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A B S T R A C T

Ever since the formulation of the central dogma of biology, the fo-
cus was shifted into how the various steps up to the protein forma-
tion are regulated. RNA-binding proteins (RBPs) have been shown
to be instrumental in a vast number of post-transcriptional processes.
Crosslinking immunoprecipitation (CLIP) is a mainstay in the exper-
imental approaches used for detecting the binding partners of the
RBPs. Many variations of these protocols have been developed, along
with multiple software solutions for their analysis. However, most
of the existing methods do not include efficient pre-processing in
their processing and their statistical models still do not efficiently
remove all sources of noise. To deal with these issues, we developed
RCRUNCH. RCRUNCH is an automated workflow, that deals with
pre-processing, has its own statistical approach to efficiently detect
significant binding events and also reliably infers motifs. Additional
features are inclusion of multi-mappers, selective removal of ncRNAs
and a transcriptomic approach for considering binding events span-
ning splice junctions. RCRUNCH was shown to have a reliable per-
formance in comparison to the most wide used methods in a number
of metrics. ENCODE eCLIP data were analysed using RCRUNCH
and many known interactions and motifs were successfully repro-
duced, along with some new interesting findings. This interest in
high-throughput data analysis led to a more collaborative project
called ZARP, used for high-throughput analysis of RNA-seq data, de-
veloped in the Zavolan group with the FAIR principles in mind, and
a good roadmap on how to apply best practices in the specific context
of a bioinformatics analysis. In this project we focused more on flexi-
bility and usability of the workflow even with minimal bioinformatics
expertise.
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1
I N T R O D U C T I O N

1.1 gene expression and its regulation

The central dogma of biology postulates that the flow of genetic in-
formation starts from the DNA, is transferred via transcription to
the RNA and then via translation to proteins [1]. The direction of
this flow according to the central dogma is irreversible. This basic
view has evolved over the years to include a vast array of regula-
tory processes. Transcription is in itself not as straightforward, with
epigenetic marks such as histone modifications and DNA methyla-
tion, and regulatory processes such as chromatin remodeling having
a great effect on the final outcome. In a similar manner the informa-
tion transfer from DNA to RNA involves much more than the mere
act of transcription. The composition and function of mRNAs further
depends on RNA modifications, splicing, polyadenylation, traffic of
the mRNA to the correct location to be translated, its stability and
susceptibility to degradation. Moreover, transcription does not only
produce protein-coding messenger RNAs but also non-coding RNAs
(ncRNAs), some of which have regulatory functions in translation
(rRNAs, tRNAs), RNA decay and other processes. Translation, as in-
dicated already, requires rRNAs that participate in the formation of
the ribosome, and its output is affected by the stability of the mRNA
and its localisation. Features of the mRNA, like modifications and
length of the untranslated regions (3’ UTRs) have been shown to af-
fect the translation efficiency. RNA binding proteins (RBPs) are im-
portant players in the regulation and fine-tuning of the genetic flow
of information to the final protein product.

Proteins have been associated with specific functions in these regu-
latory processes. Transcription factors are essential to the epigenetic
regulation [2]. The first indication was the detection of short genomic
regions that shared common qualities, like susceptibility to transcrip-
tion induction after exposure to increased temperatures. Conversely,
these small regions, termed heat shock elements (HSE), were absent
from genes non-responsive to increased temperatures [3]. To further
consolidate the importance of HSEs, they were transferred from the
heat inducible gene (hsp70) to the non-inducible gene thymidine ki-
nase [4]. The expression of the latter was increased upon temperature
increase, indicating that the HSE does indeed confer heat-inducible
transcription. These short DNA sequences were shown to act via bind-
ing of specific proteins, called transcription factors (TF), which could
affect transcription in a positive or negative manner.

At the time, it was thought that gene expression is determined at
the step of transcription, while post-transcriptional processes were
largely ignored, perhaps due to the prokaryotic paradigm of regula-
tion [2]. However, it was beginning to become apparent that eukary-
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otic cells have a wide range of post-transcriptional processes in place,
affecting gene expression and that there are signals and factors (RNA-
binding proteins, RBPs) participating in these processes, bringing the
RBPs to the forefront, as gene expression regulators [5] [6]. The detec-
tion of highly conserved domains in RBPs [7], [8] contributed further
to the elucidation of their function, first in the context of develop-
ment [5, 8]. Since then, many RBPs have been characterized along
with their regulation and novel functions in a multitude of different
contexts apart from development [9], [10].

Once a protein is produced, it can undergo further interactions or
modifications that affect its function. The modifications and interac-
tion partners can also be modulated by small molecules, protein phos-
phorylation or protein-protein interactions [11].

As we can see, the central dogma of gene expression has been en-
riched since its conception with a vast number of diverse regulators
affecting each and every step of the process, controlling a protein’s
life, even before its formation at the transcript level and all the way
until its final degradation. The complexity and sheer number of regu-
latory processes governing gene expression, along with the expected
stochasticity of these processes which typically involve a small num-
ber of molecules, render the exact prediction of the final outcome in
a specific context rather inaccurate and complicated.

1.2 rna-binding proteins

1.2.1 RNA-binding proteins: important regulators of expression

RNA binding proteins (RBPs) are a major component of gene reg-
ulation. They bind a multitude of distinct RNA species at different
stages of their life cycle. Since the proposal of RBPs acting as expres-
sion regulators [12] [5], more than 1542 RBPs have been uncovered in
humans, which is around 7.5% of the protein-coding genome [10, 13].
The plethora of these proteins, their deep evolutionary conservation
[10], and their involvement in genetic disorders [14] [15] and human
disease in general [16], render these proteins of high interest. In par-
ticular, understanding their mode of action as gene regulators will
open new avenues for therapeutic interventions.

1.2.2 RBP discovery

Despite the fact the first RBPs and their domains were already char-
acterized by the late eighties, the catalog of RBPs, either identified
experimentally or predicted, keeps getting longer. Although at first
RBPs were studied one at the time, the interest rose for large scale ap-
proaches to uncover all RBPs in a living cell. The main high-throughput
method for detecting proteins with RNA-binding activity in vivo re-
lies on RNA interactome capture (RIC [17] [18] [19]). In this approach,
crosslinking is used to stabilize any RBP-RNA interactions taking
place in a cell at a given time. Then, the ribonucleoprotein (RNP)
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complexes are captured with the help of oligo(dT) beads and the
proteins that are bound to RNAs, i.e. RBPs, are identified by mass
spectrometry. Modifications of this protocol have enabled not only
higher specificity, but also the determination of the exact regions of
the RBP that interact with the RNA [17, 19] [20]. Additional fractiona-
tion might give more insight into e.g nuclear RBPs and their function
[17].

Additional curation to more reliably annotate the RBP repertoire
was performed in [10]. Specifically, experimental information on whether
proteins interact with RNA directly or indirectly was used, based on
which shared domains (so-called Pfam domains [21], represented as
position-specific weight matrices) were gathered and used for train-
ing hidden Markov models, which were then applied on the whole
human genome. This led to the doubling of the number of putative
RBPs, relative to the number of RBPs detected based on the experi-
mental methods mentioned above. Furthermore, based on the obser-
vation that proteins that often interact with other RBPs in an RNA-
dependent manner are usually RBPs themselves, a computational
method was developed, which takes advantage of mass spectrometry-
determined protein-protein interactomes to predict RNA binding ac-
tivity of uncharacterised proteins [17, 22]. All prediction methods rely
on particular assumptions (e.g that the presence of an RNA-binding
domain (RBD) always leads to an RNA-related function) that do not
always hold (participation in RNP complex does not always equal
RNA interaction) and therefore these predictions generally include
many false positives. Additionally, for these models to be trained
properly there is the prerequisite of clean training data, which then
relies on the accuracy of the experiments used to derive them, which
in many cases might be an issue.

1.2.3 RBPs contain highly conserved RNA-binding domains

The elucidation of various RBPs in terms of structure and binding
preferences along with conservation studies, led to the identification
of highly conserved regions of sizes ranging from 60-90 amino acids
with common features, called RNA-binding domains (RBD). One of
the first RBDs described was the RNP consensus sequence (RNP-CS)
[7]. Experimental approaches to identify proteins that bind RNAs and
multiple alignments of their conserved regions, uncovered a pattern
of 90 amino acid sequences among some RBPs that was additionally
found to be conserved all the way from yeast to human [5]. Octapep-
tides within these regions were found to be further conserved and
were hypothesized to mediate the RBP-RNA binding, even though
later on more peptides were found to be deeply conserved (RNP1,
RNP2).

Some of the main RNA-binding domains described so far are: RNA
recognition motif (RRM) [5, 23]: one of the most frequently observed
RBDs in human RBPs with a frequency of 0.5-1% across human
genes. Its characteristic secondary structure leads to recognition of
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between four and eight nucleotides-long motifs. Usually more than
one such RBD is required for more specific binding.

K-homology domain (KH): this type of domain has some variability
in terms of observed topologies. In this case the RNA binding relies
mostly on shape complementarity and hydrogen bonds. This type of
domain can also bind single-stranded DNA (ssDNA).

Zinc finger (ZnF): this domain binds DNA as well as RNA. There
are further family distinctions within this type, and the specific bind-
ing depends on the structure of the DNA, RNA and of the RBP that
contains the ZnF domain.

Ribosomal S1-like (in short S1) domain: this domain binds to spe-
cific nucleotides via surface complementarity and secondary struc-
ture, similarly to RRM.

PAZ and PIWI domains: these domains are found in RBPs partici-
pating in the processing of small regulatory RNAs, microRNAs (miR-
NAs) and small interfering RNAs (siRNAs).

A more extensive catalogue of annotated domains can be found
in [24]. RBDs as individual entities offer limited specificity in terms
of target specificity. It is the combination of multiple such RBDs and
the varying secondary structures of the RNAs that render the RBPs
so uniquely specific to certain RNAs during specific stages of gene
expression regulation.

The interdomain sequences between specific RBDs have also been
shown to significantly affect the affinity and specificity of RBPs to-
wards specific targets. There are also models to calculate the final
affinity of either individual RBD and their combinatorial binding
affinity [25], that show that shorter linkers lead to increased affinity
as opposed to longer linkers (>50-60 residues) which lead to affinity
that is close to what it would be if the two domains were acting in-
dependently. Furthermore, protein-protein interactions and the vary-
ing combinations of proteins into complexes (e.g spliceosome) offer
a multitude of different surfaces available for binding [26] [27]. The
conformational rigidity of both the RBP interfaces and the target RNA
has been correlated to higher specificity of binding while flexibility
seems to favor binding affinity [28].

Apart from the RBDs mentioned above, disordered regions have
also been shown to maintain important roles in RBP functionality
[29]. They mediate RNA-binding, governed by specific motifs, e.g
RGG/RG [30], as well as regulate transcription via interaction with
the RNA polymerase II [31]. The role of disordered regions in RBP-
RNA as well as protein-protein interactions emphasize their impor-
tance for gene regulation.

It is evident that although RBPs have distinct RBDs that mediate
the RNA binding in a sequence-specific manner, the interactions and
localisation of both RBPs and RNAs at a given time could further lead
to different outcomes of the RBP-RNA interaction. Therefore, RNA
regulation via RBP binding does not seem to be a linear process, but
rather the result of intricate interactions of more than one regulators.
It is therefore of important to understand the role of individual RBPs
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in regulatory processes to be able to decipher their joint functions in
determining gene expression.

1.2.4 RBPs : localisation, binding partners, functions

RBPs have been observed across all subcellular locations, where they
mediate a plethora of regulatory processes. The combination of CLIP
methods (see next section) with cellular fractionation aims to shed
light into the localisation-dependent functions of RBPs [32]. In recent
years, the discovery of more and more membraneless organelles that
compartmentalise various processes in eukaryotic cells [33, 34] (e.g
Cajal bodies, paraspeckles, nuclear speckles, P-bodies, stress gran-
ules), has greatly increased the interest in the mechanisms under-
lying the formation and function of these structures. Liquid-liquid
phase separation (LLPS) is a key mechanism describing the formation
of such organelles [35] and RNA-binding proteins have been been
shown to provide building blocks for the formation of these conden-
sates. Intrinsically-disordered regions (IDRs) and prion-like domains
contribute to the phase separation [34, 36], while defects caused for
e.g. by mutations in RBPs have emerged as culprits of various neu-
rodegenerative diseases [37].

The versatility of RBPs continue to surprise scientists. For e.g. re-
cent studies have shown that some RBPs also act as metabolic en-
zymes, one theory being that RNA-binding might regulate their avail-
ability to act as enzymes and the other way round [9, 38]. Another ex-
ample of dual functionality is chromatin association [39]. A method
called SPACE (Silica Particle Assisted Chromatin Enrichment) was de-
veloped with the aim of identifying all chromatin-associated proteins
and the outcome was that 48% out of a total of 1459 these proteins
were annotated as RBPs [39]. This binding was again associated with
the IDRs of these RBPs. [40]

The function of RBPs as enhancers or suppressors of miRNA tar-
geting (MT) has also been established and these have been studied in
the context of cancer [41]. Since then, there have been approaches to
detect more of the MT events across the genome [41, 42].

1.2.5 Methods to determine RBP-RNA interactions

As already mentioned, RBPs interact with RNAs via specific con-
served domains of 60-90 amino acids called RNA-binding domains
or RBDs. Several RBPs are typically bound to an RNA, thus form-
ing ribonucleoprotein complexes or RNPs. The RNP composition is
highly dynamic in space, time and cell type or state and it is this
dynamics that leads to the expression of different subsets of genes
in different cell types. Therefore, mapping these dynamic interac-
tions is of great interest. Many approaches are currently available
identifying RNA targets and sites of individual RBPs (protein-centric
approaches). Conversely, methods are also available for elucidating
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the components of RNP complexes containing a specific RNA (RNA-
centric approach).

One of the first methods for isolation of RNP complexes is RNA im-
munoprecipitation (RIP) [43] [44]. As the name implies, this method
relies on selective capture of RNPs containing a specific protein and
consequently all the RNAs that are bound to it. The capture step can
be done in native conditions [45] or after formaldehyde treatment to
stabilize the bound molecules via crosslinking [46]. This method was
found to be error-prone, mainly due to random RNP formations after
cell lysis [47].

