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Summary

Fascinating experiments have proved that in the very near future, laser will completely
replace mechanical tools in bone surgery or osteotomy. Laser osteotomy overcomes me-
chanical tools’ shortcomings, with less damage to surrounding tissue, lower risk of viral
and bacterial infections, and faster wound healing. Furthermore, the current development
of artificial intelligence has pushed the direction of research toward smart laser osteotomy.
This thesis project aimed to advance smart laser osteotomy by introducing an image-based
automatic tissue characterization or feedback system. The Optical Coherence Tomography
(OCT) imaging system was selected because it could provide a high-resolution subsurface
image slice over the laser ablation site.

Five experiments were conducted and published to show the feasibility of the feedback
system. In the first part of this thesis project, a deep-learning-based OCT image denoising
method was demonstrated and yielded a faster processing time than classical denoising
methods, while maintaining image quality comparable to a frame-averaged image. Next
part, it was necessary to find the best deep-learning model for tissue type identification
in the absence of laser ablation. The results showed that the DenseNet model is sufficient
for detecting tissue types based on the OCT image patch. The model could differentiate
five different tissue types (bone, bone marrow, fat, muscle, and skin tissues) with an
accuracy of 94.85%. The last part of this thesis project presents the result of applying the
deep-learning-based OCT-guided laser osteotomy in real-time. The first trial experiment
took place at the time of the writing of this thesis. The feedback system was evaluated
based on its ability to stop bone cutting when bone marrow was detected. The results
show that the deep-learning-based setup successfully stopped the ablation laser when
bone marrow was detected. The average maximum depth of bone marrow perforation was
only 216µm.

This thesis project provides the basic framework for OCT-based smart laser osteotomy.
It also shows that deep learning is a robust approach to achieving real-time application of
OCT-guided laser osteotomy. Nevertheless, future research directions, such as a combi-
nation of depth control and tissue classification setup, and optimization of the ablation
strategy, would make the use of OCT in laser osteotomy even more feasible. Finally, as a
sub-project of the multidisciplinary MIRACLE project at the University of Basel, this
thesis project supports the drive towards replacing mechanical tools with safer and less
invasive laser osteotomy.
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Zusammenfassung

In faszinierenden Experimenten wurde nachgewiesen, dass in der Knochenchirurgie oder
Osteotomie mechanische Werkzeuge in naher Zukunft vollständig durch Lasertechnologien
ersetzt werden können. Die Laserosteotomie übertrifft die mechanischen Werkzeuge durch
eine geringere Schädigung des umliegenden Gewebes, verringert das Risiko viraler und
bakterieller Infektionen und führt zu einer schnelleren Wundheilung. Darüber hinaus
haben die aktuellen Entwicklungen im Rahmen der künstlichen Intelligenz die Forschung
im Bereich der Laserosteotomie in Richtung der intelligenten Laserosteotomie gelenkt. In
dieser Dissertation wird sich der intelligenten Laserosteotomie durch die Einführung einer
bildbasierten automatischen Gewebecharakterisierung genähert. Für das Überwachungs-
bzw. Feedback-System wurde die optische Kohärenztomographie (Optical Coherence
Tomography, OCT) gewählt, da sie einen hochauflösenden Bildausschnitt der Laserabtra-
gungsstelle liefern kann.

Es wurden fünf Experimente durchgeführt und veröffentlicht, um die Realisierbarkeit
des Feedback-Systems zu zeigen. Im ersten Teil dieser Arbeit wird eine auf Deep Learning
basierende OCT-Bildentrauschung vorgestellt. Diese bietet nachweislich eine schnellere
Verarbeitungszeit als die klassischen Entrauschungsmethoden und dank der Bildmittelung
eine vergleichbare Bildqualität. Anschließend wird das beste Deep-Learning-Modell zur
Erkennung von Gewebetypen ohne Laserablation ermittelt. Das Ergebnis zeigt, dass
das DenseNet-Modell ausreicht, um die Gewebetypen anhand des OCT-Bild-Patches zu
erkennen. Das Modell konnte fünf verschiedene Gewebetypen (Knochen-, Knochenmark-,
Fett-, Muskel- und Hautgewebe) mit einer Genauigkeit von 94,85% unterscheiden. Der
letzte Teil dieser Arbeit zeigt das Endergebnis der Echtzeitanwendung der OCT-gesteuerten
Laserosteotomie auf Basis von Deep Learning. Das erste Experiment wurde zum Zeitpunkt
der Erstellung dieser Arbeit durchgeführt. Das Feedback-System wurde derart justiert,
dass mit dem Schneiden in den Knochen gestoppt wird, sobald Knochenmark erkannt
wurde. Das Ergebnis zeigt, dass Deep Learning den Ablationslaser erfolgreich stoppte,
wenn Knochenmark erkannt wurde. Die durchschnittliche maximale Tiefe der Perforation
des Knochenmarks betrug nur 216µm.

Das Hauptergebnis dieser Dissertation liefert den grundlegenden Rahmen für OCT-
basierte intelligente Laserosteotomie. Es zeigt auch, dass Deep Learning ein geeigneter
Ansatz ist und in der Echtzeitanwendung der OCT-gesteuerten Laserosteotomie eingesetzt
werden kann. Dennoch ist davon auszugehen, dass künftige Forschungsprojekte, zum
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Zusammenfassung 3

Beispiel eine Tiefenkontrolle für den Gewebeklassifikator oder die Optimierung der Abla-
tionsstrategie, die Realisierbarkeit des OCT-Einsatzes bei der Laserosteotomie verbessern
werden. Als Teilprojekt des multidisziplinären MIRACLE-Projekts an der Universität
Basel unterstützen die Ergebnisse dieser Arbeit schließlich die Realisierbarkeit des Ersatzes
mechanischer Werkzeuge durch eine sicherere und weniger invasive Laserosteotomie.
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Chapter 1

Introduction

1.1 Motivation

Bone surgery or osteotomy has been practiced to treat bone and joint abnormalities for
centuries. This standard procedure has been used for clinical treatments such as knee and
hip-joint replacement [1, 2], spine correction [3, 4], and maxillofacial surgery [5, 6]. Despite
the procedure’s effectiveness, however, the conventional osteotomy procedures usually
involve mechanical tools (saw, drill, chisel, and hammer). In the process, mechanical
contact and movement apply excessive pressure that, along with friction and vibration,
removes more tissue than necessary [7–9]. Additionally, preventing bacterial contamination
is a serious concern, given the direct contact between tissues and metals [10–12].

Over the last decades, the tool technology has developed rapidly to solve these problems.
One cutting-edge technology is the use of laser for osteotomy or laser osteotomy for short.
Laser osteotomy offers an efficient way to address the problems of mechanical tool, with
contactless intervention and a higher precision level. The focused cut of laser enables
surgeons to go beyond straight cuts and perform more complex cuts like circular, diamond,
and dovetail shapes [13]. Compared to conventional saws or drills, laser osteotomy cuts with
low mechanical vibration, thus leading to less material loss and less potential microorganism
contamination, both of which improve the bone’s regenerative ability [14, 15].

While laser osteotomy holds many advantages over mechanical tools, there is an
inherent risk of collateral damage to surrounding critical tissue (such as nerves). Sufficient
information about the depth of the cut or the tissue type being ablated is needed so that
the surgeon can cut the bone precisely while avoiding damage to critical tissue at the
bottom of the cut. One solution is to implement a feedback system that detects both
the depth of the cut and the tissue type so that surgeons could perform laser osteotomy
precisely, safely, and without damaging critical tissues.

The tissue type being ablated can be detected by analyzing the secondary light and/or
the acoustic emission generated during ablation or by using external diagnostic (imaging)
modalities. Analyzing the secondary light emissions via Random Lasing (RL) [16, 17]
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and Laser-Induced Breakdown Spectroscopy (LIBS) [18–21] can differentiate tissue types
with a high degree of accuracy. Furthermore, analyzing the acoustic signals emitted by
photoablation (optoacoustic) can detect tissue types with an accuracy comparable to that
of RL and LIBS [22–25]. However, each of these methods has its own limitations. For
example, RL depends on a laser dye that might be harmful to biological tissue, while
LIBS is more accurate for detecting tissue surfaces. Additionally, LIBS and optoacoustic
techniques require a high-energy pulsed laser to produce a measurable signal and usually
results in unavoidable damage to critical tissues. Another method for tissue detection
involves integrating the ablation laser with external optical spectroscopy. The non-contact
nature of laser allows for integration with external optical sensors such as Raman [26, 27],
autofluorescence [28,29], and diffuse reflectance spectroscopies [30–33]. Like LIBS, Raman
spectroscopy accurately differentiates between the tissue’s molecular bonds. However, it
requires a few seconds of integration time to get an observable signal and is therefore
unsuitable for use in a real-time feedback system. Moreover, autofluorescence and diffuse
reflectance spectroscopy, could be used to detect tissue types with higher detection rates
than Raman spectroscopy. However, these techniques are limited by the fact that they
give feedback about tissue type only for a single point and lack cutting-depth information.

Alternatively, the laser ablation process can be monitored with an integrated, ablation-
free imaging system. The basic idea underlying this thesis project was to use an Optical
Coherence Tomography (OCT) imaging system to monitor the tissue anatomy at the
subsurface level and control the laser automatically. This imaging technology is analogous
to ultrasound imaging, which performs cross-sectional tomography using light interference
phenomena. The echo time delay of the back-reflected or backscattered light from the
tissue’s internal microstructures is measured using interferometry of partially coherent
light. Although the light’s penetration depth in OCT is limited in comparison with
ultrasound, the contactless nature of OCT makes it easily integrated with laser osteotomy.
Unlike ultrasound, OCT does not require impedance matching or contact with the target
tissue.

OCT has become a standard diagnostic tool in ophthalmology for diagnosing retinal
diseases [34]. It has also become an alternative to ultrasound for high-resolution intra-
venous imaging [35]. When integrating OCT into a laser osteotomy system, the image
provides information about both the depth of ablation (for precise depth measurement)
and the tissue texture (for tissue type detection). Moreover, recent advances in compu-
tation technology have led to the adaptation of artificial intelligence (deep learning) for
medical image analysis, opening a new era for smart feedback systems. Specifically, the
Convolutional Neural Network (CNN) marks a significant breakthrough for automatic im-
age analysis and recognition. In the field of OCT, CNN has been shown to be an accurate
method for retinal image segmentation [36–39] and plaque detection in intravenous OCT
images [40, 41]. The deep learning model classifies images faster by skipping the classical
feature extraction process, thereby enabling its use in real-time tissue detection for laser
osteotomy.

More importantly, this thesis was initiated under a flagship project called MIRACLE,
short for ”Minimally Invasive Robot-Assisted Computer-guided LaserosteotomE”, at the
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University of Basel. The result of this thesis demonstrate the feasibility of a computer-
guided laser osteotomy which is emphasized as ”smart” laser osteotomy by using deep
learning method.

1.2 Contribution and Research Scope

Research into the clinical applications of OCT as a feedback system for monitoring the
depth of laser ablation has been reported, such as tumor resection [42, 43], cochlear
implant surgery [44,45], and bone osteotomy [46–48]. Recently, it has been shown that
OCT helps to shape the endosteal layer’s curvature for cochlear implantation with a
mean absolute accuracy of around 20µm [44]. This achievement is a strong evidence
of OCT’s suitability for precise laser osteotomy. However, this finding has been applied
as a real-time depth monitoring system. Its application for real-time tissue detection,
specifically for laser osteotomy, remains a challenge worth further research. Changes in
the tissue’s optical properties due to high-power laser effects are also another crucial
challenge to achieving optimal differentiation during the laser-cutting process.

This thesis project focused on using OCT for tissue detection, to guide laser osteotomy
by fulfilling the basic requirement of real-time feedback. Tissue detection can be used
to stop the laser ablation process when it reaches critical tissue. The investigation also
included the application of artificial intelligence (deep learning) to classify the tissue and
emphasized the smart laser osteotomy approach. This thesis project contributes to finding
the best deep learning models for image quality improvement and tissue detection, and to
demonstrating the real-time feedback system.

It would also be interesting to explore the benefit of deriving both depth control and
tissue detection from one OCT image. However, this research aims to give the basic
building blocks for tissue-specific laser osteotomy. It provides a ”proof of principle” and
reveals the limitations of a real-time and automatic tissue-detection concept. In the future,
combining both depth control and tissue detection based on the OCT image would lead
to greater precision and safety of laser osteotomy.

1.3 Outline

The main concepts and strategies underlying this thesis project are outlined in seven
chapters, starting with this introduction chapter (Chapter 1). Chapter 2 discusses the
basic principle of OCT, as well as methods for OCT signal processing, image denoising,
and some classical approaches to tissue detection. The next chapter, Chapter 3, briefly
discusses approaches for automatic tissue characterization using machine learning and deep
learning. The same chapter also briefly describes the integration of the OCT acquisition
system with the deep learning inference for real-time feedback.

The outcomes of this thesis project have been published in several conference pro-
ceedings and journals. Two publications, presented in Chapter 4, describes the deep
learning-based approach to fast image denoising to improve tissue detection accuracy. In
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Chapter 5, two publications describes the best deep learning models to differentiate tissue
types. The last publication, in Chapter 6, evaluates the performance and accuracy of the
closed-loop real-time feedback system. Finally, the last chapter of the thesis, Chapter
7, discusses the outlook for future research, specifically in combining depth control and
tissue detection to have both precise and safe laser osteotomy, and ends with some closing
remarks.



Chapter 2

Optical Coherence Tomography

Optical Coherence Tomography (OCT) has become the preferred modality for non-
invasive and non-contact biomedical imaging. It is analogous to ultrasound imaging, except
that it uses light instead of sound. It performs a subsurface two-dimensional cross section
and three-dimensional volumetric image scan of biological tissue. The latest light source
technology enables OCT to provide real-time imaging with an axial resolution of less than
3µm in air [49,50]. The use of infrared and visible light is safer for most biological samples,
compared to the ionizing radiation used in micro-computed tomography (micro-CT) for
microscopic-scale tissue imaging.

This chapter briefly reviews the basic principles of OCT and the signal processing
steps. The discussion starts with the basic concept of signal formation in the Time Domain
Optical Coherence Tomography (TD-OCT). It continues with the latest OCT technology,
Fourier Domain Optical Coherence Tomography (FD-OCT), which was used in this thesis
project. The benefit of using FD-OCT over TD-OCT is also discussed. This chapter also
discusses the necessary signal processing steps and the requirement for a high-performance
computational resource to reconstruct the OCT image in real-time. The origin of speckles
in OCT and several methods to enhance image quality are also explained in the last
section of the chapter. Reducing image speckles is important as it could improve the tissue
classifier.

2.1 Basic Principle of OCT

OCT imaging is a tomographic technique that uses interference phenomena to measure the
magnitude and echo time delay of light traveling through the internal micro-structure of
biological tissue. The basic concept of OCT is based on the classical optical measurement
technique, known as Low Coherence Interferometry (LCI), which uses the Michelson
interferometer configuration (Figure 2.1a) [51]. The interference signals are formed by
splitting light into two paths (called reference and sample arms) using a beam-splitter and
reflecting them back using a mirror at each end to recombine them to interfere with each
other constructively or destructively. The interference signal, referred as interferogram,

9
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(a) Michelson interferometer configuration.

𝜆𝜆 = 800 𝑛𝑛𝑛𝑛
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𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑆𝑆 = 1

B CA
⁄𝜆𝜆 2

(b) Interferogram with monochromatic light.

Figure 2.1: A Michelson interferometer configuration (a). The light is split into two paths, the
reference arm path (red dashed line) and the sample arm path (blue dashed line), by a beam splitter.
Mirrors are placed at each arm to reflect the light back. The same beam splitter recombines the
light reflected from the two paths. A photodiode detects the intensity of the recombined light,
while the mirror at the reference arm is moving. An example of the detected interference signal
from a monochromatic light source is shown in (b). However, this interference pattern lacks
location information. A reflector in the sample arm will appear multiple times (e.g., at points A,
B, or C), assuming that each peak corresponds to a path length match between the sample and
reference arm. Images adapted from [35].

is detected by a photodetector while scanning (moving) the mirror at the reference arm.
This technique is called Time Domain OCT (TD-OCT). The time terminology comes
from the definition of the reference mirror location as a function of time.

The interferogram from a monochromatic light source with a wavenumber of k and
intensity of I0 follows the equation [35]

ID (zR) = αβI0 [RR +RS + 2
√
RRRS cos(2k(zR − zS))] . (2.1)

ID(zR) defines the detected intensity as a function of the location of the reference mirror.
Fraction of α : β indicates the splitting ratio between incident light power sent to the
reference arm and the sample arm, respectively. RR and RS indicate the power reflectivity
of the mirror at the reference and sample arms, respectively, and are given by the magnitude
squared of the electric field reflectivity (R = |r|2). The intensity of the detected signal will
either increase or decrease depending on the path length difference between the two arms
(zR − zS). However, this sinusoidal signal lacks information about the mirror location
in the sample arm. The mirror reflection appears multiple times for every path length
difference, with a multiplication of ±π/k, for example, at points A, B, or C in Figure 2.1b.

Most light sources are never truly monochromatic. Even laser can only be quasi-
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monochromatic. Here, the coherence property of the light source plays an important role
in determining the axial location of the mirror in the sample arm or a reflection site in the
biological sample. The frequency (wavenumber) variation shortens the coherency of the
light source, thus, limiting the interference signal detection. Figure 2.2 shows an example
where the light coherency limits the interference signal by enveloping the interference
fringe into a package or sync signal. The packaged signal provides a better estimation of
location from a reflective boundary, as full interference only arises when the two path
lengths are matched within the coherence length of the light source. Other reflections
originating outside the coherence length will go undetected (coherence gating).

─ Signal
-- Envelope

𝑙𝑙𝑐𝑐~2.82 μm

2 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆

𝑆𝑆0 𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑆𝑆

𝜆𝜆0
2

𝜆𝜆 = 800 𝑛𝑛𝑛𝑛
∆𝜆𝜆 = 100 𝑛𝑛𝑛𝑛
𝛼𝛼 ∶ 𝛽𝛽 = 50 ∶ 50
𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑆𝑆 = 1

Figure 2.2: Example of detected interference signal with a Gaussian polychromatic light source
(λ0 = 800nm and ∆λ = 100nm). A reflector in the sample arm will be detected only in the
coherence length (lc) and most likely at the peak of the envelope. Images adapted from [35].

The interferogram, when using a light source with a Gaussian spectrum, can be
rewritten from Equation 2.1 and becomes [51]

ID (zR) = αβ S0 [RR +RS + 2
√
RRRS cos(2k0(zR − zS)) e−((zR−zS)∆k)2 ]. (2.2)

Here, k0 represents the central wavenumber of the light source spectrum, and ∆k represents
its spectral bandwidth. The total power spectral emitted by the light source is defined

as S0 =
∞∫
0

S(k). The exponential component of the equation defines the envelopes of the

signal. It is associated with the complex degree of coherence of the light source, which is
dependent on the spectral bandwidth of the light source.

In clinical practice, the mirror in the sample arm would be replaced with a biological
sample. The sample under investigation contains profiles of reflectivity along the depth
(see Figure 2.3). The internal sample reflectivity profile is reconstructed by scanning the
reference mirror, along with the path length difference. This scan is analogous to A-Scan
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Broadband
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𝑧𝑧𝑆𝑆

Figure 2.3: TD-OCT uses a broadband light source to have a low coherence length. Practically,
it uses the Michelson interferometer setup and replaces the mirror in the sample arm with
a biological sample. The internal sample reflectivity profile is reconstructed by scanning the
reference mirror. The signal formation is illustrated in Figure 2.4. Images adapted from [51].

in ultrasound imaging. The scan motion moves the envelope, whose amplitude corresponds
to the reflectivity at each location. The interferogram detected by the photodiode with
multiple reflectors is then defined as [51]

ID (zR) =αβ S0 [RR +
N∑

n=1

RSn (DC)

+ 2
N∑

n=1

√
RRRSn cos(2k0(zR − zSn)) e

−((zR−zSn )∆k)2
(Cross-correlation)

+
N∑

n̸=m=1

√
RSnRSm cos(2k0(zSn − zSm)) e

−((zSn−zSm )∆k)2 ] . (Auto-correlation)

(2.3)
The multiple reflectors in this equation distinguish three signal components [51]: (1) Direct
Current (DC)1 signal is the most significant component, proportional to the reflectivity of
the reference and sample arms. However, it is typically proportional to the mirror power
reflectivity at the reference arm, as its magnitude is usually larger than the reflectivity
of the biological tissue at the sample arm (RR ≫ RS). This could be considered as the
base signal, with the absence of interference. (2) Cross-correlation signal is the primary
information carrier. This component carries the interference relation between individual
reflectors at the sample arm and the mirror at the reference arm. (3) Auto-correlation
signal is the signal resulting from self-interference between reflectors in the biological

1The direct current terminology comes from the fact that the detector measures the signal as a direct
electrical current.
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(c) The envelope of the combined interference
signal.

Figure 2.4: Illustration of the sample reflectivity profile reconstruction in TD-OCT. Figure (c) is
the envelopes of the combined interference signals (b) coming from the individual reflectors (a).
Two reflective boundaries can be fully distinguished if located at a distance ≥ lc (e.g., R3 and
R4, with distance lc). Still, it is difficult to separate two reflectors with a distance < lc (e.g., R1
and R2, with distance lc/2). Images adapted from [51].

tissue under investigation. This signal is typically neglected, using the same argument for
the DC signal that RR ≫ RS.

The axial resolution of a TD-OCT is characterized by Full Width Half Maximum
(FWHM) of the signal envelope. It is defined as the round-trip coherence length of a
Gaussian-shaped light source (lc) given by [51]

lc = ∆z =
2
√
ln(2)

∆k
=

2 ln(2)

π

λ20
∆λ

, (2.4)

where λ0 and ∆λ are the center and bandwidth wavelength of the light source. The signal
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formed is illustrated in Figure 2.4. Two reflective boundaries can be fully distinguished
if they are located at a distance more than or equal to the coherent length (≥ lc); for
example, the reflectors at points R3 and R4. In contrast, two reflective boundaries with a
distance less than coherent length (< lc) may be hard to separate, as is the case with the
reflectors at points R1 and R2.

OCT extends the benefit of LCI by performing multiple A-Scans in the lateral direction
to capture a two-dimensional image, called a B-Scan image, analogous to ultrasound
B-Mode. Lateral resolution in OCT is determined by the optical system that focuses the
light and is akin to Optical Confocal Microscopy (OCM). The lateral resolution is defined
by [51]

∆x =
4λ

π

f

d
, (2.5)

where d and f are the size of the incident beam on the objective lens and the focal length
of the objective lens, respectively. The lateral resolution is proportional to wavelength (λ)
and inversely proportional to the Numerical Aperture (NA), defined as f/d. The lateral
resolution also determines the depth of field (b), whereby increasing the lateral resolution
(smaller ∆x) decreases the depth of field. The relation is illustrated in Figure 2.5 and
defined by [51]

b =
π∆x2

λ
. (2.6)

The selection of the depth of field or NA imposes the benefit of OCT compared to OCM.
The OCT axial resolution is technically independent of the focusing lens’s depth of field

Low NA

∆𝑧𝑧

∆𝑧𝑧

∆𝑧𝑧

𝑏𝑏

∆𝑥𝑥

∆𝑧𝑧

High NA

∆𝑥𝑥

𝑏𝑏

Figure 2.5: Lateral resolution in OCT is determined by the focused spot size of the OCT beam.
OCT imaging is usually performed with a low NA, with a depth of field (b) much longer than
the coherence length, to scan the reflectivity function over the sample cross-section. Although
focusing with a high NA results in high lateral resolution, it reduces the depth of field and limits
the cross-sectional range of the OCT. Images adapted from [51].
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or NA. Rather, the axial resolution is given by the envelope’s width or governed by the
light source’s coherence length (lc). Conversely, the OCM axial resolution is limited by the
confocal gating, which is defined by the depth of focus (b). Thus, a high NA is preferable
in OCM. Most OCT imaging systems, however, work in a low NA condition to attain a
considerable depth of field. The depth of field needs to be larger than the coherence length,
b > ∆z, to benefit from the coherence length resolution, although the low NA consequently
limits the lateral resolution. This condition is useful in a limited NA application, such as
catheter imaging

OCT has the added benefit of sending light via an optical fiber, which gives more
flexibility when placing the sample arm, usually embedded into a handheld probe. The
use of optical fiber allows easier integration with a variety of medical instruments, such
as a handheld probe for skin imaging or a catheter for intravenous imaging. TD-OCT is
limited by the movement speed and range of the scanning mirror in the reference arm.
The next section discusses Fourier domain OCT, which is faster than TD-OCT.

2.2 Fourier Domain OCT

Fourier domain OCT (FD-OCT) uses a faster signal collection technique and offers a
solution to the scanning mirror limitation of TD-OCT. In FD-OCT, depth information is
obtained by evaluating the spectrum of the returning light without moving the mirror in the
reference arm. Instead, it detects sample reflectivity at different locations by distinguishing
the frequency components (Fourier domain) in the output signal. A spectrometry technique
is used, which can be performed in two ways: either changing the detector to a spectrometer,
called Spectral Domain optical Coherence Tomography (SD-OCT), or using a rapidly
tunable laser source, called Swept Source Optical Coherence Tomography (SS-OCT).
Schematics of the SD-OCT and SS-OCT are illustrated in Figure 2.6. The interferogram
formation principle is similar for both techniques. In this thesis project, we specifically
used SS-OCT to benefit from certain advantages it has over SD-OCT; these advantages
will be discussed in the next subsection. However, to understand the FD-OCT working
principle, one must first understand how the signal formation is reconstructed from the
spectral domain to the spatial domain in SD-OCT.

The interferogram in SD-OCT can be determined by referring to Equation 2.1, where
the sinusoidal signal is formed by either the variation in path length difference, zR − zS,
or wavenumber k. In TD-OCT, the single photodiode implicitly measures the integrated
spectral power emitted by the light source. Thus, the sinusoidal signal only depends on
the moving reference mirror I(zR). In SD-OCT, however, both the biological sample and
reference mirror remain static. A spectrometer is used instead of a photodiode. Each pixel
element in the spectrometer measures the back-reflected intensity for each wavenumber,
I(k), and can be rewritten based on Equation 2.3 by considering the individual wavenumber,
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(a) Spectral domain OCT.
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(b) Swept source OCT.

Figure 2.6: Schematic for SD-OCT (a) and SS-OCT (b). As with TD-OCT, a broadband light
source is used, but the mirror in the reference arm is kept static. For SD-OCT (a), a spectrometer
replaces the photodiode to analyze the output light from the interferometer. The interference
signal is embedded in the spectrogram signal, called the interferogram. For SS-OCT (b), a tunable
light source is used to produce a variation of wavenumber while a photodiode is used to analyze
the interference of each wavenumber. Images adapted from [52].

k, as a monochromatic light source, as follows [51]:

ID (k) =αβ S(k) [RR +
N∑

n=1

RSn

+ 2
N∑

n=1

√
RRRSn cos(2k(zR − zSn))

+
N∑

n̸=m=1

√
RSnRSm cos(2k(zSn − zSm))] .

(2.7)

S(k) refers to the intensity of wavenumber k. Note that the reference mirror is kept static
so that zR is constant. Here, each pixel element in the spectrometer implicitly measures
the sum interference of individual wavenumber, k, from all reflectors along the biological
tissue (both cross-correlation and autocorrelation).

The reflectivity profile of the sample is estimated from the inverse Fourier transform
F−1{I(k)}. We can transform Equation 2.7 from the k-space domain into the spatial

domain by using the property of Fourier pair cos(kz0)
F←→ δ[z ± z0], the convolution prop-

erty of the Fourier transform X(k)Y (k)
F←→x(z)⊗ y(z), and the sifting property of the

convolution of the delta function y(z)⊗ δ[z ± z0] = y(z0). Therefore, the inverse Fourier
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transformation of Equation 2.7 is written as [51]

iD (z) =αβ [γ(z)RR + γ(z)
N∑

n=1

RSn ]

+ 2αβ
N∑

n=1

√
RRRSnγ[2(zSn ± zR)]

+ αβ

N∑
n̸=m=1

√
RSnRSmγ[2(zSm ± zSn)] ,

(2.8)

where γ(z) is the complex degree function of the source, which is the inverse Fourier
transform of the source spectrum S(k). As with Equation 2.3, the transformed signal also
consists of the DC, cross-correlation, and auto-correlation signals. The signal reconstruction
is illustrated in Figure 2.7. The displacement of each reflector is (2(zSn ± zR)) because the
interferometer measures the round-trip distance to each reflector. Here, the sample reflectiv-

ity profile is interpreted as the cross-correlation term
√
RS(zS) =

N∑
n=1

√
RSnγ[2(zSn ± zR)].

Although the auto-correlation factor still surrounds it, it is negligible based on the same
reasoning applied to Equation 2.3. The FD-OCT axial resolution is technically similar to
that of TD-OCT, which is characterized by the coherence length of the light source lc
(Equation 2.4). An example of the reconstructed signal with multiple reflectors is shown
in Figure 2.8.
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(a) Spectral interferogram.
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(b) Spatial domain interferogram.

Figure 2.7: Illustration of the detected interferogram (a) and the inverse Fourier-transformed
signal (b). The interference fringes are encoded on the spectrogram with the light source spec-
trum defining the DC signal. The transformed signal is doubled due to round-trip scaling. The
transformed DC signal appears as a large artifact signal centered at zero path length difference.
Images adapted from [51].
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Figure 2.8: Illustration of the sample reflectivity profile reconstruction in FD-OCT. Figure (c) is
the inverse Fourier transform of the interferogram signals (b) coming from the reflectors (a).
As with TD-OCT, two reflective boundaries can be fully distinguished if located at a distance
≥ lc (e.g., R3 and R4, with distance lc). It is difficult, however, to separate two reflectors with a
distance < lc (e.g., R1 and R2, with distance lc/2). Images adapted from [51].
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2.3 Signal to Noise Ratio and Sensitivity in FD-OCT

With the inverse Fourier transformation principle, the A-Scan rate of SD-OCT depends
on the spectrometer’s response time, which is usually faster than the scanning speed of
the reference mirror in TD-OCT. SD-OCT uses multiple pixel elements in the spectrom-
eters to acquire signal simultaneously2 [53–55], which accounts for its faster scanning
time. Consequently, SD-OCT has a higher Signal to Noise Ratio (SNR) than TD-OCT.
Furthermore, since both OCT methods use the same principle of interference of coherence
light, they yield similar axial and lateral resolutions.

The well-known expression for the SNR of a TD-OCT set up is given by [51]

SNRTD−OCT =
⟨ID⟩2

σ2
=
ρS0RS

2eBD

, (2.9)

where ⟨ID⟩2 is the mean-square peak signal power; it occurs at zR = zS in Equation 2.2 for
a single reflector, RS, assuming that the power of the source, S0, is split equally between
the reference and sample arms (α : β = 50 : 50). Both ρ and BD are the responsivity and
bandwidth of the detector, respectively. This equation was derived upon the assumption
of shot noise limited detection, with shot noise variance σ2.

Conversely, in SD-OCT, the backscattered light from all pixels in the A-Scan line (that
contributes to the signal) is acquired simultaneously, so the noise in each spectral channel
is uncorrelated. Thus, the noise variances add up incoherently in the inverse discrete
Fourier summation. It has been shown both theoretically and experimentally that the
SNR for both SD- and SS-OCT is defined as [51]

SNRSD−OCT = SNRSS−OCT = SNRTD−OCT
M

2
, (2.10)

where M is the number of active pixel elements in the spectrometer. The M -factor
improvement arises because all the pixel elements capture the interference signal in
parallel 2, while in TD-OCT, the photodiode sequentially samples the signal. The division
of factor M by 2 accounts for the fact that the inverse Fourier transform generates
redundant data for positive and negative sample displacement.

