
Einstein-Podolsky-Rosen

experiment with two

Bose-Einstein condensates

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Paolo Colciaghi

2023

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.

The complete text may be reviewed here:

http://creativecommons.org/licenses/by-nc-nd/4.0/

edoc.unibas.ch
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf

Antrag von

Erstbetreuer: Prof. Dr. Philipp Treutlein

Zusätzl. Erstbetreuer: Dr. Tilman Zibold

Zweitbetreuer: Prof. Dr. Christoph Bruder

Externer Experte: Prof. Dr. Marco Fattori

Basel, den 20. Juni 2023

Prof. Dr. Marcel Mayor

Dekan



Abstract

In 1935, Einstein, Podolsky, and Rosen (EPR) conceived a Gedankenexper-
iment in which two particles are entangled through interactions, spatially
separated, and measured. Under the classical assumption of local realism,
they showed that the measurement correlations predicted by quantum me-
chanics for this scenario lead to a violation of the Heisenberg uncertainty
principle. This contradiction, later denominated EPR paradox, revealed that
the completeness of quantum mechanics is not compatible with the local
realist description of nature that characterises classical physics.

Although the EPR paradox has been observed between systems consist-
ing of few particles, this has not yet been achieved between larger systems:
The entanglement of macroscopic objects has already been demonstrated,
but the measured correlations were not strong enough to demonstrate the
EPR paradox. However, the presence of entanglement of the EPR type in
many-particle systems has been shown by measuring correlations within sin-
gle systems.

In this thesis I describe an EPR experiment with two spatially separated
massive many-particle systems: In close analogy to the original Gedanken-
experiment, we entangle about 1400 atoms in a two-component 87Rb Bose-
Einstein condensate (BEC) via tunable collisional interactions and coherently
split them into two separate condensates. Our splitting technique preserves
the overlap and coherence between the components in each of the split BECs,
allowing us to individually manipulate them. The entanglement inherited
from the initial system results in measurement correlations between the two
BECs that are strong enough to show the EPR paradox.

Our work shows that the conflict between quantum mechanics and local
realism does not disappear when the size of the involved systems is increased
to ∼ 103 atoms. In addition to this, EPR entanglement – in conjunction
with the spatial separation and individual addressability of the two systems
demonstrated in our experiment – is a valuable resource for quantum metrol-
ogy and quantum information processing with many-particle systems.
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Chapter 1

Introduction

Classical physics satisfies the principles of local causality, which prohibits any
causal connection between space-like separated events, and realism, which re-
quires that all physical properties of a system exist independent of detection
and can be determined without disturbing the system. Quantum mechanics,
on the other hand, only makes probabilistic predictions about measurement
outcomes and places a lower bound on the combined uncertainty of comple-
mentary observables – the Heisenberg uncertainty principle. Furthermore,
quantum entanglement allows local measurements to instantaneously change
the state of distant systems.

In 1935, Einstein, Podolsky, and Rosen (EPR) raised the question
whether the quantum mechanical description of physical reality can be
considered complete, or whether there are some “hidden” degrees of freedom
that predetermine the measurement outcomes [1]. To address this, EPR
proposed a Gedankenexperiment where two particles, A and B, are prepared
in an entangled state, separated, and measured. They demonstrated that,
in this scenario, assuming both the completeness of quantum mechanics and
the validity of local realism (i.e. the union of local causality and realism)
leads to a contradiction, which became known as the EPR paradox [2, 3].

Even though an experimental realisation of the Gedankenexperiment was
unforeseeable at the time of its publication, EPR’s work has had a ground-
breaking impact on both the study of fundamental physics and quantum
technology, as it was the first to reveal some of the most non-classical features
of quantum mechanics – for example, the terms entanglement and steering
were introduced by Schrödinger in his reaction to EPR’s paper [2,3]. In 1964,
Bell developed the Gedankenexperiment further by considering a different set
of measurements. This allowed him to make an even stronger statement than
the EPR paradox, demonstrating that the predictions of quantum mechanics
cannot be reproduced by any local realist theory [4].

1



Local realism is so deeply rooted in classical physics and ubiquitous in our
experience of macroscopic phenomena, that EPR imposed it as a requirement
for a physical theory to be considered acceptable, thus concluding that quan-
tum theory was incomplete. However, such a claim needed to be investigated
experimentally: For what was known at the time, the states considered by
EPR could have been physically inaccessible, or their description made by
quantum mechanics could have been incorrect. Furthermore, we now know
that the assumption of local realism does not hold in the microscopic world.
Indeed, not only the experimental realisations of the EPR paradox in its orig-
inal form have demonstrated the conflict between quantum mechanics and
local realism [5–10], but increasingly sophisticated experimental Bell tests
have yielded results inconsistent with the latter [11–18].

The experiments mentioned above, which were all performed with
few particles, showed the non-local-realist behaviour of microscopic sys-
tems. However, local realism still governs our experience of macroscopic
phenomena, which raises the question whether this non-classical aspect
of quantum systems just becomes negligible in large, noisy, “everyday”
objects, or whether the latter cannot be described correctly by quantum
theory [19]. This question can be addressed by performing EPR experiments
with increasingly macroscopic, massive systems [9, 20, 21], which poses the
challenge of engineering strong entanglement and achieving a high level of
control and coherence in such systems. In recent years, remarkable progress
has been made in this direction, with the demonstration of entanglement
between spatially separated macroscopic objects [22–27] and the observation
of EPR-like correlations within individual many-particle systems [28–31].

In this thesis I describe the experimental realisation of an EPR experiment
(in the spin version proposed by Bohm [32, 33]) with two massive many-
particle systems. In our experiment, we first prepare a two-component Bose-
Einstein condensate composed of about 1400 87Rb atoms in a squeezed spin
state (which is many-particle entangled [34]) by means of tunable collisional
interactions [35]. Then, we coherently split the system into two spatially
separated clouds, which we can individually manipulate and measure. The
measurement correlations due to the entanglement inherited from the original
BEC are strong enough to demonstrate the EPR paradox, which is observed
here for the first time with two mesoscopic systems.

The results presented in this thesis were published in

[36] P. Colciaghi, Y. Li, P. Treutlein, and T. Zibold, Einstein-Podolsky-
Rosen experiment with two Bose-Einstein condensates, Phys. Rev. X,
13, 021031, 2023.

Further experimental work from the early stages of my doctorate was
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published in

[37] Y. Li, K. Paw lowski, B. Décamps, P. Colciaghi, M. Fadel, P. Treutlein,
and T. Zibold, Fundamental limit of phase coherence in two-component
Bose-Einstein condensates, Phys. Rev. Lett., 125, 123402, 2020.

Outline

In Chap. 2, I go through the fundamentals of Bose-Einstein condensation,
review the properties of our system, and introduce the formalism that we
use to describe it. In Chap. 3, I describe the experimental apparatus. In
Chap. 4, which contains the main results of this thesis, I discuss the EPR
paradox, introduce the experimental criteria that we use to investigate it,
describe the experimental sequence, and present the experimental results
demonstrating the EPR paradox with two spatially separated BECs. In the
appendix, I describe among others a range of calibration measurements that
are essential to correctly set up the experiment.
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Chapter 2

Bose-Einstein condensation

In the experiments described in this thesis we work with BECs for their prop-
erties such as excellent coherence, reliable state initialisation and manipula-
tion, and macroscopic quantum behaviour. In this chapter I briefly review
the fundamentals of Bose-Einstein condensation (following the approach used
in Ref. [38]), discuss the properties of our own BEC, and introduce the for-
malism we use to describe it. For more extensive reviews about this topic, I
refer the reader to Ref. [39–42].

2.1 The phenomenon of Bose-Einstein con-

densation

In 1924 Einstein predicted, based on Bose’s considerations about photons
[43], that a large fraction of the particles in a bosonic system should occupy
the same single-particle state when the system is cooled below a certain tem-
perature [44, 45]. This phenomenon, now known as Bose-Einstein conden-
sation, was first observed experimentally in 1995 in dilute vapours of alkali
metals [46–48].

Bose-Einstein condensation is a purely quantum statistical effect [41]:
Let us consider the problem of distributing N indistinguishable particles
with bosonic permutation symmetry among p states. When the number of
accessible states p is reduced (typically by decreasing the temperature of the
system) to the point where p . N , then the statistical weight of configura-
tions where many particles occupy the same state becomes dominant. This
is in contrast with the classical case of distinguishable particles, where the
configurations with many different occupied states remain likelier.

As an alternative, qualitative argument [39], one can claim that
symmetry-related phenomena become relevant when the wave functions
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of the particles start overlapping, that is when their thermal de Broglie
wavelength λdB =

√
2π~2/mkBT becomes comparable to the inter-particle

separation n−1/3 [39], where m is the mass of the particles, T is their
temperature, and n is their number density.

As it can be seen from the arguments above, Bose-Einstein condensation
occurs below a certain critical temperature Tc, which depends on the spec-
trum of the motional states of particles in the system. For non-interacting
bosons in a three-dimensional harmonic potential, the critical temperature
is given by [40]

T 0
c =

~ωho

kB

(
N

ζ(3)

)1/3

' 0.94
~ωho

kB
N1/3, (2.1)

where ζ is the Riemann ζ function and ωho is the geometric average of the
oscillator frequencies. Taking into account finite size effects and interactions,
one obtains the following corrections to the critical temperature [49],

Tc '
(

1− 0.73
ω̄

ωho

N−1/3 − 1.33
as
aho

N1/6

)
T 0
c , (2.2)

where ω̄ is the arithmetic mean of the trap frequencies, as is the s-wave scat-
tering length, and aho :=

√
~/mωho is the typical length scale of the harmonic

oscillator. For T < Tc, the fraction of condensed particles in the system is
given by

N0

N
= 1−

(
T

Tc

)3

, (2.3)

where N0 is the number of condensed particles. Further corrections to this
model are discussed in [40].

It is worth spending a few words, as a final remark, about the role of inter-
actions in the occurrence of Bose-Einstein condensation: The phenomenon
was first predicted in the non-interacting case, leaving the question as to
whether it could occur in an interacting system (hence at all in reality) open.
As it turned out, while repulsive interactions mostly stabilise the condensate,
attractive interactions tend to make it collapse. This effect is contrasted by
the so-called quantum pressure from the kinetic term in the Hamiltonian,
but above a critical number of condensed particles the interactions dominate
and the BEC collapses [40].

2.2 The Gross-Pitaevskii equation

For our typical experimental parameters, we are not able to observe any
non-condensed atoms [50, 51]. Therefore, we consider the thermal fraction
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of our system as negligible and model our BEC as fully condensed – as a
so-called zero-temperature BEC. The exact state of a BEC is given by the
N particle Schrödinger equation, which is extremely difficult to solve due to
interactions. In this section I will introduce the most common approximation
used to model the state of a BEC, a Hartree-Fock ansatz known as the Gross-
Pitaevskii equation (GPE) or mean-field approximation [41].

Besides the Hartree-Fock ansatz

Ψ(~r1, . . . , ~rN , t) =
N∏
i=1

ψ(~ri, t), (2.4)

where Ψ is the N -particle wave function and ψ is the single-particle wave
function, we assume that the particles only interact via pairwise s-scattering
interactions, described by the contact potential gδ(~r − ~r′) with interaction
strength

g =
4π~2as
m

. (2.5)

Both these assumptions are excellent approximations for weakly-interacting
dilute gases, such as our system.

In the static case, by minimising the energy expectation value obtained
from Eq. (2.4) with the constraint of the wave function normalisation and
dividing by N , we obtain the time-independent GPE (TIGPE)(

Ĥsp(~r) + g(N − 1)|ψ(~r)|2
)
ψ(~r) = µψ(~r), (2.6)

where Ĥsp(~r) := (~2/2m)∇2 + V (~r) is the single-particle Hamiltonian in the
external potential V (~r), the term g(N − 1)|ψ(~r)|2 is an effective potential
describing the inter-particle interactions as a mean field, and µ is the chemical
potential. The chemical potential is the partial derivative of the energy
expectation value w.r.t. the atom number, and it can be understood as the
energy needed to add one particle to the BEC.

Generalising Eq. (2.6) to the dynamic case yields the time-dependent
Gross-Pitaevskii equation (TDGPE)

i~∂tψ(~r, t) =
(
Ĥsp(~r, t) + g(N − 1)|ψ(~r, t)|2

)
ψ(~r, t). (2.7)

The GPE has in general no analytic solution, and is typically solved nu-
merically. Two notable exceptions are the harmonic-oscillator limit and the
Thomas-Fermi limit. The first one is the non-interacting case, and results in
ψ being identical to the single-particle ground-state wave function, which in
the case of a harmonic potential corresponds to a Gaussian function. The
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Thomas-Fermi limit corresponds to the case where the interaction energy is
much larger than the kinetic energy, typically due to the particle number
being very large. In this case, the kinetic term in the GPE can be neglected,
yielding an inverted parabola as a static solution. Our experimental param-
eters correspond to neither of these regimes.

2.3 Two-component Bose-Einstein conden-

sates

In this work we treat a BEC composed of atoms that possess an internal
degree of freedom, {|i〉}i∈{1,...,M}, which makes particles in different states
distinguishable from each other. Such a system, called multi-component
BEC, is described by a system of coupled GPEs. In the time-independent
case, this reads(

Ĥ(i)
sp (~r) + gii(Ni − 1)|ψi(~r)|2 +

∑
j 6=i

gijNj|ψj(~r)|2
)
ψi(~r) = µiψi(~r), (2.8)

for every i ∈ {1, . . . ,M}, where ψi, Ni, and µi are respectively the wave
function, the atom number, and the chemical potential of the i-th state,
and gij is the interaction strength between the i-th and the j-th state. The
multi-component TDGPE can be obtained in the same way.

2.3.1 The ground state of 87Rb

In this thesis, we consider a two-component BEC constituted by two states in
the hyperfine-split ground state of 87Rb, whose structure is briefly reviewed
in this section. More detailed information can be found in Ref. [52].

Since 87Rb is an alkali metal, its electronic properties are mainly deter-
mined by the one electron populating the outermost orbital, resulting in a
simple level structure. The hyperfine splitting results from the coupling be-

tween the total angular momenta of the electron, ~̂J , and of the nucleus, ~̂I.
For J = 1/2, it takes the simple form

Ĥhfs = Ahfs
~̂I · ~̂J, (2.9)

where Ahfs is the magnetic dipole moment of the involved fine-structure
manifold [52]. Eq. (2.9) is diagonalised in the basis formed by the states
|F,mF 〉, where F and mF are the quantum numbers related respectively
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|1〉

|2〉
F = 2

F = 1

−2mF = −1 0 +1 +2

≈

6.
8
G
H
z

0.70MHz/G

−
√

3/4 −
√

3/8 −
√

1/8

−
√

3/16 −
√

1/4 −
√

3/16

√
1/8

√
3/8

√
3/4

Figure 2.1: Level diagram of the hyperfine split ground state of 87Rb in
the linear Zeeman regime. The states are indicated by solid horizontal lines,
whose colour represents the sign of the respective magnetic moment: Orange
for positive, green for zero, and blue for negative. Dashed lines indicate pos-
sible microwave magnetic dipole transitions and the respective non-vanishing
matrix elements 〈F,mF | Ĵp |F ′,m′F 〉, where p ∈ {−, z,+}. The Ĵz matrix el-
ements are non-vanishing for the transitions with ∆mF = 0, whereas those
relative to Ĵ± := Ĵx ± iĴy are non-vanishing for ∆mF = ±1. The frequency
splitting of the states is not to scale.
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to the total angular momentum, ~̂F := ~̂J + ~̂I, and to its projection along
the quantisation axis. The ground state of 87Rb is given by J = 1/2 and
I = 3/2, thus it is hyperfine split into F = 1 and F = 2, separated by
2Ahfs = h× 6.834 682 611 GHz [52]. In absence of externally applied fields,
states with different mF are degenerate.

An atom coupled to a static magnetic field ~B is described by the Breit-
Rabi Hamiltonian

ĤBR = Ĥhfs + µB(gI ~̂I + gJ ~̂J) · ~B, (2.10)

where µB is the Bohr magneton, and the g factors related to ~̂I and ~̂J are re-
spectively gI ≈ −1× 10−3 and gJ ≈ 2.003 [52]. If we restrict ourselves to the
ground state (J = 1/2 and I = 3/2), Eq. (2.10) can be diagonalised analyt-
ically. Since in our experiments we use magnetic fields which induce energy
shifts much smaller than the hyperfine splitting, we express the eigenvalues
of Eq. (2.10) in the |F,mF 〉 basis

E|F,mF 〉 = −Ahfs

4
+ gIµBmFB ± Ahfs

√
1 +mF ξ + ξ2, (2.11)

where ξ := (gJ − gI)µBB/(2Ahfs), B := | ~B|, ± is + (−) for F = 2 (F = 1),
and where we have chosen the quantisation axis parallel to the magnetic
field [52]. For weak magnetic fields, ξ � 1, the magnetic-field dependence in
Eq. (2.11) can be approximated by the linear Zeeman effect

EZ ≈ gFmFµBB, (2.12)

where gF ≈ ±1/2 (with the same sign convention as above), which yields
a relative shift between adjacent mF levels of gFµB ≈ h× 0.70 MHz/G, see
Fig. 2.1. This is a good approximation for our experimental parameters.

All states with a positive magnetic moment gFmFµB – also known as
low-field seeking states, orange in Fig. 2.1 – can be trapped in a minimum of
the magnetic field modulus B(~r). Among these,

|1〉 := |F = 1,mF = −1〉 ,
|2〉 := |F = 2,mF = +1〉 ,

have nearly identical magnetic moment and thus experience the same trap-
ping potential. In addition to this, they have very similar s-wave-scattering
lengths,

a11 = 100.40 a0,

a12 = 98.01 a0,

a22 = 95.44 a0,

9



where a0 is the Bohr radius [53]. Thus, using these two states as BEC
components guarantees that they maintain nearly perfect overlap for our
experimental parameters: From the numerical solution of the two-component
TDGPE shown in Ref. [51], it resulted that their overlap oscillates between
97.7 % and 100 % during the so-called breathing dynamics. This was also
confirmed experimentally by measuring the interferometric visibility of our
system, see Sec. 2.3.7, which was observed to be 97 %.

Since in this thesis we are interested in coherent superpositions of |1〉
and |2〉, it is desirable to minimise the sensitivity of such superpositions to
fluctuations of the magnetic field. From Eq. (2.11) (not in the linear approxi-
mation), it results that there is a so-called magic field value B0 = 3.228 917 G
around which the differential Zeeman shift between |1〉 and |2〉 is first-order
magnetic field insensitive,

ω12 = ω0 + β(B −B0)2, (2.13)

where β = 2π × 431 HzG−2 and ω0 = 2π × 6.834 678 114 GHz [54]. Perform-
ing experiments close to the magic field makes it possible to attain coherence
times of hundreds of milliseconds with our experimental apparatus [37] and
up to several seconds in atomic clock experiments1 [55, 56].

2.3.2 Collective spin formalism

As discussed in Sec. 2.3.1, the two components of our BEC show nearly
perfect overlap. Due to this, we can neglect the spatial dynamics and focus
on the internal degree of freedom of the atoms: Since it is a collection of
pseudo-spin-1/2 (i.e. two-level) particles, we can describe our system with
the collective spin formalism [57].

The collective spin components of the system are defined as the sums of
the corresponding individual spin components

Ŝx,y,z :=
1

2

N∑
i=1

σ̂(i)
x,y,z, (2.14)

where σ̂
(i)
x,y,z are the Pauli matrices applied to the i-th particle. The collective

spin components satisfy the angular momentum commutation relations

[Ŝa, Ŝb] = i
∑

c∈{x,y,z}
εabcŜc, (2.15)

1Including the effect of spin self-rephasing, coherence times of one minute have been
observed [55].
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where a, b, c ∈ {x, y, z} and εabc is the Levi-Civita symbol.
Since our atoms are indistinguishable bosons, we can restrict our dis-

cussion to the Hilbert space of states symmetric under particle exchange,
known as the fully symmetric subspace, which has dimension N + 1 and is
characterised by the maximal total spin length of S = N/2, where S is de-

fined by S(S + 1) := 〈 ~̂S2〉. In this case, we can treat the two states |1〉 and
|2〉 as bosonic modes and make use of Schwinger’s representation of angular
momentum [58], i.e. express the collective spin operators in terms of their
creation (â†1 and â†2) and annihilation operators (â1 and â2):

Ŝx =
â†1â2 + â†2â1

2
, Ŝy =

â†1â2 − â†2â1

2i
, Ŝz =

â†1â1 − â†2â2

2
. (2.16)

In the same way, the atom number operator of state |i〉 can be expressed
as N̂i = â†i âi. Thus, we can re-write the total atom number opera-
tor as N̂ = â†1â1 + â†2â2 and the z-component of the collective spin as
Ŝz = (N̂1 − N̂2)/2. As described in Sec. 3.4, we measure our system by
detecting the atom number present in the two states, thus we can measure
directly the z-component of the collective spin. In order to measure other
spin directions, we have to perform collective spin rotations before detection,
see Sec. 3.4.1.

