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Abstract

The following dissertation presents my scientific contributions to computational research in the field of RNA

biology, carried out in the group of Professor Mihaela Zavolan at the Biozentrum, University of Basel, Switzer-

land. The projects in which I was involved focused on splicing and polyadenylation, two crucial steps in the

maturation of eukaryotic mRNAs, and targets of post-transcriptional mechanisms for regulating gene expres-

sion. In the following sections I provide five concise summaries of scientific articles (published, under revision

and in preparation) that I co-authored, providing my knowledge and expertise in bioinformatics. Briefly, these

manuscripts cover the following aspects. Together with other colleagues from our group we developed a general

purpose RNA-seq data processing workflow which utilizes best-practices in scientific software development for

reproducible research. I further helped in analyzing the molecular impact of the LARP7 protein on the whole

transcriptome, identifying splicing events that are deregulated upon changes in LARP7 expression level. Anal-

ogously, I worked with other members of our group in defining targets of the CFIm complex that is involved in

alternative polyadenylation and in characterizing the downstream effects on CFIm-dependent polyadenylation

on cellular pathways. Further, based on a previously published probabilistic framework for predicting binding

sites of nucleic acid-binding proteins, I developed a user-friendly bioinformatics tool to search for binding sites of

RNA-binding proteins on mRNAs. Finally, in my main PhD project I combined all the aforementioned expertise

together to develop a complex computational workflow to infer the activity of RNA-binding proteins (RBPs)

on alternative splicing and alternative polyadenylation from RNA-seq data. The core of my work consisted of a

novel computational method to assess the impact of binding sites of RBP regulators on the inclusion of cassette

exons in mature transcripts. We validated this method on various RBP knock-down datasets and uncovered

proteins which are plausible drivers of differential mRNA processing in glioblastoma cancer. The workflow is

implemented in a modular fashion, leaving room for expansion in potential subsequent research projects which

are discussed in the final section of this dissertation. In conclusion, I present my novel scientific contribution

to understanding the regulatory impact of RNA-binding proteins on mRNA processing from a computational

perspective. This work is relevant not only for the results we present but also for creating an opportunity

for other scientists to investigate RNA maturation in their research projects. I hope my work will aid others

pursuing their scientific passion and that I indirectly contribute to many fascinating discoveries in the future.
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Introduction

Regulation of gene expression

Eukaryotic organisms store their genetic information in the form of deoxyribonucleic acid (DNA) with the

sequences encoding proteins structured into genes. The former are the most important of cell’s macromolecules

responsible for virtually every aspect of its life. The process of protein production based on the template of

genes - gene expression - is therefore crucial for the survival of the whole organism and as such must undergo

strict regulation.

Central dogma of molecular biology

The discovery of molecular structure for DNA in 1953 [1] has been marked as the cornerstone for a new branch

of science, one which will later be referred to as molecular biology. While some preliminary research that

highlighted differences in distinct types of nucleic acids already existed at that time [2, 3] it is that key event

that led to rapid progress in the understanding of how genetic information is transferred and manifested in

living organisms. Following this finding the term “central dogma of molecular biology” has been proposed,

denoting that sequential information in biological systems can only be transferred from nucleic acids to proteins

and not the other way [4]. Along with it the messenger RNA (mRNA) has been isolated [5, 6] and its role as

an intermediary in gene expression process has been described [7]. Now, over 50 years later, when biological

sciences expanded in scope and specialised into various sub-disciplines, the initial model of biological information

processing still remains true to the most extent [8]. It has been proposed that due to its physico-chemical

properties double-stranded DNA is more stable then single-stranded RNA [9] and thus is better suited as

a medium for information storage. Consistently, DNA has emerged in evolution as the medium for genetic

information storage and transmission via DNA replication [10], while various mechanisms have evolved to control

gene expression, including at the level of transcription and translation [11]. With an intermediate level between

DNA and proteins and the widespread presence of RNA-degrading enzymes - ribonucleases - which evolved not

only to protect against RNA viruses but also to ensure the transient character of intracellular mRNAs, the

kinetics of gene expression can be finely-tuned to enable nuanced responses to extracellular signals.

It is essential to note that, being critical to a cell’s survival, the whole process of gene expression is closely

controlled at distinct steps by various factors. Transcription initiation, apart from the formation and binding of

the RNA Polymerase II holoenzyme to the promoter sequence of the transcribed gene, often requires favourable

DNA topology with an open chromatin state [12] and additional binding of specific transcription factors (TFs)

[13]. It has been reported that sequence-specific TFs are the most important and diverse mechanism of gene

expression regulation [14], while transcriptional elongation and termination are mostly under the control of RNA

polymerase II [15]. The end product of transcription of protein-coding genes in eukaryotes are the precursor

mRNA molecules (pre-mRNAs), which must first undergo maturation before serving as a template for protein

synthesis. The processing of pre-mRNAs and the post-transcriptional regulation is described in more detail in

subsequent sections. The efficiency and speed of translation, similarly as for transcription, are controlled by

various proteins which in this case directly interact with the ribosome [16]. Finally, there is a post-translational

layer of regulation of gene expression with post-translational modifications (PTMs) having the most significant

effect on the proteome [17]. Some proteins are tagged with so-called signal peptides that lead the cell to

translocate these proteins to specific subcellular compartments or secrete them into the extracellular medium

[18]. Altogether these findings show that the genetic information undergoes several controlled transformation

steps before reaching its desired functional state.
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mRNA processing

With the fundamental role RNA molecules have in gene expression, it is important to provide more insight

into the previously mentioned process of mRNA maturation, which not only leads to gene expression but

also allows the production of multiple variants - called isoforms - from a given gene, thus diversifying the

functionality of eukaryotic cells [19, 20]. The first step of RNA processing is ‘capping’, which is the addition

of a 7-methylguanosine nucleotide (cap) at the 5’-end of the primary transcript. The cap increases stability of

the mRNA in the cytoplasm and serves as an anchor for ribosomes to initiate translation [21]. This process

is tightly controlled by the C-terminal domain of RNA polymerase II. Although a few cap variants have been

described [22], the 7-methylguanosine cap is generally used, leaving little room for variation at this step of RNA

processing.

The RNAs generated from eukaryotic genes, especially in organisms such as mice and humans, are not

contiguous copies of the respective genes. Rather, they are composed of fragments that are included in the

mature RNA - exons, flanked by 3’ and 5’ splice sites - as well as fragments that are removed and degraded

during the process of RNA maturation - introns. This is not to say that introns are entirely non-functional,

as several studies point out various functions of intronic regions [23]. The process by which exons are excised

from the pre-mRNA is called splicing. It is at this step where the first layer of transcriptome diversification

takes place as alternatively splicing, the inclusion of an exon in some transcripts but not others, is a common

occurrence [24]. Alternative splicing thus gives rise to distinct transcripts from the same template gene, variants

that are called isoforms. The proteins translated from distinct isoforms may differ in their chemical properties

like hydrophobicity or solubility but also in their biological function in cases where the structure of the proteins

changes for example by the inclusion or exclusion of a protein domain. For instance, the shorter isoform of

Bcl-x, a mitochondrial transmembrane protein, is pro-apoptotic whereas its long form - anti-apoptotic [25].

Splicing variants can differ in a variety of ways [26], the most prevalent variation being the skipping of ‘cassette

exons’ [24]. Other variations are alternative 3’/5’ splice sites, mutually exclusive exons or retained introns. In

humans over 95% of multi-exonic genes undergo alternative splicing [27] thus the effect of variations in exon

composition over the whole transcriptome and the resulting proteome is vast.

The other crucial step of pre-mRNA maturation, apart from splicing, is the formation of the pre-mRNA 3’

end, which involves 3’ end cleavage and polyadenylation. The polyadenylation signal (PAS) is AAUAAA and

some close variants [28, 29]. The 3’end processing complex binds PAS and cleaves the precursor mRNA sequence

10-30 nucleotides downstream after which a poly-adenosine tail of 200 nucleotides in length is added [30]. That

sequence is commonly referred to as a poly(A) tail and its primary functions are to increase the stability of the

mRNA by protecting it against the exonuclease-mediated degradation [31]. Most human genes contain more

than one polyadenylation signal therefore a given transcript might be cleaved at different poly(A) sites [32]. This

will affect the transcript sequence, as more distally-located poly(A) sites give rise to longer transcripts, which

contain additional regulatory elements compared to the shorter isoforms. Frequently, in protein-coding genes,

alternative polyadenylation at different poly(A) sites gives rise to transcripts that only differ in the untranslated

region located beyond the protein-coding region (3’ UTR). These regions are relevant for the mRNA’s stability,

subcellular localisation, or translation rate [33].

All in all, alternative splicing and alternative polyadenylation come up as two very powerful mechanisms of

post-transcriptional regulation of gene expression, having a strong impact on the sequence of mature mRNAs

and therefore proteins.

cis- and trans- acting regulators of transcript maturation

As both splicing and polyadenylation are context-dependent, the question arises how these processes are regu-

lated in different cell types. In transcriptional control, the context-dependent transcription of genes is imple-

mented by transcription factors (TFs), DNA-binding proteins that are expressed in a cell-type specific manner

and bind to promoter and enhancer regions to recruit the RNA polymerase to these regions. Analogously, it has

been shown that RNA-binding proteins (RBPs) with cell-type-specific pattern of expression bind to sequence



elements in precursor and mature RNAs to modulate their splicing, polyadenylation, but also transport, local-

ization and translation [34]. Recent studies highlighted multiple proteins which might be involved in more than

one step during mRNA processing [35, 36, 37] although the effect is not always direct. Despite RBPs usually

detecting cis-acting short sequence motifs on an unstructured single-stranded mRNA some authors report that

the secondary structure of the target molecule plays a significant role in the interaction [38]. The accessibility of

the binding site indeed seems to be important as well, however regulators of mRNAs maturation are commonly

defined by the specific sequences they bind, suggesting that sequence-specific recognition is at the core of that

regulation. Indeed, studies that explicitly investigated the role of the structural context in which the sequence

motifs are located found this to be substantial only for a small number of RBPs [39].

Apart from RNA binding proteins other molecules may also detect sequence elements on both primary

and processed transcripts. Three other most notable groups of regulators are microRNAs (miRNAs), small

interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs), all of them very well studied and described

in the literature [40, 41, 42]. These RNAs typically have regulatory functions, recognizing their RNA targets via

Watson-Crick base-pairing. The miRNAs as well as the siRNAs are short, 21-23 nucleotides, binding their targets

through a so-called ‘seed sequence’ located at the 5’ end of the small RNA. In most cases their interaction sites

are in the 3’UTRs of mRNAs [43] but this is not a strict rule and interactions with 5’UTRs, coding sequences and

gene promoters have also been reported [44]. The most common outcome of the interaction is the degradation

of the target mRNA through RNA-induced silencing complexes (RISCs). In contrast to the miRNAs, which are

encoded in the genome, siRNAs are typically of exogenous origin and designed to be perfectly complementary

to a particular gene [45]. Long non-coding RNAs are more than 200 nucleotides in length and are capable of

interacting with DNA, mRNAs, microRNAs and proteins [41]. They are very diverse and can regulate gene

expression at multiple post-transcriptional levels: interacting with splicing factors [46], behaving as miRNA

sponges [47], serving as precursors for miRNA or endogenous siRNAs [48], binding to proteins that mediate

mRNA decay or binding directly to mRNAs to regulate their stability [49].

As discussed, the maturation of mRNAs is a highly regulated process with multiple distinct types of regula-

tors affecting different aspects of the transcript’s fate. The vast majority of them act through their respective

binding sites located on the mRNAs. It is therefore crucial to assess the overall effect of these binding sites on the

two most potent mechanisms of transcriptome diversification: alternative splicing and alternative polyadenyla-

tion.

High-throughput biology

Biological sciences started as rather descriptive. In his revolutionary “Origin of Species”, published in 1859,

Charles Darwin compared morphological characteristics between finches living in the Galapagos Archipelago,

this work having laid the foundations for the field of evolutionary biology. As considered by many, the first

groundbreaking quantitative discovery in the field of genetics came in 1866 when an Augustinian friar Gregor

Mendel published his work on the heredity of different traits of pea plants. He coined the terms “dominant” and

“recessive” in regards to various characteristics based on their ratios in the offspring. Nowadays, over 150 years

after these initial discoveries, biological research evolved into a multidisciplinary field which applies increasingly

quantitatively precise methods to gather observations on cellular and molecular scale. Theoretical models are

also constructed and tested against experimental measurements, similar to what is done in physics, though still

at a more limited scale [50]. Some of the noteworthy high-throughput quantitative techniques in use today are:

mass spectroscopy [51], ribosome profiling [52], genomic DNA sequencing [53], assay for transposase-accessible

chromatin using sequencing [54], variants of cross-linking and immunoprecipitation with sequencing [55] and

chromatin immunoprecipitation with sequencing [56]. All of the resulting data needs specialized computational

methods for analysis and interpretation. Last but not least, novel RNA sequencing technologies, which will be

elaborated upon in the next section, allow scientists to investigate gene expression at the transcriptome level.



RNA-sequencing platforms

As the gene expression profile of a cell determines the cell’s repertoire of molecular functions, various approaches

have been developed to quantify cellular transcriptomes. The dawn of the current century was dominated by

the microarray technology, extensively described in [57] and [58]. While different versions were in use, as

mentioned in [59], the key principle was that the RNA content of a population of cells was hybridized against

a set of probes designed to have specific sequences, complementary to the transcripts that were annotated at

that point. Due to a complicated procedure and especially to the reliance on genome annotation [60], the

microarray technology was superseded by more reliable techniques that also allow the de novo discovery of RNA

species present in cells. These approaches may be roughly grouped into short-read and long-read sequencing,

both very well described in the literature [61, 62]. Short-read sequencing technologies further come in various

flavors such as sequencing by ligation (SOLiD platform by Applied Biosystems, Complete Genomics platform)

and sequencing by synthesis (platforms of: Illumina, Qiagen, 454, Ion Torrent). Both of these require prior

amplification of the template material [62]. This is unlike one of the two main long-read sequencing technologies:

single-molecule real-time sequencing, which can directly detect DNA without the amplification step. In contrast,

synthetic long-read sequencing technologies do not produce long reads per se but instead utilise read barcodes

such that downstream computational assembly of larger fragments is feasible. The leading advances in single

molecule long-read sequencing came from Pacific Biosciences and Oxford Nanopore Technologies, whereas the

most common methods for synthetic long-read sequencing are introduced by Illumina and 10X Genomics [62].

A separate class of technologies provides single-cell RNA sequencing data. These are described in [63] and the

main challenges in the field are pointed out in [64]. However, since the following dissertation revolves around

bulk RNA-Seq data analysis, I will not focus on those.

At this point it is worth highlighting that each of the previously described techniques may require a dedicated

strategy for downstream data analysis. Distinct instruments can introduce technology-specific biases, which

need to be accounted for in the analysis. This renders appropriate post-processing a crucial part of the whole

experiment, which requires expert knowledge of both the sequencing platform as well as of bioinformatics

standards for data analysis. The analysis steps following an RNA-sequencing experiment have been extensively

described in [65]; they involve adapter sequence removal, read alignment against a reference genome, gene

expression quantification, differential gene expression analysis and data visualisation. Each step should be

accompanied by a quality control mechanism which would allow scientists to narrow down plausible sources

of errors, if such arise. Subsequent steps may be project-specific and largely depend on the purpose of the

experiment.

In summary, there are various RNA-Sequencing technologies available on the market and proper downstream

analysis is critical for correct understanding and interpretation of the biological data.The bioinformatics software

developed for these types of tasks should therefore satisfy specific standards of quality, further discussed below.

Software engineering in science

Bioinformatics is an exceedingly fast-growing branch of natural sciences and its recent progress might be at-

tributed to the exponential increase in available data [66]. As more scientists become involved in software

development, the sheer number of specialised software packages available is also increasing [67]. Technological

advances in biological sciences in the 21st century resulted in multiple large-scale data-generating technologies

commonly referred together as “omics”. These include: genomics [68], transcriptomics [69], proteomics [70],

as well as metabolomics [71]. Each of them focuses on a distinct set of molecules and can address different

scientific hypotheses. However, what is universal to all “omics” approaches is that digital data generated by

distinct experiments require preprocessing, analysis, integration and often additional curation over time. Society

and media has coined a novel term for techniques and approaches applicable across data-rich domains: “data

science”. Despite this phrase being often critiqued for its vagueness and its advocates for not following a strict

scientific method, the name did find its way also into the academic environment, as many scientists adopt and



use it in their publications [64, 72, 73]. It might be therefore beneficial to highlight relevant technical skills often

associated with positions advertised as such. Great emphasis is placed on: exploratory data analysis, data visu-

alisation, software engineering, information integration, statistical methods, database management, data-driven

inference, efficient computing, high-performance environments, machine learning, mathematical modelling as

well as dealing with so-called big data. Most of these competencies are necessary (but not sufficient) to perform

analyses in modern-day computational research. Naturally, this applies to bioinformatics and computational

biology too, where the focus is shifted from hypothesis-driven research on small systems towards processing and

inference from experimental data. This led to the development of domain-specific standards, both in terms of

data and metadata formats [74, 75] as well as best coding practices [76, 77, 78, 79].

Two of the most commonly used programming languages in the broad field of bioinformatics are Python

and R, both very well suited for data analysis-related tasks. Most important packages and their application

in research for the former one have been extensively described in [80, 81, 82] whereas the whole scientific

ecosystem of the latter is presented in [83]. A notable drawback is that both of them fall into the category

of interpreted programming languages. In order to overcome the efficiency limitation for cases in which the

speed of computations is a critical factor, software engineers developed dedicated interfaces between both

Python & R and low-level compiled languages [84, 85]. On top of that, novel programming languages oriented

around efficient data processing are being actively developed, most notably: Rust [86] and Julia [87]. Their

appearance has not remained unnoticed by the scientific community [88, 89]. In addition to these efforts

attention is also directed towards the development of integrated and interactive exploratory data analytic

environments [90, 91] as well as platforms for collaborative work [92] and cloud computing [93]. This has

been accompanied by the recent growth of strictly software engineering toolset related to: unit/integration

testing with code coverage measurement, automatic documentation, static code analysis, packaging, continuous

integration/continuous delivery solutions and dependencies management. All of these are considered good coding

practices and facilitate the delivery of high-quality software for science. Two most notable advances are: the rise

in popularity of workflow management systems and specification languages [94] as well as software encapsulation

mechanisms. For the former: CWL [95], Nextflow [96], or Snakemake [97] are good representatives. However,

despite their advantages, these systems alone cannot guarantee flawless execution of a computational workflow.

Due to specifications of either the hardware architecture or the operating system of the host machine it is not

uncommon to encounter obstacles in installation of the software required for the analysis. These problems are

best addressed by container technologies like Docker [98] or Singularity [99] but also general purpose package

managers and repositories: PyPI [100], conda [101] and Bioconductor [102]. Such solutions allow researchers

to easily install and execute scientific software in a platform-independent manner. Together with previously

mentioned workflow management systems they ensure code reusability and results reproducibility for even the

most complicated data processing pipelines as individual steps are transparent and abstracted. Moreover, as

the presented technologies are themselves software, they too continuously grow and expand in functionalities,

according to the formerly listed software engineering techniques. That modularity allows for faster, more stable

and reliable software development for research.

Currently there are numerous advancing community initiatives in order to facilitate scientific data manage-

ment as well as proper metadata annotation, especially in the area of biomedical research. The most noteworthy

one being the establishment of FAIR principles - a set of guidelines which emphasize four key aspects of schol-

arly data: Findability, Accessibility, Interoperability and Reusability [103]. Other efforts are directed, amongst

others, towards deploying federated computing infrastructures [104], designing standards for metadata [105],

framing policies around sensitive human-related data [106], curated software management [107, 108, 109] and

integration of information across multiple research centers across different countries. To address these tasks

global organizations are formed, most notable of which are: Elixir Europe and Global Alliance for Genomics

& Health. Such corporations are not only highly fruitful in terms of advancing pure technical skills but also

enable specialists in different aspects of research to discuss, establish partnerships, contribute their expertise

and advance together towards developing a secure, strong and nowadays crucial support system for life sciences

in general.



I personally believe it is essential to stress out the importance of high-quality scientific software engineering,

of which I am a dedicated advocate. Due to that reason, the method which we have developed as the core part

of my main PhD project, presented within this dissertation, is packaged into a fully automated computational

workflow and I dedicated significant time and effort so that it meets the criteria of reproducibility. My goal is

to deliver stable and open-source software for data analysis which might be later utilized by the whole scientific

community in their research.



ZARP: An automated workflow for processing of RNA-

seq data

RNA-seq data processing is a very common task in molecular biology projects, as gene expression analysis is

key to understanding cellular function. As research in biological sciences becomes ever more interdisciplinary,

it is essential for us - bioinformaticians - to share our experience and expertise with scientists outside of our

specialisation, to improve the progress of the field as a whole. In our group we have frequently come across

the fact that the analysis of RNA-seq data is a bottleneck in molecular biology projects, even for labs that

do cover competencies in both experimental and computational biology. For this reason we have decided to

develop ZARP: a general purpose computational pipeline for RNA-seq data analysis, that implements most

common steps using tools and parameters that we have found optimal in our own experience. ZARP’s steps

are the following: sequenced reads are trimmed of adapters as well as poly(A) tails with cutadapt [110], aligned

against a reference genome and transcriptome with STAR [111] and the expression levels of genes as well as

transcripts are quantified with Salmon [112] and Kallisto [113]. The quality of the data is further assessed with

three different approaches: the FastQC tool [114] is used to summarize various metrics regarding the quality

of the sequenced reads, the ALFA tool [115] is used to functionally annotate the samples and the transcript

integrity number calculation [116] is used to assess the degree of RNA degradation in the samples, which is an

important factor for the accuracy of quantification of RNA levels [117]. Finally the results are presented in

a user-friendly interactive report. ZARP is implemented in the snakemake workflow management system. To

ensure reproducibility and reusability it makes use of best software development practices, including execution

with conda or singularity technologies (alternatively). It is hosted as a public repository on GitHub; that way

our work is fully transparent and the whole community of scientific software engineers can not only clone it but

also interact with us in the form of suggestions or code improvements.

ZARP is a collaborative effort of many members of the Zavolan group, developed mainly during the par-

tial lockdown due to the COVID19 pandemic; we developed it together during regular hackathons as well as

individually, focusing on previously assigned tasks. My contribution to the project involved (chronologically):

• preparing tool-specific Docker containers

• preparing a separate software repository for the calculation of transcript integrity number and reporting;

improvement to the original code

• adding two reporting mechanisms at the end of the workflow: snakemake report with technical information

regarding the runtime and resources allocated, MultiQC [118] report with sample-wise statistics at distinct

steps of the analyses; the latter included developing two MultiQC plugins for publicly available tools (TIN

score calculation, ALFA)

• integrating snakemake profiles mechanism for workflow execution on a computational cluster (currently

supported: SLURM Workload Manager)

• project management on GitHub as well as designing pipeline integration tests via GitHub’s Action mech-

anism for Continuous Integration/Continuous Development.

• writing and editing the manuscript

In the end we provide a stable, reliable and transparent computational pipeline to provide first insights into

RNA-seq data. The projects that I will present in the subsequent sections of this dissertation include this step

of initial data processing and build on top of it in order to detect targets of alternative splicing and alternative

polyadenylation and later to infer regulators of these processes.

Manuscript describing this work is currently in preparation.

Full text is included in this dissertation as Appendix B.
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The Alazami Syndrome-Associated Protein LARP7 Guides

U6 Small Nuclear RNA Modification and Contributes to

Splicing Robustness

As mentioned in the introduction, gene expression has many layers of regulation. Recent research has identified

RNA modification as a critical component of this system, governing the processing of nascent mRNA [119]. A

distinct class of molecules long-known to be guiding the modification of RNAs are the small nucleolar RNAs

(snoRNAs), whose importance has been highlighted in both physiological and pathological conditions [120,

121, 122]. snoRNAs generally guide the modification of ribosomal RNAs (rRNAs) and are therefore of two

types, box C/D snoRNAs that guide the 2’-O-methylation of rRNAs, and box H/ACA snoRNAs that guide the

pseudouridylation of rRNAs [123]. Some snoRNAs are involved in the processing of rRNAs [124], or other types

of targets [125], and there are snoRNAs that are so far considered “orphan” because no target has so far been

described for them [126]. In this project we were contacted by the group of Gunter Meister, to help analyze the

impact of a protein known as La-related protein 7 (LARP7), which has been previously described to function in

transcriptional control along with the 7SK RNA [127] and playing a role in various cancer types [128, 129, 130]

as well as other diseases [131]. Despite previous research efforts, the cellular functions of LARP7 have not been

fully understood. Following observations of the Meister group that LARP7 interacts with both U6 snRNA as

well as U6-specific C/D box snoRNAs and that LARP7 depletion results in reduced U6 RNA modification,

we were asked to help identify potential splicing targets involved with LARP7. Spliceosome assembly and

canonical splicing were generally not affected by the absence of this RBP, but our analysis of RNA-seq data

uncovered some changes in previously described alternative splicing events. This project provided evidence for

the importance of LARP7 in RNA 2’-O-methylation of an snRNA, with consequences for the transcriptome

and potentially in the context of the Alazami syndrome. I have contributed to it as an external collaborator

providing:

• initial RNA-seq data analyses: preprocessing, quality control, read alignment, gene and transcript expres-

sion level quantification

• differential gene expression analyses

• quantification of alternative splicing events followed by differential splicing analyses

• Gene Ontology enrichment analyses

• short sections with results visualisations and edits to the manuscript

Within the presented study we have analysed RNA-Seq data and identified transcripts which undergo differ-

ential processing upon LARP7 depletion - targets of alternative splicing. Part of the splicing events which we

have quantified and called as statistically significantly perturbed have been formerly annotated as cassette ex-

ons. Being personally intrigued by the excision of selected coding sequences from primary transcripts, I wanted

to investigate how this specific process might be regulated. I aimed to develop a computational method which

would infer which RNA-binding proteins could affect mRNA maturation. Pursuing this scientific question has

led me to my main PhD research project, which is described in the following section of this dissertation.

This work has been published in the Molecular Cell journal.

Full text of the article is included in this dissertation as Appendix C.
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CFIm-mediated alternative polyadenylation remodels cel-

lular signaling and miRNA biogenesis

A separate mechanism of regulating gene expression at the post-transcriptional level is the alternative cleavage

and polyadenylation. For the majority of human genes their transcripts undergo processing at distinct poly(A)

sites thus leading to isoforms which differ in their 3’end sequences [32]. This diversification of the transcrip-

tome contributes to various cellular processes like cell growth, proliferation, differentiation, and is especially

important in many diseases as discussed in: [132] and [133]. Along with alternative promoter usage, alternative

polyadenylation is the most common mechanism of transcript diversification in humans [134]. 3’ end processing

is carried out by the core pre-mRNA 3’ end processing complex, composed of 20 proteins with notable role

of four distinct subcomplexes [135]. One of these is the mammalian cleavage factor I (CFIm), responsible for

the recognition of UGUA sequence motif on the primary transcript and allowing for skipping of poly(A) site

upon binding to these sequences [135]. CFIm is a tetramer, composed of two copies of the CFIm25 subunit and

two larger subunits of CFIm68 and/or CFIm59 [136]. The knock-down of CFIm25 or CFIm68 leads to global

shortening of 3’UTRs of transcripts [137, 138, 139]. Various groups have tried to link CFIm to the 3’ UTR

shortening observed in cancers [140], even though the expression of CFIm seem to rather increase in proliferative

cell states compared to cell states associated with reduced proliferation [141]. To shed light on this discrepancy,

our group initiated a study on the downstream effects of CFIm25 and CFIm68 overexpression or knock-down

in various cell lines. The first step in this effort was to construct a comprehensive list of mRNAs that respond

coherently and robustly to perturbations in the expression levels of the two proteins. Further analysis of these

targets pointed to the potential involvement of the ERK signalling pathway as well as of microRNAs in the

downstream behavior of cells. Both of these aspects were then validated in our lab. Our systematic analysis

of CFIm targets improves the understanding of CFIm’s role in the integration of RNA processing with other

cellular processes.

The project was mostly driven by a colleague of mine - an experimental biologist working in our group. My

scientific contribution include:

• initial RNA-seq data analysis: preprocessing, quality control, read alignment, gene and transcript expres-

sion level quantification

• quantification of poly(A) sites usage, inference of CFIm-dependent targets (using the PAQR method [29],

with further modifications)

• Gene Ontology enrichment analyses

• short sections with results visualisations and edits to the manuscript

My main work in this project revolved around the quantification of differential 3’UTR processing of primary

transcripts. I have utilised a previously published method: PAQR in order to come up with a comprehensive

set of genes which undergo coherent cleavage and polyadenylation in response to CFIm expression changes.

Building on the work done in the group on PAQR as well as on KAPAC, a method for inferring the impact of

short sequence motifs on 3’end processing, in my main PhD project I decided to work on a statistical model

analogous to KAPAC but designed for inferring the impact of short sequence motifs on pre-mRNA splicing.

This work has been published in the Nucleic Acid Research journal.

Full text of the article is included in this dissertation as Appendix D.
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Inferring binding sites of RNA-binding proteins with bindz

An essential part of any study that investigates how trans-acting regulators may influence the processing of

primary transcripts is the identification of their binding sites on the pre-mRNA sequence. It is such short

sequence motifs that cis-act on alternative splicing and altenative polyadenylation of a given gene. There are

various tools to predict binding sites of nucleic acid binding proteins, e.g. as part of the MEME suite [142],

but these are generally part of larger suites, designed for various specific problems and a simple question that

we frequently come across in experimental studies, such as what binding sites can we predict occur in an RNA

sequence given the current knowledge of trans-acting factors, does not have an easy-to-find answer. To address

this question we set out to develop a web-based analysis tool, bindZ, that predicts binding sites for RBPs and

miRNAs of interest in a transcripts sequence. We further wanted to predict the impact of specific mutations on

the interactome of individual mRNAs. I have been involved in the RBP-binding site prediction component of this

tool, which is completed. The miRNA-binding prediction module and the web interface remain to be finalized.

At the core of the RBP-binding module we incorporated MotEvo [143] - a Bayesian probabilistic method for the

prediction of binding probabilities between a selected motif (represented in the Position Weight Matrix format)

and a given nucleotide sequence. We have adapted the original work such that it is suitable to infer plausible

binding events for various RNA-binding proteins, for which the motifs’ PWMs we obtained from the ATtRACT

database [144]. As the tool’s output users are presented with a plain text table which summarizes: coordinates

of binding events, their energies as well as posterior probabilities. Additionally, these results are graphically

represented as heatmaps so that one may quickly grasp the most important observations and draw meaningful

conclusions easily. From the software engineering perspective the module is also a snakemake workflow which

utilizes conda technology to ensure reproducible research. I have developed it with the help of a summer student

during his internship in our group. My work may be summarised as:

• Design and development of the computational workflow encompassing the tool’s functionality (from the

scientific software engineering perspective).

• Development of the initial data processing steps.

• Project management and coordination with the summer student at the later stages of the project.

• Writing and editing the corresponding section of a manuscript (in preparation).

Similar to ZARP, bindZ is being developed having the whole community of molecular as well as computational

biologists in mind. Its primary use case is to aid researchers in the design of experiments with sequence variants

that may differ in their ability to bind RBPs and microRNAs, due to specific point mutations that might

create/destroy binding sites. More advanced users might automatise the analyses in such a way which would

allow for global screening of selected RPBs over a wide range of pre-mRNA sequences, thus enabling more

general studies on the regulation of gene expression at the post-transcriptional level. It is the second approach

that I will utilise in my main research project, presented in the next section of this dissertation. Given Position

Weight Matrices which represent binding motifs of distinct RNA-binding proteins I will infer probabilities of

binding of these regulators in the proximity of 3’/5’ splice sites of cassette exons as well as proximal and distal

poly(A) sites. This information will serve as input data for our statistical models which assess the regulatory

impact of RBPs on the mRNA maturation process.

An application note describing this tool is currently in preparation.

Full text is included in this dissertation as Appendix E.
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MAPP unravels frequent co-regulation of splicing and

polyadenylation by RBPs and their dysregulation in can-

cer

My main PhD project focused on the inference of sequence motifs and RBPs that regulate splicing and

polyadenylation from RNA-seq data and ties together themes I have previously presented in this dissertation:

RNA-Seq data processing, scientific software engineering, statistical data analysis, quantification of alternative

splicing events, quantification of differential poly(A) sites usage and the inference of binding sites for RNA-

binding proteins on the sequences of transcripts. With the knowledge and expertise I had acquired during

my other scientific contributions I aimed to combine them into a high-quality bioinformatics tool which would

uncover novel aspects of mRNA processing. In pursuing this scientific journey we have developed a complex

computational pipeline which, given raw sequencing data, is able to infer the most plausible sequence mo-

tifs driving both differential inclusion of cassette exons and the choice of distinct poly(A) sites. Our results

confirm a dual-action of both HNRNPC and PTBP1 proteins on both processes. We further uncover a position-

dependent effect of RBFOX1 on alternative splicing for which binding in exonic vs. intronic sequences seem

to have an opposite effect on the inclusion of an exon. We present a list of multiple regulatory RBPs together

with their impact profiles around 3’/5’ splice sites and poly(A) sites. Finally we investigate the patterns of

mRNA processing in glioblastoma, a very aggressive cancer. We conclude that RNA-binding proteins which

we previously studied: PTBP1 and RBFOX1 act in concert and are the two main regulators responsible for

the global excision of cassette exons in this disease. We analyse downstream targets of differential splicing and

discover that multiple proteins which have been previously reported to be associated with the cancer phenotype

are indeed targets of these RBPs. In conclusion, we developed a complex but high-quality bioinformatics tool

to analyze RNA-Seq data and infer potential regulators of mRNA maturation. We presented the validity of our

method on several datasets providing insight into molecular mechanisms of RBPs action on distinct conditions.

Our pipeline is developed under open source license and once published in a scientific journal will be publicly

available for other scientists to utilise in their projects. My work during this project included:

• Investigation into available tools related to quantification of alternative splicing events; improvement of

an existing strategy in order to obtain reliable estimates of cassette exon inclusion from RNA-Seq data.

• Design and implementation of a Bayesian statistical model to explain differential cassette exon inclusion

across RNA-Seq samples with the activity of short sequence motifs.

• Design and development of most of the computational workflow (from the software engineering perspec-

tive); modular development of sub-pipelines dedicated to distinct functionalities.

• Method validation and parametrization on selected RBPs RNA-Seq knock-down experiments publicly

available from NCBI servers. Global screening of almost 500 RNA-Seq knock-down experiments of various

RNA binding proteins from the ENCODE project; post-processing and downstream analyses.

• Analysis and post-processing of glioblastoma RNA-Seq data sets from The Cancer Genome Atlas project.

• Writing and editing the manuscript.

Manuscript describing this work is currently under revision in the Nature Communications journal.

Article preprint has been uploaded to the bioRxiv server.

Full text is included in this dissertation as Appendix F.
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Conclusions and future prospects

The research detailed within this dissertation is dedicated to crafting computational methodologies aimed at

unraveling the intricate stages of RNA processing pivotal in deciphering gene expression levels. Commencing

from the processing of raw sequencing reads as well as quality control procedures, through the accurate quan-

tification of gene and isoform expressions with the most highlight on the modeling of the intricate regulatory

influence wielded by RNA-binding proteins upon primary transcripts. Finally, I explored the downstream tar-

gets encompassing differential exon inclusion and poly(A)-site usage. This comprehensive approach aimed not

only to illuminate specific molecular mechanisms related to splicing and plyadenylation of pre-mRNA but also

to provide an understanding of their global impact on gene expression. Throughout my doctoral journey, I

presented the practicality and efficacy of these methods in addressing paramount queries within the field of

computational biology. A focal point of my endeavor was the development of user-friendly and reproducible

tools. Notably, the methodologies, especially the MAPP method, stand as open-source computational work-

flows nwhich I maintain and enhance from the software engineering point of view up to this day. Moreover,

my horizon in biological sciences, particularly in the domain of RNA biology, has been considerably broadened.

Crucially, I’ve acquired the proficiency to approach and address complex scientific inquiries with computational

approaches and therefore I stand equipped with a comprehensive skill set required for driving computational

research independently, competently and at the highest standard of research reproducibility.

In my primary research during my PhD, the primary goal was to pinpoint the RNA-binding proteins re-

sponsible for orchestrating two pivotal facets of gene expression: the inclusion of cassette exons and the choice

of distinct poly(A) sites at the stage of 3’end processing. These steps, as I outlined earlier, hold fundamental

significance in how proteins are produced within eukariotic cells. In 2017 it has been reported that cancer is

the second leading cause of death worldwide [145]. Previous studies already extensively detailed the pivotal

roles that alternative splicing and polyadenylation play in the development of tumors [146] and [147]. These

aberrant modifications in mRNA processing trigger a cascade of effects, impacting crucial cellular processes:

sustaining proliferative signaling pathways via ERK and MAPK, circumventing natural cell growth inhibitors

through PI3K-AKT signaling, activating specific proto-oncogenes while suppressing tumor-inhibitors, resisting

programmed cell death, augmenting cell replication through the Wnt pathway, fostering the growth of new blood

vessels via the vascular endothelial growth factor (VEGF), facilitating the metastasis of cancer cells, altering cel-

lular metabolism, and evading immune system detection. Another noteworthy aspect is the profound influence

of alternative splicing within the microenvironment surrounding tumors, succinctly summarised in [148]. These

modifications ripple through the functionalities of T and B cells, altering their functions, along with affecting

proteins present in the extracellular matrix (ECM). Moreover, the hypoxic conditions often characteristic of

the tumor environment also trigger a specific program governing splicing of primary transcripts. Collectively,

the intricate process of eukaryotic mRNA processing emerges as a pivotal mechanism significantly influencing

the progression and growth of cancer. Beyond the realm of cancer, various diseases, such as spinal muscular

atrophy, retinitis pigmentosa, cystic fibrosis, type 2 diabetes, beta-Thalassemia, and several neurological and

urogenital disorders, stand as testament to the ramifications of incorrect mRNA processing [132, 149]. These

are not usually linked to a global deregulation but rather some well-described mRNA processing changes on

very specific genes. Nonetheless, understanding the nuances governing these processes isn’t just a matter of

academic curiosity; it opens doors for designing novel and effective treatment strategies and paving the way for

innovative therapies.

A major group of regulators in cellular mechanisms comprises RNA-binding proteins, whose intricate involve-

ment in human genetic diseases, both Mendelian and somatic, has been extensively detailed in recent literature

[150]. The author underscores the adverse impacts of mutations occurring in genes that encode RBPs, shedding

light on their multifaceted repercussions. These mutations might wield a diverse array of effects on RNA-binding

proteins. For instance, they could potentially alter the expression levels of these proteins, leading to shifts in the

relative proportions of alternative isoforms displaying distinct functionalities. Alternatively, mutations might
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truncate proteins or modify their amino acid sequences, severely impacting their interactions with cofactors or

RNA targets. For those RBPs that serve dual roles as enzymes some mutations might even alter their enzy-

matic properties. Another plausible effect of such mutations could involve the mislocalization and aggregation

of RNA-binding proteins. Additionally, products derived from mutated RBP genes might undergo incorrect

post-translational modifications. Such mutations could even alter the physiochemical properties of the mutant

proteins, affecting their solubility and consequently impacting subsequent binding events downstream [150]. In

all these instances, the molecular functionality of the defective protein stands at risk of impairment, potentially

leading to improper cellular pre-mRNA processing. This underscores the critical necessity of accurately iden-

tifying distinct RNA-binding proteins that oversee the processing of specific mRNA molecules across diverse

conditions. From a clinical standpoint, RBPs are surfacing as promising targets for novel therapeutic interven-

tions. Over recent years, several successful strategies have emerged for RBP-based treatments [151, 152, 153].

These strategies encompass a wide range of approaches, such as administering small natural or synthesized

molecules that modulate the spliceosome machinery, developing inhibitory molecules targeting protein kinases

involved in splicing, and indirectly influencing splicing regulation through transcriptional elongation - a process

kinetically linked to alternative splicing. Additionally, artificially synthesized antisense oligonucleotides have

gained substantial interest within the scientific community. One may distinghuish two separate cetegories of

particualr interest: splice-switching oligonucleotides (SSOs) and RNA decoy oligonucleotides. The former, short

sequences spanning 15-30 nucleotides, competitively bind to splicing factors in pre-mRNA, aiming to modulate

splicing by interfering with spliceosome recognition of splice sites. Conversely, decoy oligonucleotides contain

repeated sequence motifs recognized by specific RBP regulators, acting as protein sponges, effectively hindering

the biological activities of these regulatory proteins [151]. Despite these advancements, there lacks a clinically

approved strategy utilizing antisense oligonucleotides to interfere with the 3’ end cleavage and polyadenyla-

tion of transcripts. Nonetheless, decoy oligonucleotides present a promising therapeutic approach, particularly

given the involvement of multiple RNA-binding proteins through the same binding sites, as detailed in our

manuscript. Hence, it becomes imperative to critically investigate the specific impact of RNA-binding proteins

on both splicing and polyadenylation processes, delving into the modes of action at a fine-grained level of details

in order to identify the primary mRNA processing regulators active under various conditions. This exploration

isn’t solely confined to the realms of basic research; it holds profound implications for understanding the intri-

cate machinery governing gene expression at the cellular level. Moreover, these novel biological insights could

potentially lay the groundwork for the development of new drugs and therapies — an overarching objective

driving the design and development of MAPP.

While my PhD research has been instrumental in unearthing novel regulatory interactions, the inherent

nature of scientific exploration dictates that each answer attained leads to a myriad of new questions. Work

that culminated in this dissertation is no different in that sense. The profound revelations gleaned from this

research serve not as conclusions but as catalysts propelling future scientific inquiries and I am particularly

drawn to the following domains for further exploration and scholarly pursuit:

• Insight into mRNA processing profiles of distinct tissues. It is well established that alternative

splicing constributes to the acquisition of tissue function and identity [154]. Key changes which drive

the establishment of cell types arise early in the embryonic development stage and persist for distinct

tissues throughout the adulthood. Splicing changes in numerous genes are usually coordianted by global

regulators - mainly RNA-binding proteins. Thus it seems especially interesting to investigate the patterns

of differential RBP activities between various types of cells. Our prelimiary and unused results of analyzing

samples from over 20 distinct tissues publicly available from the Human Protein Atlas project uncover a

striking pattern for U-rich motifs acting on inclusion of cassette exons in skeletal muscles and heart as well

as C/T-motifs with strong activity in cerebral cortex, skeletal muscles and heart. These results suggest

that the differences in gene expression profiles across various tissues are not only due to regulation at the

transcriptional level but also because of tissue-specific regulation of mRNA maturation via RNA-binding

proteins. As these are complex physiological systems with dynamic interation of all splicing regulators



at once it seems reasonable to expect a different repertoir of multiple proteins affecting the processing of

mRNA in each tissue. With MAPP we could aim to construct ”impact profiles” which reflect spllicing

regulatory network and may point towards similarities and differences in not only cassette exon inclusion

but also alternative 3’ end processing between specific cell types.