This thesis project specifically focused on using SS-OCT to monitor the laser osteotomy
process. Therefore, it is worth briefly discussing its advantages over TD-OCT and SD-OCT.
SS-OCT uses a principle similar to SD-OCT, except that the wavenumber is swept linearly
over time, k = k0 +mt, where k0 is the initial wavenumber and m = ∆k/∆t is the rate
of change of the wavenumber over time (see Figure 2.6b). This mechanism is almost
analogous to TD-OCT. However, during implementation, sweeping is relatively faster and
more convenient than moving the reference mirror. Most of the current swept laser sources
can sweep an A-Scan with a repetition rate of more than 100 kHz, which corresponds
to 10µs per A-Scan. This instantaneous tuning speed gives SS-OCT benefits similar to

2 Electronically, the digital acquisition in the Charge-Coupled Device (CCD) array happens sequentially
along the pixel line array. However, the acquisition rate is relatively fast, usually in the magnitude of
MHz, and is therefore considered simultaneous acquisition.
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those of SD-OCT with a higher SNR than TD-OCT, as defined in Equation 2.10, where
M in SS-OCT is defined as the total number of wavenumber samples per A-Scan.

FD-OCT suffers from sensitivity fall-off along the depth of the A-Scan line. Based on
Equation 2.7, it is expected that the SD-OCT spectrometer could resolve the discrete
individual wavenumber of the light source. However the spectrometer has a finite number
of pixel elements and pixel size, which ultimately defines the spectral resolution (denoted
as δk). The spectral resolution at which the signal can be detected introduces the fall-off
in sensitivity. This limitation affects the spectral interferogram by convolution to the
rectangular function of the spectral resolution, rect(δk), and results in a Sinc function
over depth, sinc(δk z), after the inverse Fourier transformation as follows [51]:

ID(k)⊗ rect(δk)
F←−−→ iD(z) · sinc(δk z) . (2.11)

Sensitivity fall-off causes the peak signals of a reflector to decrease over depth. For SS-
OCT, δk depends on the instantaneous line width of the light source and the detection
bandwidth of the photodiode and digitizer. Moreover, we could predict that the detected
signal would fall close to zero at a distance point, denoted as zmax. Following the Nyquist
criterion, zmax is defined as

zmax = ± π

2δk
. (2.12)

Although this fall-off effect applies to both SD- and SS-OCT, current OCT technology
makes it more convenient to achieve an instantaneous spectral width with a narrower
resolution using a sweeping light source (SS-OCT) than to increase the number of pixel
elements in a SD-OCT spectrometer, which will technically require smaller pixel elements.
Current commercial swept source lasers in particular, such as Vertical-Cavity Surface-
Emitting Laser (VCSEL) [56] and akinetic swept laser [57], have a coherence length
corresponding to an OCT depth range of centimeters.

2.4 Signal Preprocessing

Image reconstruction in an FD-OCT set up is relatively simple, requiring an inverse
Fourier transform of the interferogram from the k-space domain to the spatial domain.
However, it is necessary to preprocess the interferogram to further improve the image
quality in FD-OCT. This section aims to explain the three major steps of preprocessing
the FD-OCT interferogram before performing the inverse Fourier transform.

2.4.1 DC and background removal

The first step is to remove the DC and background signal. Recalling Equation 2.7, the
interference signal is composed of the DC, cross-correlation, auto-correlation, and additional
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dark background signals [58]

ID ∝ IDC + Icross−correlation + Iauto−correlation +Bdark . (2.13)

For image reconstruction, we are most interested in the cross-correlation signal, which
contains the sample reflectivity profile. Therefore, we need to subtract the DC, auto-
correlation, and dark background signals from the interferogram. The auto-correlation
signal can be neglected, given that the reflectivity of the reference arm is usually greater
than the reflectivity of the biological tissue in the sample arm (RR ≫ RS).

Here, we introduce the term dark background (Bdark). This signal can be measured by
capturing the signal while closing both the sample and reference arms. The dark background
signal represents the external noise that might arise due to external factors, such as electrical
noise and environmental light sources. The DC signal consists of signals coming from both
the reference and sample arms. The signal from the reference arm, Iref , can be measured
by closing the sample arm completely. Likewise, the sample background signal, Isamp, can

kmin k0 kmax

Wavenumber [rad m -1]

0

0.5

1

N
or

m
al

iz
ed

 I D
(k

) [
a .

u.
] ─ DC + Cross Correlation

─ DC

(a) Interferogram with DC embedded.

kmin k0 kmax

Wavenumber [rad m -1]

-1

0

1
N

or
m

al
iz

ed
 I D

(k
) [

a .
u.

]

DC Floor

𝐼𝐼𝐷𝐷 𝑘𝑘 − 𝐷𝐷𝐷𝐷

(b) Interferogram with DC subtracted.

Suppressed 
DC Signal

(c) The inverse Fourier transformation of
the DC subtracted interferogram.

Figure 2.9: Illustration of the DC subtraction. DC signal subtraction (b) from the original
interferogram (a) leads to suppression of the DC peak on the inverse Fourier transformation (c).
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be measured by closing the reference arm. However, the dark background signal must be
subtracted as it was measured with each one of the signals, IDC = Iref + Isamp − 2Bdark.
This method preserves the cross-correlation signal with a high degree of accuracy; however,
it is sensitive to changes in the DC signal (e.g., due to changes in the optical setup or
the light source). Therefore, it is necessary to measure the total background signal before
every measurement with an actual biological sample.

Alternatively, it is more convenient to measure the background signal by taking the
average interferogram over all A-Scans in a B-scan image [58,59]. This averaging technique
corresponds to measuring the sum of DC and dark background signals, which results in a
static signal, ⟨ID⟩t ≃ IDC +Bdark. The fluctuating interference (cross-correlation) signal
will have a relatively small impact on the static signal. This method is preferred in most
applications because it is more adaptive to changes in the DC signal.

2.4.2 k-space linearization

The second major step in processing the OCT signal is to remap the spectral wavelength
(λ) into wavenumber (k). Fourier transformation relates the physical distance, z, to
the wavenumber, k, of the reflected light wave. However, the spectra obtained with
the spectrometer in SD-OCT have a unit of wavelength. The wavelength is inversely
proportional to the wavenumber (k = 2π/λ), which will induce phase non-linearity over
the signal and leads to the broadening of the point spread function and deteriorates the
reconstructed image resolution [60]. This is similar to the dispersion problem, which will
be discussed in the next section. Therefore, before applying the Fourier transform, the
data must be resampled so that it is evenly (linearly) spaced in the k dimension (k-space).
The remapping process usually involves interpolation from the wavelength function as the
wavenumber function. Typically, the interpolated spectrum is fitted to the third-order
polynomial, and the nonlinear part is used to correct the wavelength. Practically, SS-
OCT provides a finer and more convenient way of tuning the light source with a linearly
spaced wavenumber (calibrated for linearity), making the remapping process unnecessary.
Therefore, in this thesis project, the k-space linearization step is skipped.

2.4.3 Windowing

The last significant step in preprocessing the OCT signal is windowing the signal. A major
artifact in OCT A-Scans comes from sidelobes in the reconstructed signal, which could
reduce image sharpness and contrast [61]. These sidelobes arise from the imperfection of
the Gaussian-shaped spectrum for most broadband light sources. Specifically, in SS-OCT,
most of the light source’s spectrum is flat or close to a rectangular function. Therefore,
the interferogram must be reshaped (windowing) to reduce the sidelobes. The windowing
process involves reshaping the interferogram envelope to match the Gaussian-shaped
spectrum. There are several different windows that can be applied. Several studies have
explored various window filters, all with nearly similar effects. For most cases, a Hanning
filter [62] is sufficient. Figure 2.10 illustrates the sidelobe effect resulting from the inverse
Fourier transform of an interferogram with a near linear DC envelope.
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Figure 2.10: Illustration of an inverse Fourier transformation of an interferogram with a near
linear light source spectrum. The reconstructed reflector location is embedded with sidelobe
artifacts due to the transformation of an imperfect Gaussian-shaped interferogram. Practically, a
windowing filter could digitally reshape the signal to get an ideal signal, as shown in Figure2.9b.

2.5 Speeding Up the Signal Processing

FD-OCT technology has been widely used in modern OCT systems. Higher sensitivity
and speed account for much of FD-OCT’s success over TD-OCT. The previous sections
highlight the key aspects of physics that have enabled an increase in sensitivity and,
consequently, increased imaging speed without loss of image quality. Increasing the
speed allowed OCT to shift from 1D point sampling measurements to comprehensive 4D
imaging [63,64]. Scanning speeds increased from 2 A-Scans/second (TD-OCT) to a few
million A-Scans/second, using SS-OCT with high-speed swept-source laser technology [65].

To fully take advantage of FD-OCT’s speed, a high-performance computational resource
is also required for real-time signal processing and OCT image visualization. Real-time
visualization and image analysis would improve pathology diagnosis and extend the
scanning ability from 3D volume images to 4D dynamic volumes, such as in OCT-
Angiography. Fast image reconstruction is also necessary to monitor the laser osteotomy
process, with its high repetition rate. Significant computational resources are required
for complex FD-OCT interferometric data processing, especially for the inverse Fourier
transformation process, which demands an extremely high data throughput. To address
this problem, one must consider additional aspects for improving OCT performance beyond
the optical components that have been discussed in the previous sections. While OCT
image resolution depends on the coherence length of the light source and the aperture of the
focusing optics, its visualization performance depends on the clock speed of the computer
processor, which is currently limited. In other words, OCT visualization performance is
limited by both the image acquisition rate and the digital processing speed.

Most modern OCT systems have a high acquisition rate of up to a few million A-
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Scans/second. Nevertheless, the clock speed of a single processor to process the signal
is limited. Therefore, the computational speed to process A-Scan signals one by one
(sequentially) in a B-Scan is also limited. A multi-threading technique, or parallel pro-
cessing, plays an important role in real-time OCT image visualization. This technique
takes advantage of multiprocessors that can work together simultaneously. The method
is strongly compatible with FD-OCT’s high data throughput, which usually slow with
a sequential process. Parallelization in OCT mainly employs a Graphical Processing
Unit (GPU), which contains more coprocessors and has a higher memory bandwidth than
most Central Processing Unit (CPU) clusters.

For comparison, an NVIDIA GPU GTX1050Ti has 768 virtual processors in one board,
with an individual processor clock speed of 1.4GHz. Meanwhile, an Intel i7-7700 Quadcore
CPU has eight virtual processors with an individual processor clock speed of 3.6GHz. A
single fast inverse Fourier transformation (A-Scan) in Matlab 2020b, with 2048 swept
points per A-Scan, running on this CPU took ∼6.8µsec (without CPU parallelization).
The same process took ∼48µsec in the GPU, 7x slower than the CPU. However, when
transforming 128 A-Scans, the GPU took ∼435µsec, almost 4x faster than the CPU,
which took ∼1,143µsec3.

Fast image reconstruction was necessary for this thesis project in order to monitor the
laser ablation process, which uses a high repetition rate. Furthermore, parallel computing
in a GPU has become the standard for deep learning inference, where deep learning
methods are used in both speckle reduction and tissue differentiation. In this thesis
project, almost all of the computational processes to reconstruct the OCT image were
executed in a GPU. Additionally, it is more convenient to both reconstruct images and
detect tissue using GPU processing to avoid redundant communication between the GPU
and CPU.

2.6 Speckle in OCT and Reduction Methods

This section will discuss the origin of speckles and explains a few methods for reducing
them. Speckle in OCT images appears as a random granularity that has no obvious
relationship to the texture of the biological tissue. One could easily assume that it is just
random noise outside the OCT system. However, this characteristic appearance of OCT
images arises from the fact that we are dealing with interference of coherent light. The
coherence property of light is both a strength and a weakness of OCT [66]. The signal
modulation resulting from light coherency enables us to detect structural interfaces with
very high resolution. However, it is also the cause of speckle patterns in OCT images,
which ultimately reduces the resolution and sensitivity. Note that it is important to
distinguish between speckle noise and the noise described in Section 2.3.

The origin of the speckles can be traced from the interference Equation 2.2. The
detected signal is modulated as an interference pattern. Coherency limits the interference

3Note that this example is based on a personal benchmark with a specific computer. Results may
differ with different computer specifications and different number of Fourier transformations.
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pattern to a package of signals (coherent envelopes). In other words, the detection system
packed the continuous structure into a discrete function of the path length difference
(sample volume). As a result, an ideal object would need to have one scatterer for each
discrete path length difference to get a perfectly modulated signal. However, there will be
microscopic structures between the sample surface and path length locations (lc), which
lead to reflections.

In principle, the detected signals should only come from multiple backscattered lights
within the sample volume, as illustrated in Figure 2.11a. However, the microscopic
structures consequently cause a detection delay due to multiple forward-scattering effects
during propagation through the sample volume4. The forward-scattered lights contribute
to random delays and distort the path length detection in the axial direction. Conversely,
multiple backscattering occurs within the sample volume and contributes least to signal
delays. The forward-scattered lights give rise to secondary interference between the
multiple backscattered lights within the sample volume and distort the path length
detection in the lateral direction. As a result of these two effects, the returning wavefront
is distorted, from an ideal spherical wavefront to a wavefront with localized regions of
constructive and destructive interference, and detected as random delays in the signal.
Lights scattered from any point outside the focal volume (due to deflection from the
forward scatter) also generate speckles. As long as these altered path lengths fall within
the coherence length, the interference signal will still be observed. Since these scattering
events are distributed randomly, the interference pattern is modulated randomly to form
a speckle pattern.

From this explanation, speckle can be classified into two categories. The first category
is the signal-carrying speckles, originating from multiple backscattered lights within the
sample volume (focal zone). This speckle mostly appears with large granularity, illustrated
in Figure 2.11b. The second category is the signal-degrading speckles, originating from
forward-scattering lights during propagation and the scattered light outside the focal zone.
This speckle induces small granularity in the image. The signal-degrading speckle can be
reduced by increasing the NA of the focusing optics. However, the optimal NA should
be set such that the depth of field is larger than the coherence length, as explained in
Section 2.1, to benefit from the coherence length resolution.

At this point, we have discussed the origin of speckles as an interference phenomenon.
Another explanation that has been put forward to account for speckles is the missing
frequency problem. This problem appears as a limitation of the coherency tomographic
method. OCT acts as a bandpass filter. OCT scanners can detect only those objects
whose spatial frequency spectra overlap the band of spatial frequencies, from 2/λ0 − 1/lc
to 2/λ0 + 1/lc [66]. Only biological structures within this spatial frequency band will be
detected uniformly by OCT and appear as image granularity due to the modulation of the
signals. Structures with smaller sizes are absent in OCT images. At the same time, the
higher frequency limit appears as the axial resolution of the OCT system. One solution

4In principle, some of the lights would also experience multiple microscopic (premature) backscatters
during propagation through the sample. However, these backscatters are outside of the coherence length
and will not deteriorate the image.
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Figure 2.11: Illustration of light scattering in biological tissue (a). Speckle in OCT images
originates from multiple backscattering on the sample volume. Meanwhile, random speckle noise
appears when the signal originates from multiple forward-scattering and out-of-field scattering.
Image (b) shows an OCT bone tissue image containing speckles that have no obvious relation to
the bone structure. Image (a) was adapted from [66].

to this problem is to use a broader bandwidth light source, which also improves the axial
resolution.

Ideally, we would like to remove speckles from the OCT image completely. However,
completely removing speckles from the OCT image also means removing both the signal-
carrying and signal-degrading speckles, which consequently remove important structural
information about the biological tissue. This information is important for texture-based
tissue differentiation, which will be explained in the next chapter. Here, OCT speckle
reduction is addressed as a process to minimize signal-degrading speckle while preserving
the signal-carrying speckle. In practice, there are four basic techniques that can be used
for speckle reduction. However, none of them are theoretically ideal and each of them has
its respective shortcomings. The practicality of implementing the technique must also be
considered. Nevertheless, we will discuss the techniques briefly without expanding on how
they could be implemented in the OCT system.

• Polarization Diversity

The first technique is polarization diversity, which can be implemented by rotating the
linear polarization state during the exposure time. The spectral changes will partially
average out the speckled signal. However, this approach only improves the SNR by a
factor of

√
2 at most [67], and is therefore quite limited.
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• Spatial Compounding/Frame-Averaging

The second technique is spatial compounding or frame-averaging, which involves averag-
ing a series of images from the same or slightly displaced sample volume. Displacement
must be minimal so that the signal-carrying speckles in the image remain correlated
between frames. Otherwise, the resulting image would show the effects of smoothing
and loss of sharpness. The effectiveness of this approach depends on the number of
averaged images. This technique yields an improvement of the SNR by a factor of√
N [68]. The problem with this approach is the need for multiple image acquisitions,

which usually require a relatively longer acquisition time. Nevertheless, this approach
usually serves as the gold standard because it can be implemented without additional
changes or modifications to the OCT components.

• Frequency Compounding

The third technique takes advantage of the reduced correlation between speckles within
different frequency bands. There are two ways to create a variety of frequency bands
(frequency compounding). First, the light source can be split with a bandwidth of ∆λ
and centered at λ0 into N equally non-overlapping frequency bands. The reconstruction
process is similar to frame averaging, where each frame is acquired with a different
individual frequency band. Frequency compounding also improves the SNR by a factor
of
√
N [69], but partitioning the spectral bandwidth reduces the axial resolution of the

OCT system.

• Digital Image Processing

The last technique for speckle reduction is often implemented because it can be applied
simultaneously after the Fourier transformation of the interferogram. Several algorithms
have been studied to perform this technique. The most popular, simple, and relatively
fast methods are image filtering, including median, Gaussian, Wiener, and wavelet
filters [70–73]. However, these image filters typically result in over-smoothing the image
and reduce its sharpness.

In this project, reducing speckles in the OCT image is important. The tissue textural
information strongly discriminates among different tissue types, especially for distinguish-
ing between uniform and non-uniform tissue. However, a fast speckle reduction technique
is required to monitor the laser ablation process at a high repetition rate. The frame
averaging technique is easily adapted to different OCT systems and produces a relatively
higher quality image, but it requires a longer image acquisition time. A post-processing
filter works relatively faster than frame averaging. This thesis project tried to use a deep
learning algorithm as a black box that mimics the frame-averaging method [74,75]. The
current deep learning technology makes it possible to reduce signal-degrading speckle with
a faster filtering process while maintaining the signal-carrying speckle. A more detailed
explanation of the algorithm is explained in Chapter 4.
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Chapter 3

Tissue Characterization and
Feedback System with OCT

The main objective of this thesis project involves tissue characterization. Tissue
characterization aims to quantify tissue properties or features that can be used to classify
tissue type. Tissue characterization for medical images, especially OCT images, is usually
performed by extracting the features associated with different tissue types and validating
the result with standard histology images. Generally, human experts or medical doctors
perform these steps. Nowadays, however, the vast majority of research in the medical
imaging field, including OCT, seeks to automate these processes. Even more, improvements
in deep learning led to a paradigm shift, from manually engineered feature extraction to
using a Deep Neural Network (DNN) as a black box capable of extracting discriminating
features automatically.

This chapter begins by discussing classical tissue characterization, including feature
extraction from the OCT image, which relies on the tissue’s optical properties and ge-
ometrical texture. It is followed by the application of machine-learning algorithms to
differentiate tissue types based on the extracted features. Such automated tissue character-
ization systems benefit medical doctors by providing fast and repeatable image analyses.
The work in this thesis moves away from the traditional approaches, using deep learning
methods, a cutting-edge branch of machine learning capable of automatically learning
complex and robust features from raw data without the need for feature engineering. The
second section of this chapter discusses the basic working principle underlying the deep
learning model. The last section of this chapter briefly discusses the ablation laser and its
integration with the deep-learning-based OCT tissue characterization setup for real-time
osteotomy monitoring.

3.1 Classical Tissue Characterization

Tissue characterization is the classification of tissue based on its typical appearance in an
OCT image. Traditionally, medical doctors with specialized expertise are trained to analyze

29
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OCT images based on tissue anatomy. However, the analysis is often subject to both
intra- and inter-observer variability. Automating these processes with a computer would
help surgeons achieve consistent results. The typical steps of building the tissue profile
or characterization are shown in Figure 3.1. Here, the subjective high-level knowledge
of tissue characteristics (features) is often difficult to quantify. Therefore, interpretable
and quantifiable features are preferable in most classical tissue characterization. In OCT,
these features are generally classified according to the optical properties and the texture
properties of the tissue. Such features help us to understand and support faster machine
learning optimization.

Data Collection 
and Labelling Data SplittingFeature 

extraction
Model Training 
and Validation Application

Figure 3.1: Common steps of building an automatic tissue characterization system in OCT. It
starts with collecting images from an OCT device and manually labeling the tissue type of the
corresponding image. It is followed by feature extraction to find unique characteristic features of
a tissue embedded in the image. The extracted features are then split into training and validation
datasets. A machine-learning model will be trained and validated before it is applied in clinical
conditions. Additional testing datasets are usually used as a benchmark by which to evaluate the
performance of the machine-learning model.

3.1.1 Attenuation Coefficient

The use of light to carry the signal poses a drawback in terms of limiting attenuation in
biological tissue. In addition to the confocal properties of the focusing optics and spectral
resolution in FD-OCT, light attenuation also governs the maximum depth of an A-Scan.
This optical property, however, could be used as one parameter by which to characterize
biological tissue. The optical Attenuation Coefficient (AC) is a tissue property that defines
how incident light is attenuated when passing through a medium. It is an important
parameter that enables quantitative analysis of tissue property signals and acts as a strong
tissue discriminant for several OCT applications [76]. Additionally, the optical setup in
most OCT research is designed such that the imaging depth should be greater than the
light attenuation through tissue.

The AC defines how incident light is attenuated when passing through a medium and
is dependent on the underlying medium’s optical properties. Light loss in tissue can be
caused by absorption, scattering, or a combination of the two. The intensity detected over
depth, ID(z), in OCT can be modeled as a single scattering event that incorporates the
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axial point spread function and follows the Lambert-Beer law equation [77]

ID (z) = I0 h(z) s(z) e
−µtz, (3.1)

where z and I0 indicate the penetration depth and source intensity, respectively. The
attenuation coefficient, µt, is the result of scattering and absorption. Here, h(z) is the
confocal function defined by the focusing optics. Specifically, in FD-OCT, s(z) accounts
for the sensitivity fall-off function, while in TD-OCT, it is considered a constant.

Multiple methods have been proposed to extract the AC from OCT images. The
simplest method is the curve fitting method [78]. This method estimates µt by simplifying
Equation 3.1 to a logarithmic function,

log[ID (z)] = log[I0] + log[h(z)] + log[s(z)]− µtz. (3.2)

This equation presents a linear relation between the logarithmic intensity log[ID (z)] and
a function of depth µtz, with µt indicating the slope. Hence, we could estimate µt using
the linear least-square fitting method. Note that we need to consider log[h(z)] + log[s(z)]
as a constant value and log[I0] as an offset intensity. One drawback of this method is that
it needs a large amount of data to accurately fit the curve. Additionally, this method is
unable to extract values over small tissue regions or multilayered tissue.

Another approach to extracting the AC is the depth-resolve method proposed by
Vermeer et al. to overcome the resolution limit of the curve fitting method [79]. This
method enables a pixelwise AC extraction and provides a better estimation of the AC
in multilayered tissue. It introduces the depth-dependent attenuation coefficient, µt(z).
Considering the confocal h(z) and sensitivity s(z) functions as a constant function, we
could rewrite Equation 3.1 into

ID (z) = I0 e
−2

∫ z
0 µ(u)du. (3.3)

Here, the −
∫ z

0
µ(u)du denotes the sum of the attenuation coefficient of the biological

tissue from 0 to depth z. The factor of 2 accounts for the round-trip attenuation of light
in tissue. Solving the definite integral of this equation from depth z to infinity yields an
AC estimation of

µ (z) ≈ I(z)

2
∫∞
z
I(u)du

≈ I(z)

2
∫ D

z
I(u)du

, (3.4)

where D is the maximum imaging range of FD-OCT. The pixelwise AC values are then
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estimated by calculating the discrete integral and are expressed as

µ [i] =
1

2∆
log

1 +
I[i]

N∑
j=i+1

I[j]

 ≈ I[i]

2∆
N∑

j=i+1

I[j]

, (3.5)

where i denotes the pixel index location on an A-Scan and is bounded to the last pixel
index N , (i ≤ N − 1). Thus, the number of reconstructed AC pixels is reduced by one
pixel for each A-Scan. Notation ∆ is the pixel size. The right side of the equation is the
first-order linearization, with log(1 + x) ≈ x, assuming x is small.

This pixelwise method provides a more convenient way of mapping the AC for hetero-
geneous tissue. One limitation of this method is that it fails to extract the AC map when
the light does not completely attenuate at the last pixel location. Liu et al. optimized the
method by adding a constant AC value from the last data point N [80]. They rewrite
Equation 3.5 as

µ [i] ≈ I[i]

2∆
N∑

j=i+1

I[j] + I[N ]
µ[N ]

.
(3.6)

The AC at the last point µ[N ] is approximated using the curve fitting method.
Up to this point, we have discussed the commonly used method for extracting the AC

from OCT images based on a single scattering event model. Another method attempts
to model the light interaction as a multi-scattering event. Almasian et al. developed a
comprehensive AC extraction method with a multi-scattering model [81]. However, due
to its complexity, it would be difficult to implement this method for real-time extraction
and use in a laser osteotomy monitoring system.

3.1.2 Textural Features

Another simple and straightforward way to characterize tissue objects in most medical
images is by analyzing the texture appearance. There are several quantitative parameters
that can be extracted from the textural appearance of tissue in an OCT image. The most
commonly used and interpretable parameters are as follows:

• First-order statistics are related to the distribution of the pixel intensity and
ignore inter-pixel correlations. These parameters include mean value, median value,
standard deviation, skewness, and kurtosis of the tissue texture [82].

• Gray level co-occurrence matrix is the second-order statistical parameter for
texture analysis. It examines the spatial relationship among pixels and defines how
often different combinations of pixel brightness values (gray levels) occur in an image.
Based on this matrix, the features that can be extracted include contrast, correlation,
dissimilarity, energy, entropy, homogeneity, and maximum probability [83].
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• Neighborhood gray-tone difference matrix corresponds to the visual properties
of the texture. It quantifies the difference between a gray value and the average
gray value of its neighbors’ pixels within a kernel matrix. Five texture features can
be extracted from this matrix, including busyness, contrast, complexity, coarseness,
and texture length [84].

• Fractal dimension is a characterization index of a fractal pattern, established by
quantifying its complexity as a ratio of the change in detail to the change in scale.
Typically, the differential box-counting algorithm is used to quantify the pattern
change [85].

3.1.3 Classical Machine Learning Methods for Tissue Classifica-
tion

Traditionally, automating tissue characterization involves a machine-learning algorithm
to classify tissue types based on the features described in the previous sections. The main
purpose of machine learning is to implement an algorithm that can classify tissue types
by learning from the feature data, without explicit programmed1. In practice, the data
is divided into two main datasets, the training set and the testing set. The training set
serves as the learning data to optimize the machine-learning algorithm, which is then
referred to as the classifier model. The testing set is used to evaluate the performance of
the optimized model.

There are two main approaches to training the classifier model. The first approach
is supervised learning, whereby each of the samples in the dataset has a true label or
ground truth, and the model is trained to give a label as similar as possible to the true
label. The second approach is unsupervised learning, where the data does not have any
associated labels or prior knowledge of the ground truth. Although unsupervised learning
seems powerful, employing autonomous learning to discover the inherent structure of
unlabeled data, the approach is rarely used for classification problems. Ethically, it is
difficult to justify the validity of unlabeled data for medical applications. In this thesis
project, the discussion focuses on supervised learning, due to its simplicity. Among the
available machine learning algorithms commonly used in research of tissue characterization,
two supervised learning algorithms have been selected for illustration: the random forest
and Support Vector Machine (SVM). Both of these algorithms have been studied for
automated tissue characterization in intravascular plaque detection [86, 87], malignant
detection [88,89], and glaucoma detection [90].

• Random forest is an ensemble classifier that combines numerous decision trees. It
combines multiple binary tree predictors, where each tree consists of a randomly
sampled subset of features. Choosing the predictors in a random subspace of the
training data reduces the correlation between the individual decision trees and

1Although some of the algorithms were developed for regression problems, the discussion focuses on
their application to the classification problem.
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provides a variety of trees. This strategy is better at reducing the risk of overfitting
than using a normal decision tree. For a classification task, a majority vote from
multiple predictors’ outputs, where the most frequent categorical label, will yield
the predicted class [91].

• Support Vector Machine SVM is a supervised learning algorithm that analyses
data by constructing a set of hyperplanes used for separating different classes of data
in the feature space. The linear SVM classifier can be viewed as an extension of the
perceptron, an earlier classical machine-learning algorithm. Although perceptron
guaranteed finding a separating hyperplane on separable data, it mostly failed to
separate noisy data (embedded with outliers) that may be inseparable with a linear
hyperplane. In contrast, the SVM algorithm tries to find the maximum margin of
a separating hyperplane (support vectors) and adds a penalty term for violating
the classification constraints; thus, it performs better in noisy data. Furthermore,
SVM can be implemented using a nonlinear kernel function, such as polynomial,
sigmoid, and radial basis functions, to provide optimal separation for more complex
data [92].

3.2 Deep Learning

Deep learning is a subset of machine learning. It is regarded as an improvement over
conventional Artificial Neural Network (ANN) by building networks with multiple (more
than two) hidden layers, which are then called Deep Neural Network (DNN). As the
backbone of deep learning models, ANN is inspired by neurobiological aspects, although
its main goal is not to artificially rebuild biological brain systems. Technically, mimicking
the connectivity of neurons in the brain helps ANN to automatically discover hierarchical
feature representations, such that higher-level features can be derived from lower-level
features [93]. Its success in computer vision has inspired its use in several medical imaging
analysis studies, such as image denoising, classification, and segmentation.

This thesis project focused on applying a DNN for tissue classification, based on OCT
images. Compared to classical machine-learning methods, DNN can be considered as a
black box, capable of identifying feature representations automatically, without any feature
engineering or feature extraction techniques applied to the dataset [93]. Skipping the
feature extraction process is a key benefit for real-time feedback. This superiority of DNN
over other classical machine-learning algorithms can be regarded from the approximation
theorem, which describes ANN as a universal function approximation [94]. This theorem
states that an ANN with a single hidden layer is capable of approximating any continuous
functions with arbitrary complexity if it has a continuous input-output relation and
contains a sufficiently large number of neurons. Furthermore, DNN employs more than
one hidden layer, which theoretically offers more benefits than a single hidden layer ANN,
especially when the data has discontinuities. Several deep learning studies have shown
that approximation capacity grows faster with multilayer neural network models than
with single layer ones [95,96].
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3.2.1 Deep Neural Network General Representation

The artificial (deep) neural network model mimics the behavior of a biological neural
network by building a generalization of mathematical models of human neuronal biology.
The very basic building blocks of DNN are the adaptive computational units or neurons.
Figure 3.2 illustrates the mathematical model of a neuron with the vector xi representing
the input of the neuron that receives signals from the external sensory system or other
neurons. The weights vector, w = [w1, w2..., wi], is the synaptic weights that modify the
received signal. These weights can be interpreted as gains that attenuate or amplify the
input values. The parameter bk is the bias of a neuron. Here, the learning process of an
ANN refers to the process of modifying the weights of connections between the neurons.
The output of the neuron is the sum of the multiplication between the inputs vector and
the weights vector and is activated by an activation ψ(.), written as

y = ψ(
∑

wixi ). (3.7)

The activation function determines whether the neuron is activated or deactivated.
Several options are available, such as the linear, sigmoid, tanh, and Rectifier Linear
Unit (ReLu) activation functions. Nowadays, the ReLu activation function is one of the
most popular functions due to its simplicity. Although it has a linear relationship, it provides
nonlinear transformation. With enough neurons, it can be used to approximate arbitrary
nonlinear functions, such as the exclusive disjunction (XOR) and sinusoidal functions,
which cannot be approximated by simple linear activation functions [97]. Furthermore,
unlike other smooth activation functions, ReLu is insensitive to the vanishing gradient
problem [98], a condition where the weight is either extremely small or extremely big.