Assuming that the atom numbers in the two states are tightly distributed
around their mean values, N̄1 and N̄2, a Hamiltonian suited to describe the
collective spin dynamics can be derived by expanding the full Hamiltonian
of the system around N̄1 and N̄2, and omitting the constant terms [59]:

Ĥ =
[
(µ1 − µ2)− 2~χ〈Ŝz〉+ ~χ̃(N̂ − N̄)

]
Ŝz + ~χŜ2

z , (2.17)

where N̄ is the mean total atom number and

χ :=
1

2~

(
∂µ1

∂N1

+
∂µ2

∂N2

− ∂µ1

∂N2

− ∂µ2

∂N1

)
N̄1,N̄2

, (2.18)

χ̃ :=
1

2~

(
∂µ1

∂N1

− ∂µ2

∂N2

)
N̄1,N̄2

. (2.19)

The second and third term in Eq. (2.17) represent rotations around the z
axis proportional to 〈Ŝz〉 and (N̂ − N̄), respectively, whereas the last term
induces a nonlinear evolution known as one-axis twisting (OAT) [60], which
is relevant to the generation of entanglement in our system, see Secs. 2.3.5
and 4.3. The chemical potentials are defined as

µi :=
∂H

∂Ni

=

∫
R3

d3r ψ∗i Ĥ
(i)
sp ψi +

∑
j∈{1,2}

gijNj

∫
R3

d3r |ψi|2|ψj|2 (2.20)
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for i ∈ {1, 2}. In the weak interaction limit (e.g. for small atom numbers),
the mode functions ψ1,2 are independent of the atom number and χ and χ̃
are simplified to

χ =
1

2~

(
g11

∫
R3

d3r |ψ1|4 + g22

∫
R3

d3r |ψ2|4 − 2g12

∫
R3

d3r |ψ1|2|ψ2|2
)
,

(2.21)

χ̃ =
1

2~

(
g11

∫
R3

d3r |ψ1|4 − g22

∫
R3

d3r |ψ2|4
)
. (2.22)

Although for our experimental parameters we are not fully in the weak in-
teraction limit, these expressions help us understand how χ and χ̃ depend
on the scattering lengths and density overlap of the BEC components. This
indicates which experimental parameters can be modified to engineer the
collisional phase shifts and the OAT dynamics terms in the Hamiltonian
Eq. (2.17). For example, due to the similarity of the scattering lengths, the
OAT term is negligible as long as the BEC components overlap, but can be
activated by means of state-dependent potentials, see Secs. 2.3.5 and 3.3.3.

2.3.3 Wigner function

The complete description of the state of a system is given by its density
matrix. However, this does not help us to gain a visual intuition of the state.
A more intuitive – and still complete – representation of the collective spin
state is given by the spherical Wigner function [61, 62], which is analogous
to the planar Wigner function of a harmonic oscillator, but it is defined on
a spherical phase space of radius S = N/2 known as generalised or many-
particle Bloch sphere:

W (θ, ϕ) :=
2S∑
k=0

k∑
q=−k

ρkqYkq(θ, ϕ), (2.23)

where Ykq are spherical harmonics, θ and ϕ are the polar and azimuthal
angle, respectively, and the weights ρkq are the transformed density matrix
elements

ρkq :=
S∑

m=−S

S∑
m′=−S

tSmm
′

kq 〈S,m| ρ̂ |S,m′〉 . (2.24)

The transformation coefficients are defined as

tSmm
′

kq := (−1)S−m
√

2k + 1

(
S k S
−m q m′

)
, (2.25)

where the last term in parentheses is the Wigner 3j symbol. This allows us
to represent the collective spin components on the generalised Bloch sphere.
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2.3.4 Coherent spin states

The simultaneous eigenstates of Ŝz and ~̂S2 = Ŝ2
x + Ŝ2

y + Ŝ2
z are the so-called

Dicke states, which are denoted by |S,m〉, where S(S + 1) and m are the

eigenvalues of ~̂S2 and Ŝz, respectively. Given that our system is restricted
to the fully symmetric subspace, we are only interested in the Dicke states
with S = N/2. Since they are eigenstates of Ŝz, they have fully undeter-
mined phase between the two BEC components and constitute the “natural”
measurement basis of our system. However, the only Dicke states that can
be prepared in our apparatus are the extremal Dicke states |S,±S〉 – also
known as stretched spin states. The preparation of all other Dicke states
(which are entangled states) would require non-destructive measurements
and single-atom resolution.

Coherent spin states (CSS), on the other hand, can be prepared easily
in our apparatus. These states are the tensor product of N identical single-
particle states in the direction (θ, ϕ)

|CSS : θ, ϕ〉 :=
(
cos(θ/2) |1〉+ eiϕ sin(θ/2) |2〉

)⊗N
, (2.26)

where θ ∈ [0, π] and ϕ ∈ [0, 2π], and are therefore considered as the most
“classical” states in our system. From their definition it is clear that they
are separable, fully symmetric, polarised2 states. Since CSSs are the collec-
tion of independent and identically prepared binary systems, much of their
behaviour is given by binomial statistics: For example, the variance of a
spin quadrature perpendicular to the mean spin direction is Var(Ŝ⊥) = S/2,
whereas the variance along Ŝz is Var(Ŝz) = sin2(θ)S/2. Also, the expansion
of a CSS in the Dicke basis is a binomial distribution

|CSS : θ, ϕ〉 =
S∑

m=−S

√(
N
k

)
pk(1− p)N−ke−imϕ |S,m〉 , (2.27)

with N = 2S, k := S +m, and p := cos2(θ/2). From Eq. (2.27) it is
clear that stretched spin states are CSSs: |S, S〉 = |CSS : 0, ϕ〉 and
|S,−S〉 = |CSS : π, ϕ〉. Any CSS can be obtained from a stretched spin
state with one collective spin rotation:

|CSS : θ, ϕ〉 = e
−iθŜϕ+π2 |S, S〉 = e

−i(π−θ)Ŝϕ−π2 |S,−S〉 . (2.28)

This is experimentally relevant, as we typically initialise the system in a
stretched spin state and mainly apply Rabi pulses for further manipulations.

2Polarised states satisfy
√
〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2 ' N/2.

13



2.3.5 Spin squeezing

CSSs are separable, Heisenberg limited states with equal uncertainty in all
quadratures perpendicular to the mean spin direction. This uncertainty fol-
lows from the binomial statistics of uncorrelated spin-1/2 measurements and
it determines the standard quantum limit (SQL) of metrological sensitiv-
ity. The SQL can be overcome, among others, by squeezed spin states
(SSSs) [57, 60], which are fully symmetric, polarised states, where in the
plane perpendicular to the mean spin direction, Ŝm, there is one quadrature
showing reduced uncertainty (squeezed direction Ŝs). As required by the
Heisenberg uncertainty principle, this is only possible at the expense of in-
creased noise in the perpendicular quadrature (anti-squeezed direction Ŝas).
Since the SQL follows from the uncorrelated measurement outcomes of the
atoms, it is clear that SSSs are many-particle entangled states [34, 35,57].

The noise reduction of a SSS w.r.t. the SQL is quantified by the number
squeezing parameter [57],

ζ2 :=
4 Var(Ŝs)

N
, (2.29)

which is however not a measure of its metrological usefulness, as it does not
take into account the interferometric contrast of the state, 2〈Ŝm〉/N . This is
included by the spin squeezing parameter [63, 64]

ξ2 :=
N Var(Ŝs)

〈Ŝm〉2
. (2.30)

When ξ2 < 1, the state can be used to overcome the SQL in interferometric
measurements, thereby also demonstrating many-particle entanglement [34,
63,64].

SSSs can be prepared starting from a CSS on the equator of the many-
particle Bloch sphere |CSS : π/2, ϕ〉 and applying OAT dynamics χŜ2

z for
a time . N−2/3/χ [60], which in our experiments is achieved by modifying
the overlap between the BEC components by means of state-dependent po-
tentials, see Secs. 2.3.2 and 3.3.3. Both CSSs and SSSs are approximately
Gaussian states, i.e. they can be described by first and second moments of the
collective spin measurements – such as mean and variance. If we apply OAT
for longer than ∼ N−2/3/χ, we get oversqueezed states, whose description
necessitates higher moments [57,65,66]. For the OAT evolution time π/(2χ),
we obtain a Schrödinger cat state [57], which in our case is the coherent
superposition of two diametrically opposite CSSs.

Although oversqueezing the state yields in principle more resources than
normal squeezing [57, 65], SSSs are experimentally very convenient: Firstly,

14



measuring higher moments of the spin observables is a large experimental
overhead and requires an elaborate optimisation of the process or more ad-
vanced detection strategies [66–68]. Secondly, SSSs are robust against parti-
cle losses, but become increasingly fragile as we oversqueeze – e.g. a cat state
is completely destroyed by the loss of one particle.

2.3.6 Atom losses in two-component Bose-Einstein
condensates

The dominant atom loss mechanisms in BECs are typically one-, two-, and
three-body processes [51, 69]. One-body losses are due to collisions with the
residual background gas present in the vacuum chamber. Two-body losses
result from inelastic collisions between two atoms in the condensate, which
can be subdivided into spin-dipole and spin-exchanging collisions. In 87Rb,
spin-dipole collisions are negligible. Spin-exchanging collisions are processes
where two colliding particles exchange one quantum of angular momentum.
In the case of the states we work with, the allowed spin-exchanging collision
processes are

|2, 1〉+ |2, 1〉 7→ |2, 0〉+ |2, 2〉 ,
|1,−1〉+ |2, 1〉 7→ |1, 0〉+ |2, 0〉 ,

where the states are denoted as |F,mF 〉. Three-body losses are due to pro-
cesses where two atoms form a molecule and a third one converts the binding
energy into kinetic energy. Three-body losses are dominant for large densi-
ties (typically reached for atom numbers N > 105), but negligible for our
experimental parameters.

The equation describing the atom number evolution in our system is

dN1

dt
= −k(1)

1 N1 − k(2)
12 N1N2, (2.31)

dN2

dt
= −k(1)

2 N2 − k(2)
12 N1N2 − k(2)

22 N
2
2 , (2.32)

where k
(i)
A are the i-body loss rates involving the states in the set A. The

loss rates depend on the loss constants κ
(i)
A and on the atom density,

k
(i)
A = κ

(i)
A

∫
R3

d3r
∏
j∈A
|ψj(~r, t)|2. (2.33)
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The one-body loss constants depend on the background gas density3 and
thus need to be determined experimentally; in our case, they are typically
κ

(1)
1 = κ

(1)
2 ≈ 0.1 s−1. All other κ

(i)
A , on the other hand, can be treated as

constants – they weakly depend on the magnetic field, which is kept constant
in our experiments.

κ
(2)
12 = 2.0× 10−20 m3s−1, [37]

κ
(2)
22 = 10.3× 10−20 m3s−1. [37]

From comparing Eq. (2.31) to Eq. (2.32), it is clear that the loss process in
our system is asymmetric. Indeed, the atom number in state |2〉 decays much
faster than the one in state |1〉 [37].

Eqs. (2.31) and (2.32) describe the mean behaviour of atom losses. These
are, however, stochastic processes. As described in Sec. 2.3.7, this fact has
relevant consequences in the decoherence processes – so relevant, in fact, that
it sets a fundamental limit to the coherence of our system [37,70].

2.3.7 Coherence in two-component Bose-Einstein con-
densates

In this section I discuss the temporal phase coherence of our system, where
by phase it is meant the relative phase between the two BEC components,
which has been studied extensively in Ref. [37,51] and is crucial for the results
presented in this thesis.

In order to characterise the phase coherence of a system, one typically per-
forms a Ramsey interferometry experiment [71], which consists of preparing
the system (assuming it is initialised in state |1〉⊗N) in a superposition state
[(|1〉+ |2〉)/

√
2]⊗N = |CSS : π/2, 0〉 with a π/2 pulse, allowing it to evolve

for a given interrogation time tR, and applying a second π/2 pulse with a
phase ϕR ∈ [0, 2π) w.r.t. the first one. The second pulse maps the accumu-
lated phase to an atom number imbalance, which is measured. Repeating
this procedure with different phases yields a so-called Ramsey fringe, which
in absence of phase noise takes the form

〈Nrel(ϕR)〉 = −V cos(ϕR + ϕ), (2.34)

where Nrel := (N1 −N2)/(N1 +N2) ∈ [−1, 1] is the normalised atom number
imbalance, V ≤ 1 is the interferometric visibility, and ϕ is the phase accu-
mulated during the state evolution. The visibility describes the mean spin

3Since one-body losses are not a limiting factor for the results presented in this thesis,
we have not investigated how much of this process is caused by the residual pressure of the
vacuum system and how much by the rubidium vapour from which the BEC is produced.
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length normalised to N/2, which can be smaller than one in case of imperfect
overlap between the two states (see Sec. 2.3.1) and of asymmetric losses (see
Sec. 2.3.6). On the time scales of the experiments presented in this thesis,
the visibility of a CSS (determined as described in Ref. [51]) is 97 %.

In the presence of phase noise, the accumulated phase ϕ changes from
shot to shot, smearing the Ramsey fringe. The resulting measurements can
be fitted by the function

〈Nrel(ϕR)〉 = −C cos(ϕR + ϕ̄), (2.35)

where C is the interferometric contrast and ϕ̄ the average accumulated phase.
The difference between the contrast and the visibility is a measure of the
phase coherence of the system. In case of Gaussian phase noise, this is given
by [72]

C = V e−
1
2

Var(ϕ). (2.36)

In order to obtain the temporal behaviour of the coherence of the system,
Ramsey fringes are measured for different interrogation times. The results of
performing this procedure with our apparatus are presented and analysed in
Ref. [37,51], where they are compared with a quantum trajectory simulation
in order to understand the mechanisms that lead to decoherence. In the
following I briefly summarise the main results of such an analysis.

The dominant decoherence mechanism in our system originates from the
so-called collisional clock shift term in the spin Hamiltonian Eq. (2.17),
~χ̃(N̂ − N̄)Ŝz, which induces an atom-number-dependent phase shift. Atom
number fluctuations come both from preparation noise and from atom losses.
If the latter were deterministic, we would be able to reconstruct the atom
number at all times from the detected atom number (which is the only mea-
surable piece of information) and we could correct for the clock shift com-
pletely. Unfortunately, since atom losses are a stochastic process, the clock-
shift correction based on the detected atom number only eliminates part of
this phase noise. Since atom losses are unavoidable in BECs, this constitutes
a fundamental limitation to the phase coherence in two-component BECs.

The other effects that were considered, namely technical noise and phase
diffusion, showed minor contributions to decoherence. An upper bound
to technical noise was set by performing Ramsey experiments with a non-
condensed atom cloud, where interatomic interactions are suppressed by the
low density. Phase diffusion, which consists of the anti-squeezing caused by
the OAT term in the Hamiltonian Eq. (2.17), is negligible in our case due to
the excellent overlap between the BEC components and the nearly identical
scattering lengths (see Sec. 2.3.1).
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Chapter 3

Experimental apparatus

All experiments presented in this thesis have been performed on the atom
chip apparatus in Prof. Philipp Treutlein’s group at the University of Basel
[73]. This apparatus allows us to produce two-component 87Rb BECs com-
posed of ∼ 1500 atoms magnetically trapped close to a micro-fabricated wire
structure, the atom chip, and to manipulate their internal state with homo-
geneous and inhomogeneous high-frequency electromagnetic fields. In this
chapter, I give an overview of the experimental apparatus, spending more
time on the parts that have changed over the course of my doctorate. A
more complete description can be found in the previous doctoral theses writ-
ten about this system [38,42,51,69,74,75].

3.1 Magnetic fields and vacuum system

Atom chips [76] are micro-fabricated wire structures used to create trapping
potentials for ultra-cold atom experiments. The versatile design and the
strongly inhomogeneous fields produced close to the chip surface make it
possible to engineer a rich variety of magnetic potentials – both static and
high frequency – in compact experimental apparatuses. Furthermore, this
technology can be easily integrated with a variety of devices (e.g. on-chip
optics), making it suitable for a wide range of applications.

Our apparatus is centred around a multi-layer atom chip, see Fig. 3.1,
described in [42,69,74]. The bottom layer, known as the base chip, provides
mechanical support, all electrical connections to the atom chip, and some
of the wire structures used in the initial cooling stages. It consists of a
800 µm thick AIN ceramic substrate with a 12 µm thick patterned gold layer,
equipped with ribbon-cable-compatible pin headers for DC currents and mini-
SMP connectors for high-frequency signals.
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DC connector
(on the back)

microwave connector

science chip

base chip

Figure 3.1: Photograph of the atom chip alone (left) and glued to the glass
cell (right). Images taken from Ref. [42].

On top of the base chip, two 525 µm thick high-resistivity Si wafers are
glued, known as the spacer chip and the science chip – the spacer chip being
of course placed between the base and the science chip. The science chip
is topped with two layers of gold wire structures: The lower one is 5 µm
thick and is structured with interconnected wires that can be used in various
configurations, including the dimple, U-shaped, and Z-shaped wires. The
top one is 1 µm thick and contains two sets of wire structures, both able to
carry DC and microwave (mw) currents. The two layers are separated by
a 6 µm thick polyamide layer, which serves both as electrical insulator and
as surface planariser. Besides the wire structures, the surface of the science
chip is gold coated and is used as a mirror during the laser cooling stages.

Both DC and mw magnetic fields generated by the atom chip can be
simulated with a program originally developed in Ref. [42]. The accuracy of
the simulated mw amplitude was confirmed experimentally in Ref. [77,78].

The atom chip is glued to a (3 cm)3 glass cell, forming the top wall of the
so-called science chamber, where every stage of the experimental sequence
takes place. The bottom of the glass cell is connected via a six-way stainless-
steel cross to a 40 l/s ion pump1, a Ti-sublimation pump2, an ion pressure
gauge3, and three Rb dispensers4. The ion pump maintains a pressure be-
tween 5× 10−10 mbar and 1× 10−9 mbar (read from the pressure gauge).
Once every few months, when the pressure surpasses 1× 10−9 mbar (the typ-

1Varian VacIon Plus 40 Diode.
2A Ti filament driven by Vacom SUBLI-CON 51.
3Leybold Ionivac IE514 Extractor.
4Two SAES Getters RB/NF/3,4/12FT10+10 and one Alvatec AS-RbIn-5-F, all of

which contain the natural mixture of Rb isotopes.
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ical BEC lifetime at this pressure is ∼ 6 s), we activate the Ti-sublimation
pump. Out of the three Rb dispensers, only one of the SAES Getters is in
operation, at the constant current of 2.35 A.

All inhomogeneous magnetic fields are produced by the wire structures
on the atom chip, with one exception: On the back of the chip is attached
a water-cooled copper block, which contains a U-shaped wire used to create
the quadrupole field during the initial magneto-optical trapping stage (called
big U wire). A water-cooled coil cage, composed of three Helmholtz coils,
surrounds the science chamber, providing approximately homogeneous fields
in all directions (called bias fields). In the x- and z-direction, the coils
produce fields of 6.1 G/A and 1.7 G/A, respectively. In the y-direction, two
independent windings provide strong fields (4.3 G/A) and weaker but more
stable fields (1.7 G/A). The water cooling of both the copper block and the
coil cage are connected in series to a thermoelectric chiller5.

In addition to the coil cage, around the science chamber there are a
mw and a rf antenna used for collective spin rotations (see Sec. 3.3.2), fibre
output couplers (see Sec. 3.2), and imaging optics (see Sec. 3.4). In order to
protect the atoms from magnetic field fluctuations and ambient light, all the
aforementioned components are enclosed in a single-layer µ-metal shield.

3.1.1 Magnetic trapping potentials

According to Eq. (2.12), the linear Zeeman shift produces a potential
V (~r) := gFmFµBB(~r), which allows one to trap atoms in states with
positive magnetic moment – low-field-seeking states – in a minimum of the
magnetic field modulus B(~r). We produce such minimum by means of Ioffe-
Pritchard traps [76, 79–81], which are the combination of a two-dimensional
and a one-dimensional trap. Two-dimensional confinement results from the
combination of the magnetic field from a current-carrying wire in, say, the
x direction and a homogeneous magnetic field in the y direction: The two
fields cancel each other along a straight line in the x direction, forming a
quadrupole field in the yz plane. In order to have a non-zero field in the
trap centre6 and to obtain a harmonic potential, a homogeneous field is
added in the x direction. Confinement in the third dimension is obtained
by adding one or more current-carrying wires in the y direction. This can
be done by substituting the straight wire with a Z-, U-, or H-shaped one,
or by introducing an additional wire crossing the first one – the latter
configuration is called dimple trap.

5Solid State Cooling Systems ThermoCube 10-400L-3G20-2-EF-DC-VD-AR.
6This has multiple advantages, such as the hindering of Majorana transitions [76] and

the possibility to perform experiments at the magic field (see Sec. 2.3.1).
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In our experimental apparatus we use a sequence of traps generated by
the homogeneous fields and a Z-shaped wire (called ioffe) to capture the
laser cooled atoms and move them close to the chip surface. Then, they are
transferred into a similar trap produced by a longer Z-shaped wire (long ioffe)
and subsequently into a sequence of dimple traps, where they are cooled into
a BEC and manipulated [42]. The quadrupole field for the dimple traps is
produced by the long ioffe wire, which provides a much weaker confinement
in the x direction than the dimple. The Z-shaped wires and the one used for
the first dimple trap (called dimple wire) are patterned on the lower layer of
the science chip and carry currents up to a few Ampère. For the final dimple
trap, on the other hand, we use three of the small wires on the top layer,
which only carry up to a few tens of milli-Ampères.

3.1.2 Current sources

Magnetic fields are among the most critical experimental parameters to both
the production and the manipulation of our BEC, as they determine the
trapping potential and the Zeeman shifts. Thus, the noise performance and
stability of the current sources producing them are crucial to the experiments
presented in this thesis.

Most current sources currently in use are the same as described in
Ref. [51], where their noise performance and stability were characterised.
Based on the characterisation shown in Ref. [51], the current sources
connected to the long ioffe wire and to the small wires were replaced by
devices developed and built by Tilman Zibold. The new current source
for the long Z-shaped wire delivers up to ±1 A with 1 MHz bandwidth
and 1× 10−6 stability7, while those for the small wires provide currents
up to ±10 mA with 2× 10−6 stability. These replacements were a relevant
improvement to the apparatus, because the magnetic fields produced by
these wires define (together with the homogeneous fields) the trap where
the final cooling stages and the manipulation of the BEC take place and are
therefore particularly critical.