• A broader analysis of differential mRNA processing in various cancer types. It is well-known

that both alternative splicing as well as alternative polyadenylation play a significant role in tumorigenesis

[146, 155]. So far I have applied MAPP to a curated set of RNA-Seq samples obtained from glioblastoma

patients, where we confirmed the pivotal role of PTBP1 and RBFOX1 in mRNA processing deregulation

[29]. However, The Cancer Genome Atlas contains substantial amount of data coming from multiple

distinct cancer types as well as different stages of cancers. It would be quite fascinating to construct an

“Atlas of mRNA processing profiles in cancer” in order to uncover main RBPs driving the inclusion of

skipped exons and poly(A) site choice in cancerous cells originating from various tissues. Additionally, a

comprehensive exploration could involve delving into the intricacies of tumor heterogeneity, specifically

examining the distinct patterns of mRNA processing that manifest within separate subpopulations of

cancer cells. This investigation, however, necessitates the availability of RNA-sequencing samples derived

from meticulously obtained tumor biopsies.

• Investigation of the activity of RNA-binding proteins on intron retention. Within the vast

landscape of splicing events documented on the human genome, a notably significant category comprises

the retained introns [156]. These particular introns play a pivotal role in the nuclear retention of host

transcripts and are intricately linked to cellular responses to various signaling mechanisms [157]. The

likelihood-based model for exon inclusion we developed during my PhD time is general enough to be

easily adapted to encompass these splicing events as well. Conceptually speaking, both processes involve

excision of a specific subsequence from primary mRNA and, provided quantified intron inclusion values,

the downstream inference of motifs activities may follow the same principle. That is not to say that the

same biological factors need to control and affect both processes. A slight modification to our existing

method might provide a wider overview of the regulation of mRNA processing by orchestrated RNA-

binding proteins. This expanded approach holds the promise of broadening the scope of our analytical

pipeline significantly as integrating a different kind of splicing events into the analysis offers a more

comprehensive panorama of splicing regulation at the stage of RNA processing.

• Modelling differential mRNA processing with RNA-binding proteins’ activity on single-cell

level. The advent of single-cell RNA-sequencing technologies has revolutionized our ability to distinguish

distinct cell subpopulations based on their unique expression profiles. We currently observe a rapid growth

in the field of scRNA-seq analysis [158]. However, despite this rapid advancement, the extent to which

RNA processing diverges among individual cells within a population remains largely unexplored. While

studies have shed light on the influence of transcription factors’ expression on discrete cell subgroups

[159], the potential impact of RNA-binding proteins (RBPs) on defining these distinct cellular subsets

remains to be explored. Considering the pivotal role of RBPs in governing mRNA maturation, it is not

unreasonable to hypothesise that distinct subpopulations of cells could be defined by differential RBPs

activities. Although one could adapt our workflow to process single-cell sequencing data, obtaining reliable

estimates of cassette exon inclusion and poly(A) site usage from single cells is very challenging. Unlike for

bulk RNA-sequencing technologies, current sequencing depth for single cell methodologies is not sufficient

to accurately estimate expression levels of specific gene isoforms. Despite that, recent advancements

have introduced methodologies that offer promising avenues for quantifying alternative splicing events

and poly(A) site expressions from single cells [160, 161]. These emerging techniques signify a potential

breakthrough in the analysis of differential mRNA processing at the single-cell level. As such, investigating

the nuances of mRNA processing regulation within cell populations holds tremendous promise as an

exciting and forward-thinking research direction in this field.



• Exploring proximal RBP interactions surrounding specific sites. In a strict sense, our novel

method associates quantified measures of mRNA processing — such as cassette exon inclusion or poly(A)

site usage — with with the count of binding sites allocated for distinct regulators situated along the primary

transcript. As such, these are cis-acting elements and may only serve as an indirect proof of RNA-binding

protein’s action. Complementary to the inferred motif activities one should ensure that the trans-acting

regulators indeed bind to their respective binding sites. In our manuscript we utilised publicly available

data from enhanced cross-linking and immunoprecipitation experiments (eCLIP) [162]. This extensive

dataset empowered us to scrutinize whether endogenous pre-mRNAs exhibiting the most substantial

alterations in mRNA processing are indeed targeted by their presumed regulators and that this binding

is more pronounced then for a contol group of primary transcripts. This facet of our analysis not only

solidifies our findings but also lays the groundwork for generalizing this approach to quantify and visually

represent the effects of RBP binding on any set of foreground and background mRNA sequences. As we

move forward, the intention is to encapsulate this aspect of our research into a separate bioinformatics

tool tailored specifically for CLIP data post-processing. This tool, designed to unravel and interpret the

intricate effects of RBP binding, holds the potential to stand as an independent entity, serving the broader

scientific community in their exploration of RNA regulation mechanisms.

The aforementioned points offer intriguing opportunities stemming from my current findings, showcasing

promising directions for future exploration. I believe I would like to pursue an academic career path and thus

would be very eager to follow up on these fascinating ideas. I find myself increasingly drawn towards the

methodological facets of computational research. Upon the successful defense of my doctoral thesis, my intent

is to actively seek out a postdoctoral position. In the next phase in my journey I aim to immense myself in

the realms of statistical modeling and machine learning within the field of bioinformatics, thereby enriching my

expertise in these areas.
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[79] R. C. Jiménez, M. Kuzak, M. Alhamdoosh, M. Barker, B. Batut, M. Borg, S. Capella-Gutierrez,
N. Chue Hong, M. Cook, M. Corpas, M. Flannery, L. Garcia, J. L. Gelṕı, S. Gladman, C. Goble,
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Abstract
Bioinformatics is a rapidly expanding field, with a plethora of new open source software tools
developed to address specific biological questions. As RNA sequencing is a basic component of
many scientific studies, multiple models and packages have been developed for processing and
analysis of such data. Still, identification of appropriate tools remains a time consuming process
that requires an in-depth understanding of the data, as well as of the principles and parameters
of each tool. In addition, packages designed for individual tasks are developed in different
programming languages and have dependencies of various degrees of complexity, which
renders their installation and execution challenging for users with limited computational
expertise. The recent emergence of workflow languages and execution engines have
enormously facilitated these tasks. Computational workflows can be reliably shared with the
scientific community, enhancing reusability while improving the reproducibility of results, as
individual analysis steps are more transparent. In the following work we present ZARP, a
general purpose RNA-seq analysis workflow which builds on state of the art software in the field
to facilitate the analysis of RNA-seq data sets. ZARP is developed in the snakemake workflow
language using best software development practices. It can run locally or in a cluster
environment, generating extensive reports not only of the data but also of the options utilized. It
is built using modern technologies with the ultimate goal to reduce the hands-on time for
bioinformaticians and non-expert users.

Contact: mihaela.zavolan@unibas.ch, alexander.kanitz@unibas.ch
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Main body

Introduction
Recent years have seen an exponential growth in bioinformatics tools [1], a large proportion of
which are dedicated to High Throughput Sequencing (HTS) data analysis. For example, for
transcript-level analyses there are tools to quantify the expression level of transcripts and genes
from RNA-seq data [2], identify RNA-binding protein (RBP) binding sites from crosslinking and
immunoprecipitation (CLIP) data [3,4], improve transcript annotation with the help of RNA
3’end-sequencing data [5,6], estimate gene expression at the single cell level [7] or improve the
annotation of transcripts and quantification of splicing events based on long read sequencing
(e.g. on the Oxford Nanopore platform) to [8,9]. Such tools are written in different programming
languages (e.g. Python, R, C, Rust) and have distinct library requirements and dependencies. In
most cases, the tools expect the input to be in one of the widely accepted file formats (e.g.
FASTQ [10], BAM [11]), but custom formats are also frequently used. In addition, the variations
in protocols or instruments across experiments may make it necessary to use different
parameterization for every sample, rendering a joint analysis of samples from multiple studies
challenging. Combining tools into an analysis protocol is a time consuming and error prone
process. As these tasks have become so common, and as the data sets and analyses continue
to increase in size and complexity, there is an urgent need for expertly curated, well-tested,
maintained and easy-to-use computational workflows.

Workflow management systems and specification languages [12,13] like CWL [14], snakemake
[15,16], nextflow [17] are now available, making it possible for such workflows to be developed,
tested and shared. This leads to reusable code and reproducible results, while fostering
scientific collaborations along the way.

Despite their apparent advantages, workflow execution languages cannot guarantee the
flawless execution of a workflow. Differences in the hardware architecture or in the host
operating system may lead to (sometimes impossible to resolve) difficulties in installation, or a
lack of reproducibility during execution of the workflows. Software containers like docker [18] or
singularity [19] or general-purpose package and environment managers like conda [20] in
combination with scientific channels like bioconda [21] allow users to easily install and run
scientific tools or general purpose software packages.

The execution of a workflow generates metadata along with the expected results. These can be
useful for re-analyses of the data but may also provide insights into the results, facilitating their



interpretation. There are agreed-upon principles on how these metadata should be organised
that are followed by the scientific community [22].

Methods/Results

ZARP: a general purpose RNA-seq workflow

ZARP (Zavolan-Lab Automated RNA-Seq Pipeline) is a generic RNA-seq analysis workflow that
allows users to carry out the most general steps in the analysis of Illumina short-read
sequencing libraries with minimum effort. The workflow is developed in snakemake [15,16], a
widely used workflow management system [12]. It relies on publicly available bioinformatics
tools that follow best practices in the field [23], and handles bulk, stranded RNA-seq data, single
or paired-end.

Workflow input
ZARP uses three distinct input files, two of which are mandatory. The first is a tab-delimited file
with sample-specific information, such as paths to the sequencing data (FASTQ format),
reference genome sequence (FASTA format), transcriptome annotation (GTF format) and
additional experiment protocol and library preparation specifications like adapter sequences or
fragment size. The second input is a configuration file in YAML format, containing
workflow-related parameters (e.g. results and log directories location, user-related information
etc). Advanced users can take advantage of ZARP’s flexibility to provide rule-specific
configuration parameters in an optional input file, thus adjusting the behaviour of some of the
tools used in the workflow. More information on this “sample table” and the rest of the input files
can be found in ZARP’s extensive documentation
(https://github.com/zavolanlab/zarp/blob/dev/pipeline_documentation.md#preparatory).

Analysis steps

A general schema of the workflow in its current version, 0.3.0, is presented in Figure 1.

In a first step, the workflow generates the indices required by the alignment tools, STAR [24],
Salmon [25], kallisto [26] and ALFA [27], with the aid of gffread [28]. These rules are applied
once for every provided genome.

After calculating per-sample quality statistics by applying fastqc [29] to the FASTQ files,
adapters are trimmed with cutadapt [30]; 5’ or/and 3’ adapters, but also poly(A/T) stretches are
removed, as indicated by the user.



The trimmed reads are then aligned to the genome with STAR. The resulting bam-formatted
files are sorted (based on coordinates) and an index is created using samtools [11]. This output
is later reformatted into bedgraph (STAR) and BigWig (BedGraphtoBigWig from ucsc tools [31]),
which allow for library normalisation and are therefore useful when visualising coverages for
multiple samples with a viewer like IGV [32]. The functional annotation in terms of gene
segments (e.g. CDS, 3’UTR, intergenic, etc.) and biotypes (e.g. protein coding genes, rRNA,
etc.) ZARP is computed with ALFA [27]. The aligned reads are also used to calculate
per-transcript Transcript Integrity Numbers (TIN scores) [33], which can be used to assess the
degree of RNA degradation in the sample. This is done with a customized tool,
tin-score-calculation [34], which is based on a script originally included in the RSeQC package
[35]. The tin-score-calculation tool processes a BED12-formatted list of transcripts that is
generated with the aid of zgtf [36].

The reads are also used by the Salmon and kallisto tools along with a transcript annotation to
infer transcript and gene expression estimates. The outputs of these tools, in Transcripts Per
Million (TPM) [37] as well as raw counts are collected by ZARP with the aid of Salmon and
merge_kallisto [38] to generate summary tables for all analyzed samples. These are then used
for a principal component analysis (PCA) with zpca [39]. The workflow produces two
user-friendly reports: one with a summary of samples-related information (by MultiQC [40]) and
the other with estimates of utilized computational resources (by snakemake).



Figure 1: General overview of the ZARP workflow.



Reproducibility and reusability

To enforce reproducibility of results and enhance reusability of the workflow, each step (rule) of
the workflow relies either on conda environments or on singularity images (originally developed
in docker) [19] that are built and hosted in the bioconda channel [21]. Users can choose
between the two technologies by selecting an appropriate profile before the workflow execution
step. The conda environments are built on the fly, while the docker images are pulled from
external servers and converted to singularity images before the execution is initiated.

Output and documentation

In addition to the transcript/gene expression tables, ZARP collects log files and metadata for
downstream analyses. Intermediate files can be optionally cleaned up by ZARP to minimize disk
space usage. As the workflow is hosted in its own GitHub repository, each ZARP version
released is accompanied by an up-to-date workflow-oriented description.

Continuous Integration and Testing

To enable continuous integration and community development, the built-in GitHub Actions
mechanism for CI/CD is implemented. Each modification to the remote repository triggers a
variety of integration tests to guarantee ZARP’s correct execution throughout the development
cycle as the source code is refactored and new features are added.

Use Cases

ZARP was tested on an RNA-seq dataset obtained by Ham et al. [41] (GEO [42] accession
number GSE139213), while analyzing the role of mTORC1 signalling in the age-related loss of
muscle mass and function in mice. The dataset consists of 20 samples corresponding to 4
cohorts of 3-months old mice: wild-type, rapamycin-treated, tuberous sclerosis complex 1
(TSC1) knockout and rapamycin-treated TSC1 knockout. Each cohort contains 5 biological
replicates, and the libraries are single-end. The samples were mapped against ENSEMBL’s [43]
GRCm38 genome primary assembly and the gene annotation for standard chromosomes was
used. Other parameters for populating ZARP’s samples table were obtained from the GEO
accession entries of the respective samples.

As shown in Figure 2 the samples are of high quality, with metrics such as GC content (Figure
2A), not showing any bias across the samples. Adapters constitute only a few bases out of each
sequence (~7 nucleotides) and the large majority of reads successfully pass the filters after



trimming, which indicates that there is no adapter contamination (Figure 2B). The statistics of
STAR-based read alignments to the mouse genome are consistent across samples, with more
than 75% uniquely mapped and less than 3% unmapped reads in a library (Figure 2E).

Transcript integrity is high across the whole transcriptome for all 20 samples, with the highest
density of transcripts at TIN scores of 75 to 85 (Figure 2C). As expected, ALFA analysis of
transcript categories shows that uniquely mapped reads overwhelmingly originated from protein
coding genes (over 86% for all samples) (Figure 2D).

Figure 2: Zarp metrics (A) GC content, (B) Nucleotides trimmed from a read, (C) Transcript
Integrity Number (TIN) score, (D) ALFA biotypes, (E) STAR alignment scores

The distribution of samples in the space of the first two principal components shows a clustering
by condition, with a clear separation between knockout and wild type, as well as between the
untreated and rapamycin-treated TSC1 knockout mice (Figure 3). This separation is more
pronounced at the gene expression level (Figure 3A), but is also present at the transcript level
(Figure 3B).



Figure 3: PCA at the (A) gene and (B) transcript level



Figure 4: Run time (in seconds) of the different steps (rules) of the workflow. The workflow was
executed in an HPCcluster (SLURM), so the execution runtimes include the time that the jobs
were in the queue. The machines that are part of the cluster also have slightly different
specifications, so the execution times might show some additional variation based on which
machine was used for their execution.



Discussion/Conclusions
ZARP is a general purpose, easy-to-use, stable and efficient RNA-seq processing workflow that
can be used by molecular biologists with minimal programming experience. Scientists with
access to a UNIX-based computer (ideally a linux machine with enough memory to align
sequencing reads) or a computing cluster can run the workflow to get an initial view of their data
on a relatively short time scale (Figure 4). The advantage of using ZARP is that it has been fine
tuned to process bulk RNA-seq datasets, allowing users to run it out of the box with default
parameters. At the same time ZARP allows users to customize different options of the tools (e.g.
via the rule config) making it a helpful tool for handling special cases. The files that ZARP
provides can serve as entry points for other project-specific analyses such as differential gene
and transcript isoform expression. As ZARP is publicly available and open source (Apache
License, Version 2.0), contributions from the bioinformatics community are very welcome and
will likely further enhance the functionality of the code. Please address all development-related
inquiries as issues at the official GitHub repository: https://github.com/zavolanlab/zarp.

Data and Software Availability

Data
Raw data analysed in the section: Use cases are publicly available for anyone to download from
the NCBI:GEO server, accession number GSE139213.

Software
ZARP lives on GitHub, the official repository is located at: https://github.com/zavolanlab/zarp
under Apache License, Version 2.0. Version 0.3.0 of the workflow described in this manuscript
has been additionally uploaded to zenodo platform where it will be stored permanently, doi:
XXX. Both services are public and allow anyone to download the software without prior
registration.

Results
Analysis results presented in the section: Use cases are publicly available for anyone to
download from the zenodo platform, doi: 10.5281/zenodo.5683525.
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SUMMARY

The La-related protein 7 (LARP7) forms a complex
with the nuclear 7SK RNA to regulate RNA polymer-
ase II transcription. It has been implicated in cancer
and the Alazami syndrome, a severe developmental
disorder. Here, we report a so far unknown role of
this protein in RNA modification. We show that
LARP7 physically connects the spliceosomal U6
small nuclear RNA (snRNA) with a distinct subset of
box C/D small nucleolar RNAs (snoRNAs) guiding
U6 20-O-methylation. Consistently, these modifica-
tions are severely compromised in the absence of
LARP7. Although general splicing remains largely un-
affected, transcriptome-wide analysis revealed per-
turbations in alternative splicing in LARP7-depleted
cells. Importantly, we identified defects in 20-O-
methylation of the U6 snRNA in Alazami syndrome
siblings carrying a LARP7mutation. Our data identify
LARP7 as a bridging factor for snoRNA-guidedmodi-
fication of the U6 snRNA and suggest that alterations
in splicing fidelity contribute to the etiology of the
Alazami syndrome.

INTRODUCTION

Small nucleolar RNAs (snoRNAs) are conserved non-coding

RNAs that guide post-transcriptional modification of various

RNAs. Based on common sequence motifs, two main families

of snoRNAs have been defined. The H/ACA box family guides

the conversion of uridine to pseudouridine, whereas C/D box

snoRNAs guide the methylation of the 20 hydroxyl of the ribose

(20-O-methylation). Members of either snoRNA family assemble

with distinct sets of proteins to form snoRNA protein complexes

(snoRNPs), in which the snoRNAs serve as guides for enzymes

catalyzing the chemical reactions (Matera et al., 2007). The cat-

alytic subunit of H/ACA snoRNPs is dyskerin, whereas the enzy-

matic activity of C/D box snoRNPs is provided by fibrillarin (FBL)

(Lui and Lowe, 2013). To function as guides, snoRNAs hybridize

to complementary sequences within their substrate RNAs. The

best characterized targets of H/ACA and C/D box snoRNP are ri-

bosomal RNAs (rRNAs) but also other non-coding RNAs, such as

small nuclear RNA (snRNAs), are frequent substrates (Bohnsack

and Sloan, 2018). In the current model, RNA-RNA interactions

are thought to be sufficient for a stable contact between

snoRNPs and substrate RNAs, thus allowing for efficient RNA

modification.

The large family of RNA-binding proteins (RBPs) is character-

ized by its ability to directly contact RNA molecules via RNA

binding domains (RBDs) (Gerstberger et al., 2014; Hentze

et al., 2018). The function of RBPs in RNA biology can be

highly diverse, ranging from scaffolding and catalysis to regula-

tion. Indeed, it is now well established that RBPs pervade

virtually every layer of gene expression, including RNA process-

ing, trafficking, stability, localization, and translation (Gehring

et al., 2017).

A prominent and well-characterized RBP is the lupus autoan-

tigen La that functions as RNA chaperone, assisting RNA poly-

merase III (Pol III) transcripts in adopting their correctly folded

state (Hasler et al., 2016; Kucera et al., 2011; Maraia et al.,

2017; Naeeni et al., 2012; Pannone et al., 1998). La is the found-

ing member of the La-related proteins (LARPs) family (Maraia

et al., 2017), which are characterized by an N-terminal Lamodule
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composed of the La motif (LaM) followed by an RNA recognition

motif (RRM1). Both motifs are organized as tandem arrange-

ments to synergistically bind RNA substrates (Alfano et al.,

2004). In higher eukaryotes, some LARP family members contain

a second RRM (referred to as RRM2), located at their C-terminal

ends. Biophysical studies revealed that RRM2 of La in isolation

possesses only weak RNA binding activity on its own (Brown

et al., 2016). Interestingly, addition of a short sequence stretch

downstream of the RRM2 increases the affinity to RNA in vitro,

suggesting a more complex and so far only poorly understood

RNA binding mode. It is conceivable that, under in vivo condi-

tions, RRM2 and its short extension synergistically function

with the La module to allow various, presumably transient inter-

actions with RNA substrates important for RNA chaperone activ-

ity (Martino et al., 2012).

LARP7 is most similar to La in terms of structural architecture

and sequence homology. In contrast to La, which binds tran-

siently to the 30 termini of all Pol III transcripts, LARP7 forms sta-

ble RNP structures with distinct RNAs in various species. In

Tetrahymena, the LARP7 homolog p65 stably interacts with the

telomerase RNA (TER), which is transcribed by Pol III in this or-

ganism (Jiang et al., 2013). P65 is an integral component of the

telomerase RNP and is important for proper telomerase function.

Intriguingly, p65 functions in a RNA-chaperone-like manner dur-

ing telomerase assembly (Stone et al., 2007). Pof8, a La-related

protein in fission yeast, has also been identified as a constitutive

component of the telomerase complex, underscoring evolu-

tionary conservation of this interaction (Collopy et al., 2018;Men-

nie et al., 2018; Páez-Moscoso et al., 2018).

The best-characterized human LARP7 target is the 7SK RNA,

which sequesters the positive transcription elongation factor b

(P-TEFb) (Markert et al., 2008; Yang et al., 2001). Sequestration

prevents the P-TEFb-dependent phosphorylation of Ser2 in the

C-terminal domain (CTD) of RNA Pol II and hence impairs tran-

scription elongation (Peterlin et al., 2012). The 7SK RNA is tran-

scribed by Pol III and initially bound by La. During 7SK RNP

assembly, La is replaced by LARP7, which remains as an integral

component of the 7SK RNP (He et al., 2008; Muniz et al., 2013).

Loss of LARP7 leads to a strong reduction of 7SKRNA levels and

activation of RNA Pol II transcription, highlighting the importance

of LARP7 for the integrity and function of the 7SK RNP. 7SK is

structurally organized in four distinct hairpins connected by sin-

gle-stranded sequence elements. LARP7 uses its La module to

interact with the terminal UUU-30OH and its RRM2 to contact

the apical loop of the 30 terminal hairpin (Eichhorn et al., 2016,

2018; Muniz et al., 2013; Uchikawa et al., 2015).

Reduced LARP7 levels have been associated with several

cancers, and it has been suggested that this is due to its

impaired function in transcriptional regulation through P-TEFb

sequestration (Cheng et al., 2012; He et al., 2008; Ji et al.,

2014). However, LARP7 loss-of-function mutations in humans

are not associated with hyper-proliferation and cancer-like phe-

notypes. Instead, affected individuals suffer from primordial

dwarfism, mental disabilities, and facial dysmorphism, collec-

tively referred to as the Alazami syndrome (Alazami et al.,

2012). These observations and the finding that loss of LARP7 re-

duces proliferation of embryonic stem cells (ESCs) lead to the

assumption that the Alazami syndrome phenotype is indepen-

dent of the LARP7-7SK axis (Dai et al., 2014). Closer examination

of several Alazami syndrome patients revealed a reduced telo-

merase activity, and thus, it has been suggested that LARP7,

alike p65 in Tetrahymena, affects telomerase function (Holohan

et al., 2016). However, the underlying molecular mechanisms

of this disease remain elusive.

To further elucidate the cellular functions of LARP7 and their

potential link to Alazami syndrome, we biochemically character-

ized LARP7 in human cells. We find that LARP7 not only interacts

with the 7SK RNA but also with other non-coding RNAs,

including theU6 snRNA and a subset of C/D box snoRNAs. Strik-

ingly, this highly specific set of snoRNAs guides the 20-O-methyl-

ation of the U6 snRNA.We demonstrate that LARP7 functions as

an adaptor protein that connects these two RNA species. Impor-

tantly, this function is critical for 20-O-methylation as U6 snRNA

modification is severely impaired in the absence of LARP7.

Although U6 snRNAmodification does not detectably affect spli-

ceosome assembly and canonical splicing, RNA sequencing

(RNA-seq) data reveal alterations in the usage of alternative

splice sites upon LARP7 depletion. Splicing alterations, how-

ever, are moderate under optimal cell culture conditions, but

several distinct splicing events are more affected under temper-

ature stress in LARP7 knockout cells. This suggested that 20-O-

methylation of the U6 snRNA contributes to splicing robustness

under changing environmental conditions. In agreement with this

model, two Alazami syndrome patients display reduced 20-O-

methylation on their U6 snRNA, which is accompanied with

strong alterations in alternative splicing. Strikingly, a very high ra-

tio of the affected genes is associated with human diseases

manifesting clinical symptoms similar to the Alazami phenotype.

Our study unravels a so far unknown function of LARP7 as auxil-

iary factor in U6 20-O-methylation and suggests that perturbation

of this process contributes to the etiology of the Alazami

syndrome.

RESULTS

LARP7 Associates with Distinct RNPs
Many symptoms of the Alazami syndrome are apparently incom-

patible with the well-established role of LARP7 in 7SK RNA-

mediated transcriptional regulation. Therefore, we hypothesized

that LARP7 might have additional 7SK-independent functions

with relevance for this disease. To identify and characterize

such putative functions, we generated two CRISPR-mediated

LARP7 knockout cell lines and in addition established effective

knockdown conditions as confirmed by western blot analysis

(Figure 1A). For functional investigation, we generated polyclonal

anti-LARP7 antibodies, which do not cross-react with the homol-

ogous La protein (Figure S1A) and performed immunoprecipita-

tions from wild-type (WT) and LARP7 knockout cells (Figure 1B).

Interestingly, we observed co-immunoprecipitation of a specific

set of RNAs in WT, but not in knockout, cells. Analysis of these

RNAs by sequencing and northern blotting identified the well-

known target 7SK RNA but also so far unknown interactors,

such as snoRNAs or the spliceosomal U6 snRNA (Figures 1B

and S1B). Other RNAs with similar abundance in immunoprecip-

itates from WT and LARP7 knockout lysates were considered

non-specific.
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The U6 snRNA is present predominantly as U4/U6 and

U4/U6.U5 particles, both being major building blocks of the spli-

ceosome (Fica and Nagai, 2017; Wahl et al., 2009). It was there-

fore surprising that only the U6 snRNA but no other spliceosomal

snRNAs were enriched in the anti-LARP7 immunoprecipitates

(Figure 1B). Indeed, northern blotting revealed that only U6

became enriched to a comparable extent as 7SK RNA, whereas

all other snRNAs and the 7SL RNA, which served as negative

control, were detected only at background levels (Figure 1C).

Interestingly, we also found a subset of C/D box snoRNAs that

specifically associated with LARP7 (Figures 1B and S1B). To

further corroborate this finding, we analyzed the publicly avail-

able LARP7 crosslinking and immunoprecipitation (CLIP) data

provided by the Encode project (Sloan et al., 2016) and found

that snoRNAs were specifically associated with LARP7 in these

studies as well (Figures 1D and 1E; Table S1). Indeed, a common

set of 15 C/D box snoRNAswere identified in all Encode datasets

and in our immunoprecipitation (Figure 1E; Table S1). Strikingly,

these include all sevenC/Dbox snoRNAs that guide 20-O-methyl-

ation of the human U6 snRNA (Gumienny et al., 2017; Lestrade

and Weber, 2006). To validate this specific interaction pattern,

we immunoprecipitated endogenous LARP7 and performed

northern blot analyses. U6-modifying snoRNAs were efficiently

enriched, in contrast to SNORD44, which modifies rRNA and

served as negative control (Figure 1F).

Next, we investigated whether LARP7 associates with free

RNAs or assembled RNPs. Lysates fromHEK293 cells stably ex-

pressing FH-LARP7 were incubated with anti-FLAG antibodies,

and co-immunoprecipitated proteins were analyzed by SDS-

PAGE (Figure S1C) and by mass spectrometry (Figure S1D;

Table S2). The top gene ontology (GO) terms of the co-isolated

proteins are ‘‘snoRNA binding,’’ ‘‘7SK RNA binding,’’ ‘‘snRNA

binding,’’ ‘‘mRNA/50 UTR binding,’’ ‘‘rRNA binding,’’ and ‘‘nucle-

ocytoplasmic carrier activity.’’ Of note, well-known U6 snRNP

components, such as the LSm proteins, were not found in our

analysis. These data suggest that LARP7 specifically interacts

with premature U6 snRNPs but fully assembled box C/D

snoRNPs (Figure S1D).

LARP7 Does Not Affect snoRNA/U6 snRNA Levels or
Their Assembly into RNPs
As LARP7 stabilizes the 7SK RNA, it is conceivable that it may

act in a similar fashion on the bound snoRNAs and/or U6 snRNA.

To test this possibility, we analyzed RNA levels in LARP7WT and

knockout cell lines by northern blotting. Consistent with earlier

findings, 7SK levels were strongly reduced in LARP7 knockout

cell lines, although 7SL, which is not bound by LARP7, remained

unaffected (Figure 1G). In contrast to 7SK, neither the levels of

the LARP7-associated snoRNAs (Figure 1H, left panel) nor the

U6 snRNA (Figure 1H, right panel) were affected in the knockout

cell lines. It has also been reported that LARP7 influences snRNA

transcription (Egloff et al., 2017), which is not observed under our

conditions. Based on these results, we reasoned that LARP7 ex-

erts functions beyond the stabilization of associated RNAs.

To explore these putative functions, we asked whether the as-

sembly of snoRNPs and/or the U6 snRNP is affected upon

LARP7 deprivation. We first tested the U6 association with the

LSm complex, which is a hallmark of functionally assembled

U6 snRNP (Figure S1E) and SART3, a marker for U6 and U4/

U6 di-snRNPs (Figure S1F). In both cases, no major differences

in the association of these proteins with the U6 snRNA in LARP7-

depleted cells were evident. To evaluate snoRNP assembly, we

performed immunoprecipitations from LARP7 knockout as well

as WT HEK293 cell line lysates using antibodies directed against

FBL, the catalytic subunit of C/D box snoRNPs. In both cases,

U6-specific SNORD8 and SNORD94 were co-immunoprecipi-

tated as determined by northern blotting (Figure S1G), suggest-

ing efficient incorporation of FBL into snoRNPs in the absence of

LARP7. To further test whether LARP7 is a stable component of

U6-modifying C/D box snoRNPs, we fractionated lysates from

WT or LARP7 knockout cells on sucrose density gradients and

analyzed snoRNP sedimentation by northern blotting (Figure 1I).

The main peak of the U6-specific SNORD8 and SNORD94

shifted toward lower molecular weights in the absence of

LARP7, although rRNA-specific SNORD44 remained unaffected.

Our data thus suggest that LARP7 is stably associated with

assembled and presumably functional U6-specific snoRNPs.

LARP7 Contacts RNA Substrates with Distinct Domains
LARP7 contains a La module and a C-terminal RRM2, which are

both utilized for 7SK RNA binding (Figure 2A). To identify the do-

mains mediating the interaction with the U6 snRNA and C/D box

snoRNAs, we generated a panel of different LARP7mutants (Fig-

ure 2B) and tested their RNA binding activity (Figures 2C, S2A,

and S2B). LARP7 knockout cells were stably transfected with

FH-LARP7 variants and used for immunoprecipitation experi-

ments. Co-isolated RNAs were subsequently analyzed by north-

ern blotting (Figure 2C). As expected from previous studies

Figure 1. LARP7 Associates with the U6 snRNA and with U6-Specific C/D Box snoRNAs
(A) Lysates from WT, LARP7 knockout HEK293 cells (1–11 and 3–6) and cells transfected with small interfering RNAs (siRNAs) against LARP7 or control siRNAs

were analyzed by western blotting (WB) against LARP7. b-actin served as loading control.

(B) LARP7 was immunoprecipitated from WT or knockout cell lines, and associated RNAs were analyzed by RNA PAGE followed by ethidium bromide staining.

The panel to the right shows a western blot against LARP7.

(C) Samples were obtained as described in (B) and used for northern blotting (NB) against the indicated RNAs.

(D) Analysis of LARP7 snoRNA association in K562 cells from publicly available enhanced CLIP (eCLIP) datasets.

(E) Overlap of LARP7 eCLIP datasets from HepG2, K562 cells and our sequencing data obtained from LARP7 isolations from HEK293 cells.

(F) Samples were obtained as described in (B) and used for northern blotting against the indicated snoRNAs.

(G) Total RNA from WT and LARP7 knockout HEK293 cells (1–11 and 3–6) were analyzed by northern blotting using probes against 7SK and 7SL RNAs.

(H) Samples used in (G) were analyzed by northern blotting using probes against the indicated C/D box snoRNAs (left) and the spliceosomal U snRNAs (right).

(I) Nuclear extracts from WT and LARP7 knockout HEK293 cells were fractionated by sucrose gradient centrifugation. RNAs extracted from each fraction were

assayed by northern blotting against the indicated snoRNAs.

See also Figure S1 and Tables S1 and S2.
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(Eichhorn et al., 2018), FH-LARP7 lacking RRM2 (LARP7

DRRM2) bound only weakly to 7SK (Figure 2C, lane 4). In

contrast, this truncation still bound efficiently to U6 snRNA.

Furthermore, a point mutation within RRM2 (Y483A) did not

affect U6 or 7SK RNA binding (lane 3). Strikingly, the substitution

F44A located in the La motif abolished U6 binding without

affecting 7SK interaction (lane 2), indicating that U6 is contacted

only via the La module. Of note, LARP7 mutants that bind to 7SK

also rescued the loss of 7SK RNA in LARP7-deficient cells, sug-

gesting that the generated mutants are fully functional (Fig-

ure S2C). We next used the same set of LARP7 mutants to test

for SNORD8 and SNORD94 binding. Both RNAs associated

only weakly with FH-LARP7DRRM2 (Figure 2C, lane 4), although

the Y483A substitution was not affected (lane 3). The F44A mu-

tation, which fails to interact with U6, also reduced snoRNA bind-

ing (lane 2). We tested a number of additional mutants and

consistently confirmed these observations (Figures S2A and

S2B). Finally, we investigated whether the observed interaction

of LARP7 with the U6 snRNA is direct or mediated by a putative

bridging factor. For this, bacterially expressed recombinant

LARP7 or its F44A mutant (Figure 2D) was incubated with radio-

labeled U6 snRNA and complex formation was tested by electro-

mobility shift assays (EMSAs) (Figure 2E). WT LARP7 directly

bound to U6 with an estimated Kd in the range of 250 nM,

whereas the binding affinity of the mutant form of LARP7 was

strongly reduced. The observation that LARP7 binds to U6 and

snoRNAs with different domains led us to investigate whether

this results in the formation of a trimeric complex that can be

assembled in vitro (Figure 2F). Pull-down experiments using bio-

tinylated SNORD8 revealed that efficient association of U6 with

SNORD8 was only observed in the presence of recombinant

LARP7 (lane 3). However, LARP7 variants that are either deficient

in U6 binding (F44A, lane 4) or encompassing only the La mod-

ule, which is not sufficient for snoRNA binding (1–208, lane 5),

failed to promote efficient formation of the trimeric complex.

Taken together, our results indicate that LARP7 uses specific

RNA binding surfaces to directly bind to the U6 or 7SK RNAs,

most likely forming functionally distinct complexes. LARP7 also

binds to C/D box snoRNAs directly, as evident from UV cross-

linking in CLIP experiments (Figures 1D and 1E), but molecular

interactions appear to be more complex and require multiple

RNA-protein contacts. Although LARP7 uses its two RNA bind-

ing domains to contact different sites of the 7SK RNA intramo-

lecularly (Figure 2A), the same RNA binding domains are used

to target U6 and snoRNA intermolecularly (Figure 2G).

U6 snRNA-Targeting C/D Box snoRNAs Contain a
Conserved Sequence Motif
LARP7 binds to a distinct set of snoRNAs, and we wondered

whether this interaction is facilitated by a specific RNA motif.

Comparing the sequences of C/D box snoRNAs targeting the

U6 snRNA in a number of different species and to all other,

non-U6-specific C/D box snoRNAs, we found that 73 out of

118 (62%) U6-modifying C/D box snoRNAs contain a CAGGG

sequence motif. In contrast, this motif is only present in 92 out

of 4,759 (1.9%) C/D box snoRNAs that target other RNAs (Fig-

ures 3A and S3A). To assess the relevance of this motif for

LARP7 binding, we mutated a short sequence stretch in

SNORD8 (SNORD8 motif mutant; Figure 3B), transfected it into

HEK293 SNORD8/9 double knockout cells (Figure S3B), and

examined interaction with endogenous LARP7 in anti-LARP7

co-immunoprecipitations (Figure 3C). In addition, we also gener-

ated a SNORD8 variant with mutated U6 targeting sequence

(SNORD8 target mutant; Figures 3B and 3D). Indeed, LARP7

binding to the SNORD8 motif mutant was strongly decreased.

Similarly, the target motif mutant also bound much weaker

compared to WT, suggesting that both sequence elements are

important for this interaction. As LARP7 interacts with U6, which

in turn base pairs with SNORD8, we generated a double mutant

to assess the contribution of snoRNA-U6 interactions and

thus indirect LARP7 binding. In agreement, the double mutant

completely lost its LARP7 binding activity, confirming that the re-

sidual binding of the SNORD8 motif mutant is likely due to RNA-

RNA contacts. To exclude that the mutations introduced into

our SNORD8 constructs interfered with snoRNP assembly and

function, we immunoprecipitated FBL and analyzed the bound

snoRNAs by northern blotting (Figure 3E). All SNORD8 mutants

were readily detected in complex with FBL, suggesting that

they are integrated into presumably functional snoRNPs. Based

on these results, we conclude that U6-modifying C/D box snoR-

NAs contain a LARP7 binding motif, which we name LARP7

binding box or LAB box. This sequence motif contributes,

together with snoRNA-U6 snRNA interaction, to the formation

of a trimeric complex composed of LARP7, U6 snRNA, and a

corresponding snoRNP (Figure 3D).

U6 snRNA Lacks 20-O-Methylation in LARP7-
Deficient Cells
The data above raised the possibility that LARP7 is required for

snoRNA-guided 20-O-methylation of U6 snRNA. To directly test

this hypothesis, we isolated U6 snRNA from WT or LARP7

Figure 2. Mapping of LARP7 Interactions with 7SK, U6, and C/D Box snoRNAs

(A) Current model of LARP7-7SK RNA interactions.

(B) Schematic representation of the used LARP7 mutations.

(C) FH-LARP7 WT, F44A, Y483A, or DRRM2 were stably transfected into LARP7 knockout cells and were immunoprecipitated using anti-FLAG antibodies. Co-

immunoprecipitated RNAs were analyzed by northern blotting and ethidium bromide (EtBr) staining. Input samples are presented in lanes 6–10. The lower panel

shows an anti-hemagglutinin (HA) western blot of the immunoprecipitated LARP7 variants as well as input LARP7 expression levels.

(D) Coomassie staining of recombinant LARP7 proteins.

(E) Electromobility shift assay (EMSA) of LARP7 WT and the F44A mutant. Indicated concentrations of the recombinant proteins were incubated with constant

amounts of radiolabeled U6 snRNA. Samples were subsequently analyzed by native gel electrophoresis.

(F) The formation of the trimeric complex consisting of the biotinylated U6-specific SNORD8 snoRNA, the U6 snRNA, and LARP7was investigated by in vitro pull-

down assays followed by northern blotting (upper panels) and western blotting (lower panels).

(G) Model of the contacts formed by LARP7 to the U6 snRNA and to U6-specific snoRNAs.

See also Figure S2.
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knockout HEK293 cells using biotinylated oligonucleotides (Fig-

ure 4A). After two consecutive purification steps, U6 snRNA was

highly enriched (Figure 4B) and then used for 20-O-methylation

mapping applying RiboMeth-seq (Birkedal et al., 2015). U6

snRNA was treated with alkaline conditions to hydrolyze the

phosphodiester backbone of the RNA. Because this reaction re-

quires a 20 hydroxyl group of the ribose, 20-O-methylated nucle-

otides are protected from alkaline hydrolysis, thus allowing the

identification of modified sites by RNA-seq and bioinformatic

analysis. 20-O-methylation sites are uncovered by mapping the

C

A B

D

E

Figure 3. A Sequence Motif Enriched in U6-Modifying C/D Box snoRNAs Interacts with LARP7

(A) The sequences of U6-specific snoRNAs from different species were analyzed for the enrichment of a specific motif compared to all other C/D box snoRNAs. A

Fisher’s exact test classifies the enrichment of this motif as highly significant.

(B) Schematic representation of the different SNORD8 variants that were used.

(C) SNORD8 and SNORD9 double knockout HEK293 cells (SNORD8+9�/�) were transfected with the indicated SNORD8 constructs and endogenous LARP7

was immunoprecipitated from the lysates. Associated SNORD8 (upper panel) or U6 (lower panel) were analyzed by northern blotting. Lane 5 shows mock

transfected and lane 6 WT HEK293 cells. Input samples are shown to the right and an anti-LARP7 western blot in the lower part.

(D) Model of snoRNA-U6-LARP7 interactions.

(E) SNORD8+9�/� cells were transfected as described in (C), and endogenous FBLwas immunoprecipitated. Co-isolated SNORD8 variants aswell as SNORD94

were analyzed by northern blotting. In lane 5, WT HEK293 cells were used. Lanes 7–11 show input samples.

See also Figure S3.
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start and the end of the sequenced reads and each modified po-

sition result in a drop of coverage at the respective nucleotide

(Figure 4C). In our experiments, all known 20-O-methylation sites

on U6 snRNA are readily detectable (Figure 4C, upper panel).

Interestingly, these modifications are strongly reduced in

LARP7-deficient cells (Figure 4C, lower panel), indicating that

LARP7 is indeed required for efficient U6 20-O-methylation. As

control, we performed similar experiments with the U2 snRNA,

which also contains a defined set of site-specific 20-O-methyl-

ated ribose. None of these sites was affected in LARP7 knockout

cells, suggesting that LARP7 specifically acts on U6 snRNA (Fig-

ure S4). To corroborate these findings, we rescued the LARP7

knockout cells by integrating either WT LARP7 or the F44A

mutant stably into the genome (Figure 4D). In agreement with

our model, WT LARP7 fully rescued U6 20-O-methylation, but

the F44A mutant, which cannot bind to U6, had a much weaker

effect. Taken together, our data reveal an essential role of LARP7

in snoRNP-mediated 20-O-methylation of the U6 snRNA.

