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Abstract

Inverse medium problems are typically dedicated to finding the cause behind mea-
sured behaviors. Examples include exploring the Earth’s interior through seismic
or geophysical imaging, using ultrasounds or X-rays for medical imaging, or in-
vestigating materials in material science. In each case, our goal is to determine
the unknown, also referred to as the medium, responsible for these measured ob-
servations by solving a constraint minimization problem for the data misfit. The
constraints arise from the physical state, which is modeled and mathematically
expressed by a partial differential equation.

In this Thesis, we propose a nonlinear iterative optimization method to solve
inverse medium problems. Instead of using a grid based optimization approach,
which leads to challenging large scale problems, we iteratively minimize the data
misfit within a small finite dimensional subspace spanned by the first few eigen-
functions of a carefully chosen elliptic operator. As the operator depends on the
minimizer in the previous search space, so do its eigenfunctions, and consequently
the subsequent search space. This approach allows us to incorporate regularization
inherently at each iteration without the need for additional penalization, such as
Total Variation or Tikhonov regularization.

By introducing a key angle condition, we can prove the convergence of the
resulting Adaptive Spectral Inversion (ASI) method and demonstrate its regulariz-
ing effect. Through numerical experiments, we illustrate the remarkable accuracy
of the ASI, even detecting the smallest inclusions where previous methods failed.
Furthermore, we demonstrate that the ASI performs favorably compared to stan-
dard grid based inversion using Tikhonov regularization when applied to an elliptic
inverse problem.

The choice of the elliptic operator for obtaining the subsequent search space is
crucial for achieving accurate reconstructed media. For known piecewise constant
media, consisting of a few interior inclusions, we prove that the first few eigen-
functions of the operator, that depend on the medium, effectively approximate
the medium and its discontinuities. Then, we validate these analytically proven
properties of the operator through various numerical experiments.
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Chapter 1

Introduction

Since it may not always be clear what we mean when talking about inverse prob-

lems, we follow the definition of Keller [69]:
We call two problems inverse to one another, if the formulations of each involves

all or part of the solution of the other. From this definition, it is arbitrary which
one of the two problems we call the direct and which one the inverse problem.
However, for historical – or other – reasons, one of the two problems has been
studied extensively for some time and is better understood than the other. This
one we would call the direct problem.

An illustration of an inverse problem is the following:

What is the question, to which the answer is “42”? 1

Clearly, this simple demonstration shows that there may not be a unique answer to
this question and that some answers may be favored over others. Some examples
in mathematics are the following [69]:

(i) Find a polynomial p(x) of degree n with roots x1, . . . , xn. This task is inverse
to the direct problem of finding the roots x1, . . . , xn of a given polynomial
p(x) of degree n. In this case, the inverse problem is easier, having the
solution p(x) = c(x − x1) . . . (x − xn), which is not unique as c ̸= 0 is an
arbitrary constant.

(ii) Find a polynomial p(x) of degree n with given values y1, . . . , yn at x1, . . . , xn.
The corresponding direct problem is to find the values y1, . . . , yn of a given

1There are many theories why the Answer to the Ultimate Question of Life, the Universe,

and Everything is 42 from the comic science fiction series The Hitchhiker’s Guide to the Galaxy

by Douglas Adams. However, Adams gave this answer: The answer to this is very simple. It
was a joke. It had to be a number, an ordinary, smallish number, and I chose that one. Binary
representations, base thirteen, Tibetan monks are all complete nonsense. I sat at my desk, stared
into the garden and thought “42 will do” I typed it out. End of story.

1



Chapter 1. Introduction

polynomial p(x) at x1, . . . , xn. The inverse problem is called the Lagrange
interpolation problem, while the direct problem is the evaluation of the poly-
nomial.

(iii) Given a real symmetric matrix A of order n and n real numbers λ1, . . . , λn,
find a diagonal matrix D such that A + D has the eigenvalues λ1, . . . , λn.
This is inverse to the direct problem of finding the eigenvalues λ1, . . . , λn of
a given real symmetric matrix A + D.

A common problem used in intelligence tests is:

(iv) Given the first few members a1, a2, a3, a4 of a sequence, find the law of
formation of the sequence, i.e. find an for all positive integers n. Usually,
only the next few members a5, a6, a7 are asked for as evidence that the law
of formation has been found. The direct problem is to evaluate the first
few members of a sequence an, given the law of formation. A well known
instance of this inverse problem is to find the next few members of the
sequence, which begins with 4, 14, 34, 42. The solution is 59, 125, 145,
since the sequence consists of the express stops on the 8th Avenue subway in
New York [111]. It is clear that such inverse problems have many solutions
and for this reason, their use in intelligence tests has been criticized.

Therefore, we will give the abstract definition of the direct and inverse problem for
a given operator F :

Direct problem: Given u, evaluate F (u) = y.

Inverse problem: Given y, find u satisfying F (u) = y.

Throughout this Thesis, we refer to F as the forward operator, to y as the state

variable, and to u as the medium or sometimes the control variable.

1.1 Inverse Medium Problems
Inverse medium problems occur in a wide range of real life applications [105, 118],
such as medical imaging [4, 81, 105, 127], geophysical or seismic imaging [52, 114,
122–124], and non-destructive testing [32, 79, 93]. In these applications, a known
incident wave will be sent into an unknown medium, such as the human body
for medical imaging, the earth’s surface for geophysical imaging, or an object for
non-destructive testing. These waves will then be reflected or scattered by the
unknown medium as shown in Figure 1.1. These reflected waves can be measured
using devices typically located at the boundary of the unknown medium.

2



Chapter 1. Introduction

Fig. 1.1: Seismic inverse problem: A survey ship sends a (point) source of waves into
the sea. Those waves illuminate the medium, usually consisting of gas and oil
reservoirs and different sediment layers, and get reflected by those scatterers.
These scattered, or reflected waves, are measured at sea level. The reflected
waves can then be used to reveal the different layers of the earth [2, 3].

With these measured observations, usually perturbed or noisy due to measure-
ment errors of the device, one tries to reconstruct the medium to determine the
scatterers, e.g. cancer, oil reservoirs as in Figure 1.1, or cracks inside an object.

To mathematically formulate the inverse problem to be able to reconstruct
the (unknown) medium, we consider two Hilbert spaces H1, H2 and the forward
operator F ,

F : H1 → H2, F (u) = y.

This is the mapping of the (unknown) medium u ∈ H1 to the known data y ∈ H2,
e.g. the measured waves as shown in Figure 1.1, where u consists of the different
layers. Let us denote by u† the exact, but unknown, medium. Usually, the exact
data y† = F (u†) is perturbed due to measurement errors, and hence only noised
data yδ ∈ H2 is available, satisfying

∥y† − yδ∥H2 ⩽ δ,

where the noise δ ⩾ 0 is known. Thus, we wish to solve the inverse problem

F (u) = yδ. (1.1)

This may be done by reformulating it as a least squares minimization problem:
Find u†,δ satisfying

min
u∈H1

Jδ(u) = min
u∈H1

1
2∥F (u)− yδ∥2

H2 , (1.2)

3



Chapter 1. Introduction

with the misfit Jδ : H1 → R. To find such u†,δ, we may use standard minimization
methods to solve this optimization problem, as we will explain in Section 2.4.

1.2 Model Problems
As mentioned above, inverse medium problems typically consist of finding a min-
imizer u†,δ of the misfit Jδ satisfying (1.2), where y itself satisfies a partial differ-
ential equation (PDE) A[u]y = f , the so called forward problem, where the source
f : Ω→ R is known. Thus, our aim is to solve

min
u,y

1
2∥y − y

δ∥2
H2

s.t. A[u]y − f = 0.
(1.3)

In this Thesis, we will focus on two distinct models representing the forward prob-
lem:.

1.2.1 Elliptic Inverse Problem
As the first model problem, we consider the forward problem A[u]y = f corre-
sponding to the elliptic PDE

−∇ · (u(x)∇y(x)) = f(x), x ∈ Ω,
y(x) = 0, x ∈ ∂Ω,

(1.4)

for a bounded domain Ω ⊂ Rd, d ⩾ 1. It is known from the theory of PDEs
[38] that (1.4) admits a unique (weak) solution y. The inverse problem to (1.4) is
now to find a solution u†,δ to (1.3) with given noisy data yδ. This model problem,
for example, occurs in groundwater filtration and inverse conductivity problems
[7, 23, 80, 112].

1.2.2 Inverse Scattering Problem for the Wave Equation
Next, as a second model problem, we consider the forward problem to be the wave
equation in time-domain

∂2

∂t2
y(x, t)−∇ · (u(x)∇y(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ),

y(x, 0) = ∂
∂t
y(x, 0) = 0, x ∈ Ω,

∂
∂t
y(x, t) +

√
u(x) ∂

∂n
y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

(1.5)

4



Chapter 1. Introduction

for a bounded spatial domain Ω ⊂ Rd, d ⩾ 1, and time-domain (0, T ), T > 0, where
we impose zero initial conditions and absorbing boundary conditions [36, 47].
Here, u denotes the squared wave speed and f the known source which illuminates
the medium, as illustrated in Figure 1.1.

In the context of seismic inversion where one is interested to probe the Earth
as shown in Figure 1.1 and only data at the boundary of Ω can be measured, this
method is known as the full waveform inversion (FWI). Thus, we wish to solve

min
u,y

1
2

∫ T

0

∫
∂Ω
|y(x, t)− yδ(x, t)| dx dt.

s.t. (1.5).
(1.6)

Using an iterative minimization algorithm to solve (1.6). This was originally stud-
ied by Bamberger, Chavent, and Lailly [14] as well as Tarantola [114, 115]. Instead
of considering the time dependent model problem (1.6), one can also assume that
the corresponding forward problem to solve the FWI is given in the frequency do-
main, see Pratt et al. [95–97], which is obtained by using a Fourier transform on
(1.5). Thus, this eliminates the time-dependency, resulting in a stationary PDE
which now depends on the frequency.

1.3 Outline and Main Contribution
De Buhan and Osses [29, Section 5.4], as well as De Buhan and Kray [28], recently
introduced an iterative adaptive method to solve inverse problems. Instead of
minimizing (1.2) within the entire space H1, they employ a sequence of subspaces
{Ψm}m ⊂ H1, adaptively chosen after each iteration. These subspaces consist of
the first few eigenfunctions of a well chosen judicious elliptic differential operator
Lε[um], ε > 0, where um denotes the previous solution to the inverse problem in
the search space Ψm.

Since Lε[um] depends on the previous solution um, the eigenfunctions, and con-
sequently the new search space, also depend on um. As a result, (good) information
from um is successively transported to the new search space, leading to a better
reconstruction um+1 in the subsequent iteration.

This choice of search spaces has proven to be highly effective in solving inverse
medium problems whenever the exact yet unknown medium is assumed to be
piecewise constant. It has been used for various model problems, such as acoustic
[44, 50], electromagnetic [27], and, combined with frequency stepping, for seismic
inverse scattering problems [39, 48], as well as in optimal control [104]. How-
ever, the choice of the dimension of the search space was arbitrary until Baffet,
Grote, and Tang [11] introduced a strategy to choose its dimension adaptively. In
this work, they also made the first progress in developing mathematical theory to

5



Chapter 1. Introduction

study the approximation of piecewise constant functions v by the eigenfunctions
of the elliptic operator Lε[v]. This led to rigorous L2-error estimates proven by
Baffet, Gleichmann, and Grote [10]. Recently, Gleichmann and Grote [43] estab-
lished convergence and regularization theory for the adaptive inversion method,
introducing a new criterion to select the eigenfunctions incorporated into the new
search space. This has proven crucial in reconstructing small inclusions inside the
medium, where the previous methods have failed to detect these.

The structure of this Thesis is as follows. In Chapter I, we delve into the theory
concerning inverse problems, discuss their solvability, realization, and numerical
methods to practically solve inverse medium problems. Chapter II introduces
the Adaptive Spectral (AS) decomposition, establish its approximation properties
based on [10, 11], and validate these theoretical results numerically. In Section
6 of Chapter III, we present the general iterative Adaptive Inversion method for
solving inverse problems. This method involves solving (1.2) in a sequence of
finite dimensional subspaces Ψm ⊂ H1, which may not be known beforehand. We
identify a crucial angle condition that ensures the convergence of the Adaptive
Inversion method and also prove its effectiveness as a regularization technique. To
further enhance the approach, we combine the Adaptive Inversion method with the
AS decomposition, resulting in the Adaptive Spectral Inversion (ASI) Algorithm
presented in Section 7. This algorithm incorporates the angle condition introduced
in Section 6. Finally, in Section 8, we present various numerical experiments to
illustrate the performance of the ASI method and validate the theory presented in
Section 6.
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Chapter 2

Numerical Methods

In general, it is not possible to obtain
closed or explicit forms for the solu-
tion of inverse problems or even the for-
ward problem. However, using numeri-
cal methods we are able to approximate
the solution to the forward and inverse
problem numerically. To do so, there
are mainly two methods: Finite Differ-
ences (FD) and Finite Elements (FE).

Finite Difference Methods rely on
approximating derivatives with finite
differences. Therefore, one has to dis-
cretize the domain of interest into dis-
crete grid points and apply an appro-
priate finite difference scheme, usually resulting in a system of linear equations.
This system can then be solved with appropriate matrix algebra techniques. How-
ever, the drawback of the FD method is that one is limited to simple geometric
shapes of the domain, such as rectangles or disks. The Finite Element Method
(FEM), which we will solely use in this Thesis, on the other hand, discretizes the
domain of interest in small, finitely many elements – usually triangles or rectan-
gles in two dimensions – which is called a mesh. This method of discretizing the
domain introduces more freedom to mesh domains and admits more complex ge-
ometries such as the π-shaped domain shown above. Another huge advantage is
that the elements in the mesh do not have to admit the same size, thus this allows
us to have a finer mesh size and therefore have a better resolution where edges
or small features are located in the domain. Before introducing the FEM we first
need some theory from functional analysis.

8



Chapter 2. Numerical Methods

2.1 A Brief Survey of Functional Analysis
This chapter briefly outlines the basic concepts of functional analysis needed
throughout this Thesis. For more details we refer to the standard literature
[6, 100, 128, 129] and the references therein.

2.1.1 Derivative of Functionals
Consider a Hilbert space H and a functional J that maps each element of H to a
real number,

J : H → R,

equipped with the norm

∥J∥H→R = sup
∥u∥H ̸=0

|J(u)|
∥u∥H

= sup
∥u∥H=1

|J(u)|.

The functional J is Gateaux differentiable in u ∈ H in the direction v ∈ H,
∥v∥H = 1, if the limit

J ′(u; v) = lim
ε→0

J(u+ εv)− J(u)
ε

= ∂

∂ε
J(u+ εv)|ε=0

exists. If it exists for all directions v, we say that J is Gateaux differentiable at u.
Note that the functional J ′(u; ·) : H → R may not be linear. However, the Fréchet

derivative J ′(u) : H → R of J in u is the unique linear operator defined by

J(u+ v) = J(u) + J ′(u)v + o(∥v∥H)

or, equivalently,

lim
∥v∥H→0

J(u+ v)− J(u)− J ′(u)v
∥v∥H

.

Note that if J is Fréchet differentiable it is also Gateaux differentiable with Gateaux
derivative

F ′(u; v) = F ′(u)v,

thus the Gateaux derivative is linear for each direction v. However, the converse
does not hold.

Up to now, we have not used that H is a Banach space. Hence the concepts
introduced also hold true for any normed space. Exploiting that H is equipped
with a scalar product (·, ·)H , we know from the Riesz representation theorem that
there exists a uniquely determined element ∇J(u) ∈ H, such that

J ′(u)v = (∇J(u), v)H , ∀v ∈ H, with ∥J ′(u)∥H→R = ∥∇J(u)∥H . (2.1)

9



Chapter 2. Numerical Methods

2.1.2 Lebesgue and Sobolev Spaces
To analyze PDEs the usual spaces of p-times differentiable function Cp(Ω), for
Ω ⊂ Rd bounded, are not sufficient anymore and we have to extend them to the
so-called Lebesgue and Sobolev spaces that are no longer defined pointwise on Ω.
Thus we identify two functions u, v with each other if u(x) = v(x) for x ∈ Ω except
on a null set. We may simply denote this by u(x) = v(x) a.e. or u = v.

Now, we define the Lebesgue space Lp(Ω) for 1 ⩽ p <∞ via

Lp(Ω) =
{
u : Ω→ R :

∫
Ω
|u(x)|p dx <∞

}
,

with corresponding norm

∥u∥Lp(Ω) =
(∫

Ω
|u(x)|p dx

)1/p

and for p =∞ via

L∞(Ω) =
{
u : Ω→ R : ∥u∥L∞(Ω) <∞

}
,

∥u∥L∞(Ω) = ess supx∈Ω |u(x)|.

One can show that for 1 ⩽ p < q ⩽∞ we obtain the embedding Lq(Ω) ⊂ Lp(Ω) for
the Lebesgue spaces. For p = 2 it is easy to see that the space of square integrable
functions L2(Ω) is a Hilbert space, equipped with the underlying scalar product
and induced norm

(u, v)L2(Ω) =
∫

Ω
u(x)v(x) dx,

∥u∥L2(Ω) =
∫

Ω
|u(x)|2 dx.

Note that there exists an analogy to the spaces of sequences: Consider a se-
quence x = (x1, x2, x3, . . .). We say that x ∈ ℓp if ∥x∥ℓp <∞, with

∥x∥ℓp =
(∑

k

|xk|
)1/p

, 1 ⩽ p <∞,

∥x∥ℓ∞ = sup
k
|xk|.

As with L2(Ω), ℓ2 is also a Hilbert space with a corresponding underlying scalar
product.

Since PDEs involve derivatives, see both model problems (1.4) and (1.5), we
now extend the concept of a derivative to the weak derivative for Lebesgue spaces.

10
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For a multi index α = (α1, . . . , αn) ∈ Nn, we define the αth weak derivative v of u
if ∫

Ω
uDαφ = (−1)|α|

∫
Ω
vφ

holds for all φ ∈ C∞
c (Ω) with

Dαφ(x) = ∂|α|φ(x)
∂xα1

1 · · · ∂xαn
n

.

We then denote the weak derivative of u by v = Dαu. With this, we can define
the Sobolev space W k,p(Ω) via

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀|α| ⩽ k} ,
with its corresponding norm

W k,p(Ω) =



∑
|α|⩽k

∥Dαu∥p
Lp(Ω)

1/p

, 1 ⩽ p <∞,

max
|α|⩽k
∥Dαu∥L∞(Ω), p =∞.

(2.2)

If we define the seminorm by

|u|W k,p(Ω) =
 ∑

|α|=k

∥Dαu∥p
Lp(Ω)

1/p

,

(2.2) simply reads as

∥u∥W k,p(Ω) =
 k∑

j=0
|u|pW j,p(Ω)

1/p

.

For p = 2 the Sobolev space W k,2(Ω) is also a Hilbert space, commonly denoted
by Hk(Ω), with underlying scalar product

(u, v)Hk(Ω) =
∑

|α|⩽k

(Dαu,Dαv)L2(Ω),

and is often needed for the analysis of PDEs. Next, we denote the function space
Hk

0 (Ω) ⊂ Hk(Ω) by all functions that simply correspond to all functions in Hk(Ω)
with zero boundary. An important space, especially in the context of PDEs and
the FEM, is H1(Ω) with scalar product, seminorm, and norm given by

(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω),

|u|H1(Ω) = ∥∇u∥L2(Ω),

∥u∥H1(Ω) =
√
∥u∥2

L2(Ω) + |u|2H1(Ω).

With this, we can now introduce the Galerkin and the Finite Element Method.

11
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2.2 The Ritz-Galerkin and Finite Element Method
Before we discuss methods to solve inverse problems we first have to study solving
the forward problem given by a PDE. Since, in general, it is not possible to obtain
explicit forms for the solution of PDEs, we will introduce the FEM to obtain a
numerical solution, an approximation to the exact solution. Since this chapter only
covers the numerical aspect of solving PDEs, we refer to the standard literature
[38, 54] for the theoretical aspects. Also, this chapter is not meant to cover all the
details about the FEM and we refer to [9, 38, 54, 98] for a more in-depth reading,
as well as [73] for a good guide regarding implementation.

Let us consider the elliptic PDE as given in the test example (1.4),

−∇ · (u∇y) = f in Ω,
y = 0 on ∂Ω,

(2.3)

for a bounded domain Ω ⊂ Rd, known source f , and unknown solution y. Hence,
classical or strong solutions to (2.3) have to be in C2(Ω). However, if we consider
its variational or weak form, we allow solutions in a wider class of function spaces.
To obtain the weak formulation of (2.3) we formally integrate (2.3) over Ω, use
Green’s theorem, and incorporate the boundary conditions on ∂Ω. Thus, the weak
problem corresponding to (2.3) is: Find y ∈ H1

0 (Ω) such that

a(y, z) = (f, z)L2(Ω), ∀ z ∈ H1
0 (Ω), (2.4)

for the given bilinear form a(y, z) = (u∇y,∇z)L2(Ω).

2.2.1 The Ritz-Galerkin Method
To solve (2.4) numerically, a natural approach would be to consider (2.4) not in in
H1(Ω) or H1

0 (Ω), but in a finite dimensional subspace V h ⊂ H1(Ω) or V h
0 = V h ∩

H1
0 (Ω), as introduced by Ritz [101] and Galerkin [40]. The parameter h > 0 acts as

a discretization parameter and suggest that for h→ 0 the solution obtained in V h

should converge to the exact solution in H1(Ω). Thus, the Galerkin formulation
to (2.4) is: Find yh ∈ V h such that

a(yh, zh) = (f, zh)L2(Ω) ∀ zh ∈ V h. (2.5)

If we choose a basis {φ1, . . . , φN} of V h we can expand yh in V h satisfying

yh =
N∑

k=1
ykφk.

12
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Since (2.5) holds for all zh ∈ V h, it also holds for all basis functions φj. Hence,
this Ansatz leads to the linear system of equations

N∑
k=1

a(φk, φj)yk = (f, φj)L2(Ω), j = 1, . . . , N,

which we write in matrix-vector-notation as

Ay = f , (2.6)

where y = [y1, . . . , yN ]⊤ is the solution vector and

Aj,k = a(φk, φj), fj = (f, φj)L2(Ω),

the stiffness matrix and load vector, respectively. Additionally, we will define the
mass matrix M, which we will need later, via

Mj,k = (φk, φj)L2(Ω). (2.7)

The last piece necessary to solve (2.5) numerically, is the choice of the underlying
discrete space V h.

2.2.2 The Finite Element Method
The first step to specify a finite element space V h is to partition the domain Ω
into elements, i.e. as shown in Figure 2.1. Common elements in two dimensions are
triangles or rectangles and in three dimensions tetrahedrons, prisms, or hexahe-
drons. In the following, we will restrict ourselves to triangles in R2. A triangulation
Th = {T1, . . . , TM} is an admissible triangulation for Ω if

(i) Ω = ∪M
j=1Tj

(ii) and for k ̸= j, Tk ∩Tj is either empty, consists of exactly one common vertex
of Tk and Tj, or is a common edge of Tk and Tj.

Let HT be the radius of the circumscribed circle of a triangle T and hT the radius
of its inscribed circle. We call a family of triangulations {Th}h>0

(i) shape-regular, if there exists κ > 0 such that

max
T ∈T

HT

hT

⩽ κ ∀ T ∈ {Th}h>0

(ii) and quasi-uniform, if there exists c > 0 such that

maxT ∈T HT

minT ∈T HT

⩽ c ∀ T ∈ {Th}h>0.
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Fig. 2.1: Elliptic forward problem: Finite element solution (bottom) for the elliptic
problem (2.3) with corresponding triangulation of a moustache shaped domain
(top).