The beginning of this section states that complex functions can be approximated with
an ANN with a large finite number of neurons, which practically implies the stacks of
neurons that make up a neural layer. The DNN extends the ANN with multiple (two
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Figure 3.2: General model of a neuron in deep learning. Image is redrawn from [94].
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or more) neural layers, and the practice of training this type of network is called deep
learning. The general representation of a DNN can be seen in Figure 3.3. It is important
to understand the layers of a DNN model, which can be distinguished into one of three
types of layers:

(1) The input layer consists of an input vector (x1, x2, ..., xi) that supplies information
coming from the external sources of the network. In computer vision, it is the image that
needs to be classified. It is usually followed by at least one neural layer called the hidden
layer.

(2) The hidden layer contains the internal neurons of the network that have no
connection with the outside world. For DNN, the number of this layer should be more
than one. The input of this layer comes from the input layer or output from the previous
neural layer. The hidden layers are key components for capturing data’s complex nonlinear
behaviors. Complex features extracted from the training data are stored by the weight
vector wj = [w1,j, w2,j..., wi,j].

(3) The last layer is the output layer, which consists of a set of neurons that transfers
the most discriminating features learned from the training data to the outside world.
The output can be continuous, binary, or ordinal, depending on the specified activation
function. For classification problems, the output layer is typically equipped with a ridge
function, such as a sigmoid function, to translate the output information into a probability
distribution of classes.
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Figure 3.3: General representation of a multilayer deep neural network, where w0 is the bias of
a layer and V = ψ(

∑
(...)) [see Equation 3.8]. The dark gray node represents a constant value,

and the light gray node represents a trained variable. Image is redrawn from [94].

The mathematical form of the model represented in Figure 3.3 with output layer ŷ,
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inputs layer x, and a hidden layer V , is given by the following equations

V1,j = ψ(
∑

wi,jxi ) [hidden layer],

ŷ = V1,k ◦ V1,j = ψ(
∑

wj,kV1,j ) [output layer],
(3.8)

where the connections between layers are defined as a composition function. The learning
process is obtained by updating the weight w.

3.2.2 Loss Function and Optimization

A machine learning model undergoes a training process, defined as the process that tries
to minimize a loss function. In general, a loss function is a function that quantifies how
close the predicted values produced by a machine learning model are to the true values.
While training a DNN model, the output layer is connected to a loss function. Practically,
a convex function is preferable, such as the mean squared error (MSE) or the logistic error
function. For classification problems, logistic loss functions are preferred, since we are
mostly interested in the probabilities of success rather than in just the hard classifications.

This logistic loss function originated as the negative log-likelihood of the product of
Bernoulli distributions. It is also known as cross-entropy loss. For binary classification (0
or 1), it is defined as [99]

L(w) = −
n∑

i=1

[yi × log(ŷi) + (1− yi)× log(1− ŷi)], (3.9)

where ŷ is the predicted output and y is the true output. Note that n is the size of the
training dataset. When the number of output classes is more than two, the loss function
is known as categorical cross-entropy [99] and is equal to

L(w) = −
n∑

i=1

m∑
j=1

[yi,j × log(ŷi,j)], (3.10)

where m defines the number of targets (class outputs) that the network has to predict.

The optimization process in deep learning is denoted as updating the neural weights
such that the loss function is minimized. Optimization algorithms used for training DNN
models differ from traditional machine-learning optimization algorithms in several ways.
Most of the time, it is not possible to use an analytical solution to estimate the weights.
Therefore, optimization in deep learning is mostly obtained through iterative optimization
algorithms. One iterative optimization algorithm that is commonly used in deep learning
is gradient descent.

The straightforward gradient descent optimizer family is the batch gradient descent
which uses the entire training dataset and tries to minimize the average total loss at one
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training set. This method is mathematically written as [100]

wk+1 = wk − η∇L(wk), (3.11)

where ∇L(wk) is the derivative of the loss function evaluated at wk, and η is the learning
rate parameter.

This approach is prone to overfitting. Deep learning models with high capacity can
simply memorize the training dataset. In principle, overfitting could be prevented by
training the DNN with a dataset bigger than the model’s capacity. Unfortunately, it
can be expensive and is not always possible in practice. It is also computationally
expensive because it requires evaluating the model for every example in the entire dataset.
Alternatively, the gradient descent can be computed by randomly sampling a number of
small sample subsets from the dataset and taking the average loss from those subsets.
This optimization method is known as the minibatch Stochastic Gradient Descent (SGD)
method [100].

The learning rate is a very important parameter for the SGD algorithm. It is difficult
to set the optimal value. On the one hand, if the learning rate is too small, then the
algorithm will take longer to converge. On the other hand, if the learning rate is too high,
the algorithm will jump across the optimum loss value. Therefore, most optimization
algorithms have been developed to individually adapt the learning rates for different
parameters. For example, the AdaDelta is an adaptive learning rate method that adapts
learning rates based on a moving window of gradient updates [101]. This method later
improved by the Adam2 optimizer, which adapts the learning rates from the estimation
of the first and second moments of the gradients [102].

3.2.3 Backpropagation

A deep neural network learns its weights and biases using optimizers such as SGD, as
explained in the previous subsection. In the traditional optimization with feed-forward
process, one must calculate the gradient of the loss function for each individual weight,
which requires a lot of computational resources and effort, especially in a deep neural
network with deep layers. Therefore, it is important to have a fast algorithm for computing
such gradients.

A well-known algorithm for obtaining fast gradient computation is the backpropagation
algorithm. Its strength was demonstrated in 1986, in a study by Rumelhart et al. [103].
The team found that backpropagation learning works faster than feed-forward learning.
Today, the backpropagation algorithm is considered a fundamental building block of DNN.
The idea of this algorithm is that the deep neural network is considered as a compositional
function. Therefore, we could intuitively use the chain rule of derivative ( ∂y

∂x
= ∂y

∂u
∂u
∂x
) to

propagate the partial derivative from the lost function, output layer, hidden layer, and the
input layer, respectively. This derivative process is called backpropagation. An illustration
of this gradient computation is shown in Figure 3.4.

2Abbreviation for adaptive moment estimation.
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Figure 3.4: Comparison between the feed-forward mode (top) and the backpropagation mode
(bottom) to compute the gradient. In the forward mode, the weight gradient must be computed
for every individual node, while keeping the other weights constant. In the backward mode, the
weight gradient can be reused from the higher node to the lower node at one pass. Thus, faster
computation can be achieved.

The backpropagation algorithm is faster than forward propagation. One forward pass
computes the gradient of all weights and outputs with respect to one parameter (weight).
Thus, when computing the full gradient, the computation amounts to the number of
all weights in the network. In contrast, one backward differentiation pass computes the
derivative of one output with respect to all parameters. When computing the full gradient
thusly, the computation only amounts to the number of neurons in the output layer. Since
the quantity of outputs is usually much smaller than the number of trainable parameters
in a DNN model, the backward mode is faster and has become the standard algorithm for
fast gradient computation.

3.2.4 Convolutional Neural Network

Just as the neural structure of the brain inspired the development of ANN, studies on
how our brain processes visual information from the eye3 led to the development of
the Convolutional Neural Network (CNN). CNN is a specialized form of deep neural
network for analyzing spatial structure. It has been used primarily to solve problems of
computer vision, such as self-driving cars, robotics, and medical diagnoses. CNN has been
designed specifically to recognize two-dimensional shapes with a high degree of invariance
to translation, scaling, skewing, and other forms of distortion.

Technically, CNN depends on two main operational layers, the convolution layer and

3The inspiration came from a cat’s visual cortex [104], which has small regions of cells that are sensitive
to specific regions in the visual field.
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the pooling layer. The convolutional operation in the convolutional layer is defined as the
integral operation of two functions such that the first function acts as a filter (denoted
as the kernel) to the second function. The convolution output is usually interpreted as
a modified (filtered) version of the second function. For discrete signals, the integral
operation becomes a summation which is, in general, defined as

y(i, j) = I(i, j) ∗K(m,n) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (3.12)

with I representing the input image to be convolved with a kernel matrix ,K. Here, indices
i and j are within the image matrix dimension, while those of m and n deal with the
kernel matrix dimension. The operation is illustrated in Figure 3.5. In the form of a DNN,
the connecting weights are stored in the kernel; thus, a convolutional layer has more
weight capacity compared to a fully connected layer with the same height [105].

Convolution operation extracts feature maps or activation maps that operate as filters
for spatial pattern detection, for example, vertical and horizontal edge detectors. After
applying the convolution operation, the pooling layer replaces the convolution output with
a statistical value over the local region (neighborhood). For example, the max pooling layer
summarizes the output as the maximum within a rectangular neighborhood. Convolutional
layers followed by pooling layers are applied to reduce the spatial size (width and height) of
the data represented and enables feature extraction with higher-level representation [105].
Typically, the last layer of the CNN is connected to the conventional fully connected layer
that encodes the extracted feature map to the output (vector) layer, as illustrated in
Figure 3.6.

The CNN is one of the most successful and frequently used deep neural network
model used for image classification and object detection. The first successful application

m = 3

n = 3

i

j

Figure 3.5: Illustration of the convolution operation. The 3x3 kernel matrix (dashed blue) slides
over the input image (bottom) starting from the red kernel (red pyramid) location to the blue
kernel (blue pyramid) location and reconstructs the output image (top). Note that the dark gray
region at the input image is the out-of-border region which is usually filled with zero value (zero
padding).
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Input Image

Convolution

Pooling Ouput

Fully Connected

Flattening

Figure 3.6: Typical architecture of CNN. The convolutional layer is paired with a pooling layer
to extract higher feature representation. After pooling, the extracted feature is connected to a
fully connected layer that encodes the map to the output (vector) layer. The flattening step
transforms the 2-dimensional feature map into a 1-dimensional weight vector. The image is
redrawn from [106]

.

was LeNet-5, used by banks to recognize handwritten digits [106]. It was followed by
AlexNet, which won the ImageNet contests in 2012 [107]. Over time, many advanced
CNN architectures have since been developed. One example of a modern CNN model is
Residual Neural Network (ResNet) [108], which improves CNN performance by adding a
skipping connection to transfer the identity function to a deeper layer. This concept was
later extended to a more advanced network, Densely Connected Convolutional Networks
(DenseNet), which applied a skipping connection layer to almost all layers in the CNN [109].

3.3 Real-Time Deep Learning Based Feedback Sys-

tem

The basic idea behind the feedback system proposed in this project is to use OCT images
to monitor tissue type at the subsurface level and to control the laser automatically.
This section discusses the general steps and components needed to realize the automatic
feedback system. The steps are divided into three main subprocesses, illustrated in a
schematic diagram in Figure 3.7. The complete implementation of these processes is
discussed in Chapter 6.

The first subprocess is acquiring and enhancing (denoising) the image. Monitoring
laser ablation in real-time requires an OCT system with fast acquisition time. OCT
technology at the time of writing this thesis suggests the use of SS-OCT for a higher
acquisition rate and deeper imaging range compared to other OCT options (see Section
2.3). The acquisition step is followed by an image denoising step to improve the SNR
of the acquired image, which will further improve the accuracy of the feedback system.
The second subprocess is tracking the ablation crater. A region of interest (image patch)
from the OCT image is used as input for a DNN to classify tissue type at the ablation
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Basic Idea for Smart OCT Laser Surgery 

More Details

Ablation laser
Source

Deep Neural Network

Tissue Types

OCT Imaging System
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4
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Focusing Optics

Figure 3.7: Schematic diagram of the proposed smart laser surgery system. Step 1: OCT images
are acquired and enhanced during laser ablation. Step 2: A region of interest (image patch) from
the OCT image is used as input for the deep neural network to classify tissue type at the ablation
position. Step 3: The deep neural network output provides feedback for the ablation laser to either
stop or continue ablating.

location. The third subprocess is classifying tissue type. A DNN model classifier predicts
the current tissue type being ablated and provides feedback to the laser to either stop or
continue ablating.

3.3.1 Er:YAG Ablation Laser

Lasers have been used extensively in medicine, especially high-power lasers for osteotomy.
High-power lasers such as CO2, Er:YAG,Er-Cr:YSGG,Nd:YAG,Nd:YLF, and Ti:Sapphire
lasers are among those that have been clinically applied in dentistry and rapidly studied
for application in laser osteotomy. Of the lasers mentioned, the Er:YAG laser was selected
as the ideal laser for laser osteotomy, based on its optimal absorption by bone and water.
Figure 3.8 shows the absorption coefficient of the Er:YAG laser and other medical lasers
for hydroxyapatite materials (the main component of bone), water (H2O), melanin, and
hemoglobin. The plot shows that the Er:YAG laser has a high peak of absorption in both
water and hydroxyapatite. It is important to note that the high absorption of Er:YAG
laser has an indirect effect on ablation efficiency.

Based on the plot in Figure 3.8, CO2 laser has a higher absorption coefficient than
Er:YAG laser for hydroxyapatite material, which is higher than its absorption coefficient
in water. In contrast, the absorption coefficient of water is higher than that of bone for
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Figure 3.8: Absorption coefficients of several medical lasers and other existing lasers for
hemoglobin, melanin, hydroxyapatite, and water (H2O). Figure adapted and reprinted with
permission from [110].

Er:YAG laser. The differences between the respective water and hydroxyapatite absorption
coefficients affect ablation efficiency during laser osteotomy, since the ablation mechanism
is mostly based on the tissue-water phase explosion. The water existent in tissue is
an explosive material when high energy laser is deposited. The tremendous changes in
temperature cause high pressure bubbles to build, which then explode, resulting in bone
material ejection. Under water-cooled ablation conditions, Er:YAG laser light is mostly
absorbed by the water, while the CO2 laser light is mostly absorbed by the hydroxyapatite.
Therefore, the probability of a tissue-water phase explosion is higher when using Er:YAG
rather than CO2 laser.

Studies of CO2 laser use for bone cutting show heavy carbonization at the margin
of the cut and, consequently, took a longer healing time compared to osteotomy using
conventional drills or saws [14,15]. Additionally, carbonization and excessive debris obstruct
the view of the ablation site. Conversely, the Er:YAG laser has relatively higher bone
ablation rates per pulse with little or no carbonization on the adjacent ablation margins,
making it an optimal system for bone cutting [111]. A previous study found that a bone
ablation rate of up to 0.1mm/pulse, could be easily achieved with Er:YAG laser [112].
The thermal damage to the tissue is low, so wound healing time is comparable to that of
conventional water-cooled osteotomies performed with mechanical saws or drills [13–15].
Therefore, Er:YAG laser was chosen for the investigation into developing a reliable laser
osteotomy set up with a feedback system to detect the tissue to be cut.
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3.3.2 Image Denoising

Image denoising is one of the tasks discussed in Chapter 2 Section 2.6 and is essential
to reducing the speckle in OCT images. The gold standard method has been spatial
compounding, which works by sampling numerous images at a single sampling point and
calculating the mean value for each pixel (frame-averaging). This method improves the
SNR of the image by a factor of

√
N . However, it requires a longer acquisition time. In this

thesis project, a denoising autoencoder neural network, one of the deep learning models,
was used to enhance OCT image quality. The performance of the model is explained in
Chapter 4, where the deep learning model mimics the spatial compounding method and
improves the classifier algorithm’s accuracy.

3.3.3 Ablation Tracker

Ablation crater tracking is a critical task in this project because the tissue classifier system
needs to focus on the area below the ablation crater. In the application, it was assumed
that the laser ablation spot was fixed at the center of the OCT image. Edge detection
of the OCT image is required to define the tissue surface and to locate the patch image
position over depth. In Chapter 5 and Chapter 6, the Canny edge method [113] is shown
to be sufficient for detecting the surface of bone tissue in the OCT image.

3.3.4 Challenges of Real-Time Tissue Characterization During
Laser Ablation

Tissue classification or characterization is an essential part of the proposed feedback system.
Implementation of this thesis project specifically focused on the use of deep learning
methods. However, like other machine-learning algorithms, the deep learning method
is highly dependent on the datasets used for training. The quality and quantity of the
training data determine the accuracy and performance of a machine-learning model. Since
photothermal ablation is the primary ablation mechanism for microsecond Er:YAG lasers,
increases in temperature during laser ablation induce changes in the optical properties of
the tissue and indirectly lead to textural deformation. Therefore, it is important to train
the deep learning model with training datasets collected while ablating the tissue. An
implementation of this step is discussed in Chapter 6.



Chapter 4

OCT Image Denoising with Deep
Learning

Denoising is one of the major steps in most medical image analyses. Especially in
OCT, it refers to the suppression of speckle noise and preservation of carrier speckles. In
this thesis, improvement in image quality was expected to improve the accuracy of an
image-based tissue classifier. This chapter presents two publications that proposed the
use of deep learning for denoising OCT images.

4.1 Image Denoising with A Deep Learning Model

for Bone Images

The first publication demonstrated our experiment with using a deep learning model to
resemble the frame-averaging method. Specifically, we were implementing a U-Net model,
inspired by Ronneberger et al., as an autoencoder to denoise the biomedical images [114].
As a preliminary experiment, denoising was done for OCT images of bone tissue only. The
results show that the images denoised with U-Net have higher SNR, CNR, and sharpness
than those denoised with classical filters, BM3D and DD-CDWT [115,116]. Additionally,
the processing time was faster with U-Net than with the classical denoising filters.

Publication : Y. A. Bayhaqi, G. Rauter, A. A. Navarini, P. C. Cattin, and A. Zam, ”Fast
optical coherence tomography image enhancement using deep learning for smart laser
surgery: preliminary study in bone tissue”, Proc. SPIE, Vol. 11207, in Fourth International
Conference on Applications of Optics and Photonics, 2019.

Copyright notice: © 2019 COPYRIGHT Society of Photo-Optical Instrumentation
Engineers (SPIE). Reprinted with permission under the terms of use of SPIE Publications
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ABSTRACT   

One of the most common image denoising technique used in Optical Coherence Tomography (OCT) is the frame averaging 
method. Inherent to this method is that the more images are used, the better the resulting image. This approach comes, 
however, at the price of increased acquisition time and introduced sensitivity to motion artifacts. To overcome these 
limitations, we proposed an artificial neural network architecture able to imitate an averaging method using only a single 
image frame. The reconstructed image has an improvement in the signal-to-noise ratio (SNR) and contrast-to-noise ratio 

(CNR) parameters compared to the original image. Additionally, we also observed an improvement in the sharpness of the 
denoised images. This result shows the possibility to use this method as a pre-processing step for real-time tissue 

classification in smart laser surgery especially in bone surgery. 

Keywords: Neural Network, Optical Coherence Tomography, Denoising, Frame Averaging 
 

1. INTRODUCTION  

Optical coherence tomography (OCT) is rapidly becoming the preferred method for in vivo investigation of thin tissues or 

subsurface imaging. This modality is a clinically viable alternative for real-time high resolution in situ investigation of 
tissue structures [1]. In laser surgery, where critical tissues such as nerves and blood vessels need to be avoided from being 
cut, OCT is useful to monitor the tissue anatomy at the subsurface level before each ablation pulse is applied. The basic 
idea of the smart laser surgery system proposed in this study is to use OCT images to monitor tissue anatomy at the 
subsurface level during laser surgery. A trained artificial neural network able to differentiate tissues based on the OCT 
images could be used to determine if the ablating laser should stop or continue ablating [2]. However, in the process, OCT 

image enhancement is necessary to minimize tissue classification errors. Figure 1 shows the schematic diagram of the laser 

surgery system whereas we focus in this study on Step 1. 

Speckle is one of the causes of the grainy appearance of OCT images and is dependent on both the wavelength of the 
imaging beam and structural characteristics of the tissue [3]. Similar to ultrasound, as the signal carrier, speckle in OCT 
also contains information about the textural characteristics and clinical features of the tissues. However, random 
interference introduces interference artifacts called speckle noise that degrades the image quality and can mask the texture 

features of the tissues carried by the signal carrying speckle [3]. The sensitivity of the interferometer to the phase of a light 
makes OCT susceptible to speckle noise. Furthermore, another source of noise in OCT is the missing frequency problem. 
Due to the nature of the coherent detection method, OCT scanners can only detect those objects whose spatial frequency 

spectra (𝜐) overlap with the band of spatial frequencies between [2𝜐 − 1 𝑙𝑐⁄ , 2𝜐 + 1 𝑙𝑐⁄ ], where 𝑙𝑐 is the coherence length 
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of the source. As a result, the interior of structures with smoothly varying refractive-index profiles are absent in OCT 
images [3]. Separation of these signal carrying speckle from the signal degrading speckle (speckle noise) and the missing 
frequency problem are ongoing challenge in OCT. Multiple approaches have been suggested to address these challenges 

in the literature. The approaches can be roughly classified into frame averaging methods, and digital suppression methods. 

 

Figure 1. Schematic diagram of the proposed smart laser surgery system. Step 1: OCT images are acquired and enhanced 

during laser ablation. Step 2: A region of interest (image patch) from the OCT image is used as input for the neural network 
to classify the tissue type at the ablation position. Step 3: The Neural network output provides feedback for the ablation 

laser to either stop or continue ablating. 

The frame averaging method operates based on registrations of the images and elimination of the randomness by averaging 

between repeated acquisitions [4]. However, this method is susceptible to motion artifacts if the registration of movement 
is not well solved. Additionally, the performance of the method depends on the acquisition speed and number of repetitions 
hence may increase the acquisition time. Another method to reduce noise in OCT is using digital suppression such as 
wavelet transform filtering and spatial domain filtering approaches which can be applied directly to a single frame image 
[5, 6]. However, these methods are often computationally complex and often remove small structural features from the 

image which leads to lower image quality as compared to the frame averaging method. 

In this work, we present an implementation of a deep learning based artificial neural network (ANN) model to reduce noise 
in OCT images. In image pattern recognition and computer vision, ANNs are already known for their ability to classify, 
retrieve, detect and segment images. ANNs are also used to correct or denoise images which is useful in most medical 
imaging applications as it could lead to a better diagnostic assessment. In ultrasound imaging, ANNs were demonstrated 
to solve the problem of recovering ultrasound signals from undersampled measurements by utilizing stacked denoising 
autoencoders [7]. Furthermore, ANNs are also studied to enhance low dose CT Scan images which leads to a solution for 

reducing the risk of X-ray radiation [8]. The success of such methods arises from their ability to exploit the spatial 

correlation at multiple resolutions using a hierarchical network structure. 

In OCT imaging, recently, an implementation of a noise suppression algorithm using deep learning was proposed by 
Halupka et al. in 2018 by utilizing a convolutional neural network [9]. In 2019, Laves et al. also proposed another review 
on this problem which employed a deep convolutional autoencoder with a prior trained ResNet image classifier as 
regularizer [10]. It was shown that regularized autoencoders are capable of denoising retinal OCT images without blurring 

details of diseases. For smart laser surgery, where short and predictable computation time is required, ANNs would be the 
way to go. In this study, we proposed to use the U-Net model as an extension to deep convolutional autoencoders for our 

denoiser function which has been recently reviewed for its ability to enhance medical images [11]. 

 

2. MATERIAL AND METHOD 

2.1 Data acquisition and OCT system 

The OCT system used was a custom developed Axsun swept source OCT System which has a center wavelength (λ0) of 

1060 nm and a sweep rate of 100 kHz. The image size acquired from this OCT system has a size of 300 pixels (7.5 mm) in 
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width and 1024 pixels (1.6 mm) in depth. The output image format from the OCT system is 32-bit grayscale TIFF images. 
This system was used to obtain a subsurface image from a porcine femur bone sample. OCT B-Scan images were taken in 
120 different locations. In each acquisition location, 300 frames were acquired and averaged to reduce the noise of the 
OCT (frame averaging image), while ten images were randomly selected out of these frames (noisy images). Overall, a 

total of 1200 images were acquired and splitted into 480 training, 120 validation, and 600 testing datasets. Figure 2 shows 
the custom OCT system, the bone image sample and a representative image sample taken with this system. 
 

 

  

Figure 2. The custom developed Axsun swept source OCT system (left) used in this work, a porcine femur bone, sample 
(middle) and the raw OCT image example of the bone (right). 

 

 
Figure 3. The U-Net model proposed in this work. It consisted of the encoding path (left side) and decoding path (right 
side). 

 
2.2 U-Net Architecture 

The objective of this study is implementing a U-Net convolutional neural network model as an autoencoder to denoise 
OCT images. The main structure of the model proposed was an implementation of the neural network inspired by 

Ronneberger et al. in 2015 [11]. However, changes to the U-Net input size were done mainly to fit our OCT image size. 
The encoding path (left side) and decoding path (right side) were adapted accordingly. The encoding path was followed 
by a typical architecture of a convolutional neural network. It consists of a threefold repetition of two convolutional layers 
with small receptive 3x3 pixels filters. Figure 3 illustrates the network architecture. Each repetition followed a 2x2 max 
pooling layer with a stride of 2 for downsampling, and we doubled the number of features after each downsampling step. 
As the opposite, the decoding path consisted the same repetition of upsampling layers of the feature map followed by two 

convolutional layers and half the number of feature channels, a concatenation layer with the correspondingly cropped 

0
.5

 m
m

 

1.0 mm 

Proc. of SPIE Vol. 11207  112070Z-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

feature map from the encoding path, and two convolutional layers with small receptive 3x3 pixel filters. We equipped all 
hidden layers with the rectification nonlinearity (ReLU) activation function. The input and output size of the network were 
adapted such that the max-pooling operations are applied with an even x and y size. Therefore, the OCT images were 
resized to 304x1024 pixels using replicate padding method which extend the image by repeating border elements of array. 

Furthermore, to prevent overfitting, we put a dropout layer (ratio of 0.1) after each convolutional layer. For the final layer, 
we used a 1x1 convolutional layer to map the pixel value as similar to the reference pixel. 
 

2.3 Training details 

We implemented our approach in Keras-GPU environment, using the TensorFlow backend for neural network constructing 
and training. The noisy images were the input for the U-Net, while the averaged images were used as a label image. We 

ran the training on a workstation equipped with an Intel Xeon E5620 and two NVIDIA GEFORCE GTX 1080Ti GPUs, 
which enabled us to perform parallel computation to speed up the computation time. We trained the U-Net using 4000 
epochs. The training was done in mini-batches, with a batch size of 4 samples to fit our GPUs memory capacity. For the 
loss function, we defined the mean squared error function as already been proposed by Halupka et al. in 2018 [9]. The loss 
function implicitly tells the similarity between the reconstructed image and the label image. We also defined Adam 

(learning rate = 1.0 x 10−4) as the training optimizer. It took approximately 96 hours (4 days) to train the network. 

 

2.4 Evaluation and comparison 

We compared the U-Net autoencoder with two analytical denoising methods, block-matching 3D (BM3D) and double-
density dual-tree complex wavelet transform (DD-CDWT) [5, 6]. Both denoising methods were implemented using 
MATLAB 2017b. We compared all methods in term of image quality and computation time. We used standard image 
quality metrics, such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), sharpness, and mean squared error, to 

evaluate their performance. The sharpness parameter was proposed by Sattar et al. [12] as a measure of edge preservation 

between the enhanced image and the correspond frame averaging image which defined as  

𝛽 =
Γ(Δ𝑠 − Δ𝑠̅̅ ̅, Δ�̂� − Δ�̂�̅̅ ̅)

√Γ(Δ𝑠 − Δ𝑠̅̅ ̅ , Δ𝑠 −  Δ𝑠̅̅ ̅) . Γ (Δ�̂� −  Δ�̂�̅̅ ̅ , Δ�̂� − Δ�̂�̅̅ ̅)

  

where Δ𝑠 (𝑖, 𝑗)  is the filtered version of 𝑠(𝑖, 𝑗), obtained with a 3x3 pixels approximation of the Laplacian operator. 
Furthermore, the mean squared error metric (MSE) was used to measure the similarity between the enhanced image and 
the correspond frame averaging image. To fairly evaluate between the different denoising methods, we tested all of the 
methods on a personal computer with 2.8 GHz Intel Core i7 processor, 16 GB 1867 MHz DDR3 memory and a GPU 

NVIDIA GTX 1050Ti. 

 

3. RESULT AND DISCUSSION 

Representative images of each enhancement technique within the test set are shown in Figure 4. For display purposes, the 
images were resized while the aspect ratio was maintained during processing. Furthermore, the image quality comparison 
is shown in Table 1. We observed that the BM3D and DD-CDWT were out-performed by the U-Net autoencoder to denoise 
OCT images. The average SNR and CNR were 12.92 dB and 4.72 dB respectively for the raw images; 16.64 dB and 
6.34 dB for the 300-fold averaged images; 15.5 dB and 6.4 dB for the BM3D; 15.11 dB and 6.34 dB for the DD-CDWT; 

and 15.87 dB and 7.31 dB for the U-Net filtered images. Additionally, we also observed an improvement in the sharpness 
of 0.54 for the frame averaging images to 0.82 for the U-Net reconstructed images. The frame averaging method tends to 
blend the image points with the surrounding area. This smears the edges and induces a loss of general detail [4].  
Meanwhile, we applied dropout regularization in the U-Net to prevent overfitting and support the generalization 
capabilities for denoising the images instead [13]. Therefore, the U-Net was able to remove the speckle noise while 
maintaining the sharpness of single frame image. Other than that, we also measured the MSE of the reconstructed images. 

The BM3D and DD-CDWT method had higher MSE as compared to U-Net. This is because the U-Net was trained to 
modify the pixel as close to the reference (frame-averaging image), while the standard methods are based on an analytical 

approach. 
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The averaged computation time required for all the denoising techniques is shown in Table 2. The performance time was 
a time average of all the 600 test set images. The result shows that the U-Net was faster since it was run in parallel on the 
GPU while the other existing methods were run on the CPU. This result shows the possibility of using U-Net to denoise 
OCT images in real-time and increase tissue type classification accuracy for our smart laser surgery system. However, the 

number of OCT images used in this study was limited, and further studies are needed to train and test the neural networks 

using thousands of OCT images and more images from different tissue types to be denoised. 

(a)  

 

(b)  

 

(c)  

 

(d) 

 

Figure 4. Image comparison between (a) Frame Average method, (b) BM3D, (c) DD-CDWT, and (d) U-Net. 

 

Table 1. Image quality comparison between the standard techniques and the proposed U-Net network. 

Denoising Method Average SNR (dB) Average CNR 

(dB) 

Average 

Sharpness 

Average MSE 

(pixel value) 

Raw 12.92 4.72 - - 

Frame Averaged-

300 

16.64 6.33 0.54 - 

BM3D 15.50 6.4 0.72 1.23 

DD-CDWT 15.11 6.34 0.68 1.36 

U-NET 15.87 7.32 0.82 1.04 

 

Table 2. Denoising performance comparison between all method. 