The methodology was superseded by crosslink and immunopre-
cipitation (CLIP) [48]. The main advantage of this method is the
non-reversible crosslinking of the RBP to the UV-irradiated ribonu-
cleotides thanks to a covalent bond formation. The UV crosslink-
ing is shown to lead to higher signal:noise since it does not induce
chemical bridges or protein-protein interactions as does formalde-
hyde crosslinking [49]. Selective immunoprecipitation of a specific
RBP and treatment with RNAse allows for detection of RNA-targets
with the resolution of individual binding sites, because these are pro-
tected by the RBP during sample preparation and subsequently se-
quenced. Due to insufficient proteinase K treatment it has been shown
that reverse transcriptase can be blocked by remaining aminoacid
in the position of the covalent bond and therefore lead to truncated
reads [50, 51]. However, this was not universally accepted, with an al-
ternative hypothesis being that there is an increased rate of nucleotide
misincorporation at the crosslink site during reverse transcription [52,
53]. Of course this depends on the type of the reverse transcriptase
and the specific conditions [54].

Various adaptations of this method have emerged over the years,
with the aim to provide enhanced accuracy in terms of the targets
and nucleotide level detection of the binding sites. An example of
such an enhancement is iCLIP [55]. In this method, the incorpora-
tion of a cDNA self-circularisation step ensures that cDNAs that are
truncated at the crosslink site are still amplified and retained in the
sample, in spite of the 5’ adaptor not being reached during reverse
transcription. This is estimated to yield higher, nucleotide-level accu-
racy of the crosslink site. In this method random barcodes were also
introduced to deal with PCR amplification artifacts. A latest update
to the protocol though has replaced the circularisation step with T4

RNA ligase 1 to ligate a DNA adapter to the 3’ end of the cDNA
[56]. eCLIP [57] was designed as a further improvement of iCLIP
in terms of yield and performance. It incorporates some of iCLIP’s
steps concerning library preparation of RNA fragments, but the step
of circularisation, deemed inefficient, is replaced by a two step liga-
tion process, which is further improved by optimizing the T4 RNA
ligase protocol. The radioactive labeling of the RNA is also skipped
to shorten the time required for sample preparation (4 days). The
addition of a size-matched input (SMI) sample, which goes through
all the steps of sample preparation except for the immunoprecipi-
tation, gives improved background signal. Another modification to
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the iCLIP protocol, irCLIP [58], takes advantage of an infrared probe-
labeled adaptor, which is as efficient as a standard adaptor, yet re-
duces the time required for protein–RNA complex visualization 10-
to 100-fold. Also, the higher sensitivity of irCLIP adaptor detection
leads to faster quality controls during the protocol implementation.

PAR-CLIP [59] is another CLIP variant whose novelty lies in the in-
corporation of 4-thiouridine (4SU) in cells prior to crosslinking. This
allows milder conditions for crosslinking, at >310 nm of UV instead
of the 254 nm, leading to higher specificity and efficiency of crosslink-
ing, as well as to a specific signature of crosslinked sites, where T-C
mutations occur with much higher frequency than in the background.

In some cases, it is of higher interest to detect the proteins bind-
ing to a specific RNA. Methods like RNA affinity protein capture,
which enables purification of a specific RNA together with its inter-
actor RBPs, lead to identification of these bound proteins via mass-
spectrometry (MS), which might further lead to identification of new
proteins acting as RBPs. Another method, RNA-directed proximity-
based proteome labeling [60] relies on a specific labeling enzyme
which covalently modifies all proteins that are located in the prox-
imity to a specific RNA. This better captures transient interactions
and can also be used for specific cell localisations.

A method focusing on a specific RBP bound to a specific target,
thus enabling parallel specification of the interacting amino-acids of
the RBP and the crosslinked nucleotides, is crosslinking of segmen-
tally isotope-labeled RNA and tandem mass spectrometry (CLIR-MS/MS)
that uncovers the structure of the interacting interface and allows for
atomic resolution structures of the RNPs formed [61].

Another step in the evolution of these methods is the drop of the re-
quirement for an RBP specific antibody. This approach called TRIBE
[62], relies on the fusion of the RBP of interest with a domain from
the ADAR family which catalyzes the adenosine-to-inosine changes
in the RNAs located in the proximity of the enzyme. The limitation
of this method is that a double-stranded RNA where ADAR can bind
needs to be in close proximity to the RBP-binding site, which does
not come across that often. APOBEC1 was used to circumvent this is-
sue, since it can catalyze a C to U conversion even on single-stranded
RNA [63]. Additionally, a domain that recognizes m6A modifications
(m6A-binding YTH domain) can be fused to APOBEC1 in order to de-
tect C-U conversions close to m6A sites (DART-seq, [64]). An attempt
to apply the DART-seq method at the single-cell level and together
with long read sequencing is the method called STAMP (Surveying
Targets by APOBEC-Mediated Profiling) [65]. Although these meth-
ods successfully eliminate the reliance on a specific RBP antibody
with the accompanying sources of noise (antibody specificity, sensi-
tivity), they are still to be evaluated regarding the accuracy of the
editing and target identification. Current evaluations rely mostly on
one or a small number of RBPs and the absence of ground truth or
comparison with other equally noisy methods, as well as limitations
on technical aspects render their utility uncertain. Still their impor-
tance lies in providing a means to obtain cell and isoform specific
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insights on RBP regulation along with plans to transfer this to in vivo
settings, moving the field forward.

1.2.6 Software for identifying RBP binding sites from CLIP data

CLIP is an established method widely used for the discovery of RBP
targets and binding sites in vivo. However, despite various optimisa-
tions that have been implemented, the data still is quite noisy. The
issue of PCR duplicates has been dealt with by the introduction of
UMIs. The variable specificity of antibodies, variable efficiency of pu-
rification and variable extent and sequence-dependence of fragmen-
tation all affect which RNA fragments are captured in a CLIP exper-
iment. Moreover, highly expressed RNAs make their way into the
sample despite no binding to the RBP of interest, thus introducing
further noise that dampens the true binding signal [66]. Apart from
technical sources of error, there is variability in the observed signal
to be expected as well, due to biological factors, such as the stochas-
ticity of gene expression, the fact that cells are pooled together and
so the signal is averaged across possibly diverse cell states etc. For all
these reasons, there have been numerous attempts to provide reliable
estimates and model the noise and further rank the detected binding
peaks by a measure that reflects the affinity of the RNA-RBP interac-
tion. “Background” samples (coming from RNA-seq, SMI sequencing,
or random samples of reads from the CLIP experiment) are used to
model the expected noise, while crosslinking-diagnostic events (trun-
cation of the RNA at the crosslinking site, nucleotide substitutions or
deletions introduced during reverse transcription) are further used to
validate true binding events. Over the years, there has been quite an
expansion in the available methods in this field.

iCount [67] is one of the first approaches to the analysis of data
produced with the iCLIP method. The crosslink positions inferred
by iCLIP are the nucleotides immediately upstream of starts of the
sequenced cDNAs, where the reverse transcriptase is expected to fall
off, due to a ‘defect’ in the template caused by the “stub” left by
the degradation of the protein at the crosslinked site. The method
does not rely on a quantitative model of read sampling, but rather
relies on extensive quality-filtering of the reads. The method has more
recently evolved to an automatic workflow, including a command line
interface [68].

Piranha [69] uses a zero truncated negative binomial distribution
(ZTNB) to model the observed read coverage, based on the observa-
tion that the distribution of read counts appears to be an overdis-
persed Poisson, prevalent in high-throughput immunoprecipitation
experiments. In this model, it is assumed that most of the regions
with some read coverage stem from noise and not real binding signal
and therefore, a background model is fitted to the bulk of the data,
while the regions deviating from this distribution are considered to
have true signal. If additional covariates are provided, then a zero-
truncated negative binomial regression (ZTNBR) model is applied.
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ASPeak [70] was developed for the analysis of RIP-seq data, but
is also expected to support CLIP-seq. Based on the assumption that
RNA-seq gives a good proxy of expression for individual transcripts,
the latter is used as a background. The genome is split in functionally
meaningful intervals (e.g UTRs, introns) and for each nucleotide po-
sition the number of read centers is calculated. A negative binomial
(NB) distribution is calculated for each interval and if the P-value is
less than 0.01, then the position is added to the estimated peak. The
parameters p and r for the NB distribution are calculated by taking
3-nts-long windows at the regions of interest and maximizing the ex-
pected values of the distribution.

CLIPper [71] is the method also used within the ENCODE consor-
tium [71, 72], based on which the analysis of all available eCLIP data
is also provided. The peaks are interpolated with cubic splines. A
Poisson distribution is used from the coverage across the pre-mRNA
based on which an expected coverage is calculated.

PIPE-CLIP [73] has incorporated in its model substitutions as well
as deletions and insertions, so that all types of CLIP experiments can
be analyzed. The number of mutations/truncations is calculated with
a binomial distribution, where the size is the total number of reads
and the success rate, which is the sum of all mapped reads divided by
the genome size. P-values are given for each position’s mutation rate,
which through the Benjamini-Hochberg method are transformed to
FDR values. Fisher’s method is used to cluster individual crosslinking
positions. The motif-search tool MEME [74] is also incorporated in the
analysis.

wavClusteR [75] is used for analysis of PAR-CLIP data and relies
on a Bayesian network representation of a mixture model that has
a chain of three variables, namely the source of a transition (UV-
induced or not), the substitution frequency and the observed tran-
sitions. An algorithm termed mini-rank norm (MRN) is used to iden-
tify clusters of events by fitting the peaks to a rectangle and choosing
the clustering that fits best. Local backgrounds are also considered,
by sampling positions close to high-confidence transitions and mod-
elling a distribution of fluctuations using a mixture of two Gaussian
components of unequal variance, to cover both noisy fluctuations and
abrupt jumps.

pyCRAC [76] uses an FDR calculation based on a negative sample
(background) or a background constructed from random sampling
within genes. What sets this method apart is that it was one of the
first attempts at handling complete analysis from pre-processing to
motif prediction based on CLIP data.

BMix [70, 77] was designed to specifically analyze PAR-CLIP data.
For each position there is a probability for a T-C substitution as well
as a G-C or A-C. These can be either due to sequencing error, a single-
nucleotide polymorphisms (SNP) or due to the crosslink. Thus, a mix-
ture of binomials is calculated for each of the observations based on
these three scenarios. If no background samples are available, the en-
tire data set is used to estimate the A-C and G-C substitutions, as
these are not expected to originate from the crosslinking events.
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CLAM [78] was designed to take into account the multi-mappers
that most models were excluding from the RIP and CLIP experiments.
A graph of distinct regions connected by the multi mappers is created
and converted to a matrix, where column is the region and row is
the read. An EM framework is used to assign each multi mapper to
the optimal position, based on the observations and coverage around
these possible positions. Peak calling is performed separately for each
gene. A background is constructed by randomly assigning each of the
observed reads in a gene across this gene 1000 times. In each gene,
multiple testing corrected by the Benjamini–Hochberg False Discov-
ery Rate (FDR) and FDR < 0.001 means a locus is significant. This
method was shown to also work with m6A RIP-seq data.

CTK [79] is a second generation version of a method developed
in the same group [79, 80]. Reads are clustered together into peaks
which are ranked by their height and also evaluated by their presence
in independent replicates, if available. Crosslinks are determined as
transcriptase errors in these positions, an observation based on find-
ings from CLIP samples obtained for the Nova protein [79–81]. Apart
from deletions that were observed in the Nova samples, substitutions
were also observed at crosslink sites. FDR values on mutation sites
are calculated based on real and randomisations.

PureCLIP [82] relies on a Hidden Markov Model (HMM), where
each position on the genome is characterized as enriched or not in
the CLIP sample and crosslinked or not. The combination of these cri-
teria lead to four hidden states. A Gaussian kernel density estimate
helps with estimating an appropriate size for a region when testing
if it is enriched or not. The read starts are assumed to be more fre-
quently observed at the crosslink sites. Another added advantage of
this method is the possible incorporation of biases (high-expression,
overrepresented motifs) via incorporation of position specific external
data to the HMM framework.

YODEL [83] was developed with the aim to enable modifying the
parameters of the peak specification. There is no specific statistical
model governing the peak finding step, the model rather relies on
finding maximum values of coverage and looking for consistent de-
crease to accept clusters of positions as peaks. Thresholds for various
variables can be manually set. Despite the usefulness of the tool at
the time it was created, there are now other solutions that can auto-
matically fit the observations to specific statistical models.

CLIPick [84] focuses on the inhomogeneity of the background noise
due to different expression levels of transcripts interacting with RBPs.
Reads are clustered together into peaks, and the coverage is then in-
terpolated using cubic splines. In silico randomisation CLIP is used
to evaluate the probability that a peak of a particular height could
occur by chance, based on a background sample. This randomisa-
tion is thought to provide a more accurate peak detection. However,
building an expectation from a background sample has already been
implemented a number of times as observed in this section where
all methods are outlined, but so far there is no agreement of what
constitutes the most appropriate background.
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omniCLIP [85] relies on a Non-Homogeneous Hidden Markov Model
(NHMM) for peak detection, including four states, one for true peaks,
another two for either same or higher background signal and one
where there is signal neither in the foreground nor in the background.
The positions that have the peak state as the most likely are merged
into peaks. The scoring of the peaks is the log-likelihood ratio of
the peak state against the rest of the states. Coverage derived mean
and variance is modeled with a negative binomial based general-
ized linear approach, based on which a p-value is calculated, while
additional diagnostic events (T-C mutations) are modeled using a
Dirichlet-multinomial mixture model. As it includes both coverage
information as well as diagnostic events, this method is expected to
work with most of the CLIP variants.

1.2.7 Software for motif analysis

Most of the previous studies relied on additional software to identify
enriched motifs in the peak sequences. Most broadly used is MEME
[74], an expectation-maximization based method for identifying re-
current sequence motifs in a data set. More recently however, addi-
tional approaches to identify motifs in CLIP peaks have started to
emerge.

One of these approaches is mCross [86], which starts from the
premise that algorithms like MEME were developed with transcrip-
tion factors in mind, proteins that bind more rigid DNA structures
and longer sequence elements than RBPs, and thus these algorithms
do not work as efficiently for RBPs that tend to bind lower complex-
ity motifs with lower information content [27, 87]. In mCross posi-
tional weight matrices (PWMs) are inferred, similar to other meth-
ods, but they additionally consider crosslink-induced mutation sites
(CIMS) and crosslink-induced truncation sites (CITS) to direct the mo-
tif search to the crosslink positions. A likelihood function is used to
jointly model the sequence specificity and the crosslink information.
As a way to verify the motifs, heterozygous sites are used, assuming
that the proportion of reads mapping to a specific allele is propor-
tional to the score of the site, different between alleles. Based on the
alleles that give consistent and inconsistent information and using
appropriate statistics, the motifs can be further validated without the
need for additional experiments. While for some RBPs this approach
gives good results, the issue is that there are not many allelic varia-
tions that coincide with the binding sites and also, there are cases of
RBPs where the number of alleles yielding consistent and inconsis-
tent information are equal or too small, rendering the generalization
of such an approach uncertain.

