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Abstract 
Polyadenylation is the process by which poly(A) tails are added at the 3’ end of an RNA 
molecule. Alternative polyadenylation (APA) can occur when multiple poly(A) sites exist. This 
gives rise to transcript isoforms which can have different 3’ untranslated regions (3’UTRs) or 
can lead to different protein products. 
APA has been shown to influence the stability, localization and translation of the mRNA 
molecules. APA is known to be involved in health and disease and is tissue- and cell type-
specific. Although a lot is known about the processing machinery, less is known about the 
context-specific selection of a specific poly(A) site. With the appearance of single-cell 
transcriptomics (scRNA-seq), it got possible to study APA on the level of individual cells. 
I developed SCUREL, a computational method that detects 3’UTR changes between two sets 
of cells. We found SCUREL to be more sensitive compared to a similar method. Applying 
SCUREL to lung tumor, we found that the global 3’UTR shortening in tumor tissues cannot be 
explained by the proliferative cancer cells alone, but by a combination of most cell types 
composing the tumor tissue. Additionally, the proteins targeted by 3’UTR shortening are 
mostly implicated in protein metabolism and localization processes.  
Since we noticed that the 3’UTR annotations were incomplete, we developed a 
computational method that identifies novel poly(A) sites from scRNA-seq and termed it 
SCINPAS. It extracts poly(A) containing reads and identifies poly(A) sites irrespective of 
genome annotation. We assessed the performance of SCINPAS on systems with known effects 
and against a competing method. We demonstrated its usability and its ability to detect novel 
poly(A) sites in genic and non-genic regions.  
I have been involved in large collaborative projects, such as APAeval, where I was a main co-
organizer. The APAeval hackathon was a community-driven effort to evaluate tools related to 
APA analysis based on conventional RNA-seq data. We built a benchmark suite for the reliable 
and reproducible assessment of the tool’s performance against ground truth data. 
Furthermore, I co-developed ZARP, an RNA-seq workflow, which performs the basic steps of 
an RNA-seq analysis in an automatic and reproducible manner. ZARP follows best 
programming practices. 
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1 Introduction 

1.1. Cell types and cell states 
Each cell in a mammalian organism resides in a particular organ, resp. tissue, and has a 
function. For example, the human organism consists of over 200 cell types, ranging from stem, 
immune, bone, muscle to epithelial cells, as shown in the Human Cell Atlas (Regev et al., 
2017). And each type comes with a specific morphology, function, and molecular 
composition. Yet all cells stem from the same zygote and contain the same genetic 
information stored as DNA. This diversity is reached by the organized and structured way of 
“reading” the DNA. 
 

1.2. Gene expression 
The DNA is organized into chromosomes that carry sequences of bases. Chromosomes 
contain genes that are transcribed into messenger RNAs (mRNAs) by the RNA polymerase. 
mRNAs are translated into proteins by the ribosome. The set of all proteins in a cell, called 
the proteome, carries out the main functions of the cells. Proteins are also post-translationally 
modified, for example by phosphorylation and ubiquitination. These modifications can 
activate and/or repress proteins, thereby affecting many cellular processes, such as 
apoptosis, cell cycle, DNA transcription or immune responses (Blom et al., 2004; Caragea et 
al., 2007; Haltiwanger & Lowe, 2004; Karve & Cheema, 2011; Mann & Jensen, 2003; Ohtsubo 
& Marth, 2006; Ramazi & Zahiri, 2021; Strumillo & Beltrao, 2015; M. Wang et al., 2015; Wei 
et al., 2019; Y. Xu & Chou, 2015).  
In the past decades, lots of effort was put into measuring especially the transcriptomes of 
various cell types, with the idea that the mRNA level reflects the activity and functions of cells. 
However, the correlation between transcriptome and proteome is low (Dhingra et al., 2005; 
Rogers et al., 2008). This may have to do with the measurement technologies, but could also 
be due to the many layers of regulation between mRNA and protein.  Interestingly, a new 
technology has emerged, that of ribosome footprinting (Ingolia, 2010, 2016). It produces 
more comprehensive data on protein outputs and also with higher correlation with the 
protein level than the mRNA level measurements (Brar & Weissman, 2015; Eastman et al., 
2018; Riba et al., 2019). 
 

1.3. Transcriptome variation in single cells 
Up until recently, the transcriptome could only be measured from bulk samples consisting of 
many cells, which masked the individual types and their functions. With the advent and 
progression of single-cell transcriptomic technologies (Proserpio, 2019; F. Tang et al., 2009), 
the gene expression state of individual cells can now be measured, which enables the 
discovery of new functions and interplay between cell types (Elmentaite et al., 2022; Gulati 
et al., 2020; Hermann, 2018; Lambrechts et al., 2018; Laughney et al., 2020; Leader, 2021; 
Lukassen et al., 2018b; The Tabula Muris Consortium et al., 2018, 2020; The Tabula Sapiens 
Consortium & Quake, 2021; Travaglini et al., 2020).   
For example, tumor tissue is highly heterogeneous and consists not only of malignant cells, 
but also of transformed epithelial cells and invading immune cells, among others. The tissue 
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has its own microenvironment with surrounding blood vessels, signaling molecules and 
extracellular matrix (Alfarouk et al., 2011; Spill et al., 2016). 
In development, the stem cells in the developing organism proliferate and produce cells that 
differentiate and form the different organs and tissues with their own functions. 
For my Master thesis, I mathematically studied the build-up and development of mutations 
in healthy skin. This tissue is heterogeneous and consists of many different types including 
stem cells that renew and regenerate the skin. The growth of the tissue is constrained by its 
architecture. Therefore, the mutations that arise within a stem-cell niche cannot easily 
outcompete neighboring cells, decreasing the chance of selective sweeps. In contrast to that 
stands fluid tissue such as the blood, in which mutations conferring growth benefits are more 
easily and readily reaching saturation (Noble et al., 2021). 
 

1.4. Regulation of gene expression 
The production of proteins at the right location at right time is crucial for the functioning of 
the organism. Thus, the process of protein production starting from the DNA template (known 
as gene expression) is highly regulated to achieve the fine-tuned protein function and high 
diversity observed in higher animals. For example, not producing a protein in a tissue can have 
severe effects and cause diseases such as Albinism (Oetting & Adams, 2018) or 
Phenylketonuria (Blau, 2016). 
The genes in the genome are organized into chromatin, a complex of DNA and histones. The 
chromatin exists as euchromatin that allows the access of transcription machinery and 
heterochromatin that is condensed and restricts the access of the transcription machinery. 
Post-translational modification of histones as well as changes in the DNA such as methylation, 
lead to chromatin remodeling and thus regulate wide reaching genome regions, such as whole 
chromosome sections. Individual genes are regulated by the binding of transcription factors 
to promoters, enhancers and silencers.  
 

1.5. Co- and Post-transcriptional modifications 
During and after transcription of a gene into pre-mRNA, multiple processes modify the 
nascent transcript to produce the mature RNA molecule (Figure 1A). The pre-mRNA is capped 
at the 5’ end by adding 7-methylguanosines. The spliceosome carries out the splicing and also 
regulates the splicing pattern (e.g. exon exclusion). At the 3’ end, the pre-mRNA is cleaved by 
the 3’ end processing complex and then a tail of non-templated adenosines is added by the 
poly(A) polymerase (Figure 1B). Almost all eukaryotic mRNA and many non-coding RNA, in 
particular long non-coding RNA, are polyadenylated. Various RBPs attach to the RNA and 
regulate the fate of the molecule. 
The 3’ end processing complex, aka CPA machinery, carrying out the cleavage and 
polyadenylation consists of four subcomplexes, the cleavage and polyadenylation factor 
(CPSF), cleavage stimulation factor (CSTF), cleavage factor I and II (CFI and CFII), and other 
proteins including polyadenylate polymerase (PAP). The CPSF subcomplex recognizes the 
poly(A) signal, a hexamer with the canonical sequence AAUAAA, and cleaves approximately 
21 nucleotides downstream. The poly(A) signal is conserved between mouse and human and 
is present in the majority of poly(A) sites, though it has a number of functional variants (A. J. 
Gruber et al., 2016). Downstream of the cleavage site is also a U/GU rich region which is 
bound by a trimeric CSTF. CFIm 25, part of mammalian CFI (CFIm), binds on the UGUA motif, 
around 40 nucleotides upstream of the cleavage site. Less is known about the role of the 
subcomplex CFII. 
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The PAP adds a poly(A) tail to the 5’ cleavage product (extending the 3’ end of the transcript) 
and the poly(A) binding protein 1 (PABN1) stops the growth of the poly(A) tail once it reached 
around 250 nucleotides (Eckmann et al., 2011; Keller et al., 2000; Kühn et al., 2009; Park et 
al., 2016). The transcript is exported from the nucleus to the cytoplasm by binding the poly(A)-
binding protein (PABP). This can also recruit proteins that affect translation, one of which is 
eukaryotic initiation factor 4G (eIF4G), which is in the eIF4F complex that recruits the 40S 
ribosomal subunit. The ribosome assembles the 40S and the 60S subunits and starts 
translation (Gorgoni, 2004). For a schematic description see Figure 1C. 
The poly(A) tail is itself regulated and varies in length. During the mRNA’s lifetime, the initially 
250bp long poly(A) tail decays. The poly(A) tail is considered a key factor in regulating the 
stability and translational efficiency of the mRNA  (Bilska et al., 2022; Eckmann et al., 2011; 
Eisen et al., 2022; Legnini et al., 2019; Park et al., 2016; Subtelny et al., 2014). Deadenylation 
is the first step and typically controls mRNA decay. It is carried out by deadenylases that 
progressively remove adenosines from the 3’ end (Figure 1C). Once the poly(A) tail is 
removed, the mRNA can be degraded by the exosome (chapter 23 in (Rorbach & Bobrowicz, 
2014)). 
 
While a lot has been unraveled, the regulation of the various co- and post-transcriptional 
modifications is not understood in complete mechanistic detail. Here I focus on the 3’ end 
processing complex that carries out the cleavage and polyadenylation of the mRNA molecule.  
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Figure 1: Co- and post-transcriptional modifications of an mRNA molecule.  
A) The pre-mRNA (orange) is transcribed from the DNA (black) by the RNA polymerase II. It undergoes multiple 
maturation processes in the nucleus, including capping at 5’ end, intron removal by the spliceosome and 
cleavage and polyadenylation by the CPA machinery. Various RBPs interact with the nascent RNA molecule. 
Adapted from (A. J. Gruber & Zavolan, 2019). B) The CPA machinery in more detail. The CPSF subcomplex 
recognizes the polyA(A) signal, AAUAAA, and cleaves 21 nucleotides downstream at the PAS (black triangle). 
The UGUA motif 40 nucleotides upstream of the PAS is bound by CFI. CSTF binds U/GU-rich region downstream 
of the PAS. The role of CFII is not yet fully understood. The PAP adds numerous adenosines at the 3’ end of the 
RNA molecule and its length is regulated by PABN1. Adapted from (A. J. Gruber & Zavolan, 2019). C) Export of 
the matured RNA molecule into the cytoplasm. Through recruitment of PABP and the eIF4F complex containing 
eiF4G, the ribosome (40S and 60S subunits) is recruited and translation into the polypeptide (green) can be 
started. Translation is countered by mRNA decay. The mRNA decay pathway starts with the poly(A) tail 
degradation by deadenylases and ends with the mRNA being broken down in the exosome. The translation part 
is adapted from (Gorgoni, 2004). RBP: RNA-binding protein, CPA: cleavage and polyadenylation, CSTF: cleavage 
stimulation factor, CFI and II: cleavage factor I and II, PAP: polyadenylate polymerase, PABN1: poly(A) binding 
protein 1, PABP: poly(A) binding protein (aka PABP1), eIF4G and eiF4F: eukaryotic initiation factor 4G, eiF4F: 
eukaryotic initiation factor 4F complex, 40S: small subunit and 60S: large subunit or the ribosome. 
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1.6. Alternative polyadenylation 
Most of the human genes have multiple poly(A) sites (PAS) (Derti et al., 2012; Elkon et al., 
2013; Shepard et al., 2011; Tian, 2005), and thus, they typically generate multiple isoforms, 
depending on the cell type and condition. This process is called alternative polyadenylation 
(APA). The CPA machinery recognizes, dependent on the context, a more proximal or more 
distal PAS. Each of these PAS is recognized by its own motifs, the poly(A) signal upstream, the 
U/GU rich region downstream, and probably other signals that are recognized by various 
RBPs. How exactly the decision for the use of a specific PAS is made is still unclear. The CPA 
machinery itself as well as other regulators are involved  (A. J. Gruber & Zavolan, 2019; 
Mitschka & Mayr, 2022). The effects of perturbing the expression of CPA machinery factors 
are known, but the mechanistic details of 3’ end processing complex recruitment are 
unknown.  
RBPs can regulate poly(A) site choice, either directly as part of the of the CPA machinery or 
through binding adjacent regions (Yeo, 2014). The main isoforms resulting from APA are those 
which are polyadenylated in introns and those that differ in 3’UTR length (Mitschka & Mayr, 
2022). Alternative 3’UTR isoforms have been shown to play a role in the regulation of protein 
abundance, local translation and the formation of protein complexes (Fu et al., 2018; Mayr & 
Bartel, 2009; Sandberg et al., 2008). 
Alternative polyadenylation was studied in multiple human tissues and found to be tissue-
specific (Lianoglou et al., 2013; MacDonald & McMahon, 2010; E. T. Wang et al., 2008; H. 
Zhang et al., 2005). That is, the expression of APA isoforms of a given gene is unique to the 
tissue.  
 

1.6.1. Types of polyadenylation isoforms 
As mentioned above the alternative usage of poly(A) sites leads to transcript isoforms. 
Alternative PAS can be located on the same 3’UTR, leading to 3’UTR isoforms. It can also be 
that the PAS is located in an intron, leading to a composite terminal exon, essentially an 
extended version of an exon. The third type is using an alternative exon by which alternative 
splicing and polyadenylation give rise to a cassette terminal exon (A. J. Gruber & Zavolan, 
2019). Here we will concentrate on 3’UTR isoforms, that only differ in the length of 3’UTRs 
(Figure 2).  
The 3’UTR of an mRNA can contain various cis-regulatory sequence motifs and the long 3’UTR 
contains more. Most discussed among the regulatory factors are micro-RNAs (miRNAs) that 
bind to the long 3’UTR isoform to down-regulate the translation and stability of the mRNA. If 
the short 3’UTR isoform is expressed, the miRNA cannot bind and therefore not regulate the 
nascent transcript. The miRNA-dependent regulation of 3’UTR isoforms has been implicated 
in cancers (Mayr & Bartel, 2009; S. Xu et al., 2021; S. Yang et al., 2021). 
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Figure 2: Types of polyadenylation isoforms.  
The RNA (black line) can be composed of multiple terminal exons (TEs) (colored bars) and with multiple poly(A) 
sites (PAS) (triangle). The terminal exons consist of coding (tall) and non-coding (small) sequences. The CPA 
machinery recognizes, dependent on the context the different poly(A) sites and creates transcript isoforms. 
Terminal exons that are either processed at the distal or proximal PAS belong to the 3’UTR isoforms. The isoform 
at the distal PAS has a longer 3’UTR which contains additional cis-regulatory sequence motifs. Composite TEs 
result from processing of intronic PAS downstream of exons, essentially being extended version of an exon. 
Cassette TEs follows from the interplay between alternative splicing and polyadenylation. Selection of intronic 
PAS can lead to isoforms with truncated of the coding sequences. Adapted from (A. J. Gruber & Zavolan, 2019). 
 

1.6.2. Intronic polyadenylation 
Selection of an intronic poly(A) site can lead to the truncation of the coding sequences and 
therefore to a shorter protein product or a protein with a different C-terminal sequence.  
(A. J. Gruber, Gypas, et al., 2018) developed the TECtool that identifies terminal exons ending 
at intronic poly(A) sites by combining RNA-seq data with poly(A) site annotations. They 
showed that such sites have high prevalence in immune and germ cells. Similar results were 
obtained by (Singh et al., 2018), who analyzed 3’-seq and RNA-seq datasets from human 
tissues, immune cells, and multiple myeloma samples. They constructed an atlas of intronic 
polyadenylation events and found that such isoforms are often expressed in immune cells. In 
contrast, multiple myeloma cells have fewer intronic polyadenylation isoforms. 
(Lee et al., 2018) observed intronic polyadenylation in chronic lymphocytic leukemia. The 
truncated mRNAs lead to truncated proteins that lack tumor-suppressive functions, 
compared to the protein translated from the full-length mRNA. 
(R. Wang et al., 2019) reported that the protein PCF11, a component of the CPA machinery, 
regulates gene expression via intronic polyadenylation, depending on the length of introns. 
The downregulation of PCF11 during cell differentiation leads to an upregulation of genes 
with long introns (which tend to be related to cell morphology, adhesion, and migration). 
These studies show that alternative polyadenylation on intronic sites leads to alternative 
protein products and that it is tightly regulated in physiological conditions and dysregulated 
in disease conditions.  
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1.6.3. APA and its consequences in various cell types 
Alternative polyadenylation is an integral part of gene expression programs that are 
associated with physiological changes. During differentiation, the 3’UTRs tend to become 
longer, increasing the number of cis-regulatory elements that are available for recognition by 
RBPs. During proliferation, the 3’UTRs tend to become shorter, therefore decreasing the 
number of cis-regulatory elements (A. J. Gruber & Zavolan, 2019; Sandberg et al., 2008).  
(Z. Ji et al., 2009) reported that during mouse embryonic development many genes tend to 
express mRNAs with longer 3’UTR. Also (Shepard et al., 2011) showed with PAS-seq, a  
method for the specific capture and sequencing of mRNA 3’ ends, that many mRNAs acquire 
longer 3’UTR during differentiation from embryonic stem cells to neurons.  
 

In contrast, (Sommerkamp et al., 2020) showed that in hematopoietic stem cells a global 
3’UTR shortening occurs during differentiation and the transition from quiescent to 
proliferating cells. The authors used RNA-seq datasets of hematopoietic and progenitor cells 
(HSPCs) to study APA. While this appears to contradict previous studies that relied on other 
methods such as EST libraries (Z. Ji et al., 2009) or PAS-seq (Shepard et al., 2011), it is 
noteworthy that the system involves not only a differentiation process but also an increase in 
proliferation, thus processes that have been shown to have antagonistic effects on 3’UTR 
length.   
During B cell activation, the membrane-bound IgM is switched to the secreted form. This 
occurs when the concentration of CSTF2 increases, leading to proximal alternative polyA sites 
(Edwalds-Gilbert, 1997; Takagaki et al., 1996; Yao et al., 2012).  
 

In T cells, (Chuvpilo et al., 1999) has shown that the transcription factor NF-ATc switches from 
the distal PAS in naïve T cells to the proximal PAS in T effector cells, but more generally, 
activation of murine naïve T cells leads to global shortening of 3’UTRs (Sandberg et al., 2008).  
(Peattie et al., 1994) showed that the FKBP12 gene (the protein binds the 
immunosuppressants FK506 and rapamycin) encodes three transcripts containing the same 
open reading frame varying in the 3’UTR. The transcripts are generated by the processing of 
different splice junctions and multiple poly(A) sites. Upon in vitro activation of T cell 
populations, the transcripts with longer 3’UTRs increase in abundance and/or stability, 
suggesting that T cell activation requires more FKBP12 protein. 
The T cell activation model has been used in many studies of APA, including some that focused 
on the development of methods to infer poly(A) sites. The data from (Pace et al., 2018) was 
especially useful in demonstrating that single-cell sequencing data obtained with the 10x 
Genomics technology reveals poly(A) site with very high resolution. For this reason, this data 
is described in detail here. (Pace et al., 2018) studied the role of the histone methyltransferase 
Suv39h1 in silencing gene expression in murine CD8+ T cells. They infected CD8+ T cells with 
OVA-expressing Listeria monocytogenes (LM-OVA) bacteria and triggered their activation into 
CD8+ T effector cells. Suv39h1-defective CD8+ T cells were found to survive for longer and 
have a higher capacity for memory reprogramming. Single-cell RNA sequencing was done to 
analyze the heterogeneity of wild-type and Suv39h1 knockout LM-OVA infected CD8+ T cells. 
The authors purified these cells by fluorescence-activated cell sorting (FACS) 7 days after LM-
OVA infection and processed them for scRNA-seq. They sequenced around 1000 cells per 
mouse, 1 mouse for naïve, and 3 for infected cells (2 technical replicates and one biological 
replicate), in total around 4’000 cells.  
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Another system broadly used for method development in the APA field is mouse 
spermatogenesis. During this differentiation process  progressive 3’UTR shortening occurs 
during the maturation of germ cells to sperm (Bao et al., 2016; W. Li, 2016; D. Liu et al., 2007). 
Spermatogonia stem cells differentiate (mitotic division) into primary and secondary 
spermatocytes (meiotic division I), which form elongating, condensing and round spermatids 
(meiosis II), and finally spermatozoa (spermiogenesis). There are a number of scRNA-seq 
experiments that are useful for the study of APA.  
(Lukassen et al., 2018b) sequenced over 2’500 cells from the mouse testis to comprehensively 
characterize the mouse transcriptome during spermatogenesis. The study specifically 
described rare cell populations. The authors prepared cell suspensions for two 8-week-old 
C57BL/6J mice and obtained approximately 1’250 cells for each mouse. The cell type 
annotation was performed by clustering the cells and checking the expression of over 200 
published spermatogenesis stage markers.  
(Hermann, 2018) gathered the single cell transcriptome of over 62’000 cells from immature 
and adult male mice and adult men. Similar to (Lukassen et al., 2018b), cell types and subtypes 
were identified with known spermatogenic cell type specific marker genes. Besides this, the 
cell types were also compared against the results of sorted cell types from FACS or gravity 
sedimentation. 
APA is also a prominent mechanism for regulating gene expression in neurons. In these cells, 
the transcript isoforms using a distal terminal exon or proximal PAS are preferentially 
localized in the neurites instead of the soma. Such isoforms are induced during differentiation 
(Taliaferro et al., 2016). (Guvenek & Tian, 2018) showed that neurons have the longest 3’UTRs 
among the cell types of the brain and that 3’UTRs lengthen during neurogenesis. 
 

1.6.4. APA in cancer 
Alternative polyadenylation is also reported in diseases, in particular in the majority of 
cancers (A. J. Gruber, Schmidt, et al., 2018; Z. Xia et al., 2014). Generally, cancer cells tend to 
express mRNAs with shortened 3’UTRs, consistent with the reported 3’UTR shortening of 
proliferative cells. The causes likely are a combination of genetic alterations, global 
upregulation of 3’ end processing factors and other regulators. Genetic alterations can lead 
to the loss of poly(A) sites which, in turn, leads to reduced 3’ end processing and decreases 
mRNA expression. The gain of poly(A) sites by mutation has the opposite effects.  Mutations 
in genes encoding the CPA machinery are likely causing a global perturbation of the poly(A) 
site usage. But these two processes do not quantitatively explain the changes in poly(A) site 
usage (A. J. Gruber & Zavolan, 2019). So, changes in other genes can impact the regulation as 
well. RNA-binding proteins play a major role both in the formation and the function of mRNAs 
with alternative 3’UTRs. RBPs involved in splicing are often found to regulate APA too, and 
since polyadenylation is co-transcriptional, also transcriptional processes influence PAS 
choice (Tian & Manley, 2017). 
In the context of cancer, it is interesting to mention the 3’UTR-dependent regulation of the 
anti-apoptotic protein CD47. CD47 can translocate from the endoplasmic reticulum to the 
plasma membrane depending on the 3’UTR isoform from which it is expressed. Binding of the 
HuR RBP to the long 3’UTR isoform recruits SET to the translation site, enabling the joining of 
RAC1, which leads to the translocation of CD47 to the plasma membrane. This mechanism, 
called 3’UTR-dependent protein localization (UDPL) appears to apply to  a number of proteins 
(Berkovits & Mayr, 2015). 
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Lung cancer appears to be the cancer with the most prevalent and drastic shortening of 
3’UTRs (A. J. Gruber, Schmidt, et al., 2018; Mayr & Bartel, 2009; Z. Xia et al., 2014). As single-
cell sequencing data sets are generated at an astounding pace, it became possible to study 
the polyadenylation landscape of cancers in great detail.  
(Lambrechts et al., 2018) studied the tumor microenvironment (TME). They obtained the 
single cell transcriptomes of over 92’000 cells from human lung tumor and matching non-
malignant lung samples. They identify 52 stromal cell subtypes with new subpopulations in 
cell types previously considered homogeneous and validated them on selected markers with 
immune-histochemistry.  
(Laughney et al., 2020) studied the emergence of regenerative cell types in human primary 
lung adenocarcinomas (a type of non-small cell lung cancer). For this they obtained single-cell 
transcriptomes of over 40’000 cells from 17 human tissue samples from primary and 
metastatic lung adenocarcinoma including matching non-malignant tissue samples. They find 
a high level of immune cell infiltration in their cohort, with cancer cell fraction ranging from 
7 to 32% per sample. 
To gain more insight, whether only the cancer cells are perturbed and show the association 
to proliferative cells, or whether perturbations in other cell types can explain the global 3’UTR 
shortening in transcripts, we make use of the single-cell transcriptomics data of lung cancer 
with matched normal tissue and develop the method SCUREL to detect 3’UTR changes 
between two conditions (see section 2). 
 

1.7. Approaches to the inference of APA  
The process of cleavage and polyadenylation has been studied  for some time, e.g. (Niwa & 
Berget, 1991; Sheets et al., 1994). A variety of methods have been developed to take 
advantage of all types of sequence information available at a given time, starting from the 
rather low coverage and low resolution expressed sequence tag (EST) and microarray data. 
 
The first global studies of APA - ESTs and microarrays EST databases made it for the first time 
possible to study APA on multiple genes (Elkon et al., 2013). Various groups catalogued APA 
and performed motif enrichment searches to uncover sequence elements involved in the 
recognition of poly(A) sites (Ara et al., 2006; Beaudoing, 2000; Legendre, Matthieu et al., 
2006; H. Zhang et al., 2005).  The first method for global quantification of gene expression 
was based on cDNA microarrays. In this approach, cDNAs are used for the in vitro 
transcription of biotin-containing RNAs, which are then hybridized to a chip containing a vast 
number of gene-specific probes and then quantified. When the probes come from regions of 
transcripts that identify specific APA isoforms (e.g. a probe comes from the coding region of 
the mRNA and another from the long form of the 3’UTR), the microarray data can, in principle, 
reveal the relative usage of proximal and distal poly(A) sites in a 3’UTR.  
(Sandberg et al., 2008) took advantage of microarray data to carry out the first global analysis 
of APA in resting and activated T cells. 
(Hu et al., 2014) performed a meta-analysis for APA events from public mouse microarray 
data. They found that global differential APA affects the biological processes development, 
differentiation, and immune responses, and observed differential APA in RBP-encoding genes 
such as Rbm3, Eif4e2 and Elavl1. Since RBPs regulate APA, the authors further analyzed 
crosslinking and immunoprecipitation (CLIP) data for selected RBPs, concluding that Nova2 
represses and Mbnl1 promotes the usage of proximal PAS. 
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Lembo & Provero in chapter 12 of (Rorbach & Bobrowicz, 2014) describe their computational 
method to analyze alternative 3’UTR isoforms from Affymetrix 3’ IVT microarray data, which 
tends to capture the 3’ ends of the probes. They used public data, mainly from Gene 
Expression Omnibus (Barrett et al., 2012), to study retrospectively APA in cancer. 
 
Thus, microarray-based analysis provided the first insights into the prevalence of APA as a 
mechanism of gene regulation, particularly in cancer. However, microarrays are rather limited 
by their design, that is the choice of probes and therefore which transcripts can be measured 
and make it very difficult to study anything in APA beyond  the switch in usage between two 
APA isoforms (Z. Ji & Tian, 2009; Sandberg et al., 2008). 
 

1.7.1. Inference of PAS usage with dedicated 3’ end RNA-seq protocols 
The prevalence of APA revealed by the above-mentioned studies prompted the development 
of experimental methods that use the poly(A) tail to capture and enrich mRNAs. In contrast 
to standard RNA-seq, these methods yield reads from around the poly(A) site and do not have 
a uniform read distribution along transcripts. Poly(A) sites are then inferred from peaks in the 
read coverage along the genome. Compared to previous EST libraries or microarray 
databases, the use of RNA-seq made the approach truly transcriptomic, as each expressed 
transcript in a sample could be measured without prior selection of genes of interest. For a 
recent overview of  3’ end tailored methods see Table 1 in (A. J. Gruber & Zavolan, 2019). 
Multiple groups developed 3’ end sequencing approaches. 
Using this kind of data various atlases have been built for mammals including human and 
mouse  (Herrmann et al., 2019; Muller et al., 2014; R. Wang, Nambiar, et al., 2018; You et al., 
2015). For example, the polyAsite atlas (Herrmann et al., 2019) contains over 569’000 poly(A) 
sites for Homo sapiens (GRCh38.96), inferred from 221 samples from ten different protocols 
with a total of over 1 billion reads. The atlas can be added to the UCSC genome browser or 
be downloaded as BED formatted file for own use.  
These atlases are great for studying APA and a good reference, but the samples used do not 
cover all organs and tissues in enough depth of the organism in question.   
 

1.7.2. Inference of PAS usage with bulk RNA-seq data 
3’ end sequencing is not nearly as commonly used as bulk RNA-seq. Thus, the vast availability 
of short-read RNA-seq prompted the development of computational methods that can infer 
poly(A) site usage from bulk RNA-seq data. The principle is that while the read coverage 
profile along a gene is uniform, drops in the coverage occur when a 3’UTR isoform terminates.  
Although many tools have been proposed, in our group (A. J. Gruber, Schmidt, et al., 2018) 
developed PAQR that quantifies PAS usage from RNA-seq data. It uses the read coverage 
profile to subdivide 3’UTRs, respectively terminal exons which include the 3’UTR, based on 
known poly(A) sites from the polyAsite atlas (Herrmann et al., 2019). It finds the PAS used in 
the sample by optimally parsing the coverage of 3’UTRs by reads, given the available poly(A) 
sites, calculating the mean squared error (MSE) between up- and downstream regions and 
comparing it against the overall MSE around the candidate PAS. Finally, after the PAS are 
identified, the normalized expression and relative usage within a terminal exon is calculated. 
The relative PAS usage of a sample can be summarized by calculating the average terminal 
exon length over all transcripts by summing the relative frequency and the length of the 
terminal exon in bases and normalized by the maximum length. This yields a measure in 
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percent that equals to 0 when the proximal site is exclusively used and 100 when the most 
distal site is exclusively used. 
Various other methods have been developed to identify and quantify PAS and ultimately 
detect differential APA from RNA-seq data. (Chen et al., 2020) reviewed these methods. They 
classify them into methods requiring a-priori annotations of poly(A) sites (MISO, Roar, QAPA, 
PAQR), transcript reconstruction (PASA, Scripture, Cufflinks, 3USS, ExUTR), poly(A)-capped 
reads (KLEAT, ContextMap2), or based on read coverage profile fluctuations (PHMM, GETUTR, 
ChangePoint, EBChangePoint, IsoSCM, DaPars, APAtrap, TAPAS). The authors benchmark the 
methods on RNA-seq and real PAS data sets from human, mouse, and Arabidopsis and on 
simulated data. They match the predicted PAS to real ones with some flexibility by allowing a 
particular distance (e.g. 50bp) to an annotated PAS. If the prediction is within such a distance, 
it is considered a true positive, else a false positive. They calculate various performance 
metrics, including sensitivity, precision, and Receiver Operating Characteristic curves. They 
conclude that TAPAS has generally the best PAS prediction performance, although it 
overestimates the number of APA sites and the genes with differential APA. They also note 
that the overall prediction of all methods studied is only mediocre and the overlap between 
methods is small.  
 
(Shah et al., 2021) benchmarked TAPAS, QAPA, DaPars2, GETUTR and APAtrap against 3’-Seq, 
a 3’ end-based RNA-seq protocol, and Iso-Seq, a single-molecule full-length RNA-seq method. 
They first showed that all methods can define poly(A) sites with some reliability, like having 
the poly(A) signal in their vicinity or being in an annotated 3’UTR, but that 3’-Seq and Iso-Seq 
are performing better. Next, they benchmarked the methods using RNA-seq and 3’-Seq 
against Iso-Seq and found that a maximum of 75% of Iso-Seq PASs can be identified by those 
methods. Also, the similarity in number and distribution of PAS is bigger between 3’-Seq and 
Iso-Seq compared to the RNA-seq based methods. The PAS identification and quantification 
is more variable for the RNA-seq methods. Estimating isoform abundance from RNA-seq is 
difficult, as only short snippets of transcripts are sampled and alternative transcripts can 
overlap each-other. These authors suggested that it is not always wise to create specialized 
datasets for studying APA, also given the plentiful public RNA-seq datasets. Although, 
combining small, specialized data with large amount of RNA-seq data can be a good balance 
for the near future. 
 
Benchmarking studies that were done so far provide a good overview of the different 
methods available, but they did not thoroughly evaluate the scope of the methods for 
analyzing APA. For example, some methods are designed to identify PAS, others to detect 
3’UTR shortening or lengthening, the latter also expressed in different metrics. On the 
technical side, these studies did not provide an easy integration of additional datasets or 
computational methods.  
We therefore sought to tackle these limitations in a benchmarking effort called APAeval that 
led to the comprehensive evaluation of computational methods that use RNA-seq to study 
APA, in a reproducible and open-source environment. APAeval also brought together 
researchers from the experimental and the computational side in a collaborative manner (see 
section 4). 
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1.7.3. Inference of PAS usage with single cell sequencing methods 
Bulk sequencing methods of course mask cell-type specific APA effects. The tissue normally 
consists of multiple cell types, such as connective, epithelial, immune, or specialized cells 
(Regev et al., 2017; The Tabula Muris Consortium et al., 2018). Cell isolation from solid tissue 
may be challenging.  This is not a problem for suspended cells such as those in the blood 
where the cell types can be separated by various means like centrifugation. In-vitro studies 
can circumvent this issue as well, as cell lines can be used. However, for clinical studies, only 
tissue sections can be obtained. For example, lung cancer patients provide their cancerous 
but also adjacent healthy tissue (Lambrechts et al., 2018; Laughney et al., 2020).  
 
The first method to measure the transcriptome of single cells has already been described a 
decade ago (F. Tang et al., 2009). There exist various single-cell sequencing (scRNA-seq) 
methods, each with its own focus and goal. The main purpose is to characterize 
heterogeneous tissues on the level of individual cells and their transcriptional states. This 
enables the detection of rare subpopulations, which would be masked by bulk sequencing 
methods. This is a more unbiased way compared to FACS, which relies on enrichment of cells 
with surface protein expression. The scRNA-seq methods vary by their throughput, sensitivity, 
and scalability. 
While most studies concentrate on profiling gene expression, the technique specifically 
captures the 3’ end of transcripts. Thus, scRNA-seq can be used to interrogate the cleavage 
sites and study APA with very high resolution, of individual cell types and, to an increasing 
extent, of single cells (W. Ye et al., 2022).  
 
The experimental protocol BATSeq by (Velten et al., 2015) is used to quantify various 3’UTR 
isoforms at single cell resolution. It integrates unique molecular identifiers (UMIs) and a PAS 
mapping protocol to develop barcoded, 3’ specific sequencing method (BATSeq). These 
authors used BATSeq to sequence and retain 107 mouse embryonic and neural stem cells. 
With Bayesian modeling they found variability in isoform choice across single cells in 
consistent populations, and  that cell types can be distinguished by their 3’UTR isoform usage 
(Y. Gao & Li, 2021). 
Since BATSeq is tailored to study APA in single cells, it is very specialized and only few public 
datasets are available. The more general scRNA-seq methods focus on gene expression, which 
is a more common field of study, and are therefore more readily available. This trend is similar 
to bulk RNA-seq and dedicated 3’ end protocols. 
 

1.7.3.1. Droplet-based methods 
Droplet-based scRNA-seq methods such as 10x Genomics and Drop-seq are among the most 
popular choices in large scale studies, as they offer simultaneous measurement of thousands 
of cells and are therefore considered high-throughput. They are in general more cost-
effective and cut the library preparation cost to one tenth compared to FACS approaches (like 
CEL-Seq2 or Smart-seq2). The technical variation with 10x Genomics has decreased compared 
to bulk 3’ end sequencing. This enabled the study of APA at cell type resolution (Mitschka & 
Mayr, 2022). However, as generally only the 3’-end of the transcript is measured, information 
such as internal exon isoform is lost. This additional information can be obtained by full-length 
transcript approaches such as Smart-seq2 (Proserpio, 2019). 
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Figure 3: Library generation with Chromium Single Cell 3' v2. 
A) Schematic of read generation with 10x Chromium Single Cell 3’ v2 library. The genomic sequence (blue) is 
transcribed into RNA (shaded orange). The library preparation involves reverse transcription, template 
switching, enzymatic fragmentation and two rounds of PCR amplification steps. This yields a double stranded 
fragment with cell and unique molecule identifiers (BCs - green), poly(T) inclusion (light green) and the insert of 
the RNA molecule. The standard stranded sequencing of read 1 gives the barcodes and read 2 the insert. 
Mapping of read 2 from the same molecule yields a slightly different position because of the fragmentation 
(different shading). Some read insertions were short enough such that the poly(T) section of the fragment was 
sequenced, which produces non-templated adenosines. B) Example of a raw coverage profile obtained by 
CellRanger, from a 10x library. The reads are heavily enriched around the 3’ end of the transcript. The whole 
Cdc42 region is shown on the left and the terminal exon on the right. The alignments are sorted by cell barcode 
and colored by the UMI barcode. The PCR duplicated reads are visible as reads belonging to the same cell and 
having the same UMI. Data from (Pace et al., 2018). 
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The main principle of droplet-based methods is to capture single cells in droplets, where they 
are prepared with reagents for sequencing. Afterwards, the cells are pooled together and 
sequenced as in conventional short-read RNA-seq.  
The most prominent and widely used droplet-based scRNA-seq protocol is from Chromium 
10x Genomics, a public company designing and manufacturing sequencing technologies for 
research. The library generation of Chromium Single Cell 3’ v2 libraries is depicted in Figure 
3A. In short, the cell within a droplet (termed Gel Bead in Emulsion, GEM) is lysed and 
together with the other components (oligos and Master Mix) full-length, barcoded cDNAs are 
generated. The mRNA transcripts with poly(A) tails are captured by oligo(dT) primers, the 
reverse transcriptase extends the poly(A) tail and the template switch oligo is added via a 
template switch reaction to the 5’ end of the transcript, yielding a single-stranded, barcoded 
cDNA molecule. These molecules from single cells are pooled after breaking the GEMs. A bulk 
PCR-amplification is performed to obtain enough double-stranded cDNAs. Enzymatic 
fragmentation creates fragmented cDNAs that are size-selected for optimal insert size for 
library construction. Read 2 is added by adapter ligation, Illumina P5 and P7 sequences and 
the sample index sequences are added during the sample index PCR. The final library 
fragments are made up of the P5, P7, read 1 and read 2 sequences, used for Illumina paired-
end sequencing (commercial kits, see https://www.illumina.com). Read 1 contains the cell 
barcode (CB), which is specific for each droplet, and the UMI, which is used to track the 
transcripts and delineate from PCR duplicates. Read 2 contains the mRNA-derived fragment. 
The reads can be conveniently mapped on a transcriptome with the 10x Genomics-provided 
software called CellRanger (Zheng et al., 2017). Interestingly, even though this sequencing 
method is 3’ end based, it normally does not capture the cleavage and polyadenylation sites 
of transcripts. This is because the sequencing is done from the 5’ end of terminal fragments, 
and may not reach into the poly(A) tail. However, it can happen that the fragment contains 
parts of the polyA tail, being apparent as adenosines at the 3’ end not mapped to the genome. 
An example coverage profile of a gene and its terminal exon is shown in Figure 3B. We take 
advantage of such reads in the SCINPAS method that we developed to identify experimentally 
supported PAS from 3’ end based scRNA-seq data (section 3). 
 
