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Abstract

Transcriptomics techniques provide expression measurements across all genes and are there-
fore crucial for characterising and understanding cellular states in multicellular organisms.
The dominant technique in the last decade has been RNA-seq, which can either be applied
in bulk or in single cells. For the former, researchers are often interested in identifying
marker genes that can be used in subsequent studies to differentiate between two or more
classes of samples (e.g. cell types). We developed a novel statistical model for identify-
ing such marker genes from RNA-seq data. Our model is based on a conditional entropy
score that works well even when the number of gene expression measurements per class is
small and when more than two groups were compared. Single-cell RNA-seq has become a
popular experimental method to study variation of gene expression within a population of
cells. A main application of scRNA-seq is to obtain an exhaustive picture of the variation
in cell types that exist within a given tissue by clustering cells into subsets with distinct
gene expression patterns. One challenge to such analysis is that the measured gene expres-
sion states of single cells are subject to a large amount of unwanted noise from inherent
stochastic fluctuations due to the small mRNA numbers as well as technical noise from
the experiment. Existing computational pipelines often try to disentangle these unwanted
sources of noise from genuine biological signals by applying several layers of ad hoc steps
including feature selection, normalisation, and dimensionality reduction, before clustering
cells into subtypes. However, such pre-processing can dramatically distort the measurements
by erroneously filtering true biological variability and introducing artefactual correlations.
Here we propose a new computational method, called cellstates, that takes raw UMI counts
of an scRNA-seq experiment as input and rigorously models the structure of both biologi-
cal and experimental noise to find maximally resolved clusters of cells, i.e. groups of cells
whose gene expression states are statistically indistinguishable. The cellstates method has
no tuneable parameters, automatically optimises the number of clusters and returns directly
interpretable results, thereby overcoming many issues of other available tools. In addition,
cellstates also provides a data analysis toolbox that allows to place the cellstates within
a hierarchy and identify differentially expressed genes at each level of this hierarchy, and
several novel data visualizations.
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1
Introduction

1.1 General Introduction and Outline of Thesis1

What is transcriptomics? The human body is made up of an estimated number of
3 × 1013 cells [56]. Every one of these cells has evolved to perform a highly specialised
function in the organism. As a result, there is an immense variety of shapes, sizes and
molecular make-up of these different cells. For example, skeletal muscle cells are elongated
and contain large arrays of myofilament protein fibres that allow the muscle to contract.
Red blood cells are small, round and flexible and contain large amounts of haemoglobin
that is used to transport oxygen through the body. Nerve cells have a compact core with
many branched protrusions and use electrical potentials across their membrane to transmit
information across the body. While it is clear that cells can be grouped into such cell
types by shared characteristic features, there is no agreed on definition (see discussion in
Chapter 4). What is clear is that in order to systematically study what cell types exist,
what functions they perform, or how they are affected by diseases, we need to first measure
their molecular make-up. Fundamentally, proteins are the biological molecules performing
most cellular functions. For example, haemoglobin is a protein that red blood cells use to
transport oxygen; actin and myosin are two of the proteins that form the fibres in muscle
cells and help it generate movement. Each one of these proteins is encoded as a gene in the
genome, which is a DNA sequence shared by all cells of an organism. To make proteins,
this gene sequence is first copied from DNA to one or several molecules of messenger RNA
(mRNA) in the process of transcription. These mRNA copies are then used in turn to make
many copies of the proteins they encode in the process of translation. Thus, if a cell needs
a certain amount of a specific protein to perform its function, it needs to regulate both
transcription and translation of a gene. To fully characterize a cell type, we would ideally
want to measure the entire protein content in order to understand this regulation. The field
of proteomics tries to address such measurements and has been making rapid advances in
recent years. However, the chemical properties of proteins are very diverse, and it is therefore
still challenging and expensive to obtain such data. In contrast, mRNAs are chemically all

1 This section is intended as an introduction to the thesis for a general audience. It will therefore necessarily
contain many simplifications. To every rule in biology, there is an exception.
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very similar and next generation sequencing technologies have made it possible to study the
mRNA content across all genes of samples at a large scale. The technique, called RNA-
seq, works by extracting mRNAs from a sample, determining the sequence of each of these
mRNAs and then matching them to the known gene sequences. A more detailed description
of the protocol is presented in Section 1.2. Thus, the result is a list of gene expression levels
across all genes. The fundamental premise is that the number of mRNA copies for a gene
is predictive for the amount of the corresponding protein in the cell and therefore tells us
most of what we would want to know. This field of studying the entire RNA content of cells
is called transcriptomics.

What are the Bayesian methods for? Astonishingly, only approximately 20’000 pro-
tein coding genes [15] are needed to generate the huge variety of cells present in our bodies
and RNA-seq now allows us to quantitatively measure the expression of all of these genes
at the same time. In contrast, traditional methods for studying gene expression could only
look at a handful of genes at a time. On the one hand, this means that we can now get
a much more unbiased view of gene expression in cell types, as we do not have to choose
in advance which genes to study. On the other hand, this number of genes is much larger
than what previous data analysis methods had to deal with. As a consequence, we need
new statistical methods for correctly analysing such large, complex datasets. The kind of
models we developed are based on what is called Bayesian statistics2. Furthermore, there is
a definite need for implementing these analyses computationally. Such bioinformatics tools
help its users to gain biologically relevant insights into their data and allow them to make
predictions for further studies. There exist two main kinds of RNA-seq experiments: in bulk
and in single cells. We will address them in the next two paragraphs, along with a statistical
model that we developed for their analysis.

Finding marker genes from bulk RNA-seq data In a bulk RNA-seq experiment,
mRNA is extracted from all cells in a sample, pooled and then sequenced. We can then
compare these results across different samples. One question of interest is often what genes
have different expression levels between two conditions. If we have replicate samples for each
condition, we can estimate the level of gene expression for each gene in each condition. This
estimate will have some associated statistical uncertainty. Then, we can calculate for each
gene the difference in expression levels between the conditions – and how likely it is that
there is no significant difference at all. Many statistical models exist already for finding such
differentially expressed genes (DEG) and have been well-established. Here, we developed a
model that solves the slightly different, but related, problem of finding the most predictive
marker genes. These are genes that can be used in experiments to identify a certain type of

2 What makes a statistical model Bayesian would be beyond this introduction and is not important for
understanding the topics of this thesis. Briefly, in Bayesian statistics, probabilities are viewed as repre-
senting a state of knowledge about a system. Therefore, we can make statements like: “From our data,
we conclude that the probability of this cell being a neuron is 99%.” The opposing view, frequentist
statistics, interprets probabilities as frequencies of events. Thus, it only allows statements like “Assuming
that our cell is a neuron, we will see data like the one we measured in 99% of cases.” We use Bayesian
statistics as it is less confusing and has a more logical theoretical foundation.
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cell. If high expression of a protein is associated with a certain type of neurons, for example,
one could use a dye that recognizes this protein to stain all of these neurons in a brain
sample and identify their locations and how they are connected. The difference between
predicting good marker genes and DEGs is subtle: For marker genes, we care about how
much uncertainty there is about a single future measurement of the expression level. In
contrast, for DEGs, we care about the uncertainty of the true gene expression levels. The
model is described in detail in Chapter 2. One other feature that distinguishes our model
from established statistical models for DEG prediction is that ours works for comparing more
than two conditions. Thus, if we have a gene that has high, medium and low expression
levels in three experimental conditions, we can find it very easily.

Finding cell states in single-cell RNA-seq data If we want to study cell types with
bulk RNA-seq, we need to experimentally isolate cells of this type. However, this might not
always be possible, or it might be very laborious. In addition, only measuring the average
expression levels could hide subpopulations of these cells. Finally, it only allows us to study
known cell types, but not to discover new ones. To overcome all these limitations, single-cell
RNA-seq (scRNA-seq) was developed, where gene expression is measured across individual
cells and genes. That is, the result of such an experiment is a large data table where each
row is a gene, each column a single cell and each entry a count for how many mRNAs of a
given gene in a given cell were found. As the number of cells typically ranges from 1’000
to 100’000, this is a table with millions of entries. Analysing such data is challenging for
another reason: in contrast to bulk RNA-seq measurements, the data is very noisy and
not a precise measurement of the true gene expression levels. One common data analysis
done on this data is clustering: the aim is to find groups of cells with similar expression
patterns. These groups (clusters) can then be studied further and identified as known cell
types, novel cell types or subpopulations of known cell types, etc. Many computational tools
already exist to do such a clustering of scRNA-seq data, but they have several drawbacks.
Firstly, they deal with the measurement noise in an ad hoc way. That is, they use a series
of poorly motivated, complicated steps to pre-process the data to remove the noise before
the clustering. However, this can easily introduce unwanted biases. Secondly, as a result,
many of the available tools have a lot of parameters that need to be set correctly. To justify
these parameter settings, researchers often simply check if the final results are plausible
based on their expectations and biological knowledge. Thus, the clustering results are not
an objective statement about the data, but can easily be made to fit these expectations.
Finally, there is usually also no well-defined criterium for how similar cells should be within
a cluster – this is also left to the judgment of the researcher. Starting from the premise the
measurement noise in scRNA-seq data has a well-studied and well-understood mathematical
form, we want to address these problems with our model that is described in Chapter 3.
The main point of this model is that we define clusters as being groups of cells that are
statistically indistinguishable. That is, the measured mRNA counts for these cells across all
genes can be fully explained by assuming that they are identical and that any differences
between them are just random noise. As a consequence, the clusters are as fine-grained as
possible and follow directly from the given data. We call those clusters cell states. So the
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results naturally tell us something about how diverse cells in a tissue are. For example, the
brain is very complex and almost every neuron has a unique function – thus we find a lot
of different cell states. Furthermore, the analysis is much simpler as there is no need to set
any parameters. And importantly, we get results that are not biased by user inputs. One
drawback of this method is that predicting many cell states can make it hard for a researcher
to understand the results. Therefore, we also implemented a way to group similar cell states,
which will help to understand the broader patterns in the data before the details can be
studied.

1.2 A brief description of RNA-seq
While experimental methods for studying the transcriptome have been around since the
early 1990s, RNA-seq technology was first developed in the mid 2000s as high-throughput
DNA sequencing methods became available[25, 69]. In contrast to previous technologies, the
sequencing of transcripts allows the detection of transcript variants and not just expression
levels for known genes. This additional information can be used in many ways such as
detection of splicing, genetic variants, transcript isoforms or novel genes. In this thesis,
however, we are focussing only on the measurement of gene expression levels. In that
regard, improvements such as having lower background noise and a better detection limit
for RNAs with low abundance were crucial for the development of single-cell RNA-seq. Here,
I will briefly describe the main aspects of RNA-seq and scRNA-seq that are relevant for our
statistical methods. The main steps of scRNA-seq are also summarized in Figure 1.1. The
first step is to dissociate the cells in a tissue and isolate them. A common method for
cell isolation is the use of microfluidic droplets, as is done in the popular commercial 10X
Chromium platform [77]. In such a system, each cell gets encapsulated in a tiny droplet that
contains all the reagents needed for the steps before the mRNAs get pooled. In each cell,
the RNA is extracted and reverse-transcribed to complimentary DNA (cDNA). By using
poly-T primers for reverse-transcription, mRNAs that have a poly-A tail get selected while
the far more abundant ribosomal RNAs are skipped. Also, established methods for next-
generation sequencing of DNA can be used on these cDNA strands. The next step is to
add two random DNA sequences to each cDNA: One will act as a unique molecule identifier
(UMI) that is different for each cDNA molecule. The second one is a cell barcode that is
the same for all transcripts in a cell. Some more recent methods such as SPLiT-seq [52] use
direct combinatorial cell barcoding of transcripts and can therefore work entirely without
isolation of cells. Next, the cDNA pool is amplified, i.e. duplicated several times, so that
every strand is likely to be sequenced at least once. Then, the cDNAs are sequences. Each
sequence contains 3 sections: A part of the original mRNA transcript, a cell barcode and a
UMI. The transcript is mapped to the known genome to identify the gene it came from. The
cell barcode identifies transcripts from the same cell. When several cDNAs with the same
UMI, cell barcode and transcript sequence are found, we recognize that they came from
one original molecule and only count them once, a process knows as de-duplication [63].
This shows the importance of the UMI tags: They allow us to count how many mRNAs
of a given gene were captured in a given cell by the experiment. The amplification step
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therefore should not introduce any additional noise to the data [26]. Experimental noise is
introduced only through the random loss of molecules at each step. Overall, captured UMIs
account for roughly 10-20% of cellular mRNAs, but that number can vary a lot depending
on the experimental protocol used [60]. The final result of a scRNA-seq experiment is hence
a UMI count table. Each row in this table corresponds to a cell, each column to a gene.
The entries are counts for the number of distinct UMIs that were found, associated with the
corresponding gene sequence and cell barcode. In other words, these counts correspond to
a random fraction of cellular mRNAs that were captured. The resulting table only contains
integers and is sparse (i.e. contains many zeros) as the typical total number of UMIs per
cell is O(1 × 103 − 1 × 104) (see Figure 3.9), much lower than the number of genes. As
only a small fraction of a cell’s transcripts are captured, zero counts are often found for low
expressed genes.
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Figure 1.1: Summary of main steps in single-cell RNA sequencing. Cells in a tissue are
first dissociated and then isolated. Then, their RNA content is extracted. The reverse
transcription to cDNA is usually done with poly-T primers, which select mRNAs but not
the far more abundant rRNA molecules. Furthermore, DNA sequencing technology is well
established and can be used for the cDNAs. Each cDNA molecule gets tagged with two
random sequences: a cell barcode sequence that is unique for each cell and a unique molecular
identifier (UMI) which is different for each individual cDNA molecule. After tagging, all
sequences get pooled, amplified and sequenced. The UMI sequences are then used to identify
multiple sequenced copies of the same original cDNA strand and deduplicate those reads.
The cell barcode assigns each sequence to a cell. And the transcript sequence is mapped to
the genome to identify the gene from which it originates. Thus, the data can be summarized
in a UMI count table, where each row is a cell, each column a gene and each entry a count
of the corresponding UMIs found.

There are two important differences in bulk RNA-seq. Firstly, isolation of cells is skipped
and mRNA content from all cells is pooled together. Secondly, tagging cDNAs with barcodes
is not necessary as noise from cDNA amplification is not as much of a problem compared
to single-cells as the initial pool of sequences would be several orders of magnitude larger in
bulk. The result of a bulk RNA-seq experiment will be a vector of the number of transcript
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sequences mapped to each gene. Unlike for scRNA-seq data, this vector will contain few
zeros, and all zeros are likely to correspond to unexpressed genes. Such vectors from several
sequenced samples can be combined into a table. To account for differences in the total
number of transcripts per sample, this data is usually normalised to units of transcripts per
million (TPM). Such a normalisation should not be done for single-cell data as the total
number of transcripts per cell is much smaller and therefore differences between 0 and 1
UMI counts would be artificially inflated [61]. To conclude, the resulting normalised data
table for bulk RNA-seq is dense and contains rational numbers.



2
Identifying Marker Genes in Bulk RNA-seq

2.1 Introduction
To measure the transcriptome of a cell type of interest, single cell RNA-seq has, in recent
years, become the state-of-the-art method, as it gives results not just for the mean gene
expression, but also its distribution and can be used to characterise subtypes in the sample.
However, bulk methods are still widely in use and provide benefits such as lower cost and
a much better ability to measure low abundance transcripts. Because of the high number
of reads and the low number of samples, data analysis is relatively straightforward with
well-established tools.
Here, we establish a statistical model for identifying marker genes. These are genes, that
show a characteristic expression in a class of samples of interest and can therefore be used
in experiments, for example by antibody staining, to mark them. These classes could be,
for example, different cell types or stages of development. To identify marker genes, we
need to answer the following question: If we could only measure the expression of one gene
in a sample, which one would be most predictive for its class? The mathematical measure
to answer this question is the conditional entropy of the class C given a gene expression
measurement X, H(C|X). This entropy is a measure of the uncertainty about which class
a sample belongs after the gene expression has been measured. A low entropy corresponds
to low uncertainty.
To make it concrete, let’s look at an example from [43]. In this paper, they are studying
the differentiation of neuronal stem cells (NSC) into basal progenitors (BP) and newborn
neurons (NBN) from embryonic day 10.5 (E10.5) to birth (P0). These cell types were
experimentally separated using fluorescence activated cell sorting (FACS) by expression
of Hes5-GFP and separately bulk sequenced. The entire dataset consists of 2-4 replicate
samples for a given cell type on a given day. Now, a researcher might be interested in being
able to distinguish cell types on a sample from day E15.5, so that the three classes would
be {BP(E15.5)}, {BP15.5}, and {NBN15.5}. This kind of problem cannot be addressed by
looking at differentially expressed genes, as it involves more than two classes.
As our model was developed for RNA-seq data, we will discuss the model in this context
and refer to X as gene expression. However, there is nothing about this model specific to
such data, and it could therefore potentially be applied in many other contexts. We will
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discuss the assumptions and requirements to the data later.

