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Summary

Condensed matter physics revolutionized our lives in the first half of the 20th century by providing
the tools for the development of the transistor which is the building block of any modern classical
computer. The working principle of transistors is based on quantum mechanics indirectly since it
relies on the electronic band structures of the used semiconductors. However, the computations
performed on a computer built of transistors are purely classical.

In the 1980s, Richard Feynman proposed a groundbreaking idea for the simulation of physics:
the use of quantum computers that obey the rules of quantum mechanics rather than classical
mechanics to unleash full computational power1. Since then, physicists have been trying to build
a quantum computer that is predicted to be capable of solving complex problems like prime
factorization of large numbers2, the search in large unsorted databases3, and solving linear systems
of equations4 much faster than a classical computer.

Though a universal quantum computer with millions of quantum bits (qubits) remains a dis-
tant goal, significant progress has been made in the past four decades. Demonstrations of quantum
advantage over a classical computer for specific tasks have been achieved with superconducting
quantum chips hosting ∼ 10 − 100 qubits5. However, scaling up to millions of qubits with super-
conducting devices faces challenges due to the relatively large size of individual superconducting
qubits, approximately 10µm.

A promising alternative realization comes from condensed matter physics as well: the spin
qubit. In the original proposal of the so-called Loss-DiVincenzo qubit6 it was suggested to utilize
the spin-1/2 degree of freedom of an electron confined in a quantum dot (QD) as a quantum
mechanical two-level system, forming the qubit. It is about two orders of magnitude smaller than
superconducting qubits and thus raises hope for better scalability. The number of realized spin
qubits stands behind superconducting systems, but the wealth of experience from the advanced
semiconductor industry for Si promises fast development in spin qubit research. The integration
of industrial processes in spin qubit fabrication has become possible, but electrons in Si come with
a disadvantage that could possibly spoil the advantages for scalability: they exhibit only weak
intrinsic spin-orbit interaction (SOI). Consequently, fast, all-electrical qubit control relies on stray
fields from micromagnets on the quantum device. This encouraged research on holes in Si and

1R. P. Feynman, “Simulating physics with computers”, Int. J. Theor. Phys. 21, 467 (1982).
2P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Phys. Rev. A 52, R2493

(1995).
3L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack”, Phys. Rev. Lett. 79, 325

(1997).
4A. W. Harrow et al., “Quantum algorithm for linear systems of equations”, Phys. Rev. Lett. 103, 150502

(2009).
5F. Arute et al., “Quantum supremacy using a programmable superconducting processor”, Nature 574, 505

(2019), Y. Wu et al., “Strong quantum computational advantage using a superconducting quantum processor”,
Phys. Rev. Lett. 127, 180501 (2021), Q. Zhu et al., “Quantum computational advantage via 60-qubit 24-cycle
random circuit sampling”, Sci. Bull. 67, 240 (2022).

6D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots”, Phys. Rev. A 57, 120 (1998).
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Ge with very strong SOI enabling ultrafast qubit control without large additional elements on the
chip.

The small size of spin qubits comes at the cost of lower connectivity between qubits compared
to superconducting systems. While exchange interaction allows for two-qubit gates, its short-range
nature makes it incapable of coupling far-distant qubits which is desirable, e.g., for multi-qubit
entanglement7 or quantum error correction8. One solution for long-range coupling involves the use
of circuit quantum electrodynamics, where the spin qubits in semiconductor QDs interact strongly
with the photons in a superconducting cavity.

Furthermore, coupling semiconductors and superconductors (SCs) opens up a whole field of
interesting physical phenomena among which are Andreev spin qubits (ASQs) and topological
superconductivity with associated Majorana bound states (MBSs). ASQs have the potential to
combine the advantages of superconducting and spin qubits in QDs and MBSs promise a new
approach towards quantum computing relying on topological protection.

Motivated by these developments, this thesis delves into theoretical studies of low-dimensional
hole and electron systems in Ge and Si. Chapter 1 introduces the field of quantum computing with
spin qubits. After introducing some basic concepts of quantum computing in general, we discuss
the properties of group-IV semiconductors, in particular Si and Ge. We explain what a spin qubit
is, how it is implemented in a semiconductor QD, how it is controlled via single- and two-qubit
operations, how it can be initialized and read out, and how it interacts with the environment. In
the final part of this chapter, we pick two phenomena arising in hybrid SC-semiconductor devices,
namely the Andreev bound state which can be harnessed to implement ASQs, and the MBS as an
example of a topological state.

In Chapter 2, we analyze in detail one-dimensional Ge hole device designs that optimize SOI.
We provide a new analytical approach for the estimation of SOI in the presence of transversal
electric and magnetic fields where we treat orbital magnetic fields exactly. Assisted by numerical
calculations we analyze the electric and magnetic field dependence as well as the dependence on
strain and anisotropies of SOI, g factor, and effective masses. These quantities enter the one-
dimensional, low-energy effective model that we derive. In particular, we stress the importance of
orbital magnetic fields for the g factor. Considering electrostatic confinement of a QD in the one-
dimensional system we predict the existence of a g-factor sweet spot that is tunable by strain and
confinement potential. We expect highly coherent qubits and fast Rabi frequencies at low power for
realistic device parameters. Eventually, we identify a regime of flat bands with promising potential
for the simulation of strongly correlated matter.

Whereas in the previously discussed model the magnetic field was pointing in perpendicular
direction to the nanowire (NW) axis, in Chapter 3 we analyze similar one-dimensional Ge hole
structures with a magnetic field aligned along the NW axis. Also for this case we provide an
analytical solution and derive an effective one-dimensional model. Among our core results is the
strong renormalization of the effective g factor due to orbital magnetic fields even at weak magnetic
fields. Furthermore, we provide a detailed discussion of strain, growth direction, energetically
higher-lying valence bands, and different designs of one-dimensional systems. We raise special
attention to the large effective g factor and SOI in curved quantum wells at weak electric fields
suggesting the applicability of such devices as ideal hosts for MBSs. The same device design
exhibits a g factor and SOI independent of the electric field at stronger electric fields, ideal for the
optimization of the spin qubit coherence time.

In Chapter 4, we investigate the proximity-induced superconductivity and metallization effects
in SC-Ge hole NWs. Taking into account the three-dimensional nature of the NW we predict

7A. Fedorov et al., “Implementation of a Toffoli gate with superconducting circuits”, Nature 481, 170 (2012).
8N. Ofek et al., “Extending the lifetime of a quantum bit with error correction in superconducting circuits”,

Nature 536, 441 (2016).
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a strong dependence of the induced gap and metallization effects on the proximity of the hole
wavefunction in the Ge part to the SC. Most interestingly, by employing an external electric field
the SOI and the proximity-induced pairing potential can be tuned to large values at the same
time, making SC-Ge hole NWs a promising platform for quantum information processing via, e.g.,
ASQs or MBSs.

Finally, in Chapter 5, we propose a novel approach to lifting the valley degeneracy of the
Si conduction band edge, which is a major hurdle on the way to large-scale Si-based quantum
processors. In experimentally relevant fin field-effect transistor devices shear strain enhances the
gap to non-computational valley states to values ∼ 1 meV − 10 meV. This proposal does not rely
on atomic-size interface details as predicted for planar Si/SiGe heterostructures in previous works
and is robust against interface disorder. We show that the effect remains large for realistic values
of applied electric fields and is largely independent of the fin shape.

iii
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CHAPTER 1
Introduction

In this introduction, we recall the basic concepts relevant to our work and put our research into
a broader context. Additionally, we offer a motivation for the research projects presented in the
subsequent chapters, focusing on quantum computing with spin quantum bits (qubits) based on
one-dimensional electron and hole systems in Si and Ge. While most concepts presented apply
to both holes and electrons, we will emphasize their differences when relevant. Moreover, many
statements are not restricted to these specific platforms but are true also for different materials
and device designs. Certain general considerations hold for any type of quantum computing.

In Sec 1.1, we review the concept of quantum computing, motivate its critical importance
for future applications and give a short overview of semiconductor quantum systems harnessed
nowadays for this purpose. Sec. 1.2 provides a concise review of the properties of the group-IV
semiconductors Si and Ge. Here, we point out the differences and commonalities of electrons and
holes and particularly focus on their properties in zero and one dimensions. In Sec. 1.3, we give an
overview of the physics of spin qubits. We start by demonstrating how single qubit rotations can
be achieved in the presence of spin-orbit interaction. Subsequently, we show the basic concepts be-
hind two-qubit gates and discuss initialization and readout of spin qubits. Furthermore, we briefly
review the decoherence of spin qubits due to their interactions with the environment. Lastly,
in Sec. 1.4, we show how Andreev bound states emerge in hybrid superconductor-semiconductor
structures due to Andreev reflections, forming the basis for Andreev spin qubits. In the topolog-
ical regime, these hybrid devices can host Majorana bound states which are the prerequisite for
topological qubits and topological quantum computing.

1



1.1. Quantum computing

1.1 Quantum computing

Quantum computing is a revolutionary field that harnesses the principles of quantum mechanics
to perform powerful computations. At the heart of quantum computing are quantum bits, or short
qubits, which are quantum mechanical two-level systems. Conventionally, the two states of a qubit
are denoted as |0⟩ and |1⟩, and they span a two-dimensional Hilbert space H. A general qubit
state can be described as a superposition of these basis states

|ψ⟩ = α |0⟩ + β |1⟩ , (1.1)

where α and β are complex-valued coefficients that satisfy the normalization condition |α|2+|β|2 =
1. When a measurement is performed on the qubit, it collapses into one of the basis states, and
the probability of obtaining |0⟩ or |1⟩ is given by |α|2 and |β|2, respectively.

To visualize a qubit state geometrically, we can use the Bloch sphere (see Fig. 1.1). By defining
the polar angle as |α| = cos(θ/2) with 0 ≤ θ ≤ π, and neglecting a non-measurable global phase,
we can express the qubit state as

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ , (1.2)

where ϕ (0 ≤ ϕ < 2π) represents the azimuthal angle. These states lie on the surface of the Bloch
sphere and are called pure states. More generally the Bloch vector, representing the quantum
state, is the expectation value of the vector of Pauli matrices, which can have a length smaller
than one. The states within the interior of the Bloch sphere are called mixed states.

Figure 1.1: State |ψ⟩ = cos
(

θ
2
)

|0⟩ + eiϕ sin
(

θ
2
)

of a two-level quantum system visualized on the
Bloch sphere. The south (north) pole represents the eigenstate |1⟩ (|0⟩) of the Pauli operator σz

and states of equal superposition of |1⟩ and |0⟩ (θ = π/2) are found on the equator. The dots at
the equator represent the eigenstates of the Pauli operator σx (σy) where the x (y) axis pierces
through the surface of the Bloch sphere. The states on the surface of the Bloch sphere are pure
states and the states within its interior are mixed states.

2



1.1. Quantum computing

Now, let us consider the scenario of having two qubits instead of just one. In this case, the
basis of the Hilbert space is formed by the four states {|00⟩ , |01⟩ , |10⟩ , |11⟩}, and an arbitrary
two-qubit state can be written as

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩ , (1.3)

where αx (x = 00, 01, 10, or 11) are complex coefficients that must be normalized. The notation for
a two-qubit state is defined as the Kronecker product of single-qubit states, such as |00⟩ = |0⟩⊗|0⟩.
Particularly significant two-qubit states are the Bell states

ψx,y = |0, y⟩ + (−1)x |1, ȳ⟩√
2

, (1.4)

where x, y = 0, 1 and ȳ is the negation of y [1]. Bell states are examples of entangled states
and, in particular, they are maximally entangled. Entangled states cannot be decomposed into a
Kronecker product of single-qubit states and they exhibit the classically counter-intuitive property
that the measurement of one qubit determines the state of the other qubit, regardless of the
physical distance between them. This correlation between qubits has important implications, such
as in quantum teleportation [2, 3] or superdense coding [4, 5]. Quantum teleportation is a protocol
that allows transferring quantum information, which in general does not need to be known, over
a long distance by exploiting the entanglement between two qubits in a Bell state. Superdense
coding on the other hand can be thought of as the opposite of quantum teleportation. While in
quantum teleportation one needs to transfer two classical bits to convey the information of one
qubit, in superdense coding one sends one qubit and transmits the information of two classical
bits.

The notation for a two-qubit state can be straightforwardly extended to n qubits, with the
basis states denoted as |x1x2...xn⟩, where each xi can take on the values 0 or 1 (i = 1, 2, ..., n).
An n-qubit state is specified by 2n complex coefficients, and even for a few hundreds of qubits,
the number of coefficients becomes astronomically large. Storing such a vast number of complex
coefficients on a classical computer is practically impossible, illustrating the potential advantage
that quantum mechanical states offer for computation.

Manipulations of qubit states are achieved through quantum gates, analogous to classical logic
gates that operate on classical bits. They enable the transformation and manipulation of infor-
mation encoded in qubits. Quantum gates can be categorized as single-qubit gates, which act on
a single qubit, and multi-qubit gates, which involve two or more qubits. They are represented
by unitary operations U that transform an initial state |ψi⟩ to a final state |ψf ⟩ = U |ψi⟩. No-
tably, unlike classical computing, quantum gates are always reversible due to the unitary property
U†U = I, where I represents the identity matrix.

Single-qubit gates are generated by the Hamiltonian H(t) =
∑3

i=0 ai(t)σi where σ0 is the
identity, σj are the Pauli matrices (j = 1, 2, 3 = x, y, z), and ai(t) are time-dependent complex
coefficients. Then the single-qubit gate becomes

U = T e−i
∫ t

0
dtH(t)/ℏ

, (1.5)

where T is the time-ordering operator and ℏ is the reduced Planck constant. Thus, any single-qubit
gate can be interpreted as a rotation of the state vector on the Bloch sphere. Common examples
of single-qubit gates include the Hadamard gate

H = 1√
2

(
1 1
1 −1

)
, (1.6)

3



1.1. Quantum computing

which creates superposition by mapping the basis states as |0⟩ → |0⟩+|1⟩√
2 and |1⟩ → |0⟩−|1⟩√

2 , the
Pauli gates (X, Y , Z), which correspond to π-rotations around the x, y, and z axes of the Bloch
sphere and are represented by the Pauli matrices, and the phase gate

P (ϕ) =
(

1 0
0 eiϕ

)
, (1.7)

which modifies the phase of the quantum state by a rotation about the z axis of the Bloch sphere
by the angle ϕ.

In addition to single-qubit gates, multi-qubit gates are crucial for quantum computing. These
gates act on multiple qubits simultaneously, allowing for complex interactions and entanglement
between qubits. One notable example is the Controlled-NOT (CNOT) gate, which operates on
two qubits. In the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} it reads

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.8)

It performs a NOT operation on the target qubit (flipping the state from |0⟩ to |1⟩ and vice versa)
if and only if the control qubit is in the state |1⟩1. The CNOT gate is an essential component in
building entangling operations and forms the basis for various quantum algorithms. In particular,
by combining the Hadamard gate and the CNOT gate one can create a Bell state out of a two-qubit
basis state.

An important concept in quantum computing is the universal set of quantum gates. This set
comprises both single-qubit and multi-qubit gates that allow for the composition of any quantum
gate by combining gates from the universal set. Surprisingly, it has been proven that there is
no need for any further multi-qubit gate than the CNOT gate since the CNOT gate plus the set
of arbitrary single-qubit rotation gates is universal [6]. Universal gate sets serve as the building
blocks for quantum circuits and algorithms, enabling the execution of complex computations on a
quantum computer.

While the theoretical framework of quantum computing is promising, it is important to con-
sider the challenges posed by the real world. In practice, perfect qubits that can be initialized,
manipulated, coupled, and read out without any errors are not achievable. Quantum systems are
inherently sensitive to interactions with their environment, leading to decoherence of the quantum
states. Coherent errors can cause uncontrolled rotations of the state vector around the Bloch
sphere, while incoherent errors result in the loss of quantum information, transforming the pure
quantum state on the surface of the Bloch sphere into a mixed state within its interior. One might
think that complete isolation of the qubits from the environment would counteract decoherence.
However, the very nature of quantum computation requires qubit manipulation, which inevitably
involves interactions and compromises isolation. Thus, on the path to a functioning, fault-tolerant
quantum computer, it is crucial to improve the initialization, manipulation, and readout of qubits
to minimize error rates, ensuring they remain below the threshold for quantum error correction.
This threshold depends strongly on the number of available qubits, the connectivity between the
qubits, and chosen quantum error correction code [7–9].

Quantum error correction, distinct from classical error correction, cannot rely on redundancy
due to the no-cloning theorem [10], which forbids the creation of an exact copy of an arbitrary

1In this notation the first qubit is the control and the second the target qubit.
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1.1. Quantum computing

quantum state. Instead, it relies on the entanglement of several physical qubits to form an error-
corrected logical qubit [11]. Quantum error correction requires a significant number (at least a
million [12] for useful computations) of high-quality physical qubits, posing a major challenge in
scaling up quantum systems. The scaling of qubit counts is currently one of the most daunting
tasks in the pursuit of a fault-tolerant quantum computer. Overcoming the hurdles of decoherence,
error rates, and scalability is crucial for advancing quantum computing. Ongoing research and
engineering efforts aim to develop robust error correction techniques, innovative qubit designs, and
effective error mitigation strategies to pave the way for practical quantum computing applications.

Many proposals for quantum mechanical two-level systems that can be employed as qubits
have been successfully realized so far. The most advanced quantum processors up to this point are
based on superconducting qubits, which utilize Josephson junctions as key elements. Examples
of superconducting quantum processors include Google’s 53-qubit Sycamore processor [13] and
the Zuchongzhi quantum processor from the University of Science and Technology of China [14,
15], for both of which quantum supremacy [16] was claimed, and IBM’s 433-qubit processor Os-
prey2 announced in 2022 [17]. However, one inherent limitation of superconducting qubits is their
scalability, as they tend to be relatively large (∼ 10 µm) [18, 19].

An alternative approach to qubit design that has attracted significant attention in recent years
is the utilization of the spin degree of freedom of an electron (or a hole) to form a semiconductor
spin qubit [20, 21]. An electron with spin states |±1/2⟩, which can be split in energy by an
external magnetic field, serves as a natural two-level quantum system. Advances in semiconductor
spin qubits in recent years have demonstrated their potential to fulfill DiVincenzo’s criteria for
quantum computation [22, 23]:

1. Scalability of the system and well-characterized qubits.

2. Initialization of a simple state like the ground state of the system.

3. Low decoherence, where the coherence time is much longer than the gate operation, readout,
and initialization time.

4. Universal set of quantum gates.

5. Measurement of the qubit state.

Spin qubits are promising candidates to fulfill all of these criteria, driving the vision of large-scale
quantum computing. Regarding the number of spin qubits the most advanced processors to date
are a six-qubit processor with electrons in 28Si/SiGe [24], a four-qubit processor based on hole
spin qubits in Ge/SiGe [25], and two-qubit processors with gate fidelities overcoming the threshold
for fault-tolerant operation (> 99 %) [26–28]. Despite being behind superconducting devices in
terms of the number of qubits, spin qubits show promise for scalability due to their small size
of ∼ 100 nm which is about two orders of magnitude smaller than a typical superconducting
qubit [18, 19]. However, there are still challenges to address, such as long-distance qubit coupling
and cross-talk mitigation. One hope is to leverage the extensive experience gained from advanced
complementary metal-oxide-semiconductor (CMOS) technology used for computer chips in the
industry and apply it to quantum technology [29–31]. First attempts to realize spin qubit systems
with industrial methods were successful [32] and Intel industrially produces 12-spin-qubit chips
and makes them available to the research community [33].

Semiconductor spin qubits can be realized in various systems. As mentioned earlier, electron
and hole quantum dots (QDs) in different planar heterostructures can serve as qubit platforms.

2So far there has no data been published that proves the functionality of all 433 qubits.
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1.2. Group-IV semiconductors

Additionally, electrons or holes in nanowires (NWs) [34–36] or other quasi-one-dimensional (1D)
systems [37] can be confined to QDs. Spin qubits can also be realized in self-assembled QDs [38,
39], color-centers in diamond [40, 41] or silicon carbide [42], gate-defined QDs in graphene [43, 44]
or carbon nanotubes [45], and donor qubits [46, 47]. Furthermore, it is possible to harness the
nuclear spin instead of the spin of electrons or holes [47, 48]. In some cases, encoding a single
qubit in more than one QD with one or more electrons or holes has proven advantageous [49–61].

1.2 Group-IV semiconductors

In this thesis, our focus lies on spin qubits in Si and Ge, which are semiconductor materials from
group IV. More specifically, we analyze quasi-1D systems such as NWs, core/shell NWs [62, 63],
gate-defined 1D channels [64, 65], curved quantum wells [62, 65, 66], hut wires [35], and fin struc-
tures [37, 67]. By employing electrostatic confinement [35, 63] or growing barrier sections as part of
an NW [68, 69] it is possible to define QDs in these 1D systems. However, the physics of electrons
and holes in 1D systems is inherently fascinating and non-trivial, as their properties depend on nu-
merous factors that cannot be straightforwardly predicted from their bulk counterparts. Moreover,
the coupling of 1D semiconductor systems to a superconductor (SC) opens up an entirely new field
of phenomena to explore. Examples of such include proximity-induced superconductivity [70, 71],
metallization of NWs [72–74], Andreev bound states [75, 76], and topological superconductivity
with associated Majorana bound states [77–80], all of which warrant thorough investigation.

1.2.1 Electrons and holes
There are many reasons for the attractiveness of Si and Ge for spin qubit devices. In the early days
of semiconductor-based gate-defined spin qubits, GaAs was the most popular material because of
its ease of fabrication, single conduction band edge, and small effective mass [81]. However, the
presence of ∼ 106 nuclear spins that interact with the electron spin in a QD severely limits the
coherence time of GaAs-based spin qubits [49] (see Sec. 1.3.4). Si and Ge can be isotopically
purified such that the material becomes virtually nuclear spin free [82–84]. An undeniable proof of
the high quality of the materials is the reported mobility of up to 4.3 × 106 cm2 V−1 s−1 for holes
in Ge [85–87] and 2.4 × 106 cm2 V−1 s−1 for electrons in Si. [88]. Moreover, as already mentioned
above, there are efforts to employ the highly developed CMOS industry for scaling up Si- and
Ge-based spin qubit devices [29–32] which was made possible by the high quality and easy to grow
silicon oxide [89]. The spin-orbit interaction (SOI) of electrons in Si is weak compared to other
materials which, on the one hand, can be beneficial for a long coherence time [90–92]. However,
efficient spin-to-charge conversion (see Sec. 1.3.3) requires a coupling of the spin and orbital degrees
of freedom, which can be enhanced by the magnetic field gradient of micromagnets [24, 26, 27,
93]. In contrast, holes come with a naturally strong and tunable SOI as well as electrically tunable
g factor and thus enable ultrafast qubit control [35–37, 89, 94–97]. Especially in Ge it is very
natural to work with holes since almost any metal’s Fermi level is pinned close to the valence band
resulting in ohmic contact to the holes [98].

Before we dive into the physics of low-dimensional Si and Ge systems we recall some basic
bulk properties of these materials. Si and Ge crystals have a diamond lattice structure which is
a face-centered cubic (fcc) lattice with a diatomic basis. The lattice constants are aSi = 5.430 Å
and aGe = 5.652 Å [99]. Since the reciprocal lattice to an fcc lattice is a body-centered cubic (bcc)
lattice, the Brillouin zone for Si and Ge looks like a truncated octahedron as shown in Fig. 1.2(a).
The high symmetry points in the Brillouin zone are denoted as Γ for the center point, X for the
center of a quadratic face, and L for the center of a hexagonal face. Fig. 1.2(b) shows schematically
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1.2. Group-IV semiconductors

Figure 1.2: (a) The first Brillouin zone (BZ) of the fcc lattice is a truncated octahedron. The Γ
point lies in the center of the BZ, the X points in the center of the square faces of the BZ, and the
L points in the center of the hexagonal faces. The conduction band (CB) of Si has its minimum
close to the X point (six-fold degeneracy) while the CB of Ge has its minimum at the L point
(four-fold degeneracy since each valley is shared between neighboring BZs). (b) Schematic picture
of the band structure of Si. The CB edge is close to the X point and the maximum of the valence
band (VB) is at the Γ point at k = 0. The fundamental band gap is denoted as E0 and the gap at
k = 0 between the heavy/light hole (HH/LH) bands and the SO split-off band (SOB) as ∆0. At
k = 0 the HHs and LHs are degenerate.

the band structure of Si close to the fundamental band gap which is denoted as E0 (ESi
0 = 1.17 eV

and EGe
0 = 0.744 eV at 0 K [100]). The conduction band (CB) of Si has its minimum close to the

X point at k⟨100⟩ = 0.85 2π
aSi [101] [see Fig. 1.2(b)] while the CB edge of Ge is at the L point at

k⟨ 1
2

1
2

1
2 ⟩ = 2π

aGe [100]. The CB is of s-type, meaning the orbital angular momentum is l = 0 and
the spin is s = 1/2. Both materials have their valence band (VB) maximum at the Γ point at
k = 0. The VB is of p-type with orbital angular momentum l = 1 and spin s = 1/2. This results
in a total of six states of which four have total angular momentum j = l + s = 3/2 and two have
j = l − s = 1/2. The former can be categorized as heavy holes (HHs) with z component of the
total angular momentum jz = ±3/2 and light holes (LHs) with jz = ±1/23. The names come
from the larger effective mass of the HHs in the bulk that is characterized by the smaller curvature
of the HH band in the dispersion relation as schematically shown in Fig. 1.2(b). At k = 0 the HH
and LH bands are degenerate and they split at finite k due to SOI. The remaining two states with
j = 1/2 and jz = ±1/2 are split away from the HHs and LHs at k = 0 by the spin-orbit (SO) gap
∆0 (∆Si

0 = 44.1 meV and ∆Ge
0 = 296 meV [102]). As the name already tells us, the splitting arises

due to SOI, and thus, the band is called the SO split-off band (SOB). The SOI for electrons arises
perturbatively from the coupling of the CB to the VB and is therefore suppressed by the band
gap. In contrast to that, the SOI for holes originates directly in a coupling of k to the effective
spin degree of freedom in the VB and is thus much larger than for electrons. Note that there is no
Dresselhaus SOI in Si and Ge due to the presence of bulk inversion symmetry, but a Dresselhaus-
like term can appear in a quantum well due to interface inversion asymmetry [103–105]. All these
bands are two-fold spin degenerate in the absence of a magnetic field.

3The z direction refers here to the direction of motion of the holes determined by k. In the bulk it can be chosen
arbitrarily.
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1.2. Group-IV semiconductors

In this thesis, we want to analyze simple Hamiltonians that describe the dynamics of electrons
close to the CB edge or holes close to the VB edge rather than computationally heavy ab-initio
models that describe the full band structure. A very powerful approximate approach is the k · p
method, which allows to calculate the dispersion relation of a semiconductor to arbitrary precision
in the vicinity of a given point k0 in reciprocal space [102, 106]. The great advantage of this method
lies in the possibility to account for magnetic and electric fields as well as strain. It is based on
the Schrödinger equation for the Bloch functions eik·runk(r) ≡ eik·r ⟨r|nk⟩ accounting for the
microscopic crystal lattice by the lattice periodic potential V0(r). The Bloch functions consist of
a plane wave part eik·r and the functions unk(r) = unk(r +mR) which have the same periodicity
R as the lattice potential V0(r) = V0(r + mR) where m is an integer. The index n is called
band index in the absence of SOI and in the presence of SOI it is a common index for the mixed
orbital and spin degrees of freedom. Including Pauli SOI, which comes from a non-relativistic
approximation of the Dirac equation, the Schrödinger equation reads[

p2

2m + V0(r) + ℏ2k2

2m + ℏ
m
k · π + ℏ

4m2c2p · σ × ∇V0(r)
]

|nk⟩ = En(k) |nk⟩ , (1.9)

where m is the free electron mass, c is the speed of light, σ is the vector of Pauli matrices and
π = p + ℏ

4mc2 σ × ∇V0(r). In the absence of SOI π = p which is where the name k · p method
comes from. In this context, it is important to strictly distinguish between the wavevector k and
the momentum operator p. The lattice periodic functions {|nk0⟩} for a given k0 form a complete
orthonormal basis for Eq. (1.9) and the kets {|nk⟩} for arbitrary k can be expressed as an expansion
in terms of this basis. This yields an infinitely-dimensional matrix and diagonalizing this matrix
gives the exact dispersion relation and expansion coefficients for any n and k. However, in practice
one is typically interested in only a few adjacent bands (n = 1, . . . , N) and their dispersion relation
around the expansion point k0. Thus, the exact k · p and SO interactions are taken into account
only for the N bands of interest and the coupling to the remaining bands is treated perturbatively.
To derive an effective k · p Hamiltonian one resorts to quasi-degenerate perturbation theory [102]
which in this context is often referred to as Löwdin partitioning [107, 108]. For a simple dispersion
of an electron in the case of the CB edge at the Γ point we obtain in second-order perturbation
theory the parabolic dispersion relation

En(k) = En(0) + ℏ2k2

2m∗
n

, (1.10)

where the effective mass m∗
n is proportional to the fundamental band gap E0.

However, as we have already seen, the CB edge of Si and Ge is not at the Γ point. In the
following, we want to focus on electrons in Si. As discussed above the CB edge of Si is close
to the X point at k⟨100⟩ = 0.85 2π

aSi [101] and we define the distance of the minimum to the X
point as k0 = 0.15 2π

aSi . Since there are six equivalent X points [see Fig. 1.2(a)], there are in total
six CB minima in the Brillouin zone. Because all these minima are at the same energy they are
degenerate, which is often referred to as valley degeneracy and the minima are called valleys. A
simple k · p Hamiltonian from an expansion around the X point describing two adjacent valleys
(neglecting spin) is given in the local valley basis (l, t1, t2) by [109, 110]

H = ℏ2

2mt
(k2

t1
+ k2

t2
) + ℏ2

2ml
k2

l + ℏ2

ml
k0klσx − ℏ2

M
kt1kt2σz, (1.11)

where l is the longitudinal direction and t1 and t2 are the transversal directions. The longitudinal
and transversal masses of Si are ml = 0.19m and mt = 0.91m, respectively, and the band coupling
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1.2. Group-IV semiconductors

mass is 1/M ≈ 1/mt − 1/m [109, 111]. The other four valleys can be described by the same
Hamiltonian by rotation.

The description of holes is more intricate than that of electrons due to the SOI in a p-type band.
In what follows, we focus on holes in Ge, but except for material-specific numbers the description
holds also for holes in other diamond-lattice semiconductors, explicitly also for Si. In Ge, the SO
gap between the VB edge and the SOB is rather large (∆Ge

0 = 296 meV [102]). Thus, it is well
justified to neglect the SOB when one is interested in the dynamics at the VB edge. The k · p
Hamiltonian describing the dispersion relation close to the Γ point accounting for the HH and LH
nature is the Luttinger-Kohn (LK) Hamiltonian [102, 108, 112]

HLK = − ℏ2

2m

[(
γ1 + 5γ2

2

)
k2 − 2γ2

(
k2

xJ
2
x + k2

yJ
2
y + k2

zJ
2
z

)
− 4γ3 ({kx, ky}{Jx, Jy} + c.p.)

]
,

(1.12)

where γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 are the material-dependent Luttinger parameters for
Ge [113], Ji (i = x, y, z) are the standard spin-3/2 matrices, “c.p.” stands for cyclic permutations,
and the anti-commutator is defined as {A,B} = (AB + BA)/2. The global minus sign of the
LK Hamiltonian stems from the fact that holes live in the VB and their energy is negative with
respect to the energy of electrons in the conduction band. However, without loss of generality, we
assume that holes have a positive energy and use a positive sign in the LK Hamiltonian as long
as the conduction band is not accounted for explicitly. If not stated differently the coordinates
x, y, and z are along the main crystallographic directions ⟨100⟩. In many cases, when analytical
solutions for the eigenvalues and eigenvectors of the LK Hamiltonian in Eq. (1.12) are required,
it is necessary to make approximations. A prominent example, for which an exact solution is
known, is the spherical or isotropic approximation where γ2 = γ3 [114]. However, the neglected
anisotropies can lead to interesting effects as discussed in Chapters 2 and 3.

If the focus is on understanding the qualitative features of the Hamiltonian, rather than ob-
taining exact coefficients, the theory of invariants [115] provides a valuable approach to determine
which terms are allowed and which should vanish based solely on symmetry arguments. This relies
on the fact that the Hamiltonian must remain invariant under all symmetry operations of the
problem determined, e.g., by the point group of the lattice4. Utilizing the theory of invariants
allows for a much simpler derivation of the structure of the Hamiltonian compared to explicitly
performing the Löwdin partitioning.

1.2.2 Low-dimensional systems: nanowires and quantum dots
Based on the Hamiltonians presented above for bulk electrons and holes, which in the following
we generally refer to as particles, we can investigate the properties of low-dimensional systems by
introducing a confinement potential V (r) [r = (x, y, z)]. Our particular interest lies in analyzing
quasi-1D systems that can be modeled by, e.g., hard-wall confinement in transverse directions. This
description is suitable for epitaxially grown NWs where a substantial potential difference exists
between the material that hosts particles and a surrounding shell that could be a different semi-
conductor or a dielectric. Further confinement to a QD is typically achieved through electrostatic
gates, which provide a harmonic confinement potential.

Moreover, gates serve the purpose of applying homogeneous electric fields to the particles. In
a confined system, the electric field leads to structural inversion symmetry breaking and thus
gives rise to Rashba SOI. Furthermore, the electric field induces a shift in the position of the

4The point group of the diamond lattice is Oh and has 48 symmetry elements.
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1.2. Group-IV semiconductors

wave function for the confined particle. Defining a spin qubit requires lifting the Kramers spin
degeneracy through a magnetic field, leading to the well-controllable Zeeman splitting proportional
to the g factor. It turns out that the g factor in hole NWs and QDs strongly deviates from the free
electron g factor, is anisotropic, and strongly depends on the electric field. Coupling the magnetic
field to the orbital motion of the particles via the vector potential induces orbital effects that cause
a renormalization of the g factor and SOI strength, especially in hole NWs, as we will discuss in
Chapters 2 and 3.

In many systems, strain arises due to the lattice mismatch at the interface between two different
materials. For example, strain can be caused by the shell around an NW, the different layers in
a planar heterostructure, or by gates deposited on the device to enable electric control. Strain
becomes especially interesting in 1D hole systems leading to an increase of the subband gap and
renormalization of the g factor and SOI strength, as we will show in Chapters 2 and 3. For
electrons in 1D Si structures shear strain is a promising tool to lift the valley degeneracy as we
propose in Chapter 5.

To describe the lowest energy states of a low-dimensional system one typically employs an
effective model taking higher subbands into account perturbatively. For instance, for the lowest
two states of a particle in a quasi 1D system (parallel to the z direction) with Rashba SOI, magnetic
field Bz along the NW, and electric field Ex perpendicular to the NW the effective Hamiltonian
up to order k2

z is given by

HNW(kz) = ℏ2

2meff
k2

z + 1
2geffµBBzσz − αℏkzExσy, (1.13)

wheremeff is the effective mass, geff the effective g factor, and α the effective Rashba SOI coefficient.
These parameters depend on confinement details and external electric and magnetic fields. The
momentum parallel to the NW is denoted by ℏkz. In principle, the effective mass can depend
on the spin, and orbital effects of the magnetic field are accounted for in the magnetic field
dependence of the effective parameters. For strong electric and magnetic fields it might be necessary
to take higher-order terms in Ex and Bz into account. The SOI is characterized by the SO length
lso = ℏ/meffαEx, indicating that after a distance of lsoπ/2 along the NW, the spin of the particle
rotates in the plane spanned by the NW axis and the electric field direction from “up” to “down”
or vice versa.

Notably, in hole NWs, the Rashba SOI originating in the direct dipolar coupling to an external
electric field is unusually strong [94, 95]. Consequently, it is referred to as direct Rashba SOI. Unlike
the standard Rashba SOI, which is suppressed by the fundamental band gap of the semiconductor,
the direct Rashba SOI is only suppressed by a subband gap, making it 10 to 100 times larger. This
direct coupling to the electric field is only strong if there is a strong HH-LH mixing as in systems
with two axes of strong confinement. However, in planar structures and QDs therein, the ground
state is primarily of HH-type, leading to the suppression of direct Rashba SOI.

The most common way to define a QD in an NW is to make use of gates and apply a smooth
electrostatic confinement potential, which can be approximated by a harmonic potential Vc =
1
2meffω

2z2 along the quasi-1D system. The harmonic confinement is characterized by the orbital
confinement frequency ω, which depends on the electric field gradient provided by the gates. The
confinement along the NW is much weaker than the hard-wall confinement in transverse directions.
By performing the unitary local spin rotation Us = eiσyz/lso , we switch from the Hamiltonian in
Eq. (1.13) including Vc to the rest frame of the spin. Averaging over the quantum harmonic
oscillator ground state wave function results in the simple effective QD Hamiltonian

HQD = ℏω
2 − Eso + µBBz

2 geffe
−l2

z/l2
soσz, (1.14)
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1.3. Spin qubits

where we assume that the Zeeman energy geffµBBz is much smaller than the orbital confinement
ℏω. The SO energy is defined as Eso = ℏ2/2meff l

2
so, and the harmonic confinement length along

the NW is lz =
√
ℏ/meffω. The g factor of the QD is renormalized by the exponential that depends

on the confinement and SO length.

1.3 Spin qubits

A spin qubit can be encoded in the two states described by the effective Hamiltonian in Eq. (1.14).
However, it is essential to recognize that the qubit states are not pure spin states due to the
presence of SOI. As discussed in Sec. 1.1, universal quantum computing not only requires the
definition of the qubit states but also qubit manipulation. In the following, we will present the
mechanisms behind single- and two-qubit gates for spin qubits.

1.3.1 Single qubit rotations
Initial attempts to perform single-qubit rotations involved using a transversal ac magnetic field
Bx(t). If the frequency of the ac magnetic field ωac matches the Larmor frequency ωL of the
spin in the static magnetic field Bz, the spin will rotate about an axis in the x − z plane at
the Rabi frequency ΩR, which depends on the amplitude of the ac magnetic field. This driving
protocol is called electron spin resonance (ESR) and the qubit rotations are referred to as Rabi
oscillations [116]. However, ESR proved challenging in practice due to several reasons. For instance,
fast driving requires a large amplitude of the ac magnetic field that can only be produced by strong
ac currents close to the QD [20, 117] accompanied by considerable heating effects. This can have
disastrous effects on the qubits which require low temperatures to mitigate thermal decoherence
processes. Additionally, creating strong local magnetic fields for selective qubit manipulation in
multi-qubit devices turns out to be very difficult.

Fortunately, SOI provides an alternative way to perform single-qubit rotations without the need
for an ac magnetic field. The mechanism is very similar, but an ac electric field is required which is
much easier to control locally. All-electrical control of spin qubits is achieved through the electric-
dipole-induced spin resonance (EDSR) scheme [118, 119]. In this method, an ac electric field
Ez(t) is applied along the NW. We consider again the Hamiltonian in Eq. (1.13) with additional
harmonic confinement along the NW

H1D(kz) = ℏ2

2meff
k2

z + 1
2geffµBBzσz − αℏkzExσy + meffω

2

2 z2 − eEz(t)z. (1.15)

In analogy to the QD Hamiltonian in Eq. (1.14) we can derive an effective EDSR Hamiltonian of
the spin qubit. By completing the square we see that the ac electric field leads to a time-dependent
shift of the center of mass of the QD

H1D(kz) = ℏ2

2meff
k2

z + 1
2geffµBBzσz − αℏkzExσy + meffω

2

2 [z − d(t)]2 , (1.16)

where the periodical shift is defined as d(t) = eEz(t)l2z/ℏω and we neglect a global energy shift of
−meffω

2d(t)2/2. Moving to the orbital rest frame by the time-dependent unitary transformation
e−iℏkzd(t)/ℏ shifts the coordinates such that z → z + d(t). The resulting Hamiltonian is

H̃1D(kz) = ℏ2

2meff
k2

z + 1
2geffµBBzσz − αℏkzExσy + meffω

2

2 z2 − ℏkz
d
dtd(t). (1.17)
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As before, we perform the unitary local spin rotation Us = eiσyz/lso and average over the quantum
harmonic oscillator ground state assuming the Zeeman energy and driving frequency to be much
smaller than the orbital frequency, geffµBBz/ℏ, ωac ≪ ω. The result we obtain is the effective
EDSR Hamiltonian

HEDSR = ℏω
2 − ℏ

lso

d
dtd(t)σy + µBBz

2 geffe
−l2

z/l2
soσz. (1.18)

Driving with the harmonic ac electric field Ez(t) = Eac sin(ωact) gives the periodic shift of the QD
position d(t) = d0 sin(ωact) with d0 = eEacl

2
z/ℏω. Then the resonance condition for achieving full

Rabi oscillations is given by

ℏωac = geffµBBze
−l2

z/l2
so (1.19)

and the Rabi frequency at resonance is determined by ΩR = geffe
−l2

z/l2
soµBBzd0/lso. Note that

d0 depends on Eac and thus the Rabi frequency is controlled by the ac electric field. Another
important remark is that the Rabi frequency depends via lso on the SOI coefficient α meaning
that stronger SOI allows for faster Rabi oscillations which set the operation speed for single-qubit
gates. For cases where the intrinsic SOI is weak, such as for electrons in silicon, enhancing the
effect by a magnetic field gradient as provided by micromagnets [120–122] can be advantageous.
This is sometimes called artificial SOI since the inhomogeneous magnetic field mimics the effect
of intrinsic SOI. Additionally, the coupling to the magnetic field gradient can be further enhanced
by delocalizing one electron over two QDs because of the larger dipole coupling in such a setup
which is referred to as flopping mode qubit [57, 58].

In the following, let us discuss how the EDSR Hamiltonian in Eq. (1.18) induces rotations of
the qubit. To simplify the notation we neglect the global energy shift ℏω/2, define the effective
Zeeman energy ∆Z = µBBzgeffe

−l2
z/l2

so , and write ν = ℏωacd0/lso. Then, the EDSR Hamiltonian
becomes

H(t) = −ν cos(ωact+ φ0)σy + ∆Z

2 σz, (1.20)

where we introduce the phase φ0 that allows us to control the rotation axis. Since there is no
simple analytical solution for the Schrödinger equation

iℏ
d
dt |ψ(t)⟩ = H(t) |ψ(t)⟩ (1.21)

to this time-dependent Hamiltonian, we have to make an approximation. First, we move to the
rotating frame by the unitary UR(t) = e−iωRtσz/2 which leaves us with

H̃(t) = 1
2

(
∆Z − ℏωR iν

(
ei[(ωR+ωac)t+φ0] + ei[(ωR−ωac)t−φ0])

−iν
(
e−i[(ωR+ωac)t+φ0] + e−i[(ωR−ωac)t−φ0]) −(∆Z − ℏωR)

)
,

(1.22)

where the energy shift comes from the term −iℏ
(
U†

R(t) d
dtUR(t)

)
. By choosing the rotating frame

frequency ωR = ωac, the slowly oscillating terms in the off-diagonal matrix elements become time-
independent. Thus, we obtain a time-independent Hamiltonian plus fast oscillating, also called
counter-rotating, terms which we will neglect in the following. This is the often applied rotating
wave approximation (RWA) [123] which relies on the conditions that the oscillating coupling is
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Figure 1.3: Schematic illustration of qubit rotations on the Bloch sphere via EDSR for φ0 = 0.
(a) At resonance, the initial state |1⟩ is rotated about the y axis (dashed-blue line). After time
Tflip = π/ΩR the qubit is flipped completely to the state |0⟩. The solid-red line shows the fast
oscillations that are neglected by the RWA with exaggerated amplitude. (b) At off-resonant driving
the rotation axis is tilted away from the y axis and the initial state |1⟩ is not completely flipped
to |0⟩.

much smaller than the energy gap, ν/∆Z ≪ 1, and the driving frequency is close to resonance,
δ = |∆Z | − |ℏωac| ≪ ∆Z . The remaining Hamiltonian is time-independent

HRWA = ℏΩR

2 nR · σ, (1.23)

where ΩR =
√
δ2 + ν2/ℏ is the Rabi frequency and nR = [ν sin(φ0)/ℏΩR,−ν cos(φ0)/ℏΩR, δ/ℏΩR]

determines the rotation axis. At resonance (δ = 0) for φ0 = 0 we obtain rotations about the y axis,
leading to a full spin flip after the time Tflip = π/ΩR. Fig. 1.3(a) provides a schematic visualization
of the qubit rotation with RWA and with the fast oscillations that are neglected in the RWA. For
driving at frequencies slightly away from resonance the oscillations become faster, but the spin-flip
probability drops below one, see Fig. 1.3(b).