(Macosko et al., 2015) developed Drop-seq, a droplet-based technique to measure the 
transcriptome of thousands of cells. A single cell suspension is prepared, each cell is captured 
into a DNA-barcoded bead with a custom microfluidics device. Once in the droplet, the cells 
are lysed, and the available mRNA is captured onto a microparticle with oligo(dT) primers. 
These loaded microparticles are reverse-transcribed with template switching forming beads 
called STAMPs. These barcoded STAMPs are pooled, amplified with PCR, and sequenced with 
high-throughput RNA-seq. Like 10x Genomics, paired read 1 contains the barcodes and paired 
read 2 the transcript sequences (typically 50bp of length). This sequence is aligned to the 
genome and the gene count matrix can be constructed.  
 

1.7.3.2. FACS-based methods 
CEL-Seq (Hashimshony et al., 2012) was the first to use in vitro transcription for linear RNA 
amplification, in contrast to PCR amplification by other methods. This also eliminates the 
need for template switching increasing the sensitivity. CEL-Seq uses an oligo(dT) primer with 
a cell barcode and selects the 3’ ends of the transcripts. The library construction is based on 
bulk RNA-seq. The cells can be pooled early on, and the library is sequenced as paired-end 
short reads, where read 1 contains the barcodes and read 2 the transcript-derived sequence. 

https://www.illumina.com/
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Its successor CEL-Seq2 (Hashimshony et al., 2016) uses UMIs which reduces amplification 
biases further. CEL-Seq works on manually selected or FACS sorted cells and is a plate-based 
protocol (typically on 96 or 384 well plates). Automation and microfluidic devices can be 
combined to increase the throughput. The original protocol was modified into MARS-seq 
(Jaitin et al., 2014) and APA-seq (Levin et al., 2020). APA-seq uses by default both reads to 
capture the 3’ ends, read 1 for the exact cleavage site and read 2 for locating the gene. The 
authors note that APA-seq is in principle applicable to any poly(A) anchored RNA-seq method, 
including 10x. But this would require that the read 2 containing the barcodes needs to be 
sequenced into the poly(A) tail and into the 3’UTR, which seems unfeasible.   
 
Detection and separation of cells with FACS (Ibrahim & van den Engh, 2007; Julius et al., 1972) 
is not always possible. Maybe the sample is too small and not enough material can be 
obtained. Or the cell types of interest are not known or described in enough detail, like a rare 
subpopulation, and thus markers for FACS separation are not available. Currently, FACS can 
simultaneously measure  around 10 fluorescence markers (Autissier et al., 2010; 
Chattopadhyay et al., 2008; Chattopadhyay & Roederer, 2012; Maes et al., 2020; Perfetto et 
al., 2004), which is a limitation. Furthermore, differentiating cells are often defined by their 
lack of surface protein expression. Thus, FACS makes sense for settings where the cell type of 
interest is known and expresses specific surface proteins that can be detected with 
fluorescence markers.  
 

1.7.3.3. Full-length scRNA-seq 
Smart-seq2 (Picelli et al., 2014) is a method that captures full-length transcripts and therefore 
enables isoform analysis, including APA isoforms. It relies on the SMART technology 
(switching mechanism at the 5’ end of the RNA transcript) and is based on reverse 
transcription and template switching. Single cells are lysed, and mRNA transcripts captured 
with oligo(dT) primers. Reverse transcription is carried out and template switching introduces 
2-5 untemplated C nucleotides at the 5’ end. The template switching oligonucleotide (TSO) 
adds helper oligonucleotides for stable annealing. Then the cDNA strand can be synthesized, 
which enables the amplification of the entire transcriptome in a single PCR reaction. These 
full-length fragments need to be fragmented because the method relies on Illumina short-
read sequencing. The most popular choice for this is to use the tagmentation reaction, a 
neologism from Illumina for tagging and fragmentation of the double-stranded DNA with a 
prokaryotic Tn5 transposase. A second PCR amplification enriches the sequences and adds 
the Illumina sequences (P5, P7 and sample index) required for the library. The library can be 
sequenced in single- or paired-end mode (Proserpio, 2019). 
(Ziegenhain et al., 2017) evaluated six scRNA-seq methods and found Smart-Seq2 to have the 
highest sensitivity. Smart-Seq3 increases the sensitivity by detecting more transcripts per cell 
(Hagemann-Jensen et al., 2020). Smart-Seq3 is 5’ end-based and cannot be used for profiling 
APA.  
Caveats of the method are the comparatively low throughput because the cells can only be 
pooled after tagmentation, just before library preparation. The cells are collected manually 
or by FACS and deposited in single tubes or in 96-, 384-well plates. Also, the method is not 
strand-specific and therefore unique assignment of reads mapping to overlapping genes is 
impossible. And common to the other methods, Smart-seq2 cannot detect RNAs other than 
polyadenylated RNAs, like microRNAs, non-polyadenylated long non-coding RNA, or PIWI-
interacting RNAs. 
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1.7.3.4. Microarray-based methods 
(Han et al., 2018) developed Microwell-seq, a high-throughput and low-cost scRNA-seq 
method. The cells are loaded onto an agarose microarray and the mRNAs captured with 
magnetic beads. Each bead contains 107 to 108 oligonucleotides, consisting of a cell barcode, 
a UMI, a poly(T) tail, and a primer sequence. The cells are lysed and beads with mRNAs are 
retrieved with a magnet. The beads are collected in tubes to perform reverse transcription 
and template switching using the Smart-seq2 protocol (Picelli et al., 2014). The amplified 
cDNAs are fragmented with a customized transposase, during PCR the 3’ ends of the 
transcripts are enriched and sequenced with Illumina Hiseq platform.  
These authors used their Microwell-seq to create a mouse cell atlas with all major cell types. 
The preprint by (Fansler et al., 2021) used this atlas to quantify 3’UTR isoforms with the open-
access pipeline scUTRquant. They use the fact that Microwell-seq reads cover the transcripts 
cleavage site and contain poly(A) bases.  
 

1.8. Computational methods for studying APA from single cell transcriptomics 
The detection of PAS and the quantification of APA isoform changes from single-cell RNA-seq 
data is non-trivial due to the complex technical and biological issues associated with the data 
acquisition. 
Various computational methods were developed, dealing with the challenges in various ways. 
Some rely solely or primarily on the genome annotation, others use scRNA-seq data and PAS 
databases, some predict PAS de novo using the 3’ end nature of the scRNA-seq protocols. The 
computational methods using scRNA-seq data can broadly be categorized into peak calling 
and density-based methods. (C. Ye, Lin, et al., 2020) note that the peak calling methods have 
troubles with the sparsity of the 3’end based scRNA-seq datasets and the density-based 
methods cannot quantify PAS usage. They state a potential way to improve it is to include PAS 
databases. 
 

1.8.1. Genome sequence-based methods 
(Leung et al., 2018) developed a convolutional neural network (CNN) called Conv-Net that 
predicts tissue-specific strength of PAS from genomic sequence alone. The model can discover 
sequence motifs irrespective of location and prior knowledge. The model can also predict 
which PAS is more likely to be selected in genes with multiple sites. The Conv-Net model is an 
artificial neural network and requires training for the regression task. The training data 
consists of the sequence of a pair of PAS from a gene and the regression target is their relative 
read counts. The authors compare Conv-Net with a set of hand-crafted features including the 
poly(A) signal, called Feature-Net. The AUC for PAS selection performance between 
competing sites across different tissues is pretty much the same between Feature-Net and 
Conv-Net, suggesting that Conv-Net learns the already known motifs. 
(X. Gao et al., 2018) developed DeepPolyA that uses a deep CNN to classify plant Arabidopsis 
thaliana gene sequences into PAS or not PAS, that is into the binary classes positive or 
negative. For training the CNN model the authors used 13’427 positive sequences and 13’427 
negative sequences. The positive sequences were obtained from a dataset and the negative 
ones by randomly sampling sequences from the Arabidopsis Information Resources database. 
DeepPolyA visualizes the first convolutional layer as sequence logo, and they show that it is 
able to learn poly(A) signal motifs without prior knowledge. It outperforms other machine 
learning and deep learning methods on metrics such as area under the receiver-operating 
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characteristic curve and Matthew’s correlation coefficient (or mean square contingency 
coefficient; measure of association for two binary variables).  
(Z. Xia et al., 2019) developed DeeReCT-polyA, a CNN for poly(A) signal identification (in 
contrast to the poly(A) site). The DNA sequence is one-hot encoded, as in the other CNN-
based models, for representing the four nucleotides and is classified on whether a poly(A) 
signal is found. The authors state that the 16 filters of the first layer are basically sequence 
motif indicators. The training involves discriminating true poly(A) signals from pseudo signals 
and they visualize the convolutional filters as sequence logos. The performance is evaluated 
with the error rate, which they define as 1 minus the accuracy. They show that DeeReCT-polyA 
has the lowest average error rate on the Dragon (Kalkatawi et al., 2013) and Omni (Magana-
Mora et al., 2017) human poly(A) data compared to three other methods.  
(Arefeen et al., 2019) developed DeepPASTA, a tool to predict PAS from both sequence and 
RNA secondary structure data. The RNA secondary structure is predicted by RNAshapes 
(Steffen et al., 2006). The contribution of the RNA secondary structure on the prediction 
performance of PAS is not too big in regards of AUC (area under receiver operating 
characteristic) and AUPRC (area under precision-recall curve) values, but still consistently 
outperforms a similar model without the secondary structure. The authors extended the 
method to predict tissue-specific PAS. Also, it can predict the most dominant PAS of a gene in 
a specific tissue and relative dominance when two PAS of the same gene are given. The 
training data consists of read counts and is taken from the polyA-Seq data in (Derti et al., 
2012), with a similar procedure as in (Leung et al., 2018). This experimental method is used 
to globally map poly(A) sites in 24 matched tissues in human, mouse and other organisms. 
These authors also compared their method against (X. Gao et al., 2018; Leung et al., 2018; Z. 
Xia et al., 2019) and two other methods. 
(Bogard et al., 2019) proposed APARENT, a model that predicts the proximal-to-distal APA 
isoform ratio from DNA sequence alone. The model also revealed the cis-regulatory code for 
APA, visualized as sequence logos, with known motifs but also unknown sequence motifs of 
3’ end processing. The model was also developed to engineer poly(A) signals computationally 
and some predictions were validated experimentally. 
 
These methods and models make use of the genomic sequence around the poly(A) site, to 
predict novel poly(A) sites and in some instances their relative usage within a gene. However, 
it seems they retrieved mainly the previously known sequence motifs, such as the canonical 
poly(A) signal. Also, these methods disregard gene expression profiles (W. Ye et al., 2022). As 
these methods rely on DNA sequence alone, they are not able to infer and study cell-type and 
tissue-specific effects. 
 

1.8.2. Methods that use the genome annotation 
These methods do not identify novel PAS but rather study APA. They make use of the genome 
annotation, which can be considered previous knowledge, especially in comparison to 
methods relying on genomic sequence alone.  
MAAPER (W. V. Li et al., 2021) uses a likelihood model to predict PAS from 3’ end-based reads. 
First, the method learns the distance of reads to PAS from genes with one PAS only. These 
genes are obtained from the PAS database PolyA_DB (v3) (R. Wang, Nambiar, et al., 2018) . 
Second, PAS are predicted and quantified by a likelihood model. The model uses the 
annotated PAS in genes by the same PAS database and estimates their proportions. They 
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extend the procedure to select PAS based on the statistical significance such that MAAPER 
uses as few annotated PAS as possible. 
Sierra (Patrick et al., 2020) uses splice-aware peak calling to identify potential PAS, which are 
used to build an annotated UMI count matrix for each gene. The peak is called by fitting a 
Gaussian distribution to the read count using NLS (non-linear least squares). A drawback is 
that it does not infer PAS usage in single samples but can only compare cell types in a pairwise 
fashion.  
scAPA (Shulman & Elkon, 2019) does peak identification with Homer’s function findPeaks 
(Heinz et al., 2010). Peaks overlapping 3’UTRs (from the GENCODE annotation) were used as 
PAS and reads within the peaks counted. A Gaussian finite mixture model was used to split 
nearby peaks. This was the first method to explore APA on single cell resolution by calculating 
the mean proximal peak usage index. The authors found a strong correlation of APA status 
with cell type, though an open question is whether this is to some extent due to the sparsity 
of coverage in scRNA-seq. These results provided a proof-of-principle that scRNA-seq can be 
used for analysis of APA regulation. 
scMAPA (Y. Bai et al., 2022), single-cell multi-group identification of APA, is a computational 
change-point algorithm and a statistical model. It uses 3’UTR annotations to estimate the 
abundance of long, resp. short 3’UTR isoforms. The method identifies APA genes across 
multiple cell types with quadratic programming by extending DaPars v.2.0 (L. Li et al., 2021). 
The authors compared their scMAPA against scAPA and Sierra. scMAPA is more sensitive and 
has similar specificity against scAPA using simulated data. Performance evaluation with PBMC 
data (from the 10x Genomics website) on the proportion of annotated PAS from polyA site 
atlas (Herrmann et al., 2019) showed that scMAPA outperforms scAPA and Sierra. scDAPA 
was not used, as no PAS or similar are returned. 
scDAPA (C. Ye, Zhou, et al., 2020) is a histogram-based method to detect APA. The 3’ ends of 
reads in gene regions are divided into distinct bins of equal width. A site distribution 
difference (SDD) index is calculated to quantify the APA difference between two conditions. 
Significance is assessed by Wilcoxon rank-sum test, adjusted for multiple testing (BH) and 
genes with SDD > cut-off and p-value < cut-off are considered as APA genes. This tool can 
only compare cell types in a pairwise fashion. 
scDaPars (Y. Gao et al., 2021) is an application of DaPars (Z. Xia et al., 2014) to single cells to 
identify and quantify APA events. For each gene and cell, the APA usage is measured by the 
Percentage of Distal poly(A) site Usage Index. The higher the index, the longer the 3’UTR. This 
index can only be estimated for genes with enough coverage. To recover more genes and 
indices, the authors impute indices by a non-negative least square regression model on 
neighboring cells based on the APA profile. The authors applied scDaPars on primary breast 
cancer and endoderm differentiation datasets and were able to characterize APA variations 
and cell subpopulations in single cells. 
 

1.8.3. De novo identification of polyA sites 
SAPAS (Y. Yang et al., 2021) is a method for identifying poly(A) sites from 3’ tag-based scRNA-
seq based on poly(A)-containing reads. The trimmed poly(A) and the other non-poly(A) reads 
are mapped with HISAT2 to the ENSEMBL annotation. Poly(A)-containing reads are filtered 
for internal priming (more than five consecutive adenosines 20 base-pairs downstream of 
reads 3’ end). The 3’ ends of the reads falling into 3’UTR regions of GENCODE annotation are 
clustered (20 bp distance) and filtered based on expression. The peak/mode of the cluster 
region is assigned as poly(A) site. This means that SAPAS does de novo PAS identification, but 
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only in known 3’UTR regions, and thus no novel PAS is reported in intergenic (also within 1kb 
of 3’UTR regions), exonic or intronic regions. 
SCAPE (R. Zhou et al., 2022) is a probabilistic mixture model for identification and 
quantification of poly(A) sites in single cells by utilizing insert (read: fragment) size 
information. The data is modelled as a mixture of K isoform components and one noise 
component. Each component has three parameters: mean, standard deviation and weight. 
For paired-end sequencing, the insert size can be estimated. The poly(A) length distribution 
can be estimated from poly(A) site covering reads. The number of components is selected 
using the Bayesian Information Criterion. Expectation-Maximization is used to infer the 
parameters. The authors benchmarked SCAPE on simulated data for precision and recall 
against Sierra, scAPAtrap, scAPA, SCAPTURE and MAAPER. SCAPE had the highest recall and 
2nd highest precision and in total the highest F-score.  
scPolyA-pipe (J. Wang et al., 2022) uses scPolyA-seq, which is based on Smart-seq2, so full-
length transcript reads are used. It uses reads with poly(A) tails (consecutive A’s within or at 
the end of the read) for the identification of poly(A) sites. Only these reads are mapped and 
each read’s 3’ end considered as poly(A) site position by merging nearby sites. Internal 
priming events are defined as more than five consecutive adenosines or more than 14 
adenosines in the 20 bp downstream region of the PAS. 
scAPAtrap (Wu et al., 2020) performs detection poly(A) sites based on peaks, searched in the 
genome. An additional module (findTails) identifies poly(A) sites based on A/T stretches (start 
or end of the read unaligned to the reference genome). The authors also reason that poly(A)-
containing reads are not stemming from internal priming and therefore the anchoring step 
would remove possible such events. 
scUTRquant (Fansler et al., 2021) is a method for single cell 3’UTR isoform quantification, 
which uses Microwell-seq to construct an atlas of poly(A) sites. Cleavage sites were directly 
read out from the read alignments to genome. Those that overlapped with annotated genes 
or with cleavage sites from the polyA site atlas (Herrmann et al., 2019) were kept. The 
remaining cleavage sites were filtered for possible internal priming events and whether they 
mapped within 5’000 bp downstream of known transcripts sites. This approach led to the 
addition of approximately 10’000 cleavage sites to the GENCODE annotation, which were 
used for APA quantification. However, the procedure does not allow to include novel intronic 
or intergenic cleavage sites.  
SCAPTURE (G.-W. Li et al., 2021) uses the 3’ end-based nature of 10x Genomics. PAS are 
identified by peak calling using Homer (Heinz et al., 2010). High confidence PAS are obtained 
by a deep learning method which classifies sequences into PAS or no-PAS based on the 
genomic region around the putative PAS in question. The DL method (DeepPASS) was trained 
on PAS databases.  
 

1.9. Internal priming 
An important challenge in calling poly(A) sites coming from oligo(dT)-based methods is that 
the primer can align to internal A-rich region of a transcript. This is especially a problem in 
scRNA-seq, because many of the transcripts are pre-mRNAs, containing still unprocessed 
introns.  For the annotation of poly(A) sites this is of particular interest as internal priming 
leads to a region as falsely marked as a poly(A) site. Most computational methods using 
scRNA-seq data deal in one way or another with possible internal priming artefacts. In most 
cases, these artefacts are identified based on a number of adenosines downstream of the 
possible cleavage sites (Agarwal et al., 2021; Y. Bai et al., 2022; Shulman & Elkon, 2019; J. 
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Wang et al., 2022). Some methods check the downstream region instead (G.-W. Li et al., 2021; 
Y. Yang et al., 2021). In early EST-based studies, the frequency of internal priming during the 
reverse transcription step was estimated to be up to 12% (Nam et al., 2002).  
Methods based on bulk RNA-seq that rely on oligo(dT) primers deal in one way or another 
with internal priming. Putative internal priming events are removed by considering the reads, 
their mapping positions, and the genomic sequence (G. Ji et al., 2015). 
For the construction of the quantitative atlas of poly(A) sites, (Derti et al., 2012) dealt with 
internal priming by considering the genomic sequence downstream of the reads. They built 
an empirical model to give a probability of any given site being a true polyadenylation site.  
(Sheppard et al., 2013) used a naïve Bayes classifier to identify internal priming events. The 
classifier was trained on RNA-seq and PAS-Seq data with true positive and true negative 
poly(A) sites. Their naïve Bayes classifier outperformed the heuristic filters, such as 8 As 
downstream within 10 nucleotides window and 8 adenosines downstream plus no poly(A) 
signal. In this way they were able to identify novel poly(A) sites. 
(L. Wang et al., 2013) used a combination of motifs upstream and downstream from the 
defined cleavage site and assigned 3Seq read peaks into four classes. The peaks within the 
class without a canonical poly(A) signal but with an A-rich region mostly stemmed from 
internal priming. They validated the results by demonstrating that the expected position-
dependent nucleotide bias and PAS-associated sequence motifs in their vicinity. The study 
showed that real poly(A) sites could be reasonably well distinguished from sequencing 
artefacts.  
The deep learning neural network DeepPASS (G.-W. Li et al., 2021) successfully identifies 
internal priming events. The classification model was trained on sequences around poly(A) 
sites and assigns probabilities of each peak being a poly(A) site. 
(Svoboda et al., 2022) dedicatedly developed polyAfilter, an algorithm to filter out internal 
alignments based on stretches of adenosines in genomic sites. The tool can be applied to both 
single-cell and bulk RNA-seq data. 
There are also methods that read out cleavage sites directly from reads that still contain 
poly(A) tails (Wu et al., 2020). These tails do not map to the genome, so they appear as soft-
masked regions of the reads flagged by some of the mapping programs.  
 
We deal with internal priming in SCINPAS (section 3) by considering poly(A) containing reads 
only. Reads that have soft-clipped (i.e. not mapped to genome) bases at the 3’ end and whose 
soft-clipped regions are sufficiently A-rich are called polyA reads. Also, most computational 
methods focus on predicting PAS in 3’UTRs, but with dedicated 3’ end sequencing protocols 
intronic and exonic PAS are found (W. Ye et al., 2022). Since in SCINPAS we consider poly(A) 
containing reads, we can predict PAS outside of 3’UTRs.  
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2 Development of a computational method to 
detect changes in 3’UTRs 

My first project was stimulated by Mihaela and had the aim to quantify the 3’UTR changes in 
tumor tissue compared to matched normal tissue on the level of cell types. The motivation 
thereof was that the tumor tissues were known to exhibit global 3’UTR shortening compared 
to healthy counterpart. It is also known that tumor tissue is made up of a variety of cell types. 
Furthermore, previous studies have shown that proliferating cells and activated immune cells 
(specifically T cells) exhibit widespread 3’UTR shortening. It was unclear, however, whether 
only perturbations in cancer cells or a combination of cell types can explain the 3’UTR changes 
in the tumor tissue. With the appearance of single cell transcriptomics, it was now possible 
to study changes in 3’UTR length on the level of individual cell types.  
At that time, no computational method was available to perform this task, so I developed 
SCUREL, a method to quantify 3’UTR length changes. SCUREL compares two sets of cells in 
annotated 3’UTRs on the read density and computes a summary statistic. With the use of a 
statistical background distribution, we are able to detect genes with significant changes in 
3'UTR length. We assessed the performance on two datasets with known effects, namely T 
cell activation and spermatogenesis. By then, a competing method was available. We 
compared the performance of SCUREL against this competitor and found that SCUREL was 
more sensitive and detected more genes with 3’UTR length changes. Next, we carried out the 
analyses from two studies of the same lung cancer type with matching non-tumor tissues. 
The multi-study approach gave a more robust assessment. We found a myeloid to lymphoid 
switch in lung tumor, but the RNAs coming from immune cells were not enough to explain 
the observed 3’UTR shortening pattern in in the pseudo-bulk profile. We analyzed the cancer 
cells against their putative origin, the alveolar cells and found genes involved in the protein 
metabolism to be targeted by 3’UTR shortening. The SCUREL analysis on individual cell types, 
contrasting tumorous and matching non-tumor tissues, revealed conserved targets of 3’UTR 
shortening. Taken together, we found that most cell types within tumor tissues are involved 
in 3’UTR shortening, and the proteins targeted are enriched in protein metabolism and 
organization of subcellular structure.  
SCUREL and its results are published at the RNA journal (Burri & Zavolan, 2021) and are 
available in Appendix A. It includes the correction we recently introduced regarding the 
wording of spermatogenesis. Supplemental table 1 is not provided in the appendix, please 
refer to the supplementary material of the RNA journal publication. 
 
Since the publication SCUREL has been cited by several publications. For example, (W. Ye et 
al., 2022) mention it in their survey of methods predicting poly(A) sites as a method for APA 
analysis rather than poly(A) site prediction from scRNA-seq data. (Mitschka & Mayr, 2022) 
cite it for the global 3’UTR shortening in spermatogenesis. 
 
I was able to apply SCUREL on a large aging mouse bone marrow dataset generated in our 
group, see the section 2.1. below. This project involved the identification and annotation of 
major cell types in multiple conditions and the subsequent differential gene expression 
analysis between those conditions. The SCUREL analysis would reveal the extent and direction 
of 3’UTR changes between the conditions. 
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2.1. Application of SCUREL on aging bone marrow in mice 
2.1.1. Introduction 
Hematopoiesis is the process by which the blood components are formed. Daily, the bone 
marrow produces numerous cells to maintain steady state levels in the peripheral circulation. 
A pool of hematopoietic stem cells (HSCs) resides in the bone marrow, around two to five 
HSCs per 105 total bone marrow cells (Geiger et al., 2013). The pool of HSCs is sustained, as 
they divide asymmetrically, and some daughter cells remain HSCs. The other daughter cells 
differentiate into common lymphoid or myeloid progenitor cells. The lymphoid progenitors 
give rise to T and B lymphocytes and natural killer cells. The common myeloid progenitors 
further differentiate into granulocytes (neutrophils, basophils, and eosinophils), 
macrophages, thrombocytes, and erythrocytes (red blood cells).  
One well-known hallmark of aging in human physiology is cellular senescence, the reduction 
in the renewal capacity of various systems (Ferrucci et al., 2020; Geiger et al., 2013; Y. Liu et 
al., 2022). Alternative splicing and polyadenylation have been found to play a role in cellular 
senescence (Deschênes & Chabot, 2017; H. Li et al., 2017; Shen et al., 2019; L. Wang et al., 
2020). 
The number of phenotypic HSCs increases with aging, probably because of increased self-
renewal activity of aged HSCs. Also, in aged mice, the common myeloid progenitors increase, 
but the common lymphoid progenitors decrease in numbers, causing a myeloid skewing 
(Andersson & Florian, 2022; Geiger et al., 2013). 
(Sommerkamp et al., 2020) demonstrated that the APA regulator Pabpn1 is required for HSC 
function and that global 3’UTR shortening during differentiation into effector cells happens. 
APA regulates an isoform switch in the glutamine metabolism which is necessary for proper 
HSC self-renewal and stress response.  
 
In mice, various life-span prolonging treatments exist. One of which is caloric restriction (CR), 
in which the nutrient intake is limited normally to approximately 70% of the normal feeding. 
CR has systemic effects and impacts many tissues. (Swindell, 2008) find in a comprehensive 
microarray data study that stress-response pathway is a shared response to CR. CR has been 
shown to reduce the risk of chronic diseases (Ryu et al., 2022).  
CR also affects the hematopoietic system. (M. Bai et al., 2022) find that intermittent CR mice 
have more reticulocytes (immature red blood cells), and continuous CR mice have more red 
blood cells and hemoglobin. They conclude that short-term intermittent, but not continuous 
CR, has a profound effect on hematopoiesis, which can improve a form of acute anemia in 
mice.  
The chemical compound rapamycin has anti-aging effects (J. Li et al., 2014; Y. Zhang et al., 
2021). Rapamycin, aka Sirolimus and marketed as Rapamune is an immunosuppressant that 
is delivered after organ transplantations, among other treatments (European Medicines 
Agency, 2001). Rapamycin acts by inhibiting the kinase mammalian target of rapamycin 
(mTOR). mTOR exists in two complexes, mTORC1, which main role is to activate protein 
translation and the subsequent outcome is cell growth, proliferation and building the actin 
cytoskeleton (Lipton & Sahin, 2014). mTORC2, the second complex, is rapamycin-insensitive, 
has similar functions to mTORC1, but also promotes activation of insulin receptors and 
insulin-growth factor 1 receptors (Yin et al., 2016). Both treatments have similar but distinct 
life-prolonging effects in aging skeletal muscles (Ham et al., 2022).  
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Taken together, hematopoiesis is changing in aging and some anti-aging treatments have an 
impact on this system. We are wondering whether the treatments could slow-down or revert 
some of the aging effects and how, to better understand the molecular underpinnings. 
Furthermore, APA regulates HSC development and could therefore also be involved in the 
aging bone marrow. 
 

2.1.2. Data and Methods 
To study the effects of the treatments on the aging bone marrow, adult mice (10M) were 
treated with CR, rapamycin, or kept as control and fed ad-libitum. The four conditions were 
measured in triplicates, giving a total of 12 mice (Figure 4A). Among other tissues, the bone 
marrow was collected and the single cell transcriptome of around 80’000 cells was obtained.  
 
The single cells of the scRNA-seq dataset were annotated with the haemopedia RNA-seq 
database (Choi et al., 2019). The database consists of over 120 mouse samples of the bone 
marrow and each sample is characterized by the cell type, immunophenotype (surface 
protein markers) and the cell lineage. The cell type is used as label and occurs in two or more 
samples.  
The gene expression profile of an individual cell is compared pairwise against the gene 
expression profile of each label from the reference dataset with singleR (Aran et al., 2019). 
The classifier is trained on the known labels, detecting marker genes between labels. The 
Spearman’s rank correlation is computed for each cell-label pair and the label with the highest 
score is assigned. An additional fine-tuning step increases resolution and resolves similarly 
high scores by re-computing marker genes. Low scores are pruned, leaving some cells 
unassigned because they do not resemble any label in the reference dataset. The cells are 
visualized in two dimensions by selecting the 10% most variable genes, performing PCA, 
selecting the first 8 PCs for dimensionality reduction with UMAP (McInnes et al., 2018) (Figure 
4B). 
 

2.1.3. Results 
We observed a similar lymphoid to myeloid skewing in age. The fraction of cell lineages 
changes in age, particular the B, T cell, erythrocyte, macrophage, neutrophil and restricted 
potential progenitor lineages. The CR treated mice exaggerate the aging effects. Rapamycin 
treated mice seem to revert this change and look more like young mice again. For example, 
the fraction of cells from the erythrocyte lineage increases in age, further increase after CR 
treatment, but revert to the fraction of the young mice in rapamycin treated aged mice 
(Figure 4C).  
We find less cells from spleen and peripheral blood in aged mice. The erythrocyte lineage 
consists mostly of the reticulocytes, the most differentiated cell type of the lineage. In line 
with previous findings, the hemoglobin expression increases along the differentiation.  
Differential gene expression (DGE) was performed for selected cell types between the 
conditions. The cells of a type and sample were pooled into a pseudo-bulk sample, summing 
the counts per gene. DGE was performed with the function pseudoBulkDGE from the R 
package scran (Lun et al., 2016) using contrasts. The method wraps edgeR’s (Robinson et al., 
2010) quasi-likelihood method, meaning that cell types of sample triplicates are compared 
among the contrasts old versus young, CR vs old and rapamycin vs old.  
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The results show that differentially expressed genes exist between the conditions for cell 
types of the erythrocyte, T cell, B cell, neutrophil, and restricted progenitor lineage. The 
results for two cell types of the erythrocyte lineage are shown in Figure 4D. Generally, the 
genes are not enriched in specific pathways or GO terms. The gene Uba52 is consistently 
expressed in young, but not in old or treated mice. It has a role in development. Cdc42 
regulates cell cycle and is pretty much exclusively expressed in young mice.  
 
We checked the changes in 3’UTR length with the same cell types and condition comparisons. 
For this we applied SCUREL (Burri & Zavolan, 2021) on the mapped reads. We find during 
aging the majority (approximately 80%) of 3’UTR events are lengthening events. For the CR 
and rapamycin treatments compared against the age mice, we find approximately equal 
3’UTR shortening and lengthening events (Figure 4E). Pathway enrichment analysis of 
affected genes does not yield much, as only few 3’UTRs show significant changes. 
 

 
Figure 4: Aging bone marrow analyses. 
A) Study set-up of aging bone marrow in mice. The single-cell transcriptome of four conditions in triplicate were 
measured with 10x Genomics. The comparisons performed are 1: old versus adult, 2: caloric restriction (CR) 
versus old, 3: Rapamycin (RAPA) versus old. B) UMAP representation of the 12 mice. Each point represents an 
individual cell, 87’704 cells in total. Colored by cell lineages for better visualization. See main text for information 
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on the annotation procedure. C) Fraction of cell lineages per sample, separated by condition (color). Boxplots 
combine the triplicates. D) Differential gene expression analysis in subset of erythrocyte lineage. At least one 
comparison in each row is statistically significant. Each column corresponds to a comparison and is numbered 
as in A. E) SCUREL analysis. Fraction of 3’UTR shortening per cell type in the old versus adult (orange), CR versus 
old (green) and RAPA versus old (purple) comparisons. 
Panels A-D adapted from a Poster I presented during the PhD retreat 2022. Cell types from haemopedia mouse 
RNA-seq database (Choi et al., 2019). CD4/8T: Total CD4/8+ T cell, CFUE: Erythroid Colony Forming Unit, EoP: 
Eosinophil Progenitor, EryBlPB: Polychromatic erythroblasts (some Basophillic erythroblasts), EryBlPO: 
Polychromatic erythroblasts (some Orthochromatic erythroblasts), Fob: Follicular B cells, GMP FcgRCD150: 
FcgammaR+ CD150+ Progenitor, GMP IRF8hi/int: IRF8 High Granulocyte Macrophage Progenitor, GMP_IRF8lo: 
IRF8 Low Granulocyte Macrophage Progenitor, MonoBM: Total Monocyte Bone Marrow, MonoPB: Total 
Monocyte Peripheral Blood, MZB: Marginal zone B cells, NeutBM: Bone Marrow Neutrophil, NeutPB: Peripheral 
Blood Neutrophil, NK: Mature Natural Killer Cell, pDC: Plasmacytoid dendritic cell, PlsC: Bone marrow plasma 
cells, Retic: Reticulocyte. 

 

2.1.4. Discussion 
Taken together, we find that the aging effects are nuanced and systemic, having small 
changes in many genes. This is not surprising, as aging affecting the whole organism and thus 
has systemic and far-reaching effects on many processes and genes. APA seems to play a role, 
but it’s unclear what exactly. 
To elucidate further, one could analyze the differential gene expression changes and APA not 
by the strict and rigid fold change-based methods, but rather with gene set enrichment 
analysis. The GSEA is better able to find small but consistent effects.  
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3 Identification of de novo polyadenylation 
sites with SCINPAS 

Mihaela and I experienced during the SCUREL analyses, that the 3’UTR annotations in the 
genome seemed incomplete. We first thought that we cannot infer the cleavage sites directly 
from the sequenced reads. But we noticed that reads with non-templated 3’ ends were 
available and wondered whether those could be indicative of a cleavage site. We performed 
a preliminary check which revealed that a steady small percentage of reads do contain non-
templated adenosines. This motivated us to start to investigate this in more detail and identify 
de novo poly(A) sites directly from the reads.   
At that time a Master student joined the group and we started to develop a workflow 
extracting poly(A) containing reads from publicly available scRNA-seq datasets based on 10x 
Genomics. We worked on the workflow together and I supervised him throughout and after 
his Master thesis.  
We termed the workflow SCINPAS, an acronym for single cell identification of novel poly(A) 
sites. SCINPAS takes as input mapped reads and performs a custom deduplication step, 
favoring distal reads. This increased the fraction of reads with non-templated 3’ ends 
compared to the standard approach. Since the mapping procedure was not always accurate, 
we included a correction step that mapped-back soft-clipped, i.e. non-templated, nucleotides 
at the 3’end if they matched the genomic sequence. This increased the mapped part of the 
read. The cleavage site of such reads was defined as the 3’ end-most nucleotide that reached 
a pre-defined number of mismatches to the genomic sequence. Poly(A) containing reads were 
identified as reads with soft-clipped 3’ ends that were sufficient in length and consisted 
mostly of adenosines. To decrease variability, we clustered cleavage sites as in (A. J. Gruber 
et al., 2016) and annotated the most-frequently used genome position as poly(A) site.  
We ensured the justifiability of the obtained poly(A) containing reads by comparing them to 
known and trustworthy poly(A) sites from terminal exons and the polyAsite atlas by 
(Herrmann et al., 2019). I assessed the performance of SCINPAS to similar methods that also 
perform poly(A) site identification from scRNA-seq data. Because a method already carried 
out a benchmark and it favored reasonably well, I evaluated the performance of SCINPAS 
against this one method. We found that SCINPAS compared well, as it not only identified 
poly(A) sites in terminal exons but also in intronic and intergenic regions. We further assessed 
the capability of SCINPAS to identify novel poly(A) sites in genic and non-genic regions by 
checking the poly(A) signal motif distributions in various annotation classes. Finally, we 
applied SCINPAS on a large scRNA-seq dataset to demonstrate its generality and usefulness. 
We measured the reliability of inferred poly(A) sites based on the poly(A) signal motifs. Taken 
together, SCINPAS is able to identify poly(A) sites from scRNA-seq data, in an autonomous 
and robust procedure. 
 
