process when two normal
sections at each end of the topological nanowire both host quasi-MBSs. Finally,
we discuss the impact of our results on the interpretation of present-day three-
terminal experiments in Sec. 5.6. In App. 2.A we describe numerical approaches
used to model transport experiments. We compare the conductance pattern of the
non-topological nanowire with the conductance pattern of a uniform topological
nanowire in App. 2.B. The effect of strong broadening of finite-energy peaks is dis-
cussed in App. 2.C. In App. 2.D we study the bulk wave functions of a topological
nanowire with quasi-MBSs on both ends. Finally, App. 2.E deals with the conduc-
tance pattern of a nanowire hosting quasi-MBSs on the left end and an ABS on the
right end.

2.2 Model of the nanowire

We consider a one-dimensional (1D) semiconducting nanowire aligned along the
x-direction. The system is subjected to a magnetic field, which is applied parallel
to the nanowire axis. This magnetic field results in a Zeeman energy of strength
∆Z(x). The nanowire is partially covered by an s-wave superconductor, result-
ing in a proximity-induced superconducting gap ∆(x) in a section of length LS .
This grounded superconducting section is centered between a left and a right nor-
mal section of length L1 and L2, respectively. The Rashba SOI of strength α(x)
is position-dependent and the corresponding SOI vector points in the z-direction.
The effective 1D lattice Hamiltonian is given by

H =
N∑
n=1

[∑
σ,σ′

c†n,σ({tn+ 1
2

+ tn− 1
2
− µn + γn}δσσ′ + ∆Z,nσ

x
σσ′)cn,σ′

−
(∑

σ,σ′

c†n,σ

{
tn+ 1

2
δσσ′ − iαn+ 1

2
σzσσ′

}
cn+1,σ′ + ∆nc

†
n,↓c

†
n,↑ + H.c.

)]
, (2.1)

where c†n,σ and cn,σ creates and annihilates an electron of spin σ =↑, ↓ at the lattice
site n, respectively. The total number of sites is given by N = N1 +NS +N2, where
N1 = L1/a, N2 = L2/a, and NS = LS/a, where a is an effective lattice constant.
In addition, tn and µn denote the nearest neighbor tunneling matrix element and
the chemical potential, respectively. Furthermore, δσσ′ denotes the Kronecker delta.
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FIG. 2. Parameter profiles in the nanowire: superconducting gap
! (dashed-dotted red), chemical potential µ (dotted black), Zeeman
energy !Z (solid blue), SOI strength α (dashed orange), and tun-
neling matrix element t (green) in arbitrary units. Nontopological
nanowire (first row): both the SOI and the Zeeman energy are sup-
pressed in the superconducting section. When a resonance condition
in the normal part is satisfied, the lowest ABS is pinned to zero en-
ergy. Topological nanowire (second row): smooth parameter profiles
lead to a zero-energy pinning of the lowest ABS in the topologically
trivial bulk phase. Left column: NS junction. Right column: NSN
junction.

Here, the SOI strengths α1 and α2 could be different [78]. The
SOI energy is given by Eso,i = α2

i /ti. In Fig. 2 we show exam-
ples of the profiles of the superconducting gap, the Zeeman
energy, the chemical potential, the tunneling matrix element,
and the Rashba SOI strength for an NS and an NSN junction.
Tunnel barriers are described by

γn =γ1$(NB,b − n) + γ2$(n − N ′
B,b), (8)

where γ1 and γ2 denote the height of the left and right tunnel
barriers and NB,b = NB,1 + 1

2 and N ′
B,b = N − NB,2 + 1

2 are
the positions at which the left tunnel barrier ends and the
right tunnel barrier starts, respectively. Here we defined NB,i
via LB,i = NB,ia. We note that the topological phase cannot
be achieved in this setup because the Zeeman energy and
the Rashba SOI vanish in the superconducting section. We
therefore refer to this system as nontopological nanowire.

B. Topological nanowire

The second system under consideration is a nanowire in
which the chemical potential and the superconducting gap
change smoothly. These smooth parameter variations can gen-
erate an ABS which, as in the nontopological nanowire, sticks
to zero energy over a wide range of Zeeman energies in the
trivial regime inside the superconducting section [43,49–51].
In this case, nominally, the system enters the topological phase
locally at the short segment between the normal and supercon-
ducting sections. However, the length of this segment is much
shorter than the localization length of potential MBSs, such
that only quasi-MBSs can appear in the spectrum if certain

conditions are satisfied. The spatial dependence of parameters
is modeled by the function

%λ(n, Ni ) = 1/2[1 + tanh({n − Ni}/λ)], (9)

where λ parametrizes the smoothness [see Figs. 2(c) and
2(d)]. The exact form of the function is not relevant for the
appearance of quasi-MBSs, rather it is the smoothness itself
that determines the presence of quasi-MBSs. The supercon-
ducting gap (chemical potential) profile is characterized by
the parameter λS,L/R (λL/R), which can take different values
on the left and the right sides of the nanowire:

!n = !0
[
%λS,L (n, N1) − %λS,R (n, N1 + NS + 1)

]
, (10)

µn = µ1 + (µS − µ1)%λL (n, N1)

+ (µ2 − µS )%λR (n, N1 + NS + 1). (11)

In contrast to the previous section, here, we use a supercon-
ducting gap that is independent of the Zeeman energy. For the
case of a single normal section on the left and a tunnel barrier
only on the right, we choose the profiles

!n = !0%λS,L (n, N1)$(N ′
B,b − n), (12)

µn = [µ1 + (µS − µ1)%λL (n, N1)]$(N ′
B,b − n)

+ µ2$(n − N ′
B,b). (13)

The tunnel barriers are modeled in the same manner as in the
nontopological system [see Eq. (8)]. The remaining parame-
ters are chosen to be uniform:

tn = t, αn = α, !Z,n = !Z . (14)

In Figs. 2(c) and 2(d), we show examples of profiles for
the superconducting gap, the Zeeman energy, the chemical
potential, the tunneling matrix element, and the Rashba SOI
strength in an NS and an NSN junction. This system can enter
a topological phase hosting MBSs; however, we will mainly
focus on the trivial regime which can host only quasi-MBSs.

III. ABS IN NONTOPOLOGICAL NANOWIRES

A. ABS in the left normal section

In this section we study ABSs in nontopological nanowires
as defined in Sec. II A. We start our investigation with the
setup shown in Fig. 1(a) but without tunnel barriers or leads.
The left (right) normal section can host ABSs localized close
to N1 (N2). The ratio 2αia/Li determines the ABS level spac-
ing and therefore the number of ABSs in the left (i = 1) and
right (i = 2) normal sections. If this ratio is large in compar-
ison to !0 as is in our case, then the system hosts only a few
or a single ABS. The energy of the ABS is pinned to zero if
the parameters approximately fulfill the resonance condition

cos(2kso,iLi ) = 0, (15)

where kso,i = 2miaαi/h̄2 denotes the SOI momentum and
mi = h̄2/(2tia2) denotes the effective electron mass inside the
normal section [48]. The resonance condition is derived for a
chemical potential equal to zero in the normal section, where it
is calculated from the SOI energy. The ABS energy, however,
can also be pinned to zero in the case of a nonzero chemical
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Figure 2.2: Parameter profiles in the nanowire: superconducting gap ∆ (dashed-
dotted red), chemical potential µ (dotted black), Zeeman energy ∆Z (solid blue),
SOI strength α (dashed orange), and tunneling matrix element t (green) in arbi-
trary units. Non-topological nanowire (first row): both the SOI and the Zeeman
energy are suppressed in the superconducting section. When a resonance condition
in the normal part is satisfied, the lowest ABS is pinned to zero energy. Topological
nanowire (second row): smooth parameter profiles lead to a zero-energy pinning
of the lowest ABS in the topologically trivial bulk-phase. Left column: NS-junction.
Right column: NSN-junction.

Normal leads are attached on the left and right ends of the nanowire. The leads are
modeled by the same Hamiltonian as the normal sections. The chemical potentials
µL and µR of the left and right normal leads are adjusted to account for a possible
difference between lead and nanowire. Additionally, we introduce tunnel barriers
between the leads and the nanowire: these barriers of length LB,1 and LB,2 are con-
stituent parts of the normal sections of length L1 and L2, see Fig. 2.1b. The height
γn of the tunnel barrier at site n is used to control the coupling between the system
and the leads; it therefore controls the conductance value. We will focus on two
setups, which we refer to as the ‘non-topological’ and ‘topological’ nanowire. Both
of these systems can host ABSs that are pinned to zero energy, however, the mech-
anism fixing the ABS energy to zero is different for the two nanowire types. These
specific parameter configurations for the non-topological and topological cases are
described in Secs. 2.2 and 2.2.
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Non-topological nanowire

In this section we specify the profiles of the parameters that enter the Hamiltonian,
H , given in Eq. (4.2) for the non-topological nanowire. We define the boundary
between the left normal section (N1) and the superconducting section (S) as Nb =
N1 +1/2 and similarly the boundary between S and the right normal section (N2) as
N ′b = N1 +NS + 1/2. The non-uniform system parameters entering the Hamiltonian
H have the following structures: The tunneling matrix element is defined as

tn =t1Θ(Nb − n) + tS [Θ(n−Nb)−Θ(n−N ′b)] + t2Θ(n−N ′b) (2.2)

and is constructed out of the tunneling matrix elements t1 = t2 in N1 and N2 and
the tunneling matrix element tS in S. We define the Heaviside function Θ(n) with
Θ(0) = 1/2 throughout. The difference between the tunneling matrix elements of
the superconducting and the normal sections arises due to the mass renormalization
inside the superconducting section caused by metallization effects induced by the
thin superconducting shell [72–77]. The chemical potential has a similar structure

µn =µ1Θ(Nb − n) + µs [Θ(n−Nb)−Θ(n−N ′b)] + µ2Θ(n−N ′b), (2.3)

where µ1 and µ2 denote the chemical potential in the normal sections and µS the
chemical potential in the superconducting section. Since the magnetic field sup-
presses the bulk-gap of the parent superconductor, the superconducting gap de-
creases with increasing Zeeman energy and vanishes at the critical field strength
∆c
Z :

∆ = ∆0

√
1− (∆Z/∆c

Z)2, (2.4)

where the maximal value is given by ∆0. Therefore, the superconducting gap has
the following profile

∆n = ∆ [Θ(n−Nb)−Θ(n−N ′b)] . (2.5)

The superconducting gap is zero in N1 and N2. In contrast, the Zeeman energy and
Rashba SOI are non-zero only in the normal sections and are defined as

∆Z,n = ∆ZΘ(Nb − n) + ∆ZΘ(n−N ′b), (2.6)
αn = α1Θ(Nb − n) + α2Θ(n−N ′b). (2.7)

Here, the SOI strengths α1 and α2 could be different [78]. The SOI energy is given
by Eso,i = α2

i /ti. In Fig. 2.2 we show examples of the profiles of the superconduct-
ing gap, the Zeeman energy, the chemical potential, the tunneling matrix element,
and the Rashba SOI strength for an NS and an NSN junction. Tunnel barriers are
described by

γn =γ1Θ(NB,b − n) + γ2Θ(n−N ′B,b), (2.8)

where γ1 and γ2 denote the height of the left and right tunnel barriers and NB,b =
NB,1 + 1/2 and N ′B,b = N −NB,2 + 1/2 are the positions at which the left tunnel bar-
rier ends and the right tunnel barrier starts, respectively. Here we defined NB,i via
LB,i = NB,ia. We note that the topological phase cannot be achieved in this setup
because the Zeeman energy and the Rashba SOI vanish in the superconducting sec-
tion. We therefore refer to this system as non-topological nanowire.
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Topological nanowire

The second system under consideration is a nanowire in which the chemical po-
tential and the superconducting gap change smoothly. These smooth parameter
variations can generate an ABS which, as in the non-topological nanowire, sticks
to zero energy over a wide range of Zeeman energies in the trivial regime inside
the superconducting section [43, 49–51]. In this case, nominally, the system enters
the topological phase locally at the short segment between the normal and super-
conducting sections. However, the length of this segment is much shorter than the
localization length of potential MBSs, such that only quasi-MBSs can appear in the
spectrum if certain conditions are satisfied. The spatial dependence of parameters
is modelled by the function

Ωλ(n,Ni) = 1/2[1 + tanh({n−Ni}/λ)], (2.9)

where λ parametrizes the smoothness (see Figs. 2.2c-d). The exact form of the func-
tion is not relevant for the appearance of quasi-MBSs rather it is the smoothness
itself that determines the presence of quasi-MBSs. The superconducting gap (chem-
ical potential) profile is characterized by the parameter λS,L/R (λL/R), which can take
different values on the left and the right sides of the nanowire:

∆n = ∆0

[
ΩλS,L(n,N1)− ΩλS,R(n,N1 +NS + 1)

]
, (2.10)

µn = µ1 + (µS − µ1)ΩλL(n,N1) + (µ2 − µS)ΩλR(n,N1 +NS + 1). (2.11)

In contrast to the previous section, here, we use a superconducting gap that is in-
dependent of the Zeeman energy. For the case of a single normal section on the left
and a tunnel barrier only on the right, we choose the profiles:

∆n = ∆0ΩλS,L(n,N1)Θ(N ′B,b − n), (2.12)

µn = [µ1 + (µS − µ1)ΩλL(n,N1)] Θ(N ′B,b − n) + µ2Θ(n−N ′B,b). (2.13)

The tunnel barriers are modeled in the same manner as in the non-topological sys-
tem, see Eq. (3.2). The remaining parameters are chosen to be uniform:

tn = t, αn = α, ∆Z,n = ∆Z . (2.14)

In Figs. 2.2c and 2.2d, we show examples of profiles for the superconducting gap,
the Zeeman energy, the chemical potential, the tunneling matrix element, and the
Rashba SOI strength in an NS and an NSN junction. This system can enter a topo-
logical phase hosting MBSs, however, we will mainly focus on the trivial regime
which can host only quasi-MBSs.

2.3 ABS in Non-topological nanowires

ABS in the left normal section

In this section we study ABSs in non-topological nanowires as defined in Sec. 2.2.
We start our investigation with the setup shown in Fig. 2.1a but without tunnel
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(a) (b)

(b) (c)

FIG. 3. Nontopological nanowire with an ABS in the left normal
section [see Fig. 1(a)]. The energy of the ABS oscillates as a function
of the chemical potential µ1 and the SOI wave vector kso for the
fixed Zeeman energy: (a) !Z = 0.9!c

Z and (b) !Z = 0.75!c
Z . If the

minima of the lowest energy (blue regions), which determine the
numerical resonance condition, appear at the same values of SOI
strength and chemical potential (the red and the orange square) for
the different Zeeman energies, then the ABS stays at zero energy
for some range of !Z [see (c) and Fig. 4(a)]. Otherwise (the black
square), the ABS energy is not strictly pinned to zero as shown in (d).
These ABS levels are, however, broadened by finite temperature and
by coupling to external leads in a transport experiment such that one
can still observe an apparent ZBP (see Appendix C). The parameters
are listed in Table I in Appendix F.

potential inside the normal section as we will demonstrate
below numerically. In particular, we discuss both the energy
spectrum as well as wave functions of the ABS. The wave
function contains information about the spatial distribution of
the ABS, which is important for understanding the local and
nonlocal differential conductance of ABSs in three-terminal
devices. The parameter profiles for the NS junction are shown
in Fig. 2(a). We examine the case of small ratios q(!Z ) =
LS/ξ (!Z ) between the length LS of the superconducting sec-
tion and the localization length ξ of the ABSs,

ξ (!Z ) = h̄vF /!. (16)

Here, the renormalized Fermi velocity is defined as vF ≈√
2µS/mS with mS = h̄2/(2tSa2) being the effective mass in

the superconducting section and the dependence of ! on !Z
is defined in Eq. (4). The value of q is small for a short
superconducting section or for a small superconducting gap
!0. The latter is associated with a large localization length
since ξ is inverse proportional to !.

In Figs. 3(a) and 3(b) we plot the energy of the lowest ABS
as a function of the SOI momentum kso,1 and of the chemical
potential µ1 with the Zeeman energy being fixed close to !c

Z .
For µ1 = 0 the ABS energy exhibits an oscillatory behav-
ior that approximately matches the resonance condition from
Eq. (15). The oscillatory behavior is preserved for µ1 #= 0 and
there are still recurring points at which the energy is close
to zero (blue). Tuning the system to one of these resonance

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. (a), (c), (e) Energy spectrum and (b), (d), (f) probability
density of the ABS, |#|2, at !Z,0 = 5.74!0 (indicated by the black
line in the left panels) for different values of q = LS/ξ . First row: In
the case of a long superconducting section LS $ ξ [q(!Z,0) = 4.5],
the ABS probability density is only nonzero on the left end of
the nanowire and decays exponentially inside the superconducting
section. We extract the numerical localization length of the ABS by
fitting an exponential function (black dashed line) to the probability
density. This numerically calculated localization length ξ = 438 nm
agrees well with the analytic result ξ = 442 nm. Second (third) row
corresponds to a small value of !0 (of LS) with q(!Z,0) = 1.63
[q(!Z,0) = 1.98]. In this case, |#|2 has a finite value on the right
end of the nanowire. Generally, as one approaches !c

Z , the ABS
probability density also has a finite weight on the right end of the
nanowire. For fixed !0, this effect is more pronounced in (h) short
than in (g) long nanowires. The parameters are listed in Table I in
Appendix F.

points also for finite values of the chemical potential (e.g.,
the orange or red square), we find a zero-energy pinning [see
Figs. 3(c) and 4(a)]. If the resonance points do not coincide for
the different Zeeman energies (see the black square), then the
energy is not strictly pinned to zero [see Fig. 3(d)]. In a trans-
port experiment, however, such small deviations from zero
energy could be masked by, for example, finite temperature,
resulting in a broadened ZBP (see Appendix C).

When the ratio between the length of the superconduct-
ing section and the localization length is large (q $ 1),
the exponential decay of the ABS wave function in the
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Figure 2.3: Non-topological nanowire with an ABS in the left normal section [see
Fig. 2.1a]: The energy of the ABS oscillates as a function of the chemical potential
µ1 and the SOI wavevector kso for the fixed Zeeman energy: (a) ∆Z = 0.9∆c

Z and
(b) ∆Z = 0.75∆c

Z . If the minima of the lowest energy (blue regions), which deter-
mine the numerical resonance condition, appear at the same values of SOI strength
and chemical potential (the red and the orange square) for the different Zeeman
energies, then the ABS stays at zero energy for some range of ∆Z , see panel (c) and
Fig. 2.4a. Otherwise (the black square), the ABS energy is not strictly pinned to zero
as shown in (d). These ABS levels are, however, broadened by finite temperature
and by coupling to external leads in a transport experiment such that one can still
observe an apparent ZBP, see App. 2.C. The parameters are listed in Table 2.1 in
App. 2.F.

barriers or leads. The left (right) normal section can host ABSs localized close to N1

(N2). The ratio 2αia/Li determines the ABS level spacing and therefore the number
of ABSs in the left (i = 1) and right (i = 2) normal sections. If this ratio is large in
comparison to ∆0 as is in our case, then the system hosts only a few or a single ABS.
The energy of the ABS is pinned to zero if the parameters approximately fulfill the
resonance condition

cos(2kso,iLi) = 0, (2.15)

where kso,i = 2miaαi/~2 denotes the SOI momentum and mi = ~2/(2tia
2) denotes

the effective electron mass inside the normal section [48]. The resonance condition
is derived for a chemical potential equal to zero in the normal section, where it
is calculated from the SOI energy. The ABS energy, however, can also be pinned
to zero in the case of a non-zero chemical potential inside the normal section as we
will demonstrate below numerically. In particular, we discuss both the energy spec-
trum as well as wave functions of the ABS. The wave function contains information
about the spatial distribution of the ABS, which is important for understanding the
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local and non-local differential conductance of ABSs in three-terminal devices. The
parameter profiles for the NS junction are shown in Fig. 2.2a. We examine the case
of small ratios q(∆Z) = LS/ξ(∆Z) between the length LS of the superconducting
section and the localization length ξ of the ABSs,

ξ(∆Z) = ~vF/∆. (2.16)

Here, the renormalized Fermi velocity is defined as vF ≈
√

2µS/mS with mS =
~2/(2tSa

2) being the effective mass in the superconducting section and the depen-
dence of ∆ on ∆Z is defined in Eq. (2.4). The value of q is small for a short super-
conducting section or for a small superconducting gap ∆0. The latter is associated
with a large localization length since ξ is inverse proportional to ∆.

In Figs. 2.3a and 2.3b we plot the energy of the lowest ABS as a function of the
SOI momentum kso,1 and of the chemical potential µ1 with the Zeeman energy being
fixed close to ∆c

Z . For µ1 = 0 the ABS energy exhibits an oscillatory behavior that
approximately matches the resonance condition from Eq. (2.15). The oscillatory
behavior is preserved for µ1 6= 0 and there are still recurring points at which the
energy is close to zero (blue). Tuning the system to one of these resonance points
also for finite values of the chemical potential (e.g. the orange or red square), we
find a zero-energy pinning (see Figs. 2.3c and 2.4a). If the resonance points do not
coincide for the different Zeeman energies (see the black square), then the energy
is not strictly pinned to zero, see Fig. 2.3d. In a transport experiment, however,
such small deviations from zero energy could be masked by, for example, finite
temperature, resulting in a broadened ZBP (see App. 2.C).

When the ratio between the length of the superconducting section and the local-
ization length is large (q � 1), the exponential decay of the ABS wave function in
the superconducting section means that the ABS is essentially entirely localized on
the left side of the nanowire, see Fig. 2.4b. We extract the localization length of the
ABS from the numerically calculated probability density, see Fig. 2.4b, and find that
the numerical value of ξ agrees well with the prediction of the analytic expression
from Eq. (2.16). A smaller q can be achieved by choosing a smaller superconducting
gap (see Figs. 2.4c and 2.4d) or decreasing the length of the superconducting sec-
tion (see Figs. 2.4e and 2.4f). As the parameter q approaches one, the exponential
suppression becomes less pronounced. This results in a small but finite probability
density on the right end of the nanowire. We note that the probability density of
the ABS on the right side is always non-zero for large values of the Zeeman energy
when the superconducting gap is suppressed, see Fig. 2.4h. This behavior is ex-
plained by the dependence of the localization length on the Zeeman energy. The
localization length increases for large Zeeman energies and therefore the parameter
q approaches the value q ∼ 1. In addition, we note that the extended wave function
of the ABS in nanowires with small values of q can be expected to generate a signa-
ture in the local conductance measurements on both ends of the nanowire. These
local signals on the left and right ends would be correlated since they correspond to
the same ABS. Experiments may therefore not be able to distinguish between this
correlated ABS signatures and MBS signatures, when the parameter q is small.
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(a) (b)

(b) (c)

FIG. 3. Nontopological nanowire with an ABS in the left normal
section [see Fig. 1(a)]. The energy of the ABS oscillates as a function
of the chemical potential µ1 and the SOI wave vector kso for the
fixed Zeeman energy: (a) !Z = 0.9!c

Z and (b) !Z = 0.75!c
Z . If the

minima of the lowest energy (blue regions), which determine the
numerical resonance condition, appear at the same values of SOI
strength and chemical potential (the red and the orange square) for
the different Zeeman energies, then the ABS stays at zero energy
for some range of !Z [see (c) and Fig. 4(a)]. Otherwise (the black
square), the ABS energy is not strictly pinned to zero as shown in (d).
These ABS levels are, however, broadened by finite temperature and
by coupling to external leads in a transport experiment such that one
can still observe an apparent ZBP (see Appendix C). The parameters
are listed in Table I in Appendix F.

potential inside the normal section as we will demonstrate
below numerically. In particular, we discuss both the energy
spectrum as well as wave functions of the ABS. The wave
function contains information about the spatial distribution of
the ABS, which is important for understanding the local and
nonlocal differential conductance of ABSs in three-terminal
devices. The parameter profiles for the NS junction are shown
in Fig. 2(a). We examine the case of small ratios q(!Z ) =
LS/ξ (!Z ) between the length LS of the superconducting sec-
tion and the localization length ξ of the ABSs,

ξ (!Z ) = h̄vF /!. (16)

Here, the renormalized Fermi velocity is defined as vF ≈√
2µS/mS with mS = h̄2/(2tSa2) being the effective mass in

the superconducting section and the dependence of ! on !Z
is defined in Eq. (4). The value of q is small for a short
superconducting section or for a small superconducting gap
!0. The latter is associated with a large localization length
since ξ is inverse proportional to !.

In Figs. 3(a) and 3(b) we plot the energy of the lowest ABS
as a function of the SOI momentum kso,1 and of the chemical
potential µ1 with the Zeeman energy being fixed close to !c

Z .
For µ1 = 0 the ABS energy exhibits an oscillatory behav-
ior that approximately matches the resonance condition from
Eq. (15). The oscillatory behavior is preserved for µ1 #= 0 and
there are still recurring points at which the energy is close
to zero (blue). Tuning the system to one of these resonance

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. (a), (c), (e) Energy spectrum and (b), (d), (f) probability
density of the ABS, |#|2, at !Z,0 = 5.74!0 (indicated by the black
line in the left panels) for different values of q = LS/ξ . First row: In
the case of a long superconducting section LS $ ξ [q(!Z,0) = 4.5],
the ABS probability density is only nonzero on the left end of
the nanowire and decays exponentially inside the superconducting
section. We extract the numerical localization length of the ABS by
fitting an exponential function (black dashed line) to the probability
density. This numerically calculated localization length ξ = 438 nm
agrees well with the analytic result ξ = 442 nm. Second (third) row
corresponds to a small value of !0 (of LS) with q(!Z,0) = 1.63
[q(!Z,0) = 1.98]. In this case, |#|2 has a finite value on the right
end of the nanowire. Generally, as one approaches !c

Z , the ABS
probability density also has a finite weight on the right end of the
nanowire. For fixed !0, this effect is more pronounced in (h) short
than in (g) long nanowires. The parameters are listed in Table I in
Appendix F.

points also for finite values of the chemical potential (e.g.,
the orange or red square), we find a zero-energy pinning [see
Figs. 3(c) and 4(a)]. If the resonance points do not coincide for
the different Zeeman energies (see the black square), then the
energy is not strictly pinned to zero [see Fig. 3(d)]. In a trans-
port experiment, however, such small deviations from zero
energy could be masked by, for example, finite temperature,
resulting in a broadened ZBP (see Appendix C).

When the ratio between the length of the superconduct-
ing section and the localization length is large (q $ 1),
the exponential decay of the ABS wave function in the
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Figure 2.4: (a,c,e) Energy spectrum and (b,d,f) probability density of the ABS,
|Ψ|2, at ∆Z,0 = 5.74∆0 (indicated by the black line in the left panels) for differ-
ent values of q = LS/ξ. First row: In the case of a long superconducting sec-
tion LS � ξ [q(∆Z,0) = 4.5], the ABS probability density is only non-zero on
the left end of the nanowire and decays exponentially inside the superconduct-
ing section. We extract the numerical localization length of the ABS by fitting an
exponential function (black dashed line) to the probability density. This numeri-
cally calculated localization length ξ = 438 nm agrees well with the analytic result
ξ = 442 nm. Second (third) row corresponds to a small value of ∆0 (of LS) with
q(∆Z,0) = 1.63 [q(∆Z,0) = 1.98]. In this case, |Ψ|2 has a finite value on the right end
of the nanowire. Generally, as one approaches ∆c

Z , the ABS probability density also
has a finite weight on the right end of the nanowire. For fixed ∆0, this effect is more
pronounced in (h) short than in (g) long nanowires. The parameters are listed in
Table 2.1 in App. 2.F.
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superconducting section means that the ABS is essentially en-
tirely localized on the left side of the nanowire [see Fig. 4(b)].
We extract the localization length of the ABS from the numer-
ically calculated probability density [see Fig. 4(b)] and find
that the numerical value of ξ agrees well with the prediction
of the analytic expression from Eq. (16). A smaller q can
be achieved by choosing a smaller superconducting gap [see
Figs. 4(c) and 4(d)] or decreasing the length of the supercon-
ducting section [see Figs. 4(e) and 4(f)]. As the parameter
q approaches one, the exponential suppression becomes less
pronounced. This results in a small but finite probability
density on the right end of the nanowire. We note that the
probability density of the ABS on the right side is always
nonzero for large values of the Zeeman energy when the su-
perconducting gap is suppressed [see Fig. 4(h)]. This behavior
is explained by the dependence of the localization length on
the Zeeman energy. The localization length increases for large
Zeeman energies and therefore the parameter q approaches
the value q ∼ 1. In addition, we note that the extended wave
function of the ABS in nanowires with small values of q can
be expected to generate a signature in the local conductance
measurements on both ends of the nanowire. These local sig-
nals on the left and right ends would be correlated since they
correspond to the same ABS. Experiments may therefore not
be able to distinguish between this correlated ABS signature
and MBS signatures, when the parameter q is small.

Next, we calculate numerically the differential-
conductance matrix elements Gαβ = dIα/dVβ , which are
the derivative of the total current (which includes both spin
contributions) Iα in lead α flowing into the nanowire with
respect to the voltage bias Vβ at lead β [we follow the notation
of Ref. [66] (see Appendix A)]. To account for tunnel barriers
and leads at both ends [see Fig. 1(a)], we choose a slightly
longer normal section L1 than before. The local conductance
GLL on the left end exhibits very similar features as the energy
spectrum, which we plot for comparison as dark green dashed
lines [see Fig. 5(a)]. The ABS is visible for all Zeeman
energies and is pinned close to zero for a wide range of $Z
but the conductance is not quantized to G = 2e2/h at zero
bias and depends on the tunnel barrier properties such as its
strength and length, which would be also a case for MBSs.
Current experiments do not observe the quantized value
2e2/h of the ZBP expected for an MBS, thus, experiments
cannot easily distinguish between this trivial feature and
an MBS signature. A weaker ZBP also appears in GRR for
$Z ≈ 4$0 and stays stable until the superconducting gap
is suppressed at $c

Z [see also the line cuts in Fig. 5(f)].
This ZBP only appears for large Zeeman energies when the
wave function starts to leak through the superconducting
section. An equivalent signature could also be expected for
the MBS case, for instance, when the two tunnel barriers are
of different strength.

The nonlocal conductances GLR and GRL are similar to each
other and exhibit the bulk-gap closing at $Z = $c

Z as well as
the ZBP (see Fig. 5). This ZBP in the nonlocal conductance is
not present in long nanowires but it is visible in short wires
due to the extension of the ABS over the entire supercon-
ducting section. We note that nonzero nonlocal conductances
indicate that the local conductances GLL and GRR are not sym-
metric with respect to the bias since electrons might tunnel

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Differential conductance in a nontopological nanowire
containing one ABS on the left end that extends up to the right end.
Both local conductances (a) GLL and (b) GRR exhibit a ZBP due to
the extended nature of the ABS wave function. The conductance
of the ABS is not quantized to 2e2/h due to the shape of barriers
chosen. This conductance pattern agrees well with the energy spec-
trum, indicated by the dark green dashed lines. The yellow, dark
green, and orange solid line indicate line cuts of (e) GLL and (f) GRR

at the Zeeman energies $Z = {4.01, 5.11, 6.16}$0. The nonlocal
conductances (c) GLR and (d) GRL contain signatures of the extended
ABSs and of the bulk-gap closing at $c

Z . The parameters are listed in
Table I in Appendix F.

directly between the normal leads (see Refs. [66,67]). The
sum of all differential-conductance matrix elements, however,
is symmetric with respect to the bias. The antisymmetric
part of the local conductance Ga

LL (Ga
RR) corresponds to the

negative value of the antisymmetric part of the nonlocal con-
ductance Ga

LR (Ga
RL) (see Ref. [66]).

The ZBP in our setup is robust against changes of the
Zeeman energy but not against fluctuations of the tunnel bar-
rier strength γ1. Indeed, tuning γ1 to slightly different values
removes the perfect zero-energy pinning. Parenthetically, we
note that in short topological nanowires, the MBS wave func-
tions overlap, and so, similar to the behavior of our ABSs, it
is anyway expected that MBSs are not fixed to zero energy in
short wires. Furthermore, broadening effects, for example due
to temperature, affect the differential conductance. If the en-
ergy is not perfectly pinned to zero and the broadening is large
enough, then a conductance measurement can not resolve a
small finite-energy splitting and will reveal only a single peak,
which actually consists of two single merged peaks around
zero bias (see Appendix C). Although our system is not de-
signed to explain the data from any specific experiment, we
note that our results are similar to the experimental data from
Ref. [71]. In particular, a ZBP appears in the left conductance
for a specific value of the tunnel barrier gate voltage whereas
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Figure 2.5: Differential conductance in a non-topological nanowire containing one
ABS on the left end that extends up to the right end. Both local conductances (a)GLL

and (b)GRR exhibit a ZBP due to the extended nature of the ABS wave function. The
conductance of the ABS is not quantized to 2e2/h due to the shape of barriers cho-
sen. This conductance pattern agrees well with the energy spectrum, indicated by
the dark green dashed lines. The yellow, dark green, and orange solid line indicate
line cuts of (e) GLL and (f) GRR at the Zeeman energies ∆Z = {4.01, 5.11, 6.16}∆0.
The non-local conductances (c) GLR and (d) GRL contain signatures of the extended
ABSs and of the bulk-gap closing at ∆c

Z . The parameters are listed in Table 2.1 in
App. 2.F.

Next, we calculate numerically the differential-conductance matrix elements

Gαβ = dIα/dVβ, (2.17)

which are the derivative of the total current (which includes both spin contribu-
tions) Iα in lead α flowing into the nanowire with respect to the voltage bias Vβ at
lead β (we follow the notation of Ref. [66], see App. 2.A). To account for tunnel bar-
riers and leads at both ends, see Fig. 2.1a, we choose a slightly longer normal section
L1 than before. The local conductance GLL on the left end exhibits very similar fea-
tures as the energy spectrum, which we plot for comparison as dark green dashed
lines, see Fig. 2.5a. The ABS is visible for all Zeeman energies and is pinned close
to zero for a wide range of ∆Z but the conductance is not quantized to G = 2e2/h
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at zero bias and depends on the tunnel barrier properties such as its strength and
length, which would be also a case for MBSs. Current experiments do not observe
the quantized value, 2e2/h, of the ZBP expected for an MBS, thus, experiments can-
not easily distinguish between this trivial feature and an MBS signature. A weaker
ZBP also appears in GRR for ∆Z ≈ 4∆0 and stays stable until the superconducting
gap is suppressed at ∆c

Z , see also the line-cuts in Fig. 2.5f. This ZBP only appears
for large Zeeman energies when the wave function starts to leak through the su-
perconducting section. An equivalent signature could also be expected for the MBS
case, for instance, when the two tunnel barriers are of different strength.

The non-local conductances GLR and GRL are similar to each other and exhibit
the bulk-gap closing at ∆Z = ∆c

Z as well as the ZBP, see Fig. 2.5. This ZBP in
the non-local conductance is not present in long nanowires but it is visible in short
wires due to the extension of the ABS over the entire superconducting section. We
note that non-zero non-local conductances indicate that the local conductances GLL

and GRR are not symmetric with respect to the bias, since electrons might tunnel
directly between the normal leads, see Refs. [66, 67]. The sum of all differential-
conductance matrix elements, however, is symmetric with respect to the bias. The
antisymmetric part of the local conductance Ga

LL (Ga
RR) corresponds to the negative

value of the antisymmetric part of the non-local conductance Ga
LR (Ga

RL), see Ref.
[66].

The ZBP in our setup is robust against changes of the Zeeman energy but not
against fluctuations of the tunnel barrier strength γ1. Indeed, tuning γ1 to slightly
different values removes the perfect zero-energy pinning. Parenthetically we note
that in short topological nanowires, the MBS wave functions overlap, and so, simi-
lar to the behavior of our ABSs, it is anyway expected that MBSs are not fixed to zero
energy in short wires. Furthermore, broadening effects, for example due to temper-
ature, affect the differential conductance. If the energy is not perfectly pinned to
zero and the broadening is large enough then a conductance measurement can not
resolve a small finite energy splitting and will reveal only a single peak, which actu-
ally consists of two single merged peaks around zero bias, see App. 2.C. Although
our system is not designed to explain the data from any specific experiment, we
note that our results are similar to the experimental data from Ref. [71]. In particu-
lar, a ZBP appears in the left conductance for a specific value of the tunnel barrier
gate voltage whereas a ZBP appears in the right conductance at larger Zeeman en-
ergies.

We conclude that such an ABS mimics certain key properties of an MBS, which,
in turn, presents a challenge for an unambiguous interpretation of experimental
observations. If the ratio between the length of the superconducting section and the
localization length is small, then the ABS-ZBPs can even be correlated at the left and
right ends of the nanowire. The ABS requires some tuning and is not universally
stable against fluctuations in the SOI strength or the tunnel barrier strength. We
again note that, by construction, the system considered in this section cannot enter
the topological phase and so all features we have found here are due to trivial ABSs.
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a ZBP appears in the right conductance at larger Zeeman
energies.

We conclude that such an ABS mimics certain key prop-
erties of an MBS, which, in turn, presents a challenge for an
unambiguous interpretation of experimental observations. If
the ratio between the length of the superconducting section
and the localization length is small, then the ABS-ZBPs can
even be correlated at the left and right ends of the nanowire.
The ABS requires some tuning and is not universally stable
against fluctuations in the SOI strength or the tunnel barrier
strength. We again note that, by construction, the system con-
sidered in this section cannot enter the topological phase and
so all features we have found here are due to trivial ABSs.

B. ABS in the left and right normal sections

In this section, we examine the nontopological nanowire
with two normal sections hosting two ABSs: one on the
left and another one on the right side of the nanowire [see
Fig. 1(b)]. As before, we begin without tunnel barriers and
without the leads. If the resonance condition is fulfilled si-
multaneously in the left and the right normal sections of the
long nanowire, then the two ABSs become degenerate. The
probability density shows peaks at both ends of the nanowire
[see Fig. 6(b)]. For long wires there is no correlation between
the ABS on the left end and the ABS on the right end: both
are independent of each other and the overlap of their wave
functions is approximately zero. As can be expected from the
previous section, this is not the case for shorter wires and
correlations can occur when the ratio q is small.

In general, a topological phase transition is accompanied
by a bulk-gap closing and reopening. Here, we show that
such a gap behavior can also be mimicked by two ABSs
in nontopological nanowires. We tune the parameters of the
right normal section away from the resonance condition by
changing the length of N2. The degeneracy is lifted and the
energy of the right ABS is different from that of the left
ABS [see Fig. 6(c)]. The parameters α2 and N2 do not affect
the zero-energy pinning of the left ABS and can be chosen
independently to control the behavior of the right ABS in
dependence of the Zeeman energy. We then tune the right
ABS such that it crosses the zero energy at the same value
of the magnetic field at which the zero-energy pinning of the
left ABS starts to take place. The resulting energy spectrum
is shown in Fig. 6(e) and is reminiscent of what one might
expect close to the topological phase transition, however, we
stress that here all these features occur due to the presence of
trivial ABSs in nontopological nanowires.

The nanowire examined in Fig. 6(e) is relatively long with
a large value of the parameter q ≈ 4.5; it is therefore not
expected that the left ABS is visible in the local conductance
on the right end of the nanowire. If instead we choose a similar
parameter set as in Fig. 5, corresponding to a short nanowire
and, in addition, account for a tunnel barrier [see Fig. 1(b)],
we find the energy spectrum shown in Fig. 6(f). The energy
spectrum in Fig. 6(f) strongly resembles the gap closing and
reopening one expects from a topological phase transition, but
is again entirely due to ABSs. Additionally, the wave function
of the left ABS now spreads from the left to the right end and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. Nontopological nanowire with two ABSs: one ABS in
the left and a second one in the right normal section. (a), (c), (e),
(f) Energy spectrum and (b), (d), (g), (h) probability densities of the
ABSs at "Z = 5.74"0 and "Z = 4.62"0 (indicated by the black line
in the panels with the energy spectra). First row: Both ABSs in N1 and
N2 are tuned to zero energy, therefore, the ABSs in the left and right
normal sections are degenerate but essentially uncorrelated. Tuning
the parameters of the right ABS away from the resonance condition
(second row), one lifts the degeneracy. The left ABS stays pinned to
zero energy [see (d)]. Third row: The right ABS mimics the behavior
of the edge of a bulk-gap in (e) long and (f) short nanowires. The
probability density of the (g) left and (h) right ABS, corresponding to
(f), has a finite value throughout the entire nanowire. The parameters
are listed in Table I in Appendix F.

vice versa for the wave function of the right ABS [see Figs.
6(g) and 6(h)].

The local conductances GLL and GRR reveal that the ABS
localized more on the left (right) is still visible at the opposite
right (left) end (see Fig. 7). The left (right) ABS has a smaller
conductance value on the right (left) end and the conductance
is not quantized. In the absence of quantized conductances,
however, this behavior significantly complicates the interpre-
tation of future experimental data: The local conductance on
the left and right ends exhibits a correlated ZBP and this is
accompanied by a signature reminiscent of a bulk-gap closing
and reopening. In addition, the nonlocal conductance also
exhibits the correlated left and right ABS-ZBP as well as a
signature similar to a bulk-gap closing and reopening during a
topological phase transition. All these features could be misin-

075405-7

Figure 2.6: Non-topological nanowire with two ABSs: one ABS in the left and a sec-
ond one in the right normal section. (a,c,e,f) Energy spectrum and (b,d,g,h) prob-
ability densities of the ABSs at ∆Z = 5.74∆0 and ∆Z = 4.62∆0 (indicated by the
black line in the panels with the energy spectra). First row: Both ABSs in N1 and N2

are tuned to zero energy, therefore, the ABSs in the left and right normal sections
are degenerate but essentially uncorrelated. Tuning the parameters of the right ABS
away from the resonance condition (second row), one lifts the degeneracy. The left
ABS stays pinned to zero energy, see (d). Third row: The right ABS mimics the
behavior of the edge of a bulk-gap in (e) long and (f) short nanowires. The proba-
bility density of the (g) left and (h) right ABS, corresponding to the panel (f), has a
finite value throughout the entire nanowire. The parameters are listed in Table 2.1
in App. 2.F.

