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Abstract German 

Streptococcus pneumoniae ist ein menschliches Pathogen, das milde Symptome 

hervorrufen kann, aber auch das Potential trägt, um schwerwiegende Infektionen in 

der Lunge oder im Gehirn auszulösen. Als ein Gram-positives Bakterium trägt es 

sogenannte Teichonsäuren auf dessen Oberfläche. Bei den Teichonsäuren 

unterscheidet man zwischen zwei Arten, die entweder in der Membran eingebettet 

sind oder an die Mureinschicht gebunden sind. Die Synthese der Teichonsäuren in 

S. pneumoniae ist einzigartig, da beide durch einen geteilten Weg der Biosynthese 

hergestellt werden. Ein anderes einzigartiges Merkmal ist, dass die Teichonsäuren 

mit Phosphorylcholin modifiziert werden. Das Anhängen von Phosphorylcholin findet 

an der Innenseite der Membran während der Synthese der entstehenden 

Teichonsäurekette statt und nur diejenigen Teichonsäuren, die mit Phosphorylcholin 

modifiziert sind, werden an die Oberfläche exportiert. Cholin ist das Substrat für die 

Phosphorylcholin Einheiten und essentiell für das Überleben von S. pneumoniae. Das 

Substrat kann vom Bakterium nicht synthetisiert werden, sondern muss von einem 

sekundär aktiven Transporter, genannt LicB, importiert werden. Der Transporter 

gehört zur Drug/Metabolite Transporter Superfamilie, die aus Transportern mit zehn 

Transmembranhelices bestehen. Die Gemeinsamkeit der Transporter besteht darin, 

dass diese aus zwei invertierten, wiederholenden Einheiten bestehen, die durch 

Genduplikation entstanden sind. Die Struktur und die Funktion von LicB wurden 

bisher nicht beschrieben und Strukturen bekannter Mitglieder der Drug/Metabolite 

Superfamilie sind karg und beschreiben größtenteils nur einen kleinen Ausschnitt 

dieser Superfamilien.  

Diese Arbeit beschreibt die Funktion und die strukturellen Merkmale des 

Cholinimporters LicB der Pneumokokken. Der Transporter weist ein 

substratverbreitertes Verhalten auf, bei dem es nicht nur Cholin, sondern auch 

Arsenocholin und Acetylcholin importiert. Die mittlere effektive Konzentration wurde 

mittels Solid Supported Membrane Elektrophysiologie zu 47 ± 15 μM für Cholin, 
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170 ± 9 μM für Arsenocholin und 740 ± 84 μM für Acetylcholin bestimmt. Radioaktiv 

markiertes Acetylcholin wurde zum Cholin-armen Medium zugesetzt, um S. 

pneumoniae Zellen heranzuziehen und anschließend die Teichonsäuren zu 

extrahieren. Die extrahierten Teichonsäuren weisen ein radioaktives Signal auf, das 

den Beweis für den Import und die Katabolisierung von Acetylcholin als alternative 

Cholinquelle liefert. Protonenkopplung, als treibende Kraft für den Alternating Access 

Mechanismus des Transportzyklus, wurde durch ein fluoreszenzbasiertes 

Assayverfahren bestätigt.  

Zusätzlich dazu wurde eine synthetische Nanokörperbibliothek, die gegen LicB 

selektiert wurde, basierend auf dessen inhibitorisches Potential charakterisiert, bei 

der einzigartig bindende Nanokörper identifiziert wurden. In diesem Fall hat sich Solid 

Supported Membrane Elektrophysiologie als eine robuste und schnelle Methode zum 

Filtern von inhibitorischen Nanokörpern bewährt und bietet sich zur Anwendung an 

anderen Zielproteine als potentielles Arzneimittel an. Die Struktur des Transporters 

LicB wurde mittels Röntgenkristallographie im substratgebundenen, verschlossenen 

Zustand bei einer Auflösung von 3.8 Å bestimmt. Mittels single particle cryo-EM 

wurde LicB in Nanodiscs rekonstituiert, an einen synthetischen Nanokörper 

gebunden und im nach außen gekehrten Zustand bei einer Auflösung von 3.75 Å 

bestimmt. Der Transporter spielt eine zentrale Rolle für das Überleben des 

menschlichen Pathogens und die Kenntnis über dessen Struktur, die Funktion und 

die Identifizierung inhibitorischer, synthetischer Nanokörper bieten eine Plattform für 

die Entwicklung antimikrobieller Arzneimittel und neuartiger Alternativen zur 

Bekämpfung von Pathogenen.  
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Abstract English 

Streptococcus pneumoniae is a human pathogen that can cause mild symptoms but 

also exhibits the potential to cause severe infections in the lungs or the brain. As a 

Gram-positive bacteria it has teichoic acids attached to its surface, where there are 

two types which are either embedded in the membrane or bound to the 

peptidoglycan. The synthesis of those teichoic acids is unique for S. pneumoniae, as 

it shares the same biosynthetic pathway for both types. Another unique feature is their 

modification with phosphorylcholine. The attachment of phosphorylcholine happens 

at the inner leaflet during the synthesis of the nascent teichoic acid chain and only 

those modified teichoic acids are exported to the surface. Choline is the substrate for 

the phosphorylcholine moieties and is essential for the survival of S. pneumoniae. The 

substrate cannot be synthesized by the bacteria and can only be imported by a 

secondary active transporter denoted as LicB. This transporter belongs to the 

drug/metabolite transporter superfamily, which is comprised of transporters with ten 

transmembrane helices of two inverted repeats arising from internal gene duplication. 

The structure and function of LicB has not been described before and known 

structures of other members of the drug/metabolite transporter superfamily are 

sparse and mostly describe only a small part of the families.  

This study describes the functional and structural features of the pneumococcal 

choline importer LicB. LicB exhibits promiscuous transport behavior, where it shows 

to transport not only choline but also arsenocholine and acetylcholine. The half 

maximal effective concentrations have been determined by solid supported 

membrane electrophysiology to 47 ± 15 μM for choline, 170 ± 9 μM for arsenocholine 

and 740 ± 84 μM for acetylcholine. Radiolabeled acetylcholine was supplemented in 

choline reduced media to grow S. pneumoniae cells and to subsequently extract the 

teichoic acids. The extracted teichoic acids exhibited a signal which provides 

evidence of the import and catabolization of acetylcholine as an alternative choline 

source. Proton-coupling as the driving force for the alternating access mechanism 
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during the transport cycle has been confirmed with a fluorescence-based assay. 

Additionally, a library of synthetic nanobodies, selected against LicB, was 

characterized based on their inhibitory potential resulting in the determination of 

several unique inhibitors. In this case solid supported membrane electrophysiology 

has proven to be a robust and fast technique to screen inhibitory nanobodies and 

presents an application for other potential drug targets. The structure of the 

transporter LicB was solved in the substrate bound occluded state at a resolution of 

3.8 Å via x-ray crystallography and in the outward facing state, reconstituted into 

nanodiscs and bound to a synthetic nanobody at a resolution of 3.75 Å via cryo-EM. 

The transporter plays a crucial role for the survival of the human pathogen and the 

knowledge about the structure, the function and the identification of inhibitory 

synthetic nanobodies can help to provide a platform for antimicrobial drug 

development and for novel alternatives to combat pathogens.  

 



 1 

1 Introduction 

1.1 Pneumococcal virulence and choline import 

1.1.1 History of antibiotics and antibiotic resistances 

In 1928 in the laboratory of the St Mary’s Hospital London a now famous piece of 

mould contaminated a petri dish belonging to the microbiologist Alexander Fleming1. 

The mould was producing a substance that was killing bacteria surrounding it. This 

substance, penicillin, was further developed by Fleming and others into a drug that 

could cure bacterial infections and would revolutionize our healthcare2,3. It became 

one of the greatest medical advances of the 20th century and common and deadly 

illnesses such as pneumonia and tuberculosis could now be treated. Life 

expectations were extended and dangers of infections from small cuts, routine 

surgeries and childbirth were vastly reduced4,5.  

But unfortunately bacteria and other pathogens have intrinsic and acquired 

mechanisms to resist drugs that are made to combat them6,7. There are two important 

pathways with which bacteria can acquire resistances: from mutations of the existing 

genome8,9 or from the uptake of foreign DNA10. Those important processes already 

existed long before the introduction of antibiotic use in healthcare and evolved due 

to strong selection pressures in the environment11,12. Penicillin was introduced to the 

market in the 1940s and shortly after its introduction the first resistant bacterial strain 

was discovered which threatened the antimicrobial advancements during the 

1950s13,14. Soon after, other novel types of beta-lactam antibiotics were discovered 

and developed. One of those antibiotics was methicillin but as in the previous cases 

and already in the same decade of its introduction, the first methicillin-resistant 

bacterial strains were reported13,15. 

Reasons that contribute to antimicrobial resistances are manyfold and can be found 

in nature or are manmade, starting with the over-prescription of antibiotics16,17, 

patients not finishing their treatments, large and often unnecessary overuse in 
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livestock and fish farms18, poor hygiene in hospitals19, poor sanitary conditions20 and 

the lack of development of novel antimicrobials21. This additional survival pressure on 

the bacteria due to the use of antibiotics, increases the chances of occurrence of 

antibiotic resistances. 

 

1.1.2 Virulence and antibiotic resistance of Streptococcus pneumoniae  

Strains of bacteria that exhibit antimicrobial resistances to drugs that usually target 

them are responsible for life-threatening infections, are a global burden and called 

‘superbugs’. One of those superbugs is S. pneumoniae22,23, a highly invasive human 

pathogen that is harbored in the nasopharynx, a part of the nasal airways. Up to 27-

65% of healthy children and between 5% to 30% of healthy adults can be carriers of 

the bacteria24-26. The bacteria can cause mild to severe infections and propagate to 

the ears, the sinus, the bloodstream, the lungs and even to the brain, if they cross the 

blood brain barrier27 (Figure 1). The mortality rate of meningitis caused by S. 

pneumoniae is associated to 16% - 37%. About 30% - 50% of adults surviving those 

infections, are presenting permanent symptoms due to irreversible damages in the 

brain28,29.  