Next, we are going to employ the finite element space V h. Since there are a lot
of different finite elements [1], some of them fulfilling only a special purpose, we
will restrict ourselves to the space of piecewise polynomials of degree r ⩾ 1,

Pr = {z ∈ L2(Ω) : z|T ∈ Pr(T ) ∀T ∈ Th},

where Pr(T ) denotes the polynomials of degree r on the triangle T . Thus, a natural
choice of basis functions {φk}N

k=1 are the functions satisfying

φk(xj) = δk,j, 1 ⩽ k, j ⩽ N,

on each node xk of the underlying mesh. In practice, the calculation of the mass
matrix, stiffness matrix, and load vector will first be done over each element T ∈ Th

and then take the sum over all elements. Computing the integrals over each element
T is simply done by transforming T to a reference element T̂ , where we then need
the local basis functions φ̂k, k = 1, . . . N̂ satisfying φ̂j(x̂k) = δj,k on the local nodes
x̂k of T̂ , where N̂ is the number of local basis functions and thus the number of
nodes on the reference element. The computation of these integrals over T̂ can
then be done explicitly or with an appropriate quadrature rule. In Figure 2.2
(a) the reference element T̂ being the unit triangle, together with its nodes x̂k, is
shown for P1,P2, and P3 finite elements.
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(a) From left to right: Each node x̂k on the unit triangle T̂ for P1, P2, and P3 finite elements.

(b) From left to right: Each node x̂k on the unit triangle T̂ for P1
b , P2

b , and P3
b finite elements.

Fig. 2.2: Reference element T̂ : Nodes x̂k for standard finite elements Pr (top) and
Pr

b -FE with bubble function b ∈ P (bottom).

In the next section we will see that, for time dependent problems, we usually
have to use a numerical scheme in time after applying the FEM in space to obtain
numerical solutions. Even if we do this with an explicit method, e.g. the leap frog
method, the mass matrix has to be inverted in each time-iteration, see Section 2.3.
To avoid this, we use the mass lumping technique [24, 84], where we approximate
the mass matrix M with a diagonal mass matrix M̃, also called the lumped mass
matrix, without losing any accuracy in the numerical solution. Since the lumped
mass matrix is diagonal, its inverse is also diagonal and cheap to compute. To
obtain M̃ for P1 elements we have to choose the trapezoidal quadrature rule to
calculate the integrals that make up the the mass matrix (2.7) numerically. For
higher order elements, only choosing an appropriate quadrature rule is no longer
sufficient. We also have to consider additional basis functions bj, so called bubble

functions, together with the standard basis functions φ̂k, equipped with an appro-
priate quadrature rule, see [84, Table 1]. We will denote this space by Pr

b = Pr⊕[b].
For Pr

b elements, with r ⩾ 2, each bubble function is a polynomial of degree r+ 1.
Thus Pr ⊂ Pr

b ⊂ Pr+1 holds. With this, Pr
b yields the same accuracy as Pr how-

ever, only by adding the basis function of one degree higher. A comparison of the
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basis functions and nodes for Pr and Pr
b elements is illustrated in Figure 2.2 and

2.3.

(a) φ̂k (b) b1

Fig. 2.3: Standard FE basis functions: φ̂k, k = 1, . . . , 6, for P2 FE (left), as well
as the bubble function b1 ∈ P3 (right) to obtain the finite element space P2

b

and ensure mass lumping.

As an example we consider problem (1.4),

−∇ · (u∇y) = f in Ω,
y = 0 on ∂Ω,

for a bounded domain Ω ∈ Rd. As seen above, its weak form is given by (2.4)

a(y, z) = (f, z)L2(Ω), ∀ z ∈ H1
0 (Ω)

and its Galerkin formulation by (2.5)

a(yh, zh) = (f, zh)L2(Ω), ∀ zh ∈ V h
0 . (2.8)

As the domain Ω, we consider a moustache-shaped domain and use the triangula-
tion as shown in Figure 2.1. Next, we choose V h = P1 elements as the underlying
finite element space, thus (2.8) translates to the linear system Ay = f , c.f. (2.6).
The numerical finite element solution obtained by (2.8) can be seen in Figure 2.1
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2.3 The Leap Frog Method
Before we introduce the leap frog method we take a glimpse at the wave equation
(1.5), considering homogeneous boundary data and zero initial conditions

∂2

∂t2
y(x, t)−∇ · (u(x)∇y(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ),

y(x, 0) = ∂
∂t
y(x, 0) = 0, x ∈ Ω,
y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ).

(2.9)

Similarly as above, we can derive the (semi-discrete) Galerkin formulation for
(2.9). Find yh ∈ C2((0, T ), V h) such that

∂2

∂t2
(yh(t), zh) + a(yh(t), zh) = (f(·, t), zh) ∀ zh ∈ V h

0 , t ∈ (0, T )

yh(t) = ∂
∂t
yh(t) = 0.

Thus, if we choose a basis {φ1, . . . , φN} of V h, we can expand yh via

yh(t) =
N∑

k=1
yk(t)φk

which leads to the finite element formulation

M
∂2

∂t2
y(t) + Ay(t) = f(t), y(t)|t=0 = ∂

∂t
y(t)|t=0 = 0, (2.10)

where

y(t) = [y1(t), . . . , yN(t)]⊤,
f(t) = [f1(t), . . . , fN(t)]⊤, with fk = (f(t), φk)L2(Ω).

The resulting semi discrete finite element formulation (2.10) corresponds to an
ordinary differential equation (ODE) in time. To solve this ODE we will use
the leap frog method [89], see also [56, Chapter I.1.4 and the following], which
approximates the second time-derivative with central finite differences. For this,
we discretize the time domain (0, T ) via 0 = t0 < t1 < . . . < tNT

= T , tn = n∆t
for the time step size1 ∆t > 0, denote by yn ≈ y(tn) the fully discrete solution at

1Note that we can not choose an arbitrarily (large) time step size ∆t > 0. The step size has to
satisfy a CFL-condition [26] that couples the spatial discretization with the time discretization,
where usually a finer mesh size results in a finer time step. Thus, if only a few elements in
the mesh are small in contrast to the others, the time step size is depicted only with respect to
the smallest elements, resulting in a huge computational effort without gaining any significant
accuracy on larger elements. The leap frog based local time stepping method [31, 49] solves this
problem by only considering small time steps whenever the element size is small but allows larger
time steps on coarser elements without losing any accuracy, thus keeping the computational costs
low.
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time tn, and set fn = f(tn). Then, the fully discrete wave equation obtained with
the leap frog method is given by

M
yn+1 − 2yn + yn−1

∆t2 + Ayn = fn, n = 1, 2, 3, . . .

or equivalently

Myn+1 = (2M−∆t2A)yn −Myn−1 + ∆t2fn. (2.11)

Even though the leap frog method is fully explicit, we still have to solve a system
of equations in (2.11) for each time step n. To circumvent this, we use the mass
lumping technique as explained in Section 2.2.2. Thus, we formally replace the
mass matrix M by the lumped mass matrix M̃, which is diagonal and its inverse
is easy and cheap to compute. To obtain the solution to (2.11), we first need the
initial conditions yn for n = 0, 1. Since the exact solution satisfies y(x, 0) = 0 for
all x, c.f. (2.9), we set y0 = 0. To obtain y1 we simply use a Taylor expansion

y(∆t) = y(0) + ∂

∂t
y(0) + ∆t2

2
∂2

∂t2
y(0) +O(∆t3)

and together with (2.10) we obtain the initial condition for n = 1 by

M̃y1 = ∆t2
2 f0. (2.12)

Note that if we do not have homogeneous initial conditions or different boundary
conditions for y, (2.12) would admit a slightly different form.

Fig. 2.4: Wave equation: Numerical solution to (2.9) for different times.

A solution to the wave equation (2.9) for different times tn is illustrated in
Figure 2.4, where we used P2

b finite elements for the space discretization and the
leap frog method for time integration.
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2.4 Optimization Methods
This section follows [19, 90] and introduces the two main methods we will use to
numerically solve the optimization problem

min
u∈Rd

J(u), (2.13)

where J : Rd → R. Even though there exist various algorithms to solve (2.13),
such as the gradient free Nelder-Mead method [19, Section 1.8.2], the Conjugate
Gradient (CG) method [19, Section 1.6] and [90, Chapter 5], and the Trust-Region
method [90, Chapter 4], here we only consider descent directional methods.

Descent-directional methods are intuitive and easy to explain: Consider being
lost on top of a mountain, with no map at hand, and wanting to go back to
civilization. Your approach is to go downhill, usually in a direction of descent,
but only for a few steps. After you made these few steps you reorient yourself
and try to find a better direction of descent and take a few more steps in that
direction. This is a generic descent directional method and immediately raises two
main questions. How many steps should you go? Is one enough, or should you
go a thousand before searching for a new direction of descent? What happens
if you land on a plateau where you can no longer find a direction of descent?
Mathematically we can formulate this as follows. We start at a given point u0 ∈ Rd

and determine the search direction d0 and a step length α0 ⩾ 0. Thus, the next
point is given via u1 = u0 + α0d0, where we determine the descent direction d0

such that J(u0 + d0) < J(u0) holds, and the step length α0 as the minimizer
of J(u0 + αd0). After doing this, we proceed to obtain the next iterate um+1 via
um+1 = um+αmdm, where αm is a minimizer of J(um+αdm). If J is differentiable,
a natural choice for dm would be the steepest descent −∇J(um), which leads to
the steepest descent method.

Another selection of a descent direction dm is characterized by ∇J(um)⊤dm <
0. If ∇J(um) ̸= 0, we can pick any dm = −Bm∇J(um), for Bm positiv definit,
to obtain a descent direction. If J is two times differentiable, the choice Bm =
(∇2J(um))−1 yields Newton’s method. Since we do not compute the inverse ex-
plicitly, we have to solve the system

∇2J(um)dm = −∇J(um). (2.14)

Since the Hessian ∇2J is usually not sparse, solving (2.14) is a major drawback of
Newton’s method.

This issue may be solved by allowing descent directions dm that satisfy (2.14)
only up to a small tolerance ηm > 0 satisfying

∥∇J(um) +∇2J(um)dm∥ ⩽ ηm∥∇J(um)∥, (2.15)
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resulting in the inexact Newton’s method [30]. To obtain dm that satisfies (2.15)
may be done by using the (iterative) CG-method to solve (2.14) and stop after the
first few iterations until the tolerance (2.15) is reached.

The last class of directional descent algorithms we wish to mention are quasi

Newton methods. Quasi Newton methods do not use the exact Hessian ∇2J or
its inverse explicitly but try to approximate it in every step. Then, to obtain
the next approximated Hessian, the old approximation gets updated by the use
of the iterates um,um+1 and gradients ∇J(um),∇J(um+1) but not the exact Hes-
sian itself, and is thus cheap to compute. Hence, the benefit of quasi Newton
methods is given by completely omitting the calculation of the true Hessian which
may not be available, hard to derive, or expensive to compute. The most promi-
nent methods are the Davidon-Fletcher-Powell (DFP) and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. There exist two variants of the BFGS method,
where we only focus on the latter method. The first one is to approximate the
Hessian Hm ≈ ∇2J(um) and then obtain the new search direction by solving
Hmdm = −∇J(um). The second one is to approximate the inverse of the Hessian
Bm ≈ (∇2J(um))−1 and thus obtain the new search direction by simply calculat-
ing dm = −Bm∇J(dm). However, one can show that Bm = H−1

m and therefore we
prefer to approximate the inverse Hessian since this only requires a matrix vector
multiplication, avoiding to solve a system of equations.

Comparing the methods above, we see that the steepest descent method only
requires the computation of the gradient at each iteration, whereas the Newton-
type methods require either the exact Hessian (Newton’s and inexact Newton’s
method), or an approximation of it (DFP and BFGS method). Since the exact
Hessian might not always be available, hard to derive, or expensive to compute,
we rely on the BFGS method, where we approximate the inverse of the Hessian in
each step. Thus, the BFGS algorithm is given by
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Algorithm 1 BFGS Algorithm
Input:

initial guess u0, approximated inverse Hessian B0
set m = 0, ε > 0

1. while ∥∇J(um)∥/∥∇J(u0)∥ ⩾ ε do
2. Compute search direction dm = −Bm∇J(um).
3. Compute step size αm > 0.
4. Set

um+1 = um + αmdm

5. Compute

sm = um+1 − um, ym = ∇J(um+1)−∇J(um),

ρm = 1
ym⊤sm

, Vm = I− ρmymsm⊤
.

(2.16)

6. Update the approximate inverse Hessian

Bm+1 = V⊤
mBmVm + smsm⊤

ym⊤sm

7. m← m+ 1

The downside of all Newton-type methods is that the Hessian, or its approx-
imation, is, in general, dense. Thus, these methods are not well suited for large
scale optimization problems. To solve such large scale problems, we make use of
the limited memory BFGS (L-BFGS) method, which does not require storing the
full approximated Hessian and is easy to implement. The L-BFGS method avoids
calculating the descent direction dm = −Bm∇J(um) by an explicit matrix vector
multiplication and instead, finds an approximation of dm by only computing a few
scalar products. Therefore, we only save the first k few vector pairs {si,yi}m−1

i=m−k

computed via (2.16) and use them to calculate rm ≈ Bm∇J(um). After rm is com-
puted, we discard the oldest vector pair {sm−k,ym−k} and replace it by {um,ym, }.
The two-loop recursion to determine rm ≈ Bm∇J(um) is given by the following
algorithm, where we choose B0

m in Step 5 according to [90, equation (7.20)].
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Algorithm 2 approximated search direction
Input: gradient ∇J(um), vector pairs {si,yi}m−1

i=m−k

Output: r ≈ Bm∇J(um)
1. q = ∇J(um)
2. for j = m− 1,m− 2, . . . ,m− k do
3. σj = ρjsj⊤q
4. q = q − αjyj

5. r← B0
m

6. for j = m− k,m− k + 1, . . . ,m− 1 do
7. β = γjyj⊤r
8. r = r + sj(σj − β)

With this, we can state the L-BFGS algorithm as follows.

Algorithm 3 L-BFGS Algorithm
Input:

initial guess u0, approximated inverse Hessian B0
set m = 0, ε > 0

1. while ∥∇J(um)∥/∥∇J(u0)∥ ⩾ ε do
2. Compute search direction dm = −r from Algorithm 2.
3. Compute step size αm > 0.
4. Set

um+1 = um + αmdm

5. if m > k then
6. Discard the vector pair {sm−k,ym−k}.
7. Compute the vector pair {sm,ym} via (2.16).
8. m← m+ 1

The last step is to determine the step size αm. As mentioned above, αm should
be a minimizer of l(α) = J(um+αdm) to ensure a sufficient decrease of J . However,
we do not want to spend too much time and computational effort finding such step
size. Finding αm can be done by the standard inexact line search method, which
is usually realized by iteratively testing different values of αm until we found a
sufficient decrease in J . The simplest condition would be to pick (the largest) αm

satisfying l(αm) = J(um + αmdm) < J(um) = l(0). This may be not enough to
yield a sufficient decrease in l(α) which may leads to a local minimum that does
not yield the best possible αm.
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A popular inexact line search condition is the Armijo condition

J(um + αmdm) ⩽ J(um) + c1αm∇J(um)⊤dm (2.17)

with c1 ∈ (0, 1). Note that this is stricter than l(αm) < l(0), since J(um)⊤dm < 0
in the right side of (2.17). The numerical realization of the Armijo condition is
simply and done via the backtracking algorithm.

Algorithm 4 backtracking line search
Input:

c1, α ∈ (0, 1)
um,dm such that J(um)⊤dm < 0

1. Choose αm = max{αj : j = 0, 1, 2, . . .} such that (2.17) holds:

J(um + αmdm) ⩽ J(um) + c1αm∇J(um)⊤dm.

We can also allow the step size to be larger than 1, which may be incorporated
in Step 1 by also checking negative values for j.

Next, we wish to mention that the backtracking algorithm is a “soft line search”,
since it is not expensive to compute. To find αm via Algorithm 4 to satisfy the
Armijo condition, we only need evaluations of the functional J and not its gradient
∇J , which is, usually for large scale problems, expensive to compute. Using the
backtracking line search to compute the search direction for the BFGS and L-
BFGS algorithm, Algorithm 1 and 3 respectively, we see that we need to compute
∇J(um) anyway, and can thus reuse it in the backtracking Algorithm 4. While the
backtracking line search is appropriate for Newton’s method, it is less well-suited
for quasi-Newton methods, see [90, Section 3.1]. For these methods, the Wolfe

conditions

J(um + αmdm) ⩽ J(um) + c1αm∇J(um)⊤dm,

∇J(um + αmdm)⊤dm ⩾ c2∇J(um)⊤dm,

0 < c1 < c2 < 1, or the Goldstein conditions

J(um) + (1− c)αm∇J(um)⊤dm ⩽ J(um + αmdm)
⩽ J(um) + cαm∇J(um)⊤dm,

with 0 < c < 1/2, are more appropriate. However, they are not easy to implement
in comparison to the backtracking line search and require more expensive gradient
evaluations [90, Algorithm 3.5 & 3.6]. Since our problems of interest are large
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scale, where the gradient is expensive to compute, we will only use the backtrack-
ing line search to find the step length αm combined with the BFGS or L-BFGS
algorithms. Note that there exist more line search methods than those mentioned
above, where an extensive discussion can be found in [91].
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Inverse Problems

In this chapter, we will discuss inverse problems and important techniques to solve
them, namely regularization and numerical implementation. In general, when
solving inverse problems, we are interested to find or reconstruct the cause for
an observed effect. Usually, such inverse problems are ill-posed in the sense of
Hadamar [55]: We will call a mathematical problem well-posed, if

(i) the problem has a solution for all possible data,

(ii) this solution is unique, and

(iii) this solution depends continuously on the data.

Accordingly, we will call a problem ill-posed if it violates one of these three condi-
tions.

In the following, we will study inverse problems of the form

F : H1 → H2, F (u) = y, (3.1)

where y is given, u unknown, and H1, H2 are Hilbert spaces. Note that H1, H2 can
also be Banach spaces, where we refer to the standard literature [63, 107, 109].
Normally we do not have access to the exact data y† but know noised or perturbed
data yδ such that

∥y† − yδ∥H2 ⩽ δ, (3.2)

with δ ⩾ 0 known. Thus, if we denote the exact solution to the noise free problem
of (3.1) by u† satisfying F (u†) = y† and the solution to the noised or perturbed
problem

F (u) = yδ (3.3)
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by u†,δ, we wish to have stability of the form u†,δ → u† as δ → 0.
If the inverse problem can not satisfy condition (i) (existence) or (ii) (unique-

ness) this may be treated by adding constraints to the solution u, for example
that we wish to find the minimal norm solution or add more data, e.g. by invoking
more measurements. However, the stability constraint (iii) needs more sophisti-
cated methods such as regularization.
Example 3.1. A simple example of ill-posed inverse problems is the differentiation

of (noisy) functions. For given y† ∈ H2 = C([0, 1]) we wish to find its derivative

u† := (y†)′ ∈ H1 = C([0, 1]). Thus, the forward operator is given by

F : C([0, 1])→ C([0, 1]), u = y′ 7→ y.

Now we assume that only noisy data yδ is given such that

yδ = y† + η, η(x) = δ sin(kπx), δ ⩾ 0.

Hence, if we denote by u†,δ = (yδ)′ the noised derivative we obtain

∥yδ − y†∥C([0,1]) = ∥η∥C([0,1]) = δ, (3.4)
∥u† − u†,δ∥C([0,1]) = ∥η′∥C([0,1]) = δkπ,

where the latter one can be arbitrarily large for large k, even if the error in the

known data (3.4) is arbitrarily small. To overcome this ill-posedness, we may

consider the image space of F to be C1([0, 1]) and thus know a bound for the noise

and therefore for the data misfit, in the C1-norm,

∥y† − yδ∥C1([0,1]) ⩽ δ,

which yields

∥u† − u†,δ∥C([0,1]) ⩽ ∥y† − yδ∥C1([0,1]) → 0, δ → 0.

This illustrates that ill-posedness also depends on the underlying space and norm.

However, using C1([0, 1]) as the image space would also require y′, which is exactly

the quantity we want to reconstruct.

3.1 Regularization Methods
Next, we discuss some standard regularization strategies for linear and nonlinear
ill-posed inverse problems of the form (3.3)

F : H1 → H2, F (u) = y,

or its least squares representation

min
u∈H1

J(u) = min
u∈H1

1
2∥F (u)− y∥2

H2 . (3.5)
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3.1.1 Truncated Singular Value Decomposition
First, we will discuss the truncated singular value decomposition (TSVD) for the
linear finite dimensional case, c.f. [8, 61, 125]. For the infinite dimensional case
with linear operators we refer to [35, Chapter 3 & Example 4.8]

Assume we have a linear inverse problem of the form (3.3) with H1 = Rn,
H2 = Rm, n ⩽ m and the corresponding matrix F ∈ Rm×n with full rank F = n.
Thus, there exists a singular value decomposition (SVD) of F, given by

F = WΣV⊤ (3.6)

with unitary

W = [w1| . . . |wm] ∈ Rm×m,

V = [v1| . . . |vn] ∈ Rn×n,

and Σ ∈ Rm×n where, for 1 ⩽ i ⩽ n, Σi,i = σi for a sequence of singular values
σ1 ⩾ σ2 ⩾ . . . ⩾ σn > 0 and zero otherwise. Again, we denote by u† the exact
solution with exact data y† satisfying Fu† = y† and by u†,δ the solution to the
inverse problem

Fu = yδ

with given perturbed data

yδ = y† + η, ∥η∥ℓ2 = δ, δ ⩾ 0.

Now, we can use the SVD (3.6) of F to obtain its pseudo inverse

F† = VΣ†W⊤

with Σ†
i,i = 1/σi, 1 ⩽ i ⩽ n and zero otherwise. Thus, the minimal norm solution

can be expressed as

u†,δ = F†yδ = VΣ†W⊤yδ =
n∑

i=1

1
σi

(wi,yδ)ℓ2vi. (3.7)

This expression easily shows that small singular values σi result in an amplification
of errors in the noisy data yδ and thus leads to a noisy, unregularized solution.
The simplest way to regularize the solution is by neglecting all singular values that
are “small enough”, that is, truncating all singular values that satisfy σ2

i ⩽ α for
α ⩾ 0. This yields the truncated singular value decomposition (TSVD) solution
of (3.7)

uα,δ =
∑

σ2
i >α

1
σi

(wi,yδ)ℓ2vi.
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Since we can express the error e as

e = uα,δ − u† = eδ − eα,

where

eδ =
∑

σ2
i >α

1
σi

(wi, η)ℓ2vi,

eα =
∑

σ2
i ⩽α

1
σi

(wi,y†)ℓ2vi

with the noise amplification error eδ due to given noisy data and solution trunca-

tion error eα due to regularization. This immediately implies that

eα → 0, α→ 0.

If we choose α = α(δ) = δp, 0 < p < 2, the noise amplification error tends to zero
as δ → 0

∥eδ∥ℓ2 ⩽
δ√
α

= δ1−p/2 → 0, δ → 0,

and for this particular choice of α = α(δ), the solution truncation error eα(δ) also
tends to 0 as δ approaches 0. In summary, if we set α = α(δ) = δp for 0 < p < 2,
we obtain convergence of the form

uα(δ),δ → u†, δ → 0.