2.2 Methods
2.2.1 Estimating gene expression variance
We want to model the log-expression of a gene g in a class c with a Gaussian distribution
with mean µgc and variance σ2

gc (for now we will only look at data within one class, so we
can drop the subscript c). The data Dg consist of the nc log-expression measurements for
that gene and are summarized by their empirical mean mg and variance vg. The likelihood
of the data under such a model is therefore:

P (Dg|µg, σ
2
g) ∝ σ−nc exp

[
−nc

(mg − µg)
2 + vg

2σ2
g

]
(2.1)

One problem of bulk RNA-seq data is that there are potentially very few samples in a given
class, which makes it hard to directly estimate the variance of gene expression. Therefore, we
need to estimate the variance using a Bayesian model, which makes marker gene inference
more robust – a process called variance stabilization. In contrast to the low number of
samples per class nc (O(100 − 101)), the number of genes ng is high (O(104)). Thus, we
can directly estimate the distribution of variances from the data. To simplify the maths,
we work with the inverse variance, or precision, wg = 1/σ2

g . Our first goal is to find the
posterior distribution P (wg|Dg). We start by integrating over µg in Equation 2.1, we get:

P (Dg|wg) = w(nc−1)/2
g exp(−ncvgwg/2). (2.2)

We assume that the prior probability to have precision wg is given by a gamma distribution:

P (wg) = βαwα−1
g exp(−βwg)/Γ(α). (2.3)

We chose the gamma distribution as it is the conjugate prior to the exponential distribution
of Equation 2.2, which allows deriving a closed-form solutions of the posterior. The gamma
distribution is also the maximum entropy distribution, given the mean of w and the mean
of log(w). Performing the integral P (Dg|α, β) =

∫∞
0
P (Dg|wg)P (wg)dwg, we obtain

P (Dg|α, β) =
βα

(β + ncvg/2)α+(nc−1)/2

Γ(α+ (nc − 1)/2)

Γ(α)
. (2.4)

It is generally easier to work with the log-likelihood:

Lg(α, β) = α log(β)− (α+
nc − 1

2
) log(β +

ncvg
2

) + log(Γ(α+
nc − 1

2
))− log(Γ(α)). (2.5)

Note that the same values of α and β are used for all genes, as they all share the same prior
distribution over w. Hence, we fit the data by finding the values of α and β that maximize
the total log-likelihood over all genes L(α, β) =

∑
g Lg(α, β). This leads to the following

two equations that need to be satisfied at the optimum:

α

β
= ⟨α+ (nc − 1)/2

β + ncvg/2
⟩ (2.6)
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⟨ψ(α+
nc − 1

2
)− ψ(α)⟩ = ⟨log(1 + ncvg

2β
)⟩, (2.7)

where the averages are over all genes and ψ(x) is the digamma function. Equation 2.6
is for optimal β given fixed α, and vice versa for Equation 2.7. These two equations
can be used to numerically compute the optimum in an iterative way: Fix α, then set
β from Equation 2.6, then fix β and set α from Equation 2.7, repeat until conversion.
Having fixed the optimal values α∗ and β∗, we can finally obtain the posterior probabil-
ity of wg by combining Equations 2.2, 2.3, and 2.4 in Bayes’ theorem P (wg|Dg, α

∗, β∗) =

P (wg|α∗, β∗)P (Dg|wg)/P (Dg|α∗, β∗).

2.2.2 How to assess marker quality
Given this posterior distribution P (wgc|Dgc), how do we best assign marker quality to a
gene? If this distribution had a sharp peak, we could estimate the most likely true variance
σ2
c of the gene in each class and use a Z-statistic Z = (m1 −m2)

2/(σ2
1 + σ2

2) (we will now
compare a single gene across classes and drop the subscript g). However, the whole point
of the variance stabilization is that the posterior distribution may be quite broad when the
number of samples nc is small, precisely when we need the stabilization of the variance in
the first place.
Thus, we will assess how well a measurement of gene expression separates different classes c
of samples with the conditional entropy H(C|X). That is, given a measurement of the log-
expression X, how high is the entropy of the class C. The lower this entropy, the higher the
level of certainty that the class is C = c, given a measurement of the expression level X = x.
This conditional entropy H(X|C) can be written in terms of the joint entropy H(X,C) of
the joint distribution P (x, c), and the entropy H(X) of the marginal distribution P (x), i.e.
H(C|X) = H(X,C)−H(X).
We are going to estimate P (x|c) based on our data Dc for class c, i.e. the gene expression
measurements of the samples in class c. So we will get an expression of the form P (x|c) =
P (x|Dc). This distribution, most formally, is given by

P (x|Dc) =

∫
dµcdwc

√
wc

2π
exp

(
−wc

2
(x− µc)

2
)
P (µc, wc|Dc). (2.8)

Using P (µc, wc|Dc) ∝ P (Dc|µc, wc)P (wc)P (µc), and using the gamma-distribution prior
that we fitted P (wc|α∗

c , β
∗
c ) and the uniform prior for µc, these integrals can be performed

and we finally find

P (x|Dc) =

(
1 +

(x−mc)
2

(nc + 1)(vc +
2β∗

nc
)

)−(α∗+nc−1
2 )

. (2.9)

As an aside, while this is not a Gaussian, it can be approximated by a Gaussian with mean
µeff = mc and effective variance

σ2
eff =

(nc + 1)(vc + 2β/nc)

nc − 1 + 2α
. (2.10)
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This equation can be used to estimate the uncertainty in gene expression measurements, if
we take the class c to be all replicates of a certain condition. However, for the remainder of
this derivation, the Gaussian approximation will not be used.
Back to our calculation of the joint entropy H(X,C): for the prior P (c), the obvious choice
would be the uniform distribution P (c) = 1

|C| , where |C| is the number of classes. However,
one might also want to include prior information, e.g. when one cell type is known to be
much more abundant than another, so we will not specify it further. The expression for the
joint entropy is

H(X,C) = −
∑
c

∫
dxP (x|c)P (c) log [P (x|c)P (c)] . (2.11)

This can be rewritten as

H(X,C) = H(C)−
∑
c

P (c)

∫
dxP (x|c) log[P (x|c)] = H(C) + ⟨H(x|c)⟩, (2.12)

whereH(C) =
∑

c P (c) log[P (c)] is the entropy of the classes, H(X|C) = −
∫
dxP (x|c) log[P (x|c)]

is the entropy of the distribution P (x|c), and the average indicated by the angle brackets is
over all classes.

Calculating the conditional entropy H(X|C): Note that the distribution P (x|c) takes
the mathematical form

P (x|c) = Zc

(
1− (x−mc)

2

Vc

)−γc

, (2.13)

with Vc = (nc + 1)(vc + 2β∗/nc), γc = α∗ + (nc − 1)/2, and the normalization constant is

Zc =
Γ(γc)√

πVcΓ(γc − 1/2)
. (2.14)

So the integrals that we have to perform are

H(X|C) = − log(Zc) + γcZc

∫
dx

log
[
1 + (x−mc)

2

Vc

]
(
1 + (x−mc)2

Vc

)γc
. (2.15)

If we introduce the change of variables y = (x−mc)/
√
Vc, we find

H(X|C) = − log(Zc) + γc
√
VcZc

∫
dy

log[1 + y2]

(1 + y2)γc
. (2.16)

Now, finally, we note that if we defined

F (γ) =

∫
dy

1

(1 + y2)γ
, (2.17)

this can be written as

H(X|C) = − log(Zc)− γc
√
VcZc

d

dγc
F (γc). (2.18)
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Equation (2.17) can be analytically solved by F (γ) =
√
πΓ(γ−1/2)

Γ(γ) . Combining all this, we
finally get for the entropy

H(X|C) = − log(Zc) + γc (ψ(γc)− ψ(γc − 1/2)) , (2.19)

where ψ(x) is the digamma function, the logarithmic derivative of the gamma function.

Calculating the marginal entropy H(X): The marginal distribution P (x) is given by
a mixture over all classes, i.e. P (x) =

∑
c P (x|c)P (c). So the marginal entropy is given by

H(X) = −
∫
dxP (x) log[P (x)]. This can be written as

H(X) =
∑
c

P (c)

∫
dxP (x|c) log[

∑
c

P (c)P (x|c)]. (2.20)

There is no analytical solution to this integral, so it will have to be calculated numerically.

2.2.3 Misclassification error in binary case
If we have two classes (say one cell type vs the other cell types) and, given our data x (a gene
expression measurement), we define the probability that we assign this to the right class as
1−p, and the probability that we assign this to the wrong class as p. So p is the probability of
making an error. The entropy of this distribution is H(p) = −p log(p)−(1−p) log(1−p). As
we know the entropy of our distribution H(C|X), we want to find the inverse of the entropy
function H(p), i.e. we want to find the function p(H) that calculates the error-probability
from the entropy. While the entropy H is the more general measure that works in all cases,
in the common binary case, we can associate an error probability with the entropy in order
to give a more intuitive meaning to its value. We are particularly interested in the regime
where p (the error probability) is small. For small p, we have H(p) ≈ −p(log(p) − 1). In
terms of the lower branch of the Lambert W function, this is solved by

p(H) ≈ −H/W−1(−H/e). (2.21)

2.3 Results
2.3.1 Data
We tested our algorithm on a dataset, that at the time of writing has not been fully published
yet. A small part of the data is published in [43] and the paper also contains details how
the experiments were conducted. Briefly, transgenic mouse lines Hes5::GFP and Tbr2::GFP
(Tbr2 is also known as Eomes) were used to isolate pure populations of neural stem cells
(NSC), basal progenitors (BP) and newborn neurons (NBN) from the developing cerebral
cortex between embryonic day 10.5 (E10.5) and birth (PN). The separation of cell types
was done through fluorescence activated cell sorting (FACS) based on the expression of the
fluorescent reporter genes. NSC were identified as cells with Hes5::GFP expression, BP as
Tbr2::GFPhigh, and NBN as Tbr2::GFPlow. NSC were present from E10.5 to PN, BP from
E12.5 to PN, and NBN from E15.5 to PN. For each cell type and time point, 2-4 biological
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replicate samples were produced, resulting in a total of 70 samples that were each RNA
sequenced.

2.3.2 Marker genes
To illustrate that the algorithm works, we are showing some example results for different
comparisons across cell types and embryonic days. The first two are between cell types which
have been selected by a distinct expression pattern of a gene (Hes5 is a marker for NSC,
low Tbr2 expression distinguishes NBN from BP). Thus, the scores of these genes in the
corresponding comparisons can be used to validate our approach. In the last comparison,
we look at marker genes for NSC during gliogenesis for which we only have 9 data points,
so we can check if the results look reasonable even when the observed variance might not
reflect the real ones.

Marker genes for neural stem cells. To get marker genes for NSC, we are comparing
data from NSC at all embryonic days against data from the other cell types. That is, the
classes are c1 = {NSC E10.5 - PN}, c2 = {BP E12.5-PN, NBN E15.5-PN}. The top marker
gene is Hes5, which is the gene that was used to experimentally isolate NSC. As can be seen
in Figure 2.1, the top 12 marker genes all clearly separate NSC from other cell types.

Marker genes for differentiating newborn neurons from basal progenitors. Here,
the classes are c1 = {BP E12.5 - PN} and c2 = {NBN E15.5-PN}. The marker gene that
was used to experimentally isolate NBN, Tbr2, appears at rank 38, with H(C|X) = 1.60×
10−2 and p = 2.25×10−3 and is hence predicted to also be a significant marker gene. As can
be seen in Figure 2.2(a), the top 12 marker genes all clearly separate NSC from other cell
types. As comparison, Tbr2 expression is shown in Figure 2.2(b) – it scores lower because
of the relatively high variance in expression over time among NBN.

Marker genes for neural stem cells during gliogenesis. Neural stem cells go through
three main developmental phases: expansion (E10.5-11.5) where the cells are replicating to
expand the stem cell pool, neurogenesis (E12.5-16.5) where some of the NSC differentiate
into BP to become neurons, and gliogenesis (E17.5-PN) where NSC generate non-neuronal
brain cells, including astrocytes, oligodendrocytes, and ependymal cells [42]. Here, we want
to look for the top markers of gliogenic NSC, so our classes are c1 = {NSC E10.5 - 16.5}
and c2 = {NSC E17.5-PN}. The top 12 marker genes are shown in Figure 2.3(a) and are all
clearly genes that separate data taken during gliogenesis from those taken on other days.

The importance of variance stabilisation. The last example was chosen as the small
number of gliogenic samples (9) makes variance stabilization important in order to correctly
assess the true uncertainty in a new measurement of the gene expression. To illustrate this,
we calculated the t-statistic without variance stabilization:

t2 =
m1 −m2

v1/n1 + v2/n2
, (2.22)
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Figure 2.1: Top 12 marker genes for NSC, comparing gene expression measurements from
NSC against BP and NBN from all time points. Measurements for replicate samples from
different time points and cell types are shown as dots. The lines show the time evolution of
the estimated measurement mean, with error bars indicating the estimated true standard
deviations σeff, across replicates. For each marker gene, the conditional entropy H(C|X)
and the error of misclassification p are noted.

where the subscripts refer to the two classes. Figure 2.3(b) shows the expression patterns
for Hdhd2 and Vcam1, which both have high and very similar t-scores of 264 and 259,
respectively. For Hdhd2 there is only a 1.6-fold change in expression between classes. As the
variation in replicate gene expression measurements is smaller than expected, the estimated
standard deviation σeff indicated by the error bars is often larger than the spread of the
data. In contrast, the expression of Vcam1 changes 6.5-fold and the spread of replicate
measurements tends to be larger than σeff. Therefore, it makes sense that Vcam1 would be
a much better marker gene for gliogenic NSC than Hdhd2.
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2.4 Discussion
In the most literal sense, marker genes are those that are used in an experiment to mark
cells according to the expression of those genes. This is what we are trying to achieve here:
we find the genes whose expression is most predictive for a condition of interest. But, we
could also have defined marker genes as being expressed in our condition of interest but
not a reference condition. Or if we have time course data like in the example above, we
could look for genes that are predictive at any given time point rather than averaging over
time. How one defines marker genes should determine the method used to find them. A
related but different problem is that of finding differentially expressed genes. These are
genes for which we have the most evidence that their average expression is different between
conditions. Many different algorithms already exist for this task [17, 57], such as DESeq [2],
edgeR [51] or limma [50].
The method presented here has several advantages: Firstly, it is robust even when the
number of samples per class is small, as it uses a Bayesian method to account for the likely
underlying variation in the data rather than the observed one. Secondly, it could be used
to find genes that can differentiate between more than two conditions. And thirdly, the
method is not specific to RNA-seq measurements, but can be applied to any kind of data
where the number of measurements per condition is small, the number of features is high
and the measurements are approximately Gaussian distributed.
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Figure 2.2: (a) Top 12 marker genes comparing gene expression measurements from NBN
against BP. Measurements for replicate samples from different time points and cell types
are shown as dots. The lines show the time evolution of the estimated measurement mean,
with error bars indicating the estimated true standard deviations σeff, across replicates. The
bold lines illustrate which samples are being compared against each other. For each marker
gene, the conditional entropy H(C|X) and the error of misclassification p are noted. (b)
The same expression plot for Tbr2, the gene used as a marker in the experiment.
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Figure 2.3: (a) Top 12 marker genes comparing gliogenesis NSC (E17.5-PN) against NSC
from other embryonic days (E10.5-E16.5). Measurements for replicate samples from dif-
ferent time points and cell types are shown as dots. The lines show the time evolution of
the estimated measurement mean, with error bars indicating the estimated true standard
deviations σeff, across replicates. For each marker gene, the conditional entropy H(C|X)
and the error of misclassification p are noted. (b) Expression plots for two genes that have
very similar t-statistics, but different conditional entropy. Note the difference in the y-axis
scale.



