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Abstract: Historically, mpox has been characterised as an endemic zoonotic disease that
transmits through contact with the reservoir rodent host in West and Central Africa.
However, in May 2022, human cases of mpox were detected spreading internationally
beyond countries with known endemic reservoirs. When the first cases from 2022 were
sequenced, they shared 42 nucleotide differences from the closest mpox virus (MPXV)
previously sampled. Nearly all these mutations are characteristic of the action of APOBEC3
deaminases; host-enzymes with antiviral function. Assuming APOBEC3-editing is
characteristic of human MPXV infection, we develop a dual process phylogenetic
molecular clock that — inferring a rate of ~6 APOBEC3 mutations per year — estimates
MPXV has been circulating in humans since 2016. These observations of sustained MPXV
transmission present a fundamental shift to the perceived paradigm of MPXV epidemiology
as a zoonosis and highlight the need for revising public health messaging around MPXV as
well as outbreak management and control.

Main Text:

Since 2017, the Nigeria Centre for Disease Control has been reporting cases of MPXV
(mpox virus) infection in humans (Fig. S1)(1). MPXV, a DNA virus in the genus
Orthopoxvirus; Family Poxviridae, is often described as being endemic in West and Central
Africa as a zoonotic disease that transmits through contact with the rodent reservoir host.
Since the first human cases were observed in the 1970s, MPXV infections have been
predominantly associated with infants and children (2–4). However, of the cases observed
in Nigeria since 2017 very few have been in children, with the virus mainly affecting adults
aged 20 to 50 (79%), 27% of which were in women (5). Genome sequencing of viruses
revealed enough genetic diversity between cases that distinct zoonotic events were not
ruled out. In May 2022, cases of MPXV infection were detected spreading widely across
Europe and subsequently across the globe. The first MPXV genome sequences from these
2022 cases showed they had descended from the clade characterised by cases
diagnosed in Nigeria and Israel, Singapore, and the UK (6) associated with travel from
Nigeria (Fig. S2; Table S1, in bold). These early 2022 genomes are indicated as a triangle
within Clade IIb in Fig. 1A and represent lineage B.1 as per the nomenclature proposed by
Happi et al. (7). Isidro et al., (6) noticed that sequences within lineage B.1 shared 42 single
nucleotide differences from the closest earlier MPXV genomes from 2018. From a 2017
outbreak of MPXV in chimpanzees, the evolutionary rate of MPXV was estimated to be
1.9x10-6 substitutions per site per year (1.2 – 2.7x10-6) translating to ~1 nucleotide change
every 3 years (8). 42 substitutions in the space of 3-4 years is an unexpectedly large
number.
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Under the paradigm that MPXV is a zoonotic virus with limited human to human
transmission, one interpretation of this long branch might be that it represents adaptation
to humans facilitating the sustained transmission that is now observed. However, as we
show here, and as was quickly seen when the first genomes from 2022 were sequenced,
it is clear that these mutations are not the result of errors by the virus’s replication
machinery and occur at much higher rate than would be expected for an orthopoxvirus (6,
9). Specifically, the majority of observed nucleotide changes appear to be of a particular
type – a dinucleotide change from TC→TT or its reverse complement, GA→AA (9, 10).
This particular mutation is characteristic of the action of the APOBEC3 (Apolipoprotein B
mRNA editing enzyme, catalytic polypeptide 3) family of cytosine deaminases. These act
on single stranded DNA (ssDNA) to deaminate cytosine to uracil causing a G→A mutation
in the complementary strand when it is synthesised. Most human APOBEC3 molecules
have a strong bias towards deaminating 5’TC dinucleotides and APOBEC3-driven
deamination has been demonstrated with many DNA viruses and retroviruses; (11–18).
Furthermore, a recent study has specifically demonstrated APOBEC3F editing in cell
culture and during human MPXV infection (19).

We assess the extent to which APOBEC3 has acted on MPXV and explore whether this is
the source of the elevated mutation rate observed since 2017. We also explore the
evolutionary consequences of this mechanism driving evolution in MPXV and model the
distinct processes underpinning the evolution of MPXV in the human population.

APOBEC3 editing as a signature of MPXV evolution in the human population

The known diversity of MPXV is decomposed into three major clades; Clades I, IIa and IIb
(Fig. 1A; Happi et al., (7)). Clade I represents MPXV sampled in Central Africa and Clade IIa
is composed of viruses from human and non-human animal samples taken in or
connected to West Africa. Both of these clades include virus genomes spanning from the
1970s to present day, although the majority of samples were collected within the last 20
years (Fig. S3). Clade IIb has an early sample taken in 1971 (Genbank accession
KJ642617) but most of the sequences in Clade IIb are more recent virus genomes from
2017-2022 that (7) have labelled as hMPXV-1 (Fig. 1A, labelled phylogeny Fig. S2). Within
the recent diversity of Clade IIb (indicated as the darker box within IIb in Fig. 1A), we
catalogued transmitted mutations that occurred between 2017 and 2022 with only a single
representative from the 2022 global lineage B.1 (n=44, Fig. S2)(20).
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Fig. 1. Specific enrichment of APOBEC3-type mutations in MPXV samples collected since 2017.
(A) MPXV genetic diversity is categorised into Clade I (predominantly sequences from the DRC), Clade IIa
(predominantly West African sequences) and Clade IIb. Within Clade IIb is a sub-clade of genomes sampled

from 2017-2022 that show distinct mutational patterns to the other two clades. (B) We catalogue single

nucleotide mutations across the phylogenies of Clade IIb, Clade IIa and Clade I (top to bottom). For Clade IIb,
we include samples from 2017-2022 and only a single representative of the global lineage B.1. Of 120
reconstructed mutations that occurred on internal branches of the Clade IIb phylogeny (so are observed
transmitted mutations), 109 are consistent with APOBEC3 editing (90.8% of mutations). Individual
proportions of G→A and C→T mutations shown above the respective bars. Ancestral state reconstruction
performed across Clade IIa and Clade I does not produce the same enrichment of mutations consistent with
APOBEC3 editing, with only 27 of 207 observed mutations (13%) and 38 of 463 Clade I mutations (8%)
fitting the dinucleotide pattern. (C) Observed heptamers of C→T or G→A mutated sites of Clade IIb, IIa and I
phylogenies (top to bottom). Heptamers associated with G→A mutations have been reverse-complemented
to reflect deamination on the negative strand. For Clade IIb, most C→T mutations are present in a TC dimer
context, consistent with APOBEC3 editing (107 of 115 mutations, or 93%). However the same is not seen for
Clades IIa and I, in which 29 of 149 (19%) mutations and 42 of 256 (16%) have the dinucleotide context of
APOBEC3 respectively, which is what we would predict under standard models of nucleotide evolution.

*Only mutations occurring on internal branches of the Clade IIb phylogeny included.