I will briefly summarise the properties of the other current sources, see
Ref. [42, 51, 69, 74] for more details. The coils providing the homogeneous
fields are driven by home-built bipolar current sources capable of up to
±5 A [42,82], except for the strong-field winding in the y direction, which is
connected to a commercial unipolar device8; the latter delivers more current,
up to 15 A, but has worse noise and stability performance, hence it is only

7The stability was measured in laboratory conditions, with <1 ◦C temperature stability.
8FUG NLN 350M-20.
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used during the initial stages of the experiment. The ioffe and the dimple
wire are driven by home-built bipolar current sources [42,82] delivering of up
to ±3 A and ±0.5 A, respectively. The current through the U-shaped wire
patterned on the base chip (called base U wire), which is used during the laser
cooling, is provided by a commercial bipolar source9 capable of ±10 A. The
big U wire in the copper block is driven by a commercial unipolar device10,
which delivers up to 70 A.

3.2 Laser system

In our experimental apparatus we use lasers to cool, optically pump, and
detect atoms. We do this by addressing several transitions in the D2 line of
87Rb, as shown in Fig. 3.2. The hyperfine splitting of the ground state 52S1/2

is 6.835 GHz, whereas in the excited state manifold 52P3/2 the splittings
are on the order of hundreds of MHz. Therefore, it is possible to obtain all
desired frequencies with two lasers detuned by roughly the hyperfine splitting
of 52S1/2 from each other and acousto-optic modulators (AOMs).

The current laser system is described in detail in Ref. [51], from which
Fig. 3.3 and Fig. 3.4 were taken. Both lasers are home-built interference-
filter-stabilised diode lasers. The so-called master laser (seed laser in
Fig. 3.3) is frequency locked to the crossover transition F = 1↔ F ′ = (1, 3)
of a Doppler-free saturated absorption spectroscopy. The slave laser is
frequency locked to 6.705 GHz above the master laser frequency with an
optical phase lock loop, see Ref. [83]. In order to produce enough cooling
power, the light from the master laser is amplified by a tapered amplifier11

(TA).
The light from both lasers is split into several different beams that pass

through AOMs, which produce all desired frequencies and also provide am-
plitude and timing control of the laser pulses, see Fig. 3.3. The AOM sig-
nals are produced by rf generators based on voltage-controlled-oscillators
(VCOs), whose frequency and amplitude can be controlled both manually
and by means of analogue voltages and that are capable of TTL-controlled
fast switching. The timing resolution of the laser pulses is limited by the
control system to 10 µs, see Sec. 3.5. To minimise stray light from unused
beams, we use mechanical shutters12 with ∼ 1 ms switching time.

All beams are coupled into single-mode polarisation-maintaining optical

9HighFinesse BCS106.
10Delta Electronic SM4575D.
11TOPTICA Photonics BoosTA Pro, controlled by DC HP.
12Stanford Research Systems SR475, controlled by SR470.

22



≈780 nm

1
3
0
M
H
z

267MHz

157MHz

72MHz

6835MHz

52P3/2

52S1/2

F = 3

CO(1,3)

F = 2

F = 1

F = 0

F = 2

F = 1

m
as
te
r

co
ol
in
g

p
u
m
p
22

im
ag

in
g

sl
av
e

re
p
u
m
p

p
u
m
p
11

Figure 3.2: Level structure of the 87Rb D2 line and laser frequencies used in
our experimental apparatus. Red (green) indicates the frequencies obtained
from the master (slave) laser.
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Figure 3.3: Schematic of the laser system. Figure taken from Ref. [51].
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CHAPTER 3 EXPERIMENTAL SYSTEM

the chip surface and broad enough, providing cooling in both the 𝑦 and 𝑧 direction. Two
horizontal beams provide cooling in the 𝑥 direction. Together with the magnetic field
generated by Helmholtz coils and the U­shaped wire, they form a mirror MOT as shown

in Figure 3.5.

MOT

MOT

MOT

MOT

Primary
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Figure 3.5 Optics surrounding the science chamber. Indicated are polarizing beam splitters
(PBS), quarter­wave plates (𝜆/4), and right­hand and left­hand circular polarization of the MOT
cooling beams (RHP and LHP, respectively). Figure adapted from[3] .

As a benchmark for laser powers, the typical output power of the master laser is

around 30 mW. The tapered amplifier module is able to produce up to 3.5 W of output

power at a current of 4.3 A. We use the amplifier at a lower working current of 2.5 A to
amplify the laser power to around 1.7 W, which is sufficient for our use.
3.1.4 Current sources and their noise characterization

Current sources play an important role in our experiment apparatus. In our exper­

iment, we need current sources that meet different requirements. The current sources

used in the experiment are described in earlier theses [50,103,108,110]. Here we briefly

summarized their up­to­date properties in Table. 3.1.

During the MOT stage, quadrupole fields are needed. The wires involved are two U­

shaped wires (both are no more than a single turn), therefore large currents are required. A

current of 52A is sent through the external U­shapedwire (Big U), driven by a commercial
36

Figure 3.4: Optics surrounding the science chamber. Figure taken from
Ref. [42].

fibres, which carry them into the magnetic shield and onto the science cham-
ber, see Fig. 3.3 and Fig. 3.4. The cooling and repump light are overlapped
and split into four fibres (labelled as MOT in Fig. 3.4) by a fibre beam split-
ter13. Four of the six beam directions needed for laser cooling are obtained
by reflecting two of the cooling and repump beams on the atom chip – which
is possible because the beams are much broader than the laser cooled region.

3.3 Radio-frequency and microwave genera-

tion

In our experimental apparatus we use radio frequency14 (rf) and microwave
(mw) signals for evaporative cooling, collective spin rotations, and state-
dependent dressing potentials. These signals are produced by several com-
mercial function generators, all frequency locked to the 10 MHz outputs of a

13Schäfter+Kirchhoff 48-FPC-2-4-780.
14Following the notation used in Ref. [69], here we use the term “radio frequency” to

denote the range in the standard radio-frequency spectrum with lower frequency than
microwave signals.
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GPS-disciplined oven-stabilised quartz reference15.

3.3.1 Evaporative cooling

The final step to reach Bose-Einstein condensation in our apparatus consists
of three stages of rf-induced evaporative cooling [84], each performed in a dif-
ferent dimple trap: The first two are frequency and amplitude ramps, which
produce a BEC with a relevant thermal fraction. The third one is a constant
signal at a frequency corresponding to much less than the condensation tem-
perature, which has the effect of rendering the thermal fraction of the BEC
negligible and stabilising the final atom number16.

These signals are produced by a USB-controlled rf source17, amplified by a
temperature-stabilised amplifier18 and emitted by a home-built square coil19

placed outside of the science chamber [69]. The output of the rf generator
is gated by a switch20 controlled by one of the digital outputs present on
the rf generator itself. Since these devices are also used to generate part of
the signals used to coherently manipulate the internal state of the BEC, see
Sec. 3.3.2, they are shown in the upper half of Fig. 3.6.

The coil-resistor system that constitutes the rf antenna is impedance
matched to the 50 Ω transmission line for signals with a frequency of about
1.7 MHz, which is close to the frequencies used in the two final cooling stages,
but completely mismatched at most frequencies used during the first rf ramp
– up to 14 MHz. In order to minimise the interference effects due to re-
flections, a 6 dB attenuator21 was inserted between the amplifier and the
coil [51].

3.3.2 Coherent manipulation

As shown in Fig. 3.5, we drive the two-photon transition between |1〉
and |2〉 by off-resonantly coupling both states to the intermediate state
|F = 2,mF = 0〉, with matched detuning ∆int ≈ 2π × 500 kHz. Since in
our case the Rabi frequencies of the two transitions are much smaller than
the detuning to the intermediate state, Ωrf ,Ωmw � ∆int, the latter can be

15Stanford Research Systems FS752.
16Within a reasonable range, we can choose the atom number in the BEC by changing

the frequency of the last evaporative cooling stage without observing any thermal fraction.
17Photonics Technologies VFG 150.
18Mini-Circuits LZY-22+, temperature stabilised by Thorlabs TED4015.
19The coil has 9 windings and 3 cm side length and is connected in series to a 10 Ω

resistor. The combination has resistance 10.1 Ω and inductance 4.6 µH [69].
20Mini-Circuits ZASWA-2-50DR+.
21Mini-Circuits BW-S6W20+.
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Figure 3.5: Level structure of 87Rb at the magic field 3.23 G with the rf and
mw frequencies used to drive the two-photon transition between |1〉 and |2〉.

adiabatically eliminated – in the same way as in Raman transitions [85].
The resulting behaviour is the same as that of a two-level system driven
with Rabi frequency

Ω :=
ΩrfΩmw

2∆int

. (3.1)

Any two-photon detuning,

∆ := ωrf + ωmw − ω12, (3.2)

where ωrf (ωmw) is the rf (mw) frequency, affects the Rabi oscillations in the
same way as a detuning in a two-level system – as long as ∆� ∆int. Note
that the transition frequency ω12 is modified by the AC Zeeman shifts.

Thus, the effect of driving the two-photon transition for a time duration
t (i.e. applying a Rabi pulse) can be written as a collective spin rotation

e−i
~Ω· ~̂S t, (3.3)

where

~Ω :=

Ω cos(ϕ)
Ω sin(ϕ)

∆

 (3.4)

is the Rabi vector and ϕ is the combined phase of the two-photon signal [69].
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Figure 3.6: Schematic of the signal generation for the coherent manipulation
of the BEC, where gen. stands for generator, mod. for modulator, ampl. for
amplifier, isol. for isolator (here, composed of a three-port circulator and a
50 Ω terminator), cpl. for directional coupler, det. for mw power detector,
VCA for voltage-controlled attenuator, and PID for PID controller.

Fig. 3.6 shows a schematic of the generation of the driving fields. The rf
fields are produced by the same components used for the evaporative cool-
ing, see Sec. 3.3.1. The mw signals are produced by an IQ-modulated mw
generator22, which receives the modulation signal from a two-channel arbi-
trary waveform generator23, see appendix A. The mw signal is amplified24

and passed through a three-way circulator25, whose third port is terminated
to eliminate reflections. To control the mw amplitude, the signal is sampled
by a directional coupler26 and measured by a temperature-stabilised mw de-
tector27; the output of the detector is amplified28 and used as measured value
by an analogue PID controller29, which receives the setpoint by the exper-
iment control system (see Sec. 3.5) and feeds back on a voltage-controlled
attenuator30 connected to the output of the mw generator. The rf and mw
signals are coupled to the atoms via antennae placed outside of the science
chamber, so as to obtain a homogeneous field strength across the size of the

22Rohde & Schwarz SGS100A.
23Keysight 33522B.
24Kuhne electronic 682 TR UM.
25AEROTEK H15-1FFF.
26Pulsar CS20-10-435/1.
27Agilent 8471E.
28By a home-built current-to-voltage pre-amplifier based on an OPA111 low-noise op-

erational amplifier.
29Stanford Research Systems SIM960.
30Pulsar AAT-25-479/251040.
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BEC – which is necessary to drive collective-spin rotations [38]. The rf an-
tenna (coil in Fig. 3.6) is the same described in Sec. 3.3.1, whereas the mw
one is a rectangular waveguide, which was sawed off a coaxial-to-waveguide
coupler31 (horn in Fig. 3.6) [42].

At the beginning of every experimental run, both the rf generator and the
IQ modulator are programmed with a sequence of frequencies, amplitudes,
and phases. The rf sequence is started by a trigger given by the experiment
control system (see Sec. 3.5), whereas the IQ sequence is triggered by one
of the digital outputs of the rf generator, so as to get the best possible
synchronisation between the two devices. All pulses are timed by gating the
signals with absorptive switches controlled by the digital outputs of the rf
generator32, in order to guarantee the synchronisation of the rf and mw pulses
– which is particularly important during the two-photon manipulations. All
signal generators are frequency locked to the reference clock, see Sec. 3.3.

Microwave polarisation

In order to improve the state selectivity while driving coherent transitions in
our system, it would be advantageous to use circularly polarised mw fields, in
particular to suppress σ− transitions – see Sec. 4.4.3. To this end, we tested
several home-built and commercial circularly polarised antennae.

To measure the polarisation of mw radiation, we perform Rabi oscillations
on single-photon transitions with different changes in mF : We initialise the
atoms in the state |1〉 = |F = 1,mF = −1〉 and irradiate them for variable
times at the frequency resonant with the transition to |F = 2,mF = −2〉,
|F = 2,mF = −1〉, or |F = 2,mF = 0〉. The measured Rabi frequency is
proportional to the respective polarisation component (σ−, π, and σ+) and
matrix element (−

√
3/4, −

√
3/16, and

√
1/8, see Fig. 2.1).

After performing such experiments for different antennae placed in a vari-
ety of ways, it turned out that the best ratio between σ+ and σ− polarisation
that we could achieve (2.45 amplitude ratio) is obtained by the original config-
uration, i.e. a linearly polarised antenna placed at the side of the quantisation
axis at an angle of about 45◦ w.r.t. the atom chip surface. Understanding
the precise reasons of this is not a trivial task, as many metal structures are
present within a mw wavelength from the atoms. It would be possible, for
example, that the roughly circular polarisation results from the superposition
between the incoming mw field and its reflection off the atom chip.

31A-Info LB-OH-159-15-C-SF.
32MITEQ N147BNM2 for mw, Mini-Circuits ZASWA-2-50DRA+ for rf.
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Figure 3.7: Schematic of the mw state-dependent potential generation. Fig-
ure taken from Ref. [69].

3.3.3 State-dependent potential

The collective spin rotations discussed in Sec. 3.3.2 are induced by homoge-
neous electromagnetic fields emitted by antennae placed far from the BEC.
Some of the wire structures on the top layer of the science chip, on the other
hand, were designed to serve as mw co-planar waveguide (CPW) and are
able to irradiate the atoms with a strongly inhomogeneous mw field [42]. If
the signals applied to these structures are off resonance with all transitions
in the 87Rb ground state, they create spatially dependent AC Zeeman shifts,
which take the form of state-dependent potentials [42]

V 1,mF
mw (~r) = +

~
4

2∑
m′F=−2

∣∣∣Ω2,m′F
1,mF

(~r)
∣∣∣2

∆
2,m′F
1,mF

∝ Bmw(~r)2, (3.5)

V
2,m′F

mw (~r) = −~
4

1∑
mF=−1

∣∣∣Ω2,m′F
1,mF

(~r)
∣∣∣2

∆
2,m′F
1,mF

∝ Bmw(~r)2, (3.6)

where Ω
F ′,m′F
F,mF

and ∆
F ′,m′F
F,mF

are the Rabi frequency and the detuning, respec-
tively, relative to the transition |F,mF 〉 ↔ |F ′,m′F 〉, and Bmw is the modulus
of the mw amplitude.

Applying such a state-dependent potential to a two-component BEC
shifts the trap minima of the two states away from each other, thereby re-
ducing their overlap. As it can be seen from Eq. (2.21), this results in the
activation of the one-axis twisting (OAT) term ~χŜ2

z (which is negligible
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Figure 3.8: Schematic of the signal generation for the state-dependent dress-
ing potentials, where gen. stands for generator, ampl. for amplifier, cpl. for
directional coupler, det. for mw power detector, ALC for automatic level con-
trol (which is a built-in amplitude stabilisation feature of the mw generator),
BT for bias tee, and CPW for co-planar waveguide.

for overlapped states) in the collective-spin Hamiltonian, see Eq. (2.17). It is
thus possible to obtain a squeezed spin state (SSS) from a coherent spin state
(CSS) by applying the state-dependent potential for a controlled time [34,60],
see Sec. 2.3.5.

In the experiments presented in this thesis, we activate the OAT dynamics
for a duration of up to ∼40 ms. Since the trap frequency in the direction
of the splitting is ∼100 Hz, for the BEC to follow adiabatically the shift
of the trap minima, the switching of the state-dependent potential would
need to take a time comparable to the whole state evolution, resulting in a
relevant increase in the total experiment duration. To avoid the additional
atom losses and decoherence that this would induce, we switch the CPW mw
abruptly. Due to this, when the potential is turned on, the two states start
oscillating (typically in opposite directions, due to the sign difference between
Eqs. (3.5) and (3.6)) and thus split and recombine periodically. In order to
recover the overlap between them and to stop these dynamics, the potential
needs to be switched off at a particular time of the oscillation. Therefore,
there are discrete times for which we can activate the OAT term; these can
be determined by observing the interferometric contrast of the final state,
see appendix C. This phenomenon, known as demixing-remixing dynamics,
is studied in detail for our experimental parameters in Ref. [51].

The fields used to create the state-dependent potentials are generated as
shown in Fig. 3.8: The signal is produced by a mw generator33, amplified34,
and sampled by a directional coupler35. The sampled signal is measured
by a temperature-stabilised mw detector36 and fed to the automatic level

33Agilent E8257D.
34Microsemi AML218P3203.
35Pulsar CS20-10-435/1.
36Agilent 8471E.

31



3. Imaging system 33
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Figure 3.2: Initial (a) and new (b) imaging setup. The initial imaging setup is taken from
[7]. In (b), from right to left, the setup is seen from the side until the box containing the new
camera, from where it is seen from the top.

A first modification was to rotate the Ikon camera by 90°, so that in the frame
transfer mode, the CCD is now divided along the x-axis (the horizontal axis in
Fig.3.1) instead of the z-axis (the vertical axis in Fig. 3.1) which is the axis of
the fall of the atoms. Before, the field of view was extended in the x-direction,
which was of no use, and was anyway limited by the aperture. Now, the field
of view is extended in the z-direction, which enables us to image the atoms at
different points of the time-of-flight (see Fig. 3.3). It can also be advantageous
if, in the future, one wants to split the BEC in more than two clouds.

Another improvement was to get a flatter intensity of the imaging beam. Indeed,
since the two atomic states are not imaged at the same position, having a spatially
inhomogeneous light field can induce errors in the relative atom counts.
We modified the dimensions of the imaging beam as follows. The beam is now
only collimated by one lens (f=50 mm), then it is resized by two lenses of focal
length f=40 mm and f=30 mm to reach a diameter of 6 mm, insuring a flat
enough intensity on a central area of 1 mm² (less than 7% intensity variation),
which corresponds to the region of the atoms. We replaced the iris by a knife

x

y

z

y

Figure 3.9: Schematic of the imaging system. Figure taken from Ref. [86].
The dashed line in the centre indicates a change in coordinate system, which
is specified at the bottom.

control (ALC) input of the mw generator, where it is used to stabilise the
mw amplitude. The mw generator is programmed at the beginning of every
experimental run and it is operated in continuous wave mode. The pulse
timing is provided by the rf generator – so as to guarantee the synchroni-
sation of the state-dependent potentials with the coherent manipulations –
which gates the signals via an absorptive switch37 placed after the directional
coupler. Since the mw potentials are radiated to the atoms by the same wire
structures used to produce the final dimple trap, the mw signal is summed
to the DC current of the central wire by a bias tee38, before being fed to the
atom chip.

3.4 Imaging system

We detect the atoms by resonant absorption imaging [39,87], which is based
on comparing the shadow cast by the atoms in a circularly polarised laser
beam resonant with a cycling transition (absorption image) with a refer-
ence image taken without atoms. We use the σ+ cycling transition in the
F = 2→ F ′ = 3 component of the 87Rb D2 line. Atoms in states with F = 1

37Miteq N147BDM2.
38UMCC BT-5000-HS
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Figure 3.10: (a) Typical absorption and reference images and
(b) the resulting two-dimensional atomic density profiles. These im-
ages show the result of an experiment that involves more states than
those presented so far, which will become relevant in Chap. 4: The
BEC is prepared in a superposition of four states, |F = 1,mF = −1〉,
|F = 2,mF = +1〉, |F = 1,mF = 0〉, and |F = 2,mF = 0〉, which are then
spatially separated into two pairs, (|F = 1,mF = −1〉 , |F = 2,mF = +1〉)
and (|F = 1,mF = 0〉 , |F = 2,mF = 0〉), see Sec. 4.4. Owing to the F -
manifold selectivity of the imaging procedure and to the spatial separation,
the atom numbers in all four states can be determined independently.

need to be optically pumped to F = 2 in order to be measured.
So as to be able to detect all stages of the experimental sequence, we use

three different imaging systems (two of which are shown in Fig. 3.9): The
primary one is designed to detect the atom number in both states with high
accuracy and low noise at the BEC stage. The other two have much broader
fields of view, allowing us to detect the atoms during the initial cooling
stages from two different directions – at the expense of much worse noise
performance – which is valuable for optimising and debugging the cooling
sequence.

3.4.1 Primary imaging system

The primary imaging system is used to perform collective spin measurements
of the two-component BEC, which requires detecting the atom number in

33



both states. This is done sequentially: At the end of the experimental se-
quence, the atoms are released from the magnetic trap and allowed to ex-
pand while they fall under the effect of gravity. To control the expansion
time (called time of flight, TOF), at the beginning of the free fall they are
accelerated by a magnetic field gradient, which is produced by the long ioffe
wire and applied for a typical duration of ∼1 ms. Once the BEC reaches the
desired density and position, all atoms in states with F = 2 are detected by
a σ+ polarised laser pulse resonant with the imaging transition. The radia-
tive pressure and the recoils from the re-emitted photons cause the involved
atoms to accelerate and diffuse, making them undetectable by any further
pulse. Subsequently, the atoms in states with F = 1 are optically pumped to
F = 2 and detected by an imaging pulse identical to the first one. Finally, a
third image without atoms (the reference image) is recorded. An example of
typical absorption and reference images and of the extracted two-dimensional
atomic density profiles is shown in Fig. 3.10.