The manuscript is published in NAR Genomics and Bioinformatics (Moon et al., 2023) and 
available in Appendix B.  
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4 Benchmark of computational tools that 
study polyadenylation 

Alternative polyadenylation can be studied with the wealth of data generated by 
conventional RNA-seq. Various computational tools have been developed, with diverse 
purposes and assumptions. It was continuously more difficult to keep track of their 
practicality and limitations. The need for a test suite to benchmark and compare the tools got 
more urgent. The APAeval challenge set out to establish a benchmark for tools for the 
identification and quantification of poly(A) sites from RNA-seq data. The APAeval challenge is 
conducted by an international community of researchers ranging from RNA biologists to 
bioinformaticians. It started as an online hackathon, a collaborative event with several people 
to write computer programs, during the RNA Society meeting in 2021.  
 
We reviewed 17 tools and benchmarked 8 for their performance. The tools participated in 
the identification and/or absolute quantification and/or relative quantification challenges. 
For example, some tools would only perform one task such as identification of poly(A) sites, 
so it would only participate in the identification challenge. We treated 3’-end sequencing data 
as ground truth and therefore selected a range of such data with matching RNA-seq data. We 
selected datasets from human and mouse organism as well as synthetic data. We used a range 
of metrics to assess the performance. We used and developed a suite of workflows, packaged 
into containers, discrete environments that contain only the operating system and the 
application to run. The workflows were used for the consistent and reproducible execution 
of the tools and computation of the metrics. We found varying performance of the tools 
across factors such as tissue. We believe that our APAeval benchmarking suite is a valuable 
resource for researchers to pick an appropriate tool for their task at hand. The manuscript is 
published in the RNA journal (Bryce-Smith et al., 2023) and can be found in Appendix C. 
 
I was a main co-organizer of the APAeval challenge during the RNA Society meeting in 2021. 
This involved the preparation of pilot workflows, that exemplify their usage and that can be 
used as a template for productive workflows. I structured the work by dividing it into work 
packages and monitored their timely completion during the hackathon. We quickly realized 
that the resources would not be enough for a timely finish during the RNA Society meeting. 
We therefore presented the progress and decided to continue afterwards. During this longer 
period, I was planning and organizing regular meetings. I was involved in the programming of 
workflows for the tool executions and their integration into the OpenEBench online platform. 
In the later stages, I was more and more involved in the selection and visualization of 
identification and absolute quantification metrics, in addition to drafting and writing the 
manuscript.    
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5 Development of an automated RNA-seq 
pipeline 

 
Our group performed RNA-seq experiments on a regular basis. But the analysis was specific 
to the experimentalist or bioinformatician. We therefore sought to harmonize and automate 
the initial steps in an RNA-seq analysis. Another main objective was to work collaboratively 
and practice good programming principles. We developed ZARP, Zavolan-Lab Automated 
RNA-seq Pipeline, a general-purpose RNA-seq analysis workflow that executes the basic steps 
of short-read sequencing libraries. ZARP makes use of publicly available tools and packages 
them into an easy-to-use workflow. The input can either be either the nucleotide sequence 
in a fastq-formatted file or a public accession number for automated download. The user 
needs to provide metadata in a sample table and configure the workflow. The workflow can 
be run locally or on a high-performance cluster. One of the main outputs is an interactive 
report displaying all available quality metrics of the samples executed. The mapped reads are 
reported in standard files. Gene and transcript expression levels are also reported. We believe 
ZARP will help in the autonomous and reproducible analysis of RNA-seq samples, both for 
experimentalists and bioinformaticians alike. The manuscript is published as pre-print 
(Katsantoni et al., 2021) and available in Appendix D.  
 
I was mainly involved in the development and software engineering parts of the project. The 
project had a participatory and democratic spirit, but other group members were in charge 
and made decisions about the design and direction of the project. I incorporated the 
annotation of reads into genomic classes. We decided to use an open-source method and I 
designed tests to ensure the proper execution covering the different library types. I also 
developed a sub-workflow for the automatic download of fastq files from public accession 
numbers.  
I executed ZARP on several in-house data sets, including one from another research group. 
This enabled me to give a quick overview of the sample quality and proceed with downstream 
analyses if needed. A group from another university executed ZARP and reached out to us 
because they had some difficulties. I gave guidance and helped to troubleshoot their problem. 
In both settings, this gave me the chance to collect and report on problems and 
improvements, not only on the technical but also conceptual side. 
 
We continued to improve and extend ZARP by simplifying and reducing the amount of 
metadata needed for execution. I was mainly involved in the initial set-up of the new 
command line interface, which is implemented as an object-oriented python class. 
Furthermore, we tested ZARP on multiple organisms to showcase its strength. The updated 
version will soon be submitted to a peer-reviewed journal.  
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6 Current and future prospects 

6.1. State of my work 
I developed a sensitive computational method to detect 3’UTR changes and named it SCUREL, 
short for single cell 3’ untranslated region lengths. Given that the annotation of PAS in 
genomes is incomplete, we developed SCUREL to be agnostic to PAS annotation and robust 
with respect to the sparsity of the scRNA-seq data. I showed that SCUREL works by applying 
it to ground truth datasets, where the dynamics of PAS usage changes is knowns. SCUREL 
recapitulates the global 3’UTR shortening upon T cell activation and spermatogenesis. 
Furthermore, I compared the results against the competitor method available at the time and 
showed that SCUREL is generally more sensitive, detecting even small changes in PAS usage 
given limitations in the 3’UTR annotations. Application of SCUREL to single cell sequencing 
data from lung cancers revealed widespread 3’UTR shortening in cancer cells compared to 
the non-malignant counterpart, the alveolar epithelial cells. The proteins encoded by the 
genes that exhibited 3’UTR shortening were enriched in protein metabolism and traffic. I 
applied SCUREL analysis on all major cell types of the lung tissue to find out whether the global 
3’UTR shortening occurs in all cells in the tumor microenvironment. I found that most cell 
types experience a trend towards 3’UTR shortening in tumor samples. Targets of 3’UTR 
shortening in T and myeloid cells were enriched in cellular components such as membranes, 
vesicles, and granules. Lastly, I analyzed the variability in 3’UTR shortening between patients. 
I found that two patients were highly similar with a clear trend of 3’UTR shortening, whereas 
the third patient displayed rather 3’UTR lengthening across cell types. Enrichment analyses 
of targeted genes of 3’UTR shortening strengthened the notion that transport processes are 
affected. Taken together, SCUREL makes use of widely employed scRNA-seq data and enables 
the PAS-agnostic analysis of 3’UTR changes between two sets of cells. 
 
Given that the annotation of 3’UTRs and, consequently, PAS are incomplete, we sought to fill 
this knowledge gap by developing a computational tool to infer PAS from scRNA-seq data. We 
developed SCINPAS, short for single cell identification of novel poly(A) sites, that extracts 
reads with non-templated poly(A) tails, which provide experimental support for the poly(A) 
site. PAS clusters corresponding to individual processing sites and taking into account known 
imprecision in 3’ end processing, were recovered by a modification of the conventional 
process of de-duplicating reads with the same unique molecular identifier. SCINPAS favors 
the 3’-most reads, and includes a custom procedure that corrects the read-to-genome 
alignment to more reliably identify the location of the last mapped nucleotide of a transcript. 
Closely spaced PAS were gathered into clusters and reported as PAS clusters, with the most 
frequent position reported as a representative PAS. We demonstrated that most of the 
retrieved PAS clusters from SCINPAS fall within few nucleotides of annotated terminal exons. 
Furthermore, we showed that the PAS clusters show the expected enrichment of poly(A) 
signal variants around 20 nucleotides upstream. We evaluated SCINPAS’s ability to identify 
non-canonical PAS on two systems with such dynamics, namely T cell activation and 
spermatogenesis. SCINPAS was also able to identify novel PAS in genic and non-genic regions, 
as the enrichment of poly(A) signals upstream of these PAS demonstrated. Furthermore, 
application of SCINPAS to a subset of the Tabula Muris Senis data (The Tabula Muris 
Consortium et al., 2020) demonstrated the robustness of our tool to retrieve PAS from various 
samples. We assessed the performance of SCINPAS against the main current competitor and 
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found that our tool retrieves more de novo PAS in non-canonical locations, such as intronic, 
exonic and intergenic regions. Moreover, due to its model-free nature, SCINPAS has much 
higher resolution in pinpointing the location of the 3’ end cleavage compared to its 
competitor. In summary, SCINPAS makes use of the 3’ end-biased nature of scRNA-seq data 
to identify novel poly(A) sites again without relying on genome annotation.  
 
I have also been involved in large collaborative projects, such as APAeval, where I was a main 
co-organizer. The APAeval hackathon was a community-driven effort to evaluate tools related 
to APA analysis based on RNA-seq data. The hackathon was held online during the RNA 
Society meeting in 2021, was continued afterwards and culminated in a state-of-the-art 
benchmarking effort whose results we are about to submit for publication.  
The objective was to assess the performance of various open-source computational tools that 
use the vast collection of conventional RNA-seq datasets data to infer poly(A) sites and/or 
quantify their usage, and to do this as a collaborative team of researchers from RNA biology, 
bioinformatics, and software development. The numerous tools were assessed on their 
assumptions and unique limitations and classified into the tasks of identification, absolute 
and relative quantification. Some tools could not be integrated in the benchmarking study as 
they made too specific assumptions, did not generate clearly interpretable metrics or were 
too brittle to install and run. We developed and used benchmarking workflows to ensure the 
uniform, comparable, reusable, and reproducible execution of tools and the computation of 
performance metrics. To aid the analyses, the tools and the benchmarking workflows were 
packaged into Docker containers (Merkel, 2014). The performance metrics were computed 
against 3’ end sequencing data obtained from the same cellular systems as the RNA-seq data, 
which we treated as ground truth. We selected high quality RNA-seq datasets with matching 
3’ end sequencing data from human and mouse and simulated data, based on isoform 
expression distributions and read coverage profiles observed in real data sets. We observed 
varying performance of the tools across organisms, tissues and dependent on the availability 
of poly(A) site databases. This benchmarking resource is available for biologists and 
bioinformaticians alike and will assist to select an appropriate tool, based on the needs of any 
user’s study.  
 
Our group regularly performed RNA-seq experiments, but no standard approach to assess the 
quality of obtained the sequences existed. The bioinformaticians in our group therefore 
sought to develop an automated workflow to process RNA-seq data and provide an initial 
assessment of sample composition. Beyond this, another main purpose was to work 
collaboratively and to learn best practices in software engineering in a largely remote working 
environment, during the COVID pandemic.   
We developed ZARP (Zavolan-Lab’s Automated RNA-seq Pipeline) that uses state-of-the-art 
bioinformatics tools bundled into a Snakemake (Koster & Rahmann, 2012) workflow (see 
section 5). ZARP handles bulk, stranded, single or paired-end RNA-seq data, can run on a local 
computer or on a high-performance cluster. A final report provides a detailed summary of the 
numerous sample and quality statistics. Following best practices, ZARP makes use of 
continuous integration with the automatic execution of integration tests upon code changes. 
We demonstrated ZARP’s capabilities on several datasets from different organisms. ZARP 
requires a sample table with metadata such as library type, read orientation, or organism. To 
further facilitate its use, we developed zarp-cli, the command line interface to ZARP. It utilizes 
the HTSinfer package, also developed in our group, to infer the missing metadata. It also 
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enables the download of samples from the Sequence Read Archive. After the inference, zarp-
cli executes ZARP automatically. With ZARP, we developed a flexible, versatile and multi-
purpose RNA-seq pipeline that will simplify the first steps in RNA-seq analyses. 
 

6.2. Biological implications 
With single cell transcriptomic data, I was able to study alternative polyadenylation and 3’UTR 
isoform expression in more depth than ever before. The link between APA and cell states 
seems clearer. The regulation of APA and the impact of other regulatory mechanisms are 
explored in more detail. The progress in spatial transcriptomics will enable an even more fine-
grained view of APA.  
 

6.2.1. APA as a manifestation of cell states  
In my work, I found that APA is cell type-specific and that changes mirror cell state transitions. 
That APA is cell type-specific was already known from previous studies with other 
technologies (e.g. microarray and bulk RNA-seq). However, my SCUREL analysis of single cell 
RNA-seq data provided a greatly increased resolution, added another viewpoint and 
reinforced the notion of cell type-specificity of APA. We showed that in human lung cancer 
APA is widespread, that most major cell types are affected, and we identified differences 
between the tumors and matched normal tissues. We found common biological processes 
affected by APA, but also individual cell type-specific effects. Also, we showed that APA is to 
some extent patient-specific, which could be a reflection of the heterogeneity of the tumor 
makeup (i.e. the differing driving mutations), even though the tumors were classified as lung 
adenocarcinomas, the most frequent type of non-small cell lung cancer. Differences in sample 
collection procedure could also play a role. 
Analyses of datasets from different tissues, including T cells from spleen and liver and 
spermatocytes from testis, revealed and reinforced the tissue-specificity of APA. We observed 
a clear separation between proximal and distal usage in spermatogenesis, in contrast to a 
more nuanced and slight changes in T cell activation and in cancer. Also, the set of genes that 
are affected by APA is different, signifying the tissue-specific nature of APA.  
These insights hinge primarily on the cell type annotation, which is constrained by the sparse 
transcriptomic measurements of the single cell RNA-seq technology. For a detailed discussion, 
see section 6.3. . In carrying out the analyses, we realized that the annotation of PAS and 
3’UTRs is still highly incomplete, as many 3’ end clusters mapped to regions that did not have 
PAS annotations. This is why I have worked along two lines: developing a method to estimate 
3’UTR lengths that does not rely on a specific annotation in SCUREL and developing an 
approach to improve the coverage of PAS annotation in SCINPAS. 
 

6.2.2. Regulation of APA 
The 3’ end processing complex carries out the pre-mRNA cleavage and polyadenylation, but 
little is still known about how the choice of poly(A) site is made. Even though APA appears 
cell type and tissue specific there seems to be common pathways that are affected 
throughout. In particular, we find in the SCUREL study that in human lung tumors the targets 
of APA have roles in protein metabolism, secretion and localization. A recent review by 
(Mitschka & Mayr, 2022) found that APA is a major regulator of mRNA (subcellular) 
localization, spatial organization of protein synthesis and protein abundance (by their half-
time). This suggests that APA regulates specific processes by which it is itself regulated.  
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Many processes are involved in the regulation of APA. The DNA and RNA sequence can attract 
and interact with transcription factors or RNA-binding proteins to regulate many steps of RNA 
processing, including APA. Interestingly, various studies have noted that the distal PAS 
contain more of the canonical signals for 3’ end processing (A. J. Gruber & Zavolan, 2019; 
Mitschka & Mayr, 2022; P. Tang et al., 2022; Tian & Manley, 2017). This indicates that weak 
polyA signals at the proximal sites are overlooked in normal conditions and require specific 
regulators to promote their usage in other conditions.   
 
Previous studies indicated that APA directly impacts translation and therefore gene 
expression (Jackson et al., 2010; Sonenberg & Hinnebusch, 2009; Weill et al., 2012). However, 
recent studies could not establish this link and did not find a correlation between APA and 
protein abundance (Fansler et al., 2021; A. R. Gruber et al., 2014; Lianoglou et al., 2013; Spies 
et al., 2013; R. Wang, Zheng, et al., 2018). We investigated this in our SCUREL study as well 
and could not find a correlation either. This indicates that alternative 3’UTRs have other 
functions than setting the protein level. The 3’UTR-dependent protein localization described 
for the CD47 protein represents one such role. 
 
APA is observed in cell proliferation and differentiation, both of which require cell growth and 
division. These processes are part of the cell cycle, and we found this process to be enriched 
in erythrocyte progenitors (polychromatic erythroblasts) in the aging mouse bone marrow 
(see section 2.1. ). The cell cycle is tightly controlled at several cell cycle checkpoints. It could 
be that these checkpoints are the upstream processes that cause the CPA machinery to 
change in level or localization leading to APA changes.  
(Mitra et al., 2018) reported that quiescent mouse fibroblasts express longer transcripts from 
distal poly(A) sites compared to proliferative fibroblasts. This change is accompanied by a 
decrease in the level of the cleavage and polyadenylation factor CstF-64. Fibroblasts are often 
induced to proliferate and migrate, and these data indicate that changes in CstF-64 levels link 
these two processes.  
 

6.2.3. Impact of other regulatory mechanisms 
I concentrated on one type of alternative polyadenylation isoform, those that only differ in 
the 3’UTR length. But RNA processing can also generate composite or cassette terminal exons, 
that differ in that they have PAS in intronic regions or stem from alternative exons 
respectively. The co- and post-transcriptional modifications are regulated and intertwined.  
 

6.2.3.1. Alternative splicing 
One type of isoform generated by APA is the cassette terminal exon, which is a product of 
alternative splicing and polyadenylation. These isoforms contain exons that are spliced out in 
other transcript isoforms. During RNA maturation, various RNA-binding proteins interact with 
the spliceosome and the 3’ end processing complex, and they can have activating or 
repressing functions (A. J. Gruber & Zavolan, 2019). For example, the splicing factor U2AF and 
the 3’ end processing complex are a component in the designation of the terminal exon 
(Kyburz et al., 2006; Millevoi et al., 2006; Niwa et al., 1990). 
This intertwining means that even when a putative regulator is found, one has to ensure the 
direct interaction with the 3’ end processing complex, and not indirect via another 
mechanism, e.g. the splicing machinery.  
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6.2.3.2. poly(A) tail length 
The 3’ end processing complex adds adenosines at the cleaved 3’ end of the transcript. This 
happens in the nucleus and is performed by canonical poly(A) polymerases. The poly(A) tail is 
necessary for the translocation of the transcript to the cytoplasm. It is also important for 
mRNA stability, as deadenylation is the first step in the mRNA decay pathway (Meyer et al., 
2004; Parker & Song, 2004). The poly(A) tail can already be shortened in the nucleus (Alles et 
al., 2023). 
Both the UTRs and the poly(A) tail impact the stability and translation rate of the mRNA 
transcript, while the UTRs also impact the subcellular localization. Disentangling the effects 
of the two sources, i.e. UTRs and poly(A) tails, might not be an easy task, as the same or similar 
set of proteins are involved in their regulation.  
 
The complexity and links between RNA processing steps make it challenging to 
computationally predict regulators of individual steps. More fine-grained measurements of 
RNA abundance in different cellular compartments are needed to resolve this issue. 
 

6.2.4. Spatial transcriptomics 
Spatial transcriptomic methods are able to spatially resolve tissue sections by measuring 
transcriptomes from spots (Lebrigand et al., 2023; McKellar et al., 2022; Ståhl et al., 2016) or 
measure subcellular RNA localization by image-based transcriptomics (Eng et al., 2019; C. Xia 
et al., 2019). A recent review by (Moffitt et al., 2022) illustrates the methodological progress 
in spatial transcriptomics and the possibility of image-based proteome profiling.  
These methods enable the localization of gene expression patterns and computational 
methods were developed to explore such trends (Edsgärd et al., 2018; S. Sun et al., 2020; 
Svensson et al., 2018; Zhu et al., 2021). Often, the analysis is restricted to gene expression, 
but transcript isoforms could also be measured.  
A study using long-read single-cell sequencing showed that brain regions display differential 
isoform expression patterns (Joglekar et al., 2021), highlighting the importance of spatial 
transcriptomics. 
(G. Ji et al., 2023) developed a method to study APA from spatial transcriptomics datasets. 
The method called stAPAminer uses spatially barcoded data and the computational method 
scAPAtrap (Wu et al., 2020) for poly(A) site identification, with the modification of using single 
spots instead of single cells. Analysis of mouse olfactory bulb data revealed genes with APA 
enriched in gene ontology terms associated with olfactory bulb development.  
Given the progress in spatial transcriptomics, including its overcoming of technical challenges 
such as high error rates in long-read sequencing and the limited capture of mRNA molecules, 
the technique will further increase to single cell resolution and the ability of transcript isoform 
switch analysis. It will likely not take long to study APA in tissue sections in a cell type specific 
manner. 
 

6.3. Technical challenges 
Single cell transcriptomic sequencing led the way for cell type and tissue-specific study of APA. 
However, the obtained data is sparse and has difficulties in cell type annotation and transcript 
isoform discovery. This poses challenges that could be overcome with new technical 
advances.  
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6.3.1. Dealing with sparsity in scRNA-seq 
We are still not at the point being able to capture all mRNAs present in a cell at the time of 
sequencing. Along with the bursty nature of transcription, this means that even for similar 
cells a different set of genes is measured which leads to complications comparing them. 
(Lähnemann et al., 2020) reports that handling sparsity in single-cell RNA sequencing is 
performed in two broad approaches, by either modelling the sparsity or by imputation of 
observed zeros. They note the open problem is the circularity that arises from imputing values 
from internal information only. This can lead to inflated correlation between genes or cells. 
The imputation methods need to account for unwanted technical and expected biological 
variation. 
Some methods try to overcome the sparsity and impute expression levels (Linderman et al., 
2022; Ran et al., 2020; J. Wang et al., 2019). For example, (J. Wang et al., 2019) developed 
SAVER-X, a deep autoencoder coupled with a Bayesian model, to obtain gene to gene 
relationships to denoise data sets. As the model is using transfer learning, it can help to 
automate data integration across studies.  
The droplet-based based single-cell RNA-seq methods do not capture the full transcriptome 
of individual cells. They rely on PCR amplification to obtain more material for sequencing, but 
there are limits to it. The library preparation and PCR amplification steps are a sampling 
process in which certain transcripts are under- and others over-represented.   
Detection of over-represented transcripts are for sequencing methods using UMIs not a big 
problem. The UMI denotes the original transcript and can be used to remove duplicate reads. 
The real downside is that the complexity of the library is reduced because other original 
transcripts were not sequenced.  
The under-representation of transcripts poses a bigger challenge and can ultimately lead to 
the falsely zero expression of a gene, a so-called drop-out. Other technical factors, such as 
gene length, GC-content, or sequencing depth, introduce biases in the raw read counts as 
well. The normalization of the scRNA-seq data takes care of such biases. Various methods 
were developed to model the gene expression in a more accurate and robust manner to 
tackle these biases, including drop-out events (Breda et al., 2021; Huang et al., 2018; W. V. Li 
& Li, 2018; van Dijk et al., 2018). For example, (Breda et al., 2021) developed Sanity, a 
Bayesian normalization method from first principles. It models the mRNA counts as a 
sampling process with Poisson noise coming on top of the multiplicative noise of the PCR 
amplification. The authors compare the normalization to a selection of popular methods and 
find that Sanity removes Poisson sampling fluctuations and outperforms in downstream 
analysis tasks such as clustering. 
The sparse gene expression states of single cells make their annotation and detection of 
functional relations difficult. Modelling gene expression to normalize the transcriptome of a 
cell is achievable. However, methods incorporating the transcript isoforms, like alternative 
splicing or alternative polyadenylation isoforms, are still lacking. The study of single-cell APA 
would greatly benefit from normalization in that the expression levels would become 
comparable and could be used for downstream differential usage analyses.  
 

6.3.2. Overcoming the problem of cell type annotation with additional protein measurements 
Often, the annotation is performed manually with the help of marker genes. These are often 
surface proteins known from experimental studies. However, these markers are not always 
expressed, even though the cells are known or thought to express them. For example, CD4+ 
T cells should express CD4, but the mRNA level may be low or even absent.  
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The lack of correlation between the gene and surface protein expression could have biological 
reasons. Maybe the half-life of the mRNA transcript and the protein are so different, that the 
mRNA is already degraded when the protein is still stably expressed in the cytoplasm or cell 
membrane.  
With the progression of sequencing methods that enable the simultaneous measurement of 
gene expression and selected surface protein markers, it is now also possible to impute and 
correlate gene expression with surface markers (Javaid & Frost, 2022; Linderman et al., 2022; 
van Dijk et al., 2018; Z. Zhou et al., 2020).  
For example, (Z. Zhou et al., 2020) developed cTP-net that learned the mapping between gene 
expression and surface protein expression for PBMC data sets (mainly immune cells). They 
used available multi-omic data from CITE-seq (Stoeckius et al., 2017) and REAP-seq (Peterson 
et al., 2017) as training data. They apply the trained cTP-net (on PBMCs, CBMCs and BMMCs) 
to perform imputation on Human Cell Atlas CBMC and BMMC data sets. They state that 
labelling subtypes (e.g. CD8 senescent T) is easier compared to pure RNA expression. 
The progressive use and availability of such datasets is quite promising, as it gives an 
additional perspective on the correlation between gene and protein expression. It can also 
help in the annotation of cells, as the trusted surface protein markers can be used. It also 
makes the study of APA easier, mostly by making the cell type specific analyses more 
confident.  
 

6.3.3. Novel transcript isoforms with long-read sequencing 
Often, the short read scRNA-seq data is used for studying gene expression patterns. Some 
efforts have been made for transcript-based analyses (Patrick et al., 2020; Tekath & Dugas, 
2021). For example, (Tekath & Dugas, 2021) developed DTUrtle which enables differential 
transcript usage analysis from bulk and single-cell RNA-seq. DTUrtle performs a two-stage 
statistical procedure stageR to detect genes with DTU and specific transcripts within those 
genes. 
So far, the PAS could be assigned based on the genome with the additional transcript level 
annotation. However, it would be interesting to combine the two types of information and 
perform transcript-based analysis for the identification of PAS and studying APA. It would 
enable a more-fine grained and nuanced view at the complex process of APA. However, the 
current methods lack power to perform differential transcript usage, even more so for APA 
isoforms that increase the number of transcript isoforms again. 
Long-read sequencing enables identification of novel isoforms (R. Li et al., 2020; Wright et al., 
2022) and study of differential transcript usage, including APA isoforms (Chang et al., 2022). 
The combination of long-read and single-cell sequencing seems promising. Considerable 
progress has been made in the last couple years showing that it is possible (Y. H. Sun et al., 
2021; Q. Wang et al., 2021). Commercial sequencing kits also became available, for example 
PacBio’s MAS-seq for 10x Single Cell 3’ kit (Al’Khafaji et al., 2021; PacBio, 2021). However, 
availability of such data is still sparse. Technical challenges, like high error rates and increased 
sparsity, would need to be overcome or at least dealt by in some way, either by improving 
the sequencing technologies and/or computational efforts. 
  

6.4. Directions of future development 
Beyond the scope of this dissertation await further studies. The most straightforward and 
natural extension is the application of SCINPAS on the wealth of scRNA-seq data to extend 
the poly(A) site atlas. With the abundance of sequencing data, it would be interesting to 
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identify additional sequence motifs that regulate PAS choice or to identify regulatory 
networks from miRNA activity.  
 

6.4.1. Extending the poly(A) site atlas 
We made considerable progress in the identification of PAS from scRNA-seq data with the 
development of SCINPAS. This paves the way to extend the polyAsite atlas (Herrmann et al., 
2019) with a new data type. Furthermore, it is possible to increase the PAS expression 
resolution from sample to tissue and even cell type. This would give a more complete picture 
of PAS events and would be a great resource to study APA.  
In SCINPAS, we identify PAS from scRNA-seq by using the fact that some reads provide direct 
evidence for the cleavage site, which is apparent from the stretch of non-templated 
adenosines. This contrasts with the other methods currently used in construction of the 
polyAsite atlas, which are dedicated 3’ end protocols based on conventional RNA-seq. The 
polyAsite atlas could be considerably extended with the wealth of scRNA-seq datasets 
publicly available, such as (Regev et al., 2017; The Tabula Muris Consortium et al., 2018, 2020; 
Travaglini et al., 2020). Furthermore, since these single cell atlases contain the cell type and 
tissue information, the polyA site atlas could be extended to make use of it and annotate PAS 
by the expression in particular cell types and tissues. Previously annotated PAS could be 
enhanced with expression information across all cell types represented in scRNA-seq data 
sets. This would give a more comprehensive picture of the PAS and their cell type- and tissue-
specific usage. For example, during our analyses on the spermatogenesis dataset (Lukassen 
et al., 2018a) we discovered that spermatocytes and elongating spermatids exclusively 
express the distal or proximal PAS. This is in contrast to other tissues and cell types we 
studied, where the expression of either PAS is partial.  
Such a comprehensive polyAsite atlas would make it easier to retrieve and validate new PAS 
from another study. It would also make it possible to study the regulation of tissue- and cell 
type-specific APA in a more systematic manner.  
 

6.4.2. Identification of additional sequence motifs regulating PAS choice 
The choice of the polyadenylation site might be determined by the combination of the poly(A) 
signal, DNA elements around the signal and the expression levels of binding factors (Tian, 
2005). Therefore, computational methods were developed to identify PAS and sequence 
motifs regulating PAS choice.  
Most, if not all of the machine learning and deep learning-based models concentrated on the 
hexameric poly(A) signal as the main sequence motif for polyadenylation events. (Xie et al., 
2013) developed a model that combined a hidden Markov model with a support vector 
machine to classify genomic sequences into PAS or not. Later, (Magana-Mora et al., 2017) 
built on top a method called Omni-PolyA that combined decision trees, neural networks and 
random forests to recognize true PAS. Some methods used convolutional neural networks to 
predict PAS (Arefeen et al., 2019; Bogard et al., 2019; Z. Xia et al., 2019). The models used 
about 200 nucleotides of genomic sequence as input, which covers the U-rich region 
upstream and the U/GU-rich region downstream around the cleavage site (A. J. Gruber & 
Zavolan, 2019).  
It is unknown whether more sequence motifs contribute to the PAS choice, especially for cell 
type-specific APA. The models could be modified to use longer stretches of genomic sequence 
as input, to include such putative binding sites or motifs in the analyses. However, an increase 
of the genomic sequence length would lead to a more complex model and the use of more 
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model parameters (and possibly additional layers in deep learning models), which would 
require considerably more training data. And it is questionable whether enough annotated 
data is available. Furthermore, most of those models are sequence position sensitive, 
meaning that the motif has to occur in the same position along the input sequence. 
Additionally, these models are trained to classify a genomic sequence into PAS and are not 
tailored to identify sequence motifs. They are therefore also called black box models. Some 
of these models however enable the visualization of the learnt weights as sequence logos, 
e.g. (Bogard et al., 2019; Z. Xia et al., 2019).  
Given these limitations, I would find it interesting to use models that incorporate more prior 
knowledge, like sequential, structural, statistical, or evolutionary properties. And since the 
methods mentioned above use genomic sequence only, it would be meaningful to 
incorporate expression data to correlate differential usage with sequence context. For 
example, the binary classification task could be extended to multi-class classification or even 
to regression analysis. Moreover, methods from natural language processing could be used 
to create models that use the genomic sequence as a document and learn the relationship 
between the individual words (could be the sequence motifs). These approaches could reveal 
conditional binding and help to elucidate the regulation of PAS choice.  
 

6.4.3. Identification of regulatory networks from miRNA activity 
We could use a computational method to infer the transcription factors and miRNAs driving 
the expression changes between conditions. For example, we could check the changes in cell 
types in lung cancer compared to matched normal tissue and study whether different or 
similar transcription factors and/or miRNAs participate across cell types. In a next step we 
could correlate the miRNA changes with the 3’UTR changes identified by SCUREL or other 
methods. This would give more insights on how the 3’UTR changes would impact the miRNA-
dependent regulation.  For example, assuming that miRNA X binds on the 3’UTRs of gene A 
and gene B, would it be possible, when the 3’UTR of gene A is shortened and the binding site 
of miRNA X is lost, that the miRNA X would increase or decrease activity towards gene B and 
lead to more or less repression of B (see Figure 5).  
Several methods exist that use scRNA-seq data to predict regulatory networks with 
transcription factors (Aibar et al., 2017; Behjati Ardakani et al., 2020). But I found no method 
that attempts to infer regulatory networks from miRNAs.  
One method that models the regulatory network by transcription factors and miRNAs is the 
Integrated System for Motif Activity Response Analysis (ISMARA) (Balwierz et al., 2014). 
ISMARA identifies key transcription factors and miRNAs spurring the observed expression 
state changes. In short, ISMARA uses a collection of promoters and precalculated predicted 
transcription factor binding sites in proximity to promoters and miRNA target sites in 
annotated 3’UTRs of promoter associated transcripts. For gene expression data, based on the 
read densities across the transcripts, an expression signal is calculated for each promoter and 
sample. The linear MARA model is used to explain the signals and to infer the unknown motif 
activity profiles. The motifs are sorted by significance and a list of predicted target promoters, 
respectively associated genes, for each motif is provided. ISMARA uses estimates of 
expression driven by specific promoters to evaluate the effect of transcription factors binding 
to the promoters. Although miRNAs binding sites are also included in the ISMARA model, the 
3’UTR and miRNA binding site annotations are much less refined than the annotation of 
transcription factor binding site. Thus, this is another direction in which the APA analyses can 
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help. It would be interesting to combine scRNA-seq and the Bayesian modelling of ISMARA to 
model and infer miRNA activity and to gain more insights into the regulation of APA.  
 

 
Figure 5: Sketch of miRNA regulation. 
Upon alternative polyadenylation and the generation of short 3’UTR isoforms of gene A, the effects of a putative 
miRNA X, which cannot bind to gene A anymore, are unknown.  
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Shortening of 3’ UTRs in most cell types composing tumor tissues 
implicates alternative polyadenylation in protein metabolism  
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A. 1.  Abstract  
During pre-mRNA maturation 3’ end processing can occur at different polyadenylation sites 
in the 3’ untranslated region (3’ UTR) to give rise to transcript isoforms that differ in the length 
of their 3’UTRs. Longer 3’ UTRs contain additional cis-regulatory elements that impact the 
fate of the transcript and/or of the resulting protein. 
Extensive alternative polyadenylation (APA) has been observed in cancers, but the 
mechanisms and roles remain elusive. In particular, it is unclear whether the APA occurs in 
the malignant cells or in other cell types that infiltrate the tumor. To resolve this, we 
developed a computational method, called SCUREL, that quantifies changes in 3’UTR length 
between groups of cells, including cells of the same type originating from tumor and control 
tissue. We used this method to study APA in human lung adenocarcinoma (LUAD).  
SCUREL relies solely on annotated 3’UTRs and on control systems, such as T cell activation 
and spermatogenesis gives qualitatively similar results at much greater sensitivity compared 
to the previously published scAPA method. 
In the LUAD samples, we find a general trend towards 3’UTR shortening not only in cancer 
cells compared to the cell type of origin, but also when comparing other cell types from the 
tumor vs. the control tissue environment. However, we also find high variability in the 
individual targets between patients. The findings help to understand the extent and impact 
of APA in LUAD, which may support improvements in diagnosis and treatment.  
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A. 2. Introduction 
The processing of most human pre-mRNAs involves 3’ end cleavage and addition of a 
polyadenosine (poly(A)) tail. Typically, there are multiple cleavage and polyadenylation sites 
within a gene, and alternative polyadenylation (APA) has emerged as a major source of 
transcriptome diversity (Reyes & Huber, 2018). A prevalent type of APA  isoforms are those 
that differ only in the length of their 3’ untranslated regions (3’ UTRs). 3’ UTRs become shorter 
upon T cell activation (A. R. Gruber et al., 2014; Sandberg et al., 2008), in cancer cells (Mayr 
& Bartel, 2009; Xia et al., 2014) and upon induction of reprogramming in somatic cells (Ji & 
Tian, 2009). Although the responsible regulators are still to be determined, core 3’ end 
processing factors under the transcriptional control of cell cycle-related transcription factors 
have been implicated, at least in the context of cell proliferation (Elkon et al., 2012). Various 
RNA-binding proteins (RBPs) are also involved in specific cellular systems (A. J. Gruber, 
Schmidt, et al., 2018; Lee et al., 2021; Martin et al., 2012; Masuda et al., 2020; So et al., 2019).  
 
While APA-dependent 3’ UTR shortening has been observed in many cancers (Schmidt et al., 
2018; Xia et al., 2014), it is presently unclear whether it is a manifestation of the change in 
cell composition of the tissue or of functional changes in all cell types within the tumor 
environment. As single cell RNA sequencing (scRNA-seq) technologies specifically capture 
mRNA 3’ ends, and datasets of tumor and matched control tissue samples have started to 
become available, this question can now be addressed, provided a few challenges are 
overcome. First, the number of transcripts that can be reliably quantified is still low (Breda et 
al., 2021), because the total number of reads obtained from individual cells is in the 103-104 
range. Thus, quantifying gene expression at the isoform level is still very challenging. This 
issue can be partially circumvented by pooling the reads from cells of the same type. Second, 
while 3’ biased, scRNA-seq reads do not always reach the PAS and may also result from 
internal priming. Thus, identifying which reads correspond to the same 3’ end is also not 
trivial. This problem can be mitigated by associating scRNA-seq reads with already-annotated 
transcript 3’ ends. However, the current annotation is still far from complete (A. J. Gruber, 
Gypas, et al., 2018), leading to PAS usage quantification that is imprecise and incomplete. For 
this reason we developed a PAS-agnostic approach for quantifying changes in 3’ UTR length 
between samples, based on the entire 3’ end read distribution along the 3’ UTR. Applying the 
method to single cell sequencing data from human lung adenocarcinoma (LUAD), we found 
that 3’ UTR shortening is not specific to a cell type but rather occurs in most cell types that 
compose the tumor. Furthermore, our analysis revealed that the targeted transcripts encode 
proteins that are involved in various steps of protein metabolism, including synthesis at the 
endoplasmic reticulum (ER), transport between ER and the Golgi network and finally secretion 
of proteins. Our data thus implicates APA in the remodeling of protein metabolism in tumors. 
 