ABS in the left and right normal sections

In this section, we examine the non-topological nanowire with two normal sections
hosting two ABSs: one on the left and another one on the right side of the nanowire,
see Fig. 2.1b. As before, we begin without tunnel barriers and without the leads. If
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the resonance condition is fulfilled simultaneously in the left and the right normal
sections of the long nanowire, then the two ABSs become degenerate. The probabil-
ity density shows peaks at both ends of the nanowire, see Fig. 2.6b. For long wires
there is no correlation between the ABS on the left end and the ABS on the right
end: both are independent of each other and the overlap of their wave functions is
approximately zero. As can be expected from the previous section, this is not the
case for shorter wires and correlations can occur when the ratio q is small.

In general, a topological phase transition is accompanied by a bulk-gap closing
and reopening. Here, we show that such a gap behavior can also be mimicked
by two ABSs in non-topological nanowires. We tune the parameters of the right
normal section away from the resonance condition by changing the length of N2.
The degeneracy is lifted and the energy of the right ABS is different from that of
the left ABS, see Fig. 2.6c. The parameters α2 and N2 do not affect the zero-energy
pinning of the left ABS and can be chosen independently to control the behavior
of the right ABS in dependence of the Zeeman energy. We then tune the right ABS
such that it crosses the zero energy at the same value of the magnetic field at which
the zero-energy pinning of the left ABS starts to take place. The resulting energy
spectrum is shown in Fig. 2.6e and is reminiscent of what one might expect close
to the topological phase transition, however, we stress that here all these features
occur due to the presence of trivial ABSs in non-topological nanowires.

The nanowire examined in Fig. 2.6e is relatively long with a large value of the
parameter q ≈ 4.5; it is therefore not expected that the left ABS is visible in the
local conductance on the right end of the nanowire. If instead we choose a similar
parameter set as in Fig. 2.5, corresponding to a short nanowire and, in addition,
account for a tunnel barrier (see Fig. 2.1b), we find the energy spectrum shown in
Fig. 2.6f. The energy spectrum in Fig. 2.6f strongly resembles the gap closing and
reopening one expects from a topological phase transition, but is again entirely due
to ABSs. Additionally, the wave function of the left ABS now spreads from the left
to the right end and vice versa for the wave function of the right ABS, see Figs. 2.6g
and 2.6h.

The local conductances GLL and GRR reveal that the ABS localized more on the
left (right) is still visible at the opposite right (left) end, see Fig. 2.7. The left (right)
ABS has a smaller conductance value on the right (left) end and the conductance is
not quantized. In the absence of quantized conductances, however, this behavior
significantly complicates the interpretation of future experimental data: The local
conductance on the left and right end exhibits a correlated ZBP and this is accompa-
nied by a signature reminiscent of a bulk-gap closing and reopening. In addition,
the non-local conductance also exhibits the correlated left and right ABS-ZBP as
well as a signature similar to a bulk-gap closing and reopening during a topological
phase transition. All these features could be misinterpreted as signatures of MBSs
but appear here in a nanowire that is, by design, topologically trivial at all mag-
netic field strengths. The complementary scenario in short topological nanowires is
discussed in App. 2.B.
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(a) (b)

(c) (d)

FIG. 7. Differential-conductance patterns corresponding to the
energy spectrum of a nontopological nanowire from Fig. 6(f). Both
local conductances (a) GLL and (b) GRR exhibit a ZBP due to the
extended left ABS wave function [see Fig. 6(g)]. Although entirely
trivial in origin, the local conductance is reminiscent of what is
expected for MBSs, containing both correlated ZBPs and an appar-
ent gap closing and reopening process. The nonlocal conductances
(c) GLR and (d) GRL contain signatures of both the bulk states and the
extended ABSs, which are similar to those expected for MBSs. The
parameters are listed in Table I in Appendix F.

terpreted as signatures of MBSs but appear here in a nanowire
that is, by design, topologically trivial at all magnetic field
strengths. The complementary scenario in short topological
nanowires is discussed in Appendix B.

IV. QUASI-MBS IN TOPOLOGICAL NANOWIRES

A. Quasi-MBS in the left normal section

In this section, we consider topological nanowires in con-
figurations shown in Fig. 1(a) with parameter profiles shown
in Fig. 2(c). Such nanowires host quasi-MBSs even if the
superconducting section is in the trivial phase as discussed in
Sec. II B. In Fig. 8, we compare the energy spectrum and prob-
ability density of systems with long and short superconducting
sections. Quasi-MBSs at approximately zero energy exist in
the trivial phase and evolve into MBSs at stronger magnetic
fields. The phase transition takes place approximately at the
critical value !T

Z =
√

!2
0 + µ2

S , indicated by the green line,
and is accompanied by a bulk-gap closing and reopening.
Changing the shape of !n and µn to steplike functions shifts
quasi-MBSs to higher energies, whereas MBSs in the topo-
logical phase are not affected. The wave functions of the
quasi-MBSs only have support on the left end of the nanowire
and decay inside the superconducting section. Therefore, the
probability density is only nonzero also on the right end of
the nanowire when MBSs appear. The quasi-MBSs still exist
in short nanowires with a small ratio q and, in this case, the
wave function spreads through the superconducting section to
the right end [see Fig. 8(d)]. In contrast to ABSs in the non-
topological nanowire system considered above (see Sec. III),
quasi-MBSs in a nanowire with smooth parameter profiles are
more stable against fluctuations of the tunnel-barrier strength.
For long wires quasi-MBSs can appear over a wide range of

FIG. 8. Topological nanowire with quasi-MBSs on the left end:
(a), (c) Energy spectrum and (b), (d) probability densities of the
quasi-MBS at !Z = 1.39!0 (indicated by the black line in the left
panels) and profile of the superconducting gap (dark green dashed
line). First row: In the case of a long superconducting section LS "
ξ , the quasi-MBS probability density is only nonzero on the left end
of the nanowire and decays inside the superconducting section. The
second row corresponds to a smaller value of LS and in this case the
probability density has a finite value at the right end of the nanowire.
The topological phase transition from quasi-MBSs to MBSs takes
place at !Z = 1.73!0 (indicated by the green line in the left panels).
The parameters are listed in Table II in Appendix F.

SOI strengths. In short nanowires, however, the quasi-MBSs
are only pinned to zero for a narrow interval of the SOI
strength.

Within this setup we first study the transport properties of
long topological nanowires that host quasi-MBSs (see Fig. 9).
As is expected for MBSs, the conductance of these quasi-
MBSs is nearly quantized to 2e2/h for some set of parameters,
as discussed in earlier works [49]. Deviations from this value
are due to line broadening effects. In long nanowires quasi-
MBSs are only visible in the local conductance on the left
end, GLL, the corresponding region is encircled by an ellipse
in Figs. 9(a) and 9(b); see also Figs. 9(e) and 9(f) for line
cuts of the local conductances GLL and GRR at certain Zeeman
energies. This behavior can be understood from the fact that
the quasi-MBS wave function is localized on the left end of
the nanowire. The bulk-gap closing and reopening is only
weakly pronounced in GLL because the bulk states are mainly
localized within the superconducting section and the left lead
is relative far away from this region. As a result, GLL primarily
probes the quasi-MBS (which is localized in N1) but not the
bulk states. It should be noted that the bulk states can become
more visible using a logarithmic color scale [see Fig. 9(d)].
The normal section on the right end is shorter and so the right
local conductance is a better probe of the bulk states. The
bulk-gap closing and reopening in the nonlocal conductances
GLR and GRL, shown in Figs. 9(c) and 9(d), respectively, is
less clear compared to nanowires with uniform parameters as
well as the quasi-MBSs and the MBSs are not visible in the
nonlocal conductances. The right local conductance GRR takes
larger values close to the bulk-gap edge in the trivial regime
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Figure 2.7: Differential-conductance patterns corresponding to the energy spectrum
of a non-topological nanowire from Fig. 2.6f. Both local conductances (a) GLL and
(b) GRR exhibit a ZBP due to the extended left ABS wave function, see Fig. 2.6g.
Although entirely trivial in origin, the local conductance is reminiscent of what is
expected for MBSs, containing both correlated ZBPs and an apparent gap closing
and reopening process. The non-local conductances (c) GLR and (d) GRL contain
signatures of both the bulk states and the extended ABSs, which are similar to those
expected for MBSs. The parameters are listed in Table 2.1 in App. 2.F.

2.4 quasi-MBS in topological nanowires

Quasi-MBS in the left normal section

In this section, we consider topological nanowires in configurations shown in
Fig. 2.1a with parameter profiles shown in Fig. 2.2c. Such nanowires host quasi-
MBSs even if the superconducting section is in the trivial phase as discussed in
Sec. 2.2. In Fig. 2.8, we compare the energy spectrum and probability density of
systems with long and short superconducting sections. Quasi-MBSs at approxi-
mately zero energy exist in the trivial phase and evolve into MBSs at stronger mag-
netic fields. The phase transition takes place approximately at the critical value
∆T
Z =

√
∆2

0 + µ2
S , indicated by the green line, and is accompanied by a bulk-gap

closing and reopening. Changing the shape of ∆n and µn to step-like functions
shifts quasi-MBSs to higher energies, whereas MBSs in the topological phase are
not affected. The wave functions of the quasi-MBSs only have support on the left
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(a) (b)

(c) (d)

FIG. 7. Differential-conductance patterns corresponding to the
energy spectrum of a nontopological nanowire from Fig. 6(f). Both
local conductances (a) GLL and (b) GRR exhibit a ZBP due to the
extended left ABS wave function [see Fig. 6(g)]. Although entirely
trivial in origin, the local conductance is reminiscent of what is
expected for MBSs, containing both correlated ZBPs and an appar-
ent gap closing and reopening process. The nonlocal conductances
(c) GLR and (d) GRL contain signatures of both the bulk states and the
extended ABSs, which are similar to those expected for MBSs. The
parameters are listed in Table I in Appendix F.

terpreted as signatures of MBSs but appear here in a nanowire
that is, by design, topologically trivial at all magnetic field
strengths. The complementary scenario in short topological
nanowires is discussed in Appendix B.

IV. QUASI-MBS IN TOPOLOGICAL NANOWIRES

A. Quasi-MBS in the left normal section

In this section, we consider topological nanowires in con-
figurations shown in Fig. 1(a) with parameter profiles shown
in Fig. 2(c). Such nanowires host quasi-MBSs even if the
superconducting section is in the trivial phase as discussed in
Sec. II B. In Fig. 8, we compare the energy spectrum and prob-
ability density of systems with long and short superconducting
sections. Quasi-MBSs at approximately zero energy exist in
the trivial phase and evolve into MBSs at stronger magnetic
fields. The phase transition takes place approximately at the
critical value !T

Z =
√

!2
0 + µ2

S , indicated by the green line,
and is accompanied by a bulk-gap closing and reopening.
Changing the shape of !n and µn to steplike functions shifts
quasi-MBSs to higher energies, whereas MBSs in the topo-
logical phase are not affected. The wave functions of the
quasi-MBSs only have support on the left end of the nanowire
and decay inside the superconducting section. Therefore, the
probability density is only nonzero also on the right end of
the nanowire when MBSs appear. The quasi-MBSs still exist
in short nanowires with a small ratio q and, in this case, the
wave function spreads through the superconducting section to
the right end [see Fig. 8(d)]. In contrast to ABSs in the non-
topological nanowire system considered above (see Sec. III),
quasi-MBSs in a nanowire with smooth parameter profiles are
more stable against fluctuations of the tunnel-barrier strength.
For long wires quasi-MBSs can appear over a wide range of

FIG. 8. Topological nanowire with quasi-MBSs on the left end:
(a), (c) Energy spectrum and (b), (d) probability densities of the
quasi-MBS at !Z = 1.39!0 (indicated by the black line in the left
panels) and profile of the superconducting gap (dark green dashed
line). First row: In the case of a long superconducting section LS "
ξ , the quasi-MBS probability density is only nonzero on the left end
of the nanowire and decays inside the superconducting section. The
second row corresponds to a smaller value of LS and in this case the
probability density has a finite value at the right end of the nanowire.
The topological phase transition from quasi-MBSs to MBSs takes
place at !Z = 1.73!0 (indicated by the green line in the left panels).
The parameters are listed in Table II in Appendix F.

SOI strengths. In short nanowires, however, the quasi-MBSs
are only pinned to zero for a narrow interval of the SOI
strength.

Within this setup we first study the transport properties of
long topological nanowires that host quasi-MBSs (see Fig. 9).
As is expected for MBSs, the conductance of these quasi-
MBSs is nearly quantized to 2e2/h for some set of parameters,
as discussed in earlier works [49]. Deviations from this value
are due to line broadening effects. In long nanowires quasi-
MBSs are only visible in the local conductance on the left
end, GLL, the corresponding region is encircled by an ellipse
in Figs. 9(a) and 9(b); see also Figs. 9(e) and 9(f) for line
cuts of the local conductances GLL and GRR at certain Zeeman
energies. This behavior can be understood from the fact that
the quasi-MBS wave function is localized on the left end of
the nanowire. The bulk-gap closing and reopening is only
weakly pronounced in GLL because the bulk states are mainly
localized within the superconducting section and the left lead
is relative far away from this region. As a result, GLL primarily
probes the quasi-MBS (which is localized in N1) but not the
bulk states. It should be noted that the bulk states can become
more visible using a logarithmic color scale [see Fig. 9(d)].
The normal section on the right end is shorter and so the right
local conductance is a better probe of the bulk states. The
bulk-gap closing and reopening in the nonlocal conductances
GLR and GRL, shown in Figs. 9(c) and 9(d), respectively, is
less clear compared to nanowires with uniform parameters as
well as the quasi-MBSs and the MBSs are not visible in the
nonlocal conductances. The right local conductance GRR takes
larger values close to the bulk-gap edge in the trivial regime

075405-8

Figure 2.8: Topological nanowire with quasi-MBSs on the left end: (a,c) Energy
spectrum and (b,d) probability densities of the quasi-MBS at ∆Z = 1.39∆0 (indi-
cated by the black line in the left panels) and profile of the superconducting gap
(dark green dashed line). First row: In the case of a long superconducting section
LS � ξ, the quasi-MBS probability density is only non-zero on the left end of the
nanowire and decays inside the superconducting section. The second row corre-
sponds to a smaller value of LS and in this case the probability density has a finite
value at the right end of the nanowire. The topological phase transition from quasi-
MBSs to MBSs takes place at ∆Z = 1.73∆0 (indicated by the green line in the left
panels). The parameters are listed in Table 2.2 in App. 2.F.

end of the nanowire and decay inside the superconducting section. Therefore, the
probability density is only non-zero also on the right end of the nanowire when
MBSs appear. The quasi-MBSs still exist in short nanowires with a small ratio q
and, in this case, the wave function spreads through the superconducting section
to the right end, see Fig. 2.8d. In contrast to ABSs in the non-topological nanowire
system considered above [see Sec. 2.3], quasi-MBSs in a nanowire with smooth pa-
rameter profiles are more stable against fluctuations of the tunnel-barrier strength.
For long wires quasi-MBSs can appear over a wide range of SOI strengths. In short
nanowires, however, the quasi-MBSs are only pinned to zero for a narrow interval
of the SOI strength.

Within this setup we first study the transport properties of long topological
nanowires that host quasi-MBSs, see Fig. 2.9. As is expected for MBSs, the con-
ductance of these quasi-MBSs is nearly quantized to 2e2/h for some set of parame-
ters, as discussed in earlier works [49]. Deviations from this value are due to line
broadening effects. In long nanowires quasi-MBSs are only visible in the local con-
ductance on the left end, GLL, the corresponding region is encircled by an ellipse in
Figs. 2.9a and 2.9b; see also Figs. 2.9e and 2.9f for line-cuts of the local conductances
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FIG. 9. Differential-conductance patterns reproduce the energy
spectrum of the topological nanowire [see Fig. 8(a)]. The system un-
dergoes a topological phase transition at !Z ≈ 1.73!0 as indicated
by the green line. The local conductance (a) GLL and (b) GRR of the
MBSs are nearly quantized close to the value 2e2/h. The parameter
region of potential quasi-MBSs is encircled by the white ellipse.
Only GLL exhibits a ZBP of quasi-MBS: this local conductance is
also quantized close to 2e2/h; deviations from this value are due to
thermal broadening. The nonlocal conductances (c) GLR and (d) GRL

contain only signatures coming from the bulk states. Line cuts (e),
(f) of the local conductance GLL and GRR at the Zeeman energies
!Z = {1.16, 1.29, 1.42}!0 [indicated by the yellow, dark green and
orange lines in (a) and (b)] confirm that the quasi-MBS-ZBP ap-
pears only on the left end. The parameters are listed in Table II in
Appendix F.

[see Fig. 9(b)] since there is an “intrinsic” ABS just at the gap
edge (see Refs. [79,80]).

Next, we consider short superconducting sections. The
conductance value of the quasi-MBS and its zero-bias pin-
ning is essentially unaffected by the change of length (see
Fig. 10). In contrast, the MBSs that occur in the topological
phase are pushed away from zero energy. In short nanowires
quasi-MBSs are visible in GRR: this region is indicated by the
white ellipse in Figs. 10(a) and 10(b). The quasi-MBS-ZBP
appearing in GRR is not quantized and much smaller than that
in GLL [see also Figs. 10(e) and 10(f) for a line cut of the
conductance]. The right local conductance, however, exhibits
a small ZBP and this peak is correlated to the one on the
left end. Furthermore, while the quasi-MBSs and the MBSs
generate a signal in the nonlocal conductances GLR and GRL,
the bulk-gap closing and reopening is not as clear as in the
case of the long superconducting section.

B. Quasi-MBSs in the left and right normal sections

The final setup we consider is a topological nanowire with
normal sections on both ends [see Fig. 1(b)], with parame-
ter profiles specified in Fig. 2(d). Such a system can host

(a) (b)

(c) (d)

(e) (f)

FIG. 10. The same as in Fig. 9 but for a short nanowire. The
corresponding energy spectrum is shown in Fig. 8(c). Both local
conductances (a) GLL and (b) GRR exhibit a ZBP coming from quasi-
MBSs (highlighted by the white ellipse). The conductance of the
quasi-MBSs is close to the quantization value of 2e2/h on the left
end but not on the right end. The nonlocal conductances (c) GLR and
(d) GRL contain signatures of the bulk states as well as of the quasi-
MBSs and MBSs. Line cuts (e), (f) of the local conductance GLL and
GRR at the Zeeman energies !Z = {1.16, 1.29, 1.42}!0 [indicated
by the yellow, dark green, and orange lines in (a) and (b)] confirm
that the quasi-MBS-ZBP appears on both ends of the nanowire. The
parameters are listed in Table II in Appendix F.

zero-energy quasi-MBSs at both ends of the nanowire in
the topologically trivial regime. In Appendix D, we discuss
the energy spectrum and the wave functions of bulk states;
the latter is important for the understanding of the nonlo-
cal conductances. The conductance patterns of the nanowire,
depicted in Fig. 11, exhibit features coming from the left
and right localized quasi-MBSs. As found previously, their
conductance value is quantized close to 2e2/h. The bulk-gap
closing and reopening is only weakly pronounced in the non-
local conductance GRL, although a logarithmic color scale can
reveal this process [see Fig. 11(d)]. We note that even on the
logarithmic scale the bulk states are poorly visible compared
to Fig. 9(d), whereas the energy spectrum (dark green dashed
lines) clearly shows the bulk-gap closing and reopening. This
reduction of the nonlocal conductance signature of the bulk-
gap closing and reopening by normal sections has been noted
but not explained in Ref. [68]. The reason for this reduction
is that the bulk states have no support in the normal sections
and especially the low-energy states are confined to the mid-
dle of the superconducting section and, therefore, these bulk
states have only very weak features in the local and nonlocal
conductances. Other states are extended throughout the whole
nanowire and thus contribute more strongly to the nonlocal
conductances (see Appendix B).
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Figure 2.9: Differential-conductance patterns reproduce the energy spectrum of the
topological nanowire, see Fig. 2.8a. The system undergoes a topological phase tran-
sition at ∆Z ≈ 1.73∆0 as indicated by the green line. The local conductance (a)
GLL and (b) GRR of the MBSs are nearly quantized close to the value 2e2/h. The
parameter region of potential quasi-MBSs is encircled by the white ellipse. Only
GLL exhibits a ZBP of quasi-MBS: this local conductance is also quantized close to
2e2/h, deviations from this value are due to thermal broadening. The non-local
conductances (c) GLR and (d) GRL contain only signatures coming from the bulk
states. Line cuts (e,f) of the local conductance GLL and GRR at the Zeeman energies
∆Z = {1.16, 1.29, 1.42}∆0 [indicated by the yellow, dark green and orange lines in
(a,b)] confirm that the quasi-MBS-ZBP appears only on the left end. The parameters
are listed in Table 2.2 in App. 2.F.

GLL andGRR at certain Zeeman energies. This behavior can be understood from the
fact that the quasi-MBS wave function is localized on the left end of the nanowire.
The bulk-gap closing and reopening is only weakly pronounced in GLL because the
bulk states are mainly localized within the superconducting section and the left lead
is relative far away from this region. As a result, GLL primarily probes the quasi-
MBS (which is localized in N1) but not the bulk states. It should be noted that the
bulk states can become more visible using a logarithmic color scale (see Fig. 2.9d).
The normal section on the right end is shorter and so the right local conductance is
a better probe of the bulk states. The bulk-gap closing and reopening in the non-
local conductances GLR and GRL, shown in Figs. 2.9c and 2.9d, respectively, is less
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(e) (f)

FIG. 9. Differential-conductance patterns reproduce the energy
spectrum of the topological nanowire [see Fig. 8(a)]. The system un-
dergoes a topological phase transition at !Z ≈ 1.73!0 as indicated
by the green line. The local conductance (a) GLL and (b) GRR of the
MBSs are nearly quantized close to the value 2e2/h. The parameter
region of potential quasi-MBSs is encircled by the white ellipse.
Only GLL exhibits a ZBP of quasi-MBS: this local conductance is
also quantized close to 2e2/h; deviations from this value are due to
thermal broadening. The nonlocal conductances (c) GLR and (d) GRL

contain only signatures coming from the bulk states. Line cuts (e),
(f) of the local conductance GLL and GRR at the Zeeman energies
!Z = {1.16, 1.29, 1.42}!0 [indicated by the yellow, dark green and
orange lines in (a) and (b)] confirm that the quasi-MBS-ZBP ap-
pears only on the left end. The parameters are listed in Table II in
Appendix F.

[see Fig. 9(b)] since there is an “intrinsic” ABS just at the gap
edge (see Refs. [79,80]).

Next, we consider short superconducting sections. The
conductance value of the quasi-MBS and its zero-bias pin-
ning is essentially unaffected by the change of length (see
Fig. 10). In contrast, the MBSs that occur in the topological
phase are pushed away from zero energy. In short nanowires
quasi-MBSs are visible in GRR: this region is indicated by the
white ellipse in Figs. 10(a) and 10(b). The quasi-MBS-ZBP
appearing in GRR is not quantized and much smaller than that
in GLL [see also Figs. 10(e) and 10(f) for a line cut of the
conductance]. The right local conductance, however, exhibits
a small ZBP and this peak is correlated to the one on the
left end. Furthermore, while the quasi-MBSs and the MBSs
generate a signal in the nonlocal conductances GLR and GRL,
the bulk-gap closing and reopening is not as clear as in the
case of the long superconducting section.

B. Quasi-MBSs in the left and right normal sections

The final setup we consider is a topological nanowire with
normal sections on both ends [see Fig. 1(b)], with parame-
ter profiles specified in Fig. 2(d). Such a system can host

(a) (b)

(c) (d)

(e) (f)

FIG. 10. The same as in Fig. 9 but for a short nanowire. The
corresponding energy spectrum is shown in Fig. 8(c). Both local
conductances (a) GLL and (b) GRR exhibit a ZBP coming from quasi-
MBSs (highlighted by the white ellipse). The conductance of the
quasi-MBSs is close to the quantization value of 2e2/h on the left
end but not on the right end. The nonlocal conductances (c) GLR and
(d) GRL contain signatures of the bulk states as well as of the quasi-
MBSs and MBSs. Line cuts (e), (f) of the local conductance GLL and
GRR at the Zeeman energies !Z = {1.16, 1.29, 1.42}!0 [indicated
by the yellow, dark green, and orange lines in (a) and (b)] confirm
that the quasi-MBS-ZBP appears on both ends of the nanowire. The
parameters are listed in Table II in Appendix F.

zero-energy quasi-MBSs at both ends of the nanowire in
the topologically trivial regime. In Appendix D, we discuss
the energy spectrum and the wave functions of bulk states;
the latter is important for the understanding of the nonlo-
cal conductances. The conductance patterns of the nanowire,
depicted in Fig. 11, exhibit features coming from the left
and right localized quasi-MBSs. As found previously, their
conductance value is quantized close to 2e2/h. The bulk-gap
closing and reopening is only weakly pronounced in the non-
local conductance GRL, although a logarithmic color scale can
reveal this process [see Fig. 11(d)]. We note that even on the
logarithmic scale the bulk states are poorly visible compared
to Fig. 9(d), whereas the energy spectrum (dark green dashed
lines) clearly shows the bulk-gap closing and reopening. This
reduction of the nonlocal conductance signature of the bulk-
gap closing and reopening by normal sections has been noted
but not explained in Ref. [68]. The reason for this reduction
is that the bulk states have no support in the normal sections
and especially the low-energy states are confined to the mid-
dle of the superconducting section and, therefore, these bulk
states have only very weak features in the local and nonlocal
conductances. Other states are extended throughout the whole
nanowire and thus contribute more strongly to the nonlocal
conductances (see Appendix B).
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Figure 2.10: The same as in Fig. 2.9 but for a short nanowire. The correspond-
ing energy spectrum is shown in Fig. 2.8c. Both local conductances (a) GLL and
(b) GRR exhibit a ZBP coming from quasi-MBSs (highlighted by the white ellipse).
The conductance of the quasi-MBSs is close to the quantization value of 2e2/h on
the left end but not on the right end. The non-local conductances (c) GLR and
(d) GRL contain signatures of the bulk states as well as of the quasi-MBSs and
MBSs. Line cuts (e,f) of the local conductance GLL and GRR at the Zeeman energies
∆Z = {1.16, 1.29, 1.42}∆0 [indicated by the yellow, dark green, and orange lines in
(a,b)] confirm that the quasi-MBS-ZBP appears on both ends of the nanowire. The
parameters are listed in Table 2.2 in App. 2.F.

clear compared to nanowires with uniform parameters as well as the quasi-MBSs
and the MBSs are not visible in the non-local conductances. The right local conduc-
tance, GRR, takes larger values close to the bulk-gap edge in the trivial regime (see
Fig. 2.9b) since there is an ‘intrinsic’ ABS just at the gap edge, see Refs. [79, 80].

Next, we consider short superconducting sections. The conductance value of
the quasi-MBS and its zero-bias pinning is essentially unaffected by the change of
length, see Fig. 2.10. In contrast, the MBSs that occur in the topological phase are
pushed away from zero energy. In short nanowires quasi-MBSs are visible in GRR:
this region is indicated by the white ellipse in Figs. 2.10a and 2.10b. The quasi-MBS-
ZBP appearing in GRR is not quantized and much smaller than that in GLL, see also
Figs. 2.10e and 2.10f for a line cut of the conductance. The right local conductance,
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(a) (b)

(c) (d)

FIG. 11. A long topological nanowire, as in Fig. 9(a), with quasi-
MBSs present at both nanowire ends. The local conductance (a) GLL

and (b) GRR of the MBSs and the quasi-MBSs is close to the quan-
tization value of G = 2e2/h; deviations from this value are due to
thermal broadening. The nonlocal conductances (c) GLR and (d) GRL

contain only signatures of the bulk states, and the bulk-gap closing
and reopening is only weakly pronounced. The parameters are listed
in Table II in Appendix F.

This suppression of the visibility of the bulk-gap clos-
ing in the nonlocal conductance can be somewhat offset by
decreasing the step height of the chemical potential at the
interface between the normal and superconducting section.
Nonetheless, three-terminal experiments will require a very
high resolution to measure the bulk-gap closing and reopening
in superconducting nanowires with normal sections on both
ends. If this gap behavior cannot be resolved experimentally,
then it will also not be possible to distinguish MBSs from
quasi-MBSs, even in long nanowires.

V. CONCLUSIONS

We analyzed transport properties of nontopological Rashba
nanowires with normal sections that host ABSs. When the pa-
rameters of a normal section are close to a resonance condition
and the ratio between the length of the superconductor and the
ABS localization length is small, an ABS is pinned to zero
energy over a wide range of Zeeman energies and has a finite
probability density on both ends of the nanowire. The same
effect occurs for the case of smooth spatial variation of system
parameters such as chemical potential and superconducting
gap. As such, even though their origin is topologically trivial,
calculations of local and nonlocal conductances reveal corre-
lated ZBPs on the left and the right ends of the nanowire due
to the ABSs. We conclude therefore that the measurement of
correlated ZBPs on both ends of a superconducting nanowire
is not an unambiguous indicator for the presence of MBSs.

The observation of the closing and reopening of the
bulk gap in the local and nonlocal conductances that should
accompany a topological phase transition has also been con-

sidered in previous works as an additional indicator for the
topological phase. However, we find here that a second ABS
at the other end of the nanowire can mimic the edge of the
bulk gap, when the ratio between the length of superconduct-
ing section and the localization length of the ABS is small.
Therefore, local and nonlocal conductance measurements of
ZBPs on each end with an apparent closing and reopening
of the bulk gap is also not an unambiguous indicator for the
presence of MBSs.

We conclude that, while next-generation three-terminal ex-
perimental devices will have access to additional auxiliary
features that can help clarify the origins of ZBPs, trivial
ABSs can also generate conductance features similar to those
expected from MBSs when such devices do not have long
superconducting sections. In particular, we find that ABSs can
produce correlated ZBPs and a feature reminiscent of a bulk-
gap closing and reopening in local and nonlocal conductances.
Our results therefore suggest that it is essential to perform
measurements in systems with long superconducting sections
and over a large region of parameter space if one wishes to
gain confidence in a purported MBS signature. That said,
ballistic transport experiments favor short nanowires since
presently the production of devices with long mean-free paths
is challenging. It is therefore questionable whether current
state-of-the-art or near-term Rashba nanowire devices will be
able to conclusively rule out the effects of extended ABSs.
Alternatively, these three-terminal detection methods should
be supplemented by additional signatures observable in the
bulk [81–86] and related to the topological phase transition,
such as the inversion of spin polarization in the lowest-energy
bulk states [87,88].
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APPENDIX A: ENERGY AND TRANSPORT
CALCULATION

To obtain the energy spectrum and wave functions, we
diagonalize numerically the Hamiltonian H . For differential-
conductance calculations we use the Python package KWANT
[89], which is based on the Blonder-Tinkham-Klapwijk
(BTK) formalism [90]. KWANT is used to compute the dif-
ferential conductance Gαβ = dIα/dVβ of the three-terminal
device consisting of a nanowire with a grounded supercon-
ducting section and two normal leads at the left and right ends.
In particular, we utilize KWANT to numerically calculate the S
matrix and extract the transmission and reflection coefficients
that determine the Andreev conductance matrix at zero tem-
perature

G0 =
(

GLL,0 GLR,0
GRL,0 GRR,0

)
= e2

h

(
NL − Re

L(−eVL ) + Ae
L(−eVL ) −T e

LR(−eVR) + Ae
LR(−eVR)

−T e
RL(−eVL ) + Ae

RL(−eVL ) NR − Re
R(−eVR) + Ae

R(−eVR)

)
, (A1)
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Figure 2.11: A long topological nanowire, as in Fig. 2.9a, with quasi-MBSs present
at both nanowire ends. The local conductance (a) GLL and (b) GRR of the MBSs and
the quasi-MBSs is close to the quantization value of G = 2e2/h, deviations from
this value are due to thermal broadening. The non-local conductances (c) GLR and
(d) GRL contain only signatures of the bulk states, and the bulk-gap closing and
reopening is only weakly pronounced. The parameters are listed in Table 2.2 in
App. 2.F.

however, exhibits a small ZBP and this peak is correlated to the one on the left end.
Furthermore, while the quasi-MBSs and the MBSs generate a signal in the non-local
conductances, GLR and GRL, the bulk-gap closing and reopening is not as clear as
in the case of the long superconducting section.

Quasi-MBSs in the left and right normal sections

The final setup we consider is a topological nanowire with normal sections on both
ends, see Fig. 2.1b, with parameter profiles specified in Fig. 2.2d. Such a system
can host zero-energy quasi-MBSs at both ends of the nanowire in the topologically
trivial regime. In App. 2.D, we discuss the energy spectrum and the wave functions
of bulk states, the latter is important for the understanding of the non-local con-
ductances. The conductance patterns of the nanowire, depicted in Fig. 2.11, exhibit
features coming from the left and right localized quasi-MBSs. As found previously,
their conductance value is quantized close to 2e2/h. The bulk-gap closing and re-
opening is only weakly pronounced in the non-local conductance GRL, although a
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logarithmic color scale can reveal this process, see Fig. 2.11d. We note that even
on the logarithmic scale the bulk states are poorly visible compared to Fig. 2.9d,
whereas the energy spectrum (dark green dashed lines) clearly shows the bulk-gap
closing and reopening. This reduction of the non-local conductance signature of
the bulk-gap closing and reopening by normal sections has been noted but not ex-
plained in Ref. [68]. The reason for this reduction is that the bulk states have no
support in the normal sections and especially the low energy states are confined
to the middle of the superconducting section and, therefore, these bulk states have
only very weak features in the local and non-local conductances. Other states are
extended throughout the whole nanowire and thus contribute more strongly to the
non-local conductances, see App. 2.B.

This suppression of the visibility of the bulk-gap closing in the non-local conduc-
tance can be somewhat offset by decreasing the step height of the chemical poten-
tial at the interface between the normal and superconducting section. Nonetheless,
three-terminal experiments will require a very high resolution to measure the bulk-
gap closing and reopening in superconducting nanowires with normal sections on
both ends. If this gap behavior cannot be resolved experimentally, then it will also
not be possible to distinguish MBSs from quasi-MBSs, even in long nanowires.

2.5 Conclusions

We analyzed transport properties of non-topological Rashba nanowires with nor-
mal sections that host ABSs. When the parameters of a normal section are close
to a resonance condition and the ratio between the length of the superconductor
and the ABS localization length is small, an ABS is pinned to zero energy over a
wide range of Zeeman energies and has a finite probability density on both ends
of the nanowire. The same effect occurs for the case of smooth spatial variation of
system parameters such as chemical potential and superconducting gap. As such,
even though their origin is topologically trivial, calculations of local and non-local
conductances reveal correlated ZBPs on the left and the right ends of the nanowire
due to the ABSs. We conclude therefore that the measurement of correlated ZBPs
on both ends of a superconducting nanowire is not an unambiguous indicator for
the presence of MBSs.

The observation of the closing and reopening of the bulk-gap in the local and
non-local conductances that should accompany a topological phase transition has
also been considered in previous works as an additional indicator for the topo-
logical phase. However, we find here that a second ABS at the other end of the
nanowire can mimic the edge of the bulk-gap, when the ratio between the length of
superconducting section and the localization length of the ABS is small. Therefore,
local and non-local conductance measurements of ZBPs on each end with an appar-
ent closing and reopening of the bulk-gap is also not an unambiguous indicator for
the presence of MBSs.

We conclude that, while next generation three-terminal experimental devices
will have access to additional auxiliary features that can help clarify the origins of
ZBPs, trivial ABSs can also generate conductance features similar to those expected
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from MBSs when such devices do not have long superconducting sections. In par-
ticular, we find that ABSs can produce correlated ZBPs and a feature reminiscent of
a bulk-gap closing and reopening in local and non-local conductances. Our results
therefore suggest that it is essential to perform measurements in systems with long
superconducting sections and over a large region of parameter space if one wishes
to gain confidence in a purported MBS signature. That said, ballistic transport ex-
periments favor short nanowires since presently the production of devices with
long mean free paths is challenging. It is therefore questionable whether current
state-of-the-art or near-term Rashba nanowire devices will be able to conclusively
rule out the effects of extended ABSs. Alternatively, these three-terminal detection
methods should be supplemented by additional signatures observable in the bulk
[81–86] and related to the topological phase transition, such as the inversion of spin
polarization in the lowest energy bulk states [87, 88].
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2.A Energy and Transport calculation

To obtain the energy spectrum and wave functions, we diagonalize numerically
the Hamiltonian H . For differential conductance calculations we use the Python
package Kwant [89], which is based on the Blonder Tinkham Klapwijk (BTK) for-
malism [90]. Kwant is used to compute the differential conductance Gαβ = dIα/dVβ
of the three-terminal device consisting of a nanowire with a grounded supercon-
ducting section and two normal leads at the left and right end. In particular, we
utilise Kwant to numerically calculate the S-matrix and extract the transmission
and reflection coefficients that determine the Andreev conductance matrix at zero
temperature

G0 =

(
GLL,0 GLR,0

GRL,0 GRR,0

)
=
e2

h

(
NL −Re

L(−eVL) + AeL(−eVL) −T eLR(−eVR) + AeLR(−eVR)
−T eRL(−eVL) + AeRL(−eVL) NR −Re

R(−eVR) + AeR(−eVR)

)
, (2.18)

where NL (NR) and VL[R] denote the number of channels and the gate voltage on the
left (right) lead, respectively, Rα and Aα are the probabilities of an electron in lead α
to be reflected as an electron or hole, respectively, and similarly, the coefficients Tαβ
and Aαβ are the probabilities of an electron from lead β to transmit as an electron or
hole to lead α, respectively. The sign of the non-local conductance reveals whether
the crossed Andreev reflection, described by the transmission coefficient Aαβ , or
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the electron co-tunneling, described by the coefficient Tαβ , is a dominant contribu-
tion for the non-local differential conductance. The differential-conductance matrix
elements [63, 66, 91] at finite temperature T are given by

GLL = −e
2

h

∫ ∞
−∞

dω
dfL(ω)

dω
[NL −Re

L(ω) + AeL(ω)] , (2.19a)

GLR =
e2

h

∫ ∞
−∞

dω
dfR(ω)

dω
[T eLR(ω)− AeLR(ω)] , (2.19b)

GRL =
e2

h

∫ ∞
−∞

dω
dfL(ω)

dω
[T eRL(ω)− AeRL(ω)] , (2.19c)

GRR = −e
2

h

∫ ∞
−∞

dω
dfR(ω)

dω
[NR −Re

R(ω) + AeR(ω)] , (2.19d)

where fL[R](ω) = f(ω + eVL[R]) denotes the Fermi distribution function
f(ω) = [exp[ω/(kBT )] + 1]−1, with kB being the Boltzmann constant. The
temperature T broadens peaks in the differential conductance. In this work, we
perform the calculations using the temperature T = 40 mK throughout, unless
stated otherwise. Further details about the BTK formalism in three-terminal
devices and the numerical implementation can be found in Refs. [33, 34, 63, 66, 68,
89, 91].

Conventional Andreev reflection describes the process of an incoming electron
with spin σ incident on the interface of a normal-superconductor junction from the
normal material side. The electron can form a Cooper pair with another electron un-
der retro-reflection of a hole with opposite spin −σ [36, 38, 92]. On the other hand,
in topological superconductors, selective equal-spin Andreev reflection is possible
[93] and leads to the reflection of a hole with the same spin polarization as the in-
coming electron. In this manuscript, however, we include SOI and a Zeeman term
in the normal leads, similar for example to Ref. [47]. As a result the spin in the
lead is not a good quantum number and a projection onto the conventional An-
dreev reflection channel or the selective equal-spin Andreev reflection channel is
not possible.