3
Identifying cell states in single-cell RNA-seq data

at statistically maximal resolution

Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular experimental method to
study variation of gene expression within a population of cells. However, obtaining an ac-
curate picture of the diversity of distinct gene expression states that are present in a given
dataset is highly challenging because of the sparsity of the scRNA-seq data and its inho-
mogeneous measurement noise properties. Although a vast number of different methods
are applied in the literature for clustering cells into subsets with ‘similar’ expression pro-
files, these methods generally lack rigorously specified objectives, involve multiple complex
layers of normalisation, filtering, feature selection, dimensionality-reduction, employ ad hoc
measures of distance or similarity between cells, often ignore the known measurement noise
properties of scRNA-seq measurements, and include a large number of tunable parame-
ters. Consequently, it is virtually impossible to assign concrete biophysical meaning to the
clusterings that result from these methods.
Here we address the following problem: Given raw unique molecule identifier (UMI) counts
of an scRNA-seq dataset, partition the cells into subsets such that the gene expression states
of the cells in each subset are statistically indistinguishable, and each subset corresponds
to a distinct gene expression state. That is, we aim to partition cells so as to maximally
reduce the complexity of the dataset without removing any of its meaningful structure. We
show that, given the known measurement noise structure of scRNA-seq data, this problem
is mathematically well-defined and derive its unique solution from first principles. We have
implemented this solution in a tool called Cellstates which operates directly on the raw
data and automatically determines the optimal partition and cluster number, with zero
tunable parameters.
We show that, on synthetic datasets, Cellstates almost perfectly recovers optimal par-
titions. On real data, Cellstates robustly identifies subtle substructure within groups
of cells that are traditionally annotated as a common cell type. Moreover, we show that
the diversity of gene expression states that Cellstates identifies systematically depends
on the tissue of origin and not on technical features of the experiments, such as the total
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number of cells and total UMI count per cell. In addition to the Cellstates tool, we also
provide a small toolbox of software to place the identified cellstates into a hierarchical tree
of higher-order clusters, to identify the most important marker genes at each branch of this
hierarchy, and to visualize these results.
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3.1 Introduction
All cells in multicellular organisms contain the same genome with typically around 20,000

genes, but are able to take on a wide variety of phenotypes and perform specialized functions
by selective expression of these genes. Therefore, it is one of the fundamental problems
of cell biology to characterize the gene expression states cells take on in a multicellular
organism. Addressing this requires investigating gene expression states in single cells, which
has become possible through progress in the development of single-cell technologies, and
single-cell RNA sequencing (scRNA-seq) in particular, over the last years. Numerous cell
atlas projects [20, 22, 48, 49, 55] using this approach are already published or in progress. It
is often assumed that cells can be divided into discrete cell types which have characteristic
molecular profiles and perform specific functions, but despite all the available experimental
data, it is still debated how such discrete types should be defined [16, 40, 41, 72]. Indeed,
it is also often proposed that gene expression states are not discrete but rather occupy a
continuous subspace of gene expression space, which is typically assumed to be of much
lower dimensionality than the full gene expression space [35, 67].
It is thus currently not clear to what extent the assumption that cells can be grouped into
discrete states is appropriate. Arguably, during cellular differentiation cells must be travers-
ing an approximately continuous space of gene expression states, but for fully differentiated
tissues it may not be unreasonable to approximate cells as deriving from a set of discrete
states. However, even if we take for granted the assumption that cells take on discrete states
or ‘types’, there is currently also no agreement regarding how such types should be defined
or identified. That is, although intuitively cells of the same type should have ‘similar’ ex-
pression profiles, there is currently no agreed upon metric of closeness of gene expression
states and no agreement on how close cells need to be in order for them to be considered the
same type. Furthermore, even if a distance metric is chosen, for example Euclidean distance
in log mRNA fractions, the sparseness and inhomogeneous noise properties of scRNA-seq
data make it very challenging to accurately estimate the true distances between cells [11].
In spite of these problems, the current practice in the field is to simply apply ad hoc clus-
tering approaches to scRNA-seq data, typically inspired by unsupervised machine learning
methods, with the aim of grouping cells of the same ‘type’, e.g. [3, 28, 46]. These clus-
tering approaches generally include several complex layers of data pre-processing, such as
normalisation and imputation, feature selection, and dimensionality reduction, before the
clustering algorithm is applied. These pre-processing steps not only include many fairly
arbitrary choices but, as we have recently shown [11], such pre-processing can also severely
distort the data by erroneously filtering true biological variability and introducing arte-
factual correlations. Furthermore, for the clustering itself many different approaches are
available, and these typically additionally have many tunable parameters whose values in
practice seem to be mostly set by trial-and-error. Given the many layers of ad hoc choices
involved in these approaches, the resulting clusters lack any biophysical or even method-
ological interpretation. Instead, the approach taken to confirm the ‘biological validity’ of
the clusters, is to show that the cluster exhibit some features that match known biological
information, e.g. that certain ‘marker’ genes of a particular cell type are on average higher
expressed in a given cluster. However, given that there are combinatorially many different
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clusterings that exhibit such partial matches with prior biological knowledge, it seems prob-
lematic to us to take such partial matches to prior biological knowledge as a validation of
the clusters that happened to result from the complex layers of analysis that were applied
to the data.
We strongly feel that, instead of applying ad hoc clustering methods and attempt to validate
these retrospectively by comparison with prior biological knowledge, it is more constructive
to first rigorously specify the aims of the analysis, and then derive the appropriate algorithm
that accomplishes these aims from first principles. This is the approach we take here. We
are not going to attempt to solve the general problem of how to define cell types and
how to identify them, for reasons laid out above. Instead, our aim is to use clustering so
as to maximally reduce the complexity of the dataset without losing any of the structure
in the data. In particular, we aim to partition the cells of an scRNA-seq dataset into
subsets such that the gene expression states of all cells within each subset are statistically
indistinguishable. We thus aim to cluster cells at the highest possible level of resolution that
is statistically meaningful, i.e. within each cluster all cells are within measurement noise in
expression state, and between clusters the expression states are all distinct.
Because the nature of biological and measurement noise in scRNA-seq experiments is known,
as characterized in previous studies [61], this task has a uniquely defined solution determined
by first principles, as we show below. The resulting method, Cellstates, directly clusters
the unnormalised data so that any pre-processing steps are avoided, measurement noise is
properly taken into account, and there are no free parameters to tune. For example, the
number of clusters is determined by the data, in contrast to most approaches in which the
number of clusters is tuned by the user. Moreover, the resulting clusters have a clear and
simple interpretation.
Because Cellstates only groups cells whose expression states are statistically indistinguish-
able, it typically divides the data into many more subsets than other clustering algorithms.
To allow comparison with the more coarse clusterings provided by other methods, we ad-
ditionally provide methods for hierarchically merging Cellstates’s clusters into coarser
clusters and to identify marker genes associated with each branching in this hierarchy. As
we show below, marker genes of conventionally annotated biological cell types typically cor-
respond to coarser clusters in this hierarchy, allowing us to interpret Cellstates’s clusters
as subtypes of conventionally annotated cell types.

3.2 Review of current clustering tools
To illustrate how currently available clustering algorithms work, we will summarise the
typical steps involved. Then, we will give a detailed description for some selected tools that
are being used later in Section 3.4.3 for benchmarking against our model. A summary of
the tools is also given in Table A.3. The aim of these section is to illustrate how complex
and intransparent current methods are. They are rarely motivated by specific theoretical
considerations about UMI count data, but rather follow a number of ad-hoc steps used in
machine learning or data science for clustering various kinds of data. For all of these steps,
methods and parameter values have to be chosen, that will influence the final clusters. As
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a result, these clusters lack a clear interpretation. Researchers could be tempted to deal
with this problem by tweaking the parameters until they get results that they think look
plausible and agree with biological knowledge. But that also means, that the clusters are
not objective statements about the data, but can be largely biased by preconceived ideas
about what the data should show.

3.2.1 Common steps of a clustering analysis
Normalisation The total number of reads in a cell can vary due to random fluctuations
in the capture efficiency of the scRNA-seq protocol between cells. Therefore, the number of
UMI counts for a gene will depend on the specific capture efficiency in that cell. Thus, one
needs to normalise the counts by a size factor for each cell. Typically, this size factor is simply
the total number of UMIs in that cell multiplied by a constant, so that gene expression levels
are measured in counts per million (CPM)3. Typically, this normalisation for size factors
is also combined with a non-linear feature transformation. Without such a transformation,
differences in gene expression are proportional to their absolute levels. For example, a change
from 100 to 120 CPM would be as large as a change from 10 to 30 CPM. Relative expression
levels of genes cover several orders of magnitude, so only changes in highly expressed genes
would be relevant. As regulatory interactions often have multiplicative effects [6], it is
standard to measure expression levels as log-transformed CPM. As zero counts are frequent,
but incompatible with the logarithm, the data are normalised as log(CPM + 1). Many
other normalisation techniques exist [65], and they typically try to address three points:
differences in mRNA capture efficiencies between cells, rescaling of expression levels, and
removal of zero measurements. Many different kinds of normalisation algorithms exist [65],
but it has recently been shown that most normalisation algorithms introduce artificial biases
into the data [11]. These biases would therefore also affect clustering results. Furthermore,
zero measurements are an expected outcome of count data and should not need to be treated
as a special case [12, 54, 59, 70]. While some normalisation techniques exist that take into
account the count statistics [11, 34, 61], we will show that there is no need for this step in
the first place and that clustering can be done directly on the raw UMI counts.

Feature Selection and Dimensionality Reduction As clustering algorithms generally
try to find groups of “similar” cells, they need to define a measure of this similarity. This is
usually a distance in gene expression space. However, as this space has ca. 20’000 dimen-
sions, it suffers from the so-called curse of dimensionality, the phenomenon that distances
between points in space become evenly distributed as the number of dimensions goes up. To
remove this effect, feature selection and dimensionality reduction are both used to lower the
number of dimensions in which distances are calculated and also to speed up computations.
Many genes do not carry any relevant signal, for example if they are low expressed and
therefore noisy or if they are housekeeping genes that have similar expression in all cells.
Feature selection is the process of removing such uninformative genes and only retaining

3 For scRNA-seq other constant scaling factors than 1 million are often used, such as the median total UMI
count per cell or 10’000.
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those that are most relevant to the underlying structure of the data [30]. As many pairs of
genes have correlated expressions, the effective dimensionality of the biological information
is much lower than that of the full gene expression space. Thus, dimensionality reduc-
tion techniques, such as principal component analysis, are applied that try to preserve the
relevant information while removing any noise in the data.

Similarity Metrics and Clustering After these transformations of the raw UMI count
data, a vast corpus of clustering algorithms from the machine learning literature can be
applied [1]. The general aim of such an algorithm is to group cells into clusters such that
cell within a cluster share similar gene expression characteristics, while cells in different
clusters have clear differences. Thus, most methods will require the definition of a metric
to quantify similarity between cells, e.g. Euclidean distance in gene expression space or the
correlation of gene expression vectors. Some clustering algorithms work on graphs, and a
popular choice to construct these from the data is to make a k-nearest-neighbours graph.

3.2.2 Description of published clustering tools used in this thesis
BackSPIN BackSPIN [75] is a biclustering method, that clusters both cells and genes
simultaneously. Raw counts are pre-processed through feature selection and log(CPM) nor-
malisation, cell-to-cell similarities are measured by correlation. The idea is to reorder the
rows and columns of the expression matrix to get a block-diagonal forms, where each block
corresponds to a cluster of cells and its associated genes. The basis for BackSPIN is SPIN
[62], which is a method for optimally sorting the correlation matrix. After sorting, the op-
timal split in the correlation matrix is found such that cells on the same side of the split
have a higher correlation than cells on different sides. Genes are associated with each of
the two parts to generate two sub-matrices. Such splits can iteratively be performed on
the sub-matrices until some conversion criterium. There are a number of parameters that
can be set (most will have a default value): the maximal number of splits d (the maximum
number of clusters will be 2d); the number of genes retained in feature selection; several
parameters related to how large sub-matrices can be after each iteration, and when a split
is deemed meaningful; computational parameters for the optimization performed in SPIN.

RaceID3 RaceID3 [21, 24] is a clustering algorithm that specialises in detecting rare cell
types that do not fit into the main clusters it infers. The processing of the data uses feature
selection, normalisation, imputation of zero counts and removal of unwanted variation (such
as cell cycle or batch effects). The first clustering step is done by k-medoids clustering on
a correlation-based distance matrix, where the optimal k can be inferred directly from the
data. After initial clustering, outlier cells are defined as cells which have at least 2 (or as
chosen by a user) genes which are significantly differentially expressed with respect to the
other cells in their cluster. Outlier cells are merged into clusters or rare cell types in the
final step. The tool gives a large choice in methods and parameters values for each of the
preprocessing steps, but also the clustering algorithm and the number of clusters. There are
also several parameters and thresholds related to the outlier finding steps that can be set.
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SC3 SC3 [29] is a clustering tool that combines predictions from several parallel clustering
runs with different parameter sets into a consensus solution. The algorithm starts with nor-
malised data as an input, but does include feature selection. Using PCA, the dimensionality
is reduced to d, Euclidean distances are calculated, and k-means clustering is performed on
the cells. This is done for a range of values of d, and a similarity matrix between cells is
created based on how often cells appear in the same cluster. Finally, this similarity matrix is
used for hierarchical clustering with complete agglomeration to k clusters. If the number of
cells is very large, there is also the option to do this clustering on a subset of cells and train
a support vector machine (SVM)[7] that assigns each cell to a cluster. To summarise, there
are parameters that need to be set are related to feature selection, the number of clusters
k, the range of values d, and potentially parameters related to the SVM model.

SNN-Cliq SNN-Cliq [74] is a clustering algorithm based on shared nearest neighbour
(SNN) graphs. Preprocessing is not done by the tool, but suggested normalisation is with
log(RPKM + 1)4 and suggested feature selection is to take genes with RPKM > 20. Based
on this normalised data and a distance metric, a list of k nearest neighbours is generated
for each cell. The SNN graph connects pairs of cells that have at least one shared nearest
neighbour. Finally, a novel graph clustering algorithm is applied to this SNN graph. The
parameters to be chosen after normalisation and feature selection are: the number of nearest
neighbours k, the distance metric used, and two parameters that define the granularity of
the graph-based clustering algorithm.

DIMM-SC DIMM-SC [58] is a clustering algorithm based on a Dirichlet mixture model.
Unlike the other methods presented here, DIMM-SC directly models UMI counts using a
Bayesian model. The data is assumed to fall into one of K clusters. UMI counts n⃗ of a cell
are drawn from a multinomial distribution with parameter vector α⃗, which obeys αg ≥ 0

and
∑

g αg = 1:

P (n⃗|α⃗) ∝
∏
g

(αg)
ng , (3.1)

where the product is over the genes g. The parameter vector α⃗ has a prior given by the
Dirichlet distribution

P (α⃗|θ⃗j) ∝
∏
g

(αg)
θgj , (3.2)

where the concentration parameters θ⃗j are different for each cluster j. Then, we find the
marginal likelihood of n⃗:

P (n⃗|{θ⃗j , πj}) =
K∑
j=1

πj

∫
P (n⃗|α⃗)P (α⃗|θ⃗j)dα⃗, (3.3)

4 Reads Per Kilobase of transcript, per Million mapped reads – a unit that is not applicable to UMI based
data.
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where πj is the prior probability to be in cluster j. Hence, the model parameters {θ⃗j , πj}
are optimised to maximise the total likelihood for all cells under this model, using am
expectation maximisation (E-M) algorithm. To conclude, this here is only one parameter
that needs to be set by the user, the number of clusters K. Other parameters are related to
E-M algorithm and do not change the optimal solution, only how close the program gets to
finding it. Our model described below is actually very similar to DIMM-SC, but has a few
differences. Firstly, we do not have a fixed number of clusters, but infer it from the data.
And secondly, DIMM-SC allows for potentially large variance in gene expression within a
cluster by adjusting the relevant values of θgj . In contrast, in our model the allowed variance
within a cluster, set by the equivalent variable θg, is fitted globally for all clusters and is
proportional to the average expression of that gene across all cells.