This simple examination shows that the parameter α(δ), α(δ) → 0 for δ → 0,
balances the solution truncation error and noise amplification error. Thus, α has
to be chosen wisely such that the noise does not affect the reconstruction, while
too much important information to reconstruct u† won’t be neglected.

3.1.2 Regularization and Parameter Choice Rules
As we have seen, the parameter α specifies how well the exact solution u† can
be approximated or regularized. Consequently, we will call α the regularization

parameter.

Definition 3.2. A function

α : R⩾0 ×H2 → R⩾0, (δ, yδ) 7→ α(δ, yδ),
α(δ, yδ)→ 0, δ → 0,

is called a parameter choice rule and we distinguish the three cases
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(i) a priori choice rules if α = α(δ) only depends on δ,

(ii) a posteriori choice rules if α = α(δ, yδ) depends on both, δ and yδ,

(iii) heuristic choice rules if α = α(yδ) only depends on yδ.

Since we only consider the regularization parameter to be a parameter choice
rule, we simply refer to a regularization parameter if it satisfies the definition of a
parameter choice rule.

Definition 3.3. Consider a regularization parameter α = α(δ, yδ) depending on
the noise δ ⩾ 0 and noisy data yδ. We will call a family {Rα}α⩾0, Rα : H2 → H1
a regularization method for the inverse problem F (u) = y, if it approximates the
pseudo inverse F † pointwise for every element in the domain of F †, i.e.

Rα(y)→ F †y, α→ 0.

Additionally, if α = α(δ, yδ) is a parameter choice rule satisfying Definition 3.2,
Rα(δ,yδ) is said to be a (convergent) regularization method if

Rα(δ,yδ)y
δ → F †(y†), δ → 0. (3.8)

If we denote by uα(δ,yδ),δ = Rα(δ,yδ)y
δ the regularized solution to the noised inverse

problem and by u† = F †(y†) the exact solution to the (noise-free) inverse problem,
(3.8) simply reads

uα(δ,yδ),δ → u†, δ → 0.

The benefit of heuristic choice rules, especially in real life applications, is that
one only needs the already given data yδ and not the noise δ, or an approximation
of it, which may not be available. However, Bakushinskii [12] showed that using
a heuristic choice rule (iii) to solve ill-posed problems cannot yield a convergent
regularization method. Of course, regularization parameters such as the quasi-

optimality criterion by Tikhonov, Arsenin, and Glasko [119, 120], the L-curve

method by Hansen and O’Leary [59, 60, 62], and the modified discrepancy partner

rule [58] by Hanke and Raus have been studied, but it outlines that such methods
have to be treated with care.

A priori parameter choice rules (i), on the other hand, only make use of the
noise δ and do not take the measured data yδ into account. Hence, the parameter
α = α(δ) may be determined before actually solving the inverse problem. For a
linear forward operator F , there always exists an a priori parameter choice rule
such that the regularization Rα(δ) is a convergent regularization method, see [35,
Proposition 3.4].
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Theorem 3.4. Consider a linear forward operator F and its pseudo inverse F †.

Let {Rα}α⩾0 be a regularization method according to Definition 3.3 which is con-

tinuous but possibly nonlinear. Then, for every element y† in the domain of F †,

there exists an a priori parameter choice rule α(δ) such that Rα(δ) is a convergent

regularization method (3.8).

Proof. Since, by assumption, Rα is a regularization method, there exists for all
ε > 0 a monotonically decreasing function σ : R>0 → R>0, ε 7→ σ(ε), with
limε→0 σ(ε)→ 0, such that

∥Rσ(ε)y − T †y∥H1 ⩽
ε

2 .

Since Rσ(ε) is, itself, continuous, for every fixed ε > 0 there exists ρ(ε) > 0 such
that

∥Rσ(ε)z −Rσ(ε)y∥H1 ⩽
ε

2 if ∥z − y∥H2 ⩽ ρ(ε).

Without loss of generality, we can assume that ρ : R>0 → R>0, limε→0 ρ(ε) = 0 is
strictly increasing and thus, it admits a strictly monotone and continuous inverse
ρ−1 with limδ→0 ρ

−1(δ) = 0. Thus, we can define the monotonic function

α : R>0 → R>0, δ 7→ α(δ) = σ(ρ−1(δ)), with lim
δ→0

α(δ) = 0. (3.9)

Hence, for all ε > 0 there exists ρ = ρ(δ) > 0 such that, for ∥yδ − y†∥H2 ⩽ δ,

∥Rα(δ)y
δ − F †y†∥H1 ⩽ ∥Rα(δ)y

δ −Rα(δ)y
†∥H1 + ∥Rα(δ)y

† − F †y†∥H1 ⩽ ε.

This implies that α(δ), given by (3.9), is a parameter choice rule and thus, Rα(δ)
is a convergent regularization method.

Note that in Section 3.1.1, where we studied the TSVD, we truncated all singu-
lar values σi satisfying σ2

i ⩽ α(δ) = δp, 0 < p < 2. Thus, this choice is an a priori
choice rule. A common a priori choice rule is the balancing principle by Lepskij
[75], where the propagated noise error is taken into account. For an extensive dis-
cussion and numerical comparison regarding different parameter choice rules we
refer to Bauer and Lukas [15].

Even though there exist more a posteriori parameter choice rules [15], through-
out this Thesis we will only discuss and use the discrepancy principle. This param-
eter choice rule was first proposed by Phillips [94] and later analyzed by Morozov
[82, 83]. The motivation is simple and intuitive: The regularized solution uα,δ

should not overfit the data misfit. Recall that we have given data yδ and unknown
data y† = F (u†) with the exact but unknown solution u† such that

∥F (u†)− yδ∥H2 = ∥y† − yδ∥H2 ⩽ δ, (3.10)
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with δ ⩾ 0 known. Thus, it is not reasonable to obtain a smaller data misfit in
(3.10) with uα,δ = Rα(y†) than with the exact solution u†. Hence, we want to
choose (the possibly largest) α = α(δ, yδ) such that

∥F (uα,δ)− yδ∥H2 ⩽ τδ, τ > 1. (3.11)

For linear inverse problems it can be shown that the regularization method Rα,
where α = α(δ, yδ) is chosen according to the discrepancy principle (3.11), is a
convergent regularization method, see, for example, [35, Section 4.3 & Theorem
3.17]. Even though the discrepancy principle is easy to validate, since we only need
one evaluation of the forward operator to compute the data misfit, its drawback is
that it needs precise noise δ. If δ is not known exactly and only an approximated
value is available, this parameter choice rule may lead to very poor solutions, see
[60, Chapter 7] and also [57]. In practice we consider a monotonically decreasing
null sequence {αn}n⩾1 and compute uαn,δ = Rαny

δ until the discrepancy principle
(3.11) is satisfied.

Next, we will study different types of regularization methods, where the forward
operator F is not necessarily linear. For the theory of linear inverse problems we
refer to the standard literature [99, Chapter 3], [63, Chapter 3], [71, Chapter 2 &
3], and [35, Chapter 4 – 8]

3.1.3 Tikhonov Regularization
Recall that we want to solve the inverse problem (3.3) with given noisy data as
in (3.2). That is, for F : H1 → H2, with H1, H2 Hilbert spaces, we wish to find
u†,δ ∈ H1 satisfying

F (u†,δ) = yδ, where ∥y† − yδ∥H2 ⩽ δ

for the known noise δ ⩾ 0 and with exact but unknown data y† = F (u†) corre-
sponding to the exact but unknown solution u†. Instead of solving F (u) = yδ, for
α > 0 Tikhonov proposed to minimize the Tikhonov functional [116, 117]

Jδ
α : H1 → R, Jδ

α(u) = 1
2∥F (u)− yδ∥2

H2 + α

2 ∥u∥
2
H1 . (3.12)

Following [35, 63, 71] we will obtain the convergence results:

Theorem 3.5. Let F : H1 → H2 be continuous and weak sequentially closed.

Then there exists a minimizer uα,δ of the Tikhonov functional Jδ
α.

Proof. Since Jδ
α(u) ⩾ 0 for all u ∈ H1, there exists a minimizing sequence {um}m

such that

Jδ
α(um)→ n := inf

u∈H1
Jδ

α(u).
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Note that the convergence of the sequence {Jδ
α(um)}m does not imply convergence

of um. However, since {Jδ
α(um)}m converges, it is also bounded. Thus, there exists

N > 0 such that Jδ
α(um) ⩽ N for all m. Since

∥um∥2
H1 ⩽

2
α
Jδ

α(um) ⩽ 2
α
N,

the sequence {um}m is also bounded and thus contains a weakly convergent sub-
sequence, for simplicity denoted by {um}m, such that um ⇀ ū. Analogously we
deduce that the sequence {F (um)}m is bounded and therefore admits a weakly
convergent subsequence, for simplicity again denoted by {F (um)}m, with limit
F (um) ⇀ y. Since F is assumed to be weak sequentially closed we have F (ū) = y
and hence

n ⩽ Jδ
α(ū) = lim

m→∞
Jδ

α(um) = inf
u∈H1

Jδ
α(u) = n.

This implies that uα,δ = ū is a minimizer of the Tikhonov functional Jδ
α.

In general, a minimizer of (3.12) does not have to be unique. However, we can
show stability in the sense that it is continuous with respect to given data yδ.

Theorem 3.6. Let F : H1 → H2 be continuous and weak sequentially closed

and {um}m ⊂ H1, {ym}m ⊂ H2 be two sequences such that ym → y† where um

is the corresponding minimizer of Jδ
α with yδ replaced by ym. Then um has a

weakly convergent subsequence and every accumulation point is a minimizer of Jδ
α.

If additionally, Jδ
α admits a unique minimizer, then the whole sequence {um}m

converges strongly.

Proof. For this technical proof we refer to [35, Theorem 10.2] or [63, Theorem
4.2].

What remains to be shown is that uα,δ converges to the exact solution u† for
δ → 0 if we choose α in dependence of δ wisely.

Theorem 3.7. Let F : H1 → H2 be continuous and weak sequentially closed,

assume that there exists a minimum norm solution u† ∈ H1, i.e. F (u†) = y† with

minimal H1-norm, and consider, for a null-sequence δm → 0, αm = α(δm) with

α(δ)→ 0, δ2

α(δ) → 0, as δ → 0. (3.13)

Then every sequence {uαm,δm}m, where uαm,δm minimizes Jδm
αm

, has a convergent

subsequence and its limit is a minimum norm solution. If this minimum norm

solution is unique, then

lim
δ→0

uα(δ),δ → u†.
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Proof. Since uαm,δm minimizes Jδm
αm

, we obtain

Jδm
αm

(uαm,δm) = 1
2∥F (uαm,δm)− yδm∥2

H2 + αm

2 ∥u
αm,δm∥2

H1

⩽ Jδm
αm

(u†) ⩽ 1
2δ

2
m + αm

2 ∥u
†∥2

H1

(3.14)

and

∥uαm,δm∥2
H1 ⩽

2
αm

Jδm
αm

(uαm,δm) ⩽ Jδm
αm

(u†) ⩽ 2 δ
2
m

αm

+ ∥u†∥2
H1 . (3.15)

From (3.14) it follows that F (uαm,δm)→ y† as m→∞ and (3.15) implies that
the sequence {uαm,δm}m is bounded. Thus it admits a convergent subsequence
denoted by {uαm,δm}m that converges weakly to a limit point ū. The weak sequen-
tially closedness of F yields F (ū) = y†, and ū is a minimum norm solution due to
(3.15) and

∥ū∥2
H1 ⩽ lim sup

n→∞
∥uαm,δm∥2

H1 ⩽ lim sup
n→∞

2 δ
2
m

αm

+ ∥u†∥2
H1 = ∥u†∥2

H1 .

What remains to be shown is that {uαm,δm}m converges strongly to ū. Due to the
weak convergence of {uαm,δm}m, we obtain strong convergence via

∥uαm,δm − ū∥2
H1 = ∥uαm,δm∥2

H1 + ∥ū∥2
H1 − 2(uαm,δm , ū)H1 → 0, m→∞.

(3.16)

Note that this only implies that uαm,δm converges to a minimum norm solution ū
which is not necessarily u†. However, if u† is unique, every sequence {uαm,δm}m

has a convergent subsequence converging to u†. Since u† is itself a minimum norm
solution, we obtain ∥ū∥H1 = ∥u†∥H1 and due to the norm convergence (3.16), we
obtain strong convergence to u†.

Generalization of Tikhonov Regularization

We are able to generalize the framework of the Tikhonov regularization by adding
a regularization or penalty term R to the least square functional J from (3.5), to
obtain the minimization problem

min
u∈H1

Jδ
α = min

u∈H1
Jδ(u) + αR(u) (3.17)

with Jδ(u) = 1/2∥F (u)−yδ∥2
L2(Ω). As we have seen before, choosing the regulariza-

tion term RL2(u) = 1/2∥u∥2
L2(Ω) yields Tikhonov regularization and favors minimal
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L2-norm solutions. However, there are many other realizations of regularization
terms R that are common, for example

sparsity R0(u) = ∥u∥ℓ0 # of nonzero elements of u
(approximately) sparsity R1(u) = ∥u∥ℓ1 =

∑
k∈N
|(u, φk)L2(Ω)|

Total Variation (TV) TV(u) =
∫

Ω
|∇u| = ∥∇u∥L1(Ω)

regularized TV TVε(u) =
∫

Ω

√
|∇u|2 + ε2

semi H1 penalization RH1(u) = 1/2|u|H1(Ω) = 1/2∥∇u∥2
L2(Ω)

where u = ∑
k∈N ukφk, uk = (u, φk)L2(Ω), u = (u1, u2, . . .) for a basis {φk}k ⊂ L2(Ω).

Sparsity promoting regularization techniques can be used when the unknown
medium is known to have many sparse entries, e.g. deblurring a black and white
picture. Instead of using R(u) = ∥u∥ℓ0 as a regularization term, it is more con-
venient (due to an easier realization) to use ∥ · ∥ℓ1 or even ∥ · ∥p

ℓp as penalization
[20, 34, 45]. Total Variation (TV) on the other hand, was first introduced by
Rudin, Osher, and Fatemi [102] in image denoising and is able to accurately re-
move noise while preserving edges and sharp contrast [5, 33]; thus, it is a good
choice if the unknown medium u is known to be piecewise constant. The down-
side of the TV functional is its non-differentiability. However, Vogel and Oman
introduced the regularized TV function TVε [22, 126], which is differentiable and
hence useful to solve (3.17) with gradient-type methods. Semi H1 penalization
on the other hand, is used when the medium is known to be smooth or when the
noise-level δ may be large [70, 108].

3.1.4 Iterative Regularization
Another strategy to obtain regularization for (nonlinear) inverse problems of the
form (3.3) are iterative regularization methods. Such methods rely on a good
initial guess u0,δ and then obtain the next iterate um+1,δ successively via

um+1,δ = um,δ +Gm(um,δ, yδ) (3.18)

for a (non)-linear operator Gm. For analysis regarding iterative methods for linear
inverse problems we refer to Engl, Hanke, and Neubauer [35, Chapter 6 & 7] and
for nonlinear inverse problems to Kaltenbacher, Neubauer, and Scherzer [66]. To
obtain a regularization method, iteration (3.18) has to be stopped by an appro-
priate stopping rule to act as a (convergent) regularization method. For this we
will again consider the discrepancy principle (3.11) acting on the iterative formula.
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That is, we will stop the algorithm at iteration m∗, determined via

m∗ = m∗(δ) = min{m ∈ N : ∥F (um,δ)− yδ∥H2 ⩽ τδ}, τ > 1.

From this, it is clear that the stop criterion depends on the noise-level δ and that
the iteration number m itself acts as a regularization parameter. In the context of
the previous section, the regularization parameter α corresponds to the reciprocal
of m.

The most well known iterative method is the Landweber iteration [72], given
in the context of (3.18) by

um+1,δ = um,δ − F ′(um,δ)∗(yδ − F (um,δ).

Starting from this, it is easy to see that the Landweber iteration simply corresponds
to the gradient descent method to solve the least squares minimization problem
(3.5) with misfit 1/2∥F (u)− yδ∥H2 . We may also combine the Landweber iteration
with Tikhonov regularization, too, to obtain the scheme

um+1,δ = um,δ − [F ′(um,δ)∗(yδ − F (um,δ)) + αmu
m,δ].

Note that in this case, αm is not the regularization parameter but a penalization
parameter that favors to minimize the regularization term when chosen large and
leads to minimization of the misfit when selected small. Usually, one wants a
decreasing sequence for αm Following [35, Section 11.2] and using (3.13), we want
αm to satisfy

αm > 0, 1 ⩽
αm

αm+1
⩽ r, αm → 0, r > 1, m→∞

αm(δ)→ 0, δ2

αm(δ) → 0, δ → 0.
(3.19)

It is easy to verify that the two parameter choices

αm = α0p
m or αm = α0

mp
(3.20)

for α0 = δq, q, p ∈ (0, 1) satisfy the conditions (3.19). Another intuitive choice
proposed by Rudin, Osher, and Fatemi [102] and later used by Tang [113, Section
5.1] is the following. Consider a solution ū that minimizes

Jδ
α(u) = Jδ(u) + αR(u).

Thus, it is a stationary point of Jδ
α and satisfies

0 = (∇Jδ
α(ū), φ)H2 = (∇Jδ(ū), φ)H2 + α(∇R(ū), φ)H2 , ∀φ ∈ H1.
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Choosing φ = ū = um,δ, we may use

αm =


α0
|(∇Jδ(um,δ), um,δ)H2|
|(∇R(um,δ), um,δ)H2 |

if (∇R(um,δ), um,δ)H2 ̸= 0,

0 or as in (3.20) otherwise,

with either α0 = δq or α0 = p, for q, p ∈ (0, 1).
Another class is Newton-type methods, such as the Levenberg-Marquardt method

[76, 78]

um+1,δ = um,δ + dm,δ,

dm,δ = argmin
d∈H1

1
2∥F

′(um,δ)d+ F (um,δ)− yδ∥2
H2 + αm

2 ∥d∥
2
H1

with explicit scheme

um+1,δ = um,δ + (F ′(um,δ)∗F ′(um,δ) + αmI)−1F ′(um,δ)∗(yδ − F (um,δ)),

a modified version of the Levenberg-Marquardt, or iteratively regularized Gauß-

Newton, method proposed by [13]

um+1,δ = um,δ + dm,δ,

dm,δ = argmin
d∈H1

1
2∥F

′(um,δ)d+ F (um,δ)− yδ∥2
H2 + αm

2 ∥d+ um,δ∥2
H1 ,

with explicit scheme

um+1,δ = um,δ + (F ′(um,δ)∗F ′(um,δ) + αmI)−1(F ′(um,δ)∗(yδ − F (um,δ))− αmu
m,δ),

and Broyden’s quasi-Newton method for Hilbert spaces [46, 103]

dm,δ = −(Bm,δ)†(F (um,δ)yδ),
um+1,δ = um,δ + dm,δ,

Bm+1,δ = Bm,δ + (dm,δ, ·)H1

∥dm,δ∥2
H1

(F (um+1,δ)− yδ),

forB0,δ a regular and sufficiently good approximation to F ′(u†), e.g.B0,δ = F ′(u0,δ).
For convergence and regularization theory, as well as different iterative regulariza-
tion methods, we refer to the standard literature [66].

36



Chapter 3. Inverse Problems

3.1.5 Regularization by Discretization
Since, in practice, one usually first discretizes the inverse problem and then solves it
numerically, considering regularization by discretization or projection is a natural
choice and was first started by Natterer [85]. To do so, there are three main
discretization strategies to solve the inverse problem

F : H1 → H2, F (u) = y. (3.21)

(i) Projection in image space, also called the least squares method, where one
considers finite dimensional spaces Hm

2 ⊂ H2,

(ii) projection in preimage space, also called the least squares method, where one
considers finite dimensional spaces Hm

1 ⊂ H1,

(iii) or a combination of both.

Before we further discuss the three methods, we will consider a simple linear exam-
ple where we (poorly) discretize the preimage space and do not obtain convergence.
Consider the identity operator F = I,

I : ℓ2 → ℓ2, Iu = y, (3.22)

with given y = (y1, y2, . . .), yn = 1/n. Since ∥y∥2
ℓ2 = π2/6, we have y ∈ ℓ2

and thus, the exact solution to (3.22) is simply u† = y. We now discretize the
preimage space by Hm

1 = span{(1, 0, . . .)} ⊂ ℓ2 for all m. Thus, the solution to
the discretized equation of (3.22)

Ium = y, um ∈ Hm
1 ,

is given by um = (1, 0, . . .) ̸= u† for all m. This simple example shows that one has
to pay attention to choose an appropriate discretization of the space. Note that
Seidman [110] showed a more general result for the nonconvergence of the least
squares problem to ill-posed inverse problems.

Projection onto image space, or also called the dual least squares for (3.21)
for given noisy data y = yδ, consists of choosing finite dimensional subspaces

H1
2 ⊂ . . . ⊂ Hm

2 ⊂ . . . ⊂ H2,
⋃

m∈N
Hm

2 = H2, (3.23)

to solve

F (u) = ym,δ, ym,δ = ΠHm
2
yδ, (3.24)
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or equivalently

(ΠHm
2
F (u), zm)H2 = (ym,δ, zm)Hm

2
, ∀ zm ∈ Hm

2 ,

successively for m ⩾ 1, until an appropriate stoping criterion is reached, where
ΠHm

2
denotes the projection into Hm

2 . In [65, Theorem 2] Kaltenbacher generalized
the results for liner inverse problems [71, 92, 121] to nonlinear problems, where
she proved that the dual least squares method is, under additional assumptions,
a regularization method whenever the discretization level m, and thus Hm

2 , is
determined by the discrepancy principle

m∗ = m∗(δ) = min{m ∈ N : ∥F (um,δ)− yδ∥H2 ⩽ τδ}, τ > 1, (3.25)

where um,δ denotes the solution to (3.24), that is,

um∗(δ),δ → u†, δ → 0,

for the noise-free solution u† to exact data y†.

Projection in preimage space or also called the least squares method for
(3.21) consists of discretizing the preimage space H1 by finite dimensional sub-
spaces Hm

1 ⊂ H1 and then solve (3.21) for u ∈ Hm
1 . If we choose a basis

{φ1, . . . , φKm} for Hm
2 we thus have to solve

F (
Km∑
k=1

ukφk) = yδ

for u = (u1, . . . , uKm) and set

um,δ = um,δ[u] =
Km∑
k=1

ukφk.

This may be done by solving the minimization problem

min
u∈Hm

1

1
2∥F (u)− yδ∥m

H2 = min
u∈RKm

1
2∥F (u[u])− yδ∥m

H2 . (3.26)

A generalization for the results of linear problems has been carried out by Kaltenbacher
and Offtermatt [68, Theorem 3.4], where the discrepancy principle (3.25) is again
used as the a priori parameter choice rule. Note that here, compared to (3.23),
we only need

∥(I − ΠHm
1

)u†∥H1 → 0, m→∞. (3.27)
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If we consider Hm
1 being the finite element space V hm , c.f. Section 2.2.2, with mesh

size hm = Chm, C > 0 and h > 0 sufficiently small, Hm
1 fulfill property (3.27).

Clearly, the dimension of the spaces would increase in every iteration, thus the
computational cost for solving (3.26) increases. However, one could tackle this
problem by an adaptive grid refinement to not increase the finite element spaces
too much, but also obtain accuracy and regularization [86–88]. An approach to
satisfy (3.27) is to refine and coarsen the grid in each step to use little degrees
of freedom, and thus have less computational cost, without loosing any accuracy
[67].