2.B Short uniform topological nanowire
In this section, we compute the differential conductance of a short uniform
nanowire, which enters a topological phase at ∆Z = ∆0, see Fig. 2.12. This conduc-
tance behavior is well known and is presented here in order to compare with that of
a short non-topological nanowire which can exhibit similar signatures, see Fig. 2.7.
The left and right conductance patterns exhibit features coming from the MBSs after
the topological phase transition. The MBSs overlap since their localization length is
comparable to the system length and, therefore, the non-local conductance also con-
tains a weak MBS signature in this regime, see Figs. 2.12c and 2.12d. A logarithmic
scale can, however, reveal these weak MBS signatures in the non-local conductance,
for example, see also Fig. 2.11d.
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where NL (NR) and VL[R] denote the number of channels and
the gate voltage on the left (right) lead, respectively, Rα and
Aα are the probabilities of an electron in lead α to be reflected
as an electron or hole, respectively, and, similarly, the coef-
ficients Tαβ and Aαβ are the probabilities of an electron from
lead β to transmit as an electron or hole to lead α, respec-
tively. The sign of the nonlocal conductance reveals whether
the crossed Andreev reflection, described by the transmission
coefficient Aαβ , or the electron cotunneling, described by the
coefficient Tαβ , is a dominant contribution for the nonlocal
differential conductance. The differential-conductance matrix
elements [63,66,91] at finite temperature T are given by

GLL = −e2

h

∫ ∞

−∞
dω

dfL(ω)
dω

[
NL − Re

L(ω) + Ae
L(ω)

]
, (A2a)

GLR = e2

h

∫ ∞

−∞
dω

dfR(ω)
dω

[
T e

LR(ω) − Ae
LR(ω)

]
, (A2b)

GRL = e2

h
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where fL[R](ω) = f (ω + eVL[R] ) denotes the Fermi distribu-
tion function f (ω) = {exp[ω/(kBT )] + 1}−1, with kB being
the Boltzmann constant. The temperature T broadens peaks
in the differential conductance. In this work, we perform
the calculations using the temperature T = 40 mK through-
out, unless stated otherwise. Further details about the BTK
formalism in three-terminal devices and the numerical imple-
mentation can be found in Refs. [33,34,63,66,68,89,91].

Conventional Andreev reflection describes the process of
an incoming electron with spin σ incident on the interface
of a normal-superconductor junction from the normal mate-
rial side. The electron can form a Cooper pair with another
electron under retroreflection of a hole with opposite spin −σ
[36,38,92]. On the other hand, in topological superconductors,
selective equal-spin Andreev reflection is possible [93] and
leads to the reflection of a hole with the same spin polarization
as the incoming electron. In this paper, however, we include
SOI and a Zeeman term in the normal leads, similar for exam-
ple to Ref. [47]. As a result, the spin in the lead is not a good
quantum number and a projection onto the conventional An-
dreev reflection channel or the selective equal-spin Andreev
reflection channel is not possible.

APPENDIX B: SHORT UNIFORM TOPOLOGICAL
NANOWIRE

In this Appendix, we compute the differential conductance
of a short uniform nanowire, which enters a topological phase
at %Z = %0 (see Fig. 12). This conductance behavior is well
known and is presented here in order to compare with that
of a short nontopological nanowire which can exhibit similar
signatures (see Fig. 7). The left and right conductance patterns
exhibit features coming from the MBSs after the topological
phase transition. The MBSs overlap since their localization
length is comparable to the system length and, therefore, the
nonlocal conductance also contains a weak MBS signature
in this regime [see Figs. 12(c) and 12(d)]. A logarithmic

(a) (b)

(c) (d)

FIG. 12. Differential-conductance patterns in a short topological
nanowire with uniform parameter profiles. The local conductances
(a) GLL and (b) GRR are identical and exhibit ZBPs coming from
the MBS in the topological phase. The height of this ZBP is a bit
smaller than 2e2/h due to thermal broadening. The nonlocal conduc-
tances (c) GLR and (d) GRL exhibit the nonlocal bulk-gap closing and
reopening process, close to the Zeeman energy %Z = %0, indicated
by the green line. Furthermore, the nonlocal conductance exhibits
features around zero energy originating from overlapping MBSs. The
parameters are listed in Table II in Appendix F.

scale can, however, reveal these weak MBS signatures in the
nonlocal conductance [for example, see also Fig. 11(d)].

In short nanowires only a few states contribute to conduc-
tance at low biases close to the bulk-gap closing and reopening
point. For instance, in the example shown in Fig. 12, only
three states contribute. This should be compared to the con-
ductance of the nontopological nanowire shown in Fig. 7,
which hosts one state that mimics the bulk states undergo-
ing a topological phase transition and is very similar to the
behavior found in topological nanowires. In longer nanowires
the energy-level spacing between the bulk states decreases. As
such, many states contribute to the conductance close to the
bulk-gap closing and reopening point and therefore it is easier
to distinguish between the bulk and bound states.

We note that the ZBP of the MBSs in the short topological
nanowire is not quantized, which is also the case for the ZBP
in the trivial nanowire. Experimentally, the robust quantiza-
tion has not been observed so far. All in all, a distinction
between topological and trivial states in short nanowires via
a local and nonlocal conductance measurement is therefore
challenging.

APPENDIX C: BROADENING OF ZBP

We note that the calculated conductance peaks are rela-
tively sharp. In contrast, experiments usually show broadened
conductance patterns. Different mechanisms such as the
strong coupling between leads and nanowire, external pertur-
bations due to environment effects, and high temperatures lead
to a broadening of the conductance peaks. In this Appendix
we consider long topological and nontopological nanowires,
hosting nearly zero-energy ABSs in the left normal section,
and calculate the local conductance GLL (see Fig. 13). All
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Figure 2.12: Differential-conductance patterns in a short topological nanowire with
uniform parameter profiles. The local conductances (a) GLL and (b) GRR are identi-
cal and exhibit ZBPs coming from the MBS in the topological phase. The height of
this ZBP is a bit smaller than 2e2/h due to thermal broadening. The non-local con-
ductance (c) GLR and (d) GRL exhibit the non-local bulk-gap closing and reopening
process, close to the Zeeman energy ∆Z = ∆0, indicated by the green line. Further-
more, the non-local conductance exhibits features around zero energy originating
from overlapping MBSs. The parameters are listed in Table 2.2 in App. 2.F.

In short nanowires only a few states contribute to conductance at low biases
close to the bulk-gap closing and reopening point. For instance, in the example
shown in Fig. 2.12, only three states contribute. This should be compared to the
conductance of the non-topological nanowire shown in Fig. 2.7, which hosts one
state that mimics the bulk states undergoing a topological phase transition and is
very similar to the behavior found in topological nanowires. In longer nanowires
the energy level spacing between the bulk states decreases. As such, many states
contribute to the conductance close to the bulk-gap closing and reopening point
and therefore it is easier to distinguish between the bulk and bound states.

We note that the ZBP of the MBSs in the short topological nanowire is not quan-
tized, which is also the case for the ZBP in the trivial nanowire. Experimentally, the
robust quantization has not been observed so far. All in all, a distinction between
topological and trivial states in short nanowires via a local and non-local conduc-
tance measurement is therefore challenging.
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(a) (b)

FIG. 13. Strong broadening of the ZBP in a long (a) topological
and (b) nontopological nanowire hosting an ABS. The differential
conductance peaks are in general broadened by different mecha-
nisms such as strong coupling between leads and nanowire, external
perturbations due to the environment, and high temperatures; here
we effectively take these broadening mechanisms into account via a
large effective temperature of T = 150 mK. (a) The left local con-
ductance exhibits only a single ZBP, in contrast, the energies of the
ABS (shown in dashed green lines) are not well pinned to zero. The
strong broadening merges the two finite-energy peaks together to a
single ZBP. The topological phase transition is indicated by the green
vertical line. (b) The same effect is present in the nontopological
system. The parameters are listed in Table II in Appendix F.

broadening mechanisms are taken into account effectively via
thermal effects, i.e., by choosing a relatively high temperature
of T = 150 mK. The resulting conductance is less sharp and
is therefore in better agreement with the broader conductance
features found in experiments. Furthermore, broadening pre-
vents a high-resolution mapping of the energy spectrum. The
left local conductance GLL cannot resolve the fact that the
ABS has a finite energy (in Fig. 13 energies are shown as
green dashed lines for comparison). The conductance peaks of
the finite-energy ABS and its particle-hole partner are merged
together into a single conductance peak at zero energy. As
such, even in systems where ABSs are not perfectly tuned to
zero energy, for example, if the resonance condition is fulfilled
only approximately, an apparent ZBP in the conductance can
still emerge.

APPENDIX D: ABSENCE OF THE SIGNATURE OF THE
BULK-GAP CLOSING IN CONDUCTANCE

In this Appendix we consider topological nanowires which
host quasi-MBSs at both ends and analyze the suppression of
signatures of the topological phase transition in the conduc-
tance. Our discussion focuses on long nanowires, for which
elements of the corresponding conductance matrix are shown
in Fig. 11. The nonlocal conductances GRL and GLR show
only weak bulk-gap features at lower biases, despite the fact
that the energy spectrum exhibits a clear bulk-gap closing
and reopening consistent with the topological phase transition
(see Fig. 14). The phase transition is indicated by the green
vertical line. This puzzle can be resolved by looking at the
bulk wave functions (see Fig. 14). The nonuniform chemical
potential is responsible for confining the lowest-energy bulk
subgap states within the superconducting section. When the
bulk gap closes in the superconducting section, the normal
sections still nominally have a gap for states with nearly
zero momentum originating from the interior branches of the
spectrum. In the trivial phase [see Fig. 14(d)], the quasi-MBSs

(a) (b)

(c) (d)

FIG. 14. Topological nanowire hosting quasi-MBSs on both
ends. (a) Energy spectrum and (b)–(d) probability densities
of the quasi-MBSs and of the lowest bulk states at !Z =
{1.26, 1.91, 2.48}!0 [indicated by the black lines in (a)]. The topo-
logical phase transition takes place at !Z = 1.73!0 [indicated by
the green line in (a)]. The color of the energy states in (a) determines
the color code for their probability densities in the remaining panels.
(b) In the trivial phase, the quasi-MBSs are well localized at the
left and right ends. The first four bulk states (khaki green, yellow,
orange, dark red) are mainly localized in the superconducting section
of the nanowire. (c) Shortly after the topological phase transition, the
wave functions of the energetically lowest bulk states are still mainly
localized within the superconducting section. (d) Deeply in the topo-
logical phase transition, the lowest bulk states (dark green and khaki
green) are extended over the entire nanowire. These extended states
are more visible in the nonlocal conductance (see Fig. 11) than the
bulk states shown in (b) and (c). The parameters are listed in Table II
in Appendix F.

(blue, dark green) are well localized at the left and right ends
of the nanowire. As a result, they couple strongly to the leads.
In contrast, the energetically lowest bulk states (khaki green,
yellow, orange and dark red) are mainly localized within the
superconducting section. Thus, there is hardly any coupling to
the leads and, as such, these bulk states only weakly contribute
to the nonlocal conductance of the trivial phase.

Right after the topological phase transition [see Fig. 14(c)],
the wave functions of the energetically lowest bulk states are
also mainly localized within the superconducting section and
not in the normal sections. This results in a similar absence
of a corresponding nonlocal conductance signal as occurred
in the trivial phase. In general, we find the lower the energy
of the bulk state, the more it is localized within the supercon-
ducting section. For example, the energetically lowest state
(dark green) is more localized than the fifth bulk state (dark
red). Furthermore, these bulk states are spatially separated
from the left and right ends of the nanowire, so that a local
conductance measurement also can not resolve such states.
In contrast, the MBSs (dark blue) are mainly localized in the
normal sections and decay into the superconductor, making
them highly visible in local conductance measurements.

Deep inside the topological phase [see Fig. 14(d)], the
lowest bulk states (dark green and khaki green) originating
from the exterior branches of the spectrum (from finite Fermi
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Figure 2.13: Strong broadening of the ZBP in a long (a) topological and (b) non-
topological nanowire hosting an ABS. The differential conductance peaks are in
general broadened by different mechanisms such as strong coupling between leads
and nanowire, external perturbations due to the environment, and high tempera-
tures; here we effectively take these broadening mechanisms into account via a large
effective temperature of T = 150 mK. (a) The left local conductance exhibits only a
single ZBP, in contrast, the energies of the ABS (shown in dashed green lines) are
not well pinned to zero. The strong broadening merges the two finite-energy peaks
together to a single ZBP. The topological phase transition is indicated by the green
vertical line. (b) The same effect is present in the non-topological system. The pa-
rameters are listed in Table 2.2 in App. 2.F.

2.C Broadening of ZBP

We note that the calculated conductance peaks are relatively sharp. In contrast, ex-
periments usually show broadened conductance patterns. Different mechanisms
such as the strong coupling between leads and nanowire, external perturbations
due to environment effects, and high temperatures lead to a broadening of the con-
ductance peaks. In this section we consider long topological and non-topological
nanowires, hosting nearly zero-energy ABSs in the left normal section, and calcu-
late the local conductance GLL, see Fig. 2.13. All broadening mechanisms are taken
into account effectively via thermal effects, i.e., by choosing a relatively high tem-
perature of T = 150 mK. The resulting conductance is less sharp and is therefore
in better agreement with the broader conductance features found in experiments.
Furthermore, broadening prevents a high resolution mapping of the energy spec-
trum. The left local conductanceGLL cannot resolve the fact that the ABS has a finite
energy (in Fig. 2.13 energies are shown as green dashed lines for comparison). The
conductance peaks of the finite-energy ABS and its particle-hole partner are merged
together into a single conductance peak at zero energy. As such, even in systems
where ABSs are not perfectly tuned to zero energy, for example, if the resonance
condition is fulfilled only approximately, an apparent ZBP in the conductance can
still emerge.
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(a) (b)

FIG. 13. Strong broadening of the ZBP in a long (a) topological
and (b) nontopological nanowire hosting an ABS. The differential
conductance peaks are in general broadened by different mecha-
nisms such as strong coupling between leads and nanowire, external
perturbations due to the environment, and high temperatures; here
we effectively take these broadening mechanisms into account via a
large effective temperature of T = 150 mK. (a) The left local con-
ductance exhibits only a single ZBP, in contrast, the energies of the
ABS (shown in dashed green lines) are not well pinned to zero. The
strong broadening merges the two finite-energy peaks together to a
single ZBP. The topological phase transition is indicated by the green
vertical line. (b) The same effect is present in the nontopological
system. The parameters are listed in Table II in Appendix F.

broadening mechanisms are taken into account effectively via
thermal effects, i.e., by choosing a relatively high temperature
of T = 150 mK. The resulting conductance is less sharp and
is therefore in better agreement with the broader conductance
features found in experiments. Furthermore, broadening pre-
vents a high-resolution mapping of the energy spectrum. The
left local conductance GLL cannot resolve the fact that the
ABS has a finite energy (in Fig. 13 energies are shown as
green dashed lines for comparison). The conductance peaks of
the finite-energy ABS and its particle-hole partner are merged
together into a single conductance peak at zero energy. As
such, even in systems where ABSs are not perfectly tuned to
zero energy, for example, if the resonance condition is fulfilled
only approximately, an apparent ZBP in the conductance can
still emerge.

APPENDIX D: ABSENCE OF THE SIGNATURE OF THE
BULK-GAP CLOSING IN CONDUCTANCE

In this Appendix we consider topological nanowires which
host quasi-MBSs at both ends and analyze the suppression of
signatures of the topological phase transition in the conduc-
tance. Our discussion focuses on long nanowires, for which
elements of the corresponding conductance matrix are shown
in Fig. 11. The nonlocal conductances GRL and GLR show
only weak bulk-gap features at lower biases, despite the fact
that the energy spectrum exhibits a clear bulk-gap closing
and reopening consistent with the topological phase transition
(see Fig. 14). The phase transition is indicated by the green
vertical line. This puzzle can be resolved by looking at the
bulk wave functions (see Fig. 14). The nonuniform chemical
potential is responsible for confining the lowest-energy bulk
subgap states within the superconducting section. When the
bulk gap closes in the superconducting section, the normal
sections still nominally have a gap for states with nearly
zero momentum originating from the interior branches of the
spectrum. In the trivial phase [see Fig. 14(d)], the quasi-MBSs

(a) (b)

(c) (d)

FIG. 14. Topological nanowire hosting quasi-MBSs on both
ends. (a) Energy spectrum and (b)–(d) probability densities
of the quasi-MBSs and of the lowest bulk states at !Z =
{1.26, 1.91, 2.48}!0 [indicated by the black lines in (a)]. The topo-
logical phase transition takes place at !Z = 1.73!0 [indicated by
the green line in (a)]. The color of the energy states in (a) determines
the color code for their probability densities in the remaining panels.
(b) In the trivial phase, the quasi-MBSs are well localized at the
left and right ends. The first four bulk states (khaki green, yellow,
orange, dark red) are mainly localized in the superconducting section
of the nanowire. (c) Shortly after the topological phase transition, the
wave functions of the energetically lowest bulk states are still mainly
localized within the superconducting section. (d) Deeply in the topo-
logical phase transition, the lowest bulk states (dark green and khaki
green) are extended over the entire nanowire. These extended states
are more visible in the nonlocal conductance (see Fig. 11) than the
bulk states shown in (b) and (c). The parameters are listed in Table II
in Appendix F.

(blue, dark green) are well localized at the left and right ends
of the nanowire. As a result, they couple strongly to the leads.
In contrast, the energetically lowest bulk states (khaki green,
yellow, orange and dark red) are mainly localized within the
superconducting section. Thus, there is hardly any coupling to
the leads and, as such, these bulk states only weakly contribute
to the nonlocal conductance of the trivial phase.

Right after the topological phase transition [see Fig. 14(c)],
the wave functions of the energetically lowest bulk states are
also mainly localized within the superconducting section and
not in the normal sections. This results in a similar absence
of a corresponding nonlocal conductance signal as occurred
in the trivial phase. In general, we find the lower the energy
of the bulk state, the more it is localized within the supercon-
ducting section. For example, the energetically lowest state
(dark green) is more localized than the fifth bulk state (dark
red). Furthermore, these bulk states are spatially separated
from the left and right ends of the nanowire, so that a local
conductance measurement also can not resolve such states.
In contrast, the MBSs (dark blue) are mainly localized in the
normal sections and decay into the superconductor, making
them highly visible in local conductance measurements.

Deep inside the topological phase [see Fig. 14(d)], the
lowest bulk states (dark green and khaki green) originating
from the exterior branches of the spectrum (from finite Fermi
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Figure 2.14: Topological nanowire hosting quasi-MBSs on both ends. (a) Energy
spectrum and (b,c,d) probability densities of the quasi-MBSs and of the lowest bulk
states at ∆Z = {1.26, 1.91, 2.48}∆0 [indicated by the black lines in panel (a)]. The
topological phase transition takes place at ∆Z = 1.73∆0 [indicated by the green line
in panel (a)]. The color of the energy states in panel (a) determines the color-code
for their probability densities in the remaining panels. (b) In the trivial phase, the
quasi-MBSs are well localized at the left and right ends. The first four bulk states
(khaki green, yellow, orange, dark red) are mainly localized in the superconducting
section of the nanowire. (c) Shortly after the topological phase transition, the wave
functions of the energetically lowest bulk states are still mainly localized within the
superconducting section. (d) Deeply in the topological phase transition, the lowest
bulk states (dark green and khaki green) are extended over the entire nanowire.
These extended states are more visible in the non-local conductance (see Fig. 2.11)
than the bulk states shown in panel (b) and (c). The parameters are listed in Table 2.2
in App. 2.F.

2.D Absence of the signature of the bulk-gap closing
in conductance

In this section we consider topological nanowires which host quasi-MBSs at both
ends and analyze the suppression of signatures of the topological phase transition
in the conductance. Our discussion focusses on long nanowires, for which elements
of the corresponding conductance matrix are shown in Fig. 2.11. The non-local con-
ductances,GRL andGLR, show only weak bulk-gap features at lower biases, despite
the fact that the energy spectrum exhibits a clear bulk-gap closing and reopening
consistent with the topological phase transition, see Fig. 2.14. The phase transition
is indicated by the green vertical line. This puzzle can be resolved by looking at the
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bulk wave functions, see Fig. 2.14. The non-uniform chemical potential is responsi-
ble for confining the lowest energy bulk sub-gap states within the superconducting
section. When the bulk gap closes in the superconducting section, the normal sec-
tions still nominally have a gap for states with nearly zero momentum originating
from the interior branches of the spectrum. In the trivial phase (see Fig. 2.14b),
the quasi-MBSs (blue, dark green) are well localized at the left and right ends of
the nanowire. As a result, they couple strongly to the leads. In contrast, the ener-
getically lowest bulk states (khaki green, yellow, orange and dark red) are mainly
localized within the superconducting section. Thus, there is hardly any coupling
to the leads and, as such, these bulk states only weakly contribute to the non-local
conductance of the trivial phase.

Right after the topological phase transition (see Fig. 2.14c), the wave functions of
the energetically lowest bulk states are also mainly localized within the supercon-
ducting section and not in the normal sections. This results in a similar absence of a
corresponding non-local conductance signal as occurred in the trivial phase. In gen-
eral, we find the lower the energy of the bulk state the more it is localized within the
superconducting section. For example, the energetically lowest state (dark green)
is more localized than the fifth bulk state (dark red). Furthermore, these bulk states
are spatially separated from the left and right ends of the nanowire, so that a local
conductance measurement also can not resolve such states. In contrast, the MBSs
(dark blue) are mainly localized in the normal sections and decay into the super-
conductor making them highly visible in local conductance measurements.

Deep inside the topological phase (see Fig. 2.14d), the lowest bulk states (dark
green and khaki green) originating from the exterior branches of the spectrum (from
finite Fermi momentum) are extended over the entire nanowire. These delocalized
states couple strongly to the leads and do contribute to the non-local conductance.
In contrast, some of the energetically higher states (such as the yellow and dark
red) originating from the interior branches of the spectrum (from nearly zero Fermi
momentum), – which are related to the states discussed in Fig. 2.14c – remain con-
fined in the superconducting section and therefore contribute less to the non-local
conductance.

The absence of a clear bulk-gap closing and reopening signal in such a setup
makes it essentially impossible to determine the location of the topological phase
transition measuring local and non-local conductances and therefore it is also not
possible to conclusively determine whether the system hosts MBSs or two quasi-
MBSs. Although discussed here for long topological nanowires, this behavior also
occurs in short topological nanowires.

2.E Interplay between quasi-MBSs at the left end and
ABS at the right end of a short topological
nanowire

Finally, we consider a short topological nanowire with quasi-MBSs on the left end
and an ABS on the right end. The ABS is again tuned so that it mimics a bulk-gap
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FIG. 15. Same as Fig. 10 but for the nanowire containing an
additional right normal section hosting an ABS, which mimics a
bulk-gap closing and reopening in the nonlocal conductances close
to !Z ≈ 0.9!0. The left quasi-MBSs are visible in the local con-
ductances (a) GLL and (b) GRR. However, in GRR they are less
pronounced. The nonlocal conductances (c) GLR and (d) GRL contain
features coming from the lowest bulk states as well as from the right
ABS, which leaks through the superconducting section. Line cuts (e),
(f) of the local conductances GLL and GRR at the Zeeman energies
!Z = {1.16, 1.29, 1.42}!0 [indicated by the yellow, dark green, and
orange lines in (a) and (b)] both contain features coming from the left
quasi-MBSs. The parameters are listed in Table II in Appendix F.

momentum) are extended over the entire nanowire. These
delocalized states couple strongly to the leads and do con-
tribute to the nonlocal conductance. In contrast, some of the
energetically higher states (such as the yellow and dark red)
originating from the interior branches of the spectrum (from
nearly zero Fermi momentum), which are related to the states

discussed in Fig. 14(c), remain confined in the supercon-
ducting section and therefore contribute less to the nonlocal
conductance.

The absence of a clear bulk-gap closing and reopening
signal in such a setup makes it essentially impossible to
determine the location of the topological phase transition mea-
suring local and nonlocal conductances and therefore it is also
not possible to conclusively determine whether the system
hosts MBSs or two quasi-MBSs. Although discussed here for
long topological nanowires, this behavior also occurs in short
topological nanowires.

APPENDIX E: INTERPLAY BETWEEN QUASI-MBS AT
THE LEFT END AND ABS AT THE RIGHT END OF A

SHORT TOPOLOGICAL NANOWIRE

Finally, we consider a short topological nanowire with
quasi-MBSs on the left end and an ABS on the right end.
The ABS is again tuned so that it mimics a bulk-gap under-
going a topological phase transition. The parameter profiles
of superconducting gap and chemical potential are not identi-
cal in two normal sections. We choose a smooth parameter
profile at the interface between N1 and S, and a steplike
profile at the interface between S and N2. The elements of
the conductance matrix are shown in Fig. 15. The energy
spectrum (dark green dashed lines) agrees well with features
in the nonlocal conductance GRL. The left quasi-MBSs leak
through the superconducting section and generate a small ZBP
in the right conductance GRR [see Fig. 15(b)]. This behavior
is similar to the one of the setup shown in Fig. 10 and is
again explained by the extended nature of wave functions. The
ZBP originating from the left quasi-MBSs in the right local
conductance is more pronounced in line cuts [see Fig. 15(f)].
The energy of the right ABS decreases with increasing Zee-
man energy until it is nearly zero at the same values of the
magnetic field at which the quasi-MBSs begin to be pinned
to zero energy (!Z ≈ 0.9!0). At stronger magnetic fields
(0.9!0 < !Z < 1.4!0), the right ABS moves away from zero
energy, mimicking the reopening of the bulk gap. The true
topological phase transition, however, takes place only around

TABLE I. Parameters used to model nontopological nanowires.

Fig. N1 N2 NS NB,1 NB,2 t1 t2 tS µ1 µ2 µS !0 !Z !c
Z α1 Eso,1 α2 Eso,2 γ1 γ2 µL µR

3(a) 60 - 400 - - 100 - 20 ∗ - 2 0.25 1.58 1.75 ∗ ∗ - - - - - -
3(b) 60 - 400 - - 100 - 20 ∗ - 2 0.25 1.31 1.75 ∗ ∗ - - - - - -
3(c) 60 - 400 - - 100 - 20 0.44 - 2 0.25 ∗ 1.75 13.35 1.78 - - - - - -
3(d) 60 - 400 - - 100 - 20 0.3 - 2 0.25 ∗ 1.75 7.97 0.63 - - - - - -
4(a) 60 - 400 - - 100 - 20 0 - 2 0.25 ∗ 1.75 14.35 2.06 - - - - - -
4(c) 60 - 400 - - 100 - 20 0 - 2 0.09 ∗ 1.75 14.35 2.06 - - - - - -
4(e) 60 - 175 - - 100 - 20 0 - 2 0.25 ∗ 1.75 14.35 2.06 - - - - - -
5 90 7 140 7 7 100 100 20 0 0 2 0.25 ∗ 1.75 13.75 1.89 13.75 1.89 10 10 20 20
6(a) 60 60 400 - - 100 100 20 0 0 2 0.25 ∗ 1.75 14.35 2.06 14.35 2.06 - - - -
6(c) 60 70 400 - - 100 100 20 0 0 2 0.25 ∗ 1.75 14.35 2.06 14.35 2.06 - - - -
6(e) 60 40 400 - - 100 100 20 0 0 2 0.25 ∗ 1.75 14.35 2.06 10.33 1.07 - - - -
6(f) 90 30 140 7 7 100 100 20 0 0 2 0.25 ∗ 1.75 13.75 1.89 2.75 0.08 10 10 - -
7 90 30 140 7 7 100 100 20 0 0 2 0.25 ∗ 1.75 13.75 1.89 2.75 0.08 10 10 20 20
13(b) 60 7 400 7 7 100 100 20 0.3 0 2 0.25 ∗ 1.75 8.80 0.77 8.80 0.77 10 5 5 5
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Figure 2.15: Same as Fig. 2.10 but for the nanowire containing an additional right
normal section hosting an ABS, which mimics a bulk-gap closing and reopening in
the non-local conductances close to ∆Z ≈ 0.9∆0. The left quasi-MBSs are visible
in the local conductances (a) GLL and (b) GRR. However, in GRR they are less pro-
nounced. The non-local conductances (c) GLR and (d) GRL contain features coming
from the lowest bulk states as well as from the right ABS, which leaks through the
superconducting section. Line cuts (e,f) of the local conductances GLL and GRR at
the Zeeman energies ∆Z = {1.16, 1.29, 1.42}∆0 [indicated by the yellow, dark green
and orange lines in (a,b)] both contain features coming from the left quasi-MBSs.
The parameters are listed in Table 2.2 in App. 2.F.

undergoing a topological phase transition. The parameter profiles of superconduct-
ing gap and chemical potential are not identical in two normal sections. We choose
a smooth parameter profile at the interface between N1 and S, and a step-like pro-
file at the interface between S and N2. The elements of the conductance matrix are
shown in Fig. 2.15. The energy spectrum (dark green dashed lines) agrees well with
features in the non-local conductance GRL. The left quasi-MBSs leak through the
superconducting section and generates a small ZBP in the right conductance GRR,
see Fig. 2.15b. This behavior is similar to the one of the setup shown in Fig. 2.10 and
is again explained by the extended nature of wave functions. The ZBP originating
from the left quasi-MBSs in the right local conductance is more pronounced in line
cuts, see Fig. 2.15f. The energy of the right ABS decreases with increasing Zeeman
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energy until it is nearly zero at the same values of the magnetic field at which the
quasi-MBSs begin to be pinned to zero energy (∆Z ≈ 0.9∆0). At stronger magnetic
fields (0.9∆0 < ∆Z < 1.4∆0), the right ABS moves away from zero energy, mimick-
ing the reopening of the bulk gap. The true topological phase transition, however,
takes place only around ∆Z ≈ 1.74∆0. The right ABS is not only visible in GRR

but also in the non-local conductances, see Figs. 2.15c and 2.15d. Additionally, this
ABS generates a small feature in GLL which is only visible in the line cut shown in
Fig. 2.15e. We note that the height of this right ABS peak in GLL is comparable with
the one of the energetically lowest bulk state. We conclude that, in experiments, an
ABS on the right end could easily mask a topological phase transition.

2.F Parameter values
In this section, we list all parameters used in each figure, see Table 2.1 and Table 2.2.
The hyphen in the table indicates that the respective parameter was not included in
the calculation: For example the nanowire considered in Fig. 2.4a does not include
a second normal section to the right of the superconducting section. Furthermore,
the asterisks ∗ indicates that the corresponding parameter runs over a finite interval
which is indicated in the figure. The parameters from Figs. 2.4g and 2.4h are the
same as the ones from Figs. 2.4a and 2.4e. We choose a temperature of T = 40
mK in all plots except in Fig. 2.13, where we take T = 150 mK. Furthermore, the
effective lattice constant is a = 5 nm in all plots. All energy values in the following
tables are given in units of meV.
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troscopy of topological phases in semiconductor-superconductor het-
erostructures”. In: Phys. Rev. B 102 (7 Aug. 2020), p. 075437.

[86] Mahdi Mashkoori et al. “Identification of topological superconductivity in
magnetic impurity systems using bulk spin polarization”. In: Phys. Rev. B
102 (10 Sept. 2020), p. 104501.

[87] Paweł Szumniak et al. “Spin and charge signatures of topological supercon-
ductivity in Rashba nanowires”. In: Phys. Rev. B 96 (4 July 2017), p. 041401.

[88] Denis Chevallier et al. “Topological phase detection in Rashba nanowires
with a quantum dot”. In: Phys. Rev. B 97 (4 Jan. 2018), p. 045404.

[89] Christoph W Groth et al. “Kwant: a software package for quantum trans-
port”. In: New Journal of Physics 16.6 (June 2014), p. 063065.

[90] G. E. Blonder, M. Tinkham, and T. M. Klapwijk. “Transition from metallic
to tunneling regimes in superconducting microconstrictions: Excess current,
charge imbalance, and supercurrent conversion”. In: Phys. Rev. B 25 (7 Apr.
1982), pp. 4515–4532.



BIBLIOGRAPHY 73

[91] Benjamin M. Fregoso, Alejandro M. Lobos, and S. Das Sarma. “Electrical
detection of topological quantum phase transitions in disordered Majorana
nanowires”. In: Phys. Rev. B 88 (18 Nov. 2013), p. 180507.

[92] Grzegorz Michałek et al. “Interplay between direct and crossed Andreev
reflections in hybrid nanostructures”. In: Phys. Rev. B 88 (15 Oct. 2013),
p. 155425.

[93] James J. He et al. “Selective Equal-Spin Andreev Reflections Induced by Ma-
jorana Fermions”. In: Phys. Rev. Lett. 112 (3 Jan. 2014), p. 037001.





75

CHAPTER 3
Trivial Andreev band mimicking

topological bulk gap reopening in the
non-local conductance of long Rashba

nanowires

Adapted from:
Richard Hess, Henry F. Legg, Daniel Loss, and Jelena Klinovaja

“Trivial Andreev Band Bimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of
Long Rashba Nanowires”,

Phys. Rev. Let. 130, 207001 (2023)

We consider a one-dimensional Rashba nanowire in which multiple Andreev
bound states in the bulk of the nanowire form an Andreev band. We show that,
under certain circumstances, this trivial Andreev band can produce an apparent
closing and reopening signature of the bulk band gap in the non-local conductance
of the nanowire. Furthermore, we show that the existence of the trivial bulk re-
opening signature (BRS) in non-local conductance is essentially unaffected by the
additional presence of trivial zero-bias peaks (ZBPs) in the local conductance at ei-
ther end of the nanowire. The simultaneous occurrence of a trivial BRS and ZBPs
mimics the basic features required to pass the so-called ‘topological gap protocol’.
Our results therefore provide a topologically trivial minimal model by which the
applicability of this protocol can be benchmarked.
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3.1 Introduction

Majorana bound states (MBSs) are predicted to appear in the cores of vortices or
at boundaries of topological superconductors [1–5]. The non-Abelian statistics of
MBSs make them highly promising candidates for fault tolerant topological quan-
tum computing [6–11]. However, so far, despite significant efforts, there has been no
conclusive experimental observation of MBSs. The most heavily investigated plat-
form purported to host MBSs are hybrid semiconductor-superconductor devices.
These devices consist of a semiconductor nanowire with strong Rashba spin-orbit
interaction (SOI) – for instance InSb or InAs – that has been brought into proximity
with a superconductor – for instance NbTiN or Al [12–16]. Although the presence
of zero-bias peaks (ZBPs) in local conductance measurements initially appeared
promising evidence for MBSs in such devices [12–15, 17], it was subsequently re-
alized that the same signature could be produced by trivial effects, for instance
Andreev bound states (ABSs) [18–40].

Trivial mechanisms that mimic the expected experimental signatures of the topo-
logical superconducting phase have significantly complicated the search for MBSs.
Several auxiliary features have been suggested to provide further clarity for the ori-
gin of a ZBP. Examples include, oscillations around zero energy due to the overlap
of the MBSs in short nanowires [41–45], the flip of the lowest band spin polariza-
tion [46, 47], correlated ZBPs at either end of the nanowire, the superconducting
diode effect [48, 49], and a quantized conductance peak with height 2e2/h [50–54].
Although oscillations and correlated ZBPs have been experimentally observed [12–
15, 17, 55, 56], these signatures can also be explained by trivial mechanisms [28, 57,
58].

Seperately, it has been proposed that non-local conductance measurements in
three-terminal devices – for instance, as shown in Fig. a – can detect the bulk gap
closing and reopening that is associated with the phase transition to topological
superconductivity, potentially providing a signature for the bulk topology of the
nanowire [59–68]. In particular, it is important that the length of the proximitized
region in a device is much longer than the localization length of the induced super-
conductivity in the nanowire, otherwise a trivial bulk reopening signature (BRS) can
arise simply due to the avoided crossing of close to zero-energy ABSs [37]. When
arising due to a topological phase transition, the BRS in non-local conductance pro-
vides an upper bound for the size of the topological energy gap [67, 69]. Based on
these ideas, a so-called topological gap protocol (TGP) has been proposed [67]. The
basic features required to pass this protocol are correlated ZBPs at either end of the
nanowire in combination with a BRS. Recently, state-of-the-art experimental devices
were reported to have passed this protocol [69].

In this paper we consider trivial mechanisms that can mimic the basic features
of the topological gap protocol in nanowire devices, where the length of the prox-
imitized nanowire is significantly longer than the localization length of the induced
superconductivity. While trivial origins of ZBPs have been discussed extensively
in the literature [20–31, 33–38], trivial mechanisms that mimic the BRS are much
less understood. First, we show that it is possible for multiple ABSs to form a band
inside the superconducting gap. In particular, when approximately periodically
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(b)

(a)

Figure 3.1: Schematic sketch of a three-terminal device and a typical set of parameter
profiles supporting the formation of an Andreev band. (a) A grounded superconduct-
ing lead (red) is attached to a semiconducting nanowire (yellow). Normal leads
(blue), connected to the ends of the nanowire and tunnel barriers (orange), control
the transparency of the interface between the normal leads and the nanowire. Ex-
perimentally several different device architectures exist but the basic features for
theoretical modeling remain the same in all cases. (b) Typical parameter profile
used to model ABSs forming an Andreev band and the ZBPs at either end of the
nanowire.

spatially distributed and at similar energies, the states within the Andreev band
can have a finite support throughout the nanowire. As a result we find that this
Andreev bandcan result in a non-local conductance signal reminiscent of a BRS.
Furthermore, we combine this trivial BRS with known mechanisms for trivial ZBPs
at each end of the nanowire and show that a trivial BRS and correlated ZBPs can
occur independently. Finally, we discuss the consequences for future experimental
probes of topological superconducting phases.

3.2 Model

The real-space Hamiltonian of the one-dimensional Rashba nanowire, brought into
proximity with a superconductor and subject to an external magnetic field, is given
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by [3, 4, 37]
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where c†n,ν (cn,ν) creates (annihilates) an electron at site n with spin ν =↑, ↓ in a one-
dimensional chain with a total number of N sites. The Pauli matrices σlνν′ , with
l ∈ {x, y, z}, act in spin space. All parameter profiles, namely hopping tn± 1

2
, the

proximity induced superconducting gap ∆n, the chemical potential µn, the Rashba
SOI strength αn, and the Zeeman energy ∆Z,n are assumed to be position depen-
dent, indicated by the index n. A typical parameter profile is shown in Fig. b and
the full mathematical expressions used can be found in the Supplemental Material
(SM) 1.

Throughout we will distinguish between interior and exterior ABSs depending
on whether a given ABS occurs in the bulk or at the ends of the nanowire, respec-
tively. The position distinguishing the bulk and ends of the nanowires is indicated
by gray dashed lines in Fig. b. Interior ABSs arise due to interior normal sections
that are modeled by a vanishing local proximity gap and increase in g-factor at cer-
tain positions within the bulk of the nanowire. We consider distributions of interior
normal sections over the full length of the nanowire that allow the formation of
an Andreev band within the superconducting gap (see below). For simplicity ABSs
are created using normal sections, but a modification of g-factor alone is sufficient to
create the Andreev band that results in a trivial BRS (see SM [Note1]). Separately,
in order to enable the nanowire to host zero-energy exterior ABSs at its ends we
also model normal sections on the left and right end, which we call exterior normal
sections, consisting of NL and NR sites, respectively.

3.3 The Andreev Band
We first develop a mechanism for the formation of a trivial band formed from An-
dreev bound states inside the superconducting gap based on the interplay of mul-
tiple ABSs. We will later consider the impact of this trivial band on non-local trans-
port and trivial ZBPs. If individual ABSs are distributed in a quasi-periodic way
and if, in addition, the separation between the ABSs is of the order of the supercon-
ducting coherence length, then the individual ABSs partially overlap and hybridize
to form a band of Andreev states. In contrast to the individual ABSs, which are

1Supplemental Material. We present more details on the transport calculations, in particular,
about the S-matrix and the topological visibility Q. We discuss disorder and scenarios in which
the conditions for the appearance of the ABSs can be relaxed. Moreover, we consider an alternative
mechanism for the formation of the Andreev band as an academic example and discuss the possi-
bility of other trivial mechanisms leading to BRSs. Furthermore, we tabulate all parameter values
used in the simulations. The Supplemental Material includes the additional Refs. [70–76], which do
not appear in the main text.
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well localized, the states within this band can have a finite support throughout the
nanowire. As such, we will call this band of extended Andreev states an Andreev
band due its strong similarity with the well studied Shiba band [77–79]. We empha-
size that, unlike previous proposals for topological phases due to inhomogeneous
superconductivity [80, 81], the system we consider here remains trivial for all val-
ues of magnetic field. In particular, this is ensured because the bulk g-factor is zero
apart from in the normal sections that form the Andreev band and/or the SOI van-
ishes in the bulk of the nanowire.

Since the states in the Andreev band are extended they can connect the left and
right normal lead and hence are visible in non-local differential conductances. The
Andreev band emerges around the energy of the individual ABSs that form it and
the bandwidth is determined by the overlap of the ABSs, which is related to the sep-
aration length between the ABSs. We note that, within our minimal model, the band
width of the Andreev band is normally smaller than the size of the bulk supercon-
ducting gap such that there is usually a finite gap between bulk superconducting
states and Andreev band states.

3.4 Trivial bulk reopening signature

To study the transport consequences of the delocalized states in the Andreev band,
we first consider a profile with periodically distributed variations in the induced
proximity gap and g-factor along the nanowire, as shown in Fig. a. ABSs created
as a result of this profile have the majority of their weight in the normal sections
and hybridize to form highly extended states, as shown by the probability densi-
ties in Fig. c. We note that, even though we do not consider zero-energy exterior
ABSs here, short exterior normal sections are present in the model to provide tun-
nel barriers for the differential conductance computation, which we perform with
the Python package Kwant [82].

Due to the variation in the g-factor between the normal and superconducting
sections, the energies of states which form the Andreev band have a different slope
as a function of Zeeman field than states with the majority of their weight in the
superconducting sections, as shown in Fig. b. Here, the Zeeman field is defined as
∆Z = g0µBB/2, where µB is the Bohr magneton, B the magnetic field, and g0 is
the g-factor in the normal sections. Importantly, the larger g-factor means that the
Andreev band states cross zero energy considerably before the closing of the bulk
superconducting gap and therefore mimic a topological BRS in the energy spec-
trum. We note that for our model, the slope of the energies as a function of the
Zeeman field is non-linear since we consider the superconducting gap to be a func-
tion of the Zeeman field and states leak into the regions with reduced g-factor, such
that the average Zeeman field experienced by the ABSs is reduced.