Within MPXV Clade IIb, we observe rates of molecular evolution far greater than that
expected for double-stranded DNA viruses and indeed that observed in Clades I and IIa of
MPXV (8) and see this excess accumulation of mutation in samples as early as 2017. The
great majority of these mutations are of the type G→A or C→T (90.8%) (Fig. 1B),
regardless of sample host species (Fig. S4). Comparing MPXV Clade IIb with Clade I and
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IIa emphasises that this pattern is not seen outside of Clade IIb (Fig. 1B, labelled
phylogenies Fig. S5), nor is it seen when looking at reconstructed mutations within a
phylogeny of 46 Variola Virus (VARV) genomes, the human virus responsible for smallpox
(Fig. S6). For the other MPXV clades, APOBEC-type mutations are observed at between 8
and 13% frequency, which fits with the expected proportion under standard models of
nucleotide evolution (21, 22) (Fig. 1B). Strikingly, the heptamers of C→T and G→A
mutations that occurred across the Clade IIb phylogeny show this is a specific enrichment
of APOBEC3-type dimer mutations of the type TC→TT and GA→AA (Fig. 1C). Similarly,
this enrichment of TC→TT and GA→AA mutations is observed within the B.1 lineage (Fig.
S7), where 84.8% of observed SNPs are consistent with APOBEC3 editing (Fig. S8).
Observed heptamers around the observed C→T and G→A mutations show a striking
enrichment in TC and GA target sites in the genomes sampled from 2017-2022 in contrast
with the rest of MPXV diversity (Fig. 1C), and this enrichment is also reflected within lineage
B.1 (Fig. S9).

Our analysis highlights that evolution within Clade IIb prior to the emergence of lineage B.1
mirrors that within lineage B.1, but is distinct from MPXV Clade I or IIa. Since 2022, the B.1
lineage has been sampled and sequenced internationally in the global epidemic of MPXV.
Lineage B.1 is known to be circulating by sustained human-to-human transmission and as
such, mutations that have accumulated in B.1 can be considered characteristic of this
mode of transmission. We suggest that the APOBEC3-driven evolution of recent Clade IIb
MPXV is a signature of a switch to sustained transmission within the human population.
Within the B.1 lineage, believed to be entirely the result of human infection and
transmission, we continue to see the same pattern of predominantly APOBEC3 mutations
accumulating at a similar rate to that seen in A lineage genomes since 2017. It is unlikely
that, by chance, MPXV evolved to become susceptible to APOBEC3 action within the
putative rodent reservoir prior to the emergence of cases and to retain that susceptibility to
human APOBEC3 molecules once transmitting in humans. Given that all human cases
sequenced since 2017 share substantial numbers of APOBEC3 mutations, including nine
on the stem branch leading to hMPXV-1 it is very unlikely these represent multiple zoonotic
introductions. APOBEC3 genes emerged in placental mammals from a duplication of the
ancestral AID gene and have a dynamic recent evolutionary past, with gene duplication
and loss across phyla (23, 24). APOBEC3 genes in primates have undergone recent
expansion, with primate genomes now having 7 paralogs of 3 ancestral genes (25, 26).
Rodents, the reservoir of MPXV, have only a single functional APOBEC3 protein resulting
from gene loss and fusion events (25). Rodent APOBEC3 has been shown to be
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expressed preferentially in spleen and bone marrow with limited expression observed in
other tissues (27, 28).

APOBEC3 has a limited repertoire to generate variation in the MPXV genome

If we assume this observed evolution within hMPXV-1 is APOBEC3-driven, this may have
implications for its sustained transmission in the human population. Considering all GA and
TC dimer sites in the Clade II reference genome (Accession number ​​NC_063383) – i.e.
those that could be the target of APOBEC3 editing but had not been by that point – we
assessed what amino acid changes a deamination mutation at these sites would bring
about (Fig. 2). Of the 23,718 such dimers, 61.6% (14,618) would produce amino acid
replacements, 21% (4990) would be synonymous, 2.9% (692) would induce stop codons,
and 14.4% (3418) would occur outside of coding regions. For the Clade IIb genomes, of
the 633 mutations at these dimers that did occur, 38.7% (245) were amino acid
replacements and 35.7% (226) were synonymous, 4.7% (30) were nonsense, and a further
132 APOBEC3 mutations were in intergenic regions (20.8%). The probability of getting 226
or greater synonymous mutations out of 663 under a simple binomial distribution with
21.0% chance of a context being synonymous is P=7.6x10-18. We do not see the same
enrichment for synonymous mutations in the mutations that are not APOBEC3-like,
although the quantity of these mutations is considerably lower (Fig. S10). There are also
more mutations outside of protein coding regions than we would expect based on the
location of target dimers (probability of 4.5x10-6 of getting at least 132 non-coding
mutations given only 14.4% of targets are in these regions). This supports the hypothesis
that what we are observing are the residual least harmful APOBEC3 mutations after natural
selection has eliminated those with substantial fitness costs to the virus. By comparing the
density of observed C→T and G→A mutations and the density of APOBEC3 target sites
(TC or GA dinucleotides) across the reference genome, we see that the distribution of
mutations is not simply a product of the availability of target sites (Kolmogorov-Smirnov
test statistic=0.07, P-value=0.0002; Fig. S11A-B). When considering synonymous and
non-synonymous APOBEC3-like mutations separately, there is a significant difference
between the density of target sites across the MPXV genome and the distribution of
observed APOBEC3-like synonymous and non-synonymous mutations respectively (Fig.
S11C-D).
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Fig. 2. Observed APOBEC3-type mutations are not merely a product of available target sites. (A)
Consequence of hypothetical APOBEC3 mutations at target dimer site (either the C in the TC target site or G
in the GA target site) in the coding regions of the NCBI reference MPXV genome for Clade II (Accession
NC_063383) and those observed APOBEC3 mutations across the coding regions of the Clade IIb phylogeny
(not including the outgroup branch leading to the 1971 genome sequence). These are categorised into
non-synonymous (altered amino acid), synonymous (amino acid remaining unchanged), nonsense (editing
producing a stop codon) and intergenic (not present in a coding sequence). (B) The proportion of target
sites edited for each target site percentile window across the MPXV genome. The teal shaded regions
represent the binomial confidence interval around observations. Masked regions indicated by vertical grey
bars. Observed edits include data from the Clade IIb phylogeny, with a single representative of lineage B.1
and not including the branch leading to the outgroup 1971 genome sequence. (C) Hypothetical amino acid
changes for codons overlapping with TC and GA target sites in a reference MPXV genome (Genbank
accession number: NC_063383) if APOBEC3 edited those dimers to TT and AA. Amino acid changes are
coloured by Grantham Score (0-50 conservative: dark blue; 51-100 moderately conservative: light blue;
101-150 moderately radical: light red; >150 radical: dark red; synonymous: grey).