Maintaining the regime of ν/∆Z ≪ 1 is crucial to ensure that the counter-rotating terms
are negligible. If this condition is violated, every single-qubit rotation is fraught with errors that
accumulate over time reducing the gate fidelity. Additionally, driving the qubit beyond the validity
of the RWA results in the Bloch-Siegert shift, a shift of the resonance frequency. To account for
higher-order effects, corrections can be calculated using a higher-order Magnus expansion [124].
Moreover, the shape of the driving pulse turns out to play a vital role in achieving high-fidelity
gates. Proper pulse shaping has proven to be a successful technique in optimizing gate speed
and fidelity [26, 125]. Further optimization approaches are the driving of the qubit by higher-
harmonic excitations [126] or phase driving [127]. The fastest Rabi oscillations up to now exceeding
frequencies of 540 MHz have been realized experimentally by exploiting the strong SOI in hole
systems [36, 128].
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1.3.2 Two qubit gates
SOI not only enables single-qubit rotations, as discussed above, but also paves the way to fast
two-qubit gates by inducing a strong anisotropy in the exchange interaction between two qubits.
In what follows, we present the theory behind a simple two-qubit gate for two electrons in a double
QD (DQD). Although we describe the situation for electrons, the results can easily be generalized
for holes.

A single electron in a DQD can be described by the effective Hamiltonian

H1 = ε

2τz − t0τx + gµBBz

2 σz + δgµBBz

2 τzσz − tsoτyσy, (1.24)

where ε represents the energy detuning between the left (L) and right (R) QD, t0 > 0 is the energy
associated with the conventional spin-conserving tunneling between the dots, g is the average
g factor of the QDs, δg is the g factor difference between the QDs (important for individual
addressability), and tso is the spin-flip tunneling arising due to SOI. The Pauli operators τi and σi

(i = x, y, z) refer to the position (L, R) and spin space, respectively. We assume strong confinement
of the electron to the QDs, weak tunneling between them, and small detuning.

To consider two-qubit gates, we introduce a second particle for a second qubit which is also
described by a Hamiltonian like the one in Eq. (1.24). Since electrons, which are spin-1/2 particles,
have to obey the Pauli principle, there are six possible states the two electrons can occupy in the
DQD, of which three are singlet (|S0⟩, |SLL⟩, |SRR⟩) and three are triplet states (|T0⟩, |T↑↑⟩,
|T↓↓⟩) [129]. The singlet states are characterized by a symmetric orbital and an antisymmetric
spin part of the wave function while the triplet states exhibit the opposite symmetries. In the |S0⟩
state and all the triplet states, the two electrons are delocalized in the DQD, while in the |SLL⟩
(|SRR⟩) state, both electrons are in the left (right) QD. Similarly, the spins are not polarized in
the singlet states and |T0⟩, while the total spin-z component is one for |T↑↑⟩ and |T↓↓⟩. In the
singlet-triplet basis, {|SLL⟩, |SRR⟩, |S0⟩, |T↑↑⟩, |T↓↓⟩, |T0⟩} the DQD Hamiltonian can be written
in a Hund-Mulliken approach in matrix form:

HDQD =


U + ε 0 −

√
2t0 −tso −tso 0

0 U − ε −
√

2t0 −tso −tso 0
−

√
2t0 −

√
2t0 0 0 0 δgµBBz

−tso −tso 0 gµBBz 0 0
−tso −tso 0 0 −gµBBz 0

0 0 δgµBBz 0 0 0

 , (1.25)

where U is the Coulomb repulsion between two electrons when confined to the same QD. This term
is called Hubbard or charging energy and it makes a double occupation of one QD energetically
unfavorable [21]. Although symmetry allows Coulomb interactions between any of the singlet
states [130], in a typical QD, U is the dominant term, and we neglect the other couplings. The
orbital part of the Hamiltonian, i.e. the terms containing ε and t0, couples only singlet states
because only their wave functions exhibit a symmetric orbital part. On the other hand, the
Zeeman Hamiltonian couples only triplet states because of the symmetric spin part of the wave
function. Magnetic fields in x and y direction would further couple the |T0⟩ state to |T↑↑⟩ and
|T↓↓⟩, but for simplicity we keep assuming Bx = By = 0. SOI and the inhomogeneous g factor
couple the orbital and spin degrees of freedom and thus induce the mixing of the singlet and triplet
sectors of the Hamiltonian in Eq. (1.25).

In the following discussion, we outline the ideas of implementing a CNOT gate based on the
Hamiltonian in Eq. (1.25) where we follow important steps provided in Ref. [131]. We assume
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1.3. Spin qubits

that U is much larger than all other energies and aim to derive an effective two-qubit Hamiltonian
by decoupling the doubly occupied singlet states |SLL⟩ and |SRR⟩. In analogy to the derivation
of the EDSR Hamiltonian, we perform a unitary local spin-flip rotation Us = eiLτzσy/2lso , that
mixes spin and orbital degrees of freedom, where L/lso = arctan (tso/t) and t =

√
t20 + t2so. This

transformation already decouples |SLL⟩ and |SRR⟩ from the triplet states. However, they are still
coupled to |S0⟩. To address this coupling, we treat it in second-order perturbation theory and
introduce the exchange energy J = 2t2

U−ε + 2t2

U+ε ≈ 4t2

U

[
1 + ε2

U2

]
.

Now, dropping the singlet states which are far away in energy, the DQD Hamiltonian becomes

H̃DQD =


−J − g√

2 sin(θ) g√
2 sin(θ) δg cos(θ)

− g√
2 sin(θ) g cos(θ) 0 δg√

2 sin(θ)
g√
2 sin(θ) 0 −g cos(θ) δg√

2 sin(θ)
δg cos(θ) δg√

2 sin(θ) δg√
2 sin(θ) 0

 (1.26)

in the basis {|S0⟩ , |T↑↑⟩ , |T↓↓⟩ , |T0⟩}. To simplify the notation we define θ = L/lso and set µBBz =
1. Due to the exchange energy, the singlet is the ground state for Bz = 0. To analyze the effect of
the exchange interaction, we move to the computational frame where the single-qubit Hamiltonians
are diagonal. This is justified because in experiments J is typically small compared to the Zeeman
energy. By simple unitary transformations5, we arrive at the two-qubit Hamiltonian

H2Q ≈


E

(1)
Z

+E
(2)
Z

2 ν(2) cos(ωact) 0 0
ν(2) cos(ωact)

E
(1)
Z

−E
(2)
Z

−J∥
2

J
2 cos2(θ) 0

0 J
2 cos2(θ) −E

(1)
Z

+E
(2)
Z

−J∥
2 ν(2) cos(ωact)

0 0 ν(2) cos(ωact)
−E

(1)
Z

−E
(2)
Z

2

 (1.27)

in the computational frame {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}, where we neglect couplings to the high-energy
states split away by the sum of Zeeman energies. The Zeeman energies of the two qubits are given
by E(1)/(2)

z = (g ± δg)µBBz, J∥ = J cos(2θ), and the term ν(2) cos(ωact) with the Rabi frequency
ν(2) appears when we drive qubit two via EDSR, see Eq. (1.20)6.

For the realization of a CNOT gate, the off-diagonal matrix elements containing J need to
vanish, which happens when θ = L/lso = π/2. This is experimentally achievable in the presence of
strong SOI, e.g., with holes in Si fin field-effect transistors [131]. The possibility to tune these terms
to zero is remarkable since they enable fast two-qubit gates, which are not limited by the difference
of Zeeman energies

∣∣∣E(1)
Z − E

(2)
Z

∣∣∣, which is typically small in experiments. When θ = 0, the two-
qubit Hamiltonian in Eq. (1.27) can be separated into two decoupled blocks and the diagonal
exchange coupling terms become J∥ = −J . Then the two blocks can be driven independently, as
their resonance frequencies are at ωac = (E(2)

Z ±J/2)/ℏ, differing exactly by the exchange coupling.
By driving the lower block at resonance (ℏωac = E

(2)
Z − J/2) for the time t = πℏ/ν(2), the upper

5For the transformation we first rearrange the basis to
{∣∣T↑↑

〉
, |S0⟩ , |T0⟩ ,

∣∣T↓↓
〉}

and apply the basis transfor-

mation {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} = M
{∣∣T↑↑

〉
, |S0⟩ , |T0⟩ ,

∣∣T↓↓
〉}

with M =
( 1 0 0 0

0 1/
√

2 1/
√

2 0
0 −1/

√
2 1/

√
2 0

0 0 0 1

)
and |ss′⟩ =

∣∣s(1)s(2)′
〉

(s, s′ =↑, ↓). In this basis we diagonalize the single-qubit Hamiltonians for qubit 1 and qubit 2 individually by the

unitary transformation UC = e
−i
(

σ
(1)
y −σ

(2)
y

)
θ/2.

6Note that the direction of the static electric field is y here and x in Eq. (1.20) which is why we have a Pauli x
matrix here.
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block stays idle and the lower block performs a full spin flip corresponding to the CNOT gate,
see Eq. (1.8). Note that due to the SOI, the exchange interaction is anisotropic and becomes
J∥ = JeB ·Ry(2θ)eB for an arbitrary direction of the Zeeman field eB , where Ry is the standard
Euler rotation matrix for a rotation about the y axis. This demonstrates the potential of using
SOI in achieving high-fidelity and fast two-qubit gates for quantum information processing.

1.3.3 Initialization and readout
The tiny magnetic moment of an electron or a hole presents a challenge for directly measuring
the state of a spin qubit. On the other hand, the development of quantum point contacts (QPCs)
opened the path to highly sensitive charge measurements [103] even before the first proposal for
a spin qubit [20]. In a QPC, the conductance is quantized and at the transition between two
conductance plateaus, it becomes very susceptible to nearby charges [132, 133]. By measuring
the conductance of the QPC the number of charges in a single QD [134] or DQD [135] can be
determined.

Since the inception of spin qubits, the question of how to read them out has been addressed
and a successful proposal involves converting the spin information to a charge signal for measure-
ment [20, 48]. One routinely used method for single-shot readout of a spin qubit is energy-selective
readout [136], which is schematically illustrated in Fig. 1.4(a,b). The idea is to couple a QD to a
reservoir and a charge sensor, e.g., a QPC. In the QD two spin states are separated by the Zeeman
energy ∆Z and the chemical potential of the reservoir µ is located in between the energy of the
two states. All the other states in the QD are far away in energy and a double-occupation is
prevented by the charging energy U . If the spin in the QD is in the ground state |↓⟩, it cannot
tunnel to the reservoir because of the lack of unoccupied states [see Fig. 1.4(a)], and the signal
at the charge sensor is constant. Conversely, if the spin is in the excited state |↑⟩, it can tunnel
to the reservoir and a new spin can tunnel from the reservoir to the ground state of the QD [see
Fig. 1.4(b)], which manifests in a peak in the charge sensor signal. Since the quantum state is
destroyed by the measurement, high visibility is necessary to successfully apply this type of read-
out. Nowadays a visibility > 99 % is achieved [93, 137] and it became a common readout method.
At finite temperatures, it requires sufficiently large magnetic fields to split the spin states more
than the thermal broadening to distinguish the spin states, ∆Z ≫ kBT . Because an excited state
always escapes to the reservoir and the ground state is refilled, this scheme can also be used to
initialize the spin qubit in the ground state.

Despite its success, energy-selective readout has some drawbacks. The readout speed for a
full measurement cycle is proportional to the spin relaxation time [93, 137], which can be slow.
Furthermore, the tunneling rates need to be within a certain range: If the tunneling is too slow,
the spin might relax before it tunnels, while if it is too fast, the charge sensor might miss the
signal [138]. Therefore, a different approach is required for fast spin qubit readout.

Exploiting the Pauli spin blockade (PSB) [21, 103] as illustrated in Fig. 1.4(c,d) for spin-to-
charge conversion is one such approach. The setup comprises a DQD where initially each QD is
occupied by a single spin. The initial state can either be a singlet |S0⟩ or a triplet |T0⟩. The other
triplet states |T↓↓⟩ and |T↑↑⟩ with single occupied QDs are split away in energy by a magnetic field
[see Eq. (1.25)]. By electrostatic gates, the DQD detuning ε can be swept from the situation where
the initial state is lower in energy than the singlet state |SRR⟩ to a situation where |SRR⟩ is lower
in energy than the initial state.7. If the sweeping is slow compared to the tunneling time, adiabatic
tunneling from the initial state to the state |SRR⟩ can happen around the singlet anticrossing point.

7We choose here the singlet state |SRR⟩, but the same protocol can be realized equivalently with the two spins
on the left dot, |SLL⟩.
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1.3. Spin qubits

Figure 1.4: Schematic illustration of energy-selective readout and Pauli spin blockade (PSB). (a, b)
In a QD the two spin states are separated in energy by the Zeeman gap ∆Z due to a magnetic
field. The chemical potential µ of a reservoir coupled to the QD is in between the two states. (a)
If the spin in the QD is in the ground state (|↓⟩), it cannot tunnel to the reservoir because of
the absence of unoccupied states. (b) A spin in the excited state (|↑⟩) can tunnel to the reservoir
because its energy is larger than µ and it can be replaced by a spin from the reservoir that tunnels
to the ground state. (c, d) By tuning ε the singlet state |SRR⟩ with both spins on the right QD
can be brought to lower energy than the states |S0⟩ and |T0⟩, where the spins are delocalized over
the DQD. (c) If the two spins are originally in the singlet state |S0⟩ they can localize at one QD.
(d) If the spins form the triplet state |T0⟩, they cannot tunnel such that they end up at one QD
because of the PSB.

Only if the initial state is |S0⟩ the spin on the left QD can tunnel to the right QD, forming the
state |SRR⟩ [see Fig. 1.4(c)]. If the initial state is |T0⟩ the spin cannot tunnel because that would
require a change of the symmetry of the wave function [see Fig. 1.4(d)] or the occupation of an
excited orbital state which is excluded in the adiabatic limit [139]. This forbidden tunneling is
referred to as the PSB. As before the difference of charge in the QDs can be measured by a nearby
charge sensor. Also, the PSB method is suitable for the qubit initialization [49, 140, 141]. Both
spins can be forced to locate in the right QD by electrostatic gates where they relax to the |SRR⟩
state. Tuning ε such that |SRR⟩ lies at higher energy than the states of single QD occupation
causes one spin to tunnel to the left QD ending up in the |S0⟩ state. A subsequent single-qubit
rotation enables the transition to one of the triplet states |T↓↓⟩ or |T↑↑⟩, which relax into the state
|T0⟩. Particular caution is required if, in addition to the spin degree of freedom, there is also a
valley degree of freedom as for electrons in Si. In this case, the doubly occupied QD state can be a
spin triplet allowing for spin tunneling events that are forbidden in the valley-free situation [142].
However, accounting for the total symmetry of the wave functions enables the formulation of a
generalized PSB theory in the presence of valleys.

A different approach to qubit readout is based on the dispersive shift of the resonance frequency
of a resonator coupled to the qubit due to the change of the QD capacitance [143, 144]. In
analogy to cavity quantum electrodynamics (QED) in atomic physics [145–147] and circuit QED
with superconducting qubits [148–150], spin qubits are coupled to photons in a superconducting
microwave resonator [21]. Measuring the cavity transmission or reflection in the dispersive regime
means that the detuning between the QD transition and the cavity photon frequency is much larger
than the cavity linewidth, i.e., away from the resonance. The cavity photon frequency is shifted
by the dispersive shift depending on the state of the qubit. Strong resonator-spin qubit coupling
has been achieved [151–155] and by exploiting an ancilla QD a readout fidelity of 99.2 % was
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reported [156]. This technique exhibits low back action on the qubit because the measured operator
commutes with the qubit Hamiltonian and the Hamiltonian that describes the interaction with the
qubit-measurement apparatus [157]. This is referred to as quantum non-demolition measurement.
In theory, this property allows for infinitely accurate measurements that, however, in practice are
limited by decoherence due to coupling to the environment. Furthermore, it does not require a
charge detector in the vicinity of the qubit. In addition to the high-fidelity readout, coupling
the qubit to a microwave resonator also enables long-distance coupling of spin qubits. This is an
advantage since inter-qubit connectivity beyond nearest neighbor interactions enables quantum
information processing at higher fidelity [158].

To measure gate fidelities above the threshold for quantum error correction [26, 27] with readout
fidelities far below the gate fidelity, advanced techniques are required. In practice randomized
benchmarking [159, 160] and gate set tomography [161–163] are used for this purpose. The former
allows for error characterization of arbitrarily large quantum processors by the implementation of
a long sequence of random quantum gates and returns an error rate per gate. The latter, on the
other hand, gives a full gate-resolved characterization of the errors.

1.3.4 Decoherence
Qubits, being quantum systems, inevitably interact with their environment, leading to decoherence,
which results in the loss of quantum information. In the following, we provide a basic theoretical
background for the description of noise including an introduction to the commonly reported relax-
ation time T1, dephasing time T ∗

2 , coherence time T2, and experiment-specific numbers like THahn
2

and TRabi
2 . Subsequently, we discuss some important sources of noise for gate-defined spin qubits

in semiconductors and give numbers for state-of-the-art experiments.

Theory of decoherence

The dynamics of a closed quantum system can be described by the time evolution of the density
matrix of a quantum state given by the Liouville-von Neumann equation

d
dtρ(t) = − i

ℏ
[H(t), ρ(t)] , (1.28)

where the density matrix ρ(t) =
∑

k pk |ψk(t)⟩ ⟨ψk(t)| is given by an ensemble of pure quantum
states with the probability pk for the state |ψk(t)⟩ which fulfills

∑
k pk = 1. However, when

the quantum system interacts with its environment, decoherence processes occur and this simple
description becomes insufficient. To account for these interactions, we extend Eq. (1.28) with a
dissipator D[ρ(t)], leading to the Lindblad master equation

d
dtρ(t) = − i

ℏ
[H(t), ρ(t)] +

∑
m,n

Γ|m⟩→|n⟩

(
|n⟩⟨m| ρ(t) |m⟩⟨n| − 1

2 |m⟩⟨m| ρ(t) − 1
2ρ(t) |m⟩⟨m|

)
︸ ︷︷ ︸

=D[ρ(t)]

,

(1.29)

where Γ|m⟩→|n⟩ ≥ 0 is the transition rate from state |m⟩ to state |n⟩ [164, 165]. Note that the
validity of the Lindblad master equation relies on the Born approximation (weak coupling to the
environment) and the Markov approximation (short memory for the noise). In the following, we
assume a spin qubit described by the ground state |0⟩ and the excited state |1⟩. For the unitary
time evolution we consider the time-independent Hamiltonian H = σz∆/2 in the {|0⟩ , |1⟩} basis.
Relaxation is described in Eq. (1.29) by the process |1⟩ → |0⟩ with the associated relaxation
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rate Γ|1⟩→|0⟩ = Γr
8. We can also include dephasing processes which are described by |n⟩ → |n⟩

and we choose Γ|0⟩→|0⟩ = Γ|1⟩→|1⟩ = Γd. By solving the differential equation in Eq. (1.29) with
appropriate boundary conditions, one finds the relaxation time T1 = 1/Γr and the decoherence
rate 1/T2 = Γr/2 + Γd. The pure dephasing time can be found by setting Γr = 0 as T ∗

2 = 1/Γd.
This result also tells us the upper bound for the coherence time T2 ≤ 2T1.

In the next paragraph, we will discuss charge noise9 as an important source for decoherence of
spin qubits which has the power spectral density Sn(ω) ∝ ω−1. However, the previous results for
dephasing are only valid in the limit of white noise since we assume that the correlation time of
the noise is much shorter than the lifetime of the qubit [167]. To provide a better description of
dephasing due to charge noise, the filter function formalism is employed, which explicitly accounts
for external control in the experiment, e.g., by gate pulses [21, 168, 169]. Let us consider the
Hamiltonian H = σz∆/2 and the initial state |0⟩. By applying a π/2 pulse about the y axis, i.e.,
letting the qubit evolve under the EDSR scheme for the time Tπ/2 = π/2ΩR [see Eq. (1.23)], the
initial state becomes |+⟩ = (|0⟩ + |1⟩)/2 which is an eigenstate of σx. We assume here that the
pulse initiates an instantaneous spin flip. Then we allow the state to evolve freely for a certain
time ∆t, which is referred to as free induction decay or Ramsey experiment. After a second π/2
pulse the qubit state is measured and one obtains a sinusoidal probability P1 for the qubit to be
in state |1⟩ as a function of ∆t. Due to dephasing, P1 will be exponentially damped

⟨P1⟩ = 1
2 + 1

2e
−σδϕ

2 cos
(

∆t
ℏ

)
, (1.30)

where the decay is given by the variance

σδϕ = 1
2πℏ

∫ ∞

−∞
dωF (ωt)

ω2 Sn(ω) (1.31)

with the filter function [21, 169]

F (ωt) =
∣∣∣∣ω2
∫ t

0
r(t′)eiωt′

dt′
∣∣∣∣2. (1.32)

The filter function depends on the experimental setup and the number of pulses that are applied
to the qubit. For the Ramsey experiment described above, it takes the form

F (ωt) = 4 sin2
(
ωt

2

)
. (1.33)

Even though the decay is exponential only for white noise with power spectral density Sn(ω) =
ℏ2/T ∗

2 , the dephasing time T ∗
2 is commonly defined as the time after which the signal has decayed

to 1/e for any type of noise. Another important type of noise is quasi-static noise, which models
the slow dynamics of nuclear spins coupled to the spin qubit. It is characterized by the power
spectral density Sn(ω) = 2πℏ2δ(ω)/(T ∗

2 )2. Solving the integral in Eq. (1.31) in this case yields
σδϕ = t2/(T ∗

2 )2, which is a Gaussian decay. Returning to the original example of charge noise
described by 1/f noise with the power spectral density Sn(ω) = ℏ2/(T ∗

2 )2|ω|, we need to introduce
an infrared cutoff ωir because the integral in Eq. (1.31) diverges at ω = 0. Then the decay can be

8We assume here that there is no spontaneous excitation, meaning Γ|0⟩→|1⟩ = 0.
9A simple derivation of the 1/f power spectral density is based on classical random telegraph noise due to

trapping and detrapping of charges [166].
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approximated by

σδϕ ≈ t2

π(T ∗
2 )2 ln

(
1
ωirt

)
, (1.34)

which can be interpreted as Gaussian decay with a logarithmic correction. Commonly the notation
T ∗

2 for the dephasing time is used for the decay time measured in a Ramsey experiment where the
decay is dominated by dephasing. Thus, from Ramsey experiments, one typically sees T ∗

2 ≪ T2.
Dynamical decoupling techniques, such as the Hahn echo experiment, can significantly extend

the coherence time of a spin qubit by reducing low-frequency noise through the application of
additional, refocusing pulses [170]. In a Hahn echo experiment, the same principle as the Ramsey
experiment is employed, but with an additional π pulse applied after a time ∆t/2. Thus, the
weight of the filter function is no longer peaked at low frequency but shifted to higher frequency.
The filter function is given by

F (ωt) = 16 sin4
(
ωt

4

)
(1.35)

with the immediate consequence that σδϕ obtains a natural cutoff at low frequencies F (ωt)/ω2 → 0.
The effects of static noise are filtered out completely by the Hahn echo pulse sequence and the
coherence time measured is commonly reported as THahn

2 . By applying sequences of refocusing
pulses, the coherence time of a spin qubit can be further enhanced [169]. However, it is essential
to note that echo pulses only shift the weight of the filter function to different frequencies, leading
to higher sensitivity to high-frequency noise.

The last important timescale we want to discuss is the Rabi decay time TRabi
2 . In contrast to

the other timescales that give a measure for the coherence time of an idle qubit, TRabi
2 gives the

coherence time of a driven qubit [171]. Due to the driving, the filter function is peaked at the Rabi
frequency rather than at or close to ω = 0, which results in T ∗

2 < TRabi
2 at dominant low-frequency

noise.

Sources of noise

One of the most prominent sources of noise are local electrical fluctuations known as charge noise.
It originates in fluctuations of the gate voltages, fluctuating defect states, phononic crystal defor-
mation [172], or any other variations of charges close to the qubit. Its origin is not well understood,
but experiments show a typical power spectral density Sn(ω) ∝ ω−1 [122, 151, 173, 174], hence
the name 1/f or pink noise, although thermally activated white noise can also contribute to lesser
extent [175, 176]. While charge noise does not affect the spin degree of freedom directly, the spin
couples to charge fluctuations via the SOI or other mechanisms that couple orbital and spin de-
grees of freedom, which is necessary for the qubit manipulation and readout. However, certain
geometries enable the electrical suppression of SOI at demand [67, 177] or tuning to a g factor
minimum [58, 64, 178–180], creating a “sweet spot”, where the dephasing is significantly reduced.
Note that in the former situation, the charge noise is turned off completely while in the latter case,
the qubit is protected from charge fluctuations only to some extent.

Especially in materials like GaAs, which was used extensively in the early days of spin qubits
because of the simplicity of fabrication [81], the presence of nuclear spins and the associated
hyperfine noise limits the coherence time of spin qubits T ∗

2 ∼ 10 ns [49, 129, 181, 182]. Unlike
charge noise, the power spectral density of hyperfine noise shows a sharp peak at ω0 originating
in the slow dynamics of nuclear spins [183–185]. The hyperfine noise can strongly be suppressed
in isotopically purified Si or Ge which are virtually nuclear spin free [82–84] or by using holes
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instead of electrons where the contact hyperfine interaction between nuclear spins and hole spins
is stifled due to the p-type atomic orbitals [39, 89] and can even be tuned by appropriate QD
design [186–192].

Noise associated with phonons primarily causes spin relaxation by energy exchange with the
environment. This exchange is mediated for typical spin qubits by SOI, hyperfine interaction,
or external magnetic field gradients [103, 193], and specifically in Si and Ge via the deformation
potential [194]. In addition to the at low temperature dominant relaxation due to phonons [195,
196] also dephasing via two-phonon processes is possible [197].

In semiconductor spin qubits with long coherence time, the relaxation time T1 is often not
the limiting factor, although it can distort the readout when the readout time is comparable to
T1 [21]. State-of-the-art experiments with electrons in Si and holes in Ge report T1 on the order of
10 ms [25–28, 198], with Si MOS QDs reaching timescales exceeding seconds [199]. The dephasing
time T ∗

2 is ∼ 10 µs for electrons in Si [26, 27] and ∼ 100 ns for holes in Ge [25, 200] in the same
experiments. Remarkably, the coherence time of holes in Ge can be extended by refocusing pulses
to 100 µs [25]. Due to the valley degeneracy for electrons in Si, spin-valley relaxation hot spots
emerge under the condition of equal valley and spin splitting resulting in vastly reduced relaxation
times [201–203]. The spin-valley coupling causes the mixing of an excited spin state with valley
states of opposite spin, facilitating relaxation to the ground state through phonon emission. This
process is much faster than pure spin relaxation.

For comparison to the coherence times above, we also state here the gate speeds in the same
experiments. The gate operation time is defined here as Top = 1/2f where f is the Rabi frequency10

for single-qubit gates and the two-qubit gate operation frequency for two-qubit gates. Single qubit
gates with electrons in Si are performed at operation times of ∼ 100 ns [27, 28] and with holes in
Ge at ∼ 20 ns [200], which all exceed a fidelity of 99 %. Two qubit gates are operated at ∼ 40 ns
in Si [26, 28] and ∼ 10 ns in Ge [25]. For holes in Si/Ge core/shell NW QDs a single-qubit gate
operation time of 1.2 ns at a coherence time between 7 and 59 ns was reported [177] and holes in Ge
hut wires reach Top ∼ 0.92 ns and a coherence time up to 82 ns [128]. An extensive overview and
comparison between different spin qubits in semiconductor structures can be found in Ref. [171].

1.4 Superconductor-semiconductor devices

Recent advances have facilitated the growth of SC-semiconductor hybrid structures, characterized
by clean interfaces of high transparency [70, 204–213]. These developments have paved the way
for many applications, such as Andreev spin qubits (ASQs) [214–216], long-range coupling of spin
qubits [19, 217–219], electrically controllable Josephson junctions [75, 220–222], and topological su-
perconductivity, which is predicted to lead to the formation of Majorana bound states (MBSs) [77,
79, 223]. In addition to the emergence of proximity-induced superconductivity [224, 225], the SC
has significant effects on the semiconductor, known as the metallization of the semiconductor [72].
These effects include the renormalization of the effective mass, g factor, and the SOI strength [72,
74, 226, 227]. A detailed analysis of these effects in Ge hole NWs is provided in Chapter 4. To
motivate further interest in hybrid SC-semiconductor devices we review the physics of ASQs and
MBSs in the subsequent sections.

1.4.1 Andreev spin qubits
ASQs have raised attention due to their potential to combine the advantages of superconducting
qubits and spin qubits in QDs [215, 216, 228, 229]. The main idea is to exploit the small size

10Note that f here is not an angular frequency as the Rabi frequency in Eq. (1.23), meaning f = ΩR/2π.

21



1.4. Superconductor-semiconductor devices

of spin qubits which is advantageous for scaling up with the ease of coupling superconducting
qubits through the supercurrent [228] or by effective wave function overlap [230–234] which both
allow coupling over much longer distances than via the short-ranged exchange interaction. In
this section, we briefly sketch the physics behind ASQs which are based on Andreev bound states
(ABSs) in a SC-normal metal-SC (SNS) junction11.

Let us begin by considering a normal metal-insulator junction. If a charge (we assume here
an electron) in the metal approaches the insulator, it will be reflected specularly at the interface
because it cannot enter the insulator due to the absence of states in the band gap, see Fig. 1.5(a).
If we replace the insulator with a SC, the electron still cannot propagate through the interface if its
energy is below the superconducting gap ∆s because there are also no states in the gap. However,
in addition to the specular reflection of the electron a retro-reflection of a hole of opposite spin
and velocity can be observed and at the same time a Cooper pair forms12 in the SC which is
necessary to conserve charge and momentum [235], see Fig. 1.5(b). This process is called Andreev
reflection [236, 237]. The probability of Andreev reflections depends on the transparency of the
junction and the energy of the incident electron (or hole). It is higher for more transparent
junctions, but is suppressed if the transparency is low.

A fascinating phenomenon emerges in a short SNS junction. An electron (or hole) in the normal
metal with energy below the gap is coherently Andreev reflected back and forth at each of the
junctions, forming an ABS in the normal region [238, 239], see Fig. 1.5(c). The energy of the
ABS E(ϕ) depends on the transparency of the junctions and the difference of the superconducting
phases ϕ of the two SCs. Similar to a particle in the box, the energy of ABSs is quantized. For a
1D SNS junction with perfectly transparent junctions, the quantization condition for the energy
becomes

ϕ− 2 arccos
(
E(ϕ)
∆s

)
− 2E(ϕ)

∆s

LN

ξ
= 2πn, (1.36)

where LN is the length of the normal region, ξ is the superconducting coherence length, and n
is an integer [239]. This formula is valid in the Andreev limit where the superconducting gap is
much smaller than the chemical potential [240]. The emergence of ABSs in an SNS junction has
important consequences as it allows the supercurrent to flow from one SC to the other through
the junction, known as Josephson current [241, 242].

The effects observed in the case where the normal metal is replaced by a semiconductor are
similar. Other mechanisms that can lead to the emergence of states within the superconduct-
ing gap, which are sometimes also called ABSs, include the trapping of states in magnetic flux
vortices [243], at magnetic impurities [244–246], or at weak links between SCs.

Building on the physics of ABSs it was proposed to couple a superconductor to a QD to create
an ASQ [228, 229]. In experiments, a semiconductor NW with SOI can be proximitized by a SC,
leaving a short region in the normal state where ABSs emerge [216]. If there is an odd number
of electrons in the QD or normal region, the ground state is a spin doublet. The key advantage
over conventional spin qubits lies in the strong coupling of the ASQ to the superconducting leads
and the fact that the Josephson current depends on the state of the enclosed spin via strong SOI.
The difference in superconducting currents for the two spin states depends on the phase difference
between the SCs

∆I = ±2e
ℏ

|εso||cos(ϕ)|, (1.37)

11The normal metal section can also be a semiconductor.
12Equivalently a hole can be retro-reflected at the interface with the additional destruction of a Cooper pair in

the SC.
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Figure 1.5: Schematic illustration of (a) specular reflection of an electron (e) at a normal metal-
insulator (NI) junction, (b) Andreev reflection at a normal metal-SC (NS) junction, and (c) An-
dreev bound state (ABS) in the normal region of an SNS junction. (a) An incident electron with
momentum p and energy below the energy gap of the insulator is reflected at the interface into
an outgoing electron with momentum p′ = p− 2n̂(n̂ · p), where n̂ is the unit vector normal to the
interface. (b) If the insulator is replaced by a SC, the electron cannot propagate into the super-
conducting region if its energy is below the superconducting gap. However, a hole (h) of opposite
spin and velocity can be retro-reflected with the simultaneous formation of a Cooper pair (2e) in
the SC. (c) In a normal metal in between two superconducting regions, an electron can be Andreev
reflected at one interface under the formation of a hole of opposite momentum. Subsequently, the
hole is Andreev reflected at the other interface resulting in a so-called ABS.

where εso is a pseudovector that defines the spin-polarization axis [229]. The sign of the current
is given by the spin projection along εso and thus enables readout of the qubit. In analogy to
common spin qubits, ASQs can be driven electrically via gates as described in Sec. 1.3.1. Moreover,
two-qubit gates can be realized by utilizing the magnetic interaction between the spin-dependent
supercurrents through two qubits in a superconducting circuit. This is an Ising-type interaction
allowing for CNOT operations.

The experimental realization of ASQs is far behind conventional spin qubits. State-of-the-art
experiments have demonstrated a spin relaxation time of 17 µs and a spin coherence time of 52 ns
in an Hahn echo experiment [216].

1.4.2 Majorana bound states in Rashba nanowires
A special type of ABSs that exhibits topologically non-trivial behavior is known as MBS. In the
following, we provide a concise introduction to MBSs, explaining what they are, how they are
predicted to form in semiconductor NWs with strong SOI proximitized by a SC, and why they
are of interest for quantum computing. Our discussion is based on the comprehensive reviews in
Refs. [239, 247].

A simple yet popular toy model used to describe the emergence of MBSs is the Kitaev chain [77].
Consider a discrete 1D chain of spinless fermions of length N , described by the following Hamil-
tonian in second quantization [248]

H =
N−1∑
j=1

(
−tc†

jcj+1 + ∆scjcj+1 + H.c.
)

− µ

N∑
j=1

c†
jcj , (1.38)

where t ≥ 0 represents the nearest-neighbor hopping amplitude and µ is the chemical potential.
In general, the p-wave superconducting pairing potential ∆s can be a complex number, but for
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Figure 1.6: Schematic illustration of the two limiting cases of the Kitaev chain. (a) Trivial phase:
∆s = t = 0 and µ < 0. Pairs of Majorana operators from the same site form a fermion. (b)
Topological phase: t = ∆s and µ = 0. Majorana operators from neighboring sites pair up to form
a fermion. The Majorana operators at the ends of the chain remain unpaired and do not enter the
Hamiltonian.

simplicity is chosen to be real and positive here. The creation and annihilation operators for the
spinless fermions at site j are c†

j and cj , respectively, and they satisfy the canonical commutation
relations {c†

j , c
†
k} = {cj , ck} = 0 and {cj , c

†
k} = δjk for j, k = 1, . . . , N . For the description of

the topological phase transition, we employ a mathematical trick and define the new, so-called
Majorana operators γj1 = c†

j + cj and γj2 = i(c†
j − cj) following the commutation relations

{γjα, γkβ} = 2δjkδαβ , γ
†
jα = γjα, (1.39)

where α, β = 1, 2. The second relation implies that quasiparticle excitations due to the new
operators behave as their own antiparticles. Rewriting the Hamiltonian in Eq. (1.38) in terms of
the Majorana operators yields

H = i

2

N−1∑
j=1

[
(∆s + t)γj2γ(j+1)1 + (∆s − t)γj1γ(j+1)2

]
− µ

2

N∑
j=1

(iγj1γj2 + 1) . (1.40)

To gain insight, let us consider two limiting cases. The first one is the fully uncoupled chain where
∆s = t = 0 and µ < 0. In this case, each pair of Majorana operators pairs up to form a physical
fermion, see Fig. 1.6(a). It is clear that from the Hamiltonians in Eqs. (1.38) and (1.40) only
the second sums remain. Thus, adding a fermion to the chain comes at the cost of the chemical
potential −µ and the spectrum is fully gapped. This phase is referred to as the topologically trivial
phase and it does not host MBSs.

The second limiting case occurs when t = ∆s and µ = 0, causing the Majorana operators from
neighboring sites to pair up as shown in Fig. 1.6(b). In this situation, we introduce a new set of
fermionic operators dj = 1/2(γj2 + iγ(j+1)1) and d†

j = 1/2(γj2 − iγ(j+1)1) which lead to

H = 2t
N−1∑
j=1

(
d†

jdj − 1
2

)
(1.41)

in the given limit. Again, the spectrum is gapped, now with the energy cost of 2t for adding a
fermion. However, there are two Majorana operators, γ11 and γN2, left at the ends of the chain that
do not enter the Hamiltonian in Eq. (1.41), implying that they commute with H. Thus, there must
be two modes at zero energy, which are the MBSs localized at the ends of the Kitaev chain in the
topological phase. We can combine the two MBSs to a single fermionic mode d0 = 1/2(γ11 +iγN2),
d†

0 = 1/2(γ11 − iγN2) which is delocalized over the ends of the chain. Since the excitation and
deexcitation of these fermionic modes comes at no energy cost, the ground state at zero energy is
twofold degenerate. This property, together with the non-Abelian commutation relations, makes
MBSs highly interesting for topological quantum computing. Although we only considered the
limiting case of t = ∆s and µ = 0, the MBSs remain upon deviations from these fine-tuned
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Figure 1.7: Bulk spectrum of a Rashba NW proximitized by a SC in the presence of a magnetic
field at µ = 0. (a) ∆Z = ∆s = 0: Two parabolas shifted by ±kso with respect to each other.
We depict both particle-hole symmetric bands. (b) ∆Z > 0, ∆s = 0: A Zeeman gap opens at
k = 0 while the outer branches remain ungapped. (c) ∆s > ∆Z > 0: The superconducting pairing
potential causes a gap opening at the outer branches and the gap at k = 0 is renormalized to
∆− = ∆s − ∆Z > 0. This is the topologically trivial regime. (d) ∆s = ∆Z > 0: The gap at k = 0
closes. This is the topological phase transition point. (e) ∆Z > ∆s > 0: Reopening of the gap at
k = 0. This is the topologically non-trivial phase with ∆− < 0.

parameters. Continuous changes in the parameters will not destroy the MBSs as long as the bulk
gap remains open, a phenomenon known as the topological protection of the MBSs.

Before reviewing the concept of topological quantum computing based on MBSs we shortly dis-
cuss one experimentally realizable platform that is predicted to host MBSs: the Rashba NW [249–
252]. The great interest in this specific platform lies in the predicted experimental feasibility. In
reality, it is hard to find a spinless p-wave superconductor as necessary for the direct implementa-
tion of the Kitaev chain. However, by combining a semiconducting NW with strong Rashba SOI,
a magnetic field perpendicular to the SOI vector, and a s-wave SC in proximity to the NW, spin-
momentum-locked, so-called helical, bands form. A conventional s-wave superconducting pairing
projected onto such a helical band leads to an effective spinless p-wave SC [253]. Let us first con-
sider the Rashba NW in its trivial phase in the absence of the superconducting pairing potential.
The bulk spectrum consists of two parabolas of opposite spin that are shifted with respect to each
other by the SO wavevector ±kso, see Fig. 1.7. The magnetic field opens up a Zeeman gap ∆Z at
k = 0, while the outer branches of the parabolas at ±2kso remain ungapped. The introduction of
a superconducting pairing potential causes a gap opening also at the outer branches and leads to
a renormalization of the gap at k = 0. A competition between ∆s and ∆Z eventually results in
a topological phase transition. If ∆2

Z > ∆2
s + µ2, the system is in the topological phase and the

ends of the Rashba NW host MBSs. Note that in a NW of finite length the MBSs hybridize into a
fermion of finite energy that is exponentially suppressed by the length of the NW. Thus, the above
considerations are only valid for long systems.

The accessibility of this platform has caused numerous experimental efforts to demonstrate
the existence of MBSs. Measurements have shown zero-bias conductance peaks [254–259], which
are expected to appear in the presence of MBSs. However, non-topological states like the afore-
mentioned ABSs have turned out to mimic MBS signatures [76, 239, 260–267]. More advanced
techniques to validate the existence of MBSs combine several signatures, such as the ‘topological
gap protocol’, which demands correlated zero-bias conductance peaks at both ends of the NW
simultaneously with bulk reopening signatures that support the interpretation as a transition be-
tween the trivial and topological phases [268]. State-of-the-art experiments have reported devices
passing this protocol [269], but challenges remain as non-topological mechanisms can still explain
the measured data [270]. Therefore, irrefutable proof of the existence of MBSs is still sought.

Assuming the existence of MBSs, we can exploit their properties for topological quantum
computing. One proposed advantage of MBSs over other qubits is their potential to store quantum
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information for a long time because their non-locality implies protection from dephasing [77, 271].
At the heart of the interest in MBSs for topological quantum computing lies their non-Abelian
exchange statistics. In three dimensions, there are only two fundamental types of particles, fermions
and bosons, which differ in their behavior under exchange. Let us assume two indistinguishable
particles, one in state ψ1 and the other in state ψ2. Upon exchange of the two particles, their
many-body wave function acquires a phase

|ψ1ψ2⟩ = eiϕ |ψ2ψ1⟩ . (1.42)

If the two particles are bosons the phase factor is +1 and if they are fermions it is −1, which is
called Abelian exchange statistics. However, in condensed matter physics, it is possible to confine
particles to two dimensions where the phase factor is not restricted to the values ±1. Particles, or
better quasiparticles, following such non-Abelian exchange statistics are referred to as anyons and
MBSs are one specific type of anyons. By exchange or so-called braiding of MBSs, topologically
protected single-qubit rotations by an angle π/2 can be performed. However, for universal quantum
computing it is necessary to couple the MBSs to other types of qubits [272–274] or perform non-
protected operations [78, 275].

The standard materials employed for the experimental realization of MBSs in Rashba NWs
are InAs or InSb [254, 255, 257, 259, 261], because of their strong SOI. However, the presence of
substantial disorder in these devices has so far hindered a definitive verification of the existence
of MBSs [276]. In contrast, planar Ge structures exhibit hole mobility figures surpassing those of
InAs by a factor of 50 − 100 [86]. Moreover, as mentioned earlier, advances in the fabrication of
SC-Ge devices enabled the measurement of a hard superconducting gap in Ge [209]. Thus, the
prospect of harnessing gate-defined 1D hole channels within planar Ge heterostructures emerges
as a highly promising avenue for realizing MBSs [80].
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CHAPTER 2
Hole-spin qubits in Ge nanowire

quantum dots: Interplay of orbital
magnetic field, strain, and growth

direction

Adapted from:
Christoph Adelsberger, Mónica Benito, Stefano Bosco, Jelena Klinovaja, and Daniel Loss

“Hole-spin qubits in Ge nanowire quantum dots: Interplay of orbital magnetic field, strain, and growth
direction”,

Phys. Rev. B 105, 075308 (2022)

Hole-spin qubits in quasi-one-dimensional structures are a promising platform for quantum
information processing because of the strong spin-orbit interaction (SOI). We present analytical
results and discuss device designs that optimize the SOI in Ge semiconductors. We show that
at the magnetic field values at which qubits are operated, orbital effects of magnetic fields can
strongly affect the response of the spin qubit. We study one-dimensional hole systems in Ge under
the influence of electric and magnetic fields applied perpendicular to the device. In our theoretical
description, we include these effects exactly. The orbital effects lead to a strong renormalization
of the g factor. We find a sweet spot of the nanowire (NW) g factor where charge noise is
strongly suppressed and present an effective low-energy model that captures the dependence of
the SOI on the electromagnetic fields. Moreover, we compare properties of NWs with square and
circular cross sections with ones of gate-defined one-dimensional channels in two-dimensional Ge
heterostructures. Interestingly, the effective model predicts a flat band ground state for fine-tuned
electric and magnetic fields. By considering a quantum dot (QD) harmonically confined by gates,
we demonstrate that the NW g-factor sweet spot is retained in the QD. Our calculations reveal
that this sweet spot can be designed to coincide with the maximum of the SOI, yielding highly
coherent qubits with large Rabi frequencies. We also study the effective g factor of NWs grown
along different high-symmetry axes and find that our model derived for isotropic semiconductors
is valid for the most relevant growth directions of nonisotropic Ge NWs. Moreover, a NW grown
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along one of the three main crystallographic axes shows the largest SOI. Our results show that the
isotropic approximation is not justified in Ge in all cases.
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2.1. Introduction

2.1 Introduction

Important challenges of the scalability of spin qubits defined in quantum dots (QD) [1] can be
overcome by making qubits electrically controllable. In the case of electrons, one can take advantage
of the small intrinsic spin-orbit interaction (SOI) [2] or gradients of magnetic field [3–8]. The
physics of hole spins in semiconductors such as germanium [9] and silicon [10] has attracted much
attention recently because it naturally enables stronger SOI than in electron systems [11–21],
which allows for the realization of electrically controlled single- [18–20, 22] and two-qubit [21]
gates. Furthermore, strong natural SOI or artificial SOI due to micro-magnets enables strong
light-matter coupling to resonators [23–31]. Recent progress with Ge/SiGe heterostructures was
made by demonstrating singlet-triplet encoding [32] and a four-qubit quantum processor [9]. While
we focus on nanowires (NWs) in this work, our approach also holds for planar heterostructures with
electrostatically defined channels. Another great advantage of hole spins is their tunable response
to the hyperfine interactions [33–38], a major decoherence channel in spin qubits [39–44], which
can be made far weaker than in electron QDs [45, 46]. Furthermore, in Si and Ge, the hyperfine
interactions can also be minimized by isotopically purifying the material [47, 48]. The effective
low-dimensional physics of hole systems depends strongly on the details of the confinement, the
material strain, and the applied electromagnetic fields [11, 12, 46, 49–54]. In particular, the
strongest SOI, enabling the fastest and most power-efficient operations, is reached in quasi-one-
dimensional structures, which can be fabricated in different ways [11, 19, 52].