A. 3. Results 
A. 3. 1. A myeloid to lymphoid switch in lung tumors 
While analyses of bulk RNA-seq data revealed the shortening of 3’ UTRs in virtually all studied 
cancers with respect to matched control tissue, the shortening is especially pronounced in 
lung tumors (A. J. Gruber, Schmidt, et al., 2018). Thus, to better understand the mechanism 
and function of APA in cancers, we identified two studies in which single cell sequencing of 
lung adenocarcinoma (LUAD) and matched control tissue from multiple patients was carried 
out on the same platform, 10x Genomics (Lambrechts et al., 2018; Laughney et al., 2020). 
These data enable us to not only identify 3’ UTR changes in specific cell types, but also to 
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assess their generality between studies and patients. We followed the procedure described 
in (Lambrechts et al., 2018) to annotate the type of individual cells. Briefly, we integrated the 
data with the harmony package (see Methods, Suppl. Fig. 1), clustered the normalized gene 
expression vectors of all cells (Fig. 1A) with the Seurat package (Butler et al., 2018), and 
annotated the type of 38’156 cells from 12 samples of the (Lambrechts et al., 2018) study 
(samples 3a-d, 4a-d, 6a-d, representing 3 tumor samples and a matched control for each of 
three patients) and 18’543 cells of the (Laughney et al., 2020) study (3 pairs of tumor-matched 
control samples) based on known markers. We used the markers proposed in the (Lambrechts 
et al., 2018) study, but also added a few markers for mast cell (TPSAB1, TPSB2 and CPA3; 
(Dwyer et al., 2016) Table 1) (Fig. 1B). As described in the initial study (Lambrechts et al., 
2018), the most abundant cell types in the tumor samples were T cells, myeloid and B cells, 
while the matched control samples were dominated by myeloid and alveolar cells (Fig.1C). 
We further identified a small cluster of mast cells, annotated as B cells in the initial study that 
did not consider mast cell markers. We observed a similar myeloid to T cell switch between 
control and cancer samples from the (Laughney et al., 2020) study (Fig. 1D). In addition, the 
matched control samples from this latter study had a more homogenous cell type 
composition compared to those from the (Lambrechts et al., 2018) study, consisting almost 
exclusively of lymphocytes and myeloid cells (Fig. 1D).  
 
Given that T cells are the most numerous cell type in tumor samples and that T cell activation 
leads to 3’ UTR shortening (A. R. Gruber et al., 2014; Sandberg et al., 2008) we wondered 
whether the pattern of 3’ UTR usage that was previously inferred from ‘bulk’ samples can be 
attributed to the infiltration of the tumor with activated T cells. To investigate this possibility, 
we first determined the distribution of RNA molecules (unique molecular identifiers, UMI) per 
cell in various cell types in the two studies (Suppl. Fig. 2A) and the total number of UMIs 
obtained from each cell type in each data set (Suppl. Fig. 2B). While T cells were the most 
numerous cell type in tumors, their relatively small RNA content per cell led to a smaller 
overall contribution to the total RNA pool compared to the less numerous myeloid cells, 
which have substantially more RNA molecules per cell (Suppl. Fig. 2A). Thus, the ‘bulk’ RNA 
obtained from tumor samples is not dominated by RNA originating from T cells, suggesting 
that other cell types also contribute to the 3’ UTR shortening that was previously described 
in tumors. We therefore carried out a cell type-specific analysis of 3’ UTR usage in tumors 
relative to matched controls. 
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Figure 1. Cell type composition of lung adenocarcinoma and matched control samples.  
A. 2-dimensional projection (Uniform Manifold Approximation and Projection, UMAP) of gene expression 
vectors. The projections were obtained with the RunUMAP function from Seurat v3.2.3 (Butler et al., 2018), 
based on the first 10 principal components. The two datasets were integrated with harmony. Cell clustering was 
done on the shared nearest neighbour (SNN) graph (see Methods). B. Dot plot of marker gene expression across 
the clusters shown in panel A. Shown is the average expression and percent of expressing cells per cluster for 
the markers used in (Lambrechts et al., 2018) (see also Table 1). The dot plot was created with Seurat. C. 2-
dimensional projection (created with Seurat) of gene expression vectors as in A, but highlighting only cells from 
one study in each panel. D. Box plot of relative proportion of each cell type in control (green) and tumor (red) 
samples from individual patients from the Lambrechts and Laughney datasets. 

 
 

A. 3. 2. A PAS-agnostic approach to quantify 3’ UTR shortening and APA events 
A few approaches have been proposed for assessing APA in scRNA-seq data sets (Patrick et 
al., 2020; Shulman & Elkon, 2019; Wu et al., 2020). However, their robustness with respect to 
the sparsity of the data and the incompleteness of PAS annotation has not been checked (Ye 
et al., 2020). Thus, we developed a novel approach (single cell analysis of 3’ untranslated 
region lengths, SCUREL) (Figure 2A), specifically designed to circumvent these issues and 
implemented in a Snakemake (Koster & Rahmann, 2012) workflow. SCUREL enables two 
different comparisons of 3’ UTR length: between two different cell types in a data set (“cell 
type” mode), or for the same cell type between two different conditions (e.g. tumor and 
matched control tissue, “condition” mode). We frame the detection of changes in 3’ UTR 
length between two groups of cells as a problem of identifying the cell group from which the 
reads originated by inspecting the positions where the reads map in the terminal exons (TEs). 
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That is, read 3’ ends are tabulated and the cumulative coverage along individual TEs is 
calculated and normalized (Fig. 2B). Then, analyzing each TE individually, we record the 
fraction of reads from the two cell groups that map within an extending window of the TE 
starting from the 3’ end (Fig. 2C). This yields a curve in the plane defined by the proportions 
of reads in the two cell groups, which is similar to a receiver operating characteristic (ROC). 
The area under this curve (AUC) indicates the similarity of TE length between the compared 
cell groups. The curve is anchored at coordinates (0,0), corresponding to the end of the TE, 
where no reads have been observed yet, and (1,1), corresponding to the start of the TE, where 
all reads from the TE have been accounted for. If the coverage of a TE by read 3’ ends were 
similar between the two groups of cells and thus the cell group cannot be identified from the 
position of the reads, the curve would trace the diagonal line. Deviations above the diagonal 
indicate higher coverage of the distal region of the TE in the cell group represented on the y-
axis, while deviations below the diagonal line indicate higher coverage of the distal TE region 
in the cell group represented on the x-axis. When the number of read mapping to a given TE 
is small, the curve will show discrete jumps of 1/n step size (where n is the number of reads 
mapping to the TE), as individual reads are encountered along the TE. This could lead to AUC 
values that deviate strongly from the 0.5 value expected under the assumption of similar 
coverage in the two cell groups. To avoid false positives that are caused by these finite 
sampling effects, we constructed a background coverage data set by randomizing the labels 
indicating the cell group from which each read originated. This preserves the depth of 
coverage of each TE in each group of cells while randomizing the location of each read, thus 
allowing us to determine changes in 3’ UTR length that cannot be explained by the sparsity of 
the data. For considerations of efficiency, we carried out the randomization once, and used 
the information from TEs with similar average coverage to detect significant AUC values. That 
is, the distribution of AUC values being wider for TEs with low coverage (in counts per million, 
CPM) compared to TEs with high coverage (Fig. 2D), we binned TEs by the average coverage 
in the two cell groups (in log(mean CPM)) and within each of the 20 bins, we used the 1% 
quantile of the randomized read data as the threshold for significant AUC values. Finally, 
noting that in some cases the difference in TE exon was small and unlikely to be due to APA, 
we selected only those TEs for which the read 3’ ends span a sufficiently large distance. That 
is, we calculated the interquartile range (IQR) of read 3’ end positions and, if the union of 
these intervals for the two cell clusters that were analyzed was larger than 200 nucleotides, 
we considered the range of 3’ end variation sufficient to be indicative of APA (Fig. 2D). 
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Figure 2. Overview of SCUREL.  
A. Schematic representation of the workflow for detecting significant changes in 3’ UTR length between two 
cell populations. Input data (blue) consist of mapped reads from cellranger count and a table of annotated cell 
barcodes. The genome annotation is used to extract TEs, their cumulative 3’ end coverage in the two cell groups 
yielding the AUC value, which we used as a measure of APA. Dashed box: Alternative start of the workflow, 
from scRNA-seq reads in FASTQ format. The cell type annotation is done semi-automatically, based on marker 
gene expression (see Methods). B. Cumulative 3’ end coverage of the TE of mouse Mettl4 gene in activated 
(red) and naive (green) T cells from the (Pace et al., 2018) study. For each cell type, the first track shows the read 
coverage along the TE, the second track the location of read 3’ ends and the third track the reverse cumulative 
of the 3’ end coverage. The gene is on the negative strand of the chromosome. C. Summary of the cumulative 
3’ end read distribution along the TE of Mettl4 in activated versus naive T cells, from the 3’ (at 0,0) to the 5’ (at 
1,1) end. Points correspond to individual nucleotides of the TE where 3’ end reads are observed. The upwards 
deviation of the curve relative to the diagonal line indicates higher coverage of the distal region of the TE in 
naive T cells, quantified by the AUC value of 0.582. D. Distribution of AUC values as a function of log10(mean 
CPM) per TE in the mouse T cell activation data set (Pace et al., 2018). 9’099 TEs are represented, 218 showing 
significant shortening and 43 TEs significant lengthening (green points) attributed to APA. 

 

A. 3. 3. SCUREL detects 3’ UTR length changes in previously characterized systems 
To validate our approach, we analyzed the dynamics of 3’ UTR length in two well-
characterized cellular systems, namely T cell activation, where 3’ UTRs become shorter, and 
sperm cell development, where the 3’ UTRs are known to become longer. Furthermore, we 
compared our results with those generated on these data sets by the previously published 
scAPA method (Shulman & Elkon, 2019).  
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We annotated the mouse T cell scRNA-seq data (Pace et al., 2018) with Seurat, obtaining 1605 
activated and 1535 naïve T cells (Figure 3A), with 5.8 and 1.8 million reads mapped to TEs, 
respectively. Applying SCUREL, we identified 261 TEs whose length changed significantly upon 
T cell activation, of which 218 (84%) became shorter (Figure 3B). These results recapitulate 
those obtained from bulk RNA sequencing in a similar system (A. R. Gruber et al., 2014). 
Applying the previously published scAPA method (Shulman & Elkon, 2019) (see Methods) we 
only obtained 14 TEs with a significant length change, 12 of which (85%) became shorter 
(Figure 3C). ⅔ of the scAPA-identified targets (8 of 12 TEs) were also identified by our method, 
while the 4 cases missed by SCUREL involved either very small TE length changes (3 cases) or 
a difference in the annotation of the TE, because scAPA also quantifies PAS downstream of 
annotated TEs. In contrast, inspection of 9 randomly chosen TEs identified only by SCUREL 
indicated that they correspond to genes with relatively low expression, which are overlooked 
by scAPA (Suppl. Fig. 3). Examples of TEs from each of these categories are shown in Fig. 3G. 
 
We carried out a similar analysis on a mouse spermatogenesis data set (Lukassen et al. 2018), 
as it is well known that 3’UTRs become progressively shorter during maturation of germ cells 
(spermatogonia) to spermatocytes, spermatids and finally spermatozoa. We used the 
markers described in the original publication (Lukassen et al., 2018) to annotate 386 
elongating spermatids (ES) and 667 spermatocytes (SC), with 8 and 12 million reads in the TE 
regions, respectively (Figure 3D). Applying SCUREL, we found 2060 TEs whose length changed 
significantly from SCs to ES, almost all of which (1992, 97%) became shorter (Fig. 3E). scAPA 
yielded a similar proportion of shortened TEs (but fewer in absolute number), 96% (165 of 
171 significant APA events, Figure 3F). As in the case of T cells, most of the scAPA-identified 
TEs were also found by our method (146 of 165 TEs), while TE annotation and small changes 
in PAS usage accounted for the cases that were unique to scAPA. Inspection of 9 randomly 
chosen TEs identified only by SCUREL indicated that they correspond to genes with relatively 
low expression or exclusively express one PAS or the other (Suppl. Fig. 4). 
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Figure 3: Analysis of APA in T cell activation and spermatogenesis. 
A. UMAP projection of the T cell activation dataset (Pace et al., 2018) showing activated (red), naive (green) and 
unassigned (grey) T cells. B. Scatter plot of AUC in function of log10(mean CPM) for 9’099 TEs. The 1% quantiles 
(red lines) of the distributions obtained from the randomized dataset were used to identify TEs whose length 
changed significantly. AUC values > 0.5 indicate shorter 3’ UTRs in activated T cells. TEs whose length changes 
were attributed to APA based on the span of the read 3’ ends (see Methods) are shown in green. C. Cumulative 
distribution of proximal peak usage index (proximal PUI) for genes deemed by scAPA to undergo significant 3’ 
UTR length changes. Activated T cells (red) generally have higher proximal PUI compared to naive T cells (blue), 
indicating 3’UTR shortening in activated T cells. D. UMAP projection of the spermatogenesis dataset (Lukassen 
et al., 2018), with highlighted elongating spermatids (purple) and spermatocytes (orange). E. Scatter plot of 
AUC in function of log10(mean CPM ) for 7’875 TEs (see panel B for details). AUC values > 0.5 indicate longer 
3’ UTRs in spermatocytes. F. As in C, but comparing elongating spermatids (red) with spermatocytes (blue).  G. 
Examples of genes deemed to exhibit significant change in 3’ UTR length by both methods (left), by SCUREL 
only (middle) or by scAPA only (right). For each example, the tracks are: read coverage and cumulative 
distribution in the two conditions (activated - red - and resting - green - T cells for T cell examples, elongating 
spermatids - purple - and spermatocytes - orange - for the spermatogenesis examples, followed by coverage 
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tracks from scAPA for the same two conditions in grey. The three blue tracks on the bottom denote in order, 
the Refseq annotation of the gene, the TE region analyzed in SCUREL and the peaks identified by scAPA. 

 

A. 3. 4. Genes involved in protein metabolism are targets of 3’ UTR shortening in lung cancer 
cells  
Having established that our method reproduces previously reported patterns of 3’ UTR length 
change in physiological settings, we then turned to the question of whether 3’ UTRs are also 
different in lung cancer cells compared to their non-malignant counterpart, the alveolar 
epithelial cells. We identified 1’330 TEs that were shorter in the 3’607 cancer compared to 
the 851 alveolar cells in the Lambrechts dataset (with 22 and 3.7 million reads in TEs 
respectively), representing 98% of 1’357 significant events (Figure 4A, top). Similarly, we 
identified 188 shortened TEs from the Laughney dataset of 489 cancer and 292 alveolar cells 
(with 6 and 1.3 million reads in TEs respectively), representing 85% of 219 significant events 
(Figure 4A, bottom). While much fewer events were found in the Laughney data set, the 
majority (105 of 188 TEs, 56%) were shared with the Lambrechts dataset. To determine 
whether specific biological processes are subject to APA-dependent regulation in cancer cells, 
we submitted the set of 105 shared genes to functional analysis via the STRING web server 
(Szklarczyk et al., 2019). This revealed that the corresponding proteins are associated with 
membranes, vesicles and granules (Figure 4B,C). Interestingly, these APA targets cover the 
entire lifecycle of membrane and secreted proteins, from synthesis (i.e. translation initiation 
factors and ribosomal proteins), to traffic into the ER (e.g. SSR1, SPCS3, SEC63) and Golgi (e.g. 
TRAPPC3, KDELR2), to proteasome-mediated degradation (PSMD12). Some of the APA targets 
are surface receptors with well-known involvement in cancers (CD44, CD47 and CD59). These 
results indicate that APA contributes to the orchestration of protein metabolism and traffic 
in cancer cells. Examples of TEs from Figure 4B are shown in Figure 4D. 
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Figure 4: APA in lung adenocarcinoma cells. 
A. Scatter plot of AUC in function of log10(mean CPM) for cancer and alveolar cells in the Lambrechts (top) and 
Laughney (bottom) datasets. TEs with significant APA-induced length changes are highlighted in green (numbers 
shown in insets). B. The interaction network (from the STRING web server) of proteins whose transcripts undergo 
3’UTR shortening in both datasets. C. Functional enrichment analysis for genes whose TEs undergo shortening 
in cancer cells. Shown are the top 10 GO biological process terms (sorted by the false discovery rate, FDR). 
Analysis was performed with STRING web server, using as background the set of genes found to be expressed 
in the lung samples. D. Read coverage along TEs for a few example genes from panel B (EIF1, CD44 and CD59). 
Each panel shows four tracks per data set, blue: cancer cells, red: alveolar cells, coverage of the TE by reads 
(top track) and the cumulative coverage of the TE by read 3’ ends (bottom track). In all cases, the 3’ UTRs are 
shorter in cancer compared to alveolar cells. 

 

A. 3. 5. Conserved targets of 3’ UTR shortening in individual cell types  
The next question we wanted to answer is whether 3’ UTR shortening affects all cells in the 
tumor environment, or it is rather restricted to specific cell types. We thus carried out the 
SCUREL analysis for each individual cell type for which we had at least ~20 cells in each data 
set, comparing TE lengths between cells of the same type, from the tumor sample and 
matched control sample. We found many more TEs becoming significantly shorter than longer 
(Fig. 5A-B), across almost all cell types and in both data sets. This is summarized in Fig. 5C, 
which shows that the proportion of shortened among significantly changed TEs is almost 
always greater than 0.5. By grouping all reads from the tumors and from matched control 
samples, respectively, we also recapitulated the result of previous ‘bulk’ RNA-seq data 
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analyses (Fig. 5D). Thus, 3’ UTR shortening is not restricted to a specific cell type, but seems 
to generally take place in all cell types, associated with the tumor environment. 
 
Moreover, in spite of the differences between the studies, there was a highly significant 
overlap between the targets of TE shortening in individual cell types (Fig. 5E-F). To gain further 
insight into the processes that may be regulated by APA, we submitted the intersection sets 
of genes exhibiting TE shortening in T lymphocytes and myeloid cells in these studies to 
functional enrichment analysis. We found significant enrichments especially in cellular 
components such as membranes, vesicles and granules (Fig. 5G-H), similar to what we 
observed in cancer cells. 

 
 
Figure 5. APA events in individual cell types. 
A. Number of genes with APA-associated 3’UTR shortening in the Lambrechts (green) and Laughney (orange) 
data sets. B. Number of genes with APA-associated 3’UTR lengthening, same colors as A. C. Fraction of 3’UTR 
shortening events in individual cell types, among all significant events. D. Number of genes whose TEs undergo 
significant length change in quasi-bulk samples, shortening and lengthening events being shown separately. E. 
Venn diagram of TE shortening events in T cells from the two studies. Calculation of odds ratio and p-value of 
overlap with hypergeometric distribution (see Methods). F. Similar for myeloid cells. G. Biological process 
enrichment for TEs undergoing significant shortening in T cells and myeloid cells from the Lambrechts (LB) and 
Laughney (LN) studies. No process was specifically enriched in myeloid cells from the Laughney dataset. Plot 
generated with pheatmap (v 1.0.12). H Cellular component enrichment for TEs undergoing significant shortening 
in T cells and myeloid cells from the two studies. No component was specifically enriched in T cells from the 
Laughney dataset. Plot generated as in G. 
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A. 3. 6. Variability in 3’ UTR shortening among individuals 
Finally, we asked to what extent are the targets of 3’ UTR shortening similar across patients. 
To answer this question, we analyzed individually the cells obtained from three patients in 
the Lambrechts study. Interestingly, in spite of the similar histopathological classification of 
the samples, one of the three samples was markedly different from the others, not exhibiting 
any tendency towards 3’ UTR shortening (Fig. 6A-D). The other two samples showed highly 
significant overlaps between shortened 3’ UTRs in different cell types (Fig. 6E). Analysis of 
biological process enrichment in individual cell types based on the genes targeted in both of 
these patients reinforced the concept that transport processes are affected in multiple cell 
types (Fig. 6F). It also provided further granularity. For example, leukocyte activation and 
secretion are terms enriched in the myeloid cell data, whereas metabolic processes are 
enriched in T cells, interaction with immune cells in endothelial cells and interaction with 
endothelial cells and angiogenesis in fibroblasts. Altogether these data demonstrate the 
power of SCUREL identifying changes in APA-related changes in 3’ UTR length, revealing 
common functional themes, in spite of substantial variability between samples. A complete 
table of genes with significant 3’UTR shortening across all LUAD comparisons we conducted 
is available in Suppl. Table 1. The data further indicate that protein transport processes and 
intercellular communication are preferential targets of APA across multiple cell types. 
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Figure 6. APA events in individual cell types from individual patients. 
A. Number of genes with 3’UTR shortening inferred from patient 3 (green), patient 4 (orange) and patient 6 
(purple) samples from the Lambrechts dataset. B. Number of genes with 3’UTR lengthening, same colors as A. 
C. Fraction of 3’UTR shortening events in individual cell types, among all significant events. D. Number of genes 
whose TEs undergo significant length change in quasi-bulk samples, shortening and lengthening events being 
shown separately. E. Venn diagrams of significantly shortened TEs in myeloid, T, endothelial and fibroblast cells 
from tumor relative to matched control samples from distinct patients. Calculation of odds ratio and p-value of 
overlap with hypergeometric distribution (see Methods). F. Biological process enrichment for TEs found to be 
shorter in cancer compared to matched control cells of individual cell types, from patient 3 and patient 6. Plot 
generated with pheatmap (v 1.0.12). 

 

A. 4. Discussion 
The remodeling of gene expression in cancers involves, among other processes, alternative 
polyadenylation. A tendency toward 3’ UTR shortening has been generally observed, though 
to different extents, in virtually all studied cancers (Schmidt et al., 2018; Xia et al., 2014). 
Whether this is the result of changes in the cell type composition of the tissue or to cancer-
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related changes in functionality in all cell types has not been investigated so far. We set out 
to answer this question, taking advantage of single cell sequencing data sets obtained from 
human lung adenocarcinoma. As the sparsity of the scRNA-seq data poses some challenges 
(Lähnemann et al., 2020) we sought two distinct studies that used the same sequencing 
platform, to identify shared patterns of variation. Furthermore, we developed an approach 
that controls for both imperfect annotation of transcript isoforms and low read coverage in 
scRNA-seq. 
 
Comparing data from cells of the same type, but originating either from tumor samples or 
from matched control tissue, we found similar tendencies towards 3’ UTR shortening in the 
tumor environment for most cell types. Furthermore, the proteins encoded by the transcripts 
that are affected in various cell types cluster into specific functional classes, specifically the 
synthesis, traffic, secretion and degradation of proteins. This implicates APA in the regulation 
of protein metabolism and the organization of subcellular structure. 
 
Initial studies that described the phenomenon of 3’ UTR shortening in T cells and cancer cells 
proposed a role in the regulation of protein levels, as short 3’ UTR isoforms are more stable 
than those with long 3’ UTRs (Mayr & Bartel, 2009; Sandberg et al., 2008). However, when 
the decay rates of 3’ UTR isoforms were measured, they turned out to be rather similar (A. R. 
Gruber et al., 2014; Spies et al., 2013), leaving open the question of functional differences 
between 3’ UTR isoforms (Mayr, 2018). More recent work uncovered additional layers of 3’ 
UTR-mediated regulation. For example, a role of 3’ UTRs in the localization of the translated 
protein (UDPL) has been described for a number of membrane proteins, including the 
immunoglobulin family member CD47, whose localization to the cell membrane protects host 
cells from phagocytosis by macrophages (Berkovits & Mayr, 2015). Interestingly, CD47 is a 
conserved APA target in both LUAD datasets that we analyzed here, its 3’ UTR becoming 
shorter in cancer cells compared to lung alveolar cancer cells. This would predict decreased 
localization of CD47 to the surface of cancer cells, making them more susceptible to apoptosis 
compared to normal alveolar cells. This may explain why increased levels of CD47 are 
associated with increased cancer-free survival of patients with lung cancers (kmplot.com, 
(Nagy et al., 2021)) . It will be very interesting to apply methods for simultaneous profiling of 
protein and mRNA expression in single cells (Stoeckius et al., 2017) to better understand the 
interplay between APA, gene expression, and membrane localization of CD47 in cancers.   
 
The concept that 3’ UTR shortening is associated with proliferative states was challenged in a 
recent study that instead demonstrated its association with the secretion of proteins, both in 
trophoblast and in plasma cells (Cheng et al., 2020). Our data fully support this notion, 
extending the data to cancer cells as well as T lymphocytes and myeloid cells. As the protein 
production apparatus is present in all cells, APA is a well-suited mechanism for fine-tuning the 
expression of various components in a cell type and cell state-dependent manner (Lianoglou 
et al., 2013). Associating APA with protein metabolism rather than cell proliferation makes 
the question of its upstream regulation ever more puzzling because the shortening of 3’ UTRs 
in proliferating cells has been attributed to an increased expression of 3’ end processing 
factors mediated by cell cycle-associated E2F transcription factors (Elkon et al., 2012). It will 
be interesting to revisit this issue in a system where the increased protein production and 
secretion can be decoupled from cell proliferation, as the B cell maturation system (Cheng et 
al., 2020).  
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In conclusion, among the many applications of scRNA-seq, analysis of cell type-dependent 
polyadenylation reveals the relevance of APA as a general mechanism for regulating the 
metabolism and traffic of proteins within cells. With SCUREL we provide a robust method for 
detecting changes in 3’ UTR length for even low-expression genes between cell types, in a 
manner that does not rely on accurate PAS annotation. 
 

A. 5. Materials and Methods 
A. 5. 1. Datasets 
Lung cancer samples 
Lung adenocarcinoma (LUAD) and matched control samples were downloaded from the GEO 
database (Barrett et al., 2013), based on the accession numbers in the original publications. 
Specifically, from the (Lambrechts et al., 2018; Szklarczyk et al., 2019) data set we used the 
LUAD samples listed in Table 1 of the original publication (corresponding to patients 3, 4 and 
6, 3 tumor samples and one matched control sample for each patient). scRNA-seq data 
(ArrayExpress (Athar et al., 2019) accession numbers E-MTAB-6149 and E-MTAB-6653) were 
generated in this study with the 10x Genomics Single Cell 3’ V2 protocol. From the (Laughney 
et al., 2020) study we also used LUAD and matched control samples, which originated from 3 
donors. These samples were also generated with the 10x Genomics Single Cell 3’ V2 protocol 
(accession number GSE123904). 
 
Mouse testis samples 
scRNA-seq data from the testes of two 8-week old C57BL/6J mice (Lukassen et al., 2018) were 
downloaded from the GEO database (accession number GSE104556). 
 
Mouse T cell samples 
scRNA-seq data of FACS sorted T cells from the lymph nodes and spleen of C57BL/6J mice, 
three infected with OVA-expressing Lysteria monocytogenes and one naive (Pace et al., 2018) 
were downloaded from the GEO database (accession number GSE106268). 
 

A. 5. 2. Execution of scAPA 
scAPA (Shulman & Elkon, 2019) was downloaded from the github repository and executed 
with the same genome sequence that was used throughout the study. For compatibility, the 
“chr” prefix in the chromosome names was removed. The lengths of the chromosomes were 
obtained with samtools faidx. The homer software (v4.11.1) required by the scAPA package 
was manually downloaded from http://homer.ucsd.edu/homer/. We collected all other 
requirements specified on scAPA github page in a conda environment. The removal of 
duplicate reads was done by adjusting the existing umi_tools dedup command in 
scAPA.shell.script.R  for 10X Genomics, using the following options " --per-gene", " --gene-
tag=GX", " --per-cell ". This was necessary because according to the protocol, one RNA 
fragment could result in reads that do not map at identical positions.  
 

A. 5. 3. Extraction of terminal exons 
Terminal exons were obtained from the RefSeq genome annotations (gff), GRCm38.p6 for 
mouse and GRCh38.p13 for human, with a custom script, as follows. Chromosome names 

http://homer.ucsd.edu/homer/
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from the RefSeq assembly were converted to ENSEMBL-type names based on the 
accompanying ‘assembly_report.txt’ file. Only autosomes, allosomes and mitochondrial DNA 
were retained. Based on the genome annotation file, protein-coding and long non-coding 
transcripts were retained, while model transcripts (‘Gnomon’ prediction; accession prefixes 
XM_, XR_, and XP_) were discarded. From this transcript set, the 3’-most exons (i.e. terminal 
exons, TEs) were retrieved. Overlapping TEs on the same chromosome strand were clustered 
with intervaltree (v3.0.2; python package) and from each cluster, the longest exon was kept. 
The resulting set of TEs was sorted by chromosome and start position and saved to a BED-
formatted file. TE IDs were converted to gene names with biomaRt (v 2.46.3) using the 
ensembl BioMart database. Duplicate gene names were discarded.  
 

A. 5. 4. Processing of scRNA-seq reads 
The workflow can start from mapped reads in cellranger-compatible format, a file with cell 
barcode-to-cell type annotation and a genome annotation file. Alternatively, the cellranger 
count function can be used to map reads from FASTQ input data. Reads from the FASTQ files 
were mapped with the function count from the cellranger (v5.0.0) package to the reference 
human genome GRCh38-3.0.0 sequence obtained directly from 10X genomics website. This 
genome is a modified version of the GRCh38 genome, compatible with the cellranger analysis 
pipeline. Reads are also aligned to the transcriptome. In this step, cell barcodes and UMIs 
correction also takes place. Aligned reads (BAM) with mapping quality (MAPQ) scores > 30 
were selected with samtools (v1.12, (Li et al., 2009)). Reads without a cell barcode “CB” tag 
were removed with samtools view, as were duplicated reads using umi_tools dedup (v1.1.1, 
(Smith et al., 2017)). The mapped reads are filtered, deduplicated and grouped by cell type in 
the “cell type” mode or by cell type and tissue of origin in the “condition” mode. In the latter 
case, quasi-bulk samples are also constructed from the filtered reads that come from 
individual conditions.  
 

A. 5. 5. Cell type annotation 
The annotation of cell types in all datasets was carried out with the approach described in 
(Lambrechts et al., 2018). Filtered data (so as to remove artifacts such as empty droplets) 
consisting of cellular barcodes and count matrices from individual data sets were loaded in R 
(v4.0.3) with Read10X (from Seurat v3.2.3 (Butler et al., 2018)), and Seurat objects were 
created with CreateSeuratObject. For the lung cancer datasets, cells with < 201 Unique 
Molecular Identifiers (UMIs), with < 101 or > 6000 genes or with > 10% UMIs from 
mitochondrial genes (which may indicate apoptotic or damaged cells) were removed. For all 
datasets, genes with zero variance across all cells (i.e. sum = 0) were discarded. The gene 
expression counts for each cell were log-normalised with NormalizeData with a default scale 
factor of 10’000. In Seurat, 2’000-2’500 most variable genes are used to cluster the cells. Here 
we used the 2’192 variable most variable genes, as in (Lambrechts et al., 2018). These were 
selected with FindVariableFeatures, with normalised expression between 0.125 and 3, and a 
quantile-normalised variance exceeding 0.5 for lung cancer and mouse T cell samples, and 
normalised expression between 0.1 and 8 for mouse testis samples. Gene expression levels 
were then centered and scaled across all cells. After Principal Component Analysis (PCA) on 
the most variable genes, the number of relevant dimensions n for each data set was 
determined by assessing the variance explained by individual Principal Components (PC) with 
ElbowPlot from Seurat. UMAP (McInnes et al., 2018) was used to visualize the data projected 
on the n dimensions. For T cell activation and LUAD samples, batch correction and data 
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integration were performed with harmony (v1.0) (Korsunsky et al., 2019). Harmony was run 
on the first 30 PCs and set to group by dataset. The transformed data set was used for 
downstream analysis (i.e. clustering of cells, visualization in 2D). 
 
Various Seurat functions were used to identify the cell type of individual cells. Cells were 
clustered using the Shared Nearest Neighbor (SNN) algorithm, which aims to optimize 
modularity. First, FindNeighbors was executed using the first n dimensions from PCA or 
harmony and with otherwise default settings (k = 20). Then, FindClusters with resolution 
parameter 0.6 for LUAD, 0.2 for T cells and 0.3 for spermatocytes was run, so as to retrieve a 
number of clusters similar to those in the original publications. The expression of cell type 
markers in each cluster was assessed with FindAllMarkers. This function finds genes that are 
differentially expressed between cells from one cluster and all other cells, by applying a 
Wilcoxon Rank Sum test on the log-normalized expression. Individual clusters were 
downsampled to the number of cells in the smallest cluster or to at least 100 cells. Only genes 
expressed in a minimum of 10% of the cells in either population and with a log (base e) -fold-
change of at least 0.25 (default values in Seurat) were tested. Markers with adjusted p-value 
< 0.01 were considered significant and those with higher expression in the selected cluster 
were considered as potential markers for that cell cluster. For each cluster we counted the 
number of significant markers that matched known cell type markers (Table 1) and assigned 
the cell type to be the one for which a proportion of > 0.6 of known markers were specifically 
expressed in the cell cluster. Generally, this assignment was unambiguous, and when it was 
not, the cell type assignment was done manually, taking into account the adjusted p-value 
and average log-fold-change of all considered marker genes as well as the cell type annotation 
from the Suppl. Table 3 of (Lambrechts et al., 2018), which contains additional cell type 
markers. At least 3 marker genes were required to assign a cluster to the corresponding cell 
type, except for cancer cells that were annotated only based on the expression of EPCAM. 
 
Table 1: Marker genes for cell type annotation. Based on (Lambrechts et al., 2018). 
 

Cell type marker genes Cell type marker genes 

alveolar CLDN18 fibroblast C1R 

alveolar FOLR1 B cell CD79A 

alveolar AQP4 B cell IGKC 

alveolar PEBP4 B cell IGLC3 

endothelial CLDN5 B cell IGHG3 

endothelial FLT1 myeloid LYZ 

endothelial CDH5 myeloid MARCO 

endothelial RAMP2 myeloid CD68 

epithelial CAPS myeloid FSGR3A 

epithelial TMEM190 T cell CD3D 
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epithelial PIFO T cell TRBC1 

epithelial SNTN T cell TRBC2 

fibroblast COL1A1 T cell TRAC 

fibroblast DCN cancer EPCAM 

fibroblast COL1A2   

 

A. 5. 6. Assessing 3’ UTR length differences with the AUC measure  
To assess changes in 3’ UTR length between groups of cells we used the following approach. 
For simplicity, the analysis is carried out for terminal exons (TEs) rather than 3’ UTRs, as 3’ 
UTRs are generally contained in TEs, covering almost the entire length of the TEs. We started 
from the BAM files of mapped reads from two groups of cells. We computed the 3’ end 
coverage of individual TEs per strand with bedtools genomecov and parameter “-bga”. The 
BED file with read 3’ end positions was used to obtain the normalized reverse cumulative 
coverage of individual TEs, i.e. starting at the TE 3’ end and ending at the 5’ most nucleotide. 
Individual TEs were traversed from the end to the beginning, recording the reverse 
cumulative coverage in the two groups of cells as a function of position. The area under the 
resulting curve (AUC) was then calculated. An AUC of 0.5 corresponds to identical position-
dependent coverage of the TE by 3’ end reads in the two groups of cells, i.e. no difference in 
TE length. An AUC value of 1 corresponds to all the 3’ end reads from the group of cells 
indicated on the y-axis being clustered at the end of the TE, before any reads from the other 
group are observed, thus the TEs are longest in this group of cells. Vice versa, an AUC value 
of 0 corresponds to all the 3’ end reads from the group indicated on x-axis are observed before 
any reads of the other group, thus the 3’UTRs are longest in this group of cells. 
 
If the read coverage of a TE is very sparse, the curve representing the coverage in the two cell 
groups will not be smooth, but rather change in steps of 1/n where n is the number of reads 
mapping to the TE; deviations from the diagonal line of identical coverage in the two groups 
will be common, due to the stochastic sampling of the reads. To mitigate this effect and 
identify TEs whose coverage cannot be explained by stochastic sampling of low-expression 
genes we generated a background dataset, in which we randomized the cell group label of 
the reads. This procedure preserves the number of reads obtained in each TE in each group, 
but randomizes their position in the TE.  
 
Finally, we identified TEs with AUCs indicating significant shifts in PAS usage. For this, we 
extracted TEs with a normalized read count (CPM) >= 2 in both cell groups, roughly 
corresponding to TEs with at least one count in each of the groups. As AUC values depend on 
the overall expression of the TE, we used an expression-dependent AUC cutoff to identify the 
TEs significantly changing length. This corresponded to the two-tailed 1% quantile of the 
background distribution in each of the 20 equal-sized log(mean expression between cell 
groups) bins, smoothened using the median over a running window of 5 values. Finally, to 
ensure that the change in read coverage was due to APA, we only retained significantly 
changed TEs for which the union of the interquartile range of TE positions that were covered 
by 3’ end reads in the two samples spanned at least 200 nucleotides. 
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A. 5. 7. Analysis of overlaps between data sets 
We used a sample-specific background for the calculation of the probability of overlap of 
genes and for the pathway enrichment analysis carried out on the STRING web server. All TEs 
considered in the AUC analysis, i.e. TEs with CPM >= 2, in each sample were combined and 
the unique set of TEs was used as background. In particular, for the cell type analysis of the 
Lambrechts dataset, we used the cell type-specific union of TEs from patients 3, 4 and 6 and 
obtained 10’966 genes for myeloid cells, 10’473 for T cells, 11’269 for endothelial cells and 
11’857 for fibroblasts. For the cell type analysis of lung cancer datasets, the union of TEs 
consisted of 10’177 genes in T cells and 9’970 genes in myeloid cells. We used the 
hypergeometric distribution to calculate the odds ratio and associated p-value of the overlap 
between gene sets. 
 

A. 5. 8. Pathway analysis 
The gene symbols for TEs with significant APA events were analyzed via the STRING web 
server, which provides enriched Gene ontology (GO) terms, KEGG and reactome pathways. 
As a background gene set for the enrichment analysis we provided the dataset-specific list of 
expressed genes (CPM >= 2). 
 

A. 5. 9. Workflow execution 
SCUREL was packaged in Snakemake and can be obtained from 
https://github.com/zavolanlab/SCUREL. 
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A. 8. Supplementary Figures 
 

 

Supplementary Figure 1. Principal component analysis of the combined

datasets from the (Lambrechts et al. 20218; Laughney et al. 2020) studies. A, B.