The ‘repertoire’ of mutations that APOBEC3 is able to provide as genetic variation on
which natural selection can act is severely restricted. Only a limited number of dinucleotide
contexts are present, and the repertoire of amino acid changes that APOBEC3 editing can
induce is also limited (Fig. 2C, Fig. S12). Only 13 different amino acid replacements are
possible, and three that give rise to stop codons, and they are not reversible by the same
mechanism. This means that given the restricted set of positions at which these mutations
occur and the limited amino acid changes they can result in, the elevated rate won’t
necessarily facilitate adaptation of the virus.

APOBEC3 hypermutation is a host-mediated antiviral mechanism. These molecules act as
the viral genome is being replicated and single strands are exposed. During repeated
rounds of replication either strand can be deaminated leading to both C→T and G→A
changes on the positive strand as seen here. Thus it is likely that the genomes that are
extensively mutated by APOBEC3 will simply not be viable and will not be transmitted
further. MPXV replicates in the cytoplasm likely by means of rolling-circle amplification (29)
and this facilitates extensive continuous genome replication (30). The high processivity of
this mechanism efficiently produces high copy numbers of MPXV genome molecules in the
cell, potentially saturating the APOBEC3 enzyme action if the concentration of MPXV DNA
molecules is high enough. This likely means that many MPXV genomes are unaffected by
APOBEC3 action. Occasionally however a genome, modestly mutated by APOBEC3, may
remain viable and be transmitted. We see this in the enrichment of observed synonymous
and intergenic mutations relative to available targets in the MPXV genome. Given the
non-reversibility of the APOBEC3 action, sustained evolution within the human population
may result in a depletion of lower-consequence target sites (i.e., synonymous or
conservative amino acid changes) and thus expedite a decrease in fitness of MPXV over
time. This could be both through a reduction in the number of viable offspring viruses
produced by infected cells and as a result the accumulation of moderately deleterious
mutations by genetic drift (i.e., mutation load). However the timescale on which this might
happen is uncertain and other evolutionary forces such as recombination may act to
restore fitness, and we do not address this further in this study. A further uncertainty arises
when considering the variable repertoire of genes associated with virus infectivity or host
immune modulation in poxvirus genomes. Mutations that alter or abrogate the function of
these genes may have little direct effect on virus replication machinery, but may disrupt the
virus/host interaction. There is precedent for the naturally occurring inactivation of genes in
VARV contributing to host specificity, and consequently the loss of function of some MPXV
genes through APOBEC3 activity may potentially have adaptive value for the virus as it
replicates and transmits in a new host (31, 32).
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Even if the mutations that accumulate through this process are simply the neutral residue
of a sub-optimal antiviral host defence, they have produced sufficient variability for the
phylogenetic analysis of the epidemic over the short term. The initial lineages proposed by
Happi et al (7) have now expanded with the 2022 epidemic B.1 lineage now
encompassing 17 sublineages at time of writing (33). The rapid and temporally linear
accumulation of mutations means that genomic epidemiological models and tools (34, 35),
usually employed for RNA viruses, may also have utility to hMPXV-1.

The linear accumulation of APOBEC3-type mutations since the emergence and
spread of MPXV in humans

Since 2017 the genomes thus far sampled from Clade IIb have accumulated
APOBEC3-type single nucleotide mutations approximately linearly over time (Fig. 3A-B,
labelled phylogeny in Fig. S13). We applied Bayesian regression analysis on the root-to-tip
plot of sequences in Fig. 3A, which includes one representative B.1 genome, and also
separately on the B.1 lineage (B.1 phylogeny in Fig. S1)(20). To ensure the elevated
temporal signal is unique to APOBEC3 data, we show combinations of APOBEC3 and
non-APOBEC3 mutations on Clade IIb data in Fig. S14. The estimated rate of
accumulation was 6.18 per year (95% credible intervals of 5.20, 7.16). For the B.1 lineage
the rate was 5.93 per year (2.95, 8.92) – suggesting that despite widespread and rapid
transmission within MSM networks, the rate of accumulation of APOBEC3 mutations
remained the same as the rest of the Clade IIb. It is notable that the regression line for B.1
lies substantially above that for the rest of Clade IIb suggesting that this lineage
accumulated more mutations than expected prior to the emergence of B.1. However most
of these mutations are also present in the genome from Maryland, USA (Accession
number: ON676708) from November 2021(10), indicating they arose and circulated for
some months prior to the B.1 epidemic (Fig. S15-S16). Extrapolating back to when the
APOBEC3-type mutations started to accumulate provides an estimate of when the first
APOBEC3 mutations occurred in the stem of the branch leading to the 2017 epidemic. If
we assume all these mutations are due to APOBEC3 in humans then we estimate this date
of emergence to be 20-Jun-2015. However, we expect a few APOBEC3-like mutations to
actually be due to replication errors during the earlier pre-emergence epoch. The number
of mutations we ascribe to this period will affect our estimate linearly – i.e., if 3 mutations
were not due to APOBEC3 then the estimate would shift to 14-Dec-2015.
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To accommodate this uncertainty in our estimates we have developed a more explicit
model of APOBEC3-mediated evolution in the BEAST software package (20, 34). We
estimate the action of APOBEC3 on the MPXV population is driving evolution at a rate ~28
times faster than that of the background evolutionary rate (Fig. S17). Gigante et al (10) also
described an elevated overall rate of evolution in the A lineage but did not decompose the
APOBEC3 and non-APOBEC3 contribution to this. The time of the most recent common
ancestor of the post 2017 genomes is estimated to be 23-Feb-2016 (28-Jun-2015,
28-Sep-2016) with the transition to sustained human to human transmission to be
14-Sep-2015 (21-Aug-2014, 31-Jul-2016; Fig. 3C, Fig. S17). Unlike the assumption in Fig.
3B that all APOBEC3 mutations occurred post-emergence, the BEAST analysis estimates
the transition point integrating over all possibilities. This allows for the fact that a few of the
APOBEC3-like mutations may actually be due to replication errors in the earlier
evolutionary epoch and this might explain the slightly more recent date. We also see
evidence of exponential growth in the number of infections in the epidemic prior to the
emergence of lineage B.1 in 2022 (Fig. 3D), despite the decline in cases reported in 2020
(Fig. S1C), albeit the growth rate is relatively slow reinforcing the indication from the
demographics of the cases that this is not a generalised epidemic.
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Fig. 3. Estimating the time of MPXV emergence into the human population from the accumulation
of APOBEC3-type mutations. (A) MPXV genomes sampled from human infections from 2017-2022, with
an outgroup sequence from an outbreak in Nigeria in 1971 (n=44 including outgroup). Lineages indicated as
per nomenclature proposed by Happi et al., (7). Mutations along each branch are indicated with circles
coloured by whether it is putatively APOBEC3 edited (TC→TT and GA→AA; red) or whether it is another
mutation type (yellow). The break in the basal branch illustrates the assumption made in the regression model
in panel B, that all APOBEC3 mutations occurred after emerging into the human population, however we do
not know the precise distribution of red or yellow mutations. (B) APOBEC3 mutations from MPXV genomes
sampled since 2017. The reconstructed most recent common ancestor (MRCA) of the panel A phylogeny is
used as the root in the root-to-tip plot and the y-intercept is used as a proxy for time of emergence which is
inferred by fitting a Bayesian regression to the sequence dates from panel A. Intersects with y=1, 2, & 3 are
also shown as it is likely that a small number of the APOBEC3-type mutations are actually earlier replication
errors and not induced by APOBEC3. (C) Maximum Clade Credibility (MCC) phylogeny of MPXV Clade IIb
with absolute time shown on the X-axis. We separated the alignment into an APOBEC3 and a
non-APOBEC3 partition and modelled the substitution process in each independently. We used an epoch
model with two outgroup sequences (not shown in panel) representing the first epoch and hMPXV-1 ingroup
sequences representing MPXV post-emergence into the human population with an exponential growth
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model. The probability density distributions show the estimated time of the most recent common ancestor
(tMRCA) of the ingroup as well as the estimated transition time that represents the time of emergence into
the human population. (D) Estimated effective population size of the outbreak using a non-parametric
coalescent Skygrid model with 11 change points over a period of 8.5 years. This reconstruction falls within
the bounds of the exponential growth model estimated from the second epoch in panel C, suggesting that
the MPXV population has been exponentially growing since at least 2016.