3.3 Methods
3.3.1 Multinomial noise in scRNA-seq data implies a parameter-free solution for prob-

abilities of partitions of cells into states
The internal gene expression state (GES) of a cell c, which we will also refer to as a cellstate,
is determined by a multitude of biological processes that influence the transcription rates
λgc(t) and degradation rates µgc(t) of mRNAs across genes g and time t in the history of
the cell.
These rates determine the probabilities for the mRNA counts in the cell, which in turn
ultimately determine the probabilities of the number of reads captured in a UMI-based
scRNA-seq measurement. The probability distribution for the number of mRNAs in a cell
mgc follows a Poisson distribution with mean agc given by

agc ≡ ⟨mgc⟩ =
∫ ∞

0

dtλgc(t) exp
[
−
∫ t

0

µgc(s)ds

]
, (3.4)

where the time is measured backwards from the present (t = 0) to the distant past (t = ∞)
in the history of the cell [11]. Thus, notably, for each gene g in each cell c, the entire
complex history of transcription rate and mRNA decay rate can be summarised into a single
parameter agc that fully determines the probability distribution of its current mRNA count
for gene g. The scRNA-seq measurement process is noisy, and typically only a small fraction
(∼ 20% or less) of cellular mRNAs are captured. As this capture rate can vary substantially
between cells, information about absolute gene expression levels is lost, at least to some
extent. Therefore, more accurate inferences can be made regarding the expected fractions
of total cellular mRNA that mRNAs of each gene g represent. Following [11], we denote
these fractions by transcription quotients αgc, which we define by

αgc =
agc∑
g agc

. (3.5)

We now define the GES of a cell as the vector α⃗c of transcription quotients across all G
genes. Thus, a GES is a point in the G-dimensional simplex αgc ≥ 0 ∀g with

∑
g αgc = 1.

Given an scRNA-seq dataset with N cells, we will assume that the GESs of the cells derive
from an unknown set S of GESs, where each GES s ∈ S is characterized by a distinct vector



Identifying cell states in single-cell RNA-seq data at statistically maximal resolution 25

of transcription quotients α⃗s. That is, we assume that there are somewhere between 1 (all
cells having the same GES) and N (all cells having a distinct GES) cellstates represented
in the dataset. Our goal is to derive which cells are in the same state and thus separate
differences in UMI counts due to biological and measurement noise from differences in the
underlying biological state. Thus, the space of hypotheses for this problem is the space of
possible partitions of the N cells into non-empty non-overlapping subsets. In particular, we
aim to calculate a likelihood for each possible partition that quantifies how probable the
data is under the assumption that all cells in each subset of the partition are in the same
GES.
The first step is to derive the relationship between the GES of a cell c characterized by α⃗c

and the vector of its measured UMI counts n⃗c, which is summarised in Fig. 3.1A. Given
the transcription activities agc of a cell c, the mRNA counts are not uniquely determined,
but due to inherent biochemical noise in the gene expression process, the mRNA counts
mgc are given by Poisson samples with means agc. Defining the total transcription activity
Ac =

∑
g agc, the expected mRNA count for gene g can be expressed as the product of Ac

and the transcription quotient αgc:

mgc|αgS , Ac ∼ Poisson(αgcAc) (3.6)

Assuming that, for cell c, each transcript was captured and sequenced with a probability pc,
the distribution of UMI counts ngc will also be Poisson distributed with mean αgcAcpc for
each gene g. If we marginalize over the unknown capture probability pc and condition on
the total number of mRNAs Nc that were captured for cell c, the counts ngc are simply dis-
tributed as a multinomial sample of the transcription quotients α⃗gc (see the supplementary
methods of [11] for a more extensive derivation):

n⃗c|α⃗c, Nc ∼ Multinomial(α⃗c, Nc) ∝
∏
g

(αgc)
ngc . (3.7)

Thus, the probability of the observed mRNA counts n⃗c of a cell c conditioned on its GES α⃗c

is simply a multinomial sample of size Nc of the expression state α⃗c. As an aside, we note
that the vector of observed UMI counts n⃗c is the unique sufficient statistic for the GES α⃗c

of cell c.
Given a partition ρ of the cells into non-overlapping subsets, we now use the above results to
calculate a probability P (n|ρ) of the observed UMI counts n across all genes and cells, given
the assumed partition ρ. The derivation of our model follows [68], is explained in detail in
the Supplementary Information section 3.8.1.1, and the general approach is illustrated in
Fig. 3.1. Briefly, a partition ρ contains subsets of cells s, with one GES α⃗s for each subset
s ∈ ρ (i.e. each subset s corresponds to a cluster of cells), and all cells c ∈ s are assumed to
have the same GES α⃗s for each subset s ∈ ρ. The probability for the counts ngc of all cells
in the subset s is simply the product over multinomial distributions for each of the cells.
Thus, if we define the cluster UMI counts ngs =

∑
c∈s ngc and Ns =

∑
c∈sNc, then these

cluster counts also simply derive from a multinomial distribution

n⃗s|α⃗s, Ns ∼ Multinomial(α⃗s, Ns) ∝
∏
g

(αgs)
ngs . (3.8)
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Next, because we do not know the transcription quotients α⃗s we marginalize over these
parameters using a Dirichlet prior. The family of Dirichlet priors is the unique set of
priors that is invariant under rescaling of the unknown transcription quotients αgc and is
parametrized by a vector of concentrations Θ. This marginalization can be done analytically,
leading to a ratio of products of Gamma functions of the counts ngs (see Supplementary
Information section 3.8.1.1). In this way, a likelihood of the UMI counts n⃗s is obtained
for each cluster s in the partition ρ. By taking the product of these likelihoods over all
subsets in ρ, we arrive at an expression for the likelihood P (D|ρ,Θ) of the entire dataset
D = {n⃗c} as a function of the partition ρ and the parameters of the Dirichlet prior Θ.
Taking a uniform prior over both partitions ρ and the parameter Θ, the posterior P (ρ,Θ|D)

is simply proportional to the likelihood P (D|ρ,Θ), which we have obtained in analytical
form. The aim of our algorithm is to now find the partition ρ and prior parameters Θ that
jointly maximize this likelihood.
Importantly, this approach uses only the assumptions that both the inherent biochemical
noise in gene expression and the scRNA sequencing introduce Poisson sampling noise, and
from first principles derives a parameter-free solution for the most likely partition ρ∗ of cells
into cellstates that is entirely determined by the raw data D. Note that defining cellstates in
this way also determines how many distinct cellstates there are, and how many cells there are
in each state, directly from the data. The total likelihood of a partition ρ simply quantifies
how consistent the cells’ measured UMI counts are with the assumption that all cells in
each cluster share a common (but unknown) GES α⃗. Importantly, over-clustering of the
cells into too many cellstates is avoided through the Bayesian framework, where increasing
the number of GES α⃗ that are marginalized over will lower the likelihood if not supported
by the data. To summarise, we partition all cells into subsets such that it is most likely
that within each subset the remaining variation between the captured UMI counts is due to
random fluctuations.

3.3.2 The likelihood function is optimized using a Markov-Chain Monte-Carlo algorithm
The number of possible partitions of N cells grows faster than eN , and we have confirmed
that simple greedy searches, such as iteratively fusing clusters of cells to maximally increase
the likelihood of the partition, tend to get stuck in local optima of the likelihood function.
This makes maximization of the likelihood function challenging. To search for the optimal
partition, we start from the partition in which each cell forms a cluster by itself and use a
stochastic Markov-Chain Monte-Carlo (MCMC) scheme as previously developed in [68]. In
each step, a randomly selected cell is proposed to move into a randomly selected different
cluster – and accepted if this move increases the likelihood of the partition. If the move
decreases the likelihood by a factor p < 1, the move is accepted with a probability p̃ that
is adjusted to ensure uniform sampling of partitions (see Supplementary Information sec-
tion 3.8.2.1). Although theoretically, this MCMC scheme samples partitions in proportion
to their likelihood in the long run, we have observed that, in practice, either p≫ 1 or p≪ 1

for most of the proposed moves, most likely due to the fact that the total number of UMI
per cell is generally large. Therefore, in practice, the optimization essentially performs a
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Figure 3.1: (A) Summary of model assumptions. Each cell is in a gene expression state
(indicated by shape and colour) characterized by the transcription quotients across genes.
The relative numbers of mRNAs in the cell follow a multinomial distribution of these rates.
The counts obtained from sequencing reflect a random subset of captured cellular mRNAs
and follow the same multinomial. (B) Summary of clustering algorithm. Each partition ρ
of cells into clusters gives a likelihood of the data under the noise model. By optimizing
the partition, we find groups of cells with shared gene expression states. (C) Cellstates can
be hierarchically merged into higher-order cell types. For each merging step, we indicate
which genes most contribute to distinguishing the transcription quotients to the left and
right below the merger.

random uphill walk to a local optimum rather than sampling the full probability distribution
of partitions. We have experimented with a number of different search schemes, including
simulated annealing and Gibbs’ sampling schemes, but found that these random uphill walks
provide the best balance between total run time and optimality of the final partition. After
the MCMC converges, the optimization is followed by some deterministic steps, as described
in detail in Supplementary Information section 3.8.2.1. Multiple runs of Cellstates on
the same data can yield slightly different partitions, and we simply select the best-scoring
partition from the partitions obtained in different runs.

3.3.3 Merging cellstates hierarchically into higher-order clusters
As the optimal cellstate partition gives a very fine-grained view of the data, it makes sense to
relate the obtained cellstates to each other in a structured manner. To examine the higher-
order structure between the cellstates of the optimal partition ρ∗, we devised a scheme to
hierarchically merge them into higher-order clusters. We define a pairwise cluster similarity
as the ratio of the likelihoods of the partition in which the two clusters are merged and the
partition in which the two are separated. By construction of the optimal partition ρ∗, the
similarity will be < 1 for any pair of clusters of this partition, and we define a ‘distance’
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between two clusters as minus the logarithm of this similarity. The most similar clusters are
iteratively merged, resulting in a hierarchical tree of higher-order clusters, see Supplementary
Information section 3.8.1.3 and Fig. 3.1C. As discussed below, we find that these higher-
order clusters are often similar to the cell type annotations given in the publications of the
datasets on which we ran our algorithm. Additionally, by approximating the multinomial as
the product of independent binomials for each gene, we can calculate the contribution of each
gene to the cluster similarity score, thus quantifying which genes drive differences in GES
between cellstates or higher-order clusters (see Supplementary Information section 3.8.1.4).
This allows users of our method to explore the types of cellstates present in the hierarchical
tree more easily, i.e. by identifying which genes are associated with particular branchings.

3.4 Results
3.4.1 Cellstates accurately finds optimal partitions in simulated data
As discussed below, we tested Cellstates by running it on a number of published experi-
mental scRNA-seq datasets. However, since there is no ground-truth information available
for the GESs of cells in real scRNA-seq datasets, we decided to validate our likelihood max-
imization algorithm on synthetic datasets that were generated so as to be in agreement
with the noise model described above. To get realistic simulated data, we modelled the
simulations after results obtained by Cellstates from 18 of the analysed real experimental
datasets as follows. For each of the 18 real datasets we took the optimal partition inferred by
Cellstates and then, for each of the clusters s in this partition, sampled the UMI counts
of its cells from a multinomial distribution with mean equal to the inferred GES α⃗s of the
cluster. We generated three independent simulated datasets for each of the 18 scRNA-seq
datasets, for a total of 54 simulated datasets (See Supplementary Information section 3.8.2.2
for details). We then ran the Cellstates algorithm three times on each simulated dataset.
For the large majority of runs, Cellstates found the exact same partition as the one that
generated the data (Figure 3.5), which is remarkable since only a tiny fraction of the total
space of partitions is sampled during the MCMC likelihood optimization. Moreover, when
the partition that Cellstates found differed from the partition that generated the data,
this was because Cellstates found a partition with even higher likelihood than the one
that generated the data. In fact, for each of the 54 datasets our MCMC likelihood maxi-
mization procedure found a partition with likelihood at least as large as the partition that
generated the data, and in ≈ 91% of all runs overall (Figure 3.5).
To compare the similarity of partitions more quantitatively, we will use the two complemen-
tary measures of homogeneity and completeness [53] throughout this paper. These measures
quantify how much information (as quantified by the Gibbs/Shannon entropy function) a
given partition ρ contains about a reference partition ρf , and are both normalised to lie be-
tween 0 and 1. If we imagine that we colour cells by their cluster in the reference partition
ρf , i.e. so that all cells within each cluster of ρf are given the same colour, then homogeneity
measures how much information the cluster membership in ρ provides about the colour of
the cells (i.e. cluster membership in ρf ). Homogeneity is 1 when, for each cluster of ρ, all
cells have the same colour. Completeness, vice versa, measures how much information the
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colour of a cell provides about its cluster in ρ. Completeness is 1 when, for each colour from
ρf , all cells of a common colour occur in only one cluster of ρ. Note that two measures are
necessary because if ρ is the partition in which each cell is its own cluster, homogeneity is 1

by definition (but completeness is 0). Vice versa, if ρ is the partition in which all cells are
in one cluster, then completeness is 1 (but homogeneity is 0).
Comparing the partitions inferred by Cellstates on the simulated data to the correspond-
ing reference partitions used to generate the data, we find that they overlap very well, with
completeness and homogeneity larger than 0.95 for all runs, and larger than 0.9975 for
118/162 (73%) of the runs, as shown in Figure 3.2A. As discussed in Supplementary Infor-
mation section 3.8.2.2, most ‘errors’ occur when the maximum likelihood partition found
by Cellstates is higher than that used to generate the data. This happens in particular
when the simulated datasets are too noisy to resolve all ground-truth states because the
total UMI counts of cells in the ground-truth states are smaller than in the original data.
In summary, our tests with simulated datasets show that on datasets that mimic real data,
Cellstates performs extremely well on recovering the ground truth used to generate the
data, most often recovering the exact partition. And when there is a difference in the
partition found, this is most often because Cellstates found an even better partition,
which is always very close to the ground-truth partition, as measured by completeness and
homogeneity.

3.4.2 Cellstates yields highly reproducible partitions on real datasets
We gathered a total of 29 published datasets from UMI-based scRNA-seq experiments,
covering a large range of experimental protocols, tissues and two species (mouse and human),
as summarised in Supplementary Table A.1. We ran Cellstates on five times on all
datasets and compared the best-scoring partition from the five runs with the partitions
from the other four runs. We find that the agreement between multiple runs of Cellstates
is high, with 88% of the homogeneity and completeness scores larger than 0.9 (Figure 3.7).
These results show that, even though different runs yield different partitions, they do not
change substantially between runs.