Projection of the gene expression data from the 56’699 cells from the Lambrechts

(red) and Laughney (blue) data sets, on the first two principal components, PC 1 

and 2 (A), and on PC 3 and 4 (B). C, D. Projection of the gene expression data

as above, but after dataset integration with harmony, for PC 1 and 2 ( C) and PC 

3 and 4 (D).

A B

C D
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Supplementary Figure 2. Relative contributions of individual cell types to the

total pool of mRNA reads. A Distributions of the number UMI counts per cell

for all annotated cell types in the Lambrechts (red) and Laughney (blue) 

datasets. The graphs were generated with Seurat. B Total number of UMI 

counts contributed by individual cell types to tumor (red) and matched control

(green) samples from the Lambrechts and Laughney data.
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Supplementary Figure 3. Nine random examples of SCUREL (and not scAPA)-detected

3’UTR shortening events in activated T cells (red) versus naive T cells (green). Only the

TE of each gene is shown. The strand on which genes are encoded is indicated by arrows

in the TE track (> indicates the Watson and < the Crick strands).
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Supplementary Figure 4. Nine random examples of SCUREL detecting 3’UTR shortening

in elongating spermatids (purple) versus spermatocytes (orange). Only the TE of each gene

is shown. The strand on which genes are encoded is indicated by arrows in the TE track (> 

indicates the Watson and < the Crick strands).
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Appendix B  

Identification of experimentally-supported poly(A) sites in single-cell 
RNA-seq data with SCINPAS 

Youngbin Moon1,2,†, Dominik Burri1,2,†, Mihaela Zavolan1,2,* 

1Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-
4056 Basel, Switzerland 

2Swiss Institute of Bioinformatics, Basel, Switzerland 

†These authors contributed equally to this work 

*Corresponding author mihaela.zavolan@unibas.ch  

B. 1. Abstract 
Alternative polyadenylation is a main driver of transcriptome diversity in mammals, 
generating transcript isoforms with different 3’ ends via cleavage and polyadenylation at 
distinct polyadenylation (poly(A)) sites. The regulation of cell type-specific poly(A) site choice 
is not completely resolved, and requires quantitative poly(A) site usage data across cell types. 
3’ end-based single-cell RNA-seq can now be broadly used to obtain such data, enabling the 
identification and quantification of poly(A) sites with direct experimental support. We 
propose SCINPAS, a computational method to identify poly(A) sites from scRNA-seq datasets. 
SCINPAS modifies the read deduplication step to favor the selection of distal reads and extract 
those with non-templated poly(A) tails. This approach improves the resolution of poly(A) site 
recovery relative to standard software. SCINPAS identifies poly(A) sites in genic and non-genic 
regions, providing complementary information relative to other tools. The workflow is 
modular, and the key read deduplication step is general, enabling the use of SCINPAS in other 
typical analyses of single cell gene expression. Taken together, we show that SCINPAS is able 
to identify experimentally-supported, known and novel poly(A) sites from 3’ end-based 
single-cell RNA sequencing data. 
 

B. 2. Introduction 
The majority of genes in the human genome have multiple isoforms, most of which come 
from the use of alternative transcription start or polyadenylation sites (1). While the 
regulation of transcription initiation by transcription factors has been extensively studied, 
much less is known about the regulation of poly(A) site (PAS) choice (2, 3). Comprehensive 
and quantitative PAS usage data across cell types is essential for studying the PAS choice, and 
a variety of methods have been developed to obtain such data by specifically sequencing 
mRNA 3’ ends (2, 4). With the introduction of single-cell RNA sequencing (scRNA-seq) the 
scale and resolution of PAS choice analyses can be dramatically expanded, because the 
broadly used 10x Genomics technology targets the 3’-terminal fragments of mRNAs. 
Consequently, various studies have emerged, describing the polyadenylation landscape of 
various cell types (5–10). However, as the scRNA-seq reads are generated from the 5’ ends of 
terminal mRNA fragments, they do not typically reach into the poly(A) tails to directly define 

https://orcid.org/0009-0001-5728-3959
https://orcid.org/0000-0002-8131-9309
https://orcid.org/0000-0002-8832-2041
mailto:mihaela.zavolan@unibas.ch
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the PAS. These are inferred computationally by associating peaks in read coverage with 
putative PAS, which can and does lead to a loss of resolution in PAS identification. Moreover, 
analyses of PAS usage in scRNA-seq data invariably start from genome-mapped reads, once 
the pre-processing and the “deduplication” of the reads based on their unique molecular 
identifiers (UMIs) have been performed with standard tools like CellRanger (11) and UMI-
tools (12). These tools were not developed with the specific intent of detecting and 
quantifying the usage of PAS, and therefore, they do not attempt to extract the reads that are 
most relevant for PAS analyses. To fill this gap, we have developed SCINPAS, a tool that 
modifies the pre-processing of scRNA-seq data to improve the extraction of reads that carry 
non-templated poly(A) tails and thus provide direct evidence for PAS usage. SCINPAS should 
be applicable to any dataset generated with a 3’-biased approach to increase the recovery of 
PAS from individual cells and cell types, and thus improve the understanding of PAS usage 
and 3’ untranslated region (UTR) dynamics across cell types. 
 

B. 3. Methods 
B. 3. 1. Analyzed datasets  

Dataset Accession 
number 

Sample  BAM File Size 
(GB) 

Tissue 

Tabula Muris Senis NA 10X_P4_2 21.8 Liver 

NA 10X_P4_7 23.8 Spleen 

NA 10X_P7_4 17.8 Heart and Aorta 

NA 10X_P7_11 22.2 Thymus 

NA 10X_P7_14 18.8 Limb muscle 

NA 10X_P7_15 15.0 Limb muscle 

T cell activation 
dataset 

SRR6228889 10X_naive_1 5.7 Blood 

SRR6228891 10X_infected_1 7.0 Blood 

SRR6228892 10X_infected_2 6.8 Blood 

SRR6228895 10X_infected_3 5.8 Blood 

Sperm cell 
development 
dataset 

SRR6129050 10X_mouse_1 16.6 Germ line 

SRR6129051 10X_mouse_2 16.1 Germ line 

 
Table 1. scRNA-seq datasets used in the study.  
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SRR: Sequence read archive run identifier, BAM: Binary Alignment Map, GB: Gigabyte, NA: Not Available. 
Single-cell RNA sequencing data of the Tabula Muris Senis dataset were downloaded from czb-tabula-muris-
senis S3 Public Bucket (13). Single-cell RNA sequencing data of mouse CD8+ T cells - naïve and from Listeria 
monocytogenes infection (14) - as well as from mouse germ cells (15) were downloaded from the NCBI’s GEO 
database (accession numbers GSE106264 and GSE104556 respectively). Table 1 provides further information 
on these samples. 

 

B. 3. 2. Mapping reads to the genome 
Alignments of reads-to-genome were obtained with the CellRanger software, as it provided 
only the primary, highest-accuracy alignments and did not discard reads that mapped to non-
exonic regions. 
For the Tabula Muris Senis datasets, we used the alignments already available at czb-tabula-
muris-senis S3 Public Bucket (13), generated with CellRanger version 2.0.1 (11), using the 
GENCODE GRCm38 vM19 annotation (available from the same S3 Public Bucket). 
For the T cell activation and sperm cell development datasets, we used the 10x Genomics 
CellRanger software version 5.0.0  (11) to map the reads to the CellRanger-provided genome 
assembly, which is a modification of the GENCODE GRCm38 vM23 assembly version of the 
mouse genome.  
 

B. 3. 3. Read deduplication 
A key step in the scRNA-seq data analysis is the identification and “deduplication” of reads 
that come from the PCR copies of the same initial mRNA. This is done based on the UMIs that 
are added during the cDNA synthesis step and then sequenced as part of read 2, while the 5’ 
end of the mRNA fragment is captured in read 1, in a paired-end sequencing approach. In 
principle, reads carrying the same cell identifier and the same UMI should come from PCR 
copies of one mRNA molecule. However, mutations may be introduced in the UMIs during 
sample preparation and sequencing, so that distinct UMIs do not always imply distinct initial 
mRNAs. CellRanger corrects apparent sequencing errors in the molecule identifiers (UR tag), 
providing read barcodes (UB). Moreover, as the UMIs are very short, there is a small chance 
that two distinct mRNAs end up with the same UMI. The standard approach for read 
deduplication with the UMI-tools software uses the genome annotation, to collapse the reads 
that have the same UMI only if they fall inside one gene. This of course makes sense, since 
the reads should be derived from a unique initial mRNA, but it also means that reads that fall 
outside of annotated regions are not considered. Furthermore, UMI-tools is not optimized to 
extract the most distal and thus most likely to contain a poly(A) tail from among reads with 
the same UMI. As our goal is to identify PAS in as comprehensive a manner as possible, 
including those outside of annotated genes or exonic regions, we do not use the gene 
annotation for deduplication, but implemented a different pre-processing approach.  
 
Determination of read spans  
First, we investigated the span of the genome covered by reads that originated in the same 
cell (same cell barcode - CB tag, provided by CellRanger) and the same molecular identifier, 
not trying to correct errors in the molecular identifier (UR tag). We calculated the span of a 
set of reads as follows:  

𝑠𝑝𝑎𝑛 𝑜𝑓 𝑟𝑒𝑎𝑑 𝑠𝑒𝑡(𝐶𝐵, 𝑈𝑅) = 𝑚𝑎𝑥(𝑟𝑒𝑎𝑑 𝑒𝑛𝑑|𝐶𝐵, 𝑈𝑅)  − 𝑚𝑖𝑛 (𝑟𝑒𝑎𝑑 𝑠𝑡𝑎𝑟𝑡|𝐶𝐵, 𝑈𝑅) 
The start and end coordinates refer to the genomic coordinates of reads within the set with 
a specific (CB, UR) combination. For reads that spanned splice junctions (coming from 
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adjacent exons of spliced mRNA), only the most distal part of the mapped read was used to 
compute the span.  
The distribution of spans had two distinct peaks, one at 100-1000 and the other at 10-100 
million nucleotides. Only the first one corresponds to terminal fragment sizes that are 
generated in the experiments, while the second peak may correspond to cases where two 
distinct mRNAs ended up with the same UMI.  
 
Read clustering 
Based on these results, we restricted the deduplication to reads with the same (CB, UR) tag 
combination that covered a maximum span of 100’000 nucleotides. That is, we traversed the 
genome, adding reads to the 3’ end of a cluster for as long as the maximum cluster span was 
not reached. Once this happened, we initiated a new subcluster with a new subcluster tag (YB 
tag, Table 2). In the very unlikely case that reads originating in the same mRNA will be split 
into multiple clusters by this procedure, the identification of PAS will not be impacted, 
because only the distal cluster will contain reads with poly(A) tails.  
 
UMI correction 
Similar to CellRanger, we then corrected errors in the molecular identifiers, by merging 
clusters whose span overlapped, and whose UR tags differed in one nucleotide. The majority 
UR tag in a merged cluster was then taken as the UMI of all reads in the cluster.  
 
Read selection 
Finally, we chose the most distal read from each cluster, as this should come closest to the 
PAS, possibly covering part of the poly(A) tail. If a cluster contained reads mapping to both 
strands of the chromosome (as well as having the same CB and UMI tags), we applied 
deduplication only to reads corresponding to the majority strand. In case of an equal number 
of reads mapping to the positive and negative strands we chose arbitrarily those from the 
negative strand. 
 

B. 3. 4. Alignment correction 
Inspection of read-to-genome alignments indicated that there were some cases where the 
alignment program did not fully extend the mappable parts of the reads into regions of low 
nucleotide complexity. This resulted in unmapped (i.e. “soft-clipped”) regions of the reads 
that in fact matched the genome. As we rely on soft-clipping to identify the PAS, it is important 
that the alignment is correct, extending over the entire alignable part of each read. We 
therefore implemented an additional step following the read-to-genome alignment, 
extending the mapped region of a soft-clipped read for as long as the number of mismatches 
between the soft-clipped region and reference genome remained under a threshold, which 
was  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑎𝑥(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑜𝑓𝑡 𝑐𝑙𝑖𝑝𝑝𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛/10, 2) 
That is, we extended the alignment for as long as the number of errors in the extended 
alignment stayed under 10%, or, for short extensions, until the number of errors remained 
less than 2. Once this point was reached, we backtracked to the 3’-most position in the 
alignment where the read and the genome matched over 3 consecutive bases. The corrected 
cleavage site was set to the nucleotide after the last of these 3 positions. For further 
processing, we defined two additional tags associated with the extended read alignments, XO 
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and XF (Table 2), corresponding to the old cleavage site implied by the initial alignment, and 
the new cleavage site, after the alignment extension. 
 

B. 3. 5. Extraction of poly(A) tail-containing reads (PATR) 
Many reads have a few soft-clipped nucleotides at their 3’ end that cannot be aligned to the 
genome. In the dataset that we used for developing the method, Tabula Muris Senis sample 
10X_P7_14, the distribution of soft-clipped region length decreased abruptly up to 4-5 
nucleotides, and slower beyond this point, consistent with two processes generating these 
soft-clipped regions. The longer soft-clipped regions were also very A-rich (not shown), 
indicating that they represent poly(A) tails. Thus, we extracted as poly(A) tail-containing reads 
(PATR) those reads that, after the alignment extension and cleavage site correction, had at 
least 5 soft-clipped nucleotides at the 3’ ends, with more than 80% A’s.  
 

B. 3. 6. Standard approach to read deduplication  
To illustrate the utility of our tool in extracting experimentally-supported PAS we compared 
the extracted reads with those obtained with the standard workflow for scRNA-seq analysis. 
That is, we carried out the read deduplication with the UMI-tools (12) software (version 
1.1.1). Throughout we used one sample from the Tabula Muris Senis dataset, 10X_P7_14 for 
these benchmarks. UMI-tools `dedup` was used with parameters extract-umi-method=tag, 
umi-tag=UB, cell-tag=CB, gene-tag=GX, method=unique, per-gene and per-cell. 
We sorted and indexed the alignments with samtools (16) and the set of reads was then 
processed as the set extracted by SCINPAS, starting with the identification of PATR.  
 

B. 3. 7. Clustering of read 3’ ends into PAS clusters 
It has been observed before (e.g. (17)) that poly(A) sites are not processed with single-
nucleotide precision, but rather mRNAs ending a few nucleotides upstream or downstream 
of a dominant PAS are typically observed in large scale datasets. For analyses such as of 
regulatory motifs, it is important to identify these dominant sites, which we refer to simply 
as PAS, and their respective clusters of secondary cleavage sites. To retrieve these PAS, BAM 
files containing alignments of PATR were used to construct BED files where the end positions 
were set to the corrected cleavage sites implied by the reads, the start positions were those 
preceding the end (i.e. corrected cleavage site -1) and the score was the number of reads with 
identical corrected cleavage site. We clustered individual cleavage sites as done before (17): 
in each iteration, we started from the cleavage site with the highest score, which became a 
new PAS, and associated with it all corrected cleavage sites within 25 nucleotides upstream 
or downstream. The score of the PAS cluster (PAS score) was computed as the total number 
of  reads supporting the PAS cluster (Fig. 1). We then removed all the cleavage sites associated 
with the cluster, and moved to the next most frequent cleavage site not yet considered. We 
repeated the procedure until all cleavage sites were examined (17). For the various controls, 
we started with the appropriate set of reads (depending on the analysis, reads without 
poly(A) tails, i.e. non-PATR, or reads deduplicated by standard tools) and applied the same 
clustering procedure described above.   
  

B. 3. 8. Classification of PAS clusters  
To evaluate the SCINPAS-identified PAS we annotated the clusters it produced by intersecting 
them with non-overlapping features annotated on the genome, i.e. intergenic regions (IG), 
intronic regions (I), non-terminal exons (NTE) or terminal exons (TE). We used the CellRanger-
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provided GTF annotation mm10-2020-A_build, which is a modified version of the GRCm38 
mouse genome assembly from GENCODE. We extracted entries corresponding to lncRNA and 
protein-coding mRNAs, and then intersected the locations of PAS clusters with these 
annotation features. For example, intronic clusters were those that intersected gene loci but 
not exons (Fig. 1). The intersections were done with the BEDTools (software version 2.27.1) 
‘window’ function with w = 1 (18), to allow for the ambiguity in assigning by different tools of 
the A nucleotide that frequently occurs after the cleavage position to either the transcript or 
to the poly(A) tail. For clusters annotated to TE we further distinguished those whose PAS was 
less than 100 nucleotides from the annotated TE end (annotated in terminal exon, ATE) and 
those whose PAS was farther away (unannotated in terminal exon, UTE). 
 

B. 3. 9. Classification of PATR 

Tag name Description Value 

XO Cleavage site implied by initial alignment Integer 

XF Corrected cleavage site implied by the 
extended alignment 

Integer 

YB Cluster of reads with same unique molecular 
identifier (UR)  

String (URID-subcluster #) 

ZI PAS cluster annotation class_chromosome:start:end:str
and:clusterIDa 

ZS PAS score Integer 

ZD Tag indicating whether a read maps to the 
boundary between the 2 clusters 

Integer (0/1)  

Zi PAS sub-cluster id  String (ATE/UTE) 

Zd Tag indicating whether a read maps to the 
boundary between the 2 sub-clusters 

Integer (0/1) 

 
Table 2. Tags added for deduplication and classification of read 3’ ends and PAS clusters. 
aclusterID consists of chromosome, cluster representative, corrected cleavage site and strand separated by ‘:’. 
We also annotated individual reads within the clusters, by propagating the cluster annotation to individual reads. 
This was achieved by identifying the cluster in which each read belonged and assigning it the annotation of the 
cluster (ZI tag) and the PAS score (ZS tag).  If a read mapped to the boundary between 2 clusters, we assigned 
it to the cluster with the highest score, and we noted the potential ambiguity by setting another tag, ZD=1. If a 
read belonged to exactly 1 cluster, the ZD tag value was set to 0. Finally, we used another tag, ‘Zi’ to denote 
the ATE or UTE annotation (and a corresponding ‘Zd’ tag to indicate whether the read overlapped two PAS 
clusters in the same terminal exon (Table 2). Tag names are in accordance with SAM format specification 
(https://github.com/samtools/hts-specs). 

 

B. 3. 10. Computation of summary statistics 
 
Number of reads associated with various categories of PAS 

https://github.com/samtools/hts-specs
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The BAM files enhanced with the tags indicating the annotation of the reads were used as 
input to the ‘pysam’ python package (version 0.18.0) (16, 19) to count all types of reads (i.e. 
raw reads, deduplicated, soft-clipped, non-PATR, PATR, TE, ATE, UTE, NTE, I, IG). 
 
Number of covered genes  
We considered as annotated those genes for which a transcript with support level (TSL) <= 3 
is annotated in the GTF file. TSL 3 signifies that there is at least one sequenced expressed 
sequence tag providing evidence for a transcript. We counted the number of annotated genes 
in the GTF file.  We then computed the number of expressed genes in a sample as the number 
of unique gene IDs (GX tag) in the deduplicated BAM file for which there were at least 2 reads 
mapping to one of the gene’s annotated exons. Similarly, we computed the number of genes 
covered with identified PATR. 
 
Position-dependent nucleotide frequencies around PAS 
To determine whether different categories of PAS had the expected nucleotide composition 
in their vicinity, PAS clusters of specific types were identified in BED files and the PAS, i.e. the 
cleavage site with the highest read support (found in the ZI tag, see Table 2) was used to 
extract 101 nucleotides-long genomic sequences centered on these PAS. The relative 
frequencies of the four nucleotides were computed and visualized for each PAS category.  
 
Position-dependent frequency of polyadenylation signals  
The most conserved signal for polyadenylation, i.e. the poly(A) signal, has the consensus 
sequence AAUAAA, but 12 variants (AAUAAA, AUUAAA, UAUAAA, AGUAAA, AAUACA, 
CAUAAA, AAUAUA, GAUAAA, AAUGAA, AAGAAA, ACUAAA, AAUAGA) have been found 
conserved between human and mouse (17), and we refer to them as “canonical”. We 
determined the position-dependent frequency distribution of these canonical poly(A) signals 
around PAS of various categories as done before (17). Specifically, we extracted the sequence 
centered on each of the PAS and stored all these sequences into a dataframe. For each 
sequence we recorded which of the 12 canonical poly(A) signals (17) occurred in it, as a 0 or 
1 value in the column corresponding to each poly(A) signal. A column sum then gives the 
frequency of PAS where each of the poly(A) signals occurs. We then traversed the dataframe 
iteratively, recording the highest frequency motif, constructing the position-dependent 
distribution of its occurrence in the sequences that contained it, then removing all these 
sequences from the dataframe and repeating the process for the next-most frequent poly(A) 
signal. If a motif occurred more than once in a sequence, its contribution towards each of the 
positions where it occurred was weighted by 1/number of occurrences, so that each sequence 
contributed with equal weight to the motif frequency distribution. The analysis was done for 
entire PAS datasets as well as for subsets of PAS with particular annotations. Running 
averages (5 nucleotides to the left and right of a given position) were plotted. 
 
Position-dependent frequency of polyadenylation signals in PAPERCLIP-identified PAS 
To determine whether the position-dependent frequency of polyadenylation signals depends 
on the method by which the PAS were inferred, we also analyzed data generated with the 
PAPERCLIP method (20), in which mRNA termini are identified by crosslinking and 
immunoprecipitation of the poly(A)-binding protein. We extracted PAPERCLIP-identified PAS 
from the polyAsite atlas (21), which contains pre-analyzed data for 28 samples mapped to the 
mouse genome assembly version GRCm38.96. Any PAS with TPM expression > 0 across all 
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PAPERCLIP samples was written out to a BED file and further used to construct position-
dependent frequency of occurrence of poly(A) signals, following the procedure described in 
the previous section. 
 
Position-dependent frequency distribution of AAUAAA around SCINPAS- and SCAPE-
identified PAS 
We applied the procedure described in the previous two sections to compare the position-
dependent frequency distribution of the main polyadenylation motif, AAUAAA, relative to 
PAS identified with either SCINPAS or SCAPE.   
 
Consistency of poly(A) signal distribution at PAS and annotated mRNA 3’ ends 
To determine whether novel PAS located in various genomic regions are characterized by the 
same poly(A) signals as annotated PAS we used the following procedure. First, we constructed 
reference distributions of poly(A) signals upstream of the 3’ ends of annotated mRNAs, as 
described in the above paragraph. Then, for each of the 12 canonical poly(A) signals, we 
determined the location of its peak around the 3’ ends of mRNAs and recorded the interval 
around the peak where the frequency was >= 90% of the peak value. This interval was 
considered the expected location of the poly(A) signal at true poly(A) sites. Then, for each 
category of PAS in a dataset we constructed the position-dependent frequency of each 
canonical poly(A) signal and we determined whether the peak position of each poly(A) signal 
fell within the interval expected from the true PAS. Finally, we counted for how many poly(A) 
signals this condition held and we defined this count to be the motif score for each category 
of PAS in a given dataset. Hence, the minimum motif score of a dataset is 0 and maximum 
motif score is 12. As negative control, we started from reads without poly(A) tails (non-PATR 
reads) and applied the same procedure, i.e. clustering, identifying the position with most read 
support in each cluster, and finally determining the motif scores for these clusters.  
 
Number of PAS in a given category 
To compare the performance of SCINPAS with that of other tools that identify PAS from 
scRNA-seq, we extracted PAS with specific annotations from the relevant BED files (see 
section Classification of PAS clusters) and counted the number of clusters supported by at 
least 2 PATR, thus requiring a minimum of 2 reads to support a PAS.  
 
Comparison of PAS usage between 2 different cell types  
To compare the pattern of PAS usage in previously analyzed datasets, we used the metadata 
provided in the respective studies to identify cell types and merge the reads (aligned and 
deduplicated) from individual cell types. The merged BAM files were further processed to get 
the PAS of individual cell types. We then intersected the set of PAS identified by SCINPAS with 
terminal exons of annotated transcripts, and for each terminal exon, we calculated the length 
implied by the location of PAS within this terminal exon. That is, given the PAS score (number 
of supporting reads) 𝑠𝑖 of a PAS 𝑖 located at distance 𝑑𝑖 from the start of the terminal exon, 
the average length 𝑙𝑖 of the terminal exon in the respective sample is given by 
(𝛴𝑖 𝑑𝑖𝑠𝑖 )/(𝛴𝑖 𝑠𝑖). If a cluster overlapped multiple terminal exons, the PAS score was 
uniformly divided between these terminal exons. We then calculated the ratio of average 
lengths of each terminal exon between two cell types and the distribution of log-values of this 
ratio. 
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B. 3. 11. Comparison with SCAPE 
 
Execution of SCAPE 
We downloaded SCAPE from https://github.com/LuChenLab/SCAPE, tested it with the 
provided example data and executed it with default parameters (see below). By default, 
SCAPE requires stranded data to infer the insert size. For the widely used 10x Genomics data, 
the second read contains only the barcodes and the insert size is approximated from paired-
end datasets. The number of PAS to search for in a specific terminal exon has to be provided. 
We used the parameter values suggested by the authors, namely maximum number of PAS = 
5, minimum number of PAS = 1, the mean and standard deviation of insert size of the library 
= 300 and 50 bases, respectively, the length of the poly(A) tail = Uniform(20,150) nucleotides, 
minimum distance between two PAS = 100 nucleotides, and maximum length of UTR = 6000 
nucleotides. SCAPE performs the optimisation step-wise `theta_step=9` and fixes the 
maximum standard deviation `max_beta=70`. This explains the discrete spans of the regions 
centered on poly(A) sites.  
 
Obtaining classes of PAS clusters 
For the comparison with other tools/resources, we created an additional annotation class, 
namely of regions of size 1kb downstream of annotated genes and termed it ‘1kb downstream 
genes’. We created these regions with BEDTools ‘flank’ function, then removed regions that 
overlapped with other genes on the same strand.  
For SCINPAS PAS clusters, this is an additional intergenic class, which was obtained with the 
BEDTools ‘window’ function using the ‘1kb downstream genes’ regions and the intergenic PAS 
clusters (parameter -u and one base pair added up- and downstream of the PAS clusters 
(parameter -w 1)). The remaining intergenic PAS clusters were also obtained with BEDTools 
‘window’ applied to  the ‘1kb downstream genes’, but with parameters -w 1 and -v, to report 
to complement of the previously identified class, i.e. PAS that were initially classified as 
intergenic, and were further located outside of the 1kb downstream of annotated genes. For 
both cases only overlaps on the same strand are reported (parameter -sm). 
The main output of SCAPE, the ‘pasite.csv.gz’ file, contains the count for each cell barcode 
and PAS. These values were summed and saved into a standard BED file. The start and end 
coordinates of each PAS was computed as floor(mean - beta/2) and floor(mean + beta/2), 
where mean and beta were the parameters of the fitted Normal distribution from SCAPE. 
The SCAPE PAS were classified with BEDTools ‘intersect’, similar to the classification of 
SCINPAS PAS. Exonic PAS were obtained from the intersection with exons but not terminal 
exons, intronic PAS from the intersection with genes but not exons, and intergenic PAS were 
those that did not intersect with genes or with ‘1kb downstream genes’. The annotation ‘1kb 
downstream genes’ was obtained when PAS did not intersect genes but overlapped 
completely (-f=1) with  the class ‘1kb downstream genes’. Lastly, terminal exon PAS were 
obtained from the intersection of terminal exons only.  
 
Analysis and graphics 
In general, we used SCINPAS-extracted PAS clusters with at least 2 supporting PATRs. This was 
also the case when we compared SCINPAS to SCAPE. To plot the number of PAS clusters, the 
individual classes (TE, exons, introns, intergenic and ‘1kb downstream genes’) were extracted 
and plotted as stacked bar charts with `geom_col`. 

https://github.com/LuChenLab/SCAPE
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The distance between PAS and the closest PAS cluster downstream was computed as follows. 
For each chromosome and strand, PAS clusters were sorted by start and end positions. Then 
for each but the last cluster we obtained the distance from its end position to the start 
position of the following cluster. The distance distribution plot was created with 
`geom_freqpoly` using density estimates.  
The scatter of the number of supporting reads associated with SCINPAS and SCAPE-identified 
PAS in individual genes were generated as follows. For each gene, overlaps between gene (g) 
and PAS cluster (p) were found by requiring the same chromosome and strand and (gs <= pe) 
& (ge >= ps) for SCAPE and (gs <= pe+1) & (ge >= ps-1) for SCINPAS, where (s) and (e) are start 
and end coordinates respectively. This allows for partial overlaps, which is also the default 
behavior of BEDTools intersect and window functions. The found overlaps were counted and 
the individual PAS scores (i.e. number of reads supporting the PAS cluster) were summed. The 
log(read count+1) values were plotted as a scatter. Density estimates were created with 
`geom_density2d` using 200 grid points in each direction. The Spearman rank correlation rho 
and associated p-value was computed with `cor.test(method=”spearman”)` on the PAS score 
at the gene level. 
For all PAS clusters, irrespective of annotation, the span was computed as the distance 
between the end and start coordinates (from the BED file coordinates). 
All plots were generated with ggplot2 (22). 
Examples of PAS and read coverage of gene loci were visualized with IGV v2.11.9 (23). 
 

B. 3. 12. Overlap of SCINPAS-inferred PAS from the Tabula Muris Senis samples with the 
polyAsite atlas 
We used the 6 Tabula Muris Senis samples from Table 1 to infer PAS, requiring a minimum of 
2 reads support. We then determined whether a SCINPAS PAS cluster (x) overlapped a PAS 
cluster (y) from the polyAsite atlas (21), located on the same chromosome and strand if the 
start (s) and end (e) coordinates of the clusters satisfied the condition (ys <= xe + 1) & (ye >= xs 

- 1). This condition, which allows for clusters to be immediately adjacent to each other rather 
than overlapping, accounts for the possibility that tools may differ in whether they assign an 
A nucleotide that frequently occurs in the genome immediately downstream of the cleavage, 
to the templated part of the transcript or to the poly(A) tail.  We then counted the fraction of 
SCINPAS clusters that overlapped a PAS cluster, for various numbers of SCINPAS clusters, 
sorted by their read support (i.e. top 100, 500, 1000, etc.).  
 

B. 3. 13. Expression levels of RNAs with or without the AAGAAA PAS motif 
We first filtered representative cleavage sites that overlap with terminal exons and grouped 
them by the gene name of the terminal exons with which they overlapped. Definition of 
overlap is the one in the paragraph above. If multiple terminal exons overlapped with a given 
representative cleavage site,  the terminal exon whose end was closest to the representative 
cleavage site was associated with the respective cleavage site. The selected terminal exons 
were then divided in two sets, depending on whether or not any of the PAS within them had 
the AAGAAA motif in the region -40bp to +20bp. The distribution of transcript expression 
levels (number of reads in the PAS clusters of the terminal exon) was then calculated for the 
two categories of TEs in the three datasets used for benchmarking: Tabula Muris Senis sample 
10X_P7_14, T cell activation dataset (union of sites in all samples) and sperm cell 
development dataset (also union of all sites in these samples).  
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B. 3. 14. Distance of PAS to terminal exon ends 
To determine how precise different methods are in identifying TE ends, we first filtered 
representative cleavage sites that overlap with terminal exons. The definition of overlap is 
the same as the two paragraphs above. If a given representative cleavage site overlapped 
multiple TEs, the TE whose end was closest to the representative cleavage site was associated 
with the respective cleavage site. Then the distance was computed as 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑎𝑏𝑠(𝑒𝑛𝑑 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑒𝑥𝑜𝑛 −  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝑐𝑙𝑒𝑎𝑣𝑎𝑔𝑒 𝑠𝑖𝑡𝑒) 
 
The distances were computed for both samples and control to generate a cumulative 
frequency plot. For the control, UMI-tools deduplicated 10X_P7_14 was used. 
 

B. 4. Results 
B. 4. 1. scRNA-seq reads provide direct evidence of polyadenylation sites 
Increasingly many studies have started to investigate APA from scRNA-seq datasets that are 
generated with the 10x Genomics technology, which captures 3’ fragments of mRNAs (5, 6, 
8, 10). Invariably, these studies start from “deduplicated” reads mapped to the reference 
genome with the CellRanger software (11). While a unique molecular identifier (UMI) is 
attached to the 3’ end of an mRNA, PCR copies of the mRNA are fragmented and 3’-terminal 
fragments are sequenced in the 5’-to-3’ direction, yielding distinct reads associated with the 
same UMI. For quantifying gene expression it is not crucial which of the reads with the same 
UMI is selected for quantification during the read deduplication process. However, reads that 
map most distally in the gene locus are more likely to reach the 3’ end of the mRNA. Thus, for 
the purpose of identifying reads that contain poly(A) tails and thus provide experimental 
evidence of the PAS, it is important to select these distal reads from among those with 
identical UMIs. To demonstrate this, we determined the number of reads with unmapped 
(soft-clipped) nucleotides at the 3’ end that were extracted either with standard software 
(CellRanger followed by UMI-tools) or by our software. On a randomly chosen sample from 
the Tabula Muris Senis dataset (ID:10X_P7_14), we found that 0.44% of the reads that were 
extracted with the standard software had soft-clipped nucleotides at their 3’ end, while this 
proportion was ~3-fold higher, 1.12%, when selecting distal reads. Similar results were 
obtained on other datasets (not shown). This result emphasized the need for a tool to pre-
process scRNA-seq reads so as to maximize the recovery of poly(A) tail-containing reads and 
thereby polyadenylation sites with experimental support.  
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Figure 1. Scheme of SCINPAS workflow.  
The inputs to SCINPAS are indicated in the green box. Alignments of reads from primary samples are generated 
with CellRanger. The SCINPAS processing steps are shown in the cyan boxes and the outputs of the workflow 
are indicated in the orange box. File formats for inputs and outputs are indicated in parentheses. 

 
A scheme of the SCINPAS - short for scRNA-seq-based identification of novel poly(A) sites - 
workflow is shown in Fig. 1. SCINPAS is written in the nextflow language (24) and its key 
features are the following. First, in contrast to UMI-tools, which uses the genome annotation 
to collapse reads that have the same UMI and map to the same gene, SCINPAS does not 
assume a specific genome annotation but rather is able to identify PAS that are located 
outside of the currently annotated exonic/genic regions. To demonstrate this, we first 
clustered the reads that came from the same cell and had the same unique molecular 
identifier. Most clusters spanned less than 10 kilobases (Fig. 2A), as expected when reads 
come from terminal fragments of mRNAs, terminal exons being generally kilobases-long (25). 
However, some clusters had a much larger span. This could occur when the sequenced 
fragments span splice junctions, or perhaps from rare cases when distinct mRNAs were 
tagged with the same UMI. In SCINPAS, we collapse all the reads with the same CB and UMI, 
but only within some maximum cluster span. That is, we traverse the genome in the 5’-to-3’ 
direction to construct clusters of such reads, ending a cluster when a predefined threshold 
(100’000 nucleotides) in length is reached. The selection of the distal read is done separately 
for each such cluster (Fig. 2B). As only reads with poly(A) tails contribute to PAS identification, 
if reads with the same UMI end up erroneously in multiple clusters, the reads originating from 
the upstream clusters would not have poly(A) tails and thus spurious PAS will not be 
generated, despite the error in read clustering. On the other hand, if the initially large cluster 
span was really due to the same UMI being attached to multiple isoforms, then the upstream 
clusters should also contain reads with poly(A) tails, and they will be kept for further analysis. 
The second key step is to identify the reads containing poly(A) tails. For this, we extracted all 
the reads whose 3’ ends could not be mapped to the genome, i.e.  those with soft-clipped 
nucleotides at the 3’ end. In the sample that we arbitrarily picked for the tool development, 
the 10X_P7_14 sample from the Tabula Muris Senis dataset, the soft-clipped part of the reads 
was generally very short, 1-3 nucleotides in 58.2% of the cases (Fig. 2C). However, many reads 
still had longer soft-clipped regions, up to ~30 nucleotides. Inspection of read-to-genome 
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alignments revealed some cases in which the alignment (generated by the STAR software 
(26)) could be further extended into the soft-clipped region, without a decrease in the 
alignment quality (Fig. 2D). Thus, we implemented an additional step of refining the alignment 
by extending the mapped regions of soft-clipped reads until the number of mismatches 
between the soft-clipped region and reference genome reached a maximum threshold and 
then correcting the cleavage site implied by the read (see Methods). Finally, we selected the 
reads that contained non-templated poly(A) tails of at least 5 nucleotides and over 80% A’s, 
and we clustered them as described previously (17), to remove the small variability in 
cleavage sites. We consider the most frequently used cleavage site in a cluster (cluster 
representative) to be the poly(A) site (simply PAS).  In the 10X_P7_14 sample we found that 
1.6% of the deduplicated reads contained poly(A) tails. The clusters and individual cleavage 
site positions (including corrected positions) within them were then saved in BED and BAM 
files, respectively, and then finally, annotated (Fig. 2E). 

 
Figure 2. Key steps in SCINPAS.  
A. Distribution of genomic spans of reads with the same cell and molecular identifier (CB and UR tag, log10) 
constructed from the sample 10X_P7_14 of Tabula Muris Senis. B. Illustration of distal read selection, from 
among the reads with the same CB and UMI. In this case, only the most 3’ read has 3’ non-templated A 
nucleotides (indicated by the green color). C. Distribution of soft-clipped region length in reads from the same 
sample, as given by the STAR software. D. Illustration of a read-to-genome alignment that could be extended 
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further over the region marked as soft-clipped in the initial alignment. The read maps to the negative strand of 
the genome. The start of the soft-clipped region marks the “Initial cleavage site” implied by the alignment. The 
“Corrected cleavage site” (red arrow) results from the extension of the alignment over the mappable part of 
the soft-clipped region. E. Scheme of SCINPAS annotation of PAS and PATR. 