Effects of U6 20-O-Methylation Deficiency on Splicing
Fidelity
Although the general functions of 20-O-methylation of the U6

snRNA are largely elusive, it is conceivable that the lack of

20-O-methylation could influence splicing. Hence, we tested

whether general pre-mRNA splicing is affected and investigated

spliceosome assembly as well as pre-mRNA splicing in vitro. We

found that, under these experimental conditions, neither spliceo-

some formation nor splicing of a model pre-mRNA substrate is

dependent on LARP7 (Figures S5A and S5B). In order to unravel

consequences of LARP7 depletion in a physiological context, we

performed total RNA-seq from WT as well as LARP7-deficient

cells. Comparing overall gene expression levels, we observed

only modest changes (Figure 5A). Dissociation of the P-TEFb ki-

nase complex from the 7SK snRNP results in enhanced RNA Pol

II Ser2 phosphorylation (Ser2-P), which in turn increases elonga-

tion rates. To assess potential P-TEFb-linked effects in our gene

expression data, we investigated Ser2-P using phospho-specific

antibodies (Figure 5B). Unexpectedly, we did not observe

detectable differences between WT and LARP7 knockout cells.

Of note, the western blot signal is phospho-specific because it

disappeared upon phosphatase treatment (right panel). Further-

more, it has been demonstrated that CDK9 levels, i.e., the kinase

subunit of P-TEFb acting on Ser2, are reduced to compensate

for RNA Pol II hyperactivation upon LARP7 knockdown (Dai

et al., 2014). Indeed, we observed a mild reduction of CDK9

levels in our LARP7 knockout cells, suggesting adaptation to

the 7SK loss (Figure S5C). Thus, global transcriptional effects

that may have resulted from the destabilization of the 7SK RNA

accompanied by increased RNA Pol II transcription were not

evident in this analysis.

We next assessed our RNA-seq data for alternative splicing

events affected in LARP7 knockout cells (Figure 5C; Table S3)

and observedmoderate but significant changes at distinct splice

sites. We therefore conclude that splicing is not generally

affected and hypothesize that U6 20-O-methylation could

contribute to a general splicing robustness or fidelity by noise

reduction. To test this, we examined alterations in distinct

splicing patterns in our RNA-seq data and found indeed a num-

ber of events that were sensitive to LARP7 loss. These events,

however, were not of a particular mode of alternative splicing,

which is generally consistent with broader effects on overall

splicing fidelity (Figure 5C).

We selected a number of splicing events and validated them

directly. We first confirmed that the observed effects are found

in two independent LARP7 knockout cell lines. We then per-

formed semiquantitative RT-PCR (Figure 5D) as well as radioac-

tive RT-PCR experiments (Figures 5E and S6A). Strikingly,

quantification of the radioactive signals revealed that the candi-

dates PARP6, KMT2D (also known asMLL2), and SETMAR show

modest but highly reproducible changes in alternative splicing

patterns. Of note, some of the investigated effects could not

be confirmed in a second knockout cell line andwere considered

unspecific (Figure S6B).

The data above suggest that LARP7-supported U6 modifica-

tion has only aminor impact on splicing under normal conditions.

However, splicing robustnessmight becomemore important un-

der stress conditions, such as higher temperatures, that all cells

experience when organisms react to infections with fever, for

example. We hence shifted WT or LARP7 knockout cells to

40�C and performed RNA-seq (Figures S6C and S6D). Consis-

tent with this idea, under high-temperature conditions, several

distinct splice sites are much stronger affected in LARP7

knockout cells compared to the control cell line.

Thus, our findings are consistent with the model that LARP7-

guided 20-O-methylation of the U6 snRNA is not necessary for

its function in splicing per se but rather contributes to splicing

robustness. These effects might be relevant under conditions

of cellular stress, such as high temperature, where RNA-RNA in-

teractions are stabilized to reduce splicing noise.

A LARP7 Mutation Affects U6 20-O-Methylation in a
Family with Alazami Syndrome
Because mutations in the LARP7 gene are linked to the Alazami

syndrome and this phenotype cannot be readily explained by the

role of LARP7 in transcription, we asked whether the newly

discovered function of LARP7 in RNA modification might

Figure 4. LARP7 Knockout Affects 20-O-Methylation of the U6 snRNA

(A) Workflow of U6 snRNA enrichment using biotinylated antisense probes and generation of RiboMeth-seq libraries.

(B) The isolated RNA was analyzed by EtBr staining and northern blotting using probes against the U6 snRNA and the 5.8S rRNA.

(C) The isolated U6 snRNA was fragmented, cloned, and sequenced (RiboMeth-seq). Reads are plotted as log2 mean-normalized counts for WT HEK293 cells

and LARP7 knockout cells (first and second panels) or as log2 fold change (log2FC) between the two cell lines (third panel). Panel 4 shows the ‘‘methylation score’’

calculated as described in Birkedal et al. (2015).

(D) LARP7 knockout cells were rescued by stably expressing WT LARP7 or the LARP7 F44A mutants, and RiboMeth-seq experiments as well as data analysis

were performed as described in (C).

See also Figure S4.

1022 Molecular Cell 77, 1014–1031, March 5, 2020



A C

HEK29
3

1-
11

3-
6

LARP7 -/-

5 64

*

*

KMT2D - MLL2

n=3

LARP7 -/-

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ra
tio

 s
ig

na
l i

nt
en

si
tie

s
re

ta
in

ed
/s

pl
ic

ed
 in

tr
on

HEK29
3

1-
11 3-

6

SETMAR

LARP7 -/-

n=30
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ra
tio

 s
ig

na
l i

nt
en

si
tie

s
re

ta
in

ed
/s

ki
pp

ed
 e

xo
n

HEK29
3

1-
11 3-

6

ED

2 31

HEK29
3

1-
11

3-
6

LARP7 -/-

*

*

n=3

PARP6

LARP7 -/-

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ra
tio

 s
ig

na
l i

nt
en

si
tie

s
re

ta
in

ed
/s

ki
pp

ed
 e

xo
n

HEK29
3

1-
11 3-

6

retained intron

KMT2D - MLL2

SETMAR

skipped exon

-RT control
14 1513 17 1816

HEK29
3

1-
11

3-
6

LARP7 -/-

400
300
200

[bp]HEK29
3

1-
11

3-
6

LARP7 -/-

500

1,200
1,000

-RT control
2 31 5 64

HEK29
3

1-
11

3-
6

LARP7 -/-

HEK29
3

1-
11

3-
6

LARP7 -/-

[bp]

400
300
200
100

500

PARP6

skipped exon

-RT control
8 97 11 1210

HEK29
3

1-
11

3-
6

[bp]HEK29
3

1-
11

3-
6

LARP7 -/-

400
300
200

500
700
800

LARP7 -/-

8 97

HEK29
3

1-
11

3-
6

LARP7 -/-

*

*

anti-Ser2-P 
POLR2A

250
180
130

LARP7 -/-

HEK29
3

1-
11

3-
6WB

[kDa]

40
1

anti- -actin

2 3

55

B
WB

[kDa]

100

4

anti-LARP7

5

180

130

- 
 P

Pas
e 

+ 
 P

Pas
e

anti-Ser2-P 
POLR2A

Expected PSI (HEK293 - LARP7 -/-)

S
ta

tis
tic

al
 s

ig
ni

fic
an

ce
(M

in
im

um
 v

al
ue

 
P

S
I a

t 0
.9

0)
 

0.5

0.4

0.3

0.2

0.1

-0.8
0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

PARP6

KMT2D

retained intron exon skipping exon skipping (microexon)
alternative splice site acceptor alternative splice site donor

lo
gF

C
H

E
K

29
3 

vs
 L

A
R

P
7 

-/
-

4

2

0

-2

-4

-6

logCPM
0 4 102 6 8 12 14

non-significant 
(15,587 genes)

significant FDR ≤0.05
(370 genes)

(legend on next page)

Molecular Cell 77, 1014–1031, March 5, 2020 1023



contribute to this disease. To test this hypothesis, we analyzed

the genomic DNA as well as RNA from blood samples of a family

with two siblings diagnosed for Alazami syndrome (Figures 6A–

6D). Exome analysis revealed that both siblings are homozygous

for the deletion c.1669-1_1671del, which destroys the 30 splice
site of intron14/exon15 of LARP7 (Figure 6B).

Analysis of the LARP7 mRNA revealed that the identified dele-

tion leads to splicing of exon 14 to a cryptic splice acceptor

located further downstream in exon 15 (Figure 6B), which results

in a 13-nt deletion. This would generate a frameshift resulting in a

premature stop codon (Figure 6C; W€urzburg variant). We hence

examined whether the mutated mRNA is removed from cells by

the nonsense-mediated decay (NMD) pathway. qPCR analysis

of the heterozygous parents and the homozygous siblings

excluded this possibility, as LARP7 RNA levels are unaffected

(Figure 6D). We reasoned that the patients express a mutant

LARP7 protein containing an altered C terminus. To test this,

we established B-lymphoblastoid cell lines (B-LCLs) from

donated blood samples. Western blot analysis revealed that

LARP7 protein levels were comparable between parents and

their affected children. As the mutated LARP7 is predicted to

differ only in eleven amino acids from the WT protein, the two

protein forms could not be distinguished by protein gel electro-

phoresis (Figure 6E). We therefore tested by northern blotting

of blood samples whether LARP7 stabilizes the 7SK RNA in

the Alazami patients (Figure 6F). Although the mutated LARP7

variant was present in normal amounts, the level of 7SK RNA

was strongly reduced in both children compared to their hetero-

zygous parents. Control RNAs, such as U2, but also U6-specific

SNORD23 and SNORD94, were unaffected. For further analysis

of the associated RNA species, we immunoprecipitated the

mutated LARP7 variant from patient-derived B-LCLs. As ex-

pected, binding to 7SK was severely compromised in these

cells. Although the interaction to the U6 snRNA was comparable

between the parent- and patient-derived cell lines, we observed

amarkedly reduced interaction of the LARP7mutant with theU6-

specific C/D box snoRNAs (Figure 6G). Finally, we expressed the

C-terminal domain of WT LARP7 and of the corresponding

W€urzburg variant (Figure 6H) and assessed direct binding to

SNORD8 in EMSA experiments (Figure 6I). Also in these direct

interaction assays, binding of the Alazami variant was markedly

reduced.

U6 20-O-Methylation Defects and Alterations in Splice
Site Usage in Alazami Patients
Based on our finding that the 20-O-methylation of U6 requires

LARP7, we performed RiboMeth-seq experiments with the U6

snRNA isolated from the generated B-LCLs (Figure 7A). All

known 20-O-methylation sites can be readily detected in the

cell line derived from a parent. Interestingly, most 20-O-methyl-

ation sites are affected in the patient-derived cell line. Of note,

RiboMeth-seq of U6 from blood samples shows strong effects

on two distinct sites, although others were less affected (Fig-

ure S7A), which might be due to very low RNA amounts that

were available for our experiments. The observed modification

defects may affect alternative splicing, as we already observed

in HEK293 cells (Figure 5C). To test this directly, we performed

RNA-seq experiments using the parent- and patient-derived

B-LCLs (Figures 7B and S7B). Interestingly, splice site selection

is strongly altered in the patient with mutated LARP7. Consis-

tently with our observations in HEK293 cells, RNA Pol II Ser2-P

is unchanged and CDK9 levels are mildly reduced in the pa-

tient-derived cells, suggesting that loss of 7SK might play a

minor role in gene expression changes in the Alazami patients

(Figures S7C and S7D). Strikingly, when closely investigating

the affected genes, more than 16% of them are associated

with diseases sharing similar clinical phenotypes as Alazami pa-

tients (Figure 7C). To test the contribution of the Alazami variant

on splicing fidelity more rigorously, we selected the PARP6 exon

skipping event and performed rescue experiments in LARP7-

deficient HEK293 cells (Figure 7D). Strikingly, WT LARP7, but

not the W€urzburg Alazami variant, rescued the observed splicing

change. Thus, our data uncover a so far unknown biochemical

defect in Alazami syndrome patients, which likely contributes

to the multifaceted disease phenotype.

DISCUSSION

LARP7 serves as an integral component of the 7SK RNP (He

et al., 2008), where it replaces the canonical La protein from

the 30 end during RNP assembly and stabilizes the 7SK RNA. Us-

ing a biochemical approach, we have identified another so far

unknown 7SK-independent function of LARP7 in human cells.

We show that LARP7 acts as an adaptor protein connecting

the U6 snRNA with C/D box snoRNAs for 20-O-methylation. In

Figure 5. LARP7 Knockout Cells Exhibit Changes in Splice Site Usage

(A) Total RNA from LARP7 knockout andWT HEK293 cells was used for RNA-seq experiments. Gene expression was quantified, and the natural logarithm of the

fold change (logFC) between WT and LARP7 knockout is plotted (y axis) against the logarithm of the counts per million (logCPM) value (x axis). Differentially

expressed genes with a false discovery rate (FDR)% 0.05 are shown in black. The genes that do not show significant changes in expression are shown in gray.

(B) Ser2-P levels of the RNA Pol II subunit POLR2A were assayed by western blotting using lysates from LARP7 knockout (lanes 1 and 2) andWT (lane 3) HEK293

cell lines (panels to the left). In the right panel, antibody specificity for phosphorylated POLR2A was tested by lambda protein phosphatase treatment of HEK293

cell lysate (lane 5).

(C) The RNA-seq data shown in (A) were analyzed for changes in alternative splicing betweenWT and LARP7 knockout cells. The Volcano plot shows differentially

regulated splicing events, color coded as indicated for the different event types. The statistical significance, quantified as theminimumabsolute difference (MV) of

percent spliced in (DPSI) for a given event that is supported at a 0.90 probability, is plotted on the y axis. The expected value for DPSI (HEK293 WT � LARP7

knockout) is plotted on the x axis. The red line indicates the threshold for statistical significance of a minimal absolute DPSI value above 0.05. Two of the events

chosen for validation experiments are highlighted.

(D and E) Validation of alternative splicing events between LARP7 knockout and WT HEK293 cells by conventional RT-PCR (D) or radioactive RT-PCR (E). A

schematic representation of the affected splice patterns is shown. Representative gels are shown in (E), and the bands used for quantification of the signals are

indicated with asterisks. The ratio of the signals from three biological replicates is shown to the right with error bars depicting ± SD.

See also Figures S5 and S6 and Table S3.
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LARP7 knockout cells, 20-O-methylation of U6 is strongly

reduced, and our data suggest LARP7-mediated fine-tuning

effects on splicing. This is particularly important in tissues

development and cell differentiation, where specific alternative

splicing events are crucial (see accompanying study by Wang

et al., 2020 [this issue of Molecular Cell]). We further report that

20-O-methylation of the U6 snRNA is impaired in Alazami syn-

drome patients, suggesting a contribution of splicing alterations

to the disease.

LARP7 uses two separate RNA binding domains to contact

different RNA species. The La module anchors LARP7 on the

U6 snRNA, and the C-terminal RRM2 interacts with a specific

subset of C/D box snoRNAs. We have identified a conserved

sequence motif required for LARP7 binding, which we refer to

as LAB box. This motif is specifically enriched in C/D box

snoRNAs targeting U6. Based on our data, we propose a model

in which the bivalent RBP LARP7 functions as a scaffold for two

different RNAs, which hybridize to each other through comple-

mentary sequences. Although a major contact between U6

and the C/D box snoRNAs is mediated by base pairing, U6 re-

mains almost unmethylated in LARP7-deficient cells highlighting

the importance of LARP7 as an auxiliary factor for U6-specific

20-O-methylation. A number of different modes of action could

be envisioned for LARP7 in this process. First, LARP7 might

use its two RBDs that are connected by a presumably flexible

linker region to anchor U6 and the C/D box snoRNAs and thus

accelerating the generation of RNA-RNA contacts. Second,

base pairing between the U6 snRNA and its modifying snoRNAs

might not be stable enough to allow catalysis and thus requires

LARP7-mediated clamping to further stabilize the interaction,

allowing for efficient 20-O-methylation. Third, LARP7 might play

a more active role in catalysis by stimulating FBL activity or posi-

tioning. It would therefore be interesting to study whether LARP7

engages in direct protein-protein interactions with FBL. Fourth, it

has been suggested that LARP7 can function as RNA chaperone

(Hussain et al., 2013). It is hence conceivable that LARP7 in-

duces a specific structural conformation of U6 that allows for

efficient C/D box snoRNA binding. For example, LARP7 might

rearrange or prevent secondary structures prior to 20-O-methyl-

ation. Structural investigations of LARP7 simultaneously bound

to a C/D box snoRNA and U6 snRNA will provide valuable in-

sights into this U6 biogenesis intermediate complex.

Themode of action of LARP7 in snoRNP-mediated RNAmodi-

fication serves as a paradigm for a double-sided RBP as auxiliary

factor for 20-O-methylation. It also raises the possibility that other

modular RBPs exert similar functions. For example, the U6

snRNA is also modified by pseudouridylation, and this process

requires H/ACA box snoRNAs. These snoRNAs are structurally

different from C/D box snoRNAs and thus might find their spe-

cific targets in a different way. However, it is also possible that

so far unknownRBPs fulfill LARP7-like functions in U6 pseudour-

idylation. Moreover, other spliceosomal U snRNAs, such as the

U2 snRNA, are also heavily modified by 20-O-methylation and

pseudouridylation (Bohnsack and Sloan, 2018), and specific

RBPs may support the modification of other snRNAs. Finally,

most human snoRNAs target rRNAs during ribosome biogen-

esis. A vast number of RBPs are essential for ribosome biogen-

esis, and a direct role in 20-O-methylation or pseudouridylation

has not been investigated. Interestingly, recent studies associ-

ated different RBPs with 20-O-methylation of rRNAs (D’Souza

et al., 2018; Nachmani et al., 2019). A mechanism for these ob-

servations has not been unraveled. Together with our findings,

these data suggest that effects of RBPs on snoRNA-guided

RNAmodification might be a widespread phenomenon. In situa-

tions of weak base pairing, the requirement of LARP7-like auxil-

iary factors might be critical although other RNAsmay stably pair

without the help of such factors.

Although all spliceosomal snRNAs carry modifications, the

precise functions of individual modified nucleotides are poorly

understood. 20-O-methylation enhances RNA duplex stability

by stabilizing the A-form RNA-RNA helix and affects global

folding by preventing hydrogen bond formation with the 20 hy-
droxyl group (Ayadi et al., 2019; Prusiner et al., 1974). During

the splice cycle, U6 base pairs with U4, U2, and also the 50 splice
site of the pre-mRNA at later stages of catalysis (Bohnsack and

Sloan, 2018). Consistently, a U2-U6 complex is stabilized by

RNA modification, but this contribution is rather mild and a gen-

eral requirement for splicing is unlikely (Karunatilaka and Rueda,

2014). Instead, U6 20-O-methylation may influence RNA struc-

ture formation and thus splicing fidelity under specific condi-

tions, such as cellular or environmental stress, or in specific

tissues. Strikingly, an accompanying paper (Wang et al., 2020)

shows mouse male germline-specific alternative splicing

changes that can be attributed to LARP7 deficiency and U6

Figure 6. A Novel LARP7 Mutation in Alazami Syndrome Patients

(A) Family tree of the two Alazami syndrome patients.

(B) Schematic representation of the LARP7 micro-deletion found in the two patients shown in (A).

(C) Sequencing of the LARP7 cDNA from blood samples revealed the usage of a cryptic splice site leading to an alternative C terminus of LARP7.

(D) RNAwas isolated from blood samples donated by the parents or the two Alazami syndrome siblings, and LARP7mRNA expression levels were determined by

qPCR. La expression levels were measured as control. The error bars represent ± SD from three technical replicates.

(E) LARP7 protein expression levels in B-LCLs derived from a healthy parent (lane 1) or from an Alazami syndrome child (lane 2), as well as the B-cell-derived Raji

cell line (lane 3) were determined by western blotting. b-actin served as loading control.

(F) RNA from blood samples donated by healthy parents (lanes 1 and 2) or Alazami patients (lanes 3 and 4) was analyzed by northern blotting for the indi-

cated RNAs.

(G) RNA co-purified in anti-LARP7 immunoprecipitations from B-LCLs shown in (E) were analyzed by northern blotting. Input samples are shown in lanes 5 and 6

(upper panels). The corresponding western blot analysis is shown in the lower panel.

(H) Recombinant expression of the C-terminal domain of the LARP7 WT (lane 1) or of the W€urzburg variant (lane 2) followed by SDS-PAGE and Coomassie

staining.

(I) Binding of the LARP7 protein variants shown in (H) to in vitro transcribed and radiolabeled SNORD8 RNA was assayed in EMSA experiments. The concen-

trations of the recombinant proteins used for each condition are indicated on top of the lanes.
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hypo-methylation. These data support our model that U6 20-O-

methylation becomes essential under the physiological condi-

tions in a living organism. Nonetheless, even under optimal

tissue culture conditions, splicing patterns of several mRNAs

are moderately changed. Most importantly, when we analyze

alternative splicing under temperature stress, LARP7 knockout

cells produce different splicing patterns compared to WT cells.

Under fever conditions, cells are exposed to high temperature,

but accurate splicing needs nonetheless be maintained. Hence,

the establishment of fever strategies as defense line against

infections might be the positive selection pressure for 20-O-

methylation of spliceosomal snRNAs during evolution. This

might even be true for various other RNA species that carry

such modifications.

TheAlazami syndrome is causedby loss-of-functionmutations

within the LARP7 gene (Alazami et al., 2012).We have analyzed a

pair of siblings with a short deletion spanning the last exon-intron

boundary. This results in the use of an alternative splice acceptor

and a frameshift leading to amarginally shorter protein carrying a

different C terminus. Using immortalized blood cells from the

patients, we find that the mutated mRNA escapes NMD and

produces a stable protein variant. Interestingly, although themu-

tation is outside of the RRM2, a clear reduction of 7SK is

observed. This is consistent with the findings that RRM2 is imme-

diately followed by an a helix, which appears to be important for

RNA interaction in addition to RRM2. Because we found that this

region is also involved in snoRNA binding, effects on U6 modifi-

cation efficiency could be predicted. Indeed, RiboMeth-seq

revealed strongly reduced U6 20-O-methylation in the Alazami

patients, identifying a so far unknown facet of this disease.

The Alazami syndrome has been associated with loss of 7SK

function as well as reduced telomerase activity. Because the

loss of 7SK leads to hyper-proliferation and cancer, it has been

questioned whether 7SK alone is the cause of the Alazami syn-

drome, which is characterized by primordial dwarfism. More-

over, the involvement of telomerase is also unclear, because

we did not observe changes in telomerase RNA levels in the pa-

tient samples that we investigated (data not shown). Based on

our study, we propose that loss of U6 20-O-methylation and

thus changes in splicing fidelity or robustness contribute to the

polymorphic phenotype of the Alazami syndrome. Interestingly,

it was reported that mutations in the minor spliceosome can

also lead to primordial dwarfism (Verma et al., 2018), a pheno-

type that is characteristic for Alazami patients. This model is

further underscored by our observation that many genes that

are associatedwith the clinical symptoms of the Alazami disease

are also alternatively spliced in Alazami patients (Figure 7C).

Taken together, these findings are in agreement with the model

that the Alazami syndrome belongs to the growing group of

splicing diseases.
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B Generation of stable FH-LARP7 cell lines
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B Sequencing from human samples

B RNA sequencing and analysis

B Small RNA sequencing
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Figure 7. Reduced U6 snRNA 20-O-Methylation and Changes in Alternative Splicing in Alazami Syndrome Patients

(A) RiboMeth-seq analysis of U6 snRNA isolated from the B-LCLs derived from a healthy parent or a child homozygous for the Alazami-syndrome-associated

LARP7 c.1669-1_1671del variant (upper two plots). The coverage of the termini of the sequenced fragments is expressed in log2 of mean normalized counts. The

log2FC for each position and the resulting methylation scores are depicted in the lower graph and heatmaps. Known 20-O-methylated positions are indicated

on top.

(B) Poly(A) RNA from the B-LCLs derived from an Alazami syndrome child and the healthy father were used for RNA-seq experiments, and differences in splicing

patterns were determined according to Figure 5C.

(C) Genes affected by differential splice site usage as determined in (B) were analyzed for their association with human diseases. Genes and diseases, which

share similar clinical symptoms with the Alazami phenotype, are summarized in the table.

(D) Effects on the alternative splicing of PARP6 upon stable expression of FH-LARP7 WT or FH-LARP7 W€urzburg variant in LARP7 knockout cell lines. Protein

levels were assayed by western blotting with the indicated antibodies. Cell lysates prepared from HEK T-REx Flp-In WT (lane 1), HEK T-REx Flp-In LARP7

knockout (lane 2), and from the two FH-LARP7 overexpression cell lines (lanes 3 and 4) were used (upper panels). Radioactive RT-PCRs were performed as in

Figure 5E with RNA obtained from the corresponding samples (lanes 5–8). The autoradiogram of a representative gel is shown in the central panel with a

schematic representation of the affected splice pattern. The signals indicated with asterisks were quantified from three biological replicates, and the ratio be-

tween retained or skipped exon events was determined with error bars depicting ± SD (lower panel).

See also Figure S7.
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LARP7 full-length wildtype (human) Uchikawa et al., 2015 N/A

LARP7 F44A (human) This paper N/A

LARP7 1-208 (human) Uchikawa et al., 2015 N/A
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variant (human)

This paper N/A

T7 RNA polymerase Our laboratory N/A
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RiboLock RNase inhibitor Thermo Scientific Cat#EO0384
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Truncated T4 RNA ligase 2 Our laboratory N/A
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NuPAGE 4-12% Bis-Tris protein gels Invitrogen Cat#NP0321PK2

Deposited Data

Raw and analyzed deep-sequencing data This paper GEO: GSE126911

LARP7-enriched snoRNAs This paper Table S1

Mass spectrometric analysis of FH-LARP7

associated proteins

This paper Table S2

Alternative splicing events in LARP7 knockout cells This paper Table S3

LARP7 mutation associated with Alazami syndrome This paper ClinVar: RCV000678485.1

ENCODE CLIP dataset K562 LARP7 Davis et al., 2018 ENCSR456KXI

ENCODE CLIP dataset K562 mock Davis et al., 2018 ENCSR863ZGZ

ENCODE CLIP dataset HepG2 LARP7 Davis et al., 2018 ENCSR961OKA

ENCODE CLIP dataset HepG2 mock Davis et al., 2018 ENCSR095SIV

Annotations for the human reference genome

(assembly GRCh38.p12) Ensembl release 92

Zerbino et al., 2018 http://apr2018.archive.ensembl.org/index.html;

RRID: SCR_006773

Annotations for RepeatMasker, tRNAs and snaRs

from UCSC table browser hg38 (February 2018)

Karolchik et al., 2003 https://genome.ucsc.edu/cgi-bin/hgTables;

RRID: SCR_005780

Annotation for human snoRNA from snoRNA atlas Jorjani et al., 2016 http://snoatlas.bioinf.uni-leipzig.de/

Annotation for snoRNA of different species

from rfam 14.1

Kalvari et al., 2018 http://rfam.xfam.org/; RRID: SCR_007891

Online Mendelian Inheritance in Man (OMIM),

catalog of Human Genes and Genetic Disorders

(June 2019)

McKusick-Nathans Institute

of Genetic Medicine,

Johns Hopkins University

https://www.omim.org/; RRID: SCR_006437

DisGeNET, collections of genes and variants

associated to human diseases

Piñero et al., 2017 https://www.disgenet.org/; RRID: SCR_006178

UniProtKB/Swiss-Prot Homo sapiens database Breuza et al., 2016 https://www.uniprot.org/; RRID: SCR_004426

Experimental Models: Cell Lines

Human: HEK293T Our laboratory RRID: CVCL_0063

Human: HEK293T LARP7 �/� clone 1-11 This paper N/A

Human: HEK293T LARP7 �/� clone 3-6 This paper N/A
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Human: HEK293T SNORD8 + SNORD9 �/� This paper N/A

Human: Flp-In T-REx 293 cell line Invitrogen Cat#R78007; RRID: CVCL_U427

Human: HEK293 T-REx FH-LARP7 This paper N/A

Human: HEK293 T-REx Flp/In LARP7 �/� This paper N/A

Human: HEK293 T-REx LARP7 �/� + FH-LARP7 WT This paper N/A

Human: HEK293 T-REx LARP7�/� + FH-LARP7 F44A This paper N/A

Human: HEK293 T-REx LARP7 �/� + FH-LARP7

Y483A

This paper N/A

Human: HEK293 T-REx LARP7 �/� + FH-

LARP7 DRRM2

This paper N/A

Human: HEK293 T-REx LARP7 �/� + FH-LARP7

W€urzburg variant

This paper N/A

Human: Raji Laboratory of Friedrich A.

Gr€asser

RRID: CVCL_0511

Oligonucleotides

LARP7 siRNA pool (siPool) siTOOLs Biotech N/A

Control siRNA pool (siPool) siTOOLs Biotech N/A

Biotinylated DNA oligonucleotide sequences for

RNA pulldowns

metabion international Table S4

Northern blot probe sequences metabion international Table S4

DNA oligonucleotide sequences for cloning,

mutagenesis and DNA amplifications in general

metabion international Eurofins

Genomics

Table S4

DNA oligonucleotide sequences for RT-PCRs

and qRT-PCRs

metabion international Eurofins

Genomics

Table S4

Recombinant DNA

pET28b + 6xHis-LARP7 Markert et al., 2008 N/A

pnEA + 6xHis-LARP7 WT Uchikawa et al., 2015 N/A

pnEA + 6xHis-LARP7 F44A This paper N/A

pnEA + 6xHis-LARP7 1-208 Uchikawa et al., 2015 N/A

pnEA + 6xHis-LARP7 C-terminal domain 445-582 This paper N/A

pnEA + 6xHis-LARP7 C-terminal domain 445-571

W€urzburg variant

This paper N/A

pSpCas9(BB)-2A-Puro (PX459) V2.0 Ran et al., 2013 Addgene plasmid #62988

PX459 V2.0 + LARP7-1 This paper N/A

PX459 V2.0 + LARP7-2 This paper N/A

PX459 V2.0 + SNORD8 up + down This paper N/A

PX459 V2.0 + SNORD9 up + down This paper N/A

pOG44 Invitrogen Cat#V600520

pcDNA5/FRT/TO modified with N-terminal FH-tag Invitrogen Cat#V652020

pcDNA5/FRT/TO + FH-LARP7 WT This paper N/A

pcDNA5/FRT/TO + FH-LARP7 F44A This paper N/A

pcDNA5/FRT/TO + FH-LARP7 Y483A This paper N/A

pcDNA5/FRT/TO + FH-LARP7 DRRM2 This paper N/A

pcDNA5/FRT/TO + FH-LARP7 W€urzburg variant This paper N/A

pGEM-T-Easy Promega Cat#A1360

pIRES-VP5 (VP5) modified Meister et al., 2004 N/A

VP5 + FH-La Hasler et al., 2016 N/A

VP5 + FH-LARP7 WT This paper N/A

VP5 + FH-LARP7 F44A This paper N/A

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gunter

Meister (gunter.meister@vkl.uni-regensburg.de). All unique/stable reagents generated in this study are available from the Lead Con-

tact with a completed Materials Transfer Agreement. Transfer of the B-LCLs underlies the additional approval from the Ethics Com-

mittee of the University of W€urzburg.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient recruitment and clinical report
The nine year old daughter and the two year old son of healthy Arabian consanguineous parents were referred for genetic counseling

because both children show psychomotor retardation. The mother reported that the girl was born after an uncomplicated pregnancy

via Caesarean section in Yemen. Several neonatal problems occurred like hypotonia and impaired suction whereas deglutition

seemed to be unaffected. At the age of three, the girl’s family immigrated to Germany and a submucous cleft palate was diagnosed

and was surgically corrected. At the age of seven the girl presented with short stature (107 cm,�3.13 standard deviation), low weight

(16.5 kg, �2.72 standard deviation) and a head circumference of 49.5 cm. Moreover, she showed developmental and speech delay,

scoliosis and hypertelorism. Her parents noticed episodes of rigidity and anxiety not due to external stimuli. An EEG revealed no path-

ological features. A cranial MRT has not been performed so far. A chromosome analysis as well as an array comparative genomic

hybridization (CGH) analysis were performed and both exhibited no pathological findings.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

VP5 + FH-LARP7 D54A F56A This paper N/A

VP5 + FH-LARP7 Y128A E130A This paper N/A

VP5 + FH-LARP7 Y483A This paper N/A

VP5 + FH-LARP7 DLa module This paper N/A

VP5 + FH-LARP7 2-561 This paper N/A

VP5 + FH-LARP7 DRRM2 This paper N/A

pSUPER modified OligoEngine Cat#VEC-PBS-0002

pSUPER + U6 snRNA This paper N/A

pcDNA3.1 (+) modified multiple cloning site Laboratory of Jan Medenbach N/A

pcDNA3.1 + SNORD8 WT This paper N/A

pcDNA3.1 + SNORD8 motif mutant This paper N/A

pcDNA3.1 + SNORD8 target mutant This paper N/A

pcDNA3.1 + SNORD8 motif+target mutant This paper N/A

Software and Algorithms

Discriminative regular expression motif elicitation

(DREME)

Bailey, 2011 http://meme-suite.org/tools/dreme;

RRID: SCR_016860

GO term enrichment analysis (PANTHER) Mi et al., 2017 http://amigo.geneontology.org/rte;

RRID: SCR_004869

CRAPome Mellacheruvu et al., 2013 http://www.crapome.org/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR;

RRID: SCR_015899

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml; RRID: SCR_016368

Salmon Patro et al., 2017 https://github.com/COMBINE-lab/Salmon

Bioconductor Huber et al., 2015 http://www.bioconductor.org/

R Project R Core Team, 2018 https://www.r-project.org/; RRID: SCR_001905

Vast-tools Tapial et al., 2017 https://github.com/vastgroup/vast-tools;

Mascot 2.5.1 Matrix Science http://www.matrixscience.com/server.html;

RRID: SCR_014322

Biopython Cock et al., 2009 https://biopython.org; RRID: SCR_007173
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The brother was delivered at 36+3 weeks of gestation and his birth weight was 1,740 g. He was seen at the age of 2 years and

presented the following clinical features: hypertelorism, strabism, dextroversio cordis, pes adductus et supinatus and a leftsidedmul-

ticystic dysplastic degeneration of the kidney. In addition, psychomotor retardation was evident. No cytogenetic analyses were per-

formed on this patient.

Blood samples and cell lines were obtained with informed consent of the parents who allowed chromosome analyses, exome

sequencing and Sanger sequencing procedures in the interests of the affected patients, who were minors. The study was approved

by the Ethics Committee of the University of W€urzburg.

Generation of B-lymphoblastoid cell lines
Lymphoblastoid cell lines (LCLs) were established from Ficoll-isolated blood lymphocytes via transformation by Epstein-Barr virus as

described previously (Neitzel, 1986) and maintained in RPMI-1640 with L-glutamine (Sigma-Aldrich) supplemented with 15% fetal

bovine serum (Sigma-Aldrich). The cell line AASD72 was established from the father (at the age of 46 years) and the Alazami-patient

derived cell line AAAS14 from the son (at the age of 4 years). The genotypes and the resulting sequences for the affected splice site

within the LARP7 mRNA were confirmed by PCR-amplification from genomic DNA and cDNA respectively using the primers indi-

cated in Table S4. The PCR products were subcloned into the pGEM-T-Easy vector (Promega) according to the manufacturer’s in-

structions and were subsequently analyzed by Sanger sequencing.

Generation of knockout cell lines
LARP7 knockout cell lines were generated fromHEK293 and Flp-In T-REx 293 (Invitrogen) parental cell lines by CRISPR/Cas9-medi-

ated genome editing. The HEK293 LARP7�/� clones 1-11 and 3-6 were generated using two independent guide RNAs (contained in

PX459 V2.0 + LARP7-1 and PX459 V2.0 + LARP7-2 respectively). The HEK293 T-REx Flp/In LARP7�/� cell line was generated using

the PX459 V2.0 + LARP7-1 construct. Two consecutive rounds of transfections with the indicated plasmids and puromycin selection

were performed before singularizing cells in 96-well plates. The single clones were allowed to recover and were expanded into 6-well

plates until confluency was reached. For each clonal line, half of the well was used to generate cryopreserved stocks, while to other

half was used to screen for LARP7 knockout clones by western blotting.

For the generation of the HEK293 SNORD8 + SNORD9 double knockout cell line, single SNORD8 knockout cell lines were gener-

ated first using PX459 V2.0 + SNORD8 up + down. One of the positive clonal cell lines was later used to delete SNORD9 using PX459

V2.0 + SNORD9 up + down. Successful deletion of the snoRNAs was first screened by PCR amplification of the targeted genomic

region (the primers used are listed in Table S4) and was subsequently confirmed by Northern blot analyses.

Generation of stable FH-LARP7 cell lines
Stable inducible cell lines were generated using the Flp-In T-REx 293 system (Invitrogen) according to the manufacturer’s instruc-

tions. In short, either the Flp-In T-REx 293 cell line or the LARP7 knockout cell line derived from it, were seeded into 12-well plates

and were then co-transfected with the plasmids pOG44 and pcDNA5-FRT/TO in a 9:1 ratio. The latter plasmid contained the FH-

LARP7 construct intended to be integrated into the genome. After 48 h, cells were transferred to a cell culture dish (100mmdiameter)

and selection of stable clones was achieved by addition of 200 mg/mL hygromycin B (GIBCO) to the medium in addition to 5 mg/mL

blasticidin (GIBCO). Single colonies were picked approximately two weeks later. Following expansion, single clones were tested for

the expression of the FH-LARP7 construct upon induction with tetracycline (1 mg/mL).

Other cell lines and cell culture conditions
The HEK293T cell line (female, embryonic kidney) and its derived LARP7 knockout cell lines (clones 1-11 and 3-6) were cultivated in

Dulbecco’s modified Eagle’s medium (DMEM; Sigma). The Raji cell line (male, 11 years old, Epstein-Barr virus-related Burkitt lym-

phoma) was cultivated in RPMI-1640medium (Sigma). Bothmedia were supplemented with 10% fetal bovine serum (Sigma-Aldrich),

and 100 U/mL penicillin, and 100mg/mL streptomycin (Sigma). The DMEMmedium used for themaintenance of the Flp-In T-REx 293

cell line (female, embryonic kidney) (Invitrogen) and its derived HEK293 T-REx Flp/In LARP7 knockout cell line was further supple-

mented with 100 mg/mL zeocin and 5 mg/mL blasticidin (GIBCO). The HEK293 T-REx FH-LARP7 cell line and the HEK293 T-REx

Flp/In LARP7 knockout cell lines stably expressing the different FH-LARP7 variants were maintained DMEM supplemented with

5 mg/mL blasticidin (GIBCO) and 100 mg/mL hygromycin B (GIBCO). All cells were grown in high-humidity incubators at 5% (v/v)

CO2 and 37�C. Heat shocks were performed in 6-well plates sealed with parafilm and incubated in a pre-warmed water bath for

2 hours at 40�C.

METHOD DETAILS

Sequencing from human samples
Genomic DNA was extracted from peripheral blood leukocytes of both index patients and of the parents using standard protocols.

Whole exome sequencing was performed only in the girl. Her genomic DNA was amplified with the Nextera Library Prep Kit (Illumina)

and Nextera xGen Exome Research Panel (IDT). Sequencing was done on a NextSeq desktop sequencer (Illumina). Data were

analyzed with GensearchNGS (PhenoSystems SA) and Alamut Visual (Interactive Biosoftware) by using a phenotype-based
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approach for variant filtering. A homozygous variant in the LARP7 gene (NM_016648.3) was identified: c.1669-1_1671del. This variant

is reported in the gnomAD population databases (https://gnomad.broadinstitute.org) in five heterozygotes (MAF < 0.01%), but not in

homozygous state. The same variant is deposited in dbSNP (https://www.ncbi.nlm.nih.gov/SNP/) under the accession rs778909076.

Sanger sequencing of the brother and of the parents confirmed autosomal recessive inheritance and segregation of the identified

variant.

RNA sequencing and analysis
For the generation of RNA-seq libraries the quality of the starting material was assayed on a TapeStation 4200 (Agilent Technologies)

device. For none of the samples the RINe value was below 9.0. Two biological replicates were used per condition.

For the analyses shown in Figures 5A and 5C and Figure S6A, total RNA from HEK293 wild-type and LARP7 knockout (clone 1-11)

cells was extracted using the TRIzol reagent (Invitrogen) and libraries were prepared with the Ovation SoLo RNA-seq system (NuGEN

Technologies) according to the manufacturer’s instructions. Libraries were sequenced at the Biomedical Sequencing Facility of the

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (Vienna, Austria) using the Ovation SoLo

Custom R1 primer included in the Ovation SoLo RNA-seq kit.

For the analyses shown in Figures S6C and S6D, RNAwas extracted fromheat shocked LARP7 knockout (clones 1-11 and 3-6) and

WTHEK293 cells with the RNeasyMini Kit (QIAGEN) including the shredding step via QIAshredder columns (QIAGEN) and the DNase

digestion step.

RNA from the B-LCL cell lines AAAS14 and AASD72 was isolated by the same procedure. In these cases, libraries of polyA+-

selected RNA were prepared with the Universal Plus mRNA-Seq Kit (NuGEN Technologies) according to the manufacturer’s instruc-

tions. Sequencing was performed according to standard procedures at the Biomedical Sequencing Facility of the CeMM Research

Center for Molecular Medicine of the Austrian Academy of Sciences (Vienna, Austria).

RNA-Seq data was mapped to ENSEMBL human genome ver. hg38 with STAR aligner (Dobin et al., 2013). Genes and transcript

expression levels were quantified from these pre-computed alignments with the salmon tool (Patro et al., 2017). Differential gene

expression analysis was performed with edgeR Bioconductor package using a well-described workflow (Love et al., 2018). Genes

with FDR < 0.05were considered significantly differentially expressed. The vast-tools analysis workflow (Tapial et al., 2017) was used

to assess alternative splicing events by computing the Percent Spliced In (PSI) scores, and their statistical significancewas evaluated

with the additional ‘diff’ module (Han et al., 2017). Events that passed a minimum read coverage (defined in https://github.com/

vastgroup/vast-tools#combine-output-format) and for which the probability of a PSI difference of at least 0.05 (MV value) between

conditions was 0.9 or higher were called as differentially spliced. To determine whether specific types of splicing events preferentially

occurred in the data, we calculated p values for the enrichment from hypergeometric distributions, where the background set of

events was composed of all events that passed the minimum quality score, irrespective of their statistical significance, and the fore-

ground was the set of events that were considered significant (defined above).

Genes identified to be differentially spliced in the B-LCL RNA-seq data were further analyzed by searching the Online Mendelian

Inheritance in Man (OMIM) database for associated diseases. Information regarding the clinical symptoms of the resulting diseases

was obtained from the OMIM and the DisGeNET databases and was manually compared to the phenotypes reported for patients

diagnosed for the Alazami syndrome.