To define spin qubits, a magnetic field is necessary to energetically split different spin states.
When a magnetic field is applied perpendicular to the axis of a one-dimensional NW, the magnetic
orbital effects can strongly influence the performance of the qubit. In two-dimensional heterostruc-
tures with a magnetic field applied in plane, the influence of these orbital effects strongly depends
on the width of the two-dimensional electron or hole gas. In this case one can observe a correction
of the g factor [55] and a renormalization of the effective mass [56] depending on the design of the
dot.

In this work, we analyze the SOI, the effective g factor, and the effective mass of the lowest-
energy states in NWs with rectangular or circular cross section and in squeezed planar heterostruc-
tures. We compare different designs and fully account for the orbital effects in a moderate magnetic
and electric field. In contrast to Ref. [11], we use here a different basis which allows us to treat
these orbital effects exactly in our analytical calculations. Interestingly, we predict that, where
the SOI is maximal, the g factor can be fine-tuned to be in a sweet spot at which the charge noise
is negligible. Similar sweet spots have been predicted in Ref. [57] in hole systems possessing a SOI
that is cubic in momentum. In these systems, because of the cubic SOI, the Rabi frequency in
electric-dipole-induced spin resonance (EDSR) experiments is predicted to be two orders of mag-
nitude smaller than in elongated QDs [52]. Furthermore, we find that the effective masses of the
low-energy holes depend strongly on both electric and magnetic fields and become spin-dependent
at finite magnetic fields. Interestingly, in an extreme case, the lowest-energy band can be tuned to
be flat. We envision that this flatness potentially could promote hole NWs as a new playground
for simulating strongly correlated matter. Also, by extending our analysis to include the cubic
anisotropies of the valence band, we find that these corrections can strongly affect the g factor for
certain growth directions of the NW, especially in the presence of strain.

This work is structured as follows. In Sec. 2.2 we introduce the model of low-energy holes.
In Sec. 2.3 we focus on a NW with rectangular cross section and calculate the SOI that is linear
in momentum and of the direct Rashba type due to strong heavy-hole (HH)-light-hole (LH) mix-
ing [11, 12]. First, we derive analytic expressions for the dependence of the SOI on external electric
fields with and without magnetic orbital effects and compare them with numerical results. The
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2.2. Model of the nanowire

Figure 2.1: (a) Sketch of a rectangular Ge NW with side lengths Lx and Lz. The NW can be
covered by a Si shell which induces strain in the Ge core. The NW including shell has total
side lengths LS,x and LS,z. The gates (gray) can be used to apply electric fields and to define an
elongated QD. (b) Sketch of a planar Ge/SiGe heterostructure with a gate-defined one-dimensional
channel. The height of the Ge layer in the center is L and the channel is electrostatically confined
in the x direction with a harmonic confinement length lx.

complete low-energy model, the effective g factor, and the effective masses are analyzed in Sec. 2.4.
We show from a numerical analysis that the g factor is strongly renormalized by orbital effects.
Moreover, we find a spin-dependent effective mass term that strongly depends on magnetic and
electric fields. In Sec. 2.5 we compare NWs with square and circular cross-sections to squeezed dots
in Ge/SiGe planar heterostructures, also including strain. In Sec. 2.6 we analyze the g factor of a
QD formed by gate confinement along the NW. In these system, we predict fast Rabi frequencies
at low power at electric field values compatible with ones needed for a g-factor sweet spot, thus
enhancing the performance of the qubit. We conclude this section by showing that the effective
model breaks down for certain fine-tuned electric and magnetic fields, where the lowest band in
the NW spectrum becomes flat. In Sec. 2.7 we study NWs grown along different typical growth
directions, and, in particular, we focus on the interplay of cubic anisotropies and orbital effects.
In Sec. 2.8 we summarize our results. Details of our calculations are given in the Appendixes.

2.2 Model of the nanowire

The general Hamiltonian describing properties of low-energy holes in diamond-lattice semiconduc-
tors is written as

H = HLK +HBP +HZ +HE + V, (2.1)

where HLK is the Luttinger-Kohn (LK) Hamiltonian [58, 59] describing the spin- 3
2 holes near the

Γ point. In addition, HBP is the Bir-Pikus (BP) Hamiltonian [60] capturing the strain of the
lattice and HZ is the Zeeman Hamiltonian describing the coupling of the spin to an external
magnetic field. The term HE includes the electric field generated by an externally applied gate
potential. In order to define a quasi-one-dimensional channel, we consider a confinement potential
V that models the cross section as depicted in Fig. 2.1(a) or the harmonic confinement along the
x direction produced by gates in a planar Ge/SiGe heterostructure [see Fig. 2.1(b)].
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2.2. Model of the nanowire

In Ge, the material dependent LK parameters are γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 [61].
Since (γ3 − γ2)/γ1 ≈ 10.8 % is rather small, the isotropic LK Hamiltonian is commonly employed
in literature [11, 12, 52, 62–64]. The isotropic LK Hamiltonian enables analytical calculations that
provide results generally applicable for any NW. Corrections due to anisotropies are analyzed in
detail in Sec. 2.7. The isotropic LK Hamiltonian HLK is written as [11, 58, 59, 61, 62, 65, 66]

HLK = ℏ2

2m

[
γkk

2 − 2γs (k · J)2
]

+Horb, (2.2)

where the orbital effects of the magnetic field are given by

Horb = ℏe
2m

{
γk

( e
ℏ
A2 + 2k · A

)
− 2γse

ℏ
(A · J)2

− 4γs

[
kxAxJ

2
x + ({kx, Ay} + {ky, Ax}) {Jx, Jy} + c.p.

]}
, (2.3)

where γ2 and γ3 have been replaced by the effective parameter 1 γs ≈ 4.84 and γk = γ1 + 5γs/2.
Here J is the vector of standard spin 3

2 matrices, {A,B} = (AB + BA)/2 is the symmetrized
anti-commutator, and by “c.p.” we mean cyclic permutations. The orbital effects come from the
kinematic momentum operator [59]

π = k + e

ℏ
A, (2.4)

with the canonical momentum operator ℏkj = −iℏ∂j , j = x, y, z, the positive elementary charge e,
and the vector potential A, which is related to the magnetic field by B = ∇ ×A. In the isotropic
approximation, the LK Hamiltonian does not depend on the orientation of the crystallographic
axes. We point out that although in this work our analysis is explicitly restricted to Ge, our
analytical results are valid more generally also for holes in GaAs, InAs, and InSb where the
isotropic approximation is applicable [67].

In Ge/Si core/shell NWs, the BP Hamiltonian is well approximated by [11, 60]

HNW
BP = |b|εsJ

2
y , (2.5)

where b = −2.5 eV [60] is the material-dependent deformation potential and εs = ε⊥ − εyy. The
strain tensor elements ε⊥ and εyy arising from the lattice mismatch between Si and Ge can be
estimated following Ref. [51] by assuming an homogeneous strain in the core of the NW. With
this assumption, the strain tensor elements depend only on the relative shell thickness [51, 68],
and in a Ge core with a Si shell of relative shell thickness γ = (LS,x − Lx)/Lx = 0.1, they
are given by ε⊥ = −2.1 × 10−3 and εyy = −8.3 × 10−3. In this case, the total strain energy is
0.62 %×|b| = 15.5 meV > 0. In contrast, in a gate-defined one-dimensional channel [see Fig. 2.1(b)]
the strain induced in the Ge layer by the lattice mismatch to the SiGe top and bottom layers is
described by the BP Hamiltonian [16, 57]

Hch
BP = |b|εsJ

2
z . (2.6)

Note that, in contrast to the NW, where the strain tends to favor LHs aligned parallel to the NW
axis, here |b|εs < 0, meaning that the ground state tends to comprise HHs aligned perpendicular

1By trying to solve the LK Hamiltonian for arbitrary growth directions of the NW and averaging over the

rotation angle, we find that the choice γs = 4.25

√
1 − 3

8

[
1 −
(

γ3
γ2

)2
]

= 4.84 is most natural. The exact choice of

γs is however irrelevant for the qualitative behavior of our results.
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2.3. Direct Rashba spin-orbit coupling

to the substrate. For our strain analysis we choose |εs| = 0.62% as in the NW setup, a value
measured in typical Ge heterostructures [69].

In addition to the vector potential entering the momentum operators in Eq. (2.4), an external
magnetic field B couples directly to the spin degree of freedom via the Zeeman Hamiltonian

HZ = 2κµBB · J , (2.7)

where κ is a material-dependent parameter (for Ge κ = 3.41). We neglect here the anisotropic
Zeeman term, which is less relevant in NWs [59, 61].

Finally, we include a homogeneous electric field via the Hamiltonian

HE = −eE · r. (2.8)

When the hole wavefunction is strongly confined in two directions and there is an inversion-
symmetry-breaking electric field, the system presents a strong so-called direct Rashba SOI [11, 12]
that is linear in momentum and is important for fast all-electric manipulation of spin qubits via
EDSR.

2.3 Direct Rashba spin-orbit coupling

In this section we calculate the strength of the effective direct Rashba SOI induced by an electric
field applied parallel to the magnetic field (in our case, in the z direction) and perpendicular to the
NW or quasi-one-dimensional structure, which extends in y direction, see Fig. 2.1. Here we first
consider an infinitely long NW and later, in Sec. 2.6, we confine a QD by a harmonic potential.
Since we choose the Landau gauge A = (0, x, 0)B for B ∥ z, the translational invariance in the y
direction is preserved and the canonical momentum ky is a good quantum number.

2.3.1 Model
First, we assume hard-wall (HW) confinement

V (x, z) =
{

0 |x| < Lx/2 and |z| < Lz/2
∞ otherwise,

(2.9)

which describes well a rectangular NW of the width Lz (Lx) in z (x) direction [see Fig. 2.1(a)].
We divide the isotropic LK Hamiltonian in Eq. (2.2) into three parts,

Hs
LK = Hzz +Hmix +Hxy, (2.10)

49



2.3. Direct Rashba spin-orbit coupling

where the addends are defined as

Hzz = ℏ2

2m


γH

z π
2
z 0 0 0

0 γL
z π

2
z 0 0

0 0 γL
z π

2
z 0

0 0 0 γH
z π

2
z

 , (2.11)

Hmix =ℏ2√
3γs

m




0 −{πz, πx} 0 0
−{πz, πx} 0 0 0

0 0 0 {πz, πx}
0 0 {πz, πx} 0



+ i


0 {πz, πy} 0 0

−{πz, πy} 0 0 0
0 0 0 −{πz, πy}
0 0 {πz, πy} 0


 , (2.12)

Hxy = ℏ2

2m


γ+{π+, π−} 0 −

√
3γsπ

2
− 0

0 γ−{π+, π−} 0 −
√

3γsπ
2
−

−
√

3γsπ
2
+ 0 γ−{π+, π−} 0

0 −
√

3γsπ
2
+ 0 γ+{π+, π−}

 , (2.13)

with γH,L
z = γ1 ∓ 2γs, γ± = γ1 ±γs, π± = πx ± iπy. Here πx, πy, and πz are the components of the

kinematic momentum as defined in Eq. (2.4). The term Hzz is diagonal in the chosen spin basis
{+ 3

2 ,+
1
2 ,−

1
2 ,−

3
2 }, whereas Hxy couples the spins ± 3

2 to the spins ∓ 1
2 , and Hmix spin ± 3

2 to spin
± 1

2 . In addition, we include the Zeeman term HZ defined in Eq. (2.7) and the electric field term
HE defined in Eq. (2.8). We assume that the electric field E is applied along the z axis (parallel to
the B field) and, for convenience, express HE in terms of the electric length lE = (ℏ2/2meE)1/3.

2.3.2 One-dimensional basis states
Let us now neglect orbital effects of the magnetic field by assuming A = 0, hence πj = kj , j =
x, y, z. We first focus on the x direction and as in our model there are no fields in this direction,
we only consider

Hky=0
xy = ℏ2

2m


γ+k

2
x 0 −

√
3γsk

2
x 0

0 γ−k
2
x 0 −

√
3γsk

2
x

−
√

3γsk
2
x 0 γ−k

2
x 0

0 −
√

3γsk
2
x 0 γ+k

2
x

 (2.14)

in this direction and we choose the basis states

ϕ0
nx

(x) =
√

2√
Lx

sin
[
πnx

Lx

(
x+ Lx

2

)]
, (2.15)

which respect the HW boundary conditions in the x direction given in Eq. (2.9). We introduce the
quantum number nx = 1, 2, . . . . The off-diagonal matrix elements of the Hamiltonian in Eq. (2.14)
lead in this basis to superpositions between spin ± 3

2 and ∓ 1
2 .

Next we consider the z direction and obtain the eigenstates of the Hamiltonian Hzz +HZ +HE .
In the absence of electric fields the eigenfunctions are

ϕ0
nz

(z) =
√

2√
Lz

sin
[
πnz

Lz

(
z + Lz

2

)]
, (2.16)
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2.3. Direct Rashba spin-orbit coupling

which again respect the HW boundary conditions along z given in Eq. (2.9). Here we also introduce
the quantum number nz = 1, 2, . . . . The corresponding energy levels, including the Zeeman energy
coming from the magnetic field B ∥ z, are given by

ε0,±3/2
z (nz) = ℏ2γH

z

2m

(
πnz

Lz

)2
± 3κµBB, (2.17)

ε0,±1/2
z (nz) = ℏ2γL

z

2m

(
πnz

Lz

)2
± κµBB. (2.18)

In contrast, when an electric field E is applied along the z axis, the eigenfunctions can be
written in terms of Airy functions,

ϕH(L)(z) = aAi
[
gH(L)(z)

]
+ bBi

[
gH(L)(z)

]
, (2.19)

with

gH(L)(z) = (γH(L)
z )−1/3

(
− z

lE
− 2m

ℏ2 ε
H(L)l2E

)
. (2.20)

The values of εH(L)(nz) and the coefficients a and b are found numerically by imposing the HW
boundary conditions. The lowest-energy solutions εH(L)(nz), obtained by solving the equation
ϕH(L)(0) = ϕH(L)(Lz) numerically, are shown in Fig. 2.2(a).

As a result, the total low-energy spectrum of Hzz +HZ +HE reads

ε±3/2
z (nz) = εH(nz) ± 3κµBB, (2.21)
ε±1/2

z (nz) = εL(nz) ± κµBB. (2.22)

The index nz labels the solutions (from low to high energy). Importantly, in this case the wave
function for spin ± 3

2 is not the same as for spin ± 1
2 [note the factor γH(L)

z in Eq. (2.20)]. This
implies, as it will become clear below, that the total wave function cannot be factorized into z
and x, y components. However, for low electric fields ⟨ϕH

n′
z ̸=nz

|ϕL
nz

⟩ ≪ ⟨ϕH
nz

|ϕL
nz

⟩ and thus this
factorization is a good approximation [see Figs. 2.2(b) and 2.2(c) below].

Weak electric field approximation

To estimate the weak electric field condition, for simplicity, we use variational solutions instead
of the numerically exact Airy function solutions. We correct the wave functions corresponding to
zero electric field with an exponential factor to write down the ansatz [57]

ϕH(L)
nz

(z) ∝ ϕ0
nz

(z) exp
[
−ρH(L)

nz

(
z

Lz
+ 1

2

)]
, (2.23)

where the variational parameters ρH(L)
nz minimize the energy of the subsequently orthogonalized

states.
If the electric field is weak, meaning Lz/π ≪ γ

1/3
1 lE , the minimal ground-state energy (nz = 1)

is found at

ρ
H(L)
1 = (Lz/lE)3

12π2
(
γ

H(L)
z

)2
(
π2 − 6

)
, (2.24)
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Figure 2.2: Solutions of Hzz +HE for the one-dimensional problem in the z direction. In all plots
the solid lines are the numerically exact Airy function solutions. The dash-dotted cyan line at
E = 2 V µm−1 marks the transition from the weak to strong electric field regime. (a) Lowest-
energy solutions for εH(L)(nz) (independent of B) as function of electric field E applied in the z
direction (perpendicular to the NW axis). The dashed lines correspond to the analytical solution
defined by Eq. (2.25) (weak electric field) and the dotted lines to the one defined by Eq. (2.28)
(strong electric field). (b) Overlap between wave functions of HH and LH states. The dashed line
corresponds to the analytical solution given by Eq. (2.26) (weak electric field). The dotted lines
represent the result obtained using the wave functions defined in Eq. (2.29). For weak electric
field ⟨ϕH

n′
z ̸=nz

|ϕL
nz

⟩ ≪ ⟨ϕH
nz

|ϕL
nz

⟩. (c) Matrix elements of kz (in dimensionless units) between the
lowest-energy HH and LH states. The dashed line (weak electric field) corresponds to the analytical
solution given by Eq. (2.27), and the dotted line (strong electric field) represents the result obtained
using the wave functions in Eq. (2.29). In all plots we use Lz = 22 nm. Generally, we find that
both analytical approximations agree well with exact numerical results shown by the solid lines.
These results are used in Sec. 2.3.3 to estimate the g factor in Eq. (2.38) and the SOI in Eq. (2.43)
in the weak electric field case.

and the corresponding energy is

εH(L)(1) ≈ ℏ2

m

[
γ

H(L)
z π2

2L2
z

−
L4

z

(
π2 − 6

)2

288π4γ
H(L)
z l6E

+ O
(
L10

z

l12
E

)]
. (2.25)

We also give the expression for the overlap

⟨ϕH
1 |ϕL

1 ⟩ ≈ 1 −
(Lz/lE)6 (π2 − 6

)3
γ2

s

216π6(γ2
1 − 4γ2

s )2 + O
(
L12

z

l12
E

)
(2.26)

and for the matrix elements of kz,

⟨ϕH
1 |kz|ϕL

1 ⟩ ≈ −i
L2

z

(
π2 − 6

)
γs

6l3Eπ2(γ2
1 − 4γ2

s ) + O
(
L8

z

l9E

)
. (2.27)

The dashed lines in Fig. 2.2(a), only shown for low electric field, correspond to Eq. (2.25). In
analogy, we show the low-field approximation for the overlap amplitude between the HH and LH
wave functions in Fig. 2.2(b). This overlap is important to estimate the SOI. Finally, the matrix
elements of kz between HH and LH states are also relevant [see Fig. 2.2(c)] and we show that the
linear approximation used to derive Eq. (2.27) works well for weak electric field.
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2.3. Direct Rashba spin-orbit coupling

Strong electric field approximation

In the opposite limit of strong electric field, the wave function is strongly compressed to the edge.
Thus, we approximate the solution by just one Airy function Ai(z). In this case, the energy
spectrum reads

εH(L)(nz) ≈ −ℏ2

m

(
Lz

4l3E
+
[
γH(L)]1/3

2l2E
Ai0(nz)

)
(2.28)

and is shown by a dotted line in Fig. 2.2(a). The corresponding wave functions is

ϕH(L)
nz

=
Ai
[

Lz−2z
2lE(γH(L))1/3 + Ai0(nz)

]
√
lE(γH(L))1/3Ai′(Ai0(nz))

, (2.29)

with the nth
z zero of the Airy function denoted by Ai0(nz). The overlap between wave functions

of HH and LH states as well as matrix elements of kz are shown with dotted lines in Figs. 2.2(b)
and 2.2(c). Again, we find an excellent agreement with numerical results in the strong electric
field regime.

2.3.3 Solution without orbital effects
In the following we use the one-dimensional wave functions derived above to study the SOI. At low
magnetic fields, the orbital effects are not expected to give a large contribution to the SOI [52].
Thus, in this subsection we neglect them and calculate a simple formula for the SOI amplitude.
First, we extend the solution of the Hamiltonian Hky=0

xy at ky = 0 [see Eq. (2.14)] by including the
parity-mixing term

H
ky=0
mix√
3γs

= ℏ2

m


0 −kx 0 0

−kx 0 0 0
0 0 0 kx

0 0 kx 0

 kz. (2.30)

Later we will use perturbation theory to include the terms linear in ky:

Hky√
3γs

= ℏ2

m


0 ikz ikx 0

−ikz 0 0 ikx

−ikx 0 0 −ikz

0 −ikx ikz 0

 ky. (2.31)

A good basis of wave functions is given by

ψH(L)
nx,nz

(x, z) = ϕH(L)
nz

(z)ϕ0
nx

(x), (2.32)

where the functions ϕH(L)
nz (z) and ϕ0

nx
(x) are introduced in Eqs. (2.19) and (2.15), respectively.

As a starting point for the following perturbation theory, we choose the Hamiltonian

H0 = Hzz +HZ +HE +Hky=0
xy . (2.33)

Its eigenstates can be approximated in position-space by

⟨x, z|nx, nz, ↑⟩ =


sin (θ↑

nx,nz
/2)ϕH

nz
(z)

0
cos (θ↑

nx,nz
/2)ϕL

nz
(z)

0

ϕ0
nx

(x) (2.34)
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2.3. Direct Rashba spin-orbit coupling

for the { 3
2 ,−

1
2 } subspace, denoted by S =↑ in the following, and by

⟨x, z|nx, nz, ↓⟩ =


0

cos (θ↓
nx,nz

/2)ϕL
nz

(z)
0

sin (θ↓
nx,nz

/2)ϕH
nz

(z)

ϕ0
nx

(x) (2.35)

for the { 1
2 ,−

3
2 } subspace, denoted by S =↓. Here we have introduced the angle

θ↑,↓
nx,nz

= arctan
( √

3γsπ
2n2

x ⟨ϕH
nz

|ϕL
nz

⟩ ℏ2/(L2
xm)

π2n2
xγsℏ2/(L2

xm) ± 4κµBB + εH(nz) − εL(nz)

)
. (2.36)

The corresponding low-energy spectrum ES
nx,nz

is given by

E↑,↓
nx,nz

=ℏ2π2n2
xγ1

2mL2
x

± κµBB + εH(nz)
2 + εL(nz)

2

− 1
2

√(
π2n2

xγsℏ2

L2
xm

± 4κµBB + εH(nz) − εL(nz)
)2

+
3γ2

sπ
4n4

x|⟨ϕH
nz

|ϕL
nz

⟩|2ℏ4

L4
xm

2 (2.37)

and is shown in Fig. 2.3 for a NW with square cross section (dashed lines). Expanding E↑,↓
nx,nz

in
the regime of weak electric fields Lz/π ≪ γ

1/3
1 lE , we obtain (for square cross section) an effective

g factor in the z direction, given by the equation

E↑
1,1 − E↓

1,1

µBB
=
[
4κ− 3L4

zm
2µ2

BB
2κ3

ℏ4π4γ2
s

+ O
(
B4)] [1 + O

(
L6

z

l6E

)]
. (2.38)

From Eq. (2.38) we observe that the effective g factor depends on the magnetic field even without
accounting for magnetic orbital effects.

The states with nx = 2 and nz = 1 and with nx = 1 and nz = 2 are almost degenerate at
B = 0 in Fig. 2.3. This is due to the fact that Lx = Lz and that here we use E = 1 V µm−1,
which is in the weak field limit defined in Sec. 2.3.2. At larger electric fields the quasi-degeneracy
is lifted, as expected from Eq. (2.28).

Finally, the parity-mixing term H
ky=0
mix couples states with different parity in x (i.e., states with

even and odd quantum number nx) and different pseudo-spin S =↑, ↓. More explicitly, the states
depicted in blue in Fig. 2.3 couple to the ones in green, and we define the perturbed states

|1, 1, S⟩′ = |1, 1, S⟩ + ⟨2, 1, S̄|Hky=0
mix |1, 1, S⟩

ES
1,1 − ES̄

2,1
|2, 1, S̄⟩, (2.39)

where S̄ is the opposite pseudospin to S, and the overlap

⟨2, 1, S̄|Hky=0
mix |1, 1, S⟩ = ± − i

8ℏ3

3Lxm

√
3γs sin

(
θS

1,1 + θS̄
2,1

2

)
⟨ϕH

1 |kz|ϕL
1 ⟩. (2.40)

In the absence of electric fields, the leading correction to the states |1, 1, S⟩ comes from couplings
to the states with nx = 2 and nz = 2.
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2.3. Direct Rashba spin-orbit coupling

0 2 4 6 8 10

B (T)

10

15

20

25

30

E
S n
x
,n
z

(m
eV

)
nx = nz = 1

nx = 2, nz = 1

nx = 1, nz = 2

Figure 2.3: The energy levels E↑,↓
nx,nz

of H0, defined in Eq. (2.33), of a Ge NW as a function of the
perpendicular magnetic field B in the z direction. Here the parity-mixing term [see Eq. (2.30)]
is neglected. The dashed lines correspond to Eq. (2.37), in which we also neglect orbital effects.
The solid lines are obtained by the approach developed in Sec. 2.3.4, where we include orbital
effects. The Zeeman splitting is large (≈ 1 meV) at B = 1 T. The strong renormalization of the
g factor due to orbital effects can be observed by comparing the solid and dashed lines. Here
Lx = Lz = 22 nm and E = 1 V µm−1. We also note that because Lx = Lz the states shown with
red and green lines are close in energy at B = 0. This quasidegeneracy is a result of the small
value of E used here and is lifted in the strong E field limit.

From the Hamiltonian term linear in ky [see Eq. (2.31)], we obtain a direct SOI term because
the eigenstates defined in Eq. (2.34) and Eq. (2.35) (for nx = nz = 1) are directly connected via
the terms proportional to kzky,

H(1)
αso

= i
ℏ2

m

√
3γs sin

(
θ↑

1,1 + θ↓
1,1

2

)
⟨ϕH

1 |kz|ϕL
1 ⟩kyσx, (2.41)

where the Pauli matrix σx acts in the pseudospin space S =↑, ↓.
There is however another sizeable SOI term, that is induced by the linear term proportional to

kxky and is assisted by the parity-mixing Hamiltonian H
ky=0
mix . This term is given by

H(2)
αso

= −i 64ℏ6

3m2L2
x

γ2
s ⟨ϕH

1 |ϕL
1 ⟩⟨ϕH

1 |kz|ϕL
1 ⟩kyσx

 sin θ↑
1,1+θ↓

2,1
2 sin θ↓

1,1−θ↓
2,1

2

E↑
1,1 − E↓

2,1
+

sin θ↓
1,1+θ↑

2,1
2 sin θ↑

1,1−θ↑
2,1

2

E↓
1,1 − E↑

2,1

.
(2.42)

The full SOI amplitude is given by Hαso
= H

(1)
αso +H

(2)
αso = αsoσxky.

To lowest order in the electric field and while the Zeeman term is small compared to the differ-
ence of confinement energies, 4κµBB ≪ π2γsℏ2/(L2

xm), the SOI strength is effectively described
by

55



2.3. Direct Rashba spin-orbit coupling

αso ≈ ℏ2

m

L2
z

(
π2 − 6

)
γ2

s

4l3Eπ2(γ2
1 − 4γ2

s )r1

[
1 +

128γs

[
r2 − 4r1 + 2(r1 − r2)L2

x/L
2
z

]
9π2r2 [2γs(−r1 + r2) − 3γ1]

]
, (2.43)

where we define r1 =
√

1 + L4
x/L

4
z − L2

x/L
2
z and r2 =

√
16 + L4

x/L
4
z − 4L2

x/L
2
z. In particular, in a

Ge NW with a square crosssection, we find αso ≈ 0.094 eEL2
z.
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Figure 2.4: (a) Color code and contour plot of the SOI strength αso obtained from Eqs. (2.41)
and (2.42) as a function of perpendicular electric field E and the confinement length Lx/Lz. We fix
Lz = 22 nm and B = 1T . The red dots mark the maximal SOI and the solid orange line shows the
fitting function discussed in the text. With the dotted cyan line we mark the case Lx = Lz, where
the cross section is a square. The plot shows a strong dependence on the geometry of the cross
section, where the SOI increases for decreasing ratio Lx/Lz and increasing E-field. (b) Cuts of the
plot in (a) for specific side length ratios Lx/Lz. The solid lines show the SOI strength according to
Eqs. (2.41) and (2.42) and the dashed lines depict the small electric field approximation according
to Eq. (2.43). The approximation captures very well the linear dependence on E at low field and
yields the correct slope for all the considered ratios of side lengths.

In Fig. 2.4(a), we fix the side length Lz = 22 nm and show a contour plot of the SOI strength
αso as a function of the side length Lx and the perpendicular electric field E. We see that the
square cross section is not maximizing the SOI strength. In fact, in the figure, the maximal SOI

is marked by red dots and lies on the curve Lm
x = 2.74lEγ1/3

1

√
erf
(

0.10L2
z/(γ

2/3
1 l2E)

)
(orange

solid line). This fitting function is similar to the one used in Ref. [52] for the gate-defined Ge
one-dimensional channel shown in Fig. 2.1(b), where the optimal length is found to be (Lm

x )1D =

0.81lEγ1/3
1

√
erf
(

0.12L2
z/(γ

2/3
1 l2E)

)
[52]. Note that for strong electric field (E > 3 V µm−1) we can

neglect the error function and Lm
x = 2.74lEγ1/3

1 has a simple E−1/3 dependence. We interpret this
dependence as follows. The electric field gives rise to the new length scale lE which determines
the optimal side length of the cross section in the x direction. Only for weak electric field, this
simple dependence is corrected by the square root of the error function. We also find that in the
range of parameters considered, our analytical results for the SOI are in good agreement to the
more general numerical calculation explained in Sec. 2.4, also including magnetic orbital effects.
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2.3. Direct Rashba spin-orbit coupling

Moreover, in Fig. 2.4(b) we show cuts of the contour plot in Fig. 2.4(a) at certain ratios of the
NW side lengths. We compare the result for the SOI strength αso given by Eqs. (2.41) and (2.42)
to the low field approximation in Eq. (2.43) and we observe an excellent agreement at low electric
fields. In this case, the SOI strength increases linearly and the approximation yields the correct
slope.

2.3.4 Solution with orbital effects
In this section we account for the orbital effects of the magnetic field. As stated before, we work in
the Landau gauge, resulting in π̃x = k̃x, π̃y = k̃y + x̃, and π̃z = k̃z. To simplify the notation in the
following we express the lengths in units of the magnetic length lB =

√
ℏ/eB, i.e. z̃ = z/lB and

k̃ = lBk, and we introduce the cyclotron energy ℏωc = eℏB/m. Orbital effects renormalize the
SOI at large values of B, when the side length of the cross section is comparable to the magnetic
length. Here we discuss a procedure to treat these orbital effects exactly, in contrast to perturbative
approaches in other works such as Ref. [54], where a slab geometry is analyzed, or Refs. [63, 64],
where a cylindrical NW is analyzed. Our results reproduce the effects captured in these works and
extend them to the limits examined here.

First, we introduce the ladder operators

a = k̃x − ix̃√
2

, (2.44)

which satisfy the canonical commutation relation
[
a, a†] = 1. The Hamiltonian H

ky=0
xy [see

Eq. (2.14)] can be rewritten as

Hky=0
xy = ℏωc


γ+
(
a†a+ 1

2
)

0 −
√

3γsa
2 0

0 γ−
(
a†a+ 1

2
)

0 −
√

3γsa
2

−
√

3γs(a†)2 0 γ−
(
a†a+ 1

2
)

0
0 −

√
3γs(a†)2 0 γ+

(
a†a+ 1

2
)
 , (2.45)

H
ky=0
mix =

√
3γsℏωc


0 −

√
2a 0 0

−
√

2a† 0 0 0
0 0 0

√
2a

0 0
√

2a† 0

 k̃z. (2.46)

In analogy with the preceding section, we now find the eigenstates of H0 [see Eq. (2.33)] and
then analyze the effect of Hmix and calculate the SOI strength. In the Landau gauge, the operator

a†a = 1
2
(
−∂2

x̃ + x̃2 − 1
)

(2.47)

has two eigenfunctions, one even and one odd, with real-valued eigenvalue η

ψe
η(x̃) = e− x̃2

2 1F1

(
−η

2 ; 1
2 ; x̃2

)
, (2.48)

ψo
η(x̃) = i

√
2 x̃ e− x̃2

2 1F1

(
−η

2 + 1
2; 3

2 ; x̃2
)
, (2.49)
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2.3. Direct Rashba spin-orbit coupling

given in terms of confluent hypergeometric functions 1F1(a, b, x̃). The annihilation and creation
operators act on these eigenfunctions as

aψe
η = ηψo

η−1, (2.50)
aψo

η = ψe
η−1, (2.51)

a†ψe
η = (η + 1)ψo

η+1, (2.52)
a†ψo

η = ψe
η+1. (2.53)

The parity quantum number λ = e, o is a good quantum number at ky = 0, when the parity-mixing
term H

ky=0
mix is neglected. In this case, we can express the general solutions for the wave functions

in a similar way to Eqs. (2.34) and (2.35) with the hypergeometric functions from Eqs. (2.48)
and (2.49) substituting the trigonometric functions in the x direction. By using these functions,
we solve exactly the Schrödinger equation H0Ψ = ϵΨ, with H0 = Hzz + HZ + HE + H

ky=0
xy and

with the spinor Ψ being dependent on the general real-valued eigenvalue ε. The energy of the
system is then found by computing the values of ε for which each component of the wave functions
satisfies HW boundary conditions, i.e., Ψλ

↑/↓,H/L(Lx/2) = 0. For more technical details on this
analysis and on the wave functions, we refer to App. 2.A.

We introduce the new notation |nx, nz, S⟩ for these exact solutions. The quantum number nx

labels the possible solutions and determines the parity and, as before, S =↑, ↓ is the pseudospin.
In Fig. 2.3 the solid lines depict the energy levels at ky = 0 obtained with this approach.

In analogy to the analysis in Sec. 2.3.3, the parity-mixing term H
ky=0
mix couples states with

different pseudospin and different parity. The corrected lowest-energy eigenstates are then

|1, 1, S⟩′ = |1, 1, S⟩ + ⟨2, 1, S̄|Hky=0
mix |1, 1, S⟩

ES
1,1 − ES̄

2,1
|2, 1, S̄⟩, (2.54)

and the SOI can be estimated by treating the terms linear in ky,

Horb
ky

= Hky + ℏωc


γ+x̃ 0

√
3γsx̃ 0

0 γ−x̃ 0
√

3γsx̃√
3γsx̃ 0 γ−x̃ 0
0

√
3γsx̃ 0 γ+x̃

 k̃y, (2.55)

perturbatively. Because the extra terms proportional to x̃ couple states within the same spin
subspace states but with different parity in x, they contribute to the term assisted by parity
mixing H(2)

αso [see Eqs. (2.41) and (2.42)]. In this case, we find the direct contribution to the SOI,

H(1)
αso

= ⟨1, 1, ↓ |Hky |1, 1, ↑⟩σx

= iℏωc

√
3γs

(
⟨Ψe

↓,L|Ψe
↑,H⟩ + ⟨Ψe

↓,H |Ψe
↑,L⟩

)
⟨ϕH

1 |k̃z|ϕL
1 ⟩k̃yσx, (2.56)
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and the term assisted by parity mixing,

H(2)
αso

=
(

⟨1, 1, ↓ |Horb
ky

|2, 1, ↓⟩⟨2, 1, ↓ |Hky=0
mix |1, 1, ↑⟩

E↑
1,1 − E↓

2,1

+⟨2, 1, ↑ |Horb
ky

|1, 1, ↑⟩⟨1, 1, ↓ |Hky=0
mix |2, 1, ↑⟩

E↓
1,1 − E↑

2,1

)
σx

=i
√

3(ℏωc)2γs

{ 〈
ϕH

1
∣∣k̃z

∣∣ϕL
1
〉

E↑
1,1 − E↓

2,1

( 〈
Ψo

↓,H
∣∣a†∣∣Ψe

↑,L
〉

+
〈
Ψo

↓,L
∣∣a†∣∣Ψe

↑,H
〉)

×
[
γ+
〈
Ψe

↓,H
∣∣a− a†∣∣Ψo

↓,H
〉

+ γ−
〈
Ψe

↓,L
∣∣a− a†∣∣Ψo

↓,L
〉

+2
√

3γs

〈
ϕH

1
∣∣ϕL

1
〉 ( 〈

Ψe
↓,L
∣∣a∣∣Ψo

↓,H
〉

−
〈
Ψe

↓,H
∣∣a†∣∣Ψo

↓,L
〉)]

+
〈
ϕH

1
∣∣k̃z

∣∣ϕL
1
〉

E↓
1,1 − E↑

2,1

( 〈
Ψe

↓,H
∣∣a†∣∣Ψo

↑,L
〉

+
〈
Ψe

↓,L
∣∣a†∣∣Ψo

↑,H
〉)

×
[
γ+
〈
Ψo

↑,H
∣∣a− a†∣∣Ψe

↑,H
〉

+ γ−
〈
Ψo

↑,L
∣∣a− a†∣∣Ψe

↑,L
〉

+2
√

3γs

〈
ϕH

1
∣∣ϕL

1
〉 ( 〈

Ψo
↑,H
∣∣a∣∣Ψe

↑,L
〉

−
〈
Ψo

↑,L
∣∣a†∣∣Ψe

↑,H
〉)]}

k̃yσx. (2.57)

The function Ψλ
↑/↓,H/L is defined in App. 2.A and ϕ

H/L
nz is given by Eq. (2.19). The sum of these

two terms yields the total SOI strength αso with effective Rashba-type Hamiltonian, Hαso =
H

(1)
αso +H

(2)
αso = αsoσxky.

As shown in Fig. 2.5, the SOI strength αso now decreases with magnetic field and the maximum
moves towards stronger electric fields. This decrease can be explained by orbital effects that start
to become very relevant at B ≈ 1.4 T, where the magnetic length is comparable to the NW side
length. The second term in Eq. (2.55) leads to a negative contribution in Eq. (2.57) and thus
reduces the total SOI αso with increasing magnetic field. In the figure we plot the analytical result
(dashed lines) together with numerical results (solid lines). We observe a good agreement between
the analytical and numerical curves for weak electric field. The dots in the plot mark where an
effective model up to order k2

y fails because the dispersion relation is dominated by k4
y. This effect

will be discussed in detail in Sec. 2.6.
Accounting for anisotropies, γ1 ̸= γ2, in Ge we see that the SOI only weakly depends on the

growth direction of the NW in agreement with Refs. [11, 52]. In particular, the maximum SOI is
reached for z ∥ [110] and the NW parallel to [001]. This is equivalent to the optimal direct Rashba
SOI direction reported in Ref. [11]. Comparing this result for the SOI to the result with isotropic
approximation for a square NW with side length of 22 nm at B = 0.1 T we have a maximum SOI
of αso = 53.8 meV nm at E = 1.6 V µm−1 [calculated numerically by diagonalizing H in Eq. (2.1)]
instead of αso = 38.3 meV nm at E = 2.6 V µm−1. Hence, with the right choice of the NW growth
direction an even larger SOI at lower electric field than shown by the analytical results before is
possible. In contrast to the SOI, the effective g factor strongly depends on the growth direction
and is highly sensitive to anisotropies as discussed in detail in Sec. 2.7.

The calculation of the correction to the g factor coming from the mixing term is inaccurate
because it is a second-order term in the parity-mixing Hamiltonian [cf. Eq. (2.46)] and requires to
account for many states to converge to the numerical solution. In the following section, therefore,
we use a fully numerical approach to calculate the NW quantum levels at ky = 0. From this
solution, we obtain the effective g factor and then by treating ky perturbatively, we compute the
SOI and the effective masses of the low-energy states.
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Figure 2.5: Effective SOI strength αso of a Ge NW with square cross section, Lx = Lz = 22 nm,
as a function of the electric field E for different values of the magnetic field. The solid lines are
numerical solutions obtained with the discrete basis given in Eq. (2.58), while the dashed lines
show the results from the semianalytical formulas in Eqs. (2.56) and (2.57). For weak electric
field the analytical result compares to the numerics very well. The SOI decreases with increasing
magnetic field due to orbital effects. The dots mark the points where the ground-state dispersion
relation becomes flat and where one needs to include in the effective theory terms that are of higher
order in momentum (see Sec. 2.6).

2.4 Effective g-factor and effective masses

In this section we present numerical results for the effective g factor and the effective mass. For
the numerical calculations we use the discrete basis

fnx,nz
(x, z) =

2 sin
[
nx

(
x

Lx
+ 1

2

)]
sin
[
nz

(
z

Lz
+ 1

2

)]
√
LxLz

(2.58)

with 0 < nx, nz ≤ 16. This basis fulfills the HW boundary conditions in the x and z directions. We
obtain the eigenvalues En,S of the Hamiltonian in Eq. (2.1) with their corresponding eigenfunctions
ψn,S , where n labels the states ascending with energy starting from the lowest eigenstate and S
is their pseudospin. In the following we extract the parameters of an effective model describing
the two states ψ1,↑(E,B) and ψ1,↓(E,B) that are lowest in energy. By second order perturbation
theory, we obtain an effective model Hamiltonian up to order k2

y,

Heff = ℏ2

2m̄k2
y − βσzk

2
y + geff

µBB

2 σz + αsokyσx, (2.59)

with the average effective mass 1/m̄, the spin-dependent term β, the effective g factor geff , and the
SOI strength αso. Here β can be interpreted as a spin-dependent mass, which depends on magnetic
field and vanishes at B = 0. Generally, there are further terms possible, such as a diagonal term
linear in ky or an off-diagonal term quadratic in ky. However, these terms are zero in the isotropic
LK Hamiltonian [70].
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This effective model works well in different geometries; however in this section we restrict
ourselves to the analysis of NWs with square cross section. We discuss alternative geometries in
Sec. 2.5. The energy levels at E = 1 V µm−1 are shown in Fig. 2.6 (solid lines). The dashed lines
show the same spectrum without orbital effects. Excluding orbital effects, the dashed green and
orange lines cross, while their solid pendants including orbital effects anti-cross. Thus, the effective
g factor is largely reduced by orbital effects. The large difference between the energies calculated
with and without orbital effects leads us to the conclusion that by neglecting orbital effects in
Ge NWs, one tends to strongly overestimate the g factor. Note also that in contrast to Fig. 2.3,
here the parity mixing term is fully accounted for. In this case, the parity mixing term leads to a
splitting at B = 0 of the degenerate states with nx = 2 and nz = 1 and with nx = 1 and nz = 2
already in the weak electric field limit.
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Figure 2.6: Energy levels of the Hamiltonian in Eq. (2.1) calculated numerically by using the
discrete basis (0 < nx, nz ≤ 16) defined in Eq. (2.58) with (solid lines) and without (dashed
lines) orbital effects as a function of the magnetic field. We note that the energy spectrum is
substantially modified if orbital effects are taken into account. We consider a square cross-section
NW with Lx = Lz = 22 nm, E = 1 V µm−1, and ϵs = 0. Note that, in contrast to Fig. 2.3, here
the parity-mixing term defined in Eq. (2.30) (without orbital effects) or in Eq. (2.46) (with orbital
effects) is included.

More explicitly, we define here the effective g factor for a magnetic field B applied along the z
direction as

geff = E1,↑ − E1,↓

µBB
. (2.60)

In Fig. 2.7(a) we show the dependence of geff in a square-cross-section NW as a function of the
electric field E applied along the z direction. The qualitative behavior is the same at each value
of the magnetic field: First, the g factor decreases, it reaches a minimum, and then it grows again.
The minimal value of the g factor depends on both electric and magnetic fields and it moves from
geff = 6.6 at E = 1.6 V µm−1 for B = 0.1 T to geff = 5.3 at E = 0.8 V µm−1 for B = 10 T. A
similar effective g factor of a cylindrical Ge NW for weak B has been predicted in Ref. [63] and
for strong magnetic field in Ref. [64].
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Figure 2.7: (a) Effective g factor geff from Eq. (2.60) and (b) average inverse effective mass 1/m̄
from Eq. (2.66) of a Ge NW with square cross section, Lx = Lz = 22 nm, as a function of the
electric field E at ky = 0 for different values of the magnetic field B. The g factor is large even at
the minimum (geff > 5), but it decreases with increasing magnetic field. As described in Sec. 2.6,
the minimum is preserved in a QD, resulting in a sweet spot where charge noise is suppressed. The
averaged inverse effective mass 1/m̄ starts from a small value at weak electric fields and approaches
a value close to the average HH-LH inverse m ass γ1/m at large E. The dots mark the points
where the ground-state dispersion relation becomes flat and where one needs to include in the
effective theory terms that are of higher order in momentum (see Sec. 2.6).