The zero-energy crossing of the Andreev band states results in gapped regions
of phase space that are entirely surrounded by regions that are essentially gapless,
i.e. with a very small lowest energy state E0, see Fig. d and also Sec. 3.G. This
behaviour of the bulk spectrum is the same when there is a topological region. Non-
local conductance, however, measures the transport gap since it is sensitive only to
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Figure 3.2: Formation of the Andreev band: (a) Spatial profiles of the induced su-
perconducting gap and of the g-factor at zero Zeeman field in terms of their max-
imal zero-field values ∆0 and g0, respectively. The combination of the two pro-
files leads to the formation of an Andreev band inside the superconducting gap.
(b) Energy spectrum of the Rashba nanowire, with Andreev band, as a function
of Zeeman field. (c) Probability densities of the extended trivial Andreev states
at the positions marked by the colored squares in panel (b). Gray dashed ver-
tical lines indicate the position of the normal sections. Due to the hybridization
of ABSs that form in the normal sections, the Andreev states extend throughout
the nanowire. (d) Lowest energy as a function of Zeeman field and chemical po-
tential. (e)[(f)] Non-local differential conductance GRL as a function of Zeeman
field [chemical potential] calculated at the chemical potential [Zeeman field] in-
dicated by the white horizontal [vertical] line in panel (d). Parameters: a = 4
nm; (NL = NR = NB,L = NB,R, NS, NN) = (5, 150, 10); M = 6; (tL = tR =
tSN ,∆0,∆

c
Z , αL = αR, γL = γR, µLead,L = µLead,R) ≈ (158, 0.6, 12.2, 0, 5, 5) meV; T = 0:

see also Sec. 3.J.

states that connect left and right leads. As shown in Figs. e and f, the extended
nature of the states that form the Andreev band means that these are indeed visible
in the non-local conductance. Therefore, the zero-energy crossing of the Andreev
band states can mimic the transport gap closing and reopening for regions of phase
space, even though, by design, the system remains entirely trivial.
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3.5 Combination of trivial effects

We now combine the trivial BRS due to an Andreev band with trivial ZBPs due
to exterior ABSs at the ends of the nanowire, such zero-energy ABSs have previ-
ously been shown to be abundant in Rashba nanowires [20–38, 40]. Together, these
trivial features mimic the key transport signatures of the topological gap protocol,
namely, the exterior ABSs result in ZBPs on either end of the nanowire and the An-
dreev band results in a trivial BRS. To generate the ZBPs we tune the system to a
certain resonance condition for SOI strength and the length of the normal sections,
in order to pin the exterior ABSs to zero energy, see Refs. [25, 37] for more details.
However, the particular mechanism causing ZBPs at the ends of the nanowire is not
the main subject of this paper and this mechanism can be exchanged for any other
that results in ZBPs, as long as the formation of the Andreev band is not affected. As
previously, we set the Rashba SOI strength to zero in the superconducting sections
of the nanowire which ensures the system is always in the trivial phase. In fact, the
Rashba SOI is in our model only non-zero in the normal sections at the ends of the
system to provide a control knob in the simulation for the zero-energy pinning of
the exterior ABSs.

In Fig. a we show the energy spectrum of a system which combines the trivial
BRS due to the Andreev band and trivial states with almost zero energy. Here, we
tune the right exterior ABS slightly away from zero energy, in order to show that the
exterior ABSs are independent of each other. In addition to the spectrum, we also
calculate the topological visibility Q [83, 84], which is positive over the majority of
the range of Zeeman field strengths, as expected since our system is always in the
trivial phase, see Fig. b. We note that when Andreev band states cross zero energy
then the unitary property of the reflection matrix breaks down and Q is ill-defined,
see the Sec. 3.F.

Finally, the differential conductance matrix elements are shown in Figs. c-f. The
trivial ZBPs due to the ABSs localized at both ends of the nanowire, are clearly vis-
ible in the local differential conductances, see Figs. c and d, but they do not appear
in the non-local conductance, as expected for the ZBP signatures predicted for well
separated MBSs in long nanowires [37, 66]. The Andreev band is visible in the non-
local conductance and is also weakly pronounced in the local conductance. Hence,
the Andreev band results in signature that mimics a topological BRS also in the case
where trivial ZBPs occur at either end of the nanowire.

3.6 Experimental relevance and outlook

Our mechanism for a trivial BRS requires that a few ABSs occur at similar en-
ergies and are approximately equally spatially distributed within the bulk of the
nanowire. Local conductance measurements on experimental state-of-the-art Rashba
nanowire devices reveal many subgap states, indicating that many ABSs remain
prevalent even in high quality devices [69]. We also note that, due to the long lo-
calization length of bound states in current nanowires (normally at least several
100 nm [69]), the distribution only needs to include a small number of ABSs, even
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Figure 3.3: Combination of the Andreev band with zero-energy states: (a) Energy
spectrum showing the Andreev band crossing zero energy at the Zeeman field
strength at which exterior ABSs are pinned to zero energy. (b) The topological
visibility indicates the trivial nature of the system for all Zeeman fields. (c,d)
Local differential conductance calculated on the left and on the right end of
the nanowire, showing pronounced ZBPs. (e,f) Non-local conductances show-
ing that the BRS is essentially unaffected by the presence of the ZBPs. Param-
eters: a = 5 nm; (NL, NR, NS, NN , NB,L = NB,R) = (90, 94, 140, 30, 7)a; M =
5; (tL = tR, tSN , µL = µR, µSN ,∆0,∆

c
Z , αL, αR, γL = γR, µLead,L = µLead,R) =

(100, 20, 0, 2, 0.25, 1.75, 13.75, 13.20, 10, 40) meV; T = 40 mK. See also Sec. 3.J.

in nanowires with lengths of several micrometers. More precisely we find the An-
dreev band in systems with a length of L . 10 localization lengths can tolerate size-
able deviations from a periodic distribution, see Sec. 3.E for a systematic analysis.
The prevalence of ABSs in current devices and the small number of ABSs required
means that it is likely there are regions of parameter space in current devices where
a trivial BRS can occur. Due to their independence, the probability of the combina-
tion of trivial ZBPs and trivial BRS occurring simultaneously, can be approximated
from the number of occurrences of each individual signature.

We want to emphasize that the mechanism described above is much more gen-
eral than the trivial BRS due to avoided crossing of ABSs in short nanowires de-
scribed previously [37]. The Andreev band mechanism for a trivial BRS is relevant
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for systems longer than the localization length. Additionally, the Andreev band
contains many states that contribute to the trivial BRS and is therefore much more
reminiscent of a bulk signature.

Our results suggest a roadmap to conclusively observe MBSs in nanowire de-
vices. First, it remains crucial to determine the magnitude of the necessary param-
eters, such as SOI, in the presence of a superconductor where metallization effects
can drastically reduce their values [85]. With this in mind, it might be desirable to
switch device architecture or material platform to increase the phase space for MBSs
and/or associated energy scales [86–88]. Second, the idea of combining multiple in-
dicators, as suggested by TGP, can reduce the probability that trivial mechanisms si-
multaneously result in similar signatures as a topological phase transition for large
continuous regions of phase space. In addition to local and non-local conductance,
further auxiliary features (see the introduction [41–54]) could also be utilized to in-
crease confidence that the topological phase transition is really being observed. Re-
ducing disorder further lowers the probability of many trivial mechanisms for MBS
indicators, including the trivial BRS discussed here. Finally, as discussed above, the
trivial BRS becomes less likely when the length of the system is increased. Practi-
cally, this means that nanowires should be made with a length that is substantially
longer than the superconducting coherence length, such that the probability of a
trivial BRS in non-local conductance is suppressed, see Sec. 3.E.

3.7 Conclusion

We have shown here that, when approximately equally distributed throughout the
nanowire and at similar energies, multiple ABSs can hybridize to form an Andreev
band within the proximity induced superconducting gap of a Rashba nanowire.
This Andreev band can cross zero-energy and therefore mimics a topological bulk
closing and reopening signature. The trivial BRS discussed here can be easily com-
bined with well-known mechanisms for trivial ZBPs since we find both phenomena
are essentially independent of each other. Our simple model contains the basic fea-
tures of the topological gap protocol [67, 69] and thus can serve as a basis for the
applicability of this protocol. In particular, such a mechanism can provide a bench-
mark as to whether ZBPs in local conductance and a BRS in non-local conductance
alone are sufficient to distinguish a trivial and topological phase, especially when
these signatures occur in only a small region of phase space.
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3.A Parameter profiles
We define the boundary between the left exterior normal section and the first sec-
tion with induced superconductivity as Nb = NL + 1/2. If the system has in total
M sections each consisting of NS lattice sites with induced superconductivity and
M − 1 interior normal sections with NN lattice sites in between the superconduct-
ing sections, then we can define also a boundary between the last superconducting
section, counting from left to right, and the exterior normal section on the right side
as N ′b = N1 + (M − 1)(NS +NN) +NS + 1/2. Finally, we define the hopping matrix
elements tn and the chemical potential µn via the auxiliary function

ηn =ηLΘ(Nb − n) + ηSN [Θ(n−Nb)−Θ(n−N ′b)] + ηRΘ(n−N ′b),

where η = {t, µ}. Here, tL (tR) [µL (µR)] denotes the hopping matrix element [chem-
ical potential] in the exterior normal section on the left (right) side of the nanowire,
Θ(n) is the Heaviside function with the definition Θ(0) = 1/2, and tSN [µSN ] is the
hopping matrix element [chemical potential] in the superconducting sections and
the interior normal sections. We note that we do not change the hopping element
(chemical potential) in the interior normal sections, since the difference tL − tSN
[µL − µSN ] serves only the purpose of pinning the exterior ABSs to zero energy. In
addition, we incorporate tunnel barriers

γn =(γL + µL)Θ(NB − n) + (γR + µR)Θ(n−N ′B), (3.2)

located at the ends of the nanowire, into the chemical potential via µn → (µn − γn).
Here γL (γR) denotes the strength of the left (right) tunnel barrier and we defined
NB = NB,L + 1/2 (N ′B = N − NB,R + 1/2) for the left (right) tunnel barrier which
consists of NB,L (NB,R) lattice sites. We consider the SOI to be fully suppressed
in the central region and to be non-zero only in the exterior normal sections with
strength αL(αR) on the left (right) side, the SOI strength profile is then given by

αn = αLΘ(Nb − n) + αRΘ(n−N ′b). (3.3)

Additionally, we construct the profile of the induced superconducting gap as ∆n =
fn∆, where we used the auxiliary function

fn=

j=M∑
j=0

Λn(NL + j[NS +NN ], NL + j[NS +NN ] +NS), (3.4)

which is constructed out of the rectangular function Λn(n1, n2) = Θ(n− n1 − 1/2)−
Θ(n−n2− 1/2). We also make the assumption that superconductivity breaks down
at a critical field strength ∆Z = ∆c

Z , such that ∆ = ∆0

√
1− (∆Z/∆c

Z)2, where ∆0 is
the pairing potential at zero magnetic field. Consequently, the profile of the induced
superconducting gap ∆n depends on the Zeeman field strength. Similarly to the
induced superconducting gap, we define the spatially varying g-factor g∗n/g0 = 1−
fn, which is suppressed in the sections with induced superconductivity, this can
occur, for instance, due to the metallization effect [85]. Here g0 denotes the g-factor



3.B. MINIMAL REQUIREMENTS FOR AN ANDREEV BAND 85

of the normal sections of the nanowire. This position dependent g-factor results in
a Zeeman energy of the form ∆Z,n = g∗n/g0∆Z , as in the main text ∆Z = g0µBB/2 is
the strength of the Zeeman field, with µB and B denoting the Bohr magneton and
the magnetic field, respectively.

3.B Minimal requirements for an Andreev band
In the main part of this paper, we considered a periodic distribution of interior
normal sections, surrounded by superconducting sections. This structure of the
induced gap was combined with an alternating g-factor, changing between zero
and a maximal value. Here, we consider, instead, a spatial variation of the g-factor
combined with a constant proximity induced superconducting gap, see Fig. a-d. If
the g-factor is fully suppressed in certain sections of the nanowire but non-zero
in short segments or at individual spatially separated lattice sites then the model
can be mapped exactly on a system containing YSR states and consequently bound
state appear for non-zero Zeeman fields [70, 77–79]. In this case our suggested
mechanism for the formation of a band within the superconducting gap, based on
overlapping ABSs, is equivalent to the well known Shiba band and an alternating
g-factor alone is sufficient for the appearance of the trivial bulk reopening signature
(BRS).

We note that the conditions for the Andreev band can be further relaxed: The g-
factor can be non-zero in the whole nanowire as long as it takes much larger values
at certain positions in space, as described via

g∗n/g0 = 1− grfn (3.5)
∆n = ∆Λn(NL, N −NR), (3.6)

where gr ∈ [0, 1] denotes the local reduction of the g-factor. The case of gr = 0.8 is il-
lustrated in Fig. e-h. In this case, the bulk states experience a non-zero Zeeman field
and and the gap closes as a linear function of the Zeeman field strength. The cross-
ing point, namely the value of the Zeeman strength, at which the Andreev band
states are close to zero energy, is strongly affected by the chemical potential. In par-
ticular, the crossing point moves to smaller Zeeman strengths for decreasing chem-
ical potential, since the localization length decreases and consequently the wave
function localizes around the sections with larger g-factor and experience therefore
a stronger Zeeman field.

3.C Impact of Rashba SOI on the Andreev band
So far we have neglected SOI in the nanowire in order to ensure that the system is
always in the trivial phase. In this section we consider the impact of a finite Rashba
SOI and show that the Andreev band can still result in a trivial BRS when SOI is
present. We note that our main choice of parameters is also physically motivated by
the metallization of a semiconducting nanowire due to being brought into proxim-
ity with a superconductor [85]. Metallization can strongly reduce properties such as
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Figure 3.4: Minimal requirements for an Andreev band: The Andreev band appears
also in case of an uniform induced superconducting gap, normal interior section
are not required (First row). Moreover, the Andreev band forms also when the g-
factor is non-zero in the entire nanowire, here it switches between 0.2 and 1 (Second
row). (a,e) Spatial profiles of the induced superconducting gap and of the g-factor.
(b,f) Energy spectra. (c,g) Extended wave functions of the states marked with the
coloured squares in panel (b,f). The grey dashed vertical lines indicate the positions
where the g-factor takes its maximum values. (d,h) Non-local differential conduc-
tance GRL. The parameters are listed in table 3.1 and we note that we set ∆c

Z → ∞
in the second row, which explains the linear behaviour due to the absence of SOI.
The conditions on the parameter profiles, discussed in the main text, can be relaxed:
The induced superconducting gap can be assumed to be constant and the g-factor
does not need to vanish in any section of the proximitized nanowire, as long as it is
modulated along the nanowire.

SOI energy and g-factors when the coupling between nanowire and superconduc-
tor is strong. Therefore, for instance, a spatial inhomogeneous coupling between
nanowire and superconductor could result in a varying g-factor or SOI.

As shown in Fig. 3.5, the fundamental behavior that results in the Andreev band
mimicking a topological BRS is not modified by the presence of Rashba SOI, al-
though we note that SOI changes the slope of the Andreev band states with respect
to the Zeeman field, especially in the vicinity of the band crossing point. Interest-
ingly, a finite SOI in combination with the varying g-factor results in Shiba band
physics [71, 77–79] such that the Andreev band actually becomes topological for a
very small range of Zeeman fields close to the Andreev band crossing point. The
overall spectrum, however, remains dominated by the closing and reopening of the
Andreev band and our parameters – namely a large chemical potential – ensure the
topological visibility is Q = +1 (trivial) for all Zeeman fields larger than the field
associated with the Andreev band crossing point and smaller than the critical field,
see Fig. f. Within the small range of Zeeman fields where the system is topologi-
cal due to Shiba physics, well-localized MBSs do not occur since the effective Shiba
chain is formed from only a few ABSs and the topological gap of the Shiba system is
tiny compared to the gap defined by the Andreev band, see white ellipses in Figs. a
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Figure 3.5: Effect of Rashba SOI on the Andreev band: The existence of a trivial BRS in
the bulk spectrum of the nanowire is largely unaffected by the presence of a finite
Rashba SOI. However, the combination of SOI, Zeeman field, and superconductiv-
ity results in Shiba physics that enables the system to enter a topological phase for a
very small range of Zeeman energy close to the Andreev band crossing point. (a,b)
Although local conductance remains essentially featureless, Shiba physics results
in the appearance of close to zero-energy bias peaks in the local conductance for a
very small range of Zeeman fields, see the regions encircled by the white ellipses.
(c,d) As as in Fig. 2e of the main text, the non-local differential conductance ex-
hibits an Andreev band that mimics a topological BRS, although SOI does change
the slope of the Andreev band states with respect to the Zeeman field, especially
in the vicinity of the band crossing point. (e) The energy spectrum as a function of
the Zeeman field. (f) The topological visibility Q reveals the topological nature of
the Andreev band in the small range of Zeeman energies close to the band crossing
point where Shiba physics occurs, but also confirms the trivial nature in the vast
majority of phase space. The parameters are listed in Table 3.1.

and b. The tiny size of the topological gap means that, in practice, this Shiba physics
is highly unlikely to be clearly observed in experiments. In conclusion, the existence
of a trivial BRS in the bulk spectrum of the nanowire is essentially unaffected by the
presence of a small Rashba SOI.
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3.D Alternative Ansatz for modeling the Andreev
band

Here, we note that the reason for the appearance of ABSs is actually irrelevant for
the formation of the Andreev band, as long as periodically distributed ABSs with
similar energy exist in the system. An alternating phase of the superconducting
order parameter along the nanowire, as described via

∆n = ∆{[Λn(NL, N −NR)− fn]eiϕ + fn}, (3.7)

combined with a constant g-factor g∗n/g0 = 1 (see Fig. a-d), for example, also results
in the appearance of ABSs in the Rashba nanowires and therefore enables the study
of the formation of the Andreev band. This means that even if the ABSs in the ex-
periment are caused by another mechanism than discussed in this paper, then the
physics underlying the formation of the Andreev band and the corresponding re-
quirements remain valid. Last we note that the parameterNN which enters Eq. (3.7)
via the auxiliary function fn denotes here the number of sites in sections with dif-
ferent superconducting phase.
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Figure 3.6: Alternative mechanism causing the formation of the Andreev band: We con-
sider an induced superconducting gap with alternating phase combined with a
uniform g-factor. (a) Spatial profiles of the induced superconducting gap and of
the g-factor. (b) Energy spectra (c) Extended wave functions of the states marked
with the coloured squares in panel (b). The grey dashed vertical lines indicate the
positions where the phase of the superconductor changes (d) non-local differential
conductance GRL. The parameters are listed in table 3.1. We conclude that the spe-
cific profiles of induced superconducting gap and g-factor are not relevant for the
formation of the Andreev band, as long as ABSs, with approximately equal energy,
are approximately periodically distributed.

3.E Disorder
In this section, we study the effect of disorder on the formation of the Andreev
band. Practically, ABSs will be randomly distributed over the whole length of the
nanowire. If the energies of these ABSs differ strongly, then they do not form a band.
However, if multiple ABSs are present and a subset of these ABSs are comparable
in energy, then they can form a band under the condition that the remaining ABSs
are sufficiently separated in space or in energy.
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Based on the above considerations we will focus on the positional variation of
ABSs with equal energies. In order to maximize the non-local conductance in the
periodic case we place the first ABS approximately one localization length, ξ, away
from the left end of the proximitized section. We note that we neglect a potential
overlap of ABSs through the superconducting substrate [72]. The distance between
two adjacent ABSs is set to roughly two localization lengths and the very right ABS
(the last one) is separated by one localization length from the right end of the prox-
imitized section. The proximitized section is described via Eq. (3.6) and the critical
field strength ∆c

Z is set to infinity so that ∆ = ∆0. All ABSs stem from the spatial
variation of the g-factor which is modeled via

gn =

j=M∑
j=1

Λn(nj,0, nj,0 +NN), (3.8)

where nj,0 = NL + NS/2 + jNS + jNN denotes the left position of the j-th section
with non-zero g-factor, with j ∈ {1, 2, ...,M} in case of a periodic distribution. The
disordered position can be written as nj,d = nj,0 + δn where δn is randomly chosen
from a Gaussian distributions with variance χδ and rounded to an integer number
with the condition that the non-zero g-factor sections lie within the superconducting
section. If NS/2 is not an integer, then we round the value accordingly.

In order to study the effect of positional disorder systematically in the param-
eter space, we compute GRL for different standard deviations χδ. The larger the
standard deviation the more the ABS distribution deviates from the periodic case.
Note that we use the python package Adaptive [73] to sample the peaks of the non-
local conductance with a higher resolution for this particular study.

In addition to the variation of the standard deviation, we calculate GRL for dif-
ferent numbers of ABSs, M , while keeping the density of ABSs fixed. In other
words, a higher number of ABSs implies a longer nanowire. For example, we place
two ABSs in a nanowire with a length of appproximately four times the localization
length, while we place three ABSs in a nanowire of an approximate length of six
localization lengths. We calculate GRL for 40 disorder configurations of each com-
bination of M and χδ, then obtain the finite temperature non-local conductance via
a convolution with the derivative of the Fermi distribution. Finally, we extract the
maximum of the absolute value of the finite temperature non-local conductance in
the energy interval [−0.9∆0, 0.9∆0] and average it over the 40 distributions yield-
ing the quantity 〈max (|Gintra

RL |)〉. We note that the choice of the energy interval, the
g-factor profile, and ∆c

Z ensure that the gap does not close as a function of the Zee-
man field such that we indeed measure only non-local conductance due to Andreev
band states.

In Figs. 3.7a and 3.7b, we present 〈max (|Gintra
RL |)〉 and the corresponding stan-

dard deviation χ〈max (|Gintra
RL |)〉. The non-local conductance is maximal in case of

the periodic distribution of the ABSs and we note that the response is almost con-
stant as a function of the number of ABSs M , meaning that the length of a periodic
system has a rather small impact on the formation of the Andreev band and its sig-
nature in non-local conductance. If only two ABSs are present in the system, then
it is not possible to define a period and consequently two ABSs of equal energy
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Figure 3.7: Impact of positional disorder on the Andreev band: (a) Averaged maximum
〈max (|Gintra

RL |)〉 of the absolute value of the non-local conductance in the energy
interval eV ∈ [−0.9∆, 0.9∆], as a function of the standard deviation χδ from the
periodic distribution and of the number of ABSs M . We made sure that we only
pick non-local conductance signatures due to the Andreev band. (b) The standard
deviation of 〈max (|Gintra

RL |)〉 from its mean value. (c,d,h) GRL as a function of the
Zeeman field strength in case of (c) a periodic system, (d) a long nanowire with an
ABS distribution strongly deviating from the periodic case, and (h) a nanowire with
a length of eight times the localization length and with a moderate deviation from
the periodic distribution. The dotted lines indicate the Zeeman strength used in (a).
(e) Spatial profiles of the induced superconducting gap and the g-factor illustrat-
ing the deviation from periodicity. The configuration is associated to GRL shown in
(h). (f) The energy spectrum and (e) probability densities of the lowest states cor-
responding to the system from (e) and (h). These plots show that if the nanowire
is short (a few times the localization length), then the Andreev band tolerates size-
able deviation from the periodic ABS distribution and it is still visible in non-local
conductance. If, in contrast, the length of the nanowire is a several orders greater
than the localization length, then the wave functions are strongly localized and con-
sequently only a distribution close to the periodic case can maintain the Andreev
band and its signature in non-local conductance. The parameters are listed in table
3.1.

hybridize well and mediate a signal in non-local conductance signal for many posi-
tional ABS distributions, as long as the nanowire length does not exceed four times
the localization length. In contrast, in much longer nanowires with more ABSs, de-
viations from the spatial periodic distribution of ABSs lead to a localization of the
wave functions (similar to Anderson localization in one-dimensional conductors
with disorder), and therefore to a decrease of non-local conductance mediated by
Andreev band states. We note, however, that in the experimental relevant regime of
nanowires of a length between four and ten localization length, which corresponds
to 2 ≤ M ≤ 5, the non-local conductance signal is still sizeable for realistic devia-
tions from the periodic distribution. In general, we find that the longer the nanowire
the less deviation from the periodic distribution is tolerated by the Andreev band
signature in non-local conductance. The standard deviation of χ [〈max (|Gintra

RL |)〉]
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shown in Fig. 3.7b reveals that the non-local conductance deviates much more in
shorter systems and we note that the periodic system (χδ = 0) has zero standard
deviation, since the positions of the ABSs are fixed.

Next, we choose three different system configurations, with lengths and stan-
dard deviations specified by the markers in Fig. 3.7a, and calculate the non-local
conductance as a function of the Zeeman field strength. Here, in contrast to
Figs. 3.7a and 3.7b, we use a finite value of ∆c

Z in order to close the gap at a cer-
tain Zeeman field strength and we sample the non-local conductance on an equally
spaced energy grid. First, we study a nanowire with spatial periodic ABSs, see the
light blue circular marker in Fig. 3.7a and Fig. 3.7c. This distribution of ABSs sup-
ports the Andreev band, as discussed in the main text. Next, we analyse a long
nanowire with ABSs deviating strongly from a periodic distribution. This devia-
tion leads to the localization of the wave functions and non-local conductance is
strongly reduced, compared to the periodic case, inside the gap independent of
the values of the Zeeman field. Last, we study the experimental relevant case of
a nanowire with a moderate deviation from the periodic distribution and with a
length of eight times the localization length. The profiles of proximity gap and g-
factor are shown in Fig. 3.7e, and the latter profile reveals the positional disorder
of the ABSs. Figure 3.7f shows the energies associated with the ABS configuration
and Fig. 3.7g shows the probability densities of the three lowest energies. The wave
functions clearly begin to become localized but some of them have still a small sup-
port throughout the whole nanowire, explaining the reduced but finite non-local
conductance signal shown in Fig. 3.7h.

3.F Impact of the Andreev band on the topological
visibility Q

Here, we comment on the sharp negative dip of the topological visibility Q pre-
sented in Fig. 3b of the main text. Originally, Q = det[r(ω = 0)] was suggested as a
topological index in finite size systems of the symmetry class D [74–76, 83, 84]: In
two-terminal devices two processes take place if an electron, with an energy smaller
than the superconducting gap, is incident on the NS interface, namely normal re-
flection and Andreev reflection. The reflection matrix is unitary and particle-hole
symmetric, therefore its determinant takes only the values +1 in case of normal re-
flection or−1 in case of perfect Andreev reflection [74–76, 83, 84]. The latter process
can be mediated by MBSs, located at the interface, due to their equal electron and
hole weights [50]. Fluctuations of the barrier strength or small disorder do not af-
fect the unitary property of the reflection matrix and the value of the determinant
does consequently not change. If the superconducting gap, however, closes, then
an incident electron can enter the superconductor. This additional process leads to
a break down of the unitary property of the reflection matrix and Q is therefore not
necessarily ±1 in gapless systems.

In this paper, we study a three terminal device, meaning that additional to the
local processes of normal reflection and Andreev reflection also electron tunnelling
(ET) and crossed Andreev reflection (CAR) between the two normal leads take
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place. The Andreev band supports non-local conductance and therefore ET and
CAR at certain sub-gap energies. If these processes occur at the Fermi energy, then
the unitary property of the reflection matrix breaks down and enables changes ofQ,
consequently Q does not need to be precisely ±1. In our simulations we find such
a behaviour. For instance, see Fig. 3.8 which zooms into Fig. 3(b) of the main text:
Q is only negative at a certain Zeeman strength for which a state of the Andreev
band crosses the Fermi level. The value of Q is therefore not a good indicator of the
topological phase if non-local conductance is non-zero close to zero energy. When,
instead Q is calculated in a two-terminal configuration, by removing the right lead,
the topological visibility is precisely Q = +1 in this case and does not show any
dips, since non-local processes are not possible.

3.G Andreev bands as a function of the chemical
potential

In this section, we study the trivial BRS as a function of the chemical potential,
while we fix the barrier strength at the ends of the nanowire to a constant value. In
Fig. 3.9, we show the lowest energies as a function of µSN and ∆Z : a similar figure
is shown in the main text (see Fig. 2d) with the difference that here the supercon-
ducting gap ∆ is constant, which has an almost negligible impact as discussed in
Fig. 3.4. In Fig. 3.9, the blue regions indicate gapless phases, while red indicates
gapped phases. The gap closing and reopening at the lower values of the Zeeman
field strength is caused by the Andreev band, while the second gap closing is set by
the critical Zeeman field strength ∆c

Z . The chemical potential is measured from the
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Figure 3.8: Dips of the topological visibility Q: (a) Q and (b) lowest eigenvalues as
a function of the Zeeman field strength. Q has dips when the lowest state of the
Andreev band crosses zero-energy, this can be explained via the breakdown of the
unitary property of the reflection matrix due to the additional non-local processes.
The grey dashed lines serve as guides for the eye to compare the position of the
dips with the roots of the lowest energy. The parameters are the same as in Fig. 3
presented in the main text.
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Figure 3.9: Analysis of the Andreev band as a function of the chemical potential: (a) Low-
est energy, E0, as a function of chemical potential µSN and Zeeman field ∆Z . Here,
we do not simulate trivial zero-energy states at the ends of the system and therefore
the lowest energy reveals the energy of bulk states in the Andreev band. Conse-
quently, the blue color indicates gapless regions while red color indicates gapped
regions. (b-d) Non-local conductance as a function of the Zeeman field for three
different values of the chemical potential: these values are indicated in panel (a) by
the white horizontal lines. For certain choices of chemical potential the Andreev
band gap does not reopen, see panel (c). As a result, gapped regions can be fully
encircled by gapless regions. Same parameters as in Fig. 2 of the main text, except
that we defined the superconducting gap via Eq. (3.6).

bottom of the band, meaning that the chemical potential can only take positive val-
ues and should be larger than the superconducting gap. We find that the Andreev
band is relative stable against changes of the chemical potential. However, the value
of the Zeeman field for which the Andreev band crosses zero-energy increases for
growing chemical potential. Moreover, the Andreev band remains closed for cer-
tain values of the chemical potential, see the white horizontal line plotted at µSN,2
and the associated Fig. 3.9c, which shows the non-local conductance. At higher
chemical potentials the Andreev band is more narrow, see Fig. 3.9d. As such, the
Andreev band leads to separated gapped regions that are surrounded by gapless re-
gions, as expected also for a topological region of phase space.

In this paper, we focus mainly on the trivial BRS, which is why we omit in this
section the simulation of trivial zero-energy states at the ends of the system. How-
ever, we have shown in the main text that trivial zero-energy states can appear
simultaneously with the BRS. Moreover, trivial zero-energy states as a function of
different system parameters have been discussed intensively in literature [20–38].
Therefore we conclude that the combination of the Andreev band and trivial zero-
energy states lead in the phase space to gapped regions with zero-energy states
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surrounded by Andreev band induced gapless regions, which are the main criteria
of the topological gap protocol [67, 69].

3.H Alternative trivial bulk gap reopening
mechanisms

In the main part of this paper, we discuss the Andreev band as a signature remi-
niscent of a gap reopening. Here for the sake of comparison we consider a consid-
erably simpler mechanism: If the proximity effect itself is affected by the Zeeman
field strength, then the induced gap might reach a local minimum at a Zeeman
field strength ∆Z,min smaller than the critical field strength ∆c

Z of the break-down
of superconductivity or smaller than the critical field strength ∆T

Z of a potential
topological phase transition. Although speculative, such behaviour of the induced
gap could be the result of the interplay of orbital effects in the parent superconduc-
tor, inter-facial disorder between the semiconducting nanowire and the supercon-
ductor, and/or the particular device geometry. We stress that we consider here a
reduction of the induced gap ∆(∆Z) at ∆Z,min and not of the gap of the parent su-
perconductor. To model this we simply assume, without any detailed justification,
that the induced gap could accidental behave as

∆(∆Z) = ∆0

[
1− κ1e

−
(

∆Z−∆Z,min
κ2

)2
]
, (3.9)

where κ1 ∈ [0, 1] determines the reduction of the gap and κ2 sets the interval of
Zeeman strength over which the gap is suppressed. The exact form of ∆(∆Z) is not
relevant, the main requirement for the closing and reopening is the presence of local
minimum as described above.

This mechanism is, in general, independent of any ABSs which appear in the
nanowire, we can therefore combine trivial zero-energy states, residing at the ends
of the nanowire, with a gap reopening signature caused by a field-dependent prox-
imity effect. Here, we consider only one trivial sub-gap state on the left end of the
nanowire, however, it is, obviously, also possible to tune additionally a second triv-
ial sub-gap state on the right end to zero-energy. In contrast to the main part of
this paper, we model this time a nanowire which can undergo a topological phase
transition since the Rashba SOI is chosen to be non-zero in the region with induced
superconducting gap.

The hopping and SOI strength profiles are simplified as tn = t and αn = α.
Moreover, we use a smooth step functions of the superconducting gap and chemical
potential, instead of tuning the system to a resonance condition, to pin the energy
of an ABS to zero for Zeeman fields smaller than the critical field

∆T
Z(∆Z) =

√
[∆(∆Z)]2 + µ2

SN , (3.10)

associated with the topological phase transition. We note here that this condition
becomes explicitly dependent on the Zeeman field strength. The profile of the su-
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perconducting gap and the chemical potential are modeled by

∆n = ∆(∆Z)

{
1
2

[1 + tanh ({n−NL}/λ)] , if NB,L < n ≤ N −NB,R

0, else
(3.11)

and

µn = ∆(∆Z)

{
µL + (µSN − µL)1

2
[1 + tanh ({n−NL}/λ)] , if NB,L < n ≤ N −NB,R

0, else,
(3.12)

where λ controls the smoothness of the step function. A representative energy spec-
trum of such a system is shown in Fig. a. The gap of the system closes and reopens
two times as a function of the Zeeman field: the first gap reopening is enforced
via the relation defined in Eq. (3.9), and appears at ∆Z,min, while the second gap
reopening appears at the topological phase transition and this second BRS would
also emerge in case of a constant function ∆(∆Z) = ∆0. We plot the topological
visibility Q in Fig. b. The system remains trivial between ∆Z,min and ∆T

Z . Q is only
negative for Zeeman strength which are approximately given by ∆Z > ∆T

Z . A ZBP
is clearly visible in the region ∆Z,min < ∆Z < ∆T

Z , see Fig. c. We choose a sufficiently
large chemical potential so that the system remains trivial (Q > 0) for Zeeman field
strengths in the vicinity of ∆Z,min.

Finally, we note that the gap closing corresponding to the topological phase
transition is less pronounced in the non-local conductance than the enforced gap
reopening at ∆Z,min, since the associated wave functions decay into the normal sec-
tion on the left side.

3.I Transport calculations
We perform the transport calculations with the Python package Kwant [82]. In par-
ticular, we attach normal leads at the left and right end of the nanowire, as schemat-
ically shown in Fig. 1 in the main text, inject modes of certain energies and calcu-
late the S-matrix. The parameters of the leads are chosen to be the same as in the
neighbouring normal section, except the chemical potential, which is set to µLead,L
(µLead,R) in the left (right) lead. We construct the differential conductance matrix
Gαβ with α, β ∈ {L,R} from the reflection r, r′ and transmission coefficients t, t′ of
the S-matrix

S =

(
r t
t′ r′

)
, (3.13)

as explained in [37, 64, 82]. The transport calculations are performed for different
temperatures T (see next section).

3.J System parameters
Here we provide the parameters used in our calculations. The hyphen in table 3.1
indicates that the corresponding parameter was not used in the calculation. We note
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Figure 3.10: Gap closing due to a Zeeman field dependent proximity effect: (a) Energy
spectrum showing the enforced closing due to a variation of the induced supercon-
ducting gap at ∆Z,min = 0.42∆0 in addition to the actual topological phase transition
∆T
Z ≈ 2.24∆0. (b) The topological visibility Q indicates that the system remains triv-

ial after the first gap reopening (c,d) Local differential conductance calculated on
the left and on the right end of the nanowire and (e,f) non-local conductances. The
parameters are listed in Table 3.2. The trivial gap closing and reopening is visible
in local and non-local conductance, while the single left ABS is only visible in left
local conductance.

that we used Eq. (3.6) in a-d to model the induced superconducting gap, meaning
that there are no interior normal sections. Moreover, we chose a constant value of
the Rashba SOI along the nanowire α = const = αL = αR in Fig. 3.5a-3.5f.
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CHAPTER 4
Prevalence of trivial zero-energy

sub-gap states in non-uniform helical
spin chains on the surface of

superconductors

Adapted from:
Richard Hess, Henry F. Legg, Daniel Loss, and Jelena Klinovaja

“Prevalence of trivial zero-energy sub-gap states in non-uniform helical spin chains on the surface
of superconductors”,

Phys. Rev. B 106, 104503 (2022)

Helical spin chains, consisting of magnetic (ad-)atoms, on the surface of bulk
superconductors are predicted to host Majorana bound states (MBSs) at the ends of
the chain. Here, we investigate the prevalence of trivial zero-energy bound states in
these helical spin chain systems. The existence of trivial zero-energy bound states
can prevent the conclusive identification of MBSs and, given the limited tunability
of atomic spin chain systems, could present a major experimental roadblock. First,
we show that the Hamiltonian of a helical spin chain with varying non-uniform
rotation rate between neighboring magnetic moments on a superconductor can
be mapped to an effective Hamiltonian reminiscent of a ferromagnetic chain with
strong Rashba spin-orbit coupling and with smooth non-uniform chemical poten-
tial, reminding a Rashba nanowire setups. Previously it has been found that trivial
zero-energy states are abundant in nanowire systems with smoothly changing po-
tentials. Therefore, we perform an extensive search for zero-energy bound states in
helical spin chain systems with varying rotation rates. Although bound states with
near zero-energy do exist for certain dimensionalities and rotation profiles, we find
that zero-energy bound states are far less prevalent than in semiconductor nanowire
systems with equivalent non-uniformities. In particular, utilising varying rotation
rates, we do not find zero-energy bound states in the most experimentally relevant
setup consisting of a one-dimensional helical spin chain on the surface of a three-
dimensional superconductor, even for profiles that produce near zero-energy states
in equivalent one- and two-dimensional systems. Although our findings do not
rule them out, the much reduced prevalence of zero-energy bound states in long
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non-uniform helical spin chains compared with equivalent semiconductor nano-
wires, as well as the ability to measure states locally via STM, should reduce the
experimental barrier to identifying MBSs in such systems.
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4.1 Introduction

The experimental realisation of Majorana bound states (MBSs) has become one of
the most sought-after goals in modern condensed matter physics. The search for
MBSs has largely been motivated by their exotic non-Abelian braiding statistics,
which makes them a promising basis for fault tolerant quantum computation [1–5].
Despite this intense effort, however, there has been no conclusive observation of
MBSs so far.

Topological px + ipy superconductors are predicted to host MBSs at the cores of
vortices [1, 6]. However, since intrinsic p-wave superconductors turn out to be rare,
the main experimental focus has been on engineering hybrid platforms based on
proximity effect that can become topological superconductors. A wide variety of
engineered systems have been proposed to host MBSs or chiral Majorana modes [5,
7–14] such as edge or surface states of topological insulators (TIs) [15], semiconduc-
tor nanowires [16–22], planar Josephson junctions [23–25], TI nanowires [26, 27],
graphene-based systems [28–37], and many more.

Although many systems have been predicted to realise MBSs, to date, the con-
clusive experimental identification of MBSs has not been possible, largely due to
trivial states that can mimic the experimental signatures of MBSs [38]. Most notable
is the situation in semiconductor nanowires, which are perhaps the most mature
experimental platform expected to host MBSs. Such systems consist of a nanowire
with strong Rashba spin-orbit coupling that has been brought into proximity with
a superconductor. It was predicted that a signature of MBSs is a zero-bias peak
in differential-conductance measurements and that this peak is stable for a wide
range of magnetic field strengths. Although such zero-energy signature has been
observed in nanowires [39–42] and other platforms [43–48] it turned out that a zero-
bias peak by itself is not a unique fingerprint of MBSs. In fact, it was shown that
trivial Andreev bound states (ABSs) [49, 50] are expected to be abundant in nano-
wires [38]. These trivial states can also result in zero-bias peaks which mimic MBSs
and they occur, for instance, due non-uniformities in the nanowire parameters [51–
67]. Despite several further signatures of MBSs being proposed, due to the high
prevalence of possible zero-energy modes, it remains unclear if a conclusive mea-
surement of MBSs can be performed in nanowire systems.

Artificial magnetic structures, such as atomic chains, where adatoms are placed
on the surface of a superconductor have also been predicted to host MBSs [68–81],
with first signatures observed in the scanning tunneling microscope (STM) spec-
troscopy [44–47]. A single magnetic adatom on the surface of a superconductor
leads to the formation of a Yu-Shiba-Rusinov (YSR) state, which is well studied
in theory [82–90] and experiment [91–98]. Current experiments exploit an atom
by atom construction technique to build the atomic chains, allowing great control
over the chain length [98–104] compared to self-assembled chains [105–107]. Here
we will focus on long chains of magnetic adatoms that possess a helical ordering
[77]. Helical ordering of the magnetic moments of the adatoms can be mediated by
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [108–111] which should lead
to a helix of magnetic moments with period π/kF , where kF denotes the Fermi
momentum. Other mechanisms can also support helical ordering, for instance the
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(a)
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Figure 4.1: Helical spin chain system: (a) Magnetic adatoms (red) are placed on the
surface of a bulk superconductor (yellow). The adatoms form a helical spin chain
with a rotation rate that can vary along the chain. (b) Geometry of helical spin chain
used in this manuscript (number of sites shown is not to scale). The full system has
Nx sites in the x direction with magnetic adatoms deposited on NC sites forming a
helical spin chain. In general, the helical spin chain is embedded in the underlying
superconductor with nL sites on the left side of the system and nR on the right.
In addition we will consider one-, two-, and three-dimensional superconductors
underlying the chain.