Implications for the global public health response to mpox cases

Since the identification of the B.1 lineage, a number of countries have reported other
lineages that lie outside the diversity of B.1, including USA, UK, Portugal, India and
Thailand. In almost all instances these cases are reported as having a history of
international travel. The lineages these are placed in (designated as A.2.1, A.2.2, A.2.3 and
A.3) can all be phylogenetically traced back to the epidemic in Nigeria (Fig. 3A). This
suggests that at least one instance of sustained human to human transmission is still
ongoing outside of the recognised MSM networks that were the focus of the 2022 global
epidemic. Stopping transmission in these communities, whilst necessary, will not be
sufficient to eliminate the virus as a human epidemic. There are large portions of the globe
without the surveillance to detect MPXV cases and if sustained human to human
transmission has been ongoing since 2015-2016 it is plausible there are other populations
that are currently enduring epidemics.

Historically, mpox was considered a zoonotic disease and cases have been treated as
independent spillover events with low levels of circulation in the human population. Thus
far, this continues to be an accurate characterization of Clade I in Central Africa. For Clade
IIb, whilst some non-B.1 lineage cases may be new zoonotic infections, the majority of
cases since 2016 are likely the result of human to human transmission. Although the B.1
lineage across the world is now diminished – though not yet eradicated – the human
epidemic from which it arose continues unabated. It is critical that global public health
affords MPXV cases in countries that are historically considered to have endemic reservoir
species equal attention and concern to those elsewhere. Surveillance needs to be global if
MPXV is to be eliminated from the human population and then prevented from reemerging.
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Materials and Methods
Nomenclature

A recently published paper (7) proposed an updated, systematic, nomenclature for the
phylogenetic structure of MPXV to replace previous geographical clade names. In this
nomenclature the 2022 global epidemic lies in Clade IIb with all genomically characterised
cases since 2017 designated with lineage labels similar to SARS-CoV-2. The recent
human epidemic, provisionally named hMPXV-1 by Happi et al. (7), comprises a hierarchy
of lineages starting with ‘A’ currently represented by genomes from 2017 cases in Nigeria.
The bulk of 2022 genomes are part of a lineage denoted ‘B.1’ but other lineages (‘A.2’ and
‘A.3’) have also been reported in the USA, UK and Portugal, in most cases in individuals
with international travel history. We follow this nomenclature here.

Data Processing and Alignment

We compiled high-quality MPXV genomes from human and non-human animal outbreaks
sampled from as early as 1965 and up to the current 2022 outbreak. The dataset
consisted of 94 genomes with representatives from Clades I, IIa and IIb (Fig. S2-S3, Fig.
S6). A second dataset comprises all Clade IIb genomes from 2017-2022 but with a single
representative of lineage B.1 of hMPXV-1 and two earlier sequences from Nigeria from
1971 and 1978 (accession numbers KJ642617 and KJ642615, respectively). The genome
from 1978 (accession KJ642615) was used as an outgroup, due to its greater divergence
despite being sampled more recently, used to root the tree and then not analysed further.
A separate analysis was run specifically on lineage B.1 where all high-quality B.1 genomes
with an exact date of collection on Genbank were downloaded on 2022-08-22. The 2021
genome from Maryland, USA (lineage A.1.1; accession number: ON676708) was used as
an outgroup to root the B.1 tree (n=769). Accession numbers and acknowledgments for
genome sequences used in this study are provided in Table S1.

All the MPXV genome datasets were aligned against the Clade II reference genome (which
is an early hMPXV-1 genome from Nigeria, accession: NC_063383) using minimap2 v2.17
(36) to generate a single coordinate system. Genome sequences were trimmed from
position 190,788 to the end, corresponding to the 3’ terminal repeat region of the MPXV
genome. A series of repetitive or low-complexity regions were masked from the alignment
(Table S3). This alignment, extraction and masking pipeline is available at
https://github.com/aineniamh/squirrel.

The full MPXV phylogeny of Clade I, IIa and IIb was estimated using maximum likelihood in
IQ-TREE v2.0 using a Jukes-Cantor substitution model (37) and subsequently midpoint
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rooted. For the ancestral reconstruction analysis, we estimated phylogenies for each of
Clade I, Clade IIa and Clade IIb. The MPXV Clade IIb phylogeny was estimated with the
same parameters, but with the outgroup specified as the 1978 Nigerian MPXV genome
sequence (Accession KJ642615) and zero-length branches collapsed. Similarly, we
estimated phylogenies independently for the hMPXV-1 coding sequence alignment and for
Clade I and Clade II of MPXV using the above parameters with genome sequence
KJ642617 as an outgroup.

We performed the ancestral state reconstruction using IQ-TREE2 on all individual Clade
phylogenies of MPXV. We parsed out all reconstructed sites that vary unambiguously
across the phylogeny (i.e. we exclude missing data) and mapped the single nucleotide
mutations that occurred to the relevant branch of the phylogeny. Using the reconstructed
node states we also catalogued the dimer and heptamer context of all C->T or G->A
mutations that occurred across the phylogenies. Scripts are available from Zenodo:
10.5281/zenodo.8146689.

We compared each recent Clade IIb sequence with the reconstructed most recent
common ancestor of the Clade IIb phylogeny and collated the mutations down each
branch from root-to-tip and their dinucleotide context. Using only APOBEC3-type
mutations, we constructed an APOBEC3 root-to-tip linear regression for Clade IIb and
similarly for lineage B.1. We first performed a linear regression of the number of APOBEC3
mutations from the root of the tree to each tip against the date of collection of the tip. The
slope is an estimate of the APOBEC3-specific mutation rate and assuming that APOBEC3
mutations are characteristic of infection in the human host, we use the X-intercept of this
regression to estimate the date of emergence into a human host. This approach does not
adjust for phylogenetic correlation and, in particular, the upward shift in B.1 is the result of
a single shared branch with a higher than average number of mutations, but one that is not
necessarily beyond expectations.