 

B. 4. 2. SCINPAS improves the recovery of poly(A) sites relative to standard software  
To compare PAS recovered from reads extracted by either SCINPAS or the standard software, 
we investigated a few properties previously found to characterize true PAS. First, the mouse 
genome being quite extensively annotated, we expect that most well-expressed isoforms are 
already represented in this annotation, and are recovered by an accurate PAS identification 
tool. Of the 652’288 poly(A) tail-containing reads (PATR) extracted by SCINPAS from the 
Tabula Muris Senis 10X_P7_14 sample, 415’299 mapped to annotated terminal exons (TE - 
63.7 %), 2’329 to other exons (NTE - 0.4 %), 34’484 to introns (I - 5.3 %) and 200’176 to 
intergenic regions (IG - 30.7 %) (Fig. 3A). In contrast, only 133’536 PATR were extracted after 
applying the UMI-tools software, 126’958 from terminal (95.1 %), 566 (0.4%) from other types 
of exons, 952 (0.7 %) from introns and 5’060 ( 3.8 %) from intergenic regions. The main 
difference is that SCINPAS identifies PATR in intergenic regions. When these are not 
considered, as in the standard analysis, the proportion of PATR in terminal exons compared 
to other genic regions is indeed very high, 91.9 %. The small number of reads that end up with 
intergenic and intronic annotation after the application of UMI-tools deduplication come 
from regions that were considered genic in the older mouse genome annotation that was 
used by the Tabula Muris Senis project for mapping the reads to the genome, but not in the 
newer annotation that we used in SCINPAS for read and PAS classification. Thus, SCINPAS 
identifies many more polyadenylated reads, the majority of which come from terminal exons, 
but also some that come from intergenic regions.  
We also asked whether the transcript ends implied by the inferred PAS indeed correspond to 
the ends of annotated terminal exons. To answer this, we calculated the distances between 
PAS, weighted by the number of supporting reads, and the annotated ends of the terminal 
exons in which the PAS are located. The cumulative density function of log10 values of the 
distance, shown in Fig. 3B, confirms that the vast majority of SCINPAS-extracted PATR are 
located within 10 nucleotides from the annotated terminal exons, while UMI-tools-extracted 
reads end hundreds of nucleotides away from the terminal exon end.  For better resolution 
of PAS annotation (Fig. 2E), we distinguished between PAS located at most 100 nucleotides 
upstream of the terminal exon end (we called these “annotated” TE PAS, or ATE) and those 
that were located further upstream in terminal exons (UTE PAS). 
The sequence composition around PAS, determined in many previous studies (17, 27, 28), is 
strongly enriched in A nucleotides at ~20 nucleotides upstream of the PAS, where the poly(A) 
signal is located, while the region downstream of the PAS is enriched in U nucleotides. To test 
this, we first clustered cleavage sites implied by the PATR into clusters of closely-spaced sites, 
and took the most frequently used position in a cluster (the “cluster representative”) as the 
actual poly(A) site (see Methods). Computing the nucleotide frequencies around these PAS, 
we obtained the expected pattern (Fig. 3C). This was not the case when the reads used to 
infer cleavage sites came from the UMI-tools deduplication and were not constrained to 
contain poly(A) tails (Fig. 3D). Furthermore, different categories of PAS individually exhibited 
a similarly biased nucleotide composition (Fig. S1). 
We also specifically checked for the presence of the poly(A) signal, which has the AAUAAA 
consensus and is located at ~20 nucleotides upstream of the cleavage site (17, 29, 30). There 
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are 12 variants of the consensus that are conserved between human and mouse (17), and 
almost all showed the expected peak at ~20 nucleotides upstream of the PAS (Fig. 3E). In 
contrast, no such pattern was exhibited by the negative control data set, constructed from 
reads without poly(A) tails obtained with the standard UMI-tools-based deduplication (Fig. 
3F). Altogether, these results demonstrate that our tool improves the recovery of bona fide 
PAS from scRNA-seq data relative to the standard workflows. 

 
Figure 3. PAS extracted by SCINPAS contain the expected poly(A) signals.  
A. The number of reads from the Tabula Muris Senis sample 10X_P7_14, at different steps of the processing 
pipeline, when the processing is done with SCINPAS (blue) or the standard UMI-tools-based workflow (orange). 
B. Distribution of log10 distances between inferred and annotated terminal exons, when processing is done with 
SCINPAS (blue) or the standard workflow (orange). C. Position-dependent nucleotide frequencies in PAS 
constructed from SCINPAS-extracted reads. PAS are anchored at position 0, and the genomic sequence 
upstream and downstream (from -50 to +50 nucleotides) was used to calculate nucleotide frequencies. D. Similar 
for negative control sites. E. Position-dependent occurrence of poly(A) signals. The genomic sequence from -40 
to +20 around PAS was extracted, poly(A) signals were identified and tabulated, and the frequency of poly(A) 
signal occurrence across all examined sequences was calculated. F. Similar for negative control sites. 

 

B. 4. 3. SCINPAS identifies PAS in genic and non-genic regions 
Given that the majority of PATR and PAS correspond to terminal exon ends, we wondered 
whether PAS that SCINPAS identified in other types of genomic regions also carry the 
expected signals for 3’ end processing and polyadenylation. Thus, we constructed position-
dependent distributions of occurrence of canonical poly(A) signals around putative PAS of 
different annotation categories. As negative control, we compared these distributions with 
those obtained for a similarly analyzed dataset, where the reads were deduplicated with UMI-
tools and did not contain soft-masked nucleotides. Indeed, all but the smallest category of 
SCINPAS-extracted PAS had the expected enrichment of almost all poly(A) signals at ~20 
nucleotides upstream of the PAS (Fig. 4A-E). The few PAS identified in non-terminal exons had 
the expected enrichment of the main poly(A) signal, AAUAAA, while for the other signals the 
number of occurrences was low and the positioning relative to PAS less clear. These results 
indicate that reads with poly(A) tails selected by our tool identify bona fide PAS across all 
types of genomic regions. The results also suggest that position-specific patterns of 
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occurrence of poly(A) signals are very reliable and can be used to flag datasets from which 
PAS are not accurately identified. 
One of the 12 conserved signals, AAGAAA showed a different positional pattern than the 
other motifs, peaking not at ~ -20 nucleotides of the PAS, but in the region -10 to 0. We also 
checked this motif’s frequency around the ends of the annotated TEs in our genome 
annotation and found it to peak at ~ +10 nucleotides, i.e. downstream of the TE end (Fig. 4F). 
To exclude the possibility that priming on internal poly(A) stretches underlies the differences 
in motif occurrence around SCINPAS PAS compared to annotated TEs, we further determined 
the position-dependent frequency of the motif occurrence in the vicinity of PAS that were 
determined with an orthogonal experimental method, PAPERCLIP (20), which uses 
crosslinking and immunoprecipitation of the poly(A) binding protein rather than priming with 
oligo(dT) to detect poly(A) tails. We extracted the PAPERCLIP-identified sites from the 
polyAsite atlas (21) and constructed the position-dependent motif distribution as done for all 
other categories of sites. The results show that in this data set as well, the AAGAAA motif 
peaks at ~10 nucleotides upstream of the PAS, similar to SCINPAS-identified PAS, and not to  
annotated TEs (Fig. 4G).   

 
Figure 4. Position-dependent frequency of occurrence of poly(A) signals at different types of PAS.  
A-E. PAS were extracted and annotated with SCINPAS from the Tabula Muris Senis sample 10X_P7_14. ATE - 
PAS within 100 nucleotides of annotated TE ends; UTE - PAS in TEs but >100 nucleotides from the annotated 
TE ends; IG - intergenic; I - intronic; NTE - PAS in exons that are not TE. F. Motif distributions around TE ends 
from the annotation of the GRCm38 mouse genome assembly. G. Similar, for PAS identified by the PAPERCLIP 
(20) method for experimental identification of PAS.  
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B. 4. 4. PAS identified by SCINPAS exhibit the expected dynamics during cell differentiation 
To further test the ability of SCINPAS to identify non-canonical PAS, we applied it to two 
systems in which the abundance and dynamics of such sites has been reported before, T cell 
activation and sperm cell development, systems in which the usage of intronic and/or coding-
region-proximal PAS is activated (31, 32). Applying SCINPAS to the T cell activation dataset 
(14) we found that intronic PAS are more frequent, 13.9% of all annotated PAS, in activated T 
cells compared to the naive T cells, where 10.3% of PAS were annotated as intronic. The 
average terminal exon length as implied by the PAS inferred from the respective samples, 
remained largely unchanged, as we observed similar numbers of terminal exons that became 
shorter or longer by at least a factor of 2 upon T cell activation (3.3% vs. 2.8%, Fig. 5A). We 
carried out a similar analysis for a sperm cell development dataset (15), comparing PAS usage 
in elongating spermatids and spermatocytes. The proportion of intronic PAS in this dataset 
was more similar between the two differentiation stages 10.8% vs 9.3% in spermatocytes and 
elongating spermatids, respectively, but many more terminal exons (13.4%) became at least 
2-fold shorter upon spermatocyte differentiation into elongating spermatids than becoming 
longer by the same factor (1.6%, Fig. 5B). As with other analyzed datasets, the intronic PAS 
inferred from activated T cells (Fig. 5C) and elongating spermatids (Fig. 5D) had the expected 
peak poly(A) signals at ~20 nucleotides upstream of the inferred cleavage site (Fig. 5C-D). An 
example of intronic PAS usage in the sperm cell differentiation system is shown in Fig. 5E.  
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Figure 5. SCINPAS-recovered sites reproduce APA patterns in previously characterized systems.  
A. Scatter plot of average terminal exon (TE) length (log2 values) computed from the location and relative 
abundance of PATR mapping to individual terminal exons. Highlighted in red are TEs whose length changes 
(increases or decreases) by more than a factor of 2 in activated compared to resting T cells. B. Similar to A but 
comparing elongating spermatids with spermatocytes. C. Position-dependent frequency distribution of 
canonical poly(A) signals at intronic PAS identified in activated T cells. D. Similar to C, for intronic PAS of 
elongating spermatids. E. Example of an intronic PAS identified from sperm cell development dataset. Top track 
shows the coverage of the region by reads, individual reads with poly(A) tails are shown in subsequent tracks 
(‘A’ nucleotides are shown with green color) and the gene annotation is shown in the bottom track. 

 

B. 4. 5. SCINPAS provides complementary information relative to other tools 
As already mentioned, a number of tools have been developed for extracting PAS from scRNA-
seq data, though they do not focus on PATR. A very recently-published and benchmarked 
tool, called SCAPE (6), uses PATR in the estimation of insert length in paired-end sequencing 
datasets, so that peaks in read coverage corresponding to PAS can be appropriately 
positioned on the genome. SCAPE was also found to perform favorably with respect to the 
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other tools developed to date, namely scAPA (33), Sierra (34), scAPAtrap (8), SCAPTURE (10) 
and MAAPER (35). 

 
Figure 6. PAS recovery by SCINPAS and SCAPE.  
A. Number of PAS inferred by SCINPAS (top) and SCAPE (bottom) from the T cell activation data. The colors 
indicate different classes of PAS (see legend). B. Distribution of the distances from each PAS to the closest PAS 
downstream for SCINPAS (purple) and SCAPE (green). For comparison, the distribution of 3’end-to-5’end 
distances between genes is shown in red. C. Scatter of the total number of PAS-associated reads within a gene 
for SCINPAS (x-axis) and SCAPE (y-axis). Spearman correlation coefficient was 0.68 (p-value < 2.2e-16). The 
diagonal of equal read counts is shown in gray. 2D kernel density estimates obtained with the 
geom_density_2d(n=200) function of ggplot2 are shown as blue contours. D. Examples of PAS recovered by 
SCINPAS (purple) and SCAPE (green) in the Capza2 (left) and Ccdc43 (right) genes, from the T cell activation 
dataset. Genes and terminal exons are shown in the IGV browser (23) in blue, and the coverage tracks in gray. 
E. Position-dependent distribution of the canonical polyadenylation signal AAUAAA around SCINPAS- and 
SCAPE-identified PAS. 

 
First, we determined the number of PAS clusters identified by SCAPE and SCINPAS in each 
sample in the T cell activation dataset. As shown in Figs. 6A and S3A, while the number of PAS 
from terminal exons does not show a consistent difference between SCINPAS and SCAPE, 
SCINPAS identifies many more PAS in intronic and intergenic regions that are not analyzed by 
SCAPE. The number of PAS identified per sample is more variable for SCINPAS, probably 
because SCINPAS only uses PATR, which represent only a few percent of the deduplicated 
reads in a library (Fig. 3A). To better understand what the two methods extract from the data 
it is insightful to examine the distance from each PAS to the closest PAS downstream. The 
distributions constructed from each sample in the T cell activation dataset are shown in Fig. 
6B and in both cases they have a prominent peak located at approximately 50’000 
nucleotides, roughly corresponding to end-to-end distances between genes (red line), as 
expected. The left sides of the distributions, however, are very different. SCAPE identifies PAS 
that are ~500 nucleotides apart, likely reflecting choices in the SCAPE model (Gaussian shape 
of the peaks with mean insert size of 300 and standard deviation of 50 nucleotides). In 
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contrast, the distances between SCINPAS clusters have a broad distribution between ~100 
and ~10’000 nucleotides, with no preferred distance, as may be expected if the PAS occurred 
randomly within terminal exons. SCINPAS clusters are either composed of single cleavage 
sites, or have a relatively small span (peak at 5 nucleotides), indicating that the cleavage sites 
are well-defined, but also that the supporting data is sparse. In contrast the span of SCAPE 
clusters shows a periodicity of 9 nucleotides, again likely indicating parameter choices of the 
method (Fig. S2). We also compared the number of supporting reads associated with PAS in 
individual genes. While the SCINPAS counts were ~10-fold lower, as expected from the fact 
that it only uses PATR and not all deduplicated reads, the Spearman correlation coefficient of 
SCINPAS and SCAPE counts was relatively high, 0.68 (p-value < 2.2e-16, Fig. 6C). In some 
instances, SCINPAS detected more PAS clusters per gene compared to SCAPE (Fig. 6D, left 
panel), though examples where the opposite was the case also occurred (Fig. 6D, right panel). 
We performed the same analysis as above on the  sperm cell development dataset and found 
similar trends (Fig. S3). Overall, SCINPAS detected fewer PAS clusters per gene in the T cell 
activation dataset (Fig. S2B) but more PAS clusters in the sperm cell development dataset (Fig. 
S2D). The increased positional resolution of SCINPAS-identified sites is also emphasized by 
the position-dependent distribution of the canonical polyadenylation motif, which has a 
sharper peak for the SCINPAS-identified sites compared to those identified in SCAPE (Fig. 6E, 
S3E). 
Finally, we asked how reproducible the PAS identified by the two methods were between 
replicate samples, by calculating the Jaccard statistic with BEDTools (18). As indicated in Table 
3, the Jaccard statistics were higher for SCINPAS than for SCAPE when comparing replicates, 
and lower when comparing PAS obtained from naive and activated T cells.  
 

 SCINPAS SCAPE 

Mouse 1 vs 2 0.3887 0.3088 

Infected 1 vs 2 0.3903 0.3012 

Infected 2 vs 3 0.3879 0.3834 

Infected 1 vs 3 0.38478 0.2852 

Naive 1 vs infected 1 0.2230 0.2479 

Table 3: Jaccard statistics.  
Pairwise comparison of SCINPAS (left) and SCAPE (right) predicted PAS in individual samples from the sperm 
cell development (mouse 1 and 2) and T cell (naive 1 and infected 1-3) activation datasets. 

 
Taken together, SCINPAS compared well with the most up-to-date method available, 
identifying not only sites in terminal exons, but also in intronic and intergenic regions. The 
method is efficient, as it uses a much smaller fraction of the sequenced reads than SCAPE, 
and gives more reproducible PAS when applied to closely-related samples.  
 

B. 4. 6. SCINPAS-based annotation of PAS from the Tabula Muris Senis dataset 
Finally, to illustrate the generality and utility of SCINPAS we applied it to a large dataset of 
mouse scRNA-seq, Tabula Muris Senis (13), which was generated with a view of building an 
atlas of gene expression in the mouse. The run time of SCINPAS ranged from 1.5 to 8 hours 
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for all samples in an individual dataset (Table 1). To roughly assess the reliability of PAS 
inferred from a given sample, we used a measure based on the poly(A) signal distribution 
around the PAS. Namely, we determined the number of canonical poly(A) signals that peaked 
at the same position in the SCINPAS-inferred PAS as in annotated terminal exon ends. We 
considered a peak to occur at the expected position if it was located within the 90% peak 
frequency window inferred from annotated terminal exon ends (Fig. 7A). As shown in Fig. 7B, 
in all datasets, all but the NTE PAS categories had the known poly(A) signal peaking at the 
expected position upstream of the PAS. This was not the case for the negative control which 
was constructed based on non-PATR reads from the UMI-tools-deduplicated 10X_P7_14 
sample. The PAS located in non-terminal exons (NTE) generally represented a small 
proportion of all the inferred PAS in each dataset (0.96% - 1.86%, depending on the dataset), 
and for these, only the main poly(A) signals, AAUAAA and AUUAAA occurred in sufficient 
frequency to yield stable profiles (Fig. 7B).  
To evaluate the sensitivity of our method we determined the proportion of expressed genes 
(supported by at least 2 reads) for which a PAS with a minimum support of 2 PATR was found. 
The results in Fig. 7C show that SCINPAS identified a PAS for approximately 52-57 % of 
expressed genes, whereas only 42% were covered by PAS inferred when starting from UMI-
tools-deduplicated reads. The total number of PAS we identified in each of the samples is 
shown in Fig. 7D. 
We further compared the PAS that we obtained here with the polyAsite atlas (21), which 
contains a curated collection of ~300’000 PAS identified in the mouse genome by bulk 3’ end 
sequencing. By taking the union of PAS from the Tabula Muris Senis samples (13) defined in 
Table 1, we obtained a total of 67’829 PAS. 35’741 of these are represented in the polyAsite 
atlas, while 32’088 can be considered novel. The overlap with polyAsite atlas is larger when 
considering only the most supported PAS (Fig. S4), as may be expected. These results 
demonstrate the utility of our tool in the mining of scRNA-seq data to obtain a comprehensive 
coverage of PAS in a given species.  
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Figure 7. Application of SCINPAS on Tabula Muris Senis samples.  
A. Illustration of the motif score calculation. The positional preference of polyadenylation motifs relative to 3’ 
ends of annotated terminal exons was first determined. Then, the motif frequency in PAS from individual 
samples and classes was calculated and was deemed consistent with the annotation when the peak fell within 
the 90% interval around the maximum frequency for annotated terminal exons. The motif score was the number 
of motifs found to be consistent in a given sample and PAS class. B. Statistics of PAS classes in the analyzed 
Tabula Muris Senis samples. C. Number of genes (y-axis, log10 scale) with an annotated PAS (“covered” genes) 
from among the expressed genes in each of the analyzed Tabula Muris Senis samples. The control was obtained 
with the same processing workflow as the PAS, but starting from UMI-tools-based deduplicated reads from the 
Tabula Muris Senis sample 10X_P7_14. A minimum of 2 reads support was required for both considering a gene 
expressed and for considering a PAS. D. Total number of SCINPAS-identified PAS (y-axis, log10 scale) with at 
least 2 PATR support in each of the samples.  

 

B. 5. Discussion 

APA is one of the main mechanisms of isoform diversification in humans (1), with a wide range 
of consequences for cell signaling and gene expression (reviewed in (3)). In the past decade, 
dedicated 3’ end sequencing methods have been developed to map the relative usage of PAS 
across tissues and conditions, and the resulting data have been consolidated in specialized 
repositories (36). However, as it has become clear from various types of single cell analyses, 
much remains to learn about the processes that give each cell its identity and alternative 
polyadenylation seems to play an important role (37). scRNA-seq has opened new possibilities 
for studying the polyadenylation landscape of individual cell types because available 
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technologies target mRNA 3’ ends. Yet the field has not fully exploited scRNA-seq data to 
extract reads that provide direct evidence for the usage of specific PAS by virtue of containing 
part of the poly(A) tail. While this property has been used before for PAS identification from 
bulk sequencing datasets (e.g. (38)), the volume of the data and the breadth of coverage of 
cell types afforded by scRNA-seq, especially using the technology from 10x Genomics, is 
unmatched. 
A number of methods have already been proposed for analyzing the polyadenylation 
landscape from scRNA-seq data (5, 7, 8, 10, 35). However, none of these methods address 
the very first step in the processing pipeline, which is read deduplication. This is the focus of 
SCINPAS, which improves the recovery of reads containing poly(A) tails several fold. The reads 
without poly(A) tails are also extracted, which means that previously developed models for 
interpreting the entire dataset can also be used. We also implemented a procedure for 
identifying PAS, clustering data from closely-spaced reads, and compared the PAS that we 
recovered with those recovered by a recently developed method, SCAPE (6). We show that 
SCINPAS provides complementary information (e.g. recovering PAS in non-exonic regions) 
and also, much higher resolution in PAS identification. SCINPAS enables studies of cleavage 
site microheterogeneity, as well as detection of alternative PAS in 3’ UTRs without specific 
assumptions about their relative distance. A small fraction of the PAS that we classify as 
intergenic are located within a relatively short distance (< 1kb) downstream of terminal exon 
ends (Fig. 6 and S3). Small variations in the position of cleavage sites can occur for multiple 
reasons, including the imprecision of the processing machinery, observed in many previous 
studies, as well as the ambiguity of assigning terminal A nucleotides when the cleavage occurs 
immediately upstream of a genome-encoded A nucleotide. However, in these cases the 
variation is much smaller than 1kb. Further analysis of SCINPAS-identified sites along with 
long read data should clarify the transcription units to which these PAS belong.  
The most conserved poly(A) signal that guides the 3’ end processing of pre-mRNAs is the 
AAUAAA hexamer, bound by the WDR33 and CPSF30 components of the 3’ end processing 
complex (30, 39). 12 variants of this sequence have been previously found to have a similar 
pattern of position-dependent enrichment upstream of the PAS (17, 29) and also to promote 
polyadenylation in vitro (40). Here we found that the peak of the AAGAAA variant was located 
at ~10 nucleotides upstream of the SCINPAS-identified PAS, but ~10 nucleotides downstream 
of annotated TE ends (Fig. 4, S5). To resolve this discrepancy, we also analyzed the position-
dependent frequency of the motif at PAS obtained with PAPERCLIP, an orthogonal method 
for PAS identification that uses crosslinking and immunoprecipitation of the poly(A)-binding 
protein to identify bona fide poly(A) tails (20). In PAPERCLIP-identified PAS, AAGAAA peaked 
also at ~10 nucleotides upstream of PAS (Fig. 4). PAS that are located in non-terminal exons, 
introns and intergenic regions are more likely to contain this motif, and genes with AAGAAA-
containing PAS have higher expression levels than genes that do not contain such PAS (Fig. 
S5). These results suggest that AAGAAA-containing PAS are non-canonical PAS that can only 
be observed under normal conditions when the gene expression level is high (Fig. S5). 
Whether they are functionally relevant in specific conditions or cell types remains to be 
determined in future studies. Interestingly, while AAGAAA was found to promote the 
polyadenylation of a substrate in vitro (40), it has also been observed associated with a 
specific class of genes; these genes have multiple PAS in both introns and exons, and they 
couple polyadenylation with splicing to generate long or short transcripts (41). An example 
studied in detail is that of the immunoglobulin E-encoding gene (42), which generates either 
a short, secreted form of the protein by the usage of an intronic AAUAAA PAS, or a long, 
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membrane-bound form that depends on the usage of multiple PAS, including one containing 
the AAGAAA poly(A) signal. Also noted before is that AAGAAA is a splice enhancer (41, 43), 
and thus, the position-dependent enrichment of this signal may vary depending on the 
location of analyzed PAS within genes. For the other signals, the position-dependent 
enrichment was similar between annotated 3’ ends and the PAS identified by SCINPAS, in 
terminal exons or elsewhere, supporting the accuracy of the method. 
Altogether, these results indicate that SCINPAS is an accurate method for extracting 
experimentally-supported PAS from scRNA-seq data. Running SCINPAS on typical datasets as 
we used here takes 1~8 hours, allowing SCINPAS to be applied to the many datasets available 
in the public domain. While SCINPAS focuses on the extraction of PATR, it also carries out 
deduplication of all reads, and thus can be used in general workflows for scRNA-seq data 
analysis. Moreover, non-polyadenylated reads may be further taken into consideration when 
quantifying PAS usage starting from the experimentally-supported PAS in the system of 
interest. The vast volume of scRNA-seq data makes it possible to substantially improve the 
coverage of PAS in public repositories, to thus reach an improved understanding of PAS usage 
in individual cell types. This is an exciting research direction for the future. SCINPAS is 
available from https://github.com/zavolanlab/SCINPAS.  
 

B. 6. Availability of data and material 
SCINPAS is packaged into a nextflow workflow (24). The code and subsequent analysis is 
available at: https://github.com/zavolanlab/SCINPAS.  
The data and additional scripts used for the plots and graphs are deposited in the zenodo 
repository, with the DOI 10.5281/zenodo.7868155.  
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B. 11. Supplementary Figures 
 

 
Figure S1. Position-dependent nucleotide frequencies in PAS constructed from SCINPAS-extracted reads.  
Data was from Tabula Muris Senis sample 10X_P7_14. PAS were anchored at position 0, and the genomic 
sequence upstream and downstream (from -50 to +50 nucleotides) was used to calculate nucleotide frequencies. 
ATE: annotated terminal exon, UTE: unannotated terminal exon, NTE: non-terminal exons, I: intronic, IG: 
intergenic regions, PATR: poly(A) containing reads.  
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Figure S2. PAS cluster statistics.  
A. Density distribution of span of PAS clusters, for each sample of T cell activation dataset separately. SCAPE 
displays discrete PAS cluster spans. B. Histogram of the difference in PAS site count identified within individual 
genes by SCINPAS and SCAPE. Zero difference excluded. A value > 0 means that SCINPAS identified more PAS 
clusters in this gene compared to SCAPE. C. Same as A, but on samples of sperm cell development dataset. D. 
Same as B, but on samples of sperm cell development dataset. 
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Figure S3. PAS recovery by SCINPAS and SCAPE from the sperm cell development dataset.  
A. Number of PAS inferred by SCINPAS (top) and SCAPE (bottom) from the sperm cell development datasets. 
The colors indicate different classes of PAS (see legend). B. Distribution of the distances from each PAS to the 
closest PAS downstream for SCINPAS (purple) SCAPE (green). For comparison, the distribution of 3’end-to-
5’end distances between genes is shown in red. C. Scatter of the total number of PAS-associated reads within 
a gene for SCINPAS (x-axis) and SCAPE (y-axis). Spearman correlation coefficient was 0.6 (p-value < 2.2e-16). 
The diagonal of equal read counts is shown in gray. 2D kernel density estimates obtained with the 
geom_density_2d(n=200) function of ggplot2 are shown as blue contours. D. Examples of PAS recovered by 
SCINPAS (purple) and SCAPE (green) in the Ccdc50 (left) and Bhlhb9 (right) genes, from the sperm cell 
development dataset. Genes and terminal exons are shown in the IGV browser (23) in blue, the coverage tracks 
shown in gray. E. Position-dependent distribution of the canonical polyadenylation signal AAUAAA around 
SCINPAS- and SCAPE-identified PAS. 
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Figure S4. Overlap of PAS sites with the polyAsite atlas.  
A. Number of PAS identified by SCINPAS in the T cell activation dataset and the overlap with the polyAsite 
atlas. B. Proportion of top sites (ranked by abundance) from the T cell activation dataset that overlap with the 
polyAsite atlas. C. Same as A for the sperm cell development dataset. D. Same as B for the sperm cell 
development dataset. E. Same as A but for the Tabula Muris Senis dataset. F. Same as B but for the Tabula 
Muris Senis dataset. 

 

 
Figure S5. Poly(A) signal frequency in different data sets.  
A,C,E: Position-dependent frequency of poly(A) signals (color) across datasets: T cell activation (A), sperm cell 
development (C) and Tabula muris Senis 10X_P7_14 (E). The hexamer AAGAAA (grey) displays a distinct pattern 
in comparison to the other poly(A) signals. B,D,F: cumulative distribution of gene expression levels (total number 
of reads in terminal exons), for genes that have at least one PAS containing the AAGAAA motif within -40 to 
+20 nucleotides around the PAS (blue) compared to all other expressed genes (orange). The data sets are in 
the same order as in the top row panels.   
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C. 2. ABSTRACT: 
The tremendous rate with which data is generated and analysis methods emerge makes it 
increasingly difficult to keep track of their domain of applicability, assumptions, limitations 
and consequently, of the efficacy and precision with which they solve specific tasks. 
Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure 
for continuous method evaluation. APAeval is an international community effort, organized 
by the RNA Society in 2021, to benchmark tools for the identification and quantification of  
the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing 
(RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to 
perform APA identification and quantification, using a comprehensive set of RNA-seq 
experiments comprising real, synthetic, and matched 3′-end sequencing data. To support 
continuous benchmarking, we have incorporated the results into the OpenEBench online 
platform, which allows for continuous extension of the set of methods, metrics, and 
challenges. We envisage that our analyses will assist researchers in selecting the appropriate 
tools for their studies, while the containers and reproducible workflows could easily be 
deployed and extended to evaluate new methods or datasets.  
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C. 3. INTRODUCTION: 
Alternative polyadenylation (APA) is a mechanism of RNA processing that generates distinct 
3′ termini, allowing the expression of multiple transcript isoforms from a single genomic locus 
as been observed in nearly all eukaryotes, and in humans (Tian & Manley, 2017). The choice 
of different polyadenylation sites (PAS) can give rise to protein isoforms with distinct C-
termini and thereby distinct functions. Even without changing the coded protein, APA-derived 
changes to 3′ untranslated regions (UTRs) can impact gene expression by influencing mRNAs’ 
nuclear export, interactions with miRNA or RNA binding proteins, stability, and translational 
efficiency (Elkon et al., 2013).  It is estimated that over 70 percent of all genes produce 
alternatively polyadenylated mRNAs (Derti et al., 2012). A number of studies have reported a 
critical role for APA-mediated gene regulation during development (Ji et al., 2009a; Lianoglou 
et al., 2013; Sommerkamp et al., 2021; Yoon et al., 2019) or disease (Goering et al., 2021; 
Morris et al., 2012; reviewed in Gruber & Zavolan, 2019) 
 
Given the importance of APA, identifying and quantifying the usage of polyadenylation sites 
on a transcriptome-wide scale is critical for understanding both the underlying mechanisms 
and functional implications of APA-mediated gene regulation. Early studies of APA used 
microarray platforms and discovered widespread changes in PAS usage (Flavell et al., 2008; Ji 
et al., 2009b). While these studies laid the groundwork for large scale study of APA-mediated 
gene regulation, they were limited by the dependence of the microarray design on previously 
annotated transcript isoforms. With the advancement of high throughput sequencing (HTS) 
technologies, scientists have developed a number of targeted 3′-end sequencing methods for 
global profiling of PAS usage. Most methods utilize oligo(dT)-based reverse transcription to 
enrich reads derived from mRNA 3′ ends (Derti et al., 2012; Lianoglou et al., 2013; Martin et 
al., 2012; Sanfilippo et al., 2017; Shepard et al., 2011; Yoon et al., 2021; Zhou et al., 2016) 
while other methods developed oligo(dT)-independent approaches to avoid the issue of 
internal priming (Hoque et al., 2013; Hwang et al., 2016; Jan et al., 2011; Ogorodnikov & 
Danckwardt, 2021; Zheng et al., 2016). These studies identified a large number of previously 
unknown sites and also demonstrated cell- and tissue-specific regulation of APA. However, 
the number of datasets generated by targeted 3′-end sequencing remains limited compared 
to the enormous amount of publicly available RNA-seq datasets.   
 
Unlike the aforementioned methods, standard RNA-seq does not target the 3′ end of 
transcripts. Instead, reads are sampled from the entire length of any expressed isoform.  
Computational methods to detect and quantify APA usage from such data generally rely on 
the pattern of coverage of a genomic locus by reads, which is a superposition of the sampled 
isoforms. However, the large fluctuations in coverage even along loci expressing single 
isoforms make it challenging to identify drops in read coverage that correspond to 3’ ends. As 
a consequence, many computational methods have been developed by various labs in the 
context of specific projects to answer often related, but not identical questions. The reliance 
of many researchers within the RNA community on these computational tools for data 
analysis points to a clear need for their comprehensive evaluation. A few previous reports 
have endeavored  to benchmark computational methods for APA analysis from RNA-seq data. 
Notably, (Chen et al., 2020) described their efforts to review 11 methods, using RNA-seq data 
sets from human, mouse, and Arabidopsis in their analysis. While the study provided 
assessments of the precision and sensitivity of PAS site inference, the RNA-seq data sets were 
pre-processed using different tools, making the results difficult to interpret and compare. 
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Moreover, the code was not presented in a manner that made it easily reproducible and 
extendable. Other benchmarking efforts have similar shortcomings (Chen et al., 2020; Shah 
et al., 2021; W. Ye et al., 2022).  
 
To specifically address the issues of reproducible and continuous benchmarking, we 
organized a hackathon focused on software that detects and quantifies poly(A) sites from 
RNA-seq data. This international effort in the RNA community had several goals: (1) To bring 
together RNA biologists, bioinformaticians, and developers within the RNA Society to foster 
the dialog between RNA researchers of different backgrounds; (2) to provide informative 
benchmarking results for current methods for APA detection and quantification; and (3) to 
develop a framework for reproducible, cloud-based benchmarking for bioinformatic tools. 
This benchmarking infrastructure was designed to be modular, extendable, and standardized 
at all levels, with the idea that additional tools or metrics could be added in the future, or the 
infrastructure applied to the benchmarking of other types of tools. 
 
Overall, we benchmarked eight methods on five RNA-seq data sets and compared the results 
to five “ground truth” datasets of known APA sites. This work constitutes the most extensive 
reproducible evaluation of APA detection and quantification methods to date. In addition to 
being described here, selected benchmarks and results are made available on the ELIXIR 
benchmarking platform OpenEBench 
(https://openebench.bsc.es/benchmarking/OEBC007)(Capella-Gutierrez et al., 2017). 

https://openebench.bsc.es/benchmarking/OEBC007
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C. 4. RESULTS: 
C. 4. 1. Methods selected for benchmarking 
From an algorithmic point of view, methods for identifying or quantifying APA from 
conventional short-read RNA-seq data can broadly be grouped into two categories. In the first 
group are methods that utilize annotated poly(A) sites, including QAPA (Ha et al., 2018) and 
PAQR (Gruber et al., 2018). While they can be used to estimate (differential) poly(A) site 
usage, these methods have the limitation that they cannot identify novel sites, beyond those 
listed in poly(A) site databases or implied in the genome annotation. In the second group are 
methods that can perform de novo identification of sites based on changes in the read 
coverage along the mRNAs, as this is expected to drop at mRNA 3′ ends. This category includes 
DaPars, DaPars2, GETUTR, TAPAS, IsoSCM, and APAtrap (Arefeen et al., 2018; Feng et al., 
2018; Kim et al., 2015; Shenker et al., 2015; Xia et al., 2014; C. Ye et al., 2018). 
 
One of the main goals of APAeval was to make all benchmarked methods accessible for the 
larger RNA community. Thus, beyond the performance of the method, we assessed additional 
factors that included the ease of installation, tool accessibility for new users, the breadth of 
use of the method (a metric biased towards older methods), the responsiveness of the 
authors to email questions or GitHub issues, and whether or not the method is currently being 
maintained (a metric biased towards recent methods). Based on these criteria, we evaluated 
17 methods for their ability to perform our benchmarking challenges (Table 1). This list was 
narrowed to eight methods that we were able to install and run on the selected benchmarking 
datasets (see below), that performed robustly, and whose output was compatible with our 
evaluation metrics. 
 
Table 1. List of methods evaluated in APAeval.  
We evaluated 17 methods for possible inclusion in APAeval. Green background: benchmarked in APAeval. 
Reasons for exclusion from APAeval benchmarking (columns 6 & 7): 1 Incompatibility with APAeval input; 2 

Incompatibility with APAeval metrics; 3 Reported bugs not fixed by authors; 4 Other (unable to install/run etc.). 
Remarks on method workflows created in APAeval (column 7): 5 workflow has very high time or memory 
consumption, 6 workflow only tested on small test files, 7 workflow does not include building of machine-learning 
model ; uses authors’ published model instead, 8 workflow contains steps to build custom annotation, defaults 
are hardcoded, and parameters for pseudoalignment cannot be changed; benchmarking was run also with the 
annotation used by the authors in the original publication,  9 differential usage functionality of the method is not 
implemented in the APAeval workflow. Other remarks: 10  features present according to publication/manual but 
not tested by APAeval.  
Note that if a tool can perform absolute quantification it qualifies for our APAeval relative quantification event, 
even if it doesn’t produce a dedicated relative quantification output. The benchmarking of differential poly(A) 
site usage is not discussed in the current publication. 

Method PAS 
Identifica
tion 

Absolute 
PAS 
Quantifi
cation 

Relative 
PAS 
Quantific
ation 

Different
ial PAS 
usage 

Benchma
rked in 
APAeval? 

APAeval 
method 
workflow 

Citation 

APA-Scan Yes No Yes Yes No1,3,4 No3,4 Fahmi et al. 
2022 

APAlyzer No No Yes Yes No2 Snakemake
2 

Wang et al. 
2020  
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APAtrap Yes Yes Yes Yes Yes Nextflow5 Ye et al. 
2018 

Aptardi Yes No No No No4 Nextflow5,6,

7 

Lusk et al. 
2021 

CSI-UTR No No No Yes No1,3 Nextflow6 Harrison et 
al. 2019 

DaPars Yes No Yes Yes Yes Nextflow Xia et al. 
2014 

DaPars2 Yes No Yes No Yes Snakemake Feng et al. 
2018 

diffUTR No No No Yes No2 Nextflow6 Gerber et 
al. 2021 

GETUTR Yes No Yes Yes Yes Nextflow Kim et al. 
2015 

IsoSCM Yes No Yes Yes Yes Nextflow Shenker et 
al. 2015 

LABRAT No No Yes Yes No2 Nextflow2,6 Goering et 
al. 2021 

MISO No Yes Yes Yes No1,4 No1,4 Katz et al. 
2010 

mountain
Climber 

Yes10 Yes10 Yes10 Yes10 No3,4 No3,4 Cass et al. 
2019 

PAQR No Yes Yes Yes Yes Snakemake Gruber et 
al. 2018 

QAPA No Yes Yes No Yes Nextflow8 Ha et al. 
2018 

Roar No No Yes Yes No1 Snakemake
2,6 

Grassi et al. 
2016 

TAPAS Yes No Yes Yes Yes Nextflow9 Arefeen et 
al. 2018 

 

Experimental data 
To be able to evaluate the inferences made by a computational method, a ground truth, 
independent (orthogonal) dataset is necessary. In our case, the ideal dataset would have RNA-
seq data for samples where the precise abundance of transcript isoforms is known and can 
be directly compared with the abundance inferred by the method for APA site inference. 
Quantifying transcript abundances genome-wide with a method different than RNA-seq is not 
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generally done. However, there are studies in which both RNA-seq and 3′ end sequencing 
data have been obtained from the same experimental system. Therefore, we used two types 
of “ground truth” estimates of PAS usage: 1) from targeted sequencing of mRNA 3′ ends; and 
2) from “realistic” simulated data, where reads were sampled so as to match transcript 
isoform expression levels estimated by the RSEM algorithm (Li & Dewey, 2011) from specific 
RNA-seq samples in the GTEx compendium of human tissue data (The GTEx Consortium, 
2020). 
 