Dzyaloshinskii-Moriya interaction (DMI) [112]. Since local measurements can be
performed on such atomic chains by utilising scanning-tunnelling microscopy tech-
niques, the location of states can be very well established [47, 100, 101], a significant
benefit over semiconductor systems. On the other hand, the topological transition
in such chains is set by the exchange coupling strength, J , between the adatoms and
the superconductor, which is not easily controlled. This lack of tunability makes ex-
ploring the phase space of a zero-energy bound state difficult and therefore, if trivial
zero-energy states are as abundant in such chains as in nanowire systems, it would
be even more difficult to conclusively identify MBSs.

In this paper we will investigate the prevalence of trivial zero-energy states due
to non-uniformities in long helical spin chains. First, we apply the established
mapping between the one-dimensional helical spin chain and the one-dimensional
Rashba nanowire, following Refs. [75–77, 113], we generalize this mapping for non-
uniform rotation rates. In particular, we find that the spatially varying rotation
rates of the magnetic moments result in non-uniformities in the effective Hamilto-
nian that are similar to those that lead to the abundance of trivial zero-energy states
in Rashba nanowires. Therefore, using this mapping as a basis, we will investigate
if non-uniform rotation rates can also lead to an abundance of zero-energy modes
in helical spin chains. Although bound states with near zero-energy do exist for cer-
tain dimensionalities and rotation profiles, including when the spin chain remains
entirely trivial, for experimentally relevant systems we find that zero-energy bound
states are far less prevalent in spin chains than semiconductor nanowire systems.
Primarily this is due to the fact the helical chain is embedded in a superconductor
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and also due to effects of the boundary.
This work is structured as follows: first, we investigate an effective one-

dimensional continuum model for a helical spin chain with a smooth spatially vary-
ing rotation rate between adjacent magnetic moments on top of a superconductor.
In Sec. 4.3 we introduce one-, two- and three-dimensional lattice models for the
non-uniform helical spin chains. The topological phase diagram of a helical peri-
odic one-dimensional spin chain is shown in Sec. 4.4 and, in addition, several non-
uniform profiles of the rotation rate are suggested, which might potentially support
the formation of trivial zero-energy sub-gap states. In Secs. 4.5, 4.6, and 4.7, we dis-
cuss the presence and absence of trivial zero-energy sub-gap states in one-, two- and
three-dimensional systems for different types of rotation rate profiles. Finally, we
conclude in Sec. 5.6. In addition, in App. 4.A, we study the disappearance of trivial
zero-energy states in chains which are placed on the boundary of a two-dimensional
superconductor. Furthermore, we consider the scenario of a chain deposited in the
bulk of a three-dimensional superconductor instead on the surface, see App. 4.B.

4.2 Theory of a one-dimensional spin chain with
spatially varying magnetization

In this section we show that the Hamiltonian of a helical spin chain, as shown in
Fig. 4.1, can be mapped to an effective Hamiltonian that is reminiscent of a semi-
conductor nanowire brought into proximity with a superconductor. Surprisingly,
despite this mapping and despite the fact that spatially varying potentials can eas-
ily be generated in the effective Hamiltonian, we will show in the remainder of
the manuscript that trivial zero-energy bound states are far less abundant in helical
spin chains than has been shown to occur in semiconductor Rashba nanowires.

To begin, we consider a helical spin chain placed on top of a superconductor.
The effective one-dimensional (1D) model is described by the Hamiltonian H1D =∫

dx Ψ†(x)H1DΨ(x) in the basis

Ψ(x) =
(
cx,↑, cx,↓, c†x,↓, −c†x,↑

)T

, (4.1)

where the operator c†x,ν (cx,ν) creates (annihilates) an electron at position x with spin
ν. The Hamiltonian density is given by

H1D =

(
− ~2

2m
∇2
x − µ

)
τz + J(x)S(x) · σ + ∆0τx, (4.2)

where m is the effective mass, µ the chemical potential, ∆0 is the superconducting
gap, and J(x) is the (position dependent) exchange coupling strength between the
magnetic moments of the adatoms and the spins of the itinerant electrons. In addi-
tion, σ = (σx, σy, σz)

T is the vector of Pauli matrices acting in spin space and τi are
Pauli matrices acting in particle-hole space. Finally, the unit-vector S(x) determines
the local direction of the magnetic moments of the adatoms that form the chain. We
will consider magnetic textures along the chain of the form

S(x) =
(
cos[2ϕ(x)], sin[2ϕ(x)], 0

)
, (4.3)
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such that the rotation of the magnetic moments in the xy-plane is described by the
total angle ϕ(x) which can be described by a non-linear function, assuming a non-
uniform rotation. Applying the unitary transformation U = e−iϕ(x)σz , one can map
the Hamiltonian of the helical chain,H1D, to that of a Rashba nanowire in a magnetic
field H̃ [113], such that

H̃ =U †H1DU

=− ~2

2m

(
∇2
x −

(
∂ϕ

∂x

)2

−
[
i
∂ϕ

∂x
∇x + i∇x

∂ϕ

∂x

]
σz

)
τz

+ J(x)σx + ∆0τx − µτz. (4.4)

When the rotation rate of the magnetic moments along the chain, which we define
as Φ(x) ≡ ∂ϕ

∂x
, is non-uniform then the transformed Hamiltonian, H̃ , contains an

effective coordinate dependent potential Ṽ (x) = ~2[Φ(x)]2/2m and also an effective
coordinate dependent Rashba SOI

H̃R(x) =
~2

2m
[iΦ(x)∇x + i∇xΦ(x)]σzτz

=
i

2
[α(x)∇x +∇xα(x)]σzτz, (4.5)

where we use the symmetrized from of the effective position-dependent Rashba
SOI [114] with the strength given by α(x) = ~2Φ(x)/m. The same unitary trans-
formation U can in principle also be applied to higher-dimensional systems. This is
because the kinetic terms that contain the derivative∇i, acting in the direction i 6= x
with i ∈ {y, z}, will commute with U . As a result, the one-dimensional helical mag-
netic structure can be mapped into a one-dimensional Rashba spin-orbit interaction
term. We note that if the magnetic structure has a two-dimensional character, as, for
example, it is the case for magnetic skyrmions, the direct mapping into a standard
two-dimensional Rashba SOI term fails, giving rise to additional terms, which again
could be used to engineer the topological phase [115–121]. The transformed Hamil-
tonian, H̃ , is reminiscent of one-dimensional semiconductor nanowires and has the
same ingredients that are required for topological superconductivity: Rashba SOI,
a superconducting gap, and a Zeeman energy [16, 17]. Using this mapping we
therefore see that, in the case of a constant rotation rate between adjacent magnetic
moments along the chain, which means ϕ(x) = krx, the topological phase transition
for the purely one-dimensional chain takes place at

JC(kr) =
√

∆2
0 + (µ− ~2k2

r/[2m])2 (4.6)

and depends on the spatial rotation period, which is set by 2π/(2kr). If the magnetic
moments of the magnetic adatoms are aligned by RKKY interaction (kr = kF ), then
the period is set to π/kr = π/kF [68–70] and the system enters the topological phase
at J(kF ) = ∆0. The topological phase transition is shifted to larger values of J for
kr 6= kF .

Therefore, when the rotation rate of the one-dimensional helical chain is non-
uniform, the above mapping is to an effective Hamiltonian that is reminiscent of a
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one-dimensional semiconductor nanowire with spatially varying parameters. Such
nanowires have been considered extensively and it has been shown that trivial zero-
energy Andreev bound states (ABSs) are abundant in these systems [51–67] .

The existence of the mapping therefore suggests that trivial zero-energy states
could potentially be as prevalent in helical spin chains as in nanowires, which
would be a significant problem given the more limited tunability of parameters in
the atomic chain compared to a nanowire. However, although the mapping for the
one-dimensional case is rigorous, the two systems differ significantly in higher di-
mensions for the following reason: superconductivity in a semiconductor nanowire
is present only in the region that is brought into proximity with a superconductor
and the Zeeman energy is (approximately) constant throughout this region. In con-
trast, the helical spin chain is embedded in a superconductor and the exchange
coupling energy – which maps to the Zeeman energy – is non-zero only close to the
position of the magnetic adatoms. As a result, as we will show in the rest of this
paper, while trivial zero-energy modes in a purely one-dimensional chain that is
aligned with the end of the superconductor are as easily generated as this mapping
suggests, the same is not true when the atomic chain is embedded in a superconduc-
tor, especially in the experimentally relevant scenario where the superconductor in
which the chain is embedded is three-dimensional.

4.3 Lattice models of spin chain

One-dimensional system

In the previous section, we work in the continuum limit. In this section, we switch
to the lattice description by discretizing the Hamiltonian, which will allow us later
to solve the problem numerically. First, we construct a lattice Hamiltonian H1D,L,
corresponding to H1D defined in Eq. (4.2). The lattice Hamiltonian H1D,L of the
setup consisting of an atomic chain on the superconducting surface (see Fig. 4.1) is
given by

H1D,L =
Nx∑
n=1

[∑
ν,ν′

c†n,ν({2t− µ}δν,ν′ + Jn (Sn · σ)νν′)cn,ν′

−
(∑

ν

tc†n,νcn+1,ν + ∆0c
†
n,↓c

†
n,↑ + H.c.

)]
, (4.7)

where Nx denotes the total number of lattice sites and t = ~2/(2ma2) denotes the
matrix hopping element, which depends on the effective lattice constant a. We con-
sider an exchange coupling strength of the form

Jn = J [Θ(n− nL)−Θ(n−Nx + nR)] , (4.8)

where nL (Nx − nR) is the site hosting the first (last) adatom and Θ(n) is the Heav-
iside step-function with Θ(0) = 0 and the length of the chain of magnetic adatoms
is given by NC = Nx− (nR +nL). Depending on the relative locations of the ends of
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the chain and the system boundaries, we distinguish two different types of setups:
1) An aligned setup is defined as the following: an end of the chain coincides with
a boundary of the system, such that NC = Nx, [see Fig. 4.1(b)]. 2) In an embedded
setup, in contrast, magnetic adatoms are located only along a subsection of the en-
tire system and do not reach the system boundary. In particular, we will consider
an embedded left end, such that Nx � NC and nR = 0 [see Fig. 4.1(b)]. We will
use the same nomenclature of aligned and embedded systems referring to setups in
which the superconductor underlying the chain is two- or three-dimensional (see
below).

We define the rotation rate, Φn, such that the helix has a period πa/Φn, as

Φn(λ) = ΦL + (ΦR − ΦL) sig
(

2[n− n0]

λ

)
, (4.9)

where we have used the sigmoid function sig(x) = 1
2

[1 + tanh(x/2)]. The profile
Φn describes a helix of magnetic moments which rotates with the period πa/ΦL

and πa/ΦR on the left and right end of the chain, respectively. If the sign of ΦL is
the opposite of ΦR, then the rotation direction changes and the system contains a
domain wall. The parameter λ controls the width and smoothness of the transition
between two sections of different rotation rate and the parameter n0 parameterises
the position of the transition. In the discretized model ϕn enters S(x) [see Eq. (4.3)]
instead of ϕ(x), where the angle ϕn relative to the magnetic moment located at n = 1
is given by

ϕn =
n∑

m=1

Φm(λ)− Φ1. (4.10)

The particular choice of a constant rotation rate, ΦR = ΦL = Φ, results in the well
known case of a helical spin chain with fixed rotation period (ϕn = nΦ− Φ1). Con-
sequently, the topological phase is defined by the condition [77]

J<C (Φ) =
√

∆2
0 + (|µ− 2t| − 2t| cos(Φ)|)2 < J

<
√

∆2
0 + (|µ− 2t|+ 2t| cos(Φ)|)2 = J>C (Φ), (4.11)

see Fig. 4.2a. In the limit of small angles between magnetic moments, Φ, the predic-
tion for the lower bound of the topological phase transition, J<C , corresponds to the
analytic result, JC , for the location of the bulk gap closing in the continuum system
as discussed in the previous section [see Eq. (4.6)]. This can be shown explicitly by
expanding the cosine function and using the definition of the matrix hopping ele-
ment t as well as the relation Φ = kra. We note that the choice ΦkF = kFa results in
the topological phase transition criterion J<C = ∆0, which is the lowest value of J<C
possible for any Φ.

Two- and three-dimensional systems

Here, we extend our model from Sec. 4.3 to higher dimensions, such that the chain
is deposited on top of a two- or three-dimensional (2D, 3D) superconductor. The
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Hamiltonian in this case has the form

HκD =
∑
j

[∑
ν,ν′

c†j,ν{(2tκ− µ)δν,ν′ + Jj(Sj · σ)ν,ν′}cj,ν′

−∆0c
†
j,↓c
†
j,↑ −∆∗0cj,↑cj,↓

]
−
∑
〈j,j′〉,ν

tc†j,νcj′,ν , (4.12)

where κ ∈ {2, 3} denotes the dimensionality of the model and the index j accounts
for the x, y, and z coordinates of the corresponding lattice site. In particular, we
choose j = (n,m) and j = (n,m, l) in two and three dimensions, respectively, and
the number of sites in y (z) direction isNy (Nz). The exchange coupling, for example
in three dimensions, is given by Jj = Jn,m,l = Jnδm,m0δl,l0 , where m0 and l0 denote
the y and z position of the atomic chain, respectively. Here, Jn is the same as in the
one-dimensional chain and the notation 〈j, j′〉 indicates a summation over nearest
neighbouring sites. As discussed above, we also use the terms aligned and embedded
to describe systems where NC = Nx and NC � Nx, respectively. Finally we note
that, since the atomic chain breaks translation symmetry in the directions perpen-
dicular to the chain, momentum in these directions is not a good quantum number
and the location of the topological phase transition can be expected to be differ-
ent than that found in the equivalent purely one-dimensional system. We use the
Python package Kwant for the implementation of the tight binding models [122].

4.4 Topological phase diagram and rotation rate
profiles

In this section, we briefly discuss the topological phase diagram of the helical spin
chain and suggest different rotation rate profiles that, based on the mapping to
semiconductor nanowires (see Sec. 5.2), could lead to low energy trivial sub-gap
states. First, we start with an aligned one-dimensional system and plot the energy
difference E2 − E1 between the first excited state and the ground state for a chain
with constant Φn ≡ Φ, such that sub-gap states other than MBSs or ABSs close
to the gap edge, emerging for example from shifting the chemical potential away
from the SOI energy [123], are not expected (see Fig. 4.2a). Although in the general
case this quantity does not provide direct information about the topology of the
phase, in a system with no other sub-gap states than MBSs, this energy difference
is given by the finite-size level-spacing in the trivial phase and is very small. In
contrast to that, in the topological phases, it determines the value of the topological
mini-gap, which should be much larger than the level spacing (see, respectively,
the dark red regions of Fig. 4.2a). As expected, the critical value of the continuum
model JC (yellow line Fig. 4.2a), agrees well for small values of the rotation rate
Φ with the almost zero value of E2 − E1 and with J<C (orange line Fig. 4.2a). The
upper critical value of the lattice model, J>C , confines the topological phase space in
the regime of strong J . For example, in the case of an antiferromagnetic alignment
the topological phase is absent [77, 124, 125]. We also note that the interval spanned
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FIG. 2. Phase diagram and nonuniform rotation profiles. (a) Phase diagram of a one-dimensional helical spin chain with constant rotation
rate (!n = ! = const), showing the energy difference E2 − E1 between the lowest-energy state and the first excited state. Orange lines indicate
the critical exchange couplings J<

C (!) and J>
C (!), which separate the topological phase from the trivial phase [see Eq. (11)], while the yellow

line represents JC [see Eq. (6)]. In the trivial phase, this energy difference is given by the finite-size quantization and very small, corresponding
to dark blue color. For small rates JC agrees well with J<

C . Next, we consider spatially varying rotation rates, with constant rates at the long
right section of the chain. (b)–(e) Different profiles of the rate !n (blue) and the corresponding profile of J<

C (!n) (orange) along the atomic
chain to be considered in this work. The blue dashed line indicates the value of !kF corresponding to a period π/kF . Numerical parameters for
the phase diagram: t ≈ 10 meV, Nx = Nc = 322, #0 = 1 meV, a = 3 Å, µ = 8 meV.

(2) In an embedded setup, in contrast, magnetic adatoms are
located only along a subsection of the entire system and do
not reach the system boundary. In particular, we will consider
an embedded left end, such that Nx # NC and nR = 0 [see
Fig. 1(b)]. We will use the same nomenclature of aligned and
embedded systems referring to setups in which the supercon-
ductor underlying the chain is two or three dimensional (see
below).

We define the rotation rate !n, such that the helix has a
period πa/!n, as

!n(λ) = !L + (!R − !L ) sig
(

2[n − n0]
λ

)
, (9)

where we have used the sigmoid function sig(x) = 1
2 [1 +

tanh(x/2)]. The profile !n describes a helix of magnetic mo-
ments which rotates with the period πa/!L and πa/!R on
the left and right ends of the chain, respectively. If the sign of
!L is the opposite of !R, then the rotation direction changes
and the system contains a domain wall. The parameter λ
controls the width and smoothness of the transition between
two sections of different rotation rate and the parameter n0
parametrizes the position of the transition. In the discretized
model ϕn enters S(x) [see Eq. (3)] instead of ϕ(x), where the
angle ϕn relative to the magnetic moment located at n = 1 is
given by

ϕn =
n∑

m=1

!m(λ) − !1. (10)

The particular choice of a constant rotation rate !R = !L =
! results in the well-known case of a helical spin chain
with fixed rotation period (ϕn = n! − !1). Consequently, the

topological phase is defined by the condition [77]

J<
C (!) =

√
#2

0 + [|µ − 2t | − 2t | cos(!)|]2 < J

<

√
#2

0 + [|µ − 2t | + 2t | cos(!)|]2 = J>
C (!) (11)

[see Fig. 2(a)]. In the limit of small angles between magnetic
moments !, the prediction for the lower bound of the topo-
logical phase transition J<

C corresponds to the analytic result
JC for the location of the bulk gap closing in the continuum
system as discussed in the previous section [see Eq. (6)]. This
can be shown explicitly by expanding the cosine function and
using the definition of the matrix hopping element t as well
as the relation ! = kra. We note that the choice !kF = kF a
results in the topological phase transition criterion J<

C = #0,
which is the lowest value of J<

C possible for any !.

B. Two- and three-dimensional systems

Here, we extend our model from Sec. III A to higher di-
mensions, such that the chain is deposited on top of a two- or
three-dimensional (2D, 3D) superconductor. The Hamiltonian
in this case has the form

HκD =
∑

j

[
∑

ν,ν ′

c†
j,ν{(2tκ − µ)δν,ν ′ + Jj (S j · σ)ν,ν ′}c j,ν ′

− #0c†
j,↓c†

j,↑ − #∗
0c j,↑c j,↓

]

−
∑

〈 j, j′〉,ν
tc†

j,νc j′,ν, (12)

where κ ∈ {2, 3} denotes the dimensionality of the model and
the index j accounts for the x, y, and z coordinates of the
corresponding lattice site. In particular, we choose j = (n, m)
and (n, m, l ) in two and three dimensions, respectively, and
the number of sites in y (z) direction is Ny (Nz). The ex-
change coupling, for example in three dimensions, is given
by Jj = Jn,m,l = Jnδm,m0δl,l0 , where m0 and l0 denote the y
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Figure 4.2: Phase diagram and non-uniform rotation profiles: (a): Phase diagram of a
one-dimensional helical spin chain with constant rotation rate (Φn = Φ = const.),
showing the energy difference E2 − E1 between the lowest energy state and the
first excited state. Orange lines indicate the critical exchange couplings J<C (Φ) and
J>C (Φ), which separate the topological phase from the trivial phase [see Eq. (4.11)],
while the yellow line represents JC [see Eq. (4.6)]. In the trivial phase, this energy
difference is given by the finite-size quantization and very small, corresponding to
dark blue color. For small rates JC agrees well with J<C . Next, we consider spatially
varying rotation rates, with constant rates at the long right section of the chain: (b-
e) Different profiles of the rate Φn (blue) and the corresponding profile of J<C (Φn)
(orange) along the atomic chain to be considered in this work. The blue dashed line
indicates the value of ΦkF corresponding to a period π/kF . Numerical parameters
for the phase diagram: t ≈ 10 meV, Nx = Nc = 322, ∆0 = 1 meV, a = 3 Å, µ = 8
meV.

by the values of J<C (Φ) and J>C (Φ) is maximal in case of ferromagnetic ordering.
However, the system with ferromagnetic configuration stays trivial since the bulk
gap does not reopen, for more details see Ref. [77].

We now define the different non-uniform rotation profiles that we will use in
the remainder of the manuscript. In general, these non-uniform rotation rates will
involve a transition between two different rotation rates in a short and long section
of the atomic chain, mathematically described by the profile defined in Eq. (4.9). We
refer to a section as short if its length is comparable or shorter than the smoothness
parameter λ (see above) and a section as long if its length is larger than λ. Since
the phase diagram shown in Fig. 4.2a verifies that the topological phase transition
criterion J<C is strongly dependent upon the rotation rate Φn between neighbouring
magnetic moments, we can expect a rich variety of states arising due to these non-
uniform profiles. Throughout we will consider only one transition region on the
left end of the chain. However, most probably, both ends should be identical, such
that there is also a trivial state on the right. We consider only one region such that
we can demonstrate the difference between a uniform chain end and one with the
transition region at the end.

The first non-uniform rotation rate profile we define is that of a smooth decay,
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this is shown in Fig. 4.2b. In this profile, the magnetic moments rotate in the longer
section of the chain with a rate ΦR < ΦkF , as such this section of the chain obeys the
topological phase transition criterion for exchange couplings larger than J<C (ΦR).
In addition, the magnetic moments in the short section, e.g. on the left side of the
chain, rotate slower with a rate ΦL < ΦR and, as a result, the topological phase
transition criterion in this section is shifted to J<C (ΦL) which is larger than J<C (ΦR).
Consequently, the entire system stays in the trivial regime for exchange couplings
smaller than J<C (ΦR) and any sub-gap state in this regime must have a trivial origin.
An example of such a profile would be a ferromagnetic ordering of the magnetic
moments close to the left end of the chain and a helical ordering on the right end.
The consequences of this profile will be discussed in detail in Sec. 4.5.

Another rotation rate profile is one that contains a domain wall i.e. a change of
the rotation direction, for example from clockwise to anticlockwise rotation. For
instance, a rotation rate, which is negative in a short section on the left (ΦL < 0), but
which takes the value ΦR > 0 with

ΦkF > ΦR ≥ |ΦL| �
2π

NC

(4.13)

in the longer right section of the atomic chain. The arguments from above apply
also in this case and the topological phase transition criterion is shifted to values
of the exchange coupling larger than J<C (ΦR) in the region where the sign of
Φn changes, see Fig. 4.2c. The entire system therefore stays trivial below for
J < J<C (ΦR) and any sub-gap states in this limit must be of trivial origin. We refer
to Sec. 4.6 for a detailed study of the sub-gap states resulting from such a profile.

Next, we consider a similar setup as in the case of the smooth decay, however,
for this profile ΦR < ΦL < ΦkF (see Fig. 4.2d). This choice has a significant impact on
J<C , namely, the critical value of the exchange coupling for which the system obeys
the topological phase transition criterion in this case is smaller for the left section
with the fast rotating magnetic moments than for the long section of the chain with
the slow rotating magnetic moments. Therefore, when J<C (ΦL) ≤ J < J<C (ΦR) the
short section on the left of the atomic chain nominally could enter the topological
regime. However, these MBSs will be strongly overlapping spatially and, thus, be
hybridized. In Rashba nanowires zero-energy bound states arising due to a section
of the system entering the topological regime have been termed as quasi-MBSs
[38] and we therefore refer to this as the quasi-MBS profile. In fact, several other
quasi-MBS profiles are possible. For example, if the rotation rate is set to ΦL < ΦkF

in the short section on the left side of the chain and to ΦR > ΦkF in the longer
section on the right side, such that the rotation rate changes smoothly between
these sections, then at some site n = ñ of the chain Φn=ñ = ΦkF (see Fig. 4.2e).
As such, a subsystem, namely the section where Φn grows, enters the topological
regime for exchange couplings satisfying J > ∆, J < J<C (ΦL), and J < J<C (ΦR). We
will investigate quasi-MBS profiles in Sec. 4.7.
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exchange couplings satisfying J > !, J < J<
C ("L ), and J <

J<
C ("R). We will investigate quasi-MBS profiles in Sec. VII.

In summary, the configurations shown in Figs. 2(b)
and 2(c) only host trivial states since the exchange coupling is
always smaller than the topological phase transition criterion
J<

C ("R). In contrast, short sections of the systems shown in
Figs. 2(d) and 2(e) could obey the topological phase transition
criterion locally. We will see that in such profiles a subsys-
tem hosts hybridized (quasi-)MBSs. We note that topology
is defined for bulk systems, so in general the topological
phase transition criterion J<

C is not meaningful for a single
site or small section of a chain. Nevertheless, interpreting the
behavior of energies and wave functions of subgap states in
terms of the variation of the critical exchange coupling J<

C ,
such that a section of the system enters the topological regime,
agrees well with our numerical observations.

V. SMOOTH DECAY

This section deals with trivial zero-energy states in the one-
dimensional helical spin-chain model described in Sec. III A
using the smooth decay rotation rate profile, as described in
Sec. IV [Fig. 2(b)]. For this profile, in the long right section of
the chain the rotation rate "n between adjacent magnetic mo-
ments is approximately constant such that "n ≈ "R, however,
the rotation rate "n decreases to zero close to the left end of
the chain [see blue line in Figs. 3(e) and 3(f)].

A. One-dimensional model

The energy spectrum of the one-dimensional lattice model
with a smooth decay rotation profile is shown in Figs. 3(a)
(aligned) and 3(b) (embedded) as a function of exchange
coupling J . In both cases we find that the bulk gap closes and
reopens for J ≈ J<

C ("R), indicated by a solid black vertical
line. In the regime J < J<

C ("R) we find that subgap states
appear. These subgap states must be entirely trivial in nature
since the topological phase transition criterion is not met for
any section of the chain.

When the chain ends coincide with the boundaries of the
superconductor (aligned system), the lowest-energy subgap
state is localized and pinned to zero energy over a range of
exchange couplings [see Fig. 3(a)]. Such a zero-energy bound
state is reminiscent of an MBS, but here is entirely trivial.
Since the exchange coupling J < JC (") does not satisfy the
topological criterion in Eq. (11) for any ", the existence of
such a zero-energy state is surprising and only arises here due
to the nonuniformity of the rotation profile. However, when
the chain is embedded into the superconductor, such that the
length of the superconductor far exceeds the length of the
chain, we find that the zero-energy pinning is lifted and the
subgap states split away from zero energy [see Fig. 3(b)].

To further analyze the behavior of the low-energy subgap
states, we examine the transition from an aligned (nL = 0)
to an embedded (nLa " ξ ) system by adding lattice sites to
the left of the atomic chain and by calculating the energy
spectrum as a function of the distance nL between the chain
end and boundary of the superconductor. Here, ξ = h̄vF /!0
denotes the superconducting coherence length with vF be-
ing the Fermi velocity. The resulting energy spectra for an

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Energy spectrum and probability density of the lowest-
energy state of a chain with a smooth decay rotation profile on a
one-dimensional superconductor. (a), (b) Energy spectrum as a func-
tion of the exchange coupling J for (a) the aligned and (b) embedded
systems. The black vertical solid line indicates the value J = J<

C ("R )
at which the topological phase transition occurs. States in the com-
pletely trivial regime [J < J<

C ("R)] are marked yellow, while the
lowest subgap states in the topological regime [J > J<

C ("R)] are
marked orange. Higher-energy states are shown in blue. The helical
spin chain hosts trivial zero-energy states only in the aligned system
but these states are continuously pushed away from zero energy as
the number of sites without magnetic moments nL on the left of the
atomic chain grows. (c) [(d)] Evolution of the lowest trivial (yellow)
[topological (orange)] subgap state as well as of the higher states as
a function of the distance of the chain end from the system boundary
at the exchange coupling strength indicated by the yellow (orange)
arrows in panel (a) [(b)]. While the trivial subgap states split away
from zero energy [see (c)], the MBSs are stable and do not substan-
tially change in energy [see (d)]. (e) [(f)] The probability densities
of the trivial (yellow) and the topological (orange) lowest-energy
states calculated at the exchange couplings indicated by the yellow
(orange) arrows in (a) and (b) in case of an aligned (embedded) sys-
tem. The blue line represents the rotation rate "n between adjacent
magnetic moments and the black dashed line indicates the end of the
chain. Moreover, the probability densities show a clear difference
between the MBSs and the trivial subgap states, and the latter are
approximately confined in the left section. Parameters: NC = 160,
t ≈ 10 meV, µ = 7 meV, ! = 1 meV, "L = 0, 2"R = 0.1768π ,
λ = 20, n0 = 40, a = 3 Å, nR = 0.

exchange coupling smaller than J<
C ("R), indicated by the

yellow arrow, and for an exchange coupling larger than
J<

C ("R), indicated by the orange arrow, are shown in Figs. 3(c)
and 3(d), respectively. This transition from the aligned to the
embedded system shows that the trivial zero-energy state is
continuously pushed away from zero energy as supercon-
ductor sites are added to the end of the chain. In addition,
the next highest state decreases in energy such that the
two lowest subgap states become approximately degener-
ate for a sufficiently long section without magnetic adatoms
on the left of the chain [see Fig. 3(c)]. In contrast, the
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Figure 4.3: Energy spectrum and probability density of the lowest energy state of a chain
with a smooth decay rotation profile on a one-dimensional superconductor. (a,b) Energy
spectrum as a function of the exchange coupling J for (a) the aligned and (b) em-
bedded systems. The black vertical solid line indicates the value J = J<C (ΦR)
at which the topological phase transition occurs. States in the completely trivial
regime [J < J<C (ΦR)] are marked yellow, while the lowest sub-gap states in the
topological regime [J > J<C (ΦR)] are marked orange. Higher energy states are
shown in blue. The helical spin chain hosts trivial zero-energy states only in the
aligned system but these states are continuously pushed away from zero energy as
the number of sites without magnetic moments nL on the left of the atomic chain
grows. (c) [(d)] Evolution of the lowest trivial (yellow) [topological (orange)] sub-
gap state as well as of the higher states as a function of the distance of the chain end
from the system boundary at the exchange coupling strength indicated by the yel-
low [orange] arrows in panels (a) [(b)]. While the trivial sub-gap states split away
from zero energy, see panel (c), the MBSs are stable and do not substantially change
in energy, see panel (d). (e) [(f)] The probability densities of the trivial (yellow) and
the topological (orange) lowest-energy states calculated at the exchange couplings
indicated by the yellow (orange) arrows in panels (a) and (b) in case of an aligned
[embedded] system. The blue line represents the rotation rate Φn between adjacent
magnetic moments and the black dashed line indicates the end of the chain. More-
over, the probability densities show a clear difference between the MBSs and the
trivial sub-gap states, and the latter are approximately confined in the left section.
Parameters: NC = 160, t ≈ 10 meV, µ = 7 meV, ∆ = 1 meV, ΦL = 0, 2ΦR = 0.1768π,
λ = 20, n0 = 40, a = 3 Å, nR = 0.
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In summary the configurations, shown in Figs. 4.2b and 4.2c only host trivial
states since the exchange coupling is always smaller than the topological phase
transition criterion J<C (ΦR). In contrast, short sections of the systems shown in
Figs. 4.2d-4.2e could obey the topological phase transition criterion locally. We will
see that in such profiles a subsystem hosts hybridized (quasi-)MBSs. We note that
topology is defined for bulk systems, so in general the topological phase transition
criterion, J<C , is not meaningful for a single site or small section of a chain. Never-
theless, interpreting the behaviour of energies and wavefunctions of sub-gap states
in terms of the variation of the critical exchange coupling J<C , such that a section of
the system enters the topological regime, agrees well with our numerical observa-
tions.

4.5 Smooth Decay

This section deals with trivial zero-energy states in the one-dimensional helical
spin chain model described in Sec. 4.3 using the smooth decay rotation rate profile,
as described in Sec. 4.4 (Fig. 4.2b). For this profile, in the long right section of the
chain the rotation rate Φn between adjacent magnetic moments is approximately
constant such that Φn ≈ ΦR, however, the rotation rate Φn decreases to zero close to
the left end of the chain (see blue line in Figs. 4.3e and 4.3f).

One-dimensional model

The energy spectrum of the one-dimensional lattice model with a smooth decay ro-
tation profile is shown in Fig. 4.3a (aligned) and Fig. 4.3b (embedded) as a function
of exchange coupling J . In both cases we find that the bulk gap closes and reopens
for J ≈ J<C (ΦR), indicated by a solid black vertical line. In the regime J < J<C (ΦR)
we find that sub-gap states appear. These sub-gap states must be entirely trivial in
nature, since the topological phase transition criterion is not met for any section of
the chain.

When the chain ends coincide with the boundaries of the superconductor
(aligned system), the lowest energy sub-gap state is localized and pinned to zero en-
ergy over a range of exchange couplings (see Fig. 4.3a). Such a zero-energy bound
state is reminiscent of an MBS, but here is entirely trivial. Since the exchange cou-
pling J < JC(Φ) does not satisfy the topological criterion in Eq. (4.11) for any Φ,
the existence of such a zero-energy state is surprising and only arises here due to
the non-uniformity of the rotation profile. However, when the chain is embedded
into the superconductor, such that the length of the superconductor far exceeds the
length of the chain, we find that the zero-energy pinning is lifted and the sub-gap
states split away from zero energy (see Fig. 4.3b).

To further analyze the behavior of the low energy sub-gap states, we examine
the transition from an aligned (nL = 0) to an embedded (nLa � ξ) system by
adding lattice sites to the left of the atomic chain and by calculating the energy
spectrum as a function of the distance nL between the chain end and boundary
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of the superconductor. Here, ξ = ~vF/∆0 denotes the superconducting coherence
length with vF being the Fermi velocity. The resulting energy spectra for an
exchange coupling smaller than J<C (ΦR), indicated by the yellow arrow, and for an
exchange coupling larger than J<C (ΦR), indicated by the orange arrow, are shown in
Figs. 4.3c and 4.3d, respectively. This transition from the aligned to the embedded
system shows that the trivial zero-energy state is continuously pushed away from
zero energy as superconductor sites are added to the end of the chain. In addition,
the next highest state decreases in energy such that the two lowest sub-gap states
become approximately degenerate for a sufficiently long section without magnetic
adatoms on the left of the chain (see Fig. 4.3c). In contrast, the zero-energy pinning
of the MBS is essentially unaffected by an increase in nL (see Fig. 4.3d). Analyzing
the probability density |Ψ(n)|2, see Figs. 4.3e and 4.3f, reveals that the trivial state
and the left MBS tend to leak into the section without magnetic adatoms in the
case of an embedded system. More specifically, the wavefunction Ψ(n) decays
exponentially into the section without magnetic moments with |Ψ|2 ∼ e−2na/ξ [126,
127].

Hence already in one dimension we observe that, in spite of the mapping of
Sec. 5.2, the leakage of the lowest energy states of an atomic chain into the sur-
rounding superconductor results in an increase in energy of that state. In general,
mechanisms that suppress the leakage of the wavefunction into the section with-
out magnetic adatoms can restore the zero-energy pinning of this lowest state. For
instance, in one dimension, a scalar impurity at the end of the chain reduces the
leakage and a strong impurity results in a lowest energy state that is again pinned
close to zero energy (not shown).

Reducing the smoothness of the transition profile Φn(λ) via the parameter
λ [see Eq. (4.9)], lifts the zero-energy pinning of the lowest sub-gap state in the
topologically trivial regime. In contrast, the energies of the MBSs are unaffected
by the smootheness of the profile Φn(λ). The exact form of the function Φn(λ) is
actually not crucial for the existence of the zero-energy sub-gap states as long as
Φn(λ) changes sufficiently smoothly between ΦL and ΦR. In particular, we find
that λ needs to be larger than the rotation period of the magnetic moments on the
right end of the atomic chain to obtain a sub-gap state with energy pinned to zero.
Furthermore, the position n0 in Eq. (4.9) of the smooth step should be placed at
least twice the length of λ from the site of first magnetic adatom and the larger the
value of n0 the more sub-gap states enter the spectrum.

Trivial sub-gap states appear at finite values of exchange coupling. By analyzing
our numerical simulations we find that their energy is only pinned to zero when the
condition

∆0 < J < J<C (ΦR) (4.14)

holds. We can understand this behaviour in the picture outlined in Ref. 51 for semi-
conductor nanowires: when the exchange coupling J is larger than the supercon-
ducting gap, the superconducting correlation has an effective p-wave nature and
below the critical exchange coupling J<C (ΦR) two p-wave channels are present.
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(a) (b)

(c) (d)

(e)
(f)

FIG. 4. Energy spectrum and probability density of the lowest-
energy state of a chain with a smooth decay rotation profile on a
two-dimensional superconductor. (a), (b) Energy spectrum as a func-
tion of the exchange coupling J for (a) the aligned and (b) embedded
systems. The black vertical solid line indicates the value J = J<

C (!R)
in the analogous one-dimensional system; this does not match the
actual bulk gap closing and reopening observed in two-dimensional
setup. (a) The lowest subgap state has almost zero energy when
the chain is aligned (b) but the state has finite energy when the
chain is embedded. (c) [(d)] Evolution of the lowest trivial (yellow)
[topological (orange)] subgap state as well as of the higher states as
a function of the distance of the chain end from the system boundary
at the exchange-coupling strength indicated by the yellow (orange)
arrows in (a). (c) The lowest trivial state is continuously pushed away
from zero energy by adding more nonmagnetic sites to the left of
the end of the chain. (d) In contrast, the energy of the MBSs is
essentially unaffected by the number of nonmagnetic sites at the
end of the chain. (e) [(f)] The probability densities of the trivial
(yellow) and the topological (orange) low-energy states calculated
at the exchange couplings indicated by the yellow (orange) arrows
in (a) and (b) in case of an aligned (embedded) system. The wave
function of the lowest-energy trivial subgap state is mostly localized
at the section of the atomic chain with the slow-rotating magnetic
moments but it leaks also slightly (strongly) in the x (y) direction
parallel (perpendicular) to the chain into the section with no magnetic
adatoms. In contrast, the probability density of the lowest state in the
topological phase reveals two peaks at the ends of the chain due to
the left and right MBS. The parameters are the same as in Fig. 3. We
choose Ny = 41 and place the chain on the line m0 = 21 along the y
direction.

As was found in the two-dimensional model, also for
the three-dimensional system there are no zero-energy states
when the chain is embedded on the surface of the su-
perconductor. Unlike the two-dimensional system, however,
in the three-dimensional system we also do not find near
zero-energy states when the chain end is aligned with the
boundary of the superconductor. In particular, Fig. 5(a) shows
the energy spectrum of an aligned system as a function of
the exchange coupling. The gap closes and reopens for an
exchange-coupling strength JC that is larger than observed
in both the one- and two-dimensional systems. For coupling

(a)

(b)

(c)

FIG. 5. Energy spectrum and probability density of the lowest-
energy state of a chain with a smooth decay rotation profile on a
three-dimensional superconductor. (a) Energy spectrum as a function
of the exchange coupling J for the aligned systems. The system
undergoes a topological phase transition indicated by the gap closing
and reopening and the appearance of zero-energy MBSs. We do
not find trivial zero-energy subgap states in this three-dimensional
system. (b), (c) Probability density of the lowest-energy state in the
trivial and the topological regime, respectively. The lowest state in
the trivial regime is mostly localized in the section of the smooth
change of the rotation rate. The probability densities are plotted for
the exchange-couplings strengths indicated by the yellow and orange
arrows in (a). The probability density in (b) shows that the lowest
state is localized in the region where the rotation rate changes, as
expected from the one- and two-dimensional case, even though the
state is energetically hardly separated from the bulk states. The MBSs
are well separated and localized at the opposite ends of the chain.
Again, their wave function is mostly located on the sites not covered
by magnetic impurities, allowing to effectively diminish their local-
ization length [73,133]. The parameters are the same as in Fig. 3. In
addition, we choose Ny = 41, m0 = 21, Nz = 25, and l0 = 1.

strengths below the value at which the gap closes we do not
observe any zero-energy subgap states, even in the aligned
system. We also note that the curvature of the bulk gap closing
lines differs from the curvature of the same process in the
two-dimensional superconductor [see Figs. 4(a) and 4(b)].
After the gap closing, as expected, we find MBSs appear at
the end of the chain.