 
Figure 1: Pathogenesis of S. pneumoniae. S. pneumoniae can asymptomatically colonize the 
nasopharynx and is transmitted via shedding through aerosols. The bacteria can spread and 
invade other organs, where it can cause sinusitis, otitis media, bacteremia, pneumoniae or 
meningitis. Figure created with BioRender. 
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The World Health Organization included S. pneumoniae as one of nine priority 

pathogens of international concern in 201430. Similar to other superbugs it developed 

resistances to antibiotics shortly after their introduction (Figure 2)31-33. Penicillin and 

cephalosporin belong to the class of β-lactam antibiotics and as such they inhibit the 

final steps of the peptidoglycan (PG) synthesis34. Since the PG is a part of the 

bacterial cell wall of both Gram-positive and Gram-negative bacteria, those 

antibiotics are therefore used against both types of bacteria. The first resistances 

against penicillin in S. pneumoniae were reported in the 1960s and those against 

cephalosporin in the 1980s33. Erythromycin is another type of antibiotic and was 

introduced to the market in 1953. It belongs to the class of macrolide antibiotics that 

inhibit bacterial protein synthesis by binding to a component of the 50S ribosomal 

subunit35. The first pneumococcal strain resistant to erythromycin was already 

reported 15 years after the introduction of the antibiotic in 1968.  

 
Figure 2: Timeline of the introduction of antibiotics and occurrence of resistance in S. 
pneumoniae. The introduced antibiotics and pneumococcal conjugate vaccines (PCV) are shown 
on the upper half of the figure, whereas the first reported resistant strains of S. pneumoniae are 
shown at the lower half of the figure. Figure adapted and modified from Cillóniz et al., 2018. 
 

This rapid emergence of antimicrobial resistance to β-lactams, macrolides and other 

types of antimicrobials is a major global concern. Multidrug-resistant (MDR) strains 

exhibit resistance to two or more antibiotics are an additional burden33,36-39 and the 
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first MDR strains of S. pneumoniae resistant to erythromycin, clindamycin, 

tetracycline and chloramphenicol or those resistant to penicillin, chloramphenicol and 

tetracycline were reported in 197733. The prevalence of MDR S. pneumoniae ranges 

geographically from 36% in Asia to 15% in Europe36,40. It is estimated that 30% of the 

severe hospital acquired infections are caused by S. pneumonia strains which are 

resistant to one or more antibiotics. This makes the treatment extremely challenging 

especially for patients with a suppressed immune system, children and the elderly. 

Pneumococcal conjugate vaccines (PCV) help to prevent infections but only target a 

fraction of the known pneumococcal serotypes41,42. Nevertheless, vaccines aid to 

lower the incidents of infections significantly43,44. 

Community acquired pneumoniae remains associated with high morbidity and 

mortality up to this day45. Here, especially MDR pathogens contribute to challenges 

for clinical management and patient treatments and the search for novel drugs and 

drug targets remains crucial36.  

 

1.1.3 Teichoic acids synthesis in Gram-positive bacteria and in S. pneumoniae 

For over a decade we have known about the existence of two types of bacteria, those 

that exhibit a Gram-coloring, the Gram-positives and those bacteria that do not exhibit 

any coloring, the Gram-negatives46. The main difference between these two types is 

the composition of the cell envelope. Both bacteria have an inner membrane and a 

layer. However, Gram-positive bacteria have a thicker PG layer of up to 10-30 nm47 

and no outer membrane, compared to Gram-negative bacteria. Gram-positive 

bacteria have their name from the fact that the Gram-staining can be retained by the 

PG that is accessible due to the absence of the outer membrane and cause the 

typical staining46. 

While the outer membrane of Gram-negative bacteria is important for cell stability, 

cell integrity, protection from toxic molecules in the environment and cell turgor 

among other things47-50, the thicker PG layer in Gram-positive compensates for the 

absence of an outer membrane47. It is possible to draw some conclusions on 
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virulence from the different compositions of the surface exposed polymers and their 

modifications. Those polymers are so-called lipopolysaccharides (LPS) in Gram-

negative bacteria49,51 and the teichoic acids (TA) in Gram-positive bacteria52. The LPS 

from Gram-negative bacteria are attached to the outer layer of the membrane 

(Figure 3A). Its surface exposed O-antigens is composed of oligosaccharide 

repeating units which are attached to the LPS. Those are highly diverse depending 

on the bacterial strain and are an important virulence factor53-56. Gram-positive 

bacteria on the other hand have two types of anionic polymers (Figure 3B) which can 

be either attached to the membrane, the so-called lipoteichoic acids57-59 (LTA) or to 

the peptidoglycan layer, which are then denoted as wall teichoic acids60-62 (WTA).  

 
Figure 3: Differences in cell wall composition of Gram-positive and Gram-negative bacteria. A. 
The cell wall of Gram-negative bacteria consists of the inner and outer lipid membrane and a thin 
peptidoglycan layer. The periplasmic space is located on both sides between the membrane and 
the peptidoglycan. Lipopolysaccharides are attached to the outer membrane and exposed to the 
surface. B. Gram-positive bacteria lack an outer membrane but have a thick layer of 
peptidoglycan. They lack LPS but have another type of anionic polymers, the teichoic acids, that 
are exposed to the surface. Those teichoic acids are either attached to the peptidoglycan and 
are called wall teichoic acids or are attached to the inner membrane by diacylglycerol and called 
lipoteichoic acids.  
 
Teichoic acids are important for the survival of the bacteria, to maintain cell shape 

and keep the integrity of the cell63. They exhibit a variety of modifications at their 

surface, e.g. the modification with D-alanyl ester residues that, together with the 

peptidoglycan, form a polyanionic matrix52. This anionic charge is important for cation 

homeostasis, trafficking of ions, small molecules and it protects the bacteria against 
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cationic antimicrobial peptides64. For most Gram-positive bacteria the composition 

and the synthesis of LTAs and WTAs differ significantly. The LTAs can be divided into 

five classes57,65 and the WTAs into four classes65,66, depending on their repeating 

units. Type I LTAs are comprised of linear glycerol phosphates. They are generally 

synthesized at the outer leaflet of the membrane, after its glycolipid anchor is flipped 

to the outside67,68 (Figure 4A). The glycolipid anchor in Staphylococcus aureus is 

synthesized by the glycosyltransferase YpfP and flipped to the outside by LtaA. 

Several glycerol phosphate molecules are then attached to the nascent chain by the 

LTAs synthetase LtaS, before it is further modified with D-alanyl ester residues69.  

 
Figure 4: Biosynthetic pathways of the synthesis of teichoic acids in S. aureus. A. Biosynthetic 
pathway of type I LTA starts at the inner leaflet of the membrane. After the synthesis of the 
glycolipid anchor, it is transported to the outer leaflet and the LTA is synthesized by the transfer 
of glycerol phosphates. The LTA is then modified with glucose and D-alanines. B. The type I WTA 
is synthesized at the inner leaflet of the membrane, where residues of GlcNAc, ManNAc, 
glycerolphosphates and ribitolphosphates are attached, before the nascent chain is flipped to 
the outer leaflet. The nascent chain is then attached to the peptidoglycan and further modified 
with D-alanines. Figure adapted and modified from van der Es et al., 2017. 
 
Type I WTAs from Bacillus subtilis and S. aureus are comprised of glycerol 

phosphates and ribitol phosphate repeating units. They are synthesized at the inner 

leaflet of the membrane, flipped to the outside and attached to a muramic acid moiety 

via a phosphodiester linkage to the peptidoglycan70 (Figure 4B). In the initial steps of 

the type I WTAs synthesis in S. aureus, the linker is synthesized by consecutive 

actions of TarO and TarA70. Cytidin diphosphate glycerol (CDP-glycerol) is then used 
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as a glycerol phosphate donor by TarB to transfer glycerol phosphates onto the linker. 

The poly (ribitol phosphate) chain is then created by the attachment of another 

glycerol phosphate moiety by TarF and ribitol phosphate polymers by TarL using the 

substrate CDP-ribitol. TarM and TarS further modify the chain with carbohydrates71 

and the complete polymer is then transported through the membrane by TarGH70. 

The synthesis of teichoic acids in S. pneumoniae, on the other hand, is unique and 

differs significantly from the one of the type I teichoic acids72. Pneumococcal LTAs 

and WTAs are synthesized through a single pathway and only later, after being 

flipped across the membrane, divided into LTAs and WTAs. Both teichoic acids in S. 

pneumoniae therefore have identical repeating units and length distributions of their 

chains73. S. pneumoniae synthesizes a very elaborate and complex type of teichoic 

aicds at the inner leaflet of the membrane (Figure 5). It is of the type IV LTAs that 

consist of a repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxygalactose 

(AATGal), glucose (Glc), ribitol phosphate and N-acetylgalactosamine (GalNAc). In 

the first step of the synthesis the sugar AATGal is transferred to the undecaprenyl-

phosphate lipid anchor72,74. The source of the sugar is a chemically activated UDP-

AATGal, converted from UDP-GlcNAc as a precursor by a subsequent activity of a 

dehydrase and an aminotransferase75. In the following step a glycose residue is 

attached by a glycosyltransferase72,76. CDP activated ribitol is acquired through the 

activity of the two enzymes TarJ and TarI77. TarJ requires NADPH for the synthesis of 

ribitol-5-posphate, which is then used by the cytidylyl transferase TarI to form CDP-

ribitol. The phosphotransferase LicD3 is then transferring ribitol with the substrate 

CDP-ribitol onto the nascent teichoic acid chain. The repeating unit core is completed 

through the attachment of two GalNAc residues by two glycosyltransferases72.  
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Figure 5: Biosynthetic pathway of teichoic acid synthesis in S. pneumoniae. The synthesis of LTAs 
and WTAs in S. pneumoniae is shared for both teichoic acids and starts with the synthesis of a 
type IV LTAs at the inner leaflet of the membrane. The precursor for the synthesis is an 
undecaprenyl phosphate that is attached to the membrane and to which residues of different 
sugars are attached. The attachment is carried out by several membrane associated proteins and 
the repeating units, i.e. UDP-AATGal and CDP-ribitol, are chemically activated and provided by 
soluble proteins. The nascent chain is modified with phosphorylcholine moieties. CDP-choline is 
chemically activated and its precursor choline can only be acquired exogenously through the 
choline importer LicB. After the chain has been synthesized and modified with phosphorylcholine 
residues, it is flipped outside and either attached to a diacylglycerol anchor at the inner 
membrane, yielding a LTA, or to the peptidoglycan, yielding a WTA. Figure adapted and modified 
from Denapaite et al., 2012. 
 

Another unique characteristic for pneumococcal teichoic acids is their modification 

with phosphoryl choline78, similar to Haemophilus influenzae, a Gram-negative human 

pathogen with phosphorylcholine decorated lipopolysaccharides79. S. pneumoniae 

cannot synthesize choline from other compounds and imports choline with a putative 

secondary active transporter from the drug/metabolite transporter (DMT) superfamily, 

LicB79,80. The imported choline is then phosphorylated by the choline kinase LicA81. 