Another recent approach to infer specific motifs relies on kmer en-
richment around crosslink sites [68]. The main difference from the
previous approach is that in this model, only the truncations are
considered meaningful for specifying the crosslink site, while CIMS
[86] are considered uninformative in terms of motif discovery. In this
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method normalization of the kmer signal takes place, by considering
regions close to peaks but around low-scoring crosslink sites, with the
aim of eliminating biases due to UV crosslinking biases or sequence
biases of cDNA ligation.

In the context of RCRUNCH, the method presented in this thesis,
the PhyloGibbs tool was incorporated for the motif prediction step.
PhyloGibbs searches for the optimal assignment of an arbitrary num-
ber of binding sites, for an arbitrary number of binding factors (in
this case RBPs). In Phylogibbs, phylogenetic information and multi-
ple alignments of regions can be provided to inform the motif identi-
fication. However, this step was omitted in RCRUNCH, as RBPs bind
to sites across transcript regions with different levels of conservation,
which complicates the treatment of the phylogenetic signal.

1.3 reproducibility in the context of high-throughput

analysis

A large problem observed during the work on this thesis, regarding
methods for CLIP but also other high-throughput data analyses, is
their reproducibility and accuracy. More often than not, these meth-
ods start from pre-processed data to construct expected distributions,
but this preprocessing is performed in an unclear manner, or with
unspecified versions of available tools and in many cases filtering of
reads in an arbitrary manner takes place. This very often makes it
exceptionally hard to reproduce the analysis and the results, as there
are various points of inconsistencies or vagueness. This problem com-
plicated, of course, the benchmarking of these methods during the
development of RCRUNCH. Traditional pipelines relying on custom
scripts or Make files can reduce the number of manual steps required.
Some drawbacks of this approach remain the parameter tracking, the
tool versioning, resuming a failed run and the over-reliance on spe-
cific infrastructure setups. Maintenance and reproducibility of com-
putational analysis tools therefore remain troublesome [88]. Develop-
ment of a plethora of workflow managers has led to strides in the
pipeline development, as it offers tracing of data provenance, porta-
bility, scalability, and re-entrancy [88]. One such workflow manager,
used in the context of this thesis, is Snakemake [89]. Snakemake is a
bioinformatician-targeted domain-specific language (DSL) [90], with
a language similar to Python and a ‘backward’ logic where start-
ing form the final output files the steps for creating them are recon-
structed. A big advantage of this workflow manager is the modular-
ity of the steps, which allows easy maintenance and expansion, thus
promoting FAIR (findable, accessible, interoperable, reusable) com-
putational analysis [91, 92]. Containerization software is also a very
important part of these workflow managers as they allow direct tool
usage, without manual installation step or worry about specific re-
quirements. This approach has led to open-source projects with the
aim to support multiple bioinformatics software and contribute fur-
ther to the FAIR principles [93].
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2
Z A R P : A N A U T O M AT E D W O R K F L O W F O R
P R O C E S S I N G O F R N A - S E Q D ATA

2.1 abstract

RNA sequencing (RNA-seq) is a crucial technique for many scien-
tific studies and multiple models, and software packages have been
developed for the processing and analysis of such data. Given the
plethora of available tools, choosing the most appropriate ones is a
time-consuming process that requires an in-depth understanding of
the data, as well as of the principles and parameters of each tool.
In addition, packages designed for individual tasks are developed
in different programming languages and have dependencies of var-
ious degrees of complexity, which renders their installation and ex-
ecution challenging for users with limited computational expertise.
The use of workflow languages and execution engines with support
for virtualization and encapsulation options such as containers and
Conda environments facilitates these tasks considerably. Computa-
tional workflows defined in those languages can be reliably shared
with the scientific community, enhancing reusability, while improving
reproducibility of results by making individual analysis steps more
transparent.

Here we present ZARP, a general purpose RNA-seq analysis work-
flow which builds on state-of-the-art software in the field to facilitate
the analysis of RNA-seq data sets. ZARP is developed in the Snake-
make workflow language using best software development practices.
It can run locally or in a cluster environment, generating extensive
reports not only of the data but also of the options utilized. It is
built using modern technologies with the ultimate goal to reduce the
hands-on time for bioinformaticians and non-expert users. ZARP is
available under a permissive Open Source license and open to contri-
butions by the scientific community.

2.2 introduction

Recent years have seen an exponential growth in bioinformatics tools
[94], a large proportion of which are dedicated to High Through-
put Sequencing (HTS) data analysis. For example, for transcript-level
analyses there are tools to quantify the expression level of transcripts
and genes from RNA-seq data [95], identify RNA-binding protein
(RBP) binding sites from crosslinking and immunoprecipitation (CLIP)
data [96, 97], improve transcript annotation with the help of RNA
3’end-sequencing data [98, 99], estimate gene expression at the single
cell level [100] or improve the annotation of transcripts and quantifi-
cation of splicing events based on long read sequencing (e.g., on the
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Oxford Nanopore platform) [101, 102]. Such tools are written in dif-
ferent programming languages (e.g., Python, R, C, Rust) and have
distinct library requirements and dependencies. In most cases, the
tools expect the input to be in one of the widely accepted file for-
mats (e.g., FASTQ [103], BAM [104]), but custom formats are also fre-
quently used. In addition, the variations in protocols or instruments
across experiments may make it necessary to use different parameter-
ization for every sample, rendering a joint analysis of samples from
multiple studies challenging. Combining tools into an analysis proto-
col is a time-consuming and error-prone process. As these tasks have
become so common, and as the data sets and analyses continue to
increase in size and complexity, there is an urgent need for expertly
curated, well-tested, maintained and easy-to-use reusable computa-
tional workflows.

A number of feature-rich, modern workflow specification languages
and corresponding management systems [105, 106] like Snakemake
[107, 108], Nextflow [109] and CWL [110] are now gaining widespread
popularity in life sciences, as they make it easier for such workflows
to be developed, tested, shared and executed. This leads to more
reusable code and reproducible results, while fostering scientific col-
laborations and Open Source Software along the way. In addition, to
facilitate the installation and execution of these workflows across dif-
ferent hardware architectures and host operating systems, modern
workflow management systems make use of virtualization and en-
capsulation techniques relying on containers (e.g., Docker [111] and
Singularity [112]) and/or package managers (e.g., Conda [113] and
Bioconda [114]). An added advantage of using workflows is the meta-
data stored along with the expected results. These can be invaluable
for re-analyzing the data but may also provide additional insights
into the results and cost analyses (e.g., runtimes, resources usage).s

The aim of the presented work is the development of a flexible,
easy-to use workflow for bulk RNA-seq data processing. The inclu-
sion of the most widely used and best performing tools for the vari-
ous processing steps minimizes time spent by users on making tool
choices. Use of a workflow language for the development ensures the
reproducibility and reliable execution of each analysis and it facili-
tates (meta)data management and reporting.

2.3 methods/results

ZARP (Zavolan-Lab Automated RNA-seq Pipeline) is a general pur-
pose RNA-seq analysis workflow that allows users to carry out the
most general steps in the analysis of Illumina short-read sequencing
libraries with minimum effort. The workflow is developed in Snake-
make [107, 108], a widely used workflow language [105]. It relies on
publicly available bioinformatics tools that follow best practices in
the field [115], and handles bulk, stranded RNA-seq data, single or
paired-end.
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Figure 2.1: Schematic overview of the ZARP workflow.

2.3.1 Workflow inputs

ZARP requires two distinct input files: (1) A tab-delimited file with
sample-specific information, such as paths to the sequencing data
(FASTQ format), reference genome sequence (FASTA format), tran-
scriptome annotation (GTF format) and additional experiment protocol-
and library-preparation specifications like adapter sequences or frag-
ment size. (2) A configuration file in YAML format containing workflow-
related parameters, such as results and log directory paths and user-
related information. Advanced users can take advantage of ZARP’s
flexible design to provide tool-specific configuration parameters via
an optional third input file, which allows adjusting the behaviour of
the workflow to their specific needs. More information on the input
files can be found in ZARP’s documentation [116] .

2.3.2 Analysis steps

A general schema of the workflow in its current version (0.3.0) is
presented in Figure 2.1 (see Supplementary Figure A.1 for a more
technical representation of the entire workflow, including all of its
steps). Table 2.1 below lists the main tools/functionalities of ZARP:

Calculation of per-sample quality statistics by applying FastQC
[117] directly on the input files (FASTQ) provides a quick assessment
of the overall quality of the samples. These consist of a considerable
range of metrics, including, for example, GC content, overrepresented
sequences and adapter content. An excessive bias in GC content may
affect downstream analyses and may have to be corrected for [126].
Overrepresented sequences may be the result of PCR duplication,
which, if excessive, may skew expression estimates and other down-
stream analyses. Information about adapter content may be used to
cross-check whether it matches with whatever the user has selected
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Tool Description Reference

FastQC
Generates various quality control metrics

based on raw FASTQ data.
[117]

Cutadapt
Trims sequence fragments of non-biological

origin or low information content.
[118]

STAR Aligns reads to reference genome. [119]

tin-score-calculation
Calculates a Transcript INtegrity score (TIN)

on aligned reads that reflects the state of RNA degradation of a sample.
[120]

ALFA
Annotates read alignments based on

gene/transcript annotations.
[121]

kallisto Estimates gene/transcript expression levels. [122]

Salmon Estimates gene/transcript expression levels. [123]

zpca
Performs principal component analyses

of gene/transcript expression level estimates across samples in a given workflow run.
[124]

MultiQC Aggregates tool results and generates interactive reports. [125]

Table 2.1: Core tools/functionalities included in ZARP. See main text for
more information on use cases for each tool and why we chose those tools
to be included in ZARP.

to trim. For more information on the metrics that FastQC reports and
how they can be interpreted, please refer to [117].

Trimming of any 5’ and/or 3’ adapters as well as poly(A/T) stretches
using Cutadapt [118] ensures a more reliable alignment as well as re-
moval of contaminant adapter sequences. The adapters and poly(A/T)
stretches to be removed are indicated by the user.

Alignment against a given set of genome resources (either only
the genome or the genome and a set of corresponding gene anno-
tations) is the step where each read is assigned to the genomic re-
gion from which it originated. Even though there are many available
aligners, STAR has been chosen [119][127]. BAM-formatted files that
are then sorted (based on coordinates) and indexed using SAMtools
[104]. These steps enable faster random access and visualisation by
tools such as genome browsers. The sorted, indexed BAM files are
further converted into the BigWig (BedGraphtoBigWig from UCSC
tools [128]) format, which allows for library normalisation, and is
thus convenient for visualising or comparing coverages across multi-
ple samples.

The aligned reads are also used to calculate per-transcript Tran-
script Integrity Numbers (TIN scores) [120], a metric to assess the
degree of RNA degradation in the sample. This is done with tin-score-
calculation [129], which is based on a script originally included in the
RSeQC package [130] but modified by us to enable multiprocessing
for increased performance.

To provide a high-level topographical/functional annotation of which
gene segments (e.g., CDS, 3’UTR, intergenic) and biotypes (e.g., pro-
tein coding genes, rRNA) are represented by the reads in a given
sample, ZARP includes ALFA [121].

Salmon [123] and kallisto [122] along with a transcriptome are used
to infer transcript and gene expression estimates. Since both of these
tools have been shown to be equally fast, memory efficient and accu-
rate [131], they are both included in ZARP. The main output metrics
provided by either tool are estimates of normalized gene/transcript
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expression, in Transcripts Per Million (TPM) [132], as well as raw read
counts per gene/transcript.

Within ZARP, TPM estimates are essential for performing princi-
pal component analyses (PCA) [133] with the help of zpca [124], a
tool created by us for the use in ZARP, but packaged separately so
that it can be easily used on its own or as part of other workflows.
PCAs on gene/transcript expression levels can help users understand
whether differences in gene/transcript expression levels across differ-
ent sample groups are sufficiently high that meaningful results in
downstream analyses may be expected.

TPM and raw count estimates can be further used in downstream
analyses, e.g., for differential gene/transcript expression, differential
transcript usage or gene set enrichment analyses. Given that such
analyses require an experiment design table and are difficult to con-
figure generically for a wide range of experiments, we chose not to
include these in ZARP. However, to facilitate downstream analyses,
gene/transcript estimates are aggregated for all samples with the aid
of Salmon and merge_kallisto [134], which generate summary tables
that can be plugged into a variety of available tools.

ZARP produces two user-friendly, web-based, interactive reports:
one with a summary of sample-related information generated by
MultiQC [125], the other with estimates of utilized computational
resources generated by Snakemake itself. Note that both for tin-score-
calculation and ALFA, we have created plugins so that the respective
results can be explored interactively through MultiQC.

2.3.3 Reproducibility and reusability

To enhance reproducibility of results and reusability of the workflow,
each step (referred to as “rule” in Snakemake) of the workflow defi-
nition relies either on Conda environments mostly hosted in the Bio-
conda channel [114] or on Docker images. The latter are converted by
Snakemake to Singularity images [112] on the fly where needed, en-
abling seamless execution of the workflow in environments with lim-
ited privileges (e.g., HPC clusters). Users can choose between Conda-
and container-based execution by selecting or preparing an appro-
priate profile when/before running a workflow. At the moment, we
include profiles for the Slurm job scheduler and we plan to add new
profiles over time. For that, we encourage users to feed their own
profiles back to the original ZARP repository so that the entire com-
munity can benefit.

2.3.4 Output and documentation

In addition to the transcript/gene expression tables, ZARP collects
log files and metadata for downstream analyses. Intermediate files
can be optionally cleaned up by ZARP to minimize disk space usage.
The workflow is hosted in its own GitHub repository, and each ZARP
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version released is accompanied by an up-to-date workflow-oriented
description. Continuous Integration and Testing

To facilitate collaborative development of the workflow and asso-
ciated software and to reduce the chance of the codebase regressing
with ongoing changes, ZARP is making use of a GitHub Actions-
based workflow for Continuous Integration and Delivery (CI/CD).
Each modification to the remote repository triggers a variety of in-
tegration tests (Conda environments test, Snakemake graph test, dry
run, minimal-example based run) to guarantee ZARP’s correct exe-
cution throughout the development cycle as the source code is refac-
tored and new features are added.

2.4 use cases

Apart from quickly gaining insights into individual samples or smaller
sets of samples, ZARP is very well suited to analyze large RNA-Seq
experiments or even run meta-analyses across multiple different ex-
periments.