With respect to previous PhD theses [38, 51, 69], major changes were
brought to this part of the apparatus during Clara Piekarski’s master’s thesis
[86]. In particular, the illumination optics, the imaging objective, and the
spatial orientation of the camera were modified, see Fig. 3.9.

The illumination optics were designed to produce collimated light at the
position of the atoms, while imaging a knife edge39 at that same position.
This ensures that the atom chip is not illuminated and that a sharp image
of the knife edge is formed on the camera sensor, minimising the related
diffraction effects. In addition to what is shown in Fig. 3.9, an iris40 used
for alignment is mounted a few millimetres before the knife edge. All these
components are now mounted in a Thorlabs cage system, which makes it easy
to adjust their longitudinal position. All metallic components were chosen
to be made of non-magnetic materials – mainly aluminium.

The imaging objective is no longer in a 4f configuration. Rather, the
two objective lenses are placed as close to each other as possible, to minimise
losses and stray light from reflections. Since the alignment of the objective
is very sensitive to the position of the first lens41, the latter is mounted
on a precision helical housing42. In addition to this, the whole objective is
mounted in a way that ensures both stability and precise adjustment in both
transverse directions. The focal lengths of the objective lenses are 40 mm
and 400 mm, respectively. Thus, the image of the atoms is formed at about

39Thorlabs VA100C/M, from which we removed one blade to obtain an adjustable knife
edge.

40Thorlabs CP20D.
41Melles Griot 06 LAI 005/076.
42Thorlabs SM1ZM
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400 mm from the second lens and is magnified by about 10 times. The precise
magnification factor is 9.90(10), which was determined by recording the cloud
position for different TOFs and fitting it with a free fall trajectory.

The objective is mounted with a system of anodised aluminium tubes,
whose interior was coated with velvet to minimise internal reflections. Out-
side of the magnetic shield, the optical path is protected against ambient
light by darkening fabric. Before reaching the camera sensor, the imaging
beam passes through a large-aperture shutter43, which prevents the sensor
from being exposed to stray light during the cooling stages. The shutter is
placed in the same darkened box as one of the secondary imaging systems;
to protect the experiment from the vibrations it produces, it is mounted on
a sorbothane layer.

We use a back-illuminated deep-depletion CCD camera44 (Ikon in
Fig. 3.9), whose sensor is cooled by a thermoelectric element (typically at
−80 ◦C) and reaches a quantum efficiency of 0.9 at our wavelength. In order
to take images in rapid succession, we operate the camera in the so-called
frame transfer mode: The images are recorded on a fraction of the CCD,
while the rest is covered by a mask made of anodised aluminium foil and
placed a few millimetres from the sensor. In between the exposures the
camera shifts the images into the darkened region, allowing us to take
pictures at 1.4 ms from each other.

While testing the changes to the imaging system, we noticed that the
part of the darkened region close to the edge of the mask is exposed to small
amounts of stray light. To ensure that the reference image is comparable to
the absorption ones, we decided to expose 1/4 of the sensor and perform four
imaging pulses – in this way the amount of stray light received by the three
images is very similar.

The frame transfer mode of the camera works in a specific direction:
CCD rows are shifted into the readout direction. Thus, the sensor can only
be subdivided into horizontal slices. However, since the atoms are detected
during the free fall, it is more useful to have a vertically elongated detection
region. We therefore rotated the camera by 90◦, obtaining a field of view of
0.34× 1.34 mm.

Measuring different spin directions

Since the primary imaging system is able to detect the atom number in
the two states |1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 2,mF = +1〉, the only
collective spin component that can be directly measured is Ŝz. Other spin

43Sutter SmartShutter.
44Andor Ikon-M DU934N-BR-DD.
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directions can be measured by performing a collective spin rotation before
detection: According to Eq. (3.3), a resonant Rabi pulse with pulse area Ωt
and phase ϕ can be written as the collective spin rotation

ÛΩt,ϕ = e−iΩt(cos(ϕ)Ŝx+sin(ϕ)Ŝy). (3.7)

Choosing Ωt = π/2 (a so-called π/2 pulse) and ϕ = 0 results in a collective
spin rotation by π/2 around the x axis, which corresponds to a change of
basis between y and z, Ûπ

2
,0ŜyÛ

†
π
2
,0 = Ŝz. Similarly, Ωt = π/2 and ϕ = π/2

yields a π/2 rotation around the y axis, corresponding to a change of basis
between x and z, Ûπ

2
,π
2
ŜxÛ

†
π
2
,π
2

= Ŝz. Thus, performing a π/2 pulse with

phase ϕ = 0 (ϕ = π/2) before detecting Ŝz results in effectively measuring
Ŝy (Ŝx).

3.4.2 Secondary imaging systems

Besides detecting BECs, it is important to image all cooling stages for opti-
mising and debugging the experimental sequence. Since the field of view of
the primary imaging system is too narrow for this, we have two secondary
systems, oriented perpendicular to each other.

The first one, not shown in Fig. 3.9, detects the atoms with a laser beam
in the −x direction, which is carried by the fibre used for optical pumping
– i.e. perpendicular to the main imaging system. The images are produced
by an objective with magnification factor 2.23 and acquired by a compact
CCD camera45, resulting in a field of view of 2.9× 2.1 mm. More information
about this system can be found in Ref. [69].

The second one was added during Clara Piekarski’s master’s thesis [86] in
order to extend the field of view in the direction of the main imaging system.
Owing to this, we are now able to image the early stages of the experimental
sequence from two different directions, making it possible to obtain complete
information about the shape and position of the atomic cloud. As shown
in Fig. 3.9, this imaging system uses the same imaging beam (deviated by a
mirror with kinematic mount) and objective as the main system, but with an
additional lens with focal length 100 mm that reduces the magnification to
3.39(1). The images are acquired by a compact CMOS camera46 (Manta in
Fig. 3.9), which yields a field of view of 3.3× 3.3 mm. The kinematic mirror,
the 100 mm lens, and the Manta camera are placed in a darkened box (which
also fits the shutter of the main camera) consisting of an elevated breadboard
between the magnetic shield and the Ikon camera.

45Allied Vision Guppy F-044B NIR.
46Allied Vision Manta G-419 NIR.
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Due to the limited frame rate of both these compact cameras, the sec-
ondary imaging systems are only able to take one absorption image per ex-
perimental run, making it impossible to detect both states: We can either
measure only the states with F = 2 or the sum of F = 2 and F = 1 (by op-
tically pumping the latter to F = 2 before detection). Since these imaging
systems are used to image early stages of the experimental sequence, where
no superposition state is prepared, this is not a limitation.

3.4.3 Imaging calibration

We can calculate the two-dimensional atomic density profile from the ab-
sorption and the reference image by means of the Beer-Lambert law [87],

n2D =
1

σ0

(
ln

(
Iref

Iabs

)
+
Iref − Iabs

Isat

)
, (3.8)

where Iabs (Iref) is the intensity profile of the absorption (reference) image,
σ0 := 3λ2/2π is the resonant absorption cross section of the imaging tran-
sition, Isat := 2π2~cΓ/3λ3 is its saturation intensity, λ is its wavelength, Γ
is its natural line width, ~ is the reduced Planck constant, and c is the
vacuum speed of light. The imaging transition is the σ+ cycling transi-
tion in the F = 2→ F ′ = 3 component of the 87Rb D2 line (λ = 780 nm,
Γ = 2π · 6.07 MHz, Isat = 1.67 mW/cm2, [52]), which allows us to detect all
atoms in states with F = 2.

The images measured by the camera correspond to the photon count
matrices Aij = 〈Iabs〉ij q p t/Eλ and Rij = 〈Iref〉ij q p t/Eλ, where 〈·〉ij is the
mean over the pixel with index (i, j), q is the quantum efficiency of the
camera, p the effective pixel area47, t the exposure time, and Eλ = 2π~c/λ
the energy per photon. Substituting Isat with its definition, we obtain the
atom number in the pixel with index (i, j),

Nij =
p

σ0

ln

(
Rij

Aij

)
+

2

q tΓ
(Rij − Aij) . (3.9)

In order to correct for stray light and back illumination of the camera sensor,
once a day we take an image without atoms nor probe light (dark image),
which is subtracted from both the absorption and the reference image.

Eqs. (3.8) and (3.9) are valid for the resonant coupling to a collection
of two-level systems by a perfectly σ+ polarised laser beam with negligible
losses between the atoms and the camera. It is also assumed that none of

47The effective pixel area is the area captured by one pixel at the position of the atoms,
i.e. the pixel area divided by the square of the magnification factor of the imaging objective.
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the re-emitted photons are absorbed by other atoms in the condensate. In
order to take into account the atomic multi-level structure and experimental
imperfections, we introduce the correction factors α for Isat and β for σ0,
which have to be determined experimentally. Due to the atomic structure,
these parameters differ for the detection of different states. Eq. (3.9) can be
thus re-written for the detection of state |k〉 as

Nij =
1

βk

[
p

σ0

ln

(
Rij

Aij

)
+

2

αk q tΓ
(Rij − Aij)

]
, (3.10)

where αk and βk are the correction factors relative to state |k〉. The cali-
bration of the imaging system consists of the experimental determination of
these correction factors for all involved states. Since the experimental criteria
that we use to demonstrate entanglement and the EPR paradox (Eqs. (4.3)
and (4.2)) depend on the atom number, the results presented in this thesis
rely on the accuracy of this procedure.

Despite the correction factors, Eq. (3.10) is based on an approximate
model. Thus, the calibration measurements are performed with settings as
close as possible to those used in the experiments the calibration is to be
applied to. This includes choosing a similar atom number, imaging pulse
duration and intensity, cloud expansion time, etc. As opposed to previous
work performed with our apparatus, the experiments presented in this the-
sis involve mainly equal superpositions of the four states |F = 1,mF = −1〉,
|F = 2,mF = +1〉, |F = 1,mF = 0〉, and |F = 2,mF = 0〉, see Chap. 4. This
does not change the imaging calibration procedure substantially, but it re-
quires preparing a similar distribution of the atoms among these states. The
pulse sequences used to this end are devised to avoid the off-resonant cou-
pling to unwanted transitions discussed in Sec. 4.4.3, which, however weak,
would affect the atom number.

The calibration procedure, described in detail in Ref. [51], consists of
three types of measurement. Firstly, the conversion from absorbed light to
atom number is rendered independent of the laser intensity following the
method described in Ref. [87]: Having fixed the imaging pulse duration, the
atoms are prepared in an equal superposition of all four states and detected
with probe intensities ranging from ≈ 0.5Isat to ≈ 2Isat, see Fig. 3.11. For
each state |k〉, the parameter αk is chosen to minimise the dependence of the
detected atom number on the light intensity – paying special attention to
the values close to the typical operation point, ≈ 1.4Isat.

Secondly, the relative detectivity of the four states is calibrated: Different
superposition states are prepared by driving Rabi oscillations, see Fig. 3.12.
The ratios between the βk are chosen to make the total detected atom number
independent of the distribution of the atoms among the four states.
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Figure 3.11: Detected atom number in the four involved states as a function
of the probe intensity (estimated based on the reference image) for the chosen
values of αk (blue), for half of the chosen values (green), and for twice the
chosen values (red). In the experiment shown here, the atoms are prepared in
an equal superposition of the four states. The detected atom number varies
from state to state due to the βk not having been calibrated yet (i.e. still
being equal to 1).
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Figure 3.12: Total detected atom number Nk1,k2 := Nk1 +Nk2 as a function
of the normalised atom number imbalance Nk1,k2

rel := (Nk1 −Nk2)/N
k1,k2 for

the chosen ratios βk1/βk2 (blue), for 2/3 of the chosen ratios (green), and
for 3/2 of the chosen ratios. The detected atom number varies from state
to state due to the βk not having been fully calibrated yet at this stage – to
determine the optimal ratios we vary βk1 and βk2 starting from 1.
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Figure 3.13: Projection noise of a CSS as a function of the atom number.
The atoms are prepared in an equal superposition of all four relevant states,
but only |F = 1,mF = −1〉 and |F = 2,mF = +1〉 are considered in this plot.
Each data point represents a group of ∼100 repetitions. The dashed line
shows a linear fit of the data. In the calibration procedure, the βk are chosen
to be such, that the slope of the linear fit is equal to 1.

Lastly, the total atom number is calibrated by observing the projection
noise of a coherent spin state (CSS) as a function of the atom number [88],
which is varied by changing the frequency of the last rf cooling stage, see
Fig. 3.13: From binomial statistics, projection noise constitutes the linear
component in

Var(Nrel)〈N〉2 = (1− 〈Nrel〉2)〈N〉+ σ2
det,1 + σ2

det,2 + σ2
pulse〈N〉2, (3.11)

where Nrel := (N1 −N2)/(N1 +N2) is the normalised atom number imbal-
ance, N := N1 +N2 is the total atom number, σ2

det,k is the variance associ-
ated with the detection noise of state |k〉, and σ2

pulse is the variance origi-
nating from pulse area noise, which in our apparatus is negligible w.r.t. the
other terms. Since the optical density of our atomic cloud is much smaller
than 1, detection noise (which is mainly composed of photon shot noise, see
Sec. 3.4.4) can be considered as independent of the atom number. Pulse area
noise depends on the homogeneous coupling to the atoms of the mw and rf
fields described in Sec. 3.3.2 and is thus also independent of the total atom
number.

In order to perform the total atom number calibration measurement close
to the relevant experimental parameters, we prepare an equal superposition
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State αk βk
|F = 1,mF = −1〉 1.4158 0.8408
|F = 2,mF = +1〉 2.6061 0.5935
|F = 1,mF = 0〉 1.7757 0.7436
|F = 2,mF = 0〉 3.6252 0.5237

Table 3.1: Imaging correction parameters resulting from the calibration pro-
cedure described in Sec. 3.4.3.

of the four states mentioned above and consider the CSS constituted by two
of them – typically |F = 1,mF = −1〉 and |F = 2,mF = +1〉. Enforcing the
correct slope of the projection noise as a function of the atom number allows
us to determine the combined detectivity of these two states, from which all
βk can be extracted via the ratios obtained as described above.

The results of the calibration procedure are listed in Tab. 3.1. The fact
that all βk are smaller than one indicates a smaller effective coupling strength
of the atoms to the probe light than in the ideal case. Similarly, the values
of all αk are larger than one, which reflects the fact that a larger detected
intensity is required to saturate the imaging transition. Both of these ef-
fects can be explained by the multi-level structure of the atoms and by the
experimental imperfections mentioned at the beginning of this section.

3.4.4 Imaging noise and typical imaging parameters

Since the criteria Eqs. (4.2) and (4.3) are based on measuring quantum noise,
any source of technical noise directly affects our results and should thus be
minimised. This includes, of course, imaging noise, which in our experimental
apparatus is mainly composed of photon shot noise: The average camera
counts per pixel are ∼ 5000, which corresponds to a photon shot noise of
σpsn ∼ 70 counts, whereas the camera manufacturer specifies a readout noise
of σcamera = 6.2 counts for the settings we use. To minimise the detection
noise, we optimise both the imaging parameters and the data analysis.

Due to the signal-to-noise ratio related to photon shot noise, the imaging
noise can be improved by increasing the number of photons scattered during
the process, which can be done by increasing either the imaging light inten-
sity or the pulse duration. However, the intensity is chosen to be ≈ 1.4Isat,
because around this value it is possible to perform a robust atom number
calibration. Hence, we maximise the pulse length. The limitation to this is
the atom diffusion caused by photon scattering, which increases the cloud
size and forces us to analyse larger regions of interest, causing us to include
detection noise from a larger area and eventually outbalancing the benefits of
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Figure 3.14: Schematic of the experiment control.

this strategy. We find the lowest imaging noise for a pulse duration of 70 µs.
During this time the radiation pressure accelerates the atoms, inducing a
relevant Doppler shift. To maintain the resonance throughout the process,
we chirp the frequency of the imaging pulses.

Since every pixel contributes to the imaging noise, we choose the regions
of interest for counting atoms to be as small as possible, while still including
nearly all of the atomic signal. We do this by selecting elliptical regions
that include ≈97 % of the total detected atom number, see appendix B. To
avoid any artificial noise reduction due to the small discarded signal (see
the supplementary materials of Ref. [30] for a discussion of this effect), we
perform the atom number calibration after the region of interest has been
determined.

Finally, we use a fringe removal algorithm to produce optimised reference
images with linear combinations of measured reference images [89]. Besides
minimising the effect of interference fringes on the reference images, this pro-
cedure strongly reduces the contribution of photon shot noise of the reference
images.

The resulting detection noise, which we measure by taking images without
atoms, corresponds to about σdet ≈ 3 atoms in every state.

3.5 Experiment control and data acquisition

The experiment control, which was built during Simon Josephy’s master’s
thesis [90], is centred around a computer running the Labscript suite [91]
(the control computer), see Fig. 3.14. Most devices – e.g. current sources
and AOM drivers – are controlled via analogue and digital voltages provided
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by National Instruments I/O cards48 (NI cards). The NI cards are stacked
in a DC powered rack49, which is connected to the control computer via an
optical Thunderbolt 3 cable50. Their shared clock is provided by a pseudo-
clock51, which is connected to the control computer via USB. The function
generators (see Sec. 3.3) are too complex to be fully controlled by the NI cards
and are connected to the control computer by ethernet (ETN in Fig. 3.14)
or USB.

At the beginning of every experimental run, the pseudo-clock, the NI
cards, and the function generators are programmed by the control computer.
This amounts to transmitting a sequence of instructions to these devices,
with the exception of the mw sources, which are operated in continuous-wave
mode and are just set to a given frequency and amplitude. After receiving a
software trigger, the pseudo-clock manages the timing of the experiment by
sending a trigger to the NI cards every time they have to advance by one step
in their sequence. The rf generator, which provides the rf signal both for the
evaporative cooling and for the coherent manipulations of the BEC, executes
its sequence sector by sector, every time after receiving a trigger from the NI
cards. The IQ modulator executes its sequence after receiving a trigger from
the rf generator, which allows for a better synchronisation between these two
devices than what would be possible by triggering both of them with the NI
cards.

The cameras (see Sec. 3.4) are controlled by a separate computer running
MatCam52, an acquisition program written in Matlab [69]. At the beginning
of every experimental run, the control computer transmits to MatCam some
information about the experimental parameters, which are saved together
with the measured data. In order to guarantee the synchronisation with
the experimental sequence, the arming of the camera and the exposure are
started by a trigger from the NI cards.

With respect to the previous version of the control system (described
in Ref. [69]), the current one has a few advantages. First of all, Labscript
is more flexible than the previous program (GoodTime): Among others, it

48Three PXI-6733 cards, for a total of 24 analogue I/O channels with 16 bit resolution,
and two PXIe-6535 cards, for a total of 64 digital I/O channels. Every PXI-6733 card is
connected to the devices via the breakout box BNC-2110, whereas the breakout box for
the PXIe-6535 has been custom built for us by the electronics workshop of the Physics
Department of the University of Basel.

49PXIe-1082DC, powered by the DC current supply Rhode&Schwarz HMP2020.
50Areca KAB-THB3/THB3-1500.
51PineBlaster, a pseudo-clock programmed by the developers of the Labscript Suite to

run on the Digilent chipKIT Max32 board.
52The Ikon camera is connected to the MatCam computer via USB, the Guppy via

FireWire, and the Manta via ethernet.
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is relatively simple to integrate devices into Labscript, whereas GoodTime
could only control the NI cards and Matlab was used to interface it with the
rest. Secondly, we improved the separation between low-noise signals and
devices from noisier ones. E.g., we no longer stack the NI cards inside the
control computer, we do not use the digital I/O channels of the analogue
NI cards any more, and we group devices by noise level both in the connec-
tions to the NI cards and in the power outlets. Thirdly, we simplified the
connections to ground by introducing galvanic isolation between several de-
vices, e.g. between the control computer and the NI cards53, in most ethernet
connections54, in some USB connections55, and in some TTL connections56.
Also, many devices – including the NI cards – are powered by floating-ground
current sources. Of course, since the experimental apparatus is composed of
tens of interconnected devices, it is impossible to obtain ideal ground con-
nections and complete isolation between different devices, but its stability
has improved to the point where it can run for days unattended.

3.6 Typical experimental sequence

The experimental sequence takes place entirely in the science chamber. The
atoms are initially collected from the background gas by a magneto-optical
trap (MOT), whose parameters have been chosen to maximise the number
of trapped atoms: The cooling laser frequency is set to 3.3 Γ below the cool-
ing transition and the quadrupole field is produced by sending 52 A through
the big U wire (see Sec. 3.1). After a typical “MOT loading” time of 12 s,
the atoms are transferred to a smaller MOT that cools them further and
brings them closer to the atom chip (−5.5 Γ detuning to the cooling transi-
tion and quadrupole field produced by 3.25 A through the base U wire, see
Sec. 3.1.2). The final laser cooling stage consists of an optical molasses with
−14 Γ detuning to the cooling transition, which yields ∼5× 105 atoms with
a temperature of ∼2 µK.

The laser cooled atoms are optically pumped to the state |F = 1,mF = −1〉,
trapped in a Ioffe-Pritchard trap generated by the ioffe wire and the y bias
field, and moved closer to the chip surface. Subsequently, the ioffe wire is
substituted by the long ioffe wire and a dimple trap is produced by the
dimple wire. In all magnetic traps the x bias field is kept at a non-zero
value, so as to render the traps harmonic and to prevent Majorana flips.