3.2 Solving Inverse Medium Problems: The Ad-
joint Method

Consider a physical state formulated by a well-posed mathematical model given
by partial differential equations (PDEs) with appropriate boundary conditions and
initial conditions. This can be formulated abstractly as

A[u] : H2 → H3, A[u]y = f, (3.28)

where the operator A[u] depends on the medium u ∈ H1, for H1, H2, H3 Hilbert
spaces. The so-called forward problem now consists in solving (3.28) for y, given
the source f and medium u. The inverse medium problem, on the other hand,
is now the task of determining the cause u of the known behavior y, induced by
the known action f . Thus, we have given data y and f and want to find the
unknown u. The given data y is usually obtained by some measuring device and
thus only a perturbed version of it is known. If we denote the exact, yet unknown,
medium by u† and the exact, but usually not available, data by y†, we denote the
perturbed/noised given data by yδ with known noise δ ⩾ 00,

∥y† − yδ∥H2 ⩽ δ.

Thus, we can not hope to find the exact medium with given perturbed data. We
only wish to find an approximate medium u†,δ, satisfying F (u†,δ) = yδ, of the exact
unknown solution u† that causes the exact, but unknown data y†.

Finding u†,δ can now be achieved by solving the constrained minimization prob-
lem

min
u,y

1
2∥y − y

δ∥2
H2

s.t. A[u]y − f = 0.
(3.29)
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This constrained optimization problem can be solved by two established standard
approaches: minimizing the Lagrange functional or minimizing the reduced misfit.

The Lagrange approach [18, 64], or also called the full-space or all-at-once

approach, eliminates the constraints by multiplying them with the Lagrange mul-
tiplier λ ∈ H3 and then adding it to the misfit. Hence, the Lagrange functional is
given by

Lδ(u, y, λ) = 1
2∥y − y

δ∥2
H2 + (λ,A[u]y − f)H3

and we minimize with respect to (u, y, λ) ∈ (H1 ×H2 ×H3),

min
u,y,λ

Lδ(u, y, λ).

Doing this, we obtain the Karush-Kuhn-Tucker (KKT) point (u†,δ, y†,δ, λ†,δ) min-
imizing Lδ and thus, obtain the cause u†,δ for observed data yδ. As the name
full-space approach suggests, we have to save all three control variables which may
lead to large memory consumption when minimizing Lδ numerically. To reduce
the computational cost, we can use the reduced-space approach [51].

The reduced-space approach tries to set every variable in dependence of the
unknown u. To acquire this, we rewrite the constraint A[u]y = f as the parameter-
to-field map y = y[u] = A[u]−1f . Thus, we formally eliminated the constraint in
(3.29) to obtain the reduced misfit

Jδ(u) = 1
2∥y[u]− yδ∥2

H2 = 1
2∥F (u)− yδ∥2

H2 , (3.30)

where F : H1 → H2, F (u) = y[u] is the forward operator (1.1). Now, we only have
to solve

min
u
Jδ(u) (3.31)

for one variable u, in contrast to the three control variables needed in the full-space
Ansatz, hence reducing the memory cost.

To solve (3.31) we want to use the BFGS, as well as the L-BFGS Algorithm,
explained in Sections 2.4 and 3.1.4. To do so, we need to compute the gradient
of Jδ which may be done in two standard approaches, discretize-then-optimize

and optimize-then-discretize. As the names suggest, the discretize-then-optimize
approach first discretizes the misfit Jδ (3.30), e.g. by finite elements introduced
in Section 2.2.2. This results in a finite dimensional least squares problem, where
the gradient then has to be computed in each unit direction ej. However, we will
focus on the optimize-then-discretize approach, where we compute the derivative
(Jδ)′(u; v) in u ∈ H1 with respect to the direction v ∈ H1 first and discretize
afterwards.
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3.2.1 Elliptic Inverse Problem
Consider H1 = H2 = H3 = L2(Ω) and the misfit Jδ : L2(Ω)→ R given by

Jδ(u) = 1
2

∫
Ω
|y[u]− yδ|2,

thus, we have available data yδ in the whole domain Ω. To illustrate the computa-
tion of the gradient of Jδ, we consider, as an example, the elliptic inverse problem
with forward problem given by (1.4),

−∇ · (u∇y) = f in Ω,
y = 0 on ∂Ω,

and its corresponding weak formulation∫
Ω
u∇y · ∇z =

∫
Ω
fz ∀z ∈ H1

0 (Ω). (3.32)

Taking the derivative of Jδ in u in direction v yields

(Jδ)′(u; v) =
∫

Ω
y′[u; v](y[u]− yδ), (3.33)

where y′[u; v] denotes the derivative of y in u with respect to v. To calculate y′[u; v]
we first take the derivative of the weak form (3.32), where we use the chain rule
to obtain ∫

Ω
v∇y[u] · ∇z +

∫
Ω
u∇y′[u; v] · ∇z = 0 ∀z ∈ H1

0 ,

since the right side of (3.32) does not depend on u. Then, for cosmetic reasons,
we rewrite this as ∫

Ω
u∇y′[u; v] · ∇z = −

∫
Ω
v∇y[u] · ∇z. (3.34)

A naive idea would be to solve this problem for all directions v to obtain y′[u; v],
and thus (Jδ)′(u; v). However, this would result in solving multiple, if not millions,
of PDEs. To avoid this, we define the auxiliary problem, the adjoint problem, by∫

Ω
u∇z · ∇y∗ =

∫
Ω
z(y[u]− yδ), ∀z ∈ H1

0 , (3.35)

with solution y∗ ∈ H1
0 , thus having zero boundary. Since (3.34) also holds for

z = y∗ and (3.35) holds for z = y′[u; v], both imply∫
Ω
u∇y′[u; v] · ∇y∗ = −

∫
Ω
v∇y · ∇y∗,∫

Ω
u∇y′[u; v] · ∇y∗ =

∫
Ω
y′[u; v](y[u]− yδ).
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Combining the above equations with (3.33) yields the derivative

(Jδ)′(u; v) = −
∫

Ω
v∇y · ∇y∗, (3.36)

where y is the solution of the forward problem and y∗ is the solution to the adjoint
problem. Thus, the three steps to compute the gradient are:

(i) Compute the solution y to the forward problem (3.32).

(ii) Compute the solution y∗ to the adjoint problem (3.35).

(iii) Compute the derivative (Jδ)′(u; v) via (3.36) for every direction v with an
appropriate quadrature rule. Note that we can precompute ∇y · ∇y∗ on the
quadrature nodes once and reuse it. Afterwards, we obtain the full gradient
∇Jδ(u) by (2.1).

Extension to Mixed Boundary Conditions

Now, we consider the elliptic problem together with Dirichlet, Neumann, and
Robin boundary conditions

−∇ · (u∇y) = f in Ω,
y = 0 on ΓD,

∂y
∂n

= g on ΓN ,

u ∂y
∂n

+ y = 0 on ΓR,

(3.37)

where ∂Ω = ΓD ∪ ΓN ∪ ΓR and its weak form given by∫
Ω
u∇y · ∇z +

∫
ΓR

yz =
∫

Ω
fz +

∫
ΓN

ugz

for all z ∈ H1
D(Ω), where H1

D(Ω) corresponds to all functions in H1(Ω) with zero
boundary on ΓD. Analogously to the argumentation above, we obtain the deriva-
tive of the weak form∫

Ω
u∇y′[u; v] · ∇z +

∫
ΓR

y′[u; v]z = −
∫

Ω
v∇y[u] · ∇z +

∫
ΓN

vgz. (3.38)

Next, we define the adjoint problem in its weak form as∫
Ω
u∇z · ∇y∗ +

∫
ΓR

zy∗ =
∫

Ω
z(y[u]− yδ) ∀z ∈ H1

G(Ω). (3.39)
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If we take z = y∗ in (3.38) and z = y′[u; v] in (3.39) this yields the representation
of the derivative as

(Jδ)′(u; v) = −
∫

Ω
v∇y · ∇y∗ +

∫
ΓN

vgy∗,

where y and y∗ are the solutions to the forward and adjoint problem, respectively.
Note that the strong formulation corresponding to the weak form of the adjoint

problem (3.39) is given by

−∇ · (u∇y∗) = y[u]− yδ in Ω,
y∗ = 0 on ΓD,

∂y∗

∂n
= 0 on ΓN ,

u∂y∗

∂n
+ y∗ = 0 on ΓR.

Thus, we obtain homogeneous Neumann boundary conditions, in comparison to
non-homogeneous conditions to the forward problem (3.37).

Extension to Partially Available Data

Now that we understand the concept of the adjoint method, we will consider data
yδ that is not available everywhere in Ω, but only on a subset B ⊂ Ω or on (parts
of the) boundary ΓB ⊂ ∂Ω.

We first consider the case where we only know data on a subset B ⊂ Ω. Thus
the misfit is given by

Jδ(u) = 1
2

∫
B
|y[u]− yδ|2 = 1

2

∫
Ω
|y[u]− yδ|2χB,

where χB is the indicator/characteristic function of B. Considering χB in the
analysis above, this only changes the right side of the adjoint problem, c.f. (3.35)
and (3.39), to ∫

B
z(y[u]− yδ) =

∫
Ω
z(y[u]− yδ)χB.

However, if we consider given data on the boundary ΓB ⊂ ∂Ω, where of course
we assume that ΓB∩ΓD = ∅, we can not simply use the indicator function χΓB

since
ΓB is a null-set with respect to Ω and thus, the integral of χΓB

over Ω vanishes.
But since the misfit with this known data is

Jδ(u) = 1
2

∫
ΓB

|y[u]− yδ|2 (3.40)
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and we define the adjoint problem in its weak formulation, we have to simply
consider the right side of the adjoint problem as the integral over the boundary
ΓB ⊂ ∂Ω: ∫

ΓB

z(y[u]− yδ).

If we apply this to the adjoint problem (3.39), we obtain∫
Ω
u∇z · ∇y∗ +

∫
ΓR

zy∗ =
∫

ΓB

z(y[u]− yδ) ∀z ∈ H1
D(Ω).

Due to this, the strong formulation admits a slightly different form

−∇ · (u∇y∗) = 0 in Ω,
y∗ = 0 on ΓD,

∂y∗

∂n
= 0 on ΓN \ ΓB,

u∂y∗

∂n
= y[u]− yδ on ΓN ∩ ΓB,

u∂y∗

∂n
+ y∗ = 0 on ΓR \ ΓB,

u∂y∗

∂n
+ y∗ = y[u]− yδ on ΓR ∩ ΓB.

(3.41)

If we introduce δΓB
, the delta distribution with support on ΓB ⊂ ∂Ω c.f. [37], such

that ∫
Ω
f(x)δΓB

(x) d(x) =
∫

ΓB

f(x(x)) ds

holds, we can write the strong formulation (3.41) more cleaner as

−∇ · (u∇y∗) = (y[u]− yδ)δΓB
in Ω,

y∗ = 0 on ΓD,
∂y∗

∂n
= 0 on ΓN ,

u∂y∗

∂n
+ y∗ = 0 on ΓR,

understood in a distributional sense, where we can use δΓB
to express the misfit

with boundary measures (3.40), ΓB ⊂ ∂Ω, as

Jδ(u) = 1
2

∫
Ω
|y[u]− yδ|2δΓB

.
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3.2.2 Inverse Scattering Problem for the Wave Equation
Now we dedicate our attention to the inverse scattering problem for the wave
equation in time domain from Section 1.2.2,

∂2

∂t2
y(x, t)−∇ · (u(x)∇y(x, t)) = f(x, t), x ∈ Ω, t ∈ (0, T ),

y(x, 0) = ∂
∂t
y(x, 0) = 0, x ∈ Ω,

∂
∂t
y(x, t) +

√
u(x) ∂

∂n
y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

(3.42)

for a bounded spatial domain Ω ⊂ Rd, d ⩾ 1 and time domain (0, T ), T > 0, where
we impose zero initial conditions and first order absorbing boundary conditions.
Here, u denotes the squared wave speed and f the known source. Since we only
consider given data at the boundary, yet for all times t ∈ (0, T ) the misfit is given
by

Jδ(u) = 1
2

∫ T

0

∫
∂Ω
|y[u]− yδ|2 = 1

2

∫ T

0

∫
Ω
|y[u]− yδ|2δ∂Ω,

where δ∂Ω corresponds the delta distribution as introduced before.
Since we want to omit the lengthy and technical derivation of the adjoint

problem we simply refer to the excellent pedagogical article by Givoli [42, Section
5 & 7.3]. Following these steps, the derivative of the misfit in u in direction v is

(Jδ)′(u; v) = −
∫ T

0

∫
Ω
u(x)∇y(x, t) · ∇y∗(x, t) dx dt, (3.43)

where y solves the forward problem (3.42) and y∗ corresponds to the solution to
the adjoint problem

∂2

∂t2
y∗ −∇ · (u∇y∗) = (y[u]− yδ)δ∂Ω in Ω× (0, T ),

y∗ = ∂
∂t
y∗ = 0 in Ω× {T},

∂
∂t
y∗ −

√
u(x) ∂

∂n
y∗ = 0 on ∂Ω× (0, T ).

(3.44)

This would require stepping backward in time to solve it. If we shift the time via
t 7→ T − t and introduce ŷ∗(t) = y∗(T − t), and set ŷ, ŷδ analogously, (3.44) yields
the adjoint problem forward in time,

∂2

∂t2
ŷ∗ −∇ · (u)∇ŷ∗) = (ŷ[u]− ŷδ)δ∂Ω in Ω× (0, T ),

ŷ∗ = ∂
∂t
ŷ∗ = 0 in Ω× {0},

∂
∂t
ŷ∗ +

√
u(x) ∂

∂n
ŷ∗ = 0 on ∂Ω× (0, T ).
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Thus, to compute the adjoint solution y∗, we can reuse the algorithm to compute
the forward problem (3.42) with right side (ŷ[u]− ŷδ)δ∂Ω. This yields the shifted
adjoint solution ŷ∗ and thus, the adjoint solution y∗ by transforming ŷ∗ back in
time.

We now want to comment on how to compute the gradient (3.43). Since v is
time independent, we can rewrite (3.43) equivalently to

(Jδ)′(u; v) =
∫

Ω
v
∫ T

0
∇y · ∇y∗

and precompute
∫ T

0 ∇y ·∇y∗ on the quadrature nodes. This allows us to reuse the
time integration for the spatial integration for every direction v, thus obtaining
the full gradient ∇Jδ(u).
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The Adaptive Spectral
Decomposition

47



Chapter 4

Analysis of the Adaptive Spectral
Decomposition

In this chapter we consider, for given media u ∈ W 1,∞(Ω), with Ω ⊂ Rd, the
expansion

u = φ0 +
∞∑

k=1
βkφk

into the eigenfunctions {φk}k⩾1 of an ε-dependent elliptic operator Lε[u], satisfying

Lε[u]φk = λkφk in Ω, φk = 0 on ∂Ω, (4.1)

for corresponding non-decreasing eigenvalues λk ∈ R, and the solution φ0 of the
boundary value problem

Lε[u]φ0 = 0 in Ω, φ0 = u on ∂Ω, (4.2)

capturing information of u on the boundary ∂Ω. Clearly, the operator Lε[u] is
crucial to achieve a good approximation

u ≈ φ0 +
K∑

k=1
βkφk (4.3)

for u by utilizing only the first few K eigenfunctions. Here we solely focus on the
Adaptive Spectral (AS) operator defined via

Lε[u]v = −∇ · (µ[u]∇v), µε[u](x) = 1√
|∇u(x)|2 + ε2

, (4.4)

where ε > 0 is a small parameter to avoid devision by zero.
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Usually, we are interested in decomposing piecewise constant functions u into
the eigenfunctions of the AS operator (4.4) with as few eigenfunctions {φk}k⩾1 as
possible. However, due to the discontinuity of u we can not apply (4.4) directly
since µε[u] depends on ∇u. To address this, we first approximate u by a more
regular function uh such that Lε[uh] is well defined. Subsequently, we compute the
first K eigenfunctions φk of the AS operator Lε[uh] to obtain the (truncated) AS
decomposition of u as given by (4.3).

Next, we follow [10, 11] to prove properties of the eigenfunctions and φ0 ob-
tained via (4.1) – (4.2) and estimates of the truncation error of u in relation to
its (truncated) AS decomposition. In contrast to [10, 11], we will only consider
uh ∈ V h to be the standard H1-conforming Pr-FE interpolant of u, c.f. Section
2.2.2. However, the theory presented can be extended to encompass more gen-
eral uh ∈ Vh for a closed subspace Vh ⊂ H1(Ω), also referred to as admissible

approximations in [10].

4.1 Notation and Definitions

4.1.1 Piecewise Constant Medium
We consider a piecewise constant function u : Ω→ R, where Ω ⊂ Rd, with d ⩾ 2,
being a bounded Lipschitz domain. Additionally, we further assume that u admits
the form

u(x) = u0(x) + ũ(x), x ∈ Ω, (4.5)

where we refer to u0 as the background and to ũ as the interior inclusion given by

u0 =
M∑

m=1
ωmχΩm , ωm ∈ R, ũ =

K∑
k=1

αkχAk , αk ∈ R \ {0}, (4.6)

with χW the characteristic function of a set W ⊂ Rd. Thus, we want to distinguish
the sets Ωm that are connected to the boundary ∂Ω of Ω such that

Ω =
M⋃

m=1
Ωm and ∂Ωm ∪ ∂Ω is open,

from the sets Ak. For each k = 1, . . . , K, the sets Ak are Lipschitz domains with
mutually disjoint boundaries such that ∂Ak is connected and Ak ⊂⊂ Ωm for some
m = 1, . . . ,M . A possible configuration of the sets Ωm and Ak in two dimensions
is illustrated in Figure 4.1.
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Ω1

Ω2

Ω3

A1

A2

A3

Fig. 4.1: Background and interior inclusions: A typical configuration in two di-
mensions of a piecewise constant function of the form (4.5) decomposed into
the sets Ωm, m = 1, 2, 3, to cover Ω and the sets Ak, k = 1, 2, 3, representing
the interior inclusions, such that decomposition (4.6) holds.

Next, we define Mh as the open h-wide neighbourhood around all interfaces by

Mh = Ũh ∪ Uh, Ũh =
K⋃

k=1
{x ∈ Ω : dist(x, ∂Ak) < h},

Uh =
M⋃

m=1
{x ∈ Ω : dist(x, ∂Ωm ∩ Ω) < h},

(4.7)

and its open complement by

Dh = Ω \Mh. (4.8)

Furthermore, we want to partition Dh and Mh into their connected components.
Let Bk

h be the connected components of Dh, given via

Bk
h = Bk ∩Dh, Bk = Ak \

⋃
i>k

Ai, k = 1, . . . , K, (4.9)

and Em
h as the connected components of the outside inclusions given by

Em
h = Em ∩Dh, Em = Ωm \

K⋃
k=1

Ak, m = 1, . . . ,M, (4.10)

where we assume that h > 0 is sufficiently small such that each Bk
h and Em

h are,
indeed, connected. Thus, we may express Dh as the disjoint union

Dh = Eh ∪
K⋃

k=1
Bk

h, Eh =
M⋃

m=1
Em

h . (4.11)

A possible configuration of the sets Mh, Em, m = 1, . . . ,M , and Bk, k = 1, . . . , K
is depicted in Figure 4.2.

Next, we will introduce the Adaptive Spectral Decomposition (AS decomposi-
tion), the AS operator Lε[v] as in (4.4), and a more general form of the weight
function µε[v].
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E1

E2

E3

B1

B2

B3

Mh

Fig. 4.2: Decomposition of Ω: A typical configuration in two dimension of the do-
main Ω as displayed in Figure 4.1: Decomposition of the sets Dh and Mh

from (4.7) and (4.8), respectively, into its connected components Bk and Em,
k, m = 1, . . . , 3, c.f. (4.9) and (4.10).

4.1.2 The Adaptive Spectral Decomposition
The weight function

Let ε > 0 and consider v ∈ H1(Ω) such that ∇v ∈ L∞(Ω). Assume that the weight

function µε[v] explicitly depends on |∇v|. Thus, it admits the form

µ[v](x) = µ̂ε(|∇v(x)|), x ∈ Ω, (4.12)

where µ̂ε : [0,∞)→ R is a non-increasing function that satisfies

µ̂ε(0) = 1/ε, 0 < µ̂ε(t), tµ̂ε(t) ⩽ 1, t ⩾ 0 (4.13)

and

∃ C > 0, s.t. for every sufficiently large t, C ⩽ tµ̂ε(t). (4.14)

From this we immediately deduce that, for almost all x ∈ Ω,

µε[v](x)|∇v(x)| < 1, and 0 < µ̂ε(∥∇v∥L∞(Ω)) ⩽ µε[v](x).

In particular, common weight functions that satisfy (4.12) – (4.14) are

µε[v] = 1
(|∇v|q + εq)1/q

, q ⩾ 1, (4.15)

µε[v] = 1
max(|∇v|, ε) ,

µε[v] =

1/ε for |∇v| ⩽ ν,
1/|∇v| for |∇v| > ν,

ν > 0.
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The Adaptive Spectral Decomposition

Let ε, h > 0, and consider V h ⊂ H1(Ω), the standard H1-conforming Pr-FE
subspace and let V h

0 = V h ∩H1
0 (Ω). Consider a given piecewise constant function

u as in (4.5) – (4.6) and let uh ∈ V h be its standard FE-interpolant on a regular
and quasi-uniform mesh Th, c.f. Section 2.2.2. If we denote the FE-interpolant of
χΩm and χAk in V h by

χ0,m
h , m = 1, . . .M,

χk
h, k = 1, . . . , K,

respectively, due to [10, Section 2.2 & Proposition 2.2] we obtain the properties:

(i)

uh = u0
h + ũh, u0

h ∈ V h, ũh ∈ V h
0 , (4.16)

u0
h =

M∑
m=1

ωmχ
0,m
h , ũh =

K∑
k=1

αkχ
k
h. (4.17)

(ii)

u = uh a.e. in Dh.

(iii)

lim
h→0
∥χ0,m

h − χΩm∥L2(Ω) → 0, lim
h→0
∥χk

h − χAk∥L2(Ω) → 0,

for m = 1, . . . ,M and k = 1, . . . , K, and thus

lim
h→0
∥uh − u∥L2(Ω) → 0.

(iv)

∥χ0,m
h ∥L1(Ω) ⩽ C, h∥χ0,m

h ∥L∞(Ω) ⩽ C, m = 1, . . . ,M,

∥χk
h∥L1(Ω) ⩽ C, h∥χk

h∥L∞(Ω) ⩽ C, k = 1, . . . , K.
(4.18)

for generic constants C > 0 independent of h.

(v)

u = uh = u0
h, ũ = ũh = 0 a.e. in Eh.
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(vi)

∇uh ∈ L∞(Ω), supp(∇u0
h) ⊂ Uh, supp(∇ũh) ⊂ Ũh, (4.19)

where Uh and Ũh are given according to (4.7).