To model the evolutionary processes in MPXV, we created two data partitions of the Clade
IIb alignment. The first partition contains only sites with putative APOBEC3 modifications
(i.e. observed C->T or G->A substitutions in the appropriate dinucleotide context) and
such target sites that are entirely conserved (i.e. all C or all G). All other sites in the
alignment are masked out as ambiguous nucleotides. As such, we have a partition that
represents APOBEC3 mutations as a function of target APOBEC3 sites (“APOBEC3
partition”). The second data partition is simply the inverse of this – i.e., contains all the sites
with only the APOBEC3 target sites masked. The APOBEC3 alignment has 24,704
unmasked sites and the non-APOBEC3 alignment has the inverse with 172,504 across the



44 taxa included in the analysis. We use a standard nucleotide GTR+G substitution model
with 4 rate categories to represent the non-APOBEC3 partition. We model the substitution
process of the APOBEC3-only partition as a two-state continuous time markov chain with
an asymmetric rate, allowing only C->T mutations and not the reverse.

To estimate the time of the initial emergence of MPXV into the human population (the time
of the primary case) we employed a 2-epoch molecular clock such that for the
APOBEC3-only partition the rate transitions from background (non-APOBEC3) rate of
evolution to the APOBEC3 rate of evolution at a time tp. This transition time is
parameterised as tp = tMRCA(lineage A) + x, where x is a free parameter in BEAST that
represents the unsampled transmission history prior to the MRCA of the sampled lineage A
viruses. The non-APOBEC3 partition is given the background rate over the entire tree. We
also employed a two-phase coalescent model with the tree from the MRCA(lineage A)
onwards having a model of exponential growth, with an inferred rate of growth, and the
earlier phase being a constant-population size coalescent model.

We further examined the pattern of epidemic growth during the lineage A phase using a
non-parametric coalescent Skygrid model (38) with 11 change points spanning 8.5 years.
For each model we ran two replicate chains with 10 million states to check for
convergence, removed 1 million states as burn-in, and then combined the samples.
BEAST XML files for these analyses and a script to generate the APOBEC3 and
non-APOBEC3 data partitions are available from Zenodo: 10.5281/zenodo.8146689.

To investigate the target site context of mutations occurring in the hMPXV-1 phylogeny, we
extracted the relevant nucleotide heptamers for all C->T or G->A mutations that occurred
across the MPXV Clade IIb phylogeny (260 of 296 mutations) and for G->A mutations we
took the reverse complement of the nucleotide sequences to normalise for strand. We also
calculated the heptamer context for just the backbone of the phylogeny (i.e. the branches
leading to the 2022 outbreak), which included 55 of 57 mutations on the respective
branches. Using the reconstructed mutations and branch states in the phylogeny, we
collected the ancestral dimer context for mutations that were either G->A or C->T to
assess which mutation occurred in a context consistent with APOBEC3 editing.

We used gene coordinates from the MPXV Clade II genbank reference (Accession number:
NC_063383) to categorise the observed APOBEC3-like SNPs into synonymous,
nonsynonymous or nonsense mutations. Similarly, for APOBEC3 target sites we used the
MPXV Clade II reference record to predict whether an edit would produce a change to the
amino acid. For these observed APOBEC3-like mutations and the APOBEC3 target sites,
we wanted to look for any spatial patterns of APOBEC3 edits along the genome. For
windows that included 1% of APOBEC3 target sites (i.e. each window contains 197 target

https://paperpile.com/c/7KJaq6/trwg2


sites out of 19700 total targets), we compiled a count of mutations consistent with
APOBEC3 editing and represented it as a proportion of available target sites for that
window, with a binomial confidence interval around that proportion. Scripts available from
Zenodo: 10.5281/zenodo.8146689.

Root-to-tip regression

The model for the linear regression of number of APOBEC3-type mutations against time
was as follows:

mi ~ Normal(μ, σ)

μ = α + β (ti - tmean)

α ~ Normal(11, 100)

β ~ Lognormal(0, 1) and

σ ~ Normal(0, 20),

where mi is the number of mutations for genome i, α is the y-intercept and has a prior
centred on the minimum number of mutations observed over all genomes, β is a
strictly-positive evolutionary rate per year, ti is the time of collection of the sample and σ is
the model error standard deviation.

The model was fitted to the data in a Bayesian framework using a quadratic approximation
to the posterior distribution implemented in the rethinking package in R (39). Posterior
estimates and 97% highest posterior densities of the parameters for the lineage A data are
α: 25.24 (23.80, 26.66), β: 6.18 (5.19, 7.16), σ: 4.76 (3.74, 5.78) and for the lineage B.1
data are α: 57.67 (57.49, 57.85), β: 5.93 (2.95, 8.91), σ: 1.77 (1.64, 1.90). An R script
performing this analysis and generating the graphic seen in Fig. 3B is available at
http://github.org/hmpxv/apobec3/

https://paperpile.com/c/7KJaq6/WlKQ4
http://github.org/hmpxv/apobec3/


Fig. S1.
(A) The genetic diversity of MPXV is split into two major clades (I and II). Historically,
outbreaks have been low-level zoonoses and could be traced back to contact with a
rodent reservoir host species. Cases of MPXV have been reported in Nigeria since 2017
and significant genetic diversity within the outbreak suggested independent introductions
from a rodent reservoir. May 2022 saw the emergence of a global lineage of Clade IIb,
lineage B.1, that had widespread human-to-human transmission in MSM (men who have
sex with men) contact networks. (B) Past isolates of MPXV from Central Africa fall into
Clade I and isolates from West Africa predominantly fall into Clade II, however the true
geographic ranges are not clear. (C) Low numbers of MPXV cases were reported in
Nigeria since 2017, with a decline in case numbers in 2020. By May 2022, there was a
large increase in the number of cases of MPXV reported in Nigeria. Case count data from
Nigeria CDC situation reports (1).

https://paperpile.com/c/7KJaq6/2iCFi


Fig. S2.

Clade IIb phylogeny illustrating sampled diversity since cases were first reported in Nigeria
in 2017. Lineage A includes cases from 2017-2019 in Nigeria, A.1 includes diversity from
Nigeria from 2018-2019 and A.2 includes a number of international cases with known
travel history from Nigeria (e.g. UK, USA and Thailand). Lineage A.1.1 contains a single
sequence, sampled in the USA in 2021. The large, global lineage B.1 that emerged in
2022 is represented by a triangle.



Fig. S3.

Sequences included in analysis from Clades I (A), IIa (B) and IIb (C), listed in Table S1. To
account for intensive sampling in 2022, we include just a single representative of Clade IIb
lineage B.1 (the global lineage that spread in MSM contact networks in 2022) in Clade IIb
analyses and treat lineage B.1 separately unless otherwise stated.