In the trivial regime, i.e., before the closing of the bulk gap,
of the aligned chain the probability density of the lowest state
is bound to the section in which !n smoothly changes as we
observed in one- and two dimensional systems [see Fig. 5(b)],
however, the energy of this lowest state is essentially equal
to that of the bulk gap. Both the lowest-energy state in the
trivial regime and the MBS decay exponentially into the bulk
superconductor [see Figs. 5(b) and 5(c)].
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Figure 4.4: Energy spectrum and probability density of the lowest energy state of a chain
with a smooth decay rotation profile on a two-dimensional superconductor. (a,b) Energy
spectrum as a function of the exchange coupling J for (a) the aligned and (b) em-
bedded systems. The black vertical solid line indicates the value J = J<C (ΦR) in the
analogous one-dimensional system, this does not match the actual bulk gap closing
and reopening observed in two-dimensional setup. (a) The lowest sub-gap state
has almost zero energy when the chain is aligned (b) but the state has finite en-
ergy when the chain is embedded. (c) [(d)] Evolution of the lowest trivial (yellow)
[topological (orange)] sub-gap state as well as of the higher states as a function of
the distance of the chain end from the system boundary at the exchange coupling
strength indicated by the yellow [orange] arrows in panel (a). (c) The lowest trivial
state is continuously pushed away from zero energy by adding more non-magnetic
sites to the left of the end of the chain. (d) In contrast the energy of the MBSs is
essentially unaffected by the number of non-magnetic sites at the end of the chain.
(e) [f] The probability densities of the trivial (yellow) and the topological (orange)
low-energy states calculated at the exchange couplings indicated by the yellow (or-
ange) arrows in panels (a) and (b) in case of an aligned [embedded] system. The
wavefunction of the lowest energy trivial sub-gap state is mostly localized at the
section of the atomic chain with the slow-rotating magnetic moments but it leaks
also slightly (strongly) in the x (y) direction parallel (perpendicular) to the chain
into the section with no magnetic adatoms. In contrast, the probability density of
the lowest state in the topological phase reveals two peaks at the ends of the chain
due to the left and right MBS. The parameters are the same as in Fig. 4.3. We choose
Ny = 41 and place the chain on the line m0 = 21 along the y-direction.

The smooth change of the rotation rate, which maps to a smooth variation of po-
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tential and induced SOI in the effective model, does not allow a coupling between
the two channels and supports the formation of trivial zero-energy states. In con-
trast, an abrupt change in the spatial profiles couples the two channels and the sub-
gap states are pushed away from zero energy. On the other hand, for J > J<C (ΦR),
the sub-gap states evolve into MBSs [51].

If the rotation rate is set to ΦR = ΦkF in the longer section of the chain, as pre-
dicted for an ordering mediated by the RKKY interaction [68, 75–81, 108–110], and
if the magnetic moments deviate from the kF ordering on the very left end of the
chain, as ΦL < ΦkF , then almost the entire system, except the section on the left,
satisfies the topological phase transition criterion when JC(kr = kF ) ≥ ∆0, see
Eq. (4.6). Consequently, the interval of exchange coupling strengths for which triv-
ial sub-gap states might appear shrinks to zero [see Eq. (4.14)]. Therefore, if the
magnetic moments in the long right section of the chain form a spiral with period
π/kF , as RKKY interaction suggests, then no sub-gap states are present even in the
case of an aligned system. In contrast, if the spin ordering deviates from kr = kF
in a long section of the chain, see for example Refs. [128], then the formation of
zero-energy states of trivial nature is possible for the aligned system.

Two-dimensional model

We now consider a helical magnetic atomic chain placed on top of a two-
dimensional superconductor, as presented in Sec. 4.3. We choose the same smooth
profile for the rotation rate between adjacent magnetic moments as in the purely
one-dimensional system discussed above. Many of our findings are the same as for
the one-dimen-sional system. For instance, a smooth decay profile leads to sub-gap
states with an energy close to zero over some range of exchange coupling strengths
in the trivial phase in the case of an aligned system (see Fig. 4.4a). Extending the
superconductor in the direction parallel to the chain (increasing nL) lifts the zero-
energy pinning of the trivial state, see Fig. 4.4c, in the same manner as in the em-
bedded one-dimensional system. Moreover, the two lowest-energy states become
almost degenerate in the trivial phase. Again, the energy of the MBSs is nearly
independent of nL (see Fig. 4.4d) as in the one-dimensional system.

One significant difference to the analogous one-dimensional system is that the
exchange coupling strength for which the bulk gap closes and reopens is larger than
in the one-dimensional system [129], see the black vertical solid line in Figs. 4.4a
and 4.4b. This discrepancy can be understood due to the additional leakage of the
wavefunction into the direction perpendicular to the chain (see wavefunction in
Fig. 4.4f). Due to this leakage, low-energy states have a weaker overlap with the
sites where a finite exchange coupling is present, therefore the effective exchange
coupling strength decreases and the topological phase transition is shifted to higher
exchange coupling strengths J . This effect is also reminiscent of the renormaliza-
tion of the effective g-factor in Rashba or TI nanowires due to metallization caused
by the coupling to a thin superconducting shell [130–133]. We note that a leakage
of the wavefunction of the trivial sub-gap states in the perpendicular direction, see
Fig. 4.4e, in the aligned system does not significantly change the zero-energy pin-
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ning, while the leakage in the direction parallel of the chain in the embedded system
does affect the energy of the sub-gap states.

HESS, LEGG, LOSS, AND KLINOVAJA PHYSICAL REVIEW B 106, 104503 (2022)
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FIG. 4. Energy spectrum and probability density of the lowest-
energy state of a chain with a smooth decay rotation profile on a
two-dimensional superconductor. (a), (b) Energy spectrum as a func-
tion of the exchange coupling J for (a) the aligned and (b) embedded
systems. The black vertical solid line indicates the value J = J<

C (!R)
in the analogous one-dimensional system; this does not match the
actual bulk gap closing and reopening observed in two-dimensional
setup. (a) The lowest subgap state has almost zero energy when
the chain is aligned (b) but the state has finite energy when the
chain is embedded. (c) [(d)] Evolution of the lowest trivial (yellow)
[topological (orange)] subgap state as well as of the higher states as
a function of the distance of the chain end from the system boundary
at the exchange-coupling strength indicated by the yellow (orange)
arrows in (a). (c) The lowest trivial state is continuously pushed away
from zero energy by adding more nonmagnetic sites to the left of
the end of the chain. (d) In contrast, the energy of the MBSs is
essentially unaffected by the number of nonmagnetic sites at the
end of the chain. (e) [(f)] The probability densities of the trivial
(yellow) and the topological (orange) low-energy states calculated
at the exchange couplings indicated by the yellow (orange) arrows
in (a) and (b) in case of an aligned (embedded) system. The wave
function of the lowest-energy trivial subgap state is mostly localized
at the section of the atomic chain with the slow-rotating magnetic
moments but it leaks also slightly (strongly) in the x (y) direction
parallel (perpendicular) to the chain into the section with no magnetic
adatoms. In contrast, the probability density of the lowest state in the
topological phase reveals two peaks at the ends of the chain due to
the left and right MBS. The parameters are the same as in Fig. 3. We
choose Ny = 41 and place the chain on the line m0 = 21 along the y
direction.

As was found in the two-dimensional model, also for
the three-dimensional system there are no zero-energy states
when the chain is embedded on the surface of the su-
perconductor. Unlike the two-dimensional system, however,
in the three-dimensional system we also do not find near
zero-energy states when the chain end is aligned with the
boundary of the superconductor. In particular, Fig. 5(a) shows
the energy spectrum of an aligned system as a function of
the exchange coupling. The gap closes and reopens for an
exchange-coupling strength JC that is larger than observed
in both the one- and two-dimensional systems. For coupling

(a)

(b)

(c)

FIG. 5. Energy spectrum and probability density of the lowest-
energy state of a chain with a smooth decay rotation profile on a
three-dimensional superconductor. (a) Energy spectrum as a function
of the exchange coupling J for the aligned systems. The system
undergoes a topological phase transition indicated by the gap closing
and reopening and the appearance of zero-energy MBSs. We do
not find trivial zero-energy subgap states in this three-dimensional
system. (b), (c) Probability density of the lowest-energy state in the
trivial and the topological regime, respectively. The lowest state in
the trivial regime is mostly localized in the section of the smooth
change of the rotation rate. The probability densities are plotted for
the exchange-couplings strengths indicated by the yellow and orange
arrows in (a). The probability density in (b) shows that the lowest
state is localized in the region where the rotation rate changes, as
expected from the one- and two-dimensional case, even though the
state is energetically hardly separated from the bulk states. The MBSs
are well separated and localized at the opposite ends of the chain.
Again, their wave function is mostly located on the sites not covered
by magnetic impurities, allowing to effectively diminish their local-
ization length [73,133]. The parameters are the same as in Fig. 3. In
addition, we choose Ny = 41, m0 = 21, Nz = 25, and l0 = 1.

strengths below the value at which the gap closes we do not
observe any zero-energy subgap states, even in the aligned
system. We also note that the curvature of the bulk gap closing
lines differs from the curvature of the same process in the
two-dimensional superconductor [see Figs. 4(a) and 4(b)].
After the gap closing, as expected, we find MBSs appear at
the end of the chain.

In the trivial regime, i.e., before the closing of the bulk gap,
of the aligned chain the probability density of the lowest state
is bound to the section in which !n smoothly changes as we
observed in one- and two dimensional systems [see Fig. 5(b)],
however, the energy of this lowest state is essentially equal
to that of the bulk gap. Both the lowest-energy state in the
trivial regime and the MBS decay exponentially into the bulk
superconductor [see Figs. 5(b) and 5(c)].
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Figure 4.5: Energy spectrum and probability density of the lowest energy state of a chain
with a smooth decay rotation profile on a three-dimensional superconductor. (a) Energy
spectrum as a function of the exchange coupling J for the aligned systems. The
system undergoes a topological phase transition indicated by the gap closing and
reopening and the appearance of zero-energy MBSs. We do not find trivial zero-
energy sub-gap states in this three-dimensional system. (b,c) Probability density of
the lowest energy state in the trivial and the topological regime, respectively. The
lowest state in the trivial regime is mostly localized in the section of the smooth
change of the rotation rate. The probability densities are plotted for the exchange
couplings strengths indicated by the yellow and orange arrow in panel (a). The
probability density in (b) shows that the lowest state is localized in the region where
the rotation rate changes, as expected from the one- and two-dimensional case, even
though the state is energetically hardly separated from the bulk states. The MBSs
are well separated and localized at the opposite ends of the chain. Again, their
wavefuction is mostly located on the sites not covered by magnetic impurities, al-
lowing to effectively diminish their localization length [73, 134]. The parameters
are the same as in Fig. 4.3. In addition we choose Ny = 41, m0 = 21, Nz = 25, and
l0 = 1.
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In the most experimentally realistic setup of an embedded chain on the super-
conductor, we do not find any zero-energy trivial sub-gap states. We also note that,
unlike in the one-dimensional system, even a single-site scalar impurity at the end
of the chain is now not sufficient to restore the zero-energy pinning since, in two-
dimensional systems, the confined state can bypass the impurity.

Three-dimensional model

Finally, we consider an atomic chain placed on the surface of a three-dimensional
superconductor, utilising the model described in Sec. 4.3. This model is closest to
realistic experimental set-ups, in which the adatoms are deposited on top of a bulk
three-dimensional superconductor [100, 101, 112].

As was found in the two-dimensional model, also for the three-dimensional sys-
tem there are no zero-energy states when the chain is embedded on the surface of
the superconductor. Unlike the two-dimensional system, however, in the three-
dimensional system we also do not find near zero-energy states when the chain
end is aligned with the boundary of the superconductor. In particular, Fig. 4.5a
shows the energy spectrum of an aligned system as a function of the exchange cou-
pling. The gap closes and reopens for an exchange coupling strength JC that is
larger than observed in both the one-dimensional and two-dimensional systems.
For coupling strengths below the value at which the gap closes we do not observe
any zero-energy sub-gap states, even in the aligned system. We also note that the
curvature of the bulk gap closing lines differs from the curvature of the same pro-
cess in the two-dimensional superconductor (see Figs. 4.4a and 4.4b). After the gap
closing, as expected, we find MBSs appear at the end of the chain.

In the trivial regime, i.e. before the closing of the bulk gap, of the aligned
chain the probability density of the lowest state is bound to the section in which
Φn smoothly changes as we observed in one- and two dimensional systems (see
Fig. 4.5b), however the energy of this lowest state is essentially equal to that of the
bulk gap. Both the lowest energy state in the trivial regime and the MBS decay
exponentially into the bulk superconductor (see Figs. 4.5b and 4.5c).

We note that much of the behavior of the aligned three-dimensional system can
be understood from the fact that the chain is placed on the surface of the three-
dimensional superconductor and therefore states can scatter from the surface into
the bulk of the superconductor (along the z-direction). To investigate the impor-
tance of a boundary of the system perpendicular to the chain, we construct an anal-
ogous system in two dimensions, where the chain has the same length as the su-
perconductor in x direction (NC = Nx) and in which the chain is placed along the
boundary of the superconductor (see Appendix 4.A). In this scenario we also do not
find trivial zero-energy sub-gap states, similar to the three-dimensional system. In
contrast, when the chain is placed in the bulk of the superconductor rather than on
the surface, then trivial sub-gap states with energies smaller than the bulk gap do
appear (see Appendix 4.B). Both of these results highlight the importance of scat-
tering from the boundary in pushing trivial zero-energy states to higher energies.

We would like to emphasize that numerical restrictions limit us to relatively
small systems in three dimensions and we cannot therefore perform extensive nu-
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merical investigations in such systems. Nonetheless, the disappearance of trivial
zero-energy and sub-gap states in our three dimensional set-up, even for the aligned
chain, indicates that the formation of trivial zero-energy sub-gap states is strongly
suppressed when the chain is placed on top of a three-dimensional superconductor.
Especially since zero-energy states do form in an aligned two-dimensional system
of comparable width and length. As the most realistic experimental setup is an
embedded chain on the surface of a three-dimensional superconductor we can con-
clude that there is a low prevalence of zero-energy sub-gap states due to a smooth
decay rotation profile.

4.6 Domain wall

In this section, we will investigate the sub-gap states forming due to domain-wall
rotation profiles. The results from the previous section show that the formation
of trivial zero-energy states is unlikely when the length of the superconductor (x
direction) exceeds the length of the chain and there is a smooth decay in rotation
rate. However, sub-gap states due to a domain wall profile, i.e. a smooth change
between a clockwise and anticlockwise rotation of the magnetic moments within
the chain, can be expected to be largely independent of the relative position of the
chain end and the superconductor boundary. Although it should be noted that, for
this profile, low energy subgap states can be expected to form close to the domain
wall rather than at ends of the chain, as is expected for MBSs.

One-dimensional model

First, utilising the one-dimensional model outlined in Sec. 4.3 we find that a chain
with a domain wall profile does support trivial states with almost zero energy in
both the case of an aligned (see Fig. 4.6a) and also an embedded chain (see Fig. 4.6b),
which is in contrast to the system with the smooth decay profile, for which we did
not observe trivial zero-energy states in the embedded case. In particular, within a
domain wall profile, the rotation rate of magnetic moments is set by Eqs. (4.9) and
(4.13) such that the rotation rate of the magnetic moments smoothly interpolates
between ΦL � − 2π

NC
on the left side and ΦR � 2π

NC
on the right side of the chain.

Here, we chose for simplicity ΦL = −ΦR, which means that the direction of the
rotation changes along the atomic chain (see blue lines in Figs. 4.6e and 4.6f). As
such, since the critical exchange coupling at which the gap closes is shifted to larger
values for slower rotating magnetic moments, the chain is completely trivial for an
exchange coupling below J<C (ΦR) (see also Fig. 4.2c). Within this trivial regime, we
find two sub-gap states – as well as their particle-hole partners – that have almost
zero energy and the transition from the aligned to the embedded system does not
substantially affect this zero-energy pinning (see Fig. 4.6c). Similar to the chain
with a smooth decay, the two lowest sub-gap states of the embedded chain become
almost degenerate in the case that the section without magnetic atoms to the left of
the atomic chain is sufficiently long, such that the localization length of the states is
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We note that much of the behavior of the aligned three-
dimensional system can be understood from the fact that the
chain is placed on the surface of the three-dimensional su-
perconductor and therefore states can scatter from the surface
into the bulk of the superconductor (along the z direction).
To investigate the importance of a boundary of the system
perpendicular to the chain, we construct an analogous system
in two dimensions, where the chain has the same length as
the superconductor in x direction (NC = Nx) and in which
the chain is placed along the boundary of the superconductor
(see Appendix A). In this scenario we also do not find trivial
zero-energy subgap states, similar to the three-dimensional
system. In contrast, when the chain is placed in the bulk of the
superconductor rather than on the surface, then trivial subgap
states with energies smaller than the bulk gap do appear (see
Appendix B). Both of these results highlight the importance
of scattering from the boundary in pushing trivial zero-energy
states to higher energies.

We would like to emphasize that numerical restrictions
limit us to relatively small systems in three dimensions and we
cannot therefore perform extensive numerical investigations
in such systems. Nonetheless, the disappearance of trivial
zero-energy and subgap states in our three-dimensional setup,
even for the aligned chain, indicates that the formation of
trivial zero-energy subgap states is strongly suppressed when
the chain is placed on top of a three-dimensional superconduc-
tor, especially since zero-energy states do form in an aligned
two-dimensional system of comparable width and length. As
the most realistic experimental setup is an embedded chain
on the surface of a three-dimensional superconductor, we can
conclude that there is a low prevalence of zero-energy subgap
states due to a smooth decay rotation profile.

VI. DOMAIN WALL

In this section, we will investigate the subgap states form-
ing due to domain wall rotation profiles. The results from the
previous section show that the formation of trivial zero-energy
states is unlikely when the length of the superconductor (x
direction) exceeds the length of the chain and there is a smooth
decay in rotation rate. However, subgap states due to a domain
wall profile, i.e., a smooth change between a clockwise and
anticlockwise rotation of the magnetic moments within the
chain, can be expected to be largely independent of the relative
position of the chain end and the superconductor boundary.
Although it should be noted that, for this profile, low-energy
subgap states can be expected to form close to the domain wall
rather than at ends of the chain, as is expected for MBSs.

A. One-dimensional model

First, utilizing the one-dimensional model outlined in
Sec. III A we find that a chain with a domain wall profile
does support trivial states with almost zero energy in both
the case of an aligned [see Fig. 6(a)] and also an embed-
ded chain [see Fig. 6(b)], which is in contrast to the system
with the smooth decay profile, for which we did not observe
trivial zero-energy states in the embedded case. In particular,
within a domain wall profile, the rotation rate of magnetic
moments is set by Eqs. (9) and (13) such that the rotation

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Energy spectrum and probability density of the lowest-
energy state of a chain with a domain wall rotation profile on
a one-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 3. The energies of the trivial subgap states can
be pinned to zero in case of (a) the aligned system and, in contrast
to the previous system, also in case of (b) the embedded system. The
domain wall allows the formation of a total of four MBSs, which
hybridize and form multiple subgap states in the topological regime.
(c), (d) The trivial state (yellow) does not split away from zero when
nonmagnetic sites are added to the left of the helical spin chain
and therefore behaves similarly to the lowest MBS (orange). (e), (f)
The wave function of the trivial state (and the left MBS) is mainly
localized in the region where the direction of the rotation changes
(!n = 0). The wave-function profiles are similar in both cases. In
particular, the wave function of the trivial state (yellow) is approx-
imately zero in the section without magnetic adatoms. Parameters:
NC = 164, t ≈ 10 meV, µ = 8 meV, " = 1 meV, 2!L = −0.2026π ,
2!R = 0.2026π , λ = 22, n0 = 44, a = 3 Å, nR = 0.

rate of the magnetic moments smoothly interpolates between
!L # − 2π

NC
on the left side and !R $ 2π

NC
on the right side of

the chain. Here, we chose for simplicity !L = −!R, which
means that the direction of the rotation changes along the
atomic chain [see blue lines in Figs. 6(e) and 6(f)]. As such,
since the critical exchange coupling at which the gap closes is
shifted to larger values for slower-rotating magnetic moments,
the chain is completely trivial for an exchange coupling below
J<

C (!R) [see also Fig. 2(c)]. Within this trivial regime, we
find two subgap states, as well as their particle-hole part-
ners, that have almost zero energy and the transition from
the aligned to the embedded system does not substantially
affect this zero-energy pinning [see Fig. 6(c)]. Similar to the
chain with a smooth decay, the two lowest subgap states of the
embedded chain become almost degenerate in the case that
the section without magnetic atoms to the left of the atomic
chain is sufficiently long, such that the localization length of
the states is much shorter than the length of the left section of
the superconductor without any magnetic adatoms.

Further analyzing the wave function of the states in this
trivial regime J < J<

C (!), we find the maximum of the prob-
ability density of the subgap states is localized at the position
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Figure 4.6: Energy spectrum and probability density of the lowest energy state of a chain
with a domain wall rotation profile on a one-dimensional superconductor. The panels are
arranged in the same manner as in Fig. 4.3. The energies of the trivial sub-gap
states can be pinned to zero in case of (a) the aligned system and, in contrast to
the previous system, also in case of (b) the embedded system. The domain wall
allows the formation of a total of four MBSs, which hybridize and form multiple
sub-gap states in the topological regime. (c,d) The trivial state (yellow) does not
split away from zero when non-magnetic sites are added to the left of the helical
spin chain and therefore behaves similarly to the lowest MBS (orange). (e,f) The
wavefunction of the trivial state (and the left MBS) is mainly localized in the region
where the direction of the rotation changes (Φn = 0). The wavefunction profiles are
similar in both cases. In particular, the wavefunction of the trivial state (yellow) is
approximately zero in the section without magnetic adatoms. Parameters: NC =
164, t ≈ 10 meV, µ = 8 meV, ∆ = 1 meV, 2ΦL = −0.2026π, 2ΦR = 0.2026π, λ = 22,
n0 = 44, a = 3 Å, nR = 0.

much shorter than the length of the left section of the superconductor without any
magnetic adatoms.

Further analyzing the wavefunction of the states in this trivial regime J <
J<C (Φ), we find the maximum of the probability density of the sub-gap states is
localized at the position of the sign change of Φn and that the probability density
is almost zero in the region where the rotation rate reaches its maximal positive or
maximal negative value (see blue line Fig. 4.6e). Adding more sites to the left of
the chain does not substantially affect the energy spectrum since the weight of the
wavefunction in the section without magnetic atoms is very small (see Fig. 4.6f).
In the topological regime, i.e. after the closing and reopening of the bulk gap, we



4.6. DOMAIN WALL 125HESS, LEGG, LOSS, AND KLINOVAJA PHYSICAL REVIEW B 106, 104503 (2022)

of the sign change of !n and that the probability density is
almost zero in the region where the rotation rate reaches its
maximal positive or maximal negative value [see blue line
Fig. 6(e)]. Adding more sites to the left of the chain does not
substantially affect the energy spectrum since the weight of
the wave function in the section without magnetic atoms is
very small [see Fig. 6(f)]. In the topological regime, i.e., after
the closing and reopening of the bulk gap, we find the system
hosts four MBSs. In particular, one MBS appears at each end
of the chain and one MBS on each side of the domain wall.
Depending on the length of the domain wall transition, the
MBSs closest to the domain wall can hybridize and form a
finite-energy subgap state [113].

B. Two-dimensional model

Next, we consider the helical chain with the domain wall
profile that is placed on top of a two-dimensional super-
conductor. The physical properties of the subgap states are
similar to those found in one-dimensional system, namely,
trivial states are pinned to zero energy in both cases of an
aligned and embedded chain [see Figs. 7(a) and 7(b)]. The
lowest-energy states in the trivial regime before the bulk gap
closes and reopens [see Fig. 7(c)], as well as in the topological
regime after the closing and reopening of the bulk gap [see
Fig. 7(d)], are unaffected by the value of nL. Furthermore, as
found in the one-dimensional system, the probability density
of the near zero-energy subgap states is localized to the region
of the smooth change of the rotation rate [see Fig. 7(e)]. In
the topological regime, after the reopening of the bulk gap,
strongly overlapping MBSs appear, their probability density
is maximal on the right end and in the region of the smooth
transition [see Fig. 7(f)]. We note that the wave function of the
MBS only weakly leaks into the y direction perpendicular to
the chain, such that the wave function is confined very close
to the position of the chain.

C. Three-dimensional model

In contrast to the one- and two-dimensional systems con-
sidered above, we find that a helical spin chain with a
domain wall spin profile that is placed on the surface of a
three-dimensional superconductor does not exhibit trivial near
zero-energy states. The energy spectrum is shown in Fig. 8(a).
The MBSs appear after the reopening of the bulk gap but
there are no subgap states in the trivial regime. This behavior
corresponds with a similar observation for the smooth decay
profile with aligned boundaries (see Sec. V C). In the three-
dimensional system, the chain is placed on the surface of the
superconductor, thus, boundary effects such as scattering from
the surface also affect the energy of the lowest states. Finally,
we note, as also observed in one- and two-dimensional sys-
tems, the probability density of the two lowest states in the
topological regime after the bulk gap has closed, reveals the
presence of a total of four MBSs, with two that are localized
at the ends of the chain and on either side of the domain
wall. The MBSs close to the domain wall partially hybridize
[see Figs. 8(b) and 8(c)].

(a) (b)

(c)

(e) (f)

(d)

FIG. 7. Energy spectrum and probability density of the lowest-
energy state of a chain with a domain wall rotation profile on
a two-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 4. The lowest subgap state has almost zero
energy when (a) the chain is aligned and also when (b) the chain is
embedded. The black solid vertical line indicates J<

C in an analogous
one-dimensional system, the line does not match with the actual
bulk gap closing and reopening in two-dimensional system. The
energy of the lowest state is neither affected in (c) the trivial nor
in (d) the topological regime during the crossover from the aligned
to the embedded system if the chain is long enough. (e) The wave
function of the lowest-energy trivial subgap state is mostly localized
at the domain wall but also slightly leaks into the section with no
magnetic adatoms perpendicular to the chain. In contrast in (f), the
probability density of the lowest state in the topological phase reveals
two additional peaks at the ends of the chain due to the left and
right MBS. Here, for our choice of parameters, the MBSs hybridize
strongly. The parameters are the same as in Fig. 6 and we chose
Ny = 41 and m0 = 21 to account for the two-dimensional system.

VII. QUASI-MBS

In this section, we consider a chain in which only
one section of the chain nominally obeys the topological
phase transition criterion [see the discussion in Sec. IV and
Fig. 2(d)]. In particular, we consider a chain in which the
magnetic moments rotate with the rate !R in the long right
section of the chain but in the left short section the rota-
tion rate between neighboring magnetic moments increases
smoothly up to !L, with !kF > !L > !R. The zero-energy
subgap states that result from a system only partially obeying
the topological phase transition criterion in a certain range
of exchange couplings (see Sec. VII A for the specific values
of J in the one-dimensional system) have been termed quasi-
MBSs [38].

A. One-dimensional model

First, considering a one-dimensional system, we find the
bulk gap closing and reopening appears at J<

C (!R). The
shorter left section with the faster-rotating magnetic moments,
however, obeys the topological phase transition criterion for
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Figure 4.7: Energy spectrum and probability density of the lowest energy state of a chain
with a domain wall rotation profile on a two-dimensional superconductor. The panels are
arranged in the same manner as in Fig. 4.4. The lowest sub-gap state has almost
zero energy when (a) the chain is aligned and also when (b) the chain is embed-
ded. The black solid vertical line indicates J<C in an analogous one-dimensional
system, the line does not match with the actual bulk gap closing and reopening in
two dimension system. The energy of the lowest state is neither affected in (c) the
trivial nor in (d) the topological regime during the crossover from the aligned to the
embedded system if the chain is long enough. (e) The wavefunction of the lowest
energy trivial sub-gap state is mostly localized at the domain wall but also slightly
leaks into the section with no magnetic adatoms perpendicular to the chain. In con-
trast in panel (f), the probability density of the lowest state in the topological phase
reveals two additional peaks at the ends of the chain due to the left and right MBS.
Here, for our choice of parameters, the MBSs hybridize strongly. The parameters
are the same as in Fig. 4.6 and we chose Ny = 41 and m0 = 21 to account for the
two-dimensional system.

find the system hosts four MBSs. In particular, one MBS appears at each end of the
chain and one MBS on each side of the domain wall. Depending on the length of
the domain wall transition the MBSs closest to the domain wall can hybridize and
form a finite-energy sub-gap state [114].

Two-dimensional model

Next, we consider the helical chain with the domain wall profile that is placed on
top of a two-dimensional superconductor. The physical properties of the sub-gap
states are similar to those found in one-dimensional system, namely trivial states
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are pinned to zero-energy in both cases of an aligned and embedded chain (see
Figs. 4.7a and 4.7b). The lowest energy states in the trivial regime before the bulk
gap closes and reopens (see Fig. 4.7c), as well as in the topological regime after the
closing and reopening of the bulk gap (see Fig. 4.7d), are unaffected by the value of
nL. Furthermore, as found in the one-dimensional system, the probability density of
the near zero-energy sub-gap states is localized to the region of the smooth change
of the rotation rate (see Fig. 4.7e). In the topological regime – after the reopening
of the bulk gap – strongly overlapping MBSs appear, their probability density is
maximal on the right end and in the region of the smooth transition (see Fig. 4.7f).
We note that the wavefunction of the MBS only weakly leaks into the y-direction
perpendicular to the chain, such that the wavefunction is confined very close to the
position of the chain.

Three-dimensional model

In contrast to the one- and two-dimensional systems considered above, we find that
a helical spin chain with a domain wall spin profile that is placed on the surface of a
three-dimensional superconductor does not exhibit trivial near zero-energy states.
The energy spectrum is shown in Fig. 4.8a. The MBSs appear after the reopening of
the bulk gap but there are no sub-gap states in the trivial regime. This behaviour
corresponds with a similar observation for the smooth decay profile with aligned
boundaries (see Sec. 4.5). In the three-dimensional system, the chain is placed on
the surface of the superconductor, thus, boundary effects such as scattering from the
surface also affect the energy of the lowest states. Finally we note, as also observed
in one- and two-dimensional systems, the probability density of the two lowest
states in the topological regime after the bulk gap has closed, reveals the presence
of a total of four MBSs, with two that are localized at the ends of the chain and
on either side of the domain wall. The MBSs close to the domain wall partially
hybridize (see Figs. 4.8b and 4.8c).

4.7 Quasi-MBS
In this section, we consider a chain in which only one section of the chain nominally
obeys the topological phase transition criterion, see the discussion in Sec. 4.4 and
Fig. 4.2d. In particular, we consider a chain in which the magnetic moments rotate
with the rate ΦR in the long right section of the chain but in the left short section the
rotation rate between neighbouring magnetic moments increases smoothly up to
ΦL, with ΦkF > ΦL > ΦR. The zero-energy sub-gap states that result from a system
only partially obeying the topological phase transition criterion in a certain range of
exchange couplings (see Sec. 4.7 for the specific values of J in the one-dimensional
system) have been termed quasi-MBSs [38].

One-dimensional model

First, considering a one-dimensional system, we find the bulk gap closing and
reopening appears at J<C (ΦR). The shorter left section with the faster rotating
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(a)

(b)

(c)

FIG. 8. Energy spectrum and probability density of the lowest-
energy state of a chain with a domain wall rotation profile on a
three-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 5. (a) No subgap states are present before
the topological phase transition, indicated by the gap closing and
reopening. In the topological regime, MBSs appear. The system hosts
four MBSs: two on each side of the domain wall. A zoom into the
panel reveals the slightly different energies of the two MBS pairs
close to zero due to finite overlap between MBS wave functions. The
probability density of (b) the second lowest and (c) lowest-energy
states in the topological phase. The probability densities are plotted
for the exchange couplings strength indicated by the orange arrow
in (a). The parameters are the same as in Fig. 6 and in addition we
chose Ny = 41, m0 = 21, Nz = 25, and l0 = 1 to account for the y
and z directions.

J<
C (!L ) < J < J<

C (!R) [see Fig. 2(d)]. As a result, the system
contains a subgap state for exchange couplings smaller than
J<

C (!R) which results from the presence of two hybridizing
MBSs. The energy of this state is well pinned to zero over
a range of exchange-coupling strengths in both the aligned
[see Fig. 9(a)] and in the embedded setup [see Fig. 9(b)].
This effect is shown clearly in Fig. 9(d) where we observe
that the energy of the lowest subgap states below and above
J<

C (!R) remain close to zero as an increasing number of sites
nL without magnetic adatoms are added to the superconductor
on the left of the system. In contrast to the previous profiles
we do not find a degeneracy of the two lowest-energy states in
the embedded system.

The spatial profile of wave functions of these subgap states
reveals the MBS character of the quasi-MBSs. In particular, in
the regime J < J<

C (!R), the probability density of the lowest
state (yellow) has two separated peaks at the ends of the
section that obeys the topological phase transition criterion
[see Figs. 9(e) and 9(f)].

Increasing the exchange coupling to values of J ≈ J<
C (!R)

allows one to bring the entire chain into the topological
regime. We find the quasi-MBSs transform into MBSs that

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile on a
one-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 3. The system hosts the so-called quasi MBSs
(yellow) for (a) the aligned and (b) the embedded system. (c) [(d)]
The energy of the quasi-MBS (the MBS) is nearly independent of the
number of sites which are placed to the left of the chain, though the
probability densities shown in (e) and (f) of the quasi-MBSs (yellow)
and the MBSs (orange) are substantially shifted into the section with-
out magnetic adatoms. The probability density reveals clearly that
the quasi-MBS originates from hybridizing MBSs which form in
the section of faster rotation. Parameters: NC = 170, t ≈ 10 meV,
µ = 5 meV, " = 1 meV, 2!L = 0.4484π , 2!R = 0.1121π , λ = 25,
n0 = 50, a = 3 Å, nR = 0.

are localized at the ends of the chain [see orange line in
Figs. 9(e) and 9(f)]. Other rotation rate profiles, which lead
to a local reduction of the critical exchange coupling J<

C , as
suggested in Fig. 2(e), support quasi-MBSs as well and lead
to similar results as discussed in this section (not shown).
We emphasize that the mechanism for zero-energy states in
partially topological chains crucially differs from the one in
fully trivial chains (see Secs. V and VI). However, similar
to the domain wall case, near zero-energy states appear in
the partially topological chain independent of the boundary
conditions for a purely one-dimensional system.

B. Two-dimensional model

The behavior of a two-dimensional system, consisting of
a one-dimensional partially topological chain placed on top
of a two-dimensional superconductor, agrees well with the
properties of the simple one-dimensional model, presented in
the previous subsection. In particular, the energy of the subgap
states does not depend on nL [see Figs. 10(c) and 10(d)] and
the subgap states are pinned close to zero energy over some
range of the exchange-coupling strength before the gap closes
and reopens [see Figs. 10(a) and 10(b)]. A subsystem of the
chain enters the topological regime for exchange couplings
smaller than the value at which the bulk gap closing and
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Figure 4.8: Energy spectrum and probability density of the lowest energy state of a chain
with a domain wall rotation profile on a three-dimensional superconductor. The panels are
arranged in the same manner as in Fig. 4.5. (a) No sub-gap states are present before
the topological phase transition, indicated by the gap closing and reopening. In the
topological regime, MBSs appear. The system hosts four MBSs: two on each side
of the domain wall. A zoom into the panel reveals the slightly different energies of
the two MBS pairs close to zero due to finite overlap between MBS wavefunctions.
The probability density of (b) the second lowest and (c) lowest energy states in the
topological phase. The probability densities are plotted for the exchange couplings
strength indicated by the orange arrow in panel (a). The parameters are the same
as in Fig. 4.6 and in addition we chose Ny = 41, m0 = 21, Nz = 25, and l0 = 1 to
account for the y and z directions.

magnetic moments, however, obeys the topological phase transition criterion for
J<C (ΦL) < J < J<C (ΦR) (see Fig. 4.2d). As a result, the system contains a sub-gap
state for exchange couplings smaller than J<C (ΦR) which results from the presence
of two hybridizing MBSs. The energy of this state is well pinned to zero over a
range of exchange coupling strengths in both the aligned (see Fig. 4.9a) and in the
embedded setup (see Fig. 4.9b). This effect is shown clearly in Fig. 4.9d where we
observe that the energy of the lowest sub-gap states below and above J<C (ΦR) re-
main close to zero as an increasing number of sites nL without magnetic adatoms
are added to the superconductor on the left of the system. In contrast to the pre-
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(a)

(b)

(c)

FIG. 8. Energy spectrum and probability density of the lowest-
energy state of a chain with a domain wall rotation profile on a
three-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 5. (a) No subgap states are present before
the topological phase transition, indicated by the gap closing and
reopening. In the topological regime, MBSs appear. The system hosts
four MBSs: two on each side of the domain wall. A zoom into the
panel reveals the slightly different energies of the two MBS pairs
close to zero due to finite overlap between MBS wave functions. The
probability density of (b) the second lowest and (c) lowest-energy
states in the topological phase. The probability densities are plotted
for the exchange couplings strength indicated by the orange arrow
in (a). The parameters are the same as in Fig. 6 and in addition we
chose Ny = 41, m0 = 21, Nz = 25, and l0 = 1 to account for the y
and z directions.

J<
C (!L ) < J < J<

C (!R) [see Fig. 2(d)]. As a result, the system
contains a subgap state for exchange couplings smaller than
J<

C (!R) which results from the presence of two hybridizing
MBSs. The energy of this state is well pinned to zero over
a range of exchange-coupling strengths in both the aligned
[see Fig. 9(a)] and in the embedded setup [see Fig. 9(b)].
This effect is shown clearly in Fig. 9(d) where we observe
that the energy of the lowest subgap states below and above
J<

C (!R) remain close to zero as an increasing number of sites
nL without magnetic adatoms are added to the superconductor
on the left of the system. In contrast to the previous profiles
we do not find a degeneracy of the two lowest-energy states in
the embedded system.

The spatial profile of wave functions of these subgap states
reveals the MBS character of the quasi-MBSs. In particular, in
the regime J < J<

C (!R), the probability density of the lowest
state (yellow) has two separated peaks at the ends of the
section that obeys the topological phase transition criterion
[see Figs. 9(e) and 9(f)].

Increasing the exchange coupling to values of J ≈ J<
C (!R)

allows one to bring the entire chain into the topological
regime. We find the quasi-MBSs transform into MBSs that

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile on a
one-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 3. The system hosts the so-called quasi MBSs
(yellow) for (a) the aligned and (b) the embedded system. (c) [(d)]
The energy of the quasi-MBS (the MBS) is nearly independent of the
number of sites which are placed to the left of the chain, though the
probability densities shown in (e) and (f) of the quasi-MBSs (yellow)
and the MBSs (orange) are substantially shifted into the section with-
out magnetic adatoms. The probability density reveals clearly that
the quasi-MBS originates from hybridizing MBSs which form in
the section of faster rotation. Parameters: NC = 170, t ≈ 10 meV,
µ = 5 meV, " = 1 meV, 2!L = 0.4484π , 2!R = 0.1121π , λ = 25,
n0 = 50, a = 3 Å, nR = 0.

are localized at the ends of the chain [see orange line in
Figs. 9(e) and 9(f)]. Other rotation rate profiles, which lead
to a local reduction of the critical exchange coupling J<

C , as
suggested in Fig. 2(e), support quasi-MBSs as well and lead
to similar results as discussed in this section (not shown).
We emphasize that the mechanism for zero-energy states in
partially topological chains crucially differs from the one in
fully trivial chains (see Secs. V and VI). However, similar
to the domain wall case, near zero-energy states appear in
the partially topological chain independent of the boundary
conditions for a purely one-dimensional system.

B. Two-dimensional model

The behavior of a two-dimensional system, consisting of
a one-dimensional partially topological chain placed on top
of a two-dimensional superconductor, agrees well with the
properties of the simple one-dimensional model, presented in
the previous subsection. In particular, the energy of the subgap
states does not depend on nL [see Figs. 10(c) and 10(d)] and
the subgap states are pinned close to zero energy over some
range of the exchange-coupling strength before the gap closes
and reopens [see Figs. 10(a) and 10(b)]. A subsystem of the
chain enters the topological regime for exchange couplings
smaller than the value at which the bulk gap closing and
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Figure 4.9: Energy spectrum and probability density of the lowest energy state of a chain
with a quasi-MBS rotation profile on a one-dimensional superconductor. The panels are
arranged in the same manner as in Fig. 4.3. The system hosts the so-called quasi
MBSs (yellow) for (a) the aligned and (b) the embedded system. (c) [(d)] The energy
of the quasi-MBS [the MBS] is nearly independent of the number of sites which are
placed to the left of the chain, though the probability densities shown in panels (e)
and (f) of the quasi-MBSs (yellow) and the MBSs (orange) are substantially shifted
into the section without magnetic adatoms. The probability density reveals clearly
that the quasi-MBS originates from hybridizing MBSs which form in the section
of faster rotation. Parameters: NC = 170, t ≈ 10 meV, µ = 5 meV, ∆ = 1 meV,
2ΦL = 0.4484π, 2ΦR = 0.1121π, λ = 25, n0 = 50, a = 3 Å, nR = 0.

vious profiles we do not find a degeneracy of the two lowest energy states in the
embedded system.

The spatial profile of wavefunctions of these sub-gap states reveals the MBS
character of the quasi-MBSs. In particular, in the regime J < J<C (ΦR), the probabil-
ity density of the lowest state (yellow) has two separated peaks at the ends of the
section that obeys the topological phase transition criterion (see Figs. 4.9e and 4.9f).