(vii) For m = 1, . . . ,M , k = 1, . . . , K

∇uh = 0 a.e. in Bk
h and Em

h . (4.20)

Thus, the operator Lε[uh] defined by

Lε[u]v = −∇ · (µ[u]∇v) (4.21)

is well defined for small ε > 0 and, for sufficiently small h > 0, even uniformly
elliptic in Ω [10, Section 3.2]. Hence, the eigenfunctions {φk}k⩾1 of Lε[uh], sorted
according to their positive eigenvalues λ1 ⩽ λ2 ⩽ . . . ⩽ λk ⩽ . . . , form an L2-
orthonormal basis of V h

0 . Since u, and thus uh, might have non-zero boundary u0
h,

we define φ0 ∈ V h as the lifting of the boundary of uh into Ω. More precisely,
φ0 ∈ V h satisfies

Lε[uh]φ0 = 0 in Ω,
φ0 = uh on ∂Ω,

(4.22)

and for k ⩾ 1, φk ∈ V h
0 , let φk ̸= 0 satisfy the eigenvalue problem

Lε[uh]φk = λkφk in Ω,
φk = 0 on ∂Ω.

(4.23)

Clearly, (4.22) and (4.23) are understood in a weak sense with respect to the
bilinear form

Bε,h[v, w] = (µε[uh]∇v,∇w)L2(Ω)

in V h, thus their Galerkin FE formulations are: Find φ0 ∈ {v ∈ V h, v = uh on ∂Ω}
and φk ∈ V h

0 such that

Bε,h[φ0, φ] = 0 ∀φ ∈ V h,

Bε,h[φk, φ] = λk(φk, φ) ∀φ ∈ V h
0 .

(4.24)

Note that by (4.13) and (4.20) we have

µε[uh] = 1/ε a.e. in Dh,
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from which we conclude that

∥∇φ∥2
L2(Dh) ⩽ εBε,h[φ, φ], ∀φ ∈ H1(Ω). (4.25)

Next, we define the Adaptive Spectral (AS) space ΦK ⊂ L2(Ω) as the span of
the first K eigenfunctions {φk}K

k=1,

ΦK = span{φ1, . . . , φK},

and denote by ΠK [uh] the standard L2-orthogonal projection onto ΦK , given by

ΠK [uh] : L2(Ω)→ ΦK , (v − ΠK [uh]v, φ)L2(Ω) = 0, ∀φ ∈ ΦK , (4.26)

as well as the L2-orthogonal projection into φ0 + ΦK by

QK [uh](v) = φ0 + ΠK [uh](v − φ0). (4.27)

Remark 1. Since Lε[uh] depends on ε and uh, it also indirectly depends on h and

u. Consequently, the eigenpairs {λk, φk}k⩾1, the AS space ΦK, and the projections

ΠK [uh] and QK [uh] also depend on u, h, and ε. For ease of notation, we will not

always denote this dependency explicitly.

Now we can introduce the Adaptive Spectral Decomposition (AS decomposi-
tion): Given u piecewise constant function with K (interior) inclusions of the form
(4.5) – (4.6),

u(x) = u0(x) + ũ(x), x ∈ Ω,

u0 =
M∑

m=1
ωmχΩm , ωm ∈ R,

ũ =
K∑

k=1
αkχAk , αk ∈ R \ {0},

we compute uh ∈ V h, solve the boundary value problem (4.22) for φ0 ∈ V h, and
solve the eigenvalue problem (4.23) to obtain the first K eigenfunctions {φk}K

k=1 ⊂
V h

0 . Next, we can project every function v ∈ u+XK , where

XK = span{χAk}K
k=1 = span{χBk}K

k=1, (4.28)

on φ0 + ΦK using (4.27),

QK [uh](v) = φ0 + ΠK [uh](v − φ0).

Then QK [uh](v) is the AS decomposition of v (into φ0 + ΦK). Note that if u
has zero boundary, i.e. u = ũ, (4.22) immediately implies that φ0 = 0, and thus
QK [uh] = ΠK [uh].
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Remark 2. In principle, we do not require u to be piecewise constant to perform

the AS decomposition. It suffices to assume that u : Ω→ R such that there exists

the H1-conforming FE-interpolant uh ∈ V h of u and that the projection ΠK [uh]u
is well defined for any K ⩾ 1.

To illustrate the AS decomposition, we consider the piecewise constant function
u : Ω ⊂ R2 → R given as in Figure 4.3 (a). Hence, u admits the form u = u0 + ũ,
see (4.5), where u0 and ũ are illustrated in Figures 4.4 (a) and (b), respectively.
The background u0 and the interior ũ thus admit the form

u0 =
M∑

m=1
ωmχΩm , ωm ∈ R, ũ =

K∑
k=1

αkχAk , αk ∈ R \ {0},

for M = K = 3, c.f. (4.6), where the sets Ωm and Ak correspond to the configura-
tion presented in Figure 4.1.

(a) u (or uh) (b) QK [uh](u) for K = 3

Fig. 4.3: Adaptive Spectral Decomposition: A piecewise constant function
u : Ω→ R, such that u = u0 + ũ as in (4.5) and its AS decomposition
QK [uh](u) for K = 3.

To obtain the AS decomposition QK [uh](u) of u, we first discretize u by uh

using P1-FE on a mesh with mesh size h = 0.05/26. Next, we solve the boundary
value and eigenvalue problem (4.22) and (4.23) with ε = 10−8 and the weight
function µε[uh] as defined in (4.15) with q = 2, to obtain φ0 and the first K = 3
eigenfunctions φ1, φ2, φ3, shown in Figures 4.4 (c) – (f). As observed in Figure
4.4, φ0 captures all the information of u0, and the first K = 3 eigenfunctions
{φk}K

k=1 capture the interior inclusions of ũ very well, whereas the subsequent
eigenfunctions resemble (local) eigenfunctions of the Laplacian with corresponding
eigenvalues that scale with 1/ε. Next, we obtain the AS decomposition QK [uh](u)
of u for K = 3 by projecting it into φ0 + Φ3, Φ3 = span{φ1, φ2, φ3} via (4.27). As
seen in Figure 4.3 (b), the AS decomposition Q3[uh]u of u is hardly distinguishable
from u itself.
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Although the illustration in Figure 4.4 may suggest that the first K = 3 eigen-
functions are piecewise constant, they are, in fact, only “almost piecewise con-
stant”, as we will prove later.

(a) u0 (b) ũ (c) φ0

(d) φ1, λ1 ≈ 1.5 (e) φ2, λ2 ≈ 4.7 (f) φ3, λ3 ≈ 5.3

(g) φ4, λ4 ≈ 1.0 · 108 (h) φ5, λ5 ≈ 1.1 · 108 (i) φ6, λ6 ≈ 1.2 · 108

Fig. 4.4: Eigenfunctions and background: The background u0 and interior inclu-
sions ũ to decompose u = u0 + ũ, as well as the solution φ0 to the boundary
value problem (4.22), and the first few eigenfunctions φk satisfying (4.23).

Finally, we remark on the connection between Lε[v] and the regularized TV
functional (Section 3.1.3)

TVε(v) =
∫

Ω

√
|∇v|2 + ε2, v ∈ H1

0 (Ω),

where this connection was first established in [48, Remark 1]. Clearly, the gradient
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of TVε is given by

∇TVε(v) = −∇ ·
 ∇v√
|∇v|2 + ε2

 = −∇ · (µε[v]∇v) = Lε[v]v

with µε[v] as defined in (4.15) for q = 2. Thus ∇TVε coincides with the AS
operator Lε[v]. Moreover, for v ≈ uh, where uh is the interpolant (of any suitable)
u into V h, we obtain

(Lε[uh]v, v)L2(Ω) =
∫

Ω
µε[uh]|∇v|2 =

∫
Ω

|∇v|2√
|∇uh|2 + ε2

≈
∫

Ω
|∇v| = TV(v).

(4.29)

for ε > 0 sufficiently small. Thus Lε[uh] essentially corresponds to the TV-energy.
Additionally, the AS decomposition exhibits a remarkable resemblance to the spec-
tral decomposition of the nonlinear TV-functional [21, 41].

4.2 Error Estimates
As observed in the example above, given u = u0 + ũ piecewise constant, where
ũ consists of K interior inclusions Ak, k = 1, . . . , K, φ0 given by (4.22) and the
first K eigenfunctions {φk}K

k=1 given by (4.23) seem to be piecewise constant, c.f.
Figure 4.4. However, they are only “almost” piecewise constant (in Dh). To prove
this, we follow [10, 11].

For this section, we assume that u is piecewise constant given by (4.5) and
(4.6), uh as in (4.16) and (4.17), XK given by (4.28), and φ0, φ1, . . . , φK satisfy
(4.24). The positiv constants C,C1, C2 are generic constants, independent of ε
and h.
Lemma 4.1. There exists a constant C > 0, independent of ε, h, and u, such that

for every ε, h > 0 sufficiently small, and k = 1, . . . , K, the following inequality

holds:

λk ⩽
C|τ |

minj |αj|
, τ = (τk) ∈ RK , τk = τk(h) = ∥χk

h∥L1(Ω).

Next, we will prove that φ0 and φk, k = 1, . . . , K are, indeed, “almost” piece-
wise constant when the interior ũ is comprised of K inclusions.
Theorem 4.2. Let u = u0 + ũ be given by (4.5) such that (4.6),

u0 =
M∑

m=1
ωmχΩm , ωm ∈ R, ũ =

K∑
k=1

αkχAk , αk ∈ R \ {0},
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holds. Let uh be its FE-interpolant given by (4.16), φ0 given by (4.22), and

{λk, φk}k with k ⩾ 1 satisfy (4.23), where {λk}k is non-decreasing and {φk}k or-

thonormal in L2(Ω). Then, for ε, h > 0 sufficiently small, the following estimates

hold:

∥∇φ0∥2
L2(Dh) ⩽ C1 max

m
|ωm| ε (4.30)

∥∇φk∥2
L2(Dh) ⩽

C1

minj |αj|
ε, λk ⩽

C1

minj |αj|
, k = 1, . . . , K. (4.31)

Proof. We shall first prove assertion (4.30). Since φ0 minimizes Bε,h[v, v] in uh +
V h

0 , we conclude that Bε,h[φ0, φ0] ⩽ Bε,h[u0
h, u

0
h]. Next, (4.19) yields

Bε,h[φ0, φ0] ⩽ Bε,h[u0
h, u

0
h] =

∫
Ω
µε[uh]|∇u0

h|2 =
∫

Uh

µε[uh]|∇u0
h|2

and since ∇uh = ∇u0
h in Uh we deduce

Bε,h[φ0, φ0] ⩽
∫

Uh

µε[uh]|∇u0
h|2 ⩽

∫
Uh

µε[u0
h]|∇u0

h|2 ⩽ ∥∇u0
h∥L1(Dh),

where the last inequality follows from (4.13). Thus, (4.25) implies

∥φ0∥2
L2(Dh) ⩽ εBε,h[φ0, φ0] ⩽ ε∥∇u0

h∥L1(Dh). (4.32)

Using the expansion (4.17),

∇u0
h =

M∑
m=1

ωm∇χ0,m
h , and estimate ∥χ0,m

h ∥L1(Ω) ⩽ C,

see (4.18), the conclusion follows by (4.32) due to

∥∇φ0∥2
L2(Dh) ⩽ ε∥∇u0

h∥L1(Ω) ⩽ C1 max
m
|ωm| ε.

The proof of estimate (4.31) relies on Lemma 4.1, as well as equations (4.18),
(4.24), and (4.25). Due to Lemma 4.1, there exists C > 0 independent of ε and h
such that

λk ⩽
C|τ |

minj |αj|
, τk = τk(h) = ∥∇χk

h∥L1(Ω), k = 1, . . . , K,

By (4.18) we may bound τk from above by a positive constant, independent of ε, h.
Thus, there exists C1 > 0 independent of ε, h, such that

λk ⩽
C1

minj |αj|
.
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Since for each k ⩾ 1, φk is L2-normalized, (4.24) and (4.25) yield

∥∇φk∥2
L2(Dh) ⩽ εBε,h[φk, φk] = ελk ⩽

C1

minj |αj|
ε, k = 1, . . . , K.

From this, we can deduce the following corollary.

Corollary 4.3. Since Dh is the union of all its connected components Em
h and

Bk
h, m = 1, . . . ,M and k = 1, . . . , K, see (4.9) – (4.11), Poincaré’s inequality and

estimates (4.30) – (4.31) imply

∥u0 − φ0∥2
L2(W ) ⩽ C2 max

m
|ωm| ε,

∥φk∥2
L2(W ) ⩽

C2

minj |αj|
ε, k = 1, . . . , K,

(4.33)

for any W = Em
h or W = Bk

h, m = 1, . . . ,M and k = 1, . . . , K, where u = u0 + ũ
is piecewise constant given by (4.5) and C2 independent of ε and h.

In summary, (4.30) implies that φ0 is essentially “almost” piecewise constant
and due to (4.33) may approximates u0, or u0

h, very well in each connected com-
ponent of Dh, see Figures 4.4 (a) and (c). Similarly, if ũ consists of K interior
inclusions A1, . . . , AK , the first K eigenfunctions φk of Lε[uh] are also “almost”
piecewise constant due to (4.31). Thus, {φk}K

k=1 cover all information of ũ in each
connected component of Dh very well. Note that each φk does not have to resem-
ble a single interior inclusion Aj, j = 1, . . . , K (see Figure 4.4), though the span of
{φk}K

k=1 is able to approximate ũ, or ũh, very well. Consequently, the AS decom-
position Qk[uh](u) of u, i.e. the projection of u into φ0 + ΦK , is able to represent
u, as presumed by Figure 4.3. To prove this, we need the following results from
[10], where denote by

⟨f⟩W = 1
L(W )

∫
W
f(x) dx,

the average of f in W ⊂ Ω, with Lebesgue measure L(W ).

Corollary 4.4. There exists a constant C > 0 independent of ε and h such that

for every ε, h > 0 sufficiently small and 1 ⩽ j ⩽ K,

∥φ0 − u0∥2
L2(Eh) ⩽ Cε, ∥φ0 − ⟨φ0⟩Bj

h
∥2

L2(Bj
h

) ⩽ Cε

and

∥φk∥2
L2(Eh) ⩽ Cε, ∥φk − ⟨φk⟩Bj

h
∥2

L2(Bj
h

) ⩽ Cε, k = 1, . . . , K.
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Lemma 4.5. There exists a constant C > 0 independent of ε and h such that for

every ε, h > 0 sufficiently small

∥φ0 − u0∥2
L2(Mh) ⩽ Ch,

∥φk∥2
L2(Mh) ⩽ Ch, k = 1, . . . , K.

Note that Corollary 4.4 and Lemma 4.5 essentially express that the difference
φ0 − u0 and the eigenfunctions φk, k = 1, . . . , K behave like O(

√
h) in the h-tube

Mh around the jump-discontinuities of u, and behave like O(
√
ε) otherwise. This

may indicate that the error made when projecting u, or any v ∈ u0 + XK , into
φ0 +ΦK , asymptotically behaves like O(

√
ε+ h), for ε, h > 0 sufficiently small. To

prove this, we first need lower and upper bounds of Σ, the matrix of the averages
of φk:

Lemma 4.6. Let the matrix Σ ∈ RK×K of the averages of φj be defined as

Σ = (σ)k,j, σk,j = ⟨φj⟩Bk
h
, k, j = 1, . . . , K.

Then there exist constants 0 < C1 ⩽ C2 independent of ε and h, such that for

every sufficiently small ε, h > 0

C1|β| ⩽ |Σβ| ⩽ C2|β|, β ∈ RK .

This automatically implies that Σ is invertible.

Lemma 4.7. There exists a positive constant C independent of ε and h, such that

for each ε, h > 0 sufficiently small

∥φ0 − u0∥L2(Ω) ⩽ C, k = 1, . . . , K.

Now we can prove the main result. Here, as above, we assume that u is piece-
wise constant given by (4.5) and (4.6), uh as in (4.16) and (4.17), XK given by
(4.28), and φ0, φ1, . . . , φK satisfy (4.24).

Theorem 4.8. (i) Let ΠK [uh] be the orthogonal projection on ΦK given by (4.26).
Then there exists a constant C > 0 independent of ε and h such that for every

v ∈ XK and every ε, h > 0 sufficiently small

∥v − ΠK [uh]v∥L2(Ω) ⩽ C
√
ε+ h∥v∥L2(Ω). (4.34)

In particular, v = ũ and v = χAk (k = 1, . . . , K) satisfy (4.34).
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(ii) Let QK [uh] be the L2-orthogonal projection on φ0 +ΦK given by (4.27). Then

there exists a constant C > 0 independent of ε and h such that for every

v ∈ u0 +XK and every ε, h > 0 sufficiently small

∥v −QK [uh](v)∥L2(Ω) ⩽ C
√
ε+ h

(
∥v − u0∥L2(Ω) + 1

)
. (4.35)

In particular, v = u and v = u0 satisfy (4.35).

Proof. We only show (4.35) since the proof of (4.34) is similar. Note that

∥v −Qk[uh]v∥L2(Ω) = min
β∈RK

∥∥∥∥∥(v − φ0)−
K∑

k=1
βkφk

∥∥∥∥∥
L2(Ω)

.

Since we have

∥v −Qk[uh]v∥L2(Ω) ⩽ ∥v − φ∥L2(Ω), ∀φ ∈ φ0 + ΦK ,

by the triangle inequality we obtain

∥v − φ∥L2(Ω) ⩽∥v − φ∥L2(Eh) + ∥v − u0∥L2(Mh) + ∥u0 − φ∥L2(Mh)

+
K∑

k=1
∥v − φ∥L2(Bk

h
).

(4.36)

The idea of the proof is to find a particular φ, i.e. to construct a suitable β ∈ RK

and set

φ = φ0 + φ̃, φ̃ =
K∑

k=1
βkφk ∈ ΦK , (4.37)

such that we can estimate each term of the right side of (4.36) with respect to ε
and h.

We first construct a suitable φ. Due to Lemma 4.6, the matrix Σ ∈ RK×K of
the averages is invertible. This implies the existence of a unique β ∈ RK such that

(Σβ)k =
K∑

j=1
βj⟨φj⟩Bk

h
= ⟨v − φ0⟩Bk

h
, k = 1, . . . , K, (4.38)

and hence, we obtain the estimate

|β|2 ⩽ C1

K∑
k=1
⟨v − φ0⟩Bk

h
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for C1 > 0 independent of ε and h. Thus we get

|β| ⩽
√
C1

(
K∑

k=1
∥v − φ0∥2

L2(Bk
h

)

)1/2

. (4.39)

By Lemma 4.7 we now estimate ∥v − φ0∥ to obtain

∥v − φ0∥L2(Bk
h

) ⩽ ∥v − u0∥L2(Bk
h

) + ∥u0 − φ0∥L2(Bk
h

) ⩽ ∥v − u0∥L2(Bk
h

) + C

for C > 0 independent of ε, h, which yields

|β| ⩽ C(∥v − u0∥L2(Ω) + 1).

Next, we will use this particular β from (4.38) to construct φ defined by (4.37):

φ = φ0 + φ̃, φ̃ =
K∑

k=1
βkφk ∈ ΦK .

Now we can estimate each term on the right side of (4.36). Due to Corollary 4.4
and (4.39), from v = u0 in Eh follows that

∥v − φ∥L2(Eh) ⩽ ∥u0 − φ0∥L2(Eh) + ∥φ̃∥L2(Eh)

⩽ ∥u0 − φ0∥L2(Eh) +
K∑

k=1
|βk|∥φk∥L2(Eh)

⩽ C
√
ε(∥v − u0∥L2(Ω) + 1).

To obtain and estimate of the piecewise constant function w = v − u0 ∈ XK in
Mh of (4.36), we employ that w = 0 almost everywhere in Ω \ ∪K

k=1B
k, thus

∥v − u0∥2
L2(Mh) =

∫
Mh

w2 =
K∑

k=1

∫
Mh∩Bk

w2. (4.40)

Since w2 is constant in each set Bk and L(Mh ∩ Bk) = O(h), see [11, Lemma 4],
this implies∫

Mh∩Bk
w2 = L(Mh ∩Bk)w2|Bk ⩽ ChL(Bk)w2|Bk = Ch

∫
Bk
w2.

Together with (4.40), this yields the estimate of the second term in (4.36) with
respect to h:

∥v − u0∥L2(Mh) ⩽ C
√
h∥v − u0∥L2(Ω).
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Now, by Lemma 4.5 and (4.39) we estimate the third term ∥u0 − φ∥L2(Mh) as

∥u0 − φ∥L2(Mh) ⩽ ∥u0 − φ0∥L2(Mh) +
K∑

k=1
|βk|∥φk∥L2(Mh)

⩽ C
√
h(∥v − u0∥L2(Ω) + 1).

To estimate each ∥v−φ∥L2(Bk
h

), we use that β solves (4.38) and thus ⟨v−φ⟩Bk
h

=
0. Hence, the Poincaré-Wirtinger inequality implies

∥v − φ∥L2(Bk
h

) ⩽ C∥∇(v − φ)∥L2(Bk
h

).

Since ∇v = 0 in each Bk
h,

∥v − φ∥L2(Bk
h

) ⩽ C1∥∇φ∥L2(Bk
h

) ⩽ C1

∥φ0∥L2(Bk
h

) +
K∑

j=1
|βj|∥∇φj∥L2(Bk

h
)


⩽ C2

√
ε(∥v − u0∥L2(Ω) + 1).

Finally, we combine the estimates above to obtain

∥v −Qk[uh](v)∥L2(Ω) ⩽ ∥v − φ∥L2(Ω) ⩽ C
√
ε+ h(∥v − u0∥L2(Ω) + 1).

Remark 3. In practice, we can project any w ∈ L2(Ω) into ΦK or φ0 + ΦK, for

particular the FE-interpolant w = uh of u. From Theorem 4.8 we immediately ob-

tain error estimates for arbitrary L2-functions. Since the norm of every projection

is less than one, the triangle inequality yields

∥w − ΠK [uh]w∥L2(Ω) ⩽ C
√
ε+ h∥w∥L2(Ω) + ∥w − v∥L2(Ω) (4.41)

for every v ∈ XK. Similarly, if v ∈ u0 +XK, then

∥w −QK [uh](w)∥L2(Ω) ⩽ C
√
ε+ h(∥w − u0∥L2(Ω) + 1) + ∥w − v∥L2(Ω). (4.42)

This means that the projection error additionally depends on the error made from

the approximation of v by w in the L2-norm.
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Chapter 5

Numerical Results

In this chapter, we present numerical examples that illustrate the analysis and
error estimates of Section 4.2, especially Theorem 4.8, and demonstrate the accu-
racy of the AS decomposition for piecewise constant media. At first, we consider
four different but simple media with homogeneous background u0, where each me-
dia is comprised of a single characteristic function. The second example is the
medium shown in Figure 4.3 (a), where the background u0 consists of M = 3
sets Ωm, m = 1, . . . ,M , and the interior ũ consists of K = 3 interior shapes Ak,
k = 1, . . . , K. The third medium consists of a uniform background and four inte-
rior adjacent inclusions. Even though this constellation is not admissible for our
analysis, the convergence rate of Theorem 4.8 still holds true. In the last remain-
ing two examples, we consider more complex media that are not covered by our
analysis: a polygonal approximation of the map of Switzerland with its 26 cantons
and Anna’s Mountains 1.

In all the numerical examples, the domain Ω ⊂ R2 is rectangular. If not
explicitly stated otherwise, we use a uniform triangular mesh Th of mesh size
h > 0, see Section 2.2.2, whose vertices lie on an equidistant cartesian grid of grid
size h. As the underlying finite dimension space V h we use standard P1-FE, the
standard space of piecewise polynomials of degree 1, and let V h

0 = V h∩H1
0 (Ω). As

mentioned above, we denote by uh ∈ V h the H1-conforming continuous interpolant
of u onto V h.