To demonstrate how ZARP can be used to gain meaningful in-
sights into typical RNA-seq experiments, we tested it on an RNA-seq
dataset that was generated by Ham et al. (GEO [135] accession num-
ber GSE139213) while analyzing the role of mTORC1 signalling in
the age-related loss of muscle mass and function in mice [136]. The
dataset consists of 20 single-ended RNA-seq libraries (read length:
101 nt, gzipped FASTQ file sizes ranging from 0.8 to 3.2 Gb, library
sizes ranging from 18.5 to 75.3 reads), corresponding to four cohorts
of 3-months old mice (with five biological replicates per cohort): (1)
wild-type, (2) rapamycin-treated, (3) tuberous sclerosis complex 1

(TSC1) knockout and (4) rapamycin-treated TSC1 knockout. The sam-
ples were mapped against ENSEMBL’s [137] GRCm38 genome pri-
mary assembly and corresponding gene annotations (release: 99) for
standard human chromosomes. Other parameters for populating ZARP’s
samples table were obtained from the GEO accession entries of the
respective samples. Sample tables and results for the test run are pub-
licly available [138].

In Figure 2.2 , we are presenting a subset of the outputs that ZARP
generated for this dataset. We can see that the GC content of reads
(Figure 2.2A) is slightly skewed towards being more AU-rich, yet all
samples pass the FastQC-defined threshold for GC bias. Moreover,
GC content does not exhibit a strong bias across samples. There is
no evidence of extensive sequencing of residual adapters (“adapter
contamination”) (Figure 2.2B; black), as less than 1% of reads have
been discarded in each sample because of insufficient length after
adapter trimming. Transcript integrity across samples is also uniform
and high (Figure 2.2C), with the highest density of expressed tran-
scripts at TIN scores of 75 to 85. Similarly, alignment statistics as
reported by STAR are also consistently high (Figure 2.2D), with rates
of reads mapped uniquely against the mouse genome of more than
72% across all samples (<4% unmapped), irrespective of sequencing
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Figure 2.2: Selection of metrics reported by ZARP. Shown are (A) GC
content, (B) adapter removal report, (C) Transcript Integrity Number (TIN)
score, (D) STAR alignment statistics, and (E) ALFA biotypes for the test run
described in the main text. Figures have been edited for visibility purposes
in order to group samples according to cohorts. Additionally, some biotypes
have been omitted from (E) as they are not meaningfully represented. Note
that in (C), transcripts that are not expressed are assigned a TIN score of 0.
The complete raw html report can be found at [138].

depth. As expected, ALFA analysis of transcript categories shows that
uniquely mapped reads overwhelmingly originated from protein cod-
ing genes (over 86% for all samples) (Figure 2.2E). Taken together,
these metrics indicate that all samples are of sufficiently high quality
for downstream analyses.

In addition to sample-specific metrics, ZARP also provides tooling
to compute principal component analyses across samples (Figure 2.3).
For the test run, the distribution of samples in the space of the first
two principal components shows a clustering by condition, with a
clear separation between knockout and wild type, as well as between
the untreated and rapamycin-treated TSC1 knockout mice. This sepa-
ration is more pronounced at the gene expression level (Figure 2.3A),
but is also present at the transcript level (Figure 2.3B). This shows that
the differences across conditions are more pronounced than any repli-
cate biases (multiplicative noise, sequencing errors), i.e., the signal-to-
noise ratio is favorable, which strongly increases the likelihood that
any subsequent analyses (e.g., differential gene/transcript expression
analysis) will provide targets of biological importance.

The total wall clock time to execute the entire test run was just
over one hour (1.01h) for all 20 samples on our Slurm-managed HPC
cluster [139], where we could make heavy use of ZARP’s paralleliza-
tion capabilities. This translates to a total CPU time of 68.79 h, out
of which 6.68h were run-specific, i.e., jobs that had to be executed
only once for all samples. The accumulated sample-specific CPU time
used for each sample varied between 2.75h and 8.44h. While the ac-
tual runtime may differ considerably across different compute envi-
ronments, we project that most users would be able to run even large-
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Figure 2.3: Principal component analysis. Principal component analysis
(PCA) at the (A) gene and (B) transcript level. PC1 and PC2 correspond to
the first and second principal components, respectively. Variances explained
by each of them are stated in the parentheses of the corresponding axes la-
bels. Expression levels used in this figure are those reported by kallisto, but
ZARP also generates corresponding PCA plots for Salmon-based quantifica-
tions.

scale analyses with dozens to hundreds of samples in less than a day
on an HPC cluster, with very little hands-on time. Maximum mem-
ory usage for any of the steps and across all samples was <32 Gb (for
STAR indexing and mapping of/against the human genome), indicat-
ing that ZARP is suitable for execution on state of the art computers,
albeit at considerably higher runtimes due to limited parallelization
capabilities, particularly for large sample groups. None of the jobs
took longer than 20 min (wall clock time) for any of the samples
(Figure 2.4). Among the most time-consuming steps are the creation
of indices (STAR, Salmon, kallisto), which however have to be per-
formed only once per set of genome resources. Among the sample-
specific steps, the calculation of the Transcript INtegrity (TIN) score
was the most time-consuming. However, we had already consider-
ably reduced its runtime by adding parallelization capabilities to the
original script (see subsection “Analysis steps” in section “Method-
s/Results” for details).

In summary, our test case demonstrates how ZARP can be used to
quickly gain informative insights (Figures 2.2 & 2.3) into a non-trivial
real-world RNA-seq analysis in a reasonable timeframe (Figure 2.4).

2.5 discussion/conclusions

ZARP is a general purpose, easy-to-use, reliable and efficient RNA-
seq processing workflow that can be used by molecular biologists
with minimal programming experience. Scientists with access to a
UNIX-based computer (ideally a Linux machine with enough mem-
ory to align sequencing reads) or a computing cluster can run the
workflow to get an initial view of their data on a relatively short
time scale. ZARP has been specifically fine-tuned to process bulk
RNA-seq datasets, allowing users to run it out of the box with de-
fault parameters. At the same time, ZARP allows advanced users to
customize workflow behavior, thereby making it a helpful and flexi-
ble tool for edge cases, where a more generic analysis with default
settings is unsuitable. The outputs that ZARP provides can serve as
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Figure 2.4: Runtime statistics. Runtime (in seconds; wall clock time) of the
different steps (“rules”) of the workflow run are depicted for each sample.
The workflow was executed in an HPC cluster managed by the Slurm job
scheduler, so the reported runtimes include the time that jobs spent queu-
ing. Additional variation in runtimes may result from individual jobs being
executed on cluster nodes with different specifications.
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entry points for other project-specific analyses, such as differential
gene and transcript expression analyses. ZARP is publicly available
and open source (Apache License, Version 2.0), and contributions
from the bioinformatics community are welcome. Please address all
development-related inquiries as issues at the official GitHub reposi-
tory [140].

2.6 data and software availability

2.6.1 Data

Raw data analysed in section “Use Cases” are publicly available for
anyone to download from the NCBI:GEO server, accession number
GSE139213.

2.6.2 Software

The ZARP code is available on GitHub at [140] and is published un-
der Apache License, Version 2.0. A snapshot of the ZARP version
described in this manuscript (0.3.0) has been additionally uploaded
to Zenodo for long-term storage [116]. Both services are public and
allow anyone to download the software without prior registration.

2.6.3 Results

Analysis results presented in section “Use Cases” are publicly avail-
able for anyone to download from Zenodo.
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3
I M P R O V E D A N A LY S I S O F ( E ) C L I P D ATA W I T H
R C R U N C H Y I E L D S A C O M P E N D I U M O F
R N A - B I N D I N G P R O T E I N B I N D I N G S I T E S A N D
M O T I F S

3.1 abstract

Crosslinking and immunoprecipitation (CLIP) is used to determine
the transcriptome-wide binding sites of RNA-binding proteins (RBPs).
Here we present RCRUNCH, an end-to-end solution to CLIP data
analysis that enables the reproducible identification of binding sites
as well as the inference of RBP sequence specificity. RCRUNCH can
analyze not only reads that map uniquely to the genome, but also
those that map to multiple genome locations or across splice bound-
aries. Furthermore, RCRUNCH can consider various types of back-
ground in the estimation of read enrichment. By applying RCRUNCH
to the eCLIP data from the ENCODE project, we have constructed
a comprehensive and homogeneous resource of in vivo-bound RBP
sequence motifs. RCRUNCH automates the reproducible analysis of
CLIP data, enabling studies of post-transcriptional control of gene ex-
pression. RCRUNCH is available at:
https://github.com/zavolanlab/RCRUNCH.

3.2 background

Throughout their life cycle, from transcription to maturation, func-
tion and decay, RNAs associate with RNA-binding proteins (RBPs)
to form ribonucleoprotein complexes (RNPs) or higher-order RNA
granules (e.g paraspeckles, Cajal bodies) [141]. RBPs are abundant in
prokaryotes as well as eukaryotes, and methods such as RNA inter-
actome capture (RIC) [142] revealed that over a thousand human and
mouse proteins have RNA-binding activity. An RBP is typically com-
posed of multiple RNA-binding domains (RBDs) coming from a lim-
ited repertoire [143], and binds to a specific sequence motif and/or
secondary structure element. The functional diversity of RBPs rests
on the number and arrangement of RBDs that they contain [144],
though methods like RIC have uncovered proteins that have RNA-
binding activity, despite lacking a known RBD.

As RBPs participate in all steps of RNA metabolism, it is not sur-
prising that they have been implicated in many diseases [145]. How-
ever, the critical targets in a particular context are often unknown. The
method of choice for mapping the binding sites of an RBP in vivo and
transcriptome-wide is crosslinking and immunoprecipitation (CLIP).
Introduced in the early 2000s [146], CLIP has a number of variants,
all exploiting the photoreactivity of nucleic acids and proteins. Briefly,
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ultraviolet light is used to crosslink RBPs to RNAs, the regions of the
RNAs that are not protected by RBPs are enzymatically digested, the
RBP of interest is purified along with the crosslinked RNAs, and fi-
nally the purified RNA [146]fragments are reverse-transcribed and
sequenced. One of the main differences between CLIP variants is in
the nature of the cDNAs that end up being sequenced. These can ei-
ther be the result of aborted reverse transcription at the crosslinked
site [147] - where a bulky adduct remains after protein digestion -, or
the result of reverse transcription through the site of crosslink, which
often results in characteristic mutations in the cDNAs [53, 148]. Al-
though the general expectation is that extensive purification leads to
a relatively pure population of target sites for a given protein, inspec-
tion of the genome coverage by sequenced reads indicates substantial
non-specific background. Various approaches have been proposed for
background correction, but a systematic benchmarking of these ap-
proaches is still lacking (discussed in [149]).

CLIP is analogous to chromatin immunoprecipitation (ChIP), a tech-
nique that has been used for many years to determine binding sites
of DNA-binding factors. To distinguish protein-specific interactions
from various types of background, ChIP includes control samples
consisting either of the chromatin input or the material resulting from
non-specific binding of antibodies to chromatin. Many computational
methods have been developed to identify ’peaks’ from such data sets
[150]. A previous study of peak finding methods developed for ChIP
data has underscored the importance of the model describing the ob-
tained data [151].

In contrast to ChIP, background samples are not always generated
in CLIP experiments, as it is less clear what an appropriate back-
ground should be. While at the DNA level, genes are generally rep-
resented in two copies per cell, the relative abundance of different
RNAs in the cell varies over many orders of magnitude. Thus, abun-
dant RNAs are likely to contaminate CLIP samples, leading to false
positive sites, while binding sites in low-abundance RNAs may be
completely missed. An approach to deal with this issue is to take ad-
vantage of crosslinking-induced mutations, identifying regions where
such mutations have a higher than expected frequency [53, 86, 148,
152]. This is not unproblematic, because mutations are introduced
stochastically and the mutation-containing reads could also come
from fragments crosslinked to proteins other than the one of interest
in the experiment [153]. Another approach is to correct for the abun-
dance of the RNAs based on RNA-seq data. This is also not ideal,
first because differences in sample preparation may lead to RNA-seq
data not containing all the potential targets of the RBP, and second
because the RNA-seq read coverage profile is not uniform, which
will influence the quantification of the local background, and conse-
quently the identification of CLIP sites. Finally, in the eCLIP variant
of CLIP, the background coverage of transcripts by reads is inferred
from a parallel sample that is prepared from the band corresponding
roughly to the size of the protein of interest, obtained by omitting
the immunoprecipitation step of sample preparation. This approach
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has the caveat that the size of the targeted protein varies from experi-
ment to experiment, and so will the proteins that are contained in the
isolated band. This makes it unclear whether the results obtained for
different RBPs are of comparable accuracy.

As mentioned above, most RBPs bind their targets in a sequence-
dependent manner, and sometimes in the context of specific struc-
ture elements [141, 154]. For many RBPs, binding motifs have been
inferred with both low and high-throughput approaches, and at least
in some of these cases, there is good agreement between the RBP-
binding motifs inferred from in vitro [155, 156] and in vivo data
[86, 157]. However, in the most comprehensive database to date, AT-
tRACT [158], there typically are many motifs for an RBP, of widely
variable information content and sometimes unrelated. A comprehen-
sive database of RBP binding motifs determined from a consistent in
vivo dataset, similar to those available for transcription factors [159,
160], is still lacking.

A number of methods have been proposed for the identification of
RBP binding peaks from CLIP data. Benchmarking of various subsets
of these methods has revealed a few good performers, such as clipper,
the tool developed for the analysis of above-mentioned eCLIP data,
omniCLIP and pureCLIP, two recently published tools that use com-
plex models to take advantage not only of the CLIP read coverage, but
also of crosslinking-induced mutations [152, 157, 161, 162]. However,
none of these tools provides an easy and robust end-to-end solution
to the identification of binding sites and sequence motifs from CLIP
data, and it has remained unclear how their accuracies compare.

To fill these gaps, we have developed RCRUNCH, a method that
further aims to treat appropriately not only reads that map uniquely
and contiguously to the genome, but also reads that map across
splice junctions in mature mRNAs, as well as multi-mapping reads.
The de novo motif discovery component of RCRUNCH, based on
the well-established Motevo tool [163], allows an immediate assess-
ment of the quality of the results, including for the comparison of its
genome/transcriptome or unique/multi-mapper based approaches.
Using data for proteins with well-characterized sequence specificity,
we demonstrate that RCRUNCH enables the reproducible extraction
of binding sites, with higher enrichment in the expected motifs com-
pared to the other tools. Application of RCRUNCH to the extensive
eCLIP datasets generated in the ENCODE project [157], covering 149

RBPs, led to the construction of a comprehensive resource of in vivo
binding sites and binding motifs of RBPs. RCRUNCH is available as
an entirely automated tool from [164].