We now analyze the effective mass of the NW, mS . At finite values of the magnetic field, this
parameter depends on the spin S and can be decomposed into the sum of two contributions

1
mS

= 1
mu

S

+ 1
mp

S

. (2.61)

The first unperturbed (u) contribution comes from projecting the part of the LK Hamiltonian [see
Eq. (2.2)] quadratic in ky,

Hk2
y

= ℏ2

2m


γ+ 0

√
3γs 0

0 γ− 0
√

3γs√
3γs 0 γ− 0
0

√
3γs 0 γ+

 k2
y, (2.62)

onto the eigenbasis of H(ky = 0) where H is given in Eq. (2.1),

ℏ2k2
y

2mu
S

= ⟨ψ1,S |Hk2
y
|ψ1,S⟩ . (2.63)

The second perturbative (p) term is a second-order correction coming from the term linear in ky,

Hky
= ℏ2√

3γs

2m


γ+√
3γs

x ikz (ikx + x) 0
−ikz

γ−√
3γs

x 0 (ikx + x)
(−ikx + x) 0 γ−√

3γs
x −ikz

0 (−ikx + x) ikz
γ+√
3γs

x

 ky (2.64)
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(see e.g. Ref. [71]),

ℏ2k2
y

2mp
S

=
∑

n≥2,S′=↑,↓

∣∣ ⟨ψn,S′ |Hky |ψ1,S⟩
∣∣2

E1,S − En,S′
. (2.65)

At this point, we also define an average effective mass m̄ and a spin-dependent term β as they
appear in the effective model in Eq. (2.59):

1
m̄

:= m↓ +m↑

2m↓m↑
= 1

2

(
1
m↑

+ 1
m↓

)
, (2.66)

β := −ℏ2m↓ −m↑

m↓m↑
= −ℏ2

(
1
m↑

− 1
m↓

)
. (2.67)

The average effective mass 1/m̄ is shown in Fig. 2.7(b) as a function of the electric field. Generally,
when E is large, 1/m̄ approaches a constant value close to γ1/m, the average HH-LH mass in the
LK Hamiltonian. The exact large E limit of 1/m̄ depends on the magnetic field. Also note that
when below B < 6 T, 1/m̄ has a maximum, while for B > 6 T, 1/m̄ increases monotonically.

We show the spin-dependent masslike term β as a function of the magnetic field in Fig. 2.8.
This term is linear in B at low magnetic field and decreases with the electric field. At B = 0,
β = 0 due to time-reversal symmetry. While generally this term is significant, at weak magnetic
fields (or at strong electric fields), it can be justified to consider a simplified effective model with
β = 0.
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Figure 2.8: Spin-dependent masslike term β defined in Eq. (2.67) as a function of the magnetic
field B at ky = 0 for different values of the electric field. At B = 0, β is zero due to time-reversal
symmetry and it increases linearly for small B. At large E, β increases very slowly. The dots
mark the points where the ground state dispersion relation becomes flat and where one needs to
include in the effective theory terms that are of higher order in momentum, see Sec. 2.6. Here we
use Lx = Lz = 22 nm.

The effective model in Eq. (2.59) is valid when the subband gap is larger than the quantization
energy along the y axis. The subband gap including orbital effects is smallest at large values of
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the magnetic field (see Fig. 2.6) and at E = 0 (not plotted). However, in the system considered
the gap remains larger than 1.9 meV, justifying the use of an effective 2 × 2 model for sufficiently
long QDs. We note that the subband gap can be increased by reducing the side lengths Lx,z or
by including strain. Importantly, we also remark that orbital effects extend the validity of this
effective model to large values of the magnetic field and that without them, the effective model
can only be valid at weak B, far away from the crossing in Fig. 2.6.

2.5 Effect of the geometry and confinement details

In the following we compare the parameters of square NWs with side Lx = Lz = L, cylindrical
NW with radius R, and two-dimensional heterostructures with an electrostatically defined one-
dimensional channel [see Fig. 2.1(b)]. In the latter case, the electrostatic potential confining the
NW in x direction is

U(x) = ℏ2γ1

2ml4x
x2 (2.68)

and is parameterized by the harmonic length lx. To describe this case, we use the first 16 eigenstates
of the harmonic oscillator. For the NW with circular cross-section with radius R, we discretize the
cross section in real space. To compare different cross sections we choose lx = L/π and R = L/

√
π,

with L the side length of the square NW.
Furthermore, here we study the effect of strain. For the NW we consider strain induced in

the Ge core by a Si shell of relative thickness γ = (Ls − L)/L = 0.1 [γ = (Rs − R)/R = 0.1 for
cylindrical NW]. The strain in the NW is included by the BP Hamiltonian in Eq. (2.5). In contrast,
in the two-dimensional heterostructure, the strain is controlled via the percentage of Si in the SiGe
layers and it is aligned perpendicularly to the two-dimensional plane as explained in Sec. 2.2 [see
in particular Eq. (2.6)]. A comparison between the effective parameters of the unstrained (solid
lines) and strained (dashed lines) devices is shown in Figs. 2.9 and 2.10.

The g factors, shown in Fig. 2.9(a), are similar for both NW geometries at weak electric fields
and only weakly depend on strain. In this case, the shape of the NW does not play a relevant
role because the wave function is centered in the middle of the cross section, away from the edges.
On the one hand, at strong electric fields the one-dimensional channel resembles a square cross-
section NW because the wave function is compressed at the top of the Ge layer and the parabolic
confinement in x becomes less relevant. On the other hand, the difference between circular and
square cross-section becomes increasingly important when the wave function is compressed to the
top of the NW.

Moreover, strain generally increases the g factor at weak electric field and moves its minimal
value to stronger electric fields. At larger electric fields the g factor of the NWs with strain becomes
smaller than without strain. Strain affects much more the one-dimensional channel compared to
the NW and it increases the g factor at E = 0 by almost a factor of three. At strong electric field
the values with and without strain are closer to each other, but the strained channel still has a
larger g factor.

In addition, in all cases the SOI strength increases linearly with E at weak electric fields.
However, at large E, the behavior of the SOI strength depends on the cross section and it ei-
ther saturates or reaches a maximum before decreasing. These trends are shown in Fig. 2.9(b).
Without strain the SOI for the square NW and the 1D channel reaches a maximum at around
E = 2 V µm−1 − 3 V µm−1, while the cylindrical NW increases monotonically in the whole range
of E studied, from E = 0 to E = 20 V µm−1. In general, strain decreases the SOI at weak electric
field since the SOI is inversely proportional to the HH-LH gap, which increases with strain [12].
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Figure 2.9: Comparison of the effective parameters of Ge NWs with different geometries with
(dashed) and without (solid) strain, obtained by the numerical diagonalization of the Hamiltonian
in Eq. (2.1), as described in the text. Here □ denotes a NW with a square cross section (blue)
and ⃝ a NW with a circular cross section (orange); ch denotes the one-dimensional gate-defined
channel (green). With s we label strained devices (|εs| = 0.62 % [51], εs > 0 for the NW, εs < 0
for the channel). (a) Effective g factor geff . In the NW, this quantity has a minimum that persists
even in the presence of strain. (b) SOI strength αso. The maximum value of αso is reached at
comparably weak electric field without strain. With strain a stronger electric field is required to
reach the largest SOI. (c) Average effective mass 1/m̄. This quantity tends to converge to a value
close to γ1/m and in unstrained NWs with circular cross-section, it is negative at small E. Here
B = 2 T, L = 22 nm, R = L/

√
π ≈ 12.4 nm, and lx = L/π ≈ 7 nm.

At stronger electric fields, however, the situation changes for the NW devices. In fact, the SOI is
larger in the strained NW because the HH-LH gap is decreased by strain (not shown here) and
thus the negative effect of strain on the SOI can be overcome by applying stronger electric fields.
The reduction of the SOI due to strain at weak electric field is also reported in Ref. [72].

Next, Fig. 2.9(c) shows the average effective mass 1/m̄ as a function of the electric field. In
analogy to the analysis in Sec. 2.4, this quantity reaches a value close to γ1/m at strong electric
fields, which is slightly increased by strain. At low electric fields E < 2 V µm−1, the NWs however
present small average masses. In particular, we observe that in NWs with circular cross section,
the average mass is negative 1/m↑ < 0. The average mass remains negative at low electric field in
a broad range of magnetic fields, from B = 0 to fields above B = 10 T. However, even when the
mass is negative, there are additional terms that are of higher order in k that ensure the positive
curvature of the dispersion relation at large k, as discussed in Sec 2.6.2. Thus, even in these cases,
it is possible to confine a QD in the NW with an electrostatic potential. Also, in strained devices,
the average mass remains positive. In Appendix 2.B we highlight the differences in the dispersion
relation of a NW with circular cross section and having a positive and negative average effective
mass.

Finally, in Fig. 2.10 we show the spin-dependent mass term β. Regardless of the geometry and
strain, β is linear in B at weak magnetic field. Although this term is typically small, at sufficiently
low electric field, it is not negligible and it affects the g factor of an elongated QD created by
gating the NW, as shown in the next section.
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Figure 2.10: Comparison of the spin-dependent masslike term β in Ge NWs with different geome-
tries with (dashed) and without (solid) strain as function of perpendicular magnetic field B in
the z direction. These results are obtained by the numerical diagonalization of the Hamiltonian
in Eq. (2.1). Here □ denotes the square cross section, ⃝ the circular cross section, and ch the
one-dimensional gate-defined channel. With s we label the lines with strain (|εs| = 0.62 % [51],
εs > 0 for the NW, εs < 0 for the channel). Time-reversal symmetry at B = 0 demands β = 0 . At
small B we observe a linear increase regardless of the geometry and strain. Here E = 2 V µm−1,
L = 22 nm, R = L/

√
π ≈ 12.4 nm, and lx = L/π ≈ 7 nm.

2.6 Quantum dot physics

This section is dedicated to the physics of a QD in a NW. The dot is defined by an electrostatic
confinement potential from gates as sketched in Fig. 2.1(a). In Sec. 2.6.1 we focus on the QD g
factor and show how strain can be used to tune the position of its minimum such that it occurs at
the same electric field where the SOI is maximal. These conditions provide an ideal working point
in the parameter space, where the qubit can be driven fast, but at the same time the decoherence
rate is diminished by a reduced sensitivity to charge noise [73, 74]. At this sweet spot, we predict
ultrafast qubits at low power. In Sec. 2.6.2 we analyze the effective NW model in Eq. (2.59) for
small ky and show that this model works generally well, except at specific fine-tuned parameters
where one needs to include corrections of higher order in momentum.

In the model given by Eq. (2.59), the eigenenergies expanded around ky = 0 are

E↑/↓ = ±EZ

2 + E
(2)
↑/↓k

2
y + O(k4

y), (2.69)

with Zeeman energy EZ = geffµBB [see Eq. (2.60)] and

E
(2)
↑/↓ = ℏ2

2m̄ ∓ β ± α2
so

EZ
. (2.70)

In inversion symmetric cross sections and at zero electric field, the SOI αso is zero [71]. As the SOI
increases with the electric field, the spectrum gradually splits into two separate parabolas with
minima at a finite value of ky; at ky = 0, these bands are split by EZ = geffµBB. We note that for
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a certain combination of electric and magnetic fields, the mass of the ground state vanishes, i.e.,
E

(2)
↓ = 0. In particular, this occurs when

E
(2)
↓ = 0 ⇒ EZ = α2

so

2m̄
±ℏ2 + 2βm̄ (2.71)

⇔ m↓ = EZℏ2

2α2
so

. (2.72)
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Figure 2.11: Dispersion relations of a NW with square cross section of side length L = 22 nm at
B = 2 T for (a) E = 0, (b) E = 0.49 V µm−1, and (c) E = 3 V µm−1. The figures compare the
exact numerical solution (black solid line) obtained by the diagonalization of the Hamiltonian in
Eq. (2.1), the effective model quadratic in ky (red dashed line) in Eq. (2.59), and the effective
model quartic in ky (blue dash-dotted line) discussed in Sec. 2.6.2. We observe that the ground-
state dispersion is well described by both effective models around k = 0. Only when the condition
from Eq. (2.72) is fulfilled as in (b), the O(k2

y) model gives rise to a flat lowest-energy band and
quartic corrections become more relevant.

In the vicinity of this point our model quadratic in ky is not valid and would predict the
appearance of a flat band. In this case, we extend our results to fourth order in ky. The points
where E(2)

↓ = 0 are marked with dots in Figs. 2.5, 2.7, and 2.8 and the spectrum at one of these
points is shown in Fig. 2.11(b). In this figure we also show the spectrum for different electric fields
and compare our analytical theory in Eq. (2.59) with numerical results obtained by diagonalizing
H in Eq. (2.1) using the basis in Eq. (2.58). We observe that in general the spectrum is well
described by an effective Hamiltonian quadratic in ky. When E = 0, this effective model fits the
ground-state dispersion nicely; however, the dispersion of the first excited state is qualitatively
correct only up to momenta |0.3/L| and it requires additional higher-order corrections for larger
ky. Moreover, as anticipated, there are points, e.g., at E = 0.49 V µm−1, where E(2)

↓ = 0, and the
O(k2

y) model gives a relatively flat ground-state dispersion. In this case, also the exact ground-state
dispersion is rather flat and can be well described by including terms proportional to k4

y.

2.6.1 Qubit operation
Having shown the validity of the effective model in Eq. (2.59), we now use it to analyze a QD. In
particular, we study the QD g factor, its sweet spot, and by including an ac electric field Ey(t)
applied along the NW, we calculate the frequency of Rabi oscillations induced by EDSR [75]. Here
we consider parameters that are sufficiently far away from the vanishing effective mass condition
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Figure 2.12: Effective g factor gQD of a Ge NW QD according to Eq. (2.74) as a function of the
electric field E at kz = 0 for different values of the magnetic field B. The NW has a square cross
section of side length L = 22 nm and the QD confinement length is ly = 35 nm. (a) The sweet spot
is at very small electric fields, where the NW is unstrained, and (b) it is shifted to larger electric
fields when strain is included. We consider here a strain tensor element εs = 0.62 %.

in Eq. (2.72). We consider an harmonic confinement potential Vc = 1
2m̄ω

2y2 with the harmonic
length ly =

√
ℏ/(m̄ω) along the NW. Following Ref. [52], we further introduce the external driving

Hamiltonian HD(t) = −ℏky∂tdy(t) with the time-dependent position of the center of the QD dy(t).
We restrict the motion of the QD to the y direction even if the ac field is not perfectly aligned to
the NW since the QD is strongly confined in the directions perpendicular to the NW. This leads
to the total NW Hamiltonian

HW = ℏ2

2m̄k2
y + g̃

B

2 σz + αsokyσx + Vc +HD(t), (2.73)

where we introduce g̃ = µBgeff − β0k
2
y with the NW g factor geff . Because at weak magnetic

fields β ∝ B, we also define the quantity β0 = β/B [cf. Figs. 2.8 and 2.10]. The spin-dependent
transformation [29] S = e−iσxy/lso removes the SOI via S†(Heff +Vc)S where we use the spin-orbit
length lso = ℏ2/(m̄αso). When the confinement energy ω is much larger than the driving and the
Zeeman energy, we obtain an effective QD Hamiltonian by projecting onto the harmonic-oscillator
ground state at B = Ey(t) = 0,

HQD = B

2 e−l2
y/l2

so

(
µBgeff − β0

2l2y

)
︸ ︷︷ ︸

=:gQDµB

σz + ℏ∂tdy(t)
lso

σx. (2.74)

We now discuss the parameters of the QD theory.
In Fig. 2.12, we show the effective renormalized QD g factor gQD [22, 29, 76] for a QD in a

NW with square cross section of side length Lx = 22 nm and QD confinement length ly = 35 nm.
Without strain the QD g factor has a minimum at weak electric field [see Fig. 2.12(a)]. With strain,
as shown in Fig. 2.12(b), the situation is drastically altered. First, in agreement with the analysis
in Sec. 2.5, we observe that the QD g factor increases with strain. Furthermore, strain shifts the g
factor sweet spot to larger electric fields. We find the minimal value gQD = 3.2 with strain at the
static electric field in z direction Esw = 14.3 V µm−1 instead of gQD = 1.3 at Esw = 0.4 V µm−1

and at B = 0.1 T.
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Figure 2.13: Position of the sweet spot Esw (black solid line) of the effective g factor gQD in a
strained Ge NW QD as a function of the QD confinement length ly. We consider here B = 0.1 T and
we calculated gQD [see Eq. (2.74)] numerically by using the discrete basis defined in Eq. (2.58) for
diagonalizing H defined in Eq. (2.1). The NW has a square cross section of side length L = 22 nm.
The blue solid line shows the value of gQD at the sweet spot and the horizontal black dashed line
marks the electric field at which the SOI is maximal. By changing the size of the QD, ly, we can
tune the position of the sweet spot of gQD to be at the same value of the electric field at which
SOI also achieves its maximum strength.

Importantly, including strain the sweet spot of the g factor occurs exactly at the same value of
the electric field that maximizes the SOI (E = 14.3 V µm−1) [see Fig. 2.9(b)]. Also, we remark that
because of the term β0 in Eq. (2.74), one can tune the position of these sweet spots by adjusting
the size of the QD via the harmonic length ly. The dependence of gQD on ly is examined in detail
in Fig. 2.13, where we show that at certain values of ly, the minimal value of gQD coincides with
the optimal SOI. These working points are ideal for qubit manipulation because they maximize
the speed of operation while reducing drastically the effect of charge noise [73, 74].

Moreover, when the harmonic drive is given by Ey(t) = Eac sin(ωDt), we can calculate the
Rabi frequency ωR at the resonance

ωD = e−l2
y/l2

so

(
µBg − β0

l2y

)
B (2.75)

as [52]

ωR = ly
2lso

(
ly

lEγ
1/3
1

)3
Eac

E
ωD. (2.76)

At the g-factor sweet spot and at B = 0.1 T, we reach with the realistic driving field amplitude
Eac = 0.02 V µm−1 the extremely large Rabi frequency ωR = 3.7 GHz with a resonant driving
frequency of ωD = 4.5 GHz. These results indicate that in the setups analyzed here, one can
perform ultrafast qubit operations at low power.
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Figure 2.14: Qubit parameters of a Ge NW QD as a function of electric and magnetic field. The
dashed vertical line marks E = 14.3 V µm−1, where the minimum of gQD and the maximum of
Eso is located. (a) Rabi frequency ωR according to Eq. (2.76) for Eac = 0.02 V µm−1. The Rabi
frequency increases linearly with B due to the resonance driving frequency ωD and is almost
constant with E. (b) Resonance driving frequency ωD according to Eq. (2.75). (c) Dephasing
rate 1/T ∗

2 according to Eq. (2.77). Independently of the magnetic field, 1/T ∗
2 has a minimum at

E = 14.3 V µm−1. However, for stronger B the dephasing rate increases faster when the electric
field is not exactly at the sweet spot. (d) The spin-orbit energy Eso = m̄αso/(2ℏ2), as well as the
QD g factor in Fig. 2.12, starts to depend on the magnetic field noticeably only at stronger B. We
choose L = 22 nm, ly = 35 nm, and

√
⟨∂E2⟩/E = 10−3.

For a complete picture of the qubit, we estimate the dephasing rate when the QD is left in the
idle state. For this aim we assume 1/f -charge noise and small fluctuations δE of the electric field.
This results in an approximate dephasing rate of [52, 71, 77, 78]

1
T ∗

2
= µBB

√
⟨δE2⟩∂gQD

ℏ∂E

√√√√ 1
2π log

(
gQDµBB

√
⟨δE2⟩

ℏωir

)
, (2.77)

where we assume a cut-off frequency of ωir = 1 Hz. At the sweet spot the qubit is protected
against fluctuations of the g factor, but it is not protected against other sources of noise such
as random fluctuations of ly due to gate potential fluctuations or hyperfine noise, which could
still be addressed by appropriately designing the QD [45, 71]. Moreover, in echo experiments the
dephasing rate can be further reduced. For a detailed analysis of charge noise sources for hole spin
qubits in quantum dots in diamond crystal structure materials such as Si and Ge, see Ref. [79].
A detailed analysis of all noise sources in Ge NWs is of interest but is beyond the scope of the
present work.
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In Fig. 2.14 we give an overview over the important parameters for qubit operations. Figs. 2.14(a)
– 2.14(c) show the Rabi frequency ωR, the resonance driving frequency ωD, and the dephasing
rate 1/T ∗

2 as a function of electric and magnetic field. The Rabi and resonance driving frequencies
increase linearly with the magnetic field as we can see in Eqs. (2.75) and (2.76). For electric fields
E > 10 V µm−1 both frequencies stay almost constant as E increases. The dashed vertical lines
in all plots mark E = 14.3 V µm−1 where the decoherence rate has a minimum. Since we only
account for charge noise due to g-factor fluctuations the decoherence rate is zero at the first-order
minimum. With our very simple model for decoherence, we predict away from the sweet spot
a large quality factor of 300 at E = 8 V µm−1 and B = 50 mT compared to 18 [19] or 45 [18]
measured in a Ge hut-wire experiment. The figures show that for reasonable values of Eac the
qubit can be driven so fast that corrections beyond the rotating wave approximation will come into
play. For more moderate driving power, still very fast Rabi rotations that do not invalidate the
approximations are achievable. In Fig. 2.14(d) we present the spin-orbit energy Eso = m̄αso/(2ℏ2)
as a function of E since it depends only slightly on the magnetic field, similarly to the QD g factor
in Fig. 2.12. The maximum spin-orbit energy coincides with the maximum coherence time of the
qubit.

2.6.2 Beyond the harmonic approximation

In the following we discuss in more detail the case of E(2)
↓ = 0. Including the term H4 =(

A+
2 + A−

2 σz

)
k4

y, coming from fourth order perturbation theory in ky, the eigenenergies mod-
ify as

E↑/↓ = ±EZ

2 +
(
ℏ2A↓ + ℏ2α2

so

2E2
Z |m↑|

)
k4

y + O(k6
y), (2.78)

where we define A↓/↑ = (A+ ∓ A−)/2. The Hamiltonian H4 completely determines the spectrum
when E

(2)
↓ = 0. The spectrum given by the effective model in Eq. (2.59) including the term H4 is

shown in Fig. 2.11 with blue lines. The values of the parameter A↑ and A↓ used in the figure are
given in Tab. 2.1. For large ky, the quartic Hamiltonian gives a better estimate for the ground-state
dispersion compared to quadratic model in Eq. (2.59).

Table 2.1: Explicit values for A↑ and A↓ used in Fig. 2.11 calculated numerically in fourth-order
perturbation theory.

E = 0 E = 0.49 V µm−1 E = 3 V µm−1

A↑ [eVnm4] 0.358 −8.19 −4.61
A↓ [eVnm4] 183 55.3 −5.88

We point out that when the mass vanishes, there are many energy states that are close in energy
and thus we envision that this regime could be interesting for simulations of strongly correlated
matter, e.g., the Sachdev-Ye-Kitaev model [80–82]. We now estimate the number of states we can
put into such a QD. To do so, we consider an harmonic QD confinement Vcy

2 = 1
2m̄ω

2y2 with the
confinement length ly =

√
ℏ/(m̄ω) along the NW. Then we solve the differential equation

(E(2)
↓ k2

y + E
(4)
↓ k4

y + Vcy
2)ϕ(ky) = Eϕ(ky) (2.79)

numerically and find its lowest eigenvalues. This procedure allows us to see how many states can
coexist in the QD below a certain energy threshold ET = kBT set by the temperature. In what
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2.7. Beyond the isotropic approximation

follows we focus on the number of states at T = 1 K. With a confinement length of ly = 186 nm,2
we obtain Vc = 4.25 × 10−7 meV nm−2; we consider also a NW with side length L = 15 nm and
magnetic field B = 2 T, such that the condition for vanishing mass in Eq. (2.72) is fulfilled at
E = 0.72 V µm−1. With these parameters we have in total eleven single-hole states in the QD, in
contrast to a QD with typical effective mass m/γ1, where under the same conditions, one obtains
three states below ET . A detailed analysis of hole-hole interactions in these system is an interesting
problem for future work, but it goes beyond the scope of the present paper.

2.7 Beyond the isotropic approximation

In this section we analyze the limits of the isotropic approximation used in the previous sections
and commonly adopted in the literature [54, 63, 64, 72]. As we show in Sec. 2.4, at low magnetic
fields only the effective g factor is significantly affected by orbital effects. Thus, we focus on the
effective NW g factor and how it depends on the growth direction with and without orbital effects.

We use here the general anisotropic LK Hamiltonian

HLK = ℏ2

2m
[
γkπ

2 − 2γ2(π2
x′J2

x′ + π2
y′J2

y′ + π2
z′J2

z′) − 4γ3 ({πx′ , πy′}{Jx′ , Jy′} + c.p.)
]
, (2.80)

where the primed indices x′, y′, and z′ denote the axes aligned to the main crystallographic axes
[100], [010], and [001], respectively. Strain is included via the isotropic BP Hamiltonian introduced
in Eq. (2.5) and neglecting corrections coming from different growth directions [51]. We consider the
coordinate system specified in Fig. 2.1 including orbital effects via the Landau gauge A = (0, x, 0)B.
Since we are mainly interested in the orbital effects of the magnetic field, we consider at first
E = 0. To account for different growth directions, we rotate the LK Hamiltonian and solve for
the eigenvalues numerically as described in Sec. 2.4. For further information on the rotations see
App. 2.C.

In Fig. 2.15 we show how the effective NW g factor geff depends on the growth direction of
the NW. As in the previous sections, we consider a NW parallel to y and B ∥ z (see Fig. 2.1). In
particular, we analyze the four cases shown at the top of Fig. 2.15: First, we consider three typical
growth directions of a NW (y ∥ [001], [110], and [111]) and, second, we consider a magnetic field
aligned to a main crystallographic axis, i.e, B ∥ [001] ∥ z. We also rotate the coordinate system
by an angle φ according to Tab. 2.2. More specifically, by varying φ in the first case, the magnetic
field points along different crystallographic axes, and in the second case the growth direction of
the NW changes (Note that to improve readability, in Tab. 2.2, Tab. 2.3, and App. 2.C, we choose
a different coordinate system compared to here. In particular, the coordinate system in the main
text is related to the one in the appendix by the replacements x → y, y → z, and z → x).

The orange curve in Fig. 2.15 shows the g factor when the magnetic field B ∥ z is aligned to
one of the main crystallographic axes, i.e., B ∥ [100], [010], [001], while the blue curve shows geff
when the NW is aligned to these axes, i.e., y ∥ [100], [010], [001]. At the angles φ = 0, π/2, π,
these two curves describe the same situation and thus the values of geff coincide. In analogy, the
orange curve at φ = π/4, 3π/4 describes a NW grown along the [110] direction with a magnetic
field aligned to a main crystallographic axis; this case is equivalently described by the green line
at φ = π/2.

Moreover, the dotted black curve shows the values of the NW g factors in the isotropic approx-
imation and is independent of the angle φ. In the other cases, however, we expect the g factor to

2We obtain this value from explicitly solving the Laplace equation for a three-gate setup with gate side length
200 nm , distance between the gates 100 nm, distance between the QD and the gates 120 nm, center gate voltage
50 mV, and side gate voltages 55 mV
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2.7. Beyond the isotropic approximation

Figure 2.15: Effective g factor geff for different growth directions of the NW, obtained numerically
from the diagonalization of the Hamiltonian given by Eq. (2.1) and the anisotropic LK Hamiltonian
given by Eq. (2.80), using the discrete basis defined in Eq. (2.58). The four panles on top show the
rotations of the coordinate system corresponding to the color code in the legend. In each case one
axis is fixed and then we rotate by the angle φ around it. For the blue, green, and purple lines the
NW axis (y) is fixed parallel to the crystallographic directions [001], [100], and [111], respectively.
For the orange line, we fix z ∥ [001]. The dashed square indicates the NW cross section and how
it is fixed with respect to the coordinate axes. (a) Without orbital effects, without strain; (b)
without orbital effects, with strain; (c) with orbital effects, without strain; and (d) with orbital
effects, with strain. The g factor depends on the growth direction and this dependence changes
when orbital effects are included. This leads to the conclusion that the isotropic approximation is
not well justified in Ge NWs in a general case without strain. In core/shell NWs with strain the
isotropic approximation is better justified. We choose a NW with a square cross section with side
length Lx = Lz = 22 nm, B = 0.1 T, E = 0, and strain tensor element εs = 0.62 %.

be an oscillating function of φ. These oscillations can have a rather large amplitude when y ∥ [001]
and y ∥ [110]. Without orbital effects [see Fig. 2.15(a)], geff varies at most of ±20 % from the g
factor obtained with the isotropic approximation and therefore this approximation is justified in
this case.

To have a better understanding of the origin of these oscillations, we refer to App. 2.C, where
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2.7. Beyond the isotropic approximation

Table 2.2: For each line in Fig. 2.15 we fix one axis and then rotate around this axis as shown
below. We use the coordinate system with the NW parallel to z and B ∥ x.

Fixed axis Rotation Rotation

z ∥ [001] x ∥ − sin(φ)[100] − cos(φ)[010] y ∥ cos(φ)[100] − sin(φ)[010]

x ∥ [001] y ∥ cos(φ)[100] − + sin(φ)[010] z ∥ sin(φ)[100] + cos(φ)[010]

z ∥ [110] x∥ − sin(φ)√
2 [100]+ sin(φ)√

2 [010]+cos(φ)[001] y∥ cos(φ)√
2 [100]− cos(φ)√

2 [010]+sin(φ)[001]

z ∥ [111]
x∥
(

cos(φ)√
6 − sin(φ)√

2

)
[100]−

√
2
3 cos(φ)[010]

+
(

cos(φ)√
6 + sin(φ)√

2

)
[001]

y∥
(

cos(φ)√
2 + sin(φ)√

6

)
[100]−

√
2
3 sin(φ)[010]

+
(

− cos(φ)√
2 + sin(φ)√

6

)
[001]

Table 2.3: Explicit crystallographic directions for certain rotation angles φ. We use the coordinate
system with the NW parallel to z and B ∥ x.

Direction φ = 0 φ = π/4 φ = π/2 φ = 3π/4 φ = π

z ∥ [001] x∥ [01̄0], y∥ [100] x∥ [1̄1̄0], y∥ [11̄0] x∥ [1̄00], y∥ [01̄0] x∥ [1̄10], y∥ [1̄1̄0] x∥ [010], y∥ [1̄00]

x∥ [001] y∥ [100], z ∥ [010] y∥ [11̄0], z ∥ [110] y∥ [01̄0], z ∥ [100] y∥ [1̄1̄0], z ∥ [11̄0] y∥ [1̄00], z ∥ [01̄0]

z ∥ [110] x∥ [001], y∥ [11̄0] x∥ [1̄10], y∥ [001] x∥ [001̄], y∥ [1̄10]

z ∥ [111] x∥ [12̄1], y∥ [101̄] x∥ [1̄01], y∥ [12̄1] x∥ [1̄21̄], y∥ [1̄01]

we report explicit expressions of the LK Hamiltonian in all the cases considered here (note the
different coordinate system used in the Appendix). In particular, when the NW is parallel to
[001], the LK Hamiltonian in Eq. (2.94) has a term proportional to e±4iφ that modulates the
amplitude of the coupling between spin ± 3

2 to spin ∓ 1
2 . This modulation leads to a change of

the HH-LH mixing with φ and thus to an oscillation of the g factor with a periodicity of π/2.
The maximum LH contribution to the ground state is obtained at φ = π/4 where the g factor
is minimal. In analogy, the orange curves corresponding to the case where B ∥ z ∥ [001] have a
similar φ dependence, which can also be explained by a term proportional to cos(4φ). In contrast,
when the NW is parallel to [110] (green curve) the φ-dependent coupling between spins ± 3

2 and
∓ 1

2 is proportional to e±iφ [see Eq. (2.95)], resulting in a π-periodic geff.
Interestingly, we note that the oscillations disappear when y ∥ [111] (purple line). In this case,

in fact, the rotation angle φ only changes the phase of the HH-LH matrix elements in the LK
Hamiltonian, but it does not affect their amplitude [see Eq. (2.96)]. Consequently φ does not
modify the g factor at ky = 0.

We obtain a similar result with strain [cf. Fig. 2.15(b)]. The deviation from the g factor
with isotropic approximation (dashed lines in Fig. 2.15) is less than 5 %. Hence, with strain the
isotropic approximation is even more justified than in the unstrained case. This difference can be
explained by the larger subband gap between the two lowest-energy states and the excited states
with strain [11]. Interestingly, with and without strain, the g factor for the NW parallel to [110]
is closest to the isotropic approximation for φ = π/4, 3π/4 corresponding to B being parallel to
highly nonsymmetric directions.

Including orbital effects into our calculations changes drastically the picture. Without strain [cf.
Fig. 2.15(c)], for specific angles the g factor can vary up to 60 % from the isotropic approximation.
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2.8. Conclusion

This large variation occurs when B ∥ [001] with φ = π/4 and φ = 3π/4, where x ∥ [110] and
the NW is parallel to [1̄10] and where x ∥ [11̄0] and the NW is parallel to [110], respectively, and
the NW is parallel to [110] with φ = 0 where B ∥ [11̄0] and x ∥ [001̄] and with φ = π where
B ∥ [1̄10] and x ∥ [001]. With such a large deviation, the isotropic approximation is not well
justified anymore to describe the g factor correctly. For the NW parallel to [111] the g factor
oscillates now slightly with the angle between 6.31 and 6.32 due to an additional angle dependence
in the orbital effect terms that couple spin ± 3

2 to spin ∓ 1
2 states [see Eq. (2.96)]. Because of the

triangular symmetry of the crystal when the NW is parallel to [111], the periodicity is π/3.
Additionally including strain into our calculations generally increases the g-factor and brings

it closer to the g factor with isotropic approximation. In this case, the maximum deviation from
the g factor with isotropic approximation is around 20 %. These results show the profound impact
of the magnetic orbital effects even at weak magnetic fields and they show how big the influence
of strain can be.

In conclusion, our results show that without strain the isotropic approximation is justified only
in special cases where the effective g factor depends only weakly on the rotation angle. With
strain the results for the g factor deviate less form the result with isotropic approximation, and
thus increasing the strain by using a thicker Si shell would render the Ge core even more isotropic.

2.8 Conclusion

We derived a low-energy effective one-dimensional model that describes the physics of confined
hole systems when electric and magnetic fields are applied in one of the confined directions. We
developed an analytic approach to quantify the spin-orbit interactions of this model and, assisted
by numerical calculations, we investigate the dependence of SOI, g factor, and effective masses on
the applied fields, on strain, and on the magnetic orbital effects. These effects are crucial to have
a good description of the system.

In particular, by complementing the analytical approach with numerical calculations, we found
that the g factor is strongly renormalized by orbital effects even at low magnetic fields. Moreover,
the orbital effects introduce a strong dependence of the g factor on the material growth direction,
which leads to a breakdown of the isotropic approximation typically employed for Ge.

We find excellent agreement between analytically and numerically computed SOIs in the weak
electric field limit. At strong fields, our analytical theory captures the qualitative trend of the
numerical results, but is quantitatively imprecise. We also find that the SOI decreases with in-
creasing magnetic field. Our analysis enables a better understanding of approximately isotropic
semiconductor NWs including orbital effects. Moreover, we show that a square cross section is not
the best choice for optimizing the SOI and that the optimal NW cross section is rectangular with
a width that depends on the electric field as Lx ≈ 2.74lEγ1. We also identify an extra term that
can be interpreted as a spin-dependent effective mass.

The analysis of different NW geometries revealed that at low electric field circular and square
cross sections are very similar, while in the strong field limit (typically reached for E > 3 V µm−1)
a gate defined one-dimensional channel is comparable to the square cross section. Furthermore,
we analyze the influence of strain and observe that it increases the g factor and reduces the SOI
at weak electric field.

We show that in a QD in qubit operation mode it is possible to tune the SOI maximum and the
g-factor sweet spot to be at the same electric field by designing strain and confinement potential. At
the sweet spot we predict Rabi frequencies in the gigahertz range at low power, enabling ultrafast
gates. With this result it is possible to optimize electrically controlled qubits in Ge NW QDs and
we believe a similar optimization is possible in other approximately isotropic semiconductor NWs.
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2.A. Wave functions with orbital effects

The effective model (2.59) we present is valid for most of the relevant NW growth directions.
We discussed the growth direction dependence of the g factor and show that orbital effects play an
important role, even at low magnetic field, but that they can be counteracted by strain. Finally,
we observed that the effective NW model can break down at certain electric and magnetic fields,
resulting in a flat band over k. In these cases the physics is dominated by a k4 term. This
interesting working point could open up the possibility of investigating strongly correlated systems
in QDs.
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discussions and comments. This work was supported by the Swiss National Science Foundation
and NCCR SPIN. M.B. achnowledges support form the Georg H. Endress Foundation. This
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2.A Wave functions with orbital effects

In this Appendix we provide some details on the wave functions in which orbital effects are included
exactly. If we neglect the parity mixing term H

ky=0
mix , the general solutions for the wavefunctions

of H0 = Hzz +HZ +HE +H
ky=0
xy with orbital effects are written as

Ψλ
↑(x, z) =


ϕH

nz
(z)Ψλ

↑,H(x)

0

ϕL
nz

(z)Ψλ
↑,L(x)

0

 , (2.81)

Ψλ
↓(x, z) =


0

ϕL
nz

(z)Ψλ
↓,L(x)

0

ϕH
nz

(z)Ψλ
↓,H(x)

 , (2.82)

where the z part ϕH/L
nz (z) is given by Eq. (2.19) and the spinor components of the in-plane contri-

bution read

Ψλ
↑,H(x) = ψλ

η−+2(Lx/2)cλ
↑(η+)ψλ

η+
(x) − ψλ

η++2(Lx/2)cλ
↑(η−)ψλ

η−
(x), (2.83)

Ψλ
↑,L(x) = ψλ

η−+2(Lx/2)ψλ
η++2(x) − ψλ

η++2(Lx/2)ψλ
η−+2(x), (2.84)

Ψλ
↓,L(x) = ψλ

χ−+2(Lx/2)cλ
↓(χ+)ψλ

χ+
(x) − ψλ

χ++2(Lx/2)cλ
↓(χ−)ψλ

χ−
(x), (2.85)

Ψλ
↓,H(x) = ψλ

χ−+2(Lx/2)ψλ
χ++2(x) − ψλ

χ++2(Lx/2)ψλ
χ−+2(x), (2.86)

where η± are the two solutions of the quadratic equation

ε
−1/2
z (nz)
ℏωc

− ε+ γ−

(
η + 5

2

)
=

3γ2
s (η + 2)(η + 1)⟨ϕH

nz
|ϕL

nz
⟩2

ε
3/2
z (nz)
ℏωc

− ε+ γ+
(
η + 1

2
) (2.87)
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and χ± the solutions of

ε
−3/2
z (nz)
ℏωc

− ε+ γ+

(
χ+ 5

2

)
=

3γ2
s (χ+ 2)(χ+ 1)⟨ϕH

nz
|ϕL

nz
⟩2

ε
1/2
z (nz)
ℏωc

− ε+ γ−
(
χ+ 1

2
) . (2.88)

The constants are defined as

ce
↑(η) = (γ1 − γs)(η + 5/2) − ε+ ε

−1/2
z (nz)/(ℏωc)√

3γs⟨ϕH
nz

|ϕL
nz

⟩(η + 1)
, (2.89)

co
↑(η) = (γ1 − γs)(η + 5/2) − ε+ ε

−1/2
z (nz)/(ℏωc)√

3γs⟨ϕH
nz

|ϕL
nz

⟩(η + 2)
, (2.90)

ce
↓(χ) = (γ1 + γs)(χ+ 5/2) − ε+ ε

−3/2
z (nz)/(ℏωc)√

3γs⟨ϕH
nz

|ϕL
nz

⟩(χ+ 1)
, (2.91)

co
↓(χ) = (γ1 + γs)(χ+ 5/2) − ε+ ε

−3/2
z (nz)/(ℏωc)√

3γs⟨ϕH
nz

|ϕL
nz

⟩(χ+ 2)
. (2.92)

Imposing the hard-wall boundary conditions on Ψλ
↓,H and Ψλ

↓,L we calculate the eigenvalues ε
numerically.

2.B Dispersion relation with negative average mass

In this Appendix we show a plot of the dispersion relation of a NW with circular cross section of
radius R = 22 nm/

√
π. We choose the same parameters as in Fig. 2.9 in the main text and show

the dispersion relation in Fig. 2.16(a) with negative average effective mass and in Fig. 2.16(b) with
positive effective mass. Interestingly, we observe a crossing between the lowest two states close
to ky = 1/(2R) at E = 0 which becomes an anticrossing for larger electric field due to the SOI.
As already mentioned in the main text, terms higher order in ky make sure that the dispersion
relation has a positive curvature at large values of ky even when m̄ < 0.

−1 0 1

ky (1/R)

−1.0

−0.5

0.0

0.5

1.0

E
n
,↑
/
↓

(m
eV

)

E = 0

−1 0 1

ky (1/R)

E = 1 V µm−1

(a) (b)

Figure 2.16: Dispersion relation of the lowest-energy states of a circular NW calculated numerically
by diagonalizing the Hamiltonian in Eq. (2.1) as described in Sec 2.4 for (a) E = 0 and m̄ < 0 and
(b) E = 1 V µm−1 and m̄ > 0. Here B = 2 T and R = 22 nm/

√
π.
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2.C Rotations of the LK Hamiltonian

In the main text we consider the situations where the NW is parallel to y as well as z ∥ B. In
the following we switch to a different coordinate system in order to express the LK Hamiltonian
where the spin quantization axis is aligned along the NW axis. This is a more convenient basis for
the interpretation of the matrix elements of the LK Hamiltonian. To switch to the new coordinate
system, we make the replacements x → y, y → z, and z → x. Then the NW is parallel to the z
axis and the magnetic field is parallel to the x axis.

For each of considered case we keep one coordinate axes fixed parallel to a certain crystallo-
graphic axis and rotate around this axis as specified in Tab. 2.2 and as illustrated at the top of
Fig. 2.15. The rotations around the fixed main crystallographic axes are performed via standard
Euler rotation matrices R. Then, we only need to solve the following equations for the momenta
kj and spin- 3

2 matrices Jj , j = x, y, z,
kx′

ky′

kz′

 = R


kx

ky

kz

 ,


Jx′

Jy′

Jz′

 = R


Jx

Jy

Jz

 (2.93)

and plug them into the LK Hamiltonian in Eq. (2.80). For certain angles φ we give the crystallo-
graphic directions to which the coordinate axes are parallel in Tab. 2.3.