Fig. S4.

There are a small number of MPXV sequences in Clade I and Clade IIa that were sampled
directly from rodent hosts. We believe that most, if not all evolution observed across
Clades I and IIa has arisen while the virus resides in the rodent reservoir as there has not
been any evidence of sustained human to human transmission until the recent outbreak of
Clade IIb. Despite this, we investigated whether including MPXV sequences sampled from
a rodent host introduces any artefacts into our observations and analysis. (A) For Clade IIa,
we excluded sequences with accession numbers MT903346.1, MT903347.1,
MT903348.1 and MT724769.1 from the alignment and estimated the maximum likelihood
phylogeny and ancestral state reconstruction as described in the main text. (B) We then
assessed the types of SNPs that occurred across the phylogeny and whether they were in
an APOBEC3 context or not. (C) For Clade I, we excluded sequences MT724772 and
MT724770 from the alignment, estimated the maximum likelihood phylogeny, and
reconstructed mutations across each branch of the phylogeny. (D) We categorised the
Clade I SNPs by whether they had occurred in an APOBEC3 context or not.
APOBEC3-like SNPs are shown in red and other SNPs in yellow. As expected, we find that
excluding the small number of rodent-derived MPXV samples makes no difference to the
observed pattern, although counts of observed SNPs are slightly reduced.



Fig. S5.

Tip-labelled phylogeny of Clades I and IIa of MPXV. Reconstructed SNPs are coloured by
whether or not the mutation type is consistent with APOBEC3 editing. Tips are coloured by
whether the host is rodent or primate (including human and chimpanzee samples).



Fig. S6.

(A) To investigate whether an enrichment of APOBEC3-consistent mutations was seen in
the human pathogen Variola Virus (VARV), we constructed a maximum likelihood
phylogeny with 47 publically available VARV genomes using IQTREE2 with the VD21
sequence from the 17th Century (Genbank accession number: KY358055) set as the
outgroup sequence. After pruning out the outgroup, we ran ancestral state reconstruction
using IQTREE2 and mapped the reconstructed SNPs to respective branches. 1,835 SNPs
were reconstructed across the phylogeny and categorised as APOBEC3-type mutations
(red) and other (yellow). The SNPs are plotted along each respective branch and branches
that have a large number of SNPs have the proportions of APOBEC3-like/ other
represented as a bar. (B) We reconstructed the mutations across the VARV phylogeny and
– of 1,835 SNPs – see only 414 that are consistent with APOBEC3-editing and so do not
see any enrichment for APOBEC3-type mutations.



Fig. S7.

Phylogeny containing all high-quality hMPXV-1 B.1 genomes shared on Genbank as of
2021-08-22, with the 2021 Maryland sample (ON676708) used as an outgroup (n=769).
Sequence names and authors are listed in Table S2.



Fig. S8.

(A) We reconstructed single nucleotide mutations across the Clade IIb phylogeny,
including only a single representative of the global lineage B.1. Of 120 SNPs that occur on
internal branches across the phylogeny, 109 are consistent with APOBEC3 editing
(90.8%). (B) Similarly, we reconstructed mutations that occurred across internal branches
of the B.1 lineage. Of 191 mutations, 162 are consistent with APOBEC3 editing (84.8%).



Fig. S9.

(A) Observed heptamers of C->T or G->A mutated sites in 337 of 383 unambiguous
mutations that occur along branches in the MPXV phylogeny in Fig.4A, excluding the
mutations that occur on the 1971 branch. Heptamers associated with G->A mutations
have been reverse-complemented to reflect deamination on the negative strand. (B)
Observed heptamers of C->T or G->A mutations in the B.1 lineage of Clade IIb (677 of
836 mutations), which we know is being transmitted human-to-human.



Fig. S10.

Observed mutations across the Clade IIb phylogeny (including all B.1 genomes, and not
including the outgroup branch leading to the 1971 genome sequence). These are
categorised into non-synonymous (altered amino acid), synonymous (amino acid remaining
unchanged), nonsense (editing producing a stop codon) and intergenic (not present in a
coding sequence), and coloured by whether they have occurred in an APOBEC3-like
context or not.



Fig. S11.

The density (moving average linear convolution with window sizes of 1000, 2500 and
15000) of (A) observed APOBEC3-like mutations across the MPXV genome, (B) available
APOBEC3 target sites in the Clade IIb reference genome (Accession NC_063383), (C)
observed APOBEC-like mutations that result in synonymous changes and (D) observed
APOBEC-like mutations that result in nonsynonymous changes. We see the same
difference between target density for both observed synonymous and non-synonymous
distributions (Kolgorov-Smirnov test statistic synonymous vs target = 0.1133,
P-value=0.0003; Kolgorov-Smirnov test statistic non-synonymous vs target = 0.067,
P-value=0.059). Repetitive/ low-complexity masked regions indicated by vertical bars.



Fig. S12.

Amino acid mutations at TC and GA dimer sites in a reference MPXV genome (accession
number NC_063383) that could occur through APOBEC3 editing. Barplot of amino acid
changes categorised by Grantham Score (0-50 conservative, 51-100 moderately
conservative, 101-150 moderately radical, >150 radical).



Fig. S13.

Tip-labelled phylogeny of Clade IIb of MPXV. Reconstructed SNPs are coloured by whether
or not the mutation type is consistent with APOBEC3 editing. Lineages are labelled on the
tree and only a single B.1 lineage representative is present.



Fig. S14.

Root-to-tip of (A) APOBEC3-like, (B) non-APOBEC3-like and (C) all SNPs for each of the
Clade I, Clade IIa and Clade IIb phylogenies. We fit a simple linear model through this data
and the distinction between the accumulation of APOBEC3-like SNPs in Clade IIb in
comparison to Clade I and IIa is striking, however there is uneven and sparse sampling for
Clades I and IIa over greater time periods than for Clade IIb.



Fig. S15.

(A) Independent linear regressions of APOBEC3 accumulation from root to tip of Clade IIb
2017-2022 and lineage B.1 respectively. The overlapping data point (sequence MA001 –
an early B.1 genome, accession number ON563414) is indicated. (B) Residuals of each
linear regression in panel A demonstrate this upward shift in APOBEC3 accumulation in the
B.1 lineage. However, this is mostly shared with lineage A.1.1, indicated, and this transient
increase is not one that is not necessarily outside the bounds of expected noise about the
regression.



Fig. S16.

(A) Linear regression of APOBEC3 accumulation from root to tip of lineage B.1 with
respect to the root of hMPXV. The overlapping data point used in both phylogenies
(Sequence MA001, accession number ON563414) indicated. (B) Residuals of the linear
regression in panel A about the B.1 lineage.



Fig. S17.

(A) Clock rate of APOBEC3 and non-APOBEC3 partitions, estimated using the epoch
model. (B) The data suggests that the primary case (tPC) occurred less than a year before
the most recent common ancestor (tMRCA) of the MPXV samples. The likely doubling time
of the outbreak is ~1.5 years.