The cytidylyl transferase LicC activates phosphorylcholine into CDP-choline82,83. CDP-

choline is used as a substrate by LicD1 and LicD2, which attach phosphorylcholine 

moieties at the GalNac residues on the nascent chain84. Both phosphorylcholine 
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transferases exhibit high specificity for the location of the modification85. LicD1 

specifically attaches phosphorylcholine moiety to the α-GalNAc position, whereas 

LicD2 only attaches the moiety to the β-GalNAc position of the nascent chain. The 

nascent chain is further polymerized by a so far unknown putatively highly 

hydrophobic membrane protein Spr122272. The transmembrane transporter TacF 

flips the teichoic acid to the outer leaflet76, where it is either attached to the 

peptidoglycan to yield a WTA, or to the glycolipid anchor to yield a LTA. Additionally 

to the phosphorylcholine modification on the teichoic acids, it has been shown that 

S. pneumoniae has a pathway for D-alanylation of the teichoic acids and teichoic 

acids have been shown to contain D-alanines86.  

 

1.1.4 Choline requirement in S. pneumoniae 

Choline is an essential nutrient for mammals that needs to be supplemented 

additionally to the endogenous synthesis in the liver and the brain87. In humans and 

other rodents it plays an important role for the maintenance of cell membranes, 

synthesis of phospholipids, for the synthesis of acetylcholine for cholinergic 

neurotransmission and the methyl metabolism for epigenetic changes among 

others88,89. Research on humans and rodents shows that choline is required for the 

development of the brain and for cognition90-92. Choline deficiency can lead to 

pathological conditions such as epilepsy, schizophrenia or Alzheimer’s disease93. 

Because of its central role in key processes and functions, several specific choline 

transporters can be found in human cells that can take up the hydrophilic cation94. 

There are low affinity choline importers that supply choline for the synthesis of 

phosphatidylcholine and other lipids95, and there are high affinity choline transporters 

located at pre-synaptic clefts of cholinergic nerves96-98. The latter is putatively coupled 

to the synthesis of acetylcholine in the brain. Another human choline transporter has 

been recently found to be involved in choline import in the plasma membrane and in 

mitochondria99.  



 10 

For bacterial cells, choline mostly plays an important role in the glycine-betaine 

pathway for osmoregulation100. Choline is for example supplied externally by the BetT 

importer in E. coli101, which then synthesize the osmolyte glycine betaine if other 

compatible solutes are not available for the compensation for osmotic stress100,102.  

Some respiratory tract pathogens, on the other hand, have a unique way of using 

choline, decorated as phosphorylcholine moieties on their surface exposed 

polymers, to invade host cells103-105. H. influencae and S. pneumoniae are both human 

pathogens that are harbored in the nasopharynx and exhibit phosphorylcholine 

moieties as part of their LPS106 and teichoic acids84, respectively. It has been known 

for a long time that choline is an essential growth factor for S. pneumoniae 107 but it is 

unique for this Gram-positive human pathogen that choline is used exclusively for the 

decoration of its teichoic acids108,109. There are two main pathways by which those 

pathogens can invade host cells. They can either mimic choline and interact with 

abundant host receptors that bind choline, or by so called choline binding proteins 

(CBP) that are attached on the phosphorylcholine moieties of the pneumococcal 

teichoic acids. In the first scenario, the phosphorylcholine moiety can interact with 

the platale-activating factor receptor (PAFR) or the laminin receptor (LR) to allow to 

adhere to host cells110. The PAFR and LR receptors are highly abundant proteins that 

are expressed on the surface of many human cells, where the PAFR accepts 

phosphorylcholine as its natural ligand24,111,112. The other pathway of invasion follows 

pneumococcal CPBs and their various functions involved in the adherence and 

invasion of host cells113. CBPs are a unique group of cell-wall associated proteins that 

bind non-covalently to the phosphorylcholine moieties of the teichoic acids113-115 

(Figure 6A). All CBPs have a conserved choline binding domain of two or more 

repeats of a 20-amino acid long sequence. Pneumococcal CBPs have been 

described to be involved in autolysis105, separation of the daughter cell116, lysozyme-

like activity117, adherence to epithelial cells118, virulence119,120 and colonization121. 

Some of those CBPs, together with the phosphorylcholine moieties on the teichoic 

acids, are crucial for several stages of pneumococcal adherence and invasion of host 
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cells27,122. The process is summarized schematically in Figure 6B. One of the first 

steps during pneumococcal invasion of the respiratory tract is the clearance of the 

mucus and mucucilia, by proteolytic degradation and deglycosilation123. The 

clearance allows the adherence of the pathogen to the apical surface of the epithelial 

cells. The adherence is mediated by phosphorylcholine and choline-binding protein 

A (CbpA, also known as PspC)111,124. The phosphorylcholine can bind to the PAFR111 

whereas CbpA is able to bind to the polymeric immunoglobulin receptor (PIGR)124. 

Both events can induce endocytosis, where the pneumococcal cell is taken up and 

released in the basolateral compartment125,126.  

 
Figure 6: Invasion and adherence to host cells by pneumococcal teichoic acids decorated with 
phosphorylcholine (ChoP) and choline binding proteins. A. CBPs are non-covalently attached via 
the choline binding domain to phosphorylcholine decorated teichoic acids on the surface of S. 
pneumoniae. B. The pneumococcal cell clears the mucus and the mucucilia by proteolytic 
degradation and deglycosylation. ChoP or CbpA can then interact with the PAFR or the PIGR 
receptor to adhere to cells. Such receptor interactions at the epithelial or the endothelial cells can 
induce endocytosis of the bacterial cell and its release to the basolateral epithelium or into the 
bloodstream. The epithelial barrier can also be crossed through the degradation of the 
extracellular matrix through the involvement of the CbpE. The blood-brain barrier can be crossed 
through the interaction of ChoP with the PAFR, CbpA with the PIGR or LR, respectively. Figure 
adapted and modified from Weiser et al., 2018. 
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A paracellular invasion is possible through the direct damage of the epithelium and 

the degradation of the extracellular matrix by choline-binding protein E (CbpE)127. The 

capillary endothelial barrier and the blood-brain barrier can be crossed to enter the 

bloodstream by the same mechanism of interaction of phosphorylcholine-PAFR or 

CbpA-PIGR111,125,126. Additionally, CpbA can interact with the LR at the blood-brain 

barrier24. 

The pneumococcal cells can undergo opacity phase variations during the process of 

invasion, depending on the environment and the stage of invasion which upregulates 

key virulence factors122,128. Those two types are called transparent and opaque, where 

the transparent type can be typically isolated from the nasopharynx and the opaque 

type can be typically harvested from the blood. During stages of adhesion the 

transparent type of pneumococcal strains is dominant with upregulated levels of 

expression of phosphorylcholine129 and CbpA121. The opaque type is a phagocytosis 

resistant phenotype and is dominant when the bacteria is in the blood stream. During 

that stage the expression of PspA is upregulated119,130. PspA is another 

pneumococcal choline-binding protein and involved in the protection against 

apolactoferrin, a bactericidal against S. pneumoniae. 

Because of the essential role of phosphorylcholine moieties and the CBPs, that are 

involved in many crucial processes and dependent on choline for binding at the 

bacterial surface, it is not a surprise that the disruption of choline supply leads to cell 

death in pneumococci107. Because of the abundance of choline in the human body, 

it is not possible to cut the pneumococcal supply by decreasing choline levels as a 

potential treatment for pneumococcal infections, but there is another potential drug 

target involved in the import of choline. It is known from knockout studies, that there 

is only a single transporter involved in choline import, which is the secondary active 

transporter LicB from the DMT superfamily. Until now, this membrane protein has 

neither been characterized functionally nor structurally and it is the aim of this study.  
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1.2 Transport across membranes 

1.2.1 Diffusion, passive and active transport 

Lipid membranes are natural barriers that separate cells, organelles and the nucleus 

for compartmentalization and as protective layers from the exterior131,132. The 

membrane is a bilayer of lipids and semi-permeable for some small hydrophobic 

molecules, like water, ethanol or urea. Those molecules can cross the barrier freely 

along their concentration gradient. Charged or large molecules, on the other hand, 

cannot cross the lipid bilayer133. However, all living organisms need to exchange 

solutes and molecules in order to perform various functions. Because the majority of 

biologically important molecules are impermeable for the membrane, they require 

facilitated transport134,135. This comes in the shape of porins, pumps or carriers136-139. 

Those proteins are integral membrane proteins spanning from one side of the 

membrane to the other to grant access across the membrane (Figure 7).  

Porins, also called channels, are membrane spanning, rigid proteins with an opening 

through which a substrate can cross the membrane140,141. The transport through 

porins happens passively and along a concentration gradient. It therefore requires 

no energy. Porins and channels are usually highly substrate specific and often have 

conserved residues that form a selectivity filter142,143. On the other hand, transport 

against the concentration gradient of a substrate requires energy and is carried out 

by pumps through active transporters144,145. Pumps, or transporters, are divided into 

primary active transporters and secondary active transporters, depending on their 

energy source. The energy source of primary active transporters comes from 

chemical processes like the hydrolysis of ATP146,147. The most common superfamilies 

of primary active transporters with shared folds and mechanisms are the ATP-binding 

cassette (ABC) transporters148,149, V-type150,151, F-type152 and P-type153 ATPases. 

Secondary active transporters on the other hand use energy coming from the 

membrane potential, the proton motive force or from the co-transport of another 

substrate along its concentration gradient137,154. Those transporters are called 
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uniporters, if they transport only one substrate, symporters, if they transport two 

substrates in the same direction and antiporters, if they transport two substrates in 

opposite directions155,156. Secondary active transporters can be divided into distinct 

families depending on sequence or structural similarity. The major facilitator 

superfamily157,158, the LeuT fold superfamily159-161 and the solute carrier transporter 

(SLC) family in humans162-165 have been studied extensively and exhibit distinct types 

of transport mechanisms. Furthermore, the DMT superfamily is a highly interesting 

transporter superfamily whose family members have striking structural and functional 

similarities to several subfamily members of the SLC family. 

 

Figure 7: Substrate transport across the membrane. Small and hydrophobic molecules can cross 
the lipid bilayer through simple diffusion along their concentration gradient. Diffusion can be 
facilitated with porins or channels. These are rigid membrane proteins that form a pore for the 
translocation of the substrate along its concentration gradient. Active transporters can facilitate 
substrates against their concentration gradient. They either use chemical energy (primary active 
transporters) or secondary energy sources like electrochemical potentials, proton-motive force, 
etc. (secondary active transporters). Uniporters translocate only one molecule. Symporters 
transport two molecules in the same direction across the membrane. Antiporters translocate two 
molecules in opposite directions. 
 