We let Lε[uh] be as in (4.21) with weight function given by (4.15) with q = 2.
Thus, we consider

Lε[uh]v = −∇ · (µε[uh]∇v), µε[uh](v) = 1√
|∇uh|2 + ε2

.

1This abstract illustration of mountains was kindly supported by my former flatmate Anna
Frommherz.
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To obtain φ0 ∈ V h and φk ∈ V h
0 for k = 1, . . . , K, we employ the Galerkin finite

element method introduced in Section 2.2.2 to numerically solve (4.24). This
results in the generalized eigenvalue problem

Aεφk = λkMφk, k = 1, . . . , K,

where Aε corresponds to the discretization of the operator Lε[uh] and M denotes
the mass matrix. In principle, ε > 0 should be as small as possible, yet large enough
to ensure that Aε is still well-posed. Unless specified otherwise, we consistently
use ε = 10−8.

After obtaining φ0 and φk, k = 1, . . . , K, we proceed to compute the AS decom-
position of u, which involves computing the projections ΠK [uh](u) and QK [uh](u)
as defined in (4.26) and (4.27), respectively. Since the eigenfunctions φk are com-
puted numerically, they may not satisfy (φk, φj)L2(Ω) = δk,j exactly. Thus, we do
not compute the Fourier expansion

ΠK [uh]v =
K∑

k=1
(φk, u)L2(Ω)φk

directly to obtain the projection. To avoid these numerical errors, we instead solve
the K-dimensional least squares problem

ΠK [uh]v = argmin
w∈ΦK

∥v − w∥L2(Ω), ΦK = span{φk}K
k=1.

In the subsequent numerical examples we monitor two errors, e = e(ε, h) and
eh = eh(ε, h) given by

e = ∥u−QK [uh](u)∥L2(Ω) and eh = ∥uh −QK [uh](uh)∥L2(Ω). (5.1)

The first error validates (4.35) of Theorem 4.8, whereas the second error validates
(4.42) of Remark 3 with w = uh. Calculating (5.1) requires the evaluation of
inner products on L2. Since all functions involved in eh lie in V h, we can calculate
the L2-norm exactly. The error e on the left, however, involves discontinuous
functions whose discontinuities are not necessarily aligned with the mesh. To
account for these discontinuities, we use the numerical quadrature rule from ACM
TOMS Algorithm #584 [74] with degree of precision 8 and 19 quadrature nodes
to precisely take the discontinuities into account.
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Chapter 5. Numerical Results

5.1 Convergence Rates of the Adaptive Spectral
Decomposition

5.1.1 Four Simple Shapes
In this first example, we consider the four different media u : Ω→ R, Ω = (0, 1)2,
as in Figure 5.1. All four possess zero boundary values, thus u0 = 0, and their
interior is comprised by a single inclusion. Hence they admit the form (4.5) with

u(x) = ũ(x) = χA1(x), x ∈ Ω.

All four geometries are chosen on purpose with the following properties: the disk
is convex with a smooth boundary and the square is also convex but only admits
a piecewise smooth boundary. The open wedge and star are non-convex, also with
piecewise smooth boundaries. Thus, all four shapes are therefore covered by our
analysis.

(a) disk (b) square (c) open wedge (d) star

Fig. 5.1: Four simple shapes: The exact media u, all consisting of a single inclusion
A1 and homogeneous boundary.

Next, we measure the error e = e(ε, h), first with respect to h by keeping
ε = 10−8 fixed, then with respect to ε by using the finest mesh with mesh size
h = 0.05/26. To measure the error e = e(h) with respect to h, we compute (5.1)
for six different meshes with varying mesh size h = 0.05/2m, m = 1, . . . 6. In
Figure 5.2 (a) the error e(h) decays as O(

√
h) for every single shape, thus we

obtain the optimal convergence rate from Theorem 4.8. Figure 5.2 (b) illustrates
the error e(ε) for varying ε = 10−m, m = 1, . . . , 8, where it first decays as O(ε),
thus with a slightly better convergence rate as predicted in Theorem 4.8, but then
stagnates at about 10−2 for subsequent ε. This is due to the dominant error made
from discretization, thus we can only improve the error decay with respect to ε by
further refining the mesh.

To eliminate the discretization error with respect to h by interpolation on V h
0 ,

we now monitor the error eh = eh(ε, h), see Remark 3 (4.41) with w = uh. The
error eh(h) remains nearly constant at about 10−9 for the three media, where the
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10−3 10−2
10−2

10−1

h

Er
ro

r
e

disc
square
open wedge
star√
h

(a) e = e(h)
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(b) e = e(ε)

Fig. 5.2: Four simple shapes: The error e = ∥u − Π1[uh]u∥L2(Ω) as a function of h
for fixed ε = 10−8 (left) and as a function of ε for h = 0.05/26 (right).

single inclusion is given by the disk, square, and open wedge, whereas the error for
the star-shaped medium decays withO(h), however, 6 magnitudes larger compared
to the three other shapes, see Figure 5.3 (a). Thus, we achieve a slightly improved
convergence order compared to (4.41). The error eh(ε) for varying ε and fixed h
shown in Figure 5.3 (b) is improved to O(ε) for the disks, square, and open wedge
shaped media, whereas the star-shaped inclusion again levels off at about 10−3.
This is due to the star-shaped discontinuities not being aligned with the mesh,
whose vertices lie on an equidistant grid.
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(a) eh = eh(h)
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(b) eh = eh(ε)

Fig. 5.3: Four simple shapes: The error eh = ∥uh −Π1[uh]uh∥L2(Ω) as a function of
h for fixed ε = 10−8 (left) and as a function of ε for h = 0.05/26 (right).
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If we align the mesh to the star-shaped discontinuity as in Figure 5.4 (a), the
error eh(h) again decays with O(h) and also decreases to 10−9, similar to the other
three inclusions.

(a) Aligned star-shaped mesh

10−3 10−2
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h
Er

ro
r
e h star

h

(b) eh = eh(h)

Fig. 5.4: Four simple shapes: The error eh(h) for the star-shaped inclusion on a
mesh aligned to the discontinuities.

5.1.2 Nonuniform Background
Next, we consider the medium u as in Figure 5.5 (a), see also Figure 4.3 (a),
consisting of a non-vanishing background u0 comprised of M = 3 sets Ωm, m =
1, . . . ,M , and K = 3 interior inclusions Ak, k = 1, . . . , K. Thus u admits the form

u(x) = u0(x) + ũ(x), x ∈ Ω,

where

u0 =
M∑

m=1
ωmχΩm , ωm ∈ R, ũ =

K∑
k=1

αkχAk , αk ∈ R \ {0},

see (4.5) – (4.6). Figure 5.5 shows φ0 given by (4.22), covering all information
of the background u0, and the first three eigenfunctions φk, k = 1, . . . , 3 given by
(4.23) of Lε[uh]u, as well as the AS decomposition Q3[uh](u) of u.

Here, we only focus on the errors

e(h) = ∥u−Q3[uh](u)∥L2(Ω)

with respect to h and fixed ε, as well as

eh(ε) = ∥uh −Q3[uh](uh)∥L2(Ω)
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(a) u (b) Q3[uh](u) (c) φ0

(d) φ1, λ1 ≈ 1.5 (e) φ2, λ2 ≈ 4.7 (f) φ3, λ3 ≈ 5.3

Fig. 5.5: Nonuniform background: The exact medium u, φ0, the first three eigen-
pairs (λk, φk), and its projection Q3[uh](u) on φ0 + Φ3.
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(b) eh = eh(ε)

Fig. 5.6: Nonuniform background: The errors e(h) = ∥u − Q3[uh](u)∥L2(Ω) with
ε = 10−8 fixed and eh(ε) = ∥uh − Q3[uh](uh)∥L2(Ω) on the finest mesh with
mesh size h = 0.05/26.

with respect to ε and fixed h, since eh removes the dominant error made due
to projection on V h. Figure 5.6 (a) shows the error e(h) for six different mesh
sizes h = 0.05/2m, m = 1, . . . , 6, where we observe the error decay of O(h), thus
validating the estimate of Theorem 4.8. The error eh(ε), for varying ε = 10−m,
m = 1, . . . , 8, on the finest mesh with mesh size h = 0.05/26 is illustrated in Figure
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5.6 (b). Clearly, the numerical order of convergence O(ε) is half an order improved
compared to the convergence order O(

√
ε) proved by Theorem 4.8.

5.1.3 Four Adjacent Squares
The third example consists of a medium u : Ω → R, Ω = (0, 1)2, with vanishing
boundary u0 = 0, and four interior inclusions as illustrated in Figure 5.7 (a). Thus
the medium admits the form

u(x) = ũ(x) =
4∑

k=1
χAk ,

where each Ak, k = 1, . . . , 4, admits the shape of a square. Note that since the
squares Ak do not have mutually disjoint boundaries ∂Ak, this medium is not
covered by our analysis. However, we can still compute the AS decomposition
Π4[uh] and measure the errors e(h), eh(ε) as in (5.1).

(a) u (b) φ1, λ1 ≈ 3.3 (c) φ2, λ2 ≈ 8.88

(d) Π4[uh]u (e) φ3, λ3 ≈ 12.65 (f) φ4, λ4 ≈ 18.37

Fig. 5.7: Four adjacent squares: The medium u and its projection Π4[uh]u into the
first four eigenfunctions φ1, . . . , φ4 of the operator Lε[uh].

Similar to the example above, the error e(h), h = 0.05/2m, m = 1, . . . 6, con-
verges as O(

√
h), see Figure 5.8 (a). Thus, the error estimate of Theorem 4.8 also
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holds true, even though the boundaries of the inclusions are not mutually disjoint.
Figure 5.8 (b) shows the error eh(ε) on the finest mesh with mesh size h = 0.05/26

for varying ε = 10−m, m = 1, . . . , 8. Here, the convergence order with respect to ε
is linear, in contrast to 1/2 as in (4.34) and (4.41).
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(b) eh = eh(ε)

Fig. 5.8: Four adjacent squares: The errors e(h) = ∥u−Π4[uh]u∥L2(Ω) with ε = 10−8

fixed and eh(ε) = ∥uh − Π4[uh]uh∥L2(Ω) on the finest mesh with mesh size
h = 0.05/26.

5.2 The Adaptive Spectral Decomposition for Com-
plex Geometries

In this section, we will compute the AS decomposition for complex media that
do not, in general, admit the form (4.5) – (4.6), where the data are given on a
discrete rectangular pixel based grid.

5.2.1 Map of Switzerland
First, we consider a polygonal approximation uh ∈ V h

0 of Switzerland and its
K = 26 cantons, as in Figure 5.9 (a), on a 1563 px × 1002 px pixel based grid,
where each canton is assigned a constant value. Thus, uh is given by

uh =
K∑

k=1
αkχ

k
h, αk ̸= 0,

where each χk
h ∈ V h corresponds to a single canton uc

h. Next, we compute the first
K = 26 eigenfunctions φ1, . . . , φK of Lε[uh], see Figure 5.9 (b) – (e), to obtain
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GrisonsBern

St. Gallen

(a) Polygonal Switzerland uh (b) 3D-view of φ5

(c) φ2 with λ2 ≈ 28.75 (d) φ5 with λ5 ≈ 85.03 (e) φ15 with λ15 ≈ 217.59

Fig. 5.9: Map of Switzerland: Polygonal representation of the map of Switzerland
uh with its 26 cantons, together with three eigenfunctions φk, k = 2, 5, 15.

Φ26 = span{φk}K
k=1. Even tough each eigenfunction does not correspond to a single

canton uc
h, we may still project each canton into Φ26. Thus, the AS decomposition

Π26[uh]uc
h =

K∑
k=1

βkφk

of a single canton is a good approximation to the canton uc
h itself. Figure 5.10

shows the projection Π26[uh] for the canton of Bern, Grisons, and St. Gallen onto
the space Φ26. Note that although the canton of St. Gallen surrounds the cantons of
Appenzell Innerrhoden and Ausserrhoden, the projection Π26[uh] does not include
these two cantons, and thus resembles the canton of St. Gallen.

5.2.2 Anna’s Mountains
As a last example, we consider uh shown in Figure 5.11 (a), where the discrete
data uh are given on a 676 px × 500 px pixel based grid. We compute φ0 and the
first K = 250 eigenfunctions φk, k = 1, . . . , K, of Lε[uh] and calculate the relative
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(a) Canton of Bern (b) Canton of Grisons (c) Canton of St. Gallen

Fig. 5.10: Map of Switzerland: Three cantons projected onto Φ26.

(a) uh (b) φ0, e0 ≈ 25.5%

(c) Q10[uh](uh), e10 ≈ 14.5% (d) Q200[uh](uh), e200 ≈ 4.5%

Fig. 5.11: Anna’s Mountains: The medium uh, φ0 and the projections QK [uh](uh)
for K = 10, 200, together with its relative L2-errors eK .

L2-error

eK =
∥uh −QK [uh](uh)∥L2(Ω)

∥uh∥L2(Ω)
.

Remarkably, φ0 itself is a good approximation of uh with a relative error
e0 ≈ 25.5%, representing most information of uh that is connected to the bound-
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ary, such as the shapes of the mountains, see Figure 5.11 (b). When comparing φ0
to uh, however, φ0 misses covering details in the interior of uh, e.g. the lakes and
rivers that flows down the mountains, as well as its structure. When we take the
first 10 eigenfunctions φk (k = 1, . . . , K) into account, the projection Q10[uh](uh)
on φ0 + Φ10 is able to represent the broader details of the interior, such as the
lake and the coarser details of the mountains, see Figure 5.11 (c). Now, if we use
the first 200 eigenfunctions to project uh into φ0 + Φ200, we are able to essentially
recover all interior details, c.f. Figure 5.11 (d), such as the rivers and the finer
structure of all mountains, resulting in a relative L2-error of 4.5%.
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Part III

The Adaptive Spectral Inversion
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Chapter 6

The Adaptive Inversion
Algorithm

In this section, we focus on solving inverse (medium) problems, see Section 3.2.
Therefore, we consider the forward operator

F : H1 → H2, F (u) = y,

whereH1, H2 are Hilbert spaces. The unknown true medium is denoted by u† ∈ H1,
and its corresponding exact data is given by y† = F (u†) ∈ H2. However, in practice
the exact data y† is often unknown due to noise in the measurements. Instead, we
have access to perturbed/noisy data yδ such that

∥y† − yδ∥H2 ⩽ δ, (6.1)

with known noise δ > 0. Thus, we wish to solve the inverse problem

F (u) = yδ, (6.2)

given noisy data yδ, which we reformulate as a least squares problem

u†,δ = argmin
u∈H1

Jδ(u), (6.3)

where the misfit Jδ : H1 → R is given by

Jδ(u) = 1
2∥F (u)− yδ∥2

H2 = 1
2∥y[u]− yδ∥2

H2 .

In other words, we seek the medium u that minimizes the error between the data
y[u] = F (u) and the noisy observations yδ in the Hilbert space H2.
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Assumptions 1. In this entire chapter we assume that the forward operator F is

continuous and the misfit Jδ is Fréchet differentiable with derivative (Jδ)′(u) for

every u ∈ H1. Since H1 and H2 are Hilbert spaces, the gradient ∇Jδ(u) ∈ H1 also

exists for every u ∈ H1 where ∥(Jδ)′(u)∥H1→R = ∥∇Jδ(u)∥H1, see Section 2.1.1.

To simplify notation, we drop the index on the H1 norm of the gradient and only

write ∥∇Jδ(u)∥. Further, we denote the inner product on H1 by ⟨·, ·⟩

Following [43], to determine a solution to the inverse problem (6.2), we solve the
least squares problem (6.3) successively in a sequence of (closed) finite dimensional
subspaces Ψm ⊂ H1, where we do not necessarily have a priori knowledge of the
entire sequence {Ψm}m⩾1. Furthermore, each subspace might also depent on δ.
This leads us to the Adaptive Inversion Algorithm:

Algorithm 5 Adaptive Inversion
Input: initial guess u0,δ, search space Ψ1 ⊂ H1, m = 1.

1. while ∥∇Jδ(um,δ)∥ ≠ 0 do
2. Solve

um,δ = argmin
u∈Ψm

Jδ(u).

3. Determine new search space Ψm+1, such that um,δ ∈ Ψm+1.
4. m← m+ 1

Since we ensure that um,δ also belongs to the next new search space Ψm+1,
we guarantee that the sequence {um,δ}m⩾1 obtained by the Adaptive Inversion
Algorithm 5 is a minimizing sequence of Jδ. Consequently, the misfit does not
increase in every iteration m, i.e.

Jδ(um+1,δ) ⩽ Jδ(um,δ), ∀m ⩾ 1.

However, without further assumptions, we do not know yet whether this algorithm
is well defined and converges.

6.1 Convergence
To prove the convergence of the Adaptive Inversion Algorithm, we establish a
crucial angle condition for {um,δ}m⩾1 with δ ⩾ 0 fixed. This angle condition now
ensures that the norm of the gradient ∥∇Jδ(um,δ)∥ converges to zero with respect to
m, leading to the convergence of Algorithm 5. Under suitable assumptions from
convex optimization theory, we can then deduce that the minimizing sequence
{um,δ}m⩾1 indeed converges to u†,δ.
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Theorem 6.1. Let the misfit Jδ satisfy Assumptions 1 and its gradient be Lipschitz

continuous for every direction d ∈ H1, i.e.

|⟨∇Jδ(u+ v), d⟩ − ⟨∇Jδ(u), d⟩| ⩽ L∥v∥H1∥d∥H1 ∀u, v ∈ H1, L > 0.

Further assume that Jδ(u) ⩾ C > −∞ for all u ∈ H1. Then, if the correction

terms dm,δ = um+1,δ − um,δ satisfy the angle condition

|⟨∇Jδ(um,δ), dm,δ⟩| ⩾ εθ∥dm,δ∥H1∥∇Jδ(um,δ)∥, 0 < εθ < 1 (6.4)

uniformly in m, we have

∥∇Jδ(um,δ)∥ → 0, m→∞.

Proof. First, we claim that

Jδ(um+1,δ)− Jδ(um,δ) ⩽ −αm

2 µm⟨∇Jδ(um,δ), dm,δ⟩, (6.5)

where

αm = µm

L

⟨∇Jδ(um,δ), dm,δ⟩
∥dm,δ∥2 > 0, µm = sign(⟨∇Jδ(um,δ), dm,δ⟩). (6.6)

As both um+1,δ, um,δ ∈ Ψm+1, the correction dm,δ is also in Ψm+1. Furthermore,
since Jδ(um+1,δ) ⩽ Jδ(u) for all u ∈ Ψm+1, we may choose u = um,δ−αmµmd

m,δ to
obtain Jδ(um+1,δ) ⩽ Jδ(um,δ − αmµmd

m,δ). The linearity and Lipschitz continuity
of the gradient thus yields

Jδ(um+1,δ)− Jδ(um,δ) + αmµm⟨∇Jδ(um,δ), dm,δ⟩
⩽ Jδ(um,δ − αmµmd

m,δ)− Jδ(um,δ) + αmµm⟨∇Jδ(um,δ), dm,δ⟩

= αmµm

∫ 1

0

〈(
∇Jδ(um,δ)−∇Jδ(um,δ − ταmµmd

m,δ)
)
, dm,δ

〉
dτ

⩽
αmL

2 ∥dm,δ∥2αm = αm

2 µm⟨∇Jδ(um,δ), dm,δ⟩,

which proves (6.5).
By assumption Jδ is bounded from below by C > 0 and decreases in every

iteration, thus, there exists a constant C0 ⩾ 0 such that by (6.5)

−C0 ⩽ C − Jδ(u(1),δ) ⩽ Jδ(um+1,δ)− Jδ(u(1),δ)

=
M∑

m=1

(
Jδ(um+1,δ)− Jδ(um,δ)

)
⩽ −

M∑
m=1

αm

2 µm⟨∇Jδ(um,δ), dm,δ⟩

= − 1
2L

M∑
m=1

∥∇Jδ(um,δ)∥2

∥dm,δ∥2 ⩽ 0.

(6.7)
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Next, we define the angle θm via

cos(θm) = µm
⟨∇Jδ(um,δ), dm,δ⟩
∥∇Jδ(um,δ)∥∥dm,δ∥

> 0

and rewrite (6.7) using (6.6) as

−C0 ⩽ − 1
2L

M∑
m=1

cos2(θm)∥∇Jδ(um,δ)∥2 ⩽ 0.

Taking the limit M →∞ then yields the well known Zoutendijk condition [90]
∞∑

m=1
cos2(θm)∥∇Jδ(um,δ)∥2 <∞,

which immediately implies

cos2(θm)∥∇Jδ(um,δ)∥2 → 0, m→∞.

Since the angle condition (6.4) holds uniformly in m for all um,δ, i.e. cos(θm) ⩾ εθ

for all m ⩾ 1, with 0 < εθ < 1, we thus conclude that

∥∇Jδ(um,δ)∥ → 0, m→∞.

Theorem 6.1 assures that the Adaptive Inversion Algorithm generates a min-
imizing sequence {um,δ}m⩾1 such that the gradient of the misfit tends to zero.
Consequently, the algorithm is well defined and converges. However, without fur-
ther assumptions concerning the misfit, this does not automatically imply that
the sequence {um,δ}m⩾1 converges (weakly) to a (local) minimizer or accumulation
point.

Assuming the misfit is coercive and proper, we can apply [16, Corollary 11.30]
to obtain the following convergence result for um,δ.

Theorem 6.2. Let Jδ : H1 → R be continuous, convex, coercive, and proper.

Then, for every δ ⩾ 0, the sequence {um,δ}m⩾1 from the Adaptive Inversion Algo-

rithm 5

(i) has a weak accumulation point, which is a minimizer of Jδ.

(ii) If Jδ is strictly convex, then Jδ admits a unique minimizer u†,δ and

um,δ ⇀ u†,δ, m→∞.
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(iii) If Jδ is also uniformly convex, then Jδ admits a unique minimizer u†,δ and

um,δ → u†,δ, m→∞.

Note that the assumptions made in Theorem 6.2 seldom hold in practice, es-
pecially for inverse medium problems. Thus, we can not always guarantee that
the sequence {um,δ}m⩾1 from Algorithm 5 converges. However, the angle condi-
tion (6.4) from Theorem 6.1 ensures convergence of the gradient to zero. Now
that we have established convergence of the Adaptive Inversion Algorithm, we will
show that it is also a regularization method c.f. Section 3.1, when stopped by the
discrepancy principle.

6.2 Regularization
Since usually only perturbed noisy data yδ is available, that satisfies (6.1) for
known noise δ ⩾ 0, it does not seam feasible to improve the minimizer um,δ of
Jδ(u) to exactly fit the misfit in the observed data beyond the error δ. Therefore,
we wish to stop the iteration whenever F (um,δ) approximates yδ closely enough.
Thus, given a parameter τ > 1, we stop the Adaptive Inversion Algorithm at
iteration m∗(δ) defined by the discrepancy principle:

m∗ = m∗(δ) = min{m ∈ N : ∥F (um,δ)− yδ∥H2 ⩽ τδ}. (6.8)

If we assume that the search spaces Ψm satisfy

∥(I − ΠΨm)u†∥H1 → 0, m→∞,

where ΠΨm denotes the projection into Ψm and u† the exact (noise-free) solution,
the following lemma always guarantees the existence of a finite m∗. This implies
that the Adaptive Inversion Algorithm always satisfies the discrepancy principle
and stops after finitely many iterations.
Lemma 6.3. Suppose that Assumptions 1 for the forward operator F hold and

that the spaces {Ψm}m⩾1 satisfy

∥(I − ΠΨm)u†∥H1 → 0, m→∞. (6.9)

Then, for τ > 1, there exists for every δ ⩾ 0 an index m∗(δ) such that the discrep-

ancy principle (6.8) is satisfied.