Increasing the exchange coupling to values of J ≈ J<C (ΦR) allows one to bring
the entire chain into the topological regime. We find the quasi-MBSs transform into
MBSs that are localised at the ends of the chain (see orange line in Figs. 4.9e and
4.9f). Other rotation rate profiles, which lead to a local reduction of the critical
exchange coupling J<C , as suggested in Fig. 4.2e, support quasi-MBSs as well and
lead to similar results as discussed in this section (not shown). We emphasize that
the mechanism for zero-energy states in partially topological chains crucially differs
from the one in fully trivial chains, see Secs. 4.5 and 4.6. However, similar to the
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(a) (b)

(c) (d)

(e) (f)

FIG. 10. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile on a
two-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 4. The main results are similar to those found
for the one-dimensional model: the quasi-MBS energy is pinned
close to zero in the case of (a) the aligned and (b) the embedded
system. A calculation of the energy spectrum as a function of the
length nL of the left section without magnetic adatoms in (c) below
and (d) above the bulk gap closing and reopening shows that the en-
ergies are basically not affected, in contrast, to the systems discussed
in Secs. V and VI. The probability density for exchange couplings
(e) smaller and (f) larger than the coupling corresponding to the bulk
gap closing has a MBS character: The chain can partially enter the
topological phase due to the increasing rotation rate of the magnetic
moments in the left section of the chain. Consequently, MBSs appear
at the ends of this short topological section and move to the ends of
the chain with increasing exchange coupling. The parameters are the
same as in Fig. 9 and in addition we chose Ny = 41 and m0 = 21.

reopening appears, with quasi-MBSs emerging at the ends
of this subsystem [see Fig. 10(e)]. The leakage of the wave
function in parallel or perpendicular direction to neighboring
sites of the chain does not affect the zero-energy pinning.
For sufficiently large exchange couplings the gap closes and
reopens and the right MBS is pushed to the end of the chain
[see Fig. 10(f)].

C. Three-dimensional model

Finally, we examine a helical chain with a quasi-MBS ro-
tation rate profile as in Fig. 2(d) on top of a three-dimensional
superconductor and use the same parameters for the chain as
in the two-dimensional system. In contrast to the one- and
two-dimensional systems we do not find near zero-energy
states in this three-dimensional system, even though the pa-
rameters are the same. Indeed, the energy spectrum shows a
clear bulk gap closing and reopening as a function of J with
zero-energy MBSs present only after this closing and reopen-
ing [see Fig. 11(a)]. The probability density of the lowest
state in the trivial and the topological regimes is shown in
Figs. 11(b) and 11(c), respectively. The lowest-energy trivial
state is not bound to the region in which ! smoothly changes

(a)

(b)

(c)

FIG. 11. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile on a
three-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 5. (a) The system undergoes a topological
phase transition indicated by the gap closing and reopening and the
appearance of zero-energy MBSs. This three-dimensional system
does not host any trivial zero-energy subgap states. Probability den-
sity of the lowest state energy in (b) the trivial and (c) the topological
phase, respectively. Unlike the one- and two-dimensional systems,
the lowest state in the trivial state is not localized in the region of
the smooth change of the rotation rate. The probability densities are
plotted for the exchange-coupling strengths indicated by the yellow
and orange arrows in (a). The parameters are the same as in Fig. 9
and in addition we choose Ny = 41, m0 = 21, Nz = 25, l0 = 1.

and, in contrast to the lower-dimensional systems, this lowest-
energy state is actually extended over the section in which
the rotation angle is almost constant, suggesting it is not of
quasi-MBS nature.

This result in combination with Secs. V C and VI C suggest
that the formation of trivial subgap states due to nonperiodic
rotations of the magnetic moments along the chain is unlikely
in three-dimensional systems. We again note, however, that
simulations in three dimensions are limited and that these
results do not exclude the presence of trivial zero-energy
subgap states, however, our results show that these states
are less prevalent in three-dimensional systems than in one-
and two-dimensional systems and far less abundant than in
equivalent nanowire systems.

VIII. CONCLUSIONS

In this paper, we investigated the prevalence of trivial zero-
energy bound states due to nonperiodic helical spin chains
of magnetic adatoms on the surface of superconductors.
Generalizing the established unitary transformation between
the helical spin chain and the Rashba nanowire, we mapped a
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Figure 4.10: Energy spectrum and probability density of the lowest energy state of a chain
with a quasi-MBS rotation profile on a two-dimensional superconductor. The panels are
arranged in the same manner as in Fig. 4.4. The main results are similar to ones
found for the one-dimensional model: the quasi-MBS energy is pinned close to
zero in the case of (a) the aligned and (b) the embedded system. A calculation of
the energy spectrum as a function of the length nL of the left section without mag-
netic adatoms in (c) below and (d) above the bulk gap closing and reopening shows
that the energies are basically not affected, in contrast, to the systems discussed in
Secs. 4.5 and 4.6. The probability density for exchange couplings (e) smaller and (f)
larger than the coupling corresponding to the bulk gap closing has a MBS charac-
ter: The chain can partially enter the topological phase due to the increasing rotation
rate of the magnetic moments in the left section of the chain. Consequently, MBSs
appear at the ends of this short topological section and move to the ends of the chain
with increasing exchange coupling. The parameters are the same as in Fig. 4.9 and
in addition we chose Ny = 41 and m0 = 21.

domain wall case, near zero-energy states appear in the partially topological chain
independent of the boundary conditions for a purely one-dimensional system.

Two-dimensional model

The behavior of a two-dimensional system, consisting of a one-dimensional par-
tially topological chain placed on top of a two-dimensional superconductor, agrees
well with the properties of the simple one-dimensional model, presented in the pre-
vious subsection. In particular, the energy of the sub-gap states does not depend on
nL (see Figs. 4.10c and 4.10d) and the sub-gap states are pinned close to zero-energy
over some range of the exchange coupling strength before the gap closes and re-
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(a) (b)

(c) (d)

(e) (f)

FIG. 10. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile on a
two-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 4. The main results are similar to those found
for the one-dimensional model: the quasi-MBS energy is pinned
close to zero in the case of (a) the aligned and (b) the embedded
system. A calculation of the energy spectrum as a function of the
length nL of the left section without magnetic adatoms in (c) below
and (d) above the bulk gap closing and reopening shows that the en-
ergies are basically not affected, in contrast, to the systems discussed
in Secs. V and VI. The probability density for exchange couplings
(e) smaller and (f) larger than the coupling corresponding to the bulk
gap closing has a MBS character: The chain can partially enter the
topological phase due to the increasing rotation rate of the magnetic
moments in the left section of the chain. Consequently, MBSs appear
at the ends of this short topological section and move to the ends of
the chain with increasing exchange coupling. The parameters are the
same as in Fig. 9 and in addition we chose Ny = 41 and m0 = 21.

reopening appears, with quasi-MBSs emerging at the ends
of this subsystem [see Fig. 10(e)]. The leakage of the wave
function in parallel or perpendicular direction to neighboring
sites of the chain does not affect the zero-energy pinning.
For sufficiently large exchange couplings the gap closes and
reopens and the right MBS is pushed to the end of the chain
[see Fig. 10(f)].

C. Three-dimensional model

Finally, we examine a helical chain with a quasi-MBS ro-
tation rate profile as in Fig. 2(d) on top of a three-dimensional
superconductor and use the same parameters for the chain as
in the two-dimensional system. In contrast to the one- and
two-dimensional systems we do not find near zero-energy
states in this three-dimensional system, even though the pa-
rameters are the same. Indeed, the energy spectrum shows a
clear bulk gap closing and reopening as a function of J with
zero-energy MBSs present only after this closing and reopen-
ing [see Fig. 11(a)]. The probability density of the lowest
state in the trivial and the topological regimes is shown in
Figs. 11(b) and 11(c), respectively. The lowest-energy trivial
state is not bound to the region in which ! smoothly changes

(a)

(b)

(c)

FIG. 11. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile on a
three-dimensional superconductor. The panels are arranged in the
same manner as in Fig. 5. (a) The system undergoes a topological
phase transition indicated by the gap closing and reopening and the
appearance of zero-energy MBSs. This three-dimensional system
does not host any trivial zero-energy subgap states. Probability den-
sity of the lowest state energy in (b) the trivial and (c) the topological
phase, respectively. Unlike the one- and two-dimensional systems,
the lowest state in the trivial state is not localized in the region of
the smooth change of the rotation rate. The probability densities are
plotted for the exchange-coupling strengths indicated by the yellow
and orange arrows in (a). The parameters are the same as in Fig. 9
and in addition we choose Ny = 41, m0 = 21, Nz = 25, l0 = 1.

and, in contrast to the lower-dimensional systems, this lowest-
energy state is actually extended over the section in which
the rotation angle is almost constant, suggesting it is not of
quasi-MBS nature.

This result in combination with Secs. V C and VI C suggest
that the formation of trivial subgap states due to nonperiodic
rotations of the magnetic moments along the chain is unlikely
in three-dimensional systems. We again note, however, that
simulations in three dimensions are limited and that these
results do not exclude the presence of trivial zero-energy
subgap states, however, our results show that these states
are less prevalent in three-dimensional systems than in one-
and two-dimensional systems and far less abundant than in
equivalent nanowire systems.

VIII. CONCLUSIONS

In this paper, we investigated the prevalence of trivial zero-
energy bound states due to nonperiodic helical spin chains
of magnetic adatoms on the surface of superconductors.
Generalizing the established unitary transformation between
the helical spin chain and the Rashba nanowire, we mapped a
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Figure 4.11: Energy spectrum and probability density of the lowest energy state of a chain
with a quasi-MBS rotation profile on a three-dimensional superconductor. The panels are
arranged in the same manner as in Fig. 4.5. (a) The system undergoes a topological
phase transition indicated by the gap closing and reopening and the appearance
of zero-energy MBSs. This three-dimensional system does not host any trivial zero-
energy sub-gap states. Probability density of the lowest state energy in (b) the trivial
and (c) the topological phase, respectively. Unlike the one- and two-dimensional
systems, the lowest state in the trivial state is not localized in the region of the
smooth change of the rotation rate. The probability densities are plotted for the
exchange couplings strengths indicated by the yellow and orange arrow in panel
(a). The parameters are the same as in Fig. 4.9 and in addition we choose Ny = 41,
m0 = 21, Nz = 25, l0 = 1

opens (see Figs. 4.10a and 4.10b). A subsystem of the chain enters the topological
regime for exchange couplings smaller than the value at which the bulk gap closing
and reopening appears, with quasi-MBSs emerging at the ends of this subsystem
(see Fig. 4.10e). The leakage of the wavefunction in parallel or perpendicular direc-
tion to neighbouring sites of the chain does not affect the zero-energy pinning. For
sufficiently large exchange couplings the gap closes and reopens and the right MBS
is pushed to the end of the chain (see Fig. 4.10f).
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Three-dimensional model

Finally, we examine a helical chain with a quasi-MBS rotation rate profile as in
Fig. 4.2d on top of a three-dimensional superconductor and use the same param-
eters for the chain as in the two-dimensional system. In contrast to the one- and
two-dimensional systems we do not find near zero-energy states in this three-
dimensional system, even though the parameters are the same. Indeed, the energy
spectrum shows a clear bulk gap closing and reopening as a function of J with
zero-energy MBSs present only after this closing and reopening (see Fig. 4.11a).
The probability density of the lowest state in the trivial and the topological regime
is shown in Figs. 4.11b and 4.11c, respectively. The lowest-energy trivial state is
not bound to the region in which Φ smoothly changes and, in contrast to the lower
dimensional systems, this lowest energy state is actually extended over the section
in which the rotation angle is almost constant, suggesting it is not of quasi-MBS
nature.

This result in combination with Secs. 4.5 and 4.6 suggest that the formation of
trivial sub-gap states due to non-periodic rotations of the magnetic moments along
the chain is unlikely in three-dimensional systems. We again note, however, that
simulations in three dimensions are limited and that these results do not exclude
the presence of trivial zero-energy sub-gap states, however, our results show that
these states are less prevalent in three-dimensional systems than in one- and two-
dimensional systems and far less abundant than in equivalent nanowire systems.

4.8 Conclusions

In this paper, we investigated the prevalence of trivial zero-energy bound states due
to non-periodic helical spin chains of magnetic adatoms on the surface of super-
conductors. Generalizing the established unitary transformation between the heli-
cal spin chain and the Rashba nanowire, we mapped a spatially varying rotation
rate on non-uniform Rashba SOI and a non-uniform potential in the transformed
Hamiltonian. Since these spatially varying potentials, when sufficiently smooth,

Table 4.1: Presence of trivial zero-energy states in different system configurations. Models
marked with the checkmark Xdo support the formation of stable trivial zero-energy
states. In set-ups with the cross × we did not find trivial-zero energy states, this
however does not fully rule out their potential appearance if alternative scenarios
are considered.

system rotation rate profile 1d 2d 3d
aligned smooth decay X X ×
aligned domain wall X X ×
aligned quasi MBS X X ×

embedded smooth decay × × ×
embedded domain wall X X ×
embedded quasi MBS X X ×
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are known to support the formation of trivial zero-energy sub-gap states in Rashba
nanowires, the mapping therefore suggests that trivial zero-energy states in helical
chains might be as abundant as in Rashba nanowires. However, unlike any realistic
nanowire, the helical spin chain is installed on the surface of the superconductor.
As such, although it is possible to use this mapping to generate some trivial zero-
energy bound states for spin rotation profiles which mimic known mechanisms for
trivial sub-gap states in Rashba nanowires, we found that such states are far less
abundant in helical spin chains than in nanowires. In particular, for the most exper-
imentally relevant setup of a helical spin chain on the surface of a three-dimensional
superconductor we did not find zero-energy bound states for any rotation profile.
Finally, in Table 4.1, we summarize our results for the appearance of trivial zero-
energy sub-gap states in all examined system configurations.

Although we stress that our findings do not conclusively rule out the appear-
ance of trivial zero-energy sub-gap states in helical spin chain systems due to non-
uniformities, they clearly show that the same mechanisms that lead to an abun-
dance of zero-energy bound states in Rashba nanowires do not result in equiva-
lent issues in atomic chains, despite an apparent mapping between the two sys-
tems. Further mechanisms other than the variation of the rate Φn still can result in
zero-energy sub-gap states. For instance, another mechanism has been suggested
in Ref. 135: multiple YSR states, emerging from a magnetic chain on top of a super-
conductor, form a YSR band with van Hove singularities, visible in the LDOS. The
energy of these singularities changes in the LDOS close to the chain ends and it can
be tuned to zero for sufficiently strong exchange coupling.

We also want to emphasize that our findings are only relevant for long helical
spin chains consisting of many rotation periods as, for instance, weakly coupled
YSR states in short trivial ferromagnetic chains can be tuned close to zero energy
for certain exchange coupling strengths [47, 100–102]. Nonetheless, it is a significant
benefit that zero-energy bound states can be more conclusively identified as MBSs
in helical spin chains compared to in semiconductor nanowires, especially since
atomic chains have a reduced tunability in comparison to semiconductor nanowire
devices and so the phase space of a purported MBS signal is more difficult to ex-
plore. Our findings coupled with other benefits of helical spin chains, such as the
fact that states in atomic chains can be addressed very locally via STM measure-
ments, should enable one to build more confidence that a given zero-energy mode
is of topological origin rather than trivial in nature.
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(a)

(b)

(d)

(c)
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FIG. 12. Sketch and energy spectra of a chain, with a quasi-MBS
rotation profile deposited at varying distances from the boundary in y
direction of a two-dimensional superconductor. (a) Schematic sketch
of an atomic chain (red) deposited on a two-dimensional supercon-
ductor (orange). The length NC of the atomic chain coincides with the
total length Nx of the system; the chain is separated by a number of
N∗

y sites from the boundary of the two-dimensional superconductor.
(b), (c) The energy spectrum of the system as a function of the
exchange coupling for N∗

y = 0 and 15, respectively. (d), (e) Energies
as a function of N∗

y for an exchange coupling smaller and larger than
the critical exchange coupling. The blue (black) arrow in (a) and
(b) indicates the value of the exchange coupling used in (d) [(e)].
The trivial zero-energy state is present only if the chain is placed
away for the boundary. The parameters are the same as in Fig. 10,
except that we introduced the quantity N∗

y .

N∗
y the gap and the zero-energy state stabilize. In contrast,

when the entire atomic chain enters the topological regime,
MBSs appear also for the choice N∗

y = 0 and are stable against
changes of N∗

y . In both cases, the size of the superconducting
gap varies as a function of N∗

y , but it stabilizes for sufficient
large values of N∗

y .
Finally, we plot the energy spectrum as a function of the

exchange coupling J in the limit of large N∗
y , which means

that the localization length of the states in y direction is
shorter than the length aN∗

y [see Fig. 12(c)]. For this case, we
obtain almost the same spectrum as in Fig. 10(a), as expected.
In addition, we calculated the energies of the systems from
Secs. V B and VI B with m0 = 0. In both cases, we did not
find any trivial zero-energy subgap states in agreement with
the results presented in Fig. 12. In conclusion, we find that
placing the chain at the boundary of the superconductor, such

(a)

(b)

FIG. 13. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile deposited in
the bulk of a three-dimensional superconductor. (a) The system hosts
subgap states and a zoom into the figure reveals a clear separation
of a subgap state from the bulk states. (b) Probability density of the
subgap state at the exchange coupling indicated by the yellow arrow
in (a). The trivial subgap state is localized in the region of smooth
change of the rotation rate. The only changed parameters compared
to Fig. 11 are the locations of the chain sites, such that Ny = Nz = 35
and m0 = l0 = 17.

that it is parallel to the chain, suppresses the formation of
trivial zero-energy subgap states in two dimensions.

APPENDIX B: CHAIN IN THE BULK OF A
THREE-DIMENSIONAL SUPERCONDUCTOR

In experiments (see, e.g., Refs. [100,101,111]), magnetic
adatoms are deposited on the surface of a superconductor,
therefore, we consider in the main text only chains which are
placed on the surface of a three-dimensional superconductor.
Here, on the contrary, we study a chain located fully inside the
bulk of a three-dimensional system. This particular situation
cannot easily be realized in experiments; however, we study
this scenario to gain further insights about the importance
of boundary effects on the subgap state at the surface. In
particular, a subgap state appears in this setup for exchange
couplings smaller than the critical value at which the gap
closes and reopens [see Fig. 13(a)]. This subgap state is not
pinned to zero energy, but it is separated in energy from the
bulk gap (see the zoom on the right side), which is not the case
for systems in which the chain is placed on the surface of the
superconductor (cf. Secs. V C, VI C, and VII C). Furthermore,
we note that the energy of the subgap state could potentially
be pinned to zero for sufficiently large systems. Moreover, the
state is localized in the region of smooth change of ! [see
Fig. 13(b)]. These results in combination with Appendix A
clearly show that the relative position of the chain towards the
superconductor boundary can strongly affect the energies of
subgap states and, in particular, trivial zero-energy states are
suppressed when the chain is placed close to a boundary, such
as the surface of a three-dimensional superconductor.
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Figure 4.12: Sketch and energy spectra of a chain, with a quasi-MBS rotation profile
deposited at varying distances from the boundary in y direction of a two-dimensional su-
perconductor. (a) Schematic sketch of an atomic chain (red) deposited on a two-
dimensional superconductor (orange). The length NC of the atomic chain coincides
with the total lengthNx of the system, the chain is separated by a number ofN∗y sites
from the boundary of the two-dimensional superconductor. (b,c) The energy spec-
trum of the system as a function of the exchange coupling for N∗y = 0 and N∗y = 15,
respectively. (d,e) Energies as a function of N∗y for an exchange coupling smaller
and larger than the critical exchange coupling. The blue [black] arrow in panels
(a) and (b) indicates the value of the exchange coupling used in panel (d) [(e)]. The
trivial zero-energy state is present only if the chain is placed away for the boundary.
The parameters are the same as in Fig. 4.10, except that we introduced the quantity
N∗y .
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4.A Chain on the boundary of a two-dimensional
system

In this Appendix, we vary the position m0 of the atomic chain in two-dimensional
systems. In particular, we place the chain on a boundary of a two-dimensional
superconductor. This analysis is motivated by our finding in three-dimensional
systems (see Secs. 4.5, 4.6, and 4.7) that the appearance of trivial zero-energy sub-
gap states is suppressed compared to similar one- and two-dimensional systems
where such states occur due to smooth variations of the rotation rates of neighbour-
ing magnetic moments along the atomic chain. This effect is likely a result of the
boundary conditions, since the atomic chain is placed on the surface of the three-
dimensional superconductor. In the two-dimensional system, see Secs. 4.5, 4.6, and
4.7, however, we considered a chain in the bulk of the superconductor (m0 ≈ Ny/2).
Placing the chain on the boundary of a two-dimensional superconductor should,
therefore, lead to similar boundary effects as observed in three dimensions.

To further investigate the importance of boundary effects, we consider the
model from Sec. 4.7, with identical parameters except that the chain is located at
the boundary of the two-dimensional superconductor, m0 = 0. The corresponding
energy spectrum as a function of the exchange coupling J is shown in Fig. 4.12b.
The bulk gap closing and reopening at a critical exchange coupling is accompanied
by the appearance of MBSs at the ends of the chain. The system does not, how-
ever, host trivial zero-energy sub-gap states for J smaller than the critical exchange
coupling.

Next, we extend the superconductor in y direction, by addingN∗yNx sites, so that
the atomic chain is not anymore positioned on the boundary of the two-dimensional
system. We calculate the energies as a function of N∗y for an exchange coupling
smaller (see Fig. 4.12d) and larger (see Fig. 4.12e) than the coupling necessary for
the bulk gap closing and reopening. In the first case, there are no zero-energy states
forN∗y = 0, however, for finite values ofN∗y a state with almost zero energy appears.
Furthermore, the size of the superconducting gap changes, due to varying leakage
of the wavefunctions to sites neighbouring the atomic chain. For sufficiently large
values ofN∗y the gap and the zero-energy state stabilize. In contrast, when the entire
atomic chain enters the topological regime, MBSs appear also for the choice N∗y = 0
and are stable against changes of N∗y . In both cases the size of the superconducting
gap varies as a function of N∗y , but it stabilizes for sufficient large values of N∗y .

Finally, we plot the energy spectrum as a function of the exchange coupling J
in the limit of large N∗y , which means that the localization length of the states in
y direction is shorter than the length aN∗y , see Fig. 4.12c. For this case, we obtain
almost the same spectrum as in Fig. 4.10a, as expected. In addition, we calculated
the energies of the systems from Secs. 4.5 and 4.6 with m0 = 0. In both cases, we
did not find any trivial zero-energy sub-gap states in agreement with the results
presented in Fig. 4.12. In conclusion, we find that placing the chain at the boundary
of the superconductor, such that it is parallel to the chain, suppresses the formation
of trivial zero-energy sub-gap states in two dimensions.
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(a)

(b)

(d)

(c)

(e)

FIG. 12. Sketch and energy spectra of a chain, with a quasi-MBS
rotation profile deposited at varying distances from the boundary in y
direction of a two-dimensional superconductor. (a) Schematic sketch
of an atomic chain (red) deposited on a two-dimensional supercon-
ductor (orange). The length NC of the atomic chain coincides with the
total length Nx of the system; the chain is separated by a number of
N∗

y sites from the boundary of the two-dimensional superconductor.
(b), (c) The energy spectrum of the system as a function of the
exchange coupling for N∗

y = 0 and 15, respectively. (d), (e) Energies
as a function of N∗

y for an exchange coupling smaller and larger than
the critical exchange coupling. The blue (black) arrow in (a) and
(b) indicates the value of the exchange coupling used in (d) [(e)].
The trivial zero-energy state is present only if the chain is placed
away for the boundary. The parameters are the same as in Fig. 10,
except that we introduced the quantity N∗

y .

N∗
y the gap and the zero-energy state stabilize. In contrast,

when the entire atomic chain enters the topological regime,
MBSs appear also for the choice N∗

y = 0 and are stable against
changes of N∗

y . In both cases, the size of the superconducting
gap varies as a function of N∗

y , but it stabilizes for sufficient
large values of N∗

y .
Finally, we plot the energy spectrum as a function of the

exchange coupling J in the limit of large N∗
y , which means

that the localization length of the states in y direction is
shorter than the length aN∗

y [see Fig. 12(c)]. For this case, we
obtain almost the same spectrum as in Fig. 10(a), as expected.
In addition, we calculated the energies of the systems from
Secs. V B and VI B with m0 = 0. In both cases, we did not
find any trivial zero-energy subgap states in agreement with
the results presented in Fig. 12. In conclusion, we find that
placing the chain at the boundary of the superconductor, such

(a)

(b)

FIG. 13. Energy spectrum and probability density of the lowest-
energy state of a chain with a quasi-MBS rotation profile deposited in
the bulk of a three-dimensional superconductor. (a) The system hosts
subgap states and a zoom into the figure reveals a clear separation
of a subgap state from the bulk states. (b) Probability density of the
subgap state at the exchange coupling indicated by the yellow arrow
in (a). The trivial subgap state is localized in the region of smooth
change of the rotation rate. The only changed parameters compared
to Fig. 11 are the locations of the chain sites, such that Ny = Nz = 35
and m0 = l0 = 17.

that it is parallel to the chain, suppresses the formation of
trivial zero-energy subgap states in two dimensions.

APPENDIX B: CHAIN IN THE BULK OF A
THREE-DIMENSIONAL SUPERCONDUCTOR

In experiments (see, e.g., Refs. [100,101,111]), magnetic
adatoms are deposited on the surface of a superconductor,
therefore, we consider in the main text only chains which are
placed on the surface of a three-dimensional superconductor.
Here, on the contrary, we study a chain located fully inside the
bulk of a three-dimensional system. This particular situation
cannot easily be realized in experiments; however, we study
this scenario to gain further insights about the importance
of boundary effects on the subgap state at the surface. In
particular, a subgap state appears in this setup for exchange
couplings smaller than the critical value at which the gap
closes and reopens [see Fig. 13(a)]. This subgap state is not
pinned to zero energy, but it is separated in energy from the
bulk gap (see the zoom on the right side), which is not the case
for systems in which the chain is placed on the surface of the
superconductor (cf. Secs. V C, VI C, and VII C). Furthermore,
we note that the energy of the subgap state could potentially
be pinned to zero for sufficiently large systems. Moreover, the
state is localized in the region of smooth change of ! [see
Fig. 13(b)]. These results in combination with Appendix A
clearly show that the relative position of the chain towards the
superconductor boundary can strongly affect the energies of
subgap states and, in particular, trivial zero-energy states are
suppressed when the chain is placed close to a boundary, such
as the surface of a three-dimensional superconductor.
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Figure 4.13: Energy spectrum and probability density of the lowest energy state of a chain
with a quasi-MBS rotation profile deposited in the bulk of a three-dimensional superconduc-
tor. (a) The system hosts sub-gap states and a zoom into the figure reveals a clear
separation of a sub-gap state from the bulk states. (b) Probability density of the
sub-gap state at the exchange coupling indicated by the yellow arrow in panel (a).
The trivial sub-gap state is localized in the region of smooth change of the rotation
rate. The only changed parameters compared to Fig. 4.11 are the locations of the
chain sites, such that Ny = Nz = 35 and m0 = l0 = 17.

4.B Chain in the bulk of a three-dimensional
superconductor

In experiments, see e.g. Refs. [100, 101, 112], magnetic adatoms are deposited on
the surface of a superconductor, therefore we consider in the main text only chains
which are placed on the surface of a three-dimensional superconductor. Here, on
the contrary, we study a chain located fully inside the bulk of a three-dimensional
system. This particular situation cannot easily be realized in experiments, however,
we study this scenario to gain further insights about the importance of boundary
effects on the sub-gap state at the surface. In particular, a sub-gap state appears
in this setup for exchange couplings smaller than the critical value at which the
gap closes and reopens, see Fig. 4.13a. This sub-gap state is not pinned to zero
energy, but it is separated in energy from the bulk gap, see the zoom on the right
side, which is not the case for systems in which the chain is placed on the surface
of the superconductor, cf. Secs. 4.5, 4.6, and 4.7. Furthermore, we note that the
energy of the sub-gap state could potentially be pinned to zero for sufficiently large
systems. Moreover, the state is localized in the region of smooth change of Φ, see
Fig. 4.13b. These results in combination with Appendix 4.A clearly show that the
relative position of the chain towards the superconductor boundary can strongly
affect the energies of sub-gap states and, in particular, trivial zero-energy states are
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suppressed when the chain is placed close to a boundary, such as the surface of a
three-dimensional superconductor.
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racetracks”,

Phys. Rev. B 108, 174516 (2023)

In superconductors, the combination of broken time-reversal and broken inver-
sion symmetries can result in a critical current being dependent on the direction
of current flow. This phenomenon is known as superconducting diode effect (SDE)
and has great potential for applications in future low-temperature electronics. Here,
we investigate how magnetic textures such as domain walls or skyrmions on a race-
track can be used to control the SDE in a Josephson junction and how the SDE can
be used as a low-temperature read-out of the data in racetrack memory devices.
First, we consider a two-dimensional electron gas (2DEG) with strong spin-orbit-
interaction (SOI) coupled to a magnetic racetrack, which forms the weak-link in a
Josephson junction. In this setup, the exchange coupling between the magnetic tex-
ture and the itinerant electrons in the 2DEG breaks time-reversal symmetry and en-
ables the SDE. When a magnetic texture, such as a domain wall or skyrmion enters
the Josephson junction, the local exchange field within the junction is changed and,
consequently, the strength of the SDE is altered. In particular, depending on the
position and form of the magnetic texture, moving the magnetic texture can cause
the SDE coefficient to change its sign, enabling a Josephson transistor effect with
potentially fast switching frequencies. Further, we find that the SDE is enhanced
if the junction length-scales are comparable with the length-scale of the magnetic
texture. Furthermore, we show that, under certain circumstances, the symmetry
breaking provided by particular magnetic textures, such as skyrmions, can lead to
an SDE even in the absence of Rashba SOI in the 2DEG. Our results provide a basis
for new forms of readout in low-temperature memory devices as well as demon-
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strating how a Josephson transistor effect can be achieved even in the absence of an
external magnetic field and intrinsic Rashba SOI.
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Figure 5.1: Schematic setup of a Josephson junction sandwiching a magnetic racetrack: (a)
The superconductors, described by the order parameters ∆ and ∆eiϕ, so that the su-
perconducting phase difference is given by ϕ, are shown in blue, while the racetrack
is shown in white. A skyrmion (multi-colored points and arrows) is embedded in
a ferromagnetic-out-of-plane background (dark blue dots). (b) The positive [nega-
tive] critical super current Ic+ [Ic−] changes as a function of time t when a magnetic
texture like a domain wall or skyrmion passes through the system. (c) If an alter-
nating current IAC with amplitude I0 is driven through the junction as a function of
the time t, then the change of critical currents and SDE becomes visible in (d) the
voltage response signal: The voltage drops if the alternating current is smaller than
the critical supercurrents. Here, we normalized the voltage response signal by the
voltage strength V0, which is measured if IAC is larger than the critical supercurrent
in a given direction.

5.1 Introduction

One of the building blocks of semiconductor technology is the diode [1] that, due to
inversion symmetry breaking, is characterized by different values of resistances for
currents flowing in opposite directions and is the basic element required to build a
transistor. A similar effect, the so-called superconducting diode effect (SDE) appears
in superconductors and hybrid superconductor-semiconductor devices with bro-
ken time reversal and inversion symmetry [2–25]. In particular, the SDE results
in critical currents that are dependent on the direction of current flow. As a con-



150 CHAPTER 5. JOSEPHSON TRANSISTOR FROM THE SDE

sequence, for a range of currents, the SDE results in a zero resistance state in one
direction, but finite Ohmic resistance in the opposite direction.

The SDE can appear both in bulk superconductors and in Josephson junctions.
Some prominent platforms that result in the SDE are artificial superconducting su-
perlattices that lack an inversion symmetry center [26] and two-dimensional elec-
tron gases (2DEG) with strong spin orbit interaction (SOI) brought into proximity
with a superconductor [27, 28]. In such setups, time-reversal symmetry is broken by
an external magnetic field. The direction of the magnetic field is crucial and should
couple to the inversion symmetry breaking term in the Hamiltonian [7], i.e. SOI, in
order for a finite SDE to occur.

Recently very large SC diode efficiencies have been achieved, opening the path-
way to significant potential technological applications [29, 30]. In addition to an
element within future low temperature electronics, it has been proposed that the
SDE can be used as a method to detect SOI strength in the presence of a super-
conductor [28, 31] and as a measure of whether a system has entered a topological
phase for example in Rashba or TI nanowires [31, 32].

Another promising future technology is racetrack memory devices [33–35]. The
basic idea of a racetrack memory is to store information using magnetic domains
in a thin quasi-one-dimensional racetrack. One advantage of racetrack memory is
that the device architecture does not rely on moving parts unlike, for instance, a
hard disk drive. In a racetrack memory device, currents push magnetic domains
along the racetrack [36], which can also enable a much faster read out of the stored
data compared to other storage devices. In a standard racetrack setup, the magnetic
domains are separated by finite size domain walls, within which the magnetization
direction smoothly changes. Alternatively, however, these magnetic domains can
be replaced by other spin textures such as magnetic skyrmions [37–40].

The low operating temperature of quantum computers, for instance, has recently
resulted in significantly increased interest in electronic elements, both classical and
quantum, that work at low temperatures. In particular, these low temperatures
enable building basic electronic devices such as transistors and read/write compo-
nents from superconductors. The use of superconductors in low-temperature elec-
tronics also opens up the potential for novel and potentially faster computational
devices than room temperature equivalents [29].

In this paper, we consider the interplay of the SDE and magnetic textures on a
racetrack. In particular, we show that the SDE can be controlled by magnetic do-
main walls or skyrmions moving on a racetrack that is sandwiched by a Josephson
junction. The control of the SDE by the magnetic texture provides the basis for
new low-temperature electronic components such as Josephson transistors as well
as for new mechanisms for low-temperature read-out of data in racetrack memory
devices. The schematic setup and functionality is shown in Fig. 5.1: A magnetic
racetrack (white) is sandwiched by two superconductors (blue) placed on top of
a substrate (yellow). Many proposed magnetic racetrack materials have itinerant
electrons with strong SOI, however, if the racetrack material is insulating, it can be
further coupled to a 2DEG with Rashba SOI to produce an SDE. In Fig. 5.1, the dots
and arrows on top of the racetrack indicate the local magnetization. Here, for exam-
ple, a magnetic skyrmion is embedded in a ferromagnetic background. The critical
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currents associated with the Josephson junction are altered when a domain wall or
skyrmion passes through the junction and therefore the critical currents also vary
as a function of time, as shown schematically in Fig. 5.1c. If an alternating current
is driven through the Josephson junction, see Fig. 5.1b, then a finite voltage oc-
curs only when the magnitude of the current in a given direction is larger than the
magnitude of the critical current in that direction, see Fig. 5.1d. This change of the
voltage signal can serve as an indicator whether a magnetic texture like a domain
wall or a skyrmion passes the junction. The fact that the SDE is strongly depen-
dent on the position of the texture can also enable a Josephson transistor effect.
Furthermore, importantly, we find that the length-scales such as the ratio between
the Fermi wave length in the two-dimensional electron gas and the skyrmion size
strongly influence the diode efficiency as a function of the position of the magnetic
texture.

In the second part of this paper we consider Josephson junctions hosting race-
tracks with arbitrary smoothly spatially varying magnetic textures but now in the
absence of Rashba SOI. Most proposals for the SDE in Josephson junctions rely on
the presence of Rashba SOI in the 2DEG. However, it is known that non-uniform
magnetic textures can map to a combination of a uniform exchange coupling field
and some effective SOI [41–58]. A helical spin chain, for example, maps to a ferro-
magnetic chain with Rashba SOI [41, 59]. As such, we show that an intrinsic Rashba
SOI in the 2DEG is not a necessary ingredient for the SDE or Josephson transistor
effect in our setup and spatially-varying magnetic textures within the Josephson
junction by themselves can be sufficient to result in the SDE.

This paper is organized as follows: First, in Sec. 5.2, we define a simple model
describing a quasi-two-dimensional electron gas with exchange coupling to the
magnetization of a racetrack and which is sandwiched by two superconductors
forming a Josephson junction. In addition, we describe details about the how we
numerically perform calculations of critical current. Second, in Sec. 5.3, we analyze
the SDE for a ferromagnetic texture as a function of the chemical potential and the
exchange coupling along the junction with a focus on sign changes of the diode
efficiency. Next, in Sec. 5.4, we discuss the SDE for domain walls and skyrmions
moving on the racetrack. We classify smooth magnetic textures in Sec. 5.5 and pre-
dict which texture-class can mediate a SDE without the need of explicit Rashba SOI
in the 2DEG. Finally, we discuss the experimental realization and implications in
Sec. 5.6. In Appendix 5.A, we present details on the gauge transformation used
in Sec. 5.5 and, in Appendix 5.B, we choose three random examples from differ-
ent classes of magnetic textures and calculate the corresponding SC diode efficien-
cies: these numerical results confirm the predictions made in Sec. 5.5. Last, in Ap-
pendix 5.C, we clarify notations used throughout the paper.

5.2 Model

We utilize an effective two-dimensional (2D) tight binding model to describe a
Josephson junction with a normal section within which the exchange coupling to
the magnetic racetrack occurs. The kinetic contribution Hkin to the full Hamiltonian
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is given by

Hkin = −
∑
〈n,m〉,ν

tc†n,νcm,ν +
∑
n,ν

(4t− µn)c†n,νcn,ν , (5.1)

where t = ~2/(2meffa
2) and µn denote the hopping amplitude and the position de-

pendent potential, respectively. Here, meff is the effective mass of the itinerant elec-
trons and a is the lattice constant. Moreover, n = (nx, ny) [or m = (mx,my)] denote
the coordinate of a lattice site and ν denotes the spin ↑, ↓ along the quantization axis,
so that c†n,ν (cn,ν) creates (annihilates) an electron with spin ν at the site n. Here, the
first sum runs over nearest neighbour sites as indicated by the notation 〈n,m〉. The
superconducting pairing potential is modelled via

Hsc =
∑
n

(
∆nc

†
n,↑c

†
n,↓ + ∆∗ncn,↓cn,↑

)
, (5.2)

where ∆n denotes the local superconducting pairing potential at site n. The cou-
pling between itinerant electrons and the magnetization texture is described by

HJ =
∑
n,ν,ν′

Jn [σ · Sn]ν,ν′ c
†
n,νcn,ν′ , (5.3)

where Jn describes the exchange coupling strength between the spin σ of the itin-
erant electrons and the local magnetic moments

Sn =

cos[ϑ(n)] sin[Φ(n)]
sin[ϑ(n)] sin[Φ(n)]

cos[Φ(n)]

 , (5.4)

which we treat classically. Here, Φ(n) and ϑ(n) are the polar and azimuthal angles,
respectively, at the lattice site n. Next, we account for Rashba SOI via

Hso = αl
∑
nx,ny

[
c†↓,nx−1,ny

c↑,nx,ny − c†↓,nx+1,ny
c↑,nx,ny

+ i
(
c†↓,nx,ny−1c↑,nx,ny − c†↓,nx,ny+1c↑,nx,ny

)
+ H.c.

]
, (5.5)

with αl = α/(2a) the finite-difference version of the Rashba SOI strength α [60, 61].
The full Hamiltonian is then given by

H = Hkin +Hsc +HJ +Hso. (5.6)

We define the parameter profiles as follows: The local superconducting pairing
potential is described by

∆n = ∆Θ(NL − nx) + ∆eiϕΘ(nx −NR), (5.7)

where NL (NR) defines the position of the left (right) interface between supercon-
ducting and normal region, so that the width of the junction in terms of lattice sites
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Figure 5.2: Schematic representation of the domain wall profiles: Here, S1 and S2 denote
the left and right superconductor, the magnetization is only non-zero in between
the superconducting regions. In particular, the arrows and the colorbars indicate
the in-plane and out-of-plane orientation of the magnetic texture, except in panel
(c), where the colorbar shows the Sy component, since the Sz component is zero.
The domain wall described by the angles (a) ϑdw,1 and Φdw,1; (b) ϑdw,2 and Φdw,2; (c)
ϑdw,3 and Φdw,3. We note that only the components pointing in y-direction contribute
to the superconducting diode effect in our case. Parameters: Ly = 2Lx = 140 nm,
a = 2.5 nm, and λdwa = 70 nm.

is set by NJ = NR − NL. The angle ϕ ∈ [0, 2π) is the phase difference between
left and right superconductor. Here, we used the Heaviside function Θ with the
particular definition Θ(0) = 1. Second, we define

Jn = J [Θ(NR − nx)−Θ(NL − nx)], (5.8)

so that the effective magnetization is only non-zero inside the junction and with
a uniform exchange coupling strength, J , to the spins of the itinerant electrons.
Finally, we define the local potential

µn = µ+ γ(δnx,NL + δny ,NR), (5.9)

where we accounted for tunnel barriers at the superconductor normal (SN) inter-
face. The symbols µ and γ denote the chemical potential and the barrier strength,
while δn,m denotes the Kronecker delta.