Small RNA sequencing
Small RNA libraries were generated from RNAs co-purifying with endogenous LARP7 by immunoprecipitation as well as from total

RNA isolated with TRIzol reagent (Invitrogen) from HEK293 cell lysate. Truncated T4 RNA Ligase 2 was used to ligate the RNAs to an

adenylated 30 adaptor [50-App-TGGAATTCTCGGGTGCCAAGG-(C7-amino)-30]. The ligation of the 50 RNA adaptor (50-GUUCAGA

GUUCUACAGUCCGACGAUC-30) was performed with T4 RNA Ligase 1 (New England Biolabs). The resulting ligation products

were reverse-transcribed using the SuperScriptIII first strand synthesis super mix (Invitrogen), followed by a PCR amplification,

wherein index sequences and other Illumina-specific sequences were added. The samples were resolved on a 6% polyacrylamide

(acrylamid/bisacrylamid 19:1) urea gel (Carl Roth) and the bands corresponding to PCR amplification products containing inserts

were cut out and eluted overnight in 300 mM NaCl and 2 mM EDTA. The supernatants containing the libraries were collected using

Costar Spin-X filter tubes (Corning), precipitated with ethanol overnight at�20�C, pelleted and dissolved in water. Bioinformatic anal-

ysis of the sequenced reads was conducted similarly to the analysis of the ENCODE CLIP datasets.

Sequencing of fractionated RNAs of different length was achieved by resolving the sample on a polyacrylamide (acrylamid/bisa-

crylamid 19:1) urea gel (Carl Roth). RNAs were visualized under UV-light with the SYBR gold nucleic acid gel stain (Invitrogen). The

RNA contained in excised gel material was eluted overnight at 4�C in 300 mM NaCl and 2 mM EDTA and was subsequently precip-

itated. The generation of libraries for sequencing occurred as described above, with the exception that the RNAs were first treated

with the tobacco acid pyrophosphatase (Epicenter) to remove RNA cap structures and allow the ligation of the 50 RNA adaptor.

Pulldown of RNAs for RiboMeth-Seq analysis
The purification of spliceosomal snRNAs for RiboMeth-Seq analysis occurred by pulldowns with complementary biotinylated oligo-

nucleotides and magnetic streptavidin beads (Dynabeads M-270, Invitrogen). Therefore, total RNA was extracted with the TRIzol re-

agent (Invitrogen) and 40-75 mg RNA - in the case of RNA isolated from human blood sample 3-5 mg - were diluted in 10 mM Tris
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pH 7.5, 0.5 M LiCl, 1 mM EDTA. The complementary oligonucleotide mixture (Table S4) was added to the samples, which were then

denatured at 95�C for 45 s before allowing annealing of the oligonucleotides to the target RNAs by incubation at 37�C for 20 min.

Meanwhile, the magnetic streptavidin beads were washed with wash buffer (20 mM Tris pH 7.5, 1 M LiCl, 2 mM EDTA and 0.1%

Tween-20) and were then resuspended in binding buffer (20 mM Tris pH 7.5, 1 M LiCl, 2 mM EDTA) in an equal volume as the anneal-

ing reaction. The samples were mixed with the resuspended magnetic beads and binding of the biotinylated oligonucleotides to the

streptavidin beads was allowed to occur at 20�C under constant shaking. Following this incubation step, the beads were collected

with a magnetic rack and were washed three times with wash buffer. The elution of the bound RNA was performed by incubation of

the beads for 2 min at 80�C in pre-warmed buffer consisting of 10 mM Tris pH 7.5 and 1 mM EDTA. The whole pulldown procedure

consisting of denaturation, annealing of biotinylated oligonucleotides and pulldown with fresh magnetic streptavidin beads was

repeated for a second timewith the eluate of the first pulldown. This resulted in higher purity of the purified target RNAs. Finally, TRIzol

reagent (Invitrogen) was added to the last eluate and the RNA was extracted.

RiboMeth-sequencing and data analysis
RiboMeth-sequencing experiments were performed adapting the protocol described in Birkedal et al. (2015) to the small RNA

sequencing protocol described above. In brief, RNA isolated from total RNA samples by antisense oligonucleotide pulldowns was

fragmented by alkaline hydrolysis in 50 mM Na2CO3 pH 9.0 for 50-55 min at 90�C. RNA fragments were resolved on polyacrylamide

(acrylamid/bisacrylamid 19:1) urea gels (Carl Roth) together with synthetic RNA size markers of 21 nt and 35 nt length loaded on

different lanes. RNAs were visualized under UV-light by SYBR gold (Invitrogen) staining and gel slices containing RNA fragments

in the range between 21 nt and 35 nt were excised. Upon elution and precipitation of the fragments, the RNA was treated with

0.5 U/mL calf intestinal alkaline phosphatase (New England Biolabs) for 1 h at 37�C. Dephosphorylated RNAs were purified by

phenol/chloroform/isoamyl alcohol extraction followed by precipitation. Phosphorylation of the 50 ends occurred with the T4 polynu-

cleotide kinase (Thermo Scientific), followed by heat-inactivation of the enzyme, removal of unincorporated ATPs via Illustra

MicroSpin G-25 gel filtration columns (GE Healthcare), phenol/chloroform/isoamyl alcohol extraction of the RNA fragments and pre-

cipitation. The generation of small RNA sequencing libraries from the products obtained by this strategy was conducted as described

in a previous section with the exception that the fragments ligated to the adenylated 30 adaptor were gel purified prior to ligation to the

50 RNA adaptor.

For data analysis, adaptor trimming was performed using cutadapt with the parameters–overlap = 8–minimum-length = 15–

discard-untrimmed. Mapping with Bowtie2 (Langmead and Salzberg, 2012) and further analysis was carried out according to

Birkedal et al. (2015) using R (R Core Team, 2018, https://www.R-project.org) and the Bioconductor (Huber et al., 2015) packages

ShortRead and ROCR. For plotting the Bioconductor package Gviz was used. A Matthews correlation analysis was carried out with

known 20-O-methylation sites of the U6 snRNA, giving Score A as the score with the highest area under curve (data not shown). Fold

change was calculated using mean normalized counts according to the DESeq2 normalization.

Databases for annotation of sequencing data
The following annotation databases were used and were processed as described below. Biotypes were adopted from Ensembl hsa

GRCh38.92 (Zerbino et al., 2018), RepeatMasker, tRNA and snaR annotations were retrieved from the UCSC table browser (Karol-

chik et al., 2003) hg38 (status February 2018).

RRNA were combined from Ensembl and RepeatMasker annotations and additional rRNA annotations were retrieved from NCBI

GRCh38 (status July 2018).

SnoRNA annotations originated from snoRNA atlas (status July 2018) (Jorjani et al., 2016). The category ‘‘Pol III’’ was created by

combining the following annotations: 5S-rRNA from Ensembl and RepeatMasker, tRNA from RepeatMasker and UCSC, U6, 7SL,

7SK and scRNA from Ensembl and RepeatMasker, vaultRNA, RMRP and RNaseP_nuc (RPPH1) from Ensembl, and SNAR from

UCSC. Overlapping or multiple annotations were merged together. SnoRNA annotations from snoRNA atlas were converted from

h19 to hg38 coordinates and were combined together with Ensembl snoRNAs. Overlapping and multiple annotations from these

two databases were merged together.

Several subbiotypes from the Ensembl annotations were grouped into the following categories: ‘‘Protein coding,’’ ‘‘Pseudogene,’’

‘‘Long noncoding’’ and ‘‘RepeatMasker.’’ To reduce multiple counting the annotations for small RNAs (i.e., miRNAs, Pol III tran-

scripts, snoRNAs and Pol I rRNAs) were cut out from the remaining annotations with an additional spacer of ten bases.

Analysis of ENCODE CLIP datasets
CLIP datasets generated by the group of Gene Yeo (UCSD, USA) were obtained from the ENCODE portal (Davis et al., 2018). The

mapped files with the following identifiers were downloaded: ENCSR456KXI and ENCSR961OKA (LARP7 CLIP performed respec-

tively in K562 and HepG2 cells) and ENCSR863ZGZ and ENCSR095SIV (corresponding mock control datasets).

Following steps were carried out with R (R Core Team, 2018, https://www.R-project.org) and the Bioconductor (Huber et al., 2015)

packages ShortRead, Biostrings and rtracklayer. The databases described in the previous section were used for annotation. Over-

laps between annotation and sequenced reads were counted on exon level with at least one base overlap. For plotting, the R pack-

ages ggplot2, cowplot and VennDiagram were used. Differential analysis was carried out with the Bioconductor package DESeq2

(significant targets: fold change R 4, p-adjust % 0.05). Heatmaps were plotted with the R package pheatmap.
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Analysis of small RNA sequencing datasets
Adaptor trimming was performed using cutadapt with the parameters–overlap = 5–minimum-length = 16. Mapping was carried out

using Bowtie2 (Langmead and Salzberg, 2012) with standard parameters. Annotation and counting was performed as described in

the previous section. The counts were normalized according to DESeq2 normalization. Due to the lack of replicates, targets were

called regulated with a fold change of normalized expressionR 4 and a normalized expression value of 10 in at least one condition.

Sequence analysis of U6-specific snoRNAs
The database Rfam 14.1 (Kalvari et al., 2018) was used to compile sequence sets for the detection of a conservedmotif in U6-specific

C/D box snoRNAs. The file family.txtwas downloaded from the Rfam FTP-server and was filtered for the search term ‘‘CD-box.’’ This

resulted in the list LCD consisting of the names of 475 C/D box snoRNA families. The list LU6 was assembled manually and contained

the names of six U6-specific snoRNA families. The list LCD\U6 contained the names of all C/D box snoRNA families except the U6-

specific snoRNAs. Based on LU6 and LCD\U6, the two sequence sets SU6 (comprising 118 sequences of U6-specific C/D box

snoRNAs) and SCD\U6 (comprising 4,759 sequences of non-U6-specific C/D box snoRNAs) were compiled. The lists consisted of

the seed alignment sequences representing the selected Rfam families. Scripts were programmed in Python using the Biopython

package (Cock et al., 2009).

The detection of discriminative motifs was performed using the Discriminative Regular Expression Motif Elicitation (DREME) algo-

rithm (Bailey, 2011). This tool detects short, ungapped motifs, which are relatively enriched in one sequence set, i.e., SU6, compared

to a second set of control sequences, i.e., SCD\U6. For each of the computedmotifs, statistical significance is determined bymeans of

a Fisher’s exact test. The most significant motif of six nucleotides length resulting from this analysis is shown in Figure 3A.

Plasmids
Expression of FH-tagged protein was achieved from modified pIRES-VP5 (VP5) plasmids (Meister et al., 2004). The open reading

frame (ORF) of human LARP7 was PCR-amplified from cDNA using oligonucleotides LARP7-NotI-F and LARP7-BamHI-R. The

PCR product was digested with NotI and BamHI and was inserted into VP5 generating VP5 + FH-LARP7 WT. The VP5 constructs

encoding the FH-LARP7 mutants F44A, D54A F56A, Y128A E130A and Y483A were created by subcloning LARP7 WT into the

pGEM-T-Easy vector (Promega) using LARP7-NotI-F and LARP7-BamHI-R. Subsequently, mutagenesis PCRs were performed

with the primer pairs LARP7-F44A-F/R, LARP7-D54A-F56A-F/R, LARP7-Y128A-E130A-F/R and LARP7-Y483A-F/R. A positive clone

was used for PCR-amplifications of the mutated sequences using LARP7-NotI-F and LARP7-BamHI-R and subsequent cloning into

VP5 as described above. The primer pairs LARP7-NotI-F and LARP7-dRRM2-BamHI-R, LARP7-NotI-F and LARP7-tr-561-BamHI-R

and LARP7-dLAM-Not-F and LARP7-BamHI-R were used to amplify and clone the LARP7 truncations DRRM2, 2-561 and DLamod-

ule into VP5 via NotI and BamHI restriction digest. The VP5 + FH-La plasmid has been described in Hasler et al. (2016).

The pcDNA5/FRT/TO + FH-LARP7 WT/ F44A / Y483A / DRRM2 plasmids were generated by PCR-amplification of the LARP7

construct from the corresponding VP5 plasmids and ligation into a modified pcDNA5/FRT/TO vector already containing the N-ter-

minal FH-tag and a modified multiple cloning site. The same primers and restriction sites were used as for their VP5 counterparts.

For the generation of the pcDNA5/FRT/TO + FH-LARP7 W€urzburg variant plasmid, the ORF of the LARP7 W€urzburg variant was

PCR-amplified from the cDNA obtained from the blood sample of an Alazami patient using the oligonucleotides LARP7-NotI-F

and LARP7-patient-Bam-R.

The plasmid pnEA + 6xHis-LARP7 F44A used for the purification of the recombinant LARP7 F44A protein was generated by PCR

amplification from VP5 + FH-LARP7 F44A with the primers pnEA-LARP7-NdeI-F and pnEA-LARP7-BamHI-R and cloning into the

pnEA vector via NdeI and BamHI. The C-terminal domain of the LARP7 WT or of the LARP7 W€urzburg variant were PCR-amplified

using the primer pairs pnEA-LARP7-445-NdeI-F and LARP7-BamHI-R or pnEA-LARP7-445-NdeI-F and LARP7-patient-Bam-R,

respectively. The obtained PCR products were cloned via NdeI and BamHI restriction digest into a modified pnEA version carrying

a N-terminal 6xHis-tag. The pSUPER + U6 snRNA plasmid was obtained by amplification of the U6 snRNA from HEK293 genomic

DNA with the primers U6-BglII-F and U6-HindIII-R. The resulting PCR product was then cloned into a modified pSUPER vector via

BglII and HindIII restriction digest.

SNORD8 was expressed from a modified pcDNA3.1 (+) vector containing approximately 600 bp of the SNORD8-encompassing

intronic region of the CHD8 host gene. This was amplified from HEK293 genomic DNA with the primer pair SNORD8-genotyping-

F/R. The resulting PCR product was phosphorylated and was inserted by blunt end ligation into the pcDNA3.1 (+) vector linearized

by EcoRV restriction digest. The pcDNA3.1 + SNORD8motif and target mutants were obtained by mutagenesis PCR with the primer

pairs D8-UAGGG-mut-F/R and D8-target-mut-F/R respectively. The plasmid pcDNA3.1 + SNORD8 motif+target mutant was ob-

tained by mutagenesis PCR of pcDNA3.1 + SNORD8 target mutant with the primer pair D8-UAGGG-mut-F/R.

Genome editing was achieved with the CRISPR/Cas9 system. To this end, guide sequences against the LARP7 gene were de-

signed and ligated into the pSpCas9(BB)-2A-Puro (PX459) V2.0 vector (Ran et al., 2013) created by the Zhang group. This occurred

by annealing and phosphorylation of the complementary oligonucleotide pairs LARP7-S1/AS1 and LARP7-S2/AS2. The annealed

products possessed single-stranded overhangs, which were compatible with the ends of the BbsI-digested PX459 vector. The guide

sequences SNORD8-up-S/AS, SNORD8-down-S/AS, SNORD9-up-S/AS, SNORD9-down-S/AS were cloned similarly into PX459

V2.0. However, snoRNAs were deleted from the genome by directing the Cas9 endonuclease shortly upstream and downstream

of the mature snoRNA sequence. To avoid co-transfection of distinct plasmids, the two independent single-guide RNAs targeting
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the intronic region of the snoRNA host gene were expressed from single plasmids. This was obtained as follows: the whole single-

guide expression unit, including the U6 promoter, was amplified with Xbal-U6-Fw and U6-Rv-KpnI from PX459 V2.0 + SNORD8 up or

from PX459 V2.0 + SNORD9 down. The resulting PCR products were inserted via XbaI and KpnI restriction into PX459 V2.0 +

SNORD8 down and PX459 V2.0 + SNORD9 up, respectively. By that, PX459 V2.0 + SNORD8 up + down and PX459 V2.0 + SNORD9

up + down were obtained.

For the sequences of the oligonucleotides used for cloning, please refer to Table S4.

Transfections
For immunoprecipitations of overexpressed proteins, HEK293 cells were plated and transfected 3-4 h later with calcium phosphate.

Therefore, 10 mg of plasmid DNA for each cell culture dish with a diameter of 15 cmwere used. Cells were harvested after 48 h or 72 h.

Transfections for the generation of knockout cell lines or stable HEK293 T-REx cell lines were performed with Lipofectamine 2000

(Invitrogen) in a 24-well or 12-well format according to the manufacturer’s instructions.

Immunoprecipitations
Binding of rabbit antibodies to 40 mL nProtein A Sepharose bead slurry (GE Healthcare) occurred in 1 mL phosphate buffered saline

(PBS) rotating overnight at 4�C. For anti-FBL immunoprecipitations 6-8 mg antibody (Bethyl Laboratories) for each coupling reaction

and for anti-LSM4 immunoprecipitations 6 mL antibody (Antibody Genie) for each coupling reaction were used. In case of anti-LARP7

(SY7862) or anti-SART3 (1631) immunoprecipitations, beads were incubated with 20 mL serum each. FH-tagged proteins were

precipitated with 30 mL of ANTI-FLAG M2 affinity gel (Sigma-Aldrich).

For each immunoprecipitation reaction, adherent cells were harvested from one to three cell culture dishes (150mm diameter) and

suspension cell lines were collected from three to four T75 flasks. Stable induction of FH-LARP7WT, F44A, Y483A orDRRM2 expres-

sion occurred for 48 h by addition to the growth medium of 1 mg/mL doxycycline. The washed and pelleted cells were lysed on ice in

1.5 mL IP lysis buffer composed of 25 mM Tris pH 7.5, 150 mM KCl, 2 mM EDTA, 1 mM NaF, 0.5% (v/v) NP-40 alternative, 1 mM

dithiothreitol (DTT) and 0.5 mM AEBSF. Clarified lysates were obtained by full-speed centrifugation at 4�C and the protein concen-

tration was determined by a Bradford assay to adjust the volumes of cell lysates used in the downstream applications. Aliquots were

taken, which served as input samples for subsequent western blot and Northern blot analyses. The remaining lysate was transferred

to a fresh tube containing the antibody-coupled beads. Control reactions were performed by incubating lysates with beads only. The

mixtures were incubated under constant rotation for 2-3 h at 4�C. The beads were then transferred to a fresh reaction tube and were

washed four to five times with ice-cold wash buffer [50 mM Tris pH 7.5, 350 mMKCl, 1 mMMgCl2, 0.5% (v/v) NP-40 alternative], and

once with ice-cold PBS. The beads were resuspended in 100 mL PBS and a 20 mL aliquot was taken for western blot analysis. The co-

precipitated RNAs were purified from the remaining beads by performing a digestion with proteinase K (Thermo Scientific) and a

phenol/chloroform extraction. Total RNA was isolated directly from an aliquot of the lysates using the TRIzol reagent (Invitrogen).

The immunoprecipitation of FH-LARP7 used for MS analyses was performed as follows: cells were grown to 90% confluency and

were harvested following tetracycline (1 mg/mL) treatment for 16 h. The cells were lysed on ice for 10 min in buffer containing 50 mM

HEPES pH 7.5, 150 mM NaCl, 2.5 mM MgCl2, 1% NP-40, protease inhibitors and RNase inhibitors. The lysate was passed 6 times

through a 26G needle followed by water bath sonication. After sonication, the lysates were centrifuged for 20 min at 14,000 rpm and

4�C. Equal amounts of total protein lysate from control HEK293 cells and FH-LARP7 overexpressing cells were taken for immuno-

precipitations. The pre-equilibrated ANTI-FLAGM2 affinity gel (Sigma-Aldrich) was incubated with the lysates for 3 h on a head-over-

tail rotor at 4�C. After incubation, beads were collected and were washed three times with washing buffer containing 50 mM HEPES

pH 7.5, 300mMNaCl and 2.5mMMgCl2, followed by the last wash using 1 x PBS. FH-LARP7 and the interacting proteinswere eluted

using 200 mg/mL 3x FLAG peptide (Sigma-Aldrich) in PBS.

Synthesis of cDNA and quantitative PCR
cDNA synthesis was carried out using the first strand cDNA synthesis kit (Thermo Scientific), 1 mg of total RNA and random hexamer

primers (for RT-PCRs used for the validation of alternative splicing) or oligo(dT)18 primers (for other applications). For qPCRs, cDNA

was diluted 1:10 and thereof 2 mL per sample were mixed with 10 pmol each of forward and reverse primer (Table S4) and 10 mL of

SsoFast EvaGreen supermix (Bio-Rad) in a total volume of 20 mL.Measurements were performed on aCFX96Real-Time System (Bio-

Rad). The error bars display ± standard deviations of the normalized signals from three technical replicates.

Protein expression and purification
For immunizations, N-terminally 6xHis-tagged human LARP7 was expressed in bacterial cells from the pET28b vector described in

Markert et al. (2008). Induction occurredwith 0.5mM IPTG and cells were incubated at 30�Covernight. Bacteria were then harvested,

resuspended in buffer containing 50mMHEPES pH 7.5, 20mMNaCl, 25mM imidazole and 5mM2-mercaptoethanol and cocktail of

protease inhibitors. The resuspended cells were sonicated and centrifuged at 45,000 rpm at 4�C. The clarified lysate was incubated

over pre-equilibrated Ni-NTA resin. The incubated beads were collected, washed and the bound protein was eluted in buffer con-

taining 50 mM HEPES pH 7.5, 200 mM NaCl, 250 mM imidazole and 5 mM 2-mercaptoethanol. The eluted 6xHis-LARPP7 protein

was dialyzed in PBS.
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The expression of recombinant LARP7 wild-type, F44A mutant and LARP7 1-208 proteins as well as the C-terminal domain con-

structs used for EMSA experiments occurred in E. coli Rosetta (DE3) from the pnEA vector, which is derived from pET15. Full-length

proteins had a 6xHis-tag at their C terminus, while the LARP7 1-208 and the LARP7 C-terminal domain constructs were tagged at the

N terminus. The purifications were performed as described in Uchikawa et al. (2015). In short, upon induction with 1 mM IPTG (for

4 hours at 28�C for the domains or overnight at 20�C for the full-length versions), cells were lysed by sonication in buffer containing

50 mM Tris pH 7.6, 500 mM NaCl, 5 mMMgCl2 and 1 mM DTT. The recombinant protein variants were purified by nickel affinity and

were eluted with lysis buffer containing 300 mM imidazole. Removal of the tag by TEV protease occurred during dialysis in 20 mM

HEPES pH 7.2, 500 mMNaCl and 1 mMDTT. In the case of the LARP7 truncations, the excised tag was removed by a second nickel

affinity purification. The proteins were then subjected to chromatography on heparin Hiload to reach a high degree of homogeneity.

Fractions containing LARP7 variants were pooled, and concentrated (in the 300 mM range), supplemented with 10% glycerol and

flash-frozen in liquid nitrogen and stored at �80�C. For the full-length versions, proteins were directly loaded on the heparin column

after cleavage with the TEV protease without the second nickel affinity purification. The collected fractions were concentrated (in the

50 mM range) and dialyzed overnight in 20 mM HEPES pH 7.2, 500 mM NaCl 2 mM DTT and 10% glycerol before flash-freezing.

Generation of polyclonal antibodies
Immunization of two rabbits with N-terminally 6xHis-tagged human LARP7 protein was performed by Eurogentec. The anti-LARP7

serum SY7862 was used for immunoprecipitations and the serum SY7863 was used for the detection of LARP7 by western blotting.

In vitro transcription of RNA
The templates for the in vitro transcription of the U6 snRNA or of the SNORD8 snoRNA were PCR amplified respectively from

pSUPER + U6 snRNA with the primer pair T7-U6-F and U6-ivt-R and from pcDNA3.1 + SNORD8 WT with the primer pairs T7-

SNORD8-F and SNORD8-ivt-R (for sequences refer to Table S4). By that, the T7 promoter sequence was added upstream of the

sequences intended to be transcribed. In vitro transcriptions were carried out using 0.1 mg/mL T7 RNA polymerase in 30 mM Tris

pH 8.0, 25 mMMgCl2, 10 mM each NTP, 2 mM spermidine, 1 mM DTT, 0.01% Triton X-100 and 2 U/mL thermostable inorganic py-

rophosphatase (New England Biolabs) for 4 h at 37�C. The in vitro transcribed RNA was purified on a 6% polyacrylamide (acrylamid/

bisacrylamid 19:1) urea gel (Carl Roth), eluted in water and precipitated.

32P-labeling of oligonucleotides
DNAoligonucleotides used as probes for Northern blot assays (Table S4) were labeled by incubating 20 pmol of oligonucleotides with

20 mCi of g-32P-ATP (Hartmann Analytic) and 0.5 U/ml T4 Polynucleotide Kinase (PNK) in 1x PNK buffer A (Thermo Scientific) at 37�C
for 30-60min. The reaction was stopped by adding EDTA, pH 8.0, and the labeled oligonucleotides were purified with a G-25 column

(GE Healthcare).

Labeling of 50 pmol primers used for radioactive PCRs was performed accordingly, except that the T4 PNK was heat-inactivated

prior loading of the reaction onto the G-25 column. The flow-through was then precipitated and the labeled oligonucleotide was dis-

solved in water.

For EMSA experiments, in vitro transcribed U6 or SNORD8 RNAs were dephosphorylated prior 32P-labeling by incubating 30 pmol

RNA with 0.1 U/mL FastAP (Thermo Scientific) in 1x PNK buffer A supplemented with 2 U/mL RiboLock RNase inhibitor (Thermo Sci-

entific). The reactions were carried out for 30 min at 37�C and the enzyme was heat-inactivated for 20 min at 75�C. The 32P-labeling

reactions were performed as described above with the exception that the T4 PNK was heat-inactivated for 10 min at 75�C without

addition of EDTA prior gel filtration.

Northern blot
Northern blots were carried out with 10-20 mg of total RNA or RNA isolated from immunoprecipitations. RNAs were separated in 1x

TBE on 6% polyacrylamide (acrylamid/bisacrylamid 19:1) urea gels (Carl Roth). After electrophoresis, the RNA was stained with

ethidium bromide to ensure equal loading of the lanes and to determine the RNA quality. The RNA was then blotted for 45 min at

20 V onto an Amersham Hybond-N membrane (GE Healthcare) and crosslinked to the membrane for 1 h at 50�C using an EDC so-

lution. An additional UV-crosslinking (254 nm, 120 mJoules/cm2) was performed in a UV Stratalinker (Stratagene). The membrane

was incubated overnight at 50�C in hybridization solution (5x SSC, 7% SDS, 20 mM sodium phosphate buffer pH 7.2, 1x Denhardt’s

solution) with a 32P-labeled oligonucleotide antisense to the RNA to detect (Table S4). Themembranewaswashed twicewith 5x SSC,

1%SDS, once with 1x SSC, 1%SDS before being wrapped in saran and exposed to a storage phosphor screen. Before re-probing a

membrane, the hybridized oligonucleotides were removed by incubating the membrane twice with a boiling 0.1%SDS solution for at

least 10 min.

Electromobility shift assay
EMSA experiments were performed according to Uchikawa et al. (2015). In short, 500 pM 32P-labeled RNA were incubated with

various amounts of recombinant proteins in 25mMHEPES pH 7.2, 250mMNaCl, 5mMMgCl2, 2mMDTT, 0.05mg/mL bovine serum

albumin, 0.005%NP-40 alternative, 10%glycerol and 5 mMyeast tRNAs. Complexes were allowed to form for 15min on ice andwere

then resolved on 6% native polyacrylamide gels (acrylamid/bisacrylamid 37.5:1) containing 5% glycerol and 0.5x Tris borate (TB)
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buffer (45 mM Tris [pH 8.0] and 45 mM borate). Electrophoresis was carried out for 2.5 h at 4�C and 230 V in 0.5x TB buffer. The gels

were dried prior exposure for signal detection.

Radioactive RT-PCR
TheRNA used for radioactive RT-PCRswas extractedwith theNucleospin RNA kit (Macherey-Nagel) and an additional digestionwith

DNase I (Thermo Scientific) was performed prior cDNA synthesis.

First, conventional RT-PCRs with the primers indicated in Table S4 were performed, either using the Thermus aquaticus DNA po-

lymerase or the Phusion DNA polymerase (Thermo Scientific) to test the amplification condition and verify the presence of the ex-

pected products.

Radioactive RT-PCRs were performed with one of the two primers end-labeled with 32P as described in a previous section. The

reactions were carried out in a volume of 12.5 mL and contained approximately 125 pmol primers and 0.5 mL cDNA. The splice pat-

terns of PARP6 and SETMAR were analyzed using the Taq DNA polymerase for 20 and 25 amplification cycles respectively. For

KMT2D (MLL2), the Phusion DNA polymerase (Thermo Scientific) was used for 22 amplification cycles. The samples were then

diluted with an equal volume of deionized formamide containing bromophenol blue and xylencyanol, denatured for 3 min at 95�C
and loaded on 5%–6% polyacrylamide (acrylamid/bisacrylamid 19:1) urea gels (Carl Roth). Electrophoresis was performed in 1x

TBE until the bromophenol blue dye migrated approximately 10-18 cm into the gels, which were dried prior exposure. For the rescue

experiments shown in Figure 7D, all cell lines were grown for six days under the presence of 1 mg/mL doxycycline, which was added

freshly every second day.

Detection of radioactive signals
The detection of radioactive signals from Northern blot, radioactive PCR and EMSA assays occurred with storage phosphor screens

which were scanned with the Personal Molecular Imager (Bio-Rad) upon exposure. If indicated, signal intensities were quantified

from three biological replicates using Quantity One Software (version 4.6.9, Bio-Rad). Error bars display ± standard deviations of

the normalized signals.

In vitro pull down of biotinylated snoRNA-U6 snRNA-LARP7 complexes
For pull down experiments, in vitro transcribed SNORD8 RNA was biotinylated at its 30 end using pCp-biotin (Jena Bioscience) and

the T4 RNA Ligase 1 (New England Biolabs) according to the manufacturer’s instructions. The enzyme was heat-inactivated and un-

incorporated pCp-biotin was removed via G-25 gel filtration columns (GE Healthcare). The biotinylated SNORD8 RNA was thermally

refolded and diluted 1:2 with binding buffer (25mMHEPES pH 7.2, 150mMNaCl, 5mMMgCl2, 2mMDTT, 0.05mg/mL bovine serum

albumin and 0.005% NP-40 alternative) prior immobilization on magnetic streptavidin beads (Dynabeads M-270, Invitrogen).

Following 20 min incubation at 20�C under constant shaking (850 rpm), the beads with the bound SNORD8 RNA were collected

with a magnetic rack and were subsequently washed three times with binding buffer.

Approximately 0.3 mMof the immobilized SNORD8 RNAwere incubated with 0.3 mM in vitro transcribed and thermally refolded U6

RNA in the presence or absence of 0.1 mM recombinant LARP7 protein variants. For the experiment shown in the upper panel of

Figure 2F the assembly reaction occurred in a total volume of 50 ml, for the experiment shown in the lower panel of Figure 2F the

volume was increased to 100 ml maintaining the same RNA and protein concentrations. Of note, the critical concentration of recom-

binant LARP7 protein required to discriminate between the characteristics of the different LARP7 variants, was carefully determined

in preceding experiments.

Following assembly of the complexes for 20 min on ice, the beads were collected with a magnetic rack and were washed three

times with wash buffer (25 mM HEPES pH 7.2, 1 M NaCl, 5 mM MgCl2, 2 mM DTT, 0.05 mg/mL bovine serum albumin and

0.005% NP-40 alternative). For Northern blot analyses, the beads were resuspended after the last washing step in 15 ml PBS, incu-

bated for 2 min at 95�C and the RNA was finally extracted using TRIzol reagent (Invitrogen). Samples for western blotting were re-

suspended directly in 1x Laemmli buffer following the last washing step.

Spliceosome assembly/in vitro splicing assay
The nuclear extracts from HEK293 and LARP7 knockout cells for the spliceosome assembly and in vitro splicing assays were pre-

pared as described by Dignam et al. (1983). Briefly, the trypsinized cells were collected after washing twice with PBS. The cells were

resuspended in low-salt buffer containing 10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl2, cocktail of protease inhibitors and

RNase inhibitor. The cells were allowed to swell on ice for 10 min. Then, the cell suspension was passed through the type B pestle

douncer for 12 times. The nuclei were pelleted by centrifugation at 9,500 rpm for 5min at 4�C. The nuclei were again washed with low

salt buffer to remove any cytoplasmic debris. The nuclei were then resuspended in high-salt buffer containing 20mMHEPES pH 7.9,

420 mM NaCl, 1.5 mMMgCl2, 0.2 mM EDTA, 25% glycerol, cocktail of protease inhibitors and RNase inhibitor. The nuclei were ho-

mogenized by passing through a douncer for 20 times and stirring on ice for 40 min. The lysate was centrifuged at 12,300 rpm for

30 min at 4�C to pellet the debris. The supernatant was dialyzed twice in 20 volumes of buffer containing 20 mM HEPES pH 7.9,

100 mM KCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 10% glycerol. Following dialysis, the nuclear lysate was centrifuged at

7,200 rpm for 2 min at 4�C before flash freezing in liquid nitrogen and storing at �80�C.
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Splicing assayswere performed in a reaction volume of 25 mL containing 60%of nuclear extract, 8mMcreatine phosphate, 1.6mM

ATP, 60mMKCl, 12 mMHEPES pH 7.9, 0.12 mMEDTA, 0.3 mMDTT and 12% glycerol. The samples were incubated with 20 counts

of 32P labeled in vitro transcribed MINX pre-mRNA (kind gift from Dr. Elmar Wolf) at 30�C for 0, 5, 15, 30, 60, 90 min and the reaction

was stopped by addition of heparin. Half of the reaction volume was used to analyze the spliceosomal assembly in 2% agarose gels.

For checking the efficiency of splicing, the other half of the reaction volume was treated with Proteinase K and the RNA was isolated

using TRIzol reagent (Invitrogen). The RNA was resolved on 15% polyacrylamide (acrylamid/bisacrylamid 19:1) urea gels.

Fractionation of nuclear extracts by sucrose gradient centrifugation
Six cell culture dishes (150mm diameter) each of HEK293 and LARP7 knockout cell lines were harvested to prepare nuclear extracts

according to Dignam et al. (1983) but with some modifications to the protocol described above. Pelleted cells were resuspended in

five packed cell pellet volumes of low-salt buffer (10 mMHEPES pH 7.9, 10 mM KCl, 1.5 mMMgCl2, 1 mMDTT and 0.5 mM AEBSF).

Following swelling for 15 min on ice, cells were collected by low-speed centrifugation and were resuspended in low-salt buffer (two

packed cell pellet volumes). Cells were lysed in a douncer applying several strokes with the type A pestle until 80%–90% of the cells

resulted to be lysed as determinedmicroscopically upon staining with trypan blue. The homogenate was centrifuged at 3,000 rpm for

10 min at 4�C and the cytoplasmic extract was discarded. The pellet containing the intact nuclei was washed 3 to 4 times with two

packed cell pellet volumes of low-salt buffer andwas then resuspended in 2/3 volume of the original packed cell pellet high-salt buffer

(20mMHEPES pH7.9, 420mMKCl, 1.5mMMgCl2, 0.2mMEDTA, 5%glycerol, 1mMDTT and 0.5mMAEBSF). The suspensionwas

transferred to a douncer and the nuclei were homogenized by several strokes with a type B pestle. Nuclear extracts were finally ob-

tained by 20,000xg centrifugation for 30 min at 4�C.
The fractionation of the nuclear extracts was performed on 15% (w/v) to 55% (w/v) sucrose gradients prepared in 25 mM Tris pH

7.5, 150 mM KCl, 2 mM EDTA, 1 mM DTT and 0.5 mM AEBSF. RNPs were resolved according to their sedimentation rate by centri-

fuging the gradients in a SW 40 Ti rotor at 30,000 rpm for 18 h at 4�C. Subsequently, 500 ml fractions were collectedmanually and half

of the volume of each fraction was used for RNA extraction with the TRIzol LS reagent (Invitrogen).

SDS-PAGE and western blotting
Western blot samples weremixedwith 4x Laemmli buffer and incubated at 95�C for 5min. Proteins were separated by SDS-PAGE on

15% gels, for FBL and LSM4western blots, as well as for the Coomassie staining of the recombinant LARP7 C-terminal domain con-

structs. For western blotting of the RNAPol II subunit B1 (POLR2A), protein sampleswere either resolved on aNuPAGE 4%–12%Bis-

Tris protein gel (Invitrogen) using a MOPS buffer system (Figure 5B, left panels and Figure S7D) or by conventional SDS-PAGE on a

6% gel (Figure 5B, right panels). For the detection of all other proteins 10% SDS-gels were used. The primary antibodies used for

immunodetection were diluted as follows: rabbit polyclonal anti-LARP7 (serum SY7863) 1:500, rabbit polyclonal anti-FBL (Bethyl

Laboratories) 1:1,000, rabbit polyclonal anti-LSM4 (Antibody Genie) 1:1,000, rabbit polyclonal anti-CDK9 (Bethyl Laboratories)

1:1,000, rat monoclonal anti-RNA polymerase II subunit B1 (phospho CTD Ser-2) (clone 3E10, Merck Millipore) 1:1000, rabbit poly-

clonal anti-SART3 (serum 1631) 1:500, mousemonoclonal anti-beta actin (clone AC-15, GeneTex) 1:10,000, mousemonoclonal anti-

HA (clone 16B12, Covance Research Products) 1:2,000. Secondary antibodies (goat polyclonal anti-Rabbit IgG IRDye 800CW

conjugated antibody, goat polyclonal anti-Mouse IgG IRDye 800CW conjugated antibody, goat polyclonal anti-Rat IgG IRDye

800CW conjugated antibody and goat anti-Mouse IgG IRDye 680RD conjugated antibody) were obtained from LI-COR Biosciences

and were diluted 1:15,000. Signals were detected with the Odyssey Infrared Imaging System (LI-COR Biosciences).

The specificity of the anti-RNA polymerase II subunit B1 (phosphoCTDSer-2) (clone 3E10,MerckMillipore) antibody was tested by

treating the lysate of HEK293 cells with the lambda protein phosphatase (New England Biolabs) according to the manufacturer’s in-

structions. For this experiment, cells were lysed in PBS supplemented with 0.5% (v/v) NP-40 alternative, 1 mM DTT and

0.5 mM AEBSF.

Coomassie staining of SDS-gels was performed according to standard procedures and gels were scanned with the Odyssey

Infrared Imaging System (LI-COR Biosciences).

Silver stainings were performedwith samples separated on a NuPAGE 4%–12%Bis-Tris protein gels (Invitrogen) usingMES buffer

at 200V. The gel was briefly rinsed with water and was fixed for 1 h at room temperature in 50%methanol and 12% acetic acid con-

taining formaldehyde. After incubation, the gel was washed with 50% ethanol for three times for 20 min each. To sensitize the gel, a

0.02% sodium thiosulfate solution was used. Immediately, the gel was washed with water and was incubated in 0.2% silver nitrate

solution containing formaldehyde. After rinsing the gel with water, it was developed with a 6% anhydrous sodium carbonate solution

containing formaldehyde. The reaction was stopped using 2.5% acetic acid.

Mass spectrometric analysis
Proteins were separated on a 4%–12%NUPAGEBis-Tris gel (Invitrogen) using aMOPS buffer system. The gel was stained with Sim-

ply Blue colloidal Coomassie blue G250 (Invitrogen). For mass spectrometric (MS) analysis of the proteins a gel lane was cut into

consecutive slices. The gel slices were then transferred into 2mL tubes and washed with 50mMNH4HCO3, 50mMNH4HCO3/aceto-

nitrile (3:1) and 50mMNH4HCO3/ acetonitrile (1:1) while shaking gently in an orbital shaker. Gel pieceswere lyophilized after shrinking

by 100% acetonitrile. To block cysteines, reduction with DTT was carried out for 30 min at 57�C followed by an alkylation step with

iodoacetamide for 30 min at room temperature in the dark. Subsequently, gel slices were washed and lyophilized again as described
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above. Proteins were subjected to in gel tryptic digest overnight at 37�C with approximately 2 mg trypsin per 100 mL gel volume

(Trypsin Gold, mass spectrometry grade, Promega). Peptides were eluted twice with 100 mM NH4HCO3 followed by an additional

extraction with 50 mM NH4HCO3 in 50% acetonitrile. Finally, the combined eluates were lyophilized. Prior to LC-MS/MS analysis,

lyophilized peptides were reconstituted in 20 mL of 1% formic acid. Separation of peptides by reversed-phase chromatography

was carried out on an UltiMate 3000 RSLCnano System (Thermo Scientific), which was equipped with a C18 Acclaim Pepmap100

preconcentration column (100 mm i.D.x 20 mm, Thermo Fisher) in front of an Acclaim Pepmap100 C18 nano column (75 mm i.d. 3

250 mm, Thermo Fisher). A linear gradient of 4% to 40% acetonitrile in 0.1% formic acid over 90 min was used to separate peptides

at a flow rate of 300 nl/ min. The LC-system was coupled on-line to a maXis plus UHR-QTOF System (Bruker Daltonics) via a Capti-

veSpray nanoflow electrospray source (Bruker Daltonics). Data-dependent acquisition of MS/MS spectra by CID fragmentation was

performed at a resolution of minimum 60000 for MS and MS/MS scans. The MS spectra rate of the precursor scan was 2 Hz pro-

cessing a mass range between m/z 175 and m/z 2000. Via the Compass 1.7 acquisition and processing software (Bruker Daltonics)

a dynamic method with a fixed cycle time of 3 s and an m/z dependent collision energy adjustment between 34 and 55 eV was

applied. Raw data processing was performed in Data Analysis 4.2 (Bruker Daltonics), and Protein Scape 3.1.3 (Bruker Daltonics)

in connection with Mascot 2.5.1 (Matrix Science) facilitated database searching of the UniProtKB/Swiss-Prot Homo sapiens data-

base (Breuza et al., 2016) (release-2017_09, 20238 entries). Search parameters were as follows: enzyme specificity trypsin with 2

missed cleavage allowed, precursor tolerance 0.02 Da, MS/MS tolerance 0.04 Da, carbamidomethylation or propionamide modifi-

cation of cysteine, oxidation of methionine, deamidation of asparagine and glutamine were set as variable modifications. Protein list

compilation was done using the Protein Extractor function of Protein Scape.

GO term enrichment analysis
For the GO term enrichment analysis MS data were further processed as follows: keratin and immunoglobulin entries were manually

removed, as well as overlapping entries with a ratio of the Mascot peptide ion-score between the FH-LARP7 and control IP datasets

lower than two. Hits with a Mascot peptide ion-score below 100 as well as proteins detected with only one peptide were removed.

The resulting list was cleaned for known contaminants of anti-FLAG immunoprecipitations performed fromHEK293 cell lysates using

the CRAPome (Mellacheruvu et al., 2013) web tool. Entries with a FC_A scores R 1.0 were maintained. The resulting list (Table S2)

was used as input for the GO term enrichment analysis which was performed with the AmiGO2 web tool using the PANTHER over-

representation test (released 2018-11-13), GO ontology database (released 2019-01-01) and Bonferroni correction for multiple

testing (Mi et al., 2017). The GO terms for the category molecular function containing the proteins depicted in Figure S1D were

selected from the top hits represented in the hierarchical output view. These terms were enriched more than ten-fold with a P value <

0.05. The hierarchy served as well to group related GO terms in the gray clouds minimizing redundancies in the proteins shown. FBL

was detected in our MS analysis and is shown in gray within the GO term ‘‘snoRNA binding.’’ This assignment occurred manually,

since FBL is the catalytic subunit of C/D box snoRNPs but is not present in the GO term ‘‘snoRNA binding.’’