Primary and secondary active transporters undergo conformational changes during 

the transport of substrates138,166,167 through an alternating access mechanism168. This 

concept describes, that the substrate binding site is only accessible to one side of 

the membrane, where the transporter undergoes conformational changes between 

facing to the outward and to the inward of the membrane. In this concept the 
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substrate binding site is only accessible to one side of the membrane at a time and 

the access to the substrate binding site alternates between the outward facing side 

and the inward facing side of the membrane (Figure 8A). Three general mechanisms 

have been described for secondary active transporters. Those are the rocker 

switch169, the rocking bundle161,170, and the elevator mechanisms171,172 (Figure 8B).  

 
Figure 8: Schematic representation of an alternating access mechanism during substrate import. 
A. The transporter is accessible to the outward facing side of the membrane in the equilibrium 
state. Upon binding of the substrate the transporter undergoes a conformational change to 
outward occluded, before it changes to the inward open state. The substrate can then be released 
and the transporter changes to the inward occluded state before the cycle starts again. B. In the 
rocker switch mechanism the substrate binds between two domains of the protein. Substrate 
binding catalyzes the rearrangement of the protein and the domains rock and grant access to the 
opposite side of the membrane. C. The rocking bundle mechanism involves a domain that moves 
against a more rigid and structurally dissimilar domain in the membrane. D. A mobile and an 
immobile domain are involved in the translocation process in the elevator mechanism. The mobile 
domain moves against the immobile, rigid domain upon substrate binding and before releasing 
it at the other side of the membrane.  
 
It has been the aim of a plethora of investigations to collect and combine the 

information gathered from crystal structures, single-particle cryogenic electron 

microscopy (cryo-EM), nuclear magnetic resonance, biophysical, biochemical and 

computational data to understand the translocation processes of this large variety of 

transporters. A clearer understanding of the mechanism and structural properties had 

and will have great impact on the future of pharmacological drug-development in 
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various fields like the development of novel antimicrobials especially through 

predictive models for the mechanisms of inhibitor binding.  

 

1.2.2 The drug/metabolite transporter superfamily 

The DMT superfamily comprises a large group of membrane transporters found in 

eukaryotes, archaea and bacteria173. This superfamily is subdivided into 14 families 

that include transporters for a wide range of substrates, metabolites, toxins and drug 

efflux pumps involved in drug resistances. The assignment to those families is based 

on phylogeny and the polypeptide chains vary from four transmembrane (TM) 

segments in the small multidrug resistance (SMR) family, five TM segments in the 

bacterial/archaeal transporter (BAT) family and in general nine to ten TM segments 

in the remaining families. It has been shown that the transporting unit of proteins from 

the SMR or the BAT family consist of a dimer, that is topologically oriented antiparallel 

towards each other and are expected to be the predecessors of the other family 

members. The remaining DMT superfamily members are predicted to have a five-TM 

internal repeat in ten TM helices174-176. This characteristic motive of an internal repeat 

very likely arose from intragenic duplication. 

Several transporters from the DMT superfamily have been studied functionally and 

structurally only recently, revealing the extremely unique topology. The transporters 

EmrE and Gdx-Clo are members of the SMR family and the available structures 

exhibit the predicted topology of antiparallel dimers177-179 (Figure 9). During the 

transport mechanism of the homodimer the proteins swap between the outward open 

and the inward open conformations179,180 (Figure 9 B, D). Due to the unique topology 

of an antiparallel homodimeric architecture there is no structural difference between 

both conformations. In EmrE the substrate tetraphenylphosphonium binds to a 

glutamate residue in exchange for a proton. The substrate is then transferred to the 

next residue in exchange for another proton before rearrangements in the helices 

open an inward facing gate and the substrate dissociates180 (Figure 9B). During the 

transport cycle in Gdx-Clo the substrate binding site is open to one side, exposing 
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two conserved glutamates, required for substrate and proton binding179 (Figure 9D). 

The published structures suggest a rearrangement upon substrate and proton 

binding and an opening towards the opposing side for substrate release. 

Another member of the DMT superfamily is YddG, an exporter of aromatic amino 

acids that can be found in E. coli, Starkey novella and other bacteria181. Studies show 

that the transporter exhibits a broad substrate specificity and expels aromatic amino 

acids and exogenous toxic compounds in order to maintain its cellular 

homeostasis181-183. The x-ray crystal structure of YddG reveals an outward facing 

state181, where the mechanism was proposed based on structural similarities of the 

inverted repeats to generate a model of an inward-facing state184,185. In this 

mechanism the TM helices TM4 and TM9 are bend and only half way in close contact 

to cycle between forming a gate towards the extracellular side, or towards the 

intracellular side181. The proposed intermediate state, the occluded state of the cycle, 

is based on simulations and exhibits both helices in close contact to each other 

prohibiting access from either side of the membrane.  

The structures of three transporter of the nucleotide sugar transporter (NST) family of 

the DMT superfamily have been studied and elucidated. Those are the 

triosephosphate/phosphate translocator (TPT) from the thermophilic red algae 

Galderia sulphuraria186, the CMP-sialic acid transporter (CST) from Mus musculus187 

and Zea mays188 and the GDP-mannose transporter Vrg4 from Saccharomyces 

cerevisiae189,190. The CST and Vrg4 transporters additionally belong to the SLC35 

family of nucleotide sugar transporters191,192. The family of SLC transporters are an 

important group of more than 300 human solute carriers that play important roles 

during physiological processes, uptake of nutrients and the efflux of drugs or 

xenobiotics and have been shown to play important roles in various diseases162-165. 

Many drugs target those transporters, which are challenging to study and only a 

sparse number of structures are published193,194. Some of the SLC transporters, i.e. 

SLC35 and SLC39, exhibit the same topology of 10 TM helices with an inverted repeat 

of 5 TM helices173,195. The family of SLC35 transporters is therefore part of the NST 
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family of DMT transporters. In fact, not only the NST transporters TPT, CST and Vrg4, 

but additionally YddG, and both SMR transporters Gdx-Clo and EmrE exhibit similar 

characteristics as those found in other SLC35 transporters. 

 

 
Figure 9: Topology and mechanism of Gdx-Clo and EmrE. A. Topology of Gdx-Clo (PDB:6WK8) 

with the inverted repeats colored in beige and green. The monobody is colored in red. B. 

Topology of EmrE (PDB:2I68) C. Schematics of the proposed alternating access for substrate 

import via Gdx-Clo. The substrate is depicted as an orange sphere and protons for coupling as 

grey spheres. D. Schematics of the proposed alternating access for substrate import via EmrE. 

The substrate is depicted as an orange sphere and protons for coupling as grey spheres. 

 

TPT is a phosphate translocator that can be found in many photosynthetic 

eukaryotes196 or in plastids of other organisms197. It belongs to the plastidic phosphate 

translocator family198 and is closely related to NST family of the DMT superfamily and 

to SLC35 transporters197,199,200. TPT catalysis the 1:1 antiport of triose-phosphate, 3-
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phosphoglycerate and inorganic phosphate201. The crystal structures of TPT in the 

occluded state bound to 3-phosphoglycerate and inorganic phosphate and 

comparison to other DMT transporters reveals a rocker switch motion of transport186.  

The CST transporter from the SLC35 family transports CMP-sialic acid across the 

Golgi187,188. Crystal structures of CST in complex with CMP and CMP-sialic acid reveal 

an antiporter rocking-switch mechanism of action, where CMP-sialic acid is 

exchanged for CMP. Since CST is an antiporter and antiporters are not able to reset 

themselves to the outward facing state after substrate release156, it requires the 

binding of CMP to change from the inward-facing to the outward facing 

conformation188. 

The GDP-mannose transporter Vrg4 from the SLC35 family imports GDP-mannose 

into the Golgi lumen and exports GMP189,190. The export of GMP happens slower due 

to its smaller size and lower affinity. Similar to the CST transporter it requires the 

export of GMP to change its conformation back to the outward facing state. 

Interestingly the transporter requires short chain lipids for transport and is inactive 

when surrounded by longer chain lipids190.  

The last DMT transporter of known structure is PfCRT from Plasmodium falciparum 

that causes malaria202. PfCRT is known to be involved in drug resistance to 

antimalarian drugs and is able to export chloroquine and piperaquine, both 

antimalarian drugs203. Only a structure in the apo state bound to an antigen fragment 

(Fab) was elucidated using single particle cryo-EM. Therefore it was not possible to 

speculate about the full transport mechanism. The analysis of the electrostatic 

potential surfaces revealed an electronegative binding cavity, exhibiting the only 

example of a negatively charged binding cavity compared to the other DMT 

transporters of known structure.  

There is evidence that some members of the DMT superfamily exist as dimers in the 

membrane204 and CST and Vrg4 dimers have been observed when reconstituted into 

monoolein188,189 (Figure 10). The homodimerization of CST is not mediated by lipids188 

whereas Vrg4 reveals a lipid mediated dimer189. The Vrg4 transporter has been 
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observed to be in its monomeric form when purified in detergent and mutation studies 

reveal that the transporter is able to cycle faster when it is in its dimeric form. It is 

hypothesized that the reason for a faster cycling is a higher thermal stability of the 

dimer. Since most structures were solved via crystallization, which would not prove 

dimerization, it remains to be shown if the homodimerization is present in all DMT 

transporters and if it is an important characteristic of those. 

 
Figure 10: Homodimers of CST and Vrg4. A. Homodimer of the CST transporter. The inverted 
repeats are colored in beige and blue, respectively and the protomers are indicated. Helices 5 
and 10 interact at the dimer interface. Figure adapted from Nji et al., 2019. B. Homodimer of Vrg4 
transporter. The protomers are indicated and monoolein is shown in pink. Figure adapted from 
Parker et al., 2019. 
  



 21 

1.3 Selected methods from biophysics and structural biology to study 

membrane proteins 

1.3.1 SSM electrophysiology 

Conventional electrophysiological methods like the voltage clamp205,206 or the patch-

clamp207-210 methods were introduced to study electrogenic transport across 

membranes. The voltage clamp method measures the ion current through excitable 

cells205,206. The voltage clamp technique, has been further revolutionized with the 

development of the patch-clamp method210. Patch-clamp allows the measurement of 

individual ion channel currents opposed to collective currents. Initially currents were 

measured on excitable native cells that exhibit axons or muscle cells but the 

advances in cloning and the introduction of oocytes to study electrogenic behavior 

increased opportunities to apply the method on new systems. The oocytes of the 

African frog Xenopus laevis have been proven to be a great expression system for 

the application of voltage- and patch-clamp methods on ion channels211 and later on 

even to study transporters212,213. However, the techniques of voltage clamp or patch-

clamp are in general not suitable to study bacterial transporters. Bacterial cells are 

too small for both techniques and the expression of bacterial transporters in 

mammalian cells is difficult. This limitations do not apply for solid-supported 

membrane (SSM)-electrophysiology which has been proven to be a powerful 

technique to measure electrogenic transport214. The method is suitable for many 

transporters that are difficult to study under conventional electrophysiological 

conditions. SSM electrophysiology is applicable on protein samples reconstituted into 

liposomes, crude membranes or membrane vesicles from cell lines or any membrane 

preparation with the protein of interest. The method of SSM is based on the black lipid 

membrane (BLM) technique. The BLM is a planar membrane onto which a membrane 

fraction containing a transporter is adsorbed. The measurement is achieved via 

capacitive coupling215. The planar bilayer sits between two compartments that are 

connected via electrodes with a variable voltage source. The demand for 
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concentration jumps between both compartments has led to the development of a 

more stable technique for this application the SSM based electrophysiology. The 

advantages of SSM compared to BLM are a higher membrane stability and with that 

a much faster solution exchange is applicable without disturbances. Additionally, the 

sensor size is up to 3 mm in diameter and can be coated with the membrane 

preparation containing the protein of interest. With the large sensor size, the signal 

amplitude is much larger compared to whole-cell patch-clamp216. SSM requires fewer 

protein, has a better signal-to-noise ratio (SNR) and a higher sensitivity compared to 

patch-clamp.  