Denoising Method Time (seconds) 

Frame Averaged-300 2.730 

BM3D 2.350 

DD-CDWT 0.860 

U-NET 0.068 

 

4. CONCLUSION AND FUTURE WORK 

The study demonstrates the ability of the U-Net to mimic the frame averaging method in denoising OCT images. The 

output images from the U-Net autoencoder have a higher image quality than those from the standard analytical methods. 
The reconstructed image showed an improvement in the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 
parameters compared to the original image. The MSE result shows that the U-Net reconstructed images are similar to the 
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image denoised using the frame averaging method. Furthermore, the performance comparison shows that the proposed 
method can be used for real-time image denoising which is suitable for our smart laser surgery system. However, the 
authors believe that a further study is needed to investigate the performance of the U-Net autoencoder in denoising OCT 

images of other tissue types such as muscle, nerve, and bone marrow. 
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4.2 Image Denoising with Deep Learning for Five

Tissues

After demonstrating the denoising performance for bone images, the experiment is ex-
tended to by denoising OCT images of marrow, fat, muscle, and skin. Two deep learning
models, U-Net [114] and ResNet [108] models, were compared. The training of the models
with supervised learning and semi-supervised learning were also compared, represented
by the Generative Adversarial Network (GAN) [117]). The quantitative and qualitative
measurements show that the deep learning models with supervised learning perform
similarly to the frame-averaging method and better than the classical denoising filters.
The results also prove that image denoising improves the accuracy of the tissue classifier.
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Abstract— Laser osteotomy promises precise cutting
and minor bone tissue damage. We proposed Optical Coher-
ence Tomography (OCT) to monitor the ablation process
toward our smart laser osteotomy approach. The OCT image
is helpful to identify tissue type and provide feedback for
the ablation laser to avoid critical tissues such as bone
marrow and nerve. Furthermore, in the implementation, the
tissue classifier’s accuracy is dependent on the quality
of the OCT image. Therefore, image denoising plays an
important role in having an accurate feedback system.
A common OCT image denoising technique is the frame-
averaging method. Inherent to this method is the need for
multiple images, i.e., the more images used, the better the
resulting image quality. However, this approach comes at
the price of increased acquisition time and sensitivity to
motion artifacts. To overcome these limitations, we applied
a deep-learning denoising method capable of imitating the
frame-averaging method. The resulting image had a similar
image quality to the frame-averaging and was better than
the classical digital filtering methods. We also evaluated if
this method affects the tissue classifier model’s accuracy
that will provide feedback to the ablation laser. We found
that image denoising significantly increased the accuracy
of the tissue classifier. Furthermore, we observed that the
classifier trained using the deep learning denoised images
achieved similar accuracy to the classifier trained using
frame-averaged images. The results suggest the possibility
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of using the deep learning method as a pre-processing step
for real-time tissue classification in smart laser osteotomy.

Index Terms— Deep learning, image denoising, image
processing, optical coherence tomography.

I. INTRODUCTION

LASER osteotomy offers many advantages over mechan-
ical tools, such as a reduced risk of bacterial con-

tamination (due to its contactless nature), less tissue loss,
and high precision cutting [1]–[4]. In addition, the small
focused cut of a laser osteotome enables surgeons to go
beyond straight cuts and perform more complex cuts like
circular, diamond, and dove-tail shapes [5]. Furthermore, the
non-contact laser osteotome provides a possibility to introduce
a feedback system to prevent cutting unwanted tissues or
damaging critical tissues, such as bone marrow and nerve.
Several such feedback systems have been developed, such as
optical spectroscopy [6]–[8] and acoustic feedback induced by
the laser ablation process [9]–[12]. However, these methods
rely on signals emitted from the laser ablation process and
permit some damage to the critical tissues. An alternative
and ablation-free approach for monitoring the laser abla-
tion process can be implemented by coupling the ablation
laser with an Optical Coherence Tomography (OCT) imaging
system.

OCT is an emerging technology that performs non-invasive
cross-sectional tomography using light propagation proper-
ties in media and interference phenomena. This imaging
technology is analogous to ultrasound imaging, except that
it uses light instead of sound. The signal reconstruction
is performed by measuring the magnitude and echo time
delay of back-reflected or back-scattered light from internal
micro-structures in the tissue. Thus, OCT is a viable alternative
for real-time, high-resolution, and in-situ investigations of thin
tissue structures [13], [14].

Critical tissues such as bone marrow and nerve must
be avoided in laser osteotomy. Therefore, OCT could help
to monitor tissue anatomy at the subsurface level during
the laser ablation process. Fig. 1 presents a schematic dia-
gram of our proposed system. This process consists of three
main subprocesses. The first subprocess is the acquisition
and denoising of the images. Next, the second subprocess
is tracking the ablation crater. The tracked region of interest
(image patch) from the OCT image will be used as an input

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Schematic of the proposed smart laser osteotomy system. Step 1: OCT images of tissue are acquired (light red) and denoised during laser
ablation (dark red line). Step 2: A region of interest or image patch (yellow box) from the OCT image is used as input for the artificial neural network
to classify the tissue types at the ablation position. Step 3: An artificial neural network provides feedback for the ablation laser to either stop or
continue ablating based on the patch image.

for a classifier to classify tissue type at the ablation position.
The third and final subprocess is the classification process.
A deep-learning artificial neural network (ANN) is proposed to
predict the current tissue type during the ablation and provides
feedback to the ablating laser to stop or continue ablating.

In the proposed schematic, the tissue classifier’s accuracy
is dependent on the quality of the OCT image that is used for
training. Although the ANN could identify tissue type from
the raw image directly, we believe that the ANN could identify
tissue type from the denoised image with better accuracy.
Furthermore, besides using an ANN as a tissue classifier, our
approach also proposed to use an ANN for the image denoising
process. This paper demonstrated the benefit of using ANN
as an image denoiser compared to the classical denoising
methods. We also investigated the effect of denoising the OCT
image to improve the tissue classifier’s accuracy.

II. SPECKLE AND IMAGE DENOISING IN OCT

Like most narrow-band detection systems such as radar and
ultrasound, speckle is the fundamental OCT image source.
Speckle is the cause of the reconstructed image’s grainy
appearance. It depends on the size and temporal coherence of
the light source and the tissue’s structural characteristics. The
phenomenon was found as the result of random interference
between mutually coherent reflected waves from multiple
back- and forward-scattering [15]. Consequently, speckle plays
a dual role as a source of noise (speckle noise) and as a carrier
of information about the tissue microstructure (signal-carrying
speckle). Speckle is considered as noise when destructive
interference happens and reduces the correspondence between
the local density of scatterers and the intensity variations. If all
the reflected waves from the tissue could be forced to interfere
constructively, the noise would vanish, and the image contrast
would be significantly improved. The OCT image denoising in
this paper aimed toward this ideal of speckle-noise reduction.

Separating the signal carrier speckle from speckle noise
(image despeckle) is an ongoing challenge in OCT. Several
approaches have been suggested to address this problem.
A common technique for reducing speckle noise in OCT
is frame-averaging, where absolute magnitudes of repeated
signals from the same location are averaged to form a new

noise-reduced signal [16]. However, this method is suscepti-
ble to motion artifacts if compensation of movement is not
resolved. Additionally, the resulting image quality depends on
the number of repetitions. The more images used, the better the
resulting image quality, but this inherently leads to increased
acquisition time.

Other than that, several classical digital filters were also
suggested to reduce speckle noise in OCT. Sparse and wavelet
transform filtering approaches, for example, can be applied
directly to a single frame image [17]–[20]. However, these
methods are often computationally complex and remove small
structural features from the image, resulting in lower image
quality than the frame-averaging method.

In this work, besides using an ANN to classify the tis-
sue type, we also used an ANN to reduce speckle noise
in the OCT image. ANN is already known for its ability
to classify, retrieve, detect, and segment images in image
pattern recognition and computer vision. ANN has also been
used to correct or denoise images, making them useful for
most medical imaging applications and potentially leading to
better diagnostic assessments. In ultrasound imaging, ANN
has been shown to solve recovering ultrasound signals from
under-sampled measurements by utilizing stacked autoen-
coders [21]. ANN has also been used to enhance low-dose
Computed Tomography images, which may offer a solution for
reducing X-ray radiation [22]. These endeavors’ success arises
from exploiting the spatial correlation at multiple resolutions,
using a hierarchical network structure.

OCT image denoising using ANNs has been proposed
and implemented mostly based on the convolutional neural
network (CNN) models [23]–[25]. The resulting images had
similar image quality to those denoised with the frame-
averaging method. The CNN could denoise retinal OCT
images from a single image without blurring the retinal tissue
structure’s details, which reduces acquisition time. However,
these references are only from the field of ophthalmology with
their retinal OCT images. Here, the CNN model has to learn to
denoise an image while retaining (memorize) the retinal tissue
structure rather than just a general noise reduction. The CNN
model might fail to denoise images in different OCT domains
(e.g., intravascular, dental, or dermatology OCT images).
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Fig. 2. Illustration of the training process using the deep learning method to denoise raw OCT images. The frame-averaged (reference) image is
reconstructed by registering and averaging 300 repeated raw images of the same position on the sample. The deep learning denoiser is trained to
modify the raw images to make them as similar as possible to the frame-averaged image, based on the loss function.

In our application, we trained and tested the performance of
the CNN method using several tissues with various textures so
that the CNN model learns more generalization of the noise.
We extended the ability of the CNN to increase OCT image
quality for normal tissues, which are encountered during laser
osteotomy. Additionally, this paper gives an overview of the
CNN model’s performance to improve OCT image quality
compared to frame-averaging and some classical digital filter
methods. We also outlined the effectiveness of the image
denoiser to increase the accuracy of a subsequent CNN tissue
classifier.

III. OCT IMAGE DENOISING METHODS

This work aimed to train a CNN that takes raw (noisy)
images as input and generates images with the same quality
level as the corresponding frame-averaged images. To achieve
this, the CNN was trained to minimize the defined loss
function, e.g., the mean squared error (MSE) between the
corresponding raw and frame-averaged images. Furthermore,
since noise in OCT also applies in the temporal domain,
we also trained the CNN to generalize the temporal noise by
using training images that were extracted in different (random)
temporal locations over the repeated frames in the same spatial
acquisition location. These training steps are shown in Fig. 2.
At the end of the experiment, we investigated the benefit of
denoising the image to improve the tissue classifier’s accuracy.

A. Frame-Averaging Method

The frame-averaging method is still one of the most effec-
tive ways to reduce speckle noise in OCT imaging. In this
paper, we used the frame-averaged image as the reference
image or label. The reference image is generated by registering
and averaging repeated scans of the same location. Averaging
of N images improves the SNR by a factor

√
N [26]. Hence,

the higher the number of images, N , the lower the noise level.
Nevertheless, since the frame-averaging method is susceptible
to motion artifact, image registration is necessary before
averaging the frames.

B. Deep-Learning Models

We compared two CNN models for denoising OCT
images: a UNet autoencoder model [27] and a residual net-
work (ResNet) model [28]. Additionally, we also compared
two different loss functions for both CNN models. First,
we trained both UNet and ResNet models with the MSE loss
function only. Then, we investigated the model’s performance
by combining MSE, perceptual, and Wasserstein-adversarial
loss. This combination was previously suggested in [22], [23],
since the MSE loss function alone may skip some embedded
details in the reference image.

1) UNet-Based Autoencoder: Starting with the UNet autoen-
coder, we adopted the structure of the CNN reported by
Ronneberger et al. in 2015 [27]. We changed the size of
the UNet input to the size of the acquired OCT images. The
encoding path (left side) and decoding path (right side) were
adapted accordingly, as shown in Fig. 3. Each side consists of
five folded convolutional blocks. There are two convolutional
layers (kernel size of 3 × 3) for each block; the number
of filters gradually increases from 32, to 64, 128, 256, and
512, respectively, for the encoding path and vice versa for the
decoding path. A 2 × 2 max-pooling layer (stride of two)
downsamples the features after each convolutional block in
the encoding path, except for the last (deepest) block. On the
other hand, a 2 × 2 upsampling2D layer was applied after each
convolutional block in the decoding path. Each convolutional
block in the encoding path forwards a residual feature (copy)
to the corresponding convolutional block in the decoding path.
We equipped all the convolutional layers with a rectified linear
unit (ReLU) as the activation function. We added a dropout
layer (ratio of 0.1) after each convolutional block to prevent
overfitting [29]. The final layer was a 1×1 convolutional layer
to reconstruct the decoded image with a similar size as the
input and activated with the sigmoid function.

2) Residual Network: The architecture of the residual net-
work (ResNet) was suggested by He et al. [28]. The model
consisted of a pre-residual layer, ten residual connecting
blocks with identical structures, and a post-residual layer
(shown in Fig. 4). The pre-and post-residual layers are 2D
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Fig. 3. The architecture of the UNet model. The main structure is separated between the downsampling encoder (left side) and the upsampling
decoder (right side). Each side consists of four folded convolutional blocks. Each convolutional block in the upsampling concatenates a residual
feature (copy) forwarded from the corresponding downsampling block. There are two convolutional layers for each block, the size of which depends
on the depth of the factor of two, starting with 32 filters.

Fig. 4. The architecture of the ResNet model. It consists of 10 residual blocks placed between pre- and post- convolutional layers. Parallelly,
a residual copy (skip) connects the pre- and post-layers. The residual block consists of two stacked convolutional layers. All the layers have 32 filters
with a kernel size of 3 x 3 pixels.

convolutional layers. Each layer has 32 filters with 3 × 3 ker-
nel size and is activated with the ReLU function. The residual
blocks consisted of two stacked 2D convolutional layers of
the same size as the pre-residual layer. Batch normalization is
applied before each convolutional layer. A skip connection
between blocks was introduced by He et al.. [28], which
added a signal between the pre-and post-processing of a
block (shown in Fig. 4). This identity mapping improves
information flow through the network during feed-forward
and back-propagation. Another skip connection was added
between the signal before the residual blocks after processing
through addition and followed by the post-residual layer. The
final layer was the reconstruction layer, a 1 × 1 convolutional
layer activated with a sigmoid function. The input size of the
ResNet was set according to the size of the image in our
datasets.

3) Mean Squared Error Loss: The most intuitive way of
measuring the similarity between two images is by using the
MSE. MSE measures the quadratic mean of the overall pixel
difference between the corresponding reference image and the
predicted image. This measurement is defined as:

M SE =
∑n

i=1
∑m

j=1( p̂i, j − pi, j )
2

mn
(1)

The MSE is the squared mean deviation of the pixel value
( p) in the frame-averaged image and the pixel value ( p̂)
in the denoised image at the i, j -th position with the same
width m and height n. The value shows the general similarity
per pixel between these images. The aim of training the
UNet and ResNet is to minimize MSE to zero. However,
studies show that the MSE loss may result in over-smoothed
image [22].
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Fig. 5. Illustration of the adversarial and perceptual learning process.
The training involves measuring Wasserstein, perceptual, and mean
squared error loss of the denoised image produced by a generator. The
critic is trained in a binary manner that tries to distinguish frame-averaged
and denoised image [29]. Meanwhile, the perceptual loss is the measure
of the relative perspective difference between the frame-averaged and
denoised images, which is extracted from the high-level feature repre-
sentation of a pre-trained VGG19 image-Net [30].

4) Adversarial and Perceptual Learning: First, we trained the
models using the MSE loss function alone. We defined these
models as UNet-MSE and ResNet-MSE, respectively. In this
specific situation, the models were trained to generate pixel
values similar to those of the frame-averaged image, based
on the MSE measurements. Furthermore, Yang et al. [22] pro-
posed to train the CNN models by introducing the Wasserstein
loss (critics) [29] and perceptual loss [30]. The solution
raised to tackle MSE loss problems which are associated
with over-smoothed edges and loss of details. A MSE-based
CNN overlooks subtle tissue texture in the image, which
is critical for human perception. These additional losses
have been demonstrated to improve the CNN for denoising
images with better image quality and statistical properties
than the MSE-based CNN. Furthermore, Halupka et al. [23]
used the same method to denoise OCT retinal images. Our
application of these losses in the CNN learning process is
illustrated in Fig. 5. Therefore, we trained additional UNet
and ResNet models with the Wasserstein and perceptual
loss. We defined them as UNet-WGAN and ResNet-WGAN,
respectively.

A generative adversarial network (GAN) consists of a
discriminator (D) and a generator (G) network. During
training, the discriminator learns to distinguish between the
frame-averaged image and the image denoised with the
generator. Simultaneously, the generator will try to generate
a high-quality denoised image from a raw image that would
be indistinguishable by the discriminator. The discriminator
network architecture is illustrated in Fig. 6. On the other
side, the generator network is the investigated UNet or
ResNet.

We applied the improved version of the original GAN,
which used the Wasserstein distance [29] as the discriminator
loss function to criticize or score the performance of the
generator. A Wasserstein GAN (WGAN) would have more
stability during the training process compared to the original
GAN. Gulrajani et al. also suggested that using the gradient
penalty term to enforce the Lipschitz constraint would even

Fig. 6. The discriminator network for measuring the Wasserstein
distance (critic) of the reconstructed image.

improve more training stability [31]. Both the discrimina-
tor and generator are trained with the min-max objective
defined as:
min

G
max

D
LW G AN (D, G) = E

Ĩraw

[D( Ĩraw)] − E
Ire f

[D(Ire f )]

+λ E
Îraw

[(‖∇ Îraw
D( Îraw)‖

2
− 1)2]

(2)

The Wasserstein distance is calculated between the denoised
image ( Ĩraw) and the frame-averaged image (Ire f ). The
denoised image is the reconstructed image by the generator
from the raw image ( Ĩraw = G(Iraw)). The final term is the
gradient penalty which enforces the Lipschitz constraint to
have gradient norm (‖∇ Îraw

D( Îraw)‖
2
) at most 1, where,

Îraw = pIre f + (1 − p) Ĩraw. (3)

p is a uniform random number between 0 and 1 ( p ∼ U [0, 1]).
The gradient penalty is weighted with a coefficient λ.

The perceptual loss is calculated from the high-level features
extracted from a pre-trained VGG19 network [30]. The percep-
tual loss measures the similarity (MSE) of feature representa-
tions between the frame-averaged and the denoised images.
This loss offers a more robust training approach because
the feature extracted from the VGG19 network represents an
external or alternate perspective, such as the content or style of
the image. The perceptual loss function obliges the generator
to denoise raw images with similar feature representations
rather than requiring the pixels to match exactly the pixel
of the frame-averaged image. The feature representation loss
is the mean squared error (Euclidean distance) between the
extracted features:

LV GG/ i, j = 1

Wi, j Hi, j

Wi, j∑

x=1

Hi, j∑

y=1

(ϕi, j (Ire f )x,y −ϕi, j ( Îraw)x,y)
2

(4)

where, ϕi, j indicates the ReLU activated feature map obtained
by the j -th convolutional layer before the j -th pooling layer
within the VGG19 network. Wi, j and Hi, j describe the dimen-
sions of the respective feature maps of the corresponding
layer. In the implementation, we used the fifth convolutional
and pooling layers to measure the perceptual loss. Further-
more, since the pre-trained VGG19 network worked with
3-channels image, we converted the 1-channel OCT image to
3-channels image by repeating the first channel to the second
and third channel. The adversarial network model minimized
the combination of MSE, perceptual, and Wasserstein loss, and
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Fig. 7. Examples of the tissue types used in the experiments.

established a ratio between them [22], [23]. Thus, the min-max
objective of the WGAN training is given by:
Loss = min

G
max

D
ω1 LW G AN (D, G) + ω2 LV GG(G) + L M S E

(5)

Here, ω1 and ω2 are the weights balancing the different
contributions of the loss function. This loss will force the
generator to match exactly the corresponding pixel value and
force the output to be perceptually similar to the reference
image.

IV. EXPERIMENT

A. Image Acquisition and Processing

A custom-made swept-source OCT system was used for
this experiment. The system was equipped with an Axsun
swept laser source with a center wavelength (λ0) of 1060 nm
and sweep rate of 100 kHz. The sensitivity (SN Rmax ) of our
OCT system was 96.46 dB. The OCT B-scan image sizes are
1024 pixels (3.6 mm) deep and 256 pixels (4.1. mm) wide. The
output image format is 16-bit grayscale with TIFF-formatted
image.

The OCT image datasets for the denoising experiment were
acquired from three different pigs, which were used for train-
ing, validation, and testing datasets, respectively. The tissue
sample types being investigated include the femur bone, bone
marrow, fat, muscle, and skin tissues (Fig. 7). We randomly
selected the scan locations over the surface area of each tissue.
Thus, the images obtained vary in shape and surface location.
The training image datasets were acquired from the first pig
at 140 scan locations for each tissue type, yielding a total
of 700 scans. Meanwhile, the validation image datasets were
acquired from the second pig at only 28 scan locations for
each tissue type. Therefore, the validation datasets contain
only 140 scans. Furthermore, the testing image datasets were
acquired from the last pig with similar number of scans as the
training image datasets (700 scans).

We acquired 300 repeated B-scan frames for each scan
location, the number of B-scans was selected to provide the
highest signal strength (as a default setting by the OCT scanner
software). These images at each scan location were then
registered to remove motion artifacts. Rigid image registration
was used because motion artifacts in our OCT images mainly
originate from the object’s translational motion. We used
the fast normalized cross-correlation similarity measure to
detect shifts between two images [32], [33]. This method
was demonstrated for its application for fast-image-template
matching. This registration method was implemented using the
normxcorr2 function in MATLAB® to calculate the correla-
tion coefficient matrix of two images. We used the first frame

for each scan as the static (fixed) image and the other frame
as the moving image. The predicted translation is given by
the location of the maximum correlation coefficient [34]. The
motion-corrected frames were then averaged (frame-averaged)
and labeled as the “ground truth” image.

Moreover, we randomly extracted 10 raw images from the
300 repeated images for each scan location and paired them
with the same ground-truth frame-averaged images. We called
them the raw images and used them for training, as explained
in Section III and Fig. 2.

In summary, the training image datasets consisted of
7000 raw images with 700 corresponding ground truth images
(7000 image pairs). The validation image datasets consisted of
1400 raw images with 140 corresponding ground-truth frame-
averaged images (1400 image pairs). Furthermore, the testing
image datasets consisted of only a single image randomly
(instead of 10) extracted from each of the 300 repeated frame
images. Therefore, only 700 image pairs were used for the
testing.

B. Performance Comparison Methods

We compared the image quality and measured the similari-
ties between the images that were denoised using the defined
CNN models (UNet-MSE, Resnet-MSE, UNet-WGAN, and
Resnet-WGAN) and the reference (frame-averaged) images.
The performance of the CNN models were also compared with
three classical digital filters—the median filter, block-matching
3D (BM3D) [17], and double-density complex wavelet trans-
form (DD-CDWT) [19]. The image quality evaluation of the
denoised images were done quantitatively and qualitatively.
Processing time comparisons were also investigated to show
the possibility of using the CNN for real-time image denoising.

Additionally, we also investigate the role of training dataset
size to the performance of the CNN models. We trained each
of CNN model with three variations of dataset size (2000,
5000, and 7000 image pairs). This investigation is intended to
demonstrate the ability of the CNN models to generalize noise
in the OCT images. Here, the WGAN based loss is expected
to improve the noise generalization better than the MSE only
loss. In summary, 12 CNN models were defined and compared
along with the BM3D and DD-CDWT denoising methods.
Definition of the evaluated denoising methods is explained in
Table I.

C. CNN Model Training Details

We train all the CNN models in Keras-GPU environment
with TensorFlow backend [35]. The training took place on
an NVIDIA DGX A100 workstation equipped with NVIDIA
A100 GPUs, which enabled us to perform parallel computa-
tions to speed up the training process. We trained all of our
models using 1000 epochs. The training was done in mini-
batches, with a batch size of 8. We selected the adaptive
learning rate optimization algorithm (Adam) as the training
optimizer [36], with the step size α = 1 x 10−5 and decay
parameters β1 = 0.9 and β2 = 0.9. The loss-weighting
parameters, ω1 and ω2, for the WGAN-based models were
similarly set to 1 x 10−3. The gradient penalty (λ) was set
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TABLE I
DEFINITION OF THE IMAGE AND DENOISING METHODS

THAT WERE INVESTIGATED

to 10, as suggested by the original paper [31]. Furthermore,
online data augmentation was performed by small random
geometrical (translation) shifts and flipping each image hor-
izontally. We used the reflection mode to fill the points
outside the boundaries of the image after translation. The data
augmentation generators for all classifiers were set to have
similar random seeds for fair training.

D. Quantitative Image Quality and Similarity Evaluation

1) Image Quality Metrics: We used the signal-to-noise
ratio (SNR) and contrast-to-noise ratio (CNR) to measure the
image quality. These metrics show the noise magnitude of an
image. The SNR is defined as the logarithmic ratio of the mean
pixel values to the standard deviation of pixel values over the
image foreground as follows:

SN R = 20 log
μ f g

σ f g
(6)

The mean μ f g and the standard deviation σ f g were mea-
sured over a defined foreground area of the image, consisting
of the tissue structure. We applied the Canny edge detection
algorithm to define the foreground and background areas
[37], [38]. Defining the area enabled us to measure the contrast
to noise ratio between tissue textural features and general
noise, defined as:

C N R = 10 log
μ f g − μbg√
σ 2

f g + σ 2
bg

(7)

The tissue textural feature is defined as the deviation of the
mean value of the foreground μ f g and background μbg .
The general noise is defined as the square root of the total
foreground μ f g and background noise μbg .

2) Similarity Metrics: In addition to the image quality,
we also measured the relative similarity of the images to
evaluate the denoising methods in terms of noise suppres-
sion performance. The similarity is the relative measurement
between the frame-averaged and the denoised image. In this
work, we defined similarity based on three metrics. The first
metric is the peak signal-to-noise ratio (PSNR). Unlike the
previous SNR, PSNR is defined as the logarithmic ratio, which
is a relative measurement with respect to the reference image:

PSN R = 10 log
M AX2

I

M SE
(8)

where M AX I is the peak intensity or maximum pixel value
that exists in the frame-averaged image and M SE is the mean
squared error between the frame-averaged and the denoised
image.

The second metric that we used to measure the similarity
was the structural similarity index (SSIM). SSIM is the mea-
sure of the perceived visual difference between two images,
which was difficult to estimate with PSNR alone. The metric
describes similarity based on three main properties: luminance,
contrast, and structure [39]. The simplified version of the
SSIM is:

SSI M(I, Î ) = (2μI μ Î + C1)(2σI Î + C2)

(μ2
I + μ2

Î
+ C1)(σ

2
I + σ 2

Î
+ C2)

(9)

where μI , μ Î , σI , σ Î , and σI Î are the local means, standard
deviations, and cross-covariance for images I and Î . The
constants C1 and C2 are the regularization coefficients, used
to avoid instability in image regions where the local mean
or standard deviation is close to zero. In this work, we set
the C1 and C2 parameters to (0.01 x L)2 and (0.03 x L)2,
respectively, where L is the maximum possible pixel intensity
range (65535) of our particular OCT image.

The final metric was the edge preservation index (EPI),
proposed by Sattar et al. [40] to measure edge preservation
between the denoised image and the corresponding frame-
averaged image. The EPI is defined as follows:

E P I = �(	s − 	s, 	̂s − 	̂s)√
�(	s − 	s,	s − 	s).�(	̂s − 	̂s, 	̂s − 	̂s)

(10)

where 	s and 	̂s are the Laplacian filtered version of the
frame-averaged and denoised images, respectively. The gamma
function �(x, y) is the pixel-wise summation function and
defined as follows:

�(x, y) =
w∑

i=1

h∑

j=1

x(i, j).y(i, j) (11)

with w and h are the image width and height, respectively.
In addition to measure the image quality and similarity

between the frame-averaged and denoised images, we also
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measured the processing performance of each method. This
was done by averaging the processing time of each image
over the testing dataset.

E. Qualitative Image Evaluation

The evaluation of the denoising performance was also con-
ducted with qualitative experiments. Experts mean opinions
were collected to quantify the image quality subjectively. The
experts were selected who mostly work with medical image
processing. This selection was chosen because it is difficult
to find an expert who is working specifically on OCT images
for normal tissues. Therefore, we defined three non-diagnostic
evaluation points to rank the denoised images.

1) Sharpness: This first point evaluates if the tissue sur-
face (border) is clearly visible or blurred. The highest score
of 6 indicates that the image has clearly visible (sharp). On the
other hand, the lowest score of 1 indicates difficulties in
distinguishing tissue surfaces due to blurred images.

2) Contrast Details: This point evaluates the ability to dis-
criminate structures below the tissue surface. The highest score
of 6 indicates a clearly visible structural pattern. The lowest
score of 1 indicates no structural pattern was noticeable.

3) Noise Level: This last point evaluates the noise level,
such as shot noise, salt and paper noise, and Gaussian noise,
on both the background and foreground area of the image.
The highest score of 6 indicates a noise-free image. The lowest
score of 1 indicates that the noise level is too high and hides
the tissue structure.

Each expert was asked to evaluate a set of denoised images
for each tissue type. A set of denoised images consisted of
17 images as described in section III.B (Table I).

F. Accuracy Comparison of Tissue Classifiers

Tissue classification is the primary aim of our proposed
smart laser osteotomy scheme. Apart from showing the per-
formance of the CNN for image denoising, we also explored
the effect of image denoising on the accuracy of the tissue
classifier. The CNN denoisers are expected to surpass the
frame-averaging method with faster processing time and sim-
ilar image quality, without significant change in its effective-
ness of increasing the tissue classifier’s accuracy.

We acquired additional image datasets to evaluate changes
in the tissue classifier’s accuracy due to image denoising.
Tissue images of a pig were used to train and validate the
classifier. The number of tissues and scan locations were
comparable to the datasets used to train the CNN image
denoisers (five tissue types and 140 scan locations per tissue).
Both raw and frame-averaged image pairs were extracted for
each scan location. In total, 700 image pairs (scan locations)
were used to train and validate the classifier (with a fraction
of 0.7 and 0.3, respectively).

For each scan location, we also denoised the raw images
using each denoising method investigated in this study, sep-
arately. However, unlike the denoising performance experi-
ments, we only tested the deep learning models which were
trained with 7000 training datasets. In summary, each scan

Fig. 8. Training Process of the tissue classifier. A pair of raw and
frame-averaged images were acquired for each scan location. Then,
the raw image was denoised using the denoisers that were investigated
in this paper (median-filtered, BM3D,DD-CDWT, UNet-MSE 3, UNet-
WGAN 3, ResNet-MSE 3, and ResNet-WGAN 3). A total of nine image
instances (green) were acquired for each scan location. A tissue classi-
fier (orange) was trained to differentiate tissue type based on an image
patch (blue) input that is extracted from each image instance (green).
The input of the classifier was an image patch (blue) with sized of
128 × 128 pixels grayscale image.

location or image pair consists of nine images (raw, frame-
averaged, median-filtered, BM3D, DD-CDWT, UNet-MSE 3,
UNet-WGAN 3, ResNet-MSE 3, and ResNet-WGAN 3).
Additionally, another tissue image from a different pig was
used to test the classifier. Similarly, with the classifiers’
training datasets, additional 700 image pairs (five tissue types
and 140 scan locations per tissue) were acquired and used for
testing.