3.4.3 Cellstates partitions agree better with published annotations than those of
other clustering tools

We next compared Cellstates partitions on real datasets with those of a set of previously
published methods (BACKSPIN [75], DIMM-SC [58], RaceID [21] and SC3 [29]). A short
summary of these methods is provided in Table A.3. Assessing the relative performance of
different clustering algorithms on real datasets is challenging because in general the ground
truth is not known. Here we consider two tests. First, we selected 3 scRNA-seq datasets
for which hand-curated annotations of cell types were provided in the publication [5, 14, 75]
and compared the partitions obtained by each of the clustering methods with the published
annotation. Although there is of course no guarantee that the published annotations are
correct, it is reasonable to assume that a better match with these published annotations
generally indicates better performance. Second, we also generated a set of five in silico
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mixtures of pure cell populations with known identity, as has been done before for similar
benchmarks [18, 61], using data from [77], and checked to what extent each algorithm can
correctly recover these known mixtures.
We ran each of the methods on each of these 8 datasets, without tweaking any of the default
parameters. Only when a method required the cluster number to be set, we set it to the
correct number of annotated cell types. For Cellstates we obtained both the partition
given by the method without specifying any parameters, and the partition obtained when
hierarchically merging clusters until the number of clusters matches the number of annotated
clusters. As for our tests with the simulated data above, we compared the clusters obtained
by each of the methods to the annotated clusters through homogeneity and completeness
(Figure 3.2B).
Notably, the partitions found by Cellstates always had the highest homogeneity. This
supports that Cellstates indeed only clusters together cells that are in the same underlying
gene regulatory state, and that this works automatically without the need to correctly set
model parameters. However, Cellstates typically partitions the data in more clusters
than the annotation, so that the completeness is generally significantly below one. When
cellstates are hierarchically merged until the number of clusters matches the annotation
(cellstates_hierarchical in Figure 3.2B), the completeness increases substantially, typically
without lowering homogeneity by much.
On the three datasets with published annotations, Cellstates obtained partitions that
match the published annotations well, especially in comparison to the partitions produced
by the other methods, with only SC3 showing a similar performance on these annotated
datasets. Importantly, for the in silico cell mixtures – which are the closest we have to a
ground-truth annotation – Cellstates clearly outperforms the other methods, and often by
a substantial margin. Overall, these results suggest that Cellstates can correctly predict
higher-order cell types in scRNA-seq data and that it can do so more accurately than other
tools. Moreover, this performance is obtained without any need to pre-process the data or
any adjustable model parameters.

3.4.4 Cellstate diversity patterns depend on tissue of origin and not on technical fea-
tures of the experiment

We next investigated the variation in the number and sizes of the clusters that Cellstates
infers on different real datasets. Because measures such as the absolute number of cells per
cluster obviously scale with the total number of cells sequenced, we decided to focus on the
distribution of cellstate abundances fcellstate, i.e. the fraction of cells associated with each
cellstate. The distribution of fcellstate reflects the diversity of different GESs present in a
given dataset. As an example, Figure 3.3A shows the distribution of fcellstate for the data
from the mouse cortex and hippocampus of [75]. As illustrated by Fig. 3.3A, we find that
fcellstate typically varies over multiple orders of magnitude, and that a substantial fraction of
the clusters correspond to singlets, i.e. where GESs were only associated with a single cell.
That is, the counts in these cells are statistically different from those of all other cells. To
obtain a quantitative measure of diversity we looked at various statistics of the distribution
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Figure 3.2: Benchmarking of Cellstates. (A) 2D-histogram of homogeneity and com-
pleteness of inferred cellstate memberships in 162 simulated datasets. The inset shows the
distributions in the region [0.95, 1], [0.95, 1] where all results fall. (B) Comparison of the
performance of Cellstates with those of other clustering tools. For Cellstates, we show
the results for the full partition into cellstate-groups (”cellstates”) and merged to the same
number of clusters as the annotation (”cellstates_hierarchical”). In each plot, we show ho-
mogeneity and completeness of the partitions obtained by the different methods using the
published annotation as the reference partitions. Note that low homogeneity and complete-
ness may indicate under-clustering and over-clustering, respectively.

of fcellstate including the fraction of cells that are singlets, the average cellstate abundance
⟨fcellstate⟩, its median, and the entropy of the distribution of fcellstate.
Although ideally these diversity measures would directly reflect the underlying biology of
the tissue from which the data derives, we expected that these diversity measures might also
strongly depend on technical features of the experiment such as the total number of cells and
the typical total number of UMI per cell. For example, the higher the total UMI count per
cell, the easier it becomes to distinguish subtly different cellstates, so that one would expect
the cellstate diversity to increase with total UMI counts. Similarly, one would expect that
the more cells are sequenced, singlet clusters should become less common. To investigate
systematically to what extent the distributions of fcellstate reflect underlying biology versus
technical features, we collected 29 scRNA-seq datasets from 9 different tissues, from different
labs and using different sequencing technologies (see Table A.1), and investigated how the
various diversity measures varied across tissues and with technical features such as cell
number and total UMI counts.
Remarkably, we find that all these diversity statistics vary over several orders of magni-
tude across datasets. For example, the fraction of cells that are singlets varies over three
orders of magnitude among the analysed datasets, from 5 × 10−4 to nearly 7 × 10−1 (see
Figure 3.3B), and similarly for the other statistics (Fig. 3.3B and Fig. 3.8). Moreover, al-
though there is a lot of variation across datasets, Fig. 3.3B and Fig. 3.8 also show that all
the diversity measures systematically depend on the tissue of origin of the sample, despite
vastly different experimental protocols used to obtain and sequence them. For example,
for datasets stemming from biologically diverse cell populations such as brain or peripheral
blood mononuclear cells (PBMC), Cellstates correctly and automatically infers few cells
per GES, whereas vastly lower diversity is inferred for datasets stemming from Thymus.
Moreover, and somewhat to our surprise, the diversity measures show almost no correlation
with technical features such as total UMI counts and cell number (Figure 3.9). The only
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clear correlation observed is a negative correlation between number of cells and median of
the cellstate fractions. This correlation is explained by the fact that the median cellstate
fraction often corresponds to singlets, i.e. fmedian = 1/ncells.
In summary, we find that the diversity of cellstates that is found in different datasets reflects
the underlying biology of the system, and does not systematically depend on technical
features of the experiment. Given this, the observation that in most of the datasets analysed
a large fraction of the clusters are singlets, strongly suggests that the true biological diversity
of cellstates is still severely under-sampled in these datasets. That is, many more cellstates
exist than are captured at these sampling depths.
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Figure 3.3: Cellstate diversity reflects the tissue of origin of the data. (A) Example rank-
abundance curve for the fraction of cells associated with each cellstate in the dataset from
[75]. Such curves describe the diversity of gene expression states in a dataset. The length
of the horizontal tail gives the number of singlet cellstates nsinglets with only one cell; the
average cellstate abundance ⟨fcellstates⟩ is also annotated. (B) For each of the Cellstates
results for 29 different datasets from 9 tissues, the average abundance ⟨fcellstates⟩ and the
fraction of singlets nsinglets/ncells are plotted by the tissue they originate from. These diver-
sity measures show a clear dependence on the tissue, despite the large variation in experi-
mental set-ups used. Error bars show the standard deviations from 5 independent runs of
Cellstates and are often so small that they are not visible.

3.4.5 Cellstates captures diversity of gene expression states in the mouse brain
Finally, to illustrate how the Cellstates data analysis pipeline can be used for in-depth
analysis of a given dataset, we focused on the dataset of [75] consisting of 3005 cells from the
somatosensory cortex and from the CA1 region of the mouse hippocampus. Cellstates
infers a remarkable diversity in this tissue, with a total of 763 different GESs. Almost a
quarter of the cells (727/3005) are in a unique singlet state, but there are also GES with up
to 201 cells (7% of all cells), as can be seen in Fig. 3.3A.
Visualizing how this large number of cellstates relates to another is difficult because the
GESs are objects in a very high-dimensional space. The approach that is currently by far
most popular in the field is to use stochastic embedding methods that attempt to place cells
that are close in gene expression space near each other in a 2-dimensional plane, in particular
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UMAP [36] and t-SNE [66]. However, it is well appreciated that proper application of these
tools is challenging [31], and that beyond approximate conservation of close-neighbourhood
relationships, the large scale structure in these visualizations is virtually meaningless. In
fact, we share the opinion of some in the field that the current usage of t-SNE and UMAP
visualizations may be doing more harm than good [13]. Nonetheless, since such visualizations
have become the de facto standard in the field, we decided to illustrate how cells with
different cellstates are placed within a t-SNE visualization of the data (Fig. 3.4A, left
panel).
This visualization confirms that cells that are predicted by Cellstates to have the same
underlying GES (indicated by the marker colour, with singlets in gray) tend to be placed
more closely in the t-SNE visualization. Cellstates infers that any variation between
cells in the same GES is due to noise, which argues that we can collapse cells in each
cellstate and replace them with a single disc at the average of their positions in the t-SNE
visualization (right panel in Fig. 3.4A, with the area of the disc corresponding to the number
of cells in the cellstate). This illustrates Cellstates’ ability to reduce the complexity in
the data, allowing for a tidier visualization which, for example, highlights that different
common cellstates (large coloured discs) have different numbers of singlets (grey dots) in
their neighbourhood.
Next, we hierarchically merged the cellstates to determine higher-order clusters in the
dataset, and again visualized the results by colouring either the cells or cellstates in the
t-SNE visualization (Fig. 3.4B). We see that when cellstates are merged into 8 higher-order
clusters, these clusters largely match the structure of the t-SNE visualization.
However, we feel that a more useful visualization of the relations between the cellstates is
obtained by displaying the hierarchical tree resulting from iteratively merging the statisti-
cally most similar clusters (Fig. 3.4C). The tree indicates which cellstates and higher-order
clusters are most similar in expression, although it should be remembered that ‘distance’
between clusters is here measured in terms of how statistically significant the differences in
the expression patterns are, as opposed to in terms of the magnitude of the changes in gene
expression. Notably, at 8 higher-order clusters we find good correspondence with the cell
type annotation given in the original publication (Fig. 3.10), and this is also confirmed by
expression of marker genes for these annotated cell types (Fig. 3.12).
There are however two main differences. Firstly, at this level of resolution in our cluster
hierarchy, the annotated clusters of endothelial-mural cells and microglia are merged and
they separate only at 15 higher-order clusters (Fig. 3.11). Secondly, one cluster had a mixed
annotation at the chosen resolution. As shown in Fig. 3.13, this cluster contains cells that
express genes which are considered markers for multiple different cell types. This indicates
that either the assumption that these genes are markers for specific cell types is incorrect or,
alternatively, a technical artefact in the data, e.g. these ‘cells’ might correspond to multiple
cells getting the same cell-barcode and having their counts combined.
Finally, we also provide software to extract genes that contribute most to separating the
GESs on opposite sides of each branch. To illustrate the use of this tool we focus on
the cluster of interneurons, which was particularly diverse with 98 out of 290 cells in singlet
states. For each node in the subtree corresponding to the interneurons we identified the genes
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Figure 3.4: Example analysis of a mouse cortex and hippocampus dataset [75] with Cellstates.
(A) Visualization of the data using t-SNE. The colours represent the inferred cellstates, with all
singlets shown in gray. On the left, cells are shown individually while on the right cells in the same
state were merged into discs. This plot contrasts regions of large gene expression diversity with
many small clusters and singlets with low-diversity regions with fewer large clusters. (B) The eight
higher-order clusters shown in the same visualization as in (A), with colours representing the eight
higher-order clusters defined in (C). (C) Hierarchical higher-order relations between the cellstates.
Leaves of the tree correspond to cellstates with their area proportional to the number of cells in
them. The vertical height of the branches indicates the negative log-likelihood of the corresponding
partition. This tree allows us to split the data into eight higher-order clusters that correspond well to
the cell types annotated in [75]. (D) Heat map of gene expression in the interneuron-cluster. Every
column corresponds to one GES and shows the corresponding expression pattern. The hierarchical
tree shown on the top corresponds to the interneuron subtree of (C). Rows correspond to selected
genes that are predicted to be differentially expressed between these GESs. In particular, for the
first three splits in the tree, top genes contributing to their separation are indicated. Three of these
are highlighted in the heat map in green, cyclamen, and orange.
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that contribute most to the separation between the cellstates at opposite branches below it
(Supplementary Information section 3.8.1.4), and in Fig. 3.4D plotted the expression of these
genes in a heat map with rows corresponding to genes and columns to individual cellstates.
As expected, all columns display unique gene expression patterns, confirming that there
are clear differences between the GESs of all cellstates. Furthermore, for three nodes we
highlight one example gene whose expression is clearly distinct between the corresponding
branches by a rectangle in the heatmap, with the dotted line separating the cellstates on
opposite sides of the branch. It should be noted that the most significant genes are those for
which the average expression on opposite sides of the branch is most significantly different,
but the expression of these genes might be quite variable across the cellstates below each
branch.
At the highest level, the gene Htr3a (green box in Fig. 3.4D) contributes significantly to
separating the expression of interneuron cellstates to the left and right of the branch (dotted
green line in Fig. 3.4D). Similarly, the genes Sst (cyclamen box and dotted line) and Vip
(orange box and dotted line) separate cellstates at branches lower in the tree of interneuron
cellstate clusters. In general, we find many known markers of interneuron subtypes among
the list of differentially expressed genes including Sst, Npy, Crhbp, Cnr1, Cck and Vip
[23, 71, 75, 76] which supports the biological relevance of the cellstates that we identified.
These results illustrate how Cellstates uncovers substantial sub-structure among cells of
the interneuron type, with the tree structure illustrating the relationships between these
subtypes, and the lists of top differentially expressed genes for each branch in the tree
providing information regarding the biological differences between these subtypes.