53Using the optical cable Areca KAB-THB3/THB3-1500.
54Using the network isolator Delock 62619.
55With the USB isolation HUB Analog Devices EVAL-CN0158-EB1Z.
56With opto-couplers.
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After having been loaded into the dimple trap, the atoms undergo the
first rf cooling stage – a 2.5 s long frequency ramp from 13.5 MHz to 2.3 MHz.
Then, they are transferred into a dimple trap generated by the small wires,
where a second rf cooling stage (a 1.4 s long frequency ramp from 2.1 MHz
to ∼1.8 MHz) achieves Bose-Einstein condensation. After this, the BEC is
loaded into the final trap, which is a dimple trap produced by the small
wires, with frequencies (ωx, ωy, ωz) = 2π × (113, 301, 301) Hz [51], and cen-
tred 40 µm from the chip surface. There, the thermal fraction of the BEC is
rendered negligible by a 0.2 s long rf signal with a frequency corresponding to
less than the condensation temperature (typically ∼2.3 MHz). This process
eliminates a fraction of condensed atoms (it “cuts into the BEC”), allowing
us to set the final atom number by changing the frequency of the signal. This
also has the effect of stabilising the atom number against fluctuations.

At this stage, a fully condensed BEC composed of typically ∼1500 atoms
in the internal state |F = 1,mF = −1〉 has been produced. This is the start-
ing point of the so-called science part of the experimental sequence, during
which the internal state of the atoms is manipulated by means of homo-
geneous (Rabi pulses, see Sec. 3.3.2) and inhomogeneous (state-dependent
potentials, see Sec. 3.3.3) mw and rf signals. The magnetic field at the trap
centre (mainly composed of the x bias field) is set to the magic field value of
≈3.23 G, so as to maximise the coherence time of the BEC (see Sec. 2.3.1).
A few examples of a possible science part can be found in Chap. 4 and ap-
pendix C.

After the science part, the atoms are detected as described in Sec. 3.4.1.
In order to measure any spin direction other than Ŝz, a collective spin rotation
has to be performed before detection, see Sec. 3.4.1.
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Chapter 4

Einstein-Podolsky-Rosen
experiment with two
Bose-Einstein condensates

In 1935, Einstein, Podolsky, and Rosen (EPR) challenged quantum mechan-
ics by showing the inconsistency between its completeness and the classical
principle of local realism [1]. EPR’s work was seminal both for the study
of fundamental physics and for quantum technology, as it was the first to
reveal some of what today are considered the most distinctive features of
quantum theory. Among others, it led to the definition of entanglement and
steering [2, 3] and, eventually, to Bell’s proof that the predictions made by
quantum mechanics cannot be reproduced by any local-hidden-variable the-
ory [4]. Although the EPR paradox has been observed with few photons or
atoms (both in its original form [6–10] and in the form of Bell tests [11–18]),
how far quantum behaviour extends into the macroscopic world is an open
question, which can be addressed by performing EPR experiments with in-
creasingly macroscopic, massive systems [9, 20,21].

In this chapter I briefly review the EPR paradox, introduce the criteria
that allow us to investigate it experimentally, and present the main result of
this thesis, namely an EPR experiment with two spatially separated and indi-
vidually addressable BECs. Analogous to the original Gedankenexperiment,
we first use interatomic interactions to generate many-particle entanglement
in a single BEC, which we then split into two spatially separated condensates.
As shown in Ref. [92], the many-particle entanglement present in the initial
BEC results in bipartite entanglement between the split systems, which in
our case is strong enough to show the EPR paradox.

With respect to previous work [30,31,93], the novelty here resides in the
ability to coherently split a two-component BEC, while maintaining nearly
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perfect overlap and coherence between the spin components of the two re-
sulting condensates. This allows us to carry out high-fidelity coherent spin
rotations on each condensate separately.

The results reported in this chapter were published in Ref. [36], which is
partly reproduced here. For a more extensive review of the EPR paradox, I
refer the reader to Ref. [9].

4.1 The Einstein-Podolsky-Rosen paradox

In their paper from 1935 [1], EPR posed the question whether the descrip-
tion of reality made by quantum mechanics can be considered complete, or
whether there are some “hidden” degrees of freedom that predetermine the
measurement outcomes, which the theory considers probabilistic. EPR con-
ceived a Gedankenexperiment with which they showed that the completeness
of quantum mechanics is inconsistent with the classical principle of local re-
alism. The latter is the union of local causality, which forbids any causal
connection between space-like separated events, and realism, which requires
all physical properties of a system to have a definite value at all times and
independent of observation. This principle is so deeply rooted in classical
physics, that it was given by EPR as a requirement for a physical theory to
be considered acceptable.

EPR’s original Gedankenexperiment considers the translational degree
of freedom of two particles. Here, I discuss its spin variant proposed by
Bohm [32,33], which is conceptually closer to our experiment. Bohm’s variant
considers two spin-1/2 particles, A and B, prepared in a singlet state, which
are separated by a process that conserves the total spin. Once they can
no longer interact, the spin of one of them (say, A) is measured along some
component. Since the total spin is zero, the same spin component of B is then
necessarily opposite to that of A. This represents no conceptual difficulty
in classical physics, where all spin components have a definite value at all
times. In quantum mechanics, on the other hand, different spin components
are non-commuting observables. When A is measured, both particles are
collapsed onto a state in which the chosen spin component has a definite
value, while the perpendicular ones are undetermined and, if measured, will
show no correlation. Thus, although the two particles no longer interact, the
choice of measurement performed on A determines which component of B
has a definite value – an effect denominated steering by Schrödinger [2, 3].

If one assumed the validity of local realism, this instantaneous and re-
mote influence of the measurement choice of A on the state of B could not
exist, and the measurement of any other spin component of B would be per-
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fectly legitimate and reveal a predetermined property of the system. Due
to the measurement correlations predicted by quantum mechanics for such
a state, however, the measurement result obtained from A would also reveal
a pre-existing property of system B, allowing an experimenter to determine
simultaneously two non-commuting spin components of B [2,3], which is in-
consistent with the quantum state representation of the system. Therefore,
accepting both local realism and the completeness of quantum mechanics
leads to a contradiction, which became known as the EPR paradox.

Since they believed in the validity of local realism, EPR concluded quan-
tum theory to be incomplete. However, the EPR paradox shows the incon-
sistency between the completeness of quantum theory and local realism, but
it does not make a statement about which needs to be refused. In 1964, Bell
conceived a scenario in which quantum mechanics and local realist theories
make different predictions [4], which was further developed into experimen-
tally useful criteria, such as the CHSH inequality [94]. All experiments con-
ducted since have yielded results consistent with quantum mechanics [11–18].

In principle, any pure entangled state can be used to observe the EPR
paradox and Bell nonlocality. However, only a strict subset of mixed en-
tangled states, so-called EPR entangled states, show strong enough correla-
tions to demonstrate the EPR paradox [95]. Similarly, only a strict subset
of the latter are able to show Bell nonlocality [96]. These distinctions can
be formalised in terms of the ability to perform different tasks [95], which
hints at the fact that stronger correlations can be exploited as a resource
for different applications in quantum technology. This is indeed the case:
For example, EPR entanglement guarantees the efficacy of certain quantum
information protocols, such as quantum teleportation, entanglement swap-
ping, one-sided device independent quantum key distribution, or randomness
certification [9, 97, 98].

As a final remark, it is worth noting that the remote measurement corre-
lations resulting from quantum entanglement do not violate local causality
in the strict special relativistic sense. Indeed, since the experimenter with
access to system A cannot decide the measurement results, they cannot influ-
ence the measurement statistics of system B and thus they cannot transmit
any information via the measurement process [99]. Although the non-local
character of quantum measurements remains, a proper treatment of this re-
quires a more rigorous definition of causation (see for example Ref. [100]),
which is beyond the scope of this thesis.
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4.2 The Einstein-Podolsky-Rosen paradox

with many-particle systems

The EPR paradox was originally conceived and later observed for few parti-
cles [1, 5–8, 10–18, 32, 33]. However, the principle of local realism originates
from classical physics and is satisfied by macroscopic phenomena. It is there-
fore interesting to investigate whether the EPR paradox can be demonstrated
with macroscopic objects, where we are used to assuming the validity of local
realism still nowadays [19]. To perform an EPR experiment with two large
systems, these need to be entangled and no longer able to interact when the
measurements are performed. In addition to this, the experimenter must
be able to measure at least two non-commuting observables of at least one
of them. In recent years, remarkable progress has been made in this di-
rection, with the demonstration of entanglement between spatially separated
macroscopic objects [22–27] and the observation of EPR entanglement within
individual many-particle systems [28–31].

As opposed to the case of the Gedankenexperiment discussed in Sec. 4.1,
perfect correlations do not exist in any realistic scenario. In addition to this,
imperfectly correlated states are commonly used in many-particle systems,
where maximally entangled states are often experimentally inaccessible or
very fragile, see Sec. 2.3.5. In order to discern the EPR paradox in this case,
one needs quantitative criteria; in the following I introduce the ones that

are used in this thesis. Let us consider two spin systems ~̂SA and ~̂SB. Both
systems satisfy Heisenberg relations, such as

EBHei :=
4 Var

(
ŜBz

)
Var

(
ŜBy

)
∣∣∣〈ŜBx 〉∣∣∣2 ≥ 1. (4.1)

Inequalities like Eq. (4.1) are to be understood as applied to repeated
measurements of identically prepared quantum states, as every experimental
repetition can only yield one valid measurement outcome [101]. If the two
spins are entangled, their measurement outcomes will be correlated, allowing

us to use the results obtained on, say, ~̂SA to infer those on ~̂SB. In our
case, this is achieved by the linear estimates ŜB,inf

z,y := −gA→Bz,y ŜAz,y + cA→Bz,y ,
where gA→Bz,y and cA→Bz,y are real numbers that can be chosen. The accu-
racy of the inference is quantified by the so-called inference variances,
Varinf(Ŝ

B
z,y) := Var(ŜBz,y − ŜB,inf

z,y ). If we assumed a local realist description
of the total system, it should be possible to assign to any measurement

outcome of ~̂SA a local quantum state of system B [95]. Due to this, the
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inference variances should obey the same uncertainty relations as the normal

observables of ~̂SB [9, 102]. Therefore, the EPR paradox is demonstrated if
an inequality of the form

EA→BEPR :=
4 Varinf

(
ŜBz

)
Varinf

(
ŜBy

)
∣∣∣〈ŜBx 〉∣∣∣2 ≥ 1 (4.2)

is violated [9, 102]. In other words, the EPR paradox is shown if the infor-

mation gained from the remote system ~̂SA allows an experimenter to make

better predictions about ~̂SB than what is possible by having access to ~̂SB

alone, which in a local realist world would not respect Heisenberg’s uncer-
tainty principle. The parameters gA→Bz,y (called gain factors) can be deter-
mined experimentally by minimising the inference variances, whereas cA→Bz,y

constitute an additive constant in the variances and can be dropped. A simi-
lar criterion can be derived for the scenario where the measurement outcomes

on ~̂SB are used to infer those on ~̂SA, EB→AEPR ≥ 1. Note that, since the EPR
paradox originates from an asymmetric scenario and is an asymmetric con-
cept, a violation of EB→AEPR ≥ 1 does not imply a violation of EA→BEPR ≥ 1, and
vice versa.

A criterion for entanglement (non-separability) similar to Eq. (4.2) was

derived in Ref. [103]: Two spins ~̂SA and ~̂SB are in an entangled state if the
inequality

Eent :=
4 Var

(
gA→Bz ŜAz + ŜBz

)
Var

(
gA→By ŜAy + ŜBy

)
(∣∣gA→Bz gA→By

∣∣ ∣∣∣〈ŜAx 〉∣∣∣+
∣∣∣〈ŜBx 〉∣∣∣)2 ≥ 1 (4.3)

is violated. The values of gA→Bz,y that minimise Eent are in general not the
same as the optimal ones for EA→BEPR . It is worth noting that Eent can be

rewritten with ~̂SB as inferring system without changing its value, with
gB→Az,y = 1/gA→Bz,y , which is consistent with entanglement being a symmetric
concept.

Although similar, there is an important difference between the EPR and
entanglement criterion: Eq. (4.2) applies to inference variances in general,
whereas Eq. (4.3) was derived specifically for linear combinations of observ-
ables. Thus, any information obtained about the inferring system and any
classical information can be used to violate Eq. (4.2), but not Eq. (4.3). It is
also worth noting that, as long as the same inference variances are used, EA→BEPR

is always larger than or equal to Eent, reflecting the fact that an observation
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Figure 4.1: Schematic of the spin squeezing sequence with spin echo. Top:
Qualitative representation on a Bloch sphere of the state of the BEC at
different stages. Bottom: Time schematic of the Rabi coupling and of the
CPW mw. The BEC is initially prepared in a CSS on the equator of the
Bloch sphere (see the Bloch sphere on the top left) by a π/2 pulse. Then,
the CPW mw is turned on for a total time tsdp, inducing the OAT dynamics
and producing a SSS (see the Bloch sphere on the top right). At half of tsdp,
the CPW mw is switched off and the echo π pulse is performed. Finally, a
further Rabi pulse can be applied, e.g. to align the squeezed direction with
the Ŝz axis.

of the EPR paradox requires stronger correlations than a demonstration of
entanglement [95].

In this work we do not address Bell nonlocality. The reason for this is
that all currently known criteria for Bell nonlocality with two many-particle
systems require non-Gaussian measurements or state preparation, e.g. single-
atom resolving detection [104]. Bell-type correlations among the atoms in
a single BEC have been shown indirectly by evaluating a witness that only
necessitates collective measurements [29].

4.3 Generation of entanglement in a Bose-

Einstein condensate

The first step of an EPR experiment is the preparation of an entangled state.
As explained in Secs. 2.3.5 and 3.3.3, in our experiment we generate many-
particle entanglement in the form of spin squeezing [34,35,60]. We do this by
activating the one-axis-twisting term ~χŜ2

z in the collective-spin Hamiltonian
(Eq. (2.17)) for a duration tsdp by means of a state-dependent mw dressing
potential, see Fig. 4.1. To reduce shot-to-shot phase fluctuations, we perform
a spin echo pulse [105] during the spin squeezing sequence: At half tsdp, the
state-dependent potential is switched off and a Rabi π pulse (the echo pulse)
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is applied.
We choose tsdp to correspond to the second revival of the demixing-

remixing dynamics (see Sec. 3.3.3), which corresponds to ≈40 ms. In this
way, the echo pulse takes place at the first revival and is able to perform a
collective spin rotation, which would be impossible if the two BEC compo-
nents were not overlapped. The calibration measurement used to determine
the precise value of tsdp is described in appendix C.6.1.

After tsdp, a Rabi pulse rotates the collective spin around its mean direc-

tion, so as to align the squeezed direction along Ŝz. The angle by which it
needs to be rotated (squeezing angle) is determined experimentally by ob-
serving for which angle the spin noise is minimised, see appendix C.7. In
the measurements presented in this thesis, the squeezing angle was found
to be 10◦, i.e. the duration of the last pulse was t2 = (10/90) tπ/2. We typi-
cally measure a number squeezing of ζ2 ' −7 dB, anti-squeezing of '14 dB,
and interferometric contrast of 96 %, see Fig. C.6. We attribute the excess
noise w.r.t the Heisenberg limit to technical noise, see Refs. [51, 86] for a
more detailed analysis. The reduction of the measured contrast w.r.t. the
97 % visibility reported in Sec. 2.3.7 is compatible with the effect of the state
wrapping around the Bloch sphere for our squeezing parameters, which is
expected to be a factor of ≈0.99 [51,64].

When analysing the experimental data, we include in the expression for
projection noise the factor 1− 〈Nrel〉2, which takes into account the possi-
bility that the state is not perfectly on the equator of the many-particle
Bloch sphere (〈Ŝz〉 6= 0). We also typically express for convenience the num-
ber squeezing parameter in terms of the relative number imbalance, Nrel,
obtaining

ζ2 =
Var(Nrel)〈N〉
1− 〈Nrel〉2

. (4.4)

The squeezing values presented here were obtained without any clock shift
correction (see Ref. [51]) and technical noise subtraction.

4.4 Coherently splitting a two-component

Bose-Einstein condensate

After generating entanglement in the initial BEC, we need to coherently
split it into two spatially separated two-component condensates, which we
are able to measure in all the spin directions necessary to evaluate the crite-
ria Eq. (4.2) and (4.3). Our splitting technique consists of two parts, namely
a beam splitter in spin space and a Stern-Gerlach-like spatial separation.
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Figure 4.2: Level diagram of the hyperfine split ground state of 87Rb in
the linear Zeeman regime. The states are indicated by solid horizontal lines.
Dashed lines indicate the transitions involved in the splitting process and
individual manipulations (note that the one relative to condensate A is the
two-photon transition discussed in Sec. 3.3.2). Orange and green colour
refer to condensate A and B, respectively, whereas magenta represents the
splitting transitions.
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Figure 4.3: Space-time schematic of the splitting procedure. The colour
orange refers to the initial BEC and to condensate A, green to condensate
B, and magenta represents the splitting pulse. Bottom left: main control
parameters for splitting and state manipulation, where trapping indicates the
magnetic trap (see Secs. 3.1.1 and 3.6), gradient the magnetic field gradient
used to accelerate the BEC before the time of flight (see Sec. 3.4.1), and
coupling the coherent drive of the transitions indicated by the colour coding.
The timing is aligned with the sketch above, but not to scale. On the right,
typical absorption images are shown, from which the atom numbers in all four
states are determined. This corresponds to a measurement of the selected

components of the collective spins ~̂SA and ~̂SB.
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The first is implemented by coherently driving the transitions between both
BEC components and two states with zero magnetic moment, see Fig. 4.2.
The spatial separation is obtained by exploiting the difference in magnetic
moment between the two pairs of states: A magnetic field gradient selec-
tively accelerates the states with non-zero magnetic moment. This results in
two pairs of overlapped states moving away from each other, which can thus
be described as two collective spins. Since the two pairs of states are con-
nected by different transitions, we can perform individual rotations of their
collective spins, which allows us to measure any of their spin components
independently.

It is worth noting that, after the splitting, all atoms are in a coherent
superposition of all four involved states, making it impossible to describe
the two condensates as systems with fixed atom number. It is therefore
incorrect to define their collective spins with Eq. (2.14). Rather, one has
to use Schwinger’s bosonic-operator-based representation of angular momen-
tum, see Eq. (2.16).

I will now give a more detailed description of the splitting experimen-
tal sequence. Although it would be possible to drive the splitting tran-
sitions when the BEC is trapped, we decided to first release it from the
trap for two reasons. Firstly, these transitions connect states with different
magnetic moments and are thus strongly affected by magnetic-field changes
(≈ 0.7 MHz/G). The field gradient due to the magnetic trap1 is sufficient to
induce a measurable space-dependent phase shift across the BEC during the
splitting pulses. Secondly, to reduce the imaging noise it is important for
us to shorten the expansion time before detection, which we usually do by
accelerating the BEC with a magnetic-field gradient (see Sec. 3.4.1). Since
the states defining one of the split condensates have zero magnetic moment,
we can only influence their expansion time by accelerating the initial BEC.

The splitting procedure (sketched in Fig. 4.3) begins by releasing the BEC
from the trap and accelerating it with a magnetic field gradient, which re-
duces the expansion time before detection. Then, we apply the beam splitter
in spin space by simultaneously driving the transitions

|1A〉 := |F = 1,mF = −1〉 ←→ |1B〉 := |F = 2,mF = 0〉 ,
|2A〉 := |F = 2,mF = +1〉 ←→ |2B〉 := |F = 1,mF = 0〉 ,

(magenta in Figs. 4.2 and 4.3) with a two-tone mw pulse (see Sec. 3.3.2). We
choose to apply a 50:50 beam splitter, which corresponds to a pulse duration
of tsplit

π/2 ≈ 70 µs for both transitions. A subsequent pulse of the magnetic field

1This is increased by the fact that the position of the trapped BEC is shifted by gravity
w.r.t. the field minimum by a few micrometers.

56



gradient selectively accelerates the states |1A〉 and |2A〉, spatially separating
the system into two distinct two-component BECs, which we call system
A (composed of states |1A〉 and |2A〉, orange in Fig. 4.2) and system B
(composed of states |1B〉 and |2B〉, green in Fig. 4.2).

Since |1A〉 (|1B〉) and |2A〉 (|2B〉) have the same magnetic moment, the
overlap between the states in each system is preserved by the splitting mech-

anism, allowing us to describe them as two collective spins, ~̂SA and ~̂SB.
Once the two condensates are split, we can coherently drive the transitions
|1A〉 ↔ |2A〉 and |1B〉 ↔ |2B〉 with distinct radio-frequency and microwave

signals, which allows us to perform arbitrary spin rotations on ~̂SA and ~̂SB

independently, see Sec. 4.4.2.
We detect the split BECs in the same way as described in Sec. 3.4. We

acquire two absorption images: The first one detects atoms in states with
F = 2 (|2A〉 and |1B〉) and the second one detects those with F = 1 (|1A〉
and |2B〉) – after they have been optically pumped to F = 2. Due to the
large separation between the two BECs (≈80 µm at the time of the first
image and ≈100 µm at the time of the second), we can count the atoms
present in all four states separately and thus obtain a measurement of the
spin components ŜAz = (N̂A

1 − N̂A
2 )/2 and ŜBz = (N̂B

1 − N̂B
2 )/2 (see Fig. 4.3).

Other spin components can be measured by coherently rotating the collective
spins before detection (see Secs. 3.4.1 and 4.4.2).

4.4.1 Cloud separation

Performing an EPR experiment requires selecting the measurement basis
when the two systems are no longer able to interact. It is therefore important
for us to estimate the separation between the two BECs at the beginning of
the individual collective spin rotations, trot.

Although it is possible for us to acquire images of the BECs at trot, see
Fig. 4.4, it is difficult to determine the cloud size and distance at this time
from these images. Indeed, the cloud size at trot is comparable to the optical
resolution of the imaging apparatus, whose point-spread function has an
estimated rms value of 1.5 µm (see the supplementary material of Ref. [30]).
Furthermore, at this time the atoms are located close to the upper edge of our
field of view, where there are visible aberrations. Due to these fringes, from
Fig. 4.4 the distance between the two BECs can only be estimated roughly
by counting the pixels between the apparent cloud centres – which yields a
value of 14.4(13) µm. We therefore estimate the BEC distance and size at
trot based on images acquired at later times.