 
Figure 11: Experimental setup of SSM electrophysiology on transport proteins. A. 
Proteoliposomes are adsorbed on the gold layer of the SSM chip and form a capacitively coupled 
system for the measurement of charge displacement. B. Current trace for a typical SSM 
measurement. A rapid solute exchange allows the measurement of current as a function of time. 
 

The SSM sensor chip consists of a gold sensor electrode and an alkyl-mercaptan 

monolayer214,217. The SSM forms spontaneously upon addition of a lipid mixture and a 

subsequent rinsing with a buffer. The membrane preparation is added on top of the 

SSM, which, on top of the sensor chip, performs as a measuring electrode and forms 

a capacitively coupled system (Figure 11A). The measurements are performed in a 

Faraday cage and the sensor is connected to a fluidic system. The membrane 

fraction with the protein of interest is adsorbed on the SSM layer on the gold surface 

of the chip and the transport activity is measured upon fast solution exchange to a 

buffer containing the electrogenic substrate (Figure 11B). Although the measured 
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current is not in a steady-state, the peak current amplitude in SSM electrophysiology 

is proportional to the turnover rate and allows the calculation of half saturation 

constants like the EC50, inhibitory constant IC50, Michaelis-Menten constant Km or the 

dissociation constant KD
214,218. Further analysis of the signal rise and its decay can 

give additional information about the kinetics in the shape of rate constants. 

Additionally, to the measurement of the substrate turnover, alternative substrates, 

inhibition, pH and salt dependence can be measured.  

 

1.3.2 Principles of x-ray crystallography techniques for membrane proteins  

The elucidation of protein structures through x-ray crystallography has been the most 

favored technique throughout the years since the first published structures of 

myoglobin219 and lysozyme220,221. X-ray crystallography together with nuclear 

magnetic resonance and single particle cryo-EM provide a platform for the 

understanding of structure related functions and help in structure based drug 

design222. Membrane proteins have been shown to be rather challenging to study, 

due to less yield, lower stability and a difficult handling but X-ray crystallography 

remains nonetheless the leading technique to solve three dimensional (3D) structures 

with a contribution of up to 80% even for membrane proteins223. Cryo-EM is catching 

up with nearly the same number of published membrane proteins structures per year 

compared to other methods223. 

One of the first steps for a successful crystallization is the expression and purification 

of homogenous membrane proteins. Different host cell systems are available for the 

protein expression, depending on the source of the protein of interest and necessary 

post-translational modifications, i.e. expression of prokaryotic or eukaryotic proteins. 

Furthermore, to delipidate and extract the membrane protein from its native 

membrane, it is crucial to select a suitable lipid substitute. Since the membrane 

consists of phospholipids with a hydrophobic tail and a hydrophilic head, a chemical 

with the same amphiphilic characteristic is required and detergents have proven to 

be useful for not only the extraction of the protein from the membrane but also for 
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keeping it stable in solution. Depending on the charge of their head group they can 

be divided into three groups: ionic, nonionic and zwitterionic detergents224,225. Ionic 

detergents have a great efficiency in the extraction of membrane proteins from the 

membrane, however they are prone to denaturing effects on membrane proteins and 

their use has become limited224. The most popular group of detergents is the nonionic 

group. Those are usually milder and exhibit a nondisruptive nature226. They are 

additionally the most widely used group of detergents for the crystallization of 

membrane proteins226. Zwitterionic detergents carry positive and negative charges in 

the polar head and have a zero net charge224. Those are not as mild as nonionic 

detergents but rather lie between the ionic and nonionic effects of harshness and 

have been successfully used for crystallisation226.  

 
Figure 12: Schematics of membrane proteins in membrane scaffolds. Membrane proteins are 
extracted from the lipid membrane. The lipidic environment can be replaced by detergents that 
mimics the characteristics of lipids or it can be replaces by membrane scaffolds, like nanodiscs 
or SMALPs. Nanodiscs and SMALPs contain lipids and provide a close to native environment. 
 

An alternative platform for the stabilization of membrane proteins are membrane 

mimetic systems (Figure 12). Those can be nanodiscs or styrene malic acid lipid 

particles (SMALPs). Nanodiscs consist of membrane scaffold proteins (MSPs), which 
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is a genetically engineered variant of the human serum apolipoprotein-A227. To get a 

membrane protein reconstituted into nanodiscs, one mixes the membrane protein 

solubilized in detergent with MSP and phospholipids. The self-assembly of nanodiscs 

happens spontaneously during the removal of detergent via biobeads or dialysis228. 

Not as popular but using the same principles are the SMALPs, but in contrast to 

nanodiscs they contain native membranes from the proteins229. 

There have been successes in the crystallization of membrane proteins using 

nanodiscs230 and SMALPs231 but it remains challenging and the main platform for 

those techniques stays single-particle cryo-EM232-234. Detergent solubilized 

membrane proteins remain widely used for x-ray crystallography. The main difficulty 

in crystallizing membrane proteins is that the detergent or the membrane mimetic 

structures cover the hydrophobic part of the protein and in many cases, this only 

leaves a very small surface area for the formation of crystal contacts. Those small 

surfaces sometimes consist of very flexible regions or loops, which can be either 

digested or truncated. The pitfall of using loop truncations is that the crystalized 

protein is not a native full-length representation of the membrane integrated protein 

of interest. Another hurdle can be the presence of protein-free micelles which reduce 

the success rate of crystallization through the disruption of protein-protein 

interactions which is important for crystal contacts. Membrane proteins in detergent 

also exhibit a higher rate of crystallographic defects, anisotropy and twinning.  

The main technique for crystallizing membrane proteins, as for soluble proteins in 

general, is vapor diffusion. After screening for optimal conditions of purity and stability 

of the membrane protein, the sample is concentrated up to its aggregation threshold 

(this can be monitored using e.g. dynamic light scattering) but approximately 

10 mg/ml can be generally used as a rule of thumb235,236. There are the sitting drop 

and the hanging drop methods for vapor diffusion (Figure 13A). For the sitting drop, 

the pure and concentrated protein is mixed with the solution from the screen that is 

also present in the reservoir and a drop is set in a sealed environment. In the hanging 

drop method, the drop is placed on top of the cover slide.  
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Figure 13: Crystallization methods and phase diagram. A. Vapor diffusion crystallization. The 
purified membrane protein in detergent is mixed with the crystallization buffer that is contained in 
the reservoir. The protein-buffer mixture is used to set up drops by either using the hanging drop 
method or the sitting drop method. B. Schematics of a typical phase diagram for the crystallization 
of proteins as a function of protein and a precipitant concentration, e.g. salt concentration. The 
diagram is divided into a region of undersaturation and a region of supersaturation. The solubility 
curve describes the equilibrium between the solid phase and the liquid phase with free 
molecules. Nucleation can arise in the region of supersaturation and crystals grow closer to the 
solubility curve in the supersaturation region.  
 

The symmetrical composition that is found in a crystal lattice is not a preferred 

composition of proteins and needs to be induced artificially. The protein needs to 

transition from a completely disordered state into an ordered one. During that critical 

transitional stage the first ordered assemblies are formed that allow the nucleation of 

macromolecular protein crystals. The point of nucleation is a critical non-equilibrium 

state of supersaturation (Figure 13B). The state of supersaturation is unique for each 

system and protein and is reached through the addition of a precipitant, which can 

be a neutral salt, a polymer or, more commonly, polyethylene glycol (PEG), available 

at different sizes. During that state nuclei form spontaneously and the growth of the 

actual crystal can start. During the vapor diffusion technique, the drop mixture with 

the protein has a lower reagent concentration and water vapor leaves the drop to 

reach equilibrium. During that exchange the drop exhibits increasing concentration 

and undergoes supersaturation. The initial screen is usually carried out using the 

sitting drop method and commercially available screens that cover a variety of 
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crystallization conditions specifically prepared after collecting data from successful 

crystallization compositions for membrane proteins237-239. After the identification of the 

initial hit, a subsequent screen is prepared using a composition around it by varying 

the pH, salt and PEG concentrations. 

Specifically for the crystallization of membrane proteins and to overcome the 

problems of crystallization using detergents, in meso crystallography was 

developed240,241. For in meso crystallography, neutral lipid molecules, mostly 

monoacylglycerols like monoolein, are mixed with the detergent solubilized protein. 

The mesophase, or also called lipidic cubic phase (LCP), forms spontaneously and 

forms a bicontinuous LCP bilayer. Through the addition of precipitants the proteins 

are migrating into lamellar domains to form crystals.  

Another very useful tool for the crystallization of membrane proteins are specific 

binders used as crystallization chaperones, that increase the surface area of proteins 

which can participate in forming crystal contacts. Such binders are usually soluble 

proteins and can be T4 lysozymes, Fab fragments242,243, nanobodies244,245 or synthetic 

nanobodies246 (Figure 14). 

 
Figure 14: Representation of scaffold chaperones for membrane protein structure elucidation. 
A. Crystal structure of G protein-coupled receptor with T4 lysozym (PDB:2RH1). B. Single particle 
cryo-EM structure of Fab-bound PfCRT (PDB:6UKJ). C. Crystal structure of nanobody bound 
receptor (PDB:5NBD). D. Crystal structure of Gdx-Clo transporter bound to a monobody 
(PDB:6WK9). 
 

There are many methods for the crystallization of membrane proteins, but the physical 

principles of x-ray crystallography stay the same for all methods and are based on 

the properties of crystals and their diffraction using an x-ray beam. The protein crystal 

consists of a symmetrical lattice formed by identical copies of the protein in a regular 
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and repeated pattern (Figure 15A). The unit cell is the smallest repeating unit and 

can be described in 3D by the lengths of the three axes a, b, c and angles α, β, γ.  