3.5 Discussion
With the popularization of scRNA-seq a vast number of techniques for normalising and
post-processing single-cell gene expression profiles have been developed, including a large
number of methods for clustering cells into ‘cell types’, e.g. reviewed in [3, 18, 30, 37]). These
methods typically involve several complex layers of analysis steps including the normalisation
of the raw data, transformation to logarithmic expression (or other ‘variance stabilization’
procedures), selection of ‘features’ to be used in the analysis, mapping of the data to a lower-
dimensional representation, often involving abstract latent spaces, selection of a similarity
or distance metric, and selection of the final clustering algorithm by which cells are grouped.
Moreover, each of these analysis steps typically comes with tunable parameters.
Our impression of the current practice in the field is that the analysis methods are being
deployed almost in a trial-and-error manner, i.e. with researchers iteratively trying out
different methodologies and tweaking of their tunable parameters, comparing the results with
expectations from prior biological knowledge, until results are obtained that look consistent
with prior knowledge and, ideally, make some new suggestions that appear biologically
plausible.
We believe this kind of approach to analysing complex data is extremely problematic. The
layers of ad hoc processing steps and tweaking of parameters make it virtually impossible
to give any unambiguous interpretation of the results, to rigorously compare results across
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different studies, and prohibit direct comparison of the results with those from other exper-
imental approaches. Instead of iterative trial-and-error tweaking of several layers of ad hoc
methods, we feel that the proper approach to data analysis is to specify the goals of the
analysis and the assumptions about the data with enough precision, such that the proper
analysis method is unique and transparently follows from these specifications.
This is the approach we have taken in this paper. Instead of attempting to solve the
general and very difficult problem of how to determine which cells belong to the same
‘type’, we aimed to solve the simpler problem of maximally reducing the complexity of
a given scRNA-seq dataset without any loss of structure, by grouping together all cells
whose gene expression states are statistically indistinguishable. We have shown that, once
a rigorous specification of the measurement noise relating the gene expression states of the
cells to the raw scRNA-seq data is given, the appropriate clustering algorithm solving this
problem is uniquely determined from first principles. We derived analytical expressions for
the posterior probabilities for partitions of the cells into non-overlapping subsets in terms of
the raw UMI counts across all genes and cells in the dataset, without any tunable parameters.
Moreover, the clusters in the partition with maximal posterior probability have a clear and
unambiguous interpretation: they are the optimal way of splitting cells into subsets with
transcriptional profiles that are identical up to measurement noise.
A key assumption that our Cellstates algorithm makes is that the cells in a given dataset
derive from a finite number of distinct gene expression states, i.e. that in general there will
be groups of cells in identical gene expression states, and one might wonder how realistic
this assumption is. It is certainly possible that, rather than a discrete set of states, cells
could derive from some continuous manifold of gene expression states and it is interesting
to ask whether this would manifest itself in the results that we observed with Cellstates.
If cells were derived from a continuum, then no two cells would ever be in the exact same
state, and one would expect the number of cellstates to grow systematically as the number
of cells increases. However, as we have seen in Fig. 3.9, we find that the observed cellstate
diversity depends on the tissue of origin, and does not show systematic correlations with
either number of cells or sequencing depth (i.e. total UMI count per cell). Although these
are only fragmentary observations at this point and more in-depth study of this question is
required, it hints that perhaps discrete cellstates do exist. However, it should also be noted
that most datasets analysed here have a large fraction of singlet cellstates, i.e. clusters
with only a single cell per cluster. This suggests that, for these datasets, we are still largely
under-sampling the true diversity in cellstates that exist in most tissues and it is conceivable
that for some tissues we might observe that the number of cellstates does continue to grow
as the total number of cells increases, which might then point to the existence of continuous
manifolds of cellstates.
One may also ask to what extent Cellstates is vulnerable to batch effects. Our mea-
surement model makes some simplifying assumptions, such as ignoring potential systematic
biases that cause transcripts of different genes to be captured with varying efficiency. We
note that such gene-dependent capture efficiencies would not affect the distribution over
partitions and the optimal partition ρ∗, as long as these capture biases are equal in all cells.
In fact, as long as systematic biases are the same for the cells within each cellstate, the opti-
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mal partition would even remain the same if cells in different cellstates had different capture
biases. However, all analysis of gene expression differences between different cellstates of
course do rely on the assumption that capture biases are the same across all cells in a given
dataset.
One limitation of our approach is that, since the number of partitions increases faster than
exponentially with the number of cells and is vast for any realistic scRNA-seq dataset, there
is no way to guarantee that our algorithm finds the global optimum even after re-running
the program several times. However, our analyses of synthetic datasets with realistic size
and structure shows that, in many cases, Cellstates manages to recover the single exact
partition that generated the data, and when the generating partition was not recovered
exactly, most often this was because a slightly different partition with even higher likelihood
was found (Fig. 3.5). On real data, we also found that the partitions obtained in different
runs of cellstates are generally very similar (Fig. 3.7). These results suggest that the vast
space of partitions can be effectively searched by Cellstates’s Monte Carlo Markov Chain
procedure.
However, it should be noted that, especially compared to most methods currently used in
the field, on larger datasets Cellstates can have long run-times and requires significant
computational resources. In the future we intend to improve the speed of the method by
using computationally less expensive methods to either first subdivide larger datasets into
coarse subsets before running Cellstates or to pre-select neighbourhood relationships,
i.e. which pairs of cells are candidates for mergers with each other. Nonetheless, we note
that although it may take quite some time to run Cellstates on a dataset, it generally is
still considerably less than the time required to perform the experiment. Moreover, since
Cellstates has no tunable parameters, the method has to only be applied once. In fact,
we believe that the strong importance that is currently assigned in the field to having fast
analysis methods derives largely from the fact that most researchers apply these methods in
a trial-and-error manner, running many times with different parameters settings and filters
until results are obtained that ‘look best’ by some preconceived notions of what the data
should show. As we already discussed above, we think this ‘fast analysis’ methodology is
scientifically unhealthy, and like the movement advancing ‘slow food’ over ‘fast food’, we
propose that analysis of complex large-scale datasets in biology would strongly benefit from
a ‘slow analysis’ movement that favours slow but rigorously motivated methods over iterative
tuning of fast ad hoc methods.
Finally, we would like to comment on the way we imagine Cellstates can be applied
in practice. The most obvious application of Cellstates, and the one we highlighted
here, is to identify subtle substructure among known cell types, the relationships between
these subtypes, and the genes that most distinguish these subtypes. However, we feel that
an arguable even more important use of cellstates is as a way to significantly reduce the
complexity of a dataset without losing any structure in the data. That is, after cells have
been clustered into cellstates, one can decide to simply treat these clusters as if they were
‘super cells’ and perform further analysis and processing such as trajectory reconstruction,
pseudo-time analysis, visualizations or differential gene expression inference treating these
clusters as if they were single cells. A recent study has shown that such an approach can
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indeed lead to improvements in downstream analyses [10], even in the absence of a rigorous
methodology for clustering. Cellstates provides precisely the rigorous methodology for
reducing the complexity of the dataset and removing some of the inherent noise in scRNA-
seq data, while leaving all underlying biological variation completely intact. We propose
that this application of Cellstates is an ideal first step in any scRNA-seq data analysis
pipeline.

3.5.1 Software availability
The Cellstates Python package is available online on GitHub (https://github.com/nimwegenLab/
cellstates). It can be run through the command-line on files containing the table of unnor-
malised expression data (UMI counts) in one of several formats including compressed and
uncompressed tab-separated values, Matrix Market, and NumPy binary. The outputs of
this command-line tool include the optimized partition of cells into cellstates, the optimized
prior parameter Θ, the hierarchical tree of cellstates that can be used to find higher-order
clusters, and a table of differential expression scores for each gene and node in the tree. Fur-
thermore, we provide python functions for analysing these Cellstates outputs, including
finding the mean and modal vector of transcription quotients of each cellstate, and visual-
izations of the hierarchical trees as shown in this paper. We also provide several notebooks
with example analyses.
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3.7 Tables
• Appendix Section A.1: Table A.1 summarises the datasets used in this chapter. Ta-

ble A.2 described composition of the zhengmix datasets.

• Appendix Section A.2: Table A.3 summarises the clustering tools that are being com-
pared against Cellstates.

3.8 Supplementary Information
3.8.1 Detailed Derivations
3.8.1.1 Likelihood of partitions
We consider an scRNA-seq dataset D characterized by a matrix of UMI counts ngc cor-
responding to the number of UMIs for gene g in cell c. We denote by ρ partitions of the
cells into non-overlapping subsets and want to determine a likelihood function P (D|ρ) under

https://github.com/nimwegenLab/cellstates
https://github.com/nimwegenLab/cellstates
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the assumption that, for each subset s ∈ ρ of the partition, all cells c ∈ s have the same
gene expression state. To explain how this likelihood function is calculated, we first discuss
how the mRNA counts mg of a cell, and observed UMI counts ng in an scRNA-seq experi-
ment depend on the gene expression processes in the recent history of the cell, as previously
introduced in [11].
Given the inherent thermodynamic fluctuations affecting the molecules inside the cell, and
the Brownian motion that they are subject to, even a comprehensive description of the
current ‘state’ of the cell in terms of the number of molecules of each type in each cellular
compartment only determines the rates with which different molecular reactions occur. For
the mRNA levels of a given gene g, the relevant rates are the transcription rate λg and the
mRNA decay-rate µg. It is well established that for a gene g with constant transcription
rate λg and constant mRNA decay-rate µg, the number of mRNA molecules in the cell mg

follows a Poisson distribution with mean ⟨mg⟩ = ag = λg/µg, e.g. [47]. More generally,
when µg and λg are arbitrary time-dependent functions µg(t), λg(t), with λg(t) denoting the
transcription rate a time t in the past of the cell, and µg(t) the decay rate of mRNAs for
gene g a time t in the past, the probability distribution for the current number of mRNAs
mg in the cell is still a Poisson distribution with mean [11]:

ag = ⟨mg⟩ =
∫ ∞

0

dtλg(t) exp
[
−
∫ t

0

µg(s)ds

]
, (3.9)

which we call the ‘transcription activity’ of gene g. Note that time is measured backwards
from the present (t = 0) to the distant past (t = ∞) in the history of the cell. Thus, a single
parameter ag for each gene g is sufficient to fully characterize the distribution of mRNA
numbers in a cell at any given time point. The remaining uncertainty about the actual
numbers is due to random thermodynamic fluctuations in events such as RNA polymerase
binding or mRNA degradation. To conclude, given the expression state of the cell as defined
by the vector of transcription activities a⃗, the probability of a count vector of cellular mRNAs
across all genes m⃗ is therefore a product of Poisson distributions:

P (m⃗|⃗a) =
∏
g

(ag)
mg

mg!
e−ag . (3.10)

We will assume that the measured UMI counts ng correspond to a random sample of the
cell’s total mRNA pool mg with some unknown capture rate p per mRNA. As will be
discussed below, our model remains valid if the capture rate p varies between cells or has
gene-dependent biases. Given these assumptions, the likelihood for the observed UMI count
vector n⃗ is still a Poisson distribution, albeit with a different mean:

P (n⃗|⃗a, p) =
∏
g

(pag)
ng

ng!
e−pag . (3.11)

Following [11], we now define the transcription quotients αg = ag/A, with A =
∑

g ag the
total transcription activity of the cell. Note that αg corresponds to the expected fraction of
transcripts from gene g among all transcripts in the cell. For a cell with a total UMI count
N =

∑
g ng, we have

⟨ng⟩ = αgpA = αgN. (3.12)
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Conditioned on the total count N , the distribution of all measured counts n⃗ is a multinomial
in the transcription quotients:

P (n⃗|α⃗, N) = N !
∏
g

1

ng!
(αg)

ng ∝
∏
g

(αg)
ng . (3.13)

This is the form of the likelihood of the UMI counts of a single cell as a function of the
transcription quotient vector α⃗.
In our model, we use the transcription quotient vector α⃗ to represent the ‘expression state’
of a cell and the key ingredient of our model is that, given a partition ρ, all cells within each
subset s of the partition have the same transcription quotient vector α⃗. The likelihood for
the counts Ds of a subset of cells s that have equal transcription quotients α⃗, is given by

P (Ds|α⃗) =
∏
c∈s

P (n⃗c|α⃗) ∝
∏
g

(αg)
ngs (3.14)

where n⃗s =
∑

c∈s n⃗c is the vector of total UMI counts among all cells in the subset s.
To calculate the likelihood P (D|ρ) of a partition, we need to marginalize over the unknown
transcription quotient vector α⃗ for each of the subsets s in ρ and to do this we have to define
a prior distribution over possible transcription quotient vectors α⃗. We will use a Dirichlet
prior, which corresponds to a maximal ignorance prior in the sense that it is the unique
prior that is invariant under arbitrary rescaling of the transcription quotients αg → λgαg.
Moreover, it is the conjugate prior to the multinomial distribution, allowing us to analytically
marginalize over the α⃗. In particular, for each subset s we characterize our prior information
regarding its transcription quotient vector α⃗ by the same Dirichlet prior:

P (α⃗|θ⃗) = Γ(Θ)∏
g Γ(θg)

∏
g

(αg)
θg−1, (3.15)

where the θg are the parameters of the Dirichlet prior and Θ =
∑

g θg. We can now
marginalize over α⃗ and obtain

P (Ds|θ⃗) =
∫
∑

g αg=1

P (Ds, α⃗|θ⃗) dα⃗ (3.16)

=

∫
∑

g αg=1

P (Ds|α⃗)P (α⃗|θ⃗) dα⃗ (3.17)

=
Γ(Θ)

Γ(Ns +Θ)

∏
g

Γ(ngs + θg)

Γ(θg)
(3.18)

with Ns =
∑

g ngs is the total number of UMI summed over all cells in subset s. The
likelihood of a partition ρ is now obtained by simple taking the product of this expression
over all subsets s ∈ ρ:

P (D|ρ, θ⃗) =
∏
s∈ρ

P (Ds|θ⃗) (3.19)

=
∏
s∈ρ

[
Γ(Θ)

Γ(Ns +Θ)

∏
g

Γ(ngs + θg)

Γ(θg)

]
. (3.20)
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Note that this expression is very similar to likelihood functions derived previously for clus-
tering DNA sequences [68]. Essentially the only change is that the 4-letter DNA alphabet
is here replaced by the ‘alphabet’ of G genes.
Ideally, we would search for the combination (ρ, θ⃗) that jointly maximizes the likelihood, i.e.
optimizing both the partition ρ and the parameters θg for each gene individually, but this
is computationally intractable. Without loss of generality, we can rewrite the parameters
of the prior θg as the product of an overall scale vector Θ and a normalised vector ϕ⃗ with∑

g ϕg = 1. Second, we note that for the trivial partition in which all cells are put into a
single cluster, the optimal ϕg are given by

ϕg =

∑
c ngc∑
c,g ngc

, (3.21)

i.e. the prior parameter ϕg simply equals the fraction of UMIs for gene g in the entire
dataset. We will simplify the optimization of the prior’s parameters by fixing ϕ⃗ to this
vector, setting θ⃗ = Θϕ⃗, and only optimize the scale factor Θ ∈ R+, while leaving the ϕg
fixed for a given dataset. Setting the prior in this way ensures that, for each subset s, the
expected direction of the transcription quotient vector α⃗ matches the overall UMI counts in
the entire dataset, while optimizing Θ allows the tuning of the expected amount of variability
around this ‘average’ vector of transcription quotients.
With this chosen form of the prior, we finally get an expression for the likelihood of the
whole dataset D that only depends on the scale factor Θ and the partition of cells into
subsets ρ:

P (D|ρ,Θ) =
∏
s∈ρ

P (Ds|Θ) (3.22)

=
∏
s∈ρ

[
Γ(Θ)

Γ(Ns +Θ)

∏
g

Γ(ngs +Θϕg)

Γ(Θϕg)

]
. (3.23)

Finally, we return to discuss our simplifying assumption that the mRNA capture rate p is
constant across genes and cells and show that this assumption can be significantly relaxed
without affecting the results. In particular, we can assume that the probability pgc of
capturing (and successfully amplifying and sequencing) an mRNA for gene g in cell c can
be written as

pgc = pcqg, (3.24)

where pc is a cell-specific overall capture rate and qg describes gene-dependent biases that
may be specific to the particular experiment, but are assumed constant across the cells in
the experiment. With this capture efficiency, the expected UMI count for gene g in cell c is
⟨ngc⟩ = pcqgag. Thus, the expected fraction of counts from gene g becomes

⟨ngc⟩
Nc

=
agpcqg∑
g agpcqg

=
agqg∑
g agqg

= α̃g, (3.25)

where the last equality defines α̃g. From here, we can proceed the derivation exactly as
before, with α̃g replacing αg. As we marginalize out this variable in Equation 3.18, the
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final result is invariant. Note that, given that we separately marginalize over the α⃗g of each
subset, the result is even invariant when different subsets s have different gene-bias vectors
q⃗, as long as all cells within a subset have the same bias. This suggests that our likelihood
over partitions is not only insensitive to fluctuations in overall capture efficiency across cells,
but will also be quite robust to fluctuations in gene-dependent capture efficiency as long as
cells with equal expression states have equal biases.

3.8.1.2 Posterior of transcription quotients
Although for calculating likelihoods over partitions ρ, we marginalize over the GES α⃗s for
each subset s, we can of course also obtain posterior distributions over these GES for each
cluster. Given a subset of cells s, the posterior distribution for its GES α⃗s can be obtained
from equations 3.14, 3.15 and 3.18 to find:

P (αs|Ds,Θ) =
P (αs|Θ)P (Ds|αs)

P (Ds|Θ)
=

Γ(Θ +Ns)∏
g Γ(ngs +Θϕg)

∏
g

(αg)
Θϕg+ngs−1. (3.26)

From this expression, we can derive expressions for mode, mean and variance of α⃗s:

Mode[αgs] =
max(Θϕg + ngs − 1, 0)∑
g max(Θϕg + ngs − 1, 0)

(3.27)

⟨αgs⟩ =
Θϕg + ngs
Θ+Ns

(3.28)

Var[αgs] =
(Θϕg + ngs)(Θ(1− ϕg) +Ns − ngs)

(Θ +Ns)2(Θ +Ns + 1)
(3.29)

Often we are interested in the log-transcription quotients δgs = log(αgs) rather than the
transcription quotients themselves. For these we find:

Mode[δgs] = log(Θϕg + ngs)− log(Θ +Ns) (3.30)

⟨δgs⟩ = ψ(Θϕg + ngs)− ψ(Θ +Ns) (3.31)

Var[δgs] = ψ1(Θϕg + ngs) + ψ1(Θ +Ns), (3.32)

where ψ is the digamma function (the derivative of the logarithm of the Gamma function)
and ψ1 is the first derivative of the digamma function.