Proof. By minimality of um,δ, the residual is bounded by

∥F (um,δ)− yδ∥H2 ⩽ ∥F (ΠΨmu†)− yδ∥H2

⩽ ∥F (ΠΨmu†)− F (u†)∥H2 + ∥F (u†)− yδ∥H2

⩽ ∥F (ΠΨmu†)− F (u†)∥H2 + δ.
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From the continuity of F and (6.9) we obtain

∥F (um,δ)− yδ∥H2 ⩽ τδ, τ > 1,

for m ⩾M sufficiently large. Thus m∗(δ) := M is always well defined.

Next, we consider the sequence {um∗,δ}δ⩾0 obtained from the Adaptive Inversion
Algorithm when stopped by the discrepancy principle (6.8). To show that the
Adaptive Inversion Algorithm is indeed a regularization method, that is

um∗,δ → u†, δ → 0,

we additionally assume that the forward operator F is Fréchet differentiable with
derivative F ′(u), weakly sequentially closed, and satisfies the tangential cone con-

dition (also known as Scherzer condition),

∥F (u)− F (v)− F ′(u)(u− v)∥H2 ⩽ η∥F (u)− F (v)∥H2 (6.10)

for all u, v ∈ H1 and η ∈ (0, 1). Then we conclude from [68, Theorem 3.4] that
the Adaptive Inversion Algorithm is a genuine regularization method according to
Definition 3.3:

Theorem 6.4. Let Ψm satisfy (6.9), F be weakly sequentially closed, Fréchet

differentiable, and also satisfy (6.10). Then, the sequence {um∗,δ}δ⩾0 obtained from

the Adaptive Inversion Algorithm 5, stopped at iteration m∗ = m∗(δ) according to

(6.8), admits a subsequence converging to a minimizer of Jδ. Moreover, if the

minimizer is unique, then the sequence {um∗,δ}δ⩾0 converges to the exact (noise-

free) solution u† of the inverse problem (6.2), that is

um∗,δ → u†, δ → 0.

Remark 4. If the nullspace of the Fréchet derivative F ′(u) is trivial, the Scherzer

condition (6.10) immediately implies the uniqueness of u†,δ for each δ ⩾ 0. Using

the triangle inequality, (6.10) implies

∥F ′(u)(u− v)∥ ⩽ (1 + η)∥F (u)− F (v)∥ ∀u, v ∈ H1.

Thus, for two distinct solutions u†,δ ̸= v†,δ to (6.2), we have

0 = ∥F (u†,δ)− F (v†,δ)∥ ⩾ 1
η + 1∥F

′(u†,δ)(u†,δ − v†,δ)∥.

This contradiction then implies the uniqueness of u†. Consequently, if the nullspace

of the Fréchet derivative F ′(u) is trivial for all u ∈ H1, then Theorem 6.4 imme-

diately implies the convergence of {um∗,δ}δ⩾0 to the exact solution.
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Summary. The Adaptive Inversion Algorithm 5 generates a minimizing sequence

{um,δ}m⩾1, i.e.

Jδ(um+1,δ) ⩽ Jδ(um,δ), ∀m ⩾ 1.

If we additionally assume that the angle condition

|⟨∇Jδ(um,δ), dm,δ⟩| ⩾ εθ∥dm,δ∥H1∥∇Jδ(um,δ)∥, 0 < εθ < 1

for the correciton dm,δ = um+1,δ − um,δ holds uniformly in m, Theorem 6.1 ensures

convergence of the gradient to zero:

∥∇Jδ(um,δ)∥ → 0, m→ 0.

These assumptions alone are not sufficient to ensure the convergence of the se-

quence {um,δ}m⩾1 to the exact solution. But under standard assumptions from

convex optimization, we even obtain convergence of the minimizing sequence from

Theorem 6.2.

Moreover, if the forward operator F satisfies standard assumptions for inverse

problems, we further deduce that the algorithm acts as a regularization method

when stopped at iteration m∗ by the discrepancy principle (6.8). Therefore, for

decreasing noise δ tending to zero, the sequence {um∗,δ}δ⩾0 converges to the exact

noise free solution u† of the inverse problem (6.2).
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Chapter 7

The Adaptive Spectral Inversion
Algorithm

In this chapter, we combine the Adaptive Spectral Decomposition from Chapter
II with the iterative Adaptive Inversion Algorithm 5 from Section 6. Thus, let
Ω ⊂ Rd, d ⩾ 1 be a bounded Lipschitz domain and H1 = L2(Ω). In each iteration
m of the algorithm, we seek a minimizer um,δ of the misfit Jδ within a finite
dimensional affine subspace φm

0 + Ψm. To construct the subsequent search space
φm+1

0 + Ψm+1, we compute φm+1
0 and the first few eigenfunctions {φm+1

k }k⩾1 using
(4.22) – (4.23), sorted in non-decreasing order according to their eigenvalues. We
then merge {φm+1

k }k⩾0 with Ψm and reduce its dimension such that um,δ remains
well represented in Ψm+1. Although the exact medium u† is unknown, we assume
that its values on the boundary are known. Therefore, each um,δ should coincide
with u† on the boundary and we deduce the subsequent minimizer in φm+1

0 +Ψm+1.
Clearly, φm+1

0 inherits the boundary values of u† (and thus um,δ), while Ψm+1

accounts for the interior variations.
Next, we wish to incorporate the angle condition (6.4) from Theorem 6.1 re-

quired to obtain convergence. Consider the given minimizer um,δ ∈ φm
0 + Ψm of Jδ

in the m-th iteration. Then, we first have to determine the minimizer um+1,δ of Jδ

in φm+1
0 + Ψm+1, compute the correction term dm,δ = um+1,δ − um,δ, and validate

the angle condition (6.4)

|⟨∇Jδ(um,δ), d⟩| ⩾ εθ∥d∥H1∥∇Jδ(um,δ)∥, 0 < εθ < 1. (7.1)

for d = dm,δ If the angle condition is not satisfied, we have to choose a different
search space, for example by using more eigenfunctions, and repeat with deter-
mining a new minimizer.

To circumvent this, we want to construct a space where we know a priori that
there exists at least one element that satisfies the angle condition. To do so, we
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consider the eigenfunctions {φk}k⩾1 of Lε[um,δ] c.f. (4.23). Then, we reorder them
according to their sensitivities

|σ1| ⩾ |σ2| ⩾ . . . ⩾ |σk|,⩾ . . . , σk = ⟨∇Jδ(um,δ), φk⟩. (7.2)

and shall include in Ψm+1 the most sensitive eigenfunctions φk. Now, we construct
a subspace ΦNθ

= span{φk}Nθ
k=1 ⊂ L2(Ω), with dimension Nθ, which contains at

least one d ∈ ΦNθ
that satisfies the angle condition (7.1) for a fixed 0 < εθ < 1.

Following [43], the next two lemmas yield subspaces ΦN∞ , ΦN2 , that contain at
least one element satisfying the angle condition.

Lemma 7.1. Let N∞ be the largest index such that

|σk| = |⟨∇Jδ(um,δ), φk⟩| ⩾ εθ∥∇Jδ(um,δ)∥, k = 1, . . . , N∞, (7.3)

holds. Then, d = ∑N∞
k=1 σkφk ∈ ΦN∞ satisfies the angle condition (6.4).

Proof. Since the eigenfunctions φk are orthonormal, we have ∥d∥L2(Ω) = ∥σ∥ℓ2

which yields

|⟨∇Jδ(um,δ), d⟩| =
∣∣∣∣∣
N∞∑
k=1

σk⟨∇Jδ(um,δ), φk⟩
∣∣∣∣∣ =

N∞∑
k=1
|⟨∇Jδ(um), φk⟩|2

⩾ εθ∥∇Jδ(um,δ)∥
N∞∑
k=1
|⟨∇Jδ(um,δ), φk⟩|

= εθ∥∇Jδ(um,δ)∥∥σ∥ℓ1 ⩾ εθ∥∇Jδ(um,δ)∥∥σ∥ℓ2

= εθ∥d∥L2(Ω)∥∇Jδ(um,δ)∥,

where the inequality follows from (7.3). Thus, the angle condition (6.4) is satisfied
for d = ∑N∞

k=1 σkφk ∈ ΦN∞ .

Note that for εθ < 1 there always exists N∞ ⩾ 1 sufficiently large such that
(7.3) is satisfied.

Lemma 7.2. Let N2, be the smallest index such that√√√√ N2∑
k=1
|⟨∇Jδ(um,δ), φk⟩|2 ⩾ εθ∥∇Jδ(um,δ)∥ (7.4)

Then, d = ∑N2
k=1 σkφk ∈ ΦN2 satisfies the angle condition (6.4).
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Proof. Similarly, since the eigenfunctions φk are orthonormal, we have

|∇Jδ(um,δ)d| =
N2∑

k=1
|⟨∇Jδ(um,δ), φk⟩|2

= ∥d∥L2(Ω)

√√√√ N2∑
k=1
|⟨∇Jδ(um,δ), φk⟩|2

⩾ εθ∥d∥L2(Ω)∥∇Jδ(um,δ)∥,

because of (7.4). Hence, the angle condition (6.4) is satisfied for d = ∑N2
k=1 σkφk ∈

ΦN2 .

We refer to (7.3) as the ℓ∞-criterion and to (7.4) as the ℓ2-criterion. If we let

Nθ = max{N∞, N2}, (7.5)

we ensure that there exists at least one element in the subspace

ΦNθ
= span{φ1, . . . , φNθ

}

that satisfies the newly introduced angle condition (6.4). Clearly, (7.3) is more
stringent than (7.4) and thus N2 ⩽ N∞. As we only compute in practice a finite
number of eigenfunctions φk, 1 ⩽ k ⩽ N , ordered according to their non-decreasing
eigenvalues, none might, in fact, satisfy (7.3). Then we set N∞ = 0 and thereby
Nθ = N2 in (7.5). In the unlikely case that no N2 ⩽ N satisfies (7.4), one needs
to increase N until (7.4) holds to ensure the existence of d ∈ ΦNθ

which satisfies
(6.4). This yields the full Adaptive Spectral Inversion (ASI) Algorithm below.
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Algorithm 6 Adaptive Spectral Inversion
Input:

initial guess u0,δ, search space φ1
0 + Ψ1

set m = 1, τ0 ⩾ 1
Output: reconstruction um∗,δ

1. while ∥∇Jδ(um,δ)∥ ≠ 0 do
2. Minimize Jδ in the current search space Ψm, dim Ψm = Km:

um,δ = argmin
u∈φm

0 +Ψm
Jδ(u). (7.6)

3. Compute τm = 1/δ∥F (um,δ)− yδ∥H2 .
4. if τm ⩽ τ0 then
5. Discrepancy principle (6.8) is satisfied, return um∗,δ = um−1,δ.
6. Determine AS basis Φm+1 and φm+1

0 from Lε[um,δ] via (4.22) – (4.23).
7. Merge AS basis and current search space:

Ψ̂m+1 = Ψm ∪ Φm+1 ∪ {φm+1
0 − φm

0 }.
8. Truncate Ψ̂m+1 while maintaining the accuracy of um,δ. This yields Ψ̃m+1.
9. Add sensitivities. Include AS basis functions φm+1

k ∈ Φ̃m+1 ⊂ Φm+1 with
maximal |σk| in (7.2). This yields the new search space Ψm+1 = Ψ̃m+1 ∪
Φ̃m+1 with dim Ψm+1 = Km+1.

10. m← m+ 1

By combining the previous search space Ψm with promising new search di-
rections determined from the current iterate um,δ, Steps 6 – 8 construct a low
dimensional subspace Ψ̃m+1 capable of representing um,δ up to a small error. In
Step 9, we then add the basis functions that will likely contribute the most to the
reduction of the misfit. Below, we provide a detailed discussion of Steps 6 – 9 of
the ASI Algorithm 6.

Step 6: Determine φm+1
0 +Φm+1. Once the minimizer um,δ of Jδ in the current

search space φm
0 + Ψm of dimension dim Ψm = Km has been found, we we proceed

to compute the boundary contribution φm+1
0 and the first few eigenfunctions of the

elliptic operator Lε[um,δ]. This involves numerically solving the (linear, symmetric,
and positive definite) boundary and eigenvalue problem (4.22) – (4.23)

Lε[um,δ]φm+1
0 = 0 in Ω, φ0 = uh on ∂Ω,

Lε[um,δ]φm+1
k = λkφ

m+1
k in Ω, φk = 0 on ∂Ω
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for the first few k = 1, . . . , Km eigenvalues, ordered with respect to their eigen-
values 0 < λ1 ⩽ . . . ⩽ λKm . This yields the new boundary contribution and AS
basis,

φm+1
0 and Φm+1 = span

{
φm+1

1 , . . . , φm+1
Km

}
.

Here, we arbitrarily set the dimension of Φm+1 to that of Ψm, though any other
sufficiently large number of eigenfunctions could be chosen.

Step 7: Merge. Next we merge the previous search space Ψm with Φm+1 and
φm+1

0 as

Ψ̂m+1 = Ψm ∪ Φm+1 ∪ {φm+1
0 − φm

0 }
= Ψm + span

{
φm+1

0 − φm
0 , φ

m+1
1 , . . . , φm+1

Km+1

}
.

We then compute an L2-orthonormal basis ψ̂k, k = 1, . . . , K̂m+1, of Ψ̂m+1 using
modified Gram-Schmidt to obtain

Ψ̂m+1 = span
{
ψ̂1, . . . , ψ̂K̂m+1

}
.

Therefore, the previous minimizer um,δ ∈ φm
0 + Ψm lies also in φm+1

0 + Ψ̂m+1,
i.e. um,δ ∈ φm+1

0 + Ψ̂m+1. However, since the dimension dim Ψ̂m+1 = K̂m+1 may
become too large with every iteration, we now need to truncate Ψ̂m+1 to keep the
number of control variables small.

Step 8: Truncate. To truncate Ψ̂m+1 and retain only the basis functions ψ̂k

essential to the contribution of um,δ − φm+1
0 , we proceed in two steps. First,

we compute an indicator v close to um,δ − φm+1
0 , but has minimal TV-“energy”,

to remove noise and preserve edges. Instead of minimizing the TV-functional
TV(v) =

∫
|∇v|, which results in a nonlinear optimization problem, we keep the

computational costs low by minimizing the linearized TV-functional (4.29). Thus,
the indicator v satisfies

min
v∈Ψ̂m+1

∫
Ω
µε[um,δ]|∇v|2

s.t. ∥v − (um,δ − φm+1
0 )∥L2(Ω) ⩽ εΨ∥um,δ − φm+1

0 ∥L2(Ω),
(7.7)

for a prescribed truncation tolerance εΨ > 0; typically set to εΨ = 5%. Since
(7.7) is a quadratic optimization problem with quadratic inequality constraints,
computing v is cheap and efficient.
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Second, we reduce the dimension of Ψ̂m+1 by discarding all basis functions that
do not significantly contribute much to the indicator v. Let γk denote the Fourier
coefficients γk of v,

γk = (v, ψ̂k)L2(Ω), k = 1, . . . , K̂m+1,

sorted in decreasing order and sort the L2-orthonormal basis functions ψ̂m+1
k ac-

cordingly. Next, we determine the index N0 by

N0 = min

1 ⩽ K ⩽ K̂m+1 :
K̂m+1∑

k=K+1
γ2

k ⩽ εΨ
2∥γ∥2

ℓ2

 ,
to ensure that the relative L2-error in the Fourier expansion truncated at N0 is
below εΨ. To avoid drastic changes in the dimension of the search space, we now
calculate ρ = N0/Km. For given ρ0, ρ1, where 0 < ρ0 ⩽ 1 ⩽ ρ1 (typically ρ0 = 0.8
and ρ1 = 1.2), we choose the dimension K̃m+1 of the truncated space Ψ̃m+1 as
follows:

(i) If ρ ∈ [ρ0, ρ1], set K̃m+1 = N0.

(ii) If ρ < ρ0, the dimension decreases too fast. Set K̃m+1 = ⌈ρ0Km⌉ and halve
εΨ to avoid a rapid decrease in the dimension at the next iteration.

(iii) If ρ > ρ1, the dimension increases too fast. Set K̃m+1 = ⌈ρ1Km⌉ and double
εΨ to avoid a rapid increase in the dimension at the next iteration.

This yields the truncated space as Ψ̃m+1 = span
{
ψ̂1, . . . , ψ̂K̃m+1

}
.

Step 9: Add sensitivities. Finally, we determine the most sensitive AS basis
functions

Φ̃m+1 = span {φ1, . . . , φNθ
}

from Φm+1, reordered according to their sensitivities |σk| as in (7.2). To determine
Nθ, we use the ℓ∞- and ℓ2-criteria (7.3) and (7.4) from Lemmas 7.1 and 7.2,
respectively. In the unlikely event that the AS space Φm+1 from Step 6 contains
no eigenfunction that satisfies (7.3) or (7.4), we can either increase the dimension
of Φm+1 or set Φ̃m+1 = ∅, thus simply proceed. By combining Ψ̃m+1 and Φ̃m+1, we
obtain the subsequent search space

Ψm+1 = Ψ̃m+1 ∪ Φ̃m+1 = span
{
ψ1, . . . , ψKm+1

}
.

Now, we can proceed and seek a minimizer um+1,δ of Jδ in the affine search space
φm+1

0 + Ψm+1.
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Note that the sensitivity based selection procedure in Step 9 only ensures that
the angle condition (6.4) is satisfied by at least one element in Φ̃m+1 ⊂ Ψm+1.
However, it does not guarantee that the correction dm,δ = um+1,δ − um,δ itself
satisfies the condition (7.1) at every iteration. If we specifically require dm,δ to
satisfy the angle condition at each iteration, we would have to verify (7.1) for
every m and potentially reject the new minimizer of (7.6) if the condition is not
met. This would result in the need to choose a new search space, possibly leading
to a further increase in the search space dimension. Instead, Lemmas 7.1 and 7.2
guarantee that at least one element in the search space satisfies the angle condition,
thereby making it rather likely that it will also be satisfied by the correction dm,δ.

Remark 5. In the above Adaptive Spectral Inversion (ASI) Algorithm, Steps 1 –

8 correspond to the ASI Algorithm previously introduced in [11]. This previous ASI

Algorithm, however, did not include the growth control (iii) on the dimension Km+1
in Step 8. Step 9, however, where further eigenfunctions are included based on

their sensitivites (7.2), is new and will prove crucial for detecting even small-scale

features in the medium. Henceforth, we denote by ASI0 the above ASI Algorithm

without Step 9, similar to the one from [11], to distinguish it from the present ASI

Algorithm.

The History of the Adaptive Spectral Inversion
This section is dedicated to the history of the Adaptive Spectral Inversion, from
its origins, refinements, and to its current version as given by Algorithm 6.

De Buhan and Osses [29] first restricted the search space Ψm in each iteration
m to the eigenfunctions of an elliptic operator that depends on the medium um,δ

to solve the inverse problems (6.3). More precisely, in the context of Chapter II,
they considered

L[um,δ]v = −∇ · (µ[um,δ]∇v), µ[um,δ] = 1
|∇um,δ|

,

without any ε-dependency, to obtain the eigenfunctions for the subsequent search
space Ψm+1. However, as L[um,δ] did not depend on the fixed parameter ε > 0, this
could lead to an ill-posed operator for small gradients of um,δ. After obtaining the
minimizer, they dismissed the entire search space and constructed the subsequent
search space by newly computing the eigenfunctions of L[um,δ]. Despite referring
to the method as an adaptive method, they only recomputed new eigenfunctions
in each iteration but kept its dimension constant.

In [28], De Buhan and Kray first introduced the fixed but small parameter
ε > 0 to the elliptic operator Lε[um,δ] to avoid problems whenever the gradient
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becomes close to zero, see [28, Remark in Section 3.3] They achieved this by using
the weight function

µε[um,δ] = max(|∇um,δ|, ε)−q, q ⩾ 1,

and then obtained the new search space by the first few eigenfunctions of Lε[um,δ].
The authors then applied this found search space together with the TRAC method
to solve an inverse problem for the wave equation without adapting the dimension
of each search space and referred to this method as the Adaptive Inversion (AI).
Later, de Buhan and Darbas applied this method to the time-harmonic Maxwell
equation at a fixed frequency [27] and referred to it as the Adaptive Eigenspace

Inversion (AEI) method.
Grote, Kray, and Nahum took the first step in adapting the number of basis

functions used in the AEI method, c.f. [48], where they solved the inverse scat-
tering problem for the Helmholtz equation using frequency stepping, increasing
the number of basis functions linearly with every frequency. There, the authors
discovered the connection of Lε given by (4.4) with the gradient of the regular-
ized TV functional, c.f. [48, Remark 1] and Chapter II. Later, Grote and Nahum
applied the AEI from [48] to multi-parameter inversion, also comparing different
elliptic operators, not necessarily of the form (4.21), to obtain the eigenfunctions
that span the search space.

In [11], Baffet, Grote, and Tang introduced a fully adaptive basis choice crite-
rion, resulting in the Adaptive Spectral Inversio (ASI). The idea was to construct
a new search space, by combing the old search space with new eigenfunctions ob-
tained from the AS operator Lε[um,δ], ensuring that the current iterate um,δ is “well
represented” in the new search space, while maintaining a low dimension. This
algorithm essentially corresponds to Steps 1 – 8 in Algorithm 6. However, they
did not include item (iii) from Step 8, thus the search space could grow arbitrarily
fast.

The newly introduced ASI Algorithm 6 now prevents the search space from a
fast growth of dimension by employing Step 8 (iii). Additionally, it incorporates
the new key angle condition introduced in Step 9, where further eigenfunctions
are included based on their sensitivities (7.2). This will prove crucial for detecting
small-scale features located inside the medium.
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Numeric Examples

To illustrate the accuracy and usefulness of the ASI Algorithm introduced in Sec-
tion 7, we shall now apply it to two inverse medium problems of the form: Find
u ∈ H1, y ∈ H2 that satisfy

min
u,y

1
2∥y − y

δ∥2
H2

s.t. A[u]y − f = 0,
(8.1)

for a given source f and noisy data yδ ∈ H2 as in (6.1). Each inverse problem is
governed by a distinct forward problem (8.1) whose solution, for any given medium
u, is y = A[u]−1f . Thus, we can eliminate the constraints in (8.1) to obtain the
reduced misfit Jδ as in (3.30) from Section 3.2, which leads to the equivalent
unconstrained minimization problem: Find u†,δ ∈ H1 such that

u†,δ = argmin
u∈H1

1
2∥y[u]− yδ∥2

H2 . (8.2)

For each inverse problem, we aim to recover separately the two different (unknown)
media u† shown in Figure 8.1, by applying the ASI Algorithm 6 to (8.2) The first
consists of six disks, each with a different value and radius. The second consists
of three inclusions: An open wedge with a sharp 90◦ interior angle, making it
non-convex with a piecewise smooth boundary, a convex drop-like inclusion with a
sharp tip, and a kite-shaped inclusion, both non-convex with smooth boundaries.

In all cases, we apply the ASI Algorithm 6 from Section 7 with the following
fixed parameter settings:

ρ0 = 0.8, ρ1 = 1.2, εθ = 10−4, εΨ = 0.05, τ0 = 1.