QUANTIFICATION AND STATISTICAL ANALYSIS

Please refer to the Figure Legends or the Experimental Model and Subject Details for description of sample size and statistical

analyses.

DATA AND CODE AVAILABILITY

The raw and analyzed sequencing data have been deposited in NCBI’s Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/gds) under the ID codes GEO: GSE126911.

The Alazami-related LARP7 variant has been deposited in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) under ID

code: RCV000678485.1.

e13 Molecular Cell 77, 1014–1031.e1–e13, March 5, 2020



Appendix D: CFIm-mediated alternative polyadenylation remodels

cellular signaling and miRNA biogenesis (Published)



3096–3114 Nucleic Acids Research, 2022, Vol. 50, No. 6 Published online 2 March 2022
https://doi.org/10.1093/nar/gkac114

CFIm-mediated alternative polyadenylation remodels
cellular signaling and miRNA biogenesis
Souvik Ghosh 1, Meric Ataman1,2, Maciej Bak1,2, Anastasiya Börsch1,2,
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ABSTRACT

The mammalian cleavage factor I (CFIm) has been
implicated in alternative polyadenylation (APA) in a
broad range of contexts, from cancers to learning
deficits and parasite infections. To determine how
the CFIm expression levels are translated into these
diverse phenotypes, we carried out a multi-omics
analysis of cell lines in which the CFIm25 (NUDT21)
or CFIm68 (CPSF6) subunits were either repressed
by siRNA-mediated knockdown or over-expressed
from stably integrated constructs. We established
that >800 genes undergo coherent APA in response
to changes in CFIm levels, and they cluster in distinct
functional classes related to protein metabolism. The
activity of the ERK pathway traces the CFIm concen-
tration, and explains some of the fluctuations in cell
growth and metabolism that are observed upon CFIm
perturbations. Furthermore, multiple transcripts en-
coding proteins from the miRNA pathway are targets
of CFIm-dependent APA. This leads to an increased
biogenesis and repressive activity of miRNAs at the
same time as some 3′ UTRs become shorter and pre-
sumably less sensitive to miRNA-mediated repres-
sion. Our study provides a first systematic assess-
ment of a core set of APA targets that respond co-
herently to changes in CFIm protein subunit levels
(CFIm25/CFIm68). We describe the elicited signaling
pathways downstream of CFIm, which improve our
understanding of the key role of CFIm in integrating
RNA processing with other cellular activities.

INTRODUCTION

Most human genes have multiple sites where pre-mRNA 3′
end processing can occur to generate alternative transcript

isoforms in different cell types and conditions (1). Alterna-
tive polyadenylation is a main contributor to the observed
transcriptome diversity (2–5). Consistently, data from The
Cancer Genome Atlas (TCGA) indicate that APA holds the
highest prognostic value among all types of isoform varia-
tion in hepatocellular carcinoma (6).

A large class of APA isoforms are those that differ in the
length of their 3′ untranslated regions (3′ UTRs). Mam-
malian cleavage factor I, a 3′ end processing complex con-
served in multicellular organisms but absent from yeast
(7), is one of the main regulators of 3′ UTR length (8–
10). A CFIm tetramer composed of two 25 kDa subunits
(CFIm25/CPSF5/NUDT21) and two larger subunits of 59
and/or 68 kDa (CFIm59/CPSF7 and CFIm68/CPSF6) as-
sociates with the RNA polymerase II (RNAPII) in the ini-
tial stages of transcription (11). Crosslinking and immuno-
precipitation revealed that within individual genes, the most
prominent peaks of CFIm binding are located in the vicin-
ity of those poly(A) sites (PAS) that are ultimately used for
the maturation of the messenger RNA (mRNA), indicating
that the interaction of CFIm with high-affinity target sites
promotes the 3′ end cleavage (9). These interaction sites are
typically located distally in 3′ UTRs, in regions enriched
in UGUA motifs (9,12). The Fip1 3′ end processing fac-
tor stabilizes the interactions of CFIm with the RNA (12),
while the ubiquitination of the PCF11 component of the 3′
end processing complex by an ectopically activated MAGE-
A11 ubiquitin ligase in cancer leads to the dissociation of
CFIm25 from the complex (13).

The depletion of CFIm25 or CFIm68 subunits of CFIm
leads to systematically shortened 3′ UTRs (9,10), whereas
CFIm59 does not seem to impact the 3′ UTR length
(9,14). The number of reported targets varies between tens
to over a thousand among studies (9,10,15,16). The phe-
notypes observed upon perturbation of CFIm expression
have been attributed to growth regulators in glioblastoma
(15), chromatin-regulatory factors in somatic cell repro-
gramming (16), and metabolic enzymes in the activation
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of hematopoietic stem cells (17). While CFIm has emerged
as an important regulator of cell fate decisions in normal
and pathological contexts, its involvement in cancers is not
fully understood (13,18). Reduced CFIm expression was re-
ported to increase cell proliferation and promote glioblas-
toma and hepatocellular carcinoma formation (15,19,20),
while opposite effects, reduced proliferation and increased
apoptosis, have been reported in K562 leukemia cells (21).

To better understand how cells respond to the perva-
sive remodeling of the RNA pool that follows fluctua-
tions in CFIm levels, we carried out a multi-omics char-
acterization of HEK293 cells in which the CFIm25 and
CFIm68 components of the CFIm complex were either
stably overexpressed, or transiently repressed via siRNA-
mediated knockdown. We demonstrate that hundreds of
transcripts undergo reciprocal changes in 3′ UTR length
in the knockdown (KD) and overexpression (OE) condi-
tions, changes that are also very consistent between per-
turbations of CFIm25 and CFIm68. These targets clus-
ter in specific cellular pathways, including stress signaling,
cell cycle, RNA processing and miRNA-mediated repres-
sion. Many kinase-encoding transcripts undergo CFIm-
dependent APA, which led us to globally estimate the
changes in kinase activities upon CFIm perturbations
from phosphoproteome measurements. Among the kinases
whose activity changes we validate here, the stress-related
ERK directly traces the CFIm expression, leading to ex-
pected changes in cell metabolism and growth. Specif-
ically, real time growth estimates revealed that the ec-
topic expression of CFIm subunits promotes cellular pro-
liferation, while the siRNA-mediated knockdown reduces
growth in multiple cell lines. By regulating the processing
of transcripts encoding miRNA pathway proteins, CFIm
also modulates the miRNA activity. Interestingly, while the
CFIm knockdown results in transcripts with shortened 3′
UTRs that can escape miRNA-dependent regulation, it also
activates the biogenesis of miRNAs and their repressive ac-
tivity on reporter constructs. Our study thus identifies key
signaling pathways downstream of CFIm, explaining the
impact of this 3′ end processing factor on fundamental cel-
lular processes such as metabolism and growth.

MATERIALS AND METHODS

Cell culture, transfections, treatments and common reagents

For most experiments, wild type HEK293 cells were cul-
tured as described before (22). For the overexpression
of CFIm25 and CFIm68, the cDNAs were cloned into
pcDNA5/FRT from Invitrogen. These were then stably in-
tegrated in the Flp-in recombination site of HEK293 cells
(Flp-In™-293 Cell Line #R75007, Invitrogen). For RNAi,
HEK293 cells were seeded at a density of 20% in six-
well plates and all subsequent steps were done accord-
ing to the “forward method” from the RNAiMAX pro-
tocol (Invitrogen). Following a 48 hr incubation, double-
stranded siRNAs (starting from 30 pmol, from Dharma-
con and Microsynth) were incubated with Lipofectamine
RNAiMAX (Invitrogen) and added to the wells. Cells
were harvested after 72 hours for further analysis. West-
ern blotting was performed as described earlier (22). The
HRP-labelled secondary antibodies were developed with

SuperSignal™ West Pico PLUS Chemiluminescent Sub-
strate (ThermoFisher Scientific #34580) or with SuperSig-
nal™ West Femto Maximum Sensitivity Substrate (Ther-
moFisher Scientific #34095). LICOR IR680/800nm dye-
labelled secondary antibodies were used for multiplexing
several antibodies on the same membrane. All western
blot images were documented with Azure c600 Gel docu-
mentation system equipped with a 8.3 MP CCD camera.
Western blot quantifications were performed using the Im-
ageJ software by quantifying the pixels of each band and
normalizing against a housekeeping control. For compar-
ison between conditions, all samples were normalised to
the average levels of the corresponding control samples.
Note that the loading control proteins (GAPDH/ACTIN)
are shown multiple times in several figures, whenever a
single membrane was re-utilised for staining of multiple
candidates. Detailed information regarding antibodies and
primers/oligos used for the study are listed in Supplemen-
tary Data.

Transcriptome profiling with poly(A)-enriched mRNA-seq

Total RNA was quality-checked on a Bioanalyser instru-
ment (Agilent Technologies, Santa Clara, CA, USA) using
the RNA 6000 Nano Chip (Agilent, Cat# 5067–1511) and
quantified by spectrophotometry using a NanoDrop ND-
1000 Instrument (NanoDrop Technologies, Wilmington,
DE, USA). 1�g total RNA was used for library preparation
with the TruSeq Stranded mRNA Library Prep Kit High
Throughput (Cat# RS-122-2103, Illumina, San Diego, CA,
USA). Libraries were quality-checked on the Fragment
Analyser (Advanced Analytical, Ames, IA, USA) using the
Standard Sensitivity NGS Fragment Analysis Kit (Cat#
DNF-473, Advanced Analytical). The average concentra-
tion was 128 ± 12 nmol/l. Samples were pooled in equal
molarity. Each pool was quantified by PicoGreen fluoro-
metric measurement to be adjusted to 1.8 pM and used for
clustering on a NextSeq 500 instrument (Illumina). Samples
were sequenced using a NextSeq 500 High Output Kit 75-
cycles (Illumina, Cat# FC-404-1005). Primary data analysis
was performed with the Illumina RTA version 2.4.11 and
base calling software version bcl2fastq-2.20.0.422.

Quantification of gene expression by poly(A)-enriched
mRNA-seq

Human protein-coding and lincRNA genes from the En-
sembl (23) release 90 annotation were stringently filtered
for transcripts whose splice junctions ‘are supported by at
least one non-suspect mRNA’ (Ensembl transcript support
level 1). To minimize the chance of erroneous estimates of
gene expression due to large changes in transcript length by
3′ UTR shortening the 3′-terminal exons of each transcript
were discarded. Then, for every gene, we identified those re-
gions that are annotated as belonging to an exon in all of
the retained transcripts of that gene. Raw sequencing data
in FASTQ format were processed with standard tools: cu-
tadapt (version 1.16) (24) to remove adapters and poly(A)-
tails from the reads, and STAR aligner (version 2.7.1a) (25)
to map resulting fragments to the genome (assembly version
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GRCh38 with splice junction annotations derived from En-
sembl release 90). The alignments were sorted and indexed
with SAMtools (version 1.10) (26) and later used for plot-
ting coverage profiles of distinct gene loci in RNA-seq sam-
ples with the Gviz R package (version 1.28.0; R software
version 3.6.0) (27). For every gene, all reads with a single
best reported alignment (‘unique mappers’) whose align-
ment start positions overlapped with any of the exclusively
‘exonic’ regions of that gene, prepared as described above,
were summed up. The resulting gene count tables for each
sequencing library were used as input for differential gene
expression analyses with the edgeR (28) package (version
3.34.0; R version 4.1.0). First, genes with low counts were
discarded by applying edgeR’s filterByExpr() func-
tion with default parameters across samples of all condi-
tions to ensure that the same genes would be called for
each comparison. Then, differentially expressed genes were
identified in a pairwise manner between treated and con-
trol (‘wild type’) libraries, by applying the calcNormFac-
tors(), estimateDisp(), exactTest() and top-
Tags() functions with default parameters, yielding fold
changes (log2) and corresponding P values and Benjamini-
Hochberg-corrected (29) false discovery rates for every gene
and for each comparison. The scripts used for this analysis
are available from the github repository https://github.com/
zavolanlab/CFI2021.

Quantification of relative PAS expression and average rela-
tive terminal exon lengths from poly(A)-enriched RNA-seq
data

To quantify the relative usage of distinct poly(A) sites we
applied the PAQR tool (30). The values were aggregated
at the level of individual terminal exons to obtain the pro-
portion of transcripts ending at individual positions in in-
dividual terminal exons. From these values we calculated a
weighted average relative terminal exon length as the sum
over all 3′ ends in the terminal exon, relative usage of the
3′ end multiplied by the length of the terminal exon ending
at the respective site. We obtained quantification for 1′750
terminal exons with multiple poly(A) sites. The PAQR code
is available from https://github.com/zavolanlab/PAQR2 and
the source code for target identification and analysis from
https://github.com/zavolanlab/CFI2021.

Quantification of relative PAS expression and average rela-
tive terminal exon lengths from 3′ end sequencing data

To identify targets of CFIm-mediated 3′ end processing
based on 3′ end sequencing data, we used poly(A) site quan-
tifications in relevant cellular systems from the PolyASite
database (31). Briefly, this database contains 3′ end sequenc-
ing data from control and CFIm25/CFIm68-depleted
HEK293 cells as well as control and CFIm25/CFIm68-
depleted HeLa cells, both obtained with the A-seq method
for 3′ end sequencing (32). PolyASite also contains data
for HeLa control and CFIm68-depleted samples, gener-
ated with the PAPERCLIP method for 3′ end sequencing
(33). Based on the ENSEMBL90 gene annotation, we ex-
tracted all annotated terminal exons, intersected the quan-
tified poly(A) sites from the PolyASite database in the sam-

ples mentioned above, and then carried out the terminal
exon length calculation as described in the previous section.

Selection of CFIm targets

We applied Principal Component Analysis (PCA) to per-
sample average terminal exon lengths and calculated the
projection on, as well as correlation of each terminal exon
(treated as a vector in the space of samples) with princi-
pal component 1. We then selected those transcripts and
genes whose exons exhibited higher than 0.9 correlation and
higher than 10 projection scores (both in absolute values) as
CFI targets. Almost all (855 of 858) of the transcripts un-
derwent 3′ UTR shortening upon CFIm KD. These were
the focus of our study.

Selection of CFIm targets from 3′ end sequencing datasets

We applied a similar analysis to the terminal exon data from
the 3′ end sequencing experiments mentioned above. The
threshold on the correlation value was set such as to obtain
a number of targets similar to that obtained from RNA-
seq data. Specifically, the thresholds were 0.9 for HEK293
A-seq data, 0.8 for HeLa A-seq data and 0.95 for HeLa PA-
PERCLIP data. This yielded 867, 879, and 1071 target tran-
scripts, respectively, for the three datasets.

UGUA frequency analysis

Terminal exons with exactly two poly(A) sites quantified by
PAQR were used for the motif frequency analysis. First, we
extracted sequences of 401 nucleotides (200 on each side of
the PAS) from both proximal and distal PAS in each TE. We
traversed each sequence recording the presence/absence of
the UGUA motif at each position and then tabulated the
counts at each position across all sites. These were plotted
using a running average of 30 nucleotides, sliding by 1 nu-
cleotide at a time.

Frequency analysis of UGUA motifs in genes from specific
functional categories

From the genes whose terminal exon lengths we quantified
with PAQR, we extracted those that were annotated with
the Gene Ontology terms ‘Cellular Response to Stress’ and
‘Protein Transport’ (according to the STRING server (34)).
We then separated these sets into CFIm targets and non-
targets, and then carried out the UGUA motif analysis as
described in the previous section.

Global proteome and phosphoproteome analysis by shotgun
LC-MS

For each sample, 5 × 106 cells were washed twice with ice-
cold 1x phosphate-buffered saline (PBS) and lysed in 100
�l urea lysis buffer (8 M urea (AppliChem), 0.1 M Ammo-
nium Bicarbonate (Sigma), 1x PhosSTOP (Roche)). Sam-
ples were vortexed, sonicated at 4◦C (Hielscher), shaken
for 5 min on a thermomixer (Eppendorf) at room temper-
ature and centrifuged for 20 min at 4◦C full speed. Super-
natants were collected and protein concentration was mea-
sured with BCA Protein Assay kit (Invitrogen). Per sample,
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a total of 300 �g of protein mass was reduced with tris(2-
carboxyethyl)phosphine (TCEP) at a final concentration of
10 mM at 37◦C for 1 hour, alkylated with 20 mM chloroac-
etamide (CAM, Sigma) at 37◦C for 30 min and incubated
for 4 h with Lys-C endopeptidase (1:200 w/w). After di-
luting samples with 0.1 M ammonium bicarbonate to a fi-
nal urea concentration of 1.6 M, proteins were further di-
gested overnight at 37◦C with sequencing-grade modified
trypsin (Promega) at a protein-to-enzyme ratio of 50:1. Sub-
sequently, peptides were desalted on a C18 Sep-Pak car-
tridge (VAC 3cc, 500 mg, Waters) according to the manu-
facturer’s instructions, split in peptide aliquots of 200 and
25 �g, dried under vacuum and stored at −80◦C until fur-
ther use.

For proteome profiling, sample aliquots containing 25
�g of dried peptides were subsequently labeled with an iso-
baric tag (TMT 10-plex, Thermo Fisher Scientific) follow-
ing a recently established protocol (35). To control for ra-
tio distortion during quantification, a peptide calibration
mixture consisting of six digested standard proteins mixed
in different amounts were added to each sample before
TMT labeling. After pooling the TMT labeled peptide sam-
ples, peptides were again desalted on C18 reversed-phase
spin columns according to the manufacturer’s instructions
(Macrospin, Harvard Apparatus) and dried under vacuum.
TMT-labeled peptides were fractionated by high-pH re-
versed phase separation using a XBridge Peptide BEH C18
column (3,5 �m, 130 Å, 1 mm × 150 mm, Waters) on an
Agilent 1260 Infinity HPLC system. Peptides were loaded
on column in buffer A (ammonium formate (20 mM, pH
10) in water) and eluted using a two-step linear gradient
starting from 2% to 10% in 5 min and then to 50% (v/v)
buffer B (90% acetonitrile / 10% ammonium formate (20
mM, pH 10) over 55 min at a flow rate of 42 �l/min. Elu-
tion of peptides was monitored with a UV detector (215 nm,
254 nm). A total of 36 fractions were collected, pooled into
12 fractions using a post-concatenation strategy as previ-
ously described (36), dried under vacuum and subjected to
LC–MS/MS analysis.

For phosphoproteome profiling, sample aliquots con-
taining 200 �g of dried peptides were subjected to phospho-
peptide enrichment using IMAC cartridges and a BRAVO
AssayMAP liquid handling platform (Agilent) as recently
described (37).

The setup of the �RPLC-MS system was described pre-
viously (35). Chromatographic separation of peptides was
carried out using an EASY nano-LC 1000 system (Thermo
Fisher Scientific), equipped with a heated RP-HPLC col-
umn (75 �m × 30 cm) packed in-house with 1.9 �m C18
resin (Reprosil-AQ Pur, Dr. Maisch). Aliquots of 1 �g total
peptides were analysed per LC×MS/MS run using a linear
gradient ranging from 95% solvent A (0.15% formic acid,
2% acetonitrile) and 5% solvent B (98% acetonitrile, 2%
water, 0.15% formic acid) to 30% solvent B over 90 min-
utes at a flow rate of 200 nl/min. Mass spectrometry anal-
ysis was performed on a Q-Exactive HF mass spectrometer
equipped with a nanoelectrospray ion source (both Thermo
Fisher Scientific) and a custom made column heater set to
60◦C. 3E6 ions were collected for MS1 scans for no >100
ms and analysed at a resolution of 120 000 FWHM (at 200
m/z). MS2 scans were acquired of the 10 most intense pre-

cursor ions at a target setting of 100 000 ions, accumulation
time of 50 ms, isolation window of 1.1 Th and at resolution
of 30 000 FWHM (at 200 m/z) using a normalized colli-
sion energy of 35%. For phosphopeptide enriched samples,
the isolation window was set to 1.4 Th and a normalized
collision energy of 28% was applied. Total cycle time was
∼1–2 s.

For proteome profiling, the raw data files were processed
using the Mascot and Scaffold software and TMT reporter
ion intensities were extracted. Phosphopeptide enriched
samples were analysed by label-free quantification. There-
fore, the acquired raw-files were imported into the Progene-
sis QI software (v2.0, Nonlinear Dynamics Limited), which
was used to extract peptide precursor ion intensities across
all samples applying the default parameters.

Quantitative analysis results from label-free and TMT
quantification were further processed using the SafeQuant
R package v.2.3.2. (https://github.com/eahrne/SafeQuant/)
to obtain protein relative abundances. This analysis in-
cluded global data normalization by equalizing the to-
tal peak/reporter areas across all LC–MS runs, summa-
tion of peak areas per protein and LC–MS/MS run, fol-
lowed by calculation of protein abundance ratios. Only
isoform specific peptide ion signals were considered for
quantification. The summarized protein expression values
were used for statistical testing of differences in expression
of abundant proteins between conditions. Here, empirical
Bayes moderated t-tests were applied, as implemented in the
limma package (http://bioconductor.org/packages/release/
bioc/html/limma.html) of R/Bioconductor. The resulting
per protein and condition comparison P-values were ad-
justed for multiple testing using the Benjamini–Hochberg
method.

Inference of kinase activity from phosphoproteome data

We used the Kinase Set Enrichment Analysis (KSEA) as de-
scribed by Hernandez-Armenta et al. (38) and implemented
in the R-package KSEA (https://github.com/evocellnet/
ksea) to predict the kinase activity changes across condi-
tions. The software takes as input the log2 fold-change in
intensity of each phosphopeptide between two conditions,
as well as kinase-substrate associations. It then determines
whether the substrates of any of the kinases are enriched
among the phosphopeptides with the largest change be-
tween conditions, and reports the −log10 of the P-value as
a proxy of kinase regulatory activity (38). As only ∼6% of
the quantified phosphopeptides in our data set have associ-
ated kinases in the PhosphoSitePlus database (39), we used
weight matrix models of kinase substrate specificity to pre-
dict further associations as follows. Considering all of the
peptide sequences Si obtained in an experiment, the likeli-
hood of a sequence Si to have a binding site for a kinase k
can be written as:

P(Si |k) =
li −lk∑

j = 0

P(Si [0.. j − 1]|B)P(Si [ j.. j + lk − 1]|Wk)

×P(Si [ j + lk..li − 1]|B),

where li is the length of the peptide, lk is the length of
the weight matrix Wk corresponding to kinase k, and B
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is the background model for the relative occurrence of
amino acids (AA) in peptides (here we used the overall fre-
quency of each AA in all peptides in the dataset). We con-
structed the weight matrices Wk from all known kinase-
substrate associations, taking a window of length lk = 15
AA (±7 AA around the phospho site) for each kinase
k from the PhosphoSitePlus database (39). For complete-
ness, we also included the possibility that the peptide does
not correspond to any of the known WMs, i.e. explaining
the peptide sequence entirely by the background model,
P(Si |B) = P(Si [0..li − 1|B]). From Bayes’ theorem, we
have that the probability of a phosphorylated peptide Si be-
ing explained by kinase k is given by P(k|Si ) = P(Si |k)P(k)

P(Si )
=

P(Si |k)P(k)∑N
k′=1 P(Si |k′)P(k′)

, where P(k) is the prior probability that

a randomly selected phosphopeptide from the data is ex-
plained by kinase k, and N is the number of kinases for
which we have sequence specificity information (including
the “background”). As we do not have prior information
on P(k), we assumed a uniform distribution, i.e. P(k) =
1/N. Finally, we have assigned to each phosphopeptide the
kinase that had the highest posterior probability of explain-
ing the peptide.

Real time proliferation assay

Cell growth was assayed using the xCELLigence system
(RTCA, ACEA Biosciences, San Diego, CA). The back-
ground impedance of the xCELLigence system was mea-
sured for 12 s using 50 �l of cell culture media at room tem-
perature in each well of an E-plate 16. After reaching 75%
confluence, the cells were washed with PBS and detached
from the flasks using a short treatment with trypsin/EDTA.
Ten thousand cells were dispensed into each well of an
E-plate 16. Growth and proliferation were monitored ev-
ery 15 min up to 48 hrs via the incorporated sensor elec-
trode arrays of the xCELLigence system, using the RTCA-
integrated software according to the manufacturer’s param-
eters. For the siRNA treatments, a lower number (3000) of
cells were seeded and allowed to grow without interruption
for a minimum of 42–48 h before the assay was briefly inter-
rupted for the addition of the siRNA mixes or lipofectamine
(for the mock treatment) to the corresponding wells. For the
ERK inhibition assays, we used Ravoxertinib hydrochlo-
ride (GDC-0994 hydrochloride). This compound was val-
idated as an orally bioavailable, selective inhibitor of ERK
kinase activity, with a half-maximal inhibitory concentra-
tion (IC50) of 6.1 nM. We used a 10 mM solution in 1 ml
of DMSO obtained from Medchem Express (Cat. No.: HY-
15947A). The final concentration of the inhibitor used for
seeding of cells was 6.1 nM in complete growth media. As
control, an equivalent amount of DMSO was added to the
cell culture medium. Ten thousand cells were counted from
their culture flasks and mixed with Ravoxertinib hydrochlo-
ride or DMSO and seeded into the xCelligence plates as per
standard protocol. All measurements were done with a min-
imum of five biological replicates.

qRT-PCR to estimate the abundance of RNAs and miRNAs

For mRNA quantifications, 50 ng of total RNA was used
for reverse transcription following the manufacturer’s pro-

tocol and cycling conditions (High-Capacity cDNA Re-
verse Transcription Kit, Thermo Fisher Scientific). Subse-
quently, the RT reaction was diluted 4-fold with water and
subjected to q-PCR in a 96-well format, using primers spe-
cific to individual genes and GoTaq® qPCR Master Mix
(Promega). The incubation and cycling conditions were set
as described in the kit and the plates were analysed in a
StepOnePlus Real-Time PCR System (Thermo Scientific).
GAPDH was used as housekeeping control for relative esti-
mation. Real-time analyses by two-step RT–PCR were car-
ried out to quantify miRNA expression using the Thermo
Scientific TaqMan chemistry-based miRNA assay system
as performed earlier (40). Briefly, 25 ng of cellular RNA
were used along with specific primers for human let7-a (as-
say ID 000377), miR-92a (assay ID 000431), miR-16 (assay
ID 000391) and miR-19b (assay ID 000396). U6 snRNA
(assay ID 001973) was used as an endogenous control.
One third of the reverse transcription mix was subjected to
PCR amplification with TaqMan® Universal PCR Master
Mix No AmpErase (Thermo Scientific) and the respective
TaqMan® reagents for target miRNA. Samples were anal-
ysed in PCR triplicates from at least two biological repli-
cates of each condition, processed independently. The com-
parative Ct method which included normalization by the
U6 snRNA, was used for each cell type for plotting of mean
values with S.D.

Microscopy analysis

Stellaris® FISH Probes, Custom Assay with CAL Fluor®
Red 590 Dye targeting the Dicer Long Isoform and
Stellaris® FISH Probes, Custom Assay with Quasar®670
Dye, targeting the common region of the transcript were
obtained by utilizing the Stellaris RNA FISH Probe De-
signer (Biosearch Technologies, IncPetaluma, CA) avail-
able online at www.biosearchtech.com/stellarisdesigner).
Cells were grown on coverslips coated with gelatin
and subsequently fixed as done previously (22). FISH
was performed as described on the website of the
manufacturer derived from protocols established previ-
ously (https://biosearchassets.blob.core.windows.net/assets/
bti stellaris protocol adherent cell.pdf) (41,42). Samples
were imaged on a fast and stable inverted wide field micro-
scope equipped with a MORE frame and enclosure, mo-
torized XY-stage. Images were captured using a Hama-
matsu ORCA flash 4.0 cooled sCMOS with the follow-
ing parameters: Effective number of pixels: 2048 × 2048,
Dynamic range: 16-bit, Quantum efficiency (peak): >70%,
Read out noise: 1.9 electrons rms. The Objective used was
a 60× TIRF APON with numerical aperture (NA) equal to
1.49. Illumination of the dyes was performed with 395/25,
550/15, 631/28 (nm) solid state light sources. The software
used for the purpose of documentation was Live Acquisi-
tion 2.5. Images were exported to OMERO for documen-
tation. Detection and analysis of spots were performed us-
ing automated pipelines developed in image analysis soft-
ware IMARIS (BITPLANE). Prior to counting, the signal
was deconvoluted using Huygens deconvolution software
as per protocol recommended by the in-house imaging fa-
cility. Subsequently, images were transformed in IMARIS
using SPOT and SURFACE detection modules according
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to the software-recommended steps. Following creation of
spots and surfaces on a control image, the parameters were
extrapolated for all other analysed images. Nuclear surface-
overlapping spots were counted as nuclear signals, while all
the others were counted towards cytosolic numbers. Each
field of view was counted in aggregate and then normalised
to the number of DAPI stained surfaces (after segmenta-
tion). For simplicity, we rounded the number of spots per
nucleus to the closest integer before using these numbers for
further calculations. A total of nine different fields of view
from two independent biological replicates were utilised for
statistics. Imaging of paraspeckles were performed using
standard IF protocols as performed earlier (22) on an in-
verted Axio Observer Zeiss microscope (Zeiss) using a Plan
Apochromat N 63×/1.40 oil DIC M27 objective with a
Photometrics Prime 95B camera. Z-stack images were de-
convoluted using ZEN software and further processed us-
ing the OMERO client server web tool for generating fig-
ures.

Luciferase assays

psiCHECK-2 Vector (Promega; C8021) was digested at
XhoI–NotI restriction sites for insertion of the bind-
ing regions for the miRNA targets used in our analysis.
Specifically, oligonucleotide constructs harboring a per-
fect match to the candidate miRNAs (hsa-miR-16–5p and
hsa-miR-92a-3p) were inserted into the psiCHECK-2 vec-
tor MCS between XhoI and NotI for use as reporters.
The sequence of the oligos used for the reporter con-
structs were TTGTAGTATTTTGCGCCAATATTTAC
GTGCTGCTAGTCGACCATTGTTAATC for the miR-
16 Reporter and TGTAGTATTTTGACAGGCCGGG
ACAAGTGCAATAGTCGACCATTGTTAATC for the
miR-92a Reporter. For the luciferase assay, 50 ng of the
miRNA reporter construct or the undigested parent vec-
tor were transfected into HEK293 cells. siRNA treatment
with oligos against CFIm25 or CFIm68 was performed 24
hours prior to transfection of the reporter plasmids. Cells
were lysed at the 48 h mark post transfection using Passive
Lysis Buffer (Promega) and 5 �l of each lysate was used for
quantification of Renilla and Firefly luciferase expression.
Firefly-normalised Renilla luciferase expression levels were
used to compute fold-repression as described earlier (22).

Seahorse XF Real-Time ATP rate assay

For the seeding of cells, cell counting was performed and
around 2650 cells were seeded in each well of a Agilent Sea-
horse XF96 Cell Culture Microplates. The plate was incu-
bated for 72 h before the siRNA treatment was done. Mea-
surement of ATP production rate in cells was performed
using the Seahorse XF Real-Time ATP Rate Assay Kit ac-
cording to the manufacturer’s instructions. Briefly, Seahorse
XF96 fluxpak cartridges were hydrated using Seahorse XF
Calibrant Solution, 24 h pre-measurement. On the day of
measurement, the culture medium was replaced with Sea-
horse XF DMEM medium (2 mM glutamine, 1 mM pyru-
vate, 10 mM glucose) and cells were incubated for 1 h at
37◦C without additional CO2. Measurement was performed
using the standard program for the ATP rate assay kit

(Oligomycin injection after 18min, Rotenone/Antimycin
A injection after 36 min). Acquired data were normal-
ized to cell numbers via Hoechst33342 staining. Measure-
ment of fluorescence intensity was performed using a Tecan
Infinite® M1000 PRO.

Statistics

Samples were compared using the GRAPHPAD PRISM
software t-test unless otherwise mentioned in the text. A P-
value of less than or equal to 0.05 was considered significant
and indicated on plots wherever applicable.

RESULTS

Wide-spread reciprocal changes in 3′ UTR length in CFIm
KD and OE

As the overlap of CFIm targets reported in different stud-
ies is limited, we took advantage of prior observations that
CFIm25 and CFIm68 have largely similar effects on 3′ UTR
length (8–10) to establish a reference set of CFIm targets,
specifically by identifying mRNAs whose 3′ UTRs undergo
(1) similar changes in length upon perturbation of either
CFIm25 or CFIm68, as well as (2) reciprocal length changes
when the expression of these factors is reduced or increased.
We therefore analysed HEK293 cell lines in which CFIm25
or CFIm68 were depleted by siRNA-mediated knockdown
(Figure 1A and Supplementary Figure S1A) as well as
HEK293 cell lines expressing FLAG-fusion constructs of
either of the two CFIm subunits stably integrated into their
genomes (9) (Figure 1B). After sequencing polyadenylated
RNAs from these cell lines in 2–3 biological replicates per
condition, we quantified the usage of tandem poly(A) sites
in terminal exons (TE) with the PAQR tool (30) (Supple-
mentary Figure S1B). The cumulative density functions
(CDF) of average terminal exon length revealed the ex-
pected trend toward proximal PAS usage and short 3′ UTRs
in CFIm KD cell lines (9,10,12,43), and a milder trend in the
opposite direction in the OE conditions (Figure 1C). Prin-
cipal component analysis of terminal exon length showed
the expected condition-dependent clustering of the sam-
ples, and also that CFIm25 and CFIm68 affect the terminal
exon (TE) length in similar ways. The first principal com-
ponent (PC1), which explains over 90% of the variance in
TE length data, reflects the level of CFIm expression (Fig-
ure 1D), as samples from CFIm25/68 KD and OE condi-
tions are located at negative and positive coordinates on
PC1, respectively. Therefore, we extracted our reference set
of CFIm-dependent APA targets as those whose TE length
aligned very well with PC1 (correlation > 0.9 in absolute
value and projection > 10 in absolute value). We obtained
858 transcripts that satisfied these criteria, 855 of which had
shorter 3′ UTRs upon CFIm25/68 KD (Supplementary Ta-
ble S1, Figure 1E). The consistency of these results with pre-
viously reported effects of CFIm25/68 (9,10) supports the
validity of our approach to CFIm target selection. Analy-
sis of 3′ UTRs with exactly two PAS used across conditions
showed that the CFIm-binding UGUA motif is more preva-
lent upstream of the distal PAS of transcripts that respond
to CFIm perturbations (APA targets) compared to both the
proximal PAS of these targets, as well as the proximal and
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Figure 1. Inference of a reference set of CFIm APA targets. (A, B) Western blots demonstrating the reduced expression of CFIm25 and CFIm68 in
the KD (A) and increased expression in OE (B) HEK293 cell lines. Three biological replicates were generated for each condition. GAPDH was used as
loading control. The expression of the 59 kDa component of CFIm, which does not influence the length of 3′ UTRs, was also measured. Shown are also
quantifications of protein levels normalized to the mean expression in Control samples (±S.D.). Significant (<0.05) P-values computed from a two tailed
t-test comparing each condition to Control are marked above individual columns. (C) Cumulative distributions of average terminal exon length, relative
to the maximum given by the annotation (see Materials and Methods), in the different cell lines. P-values from two-sample KS-tests for the difference
between the CDFs of the average TE length in CFIm25 OE and WT: 0.16, in CFIm68 OE and WT: 0.008, in CFIm25 KD and WT: 1.65e−28, and in
CFIm68 KD and WT: 5.42e−64). (D) Principal component analysis of TE length. Each dot corresponds to a sample in the space defined by the first two
principal components. (E) Selection of APA targets of CFIm: the vectors representing average length of individual TEs in all samples were projected onto
the first principal component (from panel D) and the length of the projection (x-axis), as well as the correlation of these vectors (y-axis) were calculated.
TEs for which both of these values were large in absolute value (marked by the red lines) were considered APA targets of CFIm. (F) Position-dependent
frequency of occurrence of the CFIm-binding UGUA motif in the vicinity of proximal (dashed lines) and distal (full lines) sites of CFIm targets (blue) and
non-targets (red). The curves represent running averages computed over 30 consecutive positions. (G) Genome browser tracks showing the coverage of the
TE of TIMP2 (shown in the bottom track) by RNA-seq reads from two replicate experiments for each condition, with the two PAS that were quantified
for this gene marked by black lines. The conditions are color-coded (color scheme as in panels C and D) and indicated on the y-axis.The y-axis shows the
smoothened number of reads mapping along the TE, calculated by the GViz R package.
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distal PAS of transcripts that do not respond (non-targets,
Figure 1F). Similar observations were made based on CFIm
binding sites determined by crosslinking and immunopre-
cipitation (9). TIMP2, a previously documented target of
CFIm (9,14,15), showed the preferential usage of a prox-
imal poly(A) site in CFIm25/68 KD samples (Figure 1G).
These results demonstrate that a large number of transcripts
undergo coherent changes in PAS usage upon perturbation
in CFIm25 and CFIm68 expression, forming a reference set
of CFIm targets.

The CFIm knockdown increases the biogenesis and activity
of miRNAs

As 3′ UTR shortening enables mRNAs to escape the re-
pressive effect of miRNAs (44,45), we were intrigued by the
conspicuous presence of key components of the miRNA
pathway (DICER1, AGO2) among CFIm targets (Supple-
mentary Table S1, Figure 2A, Supplementary Figure S2A
and B). To verify changes in DICER1 isoform expression
and further determine whether they occur in the nucleus as
a result of APA, as opposed to the cytoplasm as a result of
other mechanisms, we visualized the abundance and distri-
bution of DICER1 3′ UTR isoforms within cells by single
molecule RNA FISH (Figure 2B) in control and CFIm KD
(25-KD and 68-KD) conditions. We used probes that se-
lectively bind either to the distal end of the long 3′ UTR
isoform (green), or to a region that is shared by the long
and short 3′ UTR isoforms (red). The probes are expected
to co-localize on the long isoform, which will appear yel-
low, whereas the short isoform, which lacks the sequence
that can hybridize to the green probe, will only fluoresce
in the red channel. The quantitative analysis of the rela-
tive number of RNA molecules hybridizing to the different
probes in CFIm 25-KD/68-KD cells revealed a marked de-
pletion of the long isoform already in the nuclear region,
indicating the increased usage of the proximal poly(A) site
of the DICER1 transcript upon CFIm knockdown. The
longer isoform was also depleted in the cytosol in these con-
ditions, where the overall number of DICER1 molecules
was markedly higher than in the nucleus (Figure 2C and
Supplementary Figure S2D). Western blotting showed that
DICER1 protein expression also increases upon CFIm KD
(Figure 2D), matching closely both the increased counts of
DICER1 transcripts estimated from RNA-seq analysis and
the imaging data (Figure 2C).

As DICER1 upregulation is predicted to increase the
production of miRNAs, we measured the levels of three
randomly-selected, ubiquitously-expressed miRNA by real
time PCR, finding that they were indeed higher in CFIm
KD cells relative to Control (Figure 2E). In contrast, de-
spite the shortening of AGO2 3′ UTR as a result of CFIm
KD, the AGO2 mRNA level only increased by 42/72% in
CFIm25/68 KD relative to control (Supplementary Table
S3), and the protein level changes measured by TMT pro-
teomics were even smaller (27/24% in the same conditions).
These differences were not detectable when AGO2 protein
levels were compared by western blotting (Supplementary
Figure S2A). To determine whether the increased miRNA
biogenesis translates into increased miRNA-mediated re-
pression, we measured the activity of dual luciferase re-

porters for two ubiquitously-expressed miRNAs, miR-
16 and miR-92a. The reporter expression showed an in-
creased miRNA activity in CFIm25/68 KD cells com-
pared to mock-transfected Control samples, indicating that
AGO2 levels were not limiting upon CFIm knockdown
(Figure 2F). These results demonstrated the coherent ef-
fects of CFIm on the biogenesis and activity of miRNAs
whereby the reduction in CFIm expression leads to in-
creased miRNA-mediated repression of target reporters.

CFIm modulates signaling via CMGC kinases

To identify the molecular pathways whose components are
APA targets of CFIm, we performed Gene Ontology en-
richment analysis (Supplementary Table S1) with the clus-
terProfiler R package (46). Most enriched in CFIm tar-
gets were processes such as cellular response to stress and
protein transport and modification (Figure 3A). Genes
from these functional categories that we identified as tar-
gets exhibited the expected enrichment of the UGUA mo-
tif relative to those that are not CFIm targets according
to our analysis (Supplementary Figure S3), indicating a
sequence-specific effect of CFIm (Supplementary Figure
S3). To further map the signaling events in which these
targets participate, we measured the abundance of phos-
phopeptides by phosphoproteomics with IMAC enrich-
ment (see Materials and Methods) in all of the HEK293
cell lines used in this study (Supplementary Table S2).
Principal component analysis of the normalized phospho-
peptide intensities showed that the OE samples separate
well from Control as well as between CFIm components,
while the KD samples separate well from Control, but
less well between CFIm components (Figure 3B). Of the
22’707 phosphopeptides that were measured, 4′536 showed
condition-dependent changes. We then sought to apply
a recently developed method, kinase activity enrichment
analysis (KSEA) (38) to identify kinases whose activity
changes in a CFIm-dependent manner. KSEA is similar to
the broadly-used Gene Set Enrichment Analysis (GSEA)
(47), quantifying whether phophopeptides associated with
a specific kinase are enriched among the phosphopeptides
that undergo the largest change in abundance between
two conditions. As described by Hernandez-Armenta et al.
(38), we used the −log10 of the P-value, calculated from
KSEA, as a proxy of the change in kinase activity with
the sign indicating the direction of change of its associated
phophopeptides between conditions. Along with changes
in phosphopeptide levels, KSEA uses kinase-substrate in-
teractions as input. Finding that only 6.7% of the phos-
phopeptides that we identified in our experiments are rep-
resented among known kinase-substrate interactions in the
reference PhosphoSitePlus database (39), we first predicted
additional kinase-substrate relationships using position-
dependent weight matrix models of kinase substrate speci-
ficity (see Materials and Methods). KSEA then revealed
pronounced changes in kinase activity in CFIm25/68 KD
conditions and milder changes upon OE (Figure 3C). The
more pronounced effects of the KD relative to OE on ki-
nase activities mirror the response of 3′ UTR length to
these perturbations (Figure 1C). Interestingly, 14 of 35 ki-
nases with a significant activity change (KS-test P < 0.01)
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Figure 2. CFIm KD increases the activity of miRNAs. (A) Genome browser tracks showing the coverage of DICER1 TE (bottom track) by RNA-seq
reads from two replicate experiments for each condition, with the two PAS that were quantified for this gene marked by black lines. The conditions are
color-coded (as in Figure 1) and also indicated on the y-axis. Y-axis shows the smoothened number of reads mapping along the TE, calculated by the
GViz R package. (B) RNA fluorescence in situ imaging of DICER1 isoforms in Control and CFIm25 KD HEK293 cells with probes corresponding to
the common region of the long and short 3′ UTRs (red) or to the region between the proximal and distal cleavage sites, thus present exclusively in the
long 3′ UTR (green). Nuclei are marked with DAPI. Zoom-ins of the regions marked with dashed boxes are further shown both with the individual and
merged channels. A snapshot of a digital representation of the actual image as processed in IMARIS is also depicted for reference. (C) Quantification of
the copy number of the long and short 3′ UTR isoforms of DICER1 in the nucleus (left plot) and cytoplasm (right plot) of Control, CFIm25 and CFIm68
KD cells. Colocalization of the red and green signals reveals the presence of the long 3′ UTR isoform (yellow) whereas the signal from the red probe only
reveals the presence of the shorter 3′ UTR isoform. mRNA copy numbers were estimated separately from the nucleus (overlapping with DAPI) and cytosol.
Segregation of the signal was performed with IMARIS (see Methods). (D) Representative western blot showing the DICER1 expression in the Control,
CFIm25 and CFIm68 KD cells. The quantification is relative to GAPDH. (E) qPCR measurements of let-7, miR-92a, miR-16 and miR-19b expression
in CFIm25/68 KD cells relative to Control. ��ct values were calculated relative to U6 snRNA and then relative to the Control cells (where the ratio was
set to 1). (F) Normalized Renilla luciferase expression of reporter mRNAs carrying binding sites for miR-16 and miR-92a in their 3′ UTRs, in Control,
CFIm25 and CFIm68 KD cells, respectively. The Firefly luciferase expressed from the same construct was used as normalization control.
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Figure 3. CFIm has a large impact on the intra-cellular signaling landscape. (A) Gene Ontology analysis with the clusterProfiler R package (46) identifies
biological processes that are significantly enriched in CFIm targets (FDR < 0.01). The y-axis shows the proportion of CFIm targets with a specific biological
process annotation and the size of the oval is proportional to the absolute number. The color indicates the significance of the enrichment (FDR value). The
15 most significantly enriched GO categories are depicted. (B) Principal component analysis of phosphopeptide intensity data, showing the projection of
Control, CFIm25/68 KD and OE samples on the first two principal components. (C) Kinase activity changes in KD and OE conditions, computed with the
KSEA algorithm (see Methods). Shown are kinases estimated to have a significant activity change (KS-test P-value < 0.01) in at least one condition. The
scale indicates both the statistical significance of the difference relative to Control samples (log10(P-value) of the KS-test) and the direction of the change
(indicated by the sign). The sign is that of the mean of log2 fold-change in phosphopeptide intensity between conditions, taken over all phosphopeptides
associated with a given kinase. (D, E) Western blots showing the response of the CK2A1 target motif (D) and of the phosphorylated SQSTM1 (E) to
CFIm25/68 KD and OE, with associated quantifications (±S.D., P-values in the two-sided t-test). Values are calculated relative to the actin control, and
then the ratios to the mean of Control samples are used to construct the bar graphs. The same blot was reprobed in the bottom panels of D and E.
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in at least one condition belonged to the CMGC family,
which includes cyclin-dependent kinases (CDKs), mitogen-
activated protein kinases (MAP kinases), glycogen synthase
kinases (GSK) and CDK-like kinases (48). Only 21 of 173
kinases without a significant change were part of this family.