3.8.1.3 Cellstate similarities and hierarchical clustering
We define the similarity between two cellstates Sa and Sb as the ratio of the likelihoods of
the partitions with both subsets merged and each subset separate:

σab =
P (D|ρ(Sa + Sb),Θ)

P (D|ρ(Sa, Sb),Θ)

=
P (n⃗a + n⃗b|Θϕ⃗)

P (n⃗a|Θϕ⃗)P (n⃗b|Θϕ⃗)

(3.33)
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Note that this similarity metric does not behave like usual distance metrics, in that similar
clusters will have a large σ and dissimilar clusters a small σ close to 0. To build the
hierarchical tree of the cellstates, we start by setting the leaf clusters of the tree to the
cellstates of the optimal partition and then calculate all pairwise similarities σab between
all pairs of leaf clusters. We then iteratively merge the pair of clusters with the highest
similarity, and recalculate the pairwise similarities with the newly formed cluster until all
clusters have merged into a single cluster. For plotting, we save the resulting tree in the
Newick format with distances set to positive log-similarities dab = max[− log(σab), 0].

3.8.1.4 Differentially expressed genes between pairs of clusters
To describe the differences between the cellstates of different clusters, and to help give bio-
logical interpretation, it is useful to quantify which genes are most differentially expressed
between the clusters. In our framework, we can quite naturally define the extent of differ-
ential expression of genes by decomposing Equation 3.33 into contributions of individual
genes, i.e. σab =

∏
g σab,g. A low value of σab,g for a gene g indicates that the differences

in UMI counts are much more different between the two clusters a and b than would be
expected from noise. A high value σab,g, in contrast, indicates that counts are within the
expected noise levels.
To obtain such a decomposition, we start by decomposing the cluster likelihood of Equa-
tion 3.18 into contributions from individual genes P (n⃗|N,Θ) =

∏
g P (ng|N,Θ). In the

multinomial model, the likelihood is conditioned on the total number of captured mRNA
in the cell N , so that, formally, the counts ngc are correlated for all pairs of genes. How-
ever, since this correlation is generally quite weak, we can make the assumption that the
expression noise is independent between genes. Thus,

P (n⃗, α⃗|Θ) ≈
∏
g

P (ng, αg|Θ) (3.34)

=
∏
g

P (ng|αg)P (αg|Θ). (3.35)

We can find P (n⃗|αg) by marginalizing over the other variables:

P (n⃗|αg) ∝
∫
∑

g′ ̸=g αg′=1−αg

P (n⃗|α⃗)P ({αg′ ̸=g}|αg, θ⃗) {dαg′ ̸=g} (3.36)

∝ (αg)
ng (1− αg)

N−ng (3.37)

where N =
∑

g ng. We can further marginalize over {ng′ ̸=g}, requiring that N is constant,
and normalise to obtain the binomial distribution:

P (ng|αg, N) =

(
N

n

)
(αg)

ng (1− αg)
N−ng . (3.38)

Next, we find P (αg|Θ):
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P (αg|Θ) =

∫
∑

g′ ̸=g αg′=1−αg

P (α⃗|Θ) dα⃗ (3.39)

=
1

B(Θϕg,Θ(1− ϕg))
(αg)

Θϕg−1(1− αg)
Θ(1−ϕg)−1, (3.40)

where B(α, β) = Γ(α)Γ(β)/Γ(αβ).
Finally, we have all ingredients of Equation 3.35 above. Unlike in Equation 3.18 where we
perform the integral subject to the constraint

∑
g αg = 1, we integrate over all αg separately.

With the high dimensionality of α⃗ and assuming the likelihood function has a sharp peak,
the error will be small.

P (n⃗|θ) ∝
∏
g

∫ 1

0

P (ng|αg)P (αg|θ⃗) dαg (3.41)

=
∏
g

∫ 1

0

1

B(θg,Θ− θg)
(αg)

ng+θg−1(1− αg)
N−ng+Θ−θg−1 dαg (3.42)

=
∏
g

B(ng + θg, N − ng +Θ− θg)

B(θg,Θ− θg)
(3.43)

This likelihood function clearly has a separate contribution P (ng|N,Θ) for each gene:

P (ng|N,Θ) =
B(ng +Θϕg, N − ng +Θ(1− ϕg))

B(Θϕg,Θ(1− ϕg))
(3.44)

=
Γ(Θ)

Γ(Θ(1− ϕg))Γ(Θϕg)

Γ(ng +Θϕg)Γ(N − ng +Θ(1− ϕg))

Γ(N +Θ)
(3.45)

Comparing to Equation 3.18, we see that this is equivalent to taking the ratio of the cluster
likelihood with gene g and without g.
Finally, we can use this expression for P (ng|N,Θ) in Equation 3.33 and define a gene-specific
score for differential expression

σab,g =
P (na,g + nb,g|Na +Nb,Θ)

P (na,g|Na,Θ)P (nb,g|Nb,Θ)
, (3.46)

where the subscripts a, b refer to two subsets of cells. Genes with σab,g < 1 have counts
that poorly fit a model with a single transcription quotient for both clusters, compared to a
model where the two clusters have distinct transcription quotients. In contrast, genes with a
score σab,g > 1 favour a model with a single transcription quotient and are not differentially
expressed between the clusters.

3.8.2 Computational Methods
3.8.2.1 MCMC Algorithm for maximizing the likelihood
Our aim is to identify the combination of a scale factor Θ and partition ρ that jointly
maximize the likelihood P (D|ρ,Θ) given in Equation 3.22. To do this, we start from an
initial guess for Θ and then iteratively
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1. Search for the partition ρ∗ that maximizes the likelihood with the current value of Θ,

2. Given ρ∗, find the value of Θ that maximizes the likelihood P (D|ρ∗,Θ),

until convergence. In order to limit the number of time-costly optimizations of the partition,
we only consider values of Θ = 2q, q ∈ N. The initial guess is taken with q = ⌊log2(⟨NUMI⟩)+
0.5⌋ where ⟨NUMI⟩ is the average number of total UMI counts per cell. That is, our initial
guess for Θ corresponds to the average total UMI count per cell. This means that the
strength of the influence of the prior is about equal to the influence of the data from a
single-cell.
To optimize the partition ρ at a given Θ, we start with the partition in which each cell
forms its own cluster. To explain how the space of partitions is searched, we conceptualize
partitions as putting cells into ‘boxes’, i.e. such that all cells in the same box form a cluster
and different boxes correspond to different clusters. Initially we assign each of the C cells
into one of C boxes and we will search the space of partitions by moving cells between
these C boxes. Specifically, we use a Markov chain Monte Carlo (MCMC) algorithm, which
iterates the following steps:

1. Given the current partition ρ, a cell is chosen uniformly at random and taken out of
its current box.

2. One of the C − 1 other boxes is chosen uniformly at random and we consider the
partition ρ′ that is created by moving the cell into this box.

3. We calculate the likelihood ratio of the new to old partitions: Pmove = P (D|ρ′,Θ)/P (D|ρ,Θ).

4. If the new partition ρ′ has Nclus clusters and ρ had Nclus + 1 clusters, we set Pbias =

(C −Nclus), otherwise Pbias = 1.

5. If Paccept = Pmove ∗ Pbias > 1, the move is accepted, otherwise it is accepted with
probability Paccept.

Note that, as explained in the supplementary material of [68], the correction factor Pbias

ensures detailed balance, i.e. that in the absence of differences in the likelihoods of the
partitions P (D|ρ,Θ), all partitions would be sampled uniformly.
These steps are iterated until the likelihood has stopped increasing for a sufficient number
of steps. In the current implementation of the algorithm, the stopping criterion is controlled
by two parameters: the number of steps S and the number of tries per step T . Each round,
a total number of S × T moves are attempted. This is repeated if at least S of the trials
led to an accepted move, i.e. the partition was changed at least S times. If less than S

moves were made in the S × T trials, the value of S is reduced by 10 and the value of T
is multiplied by 10, and new rounds of trials are started. This is continued until S falls
below 10, after which the MCMC moves are stopped. Note that the algorithm keeps track
of the partition with the highest likelihood it has seen, and set the partition to this highest
likelihood partition at the end of the rounds of MCMC moves. By default, we set S = N ,
i.e. equal to the number of cells, and T = 1000, but these values can be changed by the
user.
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After these MCMC moves, a final uphill walk is performed as follows. For each pair of
clusters existing in the partition, we calculate the likelihood change that would occur if the
clusters were merged into one. We then iteratively merge clusters until no more mergers
are left that would increase the likelihood. Finally, for each cell we calculate the likelihood
change that would occur if the cell were moved into any of the currently existing clusters,
and move the cell to its optimal cluster.

3.8.2.2 Simulated Datasets
Simulated datasets were created based on the inferred cellstates of real datasets. Of the
36 datasets which were analysed for this paper, we selected those 18 that have less than
6000 cells, more than 3 cellstates with more than 10 cells in them, and a median number
of UMIs per cell greater than 1000. Our aim was to simulate datasets based on the set of
transcription quotients inferred to be present in the real datasets. Additionally, we wanted
to make sure that the clusters can only be identified by differences in transcription quotients
(i.e. relative gene expression levels) and not by differences in total UMI counts. The total
number of UMI for each cell c, Nc, was therefore drawn independently from a log-normal
distribution that was fitted to the experimental distribution of Nc in the corresponding
dataset.
For each cellstate s, we determined the mean expression transcription quotient vector ⟨α⃗s⟩
and then sampled the UMI count vectors n⃗c of each cell c in the cellstate s from a multinomial
distribution with mean ⟨α⃗s⟩. However, we found that the maximal likelihood partition of
the simulated dataset often differed from the partition generating the dataset, especially for
very small and singlet clusters. In particular, when cells that were in a singlet state were
given a lower total UMI count in the simulation, these cells were often no longer statistically
significantly different from other states, and this to a lesser extent also affected small clusters.
To mitigate this problem, we retained only cellstates with more than 10 cells. The number
of cells in each cellstate was kept the same as in the experimental data. With this simulation
procedure, we made sure that most simulated cellstates would be statistically distinct, even
when total UMI counts were lower than in the original dataset.
In this way, three separate simulated datasets were generated for each experimental dataset.
Lastly, an additional three “down-sampled” simulations were carried out with ⟨log10(Nc)⟩ =
3 and var(log10(Nc)) = 0.1 fixed for all datasets.

3.8.2.3 Further Discussion of the results on simulated data
In Figure 3.5 we show, for each of the three simulations (marked by their colour) generated
per experimental dataset (different columns), the detailed outcomes of three independent
Cellstates runs per simulation. The top panel shows the difference in log-likelihood
∆L between the inferred partition and the partition used to generate the simulated data.
Negative scores mean that the inferred partition had a lower likelihood than the simulated
one and can be attributed to a failure of the algorithm to find the optimal partition. As can
be seen, such errors are rare and there is always at least one out of the three runs that has
∆L ≥ 0, i.e. a partition at least as good as the one used to generate the dataset was always
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found. Positive scores indicate that a partition was found with a higher likelihood than the
one used to generate the dataset. This can happen for example if there are not enough counts
in the simulated cells to statistically distinguish cellstates. To test this hypothesis, we looked
at the “down-sampled” simulations with fewer UMI per cell which would make cells with
similar, but distinct transcription quotients indistinguishable. Indeed, the results shown in
Figure 3.6 confirm this hypothesis: For most down-sampled simulations, the best-scoring
partition is different from the ground-truth. Also, they tend to score low on homogeneity
but high on completeness - which means that inferred clusters are unions of clusters used to
generate the simulated data.
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3.8.3 Supplementary Figures
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Figure 3.5: Detailed results from Cellstates runs on simulated data based on the set
of GESs from various indicated datasets. For each of the 18 real datasets, three simula-
tions were generated (red, blue, and green) and Cellstates was run three times on each
simulated dataset. In the top panel, the difference in log-likelihood delta_LL between the
inferred and simulated partitions is shown (with a positive difference meaning that a par-
tition was found with higher log-likelihood than the one used to simulate the data). The
corresponding homogeneity and completeness of the inferred compared to the simulated
partitions are given in the two lower panels.
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Figure 3.6: Detailed results from Cellstates runs on down-sampled simulated data based
on the set of GESs from various indicated datasets, but with a median of only 1000 UMI per
cell. For each of the 18 GES-sets, three simulations were generated (red, blue, and green)
and Cellstates was run three times on each simulation. In the top panel, the difference
in log-likelihood delta_LL between the inferred partition and the partition used to generate
the simulated data is shown (positive meaning that a partition was found with higher log-
likelihood than the one used to generate the data). The corresponding homogeneity and
completeness of the inferred partitions compared to the partitions used to generate the data
are shown in the two lower two panels.
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Figure 3.7: Reproducibility of independent Cellstates runs. Cellstates was run 5 times
on each of 34 scRNA-seq datasets, and the highest-likelihood partition that was found was
compared with those of the 4 other runs. The resulting homogeneity and completeness scores
are shown twice. On the left as a scatter-plot with markers coloured by dataset, illustrating
which outliers belong to the same dataset. On the right, a 2D-histogram shows the fraction
of runs in bins of size 0.025× 0.025, showing that most fall within the top right corner with
homogeneity and completeness > 0.95.
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Figure 3.8: Tissue of origin is predictive for cellstate diversity. For 29 different datasets from
9 tissues, the entropy of the distribution of cellstate abundances fcellstate in each dataset are
shown by tissue. Although there is large variability across datasets, datasets from the same
tissue tend to have similar cellstate diversity. Tissues are sorted roughly from most to least
diverse, from left to right.



Identifying cell states in single-cell RNA-seq data at statistically maximal resolution 52

10
−4

10
−3

10
−2

10
−1

⟨f c
el
ls
ta
te
⟩

0

10
−4

10
−3

10
−2

10
−1

10
0

Fr
ac

tio
n 

of
 S

in
gl

et
 C

el
ls

10
−4

10
−3

M
ed

ia
n 
[f c

el
ls
ta
te
]

10
3

10
4

Median [NUMI]

2

4

6

E
nt

ro
py

 [f
ce
lls
ta
te
]

10
3

10
4

ncells

Dependence of cellstates diversity on experimental features

brain
PBMC
Spleen
pancreas
Lung
kidney
Mammary
Bladder
thymus

Figure 3.9: Cellstate diversity does not depend on technical features of the experiment.
The mean of the distribution of cellstate abundances fcellstate (top row panels), the fraction
of singlet cellstates (second row panels), the median (third row panels) and the entropy
(bottom row panels) of fcellstate are shown as a function of the median total number of UMIs
per cell (NUMI) (left column panels) and the total number of cells in each dataset (right
column panels). Marker colours indicate the tissue from which the samples originate. These
results show that there is no correlation between the various diversity measures and either
sequencing depth (total UMI count) or the number of cells sequenced, with the exception of
a weak negative correlation between the median cellstate abundance Median[fcellstates] and
the number of cells ncells. This weak correlation is explained by the fact that the majority of
cellstates are singlets in many experiments. Note that the variation in diversity measures for
data from the same tissue (i.e. dots of the same colour) along the y-axes is much less than
that along the x-axes, which means that cellstate diversity is largely driven by biological
and not technical experimental features.
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Figure 3.10: Cells in the 8 major cellstate clusters of the Zeisel dataset [75] largely match
annotations provided in that publication. colours indicate different annotations from [75]
(see legend), each pie chart corresponds to one higher-order cluster, and the area in each
pie chart is proportional to the number of cells with the corresponding annotation in that
cluster. Note that cells annotated by [75] as microglia and endothelial-mural cells are merged
into one cluster at this level of the hierarchy. The tree structure indicates how these clusters
are related upon further merging.



Identifying cell states in single-cell RNA-seq data at statistically maximal resolution 54

astrocytes_ependymal
endothelial_mural
interneurons
microglia
oligodendrocytes
pyramidal_CA1
pyramidal_SS

Figure 3.11: At 15 higher-order cellstate clusters, cells annotated in [75] as microglia and
endothelial-mural separate. colours indicate different annotations from [75] (see legend) and
the area in each pie chart is proportional to the number of cells in the corresponding cluster
with the corresponding annotation. Note that at this level of the hierarchy, cells with a
common annotation in [75] tend to separate into multiple higher-order cellstate clusters.
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Marker gene expression in Zeisel dataset

Figure 3.12: Expression of marker genes for annotated cell types visualized in the hierarchical
tree of higher-order cellstate clusters. The sizes of the discs at the leaves correspond to the
numbers of cells in the corresponding cellstates. See Figure 3.4 to compare with the higher-
order clusters of Cellstates.