The LK Hamiltonians for the different growth directions fixed along the z axis discussed in the
main text are, given in the coordinate system with the NW parallel to z and B ∥ x,

H
z∥[001]
LK = ℏ2

2m




(γ1 + γ2)π+π− 0 M 0

0 (γ1 − γ2)π+π− 0 M

M∗ 0 (γ1 − γ2)π+π− 0

0 M∗ 0 (γ1 + γ2)π+π−



+


0 −2

√
3γ3π− 0 0

−2
√

3γ3π+ 0 0 0

0 0 0 2
√

3γ3π−

0 0 2
√

3γ3π+ 0

πz

+


γ1 − 2γ2 0 0 0

0 γ1 + 2γ2 0 0

0 0 γ1 + 2γ2 0

0 0 0 γ1 − 2γ2

π2
z

 , (2.94)
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H
z∥[110]
LK = ℏ2

2m




N+ 0 O 0

0 N− 0 O

O∗ 0 N− 0

0 O∗ 0 N+

 +


0 −P 0 0

−P ∗ 0 0 0

0 0 0 P

0 0 P ∗ 0

πz

+


1
2 (2γ1−γ2−3γ3) 0

√
3

2 e
−2iφ(γ2−γ3) 0

0 1
2 (2γ1+γ2+3γ3) 0

√
3

2 e
−2iφ(γ2−γ3)

√
3

2 e
2iφ(γ2−γ3) 0 1

2 (2γ1+γ2+3γ3) 0

0
√

3
2 e

2iφ(γ2−γ3) 0 1
2 (2γ1−γ2−3γ3)

π
2
z

, (2.95)

H
z∥[111]
LK = ℏ2

2m




(γ1+γ3)π+π−
√

2
3 e−3iφ(γ2−γ3)π2

+ − γ2+2γ3√
3

π2
− 0√

2
3 e3iφ(γ2−γ3)π2

− (γ1−γ3)π+π− 0 − γ2+2γ3√
3

π2
−

− γ2+2γ3√
3

π2
+ 0 (γ1−γ3)π+π− −

√
2
3 e−3iφ(γ2−γ3)π2

+

0 − γ2+2γ3√
3

π2
+ −

√
2
3 e3iφ(γ2−γ3)π2

− (γ1+γ3)π+π−



+


0 − 2√

3
(2γ2+γ3)π−

√
8
3 e−3iφ(γ2−γ3)π+ 0

− 2√
3

(2γ2+γ3)π+ 0 0
√

8
3 e−3iφ(γ2−γ3)π+√

8
3 e3iφ(γ2−γ3)π− 0 0 2√

3
(2γ2+γ3)π−

0
√

8
3 e3iφ(γ2−γ3)π−

2√
3

(2γ2+γ3)π+ 0

πz

+
(

γ1−2γ3 0 0 0
0 γ1+2γ3 0 0
0 0 γ1+2γ3 0
0 0 0 γ1−2γ3

)
π2

z

]
. (2.96)

with π± = πx ± iπy. The matrix elements are defined as

M = −
√

3
2
(
e−4iφ(γ2 − γ3)π2

+ + (γ2 + γ3)π2
−
)
, (2.97)

N± =1
4
[
∓3(γ2 − γ3)(e−2iφπ2

+ + e2iφπ2
−) + (4γ1 ± γ2 ± 3γ3)π+π−

]
, (2.98)

O =
√

3
8
(
3e−4iφ(γ3 − γ2)π2

+ + 2e−2iφ(γ3 − γ2)π+π− − (3γ2 + 5γ3)π2
−
)
, (2.99)

P =
√

3
(
e−2iφ(γ3 − γ2)π+ + (γ2 + γ3)π−

)
. (2.100)

Looking at the πz = kz = 0 parts of the Hamiltonians explains the periodicity of the g factor
under rotation by the angle φ around the labeled fixed axis. The off-diagonal matrix elements
M [cf. Eq. (2.97)] of the Hamiltonian in Eq. (2.94) at kz = 0 contain the exponential exp(−4iφ)
and couple the spins ± 3

2 and ∓ 1
2 . This explains the π/2 periodicity of the effective g factor for

the NW parallel to [001]. Similarly, the Hamiltonian in Eq. (2.95) at kz = 0 contains off-diagonal
matrix elements O which have a term proportional to exp(−2iφ) [cf. Eq. (2.99)]. Also, these
matrix elements couple spin ± 3

2 to spin ∓ 1
2 and thus explain the π periodicity of the g factor for

the NW parallel to [110]. In contrast to that, the Hamiltonian in Eq. (2.96) at kz = 0 contains a
φ dependence only in the matrix elements coupling spin ± 3

2 and ± 1
2 . Hence, only the phase of the

HH-LH wave function is changed and not the amplitude leaving the g factor for the NW parallel
to [111] unchanged.
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The LK Hamiltonian with x ∥ [001], again in the coordinate system with the NW parallel to z
and B ∥ x, reads

H
x∥[001]
LK = ℏ2

2m




Q+
i
√

3
2 (γ2−γ3) sin(4φ)π2

y R 0
i
√

3
2 (γ3−γ2) sin(4φ)π2

y Q− 0 R

R∗ 0 Q−
i
√

3
2 (γ3−γ2) sin(4φ)π2

y

0 R∗ i
√

3
2 (γ2−γ3) sin(4φ)π2

y Q+


+


3
2 (γ2−γ3) sin(4φ)πy S

√
3

2 (γ2−γ3) sin(4φ)πy 0
S∗ − 3

2 (γ2−γ3) sin(4φ)πy 0
√

3
2 (γ2−γ3) sin(4φ)πy

√
3

2 (γ2−γ3) sin(4φ)πy 0 − 3
2 (γ2−γ3) sin(4φ)πy −S

0
√

3
2 (γ2−γ3) sin(4φ)πy −S∗ 3

2 (γ2−γ3) sin(4φ)πy

πz

+

 T+ − i
√

3
2 (γ2−γ3) sin(4φ)

√
3

2 (γ2−γ3) sin2(2φ) 0
i
√

3
2 (γ2−γ3) sin(4φ) T− 0

√
3

2 (γ2−γ3) sin2(2φ)
√

3
2 (γ2−γ3) sin2(2φ) 0 T−

i
√

3
2 (γ2−γ3) sin(4φ)

0
√

3
2 (γ2−γ3) sin2(2φ) − i

√
3

2 (γ2−γ3) sin(4φ) T+

π2
z

 ,
(2.101)

with the explicit matrix elements

Q± =1
4
[
4(γ1 ± γ2)π2

x + (4γ1 ± γ2 ± 3γ3)π2
y ± 3(γ2 − γ3) cos(4φ)π2

y

]
, (2.102)

R =
√

3
4
[
−4γ2π

2
x + 8iγ3πxπy + (3γ2 + γ3)π2

y + (γ2 − γ3) cos(4φ)π2
y

]
, (2.103)

S =i
√

3[2iγ3πx + (γ2 + γ3)πy − (γ2 − γ3) cos(4φ)πy], (2.104)

T± =1
4 [4γ1 ∓ 5γ2 ∓ 3γ3 ∓ 3(γ2 − γ3) cos(4φ)] . (2.105)

The g factor for B ∥ [001] is again π/2 periodic, which is explained well by the matrix element R
in Eq. (2.103), the only matrix element coupling spins ± 3

2 and ∓ 1
2 at kz = 0. The matrix element

R contains a term proportional to cos(4φ) leading to the π/2 periodicity.
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CHAPTER 3
Enhanced orbital magnetic field effects

in Ge hole nanowires

Adapted from:
Christoph Adelsberger, Stefano Bosco, Jelena Klinovaja, and Daniel Loss

“Enhanced orbital magnetic field effects in Ge hole nanowires”,
Phys. Rev. B 106, 235408 (2022)

Hole semiconductor nanowires (NW) are promising platforms to host spin qubits and Majorana
bound states for topological qubits because of their strong spin-orbit interactions (SOI). The
properties of these systems depend strongly on the design of the cross section and on strain, as
well as on external electric and magnetic fields. In this paper, we analyze in detail the dependence
of the SOI and g factors on the orbital magnetic field. We focus on magnetic fields aligned along the
axis of the NW, where orbital effects are enhanced and result in a renormalization of the effective g
factor up to 400 %, even at small values of magnetic field. We provide an exact analytical solution
for holes in Ge NWs and we derive an effective low-energy model that enables us to investigate
the effect of electric fields applied perpendicular to the NW. We also discuss in detail the role of
strain, growth direction, and high-energy valence bands in different architectures, including Ge/Si
core/shell NWs, gate-defined one-dimensional channels in planar Ge, and curved Ge quantum wells.
By comparing NWs with different growth directions, we find that the isotropic approximation is
well justified. Curved Ge quantum wells feature large effective g factors and SOI at low electric
field, ideal for hosting Majorana bound states. In contrast, at strong electric field, these quantities
are independent of the field, making hole spin qubits encoded in curved quantum wells to good
approximation not susceptible to charge noise, and significantly boosting their coherence time.
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3.1 Introduction

Semiconducting nanostructures based on holes are emerging as frontrunner candidates to process
quantum information because of their large spin-orbit interaction (SOI) [1–6] that enables ultrafast
and coherent manipulations of spin qubits [7–12], strong coupling to resonators [13–15], and is an
essential ingredient to host exotic particles such as Majorana bound states (MBSs) [16, 17]. In
hole nanostructures, the SOI is not only surprisingly strong, orders of magnitude larger than in
electronic systems [1, 18, 19], but it is also highly tunable by external electromagnetic fields and
it can be engineered by the confinement potential and by strain [20–28], resulting in sweet spots
where the charge noise plaguing state-of-the-art spin qubits is strongly suppressed [29–31]. The
qubit coherence is further enhanced by the weak hyperfine noise, another crucial issue for spin-
based quantum information processing [32–37], that in hole spin qubits encoded in Si and Ge
quantum dots (QDs) can be suppressed by isotopic purification [38, 39] or by an appropriate QD
design [40–46].

In particular, the largest SOI arises in quasi-one-dimensional architectures, including Ge nano-
wires (NWs) [1, 9, 24, 47] and gate-defined squeezed QDs in planar heterostructures [25]. In these
systems, experiments have shown a large proximity-induced superconductivity [48–50], making hole
NWs promising candidates for topological quantum information processing based on MBSs [51–
61]. A stable topological phase, however, also requires a large g factor, that allows to reach a
sufficiently large Zeeman energy overcoming the induced superconducting gap even at the weak
magnetic fields compatible with superconductors [17, 52, 59, 62, 63].

Orbital magnetic field effects play a crucial role in defining the property of hole nanostructures,
yielding significant corrections of the g factor and of the effective mass in planar heterostruc-
tures [64, 65] as well as in NWs [28, 31, 66]. Orbital effects are also used to study the shape
anisotropy in gate defined quantum dots [67]. In hole NWs, these effects are enhanced by magnetic
fields that point along the direction of the NW, where we will show that they yield a renormaliza-
tion of the g factor as large as 400%.

In this paper, we demonstrate the importance of orbital magnetic field effects in one-dimensional
hole systems in Ge, see Fig. 3.1. We present an analytical solution, exactly including orbital effects,
for low-energy holes in isotropic semiconductor NWs in the presence of a magnetic field parallel to
the NW axis. This solution allows us to derive an effective low-energy model describing the effect
of homogeneous and inhomogeneous electric fields perpendicular to the NW. Our model unravels
the strong dependence of the g factor, SOI, and effective mass on external electromagnetic fields
and on strain. We discuss the emergence of a spin-dependent mass term, that appears also at
magnetic fields perpendicular to the NW axis [28].

Moreover, in Si/Ge core/shell NWs, strain is crucial to increase the subband gap between the
lowest pair of energy states and the excited states [23, 24, 28]. We analyze its effect analytically
and predict that strain enhances the g factor at the cost of weaker SOI. This effect is understood
by introducing a strain-induced energy scale which in these systems favors a light hole (LH) ground
state over mixed heavy hole (HH)-LH states.

We compare our analytical results for Ge NWs to numerical calculations of gate-defined one-
dimensional channels in a planar heterostructure [25, 28] and curved Ge quantum wells (CQW) [31].
Gate-defined channels exhibit a smaller g factor and weaker SOI than in core/shell NWs, but with a
similar qualitative behavior of the effective parameters against electric field and strain. In contrast,
the response of the CQWs is strikingly different. In these architectures, the orbital magnetic field
effects are extremely important because of their annular cross section, yielding large g factors and
strong SOI at weak electric field, ideal to host MBSs. Moreover, we show that the g factor and the
SOI remain constant in a wide range of strong electric fields, and thus CQWs are an ideal platform
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Figure 3.1: Sketches of the architectures analyzed. (a) Cylindrical NW with radius R extending
along the z axis. The NW core (Ge) is covered by a shell (Si) that induces strain into the core.
We denote by RS the radius of the NW including the shell. (b) Sketch of a planar Ge/SiGe
heterostructure with gate-defined one-dimensional channel. The Ge layer has width Lx and the
channel is electrostatically defined by a harmonic confinement in the y direction with harmonic
length ly. (c) Sketch of a CQW: a NW with an annular cross section. The setup consists of a Si
core of radius R covered by an inner Ge shell (radius R1) that hosts the holes. Another Si layer
(radius R2) covers the Ge shell. Strain is induced into the Ge layer from the Si core and the outer
Si shell. In all three cases we consider a magnetic field of strength B = |B| applied parallel to the
z axis as indicated by the coordinate system.

to encode spin qubits, with a strongly suppressed susceptibility to charge noise, a crucial issue in
core/shell NWs [18, 19].

Furthermore, we numerically analyze corrections to our model, focusing in particular on the
influence of holes belonging to the spin-orbit split-off band (SOB) and on cubic anisotropies of the
valence band, which are neglected in our analytical calculations. The SOB does not qualitatively
alter our predictions and only changes the quantitative values of the parameters. Most notably,
in narrow NWs, the SOB reduces the g factor significantly; the SOI is less affected by the SOB.
Our analysis of anisotropies reveals that the isotropic approximation (IA) is well justified for the
description of NWs grown along one of the main crystallographic axes, along the [110] (often used
in experiments [68–70]), or along the [111] direction. This result further justifies the application
of the IA in the rest of the paper.
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This paper is organized as follows. In Sec. 3.2 we introduce the model used to describe low-
energy holes in semiconductor NWs. Our analytical solution for a NW with magnetic field parallel
to the NW taking orbital effects of the magnetic field exactly into account is derived and discussed
in Sec. 3.3. We start with briefly showing the non-parabolic bulk dispersion relation in the presence
of orbital effects and continue by adding hard-wall (HW) boundary conditions to model NWs with
circular cross sections. Furthermore, we investigate the effective g factor, the direct Rashba SOI [22,
24], and the effective mass of the holes by considering an effective low-energy model to second order
perturbation theory, also including homogeneous and inhomogeneous electric fields perpendicular
to the NW. Moreover, we discuss how strain increases the g factor, the subband gap between
ground state and excited states, and the effective mass, while it decreases the SOI and magnitude
of the spin-dependent mass. In Sec. 3.4 we compare our results to numerically calculated effective
parameters of a gate-defined one-dimensional channel defined in planar heterostructures. Likewise
we study numerically holes in CQWs consisting of a Ge shell that hosts the holes around a Si core in
Sec. 3.5. In Sec. 3.6 we extend our model for the NW by correcting terms and analyze its validity.
In particular, we include the SOB and find that these states cause quantitative corrections to
the effective parameters. Finally, we investigate the anisotropies in Ge/Si core/shell and CQWs.
Conclusion and outlook are provided in Sec. 3.7. Details on the calculations are given in the
Appendices.

3.2 Model of nanowire

In this section we present the theoretical model used in this paper. The general Hamiltonian
modeling hole nanostructures in the presence of a magnetic field is given by

H = HLK +HZ +HBP + V . (3.1)

The Luttinger-Kohn (LK) Hamiltonian HLK describes the mixing of HHs and LHs, and by
including orbital magnetic field effects it is given by [24, 71–74]

HLK = ℏ2

2m
[
γkπ

2 − 2γ2(π2
x′J2

x′ + π2
y′J2

y′ + π2
z′J2

z′)

− 4γ3 ({πx′ , πy′}{Jx′ , Jy′} + c.p.)
]
, (3.2)

where {A,B} = (AB+BA)/2, γk = γ1 +5γ2/2, and “c.p.” means cyclic permutations. The primed
indices x′, y′, and z′ denote the axes aligned to the main crystallographic axes [100], [010], and [001],
respectively, and Ji [with i = x′, y′, z′] are the standard spin-3/2 operators. The HHs correspond
to the spin component ±3/2 and the LHs to ±1/2 of Jz. The coefficients γ1, γ2, and γ3 are the
material-dependent Luttinger parameters [74] and m is the bare electron mass. Furthermore, the
kinematic momentum operators in Eq. (3.2) include orbital effects of the magnetic field by the
Peierls substitution [72]

π = k + e

ℏ
A (3.3)

with canonical momenta kj = −iℏ∂j , positive elementary charge e > 0, and vector potential A.
The magnetic field B also splits the spin states by the Zeeman Hamiltonian

HZ = 2κµBB · J , (3.4)

with κ = 3.41 in Ge. We neglect here the small anisotropic Zeeman energy ∝ J3
i [24, 72]. In this

paper we focus on magnetic fields aligned to the NW; a detailed analysis of perpendicular magnetic
fields is provided in Ref. [28].
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In Ge the Luttinger parameters γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 [75] describe a relatively
isotropic semiconductor with (γ3 − γ2)/γ1 ≈ 0.1, thus, we will often use the approximate isotropic
Luttinger-Kohn (ILK) Hamiltonian

HILK = ℏ2

2m
[
γkπ

2 − 2γs(k · J)2]+Horb, (3.5)

commonly adopted in literature [22, 24, 25, 73, 76, 77], with

Horb = ℏe
2m

{
γk

( e
ℏ
A2 + 2k · A

)
− 2γse

ℏ
(A · J)2

− 4γs

[
kxAxJ

2
x + ({kx, Ay} + {ky, Ax}) {Jx, Jy} + c.p.

]}
, (3.6)

where γs = (γ2 + γ3)/2 = 4.97. We stress that while our analysis here is restricted to Ge, our
analytical results are valid more generally for holes in GaAs, InAs, or InSb, where the ILK is
valid [74].

The quasi-one-dimensional system is defined by a confinement potential V that models the
different NWs schematically depicted in Fig. 3.1. In this paper, we first consider a Ge/Si core/shell
NW with cylindrical cross section [Fig. 3.1(a)]. The Ge NW of radius R is covered by a Si shell
of thickness RS − R, that produces a large strain on the Ge core. This strain is known to play
a relevant role for the properties of the NW [23] and we include its effect by the Bir-Pikus (BP)
Hamiltonian [78]. In this setup, the BP Hamiltonian is well-approximated by [24]

HBP = |b|εsJ
2
z′ . (3.7)

The strain energy |b|εs, with εs = ε⊥ − εz′z′ > 0, is typically positive [23] and it comprises the
deformation potential b = −2.5 eV [78] and the strain tensor elements ε⊥ and εz′z′ . Under the
assumption of homogeneous strain in the core of the NW, these strain elements depend only on
the relative shell thickness γ = (RS − R)/R [23, 79]. For the typical value γ = 0.1, one finds [23]
|b|εs = 15.5 meV.

For the gate-defined one-dimensional channel in a planar Ge/SiGe heterostructure as depicted
in Fig. 3.1(b), we consider a Ge layer with width Lx and confined in the y direction by a harmonic
potential parametrized by the harmonic length ly. This setup describes squeezed quantum dots in
planar Ge [25, 28]. In this case, the strain due to the lattice mismatch between the Ge and SiGe
layers results in the BP Hamiltonian [4, 30]

Hch
BP = |b|εsJ

2
x . (3.8)

In contrast to the core/shell NW case [cf. Eq. (3.7)] the strain energy |b|εs < 0, and the strain
favors a HH groundstate, with quantization axis perpendicular to the substrate. The strain energy
can be engineered by the percentage of Si in the SiGe layers.

Moreover, we compare Ge/Si core/shell NWs to a CQW sketched in Fig. 3.1(c). The CQW
consists of a Si core of radius R, a thin Ge shell of thickness R1 − R that hosts the holes, and
an outer Si shell of thickness R2 − R1. In addition to the longitudinal strain typical of core/shell
NWs [see Eq. (3.7)], the CQW is also subject to a radial strain that resembles the strain in planar
heterostructures. Explicitly, the total BP Hamiltonian of CQWs is well-approximated by [31]

HCQW
BP = |b|

(
εzJ

2
z − εrJ

2
r

)
(3.9)
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where we define the radial spin-3/2 matrix as

Jr = êr · J , (3.10)

with the unit vector in radial direction êr = (cos θ, sin θ, 0). In Eq. (3.9) we approximate the
longitudinal and radial strain energies as [31]

εz ≈ εp
R1 −R

R1 +R

(
1 − R1 −R

2(R1 +R) − (R1 +R)2

2R2
2

)
, (3.11)

εr ≈ εp

(
1 − R1 −R

R1 +R

)2
, (3.12)

respectively. We assume here |b|εp ≈ 140.8 meV, a value which can be reduced by replacing the Si
in the inner and outer shells by a SixGe1−x alloy.

In order to study the validity of the ILK approximation in Eq. (3.5), we examine also the effect
of the cubic anisotropies of the LK Hamiltonian in Eq. (3.2). In general, the behavior of the system
depends on the growth direction of the NW. In this paper, we focus on a few important cases.
Particularly relevant examples are NWs grown along the [001] axis, where the SOI is maximized or
fully tunable [24, 29]. We also study NWs grown along the [110] crystallographic axis, consistent
with several recent experiments [68–70]. Finally, we consider another relevant growth direction
that is experimentally achievable [80–85], where the NW is grown along the z ∥ [111] direction.
The explicit form of the rotated LK Hamiltonian in these cases is reported in Ref. [28].

3.3 Analytical solution for Ge nanowires

In the following we utilize the ILK Hamiltonian from Eq. (3.5) to find an exact analytical de-
scription of low-energy holes in a Ge or a Ge/Si core/shell NW. Our approach fully accounts for
orbital magnetic field effects that are typically neglected or included perturbatively [76, 77, 86, 87].
We find that, in Ge, these effects strongly renormalize the system response, and, thus, cannot be
safely neglected even at weak magnetic fields. With the help of our analytical results, we analyze
in detail the behavior of the system under the effect of both, electric and magnetic fields, and we
include also strain in Ge/Si core/shell NWs.

To describe the analytical procedure, we begin with the analysis of the ILK Hamiltonian, cf.
Eq. (3.5), in the bulk in Sec. 3.3.1. Therefore, we separate the ILK Hamiltonian into three parts
according to their order in the momentum πz [28]

HILK = Hxy +Hintπz +Hzzπ
2
z . (3.13)

First, we present a simple approach where we derive the bulk solution for Hxy where the magnetic
field is taken into account exactly since it is the starting point for the perturbation theory in
πz. However, in the bulk, we do not resort to perturbation theory but give an exact solution
for the dispersion relation in Appendix 3.A. In Sec. 3.3.2, we proceed for a NW in analogy to
the bulk by deriving an exact solution for Hxy including the orbital effects of the magnetic field
exactly. This can be highly relevant because the effective g factor is considerably renormalized
due to orbital effects even at weak magnetic field as discussed in Sec. 3.3.3. In the NW it is not as
straightforward as in the bulk to find an exact solution for finite πz. Thus, we develop an effective
theory in perturbation theory in Sec. 3.3.4 and Sec. 3.3.5 following Ref. [24], where we discuss the
effects of homogeneous and inhomogeneous electric fields. Finally, in Sec. 3.3.6 we discuss strain
in Ge/Si core/shell NWs.
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3.3.1 Bulk solution
For the following derivation of the bulk solution we assume a magnetic field along the z direction
that we will identify with the NW axis in Sec. 3.3.2. The complete analytical solution of the bulk
ILK Hamiltonian in this case is provided in Appendix 3.A, but the solution is rather complicated
and not straightforwardly generalizable to NWs.

Instead, in this section we discuss a simpler approach, that will provide the starting point
for our analysis of NWs. We restrict ourselves to the analysis of long wave length excitations,
with a wave length 1/kz much longer than the characteristic length defining the variation of the
wave function in the x, y plane. In the bulk analysis, this condition means that kzlB ≪ 1, where
lB =

√
ℏ/eB is the magnetic length. At small values of kz, the system is well described by the

eigenstates of Hxy, and the kz dependence can be studied by treating Hint and Hzz in perturbation
theory.

To better study the magnetic orbital effects, we now neglect the Zeeman energy. To do so, we
introduce the Landau ladder operator

a = πx − iπy√
2

lB , (3.14)

obeying the canonical commutation relation
[
a, a†] = 1. In the spin basis (+3/2, −1/2, −3/2,

+1/2), Hxy becomes

Hxy

ℏωc
=

γ+
(
a†a+ 1

2
)

−
√

3γsa
2

−
√

3γs

(
a†)2

γ−
(
a†a+ 1

2
)
⊕

γ+
(
a†a+ 1

2
)

−
√

3γs

(
a†)2

−
√

3γsa
2 γ−

(
a†a+ 1

2
)
 , (3.15)

where γ± = γ1 ± γs and the symbol “⊕” refers to the direct sum of matrices. The energy is given
here in units of ℏωc, with cyclotron frequency ωc = eB/m, and the lengths are in units of lB .
Focusing on the upper block (↑) and solving the Schrödinger equation

1√
3γs

[
γ+

(
a†a+ 1

2

)
− ε

]
ψHH = a2ψLH, (3.16)

1√
3γs

[
γ−

(
a†a+ 1

2

)
− ε

]
ψLH =

(
a†)2

ψHH, (3.17)

with the HH (LH) components of the wave function ψHH(LH) we find for the energy spectrum
written in magnetic units

ε↑
±(n̄) = γ1

(
n̄− 1

2

)
±

√
γ2

1 + (1 − 2n̄)γ1γs +
[
4n̄(n̄− 1) + 1

4

]
γ2

s , (3.18)

where n̄ is the eigenvalue of the number operator a†a. In the bulk solution, n̄ is an integer because
the wave function is required to vanish at infinity. In the absence of magnetic fields, time-reversal
symmetry implies that for the energy spectrum of the lower block (↓) is the same as for ↑.

Starting from these solutions for πz = 0, we can proceed with a perturbation theory in πz to
find the dispersion relation for the different Landau level subbands. We will do such a perturbation
theory in Secs. 3.3.4 and 3.3.5 for the NW. However, in the bulk case it is possible to derive an
exact analytical solution that we provide in Appendix 3.A.

In Fig. 3.2 we compare the bulk dispersion relations of holes in Ge with and without orbital
effects given in Appendix 3.A. The figure illustrates how the dispersion relation deviates from a
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Figure 3.2: Comparison of the bulk dispersion relations of holes in Ge with (color lines) and
without (black solid lines) orbital effects according to the analytical solution in Appendix 3.A.
Eq. (3.18) gives the bulk energies of the upper block at kz = 0 and B = 0. For the curves that
include orbital effects, we consider B = 1 T and we depict the dispersion relation for the lowest
three n̄ as indicated in the legend. Orbital effects modify the dispersion relation, yielding even a
non-parabolic dispersion relation for the ground state. For the curves without orbital effects we
choose kx = ky = 0.

parabolic spectrum (black lines) in the presence of orbital effects (color lines). Importantly, we
stress that the orbital effects strongly renormalize the mass and even result in a non-parabolic
dispersion of the ground state, as we can observe by comparing to the ground state without orbital
magnetic fields (black lines).

3.3.2 Cylindrical nanowire with hard-wall confinement
In this subsection, we consider a cylindrical NW with radius R in a magnetic field B = (0, 0, B)
in the z direction parallel to the NW, see Fig. 3.1(a). For now, we neglect the strain present
in Ge/Si core/shell NWs and we will include it in Sec. 3.3.6. A convenient gauge in this case is
the symmetric gauge A = (−y, x, 0)B/2, which preserves the rotational invariance of the cross
section. Thus the total angular momentum Iz = sz +Lz, with effective spin sz and orbital angular
momentum Lz, is preserved too. Moreover, as B ∥ z, the translational invariance along the NW
is also preserved and πz = kz is a good quantum number (QN). We assume a hard-wall (HW)
confinement potential

V (r) =
{

0, r =
√
x2 + y2 < R,

∞, otherwise.
(3.19)

Following the procedure described in Sec. 3.3.1, we find that at kz = 0 the unnormalized wave
function of the ↑ block of the Hamiltonian in Eq. (3.15) is given in the presence of the HW boundary
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condition [see Eq. (3.19)] by

Ψ↑
m =

Ψ+3/2
m

Ψ−1/2
m

 = Lm
α↑

−

(
R2

2

) ψm,α↑
+

(r)

c↑
+ψm−2,α↑

++2 (r)

− Lm
α↑

+

(
R2

2

) ψm,α↑
−

(r)

c↑
−ψm−2,α↑

−+2 (r)

 , (3.20)

where the first component of the spinor, Ψ+3/2
m , corresponds to the HH spin +3/2 and the second,

Ψ−1/2
m , to the LH spin −1/2. Here, Lm

α (x) is the associated Laguerre function and

ψm,α(r) = im2− m
2 e−imφe− r2

4 rmLm
α

(
r2

2

)
, (3.21)

where r is given in polar coordinates with the radial coordinate r and the angle φ. A detailed
derivation of this result is provided in Appendix 3.B. Note that all lengths are given in units of
lB . In analogy to the solution in Sec. 3.3.1, the spin QN is now substituted by a pseudo-spin that
we denote by ↑ and ↓ referring to the two blocks of Hxy in Eq. (3.15). The additional QN m is an
integer that is related to the total angular momentum QN Iz by m = 2Iz + 1. The coefficients α↑

±
are given by

α↑
± =

{
− 3

2γ
2
1 + γ1(ε− κ

2 ) + γs(6γs + κ)

±
[
γ2

1

(
γ2

1 − 23
4 γ

2
s − 2γsε

)
− κ(γ1 − 2γs)

[
2γ2

1 + 3γ1γs − 2γs(ε+ γs)
]

+ κ2(γ1 + γs)(γ1 − 2γs) + γ2
s (7γ2

s + 8γsε+ 4ε2)
]1/2

}
/(γ2

1 − 4γ2
s ), (3.22)

which are real numbers and depend on the Zeeman energy via κ. If αs
±, s =↑, ↓, is an integer and

κ = 0, we recover the bulk solution in Eq. (3.18). The coefficients c↑
± are given by

c↑
± =

(2α↑
± + 1)(γ1 + γs) + 3κ− 2ε

2
√

3γs

. (3.23)

Imposing the HW boundary conditions, which follow from Eq. (3.19), on the wave functions defined
in Eq. (3.20), we find the implicit eigenvalue equation determining the energy εs

m(n),

c↑
−

c↑
+

=
Lm

α↑
−

(
R2

2

)
Lm−2

α↑
++2

(
R2

2

)
Lm

α↑
+

(
R2

2
)
Lm−2

α↑
−+2

(
R2

2
) . (3.24)

Here we introduce an additional QN n to number the energies consecutively by their magnitude
for each m. In analogy, for the ↓ block of Hxy in Eq. (3.15) describing the spin states (−3/2, +1/2)
we find the spinor

Ψ↓
m =

Ψ−3/2
m

Ψ+1/2
m

 = L−m

α↓
−

(
R2

2

)c↓
+ψm−2,α↓

++2 (r)

ψm,α↓
+

(r)

− Lm
α↓

+

(
R2

2

)c↓
−ψm−2,α↓

−+2 (r)

ψm,α↓
−

(r)

 . (3.25)
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Together with the solution for the ↑ block this is the exact analytical solution for an isotropic
semiconductor hole NW with circular cross section in a magnetic field parallel to the NW axis.
The coefficients α↓

± and c↓
± for the ↓ block are

α↓
± =

{
− 3

2γ
2
1 + γ1(ε+ κ

2 ) + γs(6γs − κ)

±
[
γ2

1

(
γ2

1 − 23
4 γ

2
s + 2γsε

)
− κ(γ1 − 2γs)

[
2γ2

1 + 3γ1γs + 2γs(ε− γs)
]

+ κ2(γ1 + γs)(γ1 − 2γs) + γ2
s (7γ2

s − 8γsε+ 4ε2)
]1/2

}
/(γ2

1 − 4γ2
s ) (3.26)

and

c↓
± =

(2α↓
± + 1) (γ1 − γs) + κ− 2ε

2
√

3γs

. (3.27)

The spinor in Eq. (3.25) immediately gives the dispersion relation similar to the one for the upper
block in Eq. (3.24)

c↓
−

c↓
+

=
Lm−2

α↓
−+1

(
R2

2

)
Lm

α↓
+

(
R2

2

)
Lm−2

α↓
++2

(
R2

2
)
Lm

α↓
−

(
R2

2
) . (3.28)

The implicit Eqs. (3.24) and (3.28) are solved numerically, yielding the energies εs
m(n). Note that

the eigenstates depend on n via α.

3.3.3 Orbital corrections of the g factor
The analytical solution of Hxy [see Eq. (3.15)] obtained in the previous section includes exactly
orbital and Zeeman effects and, thus, it allows us to directly derive the g factor of the NW. We
demonstrate that the orbital magnetic fields lead to a correction of the g factor by 400 % and
discuss the reason for this strong renormalization. Here, we focus on a rather large NW of radius
R = 20 nm where orbital effects are more pronounced.

Numerically solving Eq. (3.24) and Eq. (3.28), we directly calculate the g factor of the NW at
kz = 0. In Fig. 3.3(a) we present the energy spectrum of the NW as a function of the magnetic field
given in units of the radius-dependent magnetic field B0 = ℏ/eR2 = Φ0/πR

2 = 658.2 T × nm2/R2,
which is one flux quantum Φ0 = h/e through the cross section. We note that B/B0 = R2/l2B . By
considering a NW of radius R = 20 nm, we obtain B0 = 1.65 T.

For comparison we provide in Fig. 3.3(b) the spectrum for the same parameters without taking
orbital effects into account (A = 0). We calculate the spectrum by numerically diagonalizing the
discretized version of the Hamiltonian in Eq. (3.1). In both plots, at weak magnetic fields, there
is a large separation between the energies of the lowest two pairs of Kramers partners (orange and
blue lines) and the states further above. Within the range up to 2B0 the ground state is close
to the first excited state. However, only when orbital effects are taken into account, the first two
pairs of former Kramers partners are coupled, resulting in an avoided crossing, which causes the
orbital magnetic field induced reduction of the ground-state g factor.
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Figure 3.3: [(a),(b)] Energy spectrum of a Ge NW with circular cross section of radius R = 20 nm
as a function of B in units of the radius-dependent magnetic field B0 at kz = 0. The colors
indicate the Kramers partners. The solid (dashed) lines correspond to pseudospin ↑ (↓) states.
At B = 0 we observe Kramers degeneracy that is lifted by a finite magnetic field. (a) Energy
spectrum calculated semi-analytically by numerically solving Eqs. (3.24) and (3.28), in which we
include orbital effects. (b) Energy spectrum of the Hamiltonian H defined in Eq. (3.1) calculated
by numerically diagonalizing the discretized version of the Hamiltonian in Eq. (3.1) neglecting
orbital effects (lattice spacing 0.5 nm). The g factor is strongly renormalized due to orbital effects.
(c) The effective g factor geff [see Eq. (3.29)] obtained numerically using the lowest two states (blue
lines) of panels (a) and (b). The green line depicts the effective g factor without taking orbital
effects into account, while the blue line does take them into account. The latter has a maximum
at B̃ = 3.4B0. The effective g factor only depends on the ratio R2/l2B and is seen to be strongly
reduced by orbital magnetic field effects. (d) The position B̃ = 3.4B0 of the maximum of the
effective g factor from the panel (c) as a function of the radius R. For smaller radius the maximum
is located at stronger magnetic field. The functional dependence B̃ ∝ 1/R2 is indicated by the
blue line.

From the energies in Figs. 3.3(a) and 3.3(b) we directly deduce the effective g factor as the
difference between the ↓ and ↑ energies of the ground state Kramers partners

geff = ε↓
0 − ε↑

2
µBB

. (3.29)

Note that the QN m is different for the ↑ and ↓ ground states due to the operators a2 and (a†)2

in Hxy [see Eq. (3.15)]. In Fig. 3.3(c), we show the down-renormalization of the NW g factor by
400 % due to orbital effects. This large renormalization can be understood from the spectra shown
in Figs. 3.3(a) and 3.3(b). At B = 0, the ground state Kramers pair (blue lines) is close to the
first excited pairs (orange lines). At finite B, these pairs are coupled by orbital effects, yielding an
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avoided crossing [cf. Fig. 3.3(a)] that strongly reduces the g factor. Note that for the calculation
of the g factor without orbital effects we always take the difference between the dashed and solid
blue line and ignore the crossing with higher energy Kramers partners (orange and green lines).

Interestingly, we observe a maximum of the effective g factor with orbital effects of geff = 1.24
at the magnetic field B = B̃ = 3.4B0, which decreases at larger values of R. This trend is
illustrated in Fig. 3.3(d), where we show that B̃ ∝ 1/R2. We also provide the values of B̃ for some
specific radii and we conclude that the maximum of the g factor can be reached at realistic values
of magnetic fields only in rather wide NWs.

3.3.4 Effective Hamiltonian
We use the exact solution of the Hamiltonian at kz = 0 to construct a simple effective low-energy
theory that models the dynamics of holes in NWs and long QDs. We treat the kz-dependent
terms, Hzz and Hint, of the full ILK Hamiltonian HILK in Eq. (3.13) as perturbation. Applying
the definition of the Landau level operators a from Eq. (3.14), the interaction part Hint can be
rewritten in the spin basis (+3/2, −1/2, −3/2, +1/2) as

Hint

ℏωc
=

√
6γs


0 0 0 −a

0 0 a 0

0 a† 0 0

−a† 0 0 0

 lB . (3.30)

Using Eqs. (3.20) and (3.25), we calculate the eigenfunctions of Hxy [see Eq. (3.15)] which we
arrange in the four-dimensional spinors in the same spin basis

φ↑
m =

(
Ψ+3/2

m ,Ψ−1/2
m , 0, 0

)
, (3.31)

φ↓
m =

(
0, 0,Ψ−3/2

m ,Ψ+1/2
m

)
. (3.32)

In order to model the effects of external electric fields induced by the metallic gates, we consider
a multipole expansion of the electrostatic potential. In particular, we consider a homogeneous
electric field E = (Ex, Ey, 0) and a quadratic potential parametrized by a matrix δEij . Explicitly,
we consider the electrostatic energy in the form

HE = eExr cosφ+ eEyr sinφ (3.33)

+ e

2(δExx cos2 φ+ δEyy sin2 φ+ δExy cosφ sinφ)r2.

This potential accurately describes the electrostatic potential in several experimental setups com-
prising multiple gates [29]. As we are studying an isotropic NW with circular cross section, without
loss of generality, we now fix the direction of the homogeneous field to the x direction (Ey = 0).
The inhomogeneous term can be neglected in narrow NWs, while in thick NWs the inhomogeneous
electric field becomes relevant and we include it in our analysis.

The low-energy holes are well described by an effective Hamiltonian comprising the three
lowest Kramers partners. Explicitly, this Hilbert space is spanned by the six component basis
(φ↑

2, φ
↑
1, φ

↑
0, φ

↓
0, φ

↓
1, φ

↓
2) consisting of the lowest six states in Fig. 3.3(a) (at B = 0). The states cor-

respond to the solid-blue, solid-orange, solid-green, dashed-blue, dashed-orange, and dashed-green
lines in Fig. 3.3 in the order as they appear in the basis. For all these states the QN is n = 1 and if
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not stated otherwise we assume n = 1 in the following. States with larger n lie at higher energies
and, thus, are neglected here. In this basis the effective Hamiltonian Heff

LK can be expressed as

Heff
LK =

ℏ2k2
z

2m
↑
2

+ε↑
2+q↑

2 δE+ id↑
1Ex q↑δE− 0 α1kz 0

−id↑
1Ex

ℏ2k2
z

2m
↑
1

+ε↑
1+q↑

1 δE+ id↑
2Ex α2kz 0 0

q↑δE∗
− −id↑

2Ex
ℏ2k2

z

2m
↑
0

+ε↑
0+q↑

0 δE+ 0 0 0

0 α2kz 0 ℏ2k2
z

2m
↓
0

+ε↓
0+q↓

0 δE+ id↓
1Ex q↓δE−

α1kz 0 0 −id↓
1Ex

ℏ2k2
z

2m
↓
1

+ε↓
1+q↓

1 δE+ id↓
2Ex

0 0 0 q↓δE∗
− −id↓

2Ex
ℏ2k2

z

2m
↓
2

+ε↓
2+q↓

2 δE+


,

(3.34)

where we defined

δE+ = δExx + δEyy, (3.35)
δE− = δExx − δEyy − iδExy. (3.36)

We note that the parameters d↑,↓
1,2, q↑,↓, q↑,↓

0,1,2, and α1,2 are real and will be defined explicitly below.
The energies

εs
m = ⟨φs

m|Hxy +HZ + V |φs
m⟩ (3.37)

(s =↑, ↓) are obtained numerically from the implicit relations in Eqs. (3.24) and (3.28). The
expressions for effective masses ms

i (i = 0, 1, 2) consist of two contributions. The first one arises
from Hzz as

〈
φs

i

∣∣Hzz

∣∣φs
j

〉
, which simplifies to the matrix elements with i = j, since in our case

there are only diagonal matrix entries. The second contribution of order k2
z arises from Hint in

second-order perturbation theory and is also diagonal. The total effective mass is then given by [29]

ℏ2

2ms
i

= ⟨φs
i |Hzz|φs

i ⟩ +
∑
l,n

| ⟨φs
i |Hint|φs

l (n)⟩|2

εs
i − εs

l (n) . (3.38)

The sum runs over all states outside the considered subspace. We observe strong couplings
⟨φs

i |Hint|φs
l (n)⟩ to states with large n that lead to considerable perturbative contributions to

the effective mass. Thus, to ensure the convergence of the perturbation theory numerically, we
take into account states up to n = 10.

Next, we calculate the SOI terms that couple the ↑ and ↓ blocks as the following overlaps
between HH and LH states:

α1 =
√

6γsℏωclB

(〈
Ψ−1/2

2

∣∣∣a∣∣∣Ψ−3/2
1

〉
−
〈

Ψ+3/2
2

∣∣∣a∣∣∣Ψ+1/2
1

〉)
, (3.39)

α2 =
√

6γsℏωclB

(〈
Ψ−1/2

1

∣∣∣a∣∣∣Ψ−3/2
0

〉
−
〈

Ψ+3/2
1

∣∣∣a∣∣∣Ψ+1/2
0

〉)
. (3.40)

The electric dipole moments, which result from the first term of Eq. (3.33), are given by

ds
1 = e

2i

(〈
Ψ±3/2

2

∣∣∣r∣∣∣Ψ±3/2
1

〉
+
〈

Ψ∓1/2
2

∣∣∣r∣∣∣Ψ∓1/2
1

〉)
, (3.41)

ds
2 = e

2i

(〈
Ψ±3/2

1

∣∣∣r∣∣∣Ψ±3/2
0

〉
+
〈

Ψ∓1/2
1

∣∣∣r∣∣∣Ψ∓1/2
0

〉)
, (3.42)
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and the quadrupole moments from the second term are given by

qs = e

8

(〈
Ψ±3/2

2

∣∣∣r2
∣∣∣Ψ±3/2

0

〉
+
〈

Ψ∓1/2
2

∣∣∣r2
∣∣∣Ψ∓1/2

0

〉)
(3.43)

and

qs
i = e

4

(〈
Ψ±3/2

i

∣∣∣r2
∣∣∣Ψ±3/2

i

〉
+
〈

Ψ∓1/2
i

∣∣∣r2
∣∣∣Ψ∓1/2

i

〉)
(3.44)

(i = 0, 1, 2).
For a discussion of the behavior of the effective parameters as a function of the magnetic field

we refer to Appendix 3.C. In the next section, we construct an effective low-energy theory of the
two lowest energy states by integrating out the states at higher energy.

3.3.5 2 × 2 wire Hamiltonian
To obtain a simple NW Hamiltonian describing the two states lowest in energy, we start with
the Hamiltonian Heff

LK introduced in Eq. (3.34), resort to a second order perturbation theory, and
project onto the low-energy 2 × 2 subspace. This procedure is well justified when the energy scale
characterizing the holes in the z direction is much smaller than the subband gap ε↓

0 − ε↓
1. Without

strain and at weak B field, this condition puts a strong constraint on the possible confinement
energy in the z direction because the subband energy gap is rather small, cf. Fig. 3.3(a). Larger
values of the confinement along the NW can be achieved at stronger B fields or by considering
strain, as we discuss in Sec. 3.3.6. We now focus on the effect of the electrostatic potential.

Homogeneous electric field limit

We first consider a homogeneous electric field Ex. Since we are interested in the ground-state
(φ↑

2, φ
↓
0), we can restrict ourselves to the analysis of the ground state pair and the pair of states

(φ↑
1, φ

↓
1) coupled to it via the SOI α1,2 and the dipole coupling ds

1. The states φ↑
0 and φ↓

2 are
decoupled from the ground state, and thus we assume that they have only a weak influence. We
also introduce the following averages and differences of energies

ε↑
± = ε↑

1 ± ε↑
2

2 , (3.45)

ε↓
± = ε↓

1 ± ε↓
0

2 . (3.46)

Additionally, we define the angles

tan θs =
εs

− + Ωs

ds
1Ex

(3.47)

with s =↑, ↓ and with the energies

Ωs =
√

(ds
1Ex)2 +

(
εs

−
)2 (3.48)

being dependent on the electric field Ex. Next, we rotate the ↑ and ↓ blocks by θ↑ and θ↓,
respectively, as described in Appendix 3.D. Working with second-order perturbation theory and
projecting the results onto the ground-state subspace (φ↑

2, φ
↓
0), we obtain up to second order in kz

H2×2 = ℏ2

2m̄k2
z + 1

2

(
geffµBB + ℏ2k2

z

δm

)
σz − αsokzσy. (3.49)
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In some cases a cubic SOI term becomes relevant, which requires to extend the perturbation theory
to third order [88]. The effective g factor is electric field dependent and is given by

µBBgeff = ε↓
+ − ε↑

+ − Ω↓ + Ω↑. (3.50)

Moreover, the direct Rashba SOI [22, 24] is given by

αso =α1 cos
(
θ↓) sin

(
θ↑)− α2 cos

(
θ↑) sin

(
θ↓) (3.51)

=
d↓

1α1ε
↑
− − d↑

1α2ε
↓
−

ε↓
−ε

↑
−

Ex + O(E3
x), (3.52)

and it is linear at weak electric field. We also introduce the average effective mass

1
m̄

=
m↑

1 +m↑
2 − (m↑

1 −m↑
2) cos

(
2θ↑)

4m↑
1m

↑
2

+
m↓

0 +m↓
1 + (m↓

0 −m↓
1) cos

(
2θ↓)

4m↓
0m

↓
1

− m

ℏωcl2B

([
α1 sin

(
θ↑) sin

(
θ↓)+ α2 cos

(
θ↑) cos

(
θ↓)]2

ε↓
+ − ε↑

+ + Ω↑ + Ω↓

+
[
α1 cos

(
θ↑) cos

(
θ↓)+ α2 sin

(
θ↑) sin

(
θ↓)]2

ε↑
+ − ε↓

+ + Ω↑ + Ω↓

)
, (3.53)

and the spin-dependent mass

1
δm

=
m↑

1 +m↑
2 − (m↑

1 −m↑
2) cos

(
2θ↑)

4m↑
1m

↑
2

−
m↓

0 +m↓
1 + (m↓

0 −m↓
1) cos

(
2θ↓)

4m↓
0m

↓
1

+ m

ℏωcl2B

([
α1 cos

(
θ↑) cos

(
θ↓)+ α2 sin

(
θ↑) sin

(
θ↓)]2

ε↑
+ − ε↓

+ + Ω↑ + Ω↓

−
[
α1 sin

(
θ↑) sin

(
θ↓)+ α2 cos

(
θ↑) cos

(
θ↓)]2

ε↓
+ − ε↑

+ + Ω↑ + Ω↓

)
. (3.54)

We note that both masses δm and m̄ inherit an electric field dependence by the angles θs and
energies Ωs.