KSEA predicted an increase in the activity of
CK2A1/CK2A2, SYK, MAPKAPK2, CAMK2 and
CK1D kinases upon CFIm25/68 KD (Figure 3C), but only
CK2A2, MAPKAPK2, and CK1D exhibited a reciprocal
change in activity upon CFIm25/68 OE. Focusing on
the kinases whose activity changes reflected the change
in CFIm expression, we evaluated the KSEA predictions
by checking the patterns of phosphorylation of specific
substrates. While we did not have any site that could be un-
ambiguously attributed to CK1D in our data, we did find
one of the best characterized substrates of MAPKAPK2,
the Ser82 residue of the heat shock protein 27 (HSP27)
(49). The phosphorylation level of this site was higher in
CFIm25/68 KD (1.4-fold, Supplementary Table S2) and
lower in CFIm25/68 OE (0.85/0.75, Supplementary Table
S2) conditions compared to Control cells, consistent with
the overall MAPKAPK2 activities predicted by KSEA.
Taking advantage of an antibody that selectively labels
all instances of the CK2 substrate consensus sequence,
pS/pTD/EXD/E (the most crucial residues being those at
positions +3 and +1 with respect to the phosphorylation
site (50)), we also sought to independently validate the
changes in this kinase’s activity in our experimental con-
ditions. Quantitative western blot analysis of the lysates
obtained from KD and OE cells revealed an upregulation
of total phosphorylation levels in the KD samples rela-
tive to the Control cell lysate, and no significant change
upon OE, in agreement with the results obtained from the
KSEA analysis (Figure 3D).

KSEA also predicted reciprocal changes in the ac-
tivity of CMGC family kinases such as the mitogen-
activated protein kinases JNK1/2 (MAPK8/9), P38D
(MAPK13), ERK1/2 (MAPK3/1), and cyclin dependent-
kinases CDK1/2/5 upon CFIm KD/OE, the activity de-
creasing in the KD and increasing in OE conditions (Fig-
ure 2C). Of these, transcripts corresponding to MAPK1,
MAPK9 and MAPK13 are also in our reference set of CFIm
targets (Supplementary Table S1). To independently vali-
date the changes in MAPK13 activity we focused on its
known target, Sequestosome-1, also known as ubiquitin-
binding protein p62, which undergoes MAPK13-dependent
phosphorylation at Thr269 and/or Ser272 in response to
proteasomal stress (51). Both of these sites responded as ex-
pected in our phosphoproteome data, with decreased phos-
phorylation in the CFIm25/68 KD samples (fold-changes
relative to Control 0.42/0.55 at Thr269, and 0.47/0.64 at
Ser272, Supplementary Table S2) and increased phospho-
rylation in the CFIm25/68 OE conditions (fold-changes
relative to Control 1.56/2.64 at Thr269, and 1.37/1.96
at Ser272, Supplementary Table S2). We observed similar
changes in western blots, using an antibody that recognizes
SQSTM1 only when phosphorylated at Thr269 and/or
Ser272 (Figure 3E). Altogether, these results demonstrate
that the level of CFIm is linked to the activity of CMGC
kinases, some of which are encoded by transcripts that un-
dergo CFIm-dependent APA.

CFIm-induced changes in cell proliferation reflect the activity
of ERK1/2 kinases

The ERK/MAPK signaling pathway plays a key role in
cell proliferation, differentiation and apoptosis (52). Acti-
vated by endoplasmic reticulum stress and unfolded pro-
tein response (53), this pathway can have both tumorigenic
(54) and anti-tumorigenic (55) effects. These contrasting
roles are reminiscent of the divergent changes in CFIm
expression reported in various cancers (18). To validate
the predicted change in ERK1/2 activity in our system,
we estimated the levels of phosphorylated (Tyr202/Tyr204)
ERK1/2 by western blotting. We found them to indeed be
positively correlated with the CFIm25/68 expression level
(Figure 4A). We then used a real time assay to determine
the effect of CFIm on cell proliferation, which was also re-
ported to differ between cell types (15,21). We found that
the KD of CFIm25/68 reduced and the OE increased the
growth of HEK293 cells (Figure 4B). To ascertain a com-
pelling role of ERK signaling in the increased proliferative
state of the CFIm25/68 OE cells, we used an inhibitor of
ERK signaling, Ravoxertinib hydrochloride, at reported IC-
50 concentrations (56). Cells seeded in the presence of the
inhibitor had a conspicuous growth arrest and the growth
patterns of the OE cells traced that of Control cells. In con-
trast, the DMSO treatment had no effect on the growth pat-
terns (Figure 4C). We also verified the reduced growth phe-
notype of CFIm KD in other cell types, HeLa and LN-18
glioblastoma (Figure 4B), although for these cell lines the
effects were milder than those observed in HEK293 cells.

Both the upregulation (57) and downregulation (58) of
ERK1/2 activity have been linked to the Warburg-like ef-
fect, the switch from oxidative phosphorylation to glycoly-
sis in cellular energy production that is a hallmark of cancer
(59). To determine whether the metabolic activity in our cell
systems is consistent with changes in ERK1/2 activity, we
compared the ATP production by glycolysis and oxidative
phosphorylation in all conditions (WT, CFIm KD and OE)
in a Seahorse ATP real-time rate assay (60). Indeed, we
found the switch from oxidative phosphorylation to glycol-
ysis in ATP production in both CFIm KD and OE cells
compared to Control (Figure 4D), as reported for changes
in ERK1/2 activity. The main enzyme that drives the car-
bon flux into mitochondria for the TCA cycle and oxidative
phosphorylation is pyruvate dehydrogenase (PDH), whose
inhibition leads to the Warburg effect (61). By western blot-
ting, we found that the level of the inhibitory phosphoryla-
tion on Ser293 of PDH, known to be catalyzed by pyruvate
dehydrogenase kinase 1 and 2 (PDHK1-2), was increased
(Figure 4E) in both CFIm KD and OE conditions. Thus,
perturbation in CFIm expression leads to metabolic shifts
that are consistent with ERK1/2 activity changes converg-
ing on PDHK1-2 and PDH.

To better understand how CFIm KD and OE induce di-
vergent changes in cell numbers but convergent changes
in the metabolism of cells, we performed endpoint west-
ern blot analysis of cleaved PARP (Figure 4F). The cleav-
age of PARP-1 by caspases is a hallmark of apoptosis (62).
The anti-correlation of cleaved PARP with CFIm expres-
sion levels indicates that the reduced cell culture growth
in CFIm25/68 KD conditions is due to increased levels
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Figure 4. CFIm expression level is linked to the activity of the ERK signaling pathway. (A) Western blot analysis of phospho-ERK1/2 (P-ERK1/2)
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relative to Control were statistically significant (P-value in the two tailed t-test ≤ 0.05).
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of apoptosis. In summary, these results demonstrate that
CFIm promotes the growth of multiple cell types, primar-
ily by suppressing apoptosis. Furthermore, both the cell
proliferation and metabolic phenotype are consistent with
changes in the ERK1/2 kinase activity.

3′ end sequencing reveals similar CFIm targets

We finally assessed the reproducibility of the CFIm tar-
get set with respect to the cellular system and the method
for quantifying the 3′ end usage. Perturbations of CFIm25
and/or CFIm68 expression have been carried out not only
in HEK293, but also in HeLa cells, where distinct methods
for quantifying 3′ end usage were applied. We extracted 3′
end usage data upon CFIm KD in these systems from the
PolyASite database (31), and, by applying the same target
selection method (Supplementary Figure S4, also see Ma-
terials and Methods), we obtained ∼850–1000 genes whose
TEs became shorter upon CFIm25/68 KD (Figure 5A–
C) from each of these datasets. We then visualized their rela-
tionship in a Venn diagram (Figure 5D). The overlap of tar-
gets obtained by two distinct methods for PAS usage quan-
tification or in two different cell systems was ∼20–40%. The
majority (476 of 853) of genes in our core set are also identi-
fied as CFIm targets in another data set, while 51 are com-
mon to all data sets (significance of overlap from the Su-
perExactTest (63) P-value: 3.66e−101). Notably, this latter
set includes kinases and kinase regulators such as MAPK1
(ERK2), Serine/threonine-protein kinase Chk1 (CHEK1),
AMP-activated protein kinase 1 and 2 (AMPKA1-2), C-
Jun-amino-terminal kinase-interacting protein 4 (SPAG9)
and Receptor-interacting serine/threonine-protein kinase 2
(RIPK2) (Supplementary Table S4). These results indicate
that the inferences we made based on the RNA-seq data in
HEK293 data were robust, and in line with the growth phe-
notypes that we assessed above (Figure 4B).

DISCUSSION

Our study makes two main contributions to the expanding
field of alternative polyadenylation. First, we provide a ref-
erence set of APA targets of the CFIm 3′ end processing
factor, the main regulator of 3′ UTR length known to date.
These targets were stringently selected based on their con-
sistent and coherent 3′ UTR length changes upon KD/OE
of both CFIm25 and CFIm68 components of CFIm. They
provide a basis for future analyses in other cell systems,
and especially in cancers, where CFIm has been already
implicated, with somewhat divergent roles (18). Second,
our study uncovered a so-far uncharted layer of regulation
downstream of the CFIm 3′ end processing complex, reveal-
ing that signaling pathways are extensively remodeled upon
perturbations in CFIm expression. The activity of the ERK
pathway essentially traces the CFIm expression level and
can explain the proliferation, apoptosis and metabolic re-
sponses of cells to CFIm perturbations. Beyond these main
findings, our results expand the knowledge of the interplay
between RNA 3′ end processing and other cellular processes
such as miRNA-mediated repression, as detailed below.

In spite of CFIm68 having similar 3′ UTR length regula-
tory functions, most prior studies focused on CFIm25, re-

porting a range of CFIm-dependent APA targets that var-
ied ∼100-fold (15,64). To identify conserved functions of
CFIm-dependent RNA processing in cell biology, here we
constructed a reference set of CFIm targets by carrying out
both the KD and the OE of not only CFIm25 but also the
CFIm68 subunits of CFIm. We identified 858 transcripts
with a highly consistent response across all of these condi-
tions (Figure 1), 855 of which (from 853 genes) exhibited
3′ UTR shortening upon the KD of CFIm factors. The ma-
jority of these transcripts are also identified in other cellular
systems or with other methods for poly(A) site usage quan-
tification (Figure 5). The set includes well known CFIm
targets like TIMP2 (9,14,65), DICER1 (15) and MECP2
(15,16) and, interestingly, paralogs of some reported tar-
gets, e.g. CCND2 and CHD6 in place of CCND1 and CHD9
(15,16). Along with the intersection of targets obtained by
3′ end sequencing data from HEK293 and HeLa cells be-
ing only partial (Figure 5), this latter finding may indicate
that a subset of CFIm targets is cell type-specific. How-
ever, the targets identified in the same cellular system by dis-
tinct 3′ end sequencing methods are also not identical (Fig-
ure 5D), suggesting that differences in target sets could
also be due to differences in the experimental design (e.g.
PAPERCLIP-based 3′ end processing data was only avail-
able for the CFIm68 KD, and not for the CFIm25 KD). The
changes in TE length estimated from the RNA-seq or the
3′ end sequencing data were well correlated, with Pearson
correlation coefficients in the 0.5–0.6 range (Figure 5E-F),
as observed before (30), underscoring the robustness of the
target set.

The frequency of CFIm-binding UGUA motifs is ∼1.5–
2-fold higher at the distal PAS of CFIm targets compared
to the proximal PAS, in contrast to non-targets, where the
two sites are not clearly distinguishable by the UGUA mo-
tif frequency (Figure 1). These results are in line with prior
observations (9,12,64). The UGUA motif is strongly de-
pleted downstream of the distal PAS, while at the proxi-
mal sites UGUA motifs occur with comparable frequency
both upstream and downstream of the PAS. This supports
a recently proposed model, whereby binding of CFIm to
UGUA motifs flanking the proximal PAS leads to the loop-
ing of the RNA around the proximal PAS (66) and to an
unproductive interaction with FIP1, which masks the site
from cleavage. In contrast, the UGUA motif is only present
upstream of the distal site of CFIm targets, leading to pro-
ductive interaction with the other components of the 3′ end
processing complex and 3′ end cleavage (64).

It was noted in a previous study that cell cycle-related
genes such as cyclin D1 are targets of CFIm (15), linking
APA to cellular signaling. Here, we found a strong enrich-
ment of signaling-related proteins among the reference set
of CFIm targets (Figure 3). We further predicted changes
in the activity of many kinases upon perturbations in CFIm
expression, particularly those from the CMGC family. We
focused primarily on ERK1/2, because it can link the per-
turbation in CFIm level to multiple phenotypes reported in
the context of cancer, including proliferation, apoptosis and
glucose metabolism. ERK activity was positively correlated
with the expression level of CFIm, consistent with the ef-
fects described in CFIm25-depleted K562 cells (21). Down-
regulation of ERK/MAPK has a negative effect on cellular
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Figure 5. Overlap of CFIm targets identified with several methodologies from different cell types. (A, B) CDF of average relative TE length inferred
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biological process annotation and the size of the circle is proportional to the absolute number. The color indicates the significance of the enrichment (FDR
value). (H) A graphical model of CFIm’s impact on several cellular processes.
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growth and leads to a metabolic switch that favors glycol-
ysis over oxidative phosphorylation (58), both of which we
were able to demonstrate in CFIm KD conditions (Figure
4). Conversely, with real-time assays and cell-cycle analysis
we showed that OE of CFIm promotes growth, as expected
given the phosphorylation-dependent ERK/MAPK activa-
tion (67). Surprisingly, the ERK activity was anti-correlated
with the activity of CK2A1, a kinase reported to contribute
positively to ERK signaling, as part of the Kinase Suppres-
sor of Ras 1 scaffolding complex (68) and as mediator of
ERK nuclear translocation (69). Increased CK2A1 activity
was observed in cancer cells (70), associated with drug re-
sistance (71) and resistance to apoptosis (72). Although the
mechanism behind seemingly discordant CK2A1 and ERK
activities in our system remains to be determined, the up-
regulation of CK2A1 activity could contribute to the gly-
colytic switch that we paradoxically observed in CFIm KD
conditions (73).

The activity of another MAP kinase, MAPK13 (P38D),
was also correlated with the CFIm25/68 levels (Figure
3). MAPK13 participates in key processes such as cell
proliferation, differentiation, transcription regulation and
development, and is overexpressed in a large set of hu-
man breast cancers (74,75). A main target of MAPK13 is
SQSTM1 (p62), which MAPK13 phosphorylates on Ser269
and Thr272 (51), as we also found here (Figure 3E). Inter-
estingly, our data includes 5 additional sites on SQSTM1,
all 5 with increased phosphorylation in CFIm25/68 OE
(Supplementary Table S2). As hyperphosphorylation of p62
is a marker for chemotherapy resistance in ovarian cancer
cells (76), the increased phosphorylation of these sites is
consistent with the increased growth of CFIm OE cells.

How do changes in 3′ UTR length lead to a remodeling of
cellular signaling? Consistent with prior expectations (44),
our data shows a small but significant increase in gene ex-
pression levels of CFIm targets compared to non-targets in
the CFIm KD cells, indicating a small tendency toward in-
creased stability of short 3′ UTR isoforms (77,78) (Supple-
mentary Figure S5 and S6). We further calculated the Pear-
son correlation coefficient of gene expression changes with
both changes in terminal exon length and changes in the
proximal/distal PAS usage ratio. While small (<0.23), these
correlation coefficients were significant (P-values < 0.01)
and had the expected trend (negative correlation of terminal
exon length and positive of proximal/distal ratio with gene
expression, Supplementary Figure S6). The changes at the
protein level were smaller (Supplementary Figure S5), for
reasons that remain unclear. The OE of CFIm components
did not lead to an opposite effect, namely reduction in tar-
get levels, which likely reflects the milder effect of OE on
3′ UTR length compared to the KD of CFIm. This is not
surprising because the distal PAS are already preferentially
used in HEK293 cells under control culture conditions (9),
leading to limited lengthening of 3′ UTRs upon CFIm over-
expression. Focusing on signaling-related targets, some of
the key regulators that we analysed here, such as MAPK1
(ERK2), and MAPK13 did not show significant gene ex-
pression changes, while many others were upregulated upon
CFIm25/68 KD. These include, for e.g. CK2A1, MAPK9
(JNK2), the TOR signaling pathway regulator (TIPRL)
that negatively impacts JNK signaling by binding to MKK7

(79), the TAK1-interacting protein 27 (JAZF1), which in-
hibits cell proliferation and enhances apoptosis through its
negative control of the TAK1/NF-KB signaling pathway
(80), the MAP2K4/MKK4, an upstream activator of JNK
signaling (81), and the NDFIP1 ubiquitin ligase activator
involved in the ubiquitination of upstream activators of
the JNK signaling pathway (82). In contrast to the RNAs,
the abundance of the corresponding proteins was less af-
fected by CFIm perturbations. This may be due to a lower
sensitivity of the measurement technology, as the ∼2-fold
change in abundance of DICER1 that we measured by WB
was not apparent in the proteomics data. However, protein
level changes were also not uniformly detectable for targets
that we measured by WB (Figure 2D, Supplementary Fig-
ure S2C), suggesting additional post-transcriptional con-
trol of CFIm targets. The overall small protein-level changes
could indicate that the phenotypic changes observed upon
CFIm perturbations are due to a cumulative effect of small
changes in many targets rather than to a small number of
targets whose expression is strongly altered.

The similar 3′ UTR shortening in cancer and in CFIm
KD conditions make CFIm a very appealing candidate
for explaining the cancer-related remodeling of 3′ UTRs.
Indeed, in glioblastoma and hepatocellular carcinoma
(15,19,20), reduced CFIm expression has been implicated
in 3′ UTR shortening and tumorigenesis. However, this
relationship does not appear to be universal (18) and, in
fact, the expression of 3′ end processing factors is typically
higher in tumors compared to matched control tissues (Sup-
plementary Figure S7A, (83)). Kaplan–Meier analysis (84)
shows that the levels of CFIm25/68 are also not good pre-
dictors of cancer-free survival and that in the majority of
cancer cohorts where a significant (P-value < 0.05) associ-
ation between CFIm25/68 expression and survival can be
detected, it is the high, not the low expression of CFIm
that represents a risk factor (Supplementary Figure S7B,
C). What could account for seemingly contrasting results
regarding the CFIm expression and function in cancers?
A hypothesis that can reconcile these observations is that
the level of CFIm per se is not sufficient to predict the pat-
tern of RNA processing in cancers, and that the RNA pro-
cessing load of cells plays an equally important role; an in-
creased processing load in proliferating cells may lead to
transient CFIm deficiency in spite of its increased overall
expression and this relationship may further be cell type-
specific. This scenario has been reported for the U1 snRNA
during neuronal activation, also leading to APA at proximal
PAS (85). Of course, technical artifacts such as the variable
degree of RNA degradation among samples may also lead
to divergent results, due to erroneous estimates of CFIm ex-
pression levels (30). Nevertheless, the relationship between
RNA processing demand and availability of 3′ end process-
ing factors, especially in the context of cancer, warrants fur-
ther studies.

Finally, our data show a complex effect of CFIm-
dependent APA on the miRNA-mediated gene regulation.
Much of the work on APA in the past decade has been mo-
tivated by the observation that 3′ UTRs become shorter
in proliferating cells (44), presumably leading to the es-
cape of the corresponding transcripts from miRNA regu-
lation (44,45). That DICER1, the key enzyme in miRNA

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/6/3096/6541025 by guest on 11 D

ecem
ber 2023



Nucleic Acids Research, 2022, Vol. 50, No. 6 3111

biogenesis, would be regulated in this manner to increase
the production of miRNAs in these conditions is counter-
intuitive, even though it has been observed before (15,45).
Here, we found that CFIm KD leads to reduced expres-
sion of the long DICER1 3′ UTR isoform already in the
nucleus, presumably via APA. The DICER1 protein ex-
pression increases in parallel to the transcript level. A fur-
ther contribution to the increased miRNA biogenesis in
CFIm KD condition may come from the reorganization of
paraspeckles (PS), nuclear condensates that form around
the long non-coding RNA (lncRNA) NEAT1 (86). Re-
duced CFIm levels lead to the production of a long iso-
form of NEAT1, called NEAT1 2, which nucleates the PS
(87). NEAT1 2 also recruits the Drosha/DGCR8 Micro-
processor complex to PS, where primary miRNAs interact
closely with the NONO-PSF protein dimer (88), leading to
increased miRNA biogenesis. Indeed, immunofluorescence
analysis with an antibody targeting the PS-essential NONO
protein (89) confirms the relationship between the CFIm
level and the NEAT1 2-dependent size and organization of
the PS (90) (Supplementary Figure S7D, E). The effector
component of the miRNA pathway, AGO2, also undergoes
CFIm-dependent APA, but without detectable protein-level
changes (Supplementary Figure S2C, Supplementary Table
S3). AGO2 does not seem to be limiting for miRNA re-
pression in our systems, as the increased miRNA biogen-
esis upon CFIm KD is accompanied by a corresponding
increase in their repressive activity, as demonstrated with
reporter genes (Figure 2). These results demonstrate that
CFIm organizes the miRNA-dependent regulatory layer
by modulating both miRNA biogenesis and the subset of
transcripts that are susceptible to miRNA-dependent reg-
ulation. It has been reported, for instance, that uncapped
RNAs that are downstream products of cleavage at proxi-
mal PAS stably persist in the cell (91). These may alter the
cellular milieu to trigger some of the signaling events that
we observed, while the increased miRNA activity may serve
to clear out some of these RNA species and counteract the
cellular stress that they induce. How cells deal with globally
increasing or decreasing RNA processing load is an impor-
tant question to address in future studies.

In conclusion, our study has revealed a novel layer
of CFIm-dependent gene regulation, mediated by nu-
merous kinases, especially from the CMGC family. The
ERK/JNK/MAPK pathways can explain many of the ob-
served phenotypic changes caused by CFIm expression per-
turbations, including in cell proliferation, apoptosis and
metabolism. We provide a reference set of transcripts that
respond in a consistent manner to both KD and OE of
CFIm25 and CFIm68 proteins and likely underlie the roles
of CFIm in various cellular systems. Finally, we found that
CFIm largely promotes cell growth, consistent with some,
but not all of the previous studies of cancer systems. Given
that the expression of 3′ end processing factors, and espe-
cially of CFIm is positively correlated with proliferation,
our study integrates a variety of prior observations into a
consistent framework. The exact mechanism that bridges
the CFIm-mediated APA of several transcripts to the alter-
ation in kinase activities is an interesting topic for future
studies (Figure 5F), especially when considering the simul-
taneous changes in the miRNA biogenesis and, as suggested

by our reporter assays, in the activity of the miRNA path-
way.
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Abstract   
Maturation   of   mRNA   is   a   key   step   in   gene   expression   in   eukaryotes   with   a   significant   role   of   
alternative   splicing   and   alternative   polyadenylation.   Similarly   to   transcription   factors   binding   to   
DNA   sequences   and   activating/silencing   transcription,   RNA-binding   proteins   (RBPs)   provide   
additional   layers   of   regulation   by   acting   at   various   steps   of   mRNA   maturation.   It   is   therefore   
crucial   to   precisely   pinpoint   the   location   where   these   proteins   bind   on   the   pre-mRNA   molecules   
and   whether   these   interactions   are   affected   by   genetic   mutations.   Here   we   have   implemented   a   
bioinformatics   tool,   bindz,   to   predict   binding   sites   of   RBPs   for   which   the   sequence   specificity   is   
known   on   RNA   sequences.   Bindz   is   implemented   as   an   efficient   Snakemake   pipeline   which   can   
be   easily   executed   on   a   personal   laptop   with   a   Unix-like   operating   system   to   help   the   design   of   
mutagenesis   experiments.   

Introduction   
Maturation   of   primary   transcripts   is   an   essential   step   in   the   gene   expression   in   eukaryotes.   The   
processing   of   precursor   mRNAs   involves   capping,   splicing,   cleavage   and   polyadenylation   at   the   
3’end   of   the   sequence.   Mechanisms   of   alternative   splicing   as   well   as   alternative   polyadenylation   
are   well   described   in   the   literature    (Wang   et   al.   2015;   Lutz   2008)    and   they   lead   to   distinct   
isoforms   of   genes   being   expressed.   Proteins   which   are   translated   from   these   isoforms   may   
differ   in   their   chemical   properties   like   solubility   or   hydrophobicity   but   also   in   their   biological   
function   in   situations   where   the   structure   of   the   proteins   is   altered,   for   example   by   the   inclusion   
or   exclusion   of   a   certain   protein   domain    (Liu   and   Altman   2003) .   The   impact   of   RNA   processing   
on   the   transcriptome   is   significant;   the   vast   majority   of   multi-exonic   genes   in   humans   undergo   
both   alternative   splicing   and   alternative   polyadenylation    (Jiang   and   Chen   2021;   Gruber   and   
Zavolan   2019) .   Currently,   how   these   post-transcriptional   regulatory   mechanisms   are   controlled   
on   individual   transcripts   is   still   not   well   understood.   However,   a   large   number   of   RNA-binding   
proteins   (RBPs)   is   now   known   to   be   involved.   RBPs   bind   to   sequence   motifs   in   both   precursor   
and   mature   RNAs   to   modulate   not   only   their   splicing   and   polyadenylation,   but   also   localization,   
transport   and   translation    (García-Mauriño   et   al.   2017) .   Therefore   the   key   challenge   in   studying   
regulation   of   mRNA   processing   and   in   deciphering   the   impact   of   genetic   mutations   is   the   



identification   of   potential   binding   sites   for   these   RBPs   on   the   pre-mRNAs.   To   address   this   task   
we   have   developed   bindZ   -   an   easy-to-use   bioinformatics   tool   for   predicting   binding   sites   for   
RBPs   whose   binding   specificity   is   known   in   transcript   sequences.   

bindz   
At   the   core   of   our   work   we   incorporated   MotEvo    (Arnold   et   al.   2012)    -   a   Bayesian   probabilistic   
method   for   the   prediction   of   binding   probabilities   between   a   selected   short   motif   (specified   in   a   
Position   Weight   Matrix   format)   and   a   given   nucleotide   sequence.   While   MotEvo   was   developed   
to   study   the   control   of   transcription   by   transcription   factors,   here   we   apply   the   tool   to   RBP-RNA   
interactions.   The   source   of   PWMs   was   the   largest   database   of   RBP   binding   motifs,   ATtRACT   
(Giudice   et   al.   2016) .   The   main   output   of   bindz   is   a   TSV-formatted   table   containing   coordinates   
of   predicted   binding   site,   RBP   IDs,   predicted   target   sequences   as   well   as   posterior   probability   
for   the   binding   event.   Moreover,   the   information   is   graphically   presented   as   heatmaps.   From   the   
software   engineering   perspective   bindz   is   implemented   as   a   Snakemake    (Mölder   et   al.   2021)   
workflow   and   the   user   needs   to   provide   all   the   necessary   information   in   a   configuration   text   file   
in   a   YAML   format.   We   ensure   the   reproducibility   and   reliability   of   our   computations   with   the   
conda   technology   for   dedicated   virtual   environments   for   data   processing    (“Anaconda   Software   
Distribution”   2020) .   bindz   is   designed   for   both   computational   biologists   as   well   as   
experimentalists   with   basic   bioinformatics   skills   of   working   in   a   text   shell.   Its   primary   use   case   is   
in   the   design   of   experiments   with   sequence   variants   that   might   differ   in   their   ability   to   bind   
RNA-binding   proteins   due   to   specific   point   mutations   that   would   create   or   destroy   binding   sites.   
The   immediate   future   goal   is   to   enable   global   screening   for   binding   events   over   a   wide   range   of   
pre-mRNA   sequences,   rendering   bindz   useful   for   more   general   studies   on   the   regulation   of   
gene   expression   at   the   post-transcriptional   level.   
  



  
  

Figure   1:   bindz   predicts   sites   of   interaction   between   RNA-binding   proteins   and   RNA   sequences,   
to   facilitate   the   design   of   point   mutants   with   distinct   RBP   interactomes:   (a)   wildtype   (WT)   
pre-mRNA   subsequence   with   two   binding   sites   for   RBFOX1   and   PTBP1   regulators.   (b)   Mutated   
subsequence   where   the   site   for   RBFOX1   has   been   destroyed.   
  

In   terms   of   computational   resources   bindz   may   be   easily   executed   on   a   personal   computer   with   
a   UNIX-based   operating   system.   Each   step   of   the   analysis   consumes   less   than   1GB   RAM.   We   
have   tested   our   workflow   on   a   MacBook   Pro   2017   machine   with   macOS   Big   Sur   11.0.1  
operating   system.   We   processed   all   1195   PWMs   annotated   to   human   RBPs   from   the   ATtRACT   
database   at   the   time   of   writing   and   with   2   cores   provided,   the   pipeline   finished   in   under   1h   on   a   
sequence   of   length   19nt.   Moreover,   execution   time   scales   linearly   with   the   number   of   PWMs   
and   since   the   workflow   is   parallelized   at   the   level   of   motifs,   the   whole   runtime   might   be   greatly   
reduced   by   providing   more   processors.     

Software   availability   
A   permanent   snapshot   of   bindz   version   1.0.1   has   been   uploaded   to   zenodo,   doi:   
10.5281/zenodo.5607105.   The   tool   is   hosted   and   developed   on   GitHub:   
https://github.com/zavolanlab/bindz .   All   community   contributions   in   forms   of   comments,   issues   
and   pull   requests   are   warmly   welcome.   
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Abstract

Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across

cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist

over 1,500 RBPs in human cells, their binding motifs and functions still remain to be

elucidated, especially in the complex environment of tissues and in the context of diseases.

To overcome the lack of methods for the systematic and automated detection of sequence

motif-guided pre-mRNA processing regulation based on RNA-seq data we have developed

MAPP. Applying MAPP to RBP knock-down experiments unravels that many RBPs regulate

both splicing and polyadenylation of nascent transcripts by acting on similar sequence

motifs. MAPP not only infers these sequence motifs, but also reveals the position-dependent

impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on

both splicing and 3’ end processing exhibit a consistently repressive or activating effect on

both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to

normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and

RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas

demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators

under physiological and pathological conditions.
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Introduction
Splicing and 3’ end processing of nascent RNAs are crucial steps in eukaryotic precursor

messenger RNA (pre-mRNA) maturation, also responsible for transcriptome diversification

through the generation of transcript isoforms. Both processes are modulated by various

RNA-binding proteins (RBPs), whose expression varies across tissues. To date, a few dozen

regulators have been described to modulate splicing 1,2, whereas only a handful were

reported to impact both splicing and 3’ end processing. The Poly(rC) Binding Protein 1

(PCBP1) RBP is a known splicing regulator 3, which has also been reported to regulate the

cleavage and polyadenylation (poly(A)) of transcript 3’ ends by binding to C-rich sequences

that are located in close proximity to poly(A) sites 4. Further, in previous studies we have

shown that the well-known splicing factors HNRNPC (Heterogeneous nuclear

ribonucleoproteins C) 5 and PTBP1 (Polypyrimidine Tract Binding Protein 1) 6 regulate

alternative cleavage and polyadenylation (APA) by binding to sequence motifs that are

located within -200 to +100 and -25 to +75 nucleotides (nt), respectively, relative to the

regulated poly(A) sites. ELAVL1 (ELAV Like RNA Binding Protein 1) is another RBP that was

reported to impact splicing 7 and polyadenylation 8. Also the TAR DNA Binding Protein

(TARDBP) is known to act as a regulator of alternative splicing (AS) 9 and APA 10. While

these examples indicate that RBPs coordinately regulate splicing and 3’ end processing, the

sparse characterization of RBP binding specificities of the more than 1,500 RBPs encoded in

the human genome 11 has limited these studies. To circumvent this problem we have

developed MAPP (Motif Activity on pre-mRNA processing). MAPP enables the identification

of RBP-specific sequence motifs that can explain global patterns of both alternative splicing

and alternative polyadenylation events quantified from standard RNA sequencing (RNA-seq)

experiments. MAPP further unravels the type of regulation (repressive or activating) as well

as the binding site position dependency and by charting RBP impact maps MAPP provides a

panoramic view on the regulation of alternative splicing and polyadenylation by specific

RBPs. We have benchmarked MAPP using data sets in which RBPs with well-characterized

impact on splicing and/or 3’ end processing have been overexpressed or depleted by

siRNA-mediated knock-down, showing that MAPP identifies not only the correct sequence

motif, but also the binding site position-dependent impact of the RBP on mRNA processing.

Applying MAPP to >400 RBP knock-down experiments from the ENCODE project we have

identified multiple pyrimidine motif-binding RBPs that seemingly explain changes in both

2



exon inclusion and poly(A) site choice. The corresponding RBP impact maps provide first

insights into patterns that are common to pre-mRNA processing regulation by RBPs. Finally,

to demonstrate the ability of MAPP to capture meaningful signals from tissues, we have

applied MAPP to glioblastoma (GBM), a cancer type in which large numbers of pre-mRNA

processing changes were reported previously 12,13. MAPP reveals that the PTBP1 and

RBFOX RBPs co-regulate the splicing of hundreds of cassette exons, some of which have

already been reported to drive GBM development and progression. In summary, in this study

we have developed MAPP and demonstrated that “MAPPing” RNA-seq experiments enables

to identify key pre-mRNA regulators, their binding motifs and functions as well as their role in

healthy and diseased cellular states.

Results

MAPP infers impact maps for pre-mRNA processing regulators
Whereas RBPs have long been known to orchestrate pre-mRNA splicing (e.g. 14), their

impact on 3’ end processing has only recently started to become apparent 4,5,15,16, and the

question of whether RBP regulators act on splicing and 3’ end processing in a coordinated

manner arose 6,16. A bottleneck in addressing this question is that compared to other types of

regulators, such as transcription or epigenetic factors, the fraction of RBPs with

well-characterized binding specificities is relatively minor. In addition, even for those RBPs

for which binding specificities have recently been characterized with high-throughput

experiments, the impact and mode of action on pre-mRNA processing remain speculative.

To address such questions, we have developed MAPP (Fig. 1).
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Fig. 1 | Inferring maps of RBP impact on splicing and 3’ end processing with MAPP.
a | Sketch illustrating how regulators (Reg) bind pre-mRNAs to influence the usage of splice
sites (SS) and / or poly(A) sites (PAS). b | RNA-sequencing (RNA-seq) libraries are available
or can be created for most cellular systems of interest. c | MAPP analyzes the splicing and 3’
end processing patterns apparent in the RNA-seq data with the MAEI (Motif Activity on Exon
Inclusion) and KAPACv2 (K-mer Activity on PolyAdenylation site Choice version 2.0) models,
respectively. d | MAPP infers regulatory motifs for RBPs and reports detailed maps of their
position-dependent impact on cassette exon inclusion and poly(A) site usage, respectively,
by applying the models to genomic windows located at specific distances relative to the RNA
processing sites (dashed gray vertical bars).
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MAPP makes use of a powerful functional concept that we have previously exploited in our

KAPAC tool 6, namely explaining relative expression levels of transcript isoforms across

samples with sequence motifs located throughout nascent transcripts. In contrast to KAPAC,

MAPP provides an end-to-end solution to the inference of motifs, known or not to bind

specific RBPs, that impact splicing, 3’ end cleavage or both processes.

MAPP includes a novel model, MAEI (Motif Activity on Exon Inclusion), designed to infer the

position-dependent activity of sequence elements on cassette exon inclusion, along the

KAPACv2.0 model that infers the activity of motifs on poly(A) site processing which builds

upon our previously-described KAPAC approach 6. While similarly to KAPAC, MAPP

considers the entire space of sequence motifs, modeled as k-mers, that could impact

pre-mRNA processing, its functionality is more general, as it can also work with

position-dependent weight matrices (PWMs, see Methods) representing known binding

specificities of RBPs. The two components model changes in exon inclusion and poly(A) site

usage across genes as functions of the motif counts within regions located at various

distances relative to these events. More specifically, given RNA-seq data from a cellular

system of interest (Fig. 1a,b), MAPP first infers the level of inclusion of alternatively spliced

exons and the usage of distinct poly(A) sites. For the latter it makes use of our previously

developed PAQR tool 6 (Supplementary Figures S1 and S2). Then, the MAEI and

KAPACv2.0 models are fitted to the corresponding pre-mRNA processing event data to

identify sequence motifs that can explain global splicing and poly(A) site usage patterns,

respectively (Fig. 1c). By applying the models to sequence windows located at specific

distances relative to pre-mRNA processing sites (for all our analyses unless specified

otherwise: 50 nt in length, slided by 25 nt), position-dependent activity z-scores are inferred

for each motif. MAPP ranks the sequence elements based on their significance and reports

the position-dependent z-scores in the form of impact maps 6 (Fig. 1d), which provide

detailed insights into the activity (activating or repressive) as well as the position

dependency of specific RBPs. Importantly, as MAPP can infer impact maps for motifs known

to correspond to specific regulators, as well as for motifs that have not yet been linked to a

specific RBP, it is able to unravel the impact of any regulator that regulates pre-mRNA

processing in a sequence-specific manner, even if the existence of the regulator and it’s

binding specificity is unknown to date.
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Both the binding specificity and the position-specific impact of known

regulators are uncovered de novo by MAPP
To validate MAPP, we applied it to data sets from experiments where proteins with a known

effect on splicing/polyadenylation were perturbed. We started with the well characterized

HNRNPC RBP and found that the sequence motif most significantly associated with both the

measured changes in exon inclusion as well as poly(A) site usage is penta-U, the motif that

was previously confirmed by multiple studies to be the primary binding motif of HNRNPC
17–19 (Fig. 2a, top panel). The PWM representing this motif had the largest combined z-score

out of the 344 PWMs that we curated from the ATtRACT database (see Methods). Also, the

impact map inferred by MAPP recovers the reported regulation of splicing and 3’ end

processing by the HNRNPC RBP. That is, in control (CTRL) samples, where the expression

of HNRNPC is high, MAPP infers a repressive effect (marked as blue squares) on 3’ splice

site (3’SS), 5’ splice site (5’SS) and polyadenylation site (PAS) processing. Conversely,

these sites are processed and thus the activity of the penta-U motif is positive in the

knock-down cells, where the expression of HNRNPC is low. These results are supported by

a multitude of studies (e.g. refs 5,19,20). To determine whether the differentially processed sites

are indeed bound by the suggested RBPs, we further analyzed data from enhanced

crosslinking and immunoprecipitation (eCLIP) experiments from the ENCODE project 21,22.

Towards this, we have selected the top 200 3’SS, 5’SS and PAS whose usage changes most

in the expected direction, upon HNRNPC knock-down, as well as the 1,000 sites that change

least. For these sites we have constructed position-dependent coverage profiles for

HNRNPC eCLIP data. The resulting profiles indicate that HNRNPC is indeed regulating

splicing and polyadenylation via direct interaction with the RNAs at the regions inferred by

MAPP (Fig. 2a, bottom panel).

We next turned to a well characterized splicing regulator, the RBFOX1 RBP. Analyzing data

from an experiment where the RBFOX1-dependency of exons was determined in

RBFOX2-deficient HEK293 cells in which RBFOX1 was inducibly expressed from a Flp-in

locus 23, MAPP ranks the previously described RBFOX1-binding sequence, UGCAUG, as

the most significant in explaining exon inclusion, further inferring that it has an activating

activity when located downstream of 5’SS 24 (Fig. 2b, top panel). MAPP also highlights the

opposite activity near the 3’SS, where RBFOX1-binding motifs are associated with reduced

exon inclusion. While this repressive effect appears to be much weaker compared to the

activating effect of motifs located downstream of 5’SS, it is interesting to infer simply from
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the RNA-seq data that RBFOX1, like other RBPs 25, can have opposing impacts depending

on the location of binding sites. These results demonstrate that by making use of standard

RNA-seq experiments only, MAPP enables fine grained insights into the binding-specificity

and position-dependent impact of RBPs on splicing and 3’ end processing.
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Fig. 2 | MAPP infers the known regulatory impact of the HNRNPC and the RBFOX
RBPs on splicing and 3’ end processing from RBP expression perturbation data sets.
a | Top panel: z-scores of activity changes in the vicinity of 3’ splice sites (3’SS), 5’ splice
sites (5’SS) and poly(A) sites (PAS) inferred from a HNRNPC knock-down data set 18. The
PWM with the highest inferred combined z-score of all PWMs has the penta-U motif as
consensus. By fitting the splicing and 3’ end processing models of MAPP to overlapping
windows (horizontal gray bars) located at specific distances relative to splice and poly(A)
sites, position-dependent activity z-scores are inferred. Statistically significant z-scores are
marked with an asterisk. Bottom panel: Smoothened (+/- 5 nt) HNRNPC eCLIP-based
coverage profiles in the vicinity of the top 200 3’SS, 5’SS and PAS, whose usage is most
upregulated (red) or does change least (gray) upon HNRNPC knock-down. b | Top panel:
MAPP results as described in a, but here applied to a RBFOX2-deficient HEK293 cell line
with induced expression of RBFOX1 which is known to regulate splicing at 5’SS by binding
to UGCAUG sequences 24. Bottom panel: eCLIP profiles as in a, but for the RBFOX2 RBP in
the vicinity of the top 200 3’SS, 5’SS and PAS, whose usage is most upregulated (blue) or
does change least (gray) upon RBFOX1 over-expression.