Based on the above ground truth definitions, we searched for publicly available RNA-seq 
datasets with matching 3′-end sequencing data. To represent diverse biological conditions, 
we selected both human and mouse datasets, originating both from cell lines (HEK293 or P19 
cells) and primary tissues (cortex and immune cell populations). Moreover, to avoid potential 
biases caused by technical characteristics of datasets, we chose datasets with varying 
sequencing depths (30 to 200 million reads) and from both paired and single-end sequencing. 
The ground truth data was obtained with a broad range of techniques for 3′ end sequencing, 
namely 3′-seq (Lianoglou et al., 2013), MACE-seq (Zawada et al., 2014), A-seq2 (Martin et al., 
2017) and PAPERCLIP (Hwang et al., 2016). Where possible, we selected datasets where the 
RNA-seq and orthogonal 3′-end sequencing data were generated by the same lab. The GTEx-
based “realistic” simulated data was derived from a recent study   (Vaquero-Garcia et al., 
2023). For comparability and reproducibility, we processed all raw RNA-seq data with the 
same workflow, described in the Materials and Methods section. RNA-seq/ground truth pairs 
are summarized in Supplemental Table 1. RNA-seq dataset characteristics are shown in 
Supplemental Fig. 1, and the distribution of mRNA abundances in the ground truth data is 
shown in Supplemental Fig. 2A. 
 

C. 4. 2. The APAeval benchmarking workflow 
APAeval benchmarking was divided into three “events”, according to the different tasks the 
evaluated methods perform: 1) identification of de novo poly(A) sites; 2) quantification of the 
usage of individual poly(A) sites within the transcriptome; and 3) quantification of the relative 
usage of poly(A) sites compared to other sites within the same terminal exon (TE). For each 
of these events, specific metrics were defined (see below) and then computed for each 
dataset pair separately.  
 
The benchmarking infrastructure that we developed contains two types of modules: 
workflows to execute individual methods (“method workflows”) and workflows to compute 
the benchmarking metrics for all evaluated methods (“benchmarking workflows”). Detailed 
input and output specifications are available in the APAeval Github repository 
(https://github.com/iRNA-COSI/APAeval/) and additional details can be found in the Material 
and Methods section. We used standard data formats, BAM files for aligned reads, FASTA files 
for nucleotide sequences, GTF files for gene/transcript model annotations and BED files for 
reference poly(A) sites. We included all the code necessary to make the inputs compatible 
with a method as well as to generate the standardized outputs in the respective method 
workflow. To ensure reproducibility and extensibility of our work, whenever Docker or 
Singularity containers for a method were not readily available, we custom-built them. As 
some methods were developed for a specific genome annotation, we carried out the analysis 
both with the preferred annotation of the tool and the corresponding GENCODE annotations 

https://github.com/iRNA-COSI/APAeval/
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(Release 38 for real human data, release 26 for simulated data, and release M18 for mouse) 
(Frankish et al., 2021).  A graphic summary of the entire workflow is shown in Figure 1. 
  
Identification of poly(A) sites based on the profile of genome coverage by RNA-seq reads is 
challenging to achieve with nucleotide-level precision. For this reason we tested associating  
poly(A) sites identified from RNA-seq data by the benchmarked method (PD - prediction) to 
poly(A) sites detected in an orthogonal 3′-end sequencing dataset (GT - ground truth) with 
various degrees of tolerance in calling corresponding sites. Specifically, the coordinates of 
ground truth sites were extended by n nucleotides (n = 10, 25, 50 or 100 nucleotides) in both 
directions (Supplemental Fig. 3) and the BEDTools window (Quinlan & Hall, 2010) tool was 
used to find PD sites that intersected these windows. Note that we use the term “predicted” 
to denote outputs of computational methods applied to RNA-seq data, to distinguish them 
from the corresponding values in the ground truth datasets derived from simulation or 
obtained experimentally by 3’ end sequencing. 

 
Figure 1: Overview of APAeval benchmarking strategy.  
RNA-seq data (“x.fastq”) was processed with the nf-core RNA-seq pipeline (nf-core/rna-seq) for quality control 
and mapping. The matching ground truth data (“GroundTruth_x.bed”) was retrieved from the respective 
publications in bed format. The processed input data (“x.bam”), as well as a genome annotation 
(“hs_gencode.gtf”), and if required a reference PAS atlas in BED format (not shown), were provided to the 
benchmarked methods. For running the methods, a reusable “method workflow” was written for each tool in 
either Snakemake or Nextflow. Each method workflow contains all necessary pre- and post-processing steps 
needed to process data from the input formats provided by APAeval, to the format required for the 
benchmarking workflows (“Ax.bed”, “Bx.bed”, etc.). For each benchmarking event (“Identification”, 
“AbsoluteQuantification”, “RelativeQuantification”), a reusable “benchmarking workflow” was written to 
compute a defined set of metrics from the comparison of outputs of method workflows with the corresponding 
ground truth data. Finally, the metrics for all methods for all datasets were compared within each event.  
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C. 4. 3. PAS identification 
The first metric we evaluated was the ability of various tools to perform identification of de 
novo poly(A) sites. We tested the tools both on our reference annotation (GENCODE, 
Supplemental Fig. 4) as well as using the tools’ preferred annotation (Fig. 2). The sensitivity, 
specificity, and Jaccard Index (see details in the Methods) with a window size of 50 bases 
indicate comparable performance of most methods across datasets, with GETUTR having 
relatively poor performance and TAPAS and IsoSCM relatively good performance as defined 
by sensitivity and precision. (Fig. 2, Supplemental Fig. 3, Supplemental Fig. 4). DaPars2 
performed similarly to its predecessor, DaPars. On simulated data, the precision was much 
higher than on real data, at the cost of lower sensitivity. This difference from real data is likely 
due to the fact that the simulated data does not capture all of the sources of variation in real 
RNA-Seq coverage at UTR ends well. This leads to higher precision values but, by design, 
assigns definite “truth” even to lowly covered genes (Supplemental Fig. 2A, compare the left 
panel (simulated) to other panels (real data)) where APA methods struggle, resulting in lower 
sensitivity. The Jaccard indices calculated for different methods and samples are in the range 
of 0.1-0.2, with the same methods as above having higher or lower values. With the exception 
of GETUTR, the values obtained on the simulation data are at the high end for each of the 
methods. This suggests that the experimental variability affects site identification for PD, GT, 
or both, reducing their overlap. However, we did not detect any obvious dependence of the 
methods’ performance on quality metrics of the RNA-seq data (Supplemental Fig. 5A). Finally, 
we find that the number of identified PAS matched the number of sites found in the GT data 
for approximately 25% of the genes. This proportion is typically lower in the simulation data, 
which is again an indication that the simulation data contains isoforms with very low 
abundance (Supplemental Fig. 2A, compare the left panel (simulated) to other panels (real 
data)) that are not detected by any of the tools, leading to an underestimation of used PAS. 
Altogether these results indicate that even when calling only PAS of highly expressed 
transcript isoforms, the non-uniform coverage of mRNAs by RNA-seq reads makes it difficult 
to reliably detect drops in coverage for PAS identification. Nevertheless, TAPAS showed 
consistently better performance in the PAS identification task compared to other methods. 
 

Figure 2: Results of the PAS identification event.  
Predicted site locations were extended by 50 nucleotides in both directions before the intersection with GT 
sites and each tool was given their preferred annotation (if specified by the developers) to identify the PAS. 
Results using GENCODE annotation are given in Supplemental Fig. 4. (A) Scatter plot of precision versus 
sensitivity. Each symbol corresponds to a sample-tool pair, with the shape of the symbol indicating the sample 
set and its color indicating the tool. (B) Box plots of Jaccard indices indicating the overlap of predicted and 
ground truth sites, with predicted sites being extended symmetrically by 50 nucleotides. The tools used to 
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predict the sites are shown on the x-axis, each with two associated box plots, one for the real data (left) and 
another for simulated data (right). Each point is labeled according to the code given in the legend. (C) 
Percentage of genes for which the number of PD sites was the same as the number of GT sites. Color scheme 
and organization as in B.  

 

C. 4. 4. Absolute Quantification 
The next task was to assess how accurate was the estimation of PAS usage (quantified in 
Transcripts Per Million (TPM) provided by a given tool. For simplicity of terminology, we call 
this “absolute quantification”. Three tools provided such values and were thus included in 
this analysis: PAQR, APAtrap, and QAPA. QAPA and APAtrap were each tested with two 
different annotations: QAPA with GENCODE (Frankish et al., 2021) and a custom annotation 
provided by the authors, and APAtrap with GENCODE and RefSeq (O’Leary et al., 2016). PAQR 
was only tested with GENCODE and the results are duplicated in Figure 3A. 
 
Given that the site identification from RNA-seq data does not generally have nucleotide-level 
precision, if one PD site matched multiple GT sites its score (expression level as TPM) was split 
between the GT sites into shares inversely proportional to the distance of the PD site to the 
respective GT sites. If multiple PD sites matched one GT site they were merged and their 
scores were summed up. By default, we included all sites estimated to have expression level 
> 0, but we also explored the impact of filtering the data, using in the analysis only predicted 
and ground truth sites with TPM > 1. Additionally, we determined the fraction of the gene 
expression coming from unmatched sites (“pct-FP”), to evaluate whether the accuracy of 
quantification is associated with the ability of a method to correctly identify used PAS. 
 
First, as for the identification task, we determined the precision and sensitivity with which 
these methods identify the used PAS. Compared to APAtrap, which identifies PAS de novo and 
quantifies their usage, both PAQR and QAPA, methods that quantify the usage of annotated 
sites, achieve better performance, as they focus on PAS that have been found to be functional 
in prior data (Fig. 3A). PAQR is more conservative, achieving relatively high precision at low 
sensitivity, while QAPA has a much higher sensitivity at the cost of lower precision. As with 
the other methods presented above, precision is high on simulated data at the cost of 
sensitivity. Next, we determined the Pearson correlation coefficient of PD expression with the 
expression in the GT data (Fig. 3B). To assess how the method’s performance is due to mis-
allocation of reads, we simultaneously determined the fraction of expression that is assigned 
to false positive sites, which are not present in the GT set. The correlations between measures 
were good, especially for PAQR and QAPA, two methods that assign most of the expression 
in a given sample to sites that are also present in the GT. Interestingly, these methods give 
lower F1-scores on the simulated data than on the real data (Fig. 3C). This is likely another 
reflection of a discrepancy between the abundance of PAS isoforms in the simulation and the 
real data, which leads to low-abundance sites from the simulation data not being quantified 
by the computational tools. Indeed, the distribution of expression values (TPM) had a much 
more prominent peak in the simulated data set compared to the real datasets (Supplemental 
Fig. 2). Consequently, filtering for TPM > 1 only improved performance of the methods on the 
simulated data, albeit to a negligible extent (Increase of mean Pearson R by approximately 
0.01; data not shown). As with the identification task, the performance of the methods was 
generally slightly better when using their preferred annotation as opposed to an 
independently chosen standard (GENCODE). An exception was QAPA on simulated data 
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(Supplemental Fig. 6). Again, we did not detect any significant dependence of a method’s 
performance on quality metrics of the RNA-seq data, though QAPA tends to perform better 
with higher-quality (i.e. deeper sequencing, longer reads, more replicates) RNA-seq input 
data (Supplemental Fig. 5B). 
 

Figure 3: Results of PAS isoform quantification.  
(A) Scatter plot of precision vs. sensitivity. Each sample and tool combination is represented as a symbol, with 
shape and color defined in the legend. (B) Pearson correlation of PD and GT site expression. The correlation 
coefficient for each sample is plotted against the percentage of total TPM that a method attributes to PAS that 
are not expressed in the ground truth (pct-FP).  (C) Box plots of F1 scores. Box plots are drawn separately for 
real (left, see color scheme in the legend) and simulation (right) samples.     

 

C. 4. 5. Relative quantification 
When quantifying PAS site usage it is often useful to report the relative usage of each PAS 
within a 3’UTR or a gene, rather than the absolute expression in TPM, particularly when one 
is interested in the usage of PAS in different conditions in which gene expression may change. 
Because of this, many tools, including highly cited tools such as DaPars or DaPars2, exclusively 
report relative PAS usage in some form, which made them ineligible for our definition of 
absolute quantification benchmarking. Additionally, all tools which we benchmarked for 
absolute quantification also report some form of relative PAS usage. Therefore, we sought to 
extend our quantification benchmark to include relative quantification as well. We found a 
total of eight tools with suitable outputs that could be matched to the ground truth datasets 
by the PAS window approach described above (Table 1). 
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To assess the relative quantification accuracy, we first defined a set of high-confidence and 
clear-cut APA sites within TEs based on the orthogonal 3′-end sequencing and simulation 
ground-truth datasets (see Materials and Methods). Briefly, this approach first collapses 
overlapping TEs to create non-overlapping, composite TEs for every gene based on the 
appropriate annotation (RefSeq or GENCODE) for each dataset. Next, we required the 
composite TE to contain at least 2 quantified PAS and the total expression of these PAS to be 
>= 1 TPM. We further required that the top two PAS overlapping with a composite TE 
represented at least 80% of the total expression of that TE and also that the second most 
utilized PAS had at least 5% relative Poly(A) Usage (PAU). Finally, because our previous results 
for PAS matching found an overlap window of 50 nt to behave well, we removed TEs where 
the top 2 PAS were less than 50 nt apart. Figure 4 illustrates how a single gene with multiple 
transcript annotations can lead to multiple TEs and PAS that are considered and then filtered 
out or retained for downstream benchmarking analysis. We applied this strategy to all five 
ground truth datasets using both RefSeq and GENCODE annotations, resulting in a range of 
GT-TEs counts and relative usage levels of the distal PAS (Supplemental Fig. 7). 
 

 
Figure 4: Ground-truth (GT) terminal exon (TE) and polyadenylation site (PAS) filtering for high-confidence, 
alternative polyadenylation (APA) sites.  
(A) Cartoon example of heuristics applied to composite TEs based on transcript (Tx) annotations and 
overlapping GT-PAS based on expression (transcripts per million, TPM) and relative usage of each GT-PAS within 
each composite TE. Percentages represent the polyadenylation usage (PAU) for each PAS relative to other PAS 
in the same TE. (B) Final GT TE and PAS retained for downstream comparison to tool predictions.  

 
With the above set of filtered orthogonal/ground-truth terminal exons (GT-TE) and PAS (GT-
PAS), there are a number of parameters to consider for benchmarking. These include the 
window size for an allowable match between GT-PAS and predicted PAS (PD-PAS) as well as 
which transcriptome annotation to use when running each tool (e.g., RefSeq, GENCODE, 
custom). Additionally, upon matching GT-PAS and PD-PAS, one must consider how to handle 
multiple matches and which GT-PAS values are most relevant for comparisons: values from 
the proximal PAS (GT-pPAS), the distal PAS (GT-dPAS), or all PAS considered together (GT-
allPAS)) (Supplemental Fig. 8). We describe GT-pPAS, GT-dPAS, and GT-allPAS in more detail 
below.  
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Given a specific combination of the above parameter settings, we assessed how well the RNA-
seq-based estimated PAS of a given algorithm matched the high-confidence set of PAS using 
the following statistics: The number of ground truth APA TEs and PAS captured; the 
correlation coefficient between a tool’s quantified values and ground truth; and by plotting 
the distribution of absolute differences between inferred and ground truth relative 
quantification values.  
 
Given the results of the identification and absolute quantification benchmarks and the fact 
that a window size of 50 nt seemed to perform similarly well for most tools (Supplemental 
Fig. 9), we focused our analysis on results derived using the 50 nt window for matching 
computationally-inferred and ground truth PAS. We next asked what fraction of the filtered 
high-confidence ground truth PAS arising from terminal exons with APA based on the RefSeq 
annotation were reported on by each tool (Figure 5A). Overall, GETUTR and PAQR reported 
the smallest fractions of GT-PAS matched to predictions, QAPA reported the most, and the 
remaining algorithms reported similar, intermediate numbers (Figure 5A). This was also true 
when considering the fraction of APA GT-TEs with any PAS matched to an algorithm-inferred 
PAS (Supplemental Fig. 10A). Strikingly, with the exception of QAPA, most tools reported a 
relatively small fraction (around 20%) of APA GT-TEs where both the distal and proximal PAS 
matched a computationally-inferred PAS (Figure 5B). In the case of APAtrap, DaPars, DaPars2, 
IsoSCM, and TAPAS, the small number of GT-TEs with both PAS matched to predictions was 
likely driven by the fact that these tools report more GT-TE distal PAS matches (Supplemental 
Fig. 10B) compared to proximal PAS matches (Supplemental Fig. 10C).  
 
Next, we assessed how well the relative PAS usage inferred by the algorithms correlated to 
that of matched PAS within GT APA TEs. Importantly, different tools report different types of 
relative usage. Some, like DaPars and DaPars2, report on each version of each TE in the 
annotation that was expressed, which can lead to the same PAS coordinate having multiple 
quantification values. Other methods, like QAPA, only report on the most distal, composite 
TE in a gene and report all annotated PAS regardless of expression level. Other tools we also 
considered, like LABRAT and APAlyzer, quantify PAS usage per transcript, but do not provide 
specific coordinates of the potentially collapsed PAS clusters or inferred PAS and therefore 
we did not include these in the benchmarking. These disparate approaches to produce PAS 
quantifications can lead to multiple valid matches between computationally-inferred and 
ground-truth PAS quantifications for one or more PAS within each TE. See, for example, 
Supplemental Fig. 8. This example also highlights how annotation can be influential in which 
PAS are considered and quantified by certain tools (with the exception of IsoSCM which is 
annotation-agnostic).  
 
To overcome this, we performed the benchmarking based on all GT- to PD-PAS matches for a 
window of 50 nt (all-PD) and also on only the best possible GT- to PD-PAS match that 
minimizes the absolute difference between PD and GT quantification (best-PD) 
(Supplemental Fig. 8). For a tool that outputs multiple quantifications for a single PAS, it is 
difficult for a user to prioritize the TE or PAS from the outputs, therefore we focus on the 
results for all PAS quantified by a tool that matched GT-PAS (all-PD, Fig. 5C and Supplemental 
Fig. 11). The results for the best possible PAS quantification of a tool matched to GT-PAS (best-
PD) are shown in Supplemental Fig. 12.  
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The effect of choosing to correlate all-PD matches compared to only the best-PD matches was 
apparent at different window sizes, where most tools had higher correlations when a window 
size of 100 nt was used and only the best-PD match was considered, but similar or worse 
correlations when all-PD matches at this window size were considered (e.g., APAtrap, 
DaPars/DaPars2, GETUTR, IsoSCM, and QAPA). PAQR and TAPAS performed similarly for all 
window sizes when considering PD-all or only PD-best matches (Supplemental Fig. 9).  
 
Due to partial, incomplete, or redundant matches between a tool’s PAS quantifications and 
the high confidence set of GT-PAS, choosing which set of GT-PAS value(s) to correlate with 
the computationally-inferred values can also have an effect. We considered all GT-PAS 
together (GT-allPAS, Fig. 5C and Supplemental Fig. 11A), or separated out distal GT-PAS values 
(GT-dPAS, Supplemental Fig. 11B) from proximal GT-PAS values (GT-pPAS, Supplemental Fig. 
11C) and correlated those individually to all-PD (Fig. 5, Supplemental Fig. 11) or best-PD PAS 
matches (Supplemental Fig. 12). In most cases, methods performed better when estimating 
the usage of the distal PAS site on both real and simulated RNA-seq datasets (compare panels 
B (dPAS) and C (pPAS) in Supplemental Fig. 11 and 12). This may be due, in part, to the fact 
that the distal site is typically the “canonical” one, containing the typical polyadenylation 
signals, and thereby having higher usage/expression, as observed in the ground truth samples 
(Supplemental Fig. 7B). Similar results were seen when we evaluated the absolute value of 
the difference in relative usage between PD-PAS and GT-PAS for each dataset (see Fig 6, 
comparing GT-pPAS, GT-dPAS, and GT-allPAS). Given this, we consider as most informative 
the metrics obtained when matching PD sites to all GT-PAS (GT-allPAS).  
 
We also considered how the annotation may influence method performance. We found that 
the more conservative annotation, RefSeq, which was often mentioned in many tools’ 
documentations (e.g., APAtrap, DaPars, DaPars2, GETUTR, and TAPAS), led to better 
correlations for many of these tools, particularly on the simulated dataset (Compare 
Supplemental Fig. 11 and Supplemental Fig. 13). We note that IsoSCM does not use a 
reference annotation and QAPA recommends a custom annotation resulting from a number 
of filtering steps. PAQR was only tested with GENCODE, as its main principle is to quantify the 
usage of PAS from the PolyASite database (Herrmann et al., 2020) and does not have a 
“preferred” TE annotation. 
 
Given the above results, we chose to visualize the distributions of absolute differences 
between all-PD matches to different GT-PAS values using each tool’s preferred annotation 
with an overlap window of 50 nt (Fig. 6 for representative datasets, Supplemental Fig. 14 for 
all datasets). As with the correlation results, absolute differences between all-PD to GT-pPAS 
values were worse than those observed when using GT-allPAS values or GT-dPAS values. This 
trend was particularly pronounced for tools like DaPars and DaPars2 across all datasets. These 
same methods that performed much worse on pPAS relative quantification also found much 
fewer GT-TEs with pPAS matches compared to dPAS matches (Fig. 6, Supplemental Figs. 14 
and 15, inset barcharts).  
 
PAQR was the method that generally achieved the highest performance on the correlation 
metrics described above for most datasets (Fig. 5C and 6, Supplemental Fig. 11). However, 
PAQR also consistently reported fewer PD to GT-PAS matches than other methods (Fig. 5A 
and B, Fig. 6, insets). Also of note, the dataset with lowest correlation between RNA-seq-
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based quantifications and GT was MmusCortex.  This was the only dataset that was not 
obtained based on oligo(dT) selection and, due to low coverage, the GT was obtained by 
pooling two replicates (Supplemental Fig. 1). 
 

Figure 5: Overlap and correlations of algorithm predicted PAS to ground truth PAS within APA TEs.  
(A) Distribution across datasets of the fraction of ground truth polyadenylation sites (GT-PAS) from terminal 
exons (TEs) with alternative polyadenylation (APA) that were matched to a tool predicted polyadenylation site 
(PD-PAS) based on RefSeq/preferred annotations within a window of 50 nucleotides. Left boxes are from real 
RNA-seq datasets while right boxes are for simulated datasets with points colored according to experimental 
groups. Each point is labeled according to dataset grouping given in the legend. (B) Fraction of ground truth 
(GT) TEs with APA that had PD-PAS matches to both distal and proximal GT-PAS within a window of 50 
nucleotides. (C) Pearson correlation coefficient when considering all-PD predicted values that match GT-allPAS 
values (both distal and proximal) using each tool’s preferred annotation and a match window of 50 nt. Left boxes 
for each method represent real RNA-seq data and right boxes are simulated RNA-seq data. Each dataset 
needed a minimum of 20 matched values to be plotted. Correlations between predictions either ground truth 
proximal PAS (GT-pPAS) or ground truth distal PAS (GT-dPAS) considered separately are plotted in 
Supplemental Figure 11.  
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C. 5. DISCUSSION: 
The landscape of bioinformatics software is broad, and often there are many tools available 
to complete the same task. Therefore, it can be a challenge for researchers to make informed 
decisions on which tool to select. Recognizing the need for continuous and independent 
benchmarking of computational methods, the APAeval hackathon was held during the 2021 
RNA Society Meeting. Bringing together a community of RNA biologists, bioinformaticians, 
and software developers, our goal was to benchmark various open-source computational 
tools for the identification and quantification of poly(A) sites from RNA-seq data, as well as 
set up an extendable framework for carrying out continuous benchmarking. We strove to 
package tools for easy installation and use, as well as developed workflows that could be 
applied to new datasets or used for incorporating new tools into the benchmark. We also 
made an effort to identify appropriate ground truth datasets and preprocess them for use not 
only in our study, but also in future studies of computational methods for APA analysis. By 
benchmarking many of the currently available tools, we provide researchers with the basis 
for making informed decisions on which methods best fit their application(s).  
 
From the 17 surveyed tools, we were able to benchmark eight tools across five distinct 
ground-truth datasets. Our reasons for not being able to include all tools varied, from not 
being able to install or run them, to the tools generating outputs that could not be 
transformed into the basic metrics for the respective task, i.e., PAS identification or 
quantification (Table 1). That is, although all the aforementioned tools analyze PAS usage 
from RNA-seq data, they use different types of information as input, compute distinct 
measures, and solve somewhat different tasks: PAS identification, PAS quantification (both 
per PAS isoform and relative to all PAS within a gene), differential PAS usage between 
samples, and detection of changes in TE length. As each type of task required considerable 
effort to implement, we limited ourselves to the first two. We refer the reader to (Chen et al., 
2020; Shah et al., 2021; W. Ye et al., 2022) for additional description and other types of 
benchmarking not covered here. Further increasing the complexity of the effort was the fact 
that a non-trivial number of parameters needed to be defined and tested for each task, which 
also emphasizes the importance of reproducible and parameterizable workflows that can be 
tested and used by any researcher. 
 
The results show that, in general, the methods strike different balances between sensitivity 
and specificity. The highly non-uniform coverage of genes by RNA-seq reads makes it 
challenging to reliably identify the drops in coverage that reveal the PAS. Thus, methods that 
do not identify the PAS ab initio, but rather use pre-defined PAS to assess their usage (e.g., 
QAPA and PAQR), generally have better performance than methods that do not use such 
information. However, the advantage of considering only known APA sites clearly comes at a 
price, especially for species that are not as well annotated, or when researchers study 
polyadenylation in contexts when novel sites are likely to play a role. We found that TAPAS 
has the highest accuracy for PAS identification, while for quantification, the performance 
metrics vary widely between methods. The correlation of PAQR-inferred PAS usage with the 
ground truth is consistently higher compared to other methods such as DaPars(2), although 
PAQR consistently quantifies fewer sites. Thus, if researchers are interested in a higher 
accuracy set of PAS PAQR quantifications may be preferable, but if a broader coverage of PAS 
is needed for downstream analyses, this could be obtained with methods such as QAPA, 
TAPAS and DaPars. Also, users should take into account that in general, proximal PAS are 



 

 
134 

much less accurately quantified and far fewer are properly identified compared to distal PAS, 
particularly for methods that infer proximal sites de novo, from the RNA-seq read coverage. 
These results are summarized in Fig. 7, which provides an overview of methods’ performance 
and tradeoffs that the users can easily assess when deciding what approach to use in 
analyzing their data.  
 
The above results are generally in line with other recent efforts to compare methods for 
calling PAS from RNA-Seq. Specifically, the closest benchmarking effort (Chen et al., 2020) 
included assessment of PAS identification and differential usage. The authors used four 
datasets to test PAS identification and a single dataset for differential usage. They also found 
TAPAS to be the top performer in site identification and observed similar low accuracy when 
calling PAS from RNA-seq alone. Chen et al. also note similar differences when comparing 
synthetic to real data, though the simulated data was limited to a thousand genes with 1-4 
PAS and high coverage, resulting in higher accuracy than we observe here with larger 
datasets. Notably, Chen et al.  included extensive testing of each method’s parameter setting 
and the effect of the read coverage depth. However, PAQR and DaPars2 were not part of that 
evaluation, and the authors did not test the quantification accuracy, neither absolute nor 
relative. 
 
Importantly, even though we made a strong effort to identify appropriate ground truth data, 
having diverse “gold standard” data remains a challenge. Any orthogonal method for 
measuring 3′ end usage will exhibit a different bias compared to RNA-seq, and therefore, the 
overlap between RNA-seq-based inferences and ground truth will be inherently limited. 
Furthermore, even when comparing replicates of the ground truth datasets, the Jaccard index 
of the identified sites was roughly between 0.5 and 1, and the Pearson correlation coefficient 
roughly between 0.75 and 1 (data not shown). This indicates that the methods for 
experimental identification of PAS can also be substantially improved, and also sets the upper 
bound on the performance of the computational methods.  
 
Given these limitations of the methods for quantifying APA from RNA-seq data, the question 
arises as to their utility overall. Ideally, studies of APA would use direct measurements of APA 
isoform abundance, obtained on platforms such as PacBio or Oxford Nanopore, which are 
designed for sequencing full-length cDNAs. However, substantial efforts have been put in the 
past decades into the profiling of samples from a wide range of conditions, including tumors, 
by short read RNA sequencing. Such datasets are much more extensive than datasets where 
3′ end sequencing has been applied. Thus, the interest in mining RNA-seq data to uncover 
APA remains, until perhaps 3′-biased single-cell sequencing will have generated comparable 
coverage of human cell types and diseases. Our study should facilitate the choice and 
application of available methods to these RNA-seq data sets. 
 

C. 6. MATERIALS AND METHODS: 
C. 6. 1. Data processing 
Dataset preprocessing of the RNA-seq data was performed using the nf-core/rnaseq v3.8.1 
RNA-seq pipeline (Patel et al., 2022) with options: 
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--profile docker --aligner star_salmon --save_reference --

gencode --save_trimmed --skip_markduplicates --skip_stringtie -

-save_unaligned --skip_bbsplit 

 
For ground truths from A-seq2 and 3′-seq protocols, the raw data was downloaded from SRA 
(for identifiers see Table S1) and processed as in (Herrmann et al., 2020). Here, sites were 
discarded as likely internal priming events if the 10 nt genomic region downstream of the 
putative site contained 6 consecutive As, or 7 As in total. For MACE-seq, processed PAS files 
were obtained from the authors (Schwich et al., 2021) and used as ground truth. According 
to the publication, internal priming filtering was performed by mapping a sequence of 10 As 
to the genome, allowing two mismatches, and discarding PAS if they were located adjacent 
to the genomic coordinates of a mapped A stretch. For PAPERCLIP, bed files containing PAS 
with associated read counts pooled across the duplicate experiments were downloaded from 
SRA (accessions see Table S1). The counts for each site were multiplied by 106 and divided by 
the total read count in the sample to obtain the expression level as TPM. All ground truth files 
were converted to a BED6 format for benchmarking. If applicable, PAS clusters were collapsed 
to their representative site to obtain single nucleotide PAS.  
 
Simulated RNA-seq data based on transcript level expression quantification from GTEx v8 
were used from (Vaquero-Garcia et al., 2023). We selected ten cerebellum and ten skeletal 
muscle samples from this study at random. Ground truth poly(A) site expression levels for 
these samples were extracted from GTEx v8 transcript quantifications (GTEx_Analysis_2017-
06-05_v8_RSEMv1.3.0_transcript_tpm.gct.gz downloaded from the GTEx portal) where the 
last nucleotide of each quantified transcript was defined as the poly(A) site. 
The APAeval Benchmarking Workflow 
For each of the APAeval benchmarking events, specific metrics were defined and then 
computed for each dataset pair (RNA-seq-based inferences (predictions) - ground truth data) 
separately. 
 
The benchmarking infrastructure was broadly separated into two modules: workflows to 
execute individual methods (“method workflows”) and workflows to compute the 
benchmarking metrics for all evaluated methods (“benchmarking workflows”). To ensure 
compatibility between those two modules, the output of the method workflows was required 
to adhere to a previously defined standardized format, namely the well-known BED format. 
Thus, 1) the genomic location of poly(A) sites had to be reported as single-nucleotide; 2) the 
absolute quantification of PAS was done as TPM (Transcripts Per Million); or 3) the relative 
quantification of PAS was done as fractional usage compared to one or more additional PAS 
within the same TE. Detailed input and output specifications are available in the APAeval 
Github repository (https://github.com/iRNA-COSI/APAeval/ ).  
 
A method workflow was developed for each participating method using either the Snakemake 
(Mölder et al., 2021) or Nextflow (Di Tommaso et al., 2017) workflow management systems. 
The execution of each individual step was isolated in a Docker or Singularity container. When 
possible, we selected publicly available containers (e.g., from the Biocontainers project ((Da 
Veiga Leprevost et al., 2017)). When necessary, we custom-built Docker images. Input file 
formats were restricted to maintain consistency across method workflows while also allowing 
some flexibility in individual method execution requirements. As input file formats, we 

https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_RSEMv1.3.0_transcript_tpm.gct.gz
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_RSEMv1.3.0_transcript_tpm.gct.gz
https://github.com/iRNA-COSI/APAeval/
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selected BAM files for aligned reads, FASTA files for nucleotide sequences, GTF files for 
gene/transcript model annotations and BED files for reference poly(A) sites. Any steps 
necessary to make those inputs compatible with a method were included in the method 
workflow. While we generally used the same annotation files for all methods, some required 
a specific annotation (e.g., QAPA). In such cases we carried out the analysis both with the 
preferred annotation of the tool and with the standard one. All configurable parameters of a 
tool were specified via a configuration file and test data was provided for each workflow. For 
computational tasks common to several method workflows we created a Python package that 
could be imported in the method workflows to avoid variability in implementation and code 
duplication. All workflows were reviewed for clarity and accuracy by two independent 
members of the APAeval team. 
 
Benchmarking workflows were created in Nextflow, based on previously published guidelines 
from the OEB initiative (https://github.com/inab/TCGA_benchmarking_workflow). In the 
workflows three distinct containerized steps were executed; validation of the file formats 
created by the method workflows, computation of the metrics defined for the respective 
benchmarking event, and consolidation of results into OEB compatible JSON files. Those files 
were used for uploading APAeval results to the OEB database, and the metrics were extracted 
to create the figures presented in the manuscript. All the code is available on GitHub 
(https://github.com/iRNA-COSI/APAeval/ ). 
  

C. 6. 2. PAS matching strategy 
Any evaluation of detection or quantification relies on first matching poly(A) sites identified 
from RNA-seq data by the benchmarked method (PD - prediction) to poly(A) sites detected in 
an orthogonal 3′end sequencing dataset (GT - ground truth). To achieve this we used 
BEDTools window (Quinlan & Hall, 2010). Matching was performed with different window 
sizes (n = 10, 25, 50 or 100 nucleotides) , i.e., the coordinates of ground truth sites were 
extended by n nucleotides in both directions to allow for variation in poly(A) site 
identification. For absolute quantification, if one PD site matched multiple GT sites its score 
(expression level as TPM) was split between the GT sites into shares inversely proportional to 
the distance of the PD site to the respective GT sites. If multiple PD sites matched one GT site 
they were merged and their scores were summed up. For identification, merging of PD sites 
was not performed. For relative quantification, merging of multiple or redundant PD site 
matches was not performed and either all PD site matches were considered for correlations 
(all-PD) or the single best PD match was considered (best-PD). See Supplemental Fig. 8 for 
more details and an example.   
 

C. 6. 3. Identification metrics 
In the identification metrics, we define true positives (TP) as predicted sites that fall within 
windows of specified size (see above) around GT sites. In contrast, false negatives (FN) are GT 
sites that do not have a matching prediction, and false positives (FP) are predicted sites 
without a GT match. Accordingly, we calculated the precision (TP / (TP + FP)), sensitivity (TP / 
(TP + FN)) and Jaccard index (TP / (TP + FP + FN)) for a range of window sizes.  
Finally, a metric evaluating the prediction per gene was calculated, called “Percentage of 
genes with correct number of PAS”. For this, we obtained the number of PAS per gene from 

https://github.com/inab/TCGA_benchmarking_workflow
https://github.com/iRNA-COSI/APAeval/
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the GT. Genes with no PAS in the GT were not considered further. Similarly, the number of 
PAS per gene from unique  PD sites was calculated. Finally, the number of genes with the 
same number of PAS in GT and PD was calculated and divided by the number of genes with 
at least one PAS and multiplied by 100 to obtain the percentage of genes with the correct 
number of PAS.  
 

C. 6. 4. Absolute quantification metrics 
Given the matching procedure described above, the main quantification accuracy metric we 
used is the Pearson or Spearman rank correlation of the normalized prediction and the ground 
truth expression (TPM) values for matched sites. To assess a method’s ability to focus on 
relevant sites we also determined the fraction of the gene expression coming from 
unmatched sites (“pct-FP”). For that, the percentage of TPM expression of non-matched 
predicted sites (FP) was calculated by summing the TPM expression of all predicted sites 
without a GT match and dividing by the sum of expression values of all predicted PAS (FP + 
TP).  Although the absolute quantification event aims to assess the performance of methods 
in the “true” quantification of PAS expression, we provide the sensitivity and precision metrics 
as defined above, as well as the F1-score (TP / (TP + 0.5*(FP + FN))) to shed light on the sets 
of PAS each method considers. 
 