Table S1.

Authors, Institute and Accession numbers for sequences in analysis of hMPXV-1.
Accession numbers in bold highlight the sequences from samples taken between 2018
and 2022 from individuals with travel history from Nigeria. The table includes 25 Clade IIa
sequences, 44 Clade IIb sequences and 36 Clade I sequences.

Authors Institute Accessions Clade

Nakazawa Y, Mauldin MR,
Emerson GL, Reynolds
MG, Lash RR, Gao J, Zhao
H, Li Y, Muyembe JJ,
Kingebeni PM, Wemakoy
O, Malekani J, Karem KL,
Damon IK, Carroll DS.

Poxvirus Program, Centers
for Disease Control and
Prevention, 1600 Clifton
Rd. NE, Atlanta, GA 30333,
USA

KJ642615 IIb

Faye O, Pratt CB, Faye M,
Fall G, Chitty JA, Diagne
MM, Wiley MR,
Yinka-Ogunleye AF, Aruna
S, Etebu EN, Aworabhi N,
Ogoina D, Numbere W,
Mba N, Palacios G, Sall AA,
Ihekweazu C.

Center for Genome
Sciences, USAMRIID, 1425
Porter Street, Fort Detrick,
Frederick, MD 21701, USA

MG693724 IIb

Yinka-Ogunleye A, Aruna
O, Dalhat M, Ogoina D,
McCollum A, Disu Y,
Mamadu I, Akinpelu A,
Ahmad A, Burga J,
Ndoreraho A, Nkunzimana
E, Manneh L, Mohammed
A, Adeoye O, Tom-Aba D,
Silenou B, Ipadeola O,
Saleh M, Adeyemo A,
Nwadiutor I, Aworabhi N,
Uke P, John D, Wakama P,
Reynolds M, Mauldin MR,
Doty J, Wilkins K, Musa J,
Khalakdina A, Adedeji A,
Mba N, Ojo O, Krause G,
Ihekweazu C

NCEZID/DHCPP/PRB,
CDC, 1600 Clifton Rd,
Atlanta, GA 30333, USA

MK783027
MK783028
MK783029
MK783031
MK783030
MK783032
MK783033

IIb

Cohen Gihon,I., Israeli,O.,
Shifman,O., Erez,N.,
Melamed,S., Paran,N.,
Beth-Din,A. and Zvi,A.

Institute for Biological
Research, Reuven 24,
Ness Ziona 74100, Israel

MN648051 IIb

Yong SEF, Ng OT, Ho ZJM,
Mak TM, Marimuthu K,
Vasoo S, Yeo TW, Ng YK,
Cui L, Ferdous Z, Chia PY,
Aw BJW, Manauis CM, Low
CKK, Chan G, Peh X, Lim

National Public Health
Laboratory, National Centre
for Infectious Diseases, 16
Jln Tan Tock Seng,
Singapore, Singapore
308442, Singapore

MT250197 IIb



PL, Chow LPA, Chan M,
Lee VJM, Lin RTP, Heng
MKD, Leo YS

Mauldin MR, McCollum
AM, Nakazawa YJ, Mandra
A, Whitehouse ER,
Davidson W, Zhao H, Gao
J, Li Y, Doty J,
Yinka-Ogunleye A, Akinpelu
A, Aruna O, Naidoo D,
Lewandowski K, Afrough B,
Graham V, Aarons E,
Hewson R, Vipond R,
Dunning J, Chand M,
Brown C, Cohen-Gihon I,
Erez N, Shifman O, Israeli
O, Sharon M, Schwartz E,
Beth-Din A, Zvi A, Mak TM,
Ng YK, Cui L, Lin RTP,
Olson VA, Brooks T, Paran
N, Ihekweazu C, Reynolds
MG.

NCEZID/DHCPP/PRB,
CDC, 1600 Clifton Rd,
Atlanta, GA 30333, USA

MT903341
MT903343
MT903344
MT903345
NC_063383

IIb

Gigante,C.M., Myers,R.,
Seabolt,M.H., Wilkins,K.,
McCollum,A., Hutson,C.,
Davidson,W., Rao,A.,
Blythe,D. and Li,Y.

Division of
High-Consequence
Pathogens and Pathology,
Centers for Disease Control
and Prevention, 1600
Clifton Road, Atlanta, GA
30329, USA

ON563414
ON674051
ON675438
ON676707
ON676708

IIb

Pilailuk Okada; Siripaporn
Phuygun; Nuttida
Thongpramul; Thanutsapa
Thanadachakul; Kazuhisa
Okada; Archawin
Rojanawiwat; Chakkarat
Pitayawonganon; Supakit
Sirilak

Bangkok Hospital Phuket,
2/1 Hongyok Utis Road,
Muang District, Phuket,
83000, Thailand | National
Institute of Health,
Department of Medical
Sciences, Ministry of Public
Health, Thailand, 88/7
Tiwanon Road, Amphoe
Muang, Nonthaburi 11000,
Thailand

EPI_ISL_13983888 IIb

Ndodo,N., Ashcroft,J.,
Lewandowski,K.,
Yinka-Ogunleye,A.,
Chukwu,C., Ahmad,A.,
King,D., Akinpelu,A.,
Maluquer de Motes,C.,
Ribeca,P., Summer,R.P.,
Rambaut,A., Chester,M.,
Maishman,T.,
Babatunde,O., Mba,N.,
Babatunde,O., Aruna,O.,
Pullan,S.T., Gannon,B.,
Brown,C., Ihekweazu,C.,

Nigeria Centre for Disease
Control, National Reference
Laboratory, Gaduwa,
Federal Capital Territory,
Abuja | Defence Science
and Technology
Laboratory, Porton Down,
Salisbury SP4 0JQ,
Wiltshire

OP612674
OP612675
OP612676
OP612677
OP612678
OP612679
OP612680
OP612681
OP612682
OP612683
OP612684
OP612685
OP612686

IIb



Adetifa,I. and Ulaeto,D.O. OP612687
OP612688
OP612689
OP612690
OP612691

Groves,N., Osman,K.L.,
Lewandowski,K.S.,
Carter,D.P., Pullan,S.T.,
Myers,R., Vipond,R. and
Chand,M.

Research and Evaluation,
UKHSA, Porton Down,
Salisbury, Wiltshire SP4
0JG, UK

OP331335
OP331336
OP415257

IIb

Atkinson,B., Pottage,T.,
Ngabo,D., Crook,A.,
Pitman,J., Summers,S.,
Pullan,S., Lewandowski,K.,
Furneaux,J., Davies,K. and
Brooks,T.

UKHSA, Manor Farm
Road, Porton, Wiltshire
SP4 0JG, UK

OL504741 IIb

Kugelman,J.R.,
Johnston,S.C.,
Mulembakani,P.M.,
Kisalu,N., Lee,M.S.,
Koroleva,G.,
McCarthy,S.E.,
Gestole,M.C., Wolfe,N.D.,
Fair,J.N., Schneider,B.S.,
Wright,L.L., Huggins,J.,
Whitehouse,C.A.,
Wemakoy,E.O.,
Muyembe-Tamfum,J.J.,
Hensley,L.E., Palacios,G.F.
and Rimoin,A.W.