 
Figure 15: Protein lattice and Bragg diffraction. A. Crystal packing of a membrane protein (TPT, 
PDB:5Y78). B. Schematics of x-ray reflection from a crystal lattice plane based on Bragg’s law.  
 

When x-rays hit atoms, they are scattered by the electrons in the atoms. A diffraction 

pattern is created on a detector by either constructive or destructive interferences of 

the scattered x-ray waves. A constructive interference happens when the atoms are 

ordered periodically, as is the case in a crystal and occurs only if the crystals are in 

planar layers with distance d (Figure 15B) and constructive interference appears if it 

satisfies the Bragg diffraction conditions, derived from Pythagoras theorem, where n 

is the order of reflection, θ is the angle of the deflected beam247: 

2d sinθ=n λ   (Equation 1) 

The diffraction pattern that is visible on the detector is a representation of the 

reciprocal lattice of the crystal, described by the miller indices h, k, l. The diffraction 

pattern describes the electron density in reciprocal space, where the electron density 

ρ(X) of the crystallized protein can be described in terms of a Fourier integral: 

ρ(X) = ∫ F(h,k,l) e2πiX⋅(h,k,l) dV  (Equation 2) 

Where X are the reciprocal coordinates and e2πiX⋅(h,k,l) the phase of the scattered wave. 

The electron density is related to the structure factor F(s) through the inverse Fourier 

transform: 

F(h,k,l)=∫ ρ(X)e−2πiX⋅(h,k,l) dx  (Equation 3) 
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The structure factor describes the amplitudes and phases of the reflections, where 

the amplitudes can be derived from the intensities of the scattered diffraction pattern. 

However, the phase information of the structure factor is lost during the scattering 

experiment but necessary in order to calculate the electron density map and to 

determine the structure. This problem is called the phase problem in x-ray 

crystallography and needs to be guessed though an a priori known structure from, 

e.g. a homolog model for the method of molecular replacement, which is carried out 

in silico, or by solving the phase problem experimentally by selenomethionine-

replacement or heavy-atom derivatization. From the electron density at atomic 

resolution higher than 2 Å it is possible to build the backbone and the residues of the 

protein de novo.  

 

1.3.3 Principles of single particle cryo-EM on membrane proteins 

With recent and ongoing advances in single-particles cryo-EM, it has become 

possible to elucidate structures of proteins that are too heterogeneous or flexible248 

and those that cannot easily crystallize249. Limitations of single particle cryo-EM are 

constantly improving and novel methods are being developed to study challenging 

proteins, complexes and proteins of molecular sizes below the resolution limit for 

cryo-EM223,250,251. Especially the structural elucidation of membrane proteins has 

benefitted from the advances in the field and can be seen in an increasing number 

of published structures for membrane proteins per year223. The irradiation with 

electrons produces two dimensional (2D) projections of the protein (particle) at 

different views252. Single particle cryo-EM allows a 3D reconstruction of the protein 

structure from those 2D projections. The advantages of single particle cryo-EM 

compared to other techniques are that it requires less protein sample, the protein is 

flash frozen in a buffer of choice at close to native conditions, it requires no 

crystallization and there is no phase problem that needs to be solved. This method 

allows the study of membrane proteins or complexes in detergent223,253, embedded in 

membrane mimetics like nanodiscs254 or bound to scaffolds, like nanobodies255, 
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synthetic nanobodies (sybodies)246,256, megabodies257, Fab fragments258,259 or 

DARPins260, to either decrease homogeneity and trap a specific state or to enlarge 

the particle size if the protein of interest is below the resolution limit.  

Transmission electron microscopy has been developed for physics and material 

sciences but it has become very popular to solve structures of biological 

macromolecules when energy-filtered and operated at lower dose of electron 

irradiation261. As for x-ray crystallography, a highly pure protein sample is required 

and the concentration needs to be optimized for each protein and preparation 

method individually262. For the investigation via electron microscopy the sample can 

be either embedded in a heavy atom stain like uranyl acetate263 or be vitrified in 

amorphous ice through flash freezing in liquid ethane264. Both techniques require 

glow-discharged grids265,266, which the protein sample is applied on for support. 

Glow-discharging the grid prior to application is important for the removal of 

adsorbents like water and to make the grid hydrophilic, to allow an even spread of an 

aqueous solution. The staining technique is called negative staining and the 

observed images from those samples are the negatives of the specimen267,268. 

Although the negatively stained sample can be irradiated with a higher electron dose 

and operated at room temperature, the resolution is limited due to the grain size of 

the staining agent to approximately 20 Å252. For such resolutions it is sufficient to use 

electron microscopes operating at 120 kV. The vitrification in amorphous ice 

decreases the effect of radiation damage269 and flash freezing prevents the formation 

of ice crystals, which would produce artefacts in the acquired image264. Additionally, 

it is not limited to a low resolution as in negative staining. The electron microscope 

needs a higher voltage up to 300 kV and is operated at liquid nitrogen temperatures. 

With cryogenic samples it is possible to reach higher resolution with atomic resolution 

below 2 Å270,271.  

The main components of an electron microscope are the electron source, lenses in 

the form of magnetic coils, a sample holder and a detector272 (Figure 16A). The most 

widely used electron source is a field emission gun273 that emits electrons from a 
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tungsten tip when a high electric field is applied274,275. The lens system consists of a 

condenser lens, just below the electron source, an objective lens, which sits below 

the sample holder and forms the initial image and a projector lens that magnifies the 

image before the electrons hit the detector252. An aperture sits between the objective 

and projector lenses and stops electrons that are scattered wide, to increase the 

image contrast.  

 
Figure 16: Schematic representation of the lens system in an electron microscope and electron 
scattering. A. Schematics of the lens system with an electron source emitting electrons that are 
accelerated and cross several apertures, lenses and the object before their detection. B. 
Schematics of possible electron interactions with atoms when passing an object. Electrons can 
pass the sample without interactions, they can scatter elastically or inelastically.  
 

While charge coupled devices are sufficient for the use of negatively stained 

specimen and provide increased low-frequency contrast276,277, it is crucial to use very 

sensitive and precise detectors for single particle cryo-EM278. Direct detection device 

(DDD) detectors fulfil the requirements with a higher detective quantum efficiency 

and an improved SNR278,279. Those DDD detectors come closer to the theoretical 

resolution limit of the Nyquist frequency280,281, where the Nyquist limit is the maximum 

detectable resolution which is limited to twice the pixel size of the detector252. 

Additionally, those detectors are used to record movies of the irradiated sample on a 

grid.  

Charged electrons unfortunately induce a movement of the grid and the ice and 

decrease the image contrast282. This charged induced movement can be corrected 
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for, if separate frames are recorded across the total dose of irradiation, which is 

usually aimed at around 20-50 e-/Å2. Special movie alignment algorithms can correct 

for the dose induced movement between the recorded movie frames and additionally 

weight each frame283,284, depending on the available information. The weighting is 

important because the first frames experience larger movements and the latter 

frames exhibit less information due to irradiation damage282, where covalent bonds 

can be broken and side chains or residues can be missing.  

When electrons hit atoms in the sample they can be either scattered elastically, 

without any energy loss, inelastically, where energy from the electron is transferred 

to an atom in the sample or they can pass without any deflection252 (Figure 16B). The 

electrons form an image at the detector that corresponds to a 2D projection of the 3D 

object. The inelastically scattered electrons exhibit a phase shift that contributes to 

the phase contrast of the final image at the detector, whereas the inelastically 

scattered electrons that don’t reach the detector contribute to the amplitude contrast. 

However, biological samples are weak phase objects with very low contrast as they 

are mostly composed of H, C, O and N atoms that interact weakly with electrons. 

Therefore, it is important to collect as many images of the particles as possible in 

order to average them out and increase the information. Additionally, to the low 

contrast there are other factors that decrease the information. Since the microscope 

lenses system is not ideal it exhibits spherical, astigmatic and chromatic 

aberrations272. The observed image contrast ψobserved (x) is therefore a convolution of 

the ideal object image ψideal (x) with the so called point spread function PSF (x): 

ψobserved (x)= ψideal (x) ⨂	PSF (x)   (Equation 4) 

The Fourier transform of the image contrast is: 

F [ψobserved (x)] = F [ψideal (x)] ⋅	CTF (k) ⋅	E(k) (Equation 5) 

The contrast transfer function CTF(k) describes the aberration and E(k) is the 

envelope function that describes spatial and temporal aberrations252,275. The CTF(k) 

depends on the wavelength of the electrons λ, the defocus Δz, the spherical 

aberration Cs and the spatial frequency k : 
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The envelope function, with B being the experimental B-factor285 is: 

E(k) = e -Bk2    (Equation 7) 

The phase and the amplitude both contribute to the contrast of the gained images 

and the CTF describes the spatial frequencies of the transmitted information286,287. 

Defocussing of the objective lens increases the phase contrast and with it the overall 

contrast, of a thin layer of a biological sample of light atoms286,288. The Fourier 

transform of the power spectrum of the image reveals so called Thon rings, that 

determine the minima, maxima and zero crossings of the CTF286 (Figure 17). 

Correction for the CTF, and therefore the correction for aberration of the microscope, 

can be carried out by various available algorithms and increases the quality of the 

available information in the image, called micrograph, and therefore lead to a higher 

resolution in the final density map288,289.  

 
Figure 17: Thon rings and CTF at different defoci. Two exemplary power spectra from two 
micrographs obtained at different defoci, without astigmatism and showing centrosymmetric Thon 
rings. The corresponding CTF curves are overlayed. CTF curves oscillate between positive and 
negative contrast with cero-crossing. A. Micrographs image obtained at 0.5 µm defocus. B. 
Micrographs image obtained at 1 µm defocus. Image adapted from Orlova et al., 2011 
 
After processing the micrographs by correcting for the beam induced movement and 

the CTF, the coordinates of the center of the particles are selected either manually or 

automatically from each micrograph and extracted using a smaller size to reduce 

computational resources252,290,291. During the 2D classification many projections of the 

same view of the protein are grouped together and averaged to increase the 
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information from each individual particle, which on their own do not contain enough 

contrast and information. The approaches for the 2D classification use the maximum 

likelihood, where individual particles can be assigned to different classes and the 

assignment is weighted292,293. The 2D classification is important to reduce false 

positives and to reduce heterogeneity in terms of particle size if empty micelles, 

empty nanodiscs or other impurities are present in the sample. The 3D reconstruction 

can then be carried out with a clean set of particles from selected classes252,290,291. It 

is crucial for a successful 3D reconstruction to have particles and particle classes 

covering all possible angular orientations. The bottleneck for this can be preferred 

orientation of the protein at the air-water interface294 or just not enough quantity of 

particles. The latter can be solved by increasing the recorded dataset, whereas the 

first issue is challenging to tackle. This can be overcome by increasing the ice 

thickness, the addition of detergents or tilting the grid during data collection294,295. 