3.3 results

3.3.1 Automated CLIP data analysis with RCRUNCH

RCRUNCH is a workflow (Figure 3.1a) for the automated and repro-
ducible analysis of CLIP data, from reads to binding sites and motifs.
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It is written in the Snakemake language [165], observing the FAIR
(findable, accessible, interoperable and reusable) principles [166]. The
peak-calling module at the core of the workflow builds on the CRUNCH
model [151] that was extensively validated on ChIP data. Along with
the genome sequence and annotation files, the input to RCRUNCH
consists of CLIP (foreground) sequencing reads, obtained from im-
munoprecipitation of a specific RBP, and background reads, which in
most of the analyses reported here come from a size-matched control
sample as in eCLIP. RCRUNCH’s default analysis mode uses reads
that map uniquely to the genome, but multi-mappers and/or reads
that map across splice junctions of mature mRNAs can also be in-
cluded. For the latter case, RCRUNCH constructs a representative
transcriptome composed of the isoform of each gene that has the
highest abundance in the foreground sample. In a first step of its peak
finding module, RCRUNCH identifies broad genomic regions whose
coverage by reads is significantly higher in the foreground compared
to the background sample (Figure 3.1b, see Methods). A Gaussian
mixture model is then applied to each of these regions to identify in-
dividual peaks and compute associated read enrichment scores (Fig-
ure 3.1c). Peaks sorted by the significance of their read enrichment
are then used in various analyses, including for the identification of
enriched sequence motifs. The workflow provides extensive outputs
such as the coordinates of the peaks, their enrichment scores and as-
sociated significance measure, enrichment values of known and de
novo identified sequence motifs represented as positional weight ma-
trices (PWM).

3.3.2 Comparative evaluation of CLIP peak finding methods

By automating the analysis of CLIP data from reads to binding sites
and motifs, RCRUNCH facilitates studies that rely on such data to a
much larger extent than it was possible so far. To demonstrate its per-
formance, we compared RCRUNCH with a few recently published
and more broadly used tools for CLIP site identification. These were:
clipper, the method used in the ENCODE project that generated the
eCLIP data [157], already shown to supersede a few other methods
[161], PURE-CLIP [162] and omniCLIP [152]. The latter two can use
both the CLIP read density as well as the type and frequency of muta-
tions in cDNAs to identify binding sites. As peak calling is not fully
automated in clipper, for this tool we used the peaks provided by
the ENCODE consortium [167, 168]. The other tools were provided
with genome-mapped reads obtained with the pre-processing mod-
ule of RCRUNCH. As done in previous studies [152, 162], in the com-
parative evaluation we used proteins for which the binding patterns
and motifs have been extensively studied and are thus well under-
stood [152, 157, 162]. These are hnRNPC, a splicing regulator that
binds (U)5 sequences [169], PTBP1, another splicing regulator with a
CU-rich binding motif [170], PUM2, a post-transcriptional regulator
binding to UGUANAUA sequence elements [171, 172] and RBFOX2,
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Figure 3.1: Schematic representation of RCRUNCH. a. Overview of the
workflow. b. Scatterplot of the proportion of reads (log2) in individual ge-
nomic regions in a foreground (CLIP) sample generated for the PUM2 pro-
tein (replicate 2 of dataset ENCSR661ICQ from the ENCODE project, see
Methods) and a corresponding background sample (size-matched input con-
trol, SMI). Each dot corresponds to a 300 nucleotides-long genomic region.
Marked in color are regions that are enriched in reads in the foreground rela-
tive to the background sample (FDR < 0.1, see color legend). Three genomic
regions (zoom-ins in panel c) with various enrichment scores are marked
with stars. c. Coverage of three overlapping genomic regions (highlighted in
panel b and indicated at the top of the panel) by CLIP reads (light gray) and
by background reads (dark gray) from the SMI sample. The yellow line rep-
resents the envelope of the SMI read coverage profile. The significant peaks
identified in the genomic region spanned by the three windows are shown
in red. The blue line shows the number of CLIP read starts (5’ end of mate
2 reads) in the genomic region. Read starts indicate crosslinked nucleotides,
where the reverse transcriptase falls off during sample preparation.
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a splicing regulator known to recognize the sequence (U)GCAUG(U)
[167]. For each of these proteins we applied RCRUNCH to the corre-
sponding eCLIP samples in ENCODE, typically 2 replicates in each
of two cell lines, and extracted the 1000 highest scoring sites from
each sample.

The reproducibility of results obtained from replicate experiments
is an important indicator of a method’s accuracy [149]. To estimate
the agreement between sets of peaks, obtained from either replicate
experiments or by different methods applied to the same dataset, we
used the Jaccard similarity index (see Methods). The agreement of the
top peaks inferred from two replicate experiments for the same RBP
in a given cell line (Figure 3.2a) was 20-40%, in the range reported for
CLIP samples before [148]. RCRUNCH consistently provided values
at the top of this range: for 5 of the 7 datasets RCRUNCH gave the
highest agreement, and in the 2 cases when it did not, it was still a
close second performer (Figure 3.2b). We also asked how large is the
overlap between the peaks reported by different methods. Although
this was generally lower than the overlap of peaks identified by one
method from replicate experiments, RCRUNCH had the overall high-
est agreement with the other methods (Figure 3.2c). Finally, as the
computational cost incurred by a tool is also an important factor in
its adoption, we recorded the clock time for the peak calling step of
all methods on the benchmarking data sets. For RCRUNCH the clock
time was up to 3 hours (Figure 3.2d), while PURE-CLIP needed up to
6 hours and omniCLIP up to 9 hours for an individual dataset/RBP.

Thus, RCRUNCH outperforms currently used methods both in
terms of peak reproducibility between replicate experiments and in
terms of running time. Moreover, RCRUNCH has, on average, the
highest agreement with other peak finding methods, indicating that
it capitalizes on some of the same information, while diminishing
some of the biases of these other methods.

To further evaluate the quality of the detected peaks, we deter-
mined their enrichment in the motif known to be bound by the RBP
targeted in each CLIP experiment. We extracted the literature-supported
motifs for each RBP from the ATtRACT database [158] and calculated
their enrichment in the 1000 top peaks predicted by each method rel-
ative to random genomic regions, unlikely to be bound by the RBP
(see Methods). As shown in Figure 3.3a, the known motifs were in-
deed enriched in the peaks relative to background sequences, up to
5-fold, as observed before [157, 173]. RCRUNCH peaks showed en-
richment values at the high end of the achieved range (Figure 3.3a)
for all proteins/samples except hnRNPC. To verify that the peaks
were indeed most enriched in the motifs known to be bound by the
RBP (as opposed to any other), we further applied the Phylogibbs
algorithm [174], to discover de novo the motif that is most overrep-
resented in the top peaks. Some of the de novo motifs were indeed
similar to the expected ones, but they tended to be less polarized
and more enriched (Figure 3.3b-d). Strikingly, while Phylogibbs iden-
tified de novo motifs that were very strongly enriched in the hnRNPC
peaks, these motifs did not have any resemblance to the expected
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Figure 3.2: Comparison of CLIP peak calling methods. a. Barplot showing
the Jaccard similarity index of the peaks identified by each computational
method (shown in the legend) from replicate experiments. For all RBPs,
except PUM2, data were available from two distinct cell lines, HepG2 and
K562. b. Replicate agreement, calculated based on the data in panel a, as a
percent of the maximum obtained by any method on each individual dataset.
c. Heatmap showing the Jaccard similarity index of the peaks identified by
two distinct methods for a given protein in a given cell line (in percentages,
averaged over two replicate experiments). The methods are shown in order
in the x-axis and the same order is used in each block (corresponding to
one protein and cell line) on the y-axis. The average similarity of a method
with any other method on all datasets is shown at the bottom. d. Barplot
showing the running times of peak calling steps for RCRUNCH, omniCLIP,
and PureCLIP. Error bars show the standard deviations from the 2 replicate
runs.
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Figure 3.3: Enrichment of known and de novo sequence motifs in the CLIP
peaks of individual RBPs. a. Enrichment scores computed by comparing
the frequency of known motifs among the top CLIP peaks identified by
the indicated method with the frequency in background regions (random
subsets of regions that were least enriched in CLIP reads, see Methods).
Each peak finder is shown in a different color. The enrichments of the de
novo motifs are indicated by stars, red for RCRUNCH peak center and blue
for RCRUNCH crosslink. b. The known RBP-specific motifs from ATtRACT
[158] that were used in the analysis. c. Most significantly enriched de novo
motif predicted by Phylogibbs [174] in the “RCRUNCH peak center” sites
from each sample. d. Most significantly enriched de novo motif predicted
by Phylogibbs in the “RCRUNCH crosslink” sites from each sample.

(U)5 motif corresponding to this protein. To determine whether “trun-
cated” reads, resulting from the reverse transcriptase falling off at the
crosslinked nucleotide, allow a more accurate identification of RBP-
binding motifs than the peaks in read coverage, we implemented the
“RCRUNCH crosslink” variant, in which RBP binding sites are ex-
tracted from around the most crosslinked position within each peak
(position where most reads start), in contrast to the “RCRUNCH
peak center” discussed so far, in which sites are extracted relative
to coverage peak centers. RCRUNCH crosslink clearly recovered the
hnRNPC-specific (U)5 motif (Figure 3.4d) and further improved the
identification of the RBFOX2-specific UGCAUG motif, while the re-
covery of the PUM2 and PTBP1-specific motifs was unaffected.

These results demonstrate that the peaks predicted by different
methods are enriched to fairly similar extents in the expected motifs,
though RCRUNCH has the most reliable high enrichments. Further-
more, the de novo motifs identified by RCRUNCH are more enriched
in the peaks than the known motifs, even when they appear quite
similar. For some proteins, specifically hnRNPC and RBFOX2, the
read starts enable a more precise identification of RBP-specific bind-
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ing motifs, while for others, like PTBP1 and PUM2, the coverage peak
centers are equally informative.

3.3.3 RCRUNCH helps elucidate how RBPs interact with and crosslink to
RNAs

To better understand why the sites extracted from around coverage
peak centers contain the RBP-binding motif for some proteins but
not for others, we carried out the following analysis. Within each of
the 1000 most significant peaks based on the enrichment in reads we
identified both the location of the highest-scoring match to the RBP-
specific motif and the crosslink position, where most reads started
(Supplementary Table 1). Then, we anchored the peaks on the center
of the motif match (position 0), and constructed the histograms of dis-
tances between the crosslinks and motifs, and between coverage peak
centers and motifs. As already suggested by the observations from
the previous section, the relationship between these two histograms
is highly dependent on the studied RBP (Figure 3.4a-d). For PUM2,
RBFOX2, and hnRNPC, crosslink positions strongly co-localize with
the RBP-binding motif, while for PTBP1 this is not the case. In con-
trast, the peak centers show weak co-localization with the binding
motif of PUM2 and PTBP1, but occur clearly downstream of the bind-
ing motifs for RBFOX2 and hnRNPC.

In the case of hnRNPC, highly enriched motifs were recovered
around peak centers as well, and these motifs were very different
from the expected (U)5 (Figure 3.3c). A literature search revealed
that these motifs correspond to the Alu antisense element (AAE)
[175], consistent with reported function of hnRNPC in suppressing
the exonization of these repetitive elements [147]. Computing the
peak center - motif and crosslink - motif histograms relative to the
AAE showed that hnRNPC binding sites containing AAEs have a
very specific configuration, crosslinking occurring upstream of the
AAE, within the U-rich motif, leading to CLIP read starts in this re-
gion, while the peak in read coverage is on the AAE (Figure 3.4e,f).
To better understand how these patterns relate to the specific inter-
action of an RBP with RNAs, we carried out a simulation of an RBP
binding to its cognate motif, crosslinking to the RNA and protecting
an extended region of the target from digestion. As the efficiency of
crosslinking depends on the identity of both the nucleotides and the
amino acids that participate in the RNA-RBP interaction [176], we
simulated three scenarios, corresponding to the nucleotide with the
highest efficiency of crosslinking being located upstream, within or
downstream of the RBP-specific binding motif. For each of these cases
we simulated scenarios where the probability of reverse transcriptase
reading through the crosslinked nucleotide is very low, intermedi-
ate or very high (Supplementary Figure B.1). We found that when
the readthrough probability is low, the crosslink is a better indicator
of the binding motif than the peak center (Figure 3.4g). In contrast,
when the readthrough probability is moderate to high, the crosslink
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Figure 3.4: Configuration of binding and crosslinking differ across RBPs.
a-d. Histograms of distances between the cognate motifs of RBPs and the
centers of the read coverage peaks (RCRUNCH peak center, in red) or be-
tween the motifs and the most frequent read start position in a given peak
(RCRUNCH crosslink, in blue). The top 1000 peaks (in the order of their z-
score) from one of the available samples for PUM2 (a), PTBP1 (b), RBFOX2

(c) and hnRNPC (d) were extracted. The cognate motif with the highest pos-
terior probability given the RBP’s PWM was determined and the peak was
retained only when the posterior was at least 0.3. e. For hnRNPC we carried
out the same analysis relative to the Alu-related motif. f. Example of two
hnRNPC binding peaks located on Alu antisense elements. The library-size-
normalized read coverage in the eCLIP sample is shown in gray, while the
coverage in the background SMI sample is shown in dark gray with a yel-
low outline. The fitted Gaussian peaks predicted by RCRUNCH are shown
in red, while the distribution of reads starts in this region is depicted with
the blue line. The most frequent read start within a coverage peak is chosen
by RCRUNCH crosslink as the crosslink position and the corresponding nu-
cleotide is indicated here by the blue arrow. The red arrow links the peak
center to the corresponding nucleotide within the Alu antisense element. g.
Results of CLIP experiment simulations, showing the read coverage profile
(full red line), corresponding Gaussian fit (dashed red line), and frequency
of crosslinks (blue) with respect to the RBP-specific motif (black, centered
on position 0), for low (0.1, left) and high (0.9, right) probability of reverse
transcriptase readthrough.
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position and the coverage peak center are located at comparable dis-
tances from the RBP-binding motif, so that either could be used to
identify the RBP binding site (Figure 3.4g). Thus, the motif-crosslink
and motif-peak center distance relationships that we observed for the
selected proteins indicate that the probability that the reverse tran-
scriptase reads through the RBP-RNA crosslink is much lower in the
case of RBFOX2 and hnRNPC compared PUM2 and PTBP1, leading
to a more precise identification of the binding motif when binding
sites are centered on the crosslink position.

These results suggest that model-driven analyses of CLIP data, tak-
ing into account the architecture of protein-RNA interactions, could
further improve the identification of binding sites and the interpre-
tation of the observed binding patterns. Furthermore, the variant
RCRUNCH workflows provide a flexible platform to explore the ar-
chitecture of RBP-RNA interaction sites.