Furthermore, different from the deep-learning models for
image denoising, which uses the full (1024 x 256 pixels) OCT
image as the input, the input for the classifier was an image
patch. The image patch was a 128 x 128 pixels grayscale
image, selected at the center of the tissue surface border on the
full OCT image (Fig. 1, step 2). This location represents the
location of the laser ablation which is designed to be coaxially
aligned with the center of the OCT image. We defined the
ablation spot as always in the lateral center of the image.
Vertical Canny edge detection method was used to trace the
tissue surface in axial direction because of its simplicity and
low sensitivity to noise [37], [38]. To have a similar patch
location across the classifiers’ dataset, we extracted an image
patch at the same location for all nine images in each scan
location.

Therefore, we trained all of the nine classifiers separately
and compared their accuracies in classifying tissue type. The
process of denoising and model training is illustrated in Fig. 8.
We trained the first classifier to classify tissue type using the
frame-averaged image patches. Then, we trained the second
classifier using the raw image patches to classify tissue type.
We used the second classifier as a reference classifier to
compare the performance of the other classifiers. Next, the
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third classifier was trained to classify tissue type using the
median filtered image patches. The fourth and fifth classi-
fiers were trained separately to classify tissue type based on
image patches that denoised using the BM3D and DD-CDWT,
respectively. Furthermore, we also trained classifiers using
the image patches that were denoised with the CNN models.
The sixth and seventh classifiers were trained separately to
classify tissue based on image patches that were denoised with
the UNet-MSE 3 and UNet-WGAN 3, respectively. Finally,
we trained the eighth and ninth classifiers separately based on
image patches that were denoised with the ResNet-MSE 3 and
ResNet-WGAN 3, respectively.

We used the VGG16-Net [41] model as the base model
for all classifiers which are often used for image-based object
recognition. We customized the size of the input layers to fit
the image patch size. The output layer was a soft-max activated
layer, consisting of five neurons for classifying the tissue
type (bone, bone marrow, fat, muscle, and skin). All hidden
layers were equipped with the Rectified Linear Unit (ReLU)
activation function. All the VGG16-Net models were trained
and tested using the same workstation to train the CNN
denoising models. We initialized all the weight in the models
with a similar seed value to ensure fair training. We trained
the models with 1000 epochs. The classifiers training was also
done in mini-batches, with a batch size of 16 images, to fit
our GPU’s memory capacity. We defined the cross-categorical
entropy as the training loss function and Adam (learning rate =
1.0 × 10−4) as the training optimizer. We implemented weight
decay (L2 penalty multiplier set to 5.0 × 10−4) regularizers
for all convolutional layers and dropout regularizers for the
last two fully connected layers (dropout ratio set to 0.2) as
described in the reference [41].

V. RESULTS AND DISCUSSION

After training all of the defined CNN denoiser models,
we then applied them to denoise a set of testing images.
Comparisons of the denoised images for the bone tissue
are shown in Fig. 9. More image comparisons for the
other tissue types are shown in the supplementary materials
(Fig. 4-8). In this section, we discussed the benefit of using
the CNN models for improving the raw image quality. We also
compared the results with the frame-averaging, median filter,
BM3D, and DD-CDWT. We also measured the similarity
between the frame-averaged images with the images that
were denoised with the CNN models, median filter, BM3D,
DD-CDWT, and the raw images. Furthermore, we measured
and compared the processing time for these denoisers to
denoise the raw images. Finally, we trained a tissue classifier
for each denoiser which used the corresponding denoised
image as the training dataset. We compared the changes in
the classifier’s accuracy relative to a classifier that was trained
with the frame-averaged images.

A. Quantitative Evaluation Results

The quantitative measurements were done to compare the
SNR and CNR of the denoised images. Table II shows
the averaged SNR and CNR of the raw images and the

TABLE II
THE MEAN SNR AND CNR OF THE RAW IMAGES, FRAME-AVERAGED

IMAGES, AND THE IMAGES THAT WERE DENOISED WITH THE CNN
MODELS, MEDIAN FILTER, BM3D, AND DD-CDWT. BEST

VALUE IS DENOTED WITH BOLD TEXT

denoised images using the denoisers investigated in this paper.
As the reference method, the frame-averaging effectively
improves the image quality of the raw images. However, the
frame-averaged images have less SNR compared to almost
all other denoised images. The frame-averaging method cal-
culates the mean individual pixel intensity over the temporal
domain (frames) and maintains the speckle information in the
image. Meanwhile, the other denoising methods effectively
reduce the noise (including speckle) in the spatial domain.
Here, the SNR is calculated based on the mean and noise in the
spatial domain. Nevertheless, the frame-averaged images have
higher CNR compared to almost all of the denoised images.

Most of the deep learning methods also improved the SNR
of the raw images better than frame-averaging method, except
the UNet-WGAN 1 and UNet-WGAN 2. Moreover, the UNet-
WGAN 2 and ResNet-MSE 1 improved the CNR of the raw
images better than frame-averaging method. The CNN models
learned to denoise images through convolutional spatial filters
that minimize the loss function. Similar to the median filter, the
convolutional filters also consider the neighboring pixels (ker-
nel) for each individual pixel in the image. Additionally, the
deep learning regularizers give better generalization to reduce
the noise without over-smoothing the speckle pattern and edge
details.

Investigation on the generalization capacity of the CNN
models has also been conducted by variation of training data
sizes. Among the deep learning models with MSE loss, the
UNet-MSE models have lower SNR when trained with a
higher number of training sizes. Meanwhile, although there
is a slight decrease of CNR between the ResNet-MSE 2 and
ResNet-MSE 3, the ResNet-MSE models tend to have higher
SNR with higher number of training sizes. We also observed
that the UNet-MSE models tend to have higher CNR with
higher number of training sizes. In contrast, lower CNR
is noticeable with higher number of training sizes for the
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TABLE III
THE SIMILARITY METRICS OF THE FRAME-AVERAGED IMAGES WITH

THE IMAGES THAT WERE DENOISED WITH THE CNN MODELS,
MEDIAN FILTER, BM3D, AND DD-CDWT IMAGES. BEST

VALUE IS DENOTED WITH BOLD TEXT

ResNet-MSE models. On the other hand, we observed a
non-linear relation between variation of training data size with
both SNR and CNR for all deep learning models with WGAN
loss.

Although all of the denoiser performed well in improving
the image’s SNR and CNR, the image quality measure-
ments were insufficient in quantifying the extent to which
denoiser images preserved better structural details, especially
for comparing between the deep learning models with WGAN
loss. Additional comparison metrics have been done to show
the averaged similarity between the frame-averaged images
with the images that were denoised with the CNN mod-
els, median filter, BM3D, DD-CDWT, and the raw images,
respectively. The measurements considered the image’s edge
(EPI), structural (SSIM), and intensity (PSNR) preservation
(or similarity) concerning the frame-averaged images. These
metrics give clearer information about the preservation of the
tissue structural information, which was previously inferred
from the frame-averaged images. The measurement results are
shown in Table III.

The results show that the median filter improved the SNR
better than the frame-averaging method. However, although
the median filter reduced the speckle noise, the median filtered
images have the lowest EPI compared to the other denoiser,
which indicates the loss of sharp edge details. Meanwhile,
the deep learning methods have higher EPI and SSIM than
the median filter, indicating better preservation of the sharp
edge details. Most of the deep learning denoised images
have higher PSNR than the median filtered, BM3D, and
DD-CDWT denoised images, except those denoised by the
UNet-WGAN 2, ResNet-WGAN 1, ResNet-WGAN 2, and
ResNet-WGAN 3. The similarity measurement also shows that
the BM3D and DD-CDWT denoised images have higher EPI,
which better preserved the edge details than the median filter.
These methods still kept some residual noise on the resulting
image, leading to lower PSNR and SSIM than the median

filter. The SSIM of the BM3D and DD-CDWT denoised
images were lower than the deep learning denoising methods.

The image comparisons in Fig. 9 show that the deep
learning models with the MSE loss respond to uncertainty with
smoothing (blurring) [30], [42]. Although this problem could
be solved by increasing the number of training data sizes.
The WGAN based model performed better generalization
by keeping the speckle noise as one feature to distinguish
between the reference and generated images. Therefore, the
WGAN-based models kept a small amount of artificial speckle
noise in the generated images.

The results also show that the image quality and similarity
were slightly higher for the ResNet-based models than UNet-
based models. However, since the image quality and similarity
differences between the deep learning models are relatively
small, it is difficult to conclude the best model. We believe that
these image quality and similarity metrics are insufficient to
measure the difference between the deep learning models. Fur-
ther qualitative measurements are needed to visually inspect
the tissue’s complex anatomical structures preserved by the
proposed deep learning methods.

B. Qualitative Evaluation Results

Evaluation of the denoised image quality based on the quan-
titative metrics alone may be insufficient to show the visual
improvement of the denoised images. Additional qualitative
evaluations to show the performance of the CNN models were
also conducted. Visual inspection of the denoised images was
conducted by six experts. The experts were shown 17 image
versions of the same image as described in Table I. The image
file names were number coded to hide the corresponding
denoising method, which was used to denoise the image
before being shown to experts. The experts were asked to
evaluate the sharpness, contrast, and noise level of the images
as explained in section III.E. The experts survey results for
the image sharpness, contrast, and noise level are shown in
Figs 10, 11, and 12, respectively.

The survey shows that the experts voted the frame-averaged
images to have the highest sharpness. In contrast, the median
filter method has been voted to show a low preservation of
sharpness. The UNet-MSE 1 and 2 are also voted almost
similarly with the median filter. Figs. 9f and 9g confirmed
that the images denoised with the UNet-MSE 1 and 2 are
over-smoothed. On the other hand, UNet-WGAN 1 and
ResNet-WGAN 1 were partly voted to preserve the image
sharpness. Although Figs. 9i and 9o show sharp images, loss
of tissue-specific textural features are noticeable.

In the second part of the survey, we asked the experts to
compare the perceived contrast of the images. The experts
voted that the UNet-MSE 1 and 2 have low contrast, even
lower than the median filter. Similar to the sharpness eval-
uation, the UNet-WGAN 1 and ResNet-WGAN 1 were also
partly voted to preserve the image contrast. Almost similar per-
formance was observed between the frame-averaging methods
and the ResNet-WGAN 2 models in the eyes of the experts.

The noise level evaluation showed that the UNet-WGAN
3 model reduced the noise as well as the frame-averaging
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Fig. 9. Image comparison for bone tissue. From top left to bottom right, starting with the raw-image (a), frame-averaged image (b), and the raw
images that were denoised using the median filter (c), BM3D (d), DD-CDWT (e), UNet-MSE 1 (f), UNet-MSE 2 (g), UNet-MSE 3 (h), UNet-WGAN 1
(i), UNet-WGAN 2 (j), UNet-WGAN 3 (k), ResNet-MSE 1 (l), ResNet-MSE 2 (m), ResNet-MSE 3 (n), ResNet-WGAN 1 (o), ResNet-WGAN 2 (p), and
ResNet-WGAN 3 (q). The colored boxes show the zoomed version of regions inside the images. Yellow box shows the background region above the
tissue surface. Magenta box shows the surface region of the tissue. Green box shows the region inside the tissue with high signal. Blue box shows
the background region with low to no signal inside the tissue.
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Fig. 10. Error bar plot represents the survey results for the sharpness
of the raw and denoised images. The mean scores are indicated in black
circles, with the whiskers indicating one standard deviation of the scores
(equally up and down). Individual scores from each expert are shown in
dots with the same color. Scores with similar values are shown side by
side horizontally to avoid overlapping.

Fig. 11. Error bar plot represents the survey results for the contrast of
the raw and denoised images. The mean scores are indicated in black
circles, with the whiskers indicating one standard deviation of the scores
(equally up and down). Individual scores from each expert are shown in
dots with the same color. Scores with similar values are shown side by
side horizontally to avoid overlapping.

method. The UNet-WGAN 1 only received two votes, which
indicates that the denoised images have relatively higher noise
level, confirmed in Fig. 9i. The images showed that the
denoiser completely hid the textural features in the tissue.
Other than that, the median filtered and BM3D has almost
similar noise level as the raw images.

In summary, it is difficult to conclude which denoising
methods performed best due to the high variation of scores
among the experts. It is because the experts work with different
medical imaging modalities, including OCT for ophthalmol-
ogy and ultrasound imaging.

C. Improvement in Classifier Accuracy

We collected 700 additional OCT image pairs to demon-
strate the effect of image denoising on a tissue classifier’s

Fig. 12. Error bar plot represents the survey results for the noise level
of the raw and denoised images. The mean scores are indicated in black
circles, with the whiskers indicating one standard deviation of the scores
(equally up and down). Individual scores from each expert are shown in
dots with the same color. Scores with similar values are shown side by
side horizontally to avoid overlapping.

accuracy. Each image pair consists of raw and frame-averaged
images. We denoised the raw images for each image pair or
scan location using each denoisers investigated in this study
separately. However, we only investigated the deep learning
models which were trained with 7000 images. Images patches
were extracted from the denoised images and used as input
for the tissue classifier. We trained a tissue classifier for each
denoising method and used the corresponding denoised image
patches as the training dataset. In total, nine VGG16-Net tissue
classifiers were trained separately. After training the models,
we tested them with the test dataset consisting of 700 denoised
OCT image patches. A detailed explanation regarding the
training process is explained in section IV-F.

The results in Table IV show that all of the denoiser
increased the accuracy of the tissue classifier except the
median filtering method. The tissue classifier trained with raw
images has an accuracy of 86.43 %. As a reference, the tissue
classifier trained with frame-averaged images has an accuracy
of 91.29 %, the highest accuracy compared to the other tissue
classifiers. Although the frame-averaged image still contained
an element of the speckle noise, they also contained more
information about the tissue structure, gathered from several
image frames, compared to single raw denoised images. There-
fore, the tissue classifier trained with frame-averaged images
could learn more features than that trained with single raw
denoised images. However, the tissue classifiers trained using
deep learning denoised images have the closest accuracies to
the tissue classifier trained using the frame-averaged images.
In comparison, the ResNet models improved the tissue clas-
sifier’s accuracy more than the UNet models. This is because
the ResNet models reduced the speckle noise better than the
UNet models. Therefore, the tissue classifier could focus more
on the signal-carrying speckle to differentiate tissue type.

Here, it is also shown that the MSE-based deep learn-
ing models have higher accuracy compared to the WGAN-
based models. This discrepancy appears because the WGAN
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TABLE IV
THE AVERAGE ACCURACY OF THE CLASSIFIER TRAINED USING THE

RAW IMAGES, FRAME-AVERAGED IMAGES, AND THE IMAGES THAT IS
DENOISED USING BM3D, DD-CDWT, UNET-MSE 3,

UNET-WGAN 3, RESNET-MSE 3, AND

RESNET-WGAN 3. BEST VALUE IS
DENOTED WITH BOLD TEXT

generated more artificial noise, lowering the image quality and
similarity, as discussed in the previous section.

The BM3D and DD-CDWT methods also increased the
tissue classifier’s accuracy. However, the increases are lower
than the frame-averaging and deep learning because of the
residual noise in the denoised images. On the other hand,
the median filter even reduced the tissue classifier’s accuracy.
These results indicate that the deep learning-based methods
could replace the classical digital filtering methods without
significantly altering the structural information in the image
for tissue classification. Nevertheless, further investigation
is needed to optimize the tissue classifier’s performance by
training and testing with more data samples.

D. Processing Time

One aim of this work was to find a fast algorithm for
denoising the OCT images. We evaluated the performance
of the trained models on our OCT computer with the fol-
lowing specifications: 2.8 GHz Intel Core i7 processor, 16 GB
1867 MHz DDR3 memory, and equipped with a GPU NVIDIA
GTX 1050Ti. We compared the average processing time
of the proposed denoising methods. However, the process-
ing performance comparison of the CNN models was done
between UNet and Resnet only, as the generator in both
MSE and WGAN based loss model. The results are given in
Table V. Our OCT system required 9 msec to acquire a single
B-Scan (raw) image. Therefore, the frame-averaging was the
longest denoising method which required 300 raw images. The
median filter was the fastest algorithm as it only calculates
a small-sized median kernel over the input image. However,
this achievement must be considered alongside the median
filter’s image similarity result, which erased information over
the image. In the second position, the deep learning methods
denoised the raw image faster than the BM3D and DD-CDWT
methods. The deep learning based models were faster since
they could be run in parallel on the GPU, whereas the classical
digital filtering methods were run on the CPU. Furthermore,
among the deep learning methods, the ResNet models denoised
a single raw image in only 0.078 s, which is faster than
the UNet-based models that denoised a single raw image in
0.084 s.

TABLE V
THE AVERAGE TIME REQUIRED TO DENOISE THE OCT IMAGES USING

THE FRAME-AVERAGING, BM3D, DD-CDWT, UNET-MSE,
UNET-WGAN, RESNET-MSE, AND RESNET-WGAN.

NOTE THAT DEEP LEARNING ALGORITHMS WERE

RUN USING GPU. THE MEASUREMENT ALSO

INCLUDES ACQUISITION TIME OF 300 RAW

IMAGES FOR THE FRAME-AVERAGING

METHOD. BEST VALUE IS DENOTED

WITH BOLD TEXT

Our findings confirm the possibility of achieving real-time
image denoising for our smart laser osteotomy approach.
All of the deep learning models denoise the raw image
below 90 msec. Additionally, the tissue classification using
VGG16-Net needs an average time of 0.034 s. This leads to a
total processing time of 0.112 s for the acquisition, denoising
with ResNet, and classification steps, which is slightly slower
than the optimum repetition rate of the ablation laser. Our
previous experiment showed that the optimum pulse repetition
rate of our laser ablation was 10 Hz (100 msec per pulse) [43].

VI. CONCLUSION AND FUTURE WORKS

This work demonstrates the ability of deep learning methods
to mimic the frame-averaging method for denoising OCT
images of five normal tissue types. The deep learning methods
produced better image quality and similarity than the classical
digital filtering methods. Even though the median filter could
increase the SNR and CNR better than some of the deep
learning methods, it failed to maintain the structural informa-
tion of the image. Furthermore, the processing speed of the
deep learning-based method was also faster than the BM3D,
DD-CDWT, and frame-averaging methods. The quantitative
and qualitative experiment results suggest that the deep learn-
ing methods are a feasible alternative to the frame-averaging
method for real-time OCT image denoising, a necessary sub-
process for our smart laser osteotomy approach.

Moreover, we also showed that denoising the OCT image
increased the tissue classifier’s accuracy. The frame-averaging
method improved the tissue classifier’s accuracy better than
the other denoising methods. Furthermore, the tissue classifier
has better accuracy when trained using the images that are
denoised by deep learning methods than the classical digital
filter methods. It proves that the deep learning methods could
mimic the frame-averaging method better than the classical
digital filter methods.

In the future, we will integrate the deep learning denoising
method into our OCT device for monitoring laser ablation in
real-time. We are aware that integrating the tissue classifier and
image denoising problem will further increase the processing
time. The average total time for acquisition, denoising, and
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classification steps is slightly slower than the optimum rep-
etition rate of the ablation laser. Further study will involve
optimization of the tissue classifier for better accuracy and
faster prediction time. One of the optimizations includes using
a faster CPU and GPU. Other than that, we also plan to use the
classification accuracy directly as one of the loss functions for
deep learning denoising models. Thus, reducing the processing
time for both denoising images and predicting tissue type
simultaneously seem feasible.
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Chapter 5

Deep Learning Models Comparisons

The publications in this chapter explored and compared several deep learning models.
Offline experiments were conducted with the aim of finding the best possible deep learning
models capable of identifying several tissue types. It is also important to note that the
image denoising in these two publications was done using the frame-averaging method.

5.1 Tissue Characterization with Deep Learning: Pre-

liminary Study

The first paper evaluated two deep neural network models to identify three tissue types:
bone, fat, and muscle. The first neural network model was outlined by Debdoot et al. [118],
with two fully connected layers. For the second model, the deep neural network was
engineered to accept two inputs. The first input was the intensity-based image patch,
while the second input was the A-Scan profile. The deep neural network model was then
engineered into a decision-tree-like model that separates textures of heterogeneous (muscle)
and homogeneous (bone and fat) tissues. The results of the second model showed 98.66%
accuracy, while the first model achieved only 82.4% accuracy.

Publication: Y. A. Bayhaqi, A. A. Navarini, G. Rauter, P. C. Cattin, and A. Zam,
”Neural network in tissue characterization of Optical Coherence Tomography (OCT) image
for smart laser surgery: preliminary study,” Proc. SPIE, Vol. 11044, in Third International
Seminar on Photonics, Optics, and Its Applications 2018, 2018.
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ABSTRACT   

The aim of this study is to develop an automatic tissue characterization system, based on Optical Coherence Tomography 
(OCT) images, for smart laser surgery. OCT is rapidly becoming the method of choice for investigating thin tissues or 
subsurface imaging. In smart laser surgery, OCT could be used to indicate which tissue is being irradiated, thereby 
preventing the laser from ablating critical tissue such as nerves and veins. Automatic tissue characterization based on the 
OCT images should be sufficient to give feedback to the laser control. In this study, two main neural networks were trained 

to classify texture and optical attenuation of three different tissues (bone, fat, and muscle). One neural network texture 
classifier was trained to differentiate between patterned and patternless images. The other neural network was trained to 
classify patternless images based on their attenuation profile. The two neural networks were stacked as a binary tree. The 
ability of this hybrid deep-learning approach to characterize tissue was evaluated for accuracy in classifying OCT images 
from these three different tissues. The overall (averaged) accuracy was 82.4% for the texture-based network and 98.0% 
for the attenuation-based (A-Scan) network. The fully connected layer of the neural network achieved 98.7% accuracy. 

This method shows the ability of the neural network to learn feature representation from OCT images and offers a feasible 

solution to the challenge of heuristic independent tissue characterization for histology and use in smart laser surgery. 

   

Keywords: Neural Network, Laser Surgery, Tissue Characterization, Optical Coherence Tomography 
 

1. INTRODUCTION  

Laser osteotomy is the surgical procedure of cutting bone using a laser. The medical application of this emerging 

technology is of increasing interest to surgeons, as it overcomes many of the disadvantages of using conventional burrs 
and saws. Those disadvantages include extensive heat deposition, broadening of cuts, mechanical trauma, metal shaving 
depositions, and bacterial contamination. The MIRACLE (Minimally Invasive Robot-Assisted Computer-guided 
LaserosteotomE) project investigates the use of computers and robots to guide minimaly invasive laser osteotomes. One 
goal of the project is to ensure that laser ablation of the targeted tissue is monitored to avoid cutting important tissues, 
especially vital ones such as nerves and veins. Thus, the problem of resolving tissue characterization becomes a critical 

area of study. In a previous study, tissue characterization was based on physical properties like measured acoustic shock 
waves and Laser-Induced Breakdown Spectroscopy.1,2 This study focuses on the use of Optical Coherence Tomography 
(OCT) to distinguish between tissues because of its advantage of providing information in the form of images to monitor 
the depth of laser ablation. Previous studies have also shown how OCT can help to monitor the depth of laser ablation.3 

Furthermore, this study focuses on the use of neural networks to characterize tissues based on OCT images. 
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1.1 Smart laser surgery 

The basic idea of the smart laser surgery system proposed in this study is to use OCT images to monitor tissue anatomy at 
subsurface level before laser ablation. An artificial neural network was trained to differentiate tissue based on the OCT 
images and can then determine if the ablating laser should stop or continue. A schematic diagram of this system is shown 

in Figure 1. In this study, we evaluate the neural networks’ ability to differentiate or characterize OCT images to support 

the feedback system of the ablation laser. 

1.2 Optical Coherence Tomography imaging 

OCT is rapidly becoming the preferred method for in vivo investigation of thin tissues or subsurface imaging. Subsurface 
imaging, using ultrasonic and optical imaging modalities, is a clinically viable alternative for real-time high resolution in 
situ investigation of soft tissue lesions in critical organs. OCT is an optical diffraction tomography principle-based imaging 

modality that relies on sensing speckles formed due to the coherent interference of photons backscattered from tissues 
irradiated with a broadband light source.4 OCT is suitable for use in laser surgery because it is a high resolution and non-
invasive imaging compared to ultrasound and histology.5,6 Although the maximum imaging range of the OCT system is 
limited to a few millimeters, this depth is enough to examine small ablation craters. Ablation craters created with an 

Er:YAG laser typically has an ablation rate of 0.4 mm/s.3 

 

 

Figure 1. Schematic diagram of the smart laser surgery. A region of interest from the OCT images is used as the input layer of the 
neural network to classifies the tissue type at the ablation position, which output is used as a feedback system for the ablation laser 

to stop or continue the ablation. 

 

1.3 Artificial neural network for smart laser surgery 

In image pattern recognition and computer vision, neural networks are known for their ability to classify, retrieve, detect 
and segment images. In some applications, neural networks are used to correct and caption images. Image correction or 

denoising is very useful in OCT imaging because the neural network creates a better resolution of the speckled image by 

learning to reconstruct an image based on a ground truth image.7 
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To date, tissue characterization with OCT has usually been based on texture features, but for bone and fat tissues with 
fewer visible structures in the required size range, OCT may be unsuitable. However, an examination of structure-poor 
OCT images reveals that they frequently display differentiated attenuation profiles.8 In this study, we propose combining 

the texture and attenuation features of OCT images. 

 

2. MATERIAL AND METHOD 

2.1 Optical Coherence Tomography system 

The OCT system used in this study was a custom Axsun swept source OCT system with a center wavelength (λ0) of 1060 
nm and a sweep rate of 100 kHz. This system was used to obtain subsurface images of the femur bone, fat, and muscle 
tissues of a pig. For each tissue sample, OCT B-Scan images were taken in 100 different locations. The locations were 

spaced out with a gap of 1 mm between them and randomly taken from different viewing angles. The image size acquired 
from this OCT system was 1024 pixels (1.6 mm) deep x 300 pixels (7.5 mm) wide. In each location, 300 image samples 
were acquired, which were then averaged to eliminate the speckle of the OCT. In total, from all tissue types, 300 averaged 
B-Scan images were used for analysis. The OCT system produces a 32-bit grayscale TIFF image. Contrast enhancement 

of the images was done using the contrast enhancement feature of ImageJ software, Version 1.52d. 

 

            

Figure 2. Axsun swept source OCT system (left) and pig femur bone (A), muscle (B), and fat (C) tissue samples (right). 

 

          

Figure 3. Example of the enhanced OCT images with 1024 pixels (1.6 mm) size in deep x 300 pixels (7.5 mm) size in wide for 
the pig femur bone (A), muscle (B), and fat (C) tissue samples. 
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2.2 Neural network architecture 

The first neural network model was outlined by Debdoot et al.4 In his paper, he proposed two denoising autoencoder layers 
to denoise the speckled appearance of OCT images. The input layer for the neural network was the image patch with pixel 

size 36 x 36, selected at the center position. The first autoencoder consisted of 400 neurons and the second autoencoder 

consisted of 100 neurons. The output layer of the network was the classification layer of the three different types of tissues. 

 

Figure 4. The first model of neural network architecture for texture-based classification. 

 

Figure 5. Combination model of the neural network architecture using the texture and attenuation features. 

 

Another feature of the OCT image was the attenuation profile of tissue. A network to interpret the attenuation profile was 
originally implemented by Giovanni et al. to differentiate between atherosclerotic tissue in intravascular optical coherence 
tomography (IV-OCT).8 In their study, the researchers made use of the backscattering and attenuation features of OCT 

images. This feature was then combined with the previous neural network model in a decision-tree model. The design of 
the combination model can be seen in Figure 5. In the combination model, the two networks were trained independently. 
The first network was trained to differentiate between patternless (texture-poor) images, such as bone and fat, and patterned 
images, such as muscle. Using the patternless output image from the first network, the second network was trained to 

differentiate between bone and fat based on their attenuation profiles. 

Both neural networks were trained during separate periods. For each network, the autoencoder was also trained 

independently, followed by the training of the softmax layer. The denoising autoencoder used in the intermediate layer 

Bone 

Fat 

DAE1 

36 x 36 pixels 

W1 

W2 

Wn 

DAE2 

W1 

W2 

Wn 

n=400 n=100 

Input layer                 Stacked auto denoising       Output Layer 

Texture 
Network 

Patterned 

Attenuation 
plot 

Bone 

Fat 

Muscle 

Output layer 

Attenuation 
Network 

Muscle 

0
.5

 
m

m
 

0
.5

 
m

m
 

Proc. of SPIE Vol. 11044  1104402-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

employed sparse learning to pre-train the neural network that tries to compress and encode the cardinal representation of 
a pattern.7 The autoencoder layer was trained with parameters of 2000 epochs, 0.004 L2 weight regularization, 4 
regularizations and 0.15 proportion of sparsity; the softmax layer was trained with parameters of 1000 epochs by using the 
mean squared error loss function. The 300 OCT images for all the tissues were divided evenly for the training and testing. 

The training of all the neural networks was done in MATLAB R2017b software. 

 

3. RESULT AND DISCUSSION 

The ability of our neural networks to characterize tissue was evaluated following a leave-one-out 10-fold cross validation. 
Table 1 shows the result of the first model of the neural network, with an overall average accuracy of 82.4%. This result 
indicates that the texture-based learning was inaccurate and insufficient for differentiating bone and fat because of the 

similarity in texture, compared to muscle tissue, which was clearly classified. However, combined with the attenuation 
profile, the second model of the neural network performed better in terms of classifying bone and fat. The overall accuracy 

for the combination model was 98.66%, as shown in Table 2. 

Table 1. Confusion matrix of the first neural network model. 

Input Data Classified as Bone Classified as Fat Classified as Muscle Accuracy 

Bone 39 2 9 78 

Fat 15 35 0 70 

Muscle 0 0 50 100 

   Average Accuracy 82.66 

 

Table 2. Confusion matrix of the hybrid neural network model.  

Input Data Classified as Bone Classified as Fat Classified as Muscle Accuracy (%) 

Bone 48 1 1 96 

Fat 0 50 0 100 

Muscle 0 0 50 100 

   Average Accuracy 98.66 

 

This result points to the possibility of using neural networks to characterize tissue during laser surgery. However, the data 
used in this study (in terms of OCT images) was limited, thus, further studies are needed to train and test the neural 
networks using thousands of OCT images and more tissue types to be classified. Further studies of another neural network 

model should also be considered. 

 

4. CONCLUSION 

This preliminary study shows that artificial neural networks can be used to differentiate OCT images of bone, fat, and 
muscle. The method has been experimentally demonstrated with in situ tests on animal tissue. The output of the fully 
connected layer in this study was 98.66 % accurate. Combining pattern and attenuation profile learning improves accuracy, 
particularly when homogenous tissues have no distinct pattern. It would be worth exploring other artificial neural network 
architectures commonly used in image recognition. Further studies are also needed to investigate how the system would 

work in real conditions, particularly the real-time feedback to the laser system and the characterization of more 

heterogeneous tissues. 
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5.2. Deep Learning Model Comparison 77

5.2 Deep Learning Model Comparison

The feasibility shown in the first paper was extended to the next publication, with the
same aim of finding the best possible deep learning models. Here, the comparison fo-
cused on models that have been proven for use in computer vision. The models include
VGG [119], ResNet [108], and DenseNet [109]. They were evaluated to identify five tissue
types, namely bone, bone marrow, fat, muscle, and skin tissues. Different input features
(the intensity-based image patch, A-Scan profile, and attenuation map) were also com-
bined. The attenuation map was extracted using the depth-resolved attenuation coefficient
extraction method (see Section 3.1.1). The results show that the DenseNet161 model,
with combined intensity-based and attenuation map as the input, has the highest average
accuracy of 94.85% and F1-score of 94.67%.
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Abstract: We compared deep learning models as a basis for OCT image-based feedback system
for smart laser osteotomy. A total of 10,000 OCT image patches were acquired ex-vivo from
pig’s bone, bone marrow, fat, muscle, and skin tissues. We trained neural network models using
three different input features (the texture, intensity profile, and attenuation map). The comparison
shows that the DenseNet161 model with combined input has the highest average accuracy of
94.85% and F1-score of 94.67%. Furthermore, the results show that our method improved the
accuracy of the models and the feasibility of identifying tissue types from OCT images.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Bone surgery (osteotomy) has been practiced for treatment of various bone disorders in centuries.
The instruments used in such surgeries have not changed much over time, such as saws, drills,
chisels, and hammers). The primary mechanism generally is by applying mechanical stress to the
bone surface until the instrument break the bone, producing high pressure, friction, and vibration
[1]. As a result, there is a tendency to remove more tissue than necessary [2,3]. Additionally, the
contact between tissue and the tool’s surface increases the risk of bacterial contamination [4].