8



MAPP impact maps unveil the regulation code of multiple RBPs
Next, we used the large array of RBP knock-down datasets available from the ENCODE

project to comprehensively infer the sequence specificity, binding site position-dependent

impact and activating or repressive mode of action of human RBPs on pre-mRNA

processing. Applying MAPP to 456 RBP knock-down experiments available in ENCODE we

found that the tool is also here able to identify the motif known from the ATtRACT database

to correspond to the protein whose expression was altered in the experiment. Fig. 3 shows

summary results for samples for which the ATtRACT-provided PWM for the targeted RBP

was ranked among the top 5 most significant motifs. As the ATtRACT-provided PWMs

corresponding to the perturbed proteins were not always the most significant motifs in

explaining the RNA processing alterations, we also ran MAPP in the k-mer mode, to

determine which sequence elements explain best the observed changes. For some RBPs,

such as PCBP1 and HNRNPK, the k-mer based results are more significant and consistent

compared to the PWM-based results, indicating that the inferred k-mer better represents the

RBPs binding specificity than the PWM available in public databases. Interestingly, MAPP

uncovers a promoting activity of the general splicing factor SRSF1 and the PCBP1 RBP on

splice site processing, while other RBPs (e.g. HNRNPC, PTBP1, HNRNPK) appear to have

a repressive role. Importantly, half of the RBPs (HNRNPC, PTBP1, PCBP1, HNRNPK)

regulate both splicing and polyadenylation by acting on similar sequence motifs. Another

interesting observation is that the RBPs generally have the same type of activity on exon

inclusion - activating or repressive - when located at both 5’ and 3’ splice sites, but also in

those cases where they act on cleavage and polyadenylation. Thus, RBPs inferred by MAPP

to have a dual role, on splicing and polyadenylation, appear to predominantly act as either

activators or repressors on both pre-mRNA processing steps. This may hint to a concerted

regulation of alternative terminal exons by individual regulators, but it must go beyond the

regulation of terminal exons, because in many cases the motifs have similar activity around

the 5’SS, which does not occur in terminal exons. Finally, MAPP also infers that RBPs with

similar sequence specificity can exert their regulatory roles by binding to the pre-mRNA in

different positions relative to the pre-mRNA processing sites. For instance, both PCBP1 and

HNRNPK bind a ‘CCC’ sequence element to regulate splicing and polyadenylation.

However, while the impact of HNRNPK seems to be focused on the immediate vicinity of

processing sites, PCBP1 appears to activate splicing from a broader region.
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Fig. 3 | MAPP reveals the concerted impact of pre-mRNA processing regulators on
splicing and polyadenylation. For each RBP we determined the first motif (in the order of
MAPP-provided significance) that is assigned in the ATtRACTdb to the RBP that was
depleted in each experiment. Column 3 shows the rank of that motif as inferred by MAPP.
The table contains RBPs where the known binding motif was among the top 5 reported by
MAPP. The activity profiles are shown similarly to those in Fig. 2, the top two rows indicating
the knock-down and the bottom two the control conditions. Windows within regions around
3’SS, 5’SS and PAS are set to the same ranges as done in Fig. 2. The central window
sliding through a given RNA processing site (-25nt,+25nt) was marked as black square in the
legend (bottom right). Furthermore, in addition to the PWM-based MAPP runs, we have
carried out a similar analysis exploring all possible k-mers of length 3 to 5. The top-ranked
k-mer is reported for each experiment alongside the corresponding PWM result.

While the proteins with known PWMs shown in Fig. 3 have been implicated in splicing

before, we also investigated cases where MAPP identified a significant k-mer, but not a

PWM of a known regulator as being able to explain the pre-mRNA processing changes. One

interesting example is the Poly(U) Binding Splicing Factor 60 (PUF60) RBP. ENCODE

provides knock-down experiments for this protein in two cell lines: K5643 (ENCSR558XNA)

and HepG2 (ENCSR648BSC). The two experiments that exhibit the most significant MAPP

results consistently infer a highly similar U-rich sequence element (Supplementary Fig. S3),

which is also the motif inferred to be bound by PUF60 in vitro, in RNA Bind’n-seq
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experiments 21,22. As PUF60 exhibited a narrow window of activity upstream of 3’ splice sites,

we have rerun MAPP at a higher resolution, using windows of 20 nts slided by only 10 nts.

The resulting MAPP impact maps charts the regulation of 3’ splice site usage by PUF60 at a

fine level of detail. The PUF60 RBP is only active when binding to U-rich regions located

within a very narrow window (30 to 10 nt) upstream of the 3’ splice site (Supplementary Fig.

S3). While this is consistent with a previous report of PUF60 activating exon inclusion by

binding to U-rich regions upstream of 3’ splice sites 26, MAPP reveals the very narrow

window of PUF60 activity, the intronic region of ~30-10 nts upstream of the 3’ splice site, to

be much more position-specific than other regulators mentioned above (Fig. 3). These

results illustrate the utility of MAPP in elucidating the position- and sequence-dependent

regulation of pre-mRNA processing by RBPs.

MAPP unravels RBPs that drive the oncogenic splicing program active

in glioblastomas
As key factors in the post-transcriptional regulation of gene expression, RBPs have been

reported to play an important role in numerous diseases, including cancer 27. In a previous

study we have uncovered that the PTBP1 RBP best explains the global remodeling of 3’

UTR length in glioblastoma 6. Importantly, PTBP1 was previously mainly studied in the

context of splicing and the results from our ENCODE screening suggest that the PTBP1

RBP indeed does significantly impact splicing (Fig. 3). To follow this further up we applied

MAPP to a high quality PTBP1 knock-down dataset without PTBP2 background 28 confirming

that PTBP1 does act as global splicing and 3’ end processing regulator (Fig. 4a, bottom

panel). Specifically, in addition to its repressive activity on poly(A) site usage, PTBP1

represses the processing of 3’SS and to some extent 5’SS. Moreover, from the MAPP

impact maps we can conclude that PTBP1-binding motifs located within the cassette exon

itself or the first ~75 intronic nt upstream of the 3’SS are associated with reduced exon

inclusion when the expression levels of PTBP1 are high, i.e. in control conditions. These

inferences are also supported by PTBP1 eCLIP data (Fig. 4a, top panel).
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Fig 4. | MAPP unravels the joint effect of the PTBP1 and RBFOX RBPs on splicing and
3’ end processing in glioblastoma. a | PTBP1 eCLIP densities around pre-mRNA
processing sites (top panel) and impact maps for the PTBP-bound CUCU motif as inferred
by MAPP (bottom left panel) from control cells and cells depleted of both PTBP1 and PTBP2
by siRNA-mediated knock-down. Bottom right panel: PTBP1/2/3 expression versus the
activity of the CUCU motif within 50 nt upstream of 3’ splice sites (3’SS). b | MAPP results
for glioblastoma (GBM) and normal brain (NORMAL) samples for the PTBP-bound CUCU
motif (top panel) as well as for the RBFOX-bound UGCAUG motif (bottom panel). Regions
with statistically significant CUCU motif activity (purple) or UGCAUG motif activity (green),
respectively, are highlighted in the cartoon (mid panel). MAPP was run without a minimum
exon length constraint in order to also account for micro-exons prevalent in neurons.
c | Scatter plots of the RBP mRNA expression levels versus the MAPP inferred activities for
the region windows indicated.

To uncover which regulators can best explain splicing in glioblastomas we next applied

MAPP to cancer samples 29, where it inferred that the PTBP-binding motif has the most

significant activity on pre-mRNA processing (Supplementary Tables S4 and S5) with a

motif ranking and position-dependent activity that matches the profile obtained from the

PTBP1/2 knock-down data (Fig. 4a,b; Supplementary Table S6). The combined activity of

PTBP1 on splicing and polyadenylation in glioblastoma strengthens the case for PTBP1 as a
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main regulator of pre-mRNA processing in glioblastomas, where PTBP1 is highly

overexpressed. Also, as expected for a regulator that acts as a repressor of pre-mRNA

processing, the expression of PTBP1 anti-correlates with its motif activity (Fig. 4c).

Interestingly, besides the PTBP1 motif, the RBFOX-associated motif was also identified by

MAPP as being differentially active in glioblastomas compared to normal brain samples (Fig.

4b). Moreover, a k-mer-based MAPP run confirmed that in addition to PTBP1-associated

CU-rich k-mers, the GCAUG sequence bound by the RBFOX RBPs is also among the

significant 5’SS-proximal k-mers that regulate exon inclusion (Supplementary Table S4).

Consistently with the known role of RBFOX RBPs as activators of splice site usage, the

MAPP-inferred activity correlates remarkably well with RBFOX expression (Fig. 4c).

Multiple oncogenic splicing events take place downstream of the PTBP1

and the RBFOX RBPs in glioblastoma
Investigating the percent-spliced-in (PSI) of exons having binding sites for the PTBP1 RBP,

the RBFOX RBPs, or for both within the MAPP-inferred regions we found that cassette

exons being co-regulated by both RBPs exhibit the most prominent differences in PSI when

comparing glioblastoma to normal brain tissue (Fig. 5a). Importantly, the average change in

exon inclusion increased with the minimum binding site probability required in our analysis to

be considered a target of PTBP1 and RBFOX, respectively (Supplementary Fig. S6). Gene

ontology (GO) analysis of genes with cassette exons that are differentially expressed in

glioblastoma versus normal brain tissue and that have binding sites for the PTBP1 and the

RBFOX RBPs within the corresponding regions inferred by MAPP, reveal a highly significant

enrichment of genes involved in synaptic signaling (Fig. 5b). This suggests that cassette

exons that are spliced-in within normal brain tissue due to the low and high splicing activity

of the PTBP1 and the RBFOX1 RBPs, respectively, are largely involved in neuron-specific

functions. Importantly, both RBPs were previously reported to regulate brain-specific

micro-exon inclusion in healthy brain tissue 30, suggesting that the dysregulation of these two

factors in glioblastoma leads to a pattern of exon inclusion that is less brain-specific, and

probably more akin to that of an undifferentiated state, which is a hallmark of many cancers
31,32.
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Fig. 5 | Concerted effects of the PTBP1 and RBFOX RBPs regulate cassette exon
skipping in glioblastomas. a | Distribution of inclusion score differences observed in
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normal and malignant brain samples for groups of differentially-regulated exons at increasing
levels of binding probability cutoffs. b | Top 10 enriched gene ontology terms in the category
Biological Processes as inferred from cassette exons having binding sites for both RBPs
(with binding probability > 0.6) and are differentially expressed in glioblastomas compared to
normal brain tissue. c | Differences in inclusion scores for five exons which have been
previously associated with cancer-related isoforms. d | Graphical summary of cassette exon
co-regulation by the PTBP1 and RBFOX RBPs in glioblastoma and their reported
downstream effects on tumour development and progression.

Interestingly, there are multiple splicing events among the cassette exons that are

differentially spliced-in in normal versus malignant brain tissue and contain binding sites for

the PTBP1 RBP, the RBFOX RBPs or both (Fig. 5c; Supplementary Table S7), thereby

providing a link between the dysregulation of the PTBP1 and RBFOX RBPs in glioblastomas

and the downstream effects on malignant cellular behavior.

PTBP1 is known to regulate a neuronal isoform expression program, which, amongst others,

ensures the inclusion of the PBX Homeobox 1 (PBX1) exon 7 in neurons. Importantly, the

opposite effect takes place in glioblastoma samples (Fig. 5c), in which the PTBP1 and

RBFOX RBPs are up- and down-regulated, respectively (Fig. 4c), and MAPP infers a

consistent switch in their splicing activity (Fig. 4b). Exon 7 contains binding sites for both

RBPs within the regions inferred by MAPP (Supplementary Table S7). Consistently, PTBP1

was previously shown to repress PBX1 exon 7 in mouse embryonic stem cells (ESCs).

Induced expression of exon 7 of the PBX1 transcription factor in ESCs activates the

transcription of neuronal genes 33. Thus, the high expression of PTBP1 in glioblastoma

relative to normal brain tissue might drive neurons into a more stem cell-like, i.e.

undifferentiated state, which was suggested to be the origin of glioblastoma 34, and is also

one of the general hallmarks of cancer 31.

In line with this, we observe PTBP1 being upregulated, and PTBP2 being downregulated in

GBM compared to normal brain samples (Fig. 4c). It is well known that PTBP1 is abundantly

expressed in undifferentiated neural stem cells and is downregulated during neuronal

differentiation, while its paralog PTBP2 is upregulated, leading to the increased inclusion of

neuronal exons 35,36. Importantly, it was shown that high expression of PTBP1 in neural stem

cells and undifferentiated precursors promotes skipping of the PTBP2 exon 10, which has

binding sites for both, the PTBP1 and the RBFOX RBPs (Supplementary Table S7). PTBP2

exon 10 is significantly less included in the GBM samples relative to normal brain tissues

(Fig. 5c) and skipping of exon 10 was demonstrated to result in transcript isoforms that

contain a premature stop codon and are thus subject to degradation by nonsense-mediated
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mRNA decay 37. Consistently, we observe reduced expression of PTBP2 in GBM relative to

the normal brain tissue samples (Fig. 4c).

Another interesting exon having binding sites in the MAPP-inferred regions for PTBP1 and

RBFOX is exon 3 of the RTN4 gene (Supplementary Table S7). Consistent with our

observations in GBM (Fig. 5c), high levels of PTBP1 were reported to cause exon 3 skipping

and overexpression of the RTN4 splice isoform that contains exon 3 was shown to decrease

cell proliferation of glioma cells, whereat skipping of RTN4 exon 3 contributes significantly to

their rapid growth characteristics 38. Even though many exons skipped in GBM have binding

sites for both PTBP1 and RBFOX RBPs within the MAPP-inferred regions (Fig. 5a;

Supplementary Fig. S6), there exist also candidates that appear to be under regulation of

only one of the RBPs. For instance, exon 16 of the NF2 gene is much less included in GBM

(Fig. 5c) and has only binding sites for RBFOX RBPs, but not PTBP1 (Supplementary

Table S7). Previous studies have shown that there exist two major NF2 isoforms, isoform 1,

which does not contain exon 16, and isoform 2, which does. Even though the exact role of

these isoforms is still a matter of debate, both of them have been reported to play roles in

cancer development 39,40. Finally, there exist also exons that are regulated and have only

binding sites for PTBP1, but not RBFOX RBPs (Fig. 5a; Supplementary Fig. S6). An

example is exon 6 of the ANXA7 gene (Supplementary Table S7), which is skipped in GBM

(Fig. 5c). Importantly, ANXA7 exon 6 skipping was shown to promote the progression of

GBM by fostering angiogenesis 41 and thus provides another link of the MAPP-inferred

regulators and the molecular properties of GBM (Fig. 5d).

Discussion
By binding to sequence elements in transcripts, RBPs regulate gene expression at

co-transcriptional and post-transcriptional levels. In particular, they can affect both splicing

and 3’ end processing, key steps in the maturation of mRNAs. Additionally, the interaction of

RBPs with mature mRNAs can regulate the transport, localization and translation of these

mRNAs 42. Understanding of the global and concerted effect of various RBPs on the cellular

transcriptome is undoubtedly key to understanding how gene expression is dysregulated in

various pathological conditions, including cancer 43,44. In this study we presented a novel

computational approach for inferring the regulatory impact of various RBPs on splicing and

3’ end processing.
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We have validated our method on data pertaining to proteins with well-established roles in

splicing and/or polyadenylation. Specifically, the MAPP-inferred activities of the HNRNPC

RBP are in line with its previously reported role in preventing exonization of cryptic Alu

elements 20,45. Many Alu elements have evolved to become cassette exons, and the

potentially deleterious inclusion of these exons needs to be tightly regulated. The impact

maps constructed by MAPP are fully consistent with this role of HNRNPC (Fig. 2a). MAPP

also recovers the previously-noted position-specific regulation of exon inclusion by RBFOX

RBPs (Fig. 2b), whereat binding of RBFOX upstream of cassette exons results in their

exclusion, while binding downstream of such exons promotes their inclusion 46. While our

results are consistent with this model, they also provide higher granularity in the binding site

position-dependent effects of RBFOX. Specifically, they indicate a higher impact of the

downstream, inclusion-promoting sites. Furthermore, MAPP indicates that binding sites that

are located further upstream in the introns also have an overall inclusion-promoting effect,

consistent with an earlier report 24. Thus MAPP provides direct and broad insight into the

activity of RBP binding sites from individual RNA-seq data sets, without a need for stratifying

the data or determining the binding sites with methods such as crosslinking and

immunoprecipitation. MAPP’s position-dependent impact maps thus enable an efficient and

improved understanding of how RBPs exert their roles both globally and on individual

targets.

After benchmarking MAPP on RBPs with known impact on pre-mRNA processing, we turned

to the >400 RBP knock-down data sets available from the ENCODE project and revealed

that multiple regulators affect exon inclusion and 3’ end processing (Fig. 3). Once again,

thanks to the sliding window approach of MAPP we found that distinct regulators differ not

only in their role (which for all investigated RBPs seem to be the same in the two processes,

i.e. to either enhance or repress) but also in their position specificity. For example, MAPP not

only highlighted the opposite effect of two proteins, HNRNPK and PCBP1, which bind the

same ‘CCC’ sequence, on cassette exon inclusion, but also that the distance range of their

impact differs despite binding motifs obviously exist elsewhere: PCBP1 acts more broadly in

the introns flanking the cassette exon, while HNRNPK acts in a more focused manner, at the

exon-intron boundaries. Interestingly, our results indicate that the majority of investigated

RBPs act as repressors of pre-mRNA processing. Given that the sequence elements that

are involved in processing are typically short, our results could indicate that many repressors

are needed to mask the many decoy processing sites across the genome 47.
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Of course, a knock-down is an artificial condition, while within tissues multiple RBPs likely

vary in concentration in a concerted manner, leading to more complex patterns of regulation

of mRNA maturation 48. Importantly, applying MAPP to normal brain and glioblastoma

samples we uncovered that many exons are co-regulated by the PTBP1 and RBFOX RBPs

(Fig. 4), two regulators that were reported previously to act in concert 22,30. MAPP analysis of

glioblastoma samples yields impact maps that strikingly resemble those obtained from RBP

knock-down data (Fig. 4a,b). In glioblastomas, the splicing activating RBFOX RBPs are

downregulated, whereas the PTBP1 splicing repressor is highly expressed compared to

normal brain tissue (Fig. 4c). The usage of many cassette exons alternatively spliced in

glioblastomas are repressed at their 5’SS by the highly abundant PTBP1 RBP, whereas the

usage of their 3’SS lacks splicing due to the lack of RBFOX RBPs (Fig. 4b). Thus, the

oncogenic splicing program of glioblastomas is a result of both overexpression of PTBP1

and the downregulation of RBFOX RBPs compared to healthy brain tissues (Fig 5). Notably,

multiple of the cassette exons that are differentially spliced in glioblastoma compared to

normal brain tissue and that have binding sites for the PTBP1 RBP, the RBFOX RBPs or

both, were previously validated experimentally to drive cells into a more malignant state (Fig.

5c,d). Examples are skipping of PBX1 exon 7 and PTBP2 exon 10. Both of these splicing

events were reported to contribute to less differentiated cellular states 33,35,36, which was

suggested to drive glioblastoma development 34 and is a general hallmark of cancers 31.

Further, skipping of the RTN4 exon 3 was demonstrated to increase cell proliferation of

glioma cells 38 and reduced inclusion of exon 6 of the ANXA7 gene was reported to promote

glioblastoma progression 41. Besides the already experimentally validated oncogenic splicing

events, among the large number of cassette exon skipping events taking place in

glioblastomas (Fig. 5a), there are most probably further candidates that remain to be

characterized towards their involvement in brain tumour development and progression.

Importantly, the identification of RBPs that broadly impact mRNA processing in specific

conditions and in particular in individual cancers is highly relevant, as it can provide novel

entry points for the development of therapies. Targeting of mRNAs and mRNA-RBP

interactions with antisense oligonucleotides 49,50 or small molecules 51 holds much promise

for medical applications. As MAPP is a fully automated workflow, the task of identifying

regulators of pre-mRNA processing from novel RNA-seq datasets is considerably facilitated.

Other groups have investigated binding site location-dependent effects of RBPs, specifically

proposing the concept of “RNA maps” 52, which summarize the density of RBP binding sites

in the vicinity of various types of landmarks (exon and transcript boundaries), where RBPs
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exert regulatory roles. For instance, binding of the Nova RBP upstream of a cassette exon is

associated with the skipping of that exon, while the binding downstream of the cassette exon

is associated with the exon inclusion. The impact maps that MAPP constructs provide

complementary information. They do not rely on direct information about the location of the

binding site of the RBP (usually obtained with CLIP), nor on specific thresholds for defining

regulated events such as exon inclusions. Rather, MAPP makes use of the quantitative

information in the inclusion level of each exon or PAS as well as in the number of predicted

binding sites in the vicinity of these exons. As a result, MAPP provides quantitative

information about the impact of motifs on RNA processing, circumventing issues regarding

the coverage of the binding sites by CLIP in targets with different levels of expression. Also

interesting to note is the increasing use of massively parallel assays for exploring the

dependence of RNA processing on specific motifs 53. These provide information more

analogous to MAPP’s impact maps, but are limited to a small number of conditions, a small

number of targets and regions within these targets, and have been so far used to

characterize general principles of RNA processing. In contrast, MAPP’s utility comes

primarily in exploring a broad range of conditions and identifying condition/tissue-specific

regulators. Thus, MAPP extends the RNA biologist’s toolbox to enable the functional

characterization of RBP-RNA interactions and their consequences at an increasing level of

detail.

In conclusion we developed a powerful computational approach to identify regulators of

splicing and 3’ end processing, which are frequently coordinated. MAPP has been

developed using modern principles of high-quality scientific software engineering, facilitating

further development by a broad community of developers.
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Methods

Datasets
We validated our method on publicly available RNA-seq data with perturbed levels of RBPs

with known impact on splicing, and, to some extent, polyadenylation. The full list of samples’

and records’ IDs is included as Supplementary Table S1. Similarly, Supplementary Table

S2 lists all RNA-Seq data sets related to RBP knock-downs we have obtained from the

ENCODE project. To apply MAPP we require that samples meet minimal criteria of quality.

For example, we require a sufficiently high Transcript Integrity Number (>50, typically > 70)
54, high proportion of uniquely mapped reads (>0.95), high proportion of high-quality mapped

reads (>0.85; following RNA-SeQC’s documentation: proportion of properly paired reads with

less than 6 mismatched bases and a perfect mapping quality out of all mapped reads), low

level of rRNA contamination (<0.05) and low proportion of reads mapped to intergenic

regions (<0.1), as reported by RNA-SeQC 55. BAM files with mapped RNA-seq reads of

normal and tumor sample pairs from TCGA were obtained from the Genomic Data

Commons (GDC) data portal 56. The selection of normal-tumor pairs from glioblastoma data

was done as described previously (Supplementary Table S3) 6. Additional transcriptomic

alignments were generated by first unmapping and then re-aligning RNA-Seq reads, utilizing

Samtools and STAR with proper command line options.

MAPP
MAPP, standing for Motif Activity on Pre-mRNA Processing, is implemented as a modular

snakemake workflow 57 with distinct standalone sub-workflows dedicated to separate

functionalities. These are: RNA-Seq data preprocessing, selection of cassette exons,

selection of tandem poly(A) sites, quantification of exon inclusion, quantification of poly(A)

site usage, generation of motif count matrices (PWMs/k-mers) in each window around each

site, the MAEI model (splicing), the KAPACv2.0 model (polyadenylation), and the summary

of results. Each of these modules is described in detail in the Supplementary Methods.

MAPP supports two distinct software technologies: Conda environments 58 and Singularity

containers 59.
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MAEI

MAEI, which stands for Motif Activity on Exon Inclusion, is a novel model designed to infer

the impact of short sequence motifs on the differential inclusion of cassette exons. In order

to prevent the confounding effect of sites located within intronic regions, by default MAPP fits

activities for windows of 50 nt length and considering only exons that are at least 50 nt in

length. As input the MAEI model uses, for each exon e, the expression levels of transcripts

including and excluding the exon across a set of samples s, together with a matrix N whose

entries Ne,m correspond to the motif counts of each motif m in a window around the mRNA

processing sites of interest, i.e. 5’SS or 3’SS, for each exon e. The motifs can either be

specified as PWMs or k-mers. We model the inclusion fractions fe,s (i.e. the fraction of

transcripts including the cassette exon e among transcripts for which e was included in the

pre-mRNA, see Supplementary Methods) of every exon e in every sample s using a

logistic function: , where is a linear function ofΘ
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The activity z-scores are then presented visually on the impact maps. See the

Supplementary Methods for more details on all calculations.

In order to distinguish motifs with statistically significant z-scores from those with z-scores

from a Gaussian background distribution we use a Gaussian mixture model to renormalize

the z-scores and transform them into p-values from a standard normal distribution. Statistical

significance is then finally assessed upon Bonferroni-correction of these p-values. Again, we

refer the reader to the Supplementary Methods for more details on the procedure.

KAPACv2.0

KAPACv2.0, standing for K-mer Activity on PolyAdenylation site Choice version 2.0,

implements a more general version of our previously published KAPAC tool 6. KAPACv2.0
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models genome-scale changes in 3’ end usage to infer sequence motifs that can explain 3’

end site usage across samples. In contrast to KAPAC, KAPACv2.0 can use both binding

sites predicted with position-dependent weight matrices (PWMs) as well as k-mer counts.

Also, while the first version of KAPAC was designed to run on sample contrasts, such as

knockdown versus control samples, KAPACv2.0 does not require contrasts but can be

applied to any set of samples, such as different tissues or a time series. First, we define the

relative usage of poly(A) site p in sample s as . KAPACv2.0 then models the relative𝑢
𝑝,𝑠

usage with respect to the mean of all samples as a linear function of the occurrence of𝑢
𝑝,𝑠

PWM binding sites or k-mer counts and the unknown ‘activity’ of these PWMs / k-mers:

where is the number of binding sites (predicted𝑙𝑜𝑔
2

𝑢
𝑝,𝑠( ) = 𝑁

𝑝,𝑘
* 𝐴

𝑘,𝑠
+ 𝑐

𝑝
 + 𝑐

𝑠,𝑒
 +  ε, 𝑁

𝑝,𝑘

with the PWM or by k-mer counting) around poly(A) site p, is the mean relative usage𝑐
𝑝

𝑙𝑜𝑔
2

of poly(A) site p across all samples, is the mean relative usage of the poly(A) site𝑐
𝑠,𝑒

𝑙𝑜𝑔
2

from exon e in sample s and ε is the residual error. Finally, is the activity of the PWM /𝐴
𝑘,𝑠

 

k-mer k in sample s, which determines how much the PWM / k-mer contributes to the

relative usage of the poly(A) site. KAPACv2.0 calculates for every PWMs or k-mer,

respectively, a z-score z = , whereas are the fitting errors of the activities .𝐴
𝑘,𝑠

 / σ
𝑘,𝑠

σ
𝑘,𝑠

𝐴
𝑘,𝑠

Background correction and ranking of PWMs / k-mers is done as described for the MAEI

approach above (see Supplementary Methods and ref. 6 for further information).

Curation of PWMs of RBPs binding motifs
ATtRACT is a publicly available database of RNA-binding proteins and associated motifs 60.

On 20 August 2021 we downloaded the zip file containing all available RBP motifs in the

format of position-dependent weight matrices (giving the probability of observing any of the

four bases at each position of the binding site) as well as their corresponding metadata

(ATtRACT_db.txt). From the ATtRACT_db.txt we first selected motifs annotated with the

species Homo sapiens (3256 records) and from these only those that corresponded to

wild-type proteins (“Mutated” field having the value “no”, 3178 records). We next selected

only one of the records that had the same gene ID, PWM ID and experiment description

(where for experiment description, records that contained the word ‘SELEX’ were considered

as having the same description). This procedure resulted in 1120 records. Next we clustered

records for which the entries in the PWMs (position-dependent frequencies of nucleotide

occurrence) were identical. If the cluster with identical PWM entries contained multiple

RBPs, we discarded them all, as we could not unambiguously assign the PWM to one RBP.
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If the cluster contained multiple records for the same RBP, we kept only one of them. This

step left 523 records. We further determined the length of the core motif for each PWM, that

is, the longest motif such that the first and last position had a non-zero information content

and discarded those records where core motifs were not in the range of 4 to 7 nucleotides.

This step left 346 records. Finally, for each PWM we calculated the total motif entropy and

discarded those that were too degenerate (with an entropy higher than 10). This procedure

yielded 344 PWMs for the MAPP analyses.

Coverage profiles of RNA-binding proteins
To gain additional confidence in MAPP’s inferences, we constructed coverage profiles for

distinct RNA-binding proteins based on CLIP data in HepG2 and K562 cells, publicly

available as a part of the ENCODE project (experiment IDs: ENCSR550DVK,

ENCSR987FTF, ENCSR384KAN, ENCSR249ROI, ENCSR756CKJ, ENCSR981WKN). For

Fig. 2a,b and 4a we have used the experiments conducted in HepG2 cells (similar plots for

K562 cells can be found in Supplementary Figs. S4 and S5) we selected the group of the

top 200 targets with the highest change in alternative splicing as well as alternative

polyadenylation into the expected direction based on the average quantified exon inclusion

fraction and poly(A) site usage, respectively. We have extended the margins around these

sites so that the eCLIP analysis matches the regions covered by our MAPP sliding windows.

For every RNA processing site separately we have calculated foreground/background ratios

of library-size-normalized position-wise CLIP read coverages (foreground being CLIP reads

from the RBP pulldown experiment and background being the corresponding control

pulldown experiment). We have plotted the position-wise mean ratio over all sites

(smoothened by the -5/+5nt of each position). Additionally to the target set we selected a

group of 1,000 sites with the least change in RNA processing and treated them as

background to estimate coverage profiles for non-targets. From this set there were randomly

sampled 200 non-targets for 100 times, each time following the same procedure as

described above for the non-random sites in order to obtain 100 background coverage

profiles. These random profiles were used to plot the (smoothened) per-position mean of

means together with a confidence boundary which reflects the per-position standard

deviation of the means. The data processing notebook is available in the supplementary

data (see Data availability section).
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Selection of ENCODE experiments, reported motifs and k-mers
We have downloaded and analyzed RNA-seq samples linked to 472 knock-down

experiments of RBPs, publicly available as a part of the ENCODE project; 16 of these did

not pass the quality-control step as defined in the “Datasets” section. We used the

remaining 456 data sets for the analysis shown in Fig. 3. Briefly, each ENCODE experiment

has been analyzed with MAPP in both PWM-based and k-mer-based approaches. For each

of the knock-down experiments we selected the lowest rank of any ATtRACT PWM

associated with the perturbed RBP for which MAPP found statistically significant impact on

any of the signals (statistical significance annotated with the "abs" strategy, please see

Supplementary Methods). Such obtained “PWM rank” is the key by which the results table

is sorted in descending order. For only 12 ENCODE experiments we found that the PWM

associated with the perturbed RBP had a rank of maximum 5 (out of 344 curated PWMs).

For these, we report the PWM ranks and their impact maps, as inferred by MAPP. We then

checked whether the appropriate motif is also recovered in the k-mer mode. For this, we

selected the k-mer with the highest overall statistically significant activity z-score, averaged

over all of the processing sites (labeled as “1st ranked k-mer”) from each experiment.

Alongside with the previously described PWM-based results we report the 1st ranked k-mer

and its impact map. Data processing scripts are available in the supplementary data (see

Data availability section).

Data availability
The results generated in this study are available in the supplementary data, which are

accessible from Zenodo under doi: https://doi.org/10.5281/zenodo.5789986. The accession

numbers for used datasets are available from Supplementary Tables S1 and S2.

Code availability
The MAPP code is available at https://github.com/gruber-sciencelab/MAPP under the

Apache 2.0 open-source license.

24



Author contributions
M.B. and A.G. designed the MAPP pipeline, M.B. implemented the pipeline with

contributions from A.G. I.K. helped testing the pipeline and M.B. prepared the GitHub

repository. E.N. and M.B. designed the MAEI model and background correction and M.B.

implemented it. A.G. designed and implemented the KAPACv2.0 model. R.S. developed the

TPA module of the MAPP pipeline. M.B. and A.G. analyzed the data and created the figures.

M.B. created the supplementary data record. I.K. carried out the GO analysis. A.G.

conceived the study. A.G. and M.Z. designed and supervised the project. A.G., M.B. and M.Z

wrote the manuscript.

Acknowledgements
We express our wholehearted gratitude to the sciCORE facility of the University of Basel and

to Stefan Gerlach from the Scientific Compute Cluster of the University of Konstanz

(SCCKN) for maintaining the high-performance computing clusters where we have carried

out all the computations and analyses. This work was supported by the Swiss National

Science Foundation (grant 310030_189063 to M.Z.). M.B. was a recipient of a PhD

scholarship “Fellowship for Excellence” of the Biozentrum, University of Basel.

References

1. Fredericks, A. M., Cygan, K. J., Brown, B. A. & Fairbrother, W. G. RNA-Binding Proteins:

Splicing Factors and Disease. Biomolecules 5, 893–909 (2015).

2. Zheng, D. & Tian, B. RNA-binding proteins in regulation of alternative cleavage and

polyadenylation. Adv. Exp. Med. Biol. 825, 97–127 (2014).

3. Meng, Q. et al. Signaling-dependent and coordinated regulation of transcription,

splicing, and translation resides in a single coregulator, PCBP1. Proc. Natl. Acad. Sci. U.

S. A. 104, 5866–5871 (2007).

4. Ji, X., Wan, J., Vishnu, M., Xing, Y. & Liebhaber, S. A. αCP Poly(C) binding proteins act

as global regulators of alternative polyadenylation. Mol. Cell. Biol. 33, 2560–2573

25



(2013).

5. Gruber, A. J. et al. A comprehensive analysis of 3’ end sequencing data sets reveals

novel polyadenylation signals and the repressive role of heterogeneous

ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–1159

(2016).

6. Gruber, A. J. et al. Discovery of physiological and cancer-related regulators of 3’ UTR

processing with KAPAC. Genome Biol. 19, 44 (2018).

7. Chang, S.-H. et al. ELAVL1 regulates alternative splicing of eIF4E transporter to

promote postnatal angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 111, 18309–18314

(2014).

8. Dai, W., Zhang, G. & Makeyev, E. V. RNA-binding protein HuR autoregulates its

expression by promoting alternative polyadenylation site usage. Nucleic Acids Res. 40,

787–800 (2012).

9. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing

regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

10. Rot, G. et al. High-Resolution RNA Maps Suggest Common Principles of Splicing and

Polyadenylation Regulation by TDP-43. Cell Rep. 19, 1056–1067 (2017).

11. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat.

Rev. Genet. 15, 829–845 (2014).

12. Siddaway, R. et al. Splicing is an alternate oncogenic pathway activation mechanism in

glioma. Nat. Commun. 13, 588 (2022).

13. Larionova, T. D., Kovalenko, T. F., Shakhparonov, M. I. & Pavlyukov, M. S. The

Prognostic Significance of Spliceosomal Proteins for Patients with Glioblastoma. Dokl.

Biochem. Biophys. 503, 71–75 (2022).

14. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP

maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

26



15. Masuda, A. et al. Position-specific binding of FUS to nascent RNA regulates mRNA

length. Genes Dev. 29, 1045–1057 (2015).

16. Lee, S. et al. ELAV/Hu RNA binding proteins determine multiple programs of neural

alternative splicing. PLoS Genet. 17, e1009439 (2021).

17. Cieniková, Z., Damberger, F. F., Hall, J., Allain, F. H.-T. & Maris, C. Structural and

mechanistic insights into poly(uridine) tract recognition by the hnRNP C RNA recognition

motif. J. Am. Chem. Soc. 136, 14536–14544 (2014).

18. Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate

RNA-protein interactions. Nature 518, 560–564 (2015).

19. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual

nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

20. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the

transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

21. Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data

portal. Nucleic Acids Res. 48, D882–D889 (2020).

22. Van Nostrand, E. L. et al. A large-scale binding and functional map of human

RNA-binding proteins. Nature 583, 711–719 (2020).

23. Damianov, A. et al. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein

Complex LASR. Cell 165, 606–619 (2016).

24. Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through

evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

25. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444,

580–586 (2006).

26. Královičová, J. et al. PUF60-activated exons uncover altered 3′ splice-site selection by

germline missense mutations in a single RRM. Nucleic Acids Res. 46, 6166–6187

(2018).

27



27. Müller-McNicoll, M., Rossbach, O., Hui, J. & Medenbach, J. Auto-regulatory feedback by

RNA-binding proteins. J. Mol. Cell Biol. 11, 930–939 (2019).

28. Gueroussov, S. et al. An alternative splicing event amplifies evolutionary differences

between vertebrates. Science 349, 868–873 (2015).

29. Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer

analysis project. Nat. Genet. 45, 1113–1120 (2013).

30. Li, Y. I., Sanchez-Pulido, L., Haerty, W. & Ponting, C. P. RBFOX and PTBP1 proteins

regulate the alternative splicing of micro-exons in human brain transcripts. Genome

Res. 25, 1–13 (2015).

31. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 12, 31–46 (2022).

32. Cao, Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of

properties of neural precursor/progenitor cells. Cell Biosci. 7, 61 (2017).

33. Linares, A. J. et al. The splicing regulator PTBP1 controls the activity of the transcription

factor Pbx1 during neuronal differentiation. Elife 4, e09268 (2015).

34. Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by

oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

35. Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing

required for neuronal maturation. Elife 3, e01201 (2014).

36. Keppetipola, N., Sharma, S., Li, Q. & Black, D. L. Neuronal regulation of pre-mRNA

splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit. Rev.

Biochem. Mol. Biol. 47, 360–378 (2012).

37. Kim, J.-H. et al. SON drives oncogenic RNA splicing in glioblastoma by regulating

PTBP1/PTBP2 switching and RBFOX2 activity. Nat. Commun. 12, 5551 (2021).

38. Cheung, H. C. et al. Splicing factors PTBP1 and PTBP2 promote proliferation and

migration of glioma cell lines. Brain 132, 2277–2288 (2009).

39. Sherman, L. et al. Interdomain binding mediates tumor growth suppression by the NF2

28



gene product. Oncogene 15, 2505–2509 (1997).

40. Zoch, A. et al. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are

Required for Optimal Sperm Maturation. PLoS One 10, e0129151 (2015).

41. Ferrarese, R. et al. Lineage-specific splicing of a brain-enriched alternative exon

promotes glioblastoma progression. J. Clin. Invest. 124, 2861–2876 (2014).

42. García-Mauriño, S. M. et al. RNA Binding Protein Regulation and Cross-Talk in the

Control of AU-rich mRNA Fate. Front Mol Biosci 4, 71 (2017).

43. Qi, F. et al. Significance of alternative splicing in cancer cells. Chin. Med. J. 133,

221–228 (2020).

44. Jain, B. P. The role of alternative polyadenylation in cancer progression. Gene Reports

12, 1–8 (2018).

45. Attig, J. et al. Splicing repression allows the gradual emergence of new Alu-exons in

primate evolution. Elife 5, (2016).

46. Sun, S., Zhang, Z., Fregoso, O. & Krainer, A. R. Mechanisms of activation and

repression by the alternative splicing factors RBFOX1/2. RNA 18, 274–283 (2012).

47. Gruber, A. J. & Zavolan, M. Reply to ‘A different perspective on alternative cleavage and

polyadenylation’. Nature reviews. Genetics vol. 21 63–64 (2020).

48. Dassi, E. Handshakes and Fights: The Regulatory Interplay of RNA-Binding Proteins.

Front Mol Biosci 4, 67 (2017).

49. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery.

Nat. Rev. Drug Discov. 19, 673–694 (2020).

50. Bennett, C. F. Therapeutic Antisense Oligonucleotides Are Coming of Age. Annu. Rev.

Med. 70, 307–321 (2019).

51. Desterro, J., Bak-Gordon, P. & Carmo-Fonseca, M. Targeting mRNA processing as an

anticancer strategy. Nat. Rev. Drug Discov. 19, 112–129 (2020).

52. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302,

29



1212–1215 (2003).

53. Bogard, N., Linder, J., Rosenberg, A. B. & Seelig, G. A Deep Neural Network for

Predicting and Engineering Alternative Polyadenylation. Cell 178, 91–106.e23 (2019).

54. Wang, L. et al. Measure transcript integrity using RNA-seq data. BMC Bioinformatics 17,

58 (2016).

55. DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process

optimization. Bioinformatics 28, 1530–1532 (2012).

56. Evans, B. J. Genomic Data Commons. Governing Medical Knowledge Commons

74–101 Preprint at https://doi.org/10.1017/9781316544587.005 (2017).

57. Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021).

58. Anaconda Software Distribution. Anaconda Documentation Preprint at

https://docs.anaconda.com/ (2020).

59. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: Scientific containers for mobility of

compute. PLoS One 12, e0177459 (2017).

60. Giudice, G., Sánchez-Cabo, F., Torroja, C. & Lara-Pezzi, E. ATtRACT-a database of

RNA-binding proteins and associated motifs. Database 2016, (2016).