In Fig. 3.4(a), we study the effective g factor geff as a function of the electric field Ex for
different values of the magnetic field B (solid lines). For a comparison we provide results from
numerical calculations (dots) where we diagonalize the discretized version of the Hamiltonian in
Eq. (3.1) including the homogeneous electric field given by Eq. (3.33). The comparison shows that
the perturbation theory gives a good estimate for geff at weak electric field. At Ex ≈ 0.25 V µm−1

(Ex ≈ 0.5 V µm−1 and B ≥ 5 T) the perturbation theory starts to fail and predicts an unphysical
increase of geff . The effective SOI [cf. Fig. 3.4(b)] αso increases linearly at weak Ex according to
Eq. (3.52) [illustrated by the dashed lines in Fig. 3.4(b)], and it saturates at stronger electric field
(Ex ≳ 0.5 V µm−1). Due to orbital effects, we observe a decrease of αso with increasing magnetic
field. For the realization of MBSs in the Ge NW, a weak electric field is favorable because there
the effective g factor is not so strongly suppressed, enabling to reach the topological phase [52, 54,
58, 89] at lower magnetic fields, away from the critical magnetic field of the superconductor. We
note that, if the NW is in proximity to the thin bulk superconductor, there will be an additional
renormalization of NW parameters, so-called metallization [90–95], which needs to be taken into
account.
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Figure 3.4: Effective parameters of the effective 2 × 2 model H2×2 (solid lines) as a function
of the homogeneous electric field Ex for a Ge NW with radius R = 15 nm. The dots show the
same parameters calculated numerically with the Hamiltonian in Eq. (3.1) discretized in real space
(lattice spacing 0.25 nm). (a) Effective g factor geff according to Eq. (3.50). At weak B, the results
from perturbation theory are valid only at rather weak electric fields (Ex < 0.25 V µm−1) while at
strong B, the perturbation theory can be extended to Ex < 0.5 V µm−1. At stronger electric field
the perturbative g factor increases unphysically, while it should decrease and stay at a small value
as the numerical results show. (b) The effective SOI coefficient αso [cf. Eq. (3.51)] exhibits a linear
behavior at weak electric field as provided by the expansion of Eq. (3.52). At stronger electric field
αso saturates and with increasing B it decreases due to orbital effects. (c) Inverse average effective
mass 1/m̄ from Eq. (3.53) and (d) inverse spin-dependent mass 1/δm from Eq. (3.54). The average
mass can take negative values at weak electric field and approaches the average HH-LH mass m/γ1
at stronger Ex. The spin-dependent mass is zero at B = 0 due to time-reversal symmetry and
decreases with Ex at B ̸= 0. The electric field dependence of the mass terms and the SOI is
captured well by the perturbation theory up to Ex = 1 V µm−1. However, αso is underestimated
for strong electric fields. The mass terms from numerical calculations deviate visibly from the
perturbative result at Ex = 0 due to the limited number of states that can be taken into account
for the calculation of the term coming from Hint in Eq. (3.38) in the numerics.

In addition, in Figs. 3.4(c) and 3.4(d), we present the inverse average effective mass 1/m̄ and
spin-dependent mass 1/δm, respectively. Interestingly, the inverse average mass is negative at
weak electric field Ex ≲ 0.2 V µm−1 and B ≲ 9 T. It approaches the average HH-LH mass γ1/m
at stronger electric fields. As expected from time-reversal symmetry at B = 0, the inverse spin-
dependent mass term 1/δm = 0 [28]. It is relevant only at weak electric fields and we observe that
it vanishes at strong Ex. We find a simple formula for the inverse effective masses in the limit
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Ex → 0,

lim
Ex→0

m̄−1 = m↓
0 +m↑

2

2m↓
0m

↑
2

− m

ℏωcl2B

(
2α2

1

ε↑
+ − ε↓

+ +
∣∣∣ε↑

−

∣∣∣+
∣∣∣ε↓

−

∣∣∣ + 2α2
2

−ε↑
+ + ε↓

+ +
∣∣∣ε↑

−

∣∣∣+
∣∣∣ε↓

−

∣∣∣
)
, (3.55)

lim
Ex→0

δm−1 = m↓
0 −m↑

2

2m↓
0m

↑
2

+ m

ℏωcl2B

(
2α2

2

−ε↑
+ + ε↓

+ +
∣∣∣ε↑

−

∣∣∣+
∣∣∣ε↓

−

∣∣∣ − 2α2
1

ε↑
+ − ε↓

+ +
∣∣∣ε↑

−

∣∣∣+
∣∣∣ε↓

−

∣∣∣
)
. (3.56)

These formulas make manifest that the spin-dependent mass is dominated by the average mass
of the states φ↓

0 and φ↑
2 (m↓

0 ± m↑
2)/2m↓

0m
↑
2, but it acquires a correction by the SOI coefficients

α1,2. The results for the SOI and the mass terms from perturbation theory agree well with the
numerical results in the displayed range of electric field; the SOI is underestimated at strong Ex

by the perturbation theory.

Inhomogeneous electric field

In thick NWs, the approximation of a homogeneous electric field is not well-justified and there can
be corrections arising from inhomogeneity of the electric field [29], captured by the Hamiltonian
Heff

LK defined in Eq. (3.34). For simplicity we neglect the inhomogeneous electric field term δExy

in Eq. (3.33) since the final results for the effective parameters only depend on the absolute value
of the total inhomogeneous electric field. We find that the quadrupole moment terms can strongly
renormalize the effective parameters, in particular, the g factor at weak Ex.

In analogy to the homogeneous electric field limit, we derive an effective Hamiltonian H2×2

for the lowest two states in second order perturbation theory. We arrive at the same form of the
effective 2×2 Hamiltonian as in Eq. (3.49). However, the effective masses and the SOI depend now
also on the electric field gradient δE±, see Fig. 3.5. The electric field dependence of the effective
parameters is calculated perturbatively starting from the analytical result at Ex = δExx = δEyy =
0. We analyze the same electric field range as in Fig. 3.4 and focus on weak inhomogeneous
electric fields, where the qualitative dependence on Ex stays as for δExx = δEyy = 0. The effect
of the inhomogeneous electric field on the effective parameters displayed in Fig. 3.5 is strong at
weak homogeneous electric field. The main effect is coming from the diagonal quadrupole moment
terms qs

i (i = 0, 1, 2) which cause an enhancement of the subband gap between the lowest Kramers
pair and the states higher in energy. This enhancement results in a significant renormalization of
the g factor at δExx = δEyy = 10 V µm−2 where the off-diagonal quadrupole moment terms in the
Hamiltonian in Eq. (3.34) vanish. The effective g factor and the masses tend closer to zero with
increasing inhomogeneous electric field at Ex = 0. For the g factor this effect is overestimated
by the effective model while it is underestimated for the mass terms as the comparison to the
numerical results (dots) shows. As expected from Fig. 3.4(a) the effective model fails to predict
the electric field dependence of the effective g factor at strong homogeneous electric field correctly.
However, the effective model describes the SOI and the mass terms well.

3.3.6 Strain
In Ge/Si core/shell NWs, strain is a crucial feature required to increase the subband energy gap
between the lowest Kramers pair and the excited states [23, 24, 28]. A large subband gap is
required to define QDs because it ensures that the effective theory of H2×2 defined in Eq. (3.49)
is accurate even in short quantum dots with a large confinement potential along the z direction.
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Figure 3.5: Effective parameters of the 2 × 2 model described by H2×2 in Eq. (3.49) for a circular
Ge NW are shown here, including an inhomogeneous electric field δExx and δEyy calculated per-
turbatively (solid and dashed lines) and numerically by diagonalizing the Hamiltonian in Eq. (3.1)
including the inhomogeneous electric field term in Eq. (3.33) discretized in real space (dots) at
B = 2 T as a function of the homogeneous electric field Ex. Here, we assume the radius R = 15 nm
for the cross section of the NW and a lattice spacing of 0.25 nm for the numerical calculations. In
general the effect of the electric field gradient is pronounced at weak Ex. At Ex = 1 V µm−1 the ef-
fective parameters are renormalized only slightly by the inhomogeneous field. The main reason for
the renormalization of the parameters are the diagonal quadrupole moment terms qs

i (i = 0, 1, 2)
and thus we observe a strong effect at δExx = δEyy = 10 V µm−2 where the off-diagonal terms in
the Hamiltonian in Eq. (3.34) vanish. (a) The effective g factor geff is reduced by the inhomoge-
neous field at weak Ex. The effective model overestimates the effect of the inhomogeneous field
at weak Ex and becomes inaccurate at strong Ex in agreement with Fig. 3.4(a). (b) The effective
SOI strength αso decreases with increasing inhomogeneous field slightly. (c) The inverse average
effective mass 1/m̄ moves closer to zero at Ex = 0 and still approaches a value close to γ1/m at
strong electric field. (d) The inverse spin-dependent mass |1/δm| is reduced by the inhomogeneous
electric field at Ex = 0 and approaches zero at strong Ex. The SOI and the mass terms are well
described by the effective model as the comparison with the numerical result shows.

We describe the strain in Ge/Si core/shell NWs by the BP Hamiltonian HBP [see Eq. (3.7)],
which is ∝ J2

z . As a result, we can straightforwardly extend the analytical solution in Sec. 3.3.2
by including the effects of strain. Strain enters the solution by modifying the coefficients cs

± and
αs

± in Eqs. (3.23), (3.27), (3.22), and (3.26) to Eqs. (3.93), (3.94), (3.95), and (3.96) given in
Appendix 3.B.

In the inset in Fig. 3.6(a), we show how the effective g factor, geff , changes for different values
of strain. The strain energies in the range between |b|εs = 3.7 meV and |b|εs = 40 meV can be
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Figure 3.6: Effective parameters of the a strained core/shell NW of radius R = 15 nm according
to the effective 2 × 2 model, H2×2 in Eq. (3.49) (solid lines), as a function of the electric field
Ex for strain energy |b|εs = 15.7 meV (corresponds to γ = 0.1). Strain is included via the BP
Hamiltonian HBP defined in Eq. (3.7). The dots show the same quantities calculated numerically
by diagonalizing the Hamiltonian in Eq. (3.1) discretized in real space (lattice spacing 0.25 nm)
(a) The effective g factor [see Eq. (3.50)] is large at weak Ex and decreases throughout the whole
depicted range. The perturbatively calculated g factor deviates from this behavior at strong
electric field and increases after reaching a minimum as in Fig. 3.4(a). The inset in (a) shows geff
calculated semi-analytically according to Eqs. (3.24), (3.28), and (3.29) as a function of the strain
energy |b|εs at B = 0.01 T. The result is almost independent of the strength of the magnetic field.
Strain increases geff independently of the sign of |b|εs. For |b|εs ≥ 0, the ground state is LH and we
approach the LH g factor 2κ for infinite strain energy (red-dashed line). For |b|εs < 0, the ground
state becomes more and more HH-like and we obtain the HH g factor 6κ in the limit of infinite
negative strain energy (blue-dashed line). (b) In comparison to the results obtained without strain
[cf. Fig. 3.4(b)], αso [cf. Eq. (3.51)] is strongly reduced. The SOI is underestimated by the
perturbation theory at strong electric field. (c) With strain, 1/m̄ [cf. Eq. (3.53)] is positive also
at weak Ex. The ground state is now more LH-like, which manifests in the fact that 1/m̄ is closer
to the LH mass (γ1 + 2γs)/m than to the average HH-LH mass γ1/m. (d) The spin-dependence
of the effective mass [cf. Eq. (3.54)] becomes less relevant with strain even at strong B. Note that
with strain one needs to use the definitions for cs

± and αs
± given by Eqs. (3.93), (3.94), (3.95),

and (3.96) in Appendix 3.B to calculate the effective parameters. The numerics and perturbation
theory disagree at Ex = 0 due to the same reason given in the caption of Fig. 3.4. Numerics and
perturbation theory show both that 1/m̄ is almost constant with the electric field for the chosen
value of strain due to the enhanced subband gap.
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realized by varying the relative shell thickness of the Si shell around the Ge core from γ = 0.002
to γ = 0.4 [23]. While negative values of |b|εs are not reached in Ge/Si NWs, for completeness we
include these cases in our analysis. Such negative strain energies can occur in Ge NWs where the
outer shell comprises a material with a larger lattice constant than Ge. In this figure, we define
the g factor at B = 0.01 T. We also remark that in the inset in Fig. 3.6(a) we plot the absolute
value of geff. In fact, interestingly, strain can cause a change of sign of geff: with positive strain
energy the ground state is a ↑-state and the first excited state is a ↓-state, while with negative
strain energy the order is reversed. We note that a finite value of strain (positive or negative)
tends to increase |geff |. This enhancement of |geff | is caused by a reduced susceptibility of the NW
to orbital effects. In fact, in Fig. 3.3, we relate the reduction of g to the avoided crossing between
lowest and first Kramers pairs (blue and orange lines) induced by orbital effects. In the presence
of strain, at B = 0 the subband gap between these states is increased, thus pushing the avoided
crossing to larger values of B, and enhancing the effective g factor.

The enhanced g factor at small values of B is a noteworthy advantage to host MBSs and for
spin qubit applications. However, we point out that a prerequisite for the formation of MBSs
is proximity-induced superconductivity in the Ge NW, a requirement that strongly limits the
possible thickness of the Si shell (and thus the values of strain). In experiments proximity-induced
superconductivity was demonstrated at Si shell thicknesses between 1.5 nm and 3 nm [49, 96],
corresponding to strain energies between |b|εs = 15.7 meV and |b|εs = 26.5 meV in a Ge NW with
R = 15 nm. As shown in Fig. 3.6(a) these strain parameters are sufficient to significantly increase
the g factor at weak electric field compared to the result without strain in Fig. 3.4(a).

At positive strain energies, the ground state is given by φ↑
2 with the Kramers partner φ↓

0, as in
the case without strain. These states are almost exclusively LH at Ex = 0, and therefore, in the
limit of infinite positive strain energy, geff → 2κ [cf. red dashed line in the inset in Fig. 3.6(a)],
corresponding to the pure LH g factor. At negative strain, the ground state becomes φ↑

0 with the
Kramers partner φ↓

2 which becomes HH-like with increasing negative strain energy. At |b|εs → −∞
the ground state is purely HH and we obtain the HH g factor geff → 6κ [cf. blue dashed line in
the inset in Fig. 3.6(a)]. This trend is analogous to planar Ge heterostructures, see Sec. 3.4.

We now focus on a Ge/Si core/shell NW with |b|εs = 15.7 meV (γ = 0.1). We follow the
calculations presented in Appendix 3.D and we adapt the formulas from Sec. 3.3.5 to accommodate
for strain, by considering the energies given by Eqs. (3.24) and (3.28) with the coefficients in
Eqs. (3.93), (3.94), (3.95), and (3.96). The results are presented in Fig. 3.6. In comparison to the
results obtained before without strain (cf. Fig. 3.4), the g factor is strongly enhanced at small values
of Ex as expected from the inset in Fig. 3.6(a). Similar to the qualitative behavior of the g factor of
unstrained NWs, the perturbatively calculated geff in the presence of strain deviates form the result
from numerical calculations at strong electric field, compare Figs. 3.6(a) and 3.4(a). The SOI is
strongly reduced by strain [cf. Fig. 3.6(b)]. The slope in the linear regime as well as the maximum
value at stronger Ex is smaller than without strain because of the enhanced subband energy gap.
The perturbation theory underestimates the SOI strength at strong electric field. Moreover, the
strain regularizes the inverse average effective mass 1/m̄, which is approximately constant as a
function of Ex and remains positive even at Ex → 0, as shown in Fig. 3.6(c). The inverse mass
1/m̄ is enlarged by strain and it approaches the LH mass (γ1 + 2γs)/m [(γ1 + 2γs)/γ1 = 1.74]. As
can be seen from Fig. 3.6(d), strain also reduces the spin-dependent mass term.

3.4 One-dimensional channel

In this section, we analyze how the details of the confinement affect the parameters of the effective
model, H2×2, introduced in Eq. (3.49). In particular we consider a one-dimensional channel defined
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by gates in a planar Ge/SiGe heterostructure as shown in Fig. 3.1(b). The channel extends in the
z direction. We consider a HW confinement, see Eq. (3.19), in x direction, perpendicular to the
substrate, that models the interfaces between the Ge layer with width Lx and the SiGe layers. We
consider an electrostatic gate creating a harmonic confinement potential in the y direction given
by

U(y) = ℏγ1

2ml4y
y2. (3.57)

The confinement potential is parametrized by the harmonic confinement length ly. Here, we
consider ly = Lx/π in order to have comparable confinement in x and y direction. The magnetic
field is applied in the z direction, parallel to the channel. Strain is included via the BP Hamiltonian
Hch

BP given in Eq. (3.8). For our calculations we choose realistic values for the strain energy
compared to values typically measured in Ge/SiGe heterostructures (|b|εs ≈ 16 meV) [97] and we
also analyze the limit of weak strain.

In this architecture, we solve the problem by diagonalizing the Hamiltonian in Eq. (3.1) at
kz = 0 numerically directly including the electric field. For the numerical diagonalization of the
LK Hamiltonian we use the first 20 eigenstates of the harmonic oscillator in y direction and the
basis

fnx(x) =

√
2 sin

[
nx

(
x

Lx
+ 1

2

)]
√
Lx

(3.58)

with 0 < nx ≤ 20 in x direction, fulfilling the HW boundary conditions.
In Fig. 3.7, we present the results of our analysis where we consider a magnetic field of B = 2 T

along the channel and a homogeneous electric field Ex perpendicular to the substrate. We compare
the results for a channel of HW confinement length Lx = 26.6 nm and harmonic confinement length
ly = Lx/π = 8.5 nm (solid lines) for different values of the strain energy to a Ge/Si core/shell NW
of radius R = 15 nm and strain energy |b|εs = 15.7 meV (dashed lines). With these choices for the
confinement details, the areas of the cross sections in the two cases are comparable. We emphasize
again that the sign of the strain energy in planar Ge is opposite to the strain in the NW, see
Eqs. (3.7) and (3.8). Furthermore, we also make a comparison to a channel with a much smaller
cross section with Lx = 15 nm and ly = 15 nm/π = 4.8 nm (dot-dashed lines).

The one-dimensional channel geometry exhibits a few features that are different from those
observed in the NW. In particular, as shown in Fig. 3.7, only the SOI and the g factor exhibit
the same qualitative behavior in both the NW and channel geometry. In a channel with |b|εs =
−1.9 meV, we also observe at weak electric field quantitatively similar values of αso as in a NW
with |b|εs = 15.7 meV. In Fig. 3.7(a), we show that geff is significantly smaller in the channel than
in the NW and that it decreases with the amount of strain in the planar structure. In the channel
with smaller cross section, the electric field dependence of geff is reduced.

In Figs. 3.7(c) and 3.7(d), we analyze the inverse average and spin-dependent masses, respec-
tively. With increasing (negative) strain energy the inverse average mass 1/m̄ increases. Also the
qualitative behavior changes and instead of having a maximum that occurs for |b|εs = −1.9 meV,
at larger strain energies, 1/m̄ decreases monotonically with Ex. This trend is in contrast to the
monotonic increase of the inverse averages mass in the Ge/Si NW. Interestingly, the inverse spin-
dependent mass is positive in the channel, while it is negative for the NW with respect to the g
factor. As in the NW geometry, also in the channel geometry the spin-dependent mass is most
relevant at Ex → 0 and for small values of strain, and it is negligible otherwise.
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Figure 3.7: Effective parameters of a gate-defined one-dimensional channel in a Ge/SiGe het-
erostructure as a function of the electric field perpendicular to the heterostructure plane (Ex)
with a magnetic field along the channel (B = 2 T). The solid lines show the numerical results
(calculated as described in the main text) for the channel with a HW confinement of length
Lx = 26.6 nm in x direction and a harmonic confinement in y direction with harmonic con-
finement length ly = Lx/π = 8.5 nm for different values of the strain energy |b|εs indicated by
the legend. The dash-dotted lines show the same for HW confinement length Lx = 15 nm for
|b|εs = −15.7 meV. The dashed lines show the results for a Ge/Si core/shell NW of Radius
R = 15 nm with |b|εs = 15.7 meV calculated numerically by diagonalizing the Hamiltonian in
Eq. (3.1) discretized in real space (lattice spacing 0.25 nm). Strain is included for the NW via
the BP Hamiltonian HBP from Eq. (3.7) and for the channel via the BP Hamiltonian Hch

BP from
Eq. (3.8). The g factor and SOI of the channel exhibit the same qualitative behavior as the NW,
while the mass terms are different in the two different geometries. (a) The effective g factor of the
channel is much smaller than for the NW. A decrease of the channel cross section (dash-dotted
line) leads to a weaker dependence on the external electric field and a slightly larger g factor. (b)
The SOI of the channel with Lx = 26.6 nm and |b|εs = −1.9 meV is quantitatively in the same
range as the SOI of the NW at weak electric field. With increasing strain in the channel, the SOI
decreases. (c) While the NW exhibits an inverse average effective mass that increases, the same
quantity decreases with Ex in the channel except for |b|εs = −1.9 meV where a maximum occurs
at Ex = 0.8 V µm−1. Generally, 1/m̄ is smaller in the channel than in the NW. (d) The inverse
spin-dependent mass has an opposite sign in the channel with respect to the NW.
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3.5. Curved quantum well

3.5 Curved quantum well

In the following, we consider a CQW as sketched in Fig. 3.1(c). The confinement for the CQW is
given by

V (r) =


∞, r =

√
x2 + y2 < R,

0, R < r < R1,

∞, r > R1

(3.59)

where the radii are defined as in Fig. 3.1(c). The strain induced into the Ge shell is modeled by the
BP Hamiltonian HCQW

BP defined in Eq. (3.9), as discussed in Ref. [31]. The longitudinal and radial
strain energies can be engineered individually by the radii of the inner and outer shell, R1 and R2,
see Eqs. (3.11) and (3.12). Only the longitudinal strain energy |b|εz depends on the thickness of
the outer shell.

We now calculate the energy spectrum of the CQW as a function of the magnetic field by
numerically diagonalizing the discretized version of the Hamiltonian in Eq. (3.1) where we account
for the BP Hamiltonian HCQW

BP defined in Eq. (3.9) and the confinement introduced above. Orbital
effects are crucial in the CQW as illustrated by Fig. 3.8 and discussed in Ref. [31]. A comparison
between Fig. 3.8(a) [with orbital effects] and Fig. 3.8(b) [without orbital effects] clearly illustrates
the strikingly different magnetic field dependence of the system properties when orbital effects
are included. In particular, there is a number of level crossings when orbital magnetic field is
accounted for. Only at weak magnetic field (B < 1 T), the levels in Fig. 3.8(a) do not cross, thus,
in the following we focus on the regime of weak magnetic field.
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Figure 3.8: Energy spectrum of a CQW as a function of the magnetic field B at kz = 0 calculated
by numerically diagonalizing HILK+HCQW

BP +HZ +V (a) including orbital effects and (b) neglecting
orbital effects. Orbital effects have a huge impact on the evolution of the energy states with the
magnetic field. Only at weak B < 1 T the levels in the panel (a) do not cross. The colors indicate
Kramers partners. The inner core radius is given by R = 15 nm. The thin outer Ge shell is defined
by R1 = 25 nm and R2 = 35 nm. We use a lattice spacing of 0.5 nm.

The states in the CQW are close in energy even with strain [31], thus, we cannot accurately
include an electric field perturbatively. As a result, we include a homogeneous electric field perpen-
dicular to the NW numerically. The results we obtain by this approach are presented in Fig. 3.9.
We compare the effective g factor and the SOI strength for different radii R as well as with and
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3.5. Curved quantum well

without including orbital effects. We consider a Ge shell of width R1 −R = 10 nm and the outer Si
shell R2 −R1 = 10 nm. The strain energies for the different radii considered in Fig. 3.9 are provided
in Table 3.1. With increasing core radius R the longitudinal strain component εz decreases quickly
and becomes negligible at R = 25 nm. In contrast, the radial strain component εr increases with
the core radius.
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Figure 3.9: (a) Effective g factor geff and (b) SOI αso of a CQW (R1 −R = 10 nm and R2 −R1 =
10 nm) as a function of the electric field Ex at kz = 0 and B = 0.1 T calculated by numerically
diagonalizing the Hamiltonian in Eq. (3.1) accounting for strain via HCQW

BP defined in Eq. (3.9)
and the homogeneous electric field via HE = −eExx. (a) The solid (dashed) lines correspond
to the results calculated including (excluding) orbital effects. At weak Ex ≲ 0.05 V µm−1, the
lowest energy states are close and influence each other strongly. If Ex is increased, the subband
gap between the ground state Kramers pair and the excited states also increases, resulting in a
constant g factor. At moderate electric field, geff is smaller when orbital effects are taken into
account. The dash-dotted lines in the right of the panel (a) correspond to geff obtained from
Eq. (3.60), which is valid at strong Ex. (b) We find that αso is the same with and without orbital
effects. The SOI increases rapidly at weak Ex and then stays constant at a large value. We use a
lattice spacing of 0.5 nm.

Table 3.1: Longitudinal (|b|εz) and radial (|b|εr) strain energy in the CQW according to Eq. (3.11)
and Eq. (3.12), respectively, for the inner radii chosen for Fig. 3.9. The Ge shell thickness is fixed
at R1 −R = 10 nm and the outer shell radius is fixed at R2 −R1 = 10 nm.

R (nm) 10 15 25

|b|εz (meV) 15.6 7.8 0.65

|b|εr (meV) 62.6 79.2 97.8

Importantly, a finite electric field causes an increase of the small subband gap between the
ground state Kramers pair and the excited states shown in Fig. 3.8 [31]. Due to the small subband
gap at weak electric field, the effective g factor in Fig. 3.9(a) changes rapidly. It becomes a
rather constant function of the electric fields above a certain critical field. An almost electric-field-
independent geff is a critical advantage for spin qubit applications because it strongly suppresses
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the susceptibility to charge noise [98, 99], a key issue in hole NWs [18, 19]. We anticipate that
the large g factor for R = 10 nm can acquire significant corrections coming from the high energy
holes, as we will discuss in Sec. 3.6. Despite the weak magnetic field of B = 0.1 T, the g factor is
enhanced considerably at weak electric field (Ex < 0.1 V µm−1) due to orbital effects. For small
radius, the orbital effects reduce the g factor at strong electric field. The main reason for the g
factor to decrease with increasing radius R is not the weaker confinement in the larger cross section
but the larger value of radial strain (cf. Table 3.1).

Analytical calculations analogous to the ones in Ref. [31] predict that the g factor at strong
electric fields is independent of orbital effects and reduces to

geff = 6κ |b|εz

|b|εz + 2|b|εr + 2ℏ2π2γs

m(R1−R)2

. (3.60)

We show the predicted value as dot-dashed lines on the right side of Fig. 3.9. The analytical
formula provides a good estimation for the g factor for thin Ge shells and large values of |b|εz

but we observe that it also reasonably captures the g factor at rather small values of longitudinal
strain and thick shells. In the latter cases, there are small variations of geff by orbital effects. These
variations however do not change the slope of the curves and geff remains a rather flat function of
Ex.

In contrast to the g factor, the SOI strength [cf. Fig. 3.9(b)] is not influenced by the orbital
magnetic field at this value of the magnetic field for any of the chosen values of R. At weak
electric field the SOI increases rapidly and then remains constant at a large value. This behavior
is extremely advantageous for various spin qubit applications because it removes the need of fine-
tuning the electric field to reach the maximal value of αso. The SOI could still be switched off
completely at Ex = 0. In contrast to the g factor, the SOI depends mainly on the radius and less
on the strain energy. We note that even at weak electric field where the g factor remains sizable
the SOI can also be large (at Ex = 0.06 V µm−1 and R = 10 nm: geff = 3.3 and αso = 15 meV nm),
which makes this platform suitable to find Majorana bound states.

3.6 Corrections to the model

In this section, we resort to fully numerical calculations using a discretized model in real space to
analyze the validity of the analytical results in the presence of additional effects including split-off
holes and cubic anisotropies. We focus here on cylindrical Ge/Si core/shell NWs and on CQWs.

3.6.1 Spin-orbit split-off band
In the following we explore the effect of the spin-orbit SOB on the effective g factor, the SOI, and
the effective mass of Ge NWs and CQWs. We calculate the effective parameters with a 6 × 6 LK
Hamiltonian (cf. Appendix 3.E) taking into account the two LH, the two HH and the two split-off
hole states. To study the effect of the SOB, here, we restrict our analysis to the isotropic 6 × 6
LK Hamiltonian (γ2 = γ3 = γs). The spin-orbit gap for Ge is ∆SO = 296 meV [74]. However,
despite this large gap, the SOB renormalizes the parameters of the effective model and causes a
considerable quantitative change in the system. Note that the spin of the split-off holes is truly
1/2 while the LHs correspond to the ±1/2 eigenvalues of the spin-3/2 matrix Jz.

Ge nanowire

Our result from numerical calculations of the g factor of a Ge NW is presented in Fig. 3.10. Due
to the SOB, the effective g factor at Ex = 0 depends on both R/lB and ∆SO/ℏωc. By comparing
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with Fig. 3.3(c), we observe that qualitatively the dependence of geff on B still resembles the one
obtained for the 4 × 4 LK Hamiltonian but the SOB tends to reduce geff, especially in NWs with
a small radius. With increasing radius the 4 × 4 LK Hamiltonian becomes more accurate because
the confinement energy ∝ 1/R2 becomes smaller compared to ∆SO, and the states in the SOB are
well-separated from the low-energy HH-LH subspace. More precisely, in Table 3.2, we show the
dependence of the position (at B = B̃) and value [geff(B = B̃)] of the maximum of geff for the five
radii used in Fig. 3.10. At R = 20 nm the maximum value of geff deviates only 8% from the value
of 1.24 obtained without accounting for the SOB, thus justifying the analysis in Sec. 3.3.
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Figure 3.10: Effective g factor geff of a Ge NW with circular cross section as a function of the
magnetic field (in units of B0 = 658.2 T × nm2/R2) calculated numerically using the 6 × 6 LK
Hamiltonian H6×6 (given in Appendix 3.E), which takes into account the spin-orbit SOB. For
comparison we provide geff without the spin-orbit SOB (dashed line) calculated semi-analytically
according to Eqs. (3.24), (3.28), and (3.29). The spin-orbit SOB causes a decrease of geff that is
larger at small R. We use a lattice spacing of 0.5 nm.

Table 3.2: The position (B̃) and value (geff,max) of the maximum of the effective g factor in Ge
NWs with circular cross section for different radii obtained numerically to include the SOB.

Radius R (nm) 8 10 12 15 20

B̃ (T) 39.1 24.0 16.0 9.8 5.5

geff,max 0.85 0.95 1.02 1.08 1.14

We study the effect of an electric field by numerically diagonalizing the discretized version of the
Hamiltonian in Eq. (3.1) and show the results in Fig. 3.11. We compare numerical results obtained
numerically by including the SOB with the results obtained from the 4 × 4 ILK Hamiltonian HILK
[cf. Eq. (3.5)]. The holes in the SOB are more effective at small values of R. Thus, to emphasize
their effect, here, we present the results of a simulation of a NW of a small radius R = 8 nm. The
SOB does not alter the qualitative behavior of the effective parameters, however, these states can
renormalize the values quantitatively. In particular, in Fig. 3.10(a) and (b), we show that geff is
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3.6. Corrections to the model

reduced by the SOB also at finite Ex and that the effective SOI αso is only weakly renormalized
even in narrow NWs, respectively. The effective masses also acquire corrections because of the
SOB, which are more pronounced at small values of Ex, see Figs. 3.11(c) and (d). At stronger
electric fields, the influence of the SOB on both mass terms becomes negligible.
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Figure 3.11: Effective parameters of a Ge NW with circular cross section as a function of the electric
field Ex calculated numerically with the 6 × 6 LK Hamiltonian H6×6 (given in Appendix 3.E),
which takes into account the spin-orbit SOB (solid lines). For comparison we provide the result
without the spin-orbit SOB (dashed lines). We choose a relatively small radius R = 8 nm since the
influence of the SOB is stronger for stronger confinement. (a) As we already know from Fig. 3.10,
the effective g factor is reduced when the SOB is included. However, the qualitative Ex dependence
stays the same. (b) The spin-orbit SOB reduces αso only slightly. The correction is smallest at
weak electric field. (c) At weak Ex, |1/m̄| is reduced due to the influence of the SOB. In addition,
with the SOB, the average mass is negative at weak and positive at strong electric fields. (d) The
SOB influences |1/δm| only slightly towards a smaller value. As for the average mass the correction
is largest at weak Ex. For all effective parameters, the difference between B = 0.1 T and B = 10 T
is small in agreement with the results presented in Fig. 3.6. We use a lattice spacing of 0.16 nm.

Our findings confirm that, in most cases, the SOB only causes a quantitative correction to the
4×4 LK Hamiltonian defined for a Ge NW. This correction is rather small in wide NWs but it can
be significant in narrow NWs and should be included in these cases to have an accurate description
of the system.

Curved quantum well

The effect of the SOB on the g factor and the SOI strength of CQWs is shown by Fig. 3.12. In order
to account for strain, in our numerical calculations, we resort to the 6×6 BP Hamiltonian given in
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3.6. Corrections to the model

Appendix 3.E, see Eq. (3.106). Again, we compare the results obtained with the 4×4 Hamiltonian
neglecting the SOB (solid lines) to the results where the SOB is accounted for (dashed lines). In
analogy to Ge/Si core/shell NWs, in CQWs, the effects of the SOB are strongest in NWs with small
radii, resulting in a renormalization of geff by up to 20% at R = 10 nm and Ex = 1.0 V µm−1. This
correction is comparable to what we observe in the Ge NW of radius R = 8 nm [cf. Fig. 3.11(a)].
For weaker confinement and larger R the renormalization due to SOB becomes negligible. The
SOB affects the SOI [cf. Fig. 3.12(b)] in a similar way.
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Figure 3.12: Numerically calculated (a) effective g factor geff and (b) SOI strength αso of a CQW
with R1 −R = 10 nm and R2 −R1 = 10 nm [cf. Fig. 3.1(c)] as a function of the electric field Ex at
kz = 0 and B = 0.1 T. The dashed lines depict the results calculated with the 6×6 LK Hamiltonian
H6×6 given in Appendix 3.E, which includes the spin-orbit SOB. The solid lines correspond to the
results obtained without including the SOB. Only for strong confinement (R = 10 nm) the split-off
holes renormalize both the g factor and the SOI strength. For weaker confinement the influence
of the split-off holes is negligible. We use a lattice spacing of 0.5 nm.

3.6.2 Cubic Luttinger-Kohn anisotropies
In this subsection, we discuss the effects of anisotropy on the effective parameters of a Ge/Si
core/shell NW and of a CQW. In addition, we investigate the validity of the ILK Hamiltonian
HILK defined in Eq. (3.5). Here, we calculate the effective parameters numerically by using the
general LK Hamiltonian HLK provided in Eq. (3.2).We focus on rather wide NWs, thus, we neglect
the SOB. If we include the cubic anisotropies of the LK Hamiltonian, the growth direction of the
NW becomes relevant [24, 29]. Here, we consider the three situations introduced in Sec. 3.2, where
the NW is grown along z ∥ [001], z ∥ [110], and z ∥ [111], and compare these cases to the results
obtained from the ILK Hamiltonian.

Ge/Si core/shell nanowire

In Fig. 3.13, we show geff at Ex = 0 in a Ge/Si core/shell NW as a function of the magnetic field
applied parallel to the NW axis. Comparing to the result obtained within the ILK approximation
(black-dashed line), we observe that the anisotropies reduce the g factor, especially, when the z
axis is not aligned to a main crystallographic axis. In fact, when z ∥ [001], the g factor agrees well
with the ILK but, at z ∥ [110] or z ∥ [111], geff is significantly smaller. For a more anisotropic
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material such as Si, we expect a larger difference between different growth directions but we do
not analyze this case here.
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Figure 3.13: Effective g factor geff of a strained Ge/Si core/shell NW with circular cross section as
a function of B (in units of B0 = 658.2 T × nm2/R2) calculated numerically for different growth
directions. Here, we fix strain to |b|εs = 15.7 meV. For comparison, we also provide the result
obtained from the ILK Hamiltonian (black dashed line). The [001] NW growth direction matches
the isotropic result well. The growth directions [110] and [111] exhibit the same qualitative behavior
of the g factor as the isotropic result. However, quantitatively for these growth directions geff is
smaller. We use a lattice spacing of 0.5 nm.

In the following, we include a homogeneous electric field perpendicular to the NW axis and
diagonalize the Hamiltonian in Eq. (3.1) disrectized in real space. As we account for anisotropies,
the effective parameters depend on the direction of the electric field. In Fig. 3.14 we compare the
results for the effective parameters of NWs of the three growth directions [001], [110], and [111]
and an isotropic NW as a function of the direction of the electric field. We plot the results at
B = 2 T and at a rather strong electric field, E = 2 V µm−1, where we expect a large effect of
the anisotropies. However, for all three growth directions the parameters only weakly depend on
the direction of the electric field, suggesting that the IA is a good approximation to describe Ge
NWs even at strong electric fields. The effective g factors for the [110] and [111] growth directions
deviate quantitatively from the result obtained with the isotropic LK Hamiltonian. For the NW
grown parallel to the [110] direction the SOI depends on the direction of the electric field with
a maximum of αso = 31.2 meV nm at E ∥ [1̄10] (φ = π/2). The effective mass terms are well
described by the IA. As expected from Sec. 3.3.6, the inverse average effective mass is positive
because we are analyzing a strained Ge NW. In addition, it is larger than the average HH-LH
mass γ1/m. We find that 1/δm is small and negative, in agreement with the isotropic results
shown in Fig. 3.6(d).

In summary, the ILK Hamiltonian HILK is well suited to describe the behavior of Ge/Si
core/shell NWs grown along the [001], [110], or [111] direction. A more detailed analysis tak-
ing in to account anisotropies only gives quantitative corrections.
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Figure 3.14: Effective parameters of a strained Ge/Si core/shell NW with circular cross section of
radius R = 15 nm as a function of the electric field direction represented by the angle φ calculated
numerically (B = 2 T, E = 2 V µm−1, and |b|εs = 15.7 meV) by diagonalizing the discretized
version of the Hamiltonian in Eq. (3.1). The NW growth direction is fixed to z ∥ [110] with E ⊥ z.
For φ = 0, E ∥ [001], whereas, for φ = π/2, E ∥ [1̄10], and, for φ = π, E ∥ [001̄]. Except for the
SOI for the [110] growth direction the parameters depend only weakly on the growth direction of
the NW. (a) Regardless of the growth direction of the NW the g factor is to a good approximation
independent of the electric field direction. Quantitatively the IA gives a good estimate for the
g factor of a NW grown along one of the main crystallographic axes. For the growth directions
[110] and [111] the g factor is smaller than expected from the IA. (b) Only for the [110] growth
direction the SOI depends on the direction of the electric field significantly and we find a maximum
at E ∥ [1̄10]. The IA gives a good estimate for the average SOI. [(c),(d)] The effective mass terms
depend only slightly on the direction of the electric field and agree on average well with the results
from the isotropic LK Hamiltonian. As expected at strong electric field the spin-dependent mass
term approaches zero.

Curved quantum well

Finally, in Fig. 3.15, we analyze the effect of anisotropies on the properties of the CQW. As
in Fig. 3.14, we rotate the electric field around the z direction keeping it perpendicular to the
NW. Here, we fix the strength of the electric field to E = 0.5 V µm−1 and consider the three
growth directions introduced in Sec. 3.2. We observe that the g factor and the SOI strength
obtained by the ILK Hamiltonian HILK are between the values estimated by using the anisotropic
LK Hamiltonian. Similarly to the core/shell NW, the effective g factor of the CQW is to good
approximation independent of the angle φ of the electric field for the z ∥ [001] and z ∥ [111] growth
directions. The dependence on φ is more pronounced at z ∥ [110]. For this growth direction and
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for E ∥ x ∥ [11̄0], the g factor is maximal and has a value of 0.87. Moreover, in z ∥ [111]-CQWs,
the SOI oscillates between αso = 17.5 meV nm and αso = 21.5 meV nm with a π/3 periodicity,
as expected from Ref. [28]. In contrast, in the z ∥ [001]-CQWs the periodicity is π/2 and it is
π in z ∥ [110]-CQWs. We also point out that in analogy to core/shell NWs [see Fig. 3.14], the
amplitudes of the oscillations of geff and αso increase at larger values of the electric field (not show
here).
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Figure 3.15: Numerically calculated (a) effective g factor geff and (b) SOI αso of a CQW with
R = 15 nm, R1 = 25 nm, and R2 = 35 nm [see Fig. 3.1(c)] as a function of the angle φ that
determines the direction of the electric field. We consider the three growth directions indicated by
the legend and compare the results to the effective parameters calculated applying the isotropic
approximation (IA) of the ILK Hamiltonian HILK. The g factor and the SOI strength in the
isotropic case lie in between the values obtained for the different growth directions in the anisotropic
case. The g factor is smallest for the [001] growth direction and largest for [110] if, in addition,
E ∥ x. For the [110] growth direction, the g factor strongly depends on the direction of the electric
field and shows a π periodicity. In contrast, for [111], the g factor is almost constant. Also for the
NW grown along [001], the oscillations are small. The SOI is largest for the [001] growth direction.
Interestingly, the SOI is almost constant for the bent shell grown along [001]. For [111], it oscillates
with periodicity π/3. Similarly to the g factor, the SOI for [110] strongly depends on the direction
of the electric field. Here, we choose E = 0.5 V µm−1 and B = 0.1 T. We use a lattice spacing of
0.5 nm.

From these results, we conclude that the ILK Hamiltonian in CQWs provides a reasonable
qualitative approximation but a more detailed analysis of the LK anisotropies is required to have
a good quantitative description of the system, especially in CQWs grown along the [110] direction,
where the effect of the cubic anisotropies is enhanced.

3.7 Conclusions

We presented a low-energy effective model that describes holes confined in a NW with a magnetic
field parallel to the NW axis and in a perpendicular electric field. We discussed the bulk solution
for holes in isotropic semiconductors, where we include the orbital effects of the magnetic field
exactly, as well as we extend this result to NWs, providing an analytical solution for holes in
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isotropic semiconductor NWs. These effects are found to be essential to accurately describe the
properties of the NW.

In particular, we observe a strong renormalization of the effective g factor due to orbital effects
even at small values of the external magnetic field. By using a second-order perturbation theory,
we also analyze the effects of homogeneous and inhomogeneous electric fields. The homogeneous
electric field decreases the effective g factor but enables a strong SOI. The average effective mass
changes sign and the spin-dependent mass vanishes with increasing electric field. The inhomoge-
neous electric field has a strong effect at weak electric field where it leads to a decrease of the g
factor. We also include strain in the system, which enhances the subband gap, thus, yielding a
reduced HH-LH coupling. This effect increases the g factor but decreases the SOI.

We study also the low-energy physics of holes confined in a gate-defined one-dimensional channel
and we predict a similar behavior of the g factor and SOI as in a Ge NW but with some qualitative
differences in the average and spin-dependent effective mass, which are in this case only weakly
dependent on the electric field. We also examine holes in a CQW, where we predict a g factor
independent of the electric field in a wide range of parameters. This feature is relevant for spin
qubits in quantum dots because it reduces the susceptibility to charge noise, a major decoherence
channel in current devices. Orbital effects are also found to be extremely important in CQW,
yielding an enhanced g factor at weak electric fields.

We predict that the spin-orbit split-off band causes a small quantitative correction of the
effective parameters in Ge NWs. For particularly thin NWs and CQWs, this effect becomes more
relevant, however, the qualitative behavior remains unchanged. By a comparison of our results
form calculations with the IA to results where anisotropies are taken into account we find a good
agreement justifying the application of the IA.

Acknowledgments. We thank Monica Benito and Christoph Kloeffel for useful discussions and
comments. This work is supported by the Swiss National Science Foundation (SNSF) and NCCR
SPIN (grant number 51NF40-180604).