To determine the distance between A and B at trot, we perform an ex-
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Figure 4.4: Image of the two condensates at the beginning of the individual
rotations (averaged over ∼ 30 repetitions). The scale indicates distances in
units of pixels – each pixel corresponds to 1.3 µm at the position of the atoms.
The imaging pulses were kept as short as possible (10 µs) to minimise blurring
from the displacement and diffusion of the atoms. Due to aberrations and
to the optical resolution of the imaging apparatus, it is difficult to use these
images to determine the size and separation of the split condensates.
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periment where we vary the time of flight (TOF, see Sec. 3.4.1) – a so-called
free fall experiment. To reduce the blurring due to the displacement and
diffusion of the atoms during the imaging pulses, these were kept as short as
possible2, 20 µs. For every value of the TOF, we fit the atom density profiles
(averaged over ∼25 repetitions) with a two-dimensional Gaussian profile to
obtain the BEC position. This position as a function of time is fitted with a
free fall trajectory model, which yields a distance of 15.2(35) µm at the time
trot (which is compatible with the image shown in Fig. 4.4).

The cloud size at trot was estimated with two methods, one based on
simulations and the other on the free fall experiment described above. Before
discussing them, it is worth spending a few words about the definition of the
cloud size. As mentioned in Sec. 2.2, our BEC is in an intermediate regime
between the non-interacting case and the Thomas-Fermi limit. We define
the cloud size as the distance from the centre containing 99.9 % of the atoms
– which in our case means that for both system A and B on average less
than one atom should be found out of this radius. To be able to extract this
quantity from measured atom density profiles, we simulate the BEC density
profile in the trap (by solving the TIGPE with a program written by Roman
Schmied), fit it with a two-dimensional Gaussian profile, and calculate the
ratio between the cloud size as we defined it and the Gaussian radius (we
obtain a factor of 2.9 for the vertical direction). Due to the self-similar
expansion of BECs [106], this ratio remains constant throughout the TOF.

We place an upper bound to the cloud size by means of a numerical
estimate: Using the simulated density profile mentioned above as a starting
point, we numerically solve the differential equation for the BEC expansion
from Ref. [107], obtaining a vertical cloud size of 6.0 µm at the time trot.
Since this differential equation was derived for the Thomas-Fermi limit, where
interatomic interactions are stronger than in our case, this is not an accurate
estimate of the cloud size, but rather an upper bound. Note that, even if
this were the real value, the clouds would be completely separated.

From the cloud expansion simulation we see that, at the time trot, the
expansion is already in the ballistic regime. We can thus estimate the vertical
cloud size at that time by performing a linear fit of the results from the
free fall experiment mentioned above, obtaining 4.1(4) µm. Therefore, we
conclude that the two BECs are fully separated already at the time trot.

While the estimated distance does not ensure space-like separation be-
tween the measurements of the two BECs, there are no known interactions
between the two condensates that could couple their collective spins across

2Because of the more dilute clouds detected in the free-fall experiment, the imaging
pulses here are not as short as in the image shown in Fig. 4.4.
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Figure 4.5: Individual Rabi oscillations of ~̂SA and ~̂SB. The experimental
sequence begins by splitting the BEC initialised in state |F = 1,mF = −1〉⊗N
(see Sec. 3.6) 50:50 into system A and B. Once the two condensates are fully
separated, we first drive Rabi oscillations on system B alone, then on system
A. The data are obtained by interrupting this procedure at different times
(shown on the horizontal axis) and detecting. The plot shows the normalised
spin components NA,B

rel = (NA,B
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2 )/(NA,B
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2 ). The thick vertical
line denotes a change in time scale.

this distance on the timescale of the experiment: First of all, the fact that
the two BECs are fully separated at trot rules out any influence of collisional
interactions. Secondly, the effect of magnetic dipole-dipole coupling, which is
the dominant type of long-range interaction in our system, is rendered com-
pletely negligible by the fact that in each system the two BEC components
have nearly identical magnetic moments and thus the related interaction en-
ergy has a very weak dependence on the state of the collective spins.

4.4.2 Individual manipulation of the split condensates

Since system A is composed of the same states discussed in Chaps. 2 and 3,

we can perform collective spin rotations of ~̂SA in the same way as described in
Sec. 3.3.2. The states that constitute system B, on the other hand, are con-
nected by a single-photon mw transition, which can be addressed by means
of mw pulses (see Fig. 4.2). Individual Rabi oscillations of the two collective
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spins are shown in Fig. 4.5, from which it can be seen that the Rabi frequency
attainable for system B is over 10 times larger than for system A.

Given that both systems are characterised by transitions whose frequen-
cies only depend weakly on the magnetic field, both are robust to dephasing
from magnetic field fluctuations [37]. In particular, the derivative of the tran-
sition frequency of system A w.r.t. the magnetic field is zero at B0 ≈ 3.23 G
(see Sec. 2.3.1), whereas for system B this occurs at 0 G [52]. Due to this,
the coherence times of the two systems are maximised at different fields. Be-
cause of the much larger Rabi frequency attainable for system B, we chose
to maintain the magnetic field during the individual manipulations of the
BECs at B0 (where dωB/dB ' 2π 3.7 kHz/G) and to perform the rotation of

~̂SB first.
Although the mw, rf, and bias fields are homogeneous across the BEC

size (see Secs. 3.1 and 3.3.2), this is not the case over much larger distances
and during the TOF the condensates experience varying fields. The static
magnetic field, which can be determined by observing the change in resonance
frequency of a transition with large differential Zeeman shift, changes only
slightly and can be kept close enough to B0 by adjusting the current in the

x bias coil, such that the shift it induces in ~̂SA and ~̂SB can be neglected.
On the other hand, we observe that the Rabi frequencies relative to both

systems decrease relevantly during the TOF. The change in microwave level
shifts caused by this is estimated to be on the order of a few tens of Hz, most
of which can be corrected for by calibrating the frequency of the driving
signals. We do, however, notice that we cannot obtain a better contrast than
98 % in the Rabi oscillations of system A, which can be due to the mw and rf
amplitude variations during the Rabi pulse itself, see Fig. 4.5. Since for the
results presented in this thesis we never need to perform more than a π/2
pulse on system A, this effect is not a limitation. In addition to influencing
the light shifts, the time-varying Rabi frequencies require adjusting the pulse
times individually for different pulse areas, see appendix C.8.

Performing the individual manipulations during the TOF also introduces
time (thus pulse area) constraints on the feasible rotations: With the current
experimental parameters we can perform up to a 2π pulse on system B and
up to a π pulse on system A, see Fig. 4.5, which allow us to perform arbitrary
collective spin rotations on both systems. Increasing the duration of the TOF
would be possible, but at the expense of more dilute clouds at the time of
the imaging, which would result in larger imaging noise (see Sec. 3.4.4).
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Figure 4.6: Level structure of the 87Rb hyperfine split ground state in
the linear Zeeman regime (not to scale). Orange indicates system A, green
system B, and magenta the splitting transitions. The desired transitions
are indicated by solid lines, the undesired close-to-resonance transitions are
represented by dashed lines. (a) Transitions involved in the splitting of the
condensate into systems A and B. (b) Transitions involved in driving spin

rotations of ~̂SA after splitting.

62



4.4.3 Addressability and strength of the transitions

Several transitions in the 87Rb hyperfine split ground state are nearly de-
generate and differ only by quadratic Zeeman shifts, which are of the same
order of magnitude as the Rabi frequencies (1-10 kHz). In the experimental
sequence up until the splitting, the populated states and applied driving fre-
quencies are such that they do not lead to any undesired couplings. However,
the driving fields used for the splitting pulse and for the subsequent rotations

of ~̂SA are close to resonance with other relevant transitions, see Fig. 4.6. It
is thus essential to carefully choose the parameters of these pulses, so as to
prevent the spurious driving of undesired transitions.

It is in principle possible to suppress the undesired transitions by only
using driving fields with the correct circular polarisation. However, since
the BECs are close to the metallic atom chip surface, this is challenging to
attain in our experiment and we observe that the driving fields contain all
polarisation components (see Sec. 3.3.2). We therefore have to ensure the
selectivity by carefully choosing the frequency and strength of the driving
fields.

In the case of the splitting pulse (see Fig. 4.6(a)), the desired transition
|1A〉 ↔ |1B〉 is close to resonance with |2B〉 ↔ |F = 2,mF = −1〉 and the
desired |2A〉 ↔ |2B〉 with |1B〉 ↔ |F = 1,mF = 1〉 (both with 9 kHz detun-
ing). These additional close-to-resonant transitions can cause atoms to be
transferred from system B to states with different magnetic moments, where
they are lost during the application of the magnetic gradient pulse. This loss
mechanism is mitigated by the fact that states |1B〉 and |2B〉 are initially
unpopulated and become populated only during the splitting pulse. Since in
the case of the splitting we only need to perform a π/2 pulse, we choose for
this pulse a combination of detuning and small enough Rabi frequency, for
which we observe no losses to the undesired states, corresponding to a detun-
ing of 2.2 kHz (adding to the 9 kHz mentioned above) and a pulse duration
tsplit
π/2 ≈ 70 µs.

The fields used to rotate ~̂SA after the splitting (see Fig. 4.6(b)) are close
to resonance with the transition |1B〉 ↔ |2B〉, driven as a two-photon transi-
tion with intermediate states |F = 2,mF = −1〉 and |F = 1,mF = −1〉 (with
10 kHz detuning). However, since two-photon transitions have weak effective
Rabi frequencies, this two-photon detuning can be exploited to ensure good
selectivity of the pulse. The desired transition |1A〉 ↔ |2A〉 is driven on
two-photon resonance with π/2 time of tAπ/2 ≈ 850 µs, ensuring that the two-
photon detuning of the undesired transitions is sufficient to render spurious

rotations of ~̂SB negligible, see Fig. 4.5.
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Figure 4.7: Schematic of an EPR experiment with two particles (left) and
with two many-particle systems (right), where the spin degree of freedom is
considered [32,33]. In both cases, the particles are entangled by interactions
and subsequently split into two different locations. In the case of the many-
particle system, the interactions produce multipartite entanglement, which
is inherited by the split systems in form of bipartite entanglement between
their collective spins [92].

4.5 Einstein-Podolsky-Rosen experiment

with two Bose-Einstein condensates

I will now describe how we use the tools discussed in Secs. 4.3 and 4.4
to observe the EPR paradox with two spatially separated, massive many-
particle systems [36]. Following closely Bohm’s version of the Gedankenex-
periment [32, 33] (see Fig. 4.7), we first use interactions to generate entan-
glement in a BEC. Then, we physically split the entangled system into two
distinct condensates, which can be individually manipulated and detected.
The two BECs inherit entanglement from the initial state, resulting in cor-
related measurement outcomes of their collective spins [92].

In detail, the experimental sequence (see Fig. 4.8) begins by preparing
the BEC (initialised in |F = 1,mF = −1〉⊗N , see Sec. 3.6) in a coherent spin
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Figure 4.8: Space-time schematic of the experimental sequence. The colour
orange refers to the initial BEC and to condensate A, green to condensate B,
and magenta represents the splitting pulse. Bottom: main control parameters
for splitting and state manipulation, where trapping indicates the magnetic
trap (see Secs. 3.1.1 and 3.6), gradient the magnetic field gradient used to
accelerate the BEC before the time of flight (see Sec. 3.4.1), coupling the
coherent drive of the transitions indicated by the colour coding, and CPW
mw the application of the state-dependent potential (see Secs. 3.3.3 and 4.3).
The timing is aligned with the sketch above, but not to scale. The dotted
segment indicates that the squeezing sequence is much longer than all other
experimental parts (the echo pulse is not shown due to space constraints).
The Bloch spheres give a qualitative representation of the state of the system
at different stages. On the right, typical absorption images are shown, from
which the atom numbers in all four states are determined. This corresponds

to a measurement of the selected components of the collective spins ~̂SA and

~̂SB.
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state on the equator of the Bloch sphere, |CSS : π/2, 0〉, with a π/2 pulse, see
Secs. 2.3.4 and 3.3.2. Then, we turn on the mw state-dependent dressing po-
tential for a total time of tsdp ≈ 40 ms, applying an echo π pulse at half of that
time (which is not shown in Fig. 4.8, due to space limitations). After rotating
the state by 10◦ around its mean spin direction, we obtain a squeezed spin
state polarised along the Ŝx component with a number squeezing of −7 dB
in the Ŝz direction, see Sec. 4.3. We then release the BEC from the magnetic
trap and split it as described in Sec. 4.4. Once the split condensates are fully
separated, we select their measurement bases by individually rotating their
collective spins, see Secs. 3.4.1, 4.4.1, and 4.4.2. Owing to the large spatial
separation of the two systems, we can measure the selected collective spin
components of both with absorption imaging, see Secs. 3.4.1 and 4.4.

As discussed in Sec. 4.2, to demonstrate the presence of entanglement
and the EPR paradox, one needs to evaluate the criteria Eqs. (4.3) and
(4.2), respectively. This requires repeating the experiment with identical
state preparation a sufficient number of times to get small enough error bars
on the criteria, each time measuring either the x, y, or z component of both
collective spins. Since ŜA,Bx are measured to determine their mean values,
whereas ŜA,By and ŜA,Bz are detected to evaluate the inference variances, we
gather about five times more measurements of the y and z components than
of ŜA,Bx .

The outcome of every measurement of (ŜAz,y, Ŝ
B
z,y) (≈ 1600 repetitions

in each basis) is represented by a point3 in the correlation plots shown in
Fig. 4.9. The strong correlations between the two systems can be explained
as follows: Since A and B result from splitting a squeezed spin state with
a beam-splitter-like process, combining the measurement results from the
two systems recovers the modified fluctuations of the original state (up to
experimental imperfections), i.e. Var(ŜAz,y + ŜBz,y) ' Var(Ŝinitial

z,y ). Considered
individually, on the other hand, each system shows reduced squeezing and
anti-squeezing, as this corresponds to tracing out the other one. Thus, the
variance of the combined measurement results in the squeezed (anti-squeezed)
spin component is smaller (larger) than the sum of the variances evaluated
on the individual systems,

Var(ŜAz + ŜBz ) < Var(ŜAz ) + Var(ŜBz ), (4.5)

Var(ŜAy + ŜBy ) > Var(ŜAy ) + Var(ŜBy ). (4.6)

Because of this and of the fact, that

Var(ŜAz,y + ŜBz,y) = Var(ŜAz,y) + Var(ŜBz,y) + 2 Cov(ŜAz,y, Ŝ
B
z,y), (4.7)

3The measured values of SB
y shown in Fig. 4.9 include the correction of phase shifts

induced by measured triggering delay fluctuations in the signal generation, see Sec. 4.5.2.
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Figure 4.9: Spin correlations between the two BECs and illustration of
the inference mechanism. The semitransparent grey dots are individual data
points of simultaneous measurements of spin components ŜAz and ŜBz (left
plot) and ŜAy and ŜBy (right plot) of the two systems. Data points for SBy
are corrected for the phase shift due to the measured trigger jitter of the
microwave generator (see Sec. 4.5.2). The blue histograms are their marginal
distributions, 2σ intervals are indicated by blue dotted lines. The correlations
of measurement results (2σ covariance ellipses in blue) allow one to infer
measurement results of one system from the other. This reduces the variance
of the prediction as shown by the histograms and the reduced 2σ intervals in
red. For comparison, the 2σ variance ellipses of ideal non-entangled states
with the same number of atoms are shown in yellow.
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where Cov(ŜAz,y, Ŝ
B
z,y) is the covariance of ŜAz,y and ŜBz,y, the measurements of

the squeezed (anti-squeezed) component of the two systems are expected to
show negative (positive) correlations, in agreement with Fig. 4.9.

As discussed in Sec. 4.2, these correlations allow us to use the measure-
ment results from one system to infer those of the other with an accuracy
quantified by the inference variances, which are combined in the criteria
Eqs. (4.2) and (4.3). In the following I illustrate a few features of the infer-
ence variances by focussing on the example

Varinf

(
ŜBz

)
= Var

(
ŜBz − ŜB,inf

z

)
= Var

(
ŜBz + gA→Bz ŜAz − cA→Bz

)
, (4.8)

but the discussion applies to Varinf(Ŝ
B
y ), Varinf(Ŝ

A
z ), and Varinf(Ŝ

A
y ), as well.

The value of the gain factor that minimises the inference variance is given by

gA→Bz = −Cov(ŜAz , Ŝ
B
z )

Var(ŜAz )
, (4.9)

which can be determined experimentally. The parameter cA→Bz , on the other
hand, is chosen to make the mean value of the estimate (ŜB,inf

z ) coincide with
that of the inferred quantity (ŜBz ), but has no effect on the inference variance,
since it is an additive constant.

The quantity whose variance is taken in Eq. (4.8) can be visualised on
the correlation plot as an affine transformation of the data points,(

SAz , S
B
z

)
7→
(
SAz , S

B
z + gA→Bz SAz − cA→Bz

)
, (4.10)

which reduces the width of their distribution in the direction of the inferred
spin component, SBz . The effect of this transformation can be understood
with the help of the 2σ covariance ellipse of the data (blue in Fig. 4.9),
which is deformed in the inferred direction until its width is minimised. The
minimal width achievable by such a transformation corresponds to the width
of the initial ellipse in the inferred direction at its centre, shown by the solid
red lines in Fig. 4.9.

The variance reduction obtained by the inference corresponds to the dif-
ference between the 2σ interval of the data (given by the projection of their
covariance ellipse onto the SB axis, shown by the dashed blue lines in Fig. 4.9)
and that of the transformed quantity from Eq. (4.10) (red solid lines). The
distributions of SBz and SBz + gA→Bz SAz − cA→Bz can be seen from the corre-
sponding marginal histograms (blue and red in Fig. 4.9, respectively). Quan-
titatively, the variances of SA,Bz are reduced by a factor of 1.7 and those of
SA,By by 7. The difference between these factors can be explained by the
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comparison between the correlated and uncorrelated noise in the two cases:
The correlated noise of SA,Bz consists almost entirely of quantum fluctuations,
whereas in the case of SA,By it also includes the phase noise from the initial
state preparation4 (see Sec. 4.3). In addition to this, the quantum fluctua-
tions of SA,Bz are much smaller than those of SA,By , while several sources of
technical uncorrelated noise (e.g., detection noise) affect both spin directions
in the same way. Therefore, the noise that is eliminated by the inference
(i.e. the correlated one) in the z spin direction constitutes a much smaller
fraction of the total variance than in the y direction. This is also reflected
by the values of the optimal gain factors,

gA→Bz = −0.65(2),

gB→Az = −0.65(2),

gB→By = 0.91(1),

gB→Ay = 0.92(1).

Although both the entanglement and the EPR criteria are based on the
variance reduction described above, the optimal gain factors for Eent are dif-
ferent from those that minimise the inference variances (hence EA→BEPR and
EB→AEPR ), see Sec. 4.2. In particular, since they also contribute to the numera-
tor of Eent, those for the entanglement criteria tend to be larger,

gA→B,ent
z = −1.01(1),

gA→B,ent
y = 1.03(2).

The yellow elements in Fig. 4.9 represent the 2σ variance ellipses and
marginal distributions that one would expect if the two systems were pre-
pared in ideal coherent spin states with the same atom numbers as in the
measurements. From the comparison between these and the blue ellipses and
histograms, it can be seen that both collective spin components retain part
of the squeezing and anti-squeezing of the initial state. Indeed, the number
squeezing of the two condensates considered individually amounts to

ζ2(ŜAz ) = −2.2(2) dB,

ζ2(ŜBz ) = −2.2(2) dB,

ζ2(ŜAy ) = 11.5(2) dB,

ζ2(ŜBy ) = 11.9(1) dB.

4It is also worth noting that the phase noise from the initial state preparation results
in positive correlations between SA

y and SB
y , i.e. with the same sign as the quantum

correlations in this spin direction.
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The combined measurement results, on the other hand, recover
the statistics of the initial state, ζ2(ŜAz + ŜBz ) = −6.6(3) dB and
ζ2(ŜAy + ŜBy ) = 14.6(2) dB, consistent with our expectations.

As mentioned earlier, evaluating the criteria Eqs. (4.2) and (4.3) also re-
quires measuring 〈ŜA,Bx 〉, which quantify the lengths of the collective spins.
In the case of the EPR criteria, these determine the Heisenberg uncertainty
bounds which the inference variances have to violate to demonstrate the
EPR paradox, as [ŜA,By , ŜA,Bz ] = iŜA,Bx . In the entanglement criterion, on
the other hand, the denominator of Eent is a result of the mathematical
derivation and has no simple interpretation. The collective spin lengths
normalised to half the atom numbers correspond to the interferometric con-
trasts, 2|〈ŜA,Bx 〉|/〈N̂A,B〉, which are measures of the overall coherence of the

process5 [57]. We obtain 96.2(1) % contrast for both ~̂SA and ~̂SB, which is
comparable to the contrast we measure without splitting the condensate (see
Sec. 4.3). This indicates that the coherence and overlap between the spin
components in each system are preserved by the splitting procedure.

Combining all measurements to evaluate the criteria Eqs. (4.2) and (4.3),
we obtain the values

EEnt = 0.35(2),

EA→BEPR = 0.81(3),

EB→AEPR = 0.77(3),

demonstrating both entanglement and the EPR paradox between the conden-
sates A and B, inferring both from A→ B and from B → A. The measured
values of SBy used for the evaluation of the EPR criteria are corrected for
phase shifts induced by triggering delay fluctuations in the signal genera-
tion, see Sec. 4.5.2. In addition to the criteria, we evaluate the Heisenberg
uncertainty products defined in Eq. (4.1), obtaining

EBHei = 10.2(4),

EAHei = 9.2(5).