30



1

Supplementary Materials

Maciej Bak1,2∗, Erik van Nimwegen1,2, Ian U. Kouzel3, Ralf Schmidt1,2, Mihaela Zavolan1,2 and
Andreas J. Gruber3∗§

1 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
2 Biozentrum, University of Basel, 4056 Basel, Switzerland
3 Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
∗ These authors made equal first author contributions
§ To whom correspondence should be addressed: gruber@uni-konstanz.de

1 Supplementary Figures

RNA-Seq data
pre-processing

Tandem poly(A) sites
extraction

Poly(A) sites usage
quantification

Skipped exons
extraction

Exons inclusion
quantification

Summary

Modeling poly(A) sites usage
(KAPACv2 model)

Modeling exon inclusion
(MAEI model)

Sitecount Matrices
preparation

Figure S1. High-level overview of MAPP. The pipeline may be decomposed into nine separate
functional sub-modules, each of which can be executed individually on its own. Modules on the
left-hand side are related to the analysis of alternative splicing, whereas the right-hand side is dedicated
to alternative polyadenylation. The modules in the middle preprocess and prepare the RNA-seq data
for the splicing and the polyadenylation modules (top), create the sitecount matrixes (middle) and
summarize the results in the form of a report (bottom). Accordingly, MAPP starts from three
independent entry points.
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Figure S2. Automatically generated snakemake rule graph of the MAPP pipeline. Rules of distinct
sub-modules of the workflow are prefixed with a three-letter code. Four additional rules are added at
the end of the workflow (prefix: MAPP) which generate a compressed HTML-formatted report of the
MAPP result.
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Figure S3. Impact maps of the top two most significant k-mers reported by MAPP after analyzing
two PUF60 knock-down experiments from the ENCODE project. (a) PUF60 knock-down in the K5643
cell line and (b) in the HepG2 cell line. Right side: Results based on the windows used by MAPP per
default. Left side: In order to obtain more fine-grained insight into the position-specific activity of the
RBP we rerun MAPP using more narrow sliding windows around the 3’SS (20nt in length, slided by
10nt).
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Figure S4. eCLIP-based coverage profiles for distinct RNA-binding proteins as in Fig 2 of the main
text but in K562 cell line: (a) HNRNPC eCLIP (b) RBFOX2 eCLIP.
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Figure S5. eCLIP-based coverage profiles for PTBP1 RBP as in Fig 4 of the main text but in K562
cell line.
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Figure S6. CDF plots of the differences in average percent-spliced-in (dPSI) scores between conditions
in the glioblastoma dataset. Distinct colors denote cassette exons annotated as regulated by PTBP1
and/or RBFOX. Targets are assigned based on the binding probability inferred with MotEvo [1] in the
core region of regulation: -75nt upstream to +25nt around 3’SS for PTBP1 and +25nt to +125nt
downstream of 5’SS for RBFOX. CDFs are presented for increasing binding probability cutoffs c. The
number of cases is indicated in the legend.



7

2 Supplementary Methods

2.1 Data preprocessing

Processing of raw sequencing reads in FASTQ/FASTA format starts with two consecutive runs of cutadapt
tool [2]. First, the sequences of adapters are removed and subsequently we trim poly(A) tails. Following
that the reads are mapped to both genome and transcriptome using STAR aligner [3], which also - based
on the provided resources - builds a genomic index prior aligning the reads. Obtained alignments in BAM
format were then sorted and indexed with samtools [4]. If appropriate parameters are set MAPP will
also carry out quality control of the data and, prior to the downstream analysis, filter-out such RNA-Seq
samples which do not meet specified criteria. For the quality analysis we use metrics provided by RNA-
SeQC [5] and TIN score calculated as in RSeQC package [6]. Additionally all samples are handled over
to FastQC [7] which generates additional per-sample summary report.
Snakemake rules which belong to this module are marked with a three-letter namespace: PQA.

2.2 Selection of cassette exons

We select a set of cassette (also known as ’skipped’) exons based solely on the standard ENSEMBL
genomic annotation (version: hg38). We first run SUPPA2 [8] to generate all skipped exon events and then
filter them for minimal length sufficient for the downstream analyses. We focus only on records annotated
as protein coding. Obtained events are further clustered according to a mutual coverage dissimilarity
measure:

d(e1, e2) = 1−min(
len(e1 ∩ e2)

len(e1)
,
len(e1 ∩ e2)

len(e2)
) (1)

Where e1 and e2 denote two exons and with ∩ we take only the overlap between then. We applied a
hierarhical clustering with a maximum linkage strategy and set 0.05 as a cluster linkage cutoff parameter.
From every cluster we selected one event with the highest number of distinct transcripts that support it.
Such an event we call a representative exon. For all representative exons we keep the information which
transcripts of a given gene include it as well as the list of all transcripts for a given gene (both provided
by SUPPA2). We also save the coordinates of 3’ and 5’ splice-sites of these representatives.
Snakemake rules which belong to this module are marked with a three-letter namespace: ASE.

2.3 Extraction of tandem poly(A) sites

We select a set of poly(A) sites which may be classified as proximal/distal within a given terminal exon
based on a provided BED-formatted poly(A) site atlas as well as GTF-formatted genomic annotation.
Throughout the following study we use PolyASite 2.0 [9] and ENSEMBL annotation, version hg38. We
focus on all sites supported by at least one protocol (atlas-specific information) but filter for such which
are located only on protein-coding transcripts. We also discard all sites which could be ambiguously
annotated to distinct genes. We export coordinates of the resulting tandem polyA sites into a BED-
formatted list.
Snakemake rules which belong to this module are marked with a three-letter namespace: TPA.

2.4 Quantification of exon inclusion

In order to quantify transcripts’ expression based on transcriptomic alignments we run Salmon [10].
Having obtained per-sample, per-transcript TPM-normalized expression values we use the previous infor-
mation to collapse the scores into a more exon-centric level: for each representative exon (section 2.2) in
every sample we calculate two values: summed up total TPM expression of all transcripts which include
this exon (ie,s) as well as summed up total TPM expression of all transcripts of a given gene (te,s).
Snakemake rules which belong to this module are marked with a three-letter namespace: QEI.
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2.5 Quantification of poly(A) sites’ expression

In order to quantify the expression of distinct tandem poly(A) sites we employed our previously developed
tool: PAQR [11]. The method takes as input genomic alignments of RNA-Seq reads in BAM format and
a BED-formatted list of poly(A) sites of interest. It infers expression of distinct sites directly from
the coverage profiles in their proximity (please see original publication for more details). As an output
it provides TPM-normalized expression of poly(A) sites in all samples and, additionally, a list of their
relative position within respective terminal exons. Furthermore, we filter the output table to keep tandem
sites only located on such exons for which all their sites are considered as expressed in all analyzed samples.
Snakemake rules which belong to this module are marked with a three-letter namespace: PAQ.

2.6 Sitecount Matrices

Both statistical models for discovering regulators of casette exon inclusion and poly(A) sites’ usage require
tables containing quantified information about binding sites of distinct RNA-binding proteins within a
certain distance relative to the site of interest. We call such tables ’sitecount matrices’. In case of
alternative splicing analysis we define a range around 3’SS and 5’SS. For the alternative polyadenylation
analysis we focus around tandem poly(A) sites. We employ a ’sliding-window’ strategy in order to gain
a better resolution into the positional-dependent effect of RBPs binding sites on the mRNA maturation
process. Thus, the pipeline generates multiple sitecount matrices for 3’SS, 5’SS and poly(A) sites - each
one corresponding to a unique window defined relatively to the site of interest. MAPP pipeline can
be run in two modes: kmer- and pwm-based, depending on how the user chooses to generate sitecount
matrices. In both cases the module reads in BED-formatted files with the positions of 3’SS and 5’SS
of cassette exons as well as locations of tandem poly(A) sites (all previously generated) and produces
files with coordinates of distinct windows around them. We extract genomic sequences of the regions
encoded in these windows with Pybedtools [12]. In the former mode we sum up the occurrences of
distinct kmers over the sequence of the whole window (making sure not to overcount short overlapping
homomeric subsequences) and the resulting sitecount matrix contains raw counts. In the pwm-based
approach we utilise MotEvo [1], a probabilistic method which quantifies binding probabilities between
nucleotide sequences and distinct motifs (in PWM format). MotEvo parameters were set to: prior for
background binding probability as 0.99 (which corresponds to an expectation of 1 site every 100 bp), a
minimum binding posterior probability to consider a binding event as 0.01, and the Markov order of the
background model to 1. In this case the output sitecount matrices contain summed posterior probabilities
for each RBP binding to each region. Regardless of the approach selected the resulting information is
stored in a per-exon, per-motif matrix (Ne,m), for each window separately. Throughout the following
study whenever we run MAPP in kmer-based mode we count all 3-mers, 4-mers and 5-mers. In case
of pwm-based analyses we infer binding probabilities of pre-filtered subset of motifs deposited in the
ATtRACT databse [13].
Snakemake rules which belong to this module are marked with a three-letter namespace: CSM.

2.7 Modeling exons’ inclusion (MAEI)

Our aim is to model previously quantified inclusion of cassette exons with the information stored in
sitecount matrices (either raw counts of k-mers or binding probabilities for distinct PWMs). Please note
that the following procedure is applied to each of the sliding windows separately.

For every exon e we model its inclusion fraction fe,s in sample s with a logistic function Θe,s:

fe,s =
ie,s
te,s
∼ Θe,s =

ebs+ce+Ne,m×Am,s

1 + ebs+ce+Ne,m×Am,s
, (2)
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where te,s is the total expression in sample s of the gene containing exon e, and ie,s the expression of
transcripts containing exon e. The model parameters are the baseline inclusion level bs of all exons in
sample s, the baseline inclusion level ce of exon e, the number of binding sites Ne,m for motif m at exon
e, and the activity Am,s of motif m in sample s. The motif activities Am,s are the key quantities of
interest that account for the effect of short sequence motifs on the differential exon inclusion process and
are inferred from the expression data, i.e. ie,s and te,s, and the computationally predicted site counts
Ne,m. Note that, as specified, the model is redundant in that the motif activities Am,s, exon inclusions
ce and sample inclusions bs can be shifted so as to leave all probabilities Θe,s invariant. To remove this
redundancy, we demand that the mean sample inclusion bs is zero, i.e.

∑
s bs = 0, and that the mean

activity of each motif m is zero across the samples, i.e.
∑
sAm,s = 0 for each m.

If we had observed ie,s exon inclusion transcripts out of a total te,s for each exon e in each sample s,
then given the model M (as parametrized by the logistic functions Θe,s) the probability of observing all
the quantified data obtained from the RNA-Seq experiment would simply equal a product of consecutive
Bernoulli trials where exon inclusion is treated as ”success” and exclusion as ”failure”:

P (D|M) =
∏

s,e

Θie,s
e,s × (1−Θe,s)

te,s−ie,s (3)

Using this and noting that ie,s = te,sfe,s we can write the log-likelihood as

LL =
∑

s,e

te,s ×
[
fe,s × (bs + ce +Ne,m ×Am,s)− log(1 + ebs+ce+Ne,m×Am,s)

]
, (4)

which clearly brings out that the ‘weight’ of exon e is sample s in the fitting is simply given by the total
number of transcripts te,s of exon e in sample s. However, in general we cannot meaningfully estimate
such absolute transcript numbers, i.e. the estimated total expression levels te,s are only proportional to
these observed transcript numbers, with an unknown proportionality constant. In addition, given that
absolute expression levels of transcripts typically vary over 4 − 5 orders of magnitude in RNA-seq, the
likelihood (4) will be dominated by the fitting of the most highly expressed genes, which is clearly not
desirable. To address both these issues, we will replace te,s with renormalized expression level Re,s that
is directly proportional to te,s at low expression levels but saturates to a constant at expression levels
significantly above a critical level tcrits , so that the weight of the highest expressed genes in the fitting
remains limited. In particular, we define

Re,s = Cs
te,s

te,s + tcrits

(5)

where the pre-factor Cs is set so that the sum of all expression levels
∑
e,s te,s remains invariant, i.e.

Cs =

∑
e te,s∑

e
te,s

te,s+tcrits

. (6)

The parameter tcrits determines at what expression level Re,s starts to saturate and we chose to set tcrits

to the median of the te,s across all exons by default.

In a number of applications, such as knock-down experiments of RNA processing factors or other per-
turbations that are mostly targeted toward RNA processes such as splicing, there often is relatively little
change in the absolute expression levels te,s across the samples. In those cases it can be desirable to re-
place the sample-dependent statistical weights Re,s with sample-averaged weights Re. This ensures that
observations on the inclusion frequency of a given exon e are weighted equally across all samples s. Al-
though sample-dependent weights Re,s (as defined above) are utilised with default settings of MAEI, the
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user can also specify to use sample-independent weights Re that are useful when running on experiments
where absolute levels te,s vary relatively little. We define

Re = C
〈te〉

〈te〉+ tcrit
, (7)

where 〈te〉 is the average expression of exon e across all samples and the factor C is given by:

C =

∑
e〈te〉∑

e
〈te〉

〈te〉+tcrit
, (8)

Finally, we can express the log-likelihood of our model as:

LL =
∑

s,e

R× [fe,s × (bs + ce +Ne,m ×Am,s)− log(1 + ebs+ce+Ne,m×Am,s)], (9)

with R being set to either Re,s (default) or Re as defined above.

We find maximum likelihood estimates of the model parameters using an EM algorithm where we itera-
tively calculate partial derivatives with respect to model parameters (∂LL∂As

, ∂LL∂bs
, ∂LL∂ce

), update their values
and re-calculate the likelihood until it converges. In order to ensure a successful procedure we demand
that at each iteration of the algorithm

∑
sAm,s = 0 and

∑
s bm,s = 0. Having enforced such constraints

we let all parameters ce adjust accordingly to preserve the likelihood at it’s current value.

We obtain standard deviations of motif activities (Am,s) from the Hessian matrix of the log-likelihood
function at its optimum. Its negative inverse is an estimator of the covariance matrix of the model param-
eters. We use these estimates to standardize the activities: for every sample s we calculate a per-sample
motif activity z-score: Zm,s =

Am,s
σm,s

.

In order to distinguish motifs with statistically significant z-scores from those with z-scores expected
under a Gaussian background model we fit the distribution of observed z-scores to a mixture of a uniform
(foreground) and Gaussian (background) distribution:

P (D|M) = ρ× 1

maxZm,s −minZm,s
+ (1− ρ)× 1√

2πσ
× e

−(Zm,s−µ)2
2σ2 , (10)

where the max and min functions are over all motifs m for a given sample s.
We find the maximum likelihood estimates for the parameters (ρ, µ, σ) of the model using an EM al-
gorithm and then use the fitted parameters of the Gaussian background distribution, i.e. µ and σ, to
‘renormalize’ the z-scores as Z#

m,s =
Zm,s−µ

σ . After this, we then finally transform these into p-values
using these z-scores derive from a standard normal distribution. In order to assess statistical significance
at α = 0.05 level we also apply a Bonferroni correction where we adjust by the total number of motifs. In
this way we obtain p-values pm,s for every motif m in every sample s (separately for every sliding window).

Snakemake rules which belong to this module are marked with a three-letter namespace: LSM.

2.8 Modeling poly(A) site usage (KAPACv2.0)

KAPACv2.0, standing for K-mer Activity on PolyAdenylation site Choice version 2.0, builds upon our
previously published KAPAC approach [11], whereas for the needs of MAPP we have implemented a new
version of KAPAC, KAPACv2.0, which does not depend on the definition of sample contrasts, such as
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tumor versus normal, but can be applied to any set of samples. Another new features of KAPACv2.0 is
that it is capable of running on both raw k-mer counts or binding sites predicted from position weight
matrices, similar to the MAEI model. That is, for a given sequence window relative to a poly(A) site p,
KAPACv2.0 considers either the sum of site probabilities predicted with a PWM representing a motif k
or the raw counts of a k-mer k. It uses then these counts (Np,k) to model the relative usage Up,s of each
poly(A) site p in sample s as follows (further details are provided in ref. [11]):

log2(Up,s) = Np,k ∗Ak,s + ps + ps,e + ε, (11)

whereas cs,e is the mean log2 relative usage of the poly(A) site p from exon e in sample s, cs is the mean
log2 relative usage of poly(A) site p across all samples, ε is the residual error, and the relative usage Up,s
of a poly(A) site p from a terminal exon with I poly(A) sites in sample s is calculated from its usage
Rp,s as follows:

Up,s =
Rp,s∑I
i=1Ri,s

(12)

KAPACv2.0 solves for the unknown activity Ak,s of PWM / k-mer k in sample s and the corresponding
error σk,s using an ordinary least squares approach. Similar to the MAEI model (see above), KAPACv2.0
calculates then for every activity Ak,s of PWM / k-mer k in sample s and its corresponding error σk,s
the z-score z =

Ak,s
σk,s

and performs background correction as done for the MAEI z-scores (see above).

Snakemake rules which belong to this module are marked with a three-letter namespace: KPC.

2.9 Analysis summary

Following both statistical models and having inferred motif activites (Am,s), their z-scores (Zm,s) and
p-values (pm,s) in all samples and in every window we proceed to summarize the analysis, select those
results which we consider statistically significant and visualise them with heatmaps of activity z-scores,
which we refer to as ’Impact Maps’. In the last module of the workflow we implemented two distinct
strategies to filter motifs based on statistical significance, applicable to different analyses types. In the
avg mode we call a given motif m statistically significant if and only if there exist a window w within
which for at least half of the samples pwm,s are below a previously defined cutoff (0.05). This strategy is
designed for common comparative analyses of two biological conditions, each being sequenced in multiple
replicates. The other approach - max - requires m to be called as statistically significant in only one
sample in order to annotate significance to the whole motif. The rationale behind this was to provide
an insightful way of investigating datasets which consist of multiple distinct conditions. For every motif
called as statistically significant we plot an Impact Map as a visual summary of that motifs activity on
exon inclusion and poly(A) site usage.

Snakemake rules which belong to this module are marked with a three-letter namespace: RES.

2.10 Final report

At the end of the workflow we designed a few additional steps which prepare an output directory with the
most important text files and tables as well as a summary report in HTML format. Summary directory
is also compressed into .tar.gz format to facilitate reproducibility and usability: users may exchange their
results as well as run configurations easily. The final HTML report contains a sorted table of motifs
whose activity z-scores were reported to be statistically significant in at least one sliding window around
any of the processing sites. The columns of that table include: motif ID, sequence logo (in case of a
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PWM-based MAPP execution), three maximum activity z-scores (with the maximum taken over all slid-
ing windows around each of the analyzed sites: 3’SS, 5’SS, PAS), ranking score (set to an average of the
three aforementioned z-scores) and the Impact Map.

Top-level snakemake rules related to the final summary are marked with a four-letter namespace: MAPP.

2.11 Gene ontology analysis

Prior to gene ontology (GO) analysis, differentially expressed cassette exons were obtained by perform-
ing t-tests of normal brain vs. glioblastoma samples using R [14] (v.4.2.0) and ”matrixTests” library
(v.0.1.9.1). P-values were adjusted for multiple comparisons using Benjamini-Hochberg (BH) method.
Genes containing differentially expressed cassette exons with binding sites (binding probability > 0.6) for
the PTBP1 and the RBFOX RBPs within the corresponding regions inferred by MAPP. For the PTBP1
RBP 3’SS the considered windows reached from -125 to +50 nt and for the 5’SS there was only one
window considered from -50 to 0 nt. For the RBFOX RBPs 5’SS the considered regions reached from 0
to +200 nt. The exons having counts in both of the windows were used for gene ontology (GO) analysis
which was performed with the ”enrichGO” function from the Bioconductor package ”clusterProfiler” [15]
(v.4.4.1) for each of the GO categories: biological process (BP), molecular function (MF) and cellular
component (CC). As minimal number of genes annotated per ontology term (minGSSize) we used 10 and
an adjusted p-value cutoff (pvalueCutoff) for enrichment tests was 0.1. P-values for enriched GO terms
were adjusted for multiple comparisons using BH method. All genes having MAPP quantified cassette
exons in the dataset served as a background (”universe”) for GO analysis. Full GO analysis in the form
of a compiled HTML-report as well as the Rmarkdown scripts and R session info are provided in the
GitHub repository: https://github.com/gruber-sciencelab/MAPP_GO_KEGG_htmlbook. The HTML-
report was generated with the ”Bookdown” R package [16] (v.0.29) and can be viewed by cloning the
repository and opening the “index.html” file in a browser from the ” book” folder.
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Supplementary Table S1: RNA-Seq samples downloaded from NCBI:GEO and analyzed with MAPP.
Identifiers and metadata of publicly available datasets with perturbed expression of selected RBPs.

Experiment Name Series ID Sample ID Description
HNRNPC KD GSE56010 GSM1502498 RNA-seq-control-rep1
HNRNPC KD GSE56010 GSM1502499 RNA-seq-control-rep2
HNRNPC KD GSE56010 GSM1502500 RNA-seq-HNRNPCKD-rep1
HNRNPC KD GSE56010 GSM1502501 RNA-seq-HNRNPCKD-rep2
PTBP1 KD GSE69656 GSM1705375 293 control knockdown_rep1
PTBP1 KD GSE69656 GSM1705376 293 control knockdown_rep2
PTBP1 KD GSE69656 GSM1705377 293 PTBP1 and PTBP2 double knockdown_rep1
PTBP1 KD GSE69656 GSM1705378 293 PTBP1 and PTBP2 double knockdown_rep2
RBFOX1 OE GSE71468 GSM2026221 control_noRbfox_1
RBFOX1 OE GSE71468 GSM2026222 control_noRbfox_2
RBFOX1 OE GSE71468 GSM2026223 control_noRbfox_3
RBFOX1 OE GSE71468 GSM2026224 control_+Rbfox1_1
RBFOX1 OE GSE71468 GSM2026225 control_+Rbfox1_2
RBFOX1 OE GSE71468 GSM2026226 control_+Rbfox1_3



Supplementary Table S2: RNA-Seq data of RBP knock-down experiments available through
ENCODE project were analyzed with MAPP.
Experiment identifiers together with targeted RBP name; all data are publicly available.

# Experiment ID Target
1 ENCSR599UDS AARS
2 ENCSR547NWD AARS
3 ENCSR424YSV AATF
4 ENCSR973QSV AATF
5 ENCSR610VTA ABCF1
6 ENCSR721MXZ ABCF1
7 ENCSR511SYK ACO1
8 ENCSR164TLB ADAR
9 ENCSR104OLN ADAR
10 ENCSR812TLY AGGF1
11 ENCSR268JDD AGO1
12 ENCSR533HXS AGO1
13 ENCSR495YSS AGO2
14 ENCSR207QGW AGO3
15 ENCSR016IDR AKAP1
16 ENCSR338CON AKAP1
17 ENCSR000YYN AKAP8
18 ENCSR958KSY AKAP8
19 ENCSR807ODB AKAP8L
20 ENCSR809ISU AKAP8L
21 ENCSR012DAF APOBEC3C
22 ENCSR963RLK APOBEC3C
23 ENCSR624OUI AQR
24 ENCSR253DCB ASCC1
25 ENCSR193FFA ASCC1
26 ENCSR713OLV ATP5C1
27 ENCSR231DXJ ATP5C1
28 ENCSR395FYF AUH
29 ENCSR409CSO AUH
30 ENCSR570CWH BCCIP
31 ENCSR606QIX BCCIP
32 ENCSR410ZPU BCLAF1
33 ENCSR481AYC BCLAF1
34 ENCSR775TMW BOP1
35 ENCSR925SYZ BOP1
36 ENCSR382QKD BUD13
37 ENCSR267RHP BUD13
38 ENCSR040WAK CALR



39 ENCSR081IAO CCAR1
40 ENCSR386YEV CCAR1
41 ENCSR984CLJ CCAR2
42 ENCSR237IWZ CCAR2
43 ENCSR874ZLI CCDC124
44 ENCSR929PXS CEBPZ
45 ENCSR351CNN CELF1
46 ENCSR605MFS CELF1
47 ENCSR695XOD CELF1
48 ENCSR056QEW CIRBP
49 ENCSR230ORC CIRBP
50 ENCSR269SJB CKAP4
51 ENCSR113PYX CNOT7
52 ENCSR274KWA CNOT7
53 ENCSR312HJY CNOT8
54 ENCSR795VAK CPEB4
55 ENCSR676EKU CPSF6
56 ENCSR384BDV CPSF6
57 ENCSR895BTE CPSF6
58 ENCSR594DNW CPSF7
59 ENCSR222LRL CPSF7
60 ENCSR815JDY CSTF2
61 ENCSR885YOI CSTF2
62 ENCSR286OKW CSTF2T
63 ENCSR914WQV CSTF2T
64 ENCSR840QFR DAZAP1
65 ENCSR220TBR DAZAP1
66 ENCSR907UTB DAZAP1
67 ENCSR208GPE DDX1
68 ENCSR070LJO DDX1
69 ENCSR281IUF DDX19B
70 ENCSR312SFA DDX19B
71 ENCSR961WVL DDX21
72 ENCSR485ZTC DDX21
73 ENCSR300IEW DDX24
74 ENCSR067LLB DDX24
75 ENCSR210RWL DDX27
76 ENCSR584LDM DDX27
77 ENCSR205VSQ DDX28
78 ENCSR222CSF DDX28
79 ENCSR637JLM DDX3X
80 ENCSR000KYM DDX3X
81 ENCSR334HNJ DDX47



82 ENCSR155EZL DDX47
83 ENCSR388CNS DDX47
84 ENCSR808FBR DDX5
85 ENCSR029LGJ DDX51
86 ENCSR560RSZ DDX52
87 ENCSR913ZWR DDX52
88 ENCSR331DUD DDX55
89 ENCSR964YTW DDX55
90 ENCSR856CJK DDX55
91 ENCSR598GKQ DDX59
92 ENCSR067AUG DDX59
93 ENCSR119QWQ DDX6
94 ENCSR147ZBD DDX6
95 ENCSR853PBF DHX30
96 ENCSR345VVZ DHX30
97 ENCSR494UDF DKC1
98 ENCSR118KUN DKC1
99 ENCSR577OVP DNAJC2
100 ENCSR004OSI DNAJC2
101 ENCSR079LMZ DNAJC21
102 ENCSR385KOY DNAJC21
103 ENCSR624XHG DROSHA
104 ENCSR477TRX EEF2
105 ENCSR181RLB EEF2
106 ENCSR620OKS EFTUD2
107 ENCSR117WLY EFTUD2
108 ENCSR546MBH EIF2S1
109 ENCSR861ENA EIF2S1
110 ENCSR076PMZ EIF2S2
111 ENCSR110HAA EIF2S2
112 ENCSR258VGD EIF3A
113 ENCSR788HVK EIF3D
114 ENCSR660ETT EIF3D
115 ENCSR778AJO EIF3G
116 ENCSR143UET EIF3G
117 ENCSR957EEG EIF4A3
118 ENCSR961YAG EIF4A3
119 ENCSR774BXV EIF4B
120 ENCSR313CHR EIF4B
121 ENCSR712CSN EIF4G1
122 ENCSR509LIV EIF4G1
123 ENCSR152MON EIF4G2
124 ENCSR040FSN EIF4G2



125 ENCSR077BPR ESF1
126 ENCSR060IWW ESF1
127 ENCSR840QOH ETF1
128 ENCSR831YGP EWSR1
129 ENCSR532ZPP EWSR1
130 ENCSR597IYB EXOSC9
131 ENCSR812EIA EXOSC9
132 ENCSR492BKM FAM120A
133 ENCSR047VPW FAM120A
134 ENCSR728BOL FASTKD1
135 ENCSR716WZH FASTKD2
136 ENCSR608IAI FASTKD2
137 ENCSR511BNY FIP1L1
138 ENCSR116QBU FIP1L1
139 ENCSR379VXW FKBP4
140 ENCSR639LKS FKBP4
141 ENCSR555LCE FMR1
142 ENCSR905HID FMR1
143 ENCSR688GVV FTO
144 ENCSR389HFU FTO
145 ENCSR755KOM FUBP3
146 ENCSR373KOF FUBP3
147 ENCSR325OOM FUS
148 ENCSR927JXU FUS
149 ENCSR009PPI FXR1
150 ENCSR780YFF FXR1
151 ENCSR577XBW FXR2
152 ENCSR139BIJ FXR2
153 ENCSR792CBM G3BP1
154 ENCSR074UZM G3BP1
155 ENCSR945UYL G3BP2
156 ENCSR246SOU G3BP2
157 ENCSR771QMJ GEMIN5
158 ENCSR398GHW GEMIN5
159 ENCSR874DVZ GLRX3
160 ENCSR116YMU GNB2L1
161 ENCSR968YWY GPKOW
162 ENCSR967QNT GPKOW
163 ENCSR674KDQ GRSF1
164 ENCSR835RMN GRSF1
165 ENCSR850FEH GRWD1
166 ENCSR528ASX GRWD1
167 ENCSR188IPO GTF2F1



168 ENCSR295XKC GTF2F1
169 ENCSR634KHL HDGF
170 ENCSR958NDU HLTF
171 ENCSR010ZMZ HLTF
172 ENCSR720BPO HNRNPA0
173 ENCSR552NBS HNRNPA0
174 ENCSR182DAW HNRNPA1
175 ENCSR048BWH HNRNPA1
176 ENCSR794NUE HNRNPA2B1
177 ENCSR769GES HNRNPA2B1
178 ENCSR354XQY HNRNPAB
179 ENCSR778WPL HNRNPAB
180 ENCSR052IYH HNRNPC
181 ENCSR470PRV HNRNPC
182 ENCSR634KBO HNRNPC
183 ENCSR660MZN HNRNPD
184 ENCSR392HSJ HNRNPF
185 ENCSR693MZJ HNRNPF
186 ENCSR853ZJS HNRNPK
187 ENCSR529JNJ HNRNPK
188 ENCSR155BMF HNRNPL
189 ENCSR563YIS HNRNPL
190 ENCSR490DYI HNRNPLL
191 ENCSR746NIM HNRNPM
192 ENCSR995JMS HNRNPM
193 ENCSR047IUS HNRNPU
194 ENCSR732ICL HNRNPU
195 ENCSR308IKH HNRNPU
196 ENCSR689ZJC HNRNPUL1
197 ENCSR034VBA HNRNPUL1
198 ENCSR222ABK HSPD1
199 ENCSR243IGA HSPD1
200 ENCSR629EWX IGF2BP1
201 ENCSR708GKW IGF2BP1
202 ENCSR952RRH IGF2BP2
203 ENCSR478FJK IGF2BP2
204 ENCSR481YXD IGF2BP3
205 ENCSR302JQA IGF2BP3
206 ENCSR710NWE IGF2BP3
207 ENCSR126ARZ ILF2
208 ENCSR366FFV ILF2
209 ENCSR942MBU ILF3
210 ENCSR269HQA ILF3



211 ENCSR784FTX KHDRBS1
212 ENCSR023HWI KHDRBS1
213 ENCSR561CBC KHSRP
214 ENCSR850CKU KHSRP
215 ENCSR182GKG KIF1C
216 ENCSR823WTA KIF1C
217 ENCSR542ESY KRR1
218 ENCSR244SIO KRR1
219 ENCSR866XLI LARP4
220 ENCSR744PAQ LARP4
221 ENCSR770OWW LARP7
222 ENCSR624FBY LARP7
223 ENCSR598YQX LIN28B
224 ENCSR927SLP LIN28B
225 ENCSR883BXR LSM11
226 ENCSR762FEO LSM11
227 ENCSR849STR MAGOH
228 ENCSR746EKS MAGOH
229 ENCSR517JHY MAK16
230 ENCSR105OXX MARK2
231 ENCSR792XFP MATR3
232 ENCSR492UFS MATR3
233 ENCSR222COT MBNL1
234 ENCSR992JGE METAP2
235 ENCSR952QDQ METAP2
236 ENCSR169QQW MSI2
237 ENCSR896MMU MSI2
238 ENCSR631RFX MTPAP
239 ENCSR701GSV MTPAP
240 ENCSR945GUR NAA15
241 ENCSR355OQC NAA15
242 ENCSR030ARO NCBP2
243 ENCSR361LBE NCBP2
244 ENCSR939ZRA NELFE
245 ENCSR201WFU NELFE
246 ENCSR007XKL NFX1
247 ENCSR696LLZ NIP7
248 ENCSR517JDK NKRF
249 ENCSR227AVS NOL12
250 ENCSR643UFV NOL12
251 ENCSR398HXV NONO
252 ENCSR647NYX NONO
253 ENCSR346DZQ NPM1



254 ENCSR016XPB NPM1
255 ENCSR829EFL NSUN2
256 ENCSR629RUG NSUN2
257 ENCSR754RJA NUFIP2
258 ENCSR584JRB NUFIP2
259 ENCSR457WBK NUP35
260 ENCSR927XBT NUSAP1
261 ENCSR180XTP NUSAP1
262 ENCSR028YAQ PA2G4
263 ENCSR309PPC PA2G4
264 ENCSR910YNJ PABPC1
265 ENCSR192GBD PABPC1
266 ENCSR455VZH PABPC4
267 ENCSR047EEG PABPC4
268 ENCSR416ZJH PABPN1
269 ENCSR368ZRP PAPOLA
270 ENCSR825QXH PARN
271 ENCSR306IOF PARN
272 ENCSR635FRH PCBP1
273 ENCSR545AIK PCBP1
274 ENCSR028ITN PCBP2
275 ENCSR648QFY PCBP2
276 ENCSR496ETJ PES1
277 ENCSR891DYO PES1
278 ENCSR912EHP PES1
279 ENCSR322XVS PHF6
280 ENCSR681SMT PHF6
281 ENCSR656DQV PKM
282 ENCSR978CSQ PKM
283 ENCSR191VWK PNPT1
284 ENCSR880DEH PNPT1
285 ENCSR936TED POLR2G
286 ENCSR529MBZ PPIG
287 ENCSR620HAA PPIG
288 ENCSR556FNN PPIL4
289 ENCSR851KEX PPIL4
290 ENCSR844QNT PPP1R8
291 ENCSR529QEZ PRPF6
292 ENCSR783LUA PRPF6
293 ENCSR137HKS PRPF8
294 ENCSR998MZP PRPF8
295 ENCSR744YVR PSIP1
296 ENCSR611LQB PSIP1



297 ENCSR527IVX PTBP1
298 ENCSR064DXG PTBP1
299 ENCSR239BCO PTBP1
300 ENCSR648BSC PUF60
301 ENCSR558XNA PUF60
302 ENCSR945XKW PUM1
303 ENCSR745WVZ PUM1
304 ENCSR210DML PUM2
305 ENCSR118XYK PUM2
306 ENCSR618IQH PUS1
307 ENCSR296ERI PUS1
308 ENCSR330YOU QKI
309 ENCSR256PLH QKI
310 ENCSR904BCZ RAVER1
311 ENCSR576GOW RAVER1
312 ENCSR767LLP RBFOX2
313 ENCSR336DFS RBFOX2
314 ENCSR627NVU RBM15
315 ENCSR385UPQ RBM15
316 ENCSR599PXD RBM15
317 ENCSR898OPN RBM17
318 ENCSR385TMY RBM17
319 ENCSR330KHN RBM22
320 ENCSR947OIM RBM22
321 ENCSR149DMY RBM25
322 ENCSR610AEI RBM25
323 ENCSR222SMI RBM27
324 ENCSR675KPR RBM3
325 ENCSR318HAT RBM34
326 ENCSR560AYQ RBM34
327 ENCSR678WOA RBM39
328 ENCSR760EGM RBM39
329 ENCSR711ZJQ RBM47
330 ENCSR921KDS RCC2
331 ENCSR685JXU RCC2
332 ENCSR572AMC RECQL
333 ENCSR310VND RECQL
334 ENCSR014VQS RECQL
335 ENCSR706SXN RPL23A
336 ENCSR082YGI RPLP0
337 ENCSR410UHJ RPS10
338 ENCSR004RGI RPS10
339 ENCSR098NHI RPS19



340 ENCSR486AIO RPS19
341 ENCSR667RIA RPS2
342 ENCSR410MIQ RPS3
343 ENCSR788YGG RPS3A
344 ENCSR118VQR RPS3A
345 ENCSR838SMC RPS5
346 ENCSR210KJB RRP9
347 ENCSR471GIS RRP9
348 ENCSR783YSQ RTF1
349 ENCSR906WTM RTF1
350 ENCSR770LYW SAFB2
351 ENCSR110ZYD SAFB2
352 ENCSR954HAY SART3
353 ENCSR011BBS SART3
354 ENCSR219DXZ SBDS
355 ENCSR343DHN SBDS
356 ENCSR820ROH SERBP1
357 ENCSR925RNE SERBP1
358 ENCSR628JYB SF1
359 ENCSR562CCA SF1
360 ENCSR644AIM SF1
361 ENCSR374NMJ SF3A3
362 ENCSR454KYR SF3A3
363 ENCSR896CFV SF3B1
364 ENCSR047QHX SF3B1
365 ENCSR148MQK SF3B4
366 ENCSR081XRA SF3B4
367 ENCSR782MXN SFPQ
368 ENCSR535YPK SFPQ
369 ENCSR519KXM SLBP
370 ENCSR112YTD SLBP
371 ENCSR234YMW SLTM
372 ENCSR185JGT SLTM
373 ENCSR090UMI SMN1
374 ENCSR129ROE SMN1
375 ENCSR995ZGJ SMNDC1
376 ENCSR408SDL SMNDC1
377 ENCSR232XRZ SND1
378 ENCSR398LZW SND1
379 ENCSR003LSA SNRNP200
380 ENCSR943LIB SNRNP200
381 ENCSR635BOO SNRNP70
382 ENCSR153GKS SRFBP1



383 ENCSR813NZP SRFBP1
384 ENCSR312SRB SRP68
385 ENCSR167JPY SRP68
386 ENCSR524YXQ SRPK2
387 ENCSR066VOO SRSF1
388 ENCSR094KBY SRSF1
389 ENCSR376FGR SRSF3
390 ENCSR697GLD SRSF4
391 ENCSR781YNI SRSF5
392 ENCSR447UCG SRSF5
393 ENCSR906RHU SRSF5
394 ENCSR464ADT SRSF7
395 ENCSR017PRS SRSF7
396 ENCSR113HRG SRSF9
397 ENCSR597XHH SRSF9
398 ENCSR278CHI SSB
399 ENCSR891AXF SSB
400 ENCSR422JMS SSRP1
401 ENCSR902WSK SSRP1
402 ENCSR777EDL STAU1
403 ENCSR124KCF STAU1
404 ENCSR871BXO STIP1
405 ENCSR082UWF STIP1
406 ENCSR997FOT SUB1
407 ENCSR047AJA SUB1
408 ENCSR810JYX SUCLG1
409 ENCSR101OPF SUCLG1
410 ENCSR837QDN SUGP2
411 ENCSR192BPV SUGP2
412 ENCSR281KCL SUPT6H
413 ENCSR530BOP SUPT6H
414 ENCSR995RPB SUPV3L1
415 ENCSR778SIU SUPV3L1
416 ENCSR611ZAL TAF15
417 ENCSR031RZS TAF15
418 ENCSR998RZI TAF15
419 ENCSR527QNC TARDBP
420 ENCSR455TNF TARDBP
421 ENCSR134JRE TARDBP
422 ENCSR741YCA TBRG4
423 ENCSR079IPT TBRG4
424 ENCSR573UBF TFIP11
425 ENCSR911DGK TFIP11



426 ENCSR057GCF TIA1
427 ENCSR694LKY TIA1
428 ENCSR450VQO TIAL1
429 ENCSR927TSP TIAL1
430 ENCSR030GZQ TRA2A
431 ENCSR916WOI TRA2A
432 ENCSR300QFQ TRIM56
433 ENCSR309HXK TRIM56
434 ENCSR152IWT TRIP6
435 ENCSR946OFN TROVE2
436 ENCSR060KRD TROVE2
437 ENCSR459EMR TUFM
438 ENCSR602AWR TUFM
439 ENCSR372UWV U2AF1
440 ENCSR342EDG U2AF1
441 ENCSR904CJQ U2AF2
442 ENCSR622MCX U2AF2
443 ENCSR426UUG U2AF2
444 ENCSR424JSU UBE2L3
445 ENCSR362XMY UBE2L3
446 ENCSR678MVE UCHL5
447 ENCSR684HTV UCHL5
448 ENCSR251ABP UPF1
449 ENCSR689MIY UPF1
450 ENCSR318OXM UPF2
451 ENCSR810FHY UPF2
452 ENCSR165VBD UTP18
453 ENCSR269ZAO UTP18
454 ENCSR910ECL UTP3
455 ENCSR334BTA WDR3
456 ENCSR341PZW WDR43
457 ENCSR165BCF WRN
458 ENCSR778RWJ XPO5
459 ENCSR453HKS XPO5
460 ENCSR732IYM XRCC5
461 ENCSR715XZS XRCC5
462 ENCSR232CPD XRCC6
463 ENCSR500WHE XRCC6
464 ENCSR717SJA XRN2
465 ENCSR347ZHQ XRN2
466 ENCSR306EIU YBX3
467 ENCSR494VSD YBX3
468 ENCSR843LYF YTHDC2



469 ENCSR448JAM ZC3H8
470 ENCSR518JXY ZNF622
471 ENCSR850PWM ZRANB2
472 ENCSR081QQH ZRANB2



Supplementary Table S3: Used RNA-Seq samples available through TCGA project.
Sample identifiers, hash codes and sample conidtion (healthy control tissue / glioblastoma tissue).

Sample ID Sample hash condition
TCGA-06-0681-11A 69c0cd45-79bb-4fec-85d6-f57b3e9ef217 HEALTHY
TCGA-06-0675-11A efd7c102-95dd-4040-b30a-08ba642ec3b5 HEALTHY
TCGA-06-AABW-11A 1d01565c-c9b3-4182-8823-ad36bfaa095b HEALTHY
TCGA-06-0680-11A e41d9335-aad6-4dbb-992e-21a518b20b5e HEALTHY
TCGA-06-0678-11A 0f38416c-e746-4d3f-a95b-9396ffbb8c59 HEALTHY
TCGA-06-5416-01A 2ae4257e-7fbb-4654-bfb0-7bd815df53cb GBM
TCGA-06-0644-01A b44ffe75-508f-49c6-8758-f5feeaebd0c4 GBM
TCGA-32-2621-01A 23768895-9695-4f95-a075-d7a52ac3545f GBM
TCGA-28-2509-01A 4d32f2c5-4b17-48ec-8a58-a3c582fbd790 GBM
TCGA-06-2567-01A a9f38529-3b55-48d4-81fe-68fa8c3f7e9c GBM



Supplementary Table S4: Top 20 significant k-mer activities as inferred by MAPP
from glioblastoma and normal brain samples.
MAPP was run in k-mer mode on the samples listed in Supplementary Table S3.
Only the top 20 significant k-mers are reported for the indicated regions.

3'SS 5'SS PAS
CTCT TCT CTCTC
TCT TTTCT TTT
TCTCT CTCT
CTT TTTC
TCTC TTCT
CTCTT CTT
TTCT CTTT
AGGTA TCTCT
GGTA CTCTC
TTC TTC
GGTAA TTT
CTC TCTC
CTCTC CTTTC
TTCTC CCTCT
CTTTC GCATG
TTTC TCTT
TTTCT TTTTC
TCTT TGT
TGCT TGC
CTTT CTCTT



Supplementary Table S5: Top 5 PWMs ranked by their overall impact on mRNA processing

sites as inferred by MAPP from glioblastoma and normal brain samples.

Sequence
logo PWM ID

Ranking
score 3'SS Zscore 5'SS Zscore pas Zscore

PTBP1_489 5.552 7.623 * 5.766 * 3.268

PTBP1_992 5.476 6.773 * 5.22 * 4.435 *

PTBP1_8 5.118 5.96 * 5.072 * 4.323 *

PTBP1_s100 4.525 5.577 * 5.925 * 2.074

PTBP1_1000 4.313 6.464 * 4.312 * 2.163



Supplementary Table S6: Top 5 PWMs ranked by their overall impact on mRNA processing

sites as inferred by MAPP from PTBP1/2 knock-down experiment.

Sequence
logo PWM ID

Ranking
score 3'SS Zscore 5'SS Zscore pas Zscore

PTBP1_992 5.638 4.204 * 4.361 * 8.348 *

PTBP1_489 5.581 5.261 * 4.711 * 6.771 *

PTBP1_s100 5.225 5.896 * 5.313 * 4.466 *

PTBP1_8 5.066 3.784 * 3.804 * 7.608 *

PTBP1_1000 5.006 5.304 * 4.424 * 5.289 *
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