3.3.4 RCRUNCH variants enable detection of specific classes of RBP tar-
gets

Tools for CLIP data analysis focus almost exclusively on reads that
map uniquely to the genome, leaving out multi-mapping reads or
reads that map across splice junctions, which are more challenging
to map and quantify correctly. To provide users with the opportu-
nity to investigate RBPs that specifically bind to repetitive elements
or mature mRNAs, we have implemented and evaluated a few varia-
tions of the RCRUNCH workflow. Specifically, we have implemented
the option of identifying binding sites that are located in the imme-
diate vicinity of exon-exon junctions in mature mRNAs, as well as
the option of using reads that map to multiple genomic locations
(multi-mappers). In the first situation, some reads end up mapping
to the genome in a split manner, partly to the 5’ exon and partly
to the 3’ exon. This in turn can lead to multiple distant peaks, with
the RBP-binding motif being present at only one or perhaps neither
of these peaks. Finally, the question of an appropriate “background”
for estimating the enrichment of reads in CLIP samples is still open
[149]. Aside from the size-matched control used here, the relative
abundance of mRNAs (estimated based on RNA-seq data) is some-
times taken into account [177]. By providing an appropriate file with
sequenced reads, RCRUNCH allows an easy incorporation of differ-
ent types of background. Here we used the mRNA-seq data gener-
ated for the specific cell lines included in the ENCODE project. We
benchmarked the performance of RCRUNCH variants on the proteins
chosen at the beginning of our study. In all cases we extracted sites
anchored at the crosslink position within each peak and compared
the “standard” RCRUNCH crosslink with individual variants across
a few different measures. These measures were: the number of sig-
nificant sites (at FDR = 0.1) identified in a sample (Figure 3.5a-c),
the enrichment of the known motif in the top 1000 sites identified in
each sample (Figure 3.5d-f), and the similarity of the known motif
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Figure 3.5: Performance evaluation of RCRUNCH variants. “RCRUNCH
standard” refers to peaks identified based on reads that map uniquely to
the genome, and binding sites that are always centered on the most fre-
quent crosslink position in each peak. Rows correspond to variants of the
RCRUNCH workflow, while columns show different metrics used to com-
pare each of the variants with the “standard” RCRUNCH: a-c. Number of
significant peaks in a sample (at FDR < 0.1); d-f. Enrichment of the known
motif of the RBP that was assayed in a particular sample; g-i. Similarity of
the motif identified de novo from the top peaks of a given sample and the
known motif for the respective RBP. In the case of the RNA-seq background
variant, some samples did not yield any significant peaks (FDR = 0.1). These
samples are therefore not represented in the plots.

of the RBP to the de novo motif identified from the top 1000 peaks
of a given sample (Figure 3.5g-i). While for the RCRUNCH transcrip-
tomic and multi-mapper approaches the results were very compara-
ble with those of the standard RCRUNCH, the choice of RNA-seq as
background results in a strong decrease in performance. Including
multi-mappers or splice junction reads led to the recovery of some-
what fewer sites, but the quality of the peaks, measured in terms of
their enrichment in motifs, was not affected.

These results demonstrate that RCRUNCH is a flexible and perfor-
mant method for CLIP data analysis. The choice of background is im-
portant, and in the case of eCLIP, the size-matched control samples
provide a more appropriate background for estimating read enrich-
ment in binding sites than the mRNA-samples.
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3.3.5 A compendium of RBP binding motifs inferred from eCLIP data

Although various analyses of the ENCODE eCLIP datasets have been
carried out, a consolidated compendium of binding motifs inferred
for individual proteins from these data is not available. To fill this gap,
we have applied RCRUNCH (both peak center and crosslink variants)
to all available eCLIP samples, determined peaks that are enriched
in reads relative to the SMI background, inferred the most signifi-
cantly enriched sequence motifs and finally, for each RBP, identified
the motif with the highest average enrichment across all samples cor-
responding to the RBP (Supplementary Table 2). The distribution of
the number of binding sites per RBP, as shown in Figure 3.6a, indi-
cates that two thirds of the samples yielded more than 100 binding
sites, with few samples (for the HNRNPL, AGGF1, DDX3, TARDBP
proteins) yielding thousands of sites. As may have been expected, a
known binding motif in ATtRACT is indicative of the protein having
a high number of binding sites (Figure 3.6a). We next calculated the
average Jaccard similarity index of peaks identified from pairs of sam-
ples, either corresponding to the same protein, or to different proteins
(Figure 3.3b-c and Supplementary Figure B.2). We also carried out an
analysis of the motifs enriched in individual samples (Supplementary
Figure B.4), ultimately identifying the motif that best explains the en-
tire data obtained for a given protein (highest sum of log-likelihood
ratios across all samples, Figure 3.6c-d). Of 149 proteins, 86 yielded an
enriched motif in our analysis, and 26 of these already had a specific
motif in the ATtRACT database. 21 of the proteins for which we could
not identify an enriched motif in this study were covered by the AT-
tRACT database (Figure 3.6b). The heatmap of peak overlaps shows
good consistency among different experiments involving the same
protein (Figure 3.6c, diagonal), and also highlights interesting cases
of proteins that bind to similar regions, in many cases because the pro-
teins take part in the same multi-molecular complex. For example, we
found high overlaps between the sites of splicing factors U2AF1 and
U2AF2 [178, 179] , of the DXH30 and FASTKD2 proteins involved in
the ribosomes biogenesis in the mitochondria (Supplementary Figure
B.2) [180], of the DGCR8 and DROSHA components of the miRNA
biogenesis complex [181] and a few others (Figure 3.6c). These results
lend further support to the notion that our method recovers expected
signals in the eCLIP data. Additional per sample analyses are shown
in Supplementary Figure B.2. In brief, we identified enriched motifs
in 90% of the samples, similar between the RCRUNCH crosslink and
RCRUNCH peak center approaches (Supplementary Figure B.4c), but
in many cases the enrichments were small. As we have seen for the
benchmarked proteins, the enrichment of the de novo identified motif
was higher than the enrichment of the known motif for the studied
protein (Supplementary Figure B.4b). We further calculated the simi-
larity (see Methods) between the known and de novo motifs, the latter
obtained either from RCRUNCH crosslink or RCRUNCH peak center-
predicted binding sites. We found that around 80% of the samples
yielded motifs with at least 0.4 similarity to the known motif, which is
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a much higher proportion than when comparing random pairs of mo-
tifs. The similarity was slightly higher when sites were identified by
RCRUNCH crosslink (Supplementary Figure B.4d). Given the large
number of motifs identified for RBPs that are not represented in AT-
tRACT, we asked whether these motifs are reproduced between repli-
cate samples of an RBP. Indeed, the similarity of motifs obtained from
replicate samples was similar for proteins with and without a known
motif, and it correlated with the number of sites inferred from the
samples (Supplementary Figure B.4e).

These data indicate that the motifs identified from RCRUNCH-
extracted CLIP peaks are reliable, conform with prior knowledge,
and explain the binding data better than the motifs that are currently
available in databases. Altogether, the compendium that we have con-
structed (Supplementary Table 2), provides sequence specificity data
for 86 RBPs, thus being, to our knowledge, the most extensive collec-
tion of in vivo, reproducibly-identified, consensus RBP binding mo-
tifs.

3.4 discussion

Within over a decade of development and application, CLIP has pro-
vided a wealth of insight into the RNA-binding protein-dependent
regulation of cellular processes such as RNA maturation, turnover,
localization, and translation. The large collection of RBP-centric high-
throughput datasets that has been generated as part of the ENCODE
project [182] is broadly used to unravel the functions of RBPs, many
of which were only recently found to bind RNAs. As other types of
high-throughput data, CLIP also requires dedicated computational
analysis methods. In this context, RCRUNCH makes the following
main contributions.

First, it is the first completely automated solution to CLIP data
analysis, from reads to binding sites and sequence motifs, with ac-
curacy and running times that compare favorably to those of the
most broadly used tools to date. Key to this performance are the
enrichment-based prioritization of genomic regions likely to contain
RBP binding sites, and the model for evaluating this enrichment in
individual sites.

Second, to accommodate the variability of target types across RBPs,
RCRUNCH goes beyond the typical approach of using uniquely genome-
mapped reads, allowing the inclusion of multi-mappers and/or of
reads that map across splice junctions. Both of these situations make
it difficult to determine the locus of origin of the reads and may lead
to a decreased accuracy of binding site inference. Nevertheless, for
RBPs that specifically bind repeat elements, or in the vicinity of splice
junctions, taking into account such reads and appropriately defining
the peaks in read coverage is a must. The variant RCRUNCH work-
flows fulfill this need. RCRUNCH multi-mapper considers reads that
map to a maximum number of genomic locations (specified by the
user), distributing the reads equally among the loci with maximum
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Figure 3.6: RCRUNCH results for all ENCODE eCLIP data currently avail-
able. a. Cumulative distribution of the number of significant binding sites
detected per experiment (FDR threshold=0.1, in black). Cumulative distri-
butions are also shown separately for samples corresponding to proteins
with a known binding motif (gray) and to proteins for which no known
motif is available in ATtRACT, but one was found by RCRUNCH (blue). b.
Venn diagram summarizing the motif inference in the identified peaks. We
distinguished four categories of proteins: for which (1) no motif is known
and also no enriched motif was identified in this study (grey), (2) a de novo
motif was found for a protein for which no motif is given in ATtRACT
(blue) (3) a de novo motif was found for a protein with a known motif
in ATtRACT (coral) and (4) a motif is known, but none was identified de
novo. c. Heatmap of mean peak agreement across RBPs (only the RBPs. The
agreement is calculated as the Jaccard index of the nucleotides in the peaks,
where the intersection of two sets of peaks is the number of nts covered in
both sets, while the union is the number of nts covered in at least one of the
two sets. The color range is capped at a similarity of 0.4 to make the clusters
more easily distinguishable. The top peaks are taken according to the FDR
threshold (0.1), extending by 20 nts upstream and downstream from the
crosslink site. Since there are more than 1 replicates per RBP, the mean of
these agreement calculations is used here. The colors on the left indicate the
relative frequency of each nucleotide type averaged over all positions of the
PWM. d. Polar projection of the enrichment of de novo motifs inferred for
individual RBPs from all peaks with FDR >0.1 extracted from the ENCODE
samples. Only RBPs for which an enriched motif (motif enrichment higher
than 1) are included. The color of the bars indicate whether the respective
RBP already has a known motif in ATtRACT (coral) or not (blue).
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alignment score. Compared to the run that only allowed uniquely
mapped reads, this approach yields binding sites with similar enrich-
ments in the expected sequence motifs of the benchmarked proteins,
including those with repetitive binding motifs like PTBP1. More so-
phisticated models, e.g. applying an expectation/maximization ap-
proach to read-to-locus assignment, have been proposed before [78],
but they come at the cost of increased running times, and have not
been broadly adopted. The RCRUNCH transcriptome variant was de-
signed to address another special case, namely that of RBPs that bind
predominantly mature mRNAs. Many RBPs are located in the cy-
toplasm where they orchestrate RNA traffic and localization [173].
As internal exons of human transcripts are relatively short, 147 nu-
cleotides [183], it is likely that CLIP reads for RBPs that bind to these
exons will cover exon-exon junctions [184]. Recent generation align-
ment programs such as STAR [185] can carry out spliced alignment.
However, reads that span splice junctions will give rise to multiple
peaks, in the 5’ and the 3’ exons that flank the splice junction. This
will affect the accuracy of binding site and motif identification. A way
to circumvent the issue is to map the reads to transcripts instead of
genome sequences. This is not without drawbacks. First, given that it
is not generally known a priori whether the RBP of interest binds ma-
ture RNAs or other classes of transcripts, a hybrid strategy will need
to be adopted, to allow the identification of binding sites in introns as
well as in mature mRNAs. Second, given the large number of possi-
ble isoforms per gene, accurate assignment of reads to isoforms and
peak identification in multiple isoforms are not trivial. In RCRUNCH
transcriptome we have implemented a general hybrid strategy to cap-
ture binding sites across all types of types of transcripts, including
pre-mRNAs and mature mRNAs, without incurring large computa-
tional costs. Namely, taking advantage of the observation that indi-
vidual cell types express predominantly one isoform from a given
gene [186], we first determine which of the known isoforms of each
gene has the highest expression level in the CLIP sample. We then
use these isoforms as pseudo-chromosomes, assigning reads to the
best-scoring loci, but with priority given to the spliced isoforms over
genomic loci. This approach gave good results for the benchmarked
proteins, including PUM2, which is known to bind to mature mRNAs
[187], but overall, the number of sites that spanned splice junctions
was small for the benchmarked proteins. On the other hand, for splic-
ing factors we identified many sites in the vicinity of splice sites, as
expected, indicating that these data can be studied further to deter-
mine to what extent these splicing factors remain associated with the
mature RNAs (Supplementary Figure B.5). Nevertheless, our explo-
ration of ways to handle reads that originate in various categories of
targets was by no means exhaustive and this could be a direction for
further development of the workflow.

Third, our analysis of the ENCODE eCLIP data yielded enriched se-
quence motifs for 86 RBPs. These were selected using a uniform proce-
dure, based on the maximum enrichment across all samples available
for a given RBP, in contrast to resources such as ATtRACT, which con-
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tain multiple, heterogeneous RBP-specific sequence motifs obtained
with a wide range of techniques. While the eCLIP datasets were the
focus of various previous studies (e.g. [86, 157, 173]), a compendium
of reproducible binding motifs inferred from these data sets is not
available. Moreover, although RBPs typically bind to a defined se-
quence (or sometimes structure) motif, the binding specificity of RBPs
inferred from eCLIP data has been described in terms of collections of
short motifs [86, 173], for reasons that remain unclear. The main aim
of the work presented here was to provide a uniform procedure for in-
ferring RBP sequence specificity from binding data, and a resource of
RBP-specific motifs similar to those available for transcription factors
(e.g. [188]). For RBPs that have been extensively studied, the motifs
that we identified de novo from the CLIP peaks conform with prior
knowledge, though they differ in quantitative detail. Moreover, the
de novo motifs have higher enrichment in the peaks compared to
the known motifs, which may indicate context-specific contributions
to the binding affinity. Overall, we identified enriched sequence mo-
tifs for 86 proteins, 60 of which are not represented in the ATtRACT
database. In some cases, the most enriched motif in a given sample
was not the one known to be bound by the corresponding protein, as
observed before [173]. Repetitive motifs (G/G&C/C-rich) were occa-
sionally found to be enriched in various samples, and this enrichment
was also reproduced in replicate samples for the same protein. This
raises the question of whether these motifs represent some sort of
non-specific background in CLIP samples [162]. However, we did not
find a larger overlap among the binding sites containing such motifs
relative to binding sites of randomly chosen pairs of proteins (Figure
3.6c). In fact, overlaying the pairwise overlap data with data on pro-
tein complex composition revealed compelling cases of high overlap
for proteins of the same complex such as the spliceosome, the pre-
rRNA processing complex, a paraspeckle-related complex and others
(Supplementary Figure B.2). Thus, our analysis does not support the
concept that general non-specific background in eCLIP leads to simi-
lar motifs for unrelated RBPs, though it will be interesting to investi-
gate further the functional significance of the identified motifs.