On the other hand, laser bone surgery (laser osteotomy) is an emerging technique that promises
to overcome the limitations of using conventional mechanical tools. Laser osteotomy is a
contactless intervention tool that is capable of delivering a precise cut, which, in turn, reduces
tissue loss during the ablation procedure, and supports faster tissue healing [4]. The non-contact
application of the laser osteotomy reduces the potential risk of bacterial contamination [5].
Moreover, the photothermal effect after absorption of a laser (such as Er:YAG laser) beam causes
micro explosions and breakup of bacteria. This effect subsequently leads to bacterial death in the
ablation spot [6–8].

Furthermore, by embedding the laser in a robotic arm, small complex shapes, such as a dovetail,
diamond, or circle, are made possible. [2]. However, similar to mechanical tools, laser osteotomy
may also cause collateral damage if critical tissues such as nerve and bone marrow are not avoided.
Thus, a feedback mechanism capable of distinguishing tissue types during ablation becomes
a critical focus for research. Several studies have explored tissue type identification based on
physical feedback properties. Non-invasive methods such as Raman [9–11], autofluorescence

#435184 https://doi.org/10.1364/OSAC.435184
Journal © 2021 Received 25 Jun 2021; revised 10 Aug 2021; accepted 11 Aug 2021; published 10 Sep 2021
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[12–16], and diffuse reflectance spectroscopy [17–19] have been demonstrated to have a high
sensitivity to differentiate tissue type. Nevertheless, these techniques work in point measurement,
thus, losing the tissue’s margin or morphological information. Other methods such as acoustic
shock waves and laser-induced breakdown spectroscopy also have the potential to differentiate
tissue types [20–25]. However, these methods distinguish tissue type only after an ablation pulse
has been applied, thus, increase the risk of collateral damage during laser ablation.

Our project proposed a non-destructive tissue identification system based on Optical Coherence
Tomography (OCT) imaging. OCT is the most applicable tool for margin detection and also
provides morphological information [26]. OCT offers an alternative approach to real-time tissue
classification, It is rapidly becoming the preferred method for real-time in-vivo investigation
of thin tissues and subsurface imaging because of its high resolution and non-invasive nature
[26–28]. Several studies combining OCT and laser ablation treatment have reported experiments
demonstrating OCT-guided laser surgical concepts for clinical application. The combinations
reportedly increased resection accuracy and precision for brain tumors and blood coagulation
[29–31]. This imaging system implemented an intra-operative diagnosis by providing positional
feedback and tissue specificity during surgery. In our approach, we extend the application of
the OCT-guided laser surgical concepts for smart laser osteotomy. In this manner, we focused
more on discriminating between the bone tissue and the surrounding tissues. We wanted to avoid
damaging the nerve and bone marrow (inside the bone), which may lead to complications if
it is accidentally cut. Other than that, the feedback system will help to prevent any damage to
surrounding tissue (such as muscle and skin) due to accidental patient movement.

Tissue characterization or classification has most recently been the focus of research in the
medical application of OCT. Several machine learning approaches, such as random forest [32–34]
and support vector machine (SVM) [35,36], have been demonstrated to achieved average accuracy
of 80.37% and 96.80%, respectively, for tissue characterization of atherosclerotic plaques (fibrous,
calcific, and lipid-rich). These methods involved the attenuation coefficient, statistical and
geometrical features of the image. Although, these methods have shown good accuracy for
automatic tissue classification. The complicated feature extraction of the image increased the
prediction time, which is a critical point for real-time laser ablation monitoring.

As a subset of machine learning, deep learning is developing linearly to the advances of
computation technology in recent years. The introduction of the convolutional neural network
(CNN) bring a significant breakthrough for automatic medical image analysis and recognition.
CNN is often used to classify, retrieve, correct, and segment medical images. In the field of OCT
image classification, CNN has been demonstrated to achieve similar or even better classification
accuracy and sensitivity with the classical machine learning methods. Previously, Abdolmanafi
et al. used the AlexNet and VGG19 models for the intima and media tissue classification [37].
These models were investigated to have an average accuracy of 96.0% and 98.0%, respectively.
Furthermore, Gessert et al. reported that the ResNet50V2 and DenseNet121 models have an
average accuracy of 91.3% and 91.0%, respectively, to classify the plaque area as lipid tissue,
fibrous tissue, and calcified tissue [38]. Although deep learning model required an extensive
amount of training data and more extended training time. Nevertheless, the deep learning model
performs faster image classification by skipping the feature extraction process, consequently
enabling the implementation of real-time tissue classification.

In this paper, we compared well-established CNN models to classify several healthy tissue
types, the first application of its kind to the best of our knowledge. We focused on distinguishing
the tissue types most likely to be encountered during laser osteotomy, such as bone, bone marrow,
fat, muscle, and skin. As a preliminary experiment, we investigated the CNN’s ability to classify
tissues in the absence of the ablation laser. In the future, we foresee integrating the CNN model
for real-time tissue differentiation during laser osteotomy.
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2. Materials and methods

The ultimate aim of the smart laser osteotomy is to provide feedback on the tissue types which
would be encountered during laser ablation to avoid cutting critical tissues. Here, we use an OCT
imaging system to monitor tissue anatomy at the subsurface level during laser ablation. A patch
image taken from the ablation area is used as input of the CNN model to discriminate between
tissue types. The output of the CNN model provides feedback for the ablation laser to either stop
or continue ablating. Our smart laser osteotomy concept is illustrated in Fig. 1. This paper aimed
to find the CNN model with high accuracy in distinguishing tissue type and short prediction time.
The output of the CNN will be used as feedback to close or open an optical shutter for controlling
the ablation laser (e.g Er:YAG or Nd:YAG Laser). However, as a preliminary experiment, we
investigated the CNN’s ability to classify tissue in the absence of the ablation laser.

Fig. 1. Schematic of the proposed OCT-based smart laser surgery system. We used a
Fourier-Domain OCT with an Axsun swept-source laser. The OCT laser (red line) is coupled
with an ablation laser (blue line) by a dichroic filter. The OCT images are streamed to
monitor the ablation process. A region of interest (image patch) from the OCT image is
selected on the ablation spot. We trained a convolutional neural network model to identify
tissue type based on the extracted image patch. The convolutional neural network’s output
provides feedback to an optical shutter and controls the ablation laser to either stop or
continue ablation.

2.1. OCT imaging system

OCT image acquisition is the starting point of the proposed smart laser surgery system. We used
a custom OCT system equipped with an Axsun swept-source laser. The laser source operated at
a central wavelength (λc) of 1046 nm, a spectral bandwidth of 112.15 nm, and an A-scan line
rate of 100.16 kHz. The imaging range of the OCT system was equal to 3.6 mm in the air. The
OCT system provided a field of view of 4.8 × 4.8 mm2. The image size acquired with this OCT
system was 1024 pixels in height and 300 pixels in width. The sensitivity (SNRmax) of our OCT
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system was 96.46 dB. The corresponding lateral and axial resolutions were 44µm and 10µm,
respectively.

During acquisition, frame-averaging method was used to acquire high-quality images by
averaging several image frames from a single sample location on the tissue. This method reduced
the noise originating from random interference signals and natural bandpass filter problems
while still preserving the speckle signal as the primary information carrier [39]. We ensured that
the tissues were statically placed during image acquisition to avoid motion artifacts (a potential
disadvantage of the averaging method).

2.2. Image patch extraction

The next step of our smart laser osteotomy was image patch extraction from OCT image. The
patch was selected in such a way to represent a region of interest where a destructive laser pulse
would be applied and used as input to the CNN to identify tissue types. We defined the ablation
spot as always in the lateral center of the image. Vertical Canny edge detection method was used
to trace the tissue surface in axial direction because of its simplicity and low sensitivity to noise
[40,41]. After getting the ablation spot’s lateral and axial location, a square 128 x 128 pixels
image patch was extracted with the ablation spot as the top center of the image patch. We defined
the image patch as the texture feature and used it as the input of the CNN model.

2.3. Neural network frameworks

This study aimed to find a CNN model capable of accurately and efficiently classifying tissue
type based on the extracted image patch. We evaluated well-established CNN models to find the
best model with the highest accuracy and fastest processing speed. In this study, we use four
main primary CNN models and define them as the base models. The first base model was the
AlexNet, developed by Alex et al. [42]. The second base model was the deep Visual Geometry
Group model (VGG), used by Simonyan & Zisserman for image-based object recognition [43].
The third base model was the deep Residual Network model (ResNet), shown by He et al. [44].
The last base model was the deep Densely Connected Network model (DenseNet), proposed by
Huang et al. [45].

We also exploited the variants for each CNN base model except for the AlexNet model. We
evaluate the VGG based model with the variance of 11, 13, 16, and 19 -layers (VGG11, VGG13,
VGG16, and VGG19). Additionally, we evaluated the VGG model with shallower depth by
removing the last two convolutional blocks (we defined it as VGG-3Block). The VGG-3Block
framework was similar to VGG13, but we used only the first three convolutional blocks and
directly connected the convolutional layer’s output to the fully connected layer. Additionally, we
also evaluated the effect of removing the fully connected layer (defined as VGG16-A) or adding
two more fully connected layers (defined as VGG16-B) at the end of the VGG16. Furthermore,
we evaluated the ResNetV2 model with the variance of 50, 101, and 152 residual layers depth
(ResNet50V2, ResNet101V2, and ResNet152V2). Finally, we evaluated the DenseNet model
with variance of 121, 161, 169, and 201 dense layers (DenseNet121, DenseNet161, DenseNet169,
and DenseNet201).

2.4. Feature fusion

Intuitively, we could train the CNN models directly to classify tissue type based on the texture
feature alone. However, previous studies suggest additional features to support the texture feature
could improve the tissue classification accuracy. Rico-Jimenez et al. proposed using a single
A-line (defined as intensity profile feature) to characterize atherosclerotic plaques for a faster
prediction process and reported to achieve an average classification accuracy of 85% [46]. In this
study, we believed that combining the texture and the profile features will improve the accuracy
of the CNN models. Therefore, our first approach was combining the texture feature with the
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intensity profile feature which was extracted from the middle of the image patch. The extraction
and combination process for the first approach is illustrated in Fig. 2. In the beginning, we
independently trained two CNN models. We trained the first model (CNN Texture model) to
classify tissue type by using the 2-dimensional texture feature as input. Concurrently, we trained
the second model (CNN Profile model) by using a 1-dimensional intensity profile as input. Both
models were constructed using the same base model architecture. However, for the second
model, we changed the input size of the network to accept 1-dimensional input and used the
1-dimensional convolutional layers instead of 2-dimensional layers. After training both CNN
models, we fused them to concatenate each output to an intermediate layer. The intermediate
layer was a fully-connected layer with 4096 neurons. Finally, we retrained the combination to
fine-tune the intermediate layer. We defined this combination as combination-A.

Fig. 2. Combination-A. The CNN texture and CNN profile models were trained separately.
The first model was trained to identify tissue type based on the texture feature. The second
CNN model was trained to identify tissue type based on the intensity profile feature in
the middle of the image patch. Both of the CNN model’s outputs were then fused with a
concatenation layer. The fused feature was connected to a fully connected layer of 4096. At
the end layer, a sigmoid activation function was used to identify the tissue type.

Furthermore, Ughi et al. combined the texture and attenuation coefficient features for
atherosclerotic plaque tissue characterization [32]. We also believed that the combination would
improve the accuracy of the CNN models. Therefore, in our second approach, we combined the
texture feature with a pixel-wise attenuation coefficient map. The extraction of the depth-resolved
attenuation coefficient map was proposed by Vermeer et al. to have a pixel-wise attenuation
coefficient map from the image [47]. We reconstructed the attenuation map before extracting the
image patch. Then, we extracted the attenuation coefficient map patch at the same location as the
texture image patch. These two patches were then fused into a 2-channel image and used as the
CNN model’s input. Figure 3 illustrates the processing of the second approach. We defined this
combination as combination-B.

2.5. Attenuation coefficient map reconstruction

The attenuation coefficient maps were reconstructed using the model of light transmission which
has been introduced in the work of Vermeer et al. [47]. The light transmission model of an
A-Scan is defined with

I(z) ≅ β L0 µb(z) e−2
∫ z
0 µa(u)du, (1)

where I(z) is the intensity signal detected at depth z, β defines the analog to digital conversion
factor of the digitizer and the detector’s quantum efficiency, L0 is the source light power (Wm−2),
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Fig. 3. Combination-B. The CNN model was trained to differentiate tissue type based on
2-channel image input. This 2-channel image was constructed by combining the image patch
and the attenuation patch. The attenuation patch was extracted from the attenuation map at
same location with image patch.

µa denote the attenuation coefficient, and µb denote the backscatter coefficient. We assume that
the backscatter coefficient is a fixed fraction α of the attenuation coefficient (µb = αµa) and the
I(∞) = 0. The integral of I(z) from z to infinity (∞) is then given by

∫ ∞

z
I(u)du ≅ −αβL0

2
e−2

∫ u
0 µ(v)dv + C

|︁|︁|︁|︁|︁
∞

z

= − I(u)
2µa(u) + C

|︁|︁|︁|︁|︁
∞

z

= − I(z)
2µa(z) .

(2)

We can rewrite Eq. (2) to get the estimated attenuation coefficient as

µa ≅
I(z)

2
∫ ∞
z I(u)du

. (3)

The pixel-wise form of the estimated attenuation coefficient is given by

µa[i, j] ≈ I[i, j]
2δ

∑︁∞
z=j+1 I[i, z] , (4)

where δ denotes the axial pixel spacing (mm/pixel), i denotes the A-Scan index (horizontal
index) over the image, and j denotes the index over the depth of i-th A-Scan (vertical index).
Furthermore, the image I[i, j] is first denoised with Gaussian filter to reduce the speckle noise.

2.6. Image data collection

The tissue samples were taken ex-vivo from five individual pigs. For each pig, we took tissue
samples from the femur bone. Figure 4 illustrates the femur bone anatomical structure of a pig.
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The OCT images were acquired from five different tissue types (bone, bone marrow, fat, muscle,
and skin). We prepared 400 tissue samples for each tissue type from random locations around
the diaphysis and epiphysis areas. Figure 5 shows examples of the tissue sample. A B-Scan
image was acquired for each tissue sample. All of the B-Scan images were enhanced using
frame-averaging over 300 frames per image. Therefore, 2000 OCT images were acquired for
each pig. In total, we acquired 10000 OCT scan images. Furthermore, the classification was
done by using the image patch as the input. We extracted an image patch for each OCT image.
The image patch extraction is explained in section 2.2.

Fig. 4. Illustration of the femur bone anatomical structure of a pig (left). Cross-cut example
of the bone on the diaphysis area is illustrated on the right image.

In the experiment, we used leave-one-out of five pigs (5-fold) cross-validation to measure the
performance of the CNN models. In one fold, we trained the CNN model with patch images from
four animals (8000 image patches) and tested it with one other animal (2000 image patches).

2.7. Models training

We implemented the CNN models in Keras python implementation, with a TensorFlow backend
[48]. The training workstation was equipped with an Intel Xeon E5620 processor and two
NVIDIA GTX 1080 Ti GPUs. All models were trained with 1000 epochs and a batch size of
32 samples to fit the GPU’s memory capacity. We defined cross-categorial entropy as the training
loss function and Adam (learning rate = 1.0 x 10−4) as the training optimizer. We evaluated the
classification performance of the CNN models in terms of average cross-validated accuracy and
F1-score. The F1-score is a measure of the model’s average accuracy for each class (tissue type).
The F1-score of a class can be calculated from

%F1 − score =
TP

TP + 1
2 (FP + FN) × 100 %, (5)

where TP is the number of correctly labelled samples in current class, FP is the number of
incorrectly labelled samples as belonging to the current class, and, FN is the number of incorrectly
labelled samples as belonging to other class [49].
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Fig. 5. The left column shows examples of the bone, bone marrow, fat, muscle, and skin
tissue samples used in our experiment. The corresponding OCT images (middle column)
were scanned on the red line for each tissue sample. The last column (right) shows the
attenuation maps reconstructed from the OCT images. The image patches (red box) were
taken on the surface of the tissue and used to train the CNN models.
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3. Results and discussion

3.1. Classification performance

Our first experiment was to find the optimal CNN models (VGG, ResNet, and DenseNet) by
using different number of layers except for the AlexNet model because the VGG model has
almost the same configuration as the AlexNet with more convolutional layers and smaller filter
sizes. Here the CNN models were trained with the texture feature only. Specifically for the
VGG based models, the results show that the top fully connected layers play an important part
in classification accuracy. The VGG model has less accuracy and F1-score when we removed
the fully connected layer (VGG16-A). However, we observed similar classification performance
when we use more fully connected layer (VGG16 and VGG16-B). Other than that, the number of
convolutional layer blocks also plays an important part in the VGG model’s performance. The
VGG-3block model has even less accuracy and F1-score in comparison with the AlexNet. The
VGG19 model has the best performance among the VGG models. Furthermore, the results for the
ResNet models show that the accuracy and F1-score are higher when we used more number of
layers. Finally, we observed that the DenseNet121 model performed best than the other models.
However, we also observed a relatively small difference in accuracy and F1-score between the
DenseNet models. It is difficult to conclude the relation between the number of layers and the
performance improvement of the DenseNet models. Table 1 and 2 further show the accuracy and
F1-score of the AlexNet and DenseNet models. The accuracy and F1-score for the other models
can be found in Appendix A (Table 5 and 6).

Table 1. Comparison of the average±standard deviation of accuracy for the AlexNet and DenseNet
models trained with the texture, profile, attenuation, and combinations of features (Combination A

and B). The highest average accuracies are highlighted in bold.

Model

Accuracy (%)

Input Feature

Texture Profile Attenuation
Combination

A B

AlexNet 89.22± 0.35 86.86± 0.68 88.65± 0.91 92.29± 0.16 93.39± 0.43

DenseNet121 91.52± 0.28 87.83± 0.41 89.76± 0.22 94.45± 0.46 94.57± 0.91

DenseNet161 91.04± 0.18 87.68± 0.49 89.55± 0.78 94.70± 0.42 94.85± 0.88
DenseNet169 91.30± 0.49 87.77± 0.42 89.61± 0.35 94.20± 1.09 94.42± 0.37

DenseNet201 91.04± 0.58 87.16± 0.15 89.68± 0.67 93.90± 0.55 94.13± 0.31

Table 2. Comparison of the average±standard deviation of F1-score for the AlexNet and DenseNet
models trained with the texture, profile, attenuation, and combinations of features (Combination A

and B). The highest average F1-scores are highlighted in bold.

Model

F1-Score (%)

Input Feature

Texture Profile Attenuation
Combination

A B

AlexNet 89.31± 0.29 86.95± 0.66 88.87± 0.95 92.35± 0.58 93.43± 0.14

DenseNet121 91.60± 0.37 87.90± 0.42 89.75± 0.07 94.43± 0.44 94.54± 0.20

DenseNet161 91.16± 0.11 87.76± 0.62 89.72± 0.44 94.79± 0.24 94.67± 0.35
DenseNet169 91.31± 0.76 87.85± 0.44 89.74± 0.18 94.24± 0.20 94.40± 0.28

DenseNet201 91.12± 0.26 87.22± 0.15 89.74± 0.73 93.91± 0.31 94.48± 0.30
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In the second experiment, we also discussed the classification performance of the CNN
models with three different input features (texture, intensity profile, and attenuation map feature).
Examples of the attenuation maps are shown in Fig. 5. The results show that all the CNN models
achieved higher accuracy by learning the texture feature than learning the profile or attenuation
features. We also observed that the CNN models trained with the attenuation feature have higher
accuracy and F1-score than those trained with the profile feature. Although we may discriminate
tissue type based on the average attenuation coefficient, the standard deviations indicate noises
that reduce the classification performance (see Table 3). Furthermore, the results prove the
improvement of accuracy by combining the texture and profile or attenuation features. We
observed that combination-B improves the models’ performance better than combination-A. The
combination-B increases the accuracy and F1-score of all texture feature-based models by an
average of 3.59 % and 3.60 %, respectively. On the other hand, the combination-A increases the
accuracy and F1-score of all texture feature-based models by an average of 3.00 % and 2.98 %,
respectively, which proves that the attenuation map feature discriminates better than the profile
feature. These accuracy improvements happened because the CNN models learn the discriminant
between bone marrow and fat better when trained with the profile or attenuation features than the
texture feature. As an example, Fig. 6 illustrates the benefit of using the combinations to improve
the DenseNet121 models.

Table 3. The average ± standard deviation of the tissues’
attenuation coefficient. The average attenuation coefficient

was measured based on the reconstructed attenuation
coefficient map patches

Tissue Type Attenuation Coefficient (mm−1)
Bone 0.995 ± 0.065

Bone Marrow 0.933 ± 0.179

Fat 0.866 ± 0.107

Muscle 0.849 ± 0.167

Skin 0.213 ± 0.116

3.2. Computation Performance

The computation performances of the models were evaluated for the average prediction time
to classify the image patches. We tested the computational performance of the models on the
same workstation that we used to train the models. The prediction time measurements were the
average prediction time of five prediction runs for each model. With the texture feature alone
as the input, both the AlexNet and VGG based models predicted the tissue type in less than
40 msec. We observed that the computation time of the VGG based models does not significantly
increase along with the increased number of layers. Furthermore, the ResNet and DenseNet
models predicted the tissue type in around 40∼70 msec. Here, the ResNet and DenseNet models’
prediction time increased along with the increasing number of layers. The AlexNet model
predicted the tissue type faster than the models because it used fewer layers and less network
complexity (parameters).

We also measured the prediction time when using the profile and attenuation features as the
models’ input. The models predicted the tissue type faster when we used the profile feature
than the texture and attenuation features as input because of the smaller number of parameters.
Additional delay for attenuation map extraction also increased the prediction time when we used
the attenuation feature as the input. The attenuation map extraction delayed the prediction time
by 18.76± 1.36 msec. On the other hand, there is no specific processing time for extracting the
intensity profile. Furthermore, the previous section demonstrated that combining the texture
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Fig. 6. The test confusion matrix of the DenseNet121 models that were trained with the
texture feature (a), the profile feature (b), and the attenuation of both features (c). The model
trained with texture feature have lower accuracy in classifying bone marrow and fat. On the
other hand, the profile and attenuation feature discriminate better for the bone marrow and
fat. Therefore, the model has higher accuracy in the combination A and B (d) and (e).
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feature with the profile or attenuation features significantly increased the classification accuracy
and sensitivity. In principle, the prediction time for both combination input models (combination
A and B) were similar to those trained with the texture feature alone. However, in combination-B,
the extraction of the attenuation map put an additional delay in the prediction time. Table 4
show the computation performance of the AlexNet and DenseNet models. The computation
performance for the other models can be found in Appendix A (Table 7).

Table 4. Comparison of the average±standard deviation of the prediction time for the AlexNet and
DenseNet models trained with the proposed features. The prediction time includes the attenuation
coefficient map extraction time for the combination-B model and the model with attenuation maps
input. The attenuation coefficient map extraction takes 18.76±1.36 msec. The fastest computation

performances are highlighted in bold.

Model

Prediction Time (msec)
Input Feature

Texture Profile Attenuation
Combination

A B

AlexNet 34.26± 2.88 29.89± 8.43 52.60± 6.17 34.40± 2.52 53.52± 1.11
DenseNet121 52.73± 1.89 57.25± 2.83 71.84± 2.27 53.37± 2.16 71.49± 6.71

DenseNet161 59.44± 3.43 57.25± 3.52 78.49± 7.86 59.23± 3.62 78.20± 3.23

DenseNet169 62.78± 7.67 58.70± 6.12 82.52± 3.53 63.62± 4.32 81.54± 4.56

DenseNet201 64.98± 2.68 56.16± 3.85 84.34± 6.78 63.61± 2.98 83.74± 3.69

All models’ computation performances were below 90 msec, excluding the image acquisition
and frame-averaging. Our results are faster than the reference machine learning methods [32–36].
These results show the possibility of achieving real-time tissue classification with the optimum
pulse repetition rate of our laser ablation was 10 Hz (100 msec per pulse) [27]. Nevertheless, the
results show that the AlexNet model predicted the tissue type fastest than the other models even
when using the combined features as the input. However, we prioritize more on the classification
accuracy in this study. Therefore, within the pulse repetition rate window, the DenseNet161 with
the texture and attenuation feature combination input would be the best option to predict the
tissue type.

4. Conclusions and outlook

We demonstrated that the classification accuracy was significantly increased by combining the
texture feature with the intensity profile or attenuation map features. Combining the texture
feature with the attenuation map improved the classification accuracy by an average of 3.59%.
Meanwhile, the combination with the profile features improved the classification accuracy by
an average of 3.00%. The difference in accuracy’s improvement between both combinations
was relatively small, especially between the DenseNet models. However, the attenuation feature
extraction delays the prediction time by 18.76 msec. Therefore, in practice, the combination
between the texture and intensity profile is preferable to the combination between the texture and
attenuation map.

The results for the combination between the texture and intensity profile show that DenseNet
models have higher accuracy than the other models. Specifically, the DenseNet161 model has the
highest accuracy compared with the other models. However, the complexity of the DenseNet161
model also increased the prediction time. Although the AlexNet model has 1.46% less accuracy
than the DenseNet161, this model’s prediction time is ∼1.43 times faster. If low computation
resource is available, such as in an embedded system, the AlexNet model would be a better
choice than the DenseNet161 model. For our smart laser surgery, the computation time required
by all models is still carried below the optimum ablation laser pulse rate, which suggests the
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application for real-time feedback. This study suggests that the DenseNet161 with the texture
and attenuation feature combination input would be the best option to predict the tissue type.

The frame-averaging image enhancement will delay the feedback system by ∼900 msec for
acquiring 300 frames (B-Scan) per image in this study. We would consider using a smaller
number of frames for a faster feedback system in the real-time implementation. However, the
reconstructed images will have lower image quality compared to the images used in this study.
Consequently, the CNN may have lower accuracy if trained using the images with lower image
quality. Several studies suggested faster OCT image denoising, such as block-matching 3D
(BM3D) [50], double-density dual-tree complex wavelet transform (DD-CDWT) [51], or deep
learning denoising [52] methods, as an alternative to the frame-averaging method. These methods
are demonstrated to be able to reconstruct a high-quality image from a single raw image. In such
a way, we could directly train the CNN using the denoised raw images to identify tissue type.
However, there is a possibility that the denoising method will alter the important information
(such as textural and attenuation features) for tissue classification. Further investigation is needed
to ensure that the CNN performs similarly with this study.

Furthermore, we are aware that implementing this method and incorporating it into a laser
ablation system remains challenging. One of the challenges is that the tissue will experience an
increase in temperature (heating up) during microsecond ablation. The area of interest for the
tissue classification would experience heat transfer from the ablated tissue in the focal spot area.
This process happens in a fraction of a second before the ablated tissue in the focal spot area
explodes or evaporates and is confined to the laser’s short pulse duration. Therefore, this indirect
heating process can be considered slow heating.

Additionally, the optical properties of the tissue (such as refractive index, absorption coefficient,
and scattering coefficient) would change due to the heating process [18]. These changes will
affect the tissue classifier’s (CNN) accuracy. Further studies are needed to determine how the
CNN performs during laser ablation. We planned to train and test the performance of the CNN
models with two approach conditions. In the first approach, we will train and test the CNN
modes using the images that are collected in controlled temperature conditions. For example, we
would collect the OCT images while heating the tissue in every 5 °C increment up to 100 °C. The
second approach is by directly collecting OCT images during laser ablation and use them for
training and test the CNN models.

Finally, for in-vivo experiments, we will also face challenges such as bleeding and tissue debris
from the ablated tissue, which might induce artifacts to the OCT image. Therefore, we will also
investigate the feasibility of integrating a cooling system such as pressurized air and/or water
irrigation with laser ablation in our future work. The cooling system will be helpful to maintain
the tissue temperature and cleaned the ablation area from bleeding and tissue debris.
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Appendix A: Tables on accuracy, F1-score, and computation time for all models

Table 5. The average±standard deviation of accuracy for all models. The highest average
accuracies are highlighted in bold.

Model

Accuracy (%)

Input Feature

Texture Profile Attenuation
Combination

A B

AlexNet 89.22± 0.35 86.86± 0.68 88.65± 0.91 92.29± 0.16 93.39± 0.43

VGG 3Block 87.37± 0.13 83.26± 0.24 85.06± 0.26 92.10± 0.81 92.93± 0.35

VGG11 89.57± 0.22 84.38± 0.67 86.46± 0.52 92.28± 0.28 93.51± 0.27

VGG13 90.14± 0.63 85.61± 0.56 87.68± 0.76 93.26± 0.35 94.01± 0.60

VGG16-A 87.13± 0.18 82.47± 0.44 84.34± 1.01 90.85± 0.19 91.87± 0.32

VGG16 90.86± 0.58 87.72± 0.88 89.64± 0.59 92.86± 0.41 94.07± 0.74

VGG16-B 90.83± 0.70 87.63± 0.21 89.52± 0.65 93.59± 0.37 94.05± 0.61

VGG19 91.27± 0.81 87.51± 0.71 89.27± 1.04 93.56± 0.28 94.42± 0.22

ResNet50V2 90.78± 0.36 87.07± 0.98 89.25± 1.08 93.89± 0.56 94.06± 0.23

ResNet101V2 91.31± 0.84 87.51± 1.15 89.55± 0.15 93.92± 0.22 94.25± 0.44

ResNet152V2 91.52± 0.99 87.57± 0.66 89.54± 0.22 94.16± 0.61 94.32± 0.74

DenseNet121 91.52± 0.28 87.83± 0.41 89.76± 0.22 94.45± 0.46 94.57± 0.91

DenseNet161 91.04± 0.18 87.68± 0.49 89.55± 0.78 94.70± 0.42 94.85± 0.88
DenseNet169 91.30± 0.49 87.77± 0.42 89.61± 0.35 94.20± 1.09 94.42± 0.37

DenseNet201 91.04± 0.58 87.16± 0.15 89.68± 0.67 93.90± 0.55 94.13± 0.31

Table 6. The average±standard deviation of F1-score for all models. The highest average
F1-scores are highlighted in bold.