3.A Bulk dispersion relation

In this Appendix, we show how to calculate the bulk dispersion relation for holes including orbital
effects. We consider the LK Hamiltonian in Eq. (3.2). In the symmetric gauge A = (−y, x, 0)B/2,
using the Landau ladder operators from Eq. (3.14), the Hamiltonian explicitly reads in the spin
basis (+3/2,+1/2,−1/2,−3/2),

HLK

ℏωc
=


γz

−k2
z

2 +γ+(a†a+ 1
2 ) −

√
6γsakz −

√
3γsa2 0

−
√

6γsa†kz

γz
+k2

z

2 +γ−(a†a+ 1
2 ) 0 −

√
3γsa2

−
√

3γs(a†)2 0
γz

+k2
z

2 +γ−(a†a+ 1
2 ) √

6γsakz

0 −
√

3γs(a†)2 √
6γsa†kz

γz
−k2

z

2 +γ+(a†a+ 1
2 )

 , (3.61)

where γz
± = (γ1 −2γs)/2. Adding the Zeeman Hamiltonian from Eq. (3.4) leads to the Schrödinger

equation

O1(N, k2
z)φ1 =

√
2akzφ2 + a2φ3, (3.62)

O2(N, k2
z)φ2 =

√
2a†kzφ1 + a2φ4, (3.63)

O3(N, k2
z)φ3 = −

√
2akzφ4 +

(
a†)2

φ1, (3.64)

O4(N, k2
z)φ4 = −

√
2a†kzφ3 +

(
a†)2

φ2, (3.65)
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with energies normalized by ℏωc, lengths normalized by lB , and the components of the wave
function φi, i = 1, 2, 3, 4. The operators Oi = Oi(N, k2

z) are the diagonal entries of the Hamiltonian
in Eq. (3.61) plus the Zeeman term minus the energy eigenvalue ε, explicitly given by

O1 = 1√
3γs

(
γz

−
2 k2

z + γ+

(
N + 1

2

)
− ε+ 3κ

2

)
, (3.66)

O2 = 1√
3γs

(
γz

+
2 k2

z + γ−

(
N + 1

2

)
− ε+ κ

2

)
, (3.67)

O3 = 1√
3γs

(
γz

+
2 k2

z + γ−

(
N + 1

2

)
− ε− κ

2

)
, (3.68)

O4 = 1√
3γs

(
γz

−
2 k2

z + γ+

(
N + 1

2

)
− ε− 3κ

2

)
, (3.69)

where we define the number operator N = a†a. In the following we will make use of the relation
a†a = aa† − 1, which implies amOi(N, k2

z) = Oi(N + m, k2
z)am and

(
a†)m

Oi(N, k2
z) = Oi(N −

m, k2
z)
(
a†)m, m ∈ N. Multiplying Eq. (3.63) by

(
a†)2 and Eq. (3.64) by a2 from the left side yields(

2k2
za

†a+
(
a†)2

a2
)
φ4 = −

√
2a†kzO3(N, k2

z)φ3 +
(
a†)2

O2(N, k2
z)φ2, (3.70)(

2k2
zaa

† + a2 (a†)2)
φ1 =

√
2akzO2(N, k2

z)φ2 + a2O3(N, k2
z)φ3, (3.71)

respectively. Since the left side of these equations contains only the operators k2
z and combinations

of a and a†, it can be rewritten in terms of N , and thus, this part of the equations commutes with
Oi(N, k2

z). Thus, applying O4(N, k2
z) to Eq. (3.70) and O1(N, k2

z) to Eq. (3.71) results in

a†A(N + 2, k2
z)φ2 =

√
2kzB(N + 1, k2

z)φ3, (3.72)
√

2kzC(N − 1, k2
z)φ2 = −aD(N − 2, k2

z)φ3, (3.73)

with

A(N, k2
z) =N(N + 2k2

z − 1) −O4(N, k2
z)O2(N − 2, k2

z), (3.74)
B(N, k2

z) =N(N + 2k2
z − 1) −O4(N, k2

z)O3(N − 1, k2
z), (3.75)

C(N, k2
z) =N2 + 3N + 2 + 2k2

z(N + 1) −O1(N, k2
z)O2(N + 1, k2

z), (3.76)
D(N, k2

z) =N2 + 3N + 2 + 2k2
z(N + 1) −O1(N, k2

z)O3(N + 2, k2
z). (3.77)

Acting with
√

2kzC(N − 2, k2
z) on Eq. (3.72) finally results in the implicit dispersion relation

2k2
zC(n̄− 2, k2

z)B(n̄+ 1) + n̄A(n̄+ 1, k2
z)D(n̄− 2, k2

z) = 0 (3.78)

with n̄ being the integer eigenvalue of N , i.e., Nφ3 = n̄φ3. We can solve this equation for the
energies ε, which yields the bulk dispersion relation depicted in Fig. 3.2.

We also discuss the bulk solution excluding orbital effects. In this case, we only need to
diagonalize the ILK Hamiltonian given in Eq. (3.5) where Horb = 0 and π = k, which can easily
be done by applying the unitary transformation

U = eiθJyeiφJz . (3.79)
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We then obtain the diagonal matrix

UHLKU
† = ℏ2

2m
(
γk − 2γsJ

2
z

)
k2, (3.80)

which yields two degenerate states with parabolic dispersion relation (k = |k|). The rotation
angles depend only on the direction of k and are given by

θ = arccos
(
kz

k

)
∈ [0, π), (3.81)

φ = arctan2 (ky, kx) ∈ (−π, π], (3.82)

with

arctan2(y, x) =


2 arctan

(
y

x+
√

x2+y2

)
if x > 0∥ y ̸= 0,

π if x < 0 ∧ y = 0,
undefined if x = 0 ∧ y = 0.

(3.83)

At kx = ky = 0 the angle φ is undefined but, in this case, the Hamiltonian is diagonalized directly
by the rotation eiφJz . The bulk dispersion relation without orbital effects is shown by the black
solid lines in Fig. 3.2.

3.B Derivation of the analytical solution for a cylindrical nanowire

This Appendix provides the derivations for the exact analytical solution of an isotropic semicon-
ductor hole NW with circular cross section in a magnetic field parallel to the NW. As a starting
point, we consider the Hamiltonian for the perpendicular directions Hxy defined in Eq. (3.15) with
creation and annihilation operators in polar coordinates defined as

a†a = 1
2

(
−∂2

r − 1
r
∂r − 1

r2 ∂
2
φ + r2

4 − i∂φ − 1
)
, (3.84)

a† = −ieiφ

√
2

(
∂r + i

r
∂φ − r

2

)
, (3.85)

a = −ie−iφ

√
2

(
∂r − i

r
∂φ + r

2

)
. (3.86)

Also we consider now the Zeeman Hamiltonian HZ from Eq. (3.4). The eigenstates of the upper
block (↑) of Hxy are eigenfunctions of a†a. We find the general eigenfunction of a†a in Eq. (3.84)
by identifying the equation

a†a
[
e−imφrme−r2/4g(r)

]
= 0 (3.87)

as the Laguerre differential equation with m ∈ Z. The eigenvalues of a†a are α ∈ R. We remark
that in Sec. 3.3.1 for the bulk solution, the eigenvalues are α → n ∈ N because the bulk solutions
are required to decay to zero at infinity. Here, in contrast, we have different boundary conditions,
allowing for real valued α. Most generally, the eigenfunction to the eigenvalue α is

ψm,α(r) = 2− m
2 e−imφe− r2

4 rm

[
imLm

α

(
r2

2

)
+ (−i)m

α! U

(
−α,m+ 1, r

2

2

)]
, (3.88)
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3.B. Derivation of the analytical solution for a cylindrical nanowire

where Lb
a (x) is the associated Laguerre function and U(a, b, x) is the confluent hyper-geometric

function of the second kind. The effect of the creation and annihilation operators on this eigen-
function is given by

a†ψm,α(r) = (1 + α)ψm−1,α+1(r), (3.89)
aψm,α(r) = ψm+1,α−1(r). (3.90)

The general eigenstate of the ↑ block of Hxy in Eq. (3.15) is of the form (ψm,α(r),
c↑ψm−2,α+2(r)), which we can insert into the Schrödinger equation given by the ↑ block of Hxy in
Eq. (3.15), arriving at

1√
3γs

[
(γ1 + γs)

(
α+ 1

2

)
− ε+3/2

]
ψm,α(r) = c↑ψm,α(r), (3.91)

c↑
√

3γs

[
(γ1 − γs)

(
α+ 5

2

)
− ε−1/2

]
ψm−2,α+2(r) = (α+ 1)(α+ 2)ψm−2,α+2(r), (3.92)

with the energies ε+3/2 = ε − 3κ/2 and ε−1/2 = ε + κ/2 redefined to include the Zeeman energy.
The coefficients are given in the main text by Eqs. (3.22) and (3.23).

By imposing HW boundary conditions, following from Eq. (3.19), and by requiring each element
of the spinor to vanish at r = R, we arrive at the expression for the wave function given in
Eq. (3.20). For the lower block (↓) of Hxy in Eq. (3.15) describing the spin states (−3/2, +1/2)
we proceed analogously with a similar ansatz

(
ψm,α(r), c↓ψm−2,α+2(r)

)
as for the upper block (↑).

We obtain in this case the coefficients given by Eqs. (3.26) and (3.27). With the ansatz for the ↓
block, we arrive at the spinor given in Eq. (3.25).

It is possible to include strain into our analytical calculations because of the simple form of the
BP Hamiltonian HBP defined in Eq. (3.7). Since HBP ∝ J2

z′ does not change the Schrödinger in
Eqs. (3.91) and (3.92) qualitatively the calculation of the eigenstates is analogous. The solution
keeps the same form, however, the coefficients cs

± and αs
± are modified as

c↑
± =

(2α↑
± + 1)(γ1 + γs) + 3κ− 2ε

2
√

3γs

+ 9|b|εs

4
√

3γsℏωc

, (3.93)

c↓
± =

(2α↓
± + 1)(γ1 − γs) + κ− 2ε

2
√

3γs

+ |b|εs

4
√

3γsℏωc

, (3.94)

α↑
± =

−6γ2
1 + 24γ2

s + 4γ1ε− 2γ1κ+ 4γsκ+ (−5γ1 + 4γs) |b|εs

ℏωc

4(γ2
1 − 4γ2

s )

+
{

4γ4
1 − 23γ2

1γ
2
s + 28γ4

s − 8γ2
1γsε+ 32γ3

sε+ 16γ2
sε

2

− 4(γ1 − 2γs)
[
2γ2

1 + 3γ1γs − 2γs(γs + ε)
]
κ+ 4(γ1 − 2γs)(γ1 + γs)κ2

− 2
{

4γ3
1 + 2γ2

s [10(γs + ε) + κ] − γ2
1(5γs + 4κ) + γ1γs [−4(4γs + ε) + 7κ]

} |b|εs

ℏωc

+
(
4γ2

1 + 10γ1γs + 13γ2
s

)( |b|εs

ℏωc

)2
}1/2

/
[
2(γ2

1 − 4γ2
s )
]
, (3.95)
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α↓
± =

−6γ2
1 + 24γ2

s + 4γ1ε+ 2γ1κ− 4γsκ+ (−5γ1 + 4γs) |b|εs

ℏωc

4(γ2
1 − 4γ2

s )

+
{

4γ4
1 − 23γ2

1γ
2
s + 28γ4

s + 8γ2
1γsε+ 32γ3

sε+ 16γ2
sε

2

− 4(γ1 − 2γs)
[
2γ2

1 + 3γ1γs + 2γs(−γs + ε)
]
κ+ 4(γ1 − 2γs)(γ1 + γs)κ2

+ 2
{

4γ3
1 + 2γ2

s [10(γs − ε) + κ] − γ2
1(5γs + 4κ) + γ1γs [4(−4γs + ε) + 7κ]

} |b|εs

ℏωc

+
(
4γ2

1 − 10γ1γs + 13γ2
s

)( |b|εs

ℏωc

)2
}1/2

/
[
2(γ2

1 − 4γ2
s )
]
. (3.96)

For b = 0 the coefficients coincide with the ones given in the main text by Eqs. (3.22), (3.23),
(3.26), and (3.27).

3.C Effective parameters

The Hamiltonian Heff
LK introduced in Eq. (3.34) in Sec. 3.3.4 depends on several effective parameters

that are defined in the main text. In this Appendix we show the dependence of these parameters
(cf. Fig. 3.16) on the magnetic field. These parameters enter the calculations for the 2 × 2 NW
Hamiltonian in Sec. 3.3.5.

The inverse effective masses 1/ms
i are shown in Fig. 3.16(a). The ground state at B = 0 is

almost exclusively of LH nature. Therefore, we would expect the inverse ground state masses to
be 1/m↑

2 = 1/m↓
0 = γ1 + 2γs = 23.3/m at B = 0, see Eq. (3.38). However, the corrections from

second-order perturbation theory are large, yielding a larger mass. The states higher in energy are
a mixture of HH and LH, and therefore, their masses are larger. Also, these values are considerably
corrected by second-order perturbation theory. The mass m↓

2 decreases strongly above B = 5 T, a
trend that can be explained by the anticrossing of states in the spectrum in Fig. 3.3(a). There is
a clear avoided crossing between the green-dashed and the brown-dashed lines.

In Fig. 3.16(b), we plot the absolute value of the two SOI parameters α1 and α2 obtained from
Eq. (3.39) and Eq. (3.40) as a function of the magnetic field B. Both parameters exhibit a linear
dependence on the magnetic field for weak fields. Moreover, α2 has a linear behavior in the whole
range of B shown, while α1 reaches a maximum at B = 9.5 T. At B = 0 both couplings are
α1/2(B = 0) ≈ 2.5 ℏ2/(mR); at larger values of B, α1 increases with the magnetic field while α2
decreases.

The behaviors of the absolute values of the dipole and the quadrupole moments in a NW of
radius R = 15 nm are analyzed in Figs. 3.16(c) and 3.16(d), respectively. The dipole moment |d↓

1|
has a minimum at B = 8.5 T and |d↑

1| increases throughout the whole magnetic field range; more-
over |d↑

2| decreases linearly and |d↓
2| has a maximum at B = 6.7 T where it reaches 4.2 meV µm V−1.

The strong magnetic field dependence of |d↓
2| results from the already discussed anticrossing in the

spectrum in Fig. 3.3(a).
The quadrupole moment |q↑| strongly increases with the magnetic field while |q↓| only weakly

depends on B, exhibiting a minimum at B = 4.7 T. In general, there are terms originating from
the quadrupole moments also in the diagonal part of Heff

LK given by Eq. (3.34). However, they
are negligible compared to the contributions form Hxy, HZ , and the mass terms, and we do not
consider them here. As can be seen from the Hamiltonian Heff

LK [see Eq. (3.34)], the homogeneous
field couples states from equal subspaces with neighboring m, while the field gradient couples the
zero magnetic field ground states to the second excited states of equal subspaces. We note that

121



3.C. Effective parameters

8

10

12

14

16

18

1
/m

s i
(1
/m

)

1/m↑2

1/m↓0

1/m↑1

1/m↓1

1/m↑0

1/m↓2 10

20

30

40

50

|α
1
,2
|(

m
eV

n
m

)

α1

α2

0 2 4 6 8 10

B (T)

1.5

2.0

2.5

3.0

3.5

4.0

|d
s 1
,2
|(

m
eV

µm
V
−

1
)

d↑1

d↓1

d↑2

d↓2

0 2 4 6 8 10

B (T)

4.5

5.0

5.5

6.0

6.5

|qs
|(

m
eV

µm
2

k
V
−

1
)

q↑

q↓

(a) (b)

(c) (d)

Figure 3.16: Effective parameters of a Ge NW with circular cross section of radius R = 15 nm as
a function of B calculated semi-analytically at Ex = Ey = δE = 0. The solid lines in (a), (c),
and (d) correspond to states from the ↑ subspace and the dashed ones to the ↓ subspace. (a) The
effective masses 1/ms

i are calculated by using Eq. (3.38). The masses of the lowest two energy
states, m↑

2 and m↓
0 (blue) depend only weakly on B compared to the masses of the next higher in

energy states, m↑
1 and m↓

1 (orange) or m↑
0 and m↓

2 (green). The mass m↓
2 (green dashed) varies

strongly with B due to the anti-crossing in the spectrum [cf. Fig. 3.3(a)]. The colors of the lines
are the same as for the corresponding states in Fig. 3.3(a). (b) The SOI term |α1| [cf. Eq. (3.39)]
increases with B and reaches a maximum at B = 9.5 T, while |α2| [cf. Eq. (3.40)] decreases
linearly. (c) The dipole moments |dU,D

1,2 | are given by Eqs. (3.41) and (3.42). For our choice of
parameters, |d↑

1| (violet solid) increases monotonically with B, |d↓
1| (violet dashed) has a minimum,

|d↑
2| (green solid) decreases monotonically, and |d↓

2| (green dashed) exhibits a distinctive maximum
[cf. the anti-crossing in Fig. 3.3(a)]. (d) The quadruple moments qs are given by Eq. (3.43). The
quadrupole moment |q↑| increases monotonically and |q↓| increases after reaching a minimum at
B = 4.7 T. Note that in panels (b), (c), and (d) we present absolute values.

the matrix elements for the dipole moments ds
1,2 are imaginary numbers whereas the quadrupole

moments qs are real numbers.
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3.D. Effective model

3.D Effective model

In this Appendix, we give more details on the calculations for the effective 2×2 model Hamiltonian
H2×2 from Sec. 3.3.4. The definitions introduced in Eqs. (3.45)–(3.48) allow us to write the 4 × 4-
matrix H4×4 spanned by the four component basis (φ↑

2, φ
↑
1, φ

↓
0, φ

↓
1) as

H4×4 =


ε↑

++Ω↑ cos(2θ↑)+ ℏ2k2
z

2m
↑
2

iΩ↑ sin(2θ↑) 0 α1kz

−iΩ↑ sin(2θ↑) ε↑
+−Ω↑ cos(2θ↑)+ ℏ2k2

z

2m
↑
1

α2kz 0

0 α2kz ε↓
++Ω↓ cos(2θ↓)+ ℏ2k2

z

2m
↓
0

iΩ↓ sin(2θ↓)

α1kz 0 −iΩ↓ sin(2θ↓) ε↓
+−Ω↓ cos(2θ↓)+ ℏ2k2

z

2m
↓
1

 .

(3.97)

In order to treat the electric field exactly, we diagonalize the block in the upper left and the lower
right of this matrix at kz = 0 via the unitary transformation U−1H4×4U where

U =


cos
(
θ↑) −i sin

(
θ↑) 0 0

−i sin
(
θ↑) cos

(
θ↑) 0 0

0 0 cos
(
θ↓) −i sin

(
θ↓)

0 0 −i sin
(
θ↓) cos

(
θ↓)

 . (3.98)

We use the resulting matrix and perform a second-order perturbation theory with respect to the
ground state subspace (φ↑

2, φ
↓
0) and we project the results onto this subspace, yielding the effective

2 × 2 model in Eq. (3.49).

3.E Six-band Luttinger-Kohn model

In addition to the four HH and LH states considered in the Hamiltonian H defined in Eq. (3.1),
we include in our calculations also the SOB. In this case, we use the following Hamiltonian [71,
72, 74, 100]:

H6×6 =



P +Q S R 0 − 1√
2S −

√
2R

S∗ P −Q 0 R
√

2Q
√

3
2S

R∗ 0 P −Q −S
√

3
2S

∗ −
√

2Q

0 R∗ −S∗ P +Q
√

2R∗ − 1√
2S

∗

− 1√
2S

∗ √
2Q

√
3
2S

√
2R P + ∆SO 0

−
√

2R∗
√

3
2S

∗ −
√

2Q − 1√
2S 0 P + ∆SO


, (3.99)
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where the matrix entries are defined as

P = ℏ2

2mγ1k
2, (3.100)

Q = ℏ2

2mγ2(k2
x + k2

y − 2k2
z), (3.101)

S = − ℏ2

2m2
√

3γ3kzk−, (3.102)

R = − ℏ2

2m

√
3

2
[
(γ2 + γ3)k2

− + (γ2 − γ3)k2
+
]
, (3.103)

with k± = k∗
∓ = kx ± iky. The spin-orbit gap for Ge is ∆SO = 296 meV. Including the SOB, the

Zeeman Hamiltonian HZ from Eq. (3.4) becomes [74]

H6×6
Z = κµB



3Bz

√
3B− 0 0 −

√
3
2B− 0

√
3B+ Bz B− 0

√
2Bz − 1√

2B−

0 B+ −Bz

√
3B−

1√
2B+

√
2Bz

0 0
√

3B+ −3Bz 0
√

3
2B+

−
√

3
2B+

√
2Bz

1√
2B− 0 Bz B−

0 − 1√
2B+

√
2Bz

√
3
2B− B+ −Bz


, (3.104)

where we define B± = Bx ± iBy.
The BP Hamiltonian including the SOB in the Ge/Si core/shell NW is given by

H6×6
BP = |b|εs



9
4 0 0 0 0 0

0 1
4 0 0

√
2 0

0 0 1
4 0 0 −

√
2

0 0 0 9
4 0 0

0
√

2 0 0 5
4 0

0 0 −
√

2 0 0 5
4


, (3.105)

while in a CQW it is given by [31]

H6×6,CQW
BP

|b|
=



9
8 (εr+2εz) 0 −

√
3

2 e−2iθεr 0 0
√

3
2 e−2iθεr

0 1
8 (εr+2εz) 0 −

√
3

2 e−2iθεr
εr+2εz√

2
0

−
√

3
2 e2iθεr 0 1

8 (εr+2εz) 0 0 − εr+2εz√
2

0 −
√

3
2 e2iθεr 0 9

8 (εr+2εz) −
√

3
2 e2iθεr 0

0 εr+2εz√
2

0 −
√

3
2 e−2iθεr

5
8 (εr+2εz) 0√

3
2 e2iθεr 0 − εr+2εz√

2
0 0 5

8 (εr+2εz)

 . (3.106)

Here, we introduce the polar coordinate angle θ (cf. Sec. 3.5) and the strain energies are defined
in Eqs. (3.11) and (3.12).
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Low-dimensional germanium hole devices are promising systems with many potential applica-
tions such as hole spin qubits, Andreev spin qubits, and Josephson junctions, and can serve as a
basis for the realization of topological superconductivity. This vast array of potential uses for Ge
largely stems from the exceptionally strong and controllable spin-orbit interaction (SOI), ultra-
long mean free paths, long coherence times, and compatibility with complementary metal-oxide-
semiconductor (CMOS) technology. However, when brought into proximity with a superconductor
(SC), metallization normally diminishes many useful properties of a semiconductor, for instance,
typically reducing the g factor and SOI energy, as well as renormalizing the effective mass. In this
paper, we consider metallization of a Ge nanowire (NW) in proximity to a SC, explicitly taking into
account the three-dimensional (3D) geometry of the NW. We find that proximitized Ge exhibits
a unique phenomenology of metallization effects, where the 3D cross section plays a crucial role.
For instance, in contrast to expectations, we find that SOI can be enhanced by strong coupling
to the superconductor. We also show that the thickness of the NW plays a critical role in de-
termining both the size of the proximity-induced pairing potential and metallization effects, since
the coupling between the NW and SC strongly depends on the distance of the NW wave function
from the interface with the SC. In the absence of electrostatic effects, we find that a sizable gap
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opens only in thin NWs (d ≲ 3 nm). In thicker NWs, the wave function must be pushed closer to
the SC by electrostatic effects in order to achieve a sizable proximity gap such that the required
electrostatic field strength can simultaneously induce a strong SOI. The unique and sometimes
beneficial nature of metallization effects in SC-Ge NW devices evinces them as ideal platforms for
future applications in quantum information processing.
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4.1 Introduction

Hole gases in Ge heterostructures are one of the most promising platforms for applications in
quantum information processing [1]. The compatibility of Ge with Si complementary metal-oxide-
semiconductor (CMOS) technology is important to achieve the scalability that is required for
the building blocks of any future quantum computer [2]. In addition, however, holes in Ge have
many favorable properties, such as the possibility to grow ultraclean substrates with a mean free
path up to 30 µm [3–6], the long spin coherence times due to weak hyperfine noise suppressed by
appropriate quantum dot design [7–13] or isotopic purification [14, 15], the strong and tunable
spin-orbit interaction (SOI) [16–22], and the tunable g factor [23–26]. These properties have
already enabled the realization of high-quality spin qubits [27] with which electrically controlled
single- [28–31] and two-qubit [32] gates, as well as singlet-triplet encoding [33] and a four-qubit
processor [34], have been demonstrated.

Figure 4.1: Sketch of a rectangular Ge NW in proximity to a superconductor (SC). The SC cross
section is defined by Lx = Ly = 10 nm and the Ge NW cross section by the width Lx = 10 nm
and height d, which is not fixed and will be used as a parameter in what follows. We assume an
infinitely long system in the z direction. A magnetic field B is applied along the NW axis in the
z direction, and an electric field E is applied in the perpendicular y direction.

In the last few years, there has been considerable progress in fabricating hybrid devices that
couple Ge to superconductors (SCs) such as aluminum [35–43] (see Fig. 4.1). Hybrid SC-Ge
devices substantially increase the possible applications of Ge, for instance, enabling electrically
controllable Josephson junctions [35, 44–46], allowing for long-range coupling of spin qubits [47–
50], providing the basis for Andreev spin qubits [51–54], and as a platform to realize topological
superconductivity with associated Majorana bound states (MBSs) [55–64].

The coupling of a superconductor to a semiconductor, however, not only results in a proximity-
induced superconducting pairing potential [65, 66] but has additional consequences due to metal-
lization of the semiconductor by the SC [67]. Such effects, e.g., the renormalization of the effective
mass, the g factor, and the spin-orbit energy, have been widely studied in platforms expected to
achieve MBSs [67–78]. The most extensively investigated platform to achieve topological supercon-
ductivity is semiconducting nanowires (NWs) with strong Rashba SOI, such as InAs and InSb [79].
In such systems, it has been predicted that the opening of a proximity-induced gap in the NW
also results in a reduction of the SOI energy and the g factor [67, 68]. When the SC strongly
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couples to the semiconductor, metallization effects can make it difficult to find a regime capable
of hosting MBSs because this simultaneously requires strong SOI, a large Zeeman energy, and a
sizable proximity-induced pairing potential. Due to the unique phenomenology of holes in Ge, it
was not yet clear what the consequences of metallization effects are in Ge and what limitations
metallization places on the potential applications of Ge based platforms.

In this paper, we numerically investigate the metallization of holes in three-dimensional (3D)
Ge NWs that have been brought into proximity with a 3D SC. Importantly, the wave function is
nonuniformly distributed throughout the NW cross section. As a result, we find the thickness of
the Ge NW plays a crucial role in both the size of the induced proximity gap and the consequences
of metallization effects. In the absence of electrostatic fields, we show that only when the NW is
very flat (d ≲ 3 nm), such that the wave functions of states in the NW are close to the SC, can a
sizable proximity-induced gap be achieved. However, for thicker NWs, electrostatic fields, e.g., due
to gating or interface effects, can push the wave functions close to the Ge-SC interface, increasing
the proximity-induced gap and with important separate consequences for the SOI strength. In
particular, we will demonstrate that it is possible to enhance the SOI and the proximity-induced
gap at the same time by tuning with an external electric field. Furthermore, using thicker NWs has
the advantage that one can reach the optimal side length ratio for maximal SOI that depends on
the electric field [25, 80] and that the g factor is larger than in flat NWs. The mechanism behind
the strong SOI is the direct Rashba SOI typically present in one-dimensional (1D) hole systems [16,
17, 25, 26]. Our results show that metallization effects in SC-Ge hole hybrid devices have a unique
phenomenology and are often either benign or even beneficial in nature. Our findings suggest that
although metallization effects can have important consequences for SC-Ge devices, such hybrid
systems remain a promising avenue for future quantum information processing applications.

The focus of this work lies in analyzing effective models for proximity-induced superconductiv-
ity and metallization in Ge hole NWs. These models facilitate the understanding of the qualitative
behavior of the parameters and their mutual dependences, including the proximity-induced super-
conducting order parameter, the NW g factor, and the strength of the SOI. However, certain factors
lie outside the scope of our study, such as the electrostatic potential resulting from band bending
at the interface between the SC and the semiconductor, charges originating from impurities, or
disorder. A comprehensive analysis of additional electrostatic effects, e.g., due to precise work
function differences of atoms at the interface, necessitates computationally intensive ab-initio cal-
culations such as density functional theory [81], which exceeds the boundaries of our current work.
Although all the aforementioned phenomena are anticipated to lead to quantitative adjustments
in our results, the qualitative behavior that we present here is expected to remain unchanged. In
particular, the band bending at the interface, typically addressed in numerical Schrödinger-Poisson
calculations [70, 71, 73, 74], gives rise to an accumulation or repulsion of charges at the interface.
Accounting for these effects is expected to modify the strength of the external electric field required
to confine the hole wave function at the interface, as discussed in Sec. 4.5; the outcome, however,
would remain the same.

This paper is structured as follows. In Sec. 4.2, we introduce our theoretical model of a Ge
hole NW coupled to a SC. In Sec. 4.3, we analyze the influence of the NW-SC coupling on the
Fermi wave vector of the NW states. We show that the chemical potential of the SC with respect
to the chemical potential of the NW decides whether the NW Fermi wave vector is increased or
decreased with increasing coupling. We decide for the case where the Fermi wave vector of the
NW is decreased with increasing coupling as the most relevant one. In Sec. 4.4, we investigate the
consequences of changing the thickness of the NW. Our results show that without electrostatic
fields, only thin NWs couple strongly to the SC, which can be explained by the distance of the
wave function in the NW from the SC-Ge interface. In thick NWs, however, the wave function can
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be localized close to the SC by an external electric field, as we show in Sec. 4.5. As a consequence,
the spin-orbit energy and the induced gap can simultaneously increase with increasing electric
field. A discussion of the coupling mechanism between NW and SC is given in Sec. 4.6. Finally, in
Sec. 4.7, we conclude and give an outlook of implications for Ge-based superconducting devices.

4.2 Model

In this section, we introduce the model that we employ to describe a Ge NW that is coupled to
a SC placed on top of the NW, with both NW and SC extending infinitely along the z direction
(see Fig. 4.1). We model the cross section of the system by a finite 2D lattice in real space. The
momentum ℏk along the z axis is a good quantum number since we assume translational invariance
in this direction and periodic boundary conditions. The discrete model for the NW coupled to a
SC is then

H(k) = Hw(k) +Hs(k) +Hc(k), (4.1)

where Hw(k) is the Hamiltonian for the hole NW, Hs(k) is the Hamiltonian for the SC, and Hc(k)
is the Hamiltonian describing the tunnel coupling between the NW and the SC at the interface.

To describe the heavy hole (HH) and light hole (LH) nature of the Ge NW, we use the isotropic
Luttinger-Kohn Hamiltonian,

HLK = − ℏ2

2me

[
γkk

2 − 2γs(k · J)2] , (4.2)

as commonly utilized in the literature to describe the states in Ge [16, 17, 80, 82–84]; here,
γk = γ1 + 5γs/2, γs = (γ2 + γ3)/2 = 4.97, and Ji [with i = x, y, z] are the standard spin-3/2
operators. In reality, the holes in Ge are not spin-3/2 particles, but their total angular momentum
is j = l + s = 3/2, where l is the orbital angular momentum that is l = 1 for a p-type orbital
and s = 1/2 is the spin. The coefficients γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 are the material-
dependent Luttinger parameters [85] and me is the free electron mass. Note the global negative
sign in Eq. (4.2) for holes.

To lift the Kramers degeneracy, we add a small Zeeman field in the z direction that enters via
the Zeeman Hamiltonian

HZ = 2κµBBJz, (4.3)

with magnetic field strength B and κ = 3.41 in Ge [86]. Here we neglect the small anisotropic
Zeeman energy ∝ J3

i [16, 87] and effects of orbital magnetic fields [88–92] since we consider only
very weak magnetic fields applied parallel to the NW. Furthermore, we include a homogeneous
electric field in the y direction via the Hamiltonian

HE = −eEy, (4.4)

where E is the strength of the electric field in the y direction.
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On the 2D square lattice that models the cross section of the NW, the NW Hamiltonian becomes

Hw,k = −
Lx/a,d/a∑
n=1,m=1

c†
n,m,k

[
H

k2
z

LKk
2 + 2

a2

(
H

k2
x

LK +H
k2

y

LK

)
+HZ + eEam− µw

]
cn,m,k

+
[
c†

n+1,m,k

(
i

2aH
kxkz

LK k − 1
a2H

k2
x

LK

)
cn,m,k

+ c†
n,m+1,k

(
i

2aH
kykz

LK k − 1
a2H

k2
y

LK

)
cn,m,k

− c†
n+1,m+1,k

1
4a2H

kxky

LK cn,m,k + H.c.
]
, (4.5)

with

H
k2

x

LK = ℏ2

me


γ1+γs

2 0 −
√

3γs

2 0

0 γ1−γs

2 0 −
√

3γs

2

−
√

3γs

2 0 γ1−γs

2 0

0 −
√

3γs

2 0 γ1+γs

2

 , (4.6)

H
k2

y

LK = ℏ2

me


γ1+γs

2 0
√

3γs

2 0

0 γ1−γs

2 0
√

3γs

2√
3γs

2 0 γ1−γs

2 0

0
√

3γs

2 0 γ1+γs

2

 , (4.7)

H
k2

z

LK = ℏ2

me


γ1−2γs

2 0 0 0

0 γ1+2γs

2 0 0

0 0 γ1+2γs

2 0

0 0 0 γ1−2γs

2

 , (4.8)

H
kxky

LK = ℏ2

me


0 0 i

√
3γs 0

0 0 0 i
√

3γs

−i
√

3γs 0 0 0

0 −i
√

3γs 0 0

 , (4.9)

Hkxkz

LK = ℏ2

me


0 −

√
3γs 0 0

−
√

3γs 0 0 0

0 0 0
√

3γs

0 0
√

3γs 0

 , (4.10)
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H
kykz

LK = ℏ2

me


0 i

√
3γs 0 0

−i
√

3γs 0 0 0

0 0 0 −i
√

3γs

0 0 i
√

3γs 0

 . (4.11)

We define the four-dimensional vectors c†
n,m,k =

(
c†

+ 3
2
, c†

+ 1
2
, c†

− 1
2
, c†

− 3
2

)
n,m,k

, where c†
± 3

2 ( 1
2 ) describes

the creation of a hole with total Jz angular momentum ± 3
2 ( 1

2 ). The sum runs over all sites of
the lattice (n,m) where the indices n and m run over the x and y coordinates, respectively. We
measure the chemical potential µw from the Rashba crossing point at k = 0. For the calculations
we choose the lattice spacing a = 0.1 nm.

The discretized Hamiltonian for the conventional s-wave superconductor is given by

Hs,k =
Lx/a,Ly/a∑

n=1,m=1,σ=↑,↓

b†
n,m,k,σ

[
ℏ2

2ms

(
k2 + 2

a2

)

+ gsµB

2 Bσz − µs

]
bn,m,k,σ

− ℏ2

2ms

(
Ly/a∑

m=1,σ=↑,↓
⟨n′,n⟩

b†
n′,m,k,σ

1
a2 bn,m,k,σ

+
Lx/a∑

n=1,σ=↑,↓
⟨m′,m⟩

b†
n,m′,k,σ

1
a2 bn,m,k,σ

)

+
Lx/a,Ly/a∑
n=1,m=1

(
∆0b

†
n,m,k,↑b

†
n,m,−k,↓

+ ∆∗
0bn,m,−k,↓bn,m,k,↑

)
, (4.12)

where b†
n,m,k,σ(bn,m,k,σ) creates an electron (hole) with spin σ =↑, ↓ in the superconductor. The

effective mass of the superconductor is ms and, in addition, we take the superconducting pairing
potential as ∆0 = 0.2 meV. The expression ⟨n′, n⟩ (⟨m′,m⟩) describes a sum over neighboring
sites in the x(y) direction. We measure the chemical potential of the SC, µs, from the bottom of
the lowest subband and we choose the effective mass ms = 0.95me. This results in the hopping
amplitude ts = ℏ2

2msa2 ≈ 4 eV and Fermi velocity vF,s = ∂kE(k)|k=kF
/ℏ ≈ 1.27 × 106 m s−1 for

µs = 8.75 eV, where E(k) = (ts/a2)[1 − cos(ka)] − µs is the dispersion relation.
Since the SC Hamiltonian is given in a spin basis and the NW Hamiltonian in a total angular

momentum basis, we cannot couple them without first applying a basis transformation. In the
following, for simplicity of presentation, we utilize the Hamiltonian HM of a simple metal that is
the same as Eq. (4.12) with no pairing potential, ∆0 = 0. The total Jz angular momentum basis
states P−1 |ψ⟩ = (|+3/2⟩ , |+1/2⟩ , |−1/2⟩ , |−3/2⟩) of the NW are given in terms of the orbital
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angular momentum and spin |ψ⟩ = |lz, sz⟩ by [93]

|+3/2⟩ = |+1, ↑⟩ ,

|+1/2⟩ = 1√
3

(
|+1, ↓⟩ +

√
2 |0, ↑⟩

)
,

|−1/2⟩ = 1√
3

(
|−1, ↑⟩ +

√
2 |0, ↓⟩

)
,

|−3/2⟩ = |−1, ↓⟩ . (4.13)

Note that the two spin-orbit split-off states (J = 1/2) are neglected here. The unitary matrix

P = P−1 =


1 0 0 0

0 1√
2

1√
2 0

0 1√
2 − 1√

2 0

0 0 0 1

 (4.14)

transforms the total angular momentum basis such that we can write the coupling between one
site of the metal HM,i to one site of the NW Hw,i as the matrixP−1Hw,iP Ht

HT
t HM,i

 , (4.15)

where the basis of this matrix is (|ψ⟩ , |↑⟩ , |↓⟩) and the coupling matrix is

Ht =

tHH tLH 0 0

0 0 tLH tHH

T

, (4.16)

with the LH (HH) coupling amplitudes tLH (tHH). This is a simplified model for the coupling
between a semiconductor NW and a metal, but sufficient to capture the qualitative physics of
metallization effects in Ge. We further simplify this by assuming HH and LH coupling amplitudes,
i.e., t = tHH = tLH. For an analysis of the situation where tLH ̸= 0 and tHH = 0, see Sec. 4.6. In
general, the coupling amplitudes are different and depend on k [94, 95], which is neglected here.
Furthermore, in an experiment, the Ge NW would be covered by a shell that induces strain into
the NW and changes the tunnel barrier between SC and Ge. Another possible realization would
be a gate-defined 1D channel in a planar Ge/SiGe heterostructure [26]. However, we expect only
quantitative changes of our results due to these details.

Note that the coupling t between the SC and the Ge NW is a phenomenological parameter
in our model, which is not an experimental observable. However, in the following we present the
proximity-induced superconducting order parameter and the NW g factor and SOI as a function
of t. In an experiment the proximity-induced gap can be measured which then relates to a certain
value of our model parameter t. This then allows us to predict the g factor and SOI for the
measured superconducting gap size.

4.3 Chemical potential of the superconductor

Before we discuss proximity-induced superconductivity in Ge NWs, we first analyze the dependence
of the average Fermi wave vector in the NW, k̄F = (k1

F +k2
F )/2, on the chemical potential of the SC,
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4.3. Chemical potential of the superconductor

Figure 4.2: (a) Dispersion relation of the SC-Ge hole NW for t = 0.5ts, where the color bar to
the right of (b) shows the weight of the wave function in the NW and SC for (a) and (b). The
gap opening in the NW band is shown in the inset in (a). Due to finite SOI for nonzero SC-NW
coupling t, there are two Fermi momenta. The chemical potential of the SC is fixed to µs = 8.77 eV.
In order to achieve coupling between the NW and SC states, they have to fulfill certain selection
rules given by the confinement and the related quantum numbers [67, 68]. This is the reason why
most of the SC subband states cross the NW subbands without hybridization, so without gap
opening. (b) Energies of the SC-Ge hole NW states at k = 0 as a function of the shift of the
chemical potential of the SC, δµs, measured from µs = 8.75 eV for t = 0.1ts. Here, we set ∆0 = 0
and consider a metal instead of a SC. The energies of the NW states depend strongly on δµs. For
roughly half of the δµs values, the energy of the NW states at k = 0 increases compared to the
chemical potential of the uncoupled NW, µw = 12 meV (indicated by the orange line). For the
other half of the δµs values, the energy of the NW states at k = 0 decreases. (c) As a consequence
of the observed energy behavior, the average Fermi wave vector k̄F can either increase or decrease
with t, depending on the value of δµs. For instance, the decrease in energy for δµs = 30 meV
(dark blue) causes the initial Fermi wave vector to decrease with increasing coupling t to the SC.
For δµs = −50 meV (light blue), the average Fermi wave vector increases with growing coupling
to the SC. For δµs = 0 (green) and δµs = 20 meV (cyan), the NW state at k = 0 is very close
in energy to a SC state that couples to the NW. At this resonance, k̄F changes very strongly
with t. If not stated differently, the parameters used are µw = 12 meV, µs = 8.75 eV, d = 2 nm,
Lx = Ly = 10 nm, a = 0.1 nm, ∆0 = 0.2 meV, E = 0, and B = 0.01 T.

µs, where k1,2
F are the two Fermi momenta in the presence of SOI [see Fig. 4.2(a)]. In the uncoupled

case, we can connect the Fermi wave vector to the charge carrier density n = e(k1
F + k2

F )/π in the
NW with the positive elementary charge e for holes. In general, the sizes of the induced gaps at
the two different Fermi wave vectors are not equal. In the following, we refer to the Fermi wave
vector kF denoted, without further index, as the one at which the gap is smaller. In the following,
we study the shift of the energy of the state at k = 0 and k̄F of the NW on the chemical potential
of the SC. However, in reality, it is challenging to control the chemical potential of the SC, but the
thickness of the SC is under control. The same resonances as shown in Fig. 4.2(b) can be observed
as a function of the thickness of the SC [67], which is obvious because the level spacing of the SC
depends on the chemical potential via the Fermi velocity as well as on the thickness of the SC.

For Fig. 4.2(b), we set ∆0 = 0 and assume that the NW is coupled to a normal metal. We fix
the chemical potential of the NW to µw = 12 meV and sweep the chemical potential of the metal
around µs = 8.75 eV. In Fig. 4.2(b), we show the energies of the NW and the metal states at
k = 0. The energies of the NW states (dark-blue dots) show resonances at certain values of δµs

every time the lowest NW state at k = 0 couples to a metal state that lies at the same energy.
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Note that only certain metal states couple to the NW because they need to fulfill selection rules
that are given by the quantum numbers related to the confinement [67, 68]. The periodicity of the
resonances is set by the level spacing of the metal, πℏvF,s/Ly ≈ 263 meV.

From previous investigations of metallization effects in semiconductors [67, 68], we expect that
coupling to the SC causes an increase of the Fermi wave vector of the NW states. This behavior
is, indeed, found in a large parameter regime of our numerical study [see Fig. 4.2(b)]. However,
within our model, shifting the chemical potential of the SC, µs, we find cases where k̄F of the NW
decreases. Whether k̄F increases or decreases depends on whether δµs lies on the left or the right
side of a resonance in Fig. 4.2(b). We show k̄F as a function of the coupling t between SC and
NW for different values of δµs in Fig. 4.2(c) to illustrate this behavior. The chemical potential
of the NW, µw, takes two different values for the curves in Fig. 4.2(c). However, this is not the
reason for the different behaviors. In the case where k̄F decreases with increasing t, we need to
set µw to a larger value at t = 0 to avoid a rapid depletion of the NW. For increasing k̄F , this is
not necessary and we start at t = 0 with a smaller value for µw. The cyan line ends at t = 0.6,
because at stronger coupling, the Fermi wave vector is no longer well defined as the energy of the
state at k = 0 becomes comparable to the size of the superconducting gap.

In the following, we will focus on the situation where the average Fermi wave vector k̄F decreases
with increasing coupling to the SC. However, the coupling itself also causes a shift of chemical
potentials in the NW and the SC and thus, as we will see below, a stronger SC-NW hybridization
can occur as the coupling is increased. Furthermore, we choose µs such that it is away from the
resonances. Calculations closer to a resonance show qualitatively the same, but quantitatively
stronger effects. In order to hit such a resonance in an experiment, fine tuning of the SC thickness
would be required, which is difficult in practice (but not impossible, e.g., in the case of epitaxial
growth of the SC on top of the NW). For the situation where k̄F increases with t, we observe
the same effects, which is not shown here. The only noteworthy difference is that the proximity-
induced superconducting order parameter does not converge to a constant value as quickly as in
the case of decreasing k̄F . In fact, a convergence sets in only for t > ts which, however, is an
unrealistic regime.

4.4 Nanowire thickness

In this section, we study how certain parameters, namely, the average Fermi wave vector k̄F , the
induced superconducting gap ∆, the g factor, and the spin-orbit energy Eso, of the proximitized
NW depend on the thickness d of the NW. Throughout, we keep the dimensions of the SC to
Lx = Ly = 10 nm and the width of the NW Lx = 10 nm (see Fig. 4.1). We show the results in
Fig. 4.3. As discussed in Sec. 4.3, we set the chemical potentials of the NW and the SC such that
the average Fermi wave vector shrinks with increasing t. This is reflected by the results shown in
Fig. 4.3(a) for all values of considered NW thicknesses d.

In Fig. 4.3(b), we show that with increasing coupling t, a superconducting gap ∆ is induced in
the NW and this gap increases with t until it reaches a maximum that depends on the thickness of
the NW. The induced gap is largest for d = 2 nm, where it reaches ∆ = 0.24 ∆0. When d ≥ 4 nm,
the gap is rather small because the NW wave function is localized in the center of the NW cross
section far away from the interface coupled to the SC. Note that in Sec. 4.5, we will discuss a
way to also reach a sizable gap in thicker NWs. As we expect, the size of the gap (crosses) shows
the same functional behavior as the weight ΞkF

of the NW state in the SC at kF (pluses) [see
inset in Fig. 4.2(a)]. For d = 4 nm, 5 nm, and 6 nm, the induced gap has peaks for certain values
of the coupling t, which can be traced back to the strong hybridization of the NW state with a
SC state it is coupled to at a resonance, as discussed in Sec. 4.3. However, for the induced gap,
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Figure 4.3: (a) Average Fermi wave vector k̄F , (b) proximity-induced superconducting gap (crosses,
left axis) and the weight ΞkF

of the NW state in the SC at kF (pluses, right axis), (c) NW g factor,
and (d) spin-orbit energy as a function of the coupling t between SC and NW, and for various
heights d of the Ge NW. The chemical potential of the SC is chosen such that k̄F decreases with
increasing coupling. The effect is strongest for a thin NW. As expected, the weight ΞkF

of the NW
state in the SC shows the same functional behavior as the ratio of the induced superconducting gap
and the parent SC pairing potential, ∆/∆0. The gap increases with the coupling and is largest for
a thin NW. Only for a thin NW is the NW wave function main weight close to the SC-NW interface
and the proximity effect can be sizable. The g factor is smallest for a thin NW (d = 2 nm), where
the 2D physics dominates. It decreases slightly with increasing coupling. Due to the coupling
between NW and SC, the NW wave function gains more weight at the interface breaking the
inversion symmetry, which is similar to the response of the wave function to an external electric
field. This symmetry breaking gives rise to a weak SOI that increases with the coupling t. At
certain values of t, we observe deviations of the induced gap, g factor, and spin-orbit energy from
the general t dependence. This is always the case close to a resonance, as discussed in Sec. 4.3.
However, the g factor and the spin-orbit energy are more sensitive to resonances at k = 0, while
the induced gap is more sensitive to resonances at k = kF . Unless stated otherwise, the parameters
are the same as in Fig. 4.2.

resonances at k = kF are more relevant than resonances at k = 0. By further increasing t, the SC
and the NW states move away from each other in energy and the ∆ profile returns to the general
behavior. The same interpretation holds for the peaks and dips of the g factor [see Fig. 4.3(c)]
and the spin-orbit energy Eso [see Fig. 4.3(d)]. The states in the Ge NW are mixed HH-LH states
and thus the superconductivity has support from both types of holes.