Finally, our analysis of the motif-crosslink and motif-peak center
distances revealed distinct RBP-dependent patterns. Most striking
was the peak in coverage observed over the AAEs in the hnRNPC
eCLIP. HnRNPC binds (U)5 elements [147], while the read starts, in-
dicative of crosslink positions, were located in a U-rich region up-
stream of the AAE. Our simulation of a CLIP experiment suggests
that the hnRNPC data is quite unusual relative to data for other RBPs.
HnRNPC has a large number of binding sites in Alu antisense ele-
ments that have a conserved consensus extending much beyond the
U-rich element. Motif finding methods will identify this consensus as
extremely enriched, more so than the much shorter (U)5 motif. The
strong colocalization of the most frequent crosslink position within
a peak and the RBP-specific motif supports the notion that the RT
has a high propensity to stop extending the cDNA when it encoun-
ters the RNA-RBP crosslink [50]. However, our analysis also suggests
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that the readthough probability varies substantially between RBPs,
being very low for hnRNPC, and relatively high for other proteins
like PTBP1 and PUM2. This highlights the importance of a flexible
but principled approach to binding site and motif identification, us-
ing a general measure of performance such as the motif enrichment
score, as done here. This is because the configuration of RBP-RNA in-
teractions varies across RBPs, influencing the nature of the reads that
are captured in the CLIP experiment. Although beyond the scope
of our present work, exploration of the ENCODE data set with a
simulation-driven approach may yield further insight into the inter-
actions of individual RBPs with their binding sites.

3.5 conclusions

Our study provides a general, end-to-end solution for CLIP data anal-
ysis, starting from sequenced reads and ending in binding sites and
RBP-specific sequence motifs. The tool compares favorably with the
most broadly used tools to date, and further extends the type of reads
that can be analyzed, to multi-mapping and split-mapping reads. By
applying RCRUNCH to the entire ENCODE set of samples avail-
able to date, we provide a compendium of reproducibly enriched
sequenced motifs for 86 RBPs, of which only 26 are represented in
extensive databases available today, such as ATtRACT. Finally, our
simulations suggest that the architecture of RBP-RNA interactions
imposes strong variation in the probability of identifying the precise
position of crosslinking from CLIP data.

3.6 methods

3.6.1 Inputs to RCRUNCH

RCRUNCH performs its analysis on at least one paired-end, stranded
CLIP sample, and a corresponding background sample (which could
be size-matched control (SMI) from eCLIP experiments or RNA-seq)
both provided in fastq format. All necessary parameters for the run
such as sample file names, adapters, fragment size, presence of UMIs
etc. should be provided in a config file, a template of which can be
found in the repository along with a test case. The tool also requires
the genome sequence fasta file and Ensembl [189] gtf annotation of
the corresponding organism, also given in the config file. RCRUNCH
can additionally perform some optional analyses, one being the fil-
tering out of sequences that correspond to specific non-coding RNA
biotypes and the other being the enrichment analysis for known se-
quence motifs. If these options are chosen, paths to corresponding
files should be provided in the config file, according to the instruc-
tions in the README file accompanying the software.
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3.6.2 Read preprocessing

3.6.2.1 Adapter removal

3’ and 5’ adapters for read1 and/or read2 specified in the config file
are trimmed with Cutadapt [190].

3.6.2.2 Alignment of reads to reference genome

The alignment of reads to the reference genome is done with STAR
[185], disabling the soft-clipping option. Some of the options to STAR
differ from the standard value, to allow the alignment of short reads
with only few mismatches (outFilterScoreMinOverLread 0.2, –outFilterMatchNminOverLread
0.2, outFilterMismatchNoverLmax 0.1). Multi-mapper reads (that map
equally well - same number of errors - to multiple regions in the
genome) can be included in the analysis by setting the ‘multimappers’
field in the config file to the desired number of equivalent mappings
to consider for a read. In this case, reads that map to at most ‘mul-
timappers’ locations in the genome are counted towards each of these
locations with a weight of 1/’multimappers’.

3.6.2.3 Removal of reads from abundant non-coding RNAs

Reads derived from some non-coding RNAs (e.g ribosomal (rRNAs),
transfer (tRNAs) and small nuclear RNAs (snRNAs)) are abundant
in many CLIP samples and thus believed to be largely contaminants
[157]. Frequently, these abundant RNAs are also encoded in highly
repetitive genomic loci. For these reasons RCRUNCH allows the op-
tion of selective removal of reads mapping to ncRNAs, based on the
annotation from RNAcentral [191]. For this, the user will need to pro-
vide a gff3-formatted file for the appropriate species, which can be
downloaded from RNAcentral. Specific biotypes of ncRNAs can be
selectively removed by filling out the ‘ncRNA_biotypes’ option in the
config. The names of reads that overlap in the genome with any of
the selected ncRNAs specified by the user, are saved in a list. This is
then used as input in the FilterSamReads function of the Picard soft-
ware [192] to remove the reads from the alignment file that passed to
downstream analysis.

3.6.2.4 Removal of PCR duplicates

PCR amplification is a well-established source of error in the esti-
mation of transcript counts [193]. However, different CLIP protocols
differ in whether and how they deal with this issue. Accordingly,
RCRUNCH offers multiple options. The default is to not carry out
any PCR duplicate removal, which can be specified by choosing ‘stan-
dard’ as the value for the ‘dup_type’ fields in the config file. Alter-
natively, RCRUNCH can take advantage of Unique Molecular Iden-
tifiers (UMIs), which are introduced by ligation of a DNA adapter
containing a random oligonucleotide (the UMI or randomer) to the
cDNA fragments, as done in eCLIP [157]. As the UMI is preserved
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during PCR amplification, it can be used to identify reads that are
copies of the same initial fragment. To remove PCR duplicates we
use UMI-tools [194], which assumes that the UMI sequences are suf-
fices of the read names. However, data from the ENCODE project has
the UMIs as prefixes to the read names. Thus, we use a specific rule to
make this transformation, which is controlled by the field ‘format’ in
the config file, and can be either ‘encode’ or ‘standard’. If standard is
chosen, no reformatting occurs and it is up to the user to make sure
the format of the fastq files they provide is compatible with UMI-
tools processing. Finally, if the sample preparation did not include
the addition of UMIs, RCRUNCH can still attempt this removal via
the deduplication function of STAR [185] via filling out the ‘dup_type’
option with ‘duplicates’. If no duplicate removal is desired then the
‘dup_type’ can take the option ‘with_duplicates’.

3.6.2.5 Additional preprocessing steps for the ‘RCRUNCH transcriptome’
approach

If the user chooses the transcriptomic mode of RCRUNCH (‘method_types’
as ‘TR’ in the config), a few additional steps are needed to iden-
tify reads that map across splice junctions. First, reads are aligned
to the genome (as described above), and the alignments are used to
remove PCR duplicates and possibly ncRNAs. The remaining read
alignments for the foreground sample are used by the Salmon soft-
ware [185, 192, 195] to select the most expressed transcript isoform for
each gene and construct a dataset-specific transcriptome. The reads
that were selected in the first step are aligned to the transcriptome,
after which the genome and transcriptome alignment files are jointly
analyzed to identify the highest scoring alignment (AS score in the
bamfiles) for each read. If the AS score for the transcriptome align-
ment is greater than the AS score of the genome alignment -3, the
alignment to the transcriptome is selected. We chose this criterion
rather than requiring the transcriptome alignment score to be strictly
better than the genome alignment score to conservatively assign the
reads preferentially to the transcriptome. Peaks are then detected ei-
ther on the genome or the transcriptome, treating individual tran-
scripts as we treat chromosomes. This approach allows us to detect
and properly quantify RBP binding sites in the vicinity or even span-
ning splice junctions.

3.6.3 The RCRUNCH model for the detection of RBP binding regions

Genome/transcriptome-wide identification of peaks corresponding
to individual binding sites for an RBP is time-consuming. For this rea-
son RCRUNCH implements a two-step process, as previously done
for analyzing chromatin immunoprecipitation data [151]. That is, broader
genomic regions that are enriched in reads in the foreground (CLIP)
sample compared to the background are first identified, and then in-
dividual peaks are fitted to the CLIP read coverage profiles within
the selected windows. More specifically, we tabulate the number of
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fragments that map to sliding windows of a specific size (e.g 300

nucleotides) both in the foreground (CLIP) and the background (e.g.
SMI) sample. For windows that are not enriched in binding, fluctua-
tions in the number of reads across replicate samples have been found
to be well-described by the convolution of a log-normal distribution
due to multiplicative noise in the sample preparation and Poisson
sampling noise [151]. The frequency of reads in windows with no
RBP binding should in principle be the same between the foreground
and the background sample. However, as in the foreground sample
reads are expected to come largely from bound regions, the unbound
regions will be somewhat depleted of reads. Including a correction
term µ to account for this depletion, the probability of the data for an
unbound region can be modeled as

Pu(n|N,m,M,σ,µ) =
1√

2π(2σ2 + 1
n + 1

m )
exp(−

(log( nN ) − log(mM ) − µ)2

2(2σ2 + 1
n + 1

m )
)

where n is the number of reads in a given window (of a total of N
reads) in the foreground sample, m is the number of reads (of a total
of M) in the background sample, 22 is the variance due to multiplica-
tive noise in the two samples, and 1/n and 1/m are the variances due
to the Poisson noise. For the probability of read counts due to bind-
ing, we assume a uniform distribution over the range corresponding
to the maximum and minimum difference in read frequency between
foreground and background samples across all windows:

Pb(n|N,m,M) =
1

δmax − δmin

where δ = n
N − m

M

Finally, the probability of observing the n reads is given by a mix-
ture model, of the window representing a background region(with
probability ) or a region of RBP binding (with probability 1− ρ):

P(n|N,m,M,σ,µ, ρ) = ρPu(n|N,m,M,σ,µ) + (1− ρ)Pb(n|N,m,M)

We fit the parameters ρ, σ, µ by expectation-maximization (Detailed
method described in [151], Supplemental material, section 1.9). Re-
gions that are found to be enriched in the foreground sample (based
on an FDR threshold and a corresponding z-score threshold) are an-
alyzed individually with a second mixture model, to fit peaks cor-
responding to the individual binding events. The z-scores of these
peaks are recalculated and those that still have a high enough z-score
are kept as significant (Supplementary, RCRUNCH model). The re-
gions that are considered for the peak fitting might also have slightly
lower z-scores. This aims to be more inclusive and reduce false nega-
tives (cases where the region has significant peaks close to high back-
ground regions).

3.6.4 De novo motif identification and enrichment calculation

For each peak we extract the region covering 25 nucleotides (nts) up-
stream and 25 nts downstream of the peak center in the case of the
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RCRUNCH peak center approach (option ‘peak_center’ in the config).
For RCRUNCH crosslink we extract the same type of window, cen-
tered not on the peak center but rather on the position where most
read starts within the peak are located. To avoid double-counting
of motifs, we merge overlapping peaks, obtaining thus a set of non-
redundant peaks. To estimate the enrichment of known and de novo
motifs we used the MotEvo software [163] as described in [151]. Namely,
a subset of the peaks is used to train a prior probability of non-specific
binding, and the motif enrichment is then estimated from the test set,
using this prior. We carried out this procedure 5 times (parameter
‘runs’, can be modified by the user), to both estimate the mean en-
richment for known motifs from the ATtRACT database [158], and
to identify de novo motifs (represented as positional weight matrices,
PWMs) of various sizes (provided by the user, default values: 6, 10,
14) that are enriched in the foreground peaks relative to unbound
sequences using PhyloGibbs [196]. As unbound sequences we use
those genomic regions obtained in the CLIP experiment that had the
lowest z-scores, meaning that they were depleted in CLIP reads. We
sampled 20 background sequences of equal size (50nts) for each fore-
ground peak. For each motif length, we extracted the top two motifs
in the order of cross-validated enrichment and trimmed off positions
from the boundaries of the motif until the information score became
at least 0.5. For both the known motifs, as well as the de novo motifs
we report the motif and corresponding enrichment for each of the 5

runs, as the motif can vary to some extent from run to run. The de
novo motifs from all these runs are then collected together in an extra
step and along with the known motifs, the enrichment over all the
significant peaks is estimated (in this step there cannot be any prior
estimate).

3.6.5 Benchmarking peak finder tools

We compared RCRUNCH with the recently developed and broadly
used tools clipper [157], PURE-CLIP [162] and omniCLIP [152]. To
reliably and reproducibly perform this analysis we created a sep-
arate snakemake workflow. For PURE-CLIP and omniCLIP, docker
images [197] were either created or used from existing repositories.
As we could not implement clipper in the same type of workflow
as the other tools, we relied on the bed files of clipper-predicted
binding sites from each sample provided by ENCODE. To bench-
mark the tools we used eCLIP data generated for some RBPs whose
binding motifs are well-known: hnRNPC [198, 199], IGF2BP3 [198,
200], PTBP1 [201, 202], PUM2 ([203]) and RBFOX2 [202, 204, 205]. For
PURE-CLIP and omniCLIP the eCLIP data had to be pre-processed
separately, as the tools use alignments as input. To facilitate the com-
parison across methods, we used the pre-processed data from RCRUNCH.
The execution of RCRUNCH was done using some specific options
as explained in the RCRUNCH workflow description. Firstly, only
unique mappers were aligned to the genome. PCR deduplication
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was performed, using the UMIs that eCLIP experiments contain. We
did not remove any reads mapping to ncRNAs, and we used the
RCRUNCH genomic approach. Each of the different peak calling
methods was applied, and the top 1000 peaks were extracted for the
motif analysis, irrespective of FDR threshold. The motif analyses are
included as a post-processing part of RCRUNCH. For RCRUNCH,
both the ‘crosslink’ and ‘peak center’ positions were used as anchors
for extending by 25 nts on either side and obtaining the sequences
for the motif analysis. For the other methods, we used the method-
predicted crosslink positions as anchors for extracting similar regions
of 50 nts in length. For all methods overlapping peaks were merged
to ensure non-redundancy in the sequence set. To ensure comparabil-
ity, we used the same set of sequences with lowest z-scores as back-
ground for motif enrichment estimation in the peaks predicted by all
samples.