The reconstruction of the 3D object is carried out in Fourier space and the first step 

of the 3D reconstruction is the determination of the orientation of the particles, which 

is determined by calculating the cross-correlation values252,296. The map can then be 

calculated from the determined angular parameters using maximum-likelihood and a 

Bayesian approach to determine the structure290,291,297. An initial map of a homologous 

protein can be used for the 3D reconstruction, but prior knowledge is not always 

available and this method is prone to biases if a wrong map298 or a wrong 

handedness299,300 is used. Another approach is the ab initio 3D reconstruction which 

can lead to the determination of a density map of different conformations if those are 

present in the particle set291. To ensure that the calculated maps are not computed 

due to initial map bias or other biases, the dataset is split into two random, 

independent halves, which are treated individually and compared via cross-

correlation over a spatial frequency shell called Fourier shell correlation (FSC) after 

each iteration step until the density map converges252,301. To compute the resolution 

of the obtained map, a refinement is carried out subsequently and the quality of the 

map can be described through a threshold FSC value of 0.143, which has become 
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the gold-standard for map evaluation300,302. The threshold value has been chosen 

empirically through a systematic comparison of structural features from EM density 

maps and electron density maps from x-ray crystallography of the same protein 

structure.  

Similar techniques as in x-ray crystallography can be applied for the structural 

elucidation of membrane proteins. The alignment and evaluation of proteins that have 

a molecular size below 120 kDa, if they are mostly embedded in a detergent belt or 

nanodiscs or those that are very flexible with high conformational heterogeneity, is 

difficult due to the lack of rigid structural features for an unambiguous determination. 

Therefore nanobody255, sybody246 or Fab fragment303 bound protein samples are 

generated to overcome size limitations or very flexible features. The issue of flexible 

regions can additionally be addressed computationally through the masking of 

protein regions during the data processing304-306. 

Membrane proteins make up to more than 60% of current drug targets307, but for most 

of them there is no detailed knowledge about their structure and mechanism of 

inhibition available223. By increasing our understanding about membrane proteins, we 

can establish a platform for future drug-design and help to increase the structural 

database for computer aided structure prediction and drug-design308-310. 
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2 Aim of the study 

The aim of this work was to elucidate and study the structure, function and 

mechanism of the essential pneumococcal choline importer LicB. There was not 

much known about this transporter from the DMT superfamily, except that it 

supposedly imports choline and the deletion of its gene is lethal for S. pneumoniae. 

The aim of the study was to provide insight about the mechanism of the transporter, 

its potential as a novel drug-target and its capability of inhibition. Additionally, it was 

important to provides a broader context for the DMT superfamily, which includes 

some SLC family members, beyond the knowledge about the NST-type transporters 

from the same superfamily. The study can be split into the following steps: 

The first step of the study was to over-express a recombinant copy of the 

pneumococcal LicB in a suitable bacterial vector, to extract and purify stable and 

natively folded LicB for in vitro studies. A pure and stable protein in detergent was 

crucial for all follow-up experiments. In general, it is possible to carry out structural 

and functional experiments using only the detergent solubilized protein, but it was 

crucial to reconstitute the protein in lipids and nanodiscs, respectively in order to 

provide close to native conditions. The second step was to investigate the function of 

the transporter using SSM-electrophysiology, to look at the transport of the substrate, 

of similar bioavailable compounds and inhibitors. Furthermore, it was required to 

identify the energy source for the transport and its coupling ions. The third step was 

the structural elucidation of LicB in different states to identify the binding pocket and 

predict the mechanism. X-ray crystallography and cryo-EM were both suitable 

methods allowing different approaches, e.g. variations of detergents, in LCP, using 

nanodiscs and crystallization scaffolds. The fourth step was to identify compounds 

for the inhibition of choline import. Sybodies not only perform well as crystallization 

scaffolds and for the trapping of different conformational states but can act as 

potential inhibitors.  
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3 Results 

The doctoral thesis is based on two peer-reviewed publications and a book chapter: 

 

3.1  Bärland, N., Rueff, A. S., Cebrero, G., Hutter, C. A., Seeger, M., Veening, J. 

W., & Perez, C. (2021). Mechanistic basis of choline import involved in teichoic acids 

and lipopolysaccharide modification. Accepted, Science Advances. BioRxiv preprint: 

doi: https://doi.org/10.1101/2021.09.14.460277 

 

3.2 Bärland, N., & Perez, C. (2021). Selection of Transporter-Targeted Inhibitory 

Nanobodies by Solid-Supported-Membrane (SSM)-Based Electrophysiology. Journal 

of Visualized Experiments: Jove, (171). doi: https://dx.doi.org/10.3791/62578 

 

3.3  Bärland, N., & Perez, C. (2020). Fast Small-Scale Membrane Protein 

Purification and Grid Preparation for Single-Particle Electron Microscopy. In 

Expression, Purification, and Structural Biology of Membrane Proteins (pp. 275-282). 

Humana, New York, NY. doi: https://doi.org/10.1007/978-1-0716-0373-4_18 
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3.1 Mechanistic basis of choline import involved in teichoic acids and 

lipopolysaccharide modification 

 

Natalie Bärland1, Anne-Stephanie Rueff2, Gonzalo Cebrero1, Cedric A.J. Hutter3,4, 

Markus A. Seeger3, Jan-Willem Veening2, Camilo Perez1 

 
1 Biozentrum, University of Basel, 4056 Basel, Switzerland 
2 Department of Fundamental Microbiology, Faculty of Biology and Medicine, 

University of Lausanne, 1015 Lausanne, Switzerland. 
3 Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland 
4 Current address: Linkster Therapeutics AG 

 

Contribution Natalie Bärland: Expression, purification of LicB and sybodies, 

crystallization experiments, reconstitution (lipids, nanodiscs), functional assays 

(SSM-electrophysiology, transport assay), WTA and LTA extraction, docking, data 

acquisition, analysis and interpretation, drafting of manuscript. Contribution to study 

design, mutagenesis, sample preparation for cryo-EM, processing of X-ray and cryo-

EM data, building and validating models. 

 

Journal: BioRxiv preprint, accepted Science Advances. 
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3.2 Selection of Transporter-Targeted Inhibitory Nanobodies by Solid-

Supported-Membrane (SSM)-Based Electrophysiology 

 

Natalie Bärland1, Camilo Perez1 
 

1 Biozentrum, University of Basel 

 

Contribution Natalie Bärland: Study design, sample preparation, conduction of 

experiment, data acquisition, data analysis, writing manuscript. 

 

Journal: Journal of Visualized Experiments: JoVE. 
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3.3 Fast Small-Scale Membrane Protein Purification and Grid 

Preparation for Single-Particle Electron Microscopy 

 

Natalie Bärland1, Camilo Perez1 
 

1 Biozentrum, University of Basel 

 

 

Contribution: Contribution of study design, conduction of proof of concept 

experiment, data acquisition and analysis, writing manuscript. 

 

Journal: Expression, Purification, and Structural Biology of Membrane Proteins, 

Humana, New York, NY. Part in Methods of Molecular Biology book series.  
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4 Discussion and outlook 

4.1 Characterization of the essential choline importer LicB 

As S. pneumoniae remains to be a global threat and bacterial infections by MDR 

strains are nowhere near in decreasing numbers28,29, a better understanding of the 

process connected to bacterial invasion and pathogenesis is crucial in order to find 

novel drug targets and develop drugs. This Gram-positive human pathogen S. 

pneumoniae has a unique set of phosphorylcholine modified teichoic acids which 

equips the bacterium with a very specific way to invade and colonize host cells72,108. 

Targeting LicB, the essential importer for the substrate choline, which is crucial for 

the supply of the teichoic acid modification, for its inhibition by antimicrobial 

compounds may help to tackle this pathogen that can carry MDR genes and can be 

challenging to eliminate with conventional antibiotics. Additionally, other pathogens 

that reside in the mucosal surface, like the Gram-negative H. influenzae use a similar 

pathway of host invasion and pathogenesis by phosphorylcholine modified LPS106, 

where choline is also imported by LicB or a homologous protein79. The presence of 

the lic operon in those and other pathogens shows the essential role of 

phosphorylcholine modification across different bacterial phyla, including Gram-

positive and Gram-negative bacteria.  

The analysis of the obtained structures of the LicB transporter in its outward facing 

state and in its substrate bound, occluded state, together with the functional 

characterization provide a detailed understanding of the transport mechanisms. The 

choline bound structure allows the localization of the binding pocket together with the 

residues involved in coordinating the substrate. Residues W17, Y109, W167, Y233 

and Y255 form an aromatic box around the trimethylammonium group of choline and 

stabilize the positive charge of the substrate by pi-electrons (Figure 18A). The 

hydroxyl end of choline is coordinated by Y236 and N252 in the binding pocket. 

Comparison of the central cavity of LicB to the homology model of LicB from H. 

influenzae shows the presence of aromatic and charged residues at the same 
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positions, therefore it is likely that choline binds there accordingly. The outward facing 

state of the transporter represents the conformation where the binding cavity, which 

is mostly negatively charged, is accessible to the substrate from the exterior.  

 
Figure 18: Binding pocket, proton-coupling residues and transport cycle of LicB. A. Substrate 

bound and occluded structure of LicB. Inverted repeats TM1-TM5 and TM6-TM10 are colored in 

grey and blue, respectively. Choline is depicted in orange. The left bottom inset shows residues 

involved in coordinating choline binding. The right bottom shows residues involved in proton-

coupling B. Schematics of transport cycle as predicted based on the outward facing and 

occluded structures. Choline is depicted as an orange sphere and a proton as a blue sphere.  

 

As shown by fluorescence based transport assays with a proton sensitive 

fluorophore, the energy for the transport is provided from a proton gradient. Due to a 

mostly acidic environment in the nasopharynx, the place where the pathogen is 

residing, the proton gradient must be inward directed and protons access the 

transporter at the same time as choline. Substrate and proton binding induce 

conformational changes with the most prominent movement of TM3 and TM6 before 

entering the occluded state. Due to the typical topology of two inverted repeats in all 

members of the DMT superfamily173, it is possible to speculate that there will be a 
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symmetrical movement of the corresponding helices TM1 and TM8 when the 

transporter is facing the cytoplasm for substrate and proton release (Figure 18B).  