The Ge hole NW g factor at k = 0 depends only slightly on t. In general, it decreases as the
coupling becomes stronger. The g factor is largest (g ≈ 3.6) for a thick NW (d = 6 nm), where
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the NW is governed by strong HH-LH mixing [16, 26], whereas for d = 2 nm, the lowest-energy
eigenstates are almost purely of an HH nature, resulting in a small in-plane g factor (g < 1) [1].

Without coupling between the NW and the SC, the spin-orbit energy is zero in the NW since
there is no electric field [17]. As the coupling increases, the NW wave function is pushed closer
towards the NW-SC interface and thereby gets squeezed. This breaks the inversion symmetry
similar to an external electric field that pushes the wave function towards the SC. Thus, a finite
spin-orbit energy Eso develops, as shown in Fig. 4.3(d). The spin-orbit energy is larger for thinner
NWs since there the coupling to the SC has the strongest effect due to the proximity of the
wave functions of states in the NW to the SC. The spin-orbit energy is determined by the energy
difference between the maximum of the negatively curved Rashba band and the spin-orbit crossing
point at k = 0 of the hole NW.

4.5 Electric field

As discussed in Sec. 4.4, only in very thin NWs is it possible to induce a sizable superconducting
gap since the wave function in the NW needs to be close to the NW-SC interface. However, there
are several reasons for using thicker NWs. For instance, the g factor increases with the thickness
d, as shown in Fig. 4.3(c). Also, with thicker NWs, it is possible to achieve the side length ratio of
the NW that maximizes the SOI for a certain value of the electric field [25].
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Figure 4.4: Dependence on the electric field E: (a) g factor, (b) spin-orbit energy Eso, and (c)
proximity-induced gap ∆ (blue crosses), as well as the weight ΞkF

of the NW state in the SC at
kF (red pluses) as a function of E applied in the y direction for t = 0.8 ts. The electric field is
in units of E0 = ℏ2γ1

2med3 ≈ 4 V µm−1 for d = 5 nm. The electric field has basically three effects: It
squeezes the wave function in the NW, which reduces the g factor [see (a)], induces a strong SOI
[see (b)], and pushes the wave function within the NW cross section close to the interface with
the SC which enhances the leakage of the wave function into the SC and thereby the proximity-
induced gap [see (c)]. Thus, it is possible to have strong SOI and a large proximity-induced gap
simultaneously. Finding the best parameters for a sizable g factor, SOI, and superconducting
proximity gap requires some optimization. Panel (a) shows the absolute value of the g factor. At
E ≈ 80E0, the g factor changes sign. At strong electric field (E ≳ 150E0), it is dominated by the
SC g factor since the wave function at k = 0 has a weight of almost 70 % in the SC. The position
of the maximum of the spin-orbit energy is approximately reached at |eUE/∆sb| ∼ 1 [16]. If not
stated otherwise, the parameters are the same as in Fig. 4.2 and d = 5 nm.

Apart from reducing thickness, there is another way to move the wave function closer to
the interface, namely, an external electric field in the y direction. In Fig. 4.4, we set the NW-
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SC coupling to t = 0.8 ts, as well as d = 5 nm, and plot the g factor, SOI, and proximity-
induced gap as a function of the external electric field E. We give the electric field in units
of E0 = ℏ2γ1

2med3 ≈ 4 V µm−1 for d = 5 nm. Note that E/E0 = d3/l3E with the electric length
lE = (ℏ2γ1/2meE)1/3, where m/γ1 is the average HH-LH mass. Typically, the mass of the hole
NW ground state converges to the average HH-LH mass for strong electric field [25]. Since the
external electric field shifts the NW bands in energy and we want to focus on the lowest-energy
NW state, we compensate for this effect by adjusting the chemical potential µw. As a function of
the electric field, the g factor is first reduced until it changes sign at E ≈ 80E0 [see Fig. 4.4(a)].
The small increase for the g factor at E ≈ 100E0, followed by another dip, is associated with a
resonance (see discussion in Sec. 4.3). Since we show the absolute value, the g factor increases for
stronger electric fields. It reaches a value close to one, which is set by the SC g factor because at
strong electric field (E ≳ 150E0), the wave function at k = 0 has a weight of almost 70 % in the
SC.

The spin-orbit energy, on the other hand, is small in the absence of an electric field [see
Fig. 4.3(d)] and reaches a maximum at E ≈ 37E0, after which it is gradually reduced with further
increasing the electric field [see Fig. 4.4(b)]. This is the typical behavior of the SOI in hole NWs,
which is referred to as the direct Rashba SOI [16, 17, 25, 26]. This very strong type of SOI originates
in the HH-LH mixing in 1D hole systems in combination with the breaking of inversion symmetry.
The position of the maximal spin-orbit energy is approximately reached when |eUE/∆sb| becomes
of the order of one [16], where ∆sb is the subband gap in the NW and U = 0.15d/2. Interestingly,
the proximity-induced gap increases with the electric field and reaches a value above ∆ = 0.25 ∆0,
which is comparable to the situation of the flat NW (d = 2 nm) in Fig. 4.3(b). Again, the induced
gap shows the same dependence on E as the weight of the NW wave function in the SC, ΞkF

[see
Fig. 4.4(c)].

The SOI behaves as expected from former studies [16, 25]. However, in a standard Rashba
NW, the spin-orbit energy decreases as the proximity-induced gap increases [67]. Here, we find
that this is not necessarily true for holes in Ge since an appropriate external electric field can cause
strong SOI and a sizable superconducting gap in a Ge NW at the same time. Also relevant for the
search of MBSs, where in addition to strong SOI and a proximity-induced gap a large Zeeman gap
is required, it is important to avoid regimes of strongly reduced g factor. As shown in Fig. 4.4,
it is possible to achieve a large SOI and reasonably large induced gap for realistic field strengths,
while the g factor remains relatively small; however, it can also be optimized by adjusting the field
strength. Furthermore, the coexistence of a large gap and strong SOI by itself is promising for
proposals that achieve MBSs in Ge without any requirement for a large Zeeman energy or with
reduced requirements on the Zeeman energy [61, 62, 96].

In order to get a better understanding for the observed behavior in Fig. 4.4, we plot in Fig. 4.5
the wave function of the NW state at k = kF (by kF , we denote the Fermi wavevector at which the
proximity-induced gap is smallest) for different values of the electric field. We choose E = 0 [see
Fig. 4.5(a)], the electric field where the spin-orbit energy is maximal E ≈ 37E0 [see Fig. 4.5(b)],
and the maximum considered electric field E ≈ 184E0 [see Fig. 4.5(c)]. In the absence of an
external electric field for d = 5 nm, the coupling to the SC is not sufficient to push the NW wave
function towards the interface with the SC. Thus, the wave function mostly remains in the center of
the NW cross section, resulting in a rather weak SOI [see Fig. 4.4(b)] and small proximity-induced
gap [see Fig. 4.4(c)]. At E ≈ 37E0, the wave function is squeezed in the y direction, which
causes a drop in the g factor. At the same time, the wave function is pushed towards the NW-
SC interface, breaking the symmetry. The proximity of the wave function to the SC allows for a
stronger leakage of the NW wave function into the SC, resulting in an enhanced proximity-induced
superconducting gap in the NW. At E ≈ 184E0, the wave function is further pushed towards the
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Figure 4.5: Wave function in the NW for NW-SC coupling t = 0.8 ts at (a) E = 0, (b) E = 36.9E0,
and (c) E = 184.3E0 at k = kF . The superconductor is located on top of the NW. Without the
electric field, the wave function is located in the center of the NW and the coupling to the SC is
not sufficient to shift it towards the SC. For E = 36.9E0, where we observe the maximum SOI in
Fig. 4.4(b), the wave function is squeezed and pushed towards the NW-SC interface. This explains
the gap opening and reduction of the g factor shown in Fig. 4.4. Further increasing the electric field
to E = 184.3E0 further pushes the wave function to the top and enhances the squeezing, resulting
in a larger proximity-induced gap [see Fig. 4.4(c)]. If not stated differently, the parameters are the
same as in Fig. 4.2 and d = 5 nm.

SC and the coupling, along with the induced gap, is increased. Also, the wave function is squeezed
very strongly, which is why we would expect an even smaller g factor. However, the NW state now
hybridizes strongly with the SC states, resulting in a g factor of the order of one.

For a Ge-based NW setup that is promising for the formation of Majorana bound states, we
identify the following electric field regimes as optimal: Between E ≈ 25E0 and E ≈ 60E0, the
g factor is between 0.3 and 1.1. At the same time, the spin-orbit energy reaches its maximum
within this electric field range and the gap starts to open with values between ∆ = 0.08 ∆0 and
∆ = 0.15 ∆0. The regime E ⪆ 120E0 is also promising. We find decent values of the spin-orbit
energy Eso simultaneously with a gap around ∆ = 0.25 ∆0, and with g factors larger than one,
largely due to the finite g factor of the SC.

For the topological phase transition, if the chemical potential is tuned to the crossing point of
the spin-orbit split subbands in the NW, it is required that the Zeeman gap becomes larger than
the proximity-induced superconducting gap ∆Z = 1

2gµBB > ∆ [58, 97, 98]. Taking as an example
the values we get at E = 160E0, where Eso = 460 µeV, g = 1.06, and ∆ = 0.25 ∆0 = 50 µeV, a
magnetic field of B ∼ 2 T is necessary to fulfill the topological condition. Thus, despite the very
small g factor, it is within the realms of possibility to reach the topological phase in a Ge NW
system since the critical field parallel to, e.g., thin Al films can be as large as Bc = 5 T [99]. Note
that this is just a rough estimate since an externally applied magnetic field influences the effective
g factor in the Ge NW [26] and the induced superconducting gap will be suppressed. However, a
detailed analysis taking these effects into account also predicts the topological phase to be possibly
within reach [64].

We mention here that for a more symmetric NW cross section as in a cylindrical NW, the state
is quasidegenerate, which spoils the potential formation of MBSs. However, due to static strain
coming from a shell around the NW or from the contact to the SC, which is neglected in this work,
a substantial subband gap emerges, lifting this quasidegeneracy [17, 25, 100].

In addition to the external electric field considered here, the band bending at the interface
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between the SC and semiconductor is expected to create an electrostatic potential in a realistic
device. We neglect these effects in this work because the electrostatics would only renormalize the
electric field strength required to localize holes close to the interface. Therefore, the qualitative
effect of simultaneously enhanced proximity-induced superconductivity and SOI can be expected
to remain unaltered.

4.6 Coupling only to light holes in the nanowire

In this section, we analyze the case where tLH ̸= 0 and tHH = 0 [see Eq. (4.16)] as an extreme case
of tLH ̸= tHH. In Fig. 4.6, we show the same plots as in Fig. 4.3, but with tHH = 0. In general, we
observe the same qualitative behavior with and without coupling to the HHs. Interestingly, the
proximity-induced gap ∆ can be larger for tHH = 0 than for tHH ̸= 0 [see Fig. 4.6(b)]. However,
still the induced gap is rather small for d ≥ 4 nm. Another interesting difference from Fig. 4.3 can
be seen in Fig. 4.6(d). The spin-orbit energy, which is induced by coupling to the SC, is much
smaller for d = 2 nm and d = 3 nm in the absence of the coupling to the HHs.
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Figure 4.6: Same figure as Fig. 4.3, but the SC is coupled only to the LHs in the NW (tHH = 0).
Qualitatively, there is no difference from Fig. 4.3. The proximity-induced gap is larger when the
SC couples only to the LHs [see (b)]. The spin-orbit energy in (d) is strongly reduced without
coupling to the HHs in the thin NWs (d = 2 nm and d = 3 nm). In (a), the Fermi wave vector is
not well defined for tLH > 0.75 ts, similarly to the cyan line in Fig. 4.2(c).

Also in the case without coupling to the HHs, we analyze the effect of an electric field that
pushes the NW wave function towards the interface with the SC. In Fig. 4.7, we show the same
data as in Fig. 4.4, but without coupling to the HHs. Again, we find a similar qualitative behavior
as before. For tHH = 0, the g factor minimum is 0.8 and, for E ≳ 50E0, it stays close to a value
of g ∼ 1 [see Fig. 4.7(a)]. The g factor does not drop to zero since the HHs remain uncoupled
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Figure 4.7: Same figure as Fig. 4.4, but the SC is coupled only to the LHs in the NW (tHH = 0,
tLH = 0.8 ts). The qualitative behavior is similar to Fig. 4.4. (a) The g factor never drops to a
value as low as with coupling also to HHs. For E > 50E0, the g factor stays at a value of around
one. (b) The spin-orbit energy is almost identical to the one in Fig. 4.4, but the maximum is
slightly lower at Eso = 1.1 meV instead of Eso = 1.3 meV. (c) The proximity-induced gap reaches
∆ = 0.40 ∆0 at E ≈ 184E0, which is significantly larger than the maximum of ∆ = 0.27 ∆0 in
Fig. 4.4.

from the SC and the g factor does not change sign. For E = 0, the g factor is g = 2.5 regardless
of the SC coupling to HHs. For tHH = 0, the spin-orbit energy Eso reaches only a slightly smaller
value than the previous maximum, which again occurs close to E = 37E0 [see Fig. 4.7(b)]. For
tHH = 0.8 ts, the maximum spin-orbit energy is Eso = 1.3 meV, while it is Eso = 1.1 meV for
tHH = 0. The proximity-induced gap, on the other hand, is larger for tHH = 0 [see Fig. 4.7(c)]. At
E = 184E0, the gap is ∆ = 0.40 ∆0 instead of ∆ = 0.27 ∆0 for the previous case of tHH = 0.8 ts.

There are no crucial qualitative differences between the situations with tHH = 0 and tHH ̸= 0
that would contradict our main message of simultaneously large spin-orbit energy and proximity-
induced gap. In a realistic experiment, we expect tHH ̸= tLH and tHH ̸= 0, which should result in
a situation between the two that was discussed in this paper. Again, in such a realistic situation,
we will likely find a regime where the g factor, the SOI, and the proximity-induced gap are just
large enough to achieve the topological phase transition.

4.7 Conclusion

We have numerically investigated the coupling between a Ge NW and a SC that were both modeled
as 3D systems. We showed that the average Fermi wave vector depends on the coupling to the SC
and can increase or decrease with increasing coupling depending on the chemical potential of the
SC with respect to the chemical potential of the NW.

We found that effects of the coupling between the NW and the SC strongly depend on the
thickness of the NW. When no electric field is applied, only for thin NWs does the coupling result
in a sizable proximity-induced gap in the NW. This observation can be explained by the distance
of the NW wave function to the SC. Only if the wave function is close to the SC does it strongly
couple. We showed that the g factor is largest for thicker NWs where, in the absence of an electric
field, the proximity-induced gap remains negligibly small, even for large hopping between SC and
NW sites at the interface. Since the induced gap depends on the distance of the NW wave function
to the SC, the gap can be increased by pushing the wave function closer towards the SC by an
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external electric field. We demonstrated that it is possible to achieve a large spin-orbit energy
simultaneously with a sizable proximity-induced gap for a certain range of the electric field.

There, however, exists an electric field regime where the g factor drops to almost zero, which
spoils the applicability of the Ge hole NW coupled to a SC for the formation of Majorana bound
states. Still, some optimization allows for a regime where the g factor, spin-orbit energy, and
proximity-induced gap are just large enough to achieve a topological phase transition. A rough
estimate tells us that in the most optimal scenario, the topological phase can be reached with
a magnetic field B ∼ 2 T, which is below the critical field of thin Al films. A different type of
coupling where the SC does not couple equally to HHs and LHs does not change the qualitative
results. Coupling only to LHs even can have a positive effect on the g factor of the proximitized
NW.

Our results indicate that there is a unique phenomenology of metallization effects in Ge. Most
importantly, it is possible to find scenarios where the spin-orbit energy and the induced super-
conducting gap are sizable. This is encouraging for many potential applications of hybrid Ge-SC
devices in quantum information processing, e.g., Andreev spin qubits. It is also promising for the
realization of topological superconductivity in Ge-based systems, especially for protocols where no
Zeeman energy is required [62, 96] since then no trade-off is necessary in order to optimize the g
factor.
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CHAPTER 5
Valley-free silicon fins by shear strain

Adapted from:
Christoph Adelsberger, Stefano Bosco, Jelena Klinovaja, and Daniel Loss

“Valley-free silicon fins by shear strain”,
arXiv:2308.13448 (2023)

Electron spins confined in silicon quantum dots are promising architectures for large-scale
quantum computers. However, the degeneracy of the conduction band of bulk silicon introduces
additional levels dangerously close to the window of computational energies, where the quantum
information can leak. The energy of the valley states -typically 0.1 meV- depends on hardly control-
lable atomistic disorder and still constitutes a fundamental limit to the scalability of these archi-
tectures. In this work, we introduce designs of CMOS-compatible silicon fin field-effect transistors
that enhance the energy gap to non-computational states by more than one order of magnitude.
Our devices comprise realistic silicon-germanium nanostructures with a large shear strain, where
troublesome valley degrees of freedom are completely removed. The energy of non-computational
states is therefore not affected by unavoidable atomistic disorder and can further be tuned in-situ
by applied electric fields. Our design ideas are directly applicable to a variety of setups and will
offer a blueprint towards silicon-based large-scale quantum processors.
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5.1. Introduction

5.1 Introduction

Spins in silicon and germanium quantum dots (QDs) are the workhorse of modern semiconductor-
based quantum technology [1–12]. The most advanced platforms to date utilize planar heterostruc-
tures comprising planar Si and SiGe alloys, where the quantum information is carried by single
electrons confined in the Si layer [9–13]. In these systems, long spin coherence is enabled by
the weak spin-orbit interaction of the conduction band and by removing the unwanted nuclear
spin isotopes of Si [14]. Electron spin resonance was harnessed to selectively control individual
qubits [15–17] and tunable exchange interactions mediate fast, high-fidelity two-qubit gates [8,
18–23]. The versatility of these architectures permitted remote coupling of distant qubits via mi-
crowave cavities [24–26] and spin shuttling [27–30], as well as entanglement of three spin states [31].
Readout and two-qubit gate fidelities exceeding the error correction threshold [13, 32–34] and the
recent demonstration of a six-qubit quantum processor [9] also constitute promising steps toward
large-scale quantum processors.

However, further progress in electron spin qubits in silicon is currently hindered by the valley
degeneracy of the conduction band of silicon. In planar Si/SiGe heterostructures tensile in-plane
strain partially lifts the six-fold degeneracy of bulk silicon, pushing four valleys to higher energy;
the groundstate remains two-fold degenerate [35–37]. The residual valleys introduce troublesome
additional levels in the vicinity of the computational energies where the quantum information is
processed. These states open the system to decoherence and relaxation channels and constitute a
critical source of leakage [38–45]. The residual valley degeneracy can be lifted by strong electric
fields, but the induced energy gap is relatively small 10 µeV−100 µeV and dangerously close to the
typical qubit energies ∼ 10 µeV. Because it strongly depends on atomistic details of the Si/SiGe
interface, reliably and reproducibly control this gap is an open challenge [46–52]. Moreover, in hot
qubits, valley states can be thermally excited hindering the scalability of quantum processors [53].
Larger valley splittings are reached by periodically altering the concentration of Ge in the well [54,
55]. In MOS structures splittings ∼ 0.5 meV are reached by tightly confined electrons at the
interfaces between Si and SiO2, but the splittings largely depend on interface disorder [53, 56–58].

Figure 5.1: Design of valley-free fins in Si/SixGe1−x heterostructures. (a) Equilateral triangular fin
with inner and outer side lengths L1 and L2, respectively. The electron wavefunction is localized
above the top of the SixGe1−x fin by uniaxial strain and the electric field E. The fin is assumed to
be grown on a Si substrate, but the results are similar for a Ge substrate. (b) Rectangular Si slab
with side lengths Lx and Ly on a SixGe1−x substrate. The electrons are confined at the corners
of the Si slab by an electric field E in the x-y plane. The blue dots show the position of the QD
hosting the spin qubit in the respective figure. We assume infinitely long systems in z direction.
The coordinate system in (a) shows the crystallographic growth directions for both geometries.
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5.2. Theoretical model

In this work, we propose alternative Si/SiGe nanostructures that completely lift the valley
degeneracy and thus provide ideal platforms for future spin-based quantum processors. In our
designs the electrons are confined in quasi one-dimensional Si fins, see Fig. 5.1, where, in contrast
to planar heterostructures, the SiGe induces a large shear strain. By detailed simulations based on
continuum elasticity theory and microscopic k ·p theory, we show that our engineered strain profile
enables a non-degenerate groundstate split from the excited states by energies ∼ 1 meV − 10 meV,
two to three orders of magnitude larger than in current devices. Importantly, this energy gap
remains large for realistic values of applied electric fields and is independent of atomistic disorder
at the interfaces, rendering our design robust in a wide variety of different fins.

5.2 Theoretical model

The conduction band of bulk Si has six degenerate minima in the first Brillouin zone, which are
located at a distance ±k0/2π = ±0.15/a from the X points. Here a = 5.43 Å is the lattice
constant of Si [59]. Its low-energy electronic states are described by the microscopic two-band k ·p
Hamiltonian [60, 61]

H = ℏ2

2mt
(k2

t1
+ k2

t2
) + ℏ2

2ml
k2

l + Ξuεll + eE · r + V (r) + ℏ2

ml
k0klτx −

(
ℏ2

M
kt1kt2 − 2Ξu′εt1t2

)
τz ,

(5.1)

where l is the longitudinal direction and t1 and t2 are the two transversal directions.
This Hamiltonian is based on a small-momentum expansion of the band structure around the

X points and the Pauli matrices τi, with i = x, y, z, refer to the two valleys in the vicinity to
the same X point. Because there are three inequivalent X-points, the six valleys are described
by three independent copies of Eq. (5.1). The spin degree of freedom is not included in H. The
transversal and longitudinal masses of Si are mt = 0.19me and ml = 0.91me, respectively, with
me being the free electron mass; M ≈

(
m−1

t −m−1
e

)−1 is the band-coupling mass [60, 62].
Because the lattice constant of Ge is aGe = 5.66 Å [59], the Si is strained in Si and Ge het-

erostructures. The uniaxial strain εll and the shear strain εt1t2 modify the electron energy de-
pending on the deformation potentials Ξu = 9 eV [63, 64] and Ξu′ = 7 eV [60, 65], respectively.
In the nanostructures sketched in Fig. 5.1, we simulate the elements of the strain tensor ε by
finite-element methods (FEM) based on continuum elasticity theory [66–69]. More details on the
simulation of the strain in our setups is provided in App. 5.A. We assume that the lattice constant
of an alloy of SixGe1−x varies linearly from a to aGe, and thus we use the relation

εSi/SixGe1−x
= (1 − x)εSi/Ge , (5.2)

interpolating linearly from the minimal strain at 1 − x = 0 to the maximal strain at 1 − x = 1 [70,
71].

Eq. (5.1) also includes the homogeneous electric field E resulting in the electrostatic potential
−eE · r, with e > 0 being the electron charge and r = (x, y, z), and the confinement potential
V (r) accounting for the cross section of the fin. We model the sharp interface between Si and a
SixGe1−x alloy by using the step-like potential function

V (r) =
{

0 for r ∈ RSi,

(1 − x) 500 meV for r ∈ RSiGe,
, (5.3)
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5.3. Shear-strain-induced lifting of the valley degeneracy

where RSi (RSiGe) indicates the region in the cross section occupied by Si (SiGe). In analogy to
Eq. (5.2), we also assume that V (r) decreases linearly from the maximal value of 500 meV (the
band gap difference between Si and Ge) as the concentration of Si x in the alloy increases.

Because Si has an anisotropic dispersion relation, we emphasize that electrons lying in the three
different pairs of valley states generally experience a different confinement potential. To account
for this effect, we fix the z direction to be aligned to the fin and the y direction to be perpendicular
to the substrate, see Fig. 5.1. We also restrict ourselves to the analysis of Si [001], with fins that
are aligned to the [110] crystallographic axis, i.e. y ∥ [001] and z ∥ [110]. This is the standard
orientation of current devices [1, 2, 4, 72].

5.3 Shear-strain-induced lifting of the valley degeneracy

The Hamiltonian H in Eq. (5.1) allows us to accurately analyze the physics of the conduction
band electrons in the fins shown in Fig. 5.1. We discretize H in real space for different cross
sections with lattice spacings ax, ay and we find the dispersion relation of the lowest energy states.
Importantly, we include the inhomogeneous strain tensor ε simulated by FEM with COMSOL
Multiphysics ® [73], see the App. 5.A for more details.

The effect of uniaxial and shear strain in our fins is illustrated in Fig. 5.2(a), where we show the
projection of the three-dimensional (3D) bulk valleys in Si onto the one-dimensional (1D) Brillouin
zone (BZ) along z ∥ [110], see Fig. 5.1. Along z, the four bulk Si valleys belonging to the xz-plane
(purple ellipses) are projected onto ±

√
2k0 close to the X points and the two valleys along the

y ∥ [001] axis (turquoise circles) are projected onto the Γ point (kz = 0). When ε = 0 (dashed
gray lines) all the valleys are close in energy up to a small contribution caused by the anisotropic
confinement. In analogy to planar heterostructures [61, 63, 69, 74] at finite values ε (blue solid
lines) uniaxial strain lifts the degeneracy of the valleys at the X points by several tens of meV.

However, the inherent shear strain in our fin devices results in the lifting of the remaining
two valleys. A zoom into the dispersion relation in the vicinity of the Γ point, highlighting the
shear-strain-induced valley splitting ∆ is shown in Fig. 5.2(b). We focus here on the triangular fin
sketched in Fig. 5.1(a), however, the results discussed are valid also for rectangular fins. We note
that without Ge εxy = 0 and the lowest two energy states (dashed gray line) are degenerate [56,
75], see Eq. (5.1). The SixGe1−x induces a finite εxy in the Si shell which lifts the valley degeneracy.
More details on the simulated strain profile in our fins are provided in Fig. 5.3 and in App. 5.A.
Considering a moderate Ge concentration of 1 − x = 0.3, we estimate the valley splitting ∆ =
0.65 meV for Ey = 1 V µm−1 pointing along [001], significantly larger than what is obtained in
planar heterostructures [38–45]. By increasing the Ge amount to 1 − x = 0.5 the shear strain εxy

increases [see Eq. (5.2)] and consequently a larger value of ∆ = 2.35 meV is reached.
Because the electron is localized at the top of the Si fin, the substrate does not affect the

values of ∆. We also emphasize that in striking contrast to the valley splitting arising in planar
heterostructures, our ∆ arises from shear strain and therefore is reproducible and robust against
atomistic disorder at the Si/SiGe interfaces [36, 76]. We confirm this robustness with additional
simulations shown in App. 5.B.

5.4 Electric-field-dependence of valley splitting

In planar Si/SiGe structures, the valley splitting ∆ strongly depends on the applied electric field E.
We show that in our fins, ∆ can also be tuned in-situ by E, however at large enough concentrations
of Ge in the SixGe1−x alloy, ∆ remains large and in the meV range.
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5.4. Electric-field-dependence of valley splitting

Figure 5.2: Band dispersion of electrons confined in our strained Si fins. (a) Projection of the six
valleys of the 3D Brillouin zone (BZ) of bulk Si onto the 1D BZ with momentum kz ∥ [110]. The
purple ellipses indicate the four valleys in the xz-plane, while the turquoise circles indicate the two
valleys near the X points in the out-of-plane direction y. At the bottom, we show the dispersion
relation ε(kz) of the triangular Si fin sketched in Fig. 5.1(a). Without strain (dashed gray lines)
all the six valleys in the fin are close in energy. Including a moderate strain induced by a SixGe1−x

alloy with x = 0.7 (solid blue lines), we observe that (i) uniaxial strain εll pushes the four valleys
in the xz-plane (purple ellipses) several tens of meV away and (ii) shear strain εt1t2 induces a gap
in the remaining two valleys in the y direction (turquoise circles). (b) Zoom into the dispersion
relation around the 1D Γ point at kz = 0. When εt1t2 = 0, the two valleys are quasi-degenerate.
The degeneracy is lifted by the shear strain induced by the SixGe1−x. The resulting energy gap
(i.e. valley splitting) ∆ ∼ 1 meV increases with decreasing concentration of Si x, as shown by
the blue and red lines obtained for x = 0.7 and x = 0.5, respectively. The dispersion relation is
qualitatively similar for the strained Si fin in Fig. 5.1(b). In the simulation we used L1 = 9.5 nm,
L2 = 19 nm, Ey = 1 V µm−1 (pointing along [001]), ax = 0.32 nm, and ay = 0.28 nm.

The dependence of ∆ on E and 1−x is analyzed in Fig. 5.3(a,e). In the triangular fin sketched
in Fig. 5.1(a) a positive electric field E tends to decrease ∆. This trend can be understood
by observing that E shifts the electron wavefunction towards the upper tip of the Si shell [see
Fig. 5.3(b-d)], where shear strain decreases, see Fig. 5.3(j). A detailed explanation of the FEM
simulation is provided in App. 5.A. In contrast, as the concentration of Ge increases, the strain
also increases, resulting in ∆ ≳ 15 meV for a wide range of E.

We emphasize that because ∆ depends on shear strain our results are robust against variations
in the shape of the cross section. This robustness is verified in App. 5.C, where we simulate a
rounded fin in a half-circular cross section, and we find similar values of ∆.

Large values of ∆ also emerge for a wide range of parameters in the rectangular Si fins on a
SiGe substrate sketched in Fig. 5.1(b). Similar Si nanostructures of comparable size are current
state-of-the-art for spin qubits [4, 72, 79, 80] and can be adapted to our proposal by replacing
the oxide substrate by SiGe. In this device, we observe in Fig. 5.3(e-i) a non-trivial interplay of
1 − x and E, that we relate to the position of the wavefunction in the cross section. Note that in
this case, we study the effect of an electric field E pushing the electron wavefunction toward the
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5.4. Electric-field-dependence of valley splitting

Figure 5.3: Valley splitting ∆ in our Si/SixGe1−x fins. (a) ∆ against the Ge concentration 1 − x
and electric field E (applied along the y direction) in the triangular fin sketched in Fig. 5.1(a).
For a wide range of experimentally relevant parameters ∆ ≳ 0.5 meV, substantially larger than in
planar heterostructures; ∆ is maximized when shear strain increases, i.e. at 1 − x = 1, and at
small values of E. (b-d) Probability densities |ψ|2 of the electron wavefunction at 1 − x = 0.5 for
(b) E = 0, (c) E = 4 V µm−1, and (d) E = 6 V µm−1. These parameters are marked in (a). The
inhogomeneous uniaxial strain localizes the electron at the top of the fin. At E = 0 the electron lies
at the Si/SiGe interface, where shear strain is maximal, and resulting in the largest ∆. Increasing
the electric field the electron is pushed towards the tip of the Si shell, where shear strain is weaker
and ∆ decreases. In the simulation we used L1 = 9.5 nm and L2 = 19 nm, as in Fig. 5.2. (e) ∆,
and (f-i) |ψ|2 in the rectangular fin sketched in Fig. 5.1(b). Note the different directions of E in
the two setups indicated by the arrows in panels (b) and (f). Here shear strain is larger at the left
and right sides of the cross section. At 1 − x < 0.75 and for small E the electron is localized at
the bottom of the cross section (not shown). (f) At 1 − x = 0.5 and E = 2 V µm−1, the electron
is weakly localized at the right of the fin, resulting in ∆ < 0.5 meV. (g) At 1 − x = 0.5 and
E = 9 V µm−1, the electron is pushed towards the upper-right corner of the fin, where shear strain
is larger and the valley splitting increases to ∆ > 0.5 meV. (h) At 1 − x = 0.9 and E = 2 V µm−1,
the larger concentration of Ge enhances locally the strain at the bottom corner of the rectangle
where the electron is localized causing large ∆. However, in this case the necessary level of control
of the position the QD is challenging to reach and the electron risks to leak into the substrate. (i)
At 1 − x = 0.9 and E = 9 V µm−1, the large values of E in a strongly strained device cause the
electron wavefunction to spread out across the side. Then the situation is similar to panel (f) and
∆ < 0.5 meV. We used Lx = 50 nm, Ly = 20 nm, ax = 0.28 nm, and ay = 0.34 nm. (j,k) Shear
strain εxy simulated with the FEM for the two devices for pure Ge instead of SiGe. The other shear
strain components are zero for an infinitely long system in z direction. (j) εxy is large above the
tip of the inner Ge fin and becomes weaker towards the tip of the Si shell. (k) Large εxy is found
close to the interfaces at the bottom of the Si slab. We used aSi = 5.43 Å, aGe = 5.652 Å [59],
CSi

11 = 168 GPa, CSi
12 = 65.0 GPa, CSi

44 = 80.4 GPa [77], CGe
11 = 131 GPa, CGe

12 = 49.2 GPa, and
CGe

44 = 68.2 GPa [78].

upper right corner of the fin; because of symmetry the results are equivalent if the electric field
pushes the electron towards the upper left corner. In particular, εxy is maximal at the left and
right bottom sides of the fin, see Fig. 5.3(k), and thus ∆ is large when the electron is localized
close to these areas. We should emphasize, however, that when it is too close to the interface the
electron risks to leak into the substrate. The QD is also easier to electrostatically control when it

160



5.5. Conclusion

is localized at one of the upper corners.
For low concentrations of Ge (1 − x ≲ 0.7) electrons are localized at the upper corner of the

cross section by a strong field E, and thus ∆ increases with increasing E. For weak electric fields
the wavefunction is spread over the right side and ∆ is small because εxy averages to zero over the
extension of the wavefunction. At larger values of 1 − x ≳ 0.7, the inhomogeneous uniaxial strain
localizes the electrons close to the edges already at small fields E, thus resulting in large values
of ∆. In this case, ∆ is only weakly dependent on E, and it decreases with increasing E because
the electrons are pushed away from the substrate where strain is maximal and the shear strain is
averaged out over the extension of the wavefunction.

The large valley splitting due to shear strain has important consequences for spin qubits realized
in gate-defined QDs in Si fins. The spin qubit lifetime in planar Si/SiGe heterostructures is strongly
limited at spin-valley relaxation hot spots where the qubit Zeeman and valley splittings become
comparable [41, 49, 50, 56, 81]. These hot spots are naturally avoided in our devices because of
the large difference between the typically small qubit Zeeman splitting of ∼ 10 µeV and the valley
splitting of ∼ 1 meV − 10 meV we predict.

5.5 Conclusion

In this work we show that shear strain substantially enhances the valley splitting in Si/SiGe
heterostructures. In realistic Si fins we predict valley splitting gaps ∼ 1 meV − 10 meV, orders
of magnitude larger than in current devices. We show that the amplitude of the gap can be
engineered by varying the composition of the SixGe1−x alloy and is controllable in-situ by electric
fields. Importantly, due to the large valley splitting spin-valley relaxation hot spots, which are a
problem for spin qubits in planar Si/SiGe heterostructures, are avoided naturally in our proposed
Si fins. Our designs are also robust against variations of the fin shape and, in contrast to planar
systems, are not affected by atomistic disorder. By removing a critical issue of current electron
spin qubits in Si, our devices will push these architectures towards new coherence standards and
pave the way towards large-scale semiconductor-based quantum processors.

Acknowledgments. We thank Dominik Zumbühl for giving access to the license for COMSOL
Multiphysics ® and Andreas V. Kuhlmann for useful comments. This work is supported by the
Swiss National Science Foundation (SNSF) and NCCR SPIN (Grant No. 51NF40-180604).

5.A Pseudomorphic strain

We consider strained Si/SiGe devices. Because of the mismatch of lattice constant between the
materials, a force develops at their interfaces, resulting in a displacement field u(r) for the atoms.
Consequently, in equilibrium the lattice constants of the two materials match at the interface; this
is referred to as the pseudomorphic condition.

In linear elasticity theory [68] the change of lengths in a deformed body is given by the strain
tensor

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (5.4)

The strain tensor elements εij are related to the stress tensor elements σij by the material-
dependent elastic stiffness tensor Cijkl:

σij = Cijklεkl , (5.5)
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5.A. Pseudomorphic strain

implying Einstein summation. In the presence of a force fj that deforms the body, the stress
tensor satisfies the equilibrium condition

∂σij

∂xi
= −fj . (5.6)

Therefore, we calculate εij in the presence of a given force f0
j by solving the partial differential

equation

∂[Cijklεkl]
∂xi

= −f0
j . (5.7)

Our system comprising two materials with different lattice constants ai(r) and two different elastic
stiffness tensors Cijkl(r) can be simulated by linear elasticity theory by introducing the equivalent
body force [82]

f0
i = ∂

∂xj

[
Cijkl(r)ε0

kl(r)
]
, (5.8)

where the strain from the lattice constant mismatch is given by

ε0
kk(r) = a

(ref)
k − ak(r)
ak(r) . (5.9)

Here, a(ref)
k is a reference lattice constant that can be chosen to be the lattice constant of one of

the two materials without loss of generality. The elastic stiffness tensor in Eq. (5.8) for crystals
with cubic symmetry can be written as [67, 82]

C =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


, (5.10)

where we use the Voigt notation. For our simulations the tensor is rotated such that it agrees
with the [110] growth direction of the fin considered in our system. For the finite-element method
(FEM) simulations we assume free boundary conditions at the outer boundaries of the devices.

To calculate the effect of strain due to lattice mismatch, we simulate the strain tensor elements
εij in our devices by solving the differential equation in Eq. (5.8) numerically. In particular, we use
the FEM implemented in COMSOL Multiphysics ® [73]. For the lifting of the valley degeneracy,
we pay particular attention to the shear strain component εxy which is the main source of the
large valley gap ∆ in our fins.

In the main text, we show the simulated strain tensor component εxy in the cross sections of
the two devices analyzed in the main text. The finite value of shear strain above the tip of the
inner Ge fin and at the sides and the upper corners of the Si slab explain the large values for ∆
shown in the main text.
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5.B. Atomistic disorder at the Si/SiGe interfaces

Figure 5.4: Uniaxial strain εxx, εyy, and εzz simulated with the FEM in the devices analyzed in
the main text. Here we consider pure Ge; in SixGe1−x alloys εxy → (1 − x)εxy is rescaled linearly
by the concentration of Ge. (a-c) Triangular fin. εxx and εyy counteract each other above the
tip of the Ge fin because they have opposite sign. However, the electron wavefunction is localized
above the tip of the Ge fin since |εyy| > |εxx| and εyy < 0. (d-f) Rectangular fin. Both, εxx

and εyy, have negative sign at the left and right sides of the Si slab. Thus, the wavefunction is
localized at these sides. Note that the deviation from perfect symmetry in the plots comes from
numerical inaccuracies. We used aSi = 5.43 Å, aGe = 5.652 Å [59], CSi

11 = 168 GPa, CSi
12 = 65.0 GPa,

CSi
44 = 80.4 GPa [77], CGe

11 = 131 GPa, CGe
12 = 49.2 GPa, and CGe

44 = 68.2 GPa [78].

In Fig. 5.4 we show the uniaxial strain components εxx, εyy, and εzz for both devices. In
the triangular fin the components εxx and εyy have opposite sign at the region of interest above
the tip of the Ge fin [see Fig. 5.4(a,b)]. Since |εyy| > |εxx| and εyy has negative sign the electron
wavefunction is localized above the tip of the Ge fin. The components εxx and εyy are both negative
at the left and right side of the Si slab, localizing the wavefunction there [see Fig. 5.4(d,e)]. The
εzz component is irrelevant for the localization of the electron [see Fig. 5.4(c,f)].

5.B Atomistic disorder at the Si/SiGe interfaces

In the main text, we analyze triangular and rectangular Si/SiGe fin structures and we argue that
in contrast to planar heterostructures, in our fins atomistic disorder does not affect the valley
splitting ∆. Here we show the results of a simulation including atomic steps at the interfaces of
the two materials, as shown in Fig. 5.5(a). This disorder is known to strongly affect the planar
structures [46–52] however we find that, as expected, it does not affect our fins.

In particular, we diagonalize the Hamiltonian in the main text discretized on the lattice shown
in Fig. 5.5(a) with values of strain simulated in the triangular fin device without interface steps.
The results are shown in Fig. 5.5(b) and comparing with the results in the main text we observe
perfect agreement, thus corroborating our claim. This result can be understood because in contrast
to planar heterostructures, the electron is localized away from the interface steps as discussed in the
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5.C. Semicylindrical Si/SiGe device

Figure 5.5: Atomistic disorder in our Si/SiGe fins. (a) Plot of the cross section of the triangular
fin shown in Fig. 5.1(a) including disorder at the Si/SiGe interfaces. The blue dots depict the
discrete lattice points used for the numerical diagonalization of the Hamiltonian in the main text
and the red lines mark the interface between the inner SiGe fin and the outer Si shell including
atomic size steps at random positions. (b) Valley splitting ∆ plotted against the Ge concentration
1 − x and electric field E (pointing along y direction) in the triangular fin. The result is exactly
the same as for the triangular fin without interface steps. This is not surprising since the electron
wavefunction is located far away from the interface steps.

main text. Moreover, the large valley splitting remains upon smoothening the interface between
the Ge fin and the Si shell as we will discuss in the following section.

5.C Semicylindrical Si/SiGe device

In the main text we argue that Si/SiGe fins with different shapes have a similar valley splitting
∆ and thus our results are largely independent of the fin shape. We support these claims here
by simulating a semicircular fin, see Fig. 5.6. This fin comprises a Ge semicircle on top of a Si
substrate with a Si outer shell, where the electron is localized. This fin resembles the triangular
fin discussed in the main text [see Fig. 5.1(a)] if the triangle has a round tip.

Following the same procedure as before, we simulate first the strain tensor. In Figs. 5.6(a-d)
we show the uniaxial and shear strain components. We observe a qualitatively similar trend as in
the triangular fin, see main text.

The local shear strain explains the trend of the valley splitting ∆ simulated in Fig. 5.6(f). At
small concentration of Ge, with 1 − x ≲ 0.6, the valley splitting decreases with increasing E. At
higher values of 1 −x, where strain is larger, we observe a more interesting dependence of ∆ on E.
This dependence can be understood by looking at the localization of the electron at 1−x = 0.8 for
different values of E, see Fig. 5.6(g-h). At E = 0, the wavefunction is localized at one of the lower
corners of the fin, where εxy is finite, thus resulting in a significant value of ∆. As the electric field
increases, the electron is pushed towards the tip of the fin, and in particular at E = 4 V µm−1,
the electron is localized at the bottom of the tip, where εxy is the largest, and thus resulting in a
large value of ∆. As E is further increased the electron moves toward the topmost part of the fin,
and ∆ decreases due to the weaker shear strain [see Fig. 5.6(d)]. This trend is consistent with the
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Figure 5.6: Simulation of a semicircular Si/SiGe fin. Uniaxial (a-c) and shear (d) strain components
of the strain tensor simulated with the FEM. Large shear strain appears at the interface between Si
and SiGe and decreases towards the surface. The material parameters are the same as in Fig. 5.4.
(e) Sketch of the semicircular fin with inner diameter d1 and outer diameter d2. The electric field
E points along the y direction. (f) Valley splitting ∆ against the Ge concentration 1 − x and the
electric field E. (g-i) Probability densities |ψ|2 of the electrons at 1 − x = 0.8 and (g) E = 0, (h)
E = 4 V µm−1, and (i) E = 8 V µm−1. These points are marked in (f). In analogy to the triangular
fin analyzed in the main text, we obtain ∆ > 0.5 meV for a wide experimentally-relevant range of
parameters. This result proves that the sharp tip of the fin shown in Fig. 5.1(a) is not required
to enable a large valley splitting. (g) Interestingly, for a large Ge concentration (1 − x ≳ 0.6) and
strong strain, the electron is localized at the bottom of the device, close to the surface. This effect
is caused by the uniaxial strain as shown in (a,b). (h, i) An electric field E pushes the electron
to the top of the device. Note that for smaller Ge concentration 1 − x, the electron is localized
at the top even at E = 0; this also occurs for triangular fins. We used d1 = 20 nm, d2 = 40 nm,
ax = 0.34 nm, and ay = 0.17 nm. We chose the size of the system such that the Si and Si/Ge parts
of the cross section cover the same areas as their counterparts in the triangular fin device in the
main text.

simulation of the triangular fin discussed in the main text. Consequently, we conclude that large
values of ∆ in Si/SiGe fins can be reached independently of the sharpness of the tip of the fin.
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