Since ideal squeezed spin states saturate the Heisenberg limit, we conclude
that EAHei and EBHei are larger than unity due to technical noise. Comparing
EA→BEPR to EBHei and EB→AEPR to EAHei allows us to quantify the variance reduction
gained by the inference.

5This can be understood from the fact that, because of the spin rotations used to mea-
sure ŜA,B

x and ŜA,B
y (see Sec. 3.4.1), the measurements of these spin directions correspond

to the maximum and the zero crossing of a Ramsey fringe, respectively.
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All criteria are determined without any technical noise subtraction, i.e.
we do not subtract from the inference variances any estimated contribution
from technical noise. Due to this, the entanglement and EPR entanglement
demonstrated here are directly accessible experimentally and can be used as
resources in applications, see Sec. 5.2.

4.5.1 Data analysis

The results listed in Sec. 4.5 were obtained by taking a total of about 4500
measurements within 42 hours of measurement time. We subdivide the data
into blocks for which we evaluate the criteria separately. Each block consists
of hundred Ŝz, hundred Ŝy, and twenty Ŝx measurements. The measurements

along Ŝx are performed ten times along both the positive and the negative
spin direction, to reduce bias from a potential difference in the detectivity
of different states – which we did however not observe. The subdivision into
blocks renders the analysis robust against the effect of small, slow drifts of
the experimental conditions during the tens of hours of measurement time,
while the quantum noise of the atoms, which is present in each shot of the
experiment, is unchanged. The values of the EPR and entanglement criteria
listed in Sec. 4.5 are the averages of the values obtained for the individual
blocks. We verified that analysing the whole data set in one block does
not change the conclusions of our work qualitatively: In this case we obtain
EA→BEPR = 0.87(4) and EB→AEPR = 0.82(4).

Since the imaging calibration relies on projection noise measurements
performed with equal superpositions of all involved states (see Sec. 3.4.3), it is
most accurate for the measurements of ŜA,By and ŜA,Bz . In the measurements

of ŜA,Bx , on the other hand, nearly all atoms occupy two states, and we
observe a decrease on the order of 3 % in the detected total atom number.
Since the only difference between the pulse sequences used to measure ŜA,Bx

and ŜA,By is the phase of the individual rotations, we exclude that this effect
is due to atom losses and we attribute it to an effective decrease in detectivity
due to the larger density of the cloud. To correct for this effect, we determine
the mean value of ŜA,Bx as 〈ŜA,Bx 〉 = 〈NA,B

rel,x〉〈NA,B
z,y 〉/2, i.e. we take the mean

value of the relative atom number imbalance in the ŜA,Bx measurements,
NA,B

rel,x := (NA,B
1,x −NA,B

2,x )/(NA,B
1,x +NA,B

2,x ), and multiply it by half the total

atom number detected in the measurements along y and z, 〈NA,B
z,y 〉/2.

In the following I list the variances, inference variances (those used for the
EPR criteria), and mean values that result from our measurements. Like the
criteria, these quantities were evaluated individually for every block of data,
then averaged to obtain the values listed below. Because of this, combining
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these values into the criteria yields slightly different results than those listed
in Sec. 4.5.

Var(ŜAy ) = 2535(105),

Var(ŜAz ) = 103.5(41),

Var(ŜBy ) = 2667(101),

Var(ŜBz ) = 106.8(44),

Varinf(Ŝ
A
y ) = 378(10),

Varinf(Ŝ
A
z ) = 60.5(20),

Varinf(Ŝ
B
y ) = 373(9),

Varinf(Ŝ
B
z ) = 62.3(20),

〈ŜAx 〉 = 344(1),

〈ŜBx 〉 = 338(1).

4.5.2 Signal generation and local oscillator noise

As described in Sec. 3.3.2, the mw and rf driving fields are generated by three
commercial function generators, namely an IQ-modulated mw generator, a
two-channel arbitrary waveform generator (that provides the IQ modulation
signal), and a rf generator. The mw generator is operated in continuous-wave
mode, whereas the other two devices are programmed with lists of frequen-
cies, amplitudes, and phases that are executed upon trigger. In particular,
the IQ modulator is triggered by the rf generator, which in turn is triggered
by the experiment control system. Since these devices do not share a common
sampling clock, their relative phases change between different experimental
repetitions: The mw phase is completely random, whereas the phase dif-
ference between the rf generator and the IQ modulator varies based on the
trigger delay fluctuations of the latter.

As long as we address the states |1A〉 and |2A〉 alone (e.g. in a standard
Ramsey experiment), the phases of the signals only influence the absolute
phase of the two-photon driving fields, which has no physical effect. Our
sequence, on the other hand, is more complicated and the phase of the dif-
ferent signals does matter. Indeed, it turns out that the triggering delay
fluctuations on the order of nanoseconds in the IQ generator result in phase
fluctuations of system B that are large enough to degrade the EPR signal.

To illustrate this effect, let us consider a simplified experimental sequence,
where the initial BEC is prepared in a coherent spin state on the equator
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of the Bloch sphere by a π/2 pulse at the time t0. After a duration t1, the
BEC is split into condensate A and B, and after t2 the phases of the two
systems are read out by another π/2 pulse. We assume for simplicity that
all pulses are done instantaneously, or equivalently that their detuning with
respect to the atomic transition does not matter. As shown in appendix D,
this scenario results in the following measured phases of the two systems,

φA = 0, (4.11)

φB = ωrfδt, (4.12)

where ωrf ' 1.79 MHz is the rf frequency and δt is the triggering delay of the
IQ generator. We measure typical timing fluctuations of δt of σδt = 4.0 ns,
which result in phase fluctuations of σφB = 4.5× 10−2 rad and thus in the ad-
ditional collective spin variance of ≈ 260 in the phase-sensitive measurements
of system B, i.e. along ŜBy . Since the latter is the anti-squeezed direction,
this effect is actually small when compared to the measured variance, see
Sec. 4.5.1. For the much smaller inference variances, on the other hand, it is
relevant.

These fluctuations are a technical limitation, which we plan to overcome
in the future by generating the rf and the IQ signals with a single device (i.e.
sharing the same sampling clock). In the present work, we correct for them
by directly measuring δt, which we determine in each shot of the experiment
by comparing with an oscilloscope the phase of the radio-frequency gener-
ator with the starting time of the IQ modulator sequence. This classical
information can be used for a better estimation of ŜBy = ŜBy,measured + gδtδt,

where gδt is a gain parameter chosen to minimise the variance of ŜBy . We
use this correction both in the data points of SBy shown in Fig. 4.9 and in
the evaluation of the EPR criterion, Eq. (4.2). We stress that, while this
correction can reduce classical noise, it cannot lead to a violation of the EPR
inequality, which can only be achieved by sufficiently strong entanglement
between the two systems [9]. On the other hand, this correction is not ap-
plied in the evaluation of the entanglement criterion, Eq. (4.3), which was
derived following a different principle (see Sec. 4.2).

4.6 Measuring the two systems in different

bases

Although we rotate ~̂SA and ~̂SB individually, the results presented in Sec. 4.5
are obtained by measuring the two spins in the same basis. Since many
applications of EPR entanglement require performing different measurements
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Figure 4.10: Individual manipulation of the two entangled BECs. The plot

shows the results of EPR experiments in which ~̂SB is rotated by an angle θ

around the x axis with respect to ~̂SA, as sketched in the inset on the top left.
The red filled circles represent Eent, red empty circles EB→AEPR , and blue squares
EAHei. The EPR paradox (entanglement) is observed if EB→AEPR (Eent) falls below
the dashed line at unity. The insets at the bottom show the spin correlations
similar to Fig. 4.9, with Ŝz on top and Ŝy at the bottom, for θ = 0, π/2, and
π. The numerical values of the criteria and Heisenberg products are listed in
Tab. 4.1.
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θ Eent EB→AEPR EAHei

0◦ 0.35(2) 0.77(3) 9.2(5)
30◦ 1.2(1) 1.4(2) 9.2(25)
60◦ 2.1(3) 2.6(4) 10(1)
90◦ 7.0(10) 8.5(6) 10(1)
120◦ 2.4(5) 2.9(7) 8.3(4)
150◦ 1.3(2) 1.3(1) 9.8(14)
180◦ 0.34(2) 0.80(4) 9.6(4)

Table 4.1: Numerical values of the criteria and Heisenberg products plotted

in Fig. 4.10, i.e. the results of EPR experiments in which ~̂SB is rotated

by an angle θ around the x axis with respect to ~̂SA. The EPR paradox
(entanglement) is observed if EB→AEPR (Eent) is smaller than 1.

on the two systems, it is important to demonstrate that our experiment is able

to maintain the entanglement between ~̂SA and ~̂SB in this process. Figure 4.10

shows the results of EPR experiments in which ~̂SB is rotated by an angle

θ around the x axis with respect to ~̂SA, as sketched in the inset on the top
left. The numerical values of the criteria and Heisenberg products are listed
in Tab. 4.1.

The experimental sequence here is the same as in Sec. 4.5, but the in-
dividual rotation of system B is modified to obtain the desired angle. In
the case of the ŜA,Bz measurements, which require no change of basis before
detection, this amounts to introducing a θ rotation around the ŜBx axis. For
the ŜA,By measurements, the angle θ is added to the π/2 rotation that car-
ries out the change of basis (see Sec. 3.4.1); if π/2 + θ > π, we perform a
rotation by 2π − (π/2 + θ) around the −ŜBx axis instead (i.e. in the opposite
direction), in order to minimise the pulse duration. The ŜA,Bx measurements
are unchanged w.r.t. Sec. 4.5, as the additional rotation does not have any
measurable effect on this spin component.

The case θ = 0 (leftmost points in Fig. 4.10) corresponds to the same
configuration as in Sec. 4.5, i.e. simultaneous measurements of the same
spin component. As θ increases, the correlations decrease and vanish almost
completely for θ = π/2, where orthogonal spin components are measured on
the two condensates (see in the inset plot at the bottom centre of Fig. 4.10).
Since the inference is based on the correlations, the values of EB→AEPR and Eent

increase as these get weaker, and for θ = π/2 the value of EB→AEPR is compatible
with EAHei, indicating that no meaningful noise reduction can be obtained.

Increasing θ further than π/2, the correlations gradually reappear, but
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with opposite sign, since the spin components are now being anti-aligned,
see the inset plot at the bottom right of Fig. 4.10. At θ = π, the criteria Eent

and EB→AEPR reach comparable values as for θ = 0, demonstrating that the ma-
nipulation does not degrade the entanglement between the two condensates.
It is worth noting that in this case an additional π pulse is applied to system
B w.r.t. θ = 0; the fact that we obtain comparable values for Eent and EB→AEPR

in these two cases shows the high quality of the rotations of ~̂SB.
In the setting θ = π/2 our experiment realises a situation discussed by

Schrödinger in his reaction to the EPR paradox [2, 3], where the values of
two non-commuting observables of system A are apparently measured in a
single experimental run: One (say, ŜAz ) by direct measurement on A and the
other (ŜAy ) by exploiting the strong correlations to infer its value from the
simultaneous measurement on B. Under the local realist assumptions that
measurements reveal pre-existing properties of a system and that simultane-
ous measurements on spatially separated systems do not disturb each other,
the restrictions imposed by the Heisenberg uncertainty relation could thus be
overcome [2, 3]. Today, however, we know that local realism is inconsistent
with the results of increasingly rigorous experimental tests of Bell inequali-
ties [11–18]. In the spirit of Peres’ statement that “unperformed experiments
have no results” [108], we should thus refrain from inferring a value for ŜAy
if it is not actually measured on system A.
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Chapter 5

Summary and outlook

5.1 Summary

In this thesis I report the observation of the EPR paradox between two spa-
tially separated, massive many-particle systems [36]. Our experiment begins
by preparing a two-component BEC composed of ≈ 1400 87Rb atoms in a
squeezed spin state with number squeezing ζ2 = −7 dB. We then implement
a beam splitter in spin space by coherently transferring half of the atoms in
the two BEC components to different states. The difference in magnetic mo-
ment between the initial and the new states allows us to split them into two
spatially separated two-component BECs by means of magnetic field gradi-
ents. This procedure preserves both the overlap and the coherence between
the components of the resulting condensates, allowing us to individually ro-
tate their collective spins. The many-particle entanglement present in the
initial BEC is inherited in the form of bipartite entanglement between the
split condensates [92], which turns out to be strong enough to violate the
EPR-Reid inequality, Eq. (4.2).

Our work is relevant in the context of testing quantum mechanics with
systems of increasing size and complexity. Indeed, although the EPR para-
dox and Bell nonlocality have been observed with systems composed of few
particles, how far these quantum effects extend into the macroscopic world
(where local realism is still accepted nowadays) remains an open question.
Our result shows that the conflict between quantum mechanics and local
realism does not disappear in systems composed of 103 massive particles.
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5.2 Outlook

EPR entanglement of two spatially separated systems in conjunction with the
ability to individually manipulate them opens up a variety of possibilities.
On the fundamental side, being able to measure the two collective spins in
different bases brings us closer to a Bell test with many-particle systems,
which however requires non-Gaussian measurements or state preparation,
e.g. single-atom resolving detection [104].

From the perspective of applications, EPR entanglement is a valuable
resource for quantum technology. The noise reduction gained from the in-
ference in Eq. (4.2), quantified by the difference between the Heisenberg
products and the EPR criteria, translates to a metrological enhancement
that can be exploited in quantum sensing [109–112]. Furthermore, EPR en-
tanglement is the resource that guarantees the efficacy of certain quantum
information protocols, such as quantum teleportation, entanglement swap-
ping, one-sided device-independent quantum key distribution, or randomness
certification [9, 97, 98].

Our experiment is particularly suited for quantum metrology applica-
tions [35, 78]. One can, e.g., use one of the two systems as a small sensor to
probe fields and forces with high spatial resolution and the other one as a
reference to reduce the quantum noise of the first system. Moreover, the ex-
perimental techniques demonstrated here will enable entanglement-enhanced
multiparameter estimation along the lines of Ref. [112], which proposes a pro-
tocol to measure field distributions with an array of individually addressable
systems originating from the splitting of a squeezed spin state, and demon-
strates that the entanglement inherited from the initial state enhances the
field sensitivity.

The metrology applications mentioned above can be implemented without
any modification to the experimental apparatus. However, in the future it
can be interesting to make a few changes to the experiment, in order to
further improve its performance and gain new possibilities. First of all, we
plan to solve the problem of phase noise due to trigger delay oscillations in
the signal generators, discussed in Sec. 4.5.2, by replacing the IQ modulator
and the rf generator with a single device, since producing both signals with
a common sampling clock would guarantee their relative phase stability.

As discussed in Sec. 4.4.3, the splitting pulses and the individual rotations
of the two condensates pose the problem of avoiding the accidental driving
of undesired close-to-resonance transitions. Although in the experiments
presented here this could be solved by frequency selectivity alone, it sets
several constraints on the Rabi frequencies and pulse durations that can be
chosen. For this reason, having control over the polarisation of the driving
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fields would give us much more flexibility. However, this is not achievable
with the current mw and rf driving fields, due to the presence of several
metallic structures within a wavelength from the atoms, see Sec. 3.3.2. To
circumvent this, one could think of using lasers to perform the coherent
manipulations via Raman transitions, instead.

Finally, it can be interesting to investigate the production of stronger
entanglement in our system. The most straightforward way to achieve this
with our apparatus is by increasing either the strength of the state-dependent
potential or the time for which it is activated: As mentioned in Sec. 2.3.5,
for χt & N−2/3 the state of the system is over-squeezed, and for χt = π/2
a Schrödinger cat state is produced1. This would yield more resources for
applications (e.g. for metrology [57, 65]) and possibly enable us to perform
a Bell test with two multi-particle systems, as mentioned above. However,
these states are less robust against noise and particle losses than squeezed
spin states (to make an extreme example, a Schrödinger cat state is destroyed
by the loss of one atom) and require more elaborate detection schemes (e.g.
see Ref. [66–68]). Thus, working in this regime would necessitate the devel-
opment of an experimental scheme robust to decoherence (e.g. see Ref. [113])
and further improvements in the stability and noise performance of our appa-
ratus (the values of the Heisenberg products listed in Sec. 4.5 show a relevant
amount of technical noise).

Thus, there are prospects for performing exciting experiments with our
current apparatus, as well as for developing it further to improve its perfor-
mance and explore new possibilities.

1In our case the one-axis-twisting parameter χ is not constant in time, thus the product
χt should be substituted by the integral

∫ t

0
χ(t′)dt′.
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Appendix A

IQ modulation programming

With respect to previous work performed with our apparatus, the experi-
ments presented in this thesis require a higher degree of control on the mw
signals: In the previous version of the mw generation (described in Ref. [69])
a continuous-wave mw signal – gated by a switch for pulse timing – was used.
Now several pulses at different frequencies and with independent phase con-
trol, some of which contain two tones, are needed. Since all required mw
frequencies are a few MHz apart, this was achieved by an IQ-modulated mw
generator1, which receives the modulation signal by a two-channel waveform
generator2, see Sec. 3.3.2. This device is required to emit a sequence of
one- and two-tone signals with independent frequency, amplitude, and phase
control. Although the device has two DDS-like sources for each channel,
its firmware is not capable of programming suitable signals, forcing us to
program them point by point and play them as arbitrary waveforms.

The number of samples that we can program is limited both by the mem-
ory of the device (16 MSamples) and by the time taken by the upload pro-
cess, which can exceed the duration of the initial cooling stages and cause
the waveform generator not to be ready to execute the sequence when it is
supposed to. Due to this, we substitute the single-tone signals with repeated
shorter waveforms. These shorter waveforms need to last an integer number
of samples, which in most cases forces us to approximate the frequency of
these signals. To find the best approximation, we first calculate the maxi-
mum number of periods that fit in the the largest number of samples allowed

1Rohde & Schwarz SGS100A.
2Keysight 33522B, 30 MHz bandwidth, 250 MHz sampling rate, with the following

optional additions: IQ baseband signal player, high-stability OCXO timebase, and
16 MSample memory.
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in one waveform, Nmax
samp,

Nmax
per =

⌊
f Nmax

samp

fsamp

⌋
, (A.1)

where f is the desired frequency3, fsamp is the sampling rate, and bxc is
the largest integer smaller than x. For every possible number of periods
Nper ∈ {1, . . . , Nmax

per }, we find the number of samples which best approxi-
mates its duration,

Nappr
samp(Nper) =

⌊
fsampNper

f

⌉
, (A.2)

where bxe is the closest integer to x. This corresponds to the approximated
frequency

f appr(Nper) =
fsamp Nper

Nappr
samp(Nper)

, (A.3)

which has an error w.r.t. the desired frequency

f err(Nper) = |f − f appr(Nper)|. (A.4)

We choose the value of Nper for which the error is minimal (in case this is
not unique, we choose the smallest such value of Nper). We can estimate
the maximum error as the half free spectral range between two contiguous
samples for the largest possible number of periods, Nper = Nmax

per , which rep-
resents the worst-case scenario where no smaller choice of Nper yields a better
result,

f err(Nbest
per ) .

f

2Nmax
samp

. (A.5)

Note that this is merely an upper bound to the frequency error and that in
most cases the approximation is much better.

Since the total duration of the signals does not in general coincide with
an integer number of repeated waveforms, we add a smaller “rest waveform”
after the repetitions to ensure the timing accuracy of the signals.

The substitution with repeated smaller waveforms cannot be done rea-
sonably for two-tone signals, which have a potentially very long periodicity.
However, in the experiments presented in this thesis we only execute two-tone
signals for less than a millisecond, as opposed to the hundreds of milliseconds
during which single-tone signals are needed. Thus, programming the whole
two-tone part point by point does not cause any memory issue.

3We assume f ≥ 0. For f < 0, the absolute value of f is used by the algorithm and its
sign is added to the result.
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Appendix B

Elliptical regions of interest

As mentioned in Sec. 3.4.4, in order to reduce photon shot noise, we choose
the regions of interest to count atoms from the acquired images to be as small
as possible, while still including nearly all of the atomic signal. Because of
the shape of the expanded BEC, this is achieved by elliptical regions, see
Fig. B.1. These are selected individually for each state, starting from large
rectangular regions (which include all of the atomic signal). Our algorithm
produces all possible elliptical regions1 included in the rectangular ones and,
for each of them, calculates the included fraction of the total atomic signal,
based on the average of the measured images. It then selects the smallest
one including a fraction of the atomic signal above a user-defined threshold.

Executing this algorithm with a threshold close to unity causes the place-
ment of the regions to depend strongly on the signal at the edge of the atomic
clouds, which is dominated by noise and small interference fringes. This can
result in regions de-centred by a few pixels with respect to the clouds. In
order to circumvent this problem, we execute the algorithm with a lower
threshold (typically 85 %) and add a few pixels to the ellipse radii (typically
3 pixels in all directions). In this way, the position and shape of the ellipses
are chosen based on the strong-signal part of the images, and the resulting
regions of interest include ≈ 97 % of the total atomic signal. An example
of averaged images alongside the resulting regions of interest is shown in
Fig. B.1.

1The possible elliptical regions are restricted to those with size and position that can
be expressed by an integer number of pixels.
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Figure B.1: Typical averaged images (top row), the selected elliptical regions
of interest (middle row), and their overlap (bottom row).

83



Appendix C

Typical calibration
measurements

In this appendix I review the most common calibration measurements per-
formed in our experiment. In the following I will refer to the act of repeating
a certain experimental sequence while changing the value of a certain param-
eter to cover a given range of values as scanning that parameter.