Magnetization profiles

Here, we define the different types of magnetization profiles that will be utilized
throughout the paper. Namely, various types of domains walls and skyrmions.
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Domain walls

We will analyze three different profiles of magnetic domain walls. First, we consider
a domain wall as described by ϑdw,1(ny) = π

2
and

Φdw,1(ny) =


π
2
, ny ≤ ndw,

π(ny−ndw)

λdw
+ π

2
, ndw < ny < λdw + ndw,

3π
2
, ny ≥ λdw + ndw,

(5.10)

where ndw and λdw determine the y-coordinate of the first site of the domain wall
and its size, respectively. This choice of Φ(ny) models a magnetization out of plane
at the center, nc = ndw + λdw/2, of the domain wall and it describes a magnetization
parallel or anti-parallel to the y-direction for large distances (|ny − nc| > λdw/2)
away from the domain wall center, see Fig. 5.2a. The substitution Φdw,2(ny) ⇒
Φdw,1(ny) ± π/2 leads to a magnetization aligned out of plane for large distances
away from the center of the domain wall, which is the second configuration an-
alyzed in this paper. Finally, we define a domain wall with Φdw,3(ny) = π

2
and

ϑdw,3(ny) = Φdw,1(ny) modelling an in-plane magnetization aligned along the y-
direction for large distances (larger than λdw/2) away from the domain wall center
and aligned in x-direction at nc, see Fig. 5.2a.

Skyrmions

In addition to magnetic domain walls, we consider Néel [62] and Bloch [63] type
skyrmions. The Néel skyrmion is described by a polar angle of the form

Φns(n) =

{
π if r > λs,

πr/λs otherwise,
(5.11)

where nu,s with u ∈ {x, y} denotes the x- and y-coordinate of the center of the
skyrmion and λs sets the length-scale of the skyrmion. Moreover, we introduced the
quantity r =

√
(nx − nx,s)2 + (ny − ny,s)2 measuring the distance from the center of

the skyrmion and the vector

r =

(
nx − nx,s
ny − ny,s

)
=

(
r cos[ϑns(nx, ny)]
r sin[ϑns(nx, ny)]

)
, (5.12)

which defines the azimuthal angle ϑns(n) measured from the position of the
skyrmion. The angle of the Bloch skyrmion is related to the Néel skyrmion angle
via ϑbs → ϑns − π

2
.

Calculation of the current

In this subsection, we present the details on the calculations of the supercurrents.
The computation is mainly based on the Heisenberg equation of motion [64–66],
which, in general, supports the computation of local currents. Here, however, we
are mainly interested in the total current passing in x-direction through the system.
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Figure 5.3: Schematic illustration of the implemented tight binding model: The normal
region is represented by the black and blue sites, while the superconducting leads
are represented by the yellow sites. The total current in x-direction is calculated by
summing up the local currents on the red bonds between the blue colored sites. We
note that the number of sites shown here does not match with the number of sites
used in the actual calculations.

This total current is conserved inside the junction and therefore the total current
does not depend on the x-coordinate, as long as it is located in the junction. In
contrast, the calculation of the current inside the superconductor requires a self-
consistent calculation of the superconducting order parameter to ensure current
conservation, this however is not considered here, therefore we follow the calcula-
tions presented in Refs. [67–71].

The local current between two adjacent lattice sites n and m is given by

In,m = 2
ekBT

~

∞∑
n=0

Im {Tr [Hn,mGm,n(iωn)−Hm,nGn,m(iωn)]} , (5.13)

where kB and T denote the Boltzmann constant and the temperature of the system,
respectively [67–71]. Moreover, Hn,m [Gn,m] is the submatrix of the Hamiltonian
[Green’s function] that connects the sites n and m. In addition, ωn = (2n + 1)πkBT
are the fermionic Matsubara frequencies and the corresponding summation over n
can be carried out numerically due to a fast convergence, which enables a truncation
of the sum when the required accuracy is reached. Next, we define the total current
Ix =

∑
n∈Υ In,n+ex in x-direction as the sum of all local currents through a cross

section in y-direction in between two adjacent columns of sites. Here, ex denotes
the unit vector in x-direction. For example, the total current would be the sum of
the all local currents flowing through the red bonds connecting the blue colored
sites in Fig. 5.3. Here, we denote the set of sites to the left of the cross section as Υ,
which corresponds to the left blue colored sites in Fig. 5.3.

Our numerical calculations are based on the Python package Kwant [72]. In
most of the work, we discretize the normal region (black and blue colored sites in
Fig. 5.3) and attach superconducting semi-infinite leads to the left and right (yellow
colored sites in Fig. 5.3). These leads do not have any exchange field, J = 0. The
length of the junction Ly = Nya is set by the number of sites along the y-direction.
Although the actual width of the system with leads is infinite along the x-direction,
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we will refer to system width as Lx = NJa, i.e., the number of sites describing the
width of the junction. Additionally, within the Kwant software, we attach virtual
self-energy leads at the blue sites next to the cross section in order to compute the
Green’s function locally on these sites. A gauge transformation enables us to ac-
count for the superconducting phase difference via a complex phase added to the
sub-matrix HLR (HRL). In order to improve the code efficiency we follow Ref. 67. In
particular, we calculate the zero-phase Green’s function for a given Matsubara fre-
quency and afterwards we exploit the Dyson series to obtain the Green’s function
for finite phase difference ϕ. We exploit the same scheme to obtain the local den-
sity of states (LDOS), however, this time we calculate the retarded Green’s function
G(ω) for a normal frequency ω [instead for a Matsubara frequency G(iωn)]

ρ(ω,n) = − 1

π
Trn {Im [G(ω + iκ)]} . (5.14)

Here, Trn indicates that we perform a partial trace, such that we only account for
the Green’s function submatrix associated with the site n. Moreover, the parameter
κ accounts for broadening, e.g., due to temperature. In this paper, we focus on the
LDOS at the end of the cross section, in particular at the green encircled site.

In addition to the method described above, we implemented a separate tight-
binding model, where we replace the superconducting leads by finite-size super-
conducting regions. We use this model to check our results for the LDOS and
current. In these finite-size systems we consider the length of the superconduct-
ing regions to be larger than the superconducting coherence length ξ, meaning that
NLa = (Nx − NR)a > ξ holds, where Nx denotes this time the total number of sites
in x-direction including the superconducting regions. The finite size of the system
enables extraction of all eigenvalues and eigenvectors, so that we can compare the
sub-gap eigenvalues with the peaks found in the LDOS calculation. Moreover, we
compared selected results for the current obtained from the Heisenberg equation of
motion, as described above, with the current obtained from the free energy, which
is given by

Ix(ϕ) = − e
~
∑

n,En>0

tanh

(
En

2kBT

)
∂En
∂ϕ

, (5.15)

where En are the energies of the Hamiltonian as defined in Eq. (5.6) [73].
We note that the code performance is better in case of the first method based

on the Green’s function calculated in the infinite system compared to the second
method, which is based on the eigenvalue calculation in finite-size systems. There-
fore, most of the current calculations are based on the first method.

Finally, we introduce the directional dependent critical currents Ic+ and Ic− that
are the maxima and minima of the current phase relation for all phases ϕ ∈ [0, 2π).
These represent the critical current for current flow to the right and left, respectively.
The corresponding diode efficiency is defined as

η =
Ic+ − |Ic−|

(Ic+ + |Ic−|)/2
. (5.16)
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Figure 5.4: SDE as a function of the chemical potential in case of an in-plane ferromag-
netic texture: (a) Supercurrent Ix as a function of the chemical potential µ and of the
superconducting phase difference ϕ. (b-d) The LDOS, ρ, as a function of the super-
conducting phase difference ϕ. The values chosen for the chemical potentials are
indicated by the (b) dotted, (c) dashed, and (d) dashed-dotted lines in panel (a). We
compare the LDOS calculated at a single site at the end of the junction (with the
position of the site chosen similar to the green encircled site in Fig. 5.3) found via
Green’s function method in the infinite system (with leads) with the low-energy en-
ergy spectrum (yellow dashed lines) obtained for a finite-size system in which the
superconducting regions are longer than the coherence length (no superconduct-
ing leads). If the lowest energy state crosses zero energy, then the diode efficiency is
non-zero, see panel (b) and (c). In contrast, if the lowest state does not cross zero en-
ergy, then the diode efficiency approaches almost zero, see panel (d). (e) Left [right]
y-axis: diode efficiency [critical currents] as a function of the chemical potential.
Here, the diode efficiency changes its sign, meaning that the diode can switch its
polarity as a function of the chemical potential. (f-h) CPR for the position of the
chemical potentials shown as in panels (b-d). The inset shows the modulus of the
current and it reveals the diode polarity, which can hardly be read off from the bare
CPR. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me, a = 2.5 nm, ∆ = 0.8 meV,
J = 0.05 meV, α = 0.05 eVnm, and γ = 32 meV.

5.3 SDE for uniform ferromagnetic exchange coupling

Dependence on the chemical potential

In this section, we study the diode efficiency for a system with a uniform ferromag-
netic exchange coupling oriented in parallel to the junction (y-direction in Fig. 5.3).
This is done in order to find an optimal parameter range for the operation of the SC
diode.

We note that, in principle, all ingredients for Majorana bound states (MBSs) in
a planar Josephson junction are present, namely (Rashba) SOI due to broken inver-
sion symmetry and exchange coupling, which acts as a local magnetic field, and a
superconducting phase difference. Consequently, the appearance of a topological
phase is a question of the chosen parameters [74–78]. In this work, however, we
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focus on the case of Ly � ξsc, where ξsc denotes the superconducting coherence
length, so that the system does not host well localized MBSs. We start our analysis
by the calculation of the current as a function of the superconducting phase and the
chemical potential, see Fig. 5.4a. We find that the current reveals oscillations as a
function of the chemical potential. Additionally, the critical currents increase with
growing µ, which can be partially explained with a higher transparency at larger
µ. We estimate for the chosen parameters an average transparency of τ = 0.77 and
τ = 0.94 at µ/∆ = 10 in absence of the exchange coupling for the cases Eso/∆ = 0
and Eso/∆ = 0.47, respectively. In particular, we fitted the current phase relation
(CPR) with the formula [79]

Ix(ϕ) =
A sin(ϕ)√

1− τ sin2 (ϕ/2)
, (5.17)

where A and τ serve as fit parameters 1.
We choose three values of the chemical potential, see the dotted, dashed and

dotted-dashed lines in Fig. 5.4a, and plot the corresponding current phase relation
in Figs. 5.4f-5.4h. The inset shows the modulus of the current, highlighting that
there is a difference of the critical currents and also that this difference in criti-
cal currents depends on chemical potential. Here, the diode efficiency η is quite
small due to the weak exchange coupling. This small exchange coupling was cho-
sen in order to reduce the phase space of the topological phase. In general, if the
transparency of the junction is reduced, then the topological phase shrinks for fixed
finite exchange couplings [74]. However, as mentioned above, well localized Majo-
rana bound states cannot form in junctions where the length (y-direction of Fig. 5.3)
is short.

We also calculated the LDOS at one site located at the end of the junction (see
e.g. the green encircled site in Fig. 5.3) by attaching superconducting leads as de-
scribed in the Sec. 5.2. Here, we show only the positive energy range, see Figs. 5.4b-
5.4d, a comparison with the energy spectrum (yellow dashed lines) calculated in
a finite size system, in which we discretized the superconducting regions (no su-
perconducting leads), reveals a good agreement. We find that the diode efficiency
decreases when the lowest ABS is pushed to higher energies for superconducting
phases close to π. A magnification of the low energy region reveals in particular
that the lowest ABS energy is almost a linear function of ϕ close to ϕ = π for sys-
tems with sizeable diode efficiency, indicating a high transparency mode [19]. In
contrast, if the diode efficiency is almost zero, then the derivative of the lowest ABS
energy vanishes close to ϕ = π. Finally, we calculated the diode efficiency and the
critical currents as a function of the chemical potential, see Fig. 5.4e. Notably, the
diode efficiency changes its sign multiple times, we attribute this behaviour par-
tially to the behaviour of the lowest ABS, which is strongly influenced by the choice
of the chemical potential. In principle, such a gate tunable SDE can be used as a
Josephson transistor [16], below we will show that this is also possible simply by
moving a magnetic texture along the racetrack.

1The additional factor of τ in Ref. [79], has been absorbed into the amplitude A.
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Figure 5.5: SDE as a function of the exchange coupling strength in case of an in-plane fer-
romagnetic texture: (a) Supercurrent Ix as a function of the exchange coupling J and
of the superconducting phase difference ϕ. (b-d) The LDOS, ρ, as a function of the
superconducting phase difference ϕ. The values chosen for the exchange coupling
are indicated by the (b) dotted, (c) dashed, and (d) dashed-dotted lines in panel (a).
We compare the LDOS at a single site at the end of the junction (with the position
of the site chosen similar to the green encircled site in Fig. 5.3), calculated by using
Green’s function method in the infinite system (with leads) with the low energy
spectrum (yellow dashed lines) of a finite-size system in which the superconduct-
ing regions are longer than the coherence length (no superconducting leads). The
zero-energy crossing of the lowest energy state can lead to kinks in the CPR. (d) Left
[right] y-axis: diode efficiency [critical currents] as a function of the exchange cou-
pling. The diode can change its polarity. (f-h) The CPR for the exchange couplings
as in panels (b-d). Parameters: Ly = 2Lx = 140 nm, meff = 0.023me, a = 2.5 nm,
∆ = 0.8 meV, α = 0.05 eVnm, µ = 8.16 meV, and γ = 32 meV.

Dependence on the exchange coupling J

Next, we study the current as a function of the exchange coupling strength J for
the same ferromagnetic texture, i.e., pointing in y-direction, see Fig. 5.5. The critical
currents decrease with growing exchange coupling strength. However, in general,
the overall behaviour of the current is quite complicated due to the low energy
sub-gap states, which we analyze in Figs. 5.5b-5.5d for three different values of J
as indicated by the dotted, dashed and dashed-dotted line in panel Fig. 5.5a. If
an ABS crosses zero energy, then the (central) derivative of the ABS energy with
respect to the superconducting phase difference is not well defined since only the
negative eigenvalues contribute to the ground state and therefore to the current
phase relation. A different sign of left and right derivative can lead to jumps in the
CPRs, see Eq. (5.15) and Figs. 5.5f-5.5h. These jumps, in turn, lead to strong changes
in the diode efficiency including sign changes, as can be read out from the insets,
which show the absolute value of the currents. The overall behaviour of the diode
efficiency as a function of the exchange coupling is shown in Fig. 5.5e. For small
values of J , the diode efficiency η increases approximately linearly with exchange
coupling strength. In contrast, for large exchange coupling strengths, the diode
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efficiency deviates from the linear behaviour and can even change its sign. In the
linear regime, the lowest state crosses zero energy close to ϕ = π. At the exchange
coupling associated with the sign change of the diode efficiency, the zero-energy
crossing of the lowest state is pushed away from ϕ = π. Finally, we note that the
SDE generally increases substantially for larger exchange couplings, in part due to
the smaller critical currents, as long as the system is not fine-tuned to a chemical
potential where the SDE vanishes completely.

Local supercurrents

So far, we have only considered the total supercurrent flowing in x-direction through
the junction. Here, in contrast, we analyze the local supercurrents in x-direction as
a function of the y-coordinate. With respect to Fig. 5.3, this means that we study the
current on individual red bonds. In order to simplify the analysis, we set the ex-
change coupling J and the Rashba SOI α to zero, such that there is no SDE. It turns
out that the current strength oscillates along the y-direction with an approximate
period λF/2 set by the Fermi wavelength λF ≡ 2π/kF , where kF is the Fermi mo-
mentum. In Fig. 5.6a we analyze these current oscillation for two different values
of the chemical potential.

To connect the LDOS to the current, we note that Eq. (5.13) can be rewritten in
terms of the eigenenergies and wavefunctions. This explains the oscillatory behav-
ior of the current with respect to chemical potential, since the wave functions of the
ABSs exhibit oscillations in y-direction set by the Fermi wavelength. In order to
quantify the direct correlation between oscillations of the wave functions and of the
current, we integrate the LDOS over energy window inside the superconducting
gap:

%(n) =

∫ ∆

0

ρ(ω,n)dω, (5.18)

which also captures the dependence on the superconducting phase difference. In
terms of the schematic picture shown in Fig. 5.3, this means that we consider the
LDOS along the left column of blue sites. The integrated LDOS, which takes all sub
gap states into account, reveals a similar oscillation pattern as in the current, see
Fig. 5.6b.

Finally, we note that the oscillations of the current as a function of position can
affect the critical currents in systems with finite-size magnetic texture like domain
walls or skyrmions. In fact, the ratio between the Fermi wavelength and the spatial
extent of the magnetic defect, in our case λsa or λdwa, plays a central role. For
example, if λsa� λF , then the effect of the spatial oscillation gets averaged out and
have less impact on the diode efficiency as a function of position of the magnetic
texture.

5.4 SDE for a texture moving on a racetrack
We now consider what happens to the SDE when a given magnetic texture moves
along the portion of the racetrack that forms the normal section of the Josephson
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Figure 5.6: Spatial oscillations in the distribution of local supercurrents: (a) Local cur-
rents as a function of the y-coordinate ny. The red and blue curve correspond to
systems with different chemical potential and therefore different Fermi momenta,
which determine the oscillation period P (in units of a). We find that the spatial
separation of the peaks agrees well with the analytic prediction of the oscillation
period set by the Fermi wavelength. (b) Energy-integrated LDOS [see Eq. (5.18)]
along a column of sites to the left of the cross section through which we calculated
the current. The oscillation profile of LDOS matches quite well with the profile of
the local supercurrents. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me, a = 2.5
nm, ∆ = 0.8 meV, J = 0 meV, α = 0 eVnm, γ = 0 meV, and µ = 15 (µ = 6) meV for
the red (blue) graph.

junction. We will see that the nature of the magnetic texture and its position within
the junction can significantly modify the diode efficiency, η, and even change its
sign. As a result, the magnetic texture can be detected by these modifications in
the SDE as it moves through the junction or, conversely, moving a magnetic texture
through the junction can be used to change the sign of the diode efficiency and
therefore create a Josephson transistor effect.

Domain walls

We first study the SDE due to a magnetic domain wall moving through the Joseph-
son junction. First, we consider a magnetic texture as defined by the angle profiles
Φdw,1 and Θdw,1 and calculate the current as a function of the superconducting phase
difference and of the position of the domain wall, see Fig. 5.7a. The phases associ-
ated with the positive and negative critical currents as well as the phase associated
with zero current change as a function of the position of the domain wall. More im-
portantly, the direction of the exchange field of the magnetic texture reverses when
the domain wall passes through the junction and, consequently, the direction of the
SDE also inverts, resulting in a Josephson transistor effect. This behaviour mani-
fests itself in a diode efficiency that changes its sign when the domain wall passes
through the center of the system (≈ Ny/2), see Fig. 5.7b. The sign change and the
value η = 0 for a system with the domain wall in the middle is enforced by sym-
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Figure 5.7: The CPR and diode efficiency as a function of the position of the domain
wall: (a) Supercurrent as a function of phase difference ϕ and the position of the
domain wall ndw. Panels (a) and (b) correspond to the domain wall profile Φdw,1,
while panels (c) and (d), correspond to the profiles Φdw,2 and Φdw,3, respectively.
(b,c,d) Critical currents Ic± and diode efficiency η as a function of ndw. The diode
changes its sign for the magnetic textures considered in (a,b) and (d). In contrast,
when the magnetization is out of plane far away from the domain wall (c), then
the SDE appears only when the domain wall enters the junction and we observe
additional oscillations of the diode efficiency when the domain wall moves through
the system. Parameters: Ly = 2Lx = 140 nm, meff = 0.023me, µ = 8.16 meV, a = 2.5
nm, ∆ = 0.8 meV, J = 0.05 meV, α = 0.05 eVnm, γ = 32 meV, and λdwa = 70 nm.

metry. Moreover, we note that as the domain wall moves through the system, the
magnitude of the critical currents change significantly.

In general, the physics of the system are strongly determined by the magnetiza-
tion direction: Repeating the same calculation with an out-of-plane magnetization
far away from the domain wall, as defined by Φdw,2 and Θdw,2, reveals a different be-
havior, see Fig. 5.7c. In particular, if the domain wall is far away from the junction,
then the out-of-plane magnetization does not result in a diode effect and conse-
quently the diode efficiency is zero.

The overall behaviour of the diode efficiency as a function of the domain wall
position exhibits several sign changes. In a simple picture, one might expect that
the diode efficiency first increases when the domain wall moves into the junction
until the whole domain wall entered the system. The efficiency would be constant
until the domain wall starts to leave the junction. However, the calculated diode
effect exhibits a more complex behaviour, see Fig. 5.7c. The diode efficiency does at
first grow and is almost constant when the domain wall is located in the middle of
the junction, due to the symmetry of the system. However, η exhibits in total four
sign changes as the domain wall moves through the junction. We attribute this be-
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haviour to the wavefunctions of the ABSs in the junction. As discussed above, the
ABSs in the junction exhibit spatially dependent oscillations along the y-direction,
resulting in both a probability density and current changes that depends locally
on the y-coordinate. Consequently, the diode efficiency can change, including sign
changes and associated Josephson transistor effect, if the spatial extent of the do-
main wall λdwa is of the same order as the Fermi wavelength λF . Although for nu-
merical ease we utilized a low chemical potential with large λF , in practice, many
proposed racetrack materials are good metals [34, 35] such that λF � λdwa and
these multiple sign changes would not be expected.

Next, we note that the magnitude of the diode efficiency, η, for the particular
choice of magnetization set by Φdw,2 and Θdw,2, strongly depends on the ratio be-
tween the length of the domain wall and the length of the junction, which are set
by λdw and Ny, respectively. In particular, the longer the junction compared to the
domain wall the smaller the superconducting diode efficiency of the whole junc-
tion. This is why we chose junctions which are just a few times longer than λdw and
avoid the regime Ny � λdw.

Finally, we studied a junction with a magnetization as defined via Φdw,3 and
Θdw,3, see Fig. 5.7d. This junction behaves similar to the first considered set-up
with Φdw,1 and Θdw,1. In particular, |η| is constant until the domain wall enters the
junction, then it decreases until the domain wall reaches the center of the junction at
which point a sign change in η occurs and |η| increases until the domain wall exits
the junction.

Skyrmions

We now repeat a similar analysis for the domain wall setups studied above but
instead for racetracks hosting skyrmions. First, we note that we only consider
skyrmions with a ferromagnetic background aligned in z-direction (out of plane).
Therefore, there is no diode effect if a skyrmion is not in the junction (ny,s ≤ −λs/2),
see Fig. 5.8. Considering first Néel skyrmions moving on a racetrack, when the
skyrmion enters the junction the tilted magnetization close to the skyrmion core
leads to a finite SDE, see Fig. 5.8a. The strength of this effect strongly depends on
the ratio between λs andNy, as in the case of the second domain wall configurations
with Φdw,2 and Θdw,2 studied above. As above, these spatial oscillations of η are set
by the Fermi wavelength and result in a complicated behaviour that can exhibit
several sign changes of η, see Fig. 5.8a.

Finally, we consider a Bloch skyrmion with a magnetization as defined in Sec. 5.2,
see Fig. 5.8b. The general behaviour is quite similar to the Néel skyrmion and
in general we do not find a substantial difference in the diode efficiency response
caused by the two types of skyrmionic texture.

5.5 SDE in Josephson junctions without Rashba SOI

So far we have explicitly incorporated Rashba SOI in our model via Eq. (5.5). Here,
instead, we remove the Rashba SOI and investigate which type of magnetic texture
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Figure 5.8: Diode efficiency as a function of the position of the skyrmion: Critical
currents Ic± and diode efficiency η as a function of ny,s for (a) [(b)]: Néel [Bloch]
skyrmion. The diode efficiency strongly depends on the position of the Néel or
Bloch skyrmion and there are certain positions, depending on the system configu-
rations, where |η| is maximized. If there is no skyrmion inside the junction, then
there is no SDE (η = 0) since the background magnetization is out of plane. Param-
eters: Ly = 2Lx = 140 nm, meff = 0.023me, µ = 8.16 meV, a = 2.5 nm, ∆ = 0.8 meV,
J = −0.2 meV, α = 0.05 eVnm, and γ = 32 meV, and λsa = 35 nm.

can support a SDE by itself. In order to answer this question, we first consider the
continuum Hamiltonian

H =

∫
dx dy Ψ†(~r)H(~r)Ψ(~r), (5.19)

where Ψ†(~r) = (Ψ†~r,↑,Ψ
†
~r,↓,Ψ~r,↓,−Ψ~r,↑) is a vector composed of the field operators

Ψ†~r,↑ (Ψ~r,↑) and Ψ†~r,↓ (Ψ~r,↓) which create (annihilate) a particle at the position ~r = (x, y)
with spin up or down, respectively. The Hamiltonian density is given by

H(~r;ϕ~r) = − ~2

2m
(∇2

x +∇2
y)τz (5.20)

+ ∆~r(τx cosϕ~r + τy sinϕ~r) + Jτ0
~S~r(Φ~r, ϑ~r) · ~σ,

where σj and τj are Pauli-matrices acting in spin space and particle hole space re-
spectively, and ∆~r is real. As in Eq. (5.4), the spin texture is finite only within the
normal section and using spherical coordinates such that

~S~r(Φ~r, ϑ~r) = [cos(ϑ~r) sin(Φ~r), sin(ϑ~r) sin(Φ~r), cos(Φ~r)] (5.21)

and ~σ = (σx, σy, σz) the vector of Pauli matrices. Both the angles Φ~r and ϑ~r as well
as the superconducting phase difference ϕ~r can depend on position ~r = (x, y) of a
given spin of the texture.

Although we are interested in cases where an SDE does occur in the absence of
Rashba SOI, we first point out that there are several spin textures where symme-
tries still do not allow the system to support an SDE. For instance, if the angles ϑ~r
and Φ~r are constant then all spins are parallel, so the system breaks only time re-
versal symmetry. The absence of Rashba SOI in the 2DEG means that there is no
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coupling between spin-space and real space, allowing for arbitrary rotations in spin
space. As a consequence, the combination of time-reversal symmetry, T = iσyτ0K,
where K is complex conjugation, with a rotation in spin-space by π around an axis
in the plane perpendicular to the direction of the spins, Rπ, results in the iden-
tity RπT H(~r;ϕ~r)(RπT )† = H(~r;−ϕ~r). This implies that all eigenenergies satisfy
En(ϕ) = En(−ϕ), however, since the current is given by the derivative of eigenen-
ergies with respect to the phase difference, see Eq. (5.15), this identity means that the
current must satisfy I(ϕ) = −I(−ϕ) and therefore no SDE can occur since Ic+ = |Ic−|.

In fact, more generally, if all spins lie in a plane, then the combination of a π
rotation around the axis defining the plane and time reversal symmetry will result
in the same identity and the absence of an SDE. For instance, if all spins lie in the
xz-plane then a rotation in spin-space about the y-axis, such that Rπ = σy, will also
result in the identity RπT H(~r;ϕ~r)(RπT )† = H(~r;−ϕ~r) which ensures the absence
of an SDE. As such, in the absence of Rashba SOI, a simple domain wall will not
result in an SDE since it only rotates in a single plane.

Additionally, we note that spatial symmetries can also result in a similar iden-
tity that will forbid an SDE. Namely, for our setup we are interested in currents
in the x-direction i.e. across the junction. If the spin-texture, ~S~r(Φ~r, ϑ~r), only de-
pends on the y-coordinate then the transformation ~r = (x, y) → ~r′ = (−x, y) gives
again H(~r′;ϕ~r′) = H(~r;−ϕ~r), where we used the fact the phase ϕ~r only varies in
the x-direction and that, without loss of generality, the phase can be taken to be of
opposite in sign in the left and right superconducting sections of the junction.

We now demonstrate that an SDE is allowed in the absence of Rashba SOI. First,
since the superconducting terms are unaffected by the following transformations
and for the ease of discussion, we set ∆~r = 0 everywhere in the BdG Hamiltonian
presented in Eq. (5.20). Next, apply the gauge transformation U1 = e−i(ϑ~r/2−π/4)σz

via H̃ = U †1HU1. This transformation rotates the magnetic texture around the z-
axis into the yz-plane. Subsequently, we apply the second gauge transformation
U2 = ei(Φ/2−π/4)σx asH′ = U †2H̃U2 and obtain

H′ =−~
2

2m

∑
xj∈{x,y}

[(
∂2

∂x2
j

− 1

4

{
∂ϑ

∂xj

}2

− 1

4

{
∂Φ

∂xj

}2)
σ0

−i
{

∂

∂xj
Λxj(x, y) + Λxj(x, y)

∂

∂xj

}]
+ Jσy, (5.22)

where

Λxj(x, y) =
1

2
[cos(Φ)σy + sin(Φ)σz]

∂ϑ

∂xj
− 1

2

∂Φ

∂xj
σx, (5.23)

see Appendix 5.A for a detailed derivation. In this new basis, after the unitary
transformation has been applied, the exchange coupling term, namely the term pro-
portional to J , is ferromagnetic. This modification of the exchange coupling field,
however, results in new effective SOI term and a non-uniform chemical potential
[41–46, 59]. As discussed extensively above, SOI and a ferromagnetic background
coupling to the direction of that SOI is the key ingredient that can enable an SDE.
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Φ ϑ RπT x→ −x SDE[Ix]
Φ = π

2
ϑ = const. X X ×

Φ = π
2

ϑ = ϑ(x) X × ×
Φ = π

2
ϑ = ϑ(y) X X ×

Φ = π
2

ϑ = ϑ(x, y) X × ×
0 6= Φ = const. 6= π

2
ϑ = const. X X ×

0 6= Φ = const. 6= π
2

ϑ = ϑ(x) × × X
0 6= Φ = const. 6= π

2
ϑ = ϑ(y) × X ×

0 6= Φ = const. 6= π
2

ϑ = ϑ(x, y) × × X
Φ = Φ(x) ϑ = const. X × ×
Φ = Φ(x) ϑ = ϑ(x) × × X
Φ = Φ(x) ϑ = ϑ(y) × × X
Φ = Φ(x) ϑ = ϑ(x, y) × × X
Φ = Φ(y) ϑ = const. X X ×
Φ = Φ(y) ϑ = ϑ(x) × × X
Φ = Φ(y) ϑ = ϑ(y) × X ×
Φ = Φ(y) ϑ = ϑ(x, y) × × X

Φ = Φ(x, y) ϑ = const. X × ×
Φ = Φ(x, y) ϑ = ϑ(x) × × X
Φ = Φ(x, y) ϑ = ϑ(y) × × X
Φ = Φ(x, y) ϑ = ϑ(x, y) × × X

Table 5.1: SDE resulting from magnetic textures in a model lacking explicit Rashba SOI:
We classify different textures via their angles Φ and ϑ and check which symmetries
are present in the corresponding class to predict whether a SDE is possible. If the
spins lie in a plane, then the symmetry RπT forbids a SDE. Similar if the texture
is not a function of the x-coordinate, then the SDE is suppressed in x-direction.
Both symmetries have to be broken to allow a SDE. Here, we indicate the presence
[absence] of the symmetries and the SDE with a checkmark [cross]. We note that
fine-tuned symmetries, e.g. spatial rotational symmetry, can also result in the ab-
sence of an SDE and that, even when symmetry allowed, the magnitude of the SDE
is not guaranteed to be large.

Given that a sufficiently complex spin-texture transforms to an effective SOI with
ferromagnetic background, it is clear that this can result in an SDE, as long as it is
not symmetry forbidden. In Table 5.1 we give all possible forms of spin-textures
and indicate whether or not an SDE is allowed in the absence of Rashba SOI as well
as whether or not the symmetries discussed above are present. We note, even if
allowed by the general symmetries discussed above, fine-tuning of the position of
magnetic textures can result in the absence of an SDE due to, e.g., spatial rotational
symmetries.

To provide a concrete example of a spin texture where an SDE is allowed, we
consider skyrmionic textures. In this case both the angles ϑ~r and Φ~r are a function
of x and y-coordinates and therefore the texture can in principle support a SDE, see
Fig. 5.9 where we consider a Néel skyrmion. However, the position of the skyrmion
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Figure 5.9: Diode efficiency as a function of the position of the Néel skyrmion in a sys-
tem without Rashba SOI: (a) Diode efficiency η as a function of the position of the
skyrmion ndw. (b) The CPR and the modulus of the current (shown in the inset)
indicate the different critical currents. The CPR is calculated for the skyrmion posi-
tion as indicated in panel (a). In the inset we plot the data points and do not con-
nect them to show that the resolution of the superconducting phase is indeed high
enough to resolve the difference in the critical currents. Parameters: Ly = 2Lx = 140
nm, meff = 0.023me, µ = 5 meV, a = 2.5 nm, ∆ = 1 meV, J = 1 meV, α = 0 eVnm,
γ = 32 meV, and λsa = 35 nm.

plays a crucial role and the SDE can vanish at certain symmetry points, for example
if the skyrmion is placed exactly in the middle of the junction, see Fig. 5.9a. Compar-
ing the Néel and Bloch type skyrmion we find that the polar angle Φ agrees for both
textures and the azimuthal angle ϑ can be mapped from the Néel skyrmion to the
Bloch skyrmion via the shift ϑ→ ϑ− π/2. The effective SOI, in Eq. (5.22), however,
depends only on the derivative of ϑ, but not on the actual value. Consequently,
the effective SOI is the same for both configurations, which we also checked nu-
merically. This is also evident from unitary spin rotations around the z axis of the
original Hamiltonain H presented in Eq. (5.20), which leave the energy spectrum
unchanged. If we add Rashba SOI to the system, then the gauge transformation
acting on this additional Rashba term yields an explicit dependence of the trans-
formed Hamiltonian on the angle ϑ, not only on its derivative, therefore the SDE
effect differs for the two types of skyrmions if Rashba SOI is present, as was shown
in Fig. 5.8.

Finally we note that the transformation we utilize to map a varying magnetic
texture to an effective SOI is quite general, however, we require that the derivatives
of the angles are well-defined, such that the angles should be smooth functions of
the coordinates x and y. Therefore, we explicitly do not consider certain classes of
magnetic textures such as domain walls with λdw → 0 or antiferromagnetic struc-
tures.

5.6 Discussion
We have shown how a highly controllable SDE can be achieved in a Josephson
junction where the normal section is a racetrack hosting magnetic textures, such



168 CHAPTER 5. JOSEPHSON TRANSISTOR FROM THE SDE

as domain walls or skyrmions. In particular, the positions of the magnetic texture
alters the efficiency of the SDE and can even change its sign, enabling a Josephson
transistor effect. First, we showed that a system containing Rashba-like spin-orbit
interaction enables a high degree of control that can be exerted on the SDE, de-
pending on the location of the magnetic textures. The ratio between the size of a
magnetic texture and the dimensions of the Josephson junction plays an important
role in determining the maximal strength of the SDE. We also showed that certain
textures, such as skyrmions, can enable an SDE even in the absence of Rashba SOI
in the itinerant charge carrier material and classified some magnetic textures where
this is possible.

Our results show that the interplay between magnetic textures and the SDE is an
exciting playground for future low-temperature electronics. For instance, this effect
could be used to create a superconducting transistor that is controlled by magnetic
textures rather than gates. Furthermore, the effects discussed here could be the
basis for a low-temperature readout scheme of racetrack memory devices that can
be used as components in cryogenic or quantum computers.
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5.A Gauge Transformation

Derivation of the rotated Hamiltonian

In this Appendix, we present the detailed derivation of the Hamiltonian in Eq. (5.22).
Starting point is the Hamiltonian from Eq. (5.20), which we split into the kinetic
term

H0 = − ~2

2m
(∇2

x +∇2
y)σ0 (5.24)

and the exchange term

HEx = J {sin(Φ) [cos(ϑ)σx + sin(ϑ)σy] + cos(Φ)σz} . (5.25)

These terms transform under the unitary gauge transformation U1 = e−i(ϑ/2−π/4)σz

as

U †1HExU1 = J [sin(Φ)σy + cos(Φ)σz] , (5.26)
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and

U †1 [∇2
xj
σ0]U1 =

[
∇2
xj
− 1

4

(
∂ϑ

∂xj

)2
]
σ0 − i

[
∂ϑ

∂xj
∇xj +

1

2

∂2ϑ

∂xj,2

]
σz, (5.27)

where xj ∈ {x, y}, respectively. Combining the results yields

U †1HU1 =− ~2

2m

∑
xj∈{x,y}

{[
∇2
xj
− 1

4

(
∂ϑ

∂xj

)2
]
σ0 − i

[
∂ϑ

∂xj
∇xj +

1

2

∂2ϑ

∂xj2

]
σz

}
+ J [sin(Φ)σy + cos(Φ)σz] . (5.28)

Next, we apply the second gauge transformation U2 = ei(Φ/2−π/4)σx on the exchange
coupling term like

U †2 [sin(ϑ)σy + cos(ϑ)σz]U2 = σy (5.29)

to map the system on a ferromagnet with a magnetization in y-direction. The last
term in Eq. (5.28) transforms as

U †2σzU2 = sin(Φ)σz + cos(Φ)σy, (5.30)

while the first derivative term takes the form

U †2∇xσzU2 =
1

2

∂Φ

∂x
[cos(Φ)σz − sin(Φ)σy] + [sin(Φ)σz + cos(Φ)σy]∇x. (5.31)

The combination of the results presented in Eqs. (5.30) and (5.31) allows us to rewrite
those terms as a position dependent SOI, please note the symmetrized form which
ensures the hermiticity of the term [80]

∂ϑ

∂xj

[
U †2σz

(
∇xjU2

)
+ U †2σzU2∇xj

]
+

1

2

∂2ϑ

∂x2
j

U †2σzU2

=∇xj

[
1

2

∂ϑ

∂xj
(sin(Φ)σz + cos(Φ)σy)

]
+

[
1

2

∂ϑ

∂xj
(sin(Φ)σz + cos(Φ)σy)

]
∇xj . (5.32)

The second derivative takes the form

U †2∇2
xj
σ0U2 = ∇2

xj
− 1

4

[
∂Φ

∂xj

]2

+ i
1

2

(
∇xj

∂Φ

∂xj
+
∂Φ

∂xj
∇xj

)
σx. (5.33)

Finally, the Hamiltonian is given by

U †2U
†
1HU1U2 =− ~2

2m

∑
xj∈{x,y}

{(
∂2

∂x2
j

− 1

4

[
∂Φ

∂xj

]2

− 1

4

[
∂ϑ

∂xj

]2
)
σ0

− i
[
∂

∂xj
Λxj(x, y) + Λxj(x, y)

∂

∂xj

]}
+ Jσy (5.34)

with

Λxj(x, y) =
1

2

∂ϑ

∂xj
[sin(Φ)σz + cos(Φ)σy]−

1

2

∂Φ

∂xj
σx. (5.35)

Last, we note that the strength of the appearing SOI term does not depend on the
strength of the exchange coupling, instead it is only a function of the angles ϑ and
Φ or their derivatives with respect to the x- or y-coordinate.
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5.B Magnetic textures and the SDE
In Sec. 5.5, we discuss which magnetic textures support a SDE, here we numerically
study the underlying conditions and confirm the analytic results. First, we consider
a texture that changes in x-direction since the angle ϑ = g(nx) depends explicitly
on the x-coordinate. Here, the function g(nxj) = nxjπ/λm with nxj = nx or nxj = ny
is linear for simplicity and the length-scale λm, measured in lattice sites, sets the
rotation-period of the magnetic texture. Our choice Φ = π

3
forces the spins into a

conical rotation, so that the texture is not confined to a plane. From our analytic
analysis we expect a SDE is in principle possible for this case. Indeed, the current-
phase relation and in particular the absolute value of the current reveals a finite
SDE in x-direction, see Fig. 5.10. In contrast, if ϑ(ny) = g(ny) varies instead in y-
direction, then the SDE is suppressed, since the current does not experience any
non-uniformity in x-direction. Last, we prepare a texture lying in a plane, with
Φ = g(nx) and ϑ = π

3
, see the last column in Fig. 5.10, the corresponding current is

odd-symmetric with respect to ϕ and does therefore not support a SDE as predicted.

5.C Position of domain walls and skyrmions
In this section, we clarify the meaning of negative values of the domain wall or
skyrmion centre position, see for example Fig. 5.7. We emphasize that the junction
has only Ny sites in y-direction but we move the domain wall or skyrmion so that
only a finite part of it enters the junction, as illustrated in Fig. 5.11, which shows the
in-plane magnetization of three system configurations hosting skyrmions: In the
first configuration we chose ny,s = −λs/2 so that only a small part of the skymrion
is inside the junction. For ny,s = 0, only the half of a skyrmion has entered the
junction. Last, the case ny,s = λs describes the scenario in which the whole skyrmion
just entered the junction. Finally we note that the same logic applies also to the case
ndw > Ny [ny,s > Ny]. We note that the definitions of the position of the domain
wall and the skyrmion are different: While the skyrmion position ny,s is measured
from the center of the skyrmion, the domain wall position is measured from the
beginning of the domain wall, see the definitions in Eqs. (5.10) and (5.11).
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Figure 5.10: Magnetic textures and the SDE without Rashba SOI: First row: magnetic
textures (a)[b] conical rotation parallel [perpendicular] to the direction of current
flow and (c) magnetic texture confined to a plane. Second row: current phase re-
lations corresponding to the magnetic textures. Third row: absolute value of the
current as function of the superconducting phase and associated diode efficiency.
The first texture yields a SDE, while the others do not, this is in agreement with our
analytic analysis. Parameters: (Lx, Ly) = (70, 80) nm, meff = 0.023me, µ = 5 meV,
a = 2.5 nm, ∆ = 1 meV, J = 1 meV, α = 0, λma = 20 nm, and γ = 32 meV.
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Parameters: Ly = 2Lx = 140 nm, a = 2.5 nm, and λsa = 35 nm.
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