Identifying cell states in single-cell RNA-seq data at statistically maximal resolution 56

Thy1: neurons Gad1: interneurons

Tbr1: S1 Pyramidal Spink8: CA1 Pyramidal

Mbp: Oligodendrocytes Aldoc: Astrocytes

Aif1: Microglia Cldn5: Endothelial

Marker gene expression in mixed cluster

Figure 3.13: Expression of marker genes for annotated cell types visualized in the hierarchical
tree of higher-order cellstate clusters. The sizes of the discs at the leaves correspond to the
numbers of cells in the corresponding cellstates. See Figure 3.4 to compare with the higher-
order clusters of Cellstates.
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Conclusion: Can we formalise the concept of a

“cell type” in transcriptomics?

In a 2017 edition, the journal Cell Systems asked 15 scientists for their “conceptual definition
of ‘Cell Type’ in the context of a mature organism” [16]. In the replies, one can probably find
more than 15 different answers to that question. Outside of that, there have been several
recent attempts at designing systematic frameworks for classifying and defining cell types
[40, 41, 72]. There are many attributes with which we can describe cells: their developmental
history and potential, their morphology, intracellular organisation, function, location, gene
expression pattern, protein content, response to stimuli, etc. Of course, focussing only
on gene expression by measuring the transcriptome is a strong simplification of the full
complexity of the molecular state of a cell. Nonetheless, it indirectly captures a lot of other
information such as active gene regulatory networks [4, 19, 39, 64] and can predict future
evolution of the cell state [8, 9, 33]. Currently, transcriptomics is one of the most advanced
technologies we have available to study a full set of important biological features on a large
number of single cells. In the future, it will be interesting to see if novel technologies can
further enrich this data by adding complementary single-cell measurements of epigenomics,
proteomics, and metabolomics.
The traditional view has been that we can define a cell type by a small set of characteristic
features. Such a view is used in Chapter 2, where we looked at an example dataset which
defines three distinct cell types (neural stem cells, basal progenitors and newborn neurons)
based on high or low expression of two marker genes Hes5 and Tbr2 and their location
in the ventricular zone of the developing cerebral cortex [42, 43]. These experimentally
separated cell types are then characterised as a uniform group. From the high-dimensional
gene expression measurements, we were able to then predict what other genes could be
used as marker genes to characterise these three cell types. For this task, we developed a
novel statistical model based on a conditional entropy measure that works even when the
number of measurements per group is small and when more than two groups were compared.
However, even from this bulk sequencing data, it was clear that gene expression is a dynamic
process. For many genes, expression in samples of neural stem cells taken on embryonic day
10.5 was very different to that in samples taken on embryonic day 18.5. So it is clear that a
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cell type identity is not simply a fixed point in gene expression space. Furthermore, single-
cell RNA-seq data from these cells revealed transcriptomic heterogeneity even within cells
on the same day [data not published]. This result may not actually be surprising, given that
parts of the stem cell pool differentiates into basal progenitors while other parts proliferate
to maintain the pool.
The question of how to define cell types have become particularly important as we try to
fully characterise all cells in organisms, as is done in the Human Cell Atlas project [49].
As a result of observing heterogeneities within cells of the same type, their initial working
definition of a cell type is “a region or a probability distribution either in the full-dimensional
space or in a projection onto a lower-dimensional space that reflects salient features” [49].
As discussed in Section 3.2, this definition is exactly what is done by most established
clustering tools for single-cell data in gene expression space, which are already being used
to discover novel cell types [21, 46]. It should be noted that these clusters are only meant
as a starting point from which to refine cell type definitions into “simpler molecular and
morphological signatures”. However, this starting point already is poorly defined, as most
established ways to generate the full-dimensional or lower-dimensional gene expression space
are not an unbiased reflection of the biological information in scRNA-seq data. There is also
no rigorous theory about what constitutes a sufficiently distinct cluster of cells in that space.
We tried to address these issues in Chapter 3, where we argue how established models of
noise in raw UMI counts from a scRNA-seq experiment can be used to mathematically define
a cell state. This description of a cell state contains all the underlying biological information
that can be inferred from measurements of the transcriptome. Furthermore, we show how
to partition cells into groups that are statistically most likely to have the exact same cell
state. This allows us to test in an unbiased manner how well we can describe various tissues
as a small set of discrete cell types. We find that, based only on noisy measurements of
the transcriptome, in some samples 50% of cells are in statistically distinct gene expression
states. This supports the idea, voiced also by several researchers in the article cited at the
start of this chapter [16], that in many systems there are no well-defined cell types, but
rather a continuum of potential cell states. Another explanation would be that there is a
large degree of natural variation in the gene expression that is not functionally important.
In this scenario, every cell might be in its own unique gene expression state (by our narrow
definition), but there is still a well-defined cell type that could be described by a distribution
of cell states around a centre. Further research will be needed to better understand why we
observe so many singlet states.
While our tool does provide a method for hierarchically combining the fundamental cell
states into higher-order clusters that could correspond to cell types, there is no way to
rigorously define how different groups of cells should be before they are considered distinct
types. We need to perhaps come to terms with the idea that it is impossible to have one
definition of what a cell type is. For every rule in biology, there will always be an exception.
And just like words, cell type designations have usages and not meanings.
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A.1 Summary of datasets used

Table A.1: Summary of all scRNA-seq datasets used in this thesis.

dataset name species tissue tissue exact Technique
baron human Pancreas Pancreatic islets InDrops
chen mouse Brain Hypothalamus Drop-seq
hca_10X2x5Kcell250Kreads human Blood Periphal blood monocytes Chromium
hca_CELseq2 human Blood Periphal blood monocytes CEL-seq2
hca_Dropseq human Blood Periphal blood monocytes Drop-seq
hca_MARSseq human Blood Periphal blood monocytes MARS-seq
hca_QUARTZseq human Blood Periphal blood monocytes Quartz-seq2
hca_SCRBseq human Blood Periphal blood monocytes gmcSCRB-seq
hca_ddSEQ human Blood Periphal blood monocytes ddSeq
hca_inDrop human Blood Periphal blood monocytes InDrops

kernfeld mouse Thymus Thymus P0 Drop-seq

lamanno_embryo human Brain Embryo ventral midbrain STRT-seq (C1)

lamanno_mouseembryo mouse Brain Embryo ventral midbrain STRT-seq (C1)
microwellseq_Bladder mouse Bladder Bladder Microwell-seq
microwellseq_Kidney mouse Kidney Kidney Microwell-seq
microwellseq_Lung mouse Lung Lung Microwell-seq
microwellseq_Mammary mouse Mammary Mammary Microwell-seq
microwellseq_Spleen mouse Spleen Spleen Microwell-seq
microwellseq_Thymus mouse Thymus Thymus Microwell-seq
muraro human Pancreas Pancreatic islets SORT-seq

park mouse Kidney Kidney Chromium
tabula_muris_Bladder mouse Bladder Bladder Chromium
tabula_muris_Kidney mouse Kidney Kidney Chromium
tabula_muris_Lung mouse Lung Lung Chromium
tabula_muris_Mammary mouse Mammary Mammary Chromium
tabula_muris_Spleen mouse Spleen Spleen Chromium
tabula_muris_Thymus mouse Thymus Thymus Chromium
xin human Pancreas Pancreatic islets Chromium

zeisel mouse Brain
Somatosensory cortex, CA1 
hippocampus STRT-seq (C1)

zhengmix4eq human Blood Periphal blood monocytes Chromium

zhengmix4uneq human Blood Periphal blood monocytes Chromium

zhengmix8eq human Blood Periphal blood monocytes Chromium

zhengmix8uneq human Blood Periphal blood monocytes Chromium

zhengmix10eq human Blood Periphal blood monocytes Chromium



Appendix: Identifying cell states in single-cell RNA-seq data at maximal resolution 73

Table A.1: Summary of all scRNA-seq datasets used in this thesis. (cont.) References for
the datasets are: Baron et al. [5], Chen et al. [14], Han et al. [22], Kernfeld et al. [27], La
Manno et al. [32], Mereu et al. [38], Muraro et al. [44], Park et al. [45], Schaum et al. [55], Xin
et al. [73], Zeisel et al. [75], Zheng et al. [77]

dataset name NCBI GEO Series / Link Reference Comments
baron GSE84133 Baron et al., 2016 Only sample 1 (GSM2230757)
chen GSE87544 Chen et al., 2017 Only human data
hca_10X2x5Kcell250Kreads GSE133535 Mereu et al., 2020 Only human data
hca_CELseq2 GSE133539 Mereu et al., 2020 Only human data
hca_Dropseq GSE133540 Mereu et al., 2020 Only human data
hca_MARSseq GSE133542 Mereu et al., 2020 Only human data
hca_QUARTZseq GSE133543 Mereu et al., 2020 Only human data
hca_SCRBseq GSE133544 Mereu et al., 2020 Only human data
hca_ddSEQ GSE133547 Mereu et al., 2020 Only human data
hca_inDrop GSE133548 Mereu et al., 2020 Only human data

kernfeld GSE107910 Kernfeld et al., 2018
Only P0 samples (GSM2883201, 
GSM2883202)

lamanno_embryo GSE76381 La Manno et al., 2016
GSE76381_EmbryoMoleculeCounts.
cef.txt.gz

lamanno_mouseembryo GSE76382 La Manno et al., 2016
GSE76381_MouseEmbryoMoleculeC
ounts.cef.txt.gz

microwellseq_Bladder GSE108097 Han et al., 2018 GSM2889480
microwellseq_Kidney GSE108098 Han et al., 2018 GSM2906425, GSM2906426
microwellseq_Lung GSE108099 Han et al., 2018 GSM2906429-GSM2906431
microwellseq_Mammary GSE108100 Han et al., 2018 GSM2906439-GSM2906442
microwellseq_Spleen GSE108101 Han et al., 2018 GSM2906471  
microwellseq_Thymus GSE108102 Han et al., 2018 GSM2906475, GSM2906476
muraro GSE85241 Muraro et al., 2016

park GSE107585 Park et al., 2018
Only 4 WT samples (GSM2871706-
GSM2871709)

tabula_muris_Bladder GSE109774 Schaum et al., 2018 GSE109774_Bladder.tar.gz
tabula_muris_Kidney GSE109775 Schaum et al., 2018 GSE109774_Kidney.tar.gz
tabula_muris_Lung GSE109776 Schaum et al., 2018 GSE109774_Lung.tar.gz
tabula_muris_Mammary GSE109777 Schaum et al., 2018 GSE109774_Mammary.tar.gz
tabula_muris_Spleen GSE109778 Schaum et al., 2018 GSE109774_Spleen.tar.gz
tabula_muris_Thymus GSE109779 Schaum et al., 2018 GSE109774_Thymus.tar.gz
xin GSE114297 Xin et al., 2018

zeisel GSE60361 Zeisel et al., 2015

zhengmix4eq

https://support.10xgenomi
cs.com/single-cell-gene-
expression/datasets Zheng et al.,  2017

Constructed datasets used for 
benchmarking; see separate table

zhengmix4uneq

https://support.10xgenomi
cs.com/single-cell-gene-
expression/datasets Zheng et al.,  2017

Constructed datasets used for 
benchmarking; see separate table

zhengmix8eq

https://support.10xgenomi
cs.com/single-cell-gene-
expression/datasets Zheng et al.,  2017

Constructed datasets used for 
benchmarking; see separate table

zhengmix8uneq

https://support.10xgenomi
cs.com/single-cell-gene-
expression/datasets Zheng et al.,  2017

Constructed datasets used for 
benchmarking; see separate table

zhengmix10eq

https://support.10xgenomi
cs.com/single-cell-gene-
expression/datasets Zheng et al.,  2017

Constructed datasets used for 
benchmarking; see separate table
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Table A.1: Summary of all scRNA-seq datasets used in this thesis. (cont.)

dataset name
Basis for Simulated 
dataset

Reproducibility of 
partitions 

Benchmarking of 
Clustering tools

Cellstate 
diversity

baron Yes Yes Yes Yes
chen No Yes Yes Yes
hca_10X2x5Kcell250Kreads No Yes Yes Yes
hca_CELseq2 Yes Yes No Yes
hca_Dropseq Yes Yes No Yes
hca_MARSseq No Yes No Yes
hca_QUARTZseq Yes Yes No Yes
hca_SCRBseq No Yes No Yes
hca_ddSEQ Yes Yes No Yes
hca_inDrop No Yes No Yes

kernfeld Yes Yes No Yes

lamanno_embryo Yes Yes No Yes

lamanno_mouseembryo Yes Yes No Yes
microwellseq_Bladder Yes Yes No Yes
microwellseq_Kidney No Yes No Yes
microwellseq_Lung No Yes No Yes
microwellseq_Mammary No Yes No Yes
microwellseq_Spleen No Yes No Yes
microwellseq_Thymus No Yes No Yes
muraro Yes Yes No Yes

park No Yes No Yes
tabula_muris_Bladder Yes Yes No Yes
tabula_muris_Kidney Yes Yes No Yes
tabula_muris_Lung Yes Yes No Yes
tabula_muris_Mammary Yes Yes No Yes
tabula_muris_Spleen No Yes No Yes
tabula_muris_Thymus Yes Yes No Yes
xin No Yes No Yes

zeisel Yes Yes Yes Yes

zhengmix4eq Yes Yes Yes No

zhengmix4uneq No Yes Yes No

zhengmix8eq No Yes Yes No

zhengmix8uneq No Yes Yes No

zhengmix10eq No Yes Yes No
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Table A.2: Composition of Zhengmix datasets. The original data [77] consists of 10 pure
cell type populations of different kinds of peripheral blood monocytes, which are the rows of
this table. Each Zhengmix dataset (columns) consists of a different composition of randomly
chosen cells from these pure populations. The entries in the table indicate the number of
cells of each cell type in each dataset.

dataset name zhengmix_4eq zhengmix_4uneq zhengmix_8eq zhengmix_8uneq zhengmix_10eq
CD14+ Monocytes 1000 500 1000 2600 1000
CD19+ B Cells 1000 1000 1000 1700 1000
CD34+ Cells 0 0 0 30 1000
CD4+ Helper T Cells 0 0 1000 0 1000
CD4+/CD25+ 
Regulatory T Cells 1000 3000 1000 200 1000
CD4+/CD45RA+/CD25- 
Naive T cells 0 0 1000 2300 1000
CD4+/CD45RO+ 
Memory T Cells 0 0 1000 1700 1000
CD56+ Natural Killer 
Cells 0 0 1000 1500 1000

CD8+ Cytotoxic T cells 0 0 0 0 1000
CD8+/CD45RA+ Naive 
Cytotoxic T Cells 1000 2000 1000 1700 1000
Total 4000 6500 8000 11730 10000
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A.2 Summary of selected published clustering tools
Table A.3: Summary of selected published clustering algorithms. Mandatory model param-
eters refers only to those which have no default value; usually there are many that can be
chosen. Preprocessing refers to steps either done by the tool or that should be done by the
user before applying the algorithm.

Name &
Reference

Language Method Mandatory Model
Parameters

Preprocessing

BackSPIN
[75]

Python Biclustering Clustering depth d:
maximum number of
clusters is 2d

feature selection, nor-
malization

DIMMSC
[58]

R Dirichlet mixture
model

K: number of clusters

RaceID3
[21, 24]

R K-medoids clustering
for main clusters;
afterwards refinement
for detection of rare
cell types

feature selection, nor-
malization, dimen-
sionality reduction

SC3 [29] R combining multiple
clustering solutions
through a consensus
approach

K: number of clusters
(can give a range)

feature selection, nor-
malization, dimen-
sionality reduction

SNN-Cliq
[74]

MATLAB/
Python

Based on shared near-
est neighbours

feature selection, nor-
malization
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