C. 6. 5. Relative quantification metrics 
For relative quantification benchmarking, we first defined sets of high confidence TEs that 
exhibited alternative polyadenylation (APA) to be detected by the various tools. The 
procedure is outlined in Figure 4. Given a transcriptome annotation, the summary workflow 
first defines composite TEs by collapsing TEs from different transcripts of the same gene that 
overlapped in their genome coordinates. Next, given the coordinates and expression values 
(as TPMs) of ground truth PAS (GT-PAS), we retained all GT-PAS that overlapped with a 
composite TE. Relative Poly(A) Usage (PAU) was calculated for each retained GT-PAS by 
dividing each GT-PAS TPM by the sum of TPMs of all GT-PAS associated with the same 
composite TE. Finally, a number of filtering steps were applied to define high confidence TEs 
that exhibited APA to be retained for benchmarking. These APA TEs needed to have a sum of 
GT-PAS TPMs greater than or equal to 1 and contain at least two GT-PAS with relative usage 
of at least 5%. Any GT-PAS with less than 5% PAU was filtered out. We also filtered out 
potential overly complex TEs and their associated GT-PAS by requiring the top two GT-PAS 
within a composite TE to represent at least 80% of the relative PAS usage. Finally, we filtered 
out the remaining composite TEs and their associated GT-PAS if the retained PAS were closer 
than 50 nt together. The GT-PAS closest to the start of the TE was defined as the proximal 
PAS (pPAS) and all other PAS were defined as distal PAS (dPAS).  
 
We applied the PAS window matching strategy described above, to match the filtered ground 
truth (GT-PAS) and the tool predictions (PD-PAS) and then calculated metrics over these 
matched sites. We calculated Pearson correlation between matched GT and PD relative usage 
values and plotted the empirical cumulative distribution functions (eCDFs) of absolute 
differences between GT-PAS and PD-PAS PAUs. Importantly, for these metrics we also 
considered different subsets of matches between GT and PD to identify potential 
shortcomings in the tool’s ability to quantify either the pPAS or the dPAS accurately. 
Therefore, we calculated these metrics for all GT to PD matches (GT-allPAS), just the matches 
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to GT-pPAS, and just the matches to GT-dPAS. Some methods provide duplicate 
quantifications for the same PAS coordinate because they consider each transcript-defined 
TE separately, leading to some multi-matched sites (see, for example, Supplemental Figure 
8). Because a user does not know a priori which TE version or PAS quantification is correct we 
calculated metrics based on all matched PD-PAS usage values together, including duplicates 
(all-PD matches), or by only considering the best PD-PAS usage value that minimized the 
difference to GT-PAS usage (best-PD matches). Finally, to shed light on the number of TEs 
with APA and the types of PAS (distal or proximal) each tool detects and quantifies in this 
relevant subset, we calculated the fraction of GT-TEs with APA that had matches to any PD-
PAS as well as the fraction that had a PD match to the GT-pPAS site, the GT-dPAS site, or to 
both.  
 

C. 7. Data availability 
All code and metrics for the project are publicly available at https://github.com/iRNA-
COSI/APAeval. Unless otherwise stated, publicly available containers (e.g., from the 
Biocontainers project (Da Veiga Leprevost et al., 2017)) were utilized for execution workflows. 
In a few cases, we generated custom-built docker images. These are hosted at 
https://hub.docker.com/u/apaeval. The most informative metrics  for all challenges of the 
identification and absolute quantification events  are stored in the OpenEBench database 
(https://openebench.bsc.es/benchmarking/OEBC007/events), where the results can be 
visualized and further explored.  All datasets used in this study are publicly available. For SRA 
accessions and download links see Table S1. Annotation files, input ground truth and RNA-
seq files, code for figure plotting, and other data to reproduce or supplement this analysis 
have been deposited in a Zenodo repository available at 
https://doi.org/10.5281/zenodo.8290348  
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C. 12. Glossary 

TERM DEFINITION 

APA Alternative polyadenylation 

APAeval Community effort for benchmarking bioinformatics methods that 
identify and quantify APA from RNA-seq data  

Benchmarking  Comparison of performance of methods designed for a specific task  

Benchmarking 
Workflow 1  

Computational workflow created to calculate various performance 
metrics 

Challenge 1  Specific task solved by the benchmarked methods 

Event 1  Set of challenges and metrics for evaluating method functionality; in 
APAeval, one of “Identification”, “Absolute quantification” or “Relative 
quantification” 

Ground Truth Information known to be true, used to evaluate the accuracy of 
predictions made by computational methods; in APAeval - 3′end seq 
data from the same sample/cell type as the RNA-seq data consumed by 
the methods in a particular challenge; aka “orthogonal data” 

Method/Tool Published bioinformatics software for analyzing APA from RNA-seq 
data;  

Method Workflow Computational workflow created by APAeval to reproducibly apply a 
method on all challenges 

Metrics Distinct performance indicators; in APAeval these are computed based 
on the predictions of each method and the ground truth data 

OpenEBench 2 The ELIXIR (European Life Science Infrastructure) 3 platform for 
community benchmarking and software monitoring  

PAS Poly(A) site, where the 3′ end cleavage of mRNAs occurs 

UTR Untranslated regions of protein-coding mRNAs 

1 Adapted from https://openebench.readthedocs.io/en/latest/glossary/glossary.html 
2 https://openebench.bsc.es 
3 https://elixir-europe.org 
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C. 13. Supplementary Material 

Supplemental Table 1: RNA-seq datasets with corresponding orthogonal datasets

used for benchmarking
RNA- seq data matching orthogonal data

SRA accession sample_name strandedness layout organism length

SRA

accession

sequencing

method

SRR1573494 HEK293_siControl_R1 reverse paired Hsap 100 SRR2922409 A-seq2

SRR1573495 HEK293_siControl_R2 reverse paired Hsap 100 SRR2922448 A-seq2

SRR1573496 HEK293_siHNRNPC_R1 reverse paired Hsap 100 SRR2922419 A-seq2

SRR1573497 HEK293_siHNRNPC_R2 reverse paired Hsap 100 SRR2922449 A-seq2

SRR6795718 Mayr_CD5B_R3 reverse paired Hsap 51 SRR6795684 3'-seq

SRR6795719 Mayr_CD5B_R4 reverse paired Hsap 51 SRR6795685 3'-seq

SRR6795720 Mayr_NB_R1 reverse paired Hsap 51 SRR1005606 3'-seq

SRR6795721 Mayr_NB_R2 reverse paired Hsap 51 SRR1005607 3'-seq

SRR6795723 Mayr_NB_R3 reverse paired Hsap 51 SRR6795688 3'-seq

SRR6795724 Mayr_NB_R4 reverse paired Hsap 51 SRR6795689 3'-seq

SRR6795726 Mayr_M_R2 reverse paired Hsap 51 SRR6795691 3'-seq

SRR6795713 Mayr_GC_R2 reverse paired Hsap 51 SRR6795693 3'-seq

SRR6795715 Mayr_GC_R1 reverse paired Hsap 51 SRR6795692 3'-seq

SRR11918577 P19_siControl_R1 unstranded single Mmus 75 SRR11918617 MACEseq

SRR11918578 P19_siControl_R2 unstranded single Mmus 75 SRR11918618 MACEseq

SRR11918579 P19_siSrsf3_R1 unstranded single Mmus 75 SRR11918619 MACEseq

SRR11918580 P19_siSrsf3_R2 unstranded single Mmus 75 SRR11918620 MACEseq

SRR11918581 P19_siSrsf7_R1 unstranded single Mmus 75 SRR11918621 MACEseq

SRR11918582 P19_siSrsf7_R2 unstranded single Mmus 75 SRR11918622 MACEseq

SRR1811005 MmusCortex_adult_R1 forward paired Mmus 37 GSM1614167 PAPERCLIP

SRR3067958 MmusCortex_adult_R2 forward paired Mmus 35 GSM1614167 PAPERCLIP

SRR3067957 MmusCortex_embryonic_R1 forward paired Mmus 37 GSM1614169 PAPERCLIP

SRR3067959 MmusCortex_embryonic_R2 forward paired Mmus 35 GSM1614169 PAPERCLIP

SRR22955576 GTEXsim_cerebellum_R1 forward paired Hsap 100 simulatedPAS simulated

SRR22955574 GTEXsim_cerebellum_R2 forward paired Hsap 100 simulatedPAS simulated

SRR22955639 GTEXsim_cerebellum_R3 forward paired Hsap 100 simulatedPAS simulated

SRR22955510 GTEXsim_cerebellum_R4 forward paired Hsap 100 simulatedPAS simulated

SRR22955630 GTEXsim_cerebellum_R5 forward paired Hsap 100 simulatedPAS simulated

SRR22955420 GTEXsim_cerebellum_R6 forward paired Hsap 100 simulatedPAS simulated

SRR22955571 GTEXsim_cerebellum_R7 forward paired Hsap 100 simulatedPAS simulated

SRR22955570 GTEXsim_cerebellum_R8 forward paired Hsap 100 simulatedPAS simulated

SRR22955441 GTEXsim_cerebellum_R9 forward paired Hsap 100 simulatedPAS simulated

SRR22955647 GTEXsim_cerebellum_R10 forward paired Hsap 100 simulatedPAS simulated

SRR22955539 GTEXsim_muscle_R1 forward paired Hsap 100 simulatedPAS simulated

SRR22955532 GTEXsim_muscle_R2 forward paired Hsap 100 simulatedPAS simulated

SRR22955403 GTEXsim_muscle_R3 forward paired Hsap 100 simulatedPAS simulated

SRR22955603 GTEXsim_muscle_R4 forward paired Hsap 100 simulatedPAS simulated

SRR22955459 GTEXsim_muscle_R5 forward paired Hsap 100 simulatedPAS simulated

SRR22955398 GTEXsim_muscle_R6 forward paired Hsap 100 simulatedPAS simulated

SRR22955458 GTEXsim_muscle_R7 forward paired Hsap 100 simulatedPAS simulated

SRR22955611 GTEXsim_muscle_R8 forward paired Hsap 100 simulatedPAS simulated

SRR22955449 GTEXsim_muscle_R9 forward paired Hsap 100 simulatedPAS simulated

SRR22955444 GTEXsim_muscle_R10 forward paired Hsap 100 simulatedPAS simulated
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Supplemental Figure 1: Dataset characteristics. Quality characteristics of the RNA-seq

datasets used for benchmarking. reads_raw_M: number of raw reads (Mio); reads_cleaned_M:

number of reads after adapter trimming and minimum length selection (Mio); reads_mapped_M:

number of reads successfully mapped to the genome (Mio); unique_mappers_M: number of

reads mapped to a unique position in the genome (Mio); unique_mappers_pct: fraction of total

reads mapped to a unique position in the genome; dups_pct: percentage of duplicate reads;

mismatched_nt_pct: average percentage of mismatched nucleotides within a read;

trimmed_nt_pct: average percentage of nucleotides trimmed from a read; 5-3_bias: ratio

between 5’ and 3’ bias, where those biases are the ratio between mean coverage at the 5’

region and 3’ region, respectively, and the whole transcript; GC_pct: average percentage of GC

nucleotides per read; avg_read_length: average read length in nucleotides; fast_qc_fail_pct:

Percentage of tests failed in FastQC report of nf-core/rnaseq .
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Supplemental Figure 2. TPM distributions for (A) ground truth datasets (GT), (B) APAtrap, (C)

PAQR and (D) QAPA predictions (from top to bottom). The TPM scores are displayed in

log-space. Sample replicates colored for better differentiation. Only all annotations (for GT) and

preferred annotation (for predictions) shown.
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Supplemental Figure 3: Dependence of method performance in identification event on window

size. Windows between 0 and 100 nt in steps of 10nt have been tested. Performance on all

samples from all datasets has been combined. Shaded areas around the lines depict the 95%

confidence interval. A) Precision; left column: GENCODE annotation, right column: preferred

annotation. B) Sensitivity; columns as above.

Supplemental Figure 4: Results of the PAS identification event (like Figure 2 but GENCODE

instead of preferred annotation)

Box plots of Jaccard indices indicating the overlap of predicted and ground truth sites, with
predicted sites being extended symmetrically by 50 nucleotides. The tools used to predict the
sites are shown on the x-axis, each with two associated box plots, one for the real data (left) and
another for simulated data (right). Each point is labeled according to the code given in the
legend.
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Supplemental Figure 5: Methods’ performance in relation to selected dataset

characteristics of real data. A) Precision and Sensitivity from the identification event. B)

Pearson R from the absolute Quantification event. Each dot represents one sample.
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Supplemental Figure 6: Results of PAS isoform quantification (like Figure 3 but GENCODE
instead of preferred annotation).
A) Scatter plot of Precision vs. Sensitivity. Each sample and tool combination is represented as

a symbol, with shape and color defined in the legend. B) Pearson correlation of PD and GT site

expression. The correlation coefficient for each sample is plotted against the percentage of total

TPM that an algorithm attributes to PAS that are not expressed in the ground truth (false

positives). C) Box plots of F1 scores. Box plots are drawn separately for real (left, see color

scheme in the legend) and simulation (right) samples.
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Supplemental Figure 7. Characteristics of high confidence, ground-truth (GT) terminal

exon (TE) with alternative polyadenylation (APA) for relative quantification

benchmarking. (A) Number of composite GT-TEs with APA defined as in Figure 4 using either

RefSeq (left) or GENCODE (right) annotations. Each dot represents a ground truth

experimental/simulation sample. (B) Distribution of distal polyA Usage (dPAU) for GT-TEs with

APA for each GT experiment separated by experimental group based on composite TEs from

RefSeq (left) or GENCODE (right).
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Supplemental Figure 8. Multi-match examples for certain algorithm PD to GT-PAS matches.

(A) Top shows an example of a theoretical high-confidence, alternative polyadenylation

containing ground-truth (GT) terminal exon (TE) and proximal PAS (GT_pPAS) and distal PAS

(GT_dPAS) with polyadenylation usage (PAU) calculated by the filtering algorithm described in

Methods. Bottom shows an example of an algorithm like DaPars which outputs a number TEs

(PD-TEs) based on each transcript with predicted PD-PAS, some of which overlap and can have

different relative quantification values (e.g. PD_PAS2a versus PD_PAS2b). (B) Table showing

the different match types for each PD-PAS. “best-PD” column shows only the best match

between unique GT-PAS and PD-PAS which minimizes the absolute difference between the two

while “all-PD” column shows all PD-PAS to GT-PAS matches which can be used for downstream

benchmarking.

Supplemental Figure 9. Boxplots of Pearson correlation coefficients for all datasets using given

window sizes and considering all PD- to GT-PAS quantification matches (left) or only the best

possible PD- to GT-PAS match (right).
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Supplemental Figure 10. (A) Fraction of unique ground truth terminal exons with alternative

polyadenylation (APA GT-TE, based on RefSeq annotations) that matched to any algorithm

predicted PAS (PD-PAS) using a window of 50 nucleotides. (B) Fraction of unique APA GT-TEs

that had algorithm prediction PAS matched at least the distal PAS (GT-dPAS). (C) Fraction of

unique terminal exons (TEs) from the ground-truth (GT) filtering that had algorithm prediction

PAS matched at least the proximal PAS (GT-pPAS).
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Supplemental Figure 11: The effect of GT-PAS type choice on correlation with predictions

(all-PD, preferred annotation): (A) Repeat of Figure 5C shown for comparison. Pearson

correlation coefficient when considering all-PD predicted values that match GT-allPAS values

(both distal and proximal) using each algorithm’s preferred annotation and a match window of

50 nt. Left boxes for each algorithm represent real RNA-seq data and right boxes are simulated

RNA-seq data. Each point is labeled according to dataset grouping given in the legend. (B) As

in (A), but using all-PD PAS matches to distal GT-PAS (GT-dPAS) values only. (C) As in (A), but

using all-PD PAS matches to proximal GT-PAS (GT-pPAS) values only.
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Supplemental Figure 12: The effect of GT-PAS type choice on correlation with predictions

(best-PD, preferred annotation): (A) Pearson correlation coefficient when considering the

single best-PD predicted values that match GT-allPAS values (both distal and proximal) using

each algorithm’s preferred annotation and a match window of 50 nt. Left boxes for each

algorithm represent real RNA-seq data and right boxes are simulated RNA-seq data. Each point

is labeled according to dataset grouping given in the legend. (B) As in (A), but using best-PD

PAS matches to distal GT-PAS (GT-dPAS) values only. (C) As in (A), but using best-PD PAS

matches to proximal GT-PAS (GT-pPAS) values only.
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Supplemental Figure 13: The effect of GT-PAS type choice on correlation with predictions

(all-PD, GENCODE): (A) Pearson correlation coefficient when considering all-PD predicted

values that match GT-allPAS values (both distal and proximal) using GENCODE annotation and

a match window of 50 nt. Left boxes for each algorithm represent real RNA-seq data and right

boxes are simulated RNA-seq data. Each point is labeled according to dataset grouping given in

the legend. (B) As in (A), but using all-PD PAS matches to distal GT-PAS (GT-dPAS) values

only. (C) As in (A), but using all-PD PAS matches to proximal GT-PAS (GT-pPAS) values only.
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Supplemental Figure 14. Distribution of absolute differences between ground truth and

all prediction values using preferred annotations for all datasets. (A) Average eCDF for

the absolute difference between all-PD matches to GT-allPAS values for each algorithm’s

preferred annotation for the given datasets. Lines represent the mean of all experiments in the

group and shaded regions represent plus/minus one SD. Inset barchart shows the mean

fraction of unique, ground-truth terminal exons with APA (defined in Figure 4, based on RefSeq

annotation) represented by all-PD matches. Error bar shows one SD. Each dataset needed a

minimum of 20 matched values to be plotted. (B) Same as (A), but only for matches to proximal

GT-PAS (GT-pPAS) values. Inset barchart shows mean fraction of unique GT terminal exons

with a pPAS matched to the algorithm predictions. Error bar shows one SD. (C) Same as (A),

but only for matches to distal GT-PAS (GT-dPAS) values. Inset barchart shows mean fraction of

unique GT terminal exons with a dPAS matched to the algorithm. Error bar shows one SD.
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Supplemental Figure 15. Distribution of absolute differences between ground truth and

all prediction values using GENCODE annotations for all datasets. (A) Average eCDF for

the absolute difference between all-PD matches to GT-allPAS values for each algorithm using

GENCODE annotation for the given datasets. Lines represent the mean of all experiments in

the group and shaded regions represent plus/minus one SD. Inset barchart shows the mean

fraction of unique, ground-truth terminal exons with APA (defined in Figure 4, based on

GENCODE annotation) represented by all-PD matches. Error bar shows one SD. Each dataset

needed a minimum of 20 matched values to be plotted. (B) Same as (A), but only for matches to

proximal GT-PAS (GT-pPAS) values. Inset barchart shows mean fraction of unique GT terminal

exons with a pPAS matched to the algorithm predictions. Error bar shows one SD. (C) Same as

(A), but only for matches to distal GT-PAS (GT-dPAS) values. Inset barchart shows mean

fraction of unique GT terminal exons with a dPAS matched to the algorithm. Error bar shows

one SD.
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Appendix D  

ZARP: An automated workflow for processing of RNA-seq data 
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A Biozentrum, University of Basel, Basel, 4056, Switzerland 

B Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland  

C Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland. 

      *  Corresponding author 
 

D. 1. Abstract 
RNA sequencing (RNA-seq) is a crucial technique for many scientific studies and multiple 
models, and software packages have been developed for the processing and analysis of such 
data. Given the plethora of available tools, choosing the most appropriate ones is a time-
consuming process that requires an in-depth understanding of the data, as well as of the 
principles and parameters of each tool. In addition, packages designed for individual tasks are 
developed in different programming languages and have dependencies of various degrees of 
complexity, which renders their installation and execution challenging for users with limited 
computational expertise. The use of workflow languages and execution engines with support 
for virtualization and encapsulation options such as containers and Conda environments 
facilitates these tasks considerably. Computational workflows defined in those languages can 
be reliably shared with the scientific community, enhancing reusability, while improving 
reproducibility of results by making individual analysis steps more transparent. 
 
Here we present ZARP, a general purpose RNA-seq analysis workflow which builds on state-
of-the-art software in the field to facilitate the analysis of RNA-seq data sets. ZARP is 
developed in the Snakemake workflow language using best software development practices. 
It can run locally or in a cluster environment, generating extensive reports not only of the 
data but also of the options utilized. It is built using modern technologies with the ultimate 
goal to reduce the hands-on time for bioinformaticians and non-expert users. ZARP is 
available under a permissive Open Source license and open to contributions by the scientific 
community. 
 
Contact: mihaela.zavolan@unibas.ch, alexander.kanitz@unibas.ch 
 

Keywords 
Computational workflow, pipeline, RNA-seq, high-throughput, reproducible research, FAIR, 
transcriptomics, bioinformatics 

 
D. 2. Introduction 
Recent years have seen an exponential growth in bioinformatics tools [1], a large proportion 
of which are dedicated to High Throughput Sequencing (HTS) data analysis. For example, for 
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transcript-level analyses there are tools to quantify the expression level of transcripts and 
genes from RNA-seq data [2], identify RNA-binding protein (RBP) binding sites from 
crosslinking and immunoprecipitation (CLIP) data [3,4], improve transcript annotation with 
the help of RNA 3’end-sequencing data [5,6], estimate gene expression at the single cell level 
[7] or improve the annotation of transcripts and quantification of splicing events based on 
long read sequencing (e.g., on the Oxford Nanopore platform) [8,9]. Such tools are written in 
different programming languages (e.g., Python, R, C, Rust) and have distinct library 
requirements and dependencies. In most cases, the tools expect the input to be in one of the 
widely accepted file formats (e.g., FASTQ [10], BAM [11]), but custom formats are also 
frequently used. In addition, the variations in protocols or instruments across experiments 
may make it necessary to use different parameterization for every sample, rendering a joint 
analysis of samples from multiple studies challenging. Combining tools into an analysis 
protocol is a time-consuming and error-prone process. As these tasks have become so 
common, and as the data sets and analyses continue to increase in size and complexity, there 
is an urgent need for expertly curated, well-tested, maintained and easy-to-use reusable 
computational workflows.  
 
A number of feature-rich, modern workflow specification languages and corresponding 
management systems [12,13] like Snakemake [14,15], Nextflow [16] and CWL [17] are now 
gaining widespread popularity in life sciences, as they make it easier for such workflows to be 
developed, tested, shared and executed. This leads to more reusable code and reproducible 
results, while fostering scientific collaborations and Open-Source Software along the way. In 
addition, to facilitate the installation and execution of these workflows across different 
hardware architectures and host operating systems, modern workflow management systems 
make use of virtualization and encapsulation techniques relying on containers (e.g., Docker 
[18] and Singularity [19]) and/or package managers (e.g., Conda [20] and Bioconda [21]). An 
added advantage of using workflows is the metadata stored along with the expected results. 
These can be invaluable for re-analyzing the data but may also provide additional insights into 
the results and cost analyses (e.g., runtimes, resources usage). 
 
The aim of the presented work is the development of a flexible, easy-to use workflow for bulk 
RNA-seq data processing. The inclusion of the most widely used and best performing tools for 
the various processing steps minimizes time spent by users on making tool choices. Use of a 
workflow language for the development ensures the reproducibility and reliable execution of 
each analysis and it facilitates (meta)data management and reporting. 
 

D. 3. Methods/Results 
ZARP (Zavolan-Lab Automated RNA-seq Pipeline) is a general purpose RNA-seq analysis 
workflow that allows users to carry out the most general steps in the analysis of Illumina 
short-read sequencing libraries with minimum effort. The workflow is developed in 
Snakemake [14,15], a widely used workflow language [12]. It relies on publicly available 
bioinformatics tools that follow best practices in the field [22], and handles bulk, stranded 
RNA-seq data, single or paired-end.  
 

D. 3. 1. Workflow inputs 
ZARP requires two distinct input files: (1) A tab-delimited file with sample-specific 
information, such as paths to the sequencing data (FASTQ format), reference genome 
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sequence (FASTA format), transcriptome annotation (GTF format) and additional experiment 
protocol- and library-preparation specifications like adapter sequences or fragment size. (2) 
A configuration file in YAML format containing workflow-related parameters, such as results 
and log directory paths and user-related information. Advanced users can take advantage of 
ZARP’s flexible design to provide tool-specific configuration parameters via an optional third 
input file, which allows adjusting the behaviour of the workflow to their specific needs. More 
information on the input files can be found in ZARP’s documentation [23]. 
 

D. 3. 2. Analysis steps 
A general schema of the workflow in its current version (0.3.0) is presented in Figure 1 (see 
Supplementary Figure 1 for a more technical representation of the entire workflow, including 
all of its steps). Table 1 below lists the main tools/functionalities of ZARP: 
 
Table 1. Core tools/functionalities included in ZARP.  
See main text for more information on use cases for each tool and why we chose those tools to be included in 
ZARP.  

 

Tool Description Reference 

FastQC Generates various quality control metrics based on raw 
FASTQ data. 

[24] 

Cutadapt Trims sequence fragments of non-biological origin or low 
information content. 

[25]  

STAR Aligns reads to reference genome. [26] 

tin-score-calculation Calculates a Transcript INtegrity score (TIN) on aligned 
reads that reflects the state of RNA degradation of a 
sample. 

[27] 

ALFA Annotates read alignments based on gene/transcript 
annotations. 

[28] 

kallisto Estimates gene/transcript expression levels. [29] 

Salmon Estimates gene/transcript expression levels. [30]  

zpca Performs principal component analyses of 
gene/transcript expression level estimates across 
samples in a given workflow run. 

[31] 

MultiQC Aggregates tool results and generates interactive 
reports. 

[32] 

 
Calculation of per-sample quality statistics by applying FastQC [24] directly on the input files 
(FASTQ) provides a quick assessment of the overall quality of the samples. These consist of a 
considerable range of metrics, including, for example, GC content, overrepresented 
sequences and adapter content. An excessive bias in GC content may affect downstream 
analyses and may have to be corrected for [33]. Overrepresented sequences may be the result 
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of PCR duplication, which, if excessive, may skew expression estimates and other downstream 
analyses. Information about adapter content may be used to cross-check whether it matches 
with whatever the user has selected to trim. For more information on the metrics that FastQC 
reports and how they can be interpreted, please refer to [24]. 
 
Trimming of any 5’ and/or 3’ adapters as well as poly(A/T) stretches using Cutadapt [25] 
ensures a more reliable alignment as well as removal of contaminant adapter sequences. The 
adapters and poly(A/T) stretches to be removed are indicated by the user.  
 
Alignment against a given set of genome resources (either only the genome or the genome 
and a set of corresponding gene annotations) is the step where each read is assigned to the 
genomic region from which it originated. Even though there are many available aligners, STAR 
has been chosen [26][34]. BAM-formatted files that are then sorted (based on coordinates) 
and indexed using SAMtools [11]. These steps enable faster random access and visualisation 
by tools such as genome browsers. The sorted, indexed BAM files are further converted into 
the BigWig (BedGraphtoBigWig from UCSC tools [35]) format, which allows for library 
normalisation, and is thus convenient for visualising or comparing coverages across multiple 
samples. 
The aligned reads are also used to calculate per-transcript Transcript Integrity Numbers (TIN 
scores) [36], a metric to assess the degree of RNA degradation in the sample. This is done with 
tin-score-calculation [27], which is based on a script originally included in the RSeQC package 
[37] but modified by us to enable multiprocessing for increased performance.  
 
To provide a high-level topographical/functional annotation of which gene segments (e.g., 
CDS, 3’UTR, intergenic) and biotypes (e.g., protein coding genes, rRNA) are represented by 
the reads in a given sample, ZARP includes ALFA [28]. 
 
Salmon [30] and kallisto [29] along with a transcriptome are used to infer transcript and gene 
expression estimates. Since both of these tools have been shown to be equally fast, memory 
efficient and accurate [38], they are both included in ZARP. The main output metrics provided 
by either tool are estimates of normalized gene/transcript expression, in Transcripts Per 
Million (TPM) [39], as well as raw read counts per gene/transcript. 
 
Within ZARP, TPM estimates are essential for performing principal component analyses (PCA) 
[40] with the help of zpca [31], a tool created by us for the use in ZARP, but packaged 
separately so that it can be easily used on its own or as part of other workflows. PCAs on 
gene/transcript expression levels can help users understand whether differences in 
gene/transcript expression levels across different sample groups are sufficiently high that 
meaningful results in downstream analyses may be expected. 
 
TPM and raw count estimates can be further used in downstream analyses, e.g., for 
differential gene/transcript expression, differential transcript usage or gene set enrichment 
analyses. Given that such analyses require an experiment design table and are difficult to 
configure generically for a wide range of experiments, we chose not to include these in ZARP. 
However, to facilitate downstream analyses, gene/transcript estimates are aggregated for all 
samples with the aid of Salmon and merge_kallisto [41], which generate summary tables that 
can be plugged into a variety of available tools.  
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ZARP produces two user-friendly, web-based, interactive reports: one with a summary of 
sample-related information generated by MultiQC [32], the other with estimates of utilized 
computational resources generated by Snakemake itself. Note that both for tin-score-
calculation and ALFA, we have created plugins so that the respective results can be explored 
interactively through MultiQC.  
 

 
Figure 1. Schematic overview of the ZARP workflow. 

 

D. 3. 3. Reproducibility and reusability 
To enhance reproducibility of results and reusability of the workflow, each step (referred to 
as “rule” in Snakemake) of the workflow definition relies either on Conda environments 
mostly hosted in the Bioconda channel [21] or on Docker images. The latter are converted by 
Snakemake to Singularity images [19] on the fly where needed, enabling seamless execution 
of the workflow in environments with limited privileges (e.g., HPC clusters). Users can choose 
between Conda- and container-based execution by selecting or preparing an appropriate 
profile when/before running a workflow. At the moment, we include profiles for the Slurm 
job scheduler and we plan to add new profiles over time. For that, we encourage users to 
feed their own profiles back to the original ZARP repository so that the entire community can 
benefit. 
 

D. 3. 4. Output and documentation 
In addition to the transcript/gene expression tables, ZARP collects log files and metadata for 
downstream analyses. Intermediate files can be optionally cleaned up by ZARP to minimize 
disk space usage. The workflow is hosted in its own GitHub repository, and each ZARP version 
released is accompanied by an up-to-date workflow-oriented description. 
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D. 3. 5. Continuous Integration and Testing 
To facilitate collaborative development of the workflow and associated software and to 
reduce the chance of the codebase regressing with ongoing changes, ZARP is making use of a 
GitHub Actions-based workflow for Continuous Integration and Delivery (CI/CD). Each 
modification to the remote repository triggers a variety of integration tests (Conda 
environments test, Snakemake graph test, dry run, minimal-example based run) to guarantee 
ZARP’s correct execution throughout the development cycle as the source code is refactored 
and new features are added. 
 

D. 4. Use Cases 
Apart from quickly gaining insights into individual samples or smaller sets of samples, ZARP is 
very well suited to analyze large RNA-Seq experiments or even run meta-analyses across 
multiple different experiments. 
 
To demonstrate how ZARP can be used to gain meaningful insights into typical RNA-seq 
experiments, we tested it on an RNA-seq dataset that was generated by Ham et al. (GEO [42] 
accession number GSE139213) while analyzing the role of mTORC1 signalling in the age-
related loss of muscle mass and function in mice [43]. The dataset consists of 20 single-ended 
RNA-seq libraries (read length: 101 nt, gzipped FASTQ file sizes ranging from 0.8 to 3.2 Gb, 
library sizes ranging from 18.5 to 75.3 reads), corresponding to four cohorts of 3-months old 
mice (with five biological replicates per cohort): (1) wild-type, (2) rapamycin-treated, (3) 
tuberous sclerosis complex 1 (TSC1) knockout and (4) rapamycin-treated TSC1 knockout. The 
samples were mapped against ENSEMBL’s [44] GRCm38 genome primary assembly and 
corresponding gene annotations (release: 99) for standard human chromosomes. Other 
parameters for populating ZARP’s samples table were obtained from the GEO accession 
entries of the respective samples. Sample tables and results for the test run are publicly 
available [45]. 
 
In Figure 2, we are presenting a subset of the outputs that ZARP generated for this dataset. 
We can see that the GC content of reads (Figure 2A) is slightly skewed towards being more 
AU-rich, yet all samples pass the FastQC-defined threshold for GC bias. Moreover, GC content  
does not exhibit a strong bias across samples. There is no evidence of extensive sequencing 
of residual adapters (“adapter contamination”) (Figure 2B; black), as less than 1% of reads 
have been discarded in each sample because of insufficient length after adapter trimming. 
Transcript integrity across samples is also uniform and high (Figure 2C), with the highest 
density of expressed transcripts at TIN scores of 75 to 85. Similarly, alignment statistics as 
reported by STAR are also consistently high (Figure 2D), with rates of reads mapped uniquely 
against the mouse genome of more than 72% across all samples (<4% unmapped), 
irrespective of sequencing depth. As expected, ALFA analysis of transcript categories shows 
that uniquely mapped reads overwhelmingly originated from protein coding genes (over 86% 
for all samples) (Figure 2E). Taken together, these metrics indicate that all samples are of 
sufficiently high quality for downstream analyses. 
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Figure 2. Selection of metrics reported by ZARP.  
Shown are (A) GC content, (B) adapter removal report, (C) Transcript Integrity Number (TIN) score, (D) STAR 
alignment statistics, and (E) ALFA biotypes for the test run described in the main text. Figures have been edited 
for visibility purposes in order to group samples according to cohorts. Additionally, some biotypes have been 
omitted from (E) as they are not meaningfully represented. Note that in (C), transcripts that are not expressed 
are assigned a TIN score of 0. The complete raw html report can be found at [45]. 

 
In addition to sample-specific metrics, ZARP also provides tooling to compute principal 
component analyses across samples (Figure 3). For the test run, the distribution of samples 
in the space of the first two principal components shows a clustering by condition, with a 
clear separation between knockout and wild type, as well as between the untreated and 
rapamycin-treated TSC1 knockout mice. This separation is more pronounced at the gene 
expression level (Figure 3A), but is also present at the transcript level (Figure 3B). This shows 
that the differences across conditions are more pronounced than any replicate biases 
(multiplicative noise, sequencing errors), i.e., the signal-to-noise ratio is favorable, which 
strongly increases the likelihood that any subsequent analyses (e.g., differential 
gene/transcript expression analysis) will provide targets of biological importance. 
 

 
Figure 3. Principal component analysis.  
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Principal component analysis (PCA) at the (A) gene and (B) transcript level. PC1 and PC2 correspond to the first 
and second principal components, respectively. Variances explained by each of them are stated in the 
parentheses of the corresponding axes labels. Expression levels used in this figure are those reported by kallisto, 
but ZARP also generates corresponding PCA plots for Salmon-based quantifications.  

 
The total wall clock time to execute the entire test run was just over one hour (1.01h) for all 
20 samples on our Slurm-managed HPC cluster [46], where we could make heavy use of 
ZARP’s parallelization capabilities. This translates to a total CPU time of 68.79 h, out of which 
6.68h were run-specific, i.e., jobs that had to be executed only once for all samples. The 
accumulated sample-specific CPU time used for each sample varied between 2.75h and 8.44h. 
While the actual runtime may differ considerably across different compute environments, we 
project that most users would be able to run even large-scale analyses with dozens to 
hundreds of samples in less than a day on an HPC cluster, with very little hands-on time. 
Maximum memory usage for any of the steps and across all samples was <32 Gb (for STAR 
indexing and mapping of/against the human genome), indicating that ZARP is suitable for 
execution on state of the art computers, albeit at considerably higher runtimes due to limited 
parallelization capabilities, particularly for large sample groups. None of the jobs took longer 
than ~20 min (wall clock time) for any of the samples (Figure 4). Among the most time-
consuming steps are the creation of indices (STAR, Salmon, kallisto), which however have to 
be performed only once per set of genome resources. Among the sample-specific steps, the 
calculation of the Transcript INtegrity (TIN) score was the most time-consuming. However, 
we had already considerably reduced its runtime by adding parallelization capabilities to the 
original script (see subsection “Analysis steps” in section “Methods/Results” for details). 
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Figure 4. Runtime statistics.  
Runtime (in seconds; wall clock time) of the different steps (“rules”) of the workflow run are depicted for each 
sample. The workflow was executed in an HPC cluster managed by the Slurm job scheduler, so the reported 
runtimes include the time that jobs spent queuing. Additional variation in runtimes may result from individual 
jobs being executed on cluster nodes with different specifications. 

 
In summary, our test case demonstrates how ZARP can be used to quickly gain informative 
insights (Figures 2 & 3) into a non-trivial real-world RNA-seq analysis in a reasonable 
timeframe (Figure 4). 
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D. 5. Discussion/Conclusions 
ZARP is a general purpose, easy-to-use, reliable and efficient RNA-seq processing workflow 
that can be used by molecular biologists with minimal programming experience. Scientists 
with access to a UNIX-based computer (ideally a Linux machine with enough memory to align 
sequencing reads) or a computing cluster can run the workflow to get an initial view of their 
data on a relatively short time scale. ZARP has been specifically fine-tuned to process bulk 
RNA-seq datasets, allowing users to run it out of the box with default parameters. At the same 
time, ZARP allows advanced users to customize workflow behavior, thereby making it a 
helpful and flexible tool for edge cases, where a more generic analysis with default settings is 
unsuitable. The outputs that ZARP provides can serve as entry points for other project-specific 
analyses, such as differential gene and transcript expression analyses. ZARP is publicly 
available and open source (Apache License, Version 2.0), and contributions from the 
bioinformatics community are welcome. Please address all development-related inquiries as 
issues at the official GitHub repository [47]. 
 

D. 6. Data and Software Availability 
D. 6. 1. Data 
Raw data analysed in section “Use Cases” are publicly available for anyone to download from 
the NCBI:GEO server, accession number GSE139213. 
 

D. 6. 2. Software 
The ZARP code is available on GitHub at [47] and is published under Apache License, Version 
2.0. A snapshot of the ZARP version described in this manuscript (0.3.0) has been additionally 
uploaded to Zenodo for long-term storage [23]. Both services are public and allow anyone to 
download the software without prior registration. 
 

D. 6. 3. Results 
Analysis results presented in section “Use Cases” are publicly available for anyone to 
download from Zenodo. 
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D. 12. Supplementary material 

 

Supplementary Figure 1. ZARP workflow schema.  
Graph-based representation of ZARP v0.3.0, including all of its steps (“rules”), as produced by running 
Snakemake with the --rulegraph option. Steps for both the single and the paired end workflows are shown. 
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