Model

F1-Score (%)

Input Feature

Texture Profile Attenuation
Combination

A B

AlexNet 89.31± 0.29 86.95± 0.66 88.87± 0.95 92.35± 0.58 93.43± 0.14

VGG 3Block 87.39± 0.11 83.41± 0.24 85.25± 0.28 92.39± 0.71 93.00± 0.49

VGG11 89.64± 0.22 84.46± 0.69 86.57± 0.23 92.36± 0.57 93.61± 0.72

VGG13 90.22± 0.93 85.78± 0.53 87.69± 0.31 93.34± 0.48 94.05± 0.52

VGG16-A 87.26± 0.17 82.64± 0.39 84.47± 0.17 90.91± 0.65 91.99± 0.24

VGG16 91.06± 0.61 87.81± 0.85 89.65± 0.28 92.96± 0.27 94.12± 0.31

VGG16-B 90.93± 0.71 87.74± 0.21 89.58± 0.19 93.62± 0.34 94.53± 0.89

VGG19 91.34± 0.81 87.57± 0.71 89.32± 0.08 93.60± 1.04 94.47± 0.32

ResNet50V2 90.89± 0.27 87.14± 0.97 89.37± 1.14 93.90± 0.28 94.13± 0.28

ResNet101V2 91.38± 0.83 87.59± 1.18 89.64± 0.15 93.95± 0.25 94.32± 0.58

ResNet152V2 91.58± 0.96 87.60± 0.65 89.60± 0.22 94.19± 0.51 94.35± 0.31

DenseNet121 91.60± 0.37 87.90± 0.42 89.75± 0.07 94.43± 0.44 94.54± 0.20

DenseNet161 91.16± 0.11 87.76± 0.62 89.72± 0.44 94.79± 0.24 94.67± 0.35
DenseNet169 91.31± 0.76 87.85± 0.44 89.74± 0.18 94.24± 0.20 94.40± 0.28

DenseNet201 91.12± 0.26 87.22± 0.15 89.74± 0.73 93.91± 0.31 94.48± 0.30
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Table 7. Comparison of the average±standard deviation of the prediction time for all models. The
prediction time includes the attenuation coefficient map extraction time for the combination-B

model and the model with attenuation maps input. The attenuation coefficient map extraction takes
18.76±1.36 msec. The fastest computation performances are highlighted in bold.

Model

Prediction Time (msec)
Input Feature

Texture Profile Attenuation
Combination

A B

AlexNet 34.26± 2.88 29.89± 8.43 52.60± 6.17 34.40± 2.52 53.52± 1.11
VGG-3Block 38.59± 1.13 30.52± 2.32 57.08± 2.91 38.09± 7.15 56.87± 6.51

VGG11 35.37± 2.96 28.65± 7.55 55.38± 2.37 35.89± 2.35 54.63± 0.99

VGG13 37.00± 2.78 35.88± 2.30 56.55± 3.13 37.67± 2.98 55.89± 2.25

VGG16-A 38.44± 8.11 33.61± 1.54 56.99± 1.73 38.68± 2.48 56.29± 1.08

VGG16 37.77± 1.76 27.80± 2.04 56.17± 2.86 38.47± 3.32 57.33± 4.43

VGG16-B 38.63± 2.93 34.81± 2.59 57.51± 1.92 39.25± 2.16 57.78± 0.35

VGG19 38.55± 2.78 42.63± 0.67 57.86± 0.81 39.51± 3.53 59.80± 2.38

ResNet50V2 44.41± 1.43 41.85± 2.76 64.00± 2.47 44.57± 6.86 63.17± 2.85

ResNet101V2 51.11± 2.58 58.26± 3.55 70.26± 2.83 51.07± 2.43 69.87± 4.52

ResNet152V2 60.80± 2.47 50.08± 1.82 79.16± 3.71 60.48± 6.74 79.56± 1.60

DenseNet121 52.73± 1.89 57.25± 2.83 71.84± 2.27 53.37± 2.16 71.49± 6.71

DenseNet161 59.44± 3.43 57.25± 3.52 78.49± 7.86 59.23± 3.62 78.20± 3.23

DenseNet169 62.78± 7.67 58.70± 6.12 82.52± 3.53 63.62± 4.32 81.54± 4.56

DenseNet201 64.98± 2.68 56.16± 3.85 84.34± 6.78 63.61± 2.98 83.74± 3.69
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Chapter 6

Real-Time Tissue Characterization

After identifying DenseNet as a promising deep learning model for tissue classification,
the publication presented in this chapter reports on an attempt to demonstrate, for
the first time, online tissue differentiation during laser ablation. This paper focused on
differentiating between bone and bone marrow tissues. The laser ablation was designed to
cut the bone and stop whenever the tissue classifier detected bone marrow. Three main
challenges have been addressed in this thesis. The first challenge was the primary beam
size of the Er:YAG ablation laser, which created a big crater hole. The hole was bigger
than the lateral resolution of the OCT. Thus, for example, the OCT would only scan
a small area at the crater’s center. Here, we proposed multiple scanning locations and
determined the tissue type based on the majority vote of the detected tissue type from
each location. However, the scanning locations were difficult to set since the Er:YAG laser
beam shape used in this thesis is near Gaussian-shaped, and results in a non-rectangular
crater shape. The tracked patch location at the angled crater wall was unable to cover
the tissue completely. The OCT-based feedback system should monitor tissue type over
the crater area; thus, a top-hat shaped Er:YAG would be ideal for laser osteotomy.

The second challenge was posed by the changes in the tissue’s optical properties due
to laser ablation, which is mostly caused by the photothermal interaction of light with
tissue [120]; thus, changes in a tissue’s temperature affect its optical properties and,
consequently, alter the tissue’s structure appearance. Moreover, changes in intensity on
marrow images were observed, likely due to the presence of liquid material at the surface.
The liquid appears as the effect of the high-pressure explosion at the ablation center that
squeezes the surrounding bone marrow and discharges liquid materials [120], e.g., water
and liquid fat. They then diffuse and cover the bone marrow surface. These conditions
were addressed in this publication by training the DenseNet model with training data
collected while ablating with laser.

The last challenge that has been addressed was the water spray problem. Er:YAG laser
is highly efficient in water-cooled conditions. Therefore, ideally, during laser osteotomy, a
water spray is necessary to rehydrate the target tissue material so that water-mediated
explosions occur. However, the water droplets at the tissue surface will deteriorate the
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OCT image and, consequently, disturb the patch tracker. In this publication, a solution
was proposed whereby water irrigation was only delivered at a time window while pausing
both the ablation and tissue detection system.

This publication demonstrated the feasibility of a real-time feedback system using
OCT and deep learning for laser osteotomy. The feedback system offers a completely
noninvasive way of monitoring laser ablation. For the hole-ablation experiments, the
average maximum depth of perforation and volume loss was 0.216mm (± 0.140mm) and
0.077mm3 (± 0.076mm3), respectively. The average maximum depth of perforation and
volume loss for the line-ablation experiments was 0.645mm (± 0.291mm) and 0.878mm3

(± 0.643 mm3), respectively.

Publication: Y. A. Bayhaqi, A. Hamidi, A. Navarini, P. C. Cattin, Ferda Canbaz,
and A. Zam, ”Real-time closed-loop tissue-specific laser osteotomy using deep-learning-
assisted optical coherence tomography,” Biomedical Optics Express Vol. 14, No. 6, pp.
2986–2986 (2023).
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Abstract: This article presents a real-time noninvasive method for detecting bone and bone
marrow in laser osteotomy. This is the first optical coherence tomography (OCT) implementation
as an online feedback system for laser osteotomy. A deep-learning model has been trained to
identify tissue types during laser ablation with a test accuracy of 96.28 %. For the hole ablation
experiments, the average maximum depth of perforation and volume loss was 0.216 mm and
0.077 mm3, respectively. The contactless nature of OCT with the reported performance shows
that it is becoming more feasible to utilize it as a real-time feedback system for laser osteotomy.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Over the last decades, laser technologies for cutting bones have developed rapidly. Lasers produce
a cleaner surface cut, cause fewer mechanical vibrations, offer more flexible cutting geometries,
cause fewer material losses, and show less microorganism contamination than conventional saws,
drills, or burs [1–7]. Laser osteotomy, especially with erbium-dopped yttrium aluminium garnet
(Er:YAG) laser, is ideal for efficient bone ablation with very little carbonization [8–13]. However,
similarly to mechanical tools, there is an inherent risk of collateral damage to surrounding tissue,
such as bone marrow and nerves. This remains a challenge in laser osteotomy, especially over the
ablation direction. In osteotomy with mechanical tools, physical feedback (i.e., haptic feedback)
helps surgeons to stop cutting as soon as some damage is done to the bone marrow so that the risk
of cutting nerves is avoided. Controlling the laser osteotomy is also difficult. Ideally, a surgeon
plans the ablation site and depth based on the patient’s computed tomography (CT) data. The
ablation depth could be simply calculated from the ablation rate per pulse. Nevertheless, the
accuracy of such a process is limited to the resolution of the CT and the ablation rate calculation.
The ablation rate is influenced by multiple factors, such as the shape of the laser beam, the energy
per pulse, the cooling system, the tissue density, and the water content [13–15].

One solution to this problem is to integrate a closed-loop control system that would make it
possible to safely perform laser osteotomy without damaging critical internal tissues. Researchers
have sought to address this issue throughout the last decade. Such a control mechanism aims
to identify tissue type below the laser-ablated incision during the cutting process. The ablation
process would be terminated as soon as soft tissue (such as bone marrow or nerves) is detected.

#486660 https://doi.org/10.1364/BOE.486660
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Such a detection system can be achieved by analyzing the secondary light and the acoustic
emission produced by the laser’s interaction with tissue or by integrating the ablation laser with
additional diagnostic modalities.

Analysis of secondary light emissions includes random lasing (RL) [16] and laser-induced
breakdown spectroscopy (LIBS) [17–21], which have been demonstrated to be promising methods
for differentiating tissue types. It has been shown that RL has nanoscale sensitivity to small
structural changes [16]. LIBS could run under operating room light and has a very high accuracy
for tissue differentiation at an atomic scale [18,19,22]. Even more, LIBS could also be used
for carbonization detection [23], preventing permanent damage to the bone. But each of these
methods also has its own disadvantages. RL depends on a laser dye that might harm biological
tissue, while LIBS has limitations in reaching a deep cut and is more accurate for characterizing
tissue surfaces. Furthermore, research in analyzing the acoustic signals emitted by photoablation
(ablative optoacoustic techniques) has also been demonstrated to have comparable accuracy
[24–28]. These methods require, however, a high-energy pulsed laser to produce a measurable
acoustic signal; thus, damage to the tissue is almost unavoidable.

Another interesting method for analyzing the effects of photoablation was presented by
Rupprecht et al. [29,30]. Their approach combines analyzing both secondary light emissions and
acoustic signals (combined pyrolysis-photoacoustic). Here, the light emission from the pyrolysis
process in the ablation zone is observed with a photodiode. At the same time, a piezoelectric
accelerometer is used to measure the generated acoustic signal. The measured signals were used
to interrupt the laser beam as soon as threshold values were reached. Additionally, we could also
use the pyrolysis signal for detecting bone carbonization [31]. However, this method inherits
similar drawbacks from the previously mentioned methods. A high-energy pulsed laser is needed
to generate the pyrolysis light. Even more, the piezoelectric accelerometer needs to be mounted
to the bone, which causes unnecessary damage.

Contactless laser ablation can be integrated with additional nonimaging and nonablating
diagnostic modalities. Raman spectroscopy [32,33] provides information regarding the molecular
bonds of tissue and has a high accuracy comparable to LIBS. However, a few seconds of
integration time is required to get an observable signal [32], which makes it unsuitable for a
real-time feedback system. Another alternative, autofluorescence [34,35] and diffuse reflectance
spectroscopy [36–39], may be used to differentiate tissue types with a faster processing time.
But these techniques work as a point measurement, thus lacking structural information about the
tissue anatomy over the depth.

Among the methods previously mentioned, to date, only LIBS [21] and the combined pyrolysis-
photoacoustic [29,30] methods have been experimentally tested for use in a real-time closed-loop
control system for laser osteotomy. However, although both methods have high accuracy, these
methods distinguish tissue type only after an ablation pulse has been applied, which increases
the risk of collateral damage during laser ablation. A further drawback of these approaches is
that they can only detect tissue transitions after crossing the tissue boundary. Damage to critical
structures is thus almost unavoidable.

We proposed a contactless and ablation-free optical coherence tomography (OCT) imaging sys-
tem for monitoring the laser ablation process. This emerging imaging technology is analogous to
ultrasound imaging that performs noninvasive cross-sectional tomography using light propagation
in media and interference phenomena. The echo time delay of the back-reflected or backscattered
light from the tissue’s internal microstructures is measured using interferometry of partially
coherent light. It has been demonstrated as a viable alternative to ultrasound for real-time,
high-resolution, and in situ investigations of thin tissue structures [40–42]. This noninvasive
imaging modality depicts not only a topological profile of the examined surface but also displays
the subsurface structures [43,44]. It has become a standard technique in ophthalmology for
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diagnosing retinal diseases [45,46]. Additionally, over the last decades, OCT has become an
alternative to ultrasound for intravenous imaging [47–51].

OCT has been employed in several studies to obtain subsurface information from different
tissue types and has been used as guidance for laser-ablation surgery, including in tumor resection
[52,53], cochlear implant surgery [54,55], and bone osteotomy [56–58]. Increases in resection
accuracy and precision for brain tumors and blood coagulation have been reported as advantages
of utilizing this technology [52,53,59]. One study showed that OCT helps to shape the endosteal
layer’s curvature for cochlear implantation with a mean absolute accuracy of around 20 µm [54].
Moreover, some literature has demonstrated that OCT could also be used to monitor the relative
temperature of the ablated bone surface, enabling the prevention of bone carbonization [60,61].
Specifically, OCT has been tested as a noncontact real-time feedback system for monitoring the
ablation depth of a laser in controlled bone osteotomy [56–58]. Nevertheless, these approaches
mainly focus on measuring the position of the target tissue (depth control).

In this work, we utilized OCT to guide the laser osteotomy by detecting tissue type based
on the OCT image and providing real-time feedback. Specifically, our proposed method takes
advantage of deep learning algorithm to identify the tissue types because it could provide an
efficient and accurate way to differentiate tissue. Thus supporting our real-time feedback system.
To the best of our knowledge, this is the first approach to provide the basic framework for a
real-time closed-loop tissue-specific feedback system based on OCT. In the present study, we
focused on testing the performance of the feedback system in differentiating bone and bone
marrow in real-time. The experiments were done on fresh porcine femur bones with bone marrow
inside. The primary objective of the tissue-specific feedback system was to cut the bone and to
stop the laser ablation whenever bone marrow was detected. In the future, we foresee optimizing
the feedback system for more precise predictions and more tissue types.

2. Methodology

2.1. OCT closed-loop controlled-laser-ablation setup

An Er:YAG (Syneron LiteTouch, Israel) ablation laser was used for our laser-osteotomy study
because of its efficient ablation rates and low carbonization effect [8–13]. The ablation laser’s
wavelength (2.94 µm) is strongly absorbed by both water and hydroxyapatite, which are the
main components of bone. The absorption of such laser light leads to photothermal ablation
[1,10]. The irradiated area consequently experiences heat transfer and an increase in pressure.
The tremendous build-up of pressure in a fraction of microseconds induces the explosion of
tissue material at the focal-spot area. Such heat transfer may rapidly increase the temperature
in the surrounding area and lead to carbonization outside the focal spot. A water spray and
pressurized air are usually used to keep the temperature of tissue below the carbonization
threshold. Rehydrating the tissue also increases its water content and improves the ablation rate.

The closed-loop controlled-laser osteotomy aims to provide detection of the tissue types
encountered during laser ablation to avoid cutting critical tissues. Our concept of OCT closed-
loop controlled-laser ablation is illustrated in Fig. 1(a). The Er:YAG laser beam was focused
on the bone surface by a CaF2 lens (L3) with a focal length of f = 75 mm. The ablation laser
and the OCT system were coaxially coupled with the help of a dichroic filter (DF) [Advanced
Osteotomy Tools II-VI 80048151, Switzerland]. A sapphire window with a 2 mm thickness was
placed in front of the filter to protect the optical components from debris and water droplets
splashing around during ablation. Additionally, pressurized air was used to deflect the debris
trajectory to prevent bone debris from accumulating on the sapphire window, which could reduce
the incident energy of the laser and deteriorate the OCT image.

We used a custom long-range Fourier-domain OCT system with an extended depth of focus for
deep-ablation monitoring. It was equipped with a laser source (Insight Photonic Solution, Inc.,
Lafayette, Co, USA) with a central wavelength of 1310 nm, a spectral bandwidth of 61.5 nm, and
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Fig. 1. (a) Schematic of the proposed OCT-based closed-loop controlled-laser osteotomy.
We used a custom long-range Fourier-domain OCT with a Bessel-like beam (BLB) optical
setup [39]. A dichroic filter coupled the OCT (red line) with an ablation laser (blue line).
The OCT images were analyzed (image analyzer) to identify the ablated tissue type. The
output provided feedback to an optical shutter that controlled the ablation laser to either stop
or continue ablation. (b) The image analyzer worked based on an image patch. A region of
interest (image patch) from the OCT image was selected on the ablation spot. We trained a
convolutional neural-network model to identify the tissue type based on the extracted image
patch.

an A-scan line rate of 104.17 kHz. The OCT system had an imaging range of 26.2 mm in the air.
The long-range imaging ability was achieved using a Bessel-like beam (BLB) optical setup, as
explained in our previous publication [42]. The reconstructed B-scan images from the OCT system
had the dimensions of 2048 pixels (26.2 mm) in the axial and 300 pixels (1.5 mm) in the lateral
direction. The corresponding lateral and axial resolutions were 26 µm and 18 µm, respectively.
The sensitivity or the maximum signal to noise ratio (SNRmax) of the OCT system was 110 dB.
The OCT system was controlled with a workstation that was equipped with an Intel Core i9-7900X
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central processing unit (CPU) and an NVIDIA GTX 1080Ti graphics processing unit (GPU). The
interference signal was detected by a balanced photodetector (Thorlabs PDB48xC-AC, Germany)
and digitized by a PCIe Waveform Digitizer (Alazartech ATS9373, Canada). OCT images were
reconstructed from the interference signal through several preprocessing steps such as Direct
Current (DC) subtraction, windowing, zero padding, and inverse Fourier transformation. All of
this signal processing and image reconstructions was calculated on the GPU using the compute
unified device architecture (CUDA) library for fast parallel processing [62].

The OCT images were streamed to monitor the ablation process. The detection system worked
based on an image patch taken from the ablation area (see Fig. 1(b)). The patch was used as a
deep-learning model input to discriminate between tissue types. In this paper, the deep-learning
model was trained to differentiate between bone and bone marrow (see Section 2.3). The model’s
output provided feedback to an optical shutter (Thorlabs SH1, Germany) for indirectly controlling
the Er:YAG ablation laser.

2.2. OCT scan pattern

The Er:YAG laser circular beam at the surface of the bone tissue had an estimated diameter of
∼1.0 mm with beam quality factor M2 = 22. Meanwhile, the lateral resolution of the OCT image
was 20 µm, so a significant area of ablation was not covered by a single B-Scan image, see Fig. 2.
Our proposed approach for detecting tissue type was based on detecting three image patches
from three different scan locations (images) over the monitored ablation hole. The number of
locations was chosen as a trade-off between acquisition time and coverage of the ablation area.
This scanning mechanism is illustrated in Fig. 2. In total, nine B-scan frames were acquired for
every detection step, which corresponds to an acquisition rate of 28.94 Hz (34.56 msec). For
each scan location, the image was frame-averaged from three consecutive B-Scan frames to
obtain better quality images. The tissue type of the monitored ablation crater was determined by
detecting three image patches from three scan locations simultaneously and taking the majority
voting of the detection results.

20 μm

1,2 m
m

1 mm

0.3 mm

Scan 1 Scan 2 Scan 3

Laser 
Beam

OCT B-Scan

Detection Patch

Fig. 2. Top-view illustration of the OCT scan pattern (orange) to cover the bigger area of
the Er:YAG laser beam. The color gradation from white (higher) to blue (lower) indicates
the intensity (fluence) of the laser beam. Our detection approach involved three detection
locations (red) that corresponded to analyzing three OCT B-scan images simultaneously.

2.3. Tissue differentiation

Tissue detection or classification has most recently been the research focus in clinical applications
of OCT, such as retinal diseases [63], cancer [64], or atherosclerosis plaque detection [47].
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Conventionally, tissue detection has usually been done by discriminating the feature represen-
tation (such as attenuation coefficient and textural features) of the tissue in the OCT image.
Discrimination using machine learning algorithms, such as random forest (RF) [47], principle
component analysis (PCA), and support vector machine (SVM) [64] have been demonstrated
to be useful and have shown good accuracy for automatic tissue differentiation. However, the
complicated feature extraction of the image increased the prediction time, which is a critical
point for a real-time feedback system. As an illustration, the method proposed by Ughi et al. [63]
in 2013 took about 2 seconds to detect the atherosclerotic plaque using the attenuation estimation
and RF classification algorithm. Another example was done by Müller et al. [64] in 2021. They
needed 1.6 seconds to automatically classify tissue in brain metastases using textural features and
SVM.

Currently, one of the most popular methods for image recognition is by using deep learning
algorithms, specifically the convolutional neural network (CNN). As one of the deep-learning
models, CNN has been known to have better accuracy and efficiency for object detection on an
image than other classical machine-learning methods or even other traditional deep-learning
models such as multi-layer perceptron (MLP) [65,66]. The convolutional layer of CNN operates
as spatial filters that extract high-level features such as edges from the input image.

In OCT research, CNN was proposed as an alternative for real-time image recognition because
of the non-complicated or straightforward feature extraction for recognizing the patterns of
specific tissues in OCT images. In 2017, Roy et al. developed ReLayNet [67] which is able
to segment retinal layers in 10 msec. Followed by Borkovkina et al. in 2020 [68], they have
successfully accelerated the segmentation of retinal layers to only 3.5 msec.

Moreover, in our previous experiments [69], CNN models such as VGG [70], ResNet [71],
and DenseNet [72] were demonstrated to have an accuracy of more than 90 % to differentiate
five tissue types with an inference time of less than 65 msec. We found that DenseNet has better
accuracy compared to the other tested models. Specifically, we have demonstrated that this model
had an accuracy of 91.52 % with an inference time of 52.73 msec. Therefore we chose DenseNet
(DenseNet121) as the tissue-classifier model for the present experiments.

In this work, we modified the DenseNet model output to recognize bone and bone marrow.
The input of the DenseNet model is an image patch that was selected in such a way as to represent
a region of interest where a destructive laser pulse would be applied. Technically, the ablation
spot is fixed in the lateral center of the B-scan image. Before conducting the experiments, the
OCT was aligned such that the B-scan image is centered to the hole ablation, as illustrated in
Fig. 1(b). The tissue surface in the B-scan image was detected using the vertical Canny edge
detection method because of its simplicity and low sensitivity to noise [73,74]. A square of
128 pixels × 128 pixels area was extracted from the ablation spot and defined as the input patch
for the DenseNet model. Examples of the image patches are shown in Fig. 4. Finally, the model
had two outputs with sigmoid activation function, which gave the tissue-type prediction (bone or
bone marrow).

2.4. Training, testing, and online inference

The data sets used to train the DenseNet model were taken from ex-vivo pig-bone samples. The
samples were acquired from a local butcher. Specifically, the samples were taken from the middle
section of the femur bone and consisted of the compact bone as the outer layer and the bone
marrow inside. The muscle and connective layer were removed before the experiments. For fully
supervised training, the bone image patches were taken from the bone surface, while the bone
marrow image patches were taken from the sample’s side, as illustrated in Fig. 3(a) (blue line for
bone and red line for bone marrow).

There are, however, some challenges for tissue classifiers during laser ablation. The tissue
experiences an increase in temperature (heating up) during microsecond ablation. This will
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Fig. 3. (a) Example of a pig femur bone sample used in the experiment with bone marrow
inside. The OCT B-scan images, used for deep learning training, were scanned at the blue
line for bone tissue and at the red line for bone marrow. The average thickness of the bone
layer was 2.5 mm. (b) Example of the dehydrated bone after receiving 12-18 laser pulses.
The top images show bone dehydration with hole ablations. The bottom image shows bone
dehydration with a line ablation. The hole-ablated bone experiences more dehydration to
carbonization (indicated with a darker color) than the line-ablated bone, because it better
distributed the heat from the laser (See section Section 2.5).

(a) Bone without ablation (b) Bone marrow without ablation
1 m

m

0.1 mm

1 m
m
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(c) Bone with ablation (d) Bone marrow with ablation
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0.1 mm
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Fig. 4. Examples of OCT B-scan images collected in the experiment. Bone (a) and bone
marrow (b) images without laser ablation. Bone (c) and bone marrow (d) images during laser
ablation with 200 mJ. The image of bone during ablation shows an increase in intensity due
to water dehydration. By contrast, the image of bone marrow shows a decrease in intensity
due to light absorption by liquid materials at the surface.
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induced dehydration to the bone as shown in Fig. 3(b). As a consequence, the optical properties
of the tissue (such as the refractive index, absorption coefficient, and scattering coefficient)
change [35,37]. These changes affect the textural information in the OCT images and may reduce
the tissue classifier’s accuracy. For these reasons, we trained the classifier using image patches
from four different conditions. The first patches were taken without applying the laser. The other
patches were taken while applying the ablation pulses with the energy of 200, 150, and 110 mJ,
respectively.

Five pigs, with three samples from each pig, were used to train and test the classifier. As
explained in the previous paragraph, image patches from each sample were taken from four
ablation conditions, with 1000 image patches per ablation condition. Thus, a total of 8000 image
patches consisting of 4000 image patches of bone tissue and 4000 image patches of bone marrow
were collected for each sample. The samples were separated into six samples from two pigs for
training, three samples from one pig for validation, and six samples from two pigs for testing. In
other words, the data sets were separated into 48,000 (24,000 per tissue) patches for training,
24,000 (12,000 per tissue) for validations, and 48,000 (24,000 per tissue) for testing the DenseNet
model.

The training of the DenseNet model was implemented using the Pytorch Deep Learning
framework [75]. We trained it on an NVIDIA DGX A100 workstation equipped with NVIDIA
A100 GPUs, which enabled us to perform parallel computations to speed up the training process.
The model was trained with 1000 epochs and a batch size of 32 samples. We defined cross entropy
as the training loss function and Adam (learning rate = 1.0 × 10−4) as the training optimizer.
Furthermore, we performed data augmentation to the patch image during training by random
small shifts and horizontal flips.

The inference of the DenseNet model was done on the OCT workstation and embedded as
one of the processing pipelines. After training the DenseNet model in Pytorch, we converted
the model to the Open Neural Network Exchange (ONNX) format [76], which can be read by
the NVIDIA TensorRT [77] library for parallel deep-learning inference in our OCT’s GPU.
This inference mechanism performed faster than previously reported inference mechanisms [69].
TensorRT ran the model inference in a parallel programming manner inside the NVIDIA GPU
and used the GPU’s memory to hold the input patch of the model. In our system, the OCT
signals were processed in the GPU. Thus, the reconstructed images already resided in the GPU’s
memory. Copying the OCT-reconstructed image to the DenseNet-model input was also done
in the GPU. We thus avoided unnecessary memory copy between the CPU and the GPU. The
inference of our DenseNet model took an average time of 11.96 msec by using this mechanism.

2.5. Ablation experiments

The experiments to evaluate the real-time feedback system were split into two parts. In the first
experiment, the Er:YAG laser was used to drill a hole starting at the bone surface and was stopped
when the bone marrow was reached. The ablation laser was set to send laser pulses at the energy
of 200 mJ per pulse with a repetition rate of 4 Hz. During ablation, pressurized air was pointed
to the ablation site from the side of the ablation direction (see Fig. 1(a)).

Pressurized air of 2 bar was applied to gently sweep the debris from the ablation site and
prevent it from flying up to the sapphire window. Even though the air could cool down the tissue,
it did not optimally prevent the tissue from carbonizing, which could appear after a few dozen
laser pulses. We therefore paused the ablation laser, tissue detection, and pressurized air, and
then manually sprayed water on the ablation spot whenever carbonization became visible (it was
usually identifiable by blackening on the surface). Moreover, before continuing ablation, we
reapplied the pressurized air to sweep the remaining sprayed water, which could deteriorate or
hinder the tissue texture in the OCT images.
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In the second experiment, we used a motorized linear stage to move the sample and make a
0.5 mm long line cut. The stage was set to move at a constant speed of 1 mm/s. The repetition
rate and energy of the ablation laser were set similarly to the hole-ablation experiment. The OCT
B-scan direction was set to be perpendicular to the ablation line. Despite that, the parallel scan
was superior, and the OCT-scanning size was larger than the laser-beam size. This would result
in a wavy cut, where a small-sized bone (smaller than the B-scan) will be considered as bone
marrow and will not be ablated by the laser. Since peripheral heat is distributed better in line
ablation than in hole ablation, carbonization is observed less often. It consequently leads to a
higher ablation rate [13]. Since carbonization may nevertheless appear, we still applied similar
pausing, water spraying, and air-blowing steps whenever it was noticeable. However, we only
paused ablation at every endpoint of the line.

2.6. Performance evaluation

The ablated samples were evaluated radiographically with a micro computed tomography (micro-
CT) (Bruker SkyScan 1275, Belgium) to obtain three-dimensional geometrical information of
the ablation crater shape. The micro-CT images had a dimension of 1944 pixels in height and
1944 pixels in width. The voxel spacing of the image was 16 µm equally for both axes. The
radiographical images were taken before and after cutting the sample with the laser (pre- and
post-ablation). Both images were registered and overlaid to precisely identify the boundary
between bone and bone marrow. We used the registration estimator application in Matlab with
the monomodal intensity-based rigid registration techniques [78] to estimate the shift between
the pre- and post-ablation CT images.

The evaluation of the feedback system was performed by measuring the volume and maximum
depth of collateral damage (perforation) to the bone marrow. The ablation samples used for
evaluation were different from the samples for training the deep-learning model. A total of six
new samples were used, three of them for hole ablation and the rest for line-ablation experiments.
Here, ten hole- or line-ablation experiments were made for each sample. We defined the maximum
depth of perforation as the depth from the bone-bone marrow border to the bottom of the crater
(illustrated as a white arrow in Fig. 6(i)). The maximum perforation depth was selected over
the entire micro-CT image slice that covered the ablation crater. Furthermore, we measured the
volume of the collateral damage by segmenting (with a threshold method) the damaged area on
the overlaid image and summing up the segmented areas over the whole micro-CT image slices
that covered the ablation crater. Similarly, the line ablation was also evaluated over the entire
micro-CT image slices covering the ablation line.

3. Results and discussion

3.1. Deep-learning training and inference

Training the Densenet model took ∼6.5 hours to complete with a training accuracy of 99.67 % and
a validation accuracy of 96.52 %. Furthermore, the test results of the DenseNet model showed
an accuracy of 96.28 %. In our previous study, the attenuation coefficient profile, which was
explicitly extracted using a depth-resolved method, improved the detection accuracy. However,
the time to extract this profile delayed the detection time. Other than that, we believed that
our model also tried to implicitly extract the attenuation coefficient profile, but it is difficult to
visualize filters over all the layers in the DenseNet model. Finally, in our current approach, both
image acquisition and inference with the DenseNet model (detection time) took only 45.96 msec,
which was faster than the laser’s repetition rate of 4 Hz. Our feedback system can therefore be
considered a real-time feedback system.
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3.2. Ablation evaluation

Figure 5(a) shows an axial slice of the micro-CT image for the hole-ablation experiment. The
closed-loop controlled laser system resulted in an automatic interruption of the laser beam as soon
as bone marrow was detected. However, a small perforation on the bone marrow is noticeable.
Statistically, the average maximum depth of perforation in 30 holes was 0.216 mm (± 0.140 mm),
and the deepest measured bone marrow perforation was 0.910 mm. The average volume loss of
bone marrow was 0.077 mm3 (± 0.076 mm3) with a maximum of 0.299 mm3. Figure 6(h) shows
a sagittal slice of the CT image for the line-ablation experiment. Similarly, we also observed the
perforation of the bone marrow. The average maximum depth of perforation in 30 ablation lines
was 0.645 mm (± 0.291 mm) with a deepest measured perforation of 1.778 mm. The average
volume loss of bone marrow was 0.878 mm3 (± 0.643 mm3) with a maximum of 2.269 mm3.
Tables 1 and 2 show more detail of the experiment results.