Transport assays of proton flux on LicB mutated variants show that residues R191, 

H43 and E170 are important for proton coupling, of which R191 and E170 are highly 

conserved residues, and mutating those to alanine diminishes activity. PfCRT, a 

chloroquine resistant transporter from P. falciparum which also belongs to the DMT 

superfamily258, exhibits the highest similarity to LicB. As for LicB, the binding cavity of 

this transporter, has an electronegative surface. Furthermore, PfCRT was shown to 

use proton-motive force for the efflux of chloroquine and has similar charged 

residues, as in LicB, that are possibly involved in protonation and deprotonation to 

facilitate transport311. A superposition of the outward open structures of LicB and 

PfCRT with an r.m.s.d. of 2.6 Å shows charged residues located at the same position 

in the central cavity of H43LicB/H97PfCRT, E170LicB/D137PfCRT, R191LicB/R231PfCRT and 

D229LicB/D326PfCRT (Figure 19A). 

Many methods for the characterization of the transport by membrane proteins are 

prone to artifacts in the signals arising from the presence of detergent micelles or 

lipids in the buffer. SSM-electrophysiology has proven to be the most reliable and 

reproducible method to study electrogenic transport of choline and derivatives via 

LicB reconstituted into liposomes. The SSM-electrophysiology experiments show that 

choline, with a determined EC50 of 47 ± 15 μM, is not the only recognized and 

imported substrate for LicB. Additionally, arsenocholine (EC50 =170 ± 9 μM) and 

acetylcholine (EC50 =740 ± 84 μM) are recognized by the transporter. The extraction 

of WTA and LTA from S. pneumoniae grown in choline-reduced media supplemented 

with radiolabeled [3H]-acetylcholine at the acetyl group or the amino group 

additionally provides evidence that choline derivatives can not only be imported, but 

also modified in order to provide phosphorylcholine, or phosphorylcholine-like 

moieties. Those teichoic acids that were extracted from S. pneumoniae grown in 

media supplemented with acetylcholine radiolabeled at the amino group exhibited 

radioactivity opposed to acetylcholine radiolabeled at the acetyl group. Acetylcholine 
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must be therefore modified or broken down into smaller parts, where the part of the 

acetyl group is not present after its modification and attachment to the teichoic acids.  

 
Figure 19: Proton-coupling residues in LicB and PfCRT and acetylcholine in the binding pocket 

A. Superposition and structural similarity of LicB (grey) and PfCRT (pink). The inset shows putative 

proton coupling residues from LicB depicted in grey and similar residues in close proximity in 

PfCRT depicted in pink. B. Acetylcholine docked with Autodock Vina into the outward open 

structure of LicB. Residues involved in the coordination of choline are depicted as sticks and can 

accommodate acetylcholine.  

 

This finding of a promiscuous substrate recognition, import and catabolization for the 

synthesis of chemically activated phosphorylcholine shows a potential for adaptation 

to the environmental availability of choline. This gives S. pneumoniae a more 

extensive survival capability where derivatives of choline like arsenocholine or 

acetylcholine can be imported and used for the modification of teichoic acids to 

replace or mimic phosphorylcholine. This ensures the ability of the bacteria to 

maintain its functions though the interactions with choline binding host receptors or 

CBPs for invasion and pathogenesis. Although the half maximal effective 

concentration for acetylcholine is lower than for choline, the naturally available high 

concentration of acetylcholine close to the neuronal cleft312 might be sufficient to 

provide the bacteria with this alternative substrate, during the invasion of the brain. 

On the other hand, it might be possible that proteins are present that hydrolyze 

acetylcholine before it is either imported or after it enters the cytoplasm. SSM-

electrophysiology and docking of acetylcholine clearly show that this alternative 
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substrate can be accommodated in the binding cavity of LicB by the same residues 

that are involved in choline binding (Figure 19B). 

 

4.2 SSM electrophysiology for the selection of inhibitory nanobodies 

The bottleneck for the cascade of invasion, adherence and virulence in 

S. pneumoniae and several other human pathogens harbored in the nasopharynx is 

connected to phosphorylcholine moieties of the teichoic acids or LPS79,110,113,313-316. 

Those are only synthesized if the bacteria are able to acquire exogenous choline or 

can import and modify compounds that can substitute or mimic choline, as described 

above for S. pneumoniae and acetylcholine. There is only one transporter known in 

S. pneumoniae that imports choline72. Gene deletion for the LicB transporter has 

shown to result in non-viability of the bacteria317 and hence blocking or inhibiting the 

choline importer LicB should show similar effects of non-viability. This presents LicB 

as an optimal drug target against infections caused by S. pneumoniae. However, 

inhibitors of LicB must be unique binders that don not interact with other proteins, like 

abundant choline importers in human cells.  

Nanobodies are the single variable domains of the heavy chain only antibodies that 

can be found in camelids318,319. They are important tools for structural biology of 

membrane proteins and are utilized for stabilizing conformations, for structure 

determinations as scaffolds or as inhibitors245,246. Nanobodies cannot only be 

generated by the immunization of camelids, but through in vitro based methods via 

phage or yeast display246,320-322. They carry great potential as inhibitors for therapeutic 

use because they are easier to produce, more stable, smaller than antibodies and 

are less toxic than chemical compounds323-325. Not all generated nanobodies inhibit 

the activity of the target protein and a screening method is required if those need to 

be identified. Most biophysical and biochemical screening methods like isothermal 

titration calorimetry326, surface plasmon resonance327 or microscale thermophoresis328 

rely on labelling compounds or interact with the detergent micelle which is prone to 

produce signal artefacts. SSM-electrophysiology on the other hand allows a 
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reproducible high-throughput screening of electrogenic transport214,218. The 

presented method of nanobody selection via SSM-electrophysiology enables to 

screen for inhibitory nanobodies and can be applied for all kinds of electrogenic 

transporters. Since the binding is reversible it is additionally possible to use a chip 

coated with proteoliposomes to screen several nanobodies for a high throughput. To 

unbind the nanobody, washing steps are crucial and it is important to normalize the 

peak current between measurements for data analysis. With the presented method 

the bottleneck is therefore not the screening but rather the expression and purification 

of the target protein and the nanobodies. The advantages using SSM-

electrophysiology are a high throughput, good reproducibility, low sample 

consumption and a very low SNR. 

In the case of LicB, hemicholinium-3 (HC-3) shows inhibitory effects, but it will not be 

possible to use this chemical compound as a drug against S. pneumoniae. HC-3 is 

not selectively blocking the pathogenic transporter LicB but is known to inhibit other 

choline importers that are abundant in human cells and is therefore toxic329-331. The 

sybodies on the other hand were selected specifically against LicB with unique 

epitopes interacting with the transporter. The selected inhibitory sybodies therefore 

carry a lesser potential for the interaction with human cells and could enable future 

studies for the treatment of pneumococcal infections. As they are unable to penetrate 

the native barrier of the pneumococcal capsule, the surface layer with PG, WTAs and 

LTAs, a suitable delivery vector needs to be found for a successful treatment. 

Conventional antibiotics are alternations of chemical compounds that act through the 

same mechanism of inhibition, by blocking ribosomal subunits to inhibit bacterial 

protein synthesis, inhibit cell wall synthesis or PG synthesis332. Due to the antibiotics 

crisis with fewer novel antimicrobial compounds being developed333, novel drugs are 

in need. The application of nanobodies as antimicrobials immensely increases 

possible drug targets and offers a more dynamic and versatile toolset for drug 

development to battle MDR bacteria, in cancer therapy323 and many more325. 
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4.3 Dimerization of LicB and other DMT superfamily members 

Dimerization of membrane transporters has been observed for many cases and over 

two thirds of membrane proteins of known structures are present in an oligomeric 

state334,335. To date, oligomerization or dimerization of membrane proteins cannot 

easily be predicted and the study of dimer formation, stabilization and energy costs 

in lipidic environments are the focus of current transporter studies336,337. The outward 

facing structure of LicB in nanodiscs is a dimer where the interface is formed by TM1, 

TM8 and TM9 which are stabilized by a lipid. Similarly, other DMT members have 

been observed to form dimers such as CST, TPT and Vrg4 transporters186,189,338. 

However, the dimer interface of those transporters (Figure 10) is different from the 

one in nanodisc reconstituted LicB and rather resembles the interface that is formed 

on the LicB crystal. Dimers or oligomers that can be observed in crystals are possibly 

artificial oligomers, since their formation is forced through supersaturation and 

addition of precipitating agents. Their physiological relevance therefore needs to be 

confirmed by biophysical methods.  

 
Figure 20: Dimer interfaces in LicB. A. Dimer of nanodisc reconstituted LicB bound to a sybody. 

Inverted repeats of TM1-TM5 and TM6-TM10 are colored in grey and blue, respectively. Side view 

and top view are shown. A lipid is present at the interface between TM1, TM8 and TM9 and 

depicted in black. B. Putative dimer interface of LicB from crystallized protein. The interface is 

formed by TM5 and TM10. Inverted repeats of TM1-TM5 and TM6-TM10 are colored in grey and 

violet, respectively and choline is shown in orange. 
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Comparison of the interfaces of the DMT transporter dimers to the interface formed 

in the LicB crystal (Figure 20) reveals their resemblance with the interface formed by 

TM5 and TM10. Mutation studies in Vrg4 show that dimer formation has no effect on 

the affinity of the substrate but allows a faster cycling of the transport. Lipids must 

play a central role for the formation of LicB dimers because the prominent species in 

detergent is its monomeric form. Future studies on the dimerization of LicB and DMT 

transporters will provide a better understanding of the physiological relevance of the 

dimer in the membrane, if it is energetically preferred due to membrane curvatures 

or important for affinity, the transport cycle or stability.  
 

4.4 Small scale purification for single particle cryo-EM  

Single particle cryo-EM has recently become one of the most popular methods of 

choice for structural studies of membrane proteins223,253. Membrane proteins are 

highly abundant and make up nearly a third of the genome across all living 

organisms339. They play an integral role as drug targets in pharmaceutical 

applications223,340,341. More than 50% of the drugs that are currently available on the 

market are targeting membrane proteins, however the number of membrane proteins 

with known structure is very far behind those for soluble proteins342. One of the 

bottlenecks for the study of membrane proteins is the challenge to purify large 

amounts of pure membrane protein sample due to lower thermal stability223. The 

strengths of single particle cryo-EM is that it requires a very small amount of protein 

in a native buffer composition that can be directly applied on the EM grid251-253. The 

described method for the fast small-scale membrane protein purification and grid 

preparation offers a fast and parallelized way to prepare protein samples in different 

buffer compositions. For a successful application, it is recommended to optimize the 

purification of the protein beforehand and use the parallelized method to screen 

additional buffer compositions, additives, substrates and inhibitors, in order to trap 

different conformational states. This method offers a minimal sample consumption for 

the purification of the protein in different compositions and offers direct application 
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for grid preparation and screening within one day. This method can be applied to any 

poly-histidine tagged soluble or membrane protein. 
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