As an initial guess, we always choose u0,δ = 1 constant. We also set the initial
search space Ψ1 to be the first K1 L

2-orthonormal eigenfunctions of the Laplacian,
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Fig. 8.1: Inverse Problem: The two distinct media u† used in the numerical experi-
ments. Left: six disks; right: three inclusions.

sorted in non-decreasing order with respect to their eigenvalues. Here, we choose
K1 = 100 for problem 8.1 and K1 = 50 for problem 8.2.

To assess the accuracy of the ASI method, we shall monitor the following
quantities: The dimension Km of the search space Ψm, the relative error

em = ∥u
m,δ − u†∥H1

∥u†∥H1

, (8.3)

the ratio τm from the discrepancy principle, determined in Step 3,

τm = ∥y[um,δ]− yδ∥H2

δ
, (8.4)

and the total number of iterations m∗, where m = m∗ + 1 is the first index such
that τm ⩽ τ0; hence, the discrepancy principle (6.8) is then satisfied with τ = τm∗ .
Note that τm∗ ≈ τ0 = 1 implies that um∗,δ (nearly) yields an optimal data misfit
since ∥y† − yδ∥H2 ⩽ δ.

8.1 Elliptic Inverse Problem
First, we consider the forward problem described by the elliptic differential equa-
tion

−∇ · (u(x)∇y(x)) = f(x), x ∈ Ω,
y(x) = 0, x ∈ ∂Ω,

(8.5)
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from Section 1.2.1, with Ω = (0, 1)2, constant right hand side f = 100, and H1 =
H2 = L2(Ω); Since H1 = L2(Ω), the observations yδ are available throughout Ω.
In [65, 66, 106], the one-dimensional version of (8.5) was considered and shown
to satisfy the Scherzer condition (6.10), see Theorem 6.4.

(a) ASI: um∗,δ for δ̂ = 1% (b) ASI: um∗,δ for δ̂ = 2% (c) ASI: um∗,δ for δ̂ = 5%

(d) Tikhonov: um∗,δfor δ̂ = 1% (e) Tikhonov: um∗,δfor δ̂ = 2% (f) Tikhonov: um∗,δfor δ̂ = 5%

Fig. 8.2: Elliptic inverse problem, six disks: Reconstructed media using the ASI
method (top) or standard L2-Tikhonov regularization (bottom) for different
noise levels δ̂.

Here, we compare the ASI Algorithm 6 from Section 7 with a standard grid
based inversion method using Tikhonov regularization introduced in Section 3.1.3.
To solve the forward problem (8.5), we employ a Galerkin piecewise linear P1

finite element discretization, thus V h = P1, where both u and y are approximated
using the same triangular mesh with vertices located on a 400 × 400 equidistant
Cartesian grid.

Hence, we omit the index uh, yh ∈ V h and simply denote u, y ∈ V h. Although
the finite element representation involves a large number of degrees of freedom
(nDof = 160′000), we recall that the ASI Algorithm determines the m-th iterate
only in the much smaller subspace Ψm of dimension Km. In the m-th step of the
ASI Algorithm, we determine the minimizer um,δ of (7.6) using standard BFGS
along with Armijo, instead of Wolfe-Powell line search, to keep the number of
(expensive) gradient evaluation small, as outlined in Section 2.4.
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For the standard Tikhonov L2-regularization approach, we minimize

min
u∈L2(Ω)

1
2∥y[u]− yδ∥2

L2(Ω) + α

2 ∥u∥
2
L2(Ω), (8.6)

where α > 0 denotes the regularization parameter. Due to the resulting large
number of unknowns, we now solve (8.6) using standard limited memory BFGS

(L-BFGS) together with Armijo line search as in Algorithm 3. Following Section
3.1.4, we set the regularization parameter αn = 2−n at the n-th L-BFGS iteration,
as proposed in (3.20).

To avoid any potential inverse crime, the exact data y† = y[u†] was computed
from a 20% finer mesh and perturbed at each grid point xj by

yδ(xj) = y†(xj) + δ̂ξj ∀xj ∈ Ω

for the noise level δ̂ ⩾ 0, where (ξj)j is a multivariate random variable with
ξj = ηj/∥η∥L2(Ω) and ηj are i.i.d. Gaussian random variables with mean zero and
variance one. Hence the data misfit satisfies exactly

∥y† − yδ∥L2(Ω) = δ̂ = δ.

Tab. 8.1: Elliptic inverse problem, six disks: The relative error em∗ , the total
number of iterations m∗, the dimension Km∗ , and the ratio τm∗ from the
discrepancy principle of the search space are shown for the ASI method and
L2-Tikhonov regularization.

Method ASI L2-regularization
δ = δ̂ 1% 2% 5% 10% 1% 2% 5% 10%
em∗ 2.7% 2.8% 3.9% 5.3% 5.3% 6.1% 8.0% 8.7%
m∗ 50 19 15 10 5.3 39 15 11
Km∗ 67 95 76 51 nDof = 160′000
τm∗ 1.005 1.0001 1.000 1.0003 1.000 1.0008 1.005 1.001

Table 8.1 compares the relative error em∗ , dimension Km∗ of the search space
Ψm∗ , and the ratio τm∗ at the final iteration m∗ for both, the ASI method and L2-
Tikhonov regularization. As expected, both methods require fewer iterations m∗ to
achieve (6.8) as the noise level δ̂ increases, while the relative error obtained by the
ASI method is consistently smaller than that achieved by standard L2-Tikhonov
regularization. Even with δ = 10% the ASI method yields a smaller relative error
than standard Tikhonov regularization for smaller noise δ. In Figure 8.2, we
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compare the reconstructed media um∗,δ obtained from both methods. Clearly, the
ASI method yields reconstructions with sharper contrasts, crisper edges, and more
accurate coefficients inside each disk. Moreover, the results from L2-Tikhonov
regularization display a noisy background and less accurate reconstructions of the
coefficients inside the inclusions. Remarkably, the ASI method achieves better
reconstructions, only using as few as Km∗ = 100 control variables, in contrast to
grid based Tikhonov regularization, which involves over 160′000 unknowns.
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Fig. 8.3: Elliptic inverse problem, six disks: The relative error (8.3), the ratio
τm from the discrepancy principle (8.4), the norm of the gradient, and the
dimension of the search space at iteration m for different noise levels δ.

From Figure 8.3 we observe that the relative error em and ∥∇Jδ(um,δ)∥ decrease
throughout all iterations, as expected from Theorem 6.1 in Section 6. Furthermore,
τm tends to 1 until stopped by the discrepancy principle (6.8). Note that the
dimension Km, or equivalently the number of control variables, remains small for
the ASI method regardless of δ. This keeps the computational effort low while
achieving accurate reconstructions.

Next, we consider the inverse problem for the (unknown) medium u† depicted in
the right frame of Figure 8.1, which consists of three distinct inclusions. Again, the
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ASI Algorithm from Section 7 successfully recovers the true medium at the various
noise levels δ, as illustrated in Figure 8.4: all three inclusions are clearly visible
with well defined contrast and sharp edges, except for the reentrant corner of the
open wedge with 5% noise. On the other hand, the L2-Tikhonov regularization
method yields more noisy and blurred reconstructions, where the inclusions become
hardly visible beyond 5% noise.

(a) ASI: um∗,δ for δ̂ = 1% (b) ASI: um∗,δ for δ̂ = 2% (c) ASI: um∗,δ for δ̂ = 5%

(d) Tikhonov: um∗,δ for δ̂ = 1% (e) Tikhonov: um∗,δ for δ̂ = 2% (f) Tikhonov: um∗,δ for δ̂ = 5%

Fig. 8.4: Elliptic inverse problem, three inclusions: Reconstructed medium using
the ASI method (top) or standard L2-Tikhonov regularization (bottom) for
different noise levels δ̂.

From Table 8.2, we again conclude that the relative error em∗ of the ASI method
alway remains below that obtained with L2-Tikhonov regularization. Even with
δ = 10% noise, the ASI method proves to be more accurate than L2-Tikhonov reg-
ularization with as little as 1% noise. Moreover, the number of control variables
Km∗ used in the ASI method never exceeds 160, in comparison to approximately
160′000 control variables used in the nodal FE representation for L2-Tikhonov reg-
ularization. As a consequence, the computational effort of the ASI method always
remains significantly lower than that with standard Tikhonov regularization.

In Figure 8.5, we observe that the relative error em and ∥∇J(um,δ)∥ decrease
with each iteration, while simultaneously the ratio τm tends to 1. Also, the number
of basis functions Km of the search space Ψm, i.e. the number of control variables,
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remains small, which again translates to a low computational effort.

Tab. 8.2: Elliptic inverse problem, three inclusions: The relative error em∗ , the
total number of iterations m∗, the dimension Km∗ , and the ratio τm∗ from
the discrepancy principle of the search space are shown for the ASI method
and L2-Tikhonov regularization.

Method ASI L2-regularization
δ = δ̂ 1% 2% 5% 10% 1% 2% 5% 10%
em∗ 3.3% 3.7% 5.0% 6.4% 7% 8.3% 12.9% 13.0%
m∗ 50 25 12 8 69 48 15 15
Km∗ 153 120 110 72 nDof = 160′000
τm∗ 1.001 1.0001 1.0001 1.000 1.0004 1.0001 1.029 1.0014
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Fig. 8.5: Elliptic inverse problem, three inclusions: The relative error (8.3), the
ratio τm from the discrepancy principle (8.4), the norm of the gradient, and
dimension of the search space, for every iteration m for different noise levels
δ̂ > 0.
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8.2 Time Dependent Inverse Scattering Prob-
lem

Next, we consider wave scattering from an unknown spatially distributed medium
illuminated by surrounding point sources. Hence, the forward problem (8.1) now
corresponds to the time dependent wave equation in Ω = (0, 1)2,

∂2

∂t2
yℓ(x, t)−∇ · (u(x)∇yℓ(x, t)) = fℓ(x, t), x ∈ Ω, t ∈ (0, T ),

yℓ(x, 0) = ∂
∂t
yℓ(x, 0) = 0, x ∈ Ω,

∂
∂t
yℓ(x, t) +

√
u(x) ∂

∂n
yℓ(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

(8.7)

with homogeneous initial conditions and first order absorbing boundary conditions
as introduced in Section 1.2.2. Here, u denotes the squared wave speed whereas
the sources fℓ(x, t) = gℓ(x)r(t), ℓ = 1, . . . , Ns, correspond to smoothed Gaussian
point sources

gℓ(x) = κe
(x−xℓ)2

s , x ∈ Ω,

in space, centered about distinct locations xℓ ∈ Ω, with s = 10−2 and κ = 200,
and a Ricker wavelet [28, 77] in time,

r(t) = (1− 2π2(ν − t)2)e−π2(νt−1)2
, t ∈ [0, T ],

with central frequency ν = 10. In Figure 8.6, snapshots of the solution to the
forward problem (8.7) are shown at different times for the source located at the
top left corner.

(a) t = 0.4 (b) t = 0.7 (c) t = 1.0

Fig. 8.6: Wave equation: Snapshots of the solution to the wave equation (8.7).
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To generate the (synthetic) observations, we now place Ns = 32 sources located
at xℓ equidistributed near the boundary and illuminate the medium, one source
at a time. In contrast to the previous example from Section 8.1, here the data yδ

ℓ

is only available at the boundary, yet for all t ∈ (0, T ) until the final time T = 2,
when the incident wave has essentially left Ω. Hence, we set H1 = L2(Ω) and
H2 = L2(∂Ω× (0, T )) in (8.2). Thus, the misfit

Jδ(u) = 1
2

Ns∑
ℓ=1
∥yℓ[u]− yδ

ℓ∥2
L2(∂Ω×(0,T )) (8.8)

now accounts for the data yδ
ℓ from multiple sources ℓ = 1, . . . , Ns.

The forward problem (8.7) is solved by a standard Galerkin FE-method, where
we again discretize u in V h using P1-FE on a triangular mesh with vertices located
on a 400×400 equidistant Cartesian grid. To discretize y in (8.7), we let Ṽ h be the
FE space P2

b , the piecewise quadratic P2-FE space with bubble function b ∈ P3 to
ensure mass lumping, see Section 2.2.2. However, we employ a separate triangular
mesh with about 10 elements per wavelength, resulting in approximately 60′000
nodes. For the time integration, we use the standard (fully explicit) leap frog
method with time step ∆t ≈ 4.5 · 10−4. Similar to the previous section, we may
simply write u ∈ V h and, for every time step tn = n∆t, t = 0, . . . , NT , denote the
fully discrete solution to (8.7) by yℓ(·, tn) ∈ Ṽ h, see also Section 2.3.

To avoid any potential inverse crime, the exact data y†
ℓ = yℓ[u†] was computed

from a 20% finer mesh. The perturbed (noisy) data yδ
ℓ at each grid point xj and

time step tn was then obtained via multiplicative noise, motivated by [25, 28], as

yδ
ℓ (xj, tn) = y†

ℓ(xj, tn)
(
(1 + δ̂(ηℓ)j,n

)
∀(xj, tn) ∈ Ω× (0, T )

for the noise level δ̂ ⩾ 0. Here (ηℓ)j,n corresponds to normally distributed Gaussian
noise. Thus

Ns∑
ℓ=1
∥y†

ℓ − yδ
ℓ∥L2(∂Ω×(0,T )) ⩽ δ, δ ⩾ 0.

To reduce computational cost during the inverse iteration, we do not minimize
(8.8) directly, but instead use a standard sample average approximation (SAA)
[53]: at each iteration, we combine all sources fℓ into a single “super-shot” fm,

fm =
Ns∑
ℓ=1

ξm
ℓ fℓ,

where ξm
ℓ = ±1 follow a Rademacher distribution with zero mean, resampled after

each iteration m. Consequently, at each iteration m, we solve the minimization
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problem

min
u∈Ψm

1
2∥y[u]− ym,δ∥L2(Γ×(0,T )),

with corresponding boundary observations

ym,δ =
Ns∑
ℓ=1

ξm
ℓ y

δ
ℓ .

Tab. 8.3: Inverse scattering problem, six disks: The relative error em∗ , the total
number of iterations m∗, the dimension Km∗ , and the ratio τm∗ from the
discrepancy principle of the search space are shown for the ASI and ASI0
method.

Method ASI ASI0

δ̂ 1% 2% 5% 10% 1% 2% 5% 10%
em∗ 2.6% 2.4% 2.0% 1.8% 2.4% 3.4% 4.4% 3.2%
m∗ 50 48 50 32 50 50 31 49
Km∗ 81 133 85 69 83 28 57 83
τm∗ 1.076 1.006 1.0003 1.0001 1.047 1.26 1.061 1.017
δ 0.18% 0.35% 0.88% 1.76% 0.18% 0.35% 0.88% 1.76%

First, we compare the ASI Algorithm from Section 7 with the former ASI0
Algorithm. In the ASI0 Algorithm, we omit Step 9 and thus ignore the most
sensitive AS basis functions required for the angle condition (see Remark 5). We
consider the (unknown) medium u† consisting of six disks shown in Figure 8.1,
where we observe from Table 8.3 that the ASI and ASI0 Algorithms perform
similarly in terms of the relative error em∗ and dimension of the search space Km∗ .
However, when we compare the reconstructed media um∗,δ from Figure 8.7, we see
that the ASI0 Algorithm (Figures 8.7 (d) – (f)) fails to reconstruct the smallest
disk with increasing noise. In contrast, the ASI Algorithm (Figures 8.7 (a) – (c))
consistently recovers even the smallest disk.

In Figure 8.8, we observe that the relative error em decreases throughout all
iterations, while the number of control variables Km remains small, which effec-
tively keeps the overall computational cost low. As expected from Theorem 6.1, the
norm of the gradient ∥∇Jδ(um,δ)∥ decreases and the ratio τm from the discrepancy
principle (8.4) tends to 1.

Finally, we consider the medium u† shown in Figure 8.1 with three geometric
inclusions. As shown in Figure 8.9, the ASI Algorithm recovers the shape and
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(a) ASI: um∗,δ for δ̂ = 1% (b) ASI: um∗,δ for δ̂ = 2% (c) ASI: um∗,δ for δ̂ = 5%

(d) ASI0: um∗,δ for δ̂ = 1% (e) ASI0: um∗,δ for δ̂ = 2% (f) ASI0: um∗,δ for δ̂ = 5%

Fig. 8.7: Inverse scattering problem, six disks: Comparison of ASI (top) and
ASI0 (bottom) for different noise levels δ̂.

Tab. 8.4: Inverse scattering problem, three inclusions: The relative error em∗ ,
the total number of iterations m∗, the dimension Km∗ , and the ratio τm∗

from the discrepancy principle of the search space are shown for the ASI
method.

Method ASI
δ̂ 1% 2% 5% 10%
em∗ 4.0% 3.4% 3.2% 3.4%
m∗ 50 49 50 50
Km∗ 114 83 61 45
τm∗ 1.075 1.015 1.005 1.002
δ 0.18% 0.35% 0.88% 1.46%

height of all three inclusions with high fidelity and regardless of the noise level δ̂.
In Table 8.4 and Figure 8.10, we observe that the relative error em consistently
remains low for all δ̂ and decreases throughout all iterations. Again, the ratio τm

from (8.4) tends to 1 while ∥∇Jδ(um,δ)∥ decreases. Notably, for all noise levels
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Fig. 8.8: Inverse scattering problem, six disks: The relative error (8.3), the ratio
τm from the discrepancy principle (8.4), the norm of the gradient, and the
dimension of the search space are shown at every iteration m for the ASI
method and the different noise levels δ̂.

δ̂, the number of basis functions Km never exceeds 140, significantly reducing the
computational effort compared to a standard nodal based optimization approach
with 160′000 control variables. As the ASI and ASI0 Algorithms performed simi-
larly, the results from the latter are omitted here.
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(a) ASI: um∗,δ for δ̂ = 1% (b) ASI: um∗,δ for δ̂ = 2% (c) ASI: um∗,δ for δ̂ = 5%

Fig. 8.9: Inverse scattering problem, three inclusions: Reconstructed medium
using the ASI method for different noise levels δ̂.
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Fig. 8.10: Inverse scattering problem, three inclusions: The relative error (8.3),
the ratio τm from the discrepancy principle (8.4), the norm of the gradient,
and the dimension of the search space, at iteration m for the ASI method
and different noise levels δ̂.
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Conclusion and Future Work

In this Thesis, we have introduced the Adaptive Spectral Inversion (ASI) method, a
nonlinear iterative optimization technique for solving inverse (medium) problems,
which is based on the iteratively Adaptive Inversion Algorithm 5. Unlike a grid
based finite element or finite difference Ansatz, that lead to a large number of
unknowns, the AEI method adopts a different strategy. In each iteration m, the
inverse problem is solved by minimizing the data misfit with added noise δ within
a small finite dimensional search space Ψm, effectively reducing the number of
control variables.

The subsequent search space Ψm+1 is constructed using the first few eigenfunc-
tions of a judicious chosen elliptic operator Lε[um,δ], which itself depends on the
minimizer um,δ ∈ Ψm of the misfit. Thus, the first few eigenfunctions depend on
um,δ and inherit crucial information from the previous step, transported to the
subsequent search space. Additionally, we newly added those eigenfunctions with
the largest sensitivities (7.2) to obtain a sufficient decrease of the misfit in each
step m.

In Section 6.2, we demonstrate that the ASI method, when stopped by the
discrepancy principle (6.8) after a finite number of m∗ iterations, is a genuine
regularization method. Consequently, as the noise δ approaches zero, the solution
um∗,δ obtained by the discrepancy principle, converges to the exact minimizer u†

of the inverse problem. Furthermore, by incorporating the eigenfunctions with the
largest sensitivities, satisfying the ℓ∞- and ℓ2-criteria from Lemmas 7.1 and 7.2,
respectively, into the ASI method, we introduce the newly determined angle con-

dition (6.4). We have established in Theorem 6.1 that under this angle condition,
the algorithm is well defined and converges, meaning the gradient of the misfit
tends to zero. In summary, we have successfully proven that under appropriate
assumptions, the ASI method is both well defined and convergent, and serves as
a regularization method. Consequently, regularization is naturally embedded into
the ASI method, and thus there is no need for additional regularization strate-
gies, such as adding a penalization term to the misfit, in order to obtain robust
solutions.

In Section 8, we underpin the remarkable accuracy of the ASI, first by com-
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paring it to standard grid based Tikhonov regularization for an elliptic inverse
problem. Here, the ASI method is, even for increasing noise, able to reconstruct
the unknown medium with its shapes and values, where it surpasses L2-Tikhonov
regularization. Next, we demonstrate the practical applicability of the newly in-
corporated angle condition by solving time dependent inverse scattering problems.
By including the most sensitive eigenfunctions, we can detect even the smallest
inclusions, where the ASI algorithm without taking the sensitivities into account
failed. This demonstrates the effectiveness of the angle condition, making the ASI
method even more robust.

Obviously, the choice of the operator Lε[um,δ] is crucial to obtain valid solu-
tions for inverse problems. In Chapter II, we introduce the elliptic operator Lε[v],
initially established in [29], which depends on a sufficiently small ε > 0 and a
suitable function v. When considering a piecewise constant medium u with K
interiour inclusions, we have proven in Section 4.2 that the first K eigenfunctions
obtained by Lε[uh], where uh corresponds to the finite element interpolant of u and
h denotes the mesh size, are “almost” piecewise constant and effectively represent
the inclusions inside the medium. As a result, the projection of u into these eigen-
functions, the Adaptive Spectral (AS) decomposition of u, accurately represents u
with its inclusions. Furthermore, we have proven this by deploying convergence
rates of the projection error with respect to ε and h. In various examples, we have
verified these convergence rates and highlighted the remarkable approximation of
piecewise constant functions u by only using the first few eigenfunctions of the
operator Lε[uh].

For the AS decomposition, it is essential to assume that we know the values of
the medium on the boundary. Therefore, employing this decomposition in the ASI
method may not be practical in real life applications, especially in scenarios like
seismic imaging, see Figure 1.1, where a priori information of the medium at the
boundary, or certain parts it, might be unknown. However, when we assume that
the medium is piecewise constant, we can also deduce that its normal derivative
at the boundary vanishes. Hence, we can consider the AS decomposition with
homogeneous Neumann conditions, allowing us to obtain the first few eigenfunc-
tions without requiring a priori information about the unknown medium on the
boundary.

As demonstrated in the numerical examples, the ASI method yields a robust
approximation to the unknown medium, requiring only a few control parameters
compared to grid based representations. This reduction in control parameters sig-
nificantly reduces the numerical cost of the method. Moreover, the eigenfunctions
of the operator Lε[um,δ] are highly localized, allowing for easy “sparsification” [48]
by setting all small values in their discrete representation to zero, further reduc-
ing the computational cost. We may even improve the efficiency of ASI method
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further by employing a mesh refinement when solving (4.24), as in [28]. Clearly,
the ASI method could also be applied to other inverse problems, or combined with
alternative (globally convergent) inversion methods [17].

Starting from the iteratively adaptive inversion, we can also deduce a grid
based method with a similar framework: Instead of minimizing the misfit Jδ(u)
for u ∈ Ψm in iteration m, we minimize the misfit with respect to the correction
term. To do so, we find dm,δ that minimizes Jδ(um−1,δ + d) for d ∈ Θm, and then
set um,δ = um−1,δ +dm,δ. Then an analog version of Theorem 6.1 holds true, where
the angle condition is still necessary to prove convergence. Clearly, Θm should
not consist of all grid based basis functions. Instead, it should only consist of
a few nodal basis functions with the largest sensitivities, satisfying the ℓ∞- and
ℓ2-criterion.
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