C.1 Cooling sequence

The cooling sequence is optimised to obtain as many atoms as possible in
the BEC. This is typically done by scanning some experimental parameters
and measuring the atom number after the second-to-last evaporative cooling
stage1. The parameters that we scan on a regular basis are the bias field
values during all laser cooling stages and the laser power during the optical
pumping. All other parameters (e.g. those relevant to the evaporative cooling
sequence) normally do not require being modified as often and are checked
at most once a year.

C.2 Magnetic field calibration

In order to make sure that the total magnetic field at the centre of the trap
is equal to the magic field (see Sec. 2.3.1), we perform the spectroscopy of
the transition |F = 1,mF = −1〉 ↔ |F = 2,mF = 0〉, which has a large dif-
ferential Zeeman shift and is thus sensitive to magnetic field variations: After

1The reason why we do not base our calibrations on the final atom number is that
the last evaporative cooling stage has the effect of stabilising it (see Secs. 3.3.1 and 3.6),
making it a less sensitive signal.
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Figure C.1: Single-photon mw spectroscopy of the transition
|F = 1,mF = −1〉 ↔ |F = 2,mF = 0〉, used to calibrate the magnetic field
at the trap centre. The horizontal axis represents the detuning of the ap-
plied mw field w.r.t. its theoretical value at the magic field.

preparing the BEC, we apply a mw Rabi pulse with pulse area Ω2,0
1,−1t ≈ π/2,

whose frequency is scanned around the theoretical value for this transition
at the magic field. At the frequencies close to resonance with the transition,
a part of the atoms will be transferred to the state |F = 2,mF = 0〉 and will
not be detected, see Fig. C.1. The detuning from the theoretical value, to-
gether with the magnetic field dependence of the transition (≈ 0.70 MHz/G,
see Sec. 2.3.1), allows us to correct the value of the x bias field.

To reduce the power and Fourier broadening of the transition, we use
much lower mw power and longer pulse duration than for normal internal
state manipulations, typically t ≈ 20 ms. This yields a spectroscopic resolu-
tion better than 0.5 kHz, which is finer than what we can correct for – the
resolution of the analogue channels of the NI cards limits the control of the
x bias field to steps equivalent to 0.9 kHz.

C.3 Rabi frequency calibration

The Rabi frequency calibration consists of adjusting the Rabi pulse duration
to obtain the wished pulse area Ωt. Thus, we commonly use the so-called
π/2 time tπ/2 (defined by Ωtπ/2 = π/2) as a parameter instead of the Rabi
frequency itself.

We calibrate tπ/2 by driving Rabi oscillations – i.e. by scanning the Rabi
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Figure C.2: Rabi frequency calibration measurement. The horizontal axis
shows the Rabi time and the vertical axis the normalised atom number im-
balance, Nrel. The empty circles show the experimental data, whereas the
dashed curve represents the Rabi oscillation fit given by Eq. (C.1).

pulse duration and measuring the atom number in the two states. If we
already have a good guess of its value told

π/2 (which is mostly the case), we only

measure odd multiples of told
π/2, i.e. where 〈Nrel〉 = 〈(N1 −N2)/(N1 +N2)〉 ' 0

is most sensitive to variations. Assuming the Rabi oscillations are driven
resonantly, 〈Nrel〉 after a pulse of duration ntold

π/2, where n is an odd integer,
is given by

〈Nrel〉n = cos

(
n
π

2

told
π/2

tπ/2

)
, (C.1)

see Fig. C.2. Typically, we scan n from 1 to about 19 and fit 〈Nrel〉n as a
function of n to obtain tπ/2. Due to their higher sensitivity to Rabi frequency
variations, we give higher fit weight to data points with larger n, whereas
we measure those with small n to avoid issues with periodicity (as long as
told
π/2 < 2tπ/2).

C.4 Two-photon resonance

The typical two-photon Rabi frequency of the collective spin rotations is
Ω ≈ 2π × 750 Hz. Thus, in order to attain high-fidelity manipulations, we
need the detuning of the two-photon signal, ∆, to be at most on the level of
few Hz.
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Assuming ∆� Ω, we use a Ramsey-like experiment to measure the
phase accumulation caused by the detuning (see Sec. 3.3.2): We first
perform a π/2 pulse, during which a phase ∆tπ/2 is accumulated. Then,
we perform a second π/2 pulse with a phase of ϕ = ±π/2 w.r.t. the first
one, which maps the accumulated phase to an atom-number imbalance,
〈Nrel〉± ' ± sin

(
∆tπ/2

)
' ±∆tπ/2, where we made use of the assumption

that ∆� Ω. The detuning is thus given by

∆ ' 〈Nrel〉+ − 〈Nrel〉−
2tπ/2

, (C.2)

where we expressed ∆ in terms of tπ/2 instead of Ω, because tπ/2 is the more
commonly used parameter of the two – we usually calibrate the pulse dura-
tion, see appendix C.3. It is worth noting that it is not necessary to measure
both ϕ = +π/2 and ϕ = −π/2, but doing so accounts for small errors in the
detection balance calibration (see Sec. 3.4.3), making our estimate of ∆ more
reliable.

C.5 Ramsey phase calibration

As the results presented in this thesis are based on a sequence of collec-
tive spin rotations, between which phase-changing processes take place, it
is important to determine the phase of the system at the time of the rota-
tions. This is done by performing Ramsey interferometry experiments (see
Sec. 2.3.7): Since all coherent manipulations in the experiments presented
here (except for the choice of measurement basis) leave the state of the sys-
tem on the equator of the many-particle Bloch sphere (〈Ŝz〉 ' 0), one can
interrupt the experimental sequence at any point and perform a π/2 pulse,
scan its phase, and obtain a Ramsey fringe, which be fitted by Eq. (2.35).

C.6 Demixing-remixing dynamics

Fig. C.3 shows the experimental sequence we use to obtain spin squeezing:
The BEC is prepared in a CSS on the equator of the many-particle Bloch
sphere, |CSS : π/2, 0〉 , by a Rabi π/2 pulse. Then, the CPW mw gener-
ates a state-dependent dressing potential for a duration tsdp, inducing the
demixing-remixing dynamics described in Sec. 3.3.3, which activate the OAT
term, ~χŜ2

z , in the collective spin Hamiltonian Eq. (2.17). This produces a
SSS, whose variance reduction w.r.t. a CSS (number squeezing) and minimal
variance direction (squeezing angle) depend on the time integral of χ [60].
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Figure C.3: Schematic of the spin squeezing sequence. Top: Qualitative
representation on a Bloch sphere of the state of the BEC at different stages.
Bottom: Time schematic of the Rabi coupling and of the CPW mw. The
BEC is initially prepared in a CSS on the equator of the Bloch sphere (see
the Bloch sphere on the top left) by a π/2 pulse. Then, the CPW mw is
turned on for a time tsdp, inducing the OAT dynamics and producing a SSS
(see the Bloch sphere on the top right). Finally, a further Rabi pulse can be
applied, e.g. to align the squeezed direction with the Ŝz axis.
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Figure C.4: Demixing-remixing dynamics measurement. The horizontal
axis shows the time during which the state-dependent potential is turned
on, tsdp, and the vertical axis shows the normalised atom number imbalance,
Nrel. The empty circles show the experimental data, whereas the dashed
curve represents the fit given by Eq. (C.3).
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The level shifts induced by the CPW mw also cause the system to accu-
mulate a phase, which can be determined with a Ramsey experiment, see
appendix C.5. Finally, a Rabi pulse with duration t2 and phase ϕ2 is ap-
plied, where t2 and ϕ2 depend on the use planned for the SSS.

As explained in Sec. 3.3.3, during the demixing-remixing dynamics the
overlap between the two states can only be recovered for discrete values of
tsdp, called revivals, which can be determined by scanning tsdp and measuring
the interferometric contrast of the final state with a Ramsey experiment. In
order to avoid a lengthy two-dimensional scan, it is possible to introduce some
phase proportional to tsdp in the final pulse (with much higher frequency than
the splitting and recombination) and scan tsdp, while keeping the phase of the
last pulse fixed, i.e. t2 = tπ/2 and ϕ2 = constant. The result is a fast phase
accumulation (the combined effect of the artificial phase and the one induced
by the state dressing), whose contrast is modulated by the demixing-remixing
dynamics. In the case of incomplete splitting of the two states and tsdp much
smaller than the BEC decoherence time, this can be fitted reasonably well
by the function [51]

〈Nrel(tsdp)〉 = [A+B cos(ωdrtsdp)] cos(ωfasttsdp + ϕfast), (C.3)

see Fig. C.4, where A and B are respectively the constant and modulated
components of the amplitude, ωdr is the angular frequency of the amplitude
modulation caused by the demixing-remixing dynamics, and ωfast and ϕfast

are the frequency and phase of the fast oscillation. Based on the fit re-
sults, the value of tsdp is chosen among the revival times – longer times yield
stronger squeezing at the cost of larger phase noise. We typically choose
the second revival, which for our experimental parameters occurs at about
tsdp ≈ 40 ms.

C.6.1 Demixing-remixing dynamics with spin echo

In the experiments presented in this thesis, a spin echo pulse [105] is used
during the squeezing sequence, see Fig. C.5: At half tsdp, the state-dependent
potential is temporarily switched off and a Rabi π pulse (the echo pulse)
is applied. This reduces shot-to-shot phase noise (e.g. due to CPW mw
amplitude fluctuations) and mitigates asymmetric losses (see Sec. 2.3.6) [38,
51].

In order for the echo pulse to drive a collective spin rotation, it has to
take place when the two BEC components are overlapped. Thus, we typically
apply it at the first revival and then carry on with the demixing-remixing
dynamics until the second. Since it is a π pulse applied to a state on the
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Figure C.5: Schematic of the spin squeezing sequence with spin echo. Top:
Qualitative representation on a Bloch sphere of the state of the BEC at
different stages. Bottom: Time schematic of the Rabi coupling and of the
CPW mw. The BEC is initially prepared in a CSS on the equator of the
Bloch sphere (see the Bloch sphere on the top left) by a π/2 pulse. Then,
the CPW mw is turned on for a total time tsdp, inducing the OAT dynamics
and producing a SSS (see the Bloch sphere on the top right). At half of tsdp,
the CPW mw is switched off and the echo π pulse is performed. Finally, a
further Rabi pulse can be applied, e.g. to align the squeezed direction with
the Ŝz axis.

equator of the may-particle Bloch sphere, the phase of the echo pulse should
only affect the phase calibration of the following pulses and not be important
in itself. However, for the sake of reproducibility, we usually calibrate it so,
that the state is rotated around its mean spin direction (i.e. at a zero crossing
of the corresponding Ramsey fringe).

In addition to its improvements to stability, the use of a spin echo pulse
simplifies the search of the second revival time: As long as the echo pulse is
performed at half of the squeezing sequence, any phase accumulation with
constant frequency (e.g. due to the level shifts induced by the CPW mw)
cancels, making the phase calibration of the last pulse independent of tsdp.
Therefore, to determine the second revival time, one can calibrate the phase
of the last pulse, ϕ2, to correspond to the top of the related Ramsey fringe,
scan tsdp, and choose the value for which 〈Nrel〉 is maximised.

C.7 Squeezing tomography

As mentioned in appendix C.6, the noise reduction and squeezing angle of a
SSS produced by OAT dynamics depend on the time integral of χ [60], which
is difficult to predict accurately. These quantities can be determined by a
so-called squeezing tomography experiment: The SSS, prepared as described

90



0 5 10
−10

−5

0

5

10

15

Rotation angle [◦]

ζ
2
[d
B
]

90

∼
∼

∼
∼

Figure C.6: Results of a typical squeezing tomography. The horizontal axis
shows the rotation angle of the last Rabi pulse, 90◦ t2/tπ/2, and the vertical
axis represents the number squeezing parameter, ζ2.

in appendix C.6 (with or without spin echo pulse), is rotated around its mean
spin direction by the final Rabi pulse, whose duration, t2, is scanned. For
every value of t2, the experiment is repeated a sufficient number of times to
obtain an accurate estimate for the variance of the measured collective spin
direction, typically∼ 100 repetitions. The squeezing angle is thus determined
by the setting for which this variance is minimised. In our experiments, this
corresponds to a rotation by a small positive angle w.r.t. the Ŝz axis (typically
∼ 10◦) around the mean spin direction of the state. Thus, in order to find it
with the shortest possible pulse, we choose ϕ2 so, that the last pulse rotates
the state in the opposite direction (i.e. at the zero crossing with negative
slope of the corresponding Ramsey fringe).

Fig. C.6 shows the results of a typical squeezing tomography, where
only the relevant rotation angles have been measured. From this measure-
ment, we conclude that the squeezing angle is 10◦ and the number squeezing
ζ(10◦) = −6.9(3) dB. The measurement at 90◦ quantifies the anti-squeezing
(although it is not exactly the anti-squeezed direction) and the phase noise
accumulated during tsdp, ζ(90◦) = 13.8(3) dB. We attribute the excess noise
w.r.t the Heisenberg limit to technical noise, see Refs. [51, 86] for a more
detailed analysis.

The variance measured at 0◦ is expected to correspond to shot noise,
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but it is actually smaller, ζ2(0◦) = −0.78(30) dB. We verified that this is
not due to the imaging calibration by measuring the noise of a coherent
spin state, which yielded ζ2

CSS = 0.2(2) dB. Hence, we attribute this effect to
imperfections in the spin echo pulse.

C.8 Pulses during the time of flight

Due to the time constraints imposed by the time of flight and to the time-
varying Rabi frequencies, calibrating the frequency and duration of the pulses
introduced in Sec. 4.4 requires different strategies than for those performed
when the atoms are still trapped. The calibration measurements discussed
in this section are less precise, but allow us to calibrate the splitting and
individual rotations of the split BECs pulses with a sufficient accuracy for
the experiments presented in this thesis.

C.8.1 Resonance frequency

The resonance frequencies of the splitting pulses and individual manipula-
tions are determined by scanning the frequencies of the driving fields and
observing the contrast of Rabi oscillations, which can be fitted by the func-
tion

〈Nrel(t,∆)〉 = 1 +
Ω2

Ω2 + ∆2

[
cos
(√

Ω2 + ∆2 t
)
− 1
]
, (C.4)

where t is the pulse duration, Ω is the resonant Rabi frequency, and ∆ is the
detuning (in units of angular frequency). Note that this requires performing a
two-dimensional scan of t and ∆ for every signal of which we wish to find the
resonance frequency. As a more time efficient alternative, one can perform
Rabi oscillations at a fixed frequency and estimate ∆ based on their contrast
(although the sign of ∆ cannot be determined by this method and must be
found by trial and error).

C.8.2 Pulse duration

Since the Rabi frequencies during the time of flight are not constant, we
cannot use longer pulses to calibrate the π/2 time (which is the strategy
used in appendix C.3). Thus, we determine tπ/2 by looking for the shortest
pulse duration for which 〈Nrel(tπ/2)〉 = 0. This can be done either by scanning
the pulse duration around this zero crossing and performing a linear fit, or by
measuring 〈Nrel〉 with a tentative pulse duration and using Eq. (C.1) (with
n = 1).
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Also, if we need to perform a π pulse, we need to calibrate tπ separately.
Doing this in the same way used for tπ/2 is very imprecise, as 〈Nrel〉 = ±1 cor-
responds to the part of the Rabi oscillation that is least sensitive to pulse area
variations, d〈Nrel〉/dt|tπ = 0. In order to obtain a signal close to 〈Nrel〉 = 0
(i.e. in the most sensitive part of the Rabi oscillation), we perform a se-
quence similar to a Ramsey experiment: We prepare the state of the initial
BEC along the Ŝx axis with a π/2 pulse in trap. Then, we apply the π pulse
we wish to optimise around the ±Ŝy axis. The value of tπ has to be corrected
by a factor of

1 +
arcsin

(
〈N−rel〉

)
− arcsin

(
〈N+

rel〉
)

2π
, (C.5)

where N±rel is the value of Nrel obtained after the rotation around the ±Ŝy
axis. Note that this method requires first calibrating the phase of the pulse
we wish to optimise.
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Appendix D

Phase of the split systems

As explained in Sec. 4.5.2, we study the phase noise due to trigger delay
fluctuations with a simplified experimental sequence, where the initial BEC
is prepared in a coherent spin state on the equator of the Bloch sphere by a
π/2 pulse at the time t0. After a duration t1, the BEC is split into condensate
A and B, and after t2 the phases of the two systems are read out by another
π/2 pulse. In this appendix I show the explicit calculations that lead to
Eqs. (4.11) and (4.12).

The four involved atomic states are coupled with four different frequen-
cies: The transition |1A〉 ↔ |2A〉 is coupled by ωA, |1B〉 ↔ |2B〉 by ωB,
|1A〉 ↔ |1B〉 by ω1, and |2A〉 ↔ |2B〉 by ω2. We assume for simplicity
that the coupling pulses are done instantaneously, or equivalently that their
detuning with respect to the atomic transition does not matter,

ωA = ω2A − ω1A, (D.1)

ωB = ω1B − ω2B, (D.2)

ω1 = ω1B − ω1A, (D.3)

ω2 = ω2A − ω2B, (D.4)

where the frequency differences on the right-hand side represent the atomic
transition frequencies. The coupling frequencies are produced by different
combinations of signals (see Secs. 3.3.2 and 4.4.2), namely

ωA = ωrf + ωmw + ωIQA ,

ωB = ωmw + ωIQB ,

ω1 = ωmw + ωIQ1
,

ω2 = ωmw + ωIQ2
,

where ωrf is the rf frequency, ωmw is the carrier frequency of the mw generator,
and ωIQ,i is the IQ modulation frequency used to produce ωi, i ∈ {A,B, 1, 2}.
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Similarly, the phases of the coupling signals are given by

ϕA = ϕrf + ϕmw + ϕIQA , (D.5)

ϕB = ϕmw + ϕIQB , (D.6)

ϕ1 = ϕmw + ϕIQ1
, (D.7)

ϕ2 = ϕmw + ϕIQ2
, (D.8)

where ϕrf is the phase of the rf signal, ϕmw is the phase of the mw car-
rier, and ϕIQ,i is the phase of the IQ modulation signal used to produce ωi,
i ∈ {A,B, 1, 2}. The above frequency definitions can be combined into the
identities

ω1 + ω2 = ωA + ωB, (D.9)

ωIQ1
+ ωIQ2

= ωIQA + ωIQB + ωrf , (D.10)

which will be useful later.
We treat the phase evolution in the laboratory frame of reference, defining

t = 0 as the time when the rf generator triggers the execution of the IQ
sequence. The phase of the signal α ∈ {rf,mw, IQA, IQB, IQ1, IQ2} can be
written as

ϕα(t) = ϕα(0) + ωαt. (D.11)

Since the time reference is defined by the rf generator, the initial rf phase is
constant and can be chosen to be zero, ϕrf(0) = 0. The initial phase of the
IQ signals is given by ϕIQi(0) = −ωIQiδt, where δt is the trigger delay of the
IQ generator. Given that the mw generator is run in continuous-wave mode,
ϕmw(0) is random.

Let us now apply all of the above to our simplified experimental sequence.
Note that every pulse but the final one couples a populated state to an
unpopulated one. Due to this, the relative phases between the populations
of the atomic states are given by the driving fields that first couple them,

ϕ2A(t0)− ϕ1A(t0) = ϕA(t0), (D.12)

ϕ1B(t0 + t1)− ϕ1A(t0 + t1) = ϕ1(t0 + t1), (D.13)

ϕ2A(t0 + t1)− ϕ2B(t0 + t1) = ϕ2(t0 + t1), (D.14)

where in the left-hand side of every equation the sign reflects which state
has higher energy. The measured phase of each system corresponds to the
difference between the phase of the final pulse and the relative phase between
the two involved states. In the case of system A, this is simply

φA = ϕA(t0 + t1 + t2)− [ϕ2A(t0 + t1 + t2)− ϕ1A(t0 + t1 + t2)]

= [ωA − (ω2A − ω1A)](t1 + t2) + ϕA(t0)− [ϕ2A(t0)− ϕ1A(t0)]

= 0.
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The measured phase of system B, on the other hand, is more complicated,

φB = ϕB(t0 + t1 + t2)− [ϕ1B(t0 + t1 + t2)− ϕ2B(t0 + t1 + t2)]

(apply Eq. (D.2))

= ϕB(t0 + t1)− [ϕ1B(t0 + t1)− ϕ2B(t0 + t1)]

(apply Eqs. (D.13) and (D.14))

= ϕB(t0 + t1) + ϕ2A(t0 + t1)− ϕ1A(t0 + t1)+

− ϕ1(t0 + t1)− ϕ2(t0 + t1)

(apply Eq. (D.12))

= ϕA(t0 + t1) + ϕB(t0 + t1)− ϕ1(t0 + t1)− ϕ2(t0 + t1)

(apply ϕi(t) = ϕi(0) + ωit, where i ∈ {A,B, 1, 2})
= ϕA(0) + ϕB(0)− ϕ1(0)− ϕ2(0)

+ (ωA + ωB − ω1 − ω2)(t0 + t1)

(apply Eqs. (D.5), (D.6), (D.7), (D.8), and (D.9))

= ϕrf(0) + ϕmw(0) + ϕIQA(0) + ϕmw(0) + ϕIQB(0)+

− ϕmw(0)− ϕIQ1
(0)− ϕmw(0)− ϕIQ2

(0)

(apply ϕrf(0) = 0)

= ϕIQA(0) + ϕIQB(0)− ϕIQ1
(0)− ϕIQ2

(0)

(apply Eq. (D.11))

= (ωIQ1
+ ωIQ2

− ωIQA − ωIQB)δt

(apply Eq. D.10)

= ωrfδt,

which shows that, in contrast to φA, the measured phase of system B is
affected by fluctuations in the triggering delay of the IQ generator.
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