United States Army Medical
Research Institute of
Infectious Diseases, Fort
Detrick, Maryland, USA

JX878407
JX878408
JX878409
JX878410
JX878411
JX878412
JX878413
JX878414
JX878415
JX878416
JX878417
JX878418
JX878419
JX878420
JX878421
JX878422
JX878423
JX878424
JX878425
JX878427
JX878426
JX878428
JX878429

I

Likos,A.M., Sammons,S.A.,
Olson,V.A., Frace,A.M.,
Li,Y., Olsen-Rasmussen,M.,
Davidson,W., Galloway,R.,
Khristova,M.L.,
Reynolds,M.G., Zhao,H.,
Carroll,D.S., Curns,A.,
Formenty,P., Esposito,J.J.,
Regnery,R.L. and
Damon,I.K

National Center for
Infectious Disease, Centers
for Disease Control and
Prevention, 1600 Clifton
Road NE, Mailstop G43,
Atlanta, GA 30333, USA.

DQ011155
DQ011154

I



Farlow,J., Ichou,M.A.,
Huggins,J. and Ibrahim,S.

The United States Army
Medical Research Institute
for Infectious Diseases
(USAMRIID), 1425 Porter
Street, Frederick, MD
21702, USA

HM172544 I

Shchelkunov,S.N.,
Totmenin,A.V., Babkin,I.V.,
Safronov,P.F.,Ryazankina,O
.I., Petrov,N.A.,
Gutorov,V.V., Uvarova,E.A.,
Mikheev,M.V., Sisler,J.R.,
Esposito,J.J., Jahrling,P.B.,
Moss,B. and
Sandakhchiev,L.S.

Department of Molecular
Biology of Genomes, SRC
VB Vector, Koltsovo,
Novosibirsk Region
630559, Russia

AF380138 I

Nakazawa,Y.,
Emerson,G.L., Carroll,D.S.,
Zhao,H., Li,Y.,
Reynolds,M.G.,
Karem,K.L., Olson,V.A.,
Lash,R.R., Davidson,W.B.,
Smith,S.K., Levine,R.S.,
Regnery,R.L.,
Sammons,S.A., Frace,M.A.,
Mutasim,E.M.,
Karsani,M.E.,
Muntasir,M.O.,
Babiker,A.A., Opoka,L.,
Chowdhary,V. and
Damon,I.K.

Biochemistry and
Microbiology, University of
Victoria, 3800 Finnerty
Road, Victoria, BC V8P
5C2, Canada

KC257460
KP849469
KJ642612
KJ642613
KJ642618
KJ642619
KP849471

I

Marien,J., Laudisoit,A.,
Patrono,L.V.,
Calvignac-Spencer,S.,
Leendertz,F., Leirs,H. and
Verheyen,E.

University of Antwerp,
Universiteitsplein 1,
Antwerpen 2000, Belgie

MT724770
MT724772

I

Likos,A.M., Sammons,S.A.,
Olson,V.A., Frace,A.M.,
Li,Y., Olsen-Rasmussen,M.,
Davidson,W., Galloway,R.,
Khristova,M.L.,
Reynolds,M.G., Zhao,H.,
Carroll,D.S., Curns,A.,
Formenty,P., Esposito,J.J.,
Regnery,R.L. and
Damon,I.K

National Center for
Infectious Disease, Centers
for Disease Control and
Prevention, 1600 Clifton
Road NE, Mailstop G43,
Atlanta, GA 30333, USA.

DQ011156.1
DQ011157.1

IIa

Nakazawa,Y.,
Emerson,G.L., Carroll,D.S.,
Zhao,H., Li,Y.,

Biochemistry and
Microbiology, University of
Victoria, 3800 Finnerty

KP849470.1
KJ642616.1
KJ642614.1

IIa



Reynolds,M.G.,
Karem,K.L., Olson,V.A.,
Lash,R.R., Davidson,W.B.,
Smith,S.K., Levine,R.S.,
Regnery,R.L.,
Sammons,S.A., Frace,M.A.,
Mutasim,E.M.,
Karsani,M.E.,
Muntasir,M.O.,
Babiker,A.A., Opoka,L.,
Chowdhary,V. and
Damon,I.K.

Road, Victoria, BC V8P
5C2, Canada

Marien,J., Laudisoit,A.,
Patrono,L.V.,
Calvignac-Spencer,S.,
Leendertz,F., Leirs,H. and
Verheyen,E.

University of Antwerp,
Universiteitsplein 1,
Antwerpen 2000, Belgie

MT724769.1 IIa

Patrono,L.V., Pleh,K.,
Samuni,L., Ulrich,M.,
Roethemeier,C., Sachse,A.,
Muschter,S., Nitsche,A.,
Couacy-Hymann,E.,
Boesch,C., Wittig,R.M.,
Calvignac-Spencer,S. and
Leendertz,F.H.

Project Group
Epidemiology of Highly
Pathogenic
Microorganisms, Robert
Koch Institute, Seestrasse
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Table S3.

Regions masked in alignment.

Name Type Minimum Maximum Length

repetitive region misc_feature 16609 16622 14

repetitive region misc_feature 29749 29762 14

homopolymeric
run misc_feature 148334 148351 18

repetitive region misc_feature 163190 163214 25

repetitive region misc_feature 174518 174545 28

repetitive region misc_feature 173274 173317 44

repetitive region misc_feature 169721 169774 54

repetitive region misc_feature 136513 136569 57

repetitive region misc_feature 146848 146912 65

repetitive region misc_feature 150542 150628 87

repetitive region misc_feature 192404 192529 126

repetitive region misc_feature 4680 4806 127

repetitive region misc_feature 179057 179245 189

homopolymeric
run misc_feature 592 596 5

homopolymeric
run misc_feature 133071 133115 45



Table S4.

BEAST estimated statistics

Summary Statistic [95%HPD] Epoch Model Skygrid Model

Time of ingroup MRCA1 2016.147 [2015.489, 2016.744] 2016.548 [2015.951,2017.000]

Human emergence time2 2015.703 [2014.638, 2016.583] N/A

APOBEC3 clock rate 1.298E-4 [1.099E-4, 1.502E-4] 1.407E-4 [1.197E-4, 1.609E-4]

non-APOBEC3 clock rate 4.224E-6 [3.215E-6, 5.177E-6] 6.692E-6 [4.824E-6, 8.626E-6]

Exponential Growth rate 0.550 [0.2374, 0.8686] N/A

1 The time of the most recent ancestor of the ingroup comprising all Clade IIb genomes other than those from
the 1970’s (the outgroup).
2The time, in years, prior to the MRCA of the ingroup, of the transition point to the APOBEC3 clock rate