3.6.6 Calculation of peak agreement between replicate samples and between
methods

To calculate the peak agreement between methods and across repli-
cates we used the jaccard distance metric, defined as:

A(nts1,nts2) =
|nts1 ∩nts2|

nts1 +nts2 − |nts1 ∩nts2|

, where nts1 and nts2 are the total number of nucleotides con-
tained in the top number of peaks chosen for sample 1 and sample 2,
respectively.

3.6.7 Calculation of motif similarity

We defined the motif similarity M of two sequence motifs m1 and m2,
M(m1,m2) =

2S(m1,m2)
S(m1,m1)+S(m2,m2)

, where S(m1,m2) = max1[I(m1,m2,d)]
and I(m1,m2,d) =

∑
im1(i)m2(i−d) is the inner product of the mo-

tifs with the second motif being at offset d compared to the first motif
[151]. This measure allows for the comparison of motifs of different
lengths, and takes values between 0 (when the base frequency vectors
are orthogonal) and 1 (when the two motifs are identical).

3.6.8 RCRUNCH analysis of ENCODE eCLIP data

We applied the RCRUNCH workflow to all of the ENCODE eCLIP
datasets, consisting of 220 distinct eCLIP experiments with 143 differ-
ent RBPs in two cell lines (K562, HepG2). As for the benchmarks, we
used reads mapping uniquely to the genome, performed read dedu-
plication based on the UMIs, and did not exclude reads mapping to
ncRNAs. To identify the RBP-specific binding motifs, we used the
top peaks for each RBP, based on FDR threshold < 0.1. Agreement
across replicates and motif agreement with existing knowledge were
the main metrics of performance evaluation.
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3.6.9 RCRUNCH variants

To evaluate the RCRUNCH variants, we used the same samples that
were used for benchmarking the computational methods. The pre-
processing and post-processing steps (motif analysis) were the same
as those implemented in the benchmark analysis, but the selection
of reads, regions and peaks differed. Specifically, in the RCRUNCH
transcriptome approach we first construct a reference transcriptome
composed of the most abundant isoform of each gene in the CLIP
data, and use these transcripts as ‘pseudo-chromosomes’ in the map-
ping process. We then map reads in an unspliced manner to both this
reference transcriptome and to the genome and retain the mappings
with the highest score. In cases when the alignments to transcriptome
and genome are very close in score (transcriptome - genome scores
>= -3 points), we give precedence to the transcriptome mappings and
ignore the genomic ones. We then apply the standard RCRUNCH
(see section: The RCRUNCH model for the detection of RBP binding
regions). In RCRUNCH multi-mappers we consider not only reads
that map uniquely to the genome, but also those that have up to 50

of equally good mappings (see section: Alignment of reads to refer-
ence genome). For RCRUNCH RNA-seq background we simply used
RNA-seq samples that are provided by ENCODE for the cell lines
(K562, HepG2) used for CLIP. These were treated the same as the
SMI sample.

3.7 abbreviations

• AAE: Alu antisense element

• AS: alignment score

• cDNA: complementary DNA

• ChIP: chromatin immunoprecipitation

• CLIP: crosslinking and immunoprecipitation (CLIP)

• DNA: deoxyribonucleic acid

• FAIR principles: findable, accessible, interoperable, reusable

• FDR: False discovery rate

• mRNA: messenger RNA

• ncRNA: non-coding RNA

• PCR: polymerase chain reaction

• PWM: positional weight matrix

• RBDs: RNA-binding domains

• RBPs: RNA-binding proteins
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• RIC: RNA-interactome capture

• RNA: ribonucleic acid

• RNA-seq: RNA sequencing

• RNPs: ribonucleoprotein complexes

• UMI: unique molecular identifier

• rRNA: ribosomal RNA

• tRNA: transfer RNA

• snRNA: small nuclear RNA

• SMI: size-matched input

3.8 availability of data and materials

• Project name: RCRUNCH

• Project home page: https://github.com/zavolanlab/RCRUNCH
[164]

• Programming language: Python

• License: Apache-2.0
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4
D I S C U S S I O N

RCRUNCH is a method developed with the goal of providing an end-
to-end solution to CLIP data analysis, and especially the preprocess-
ing steps, which are almost always poorly documented. RCRUNCH
also incorporates a new model to describe the background noise and
thus lead to a reliable detection of true binding sites. De novo motif
prediction and the evaluation of de novo and known motif enrich-
ments are also incorporated. Additional features are the possibility
to include multimappers, selectively filter out non-coding RNA cate-
gories, as well as a transcriptomic approach that allows for peak de-
tection spanning splice junctions. The workflow has been developed
using Snakemake [89] and following the FAIR principles [206], with
the aim of better reproducibility and maintenance along the way, as
well as room for expansion of its functionality.

A few directions for further RCRUNCH development are as fol-
lows. First, RCRUNCH currently builds a background model from
suitable experimental samples, e.g. SMI or RNA-seq. A relatively
easily-implemented extension would be to build the background model
of coverage from broader regions around the putative peaks. This
would extend the applicability of RCRUNCH, especially to iCLIP
data sets, where background samples are not routinely generated.

Another useful expansion could be identification of RNA structures
based on the binding sites detected by RCRUNCH. Most of the anal-
ysis papers based on CLIP experiments put a lot of weight in detec-
tion of specific sequence motifs as the drivers of binding, but RNA
secondary structure information [207] could potentially shed light to
other modes of binding. To solve this task, one would have to use
methods that infer sequence-structure models of binding sites.

Incorporation of phylogenetic information as well in the motif de-
tection might prove useful and lead to a better motif accuracy, as it
has been shown to be the case for transcription factor motif detection
[163]. However, one would have to be able to handle inhomogeneous
background conservation, as RBP binding sites occur in 5’/3’UTRs,
coding regions, as well as introns, all with different types of evolu-
tionary constraints and thereby conservation level.

So far, most methods rely on truncation events or mutations to re-
liably detect the crosslink sites within the binding sites. In our work,
we showed that although truncations are meaningfully correlated
with the crosslink sites because they co-localise with motifs known to
be bound by RBPs, this does not seem to universally apply to all of the
RBPs. Rather, we hypothesized that the extent to which truncations
are informative for precisely locating the binding sites/motifs might
have to do with the mode of binding of the specific RBP. Late ap-
proaches in studying the RBP-RNA interactions from a structural per-
spective [208], show discrepancies between NMR based observations
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of proximity and UV-induced covalent bonds, suggesting that CLIP
may provide a biased view of the crosslink sites. We suggested that
studying the relationship between the positions where RBP-specific
motifs, truncations and coverage peaks occur could provide new in-
formation regarding how the RBP contacts the RNA. Conversely, the
binding sites within peaks of coverage may be more accurately iden-
tifiable with a model that includes the distance relationship between
motifs and crosslinking-induced mutations. While this was attempted
before, e.g. with mCross [86], the model for the inferred motifs was
rather simplistic (kmers).

Using RCRUNCH, we analyzed the eCLIP data available in EN-
CODE to generate a set of consensus motifs detected for a big num-
ber of RBPs. These motifs could then be used as a means to explain
the changes in expression of RNAs in terms of activities of motifs.
Similar methods exist to explain the transcription factor-dependent
changes in promoter activity [209, 210]. Some combinatorial approach
that would encapsulate both transcription factor and RBPs would
be even more interesting. Moreover, motif predictions genome-wide
could be used in conjunction with other features, like topology, ex-
pression in specific context, RBDs, to detect combinatorial effects of
RBPs (antagonistic-synergistic effects or participation in complexes).

RCRUNCH was benchmarked against a number of the methods
available regarding CLIP analysis. The main metrics used for eval-
uation were the binding peak agreement between replicates across
methods and the identity of the predicted motifs for RBPs for which
the binding motif was known. We found 30% agreement between the
top 1000 peaks obtained in different replicate experiments, while de
novo predicted motifs were largely in line with current knowledge. A
key limitation, though not specific to our study, is the fact that there
is no ground truth regarding the exact binding behavior of a specific
RBP. We have seen that the pattern of read coverage is affected by the
UV-crosslinking technique, the composition of the RBP (e.g. when just
the binding domain is considered as opposed to the entire protein),
or even by the antibody specificity and the particular RBP isoform
present in the specific cells in the context of the in vivo experiments.
Each of these aspects leads to different answers making this a difficult
problem to address. Still, with the vast amount of methods available
for analysis of CLIP data, as well as the different CLIP variations, the
need of a benchmark with diverse RBPs evaluated is imperative. Per-
haps, the main conclusion of this study in spite of RNA-binding be
very complex, we still have some way of handling the main biases
with a unique model.

ZARP is the result of a group effort in the Zavolan lab to develop an
RNA-seq processing pipeline based on a workflow management sys-
tem while following the FAIR principles. Working in a collaborative
manner we organized hackathons and followed best practices, like
version control, tracking issues, automating tests via continuous in-
tegration (CI), using services that host open source software projects
during development. One of the main goals in the beginning was to
enable the wet lab people of the group to analyze their own data
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without relying on the computational biologists. Snakemake [89] was
again the workflow manager of choice and all software used was
packaged using conda [89, 211] or containerized using Docker [197].
The inputs required for ZARP are a table with sample information
and a config file that contains the parameters for the specific run.
This project is planned to be further expanded by development of
a command line interface (CLI) as well as a separate workflow that
would recognise features of the samples so as to remove the need
for specifying sample-specific information (such as the species from
which it originated, the adaptors that were used or the type of pro-
tocol, stranded or unstranded, that was used for sample preparation.
We used the ZARP development process to gain insights into how
software development can be optimized in an academic setting, and
to generate a useful template for future members of the group. Last
but not least, ZARP is publicly available and open to contribution
from the community.
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Z A R P S U P P L E M E N T S

Supplementary material to chapter 2.
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Supplementary Figure A.1: ZARP workflow schema. Graph-based repre-
sentation of ZARP v0.3.0, including all of its steps (“rules”), as produced by
running Snakemake with the –rulegraph option. Steps for both the single
and the paired end workflows are shown.
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Supplementary material to chapter 3.
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Supplementary Figure B.1: Simulation of a CLIP experiment. Upper
schema: an RBP binding to its cognate motif, (black box), crosslinking to
the RNA at the site indicated by the blue arrow, and protecting an extended
region of the target (shown in gray) from digestion. From right to left, the
relative position of the crosslink is changed relative to the motif position.
The different columns correspond, as the schema shows, to different posi-
tions of the crosslink relative to the motif position. Each row corresponds
to different probabilities of readthrough, varying from lower to higher from
top to bottom.
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Supplementary Figure B.2: Agreements of peaks identified between indi-
vidual ENCODE samples. The agreement is calculated as the Jaccard dis-
tance of the nucleotides in the peaks, where the intersection of two sets of
peaks is the number of nts covered in both sets, while the union is the num-
ber of nts covered in at least one of the two sets. The color range is capped
at a similarity of 0.4 to make the clusters more easily distinguishable. The
top peaks are taken according to the FDR threshold (0.1), extending by 20

nts upstream and downstream from the crosslink site. Only samples with
more than 100 peaks are included in this plot. The membership of RBPs in
complexes is taken into account (based on CORUM [212]), by multiplying
the value of the agreement by 1 if two proteins are known to participate in
the same complex, and - 1 otherwise. Resulting negative values are shown
in blue, while positive values are shown in red. That is, shown in red are
peak agreements of samples that either correspond to the same protein, or
to proteins known to interact with each other in complexes. On the right, a
few clusters of samples containing proteins that are known to take part in
complexes are highlighted.
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Supplementary Figure B.3: Similarity of de novo predicted motifs of dif-
ferent RBPs. Clustermap of de novo motif similarity of all RBPs covered in
the ENCODE dataset. Similarity is calculated as described in the methods
section (Calculation of motif similarity), taking for each RBP the motif that
best explains all of the samples corresponding to that RBP. On the left, a
representation of the nucleotide composition of the motif is shown, each
column corresponding to one nucleotide, while the color indicates the rel-
ative frequency of that nucleotide averaged over all positions of the PWM.
The RBP names are colored according to whether they have a motif (red) or
not (blue) in ATtRACT.
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Supplementary Figure B.4: RCRUNCH results for all ENCODE eCLIP data
currently available. a. Cumulative distribution of the number of significant
binding sites detected per experiment (FDR threshold=0.1, in black). Cumu-
lative distributions are also shown separately for samples corresponding to
proteins with a known binding motif (gray) and to proteins for which no
known motif is available in ATtRACT, but one was found by RCRUNCH
(blue). b. Left: Distribution of enrichment scores for the de novo identified
motifs in RCRUNCH crosslink (blue) and RCRUNCH peak center peaks,
for RBPs that are not represented in ATtRACT. Right: Venn diagram il-
lustrating the type of motifs identified across samples. We distinguished
three categories of samples: for which (1) no significant or fewer than 20

significant peaks were found and thus no motif was searched/reported, (2)
only a de novo motif was found and (3) a de novo motif was found and
a motif is already known. c. Enrichment of the de novo motif predicted in
the RCRUNCH-identified peaks from each sample, versus the enrichment
score of the known motif for the protein assayed in the respective experi-
ment. Marginal distributions of the known motif enrichments in RCRUNCH
crosslink (blue) and RCRUNCH peak center (red) peaks are also shown. d.
Cumulative density function of pairwise similarity scores for random pairs
of known RBP-binding motifs (gray), known and de novo motifs identified
from RCRUNCH crosslink sites (blue), known and de novo motifs identified
for RCRUNCH peak center sites of individual RBPs (red). The same known
motif was used for a given protein. e. Relationship between the similarity
of de novo motifs inferred from replicate experiments and the minimum
number of binding sites identified in these replicates. Experiments (each
corresponding to an RBP and cell line) are colored according to whether
(green) or not (blue) a motif was found in ATtRACT for the assayed RBP. f.
Relationship between the similarity of de novo motifs identified in replicate
experiments for a given RBP and the similarities of these de novo motifs and
the known motif of the corresponding RBP. Lines connect replicate samples.
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Supplementary Figure B.5: Binding events spanning splice junctions. a.
Scatterplot of average fraction of peaks predicted by RCRUNCH (genomic
approach) that overlap with annotated splice junctions. The samples are
from ENCODE and the average is for sample replicates and cell lines. b.
Scatterplot showing the fraction of the peaks that overlap a junction (e.g
3’ss) and also have a “pair” peak which overlaps the other side of the same
junction (5’ss).
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