2mm 0.5mm

(d) (e)(a) (b)

(c)

0.2mm

0.68mm

0.2mm

(h) (i)

2mm 0.5mm

(f) (g)

Fig. 5. An example for the hole-ablation experiment (a) with a zoomed-in image of a
hole (b) and its maximum intensity projection from the micro-CT image (c). A micro-CT
axial slice image for post-ablation is shown in (d) with a zoomed-in image (e) over a hole.
The axial slice was taken over the blue line at (a). Similarly, image (f) shows the overlaid
CT images between pre- and post-ablation of the axial slice with the zoomed version (g).
Image (h) illustrates a segmented region of the bone marrow perforation (transparent red) to
measure the bone marrow volume loss. Lastly, image (i) illustrates the measurement of the
maximum depth perforation (white arrow) of the bone marrow.

3.3. Discussion

Ideally, clean bone surfaces free of carbonization are expected when using Er:YAG laser osteotomy
if adequate water cooling is applied. In our experiments, continuous water cooling was impossible
because it would have deteriorated the OCT images and limited the detection accuracy of our
tissue classifier. Therefore, we manually paused the ablation and sprayed water on the ablation
spot whenever carbonization was noticeable. The carbonized part of the bone quickly evaporated
after rehydration and reablation sequentially. This sequence was stopped once the bone marrow
was reached to prevent further damage or perforation to the bone marrow. We, therefore, expected
a trace amount of carbonization. Figure 5(d) shows that a noticeable amount of carbonization
appeared on the walls of the ablation craters.

In the line-ablation experiments, carbonization was less than in the hole-ablation experiments
(see Fig. 6(b)). This is because the thermal dissipation was distributed better along the ablation
line. However, the perforation of bone marrow in the line-ablation experiments was more than in
the hole-ablation experiments. This is mainly due to the overlapping conditions at the periphery
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Fig. 6. An example result from the line-ablation experiment (a) with a zoomed image of
the line cut (b) and its maximum intensity projection from the micro-CT images (c). A
micro-CT axial slice image for post-ablation is shown in (d) with a zoomed-in image (e)
over a hole. The axial slice was taken over the blue line at (a). Similarly, image (f) shows
the overlaid CT images between pre- and post-ablation of the axial slice with the zoomed
version (g). Image (h) shows the micro-CT sagittal slice image of the cut line and illustrates
a segmented region of the bone marrow perforation (transparent red) to measure the bone
marrow volume loss. Lastly, image (i) illustrates the measurement of the maximum depth
perforation (white arrow) of the bone marrow.

Table 1. The measurement results for maximum perforation depth and
volume loss from N = 30 hole-ablation experiments. The results were also
compared with the pyrolysis-photoacoustic method [29,30]. Note that only
the maximum perforation measurements from hole-ablation experiments

are available from the reference method. The data were recalculated based
on the average bone thickness of 2.9 mm.

Methods
Our method (Hole ablation) Pyrolysis-photoacoustic [29,30]

N = 30 N = 98

Max perforation Volume loss Max perforation

(mm) (mm3) (mm)

Min 0.021 0.001 0.000

Max 0.910 0.299 0.512

Mean 0.216 0.077 0.065

Median 0.178 0.055 0.015

Std dev 0.140 0.076 0.088

of the laser beam. The intensity profile of our laser beam was close to Gaussian, with higher
intensity in the middle and lower intensity on the periphery. The energy on the periphery is
insufficient to ablate the bone significantly, but it is enough to ablate the bone marrow. A
tophat-beam intensity profile could be ideal for osteotomy. During hole ablation, this peripheral
intensity was mostly eliminated by the wall of the crater. By contrast, this peripheral beam may
still ablate the adjacent point over the line during line ablation. Additionally, the OCT detection
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Table 2. The measurement results for maximum perforation depth
and volume loss from N = 30 line-ablation experiments.

Line ablation N = 30

Max perforation (mm) Volume loss (mm3)

Min 0.178 0.110

Max 1.778 2.269

Mean 0.645 0.878

Median 0.572 0.777

Std dev 0.291 0.643

locations were limited to the primary laser beam and could not cover the whole beam (primary
and peripheral beam). Although it may be beneficial in faster bone cutting time, the damage to
the bone marrow was more. Additionally, the water content in the bone marrow is higher than
in bone. Bone material consists approximately 13 % water [79], while marrow tissue consists
approximately between 15 - 40 % water [80]. Thus with a constant laser-pulse energy, the ablation
rate in bone marrow is higher than in bone. As a result, bone marrow is easily ablated.

All experiments showed a slight perforation of bone marrow. This indicates that the deep
learning always stopped the ablation whenever the bone marrow was reached and that no
premature stops were made. The perforations were expected because the deep-learning model
was trained based on image patches containing only a single tissue type. It was insensitive to
multilayered conditions. It therefore only stopped the laser when the image patch only contained
bone marrow.

Multilayered tissue detection (segmentation) would provide more accurate detection, especially
at bone-bone marrow interface areas. Unfortunately, our OCT image contrast was insufficient
for multilayered detection. The bone tissue scattered and absorbed most of the OCT light.
Furthermore, the small signal coming from the bone marrow structure was reduced by multiple
scatterings. There was therefore a large contrast difference between bone and bone marrow on
multilayered tissue with bone on top. As a result, the bone marrow structure intensity appeared
to be weak in the OCT images (see Fig. 7(a)) and detecting it was difficult. Figure 7(b) shows
the OCT image when ablation had already reached the bone marrow. The bone marrow texture
(speckle) is blurred due to frame averaging during the ablation process, which is induced by the
motion of liquid materials at the surface. The liquid appears as the effect of the high-pressure
explosion at the ablation center that squeezes the surrounding bone marrow and discharges liquid
materials, e.g., water and liquid fat [14]. They then diffuse and cover the bone marrow surface.
Furthermore, multilayered detection of bone and bone marrow on the OCT image would provide
more precise control through predicting the remaining depth of the bone needed to be cut. Ideally,
with such predictions, we could slow down the ablation rate or reduce the laser energy such that
the cut would stop right before it touches the bone marrow. However, our laser safety mechanism
prevents us from having control over increasing or reducing the laser pulse energy (ablation
rate). This mechanism requires the user to stop or pause the laser from pulsing before changing
any parameter of the laser pulse (repetition rate and energy). The pulsing of the laser may be
continued once the repetition rate and energy are confirmed. This pausing mechanism delays the
laser pulse up to around 30 seconds. Therefore, during the experiments, the laser energy was
kept constant. Ablation to the bone marrow was, therefore, almost unavoidable when the bone
thickness was less (still detected as bone) than the amount that would be ablated by the next laser
pulse.

To summarize, the proposed real-time feedback system demonstrated to have a comparable
performance to the combined pyrolysis-photoacoustic method [29,30] for hole ablation. The
reference method used laser ablation alone both for ablation and as the detection light source.
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Fig. 7. OCT images during ablation with patches for tissue detection. The left image (a)
shows an OCT image with two layers of tissue, bone on top and bone marrow on the bottom
(dashed yellow box). The bone marrow structure intensity appears to be weak due to the
high absorption of light in the bone marrow tissue. The right image (b) shows an OCT image
when ablation had already reached the bone marrow.

In this situation, the detection mechanism stops together with the ablation laser once the laser
reaches the bone marrow, which makes the closed-loop scenario unrepeatable. This means that
the ablation and detection mechanism can only start at bone. A restart mechanism is needed once
the laser beam reaches the bone marrow, after which neither ablation nor tissue-type detection can
continue. The detection system has to be manually set to the default tissue type for each ablation
point. By contrast, our OCT detection system runs independently from the ablation laser, which
eliminates the redundant restart mechanism. And although our results show higher perforation,
this approach offers a noninvasive way to monitor the ablation process. It eliminates unnecessary
damage due to sensor mounting in the pyrolysis-photoacoustic method. The perforation, in
our case, is also higher since we have a higher ablation rate of the Er:YAG laser. Even though
perforation could not be perfectly solved with our method, we believe that it could be used as a
safety feature on a laser-osteotomy system.

4. Conclusion and outlook

The first real-time feedback using OCT for laser osteotomy was demonstrated and performed
comparable to the reference method [29,30]. The feedback system offers a completely noninvasive
way of monitoring laser ablation. For the hole-ablation experiments, the average maximum depth
of perforation and volume loss were 0.216 mm (± 0.140 mm) and 0.077 mm3 (± 0.076 mm3),
respectively. On the other hand, the average maximum depth of perforation and volume loss
for the line-ablation experiments were 0.645 mm (± 0.291 mm) and 0.878 mm3 (± 0.643 mm3),
respectively. These results are also comparable to osteotomy with a drill that was reported to
have a mean perforation of 0.660 mm [81].

These results show the feasibility of using OCT as a feedback system for laser osteotomy in
the operating room. This paper provides the basic framework for tissue-specific laser osteotomy
using deep-learning-assisted optical coherence tomography. Several optimizations could still
be undertaken or combined with the system, such as carbonization detection, depth control,
predefined ablation rate, multilayered tissue detection, and real-time control of the laser energy.

Carbonization remains a challenge in using OCT as the guidance in laser osteotomy because
continuous water irrigation reduces the tissue-detection accuracy. Our pause-sequence method
may partly solve this problem, but it would be better if one could detect any carbonization and
sync the result to an irrigation controller. Synchronization between OCT detection and a water
spray may improve this method’s effectiveness.
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Furthermore, several other aspects could still be optimized to improve the precision of
detection and reduce the perforation depth. In ideal clinical conditions, a surgeon could plan
the ablation site and depth based on a patient’s CT data. The OCT system could be used as a
depth-control mechanism during ablation. Concurrent tissue detection could be used as a second
parameter to support the depth control in stoping the laser whenever it accidentally touches bone
marrow. Nevertheless, a registration mechanism between the CT and OCT images is essential
to pinpointing the surface reference for accurate depth measurements. In the future, we need
to investigate the implementation of such a method to register the OCT image position relative
to the CT image position and track the ablation site in real time. Additionally, this paper only
demonstrated and validated the performance of real-time tissue detection using deep learning.
In this way, we avoided bias in validating the performance between depth control and tissue
detection.

In future work, we will also investigate multilayered tissue detection (segmentation) from OCT
images. It should improve the precision of cuts by providing a prediction of the remaining bone
thickness. Then control over the laser pulse energy and repetition rate could be used to slow down
the ablation rate whenever the laser pulse is predicted to cut bone marrow. Such a prediction
could be implemented using a Kalman filter to predict the trajectory of the ablation after the next
laser pulse [82]. Nevertheless, a sufficient number of labeled ground-truth images will be needed
to train the deep-learning (segmentation) model. It is a challenge to label such ground-truth
images, which may involve a trained OCT image expert. Even more, it will be a challenge to
label images taken during laser ablation, which alters the tissue texture in OCT images.
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Chapter 7

Discussion and Conclusion

7.1 Discussion

The work of this thesis aimed to develop a smart monitoring system for laser osteotomy so
that critical tissues, such as nerves, could be avoided. The use of an OCT imaging system
for monitoring and feedback was proposed because it could provide a high-resolution
image slice over the ablation site, in real time. In this thesis, a ”smart” feedback system,
rephrased as ”smart laser osteotomy,” was emphasized by developing a deep learning-based
feedback system. Specifically, deep neural network models were used for denoising the
OCT images and for tissue classification based on the OCT images. The last three chapters
aimed to demonstrate the results of using deep learning methods for the smart laser
osteotomy system. This section discusses the results of the publications in each chapter.

The scheme of the feedback system was divided into three steps or subprocesses (see
Figure 3.7), (1) acquisition and denoising, (2) patch tracking, and (3) tissue classification.
For the first step of acquiring images, the SS-OCT was selected for its acquisition perfor-
mance, which best supports our real-time feedback system. It is necessary to discuss the
swept source laser used in this thesis. Two SS-OCT devices with different light sweeping
sources were used: a short cavity laser and an Akinetic swept laser. Images taken from
the OCT system with the short cavity laser source, Axsun Technologies, were used in our
offline experiments (Chapters 4 and 5). At the same time, a long-range OCT setup with
an Akinetic swept laser, Insight Photonic Solution, was being developed. This second
OCT setup was intended to provide an imaging range of more than 1 cm, which is helpful
in monitoring deep bone ablation and was used for the last publication (Chapter 6).

Furthermore, the first step also includes the OCT image denoising process. Two
publications (Chapter 4) demonstrated our experiment with using deep learning models
to resemble the frame-averaging method and prove that image denoising improves the
accuracy of the tissue classifier. Although the results show the superiority of the frame-
averaging method, the deep learning models provide faster image denoising than the
frame-averaging method and other classical denoising filters. The results suggested that
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the supervised learning models, U-Net and ResNet, were sufficient for real-time OCT
image denoising.

The second subprocess was patch tracking. A simple Canny edge detection method was
sufficient to track the surface of the tissue in the OCT image. Two pieces of information
could be extracted from the surface detection result. The first was the ablation crater
location. The feedback system was supposed to identify tissue type at the center of the
ablation crater. Therefore. surface detection, in practice, was used to track the crater
surface, which gradually gets deeper as the laser pulses continue to ablate. The second
was the relative depth of the ablation crater. The relative depth is defined by the distance
from the border surface to the bottom of the crater. Several studies have been done on
using this information for laser osteotomy. The crater depth information can, over time,
even be used to predict the trajectory of the cut. While this thesis work was conducted, a
trajectory prediction based on the Kalman filter [121] was investigated, and the results
were published in a conference paper (see Appendix).

The last subprocess was tissue classification, an essential part of this project. Two
experiments were conducted to find the best deep neural network model and the results
were published (see Chapter 5). The DenseNet model was deemed sufficient for tissue
classification, with an accuracy of 94.85% for the offline experiments. It is important
to note that the experiments in Chapters 4 and 5 were conducted offline, without laser
ablation. This stage was followed by the implementation of the real-time feedback system
during laser ablation in Chapter 6.

An overview of the challenges encountered during real-time feedback system application
is outlined in Chapter 6. It is worth discussing some limitations of the proposed solutions.
One challenge was bone carbonization. An optimal ablation rate with the Er:YAG laser
could only be reached by spraying water at the ablation site. Unfortunately, the water
particles deteriorate the OCT image and disturb the crater tracking system. A simple
pausing mechanism was proposed; however, this method did not optimally solve the
problem. Carbonization on the bone surface could still appear. During the laser cutting
process, the carbonized part of the bone will evaporate after sequentially rehydrated and
reablated. However, when bone marrow is detected, the pausing mechanism is completely
stopped, leaving the residual carbonized bone untouched. Therefore, synchronizing OCT
detection and water spray may improve the effectiveness of this method.

Another limitation of the current approach is the image patch-based detection system.
The deep learning tissue classifier requires the patch be fully filled with the tissue structure.
thus, the stop condition only happens when the target surface is fully exposed to bone
marrow. To solve this problem, we may have to change the detection method to a
multilayered one, such as segmenting the tissue type on the image layer by layer. However,
it will be difficult to get a labeled dataset, especially with the ablation and temperature
change conditions.
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7.2 Future Direction of Research

The use of OCT imaging and a deep learning method to analyze the image offers addi-
tional benefits for realizing smart laser osteotomy, compared to other feedback modalities.
Publications throughout the thesis project have partly demonstrated this claim. The last
paper in particular, as the ultimate result, showed real-time application of the feedback
system. However, several other aspects could still be optimized to improve the precision of
detection and reduce the perforation depth. In this section, two main directions of future
research are considered.

The first main research direction is to improve the feedback mechanism. Ideally, a
surgeon could plan the ablation site and depth based on a patient’s Computed Tomography
(CT) data. The OCT system could be used as a depth-control mechanism during ablation.
Concurrently, patch-based tissue detection could be used as a second parameter to support
depth control, which in turn could be used to stop the laser whenever it touches bone
marrow. In this situation, a registration mechanism between the CT and OCT images
would be essential for pinpointing the surface reference for accurate depth measurements;
thus, a study on real-time image registration between the OCT image and CT image is
an interesting topic for future research.

Alternatively, segmentation of the tissue layer will give more precise information about
the target and the surrounding tissue geometries. The layer-by-layer segmentation result
can be used to estimate the remaining target (bone) thickness. Then, by controlling
the Er:YAG laser pulse energy and repetition rate, one could slow down the ablation
rate whenever the laser pulse is predicted to cut bone marrow. Depth prediction can be
implemented using a Kalman filter [121] that predicts the trajectory of the ablation for
the next laser pulse based on the history of the ablation rate from the previous laser
pulse (see Appendix). More interestingly, the real-time application of deep-learning-based
image denoising would further improve segmentation accuracy. It would also enable the
detection of more than two tissue types.

This mechanism is worth investigating in future research. However, it will be challenging
to label a sufficient number of ground-truth images, especially images taken during laser
ablation, to train the deep learning (segmentation) model. While the laser cut could
be more precise by controlling the laser energy and repetition rate, unfortunately, the
Er:YAG laser used in this thesis project did not have the interface to control pulse energy
or repetition rate in real-time. Therefore, a real-time control interface for the Er:YAG
laser is compulsory for future research.

The second main future research direction is related to the Er:YAG laser beam shape
and irrigation strategy. Feedback system accuracy could be improved by engineering the
Er:YAG laser beam shape from a near Gaussian shape to a top hat beam shape. The OCT
could precisely cover the ablation area with the top hat beam shape. It will eliminate
the overlapping area (hotspot) problem for the line ablation (see Section 3.3 in the last
publication). Additionally, the OCT-guided laser osteotomy could also be improved by
optimizing the irrigation strategy. There is a conflict between the need for water irrigation
to minimize the carbonization effect and increase the ablation efficiency of the Er:YAG
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laser, on the one hand, and the role of water droplets in deteriorating the OCT image
and reducing the feedback system’s accuracy, on the other. In the future, research to
synchronize the OCT detection and water spray is necessary to improve the effectiveness
of the OCT-based feedback system.

Finally, this thesis project was initiated as part of the (MIRACLE) project at the
University of Basel. This multidisciplinary (robotic, implant, and navigation) project
endeavors to develop a minimally invasive robot-assisted computer-guided laser osteotomy.
In other words, the project required a miniaturized feedback system to achieve the least
invasive laser osteotomy; thus, integrating the automatic tissue characterization system
into a miniaturized OCT system will be another target of future research.

7.3 Conclusion

This thesis aimed to develop an automatic tissue characterization system, emphasizing
the use of deep learning for a smart laser osteotomy. Several experiments were conducted
to support the claims and published in journals. In Chapter 4, a deep-learning-based OCT
image denoising process was shown to improve the accuracy of a tissue classifier. The
publication in Chapter 5 attempts to find the best tissue classifier in offline conditions.
Here, DenseNet was selected as the best candidate. The last publication in Chapter 6
demonstrated a real-time implementation of the deep learning-based OCT-guided laser
osteotomy. The average maximum perforation depth in bone marrow was only 216µm.
Further investigations are required to improve the accuracy and precision of using OCT for
smart laser osteotomy. These investigations include optimizing the OCT image detection
system and the ablation strategy, as described in the previous section. The results offer
more evidence for replacing mechanical tools with a safer and less invasive laser osteotomy.



Appendix

Depth Prediction with Kalman Filter

Surface detection is an essential subprocess of the feedback system. The detection output
is used to track the ablation location over depth. During implementation, the detection
rate was found to be relatively faster than the ablation laser pulse repetition rate, thereby
enabling tissue surface prediction with the Kalman filter [121]. Specifically, the prediction
works by measuring the ablation rate of every ablating laser pulse, based on the history
of the surface shape. The measured ablation rate can be used to predict the tissue surface
shape for the next consecutive ablating laser pulse. This prediction prevents the ablation
from overcutting the target tissue beyond what is planned. A study of the prediction
performance was published as a conference proceeding.

Publication: Y. A. Bayhaqi, A. Hamidi, F. Canbaz, A. A. Navarini, P. C. Cattin,
and A. Zam, ”Kalman filtered depth prediction using Optical Coherence Tomography for
laser bone cutting”, in Automation in Medical Engineering (AUTOMED 2021), Zenodo,
2021.
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I. Introduction 
The use of lasers in medical applications is still an 

interesting focus of research in recent years. Lasers have 

been used in several surgical procedures such as cataracts, 

endodontic, and tumor removal [1,2]. Particularly in bone 

surgery, lasers are used due to the advantages such as minor 

damage to the bone and accelerated the healing process [3]. 

However, the lack of depth control in laser still needs to be 

overcome. This depth control will help the surgeon avoid 

cutting an excessive amount of bone than planned. Several 

approaches have been proposed to predict the laser ablation 

process kinematic such as solving the forward and inverse 

problem [4,5]. However, these methods are impractical and 

complex. Here, extensive databases of the ablation process 

condition are needed. It will become complex when we face 

a heterogenous or multilayered tissue. 

This paper proposed to reflect the use of Optical Coherence 

Tomography (OCT) imaging system to monitor the laser 

ablation process [4,6]. We demonstrated and extended the 

OCT depth measurement to predict the next incoming pulse 

ablation depth by employing the Kalman filter [7]. This 

prediction will help prevent the laser from overcutting the 

bone, which may arise due to the passive component's 

delayed response to stop the laser. 

II. Material and methods 
The combination setup between the Er:YAG ablation laser 

system (LITETOUCH by Syneron, working wavelength of 

2.94 μm) and the OCT imaging system is illustrated in Fig 

1. Both laser beams were combined with a dichroic mirror. 

An optical beam shutter (Thorlabs SH1) is placed in front 

of the Er:YAG laser to stop the ablation laser pulse. 

 

Figure 1. Combination setup between the Er:YAG ablation laser 

and OCT. Both laser beams were combined with a dichroic 

mirror. 

 

  

Figure 2. Example of the ablated bone (left) and the OCT image 

scanned over the ablated crater (right). In the OCT images, the 

measured depth was defined as the averaged distance between 

circle (a) and (b) to the bottom of the crater at circle (c). 

Meanwhile, circle (d) represents the predicted bone surface for 

the incoming laser ablation pulse. 

B-scan image frames were streamed with a custom made 

OCT system equipped with an Axsun swept laser source (λ0 

= 1060 nm, Δλ = 100 nm, and sweep rate = 100 kHz). The 
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corresponding lateral and axial resolutions were 44 µm and 

10 µm, respectively. The system enables image acquisition 

with a size of 1024 x 400 pixels (3.6 mm depth x 5.6 mm 

lateral) and previews the ablation process in real-time. We 

set the OCT system's acquisition rate to 8.5 frames per 

second after averaging 20 frames to provide a good image 

quality. 

The bone surface was extracted from the OCT image by 

employing the Canny edge detection algorithm [8]. The 

measured depth was defined as the relative distance 

between the adjacent surface and the bottom of the crater 

(illustrated on the right side of Fig. 2). We then used the 

depth measurement as feedback to close the optical beam 

shutter before the measured or predicted depth reached the 

targeted depth. 

I.I. Kalman filter depth prediction 
Kalman filter produces estimates of unknown variables that 

tend to be more accurate than those based on a single 

measurement alone. This filter has been used in numerous 

technologies, particularly in distance measurement sensors 

[7]. The Kalman filter used in the experiment was based on 

the constant velocity model, which assumes that the 

velocity is constant during a sampling interval and 

expressed as 

 [
𝑥𝑡

𝑣𝑡
] =  [

1 Δ𝑡
0 1

] 𝑥𝑡−1 + 𝑤𝑡  (1) 

where 𝑥𝑡, 𝑣𝑡 and 𝑤𝑡  are the predicted actual state of depth, 

ablation rate, and process noise at time 𝑡, respectively. This 

model has been used in many applications because of its 

versatility, effectiveness, and simplicity.  

I.I. Experiment setup 
The tissues used in this experiment were porcine femur 

bone samples. We tested the feedback system for cutting 

the bone with the targeted depth of 703.13 µm and 1406.25 

µm. We also compared the result when we employ the 

Kalman filter for prediction. The laser ablation energy was 

set to 450 mJ per pulse. The bone was ablated in repetition 

rates of 1 Hz, 5 Hz, and 10 Hz, respectively. 

III. Results and discussion 
The results of the experiment are shown in Table 1. In the 

absence of the Kalman filter, the feedback system always 

passes the targeted depth. These errors mainly due to the 

communication delay of the optical shutter. Furthermore—

when the Er:YAG laser repetition rate was set to 10 Hz—

the slower acquisition rate of the OCT also contributes to 

error, because it may miss an ablation pulse measurement. 

Furthermore, the results show that the Kalman filter 

significantly reduces the error of ablation. In a repetition 

rate of 1 Hz, the filter stopped the ablation even before the 

targeted depth (premature stop), which indicates that the 

incoming pulse will ablate deeper than the targeted depth. 

However, similarly to the absence of the Kalman filter, the 

feedback system exceeds the targeted depth when the laser 

repetition rate was set to 5 Hz and 10 Hz. 

 

Table 1. Final measured depth after stopping the ablation using 

the proposed feedback system. A negative error value indicates 

premature stop. 

Kalman 

Filter 

Target 

Depth 

(µm) 

Repetition 

rate 

Measured Depth   

(µm) 

Prediction Error 

(µm) 

Off 

703.13 

1 Hz 712.828 ± 10.616 9.698 ± 10.616 

5 Hz 738.422 ± 12.909 35.292 ± 12.909 

10 Hz 774.492 ± 13.977 71.362 ± 13.977 

1406.25 

1 Hz 1413.703 ± 12.767 7.453 ± 12.767 

5 Hz 1436.906 ± 13.448 30.656 ± 13.448 

10 Hz 1469.813 ± 8.114 63.563 ± 8.114 

On 

703.13 

1 Hz 691.523 ± 4.313 -11.607 ± 4.313 

5 Hz 716.484 ± 16.704 13.354 ± 16.704 

10 Hz 729.352 ± 23.187 26.222 ± 23.187 

1406.25 

1 Hz 1383.539 ± 18.626 -22.711 ± 18.626 

5 Hz 1414.898 ± 27.777 8.648 ± 27.777 

10 Hz 1437.188 ± 23.734 30.938 ± 23.734 

IV. Conclusions and future work 
We demonstrated the use of OCT to monitor the laser 
ablation process and the Kalman filter to predict incoming 
ablation depth to reduced cutting an excessive amount of 
bone than planned. However, further investigation is needed 
to demonstrate the benefit of using the Kalman filter for 
deeper ablation prediction. In the future, we will investigate 
more in finding a better kinematic model of the Kalman 
filter. We will also explore how to overcome the response 
delay problem (e.g., increasing our OCT system's 
acquisition rate and defining an offset to the target depth). 
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[69] M. Pircher, E. Götzinger, R. A. Leitgeb, A. F. Fercher, and C. K. Hitzenberger,
“Speckle reduction in optical coherence tomography by frequency compounding,” J.
Biomed. Opt. 8, 565 – 569 (2003).

[70] S. Huang, C. Tang, M. Xu, Y. Qiu, and Z. Lei, “Bm3d-based total variation algorithm
for speckle removal with structure-preserving in oct images,” Appl. Opt. 58, 6233–
6243 (2019).

[71] S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence
tomography of the prostate nerves via wavelet shrinkage using dual-tree complex
wavelet transform,” J. Biomed. Opt. 14, 014031 (2009).

[72] A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle
reduction in optical coherence tomography images using digital filtering,” J. Opt.
Soc. Am. A 24, 1901–1910 (2007).

[73] B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence tomography
images of human finger skin by wavelet modified bm3d filter,” Opt. Commun. 291,
461–469 (2013).

[74] K. J. Halupka, B. J. Antony, M. H. Lee, K. A. Lucy, R. S. Rai, H. Ishikawa,
G. Wollstein, J. S. Schuman, and R. Garnavi, “Retinal optical coherence tomography
image enhancement via deep learning,” Biomed. Opt. Express 9, 6205–6221 (2018).

[75] Y. Huang, N. Zhang, and Q. Hao, “Real-time noise reduction based on ground truth
free deep learning for optical coherence tomography,” Biomed. Opt. Express 12,
2027–2040 (2021).

[76] S. Chang and A. K. Bowden, “Review of methods and applications of attenuation
coefficient measurements with optical coherence tomography,” J. Biomed. Opt.
24, 090901 (2019).

[77] T. van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread
function in scattering media using single-mode fiber-based optical coherence tomog-
raphy,” IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).

[78] G. van Soest, T. P. M. Goderie, E. R. M.D., S. K. M.D., A. G. J. L. H. van
Leenders M.D., N. G. M.D., S. van Noorden, T. O. M.D., B. E. Bouma, G. J. Tearney,



130 Bibliography

W. Oosterhuis, P. W. S. M.D., and A. F. W. van der Steen, “Atherosclerotic tissue
characterization in vivo by optical coherence tomography attenuation imaging,” J.
Biomed. Opt. 15, 011105 (2010).

[79] K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-
resolved model-based reconstruction of attenuation coefficients in optical coherence
tomography,” Biomed. Opt. Express 5, 322–337 (2014).

[80] J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma,
“Optimized depth-resolved estimation to measure optical attenuation coefficients from
optical coherence tomography and its application in cerebral damage determination,”
J. Biomed. Opt. 24, 035002 (2019).

[81] M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of
quantitative attenuation and backscattering coefficient measurements by optical
coherence tomography in the concentration-dependent and multiple scattering
regime,” J. Biomed. Opt. 20, 121314 (2015).

[82] C. Christodoulou, C. Pattichis, M. Pantziaris, and A. Nicolaides, “Texture-based
classification of atherosclerotic carotid plaques,” IEEE Trans. on Med. Imaging
22, 902–912 (2003).

[83] L.-K. Soh and C. Tsatsoulis, “Texture analysis of sar sea ice imagery using gray level
co-occurrence matrices,” IEEE Trans. on Geosci. Remote Sens. 37, 780–795
(1999).

[84] C. Christodoulou, S. Michaelides, and C. Pattichis, “Multifeature texture analysis
for the classification of clouds in satellite imagery,” IEEE Trans. on Geosci.
Remote Sens. 41, 2662–2668 (2003).

[85] J. Z. Liu, L. D. Zhang, and G. H. Yue, “Fractal dimension in human cerebellum
measured by magnetic resonance imaging,” Biophys. J. 85, 4041–4046 (2003).

[86] C. He, Z. Li, J. Wang, Y. Huang, Y. Yin, and Z. Li, “Atherosclerotic plaque tissue
characterization: An oct-based machine learning algorithm with ex vivo validation,”
Front. Bioeng. Biotechnol. 8 (2020).

[87] G. J. Ughi, T. Adriaenssens, P. Sinnaeve, W. Desmet, and J. D’hooge, “Automated
tissue characterization of in vivo atherosclerotic plaques by intravascular optical
coherence tomography images,” Biomed. Opt. Express 4, 1014–1030 (2013).

[88] M. Ding, S.-y. Pan, J. Huang, C. Yuan, Q. Zhang, X.-l. Zhu, and Y. Cai, “Optical
coherence tomography for identification of malignant pulmonary nodules based on
random forest machine learning algorithm,” PLOS ONE 16, 1–15 (2022).
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